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Abstract

The onset of flower formation and the process of flower development are
excellent paradigms for developmental studies in plants as they are governed
by complex regulatory networks. Extensive forward and reverse genetic
analyses have led to the identification of many key regulatory genes that form
part of these networks. Additional factors are now being characterized at the
genome-wide level using multi-omics integrative methods. The genome-
wide characterization of regulatory networks is key to understand, and
eventually manipulate, the basis of plant development and physiology.
However, and despite these advances, the emergent global, dynamic view of
flower developmental processes is lacking an important component: the
proteome. Current mass spectrometry methods now allow exploring in
depth the composition of a proteome in its expression and complexity, its
relationship with the transcriptome and even its dynamic posttranslational
modifications. In recent years, it has also become evident that there is a
substantial and still uncharted fraction of eukaryotic proteomes that is
mainly composed of small, unannotated proteins and peptides (the non-

conventional’ peptidome), with functions yet to be discovered.

The Arabidopsis genome was sequenced 20 years ago. Since then, there have
been plenty of public data concerning transcriptomes and their modulation
throughout organ development, while also describing its plasticity in
response to the environment. Conversely, the Arabidopsis proteome is far
less comprehensively characterized. To fulfil this gap, a promising approach
is the use of mass spectrometry methods for integrating its data with RNA
sequencing. In this Thesis, the pAP1:AP1-GR apl cal Arabidopsis floral
induction system was used to characterize genome expression at the
proteome level throughout early Arabidopsis flower development, and its
correlation to unbiased transcript expression data. Shotgun proteomic
procedures (LC-MS/MS) and transcript profiling experiments (RNA-seq)
were performed following a temporal series of five subsequent days after the

activation of the flower developmental program. Almost 9,000 proteins and
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around 23,000 transcripts were identified, of which 2,037 proteins and 8,125
transcripts showed significant abundance changes throughout the time-
course. These experiments allowed to substantially expand the size or scope
of the transcriptome (i.e., collection of genes) previously known to change its
expression during the early stages of flower development; to identify RNA-
protein pairs in which RNA and protein showed similar (correlated) or
opposite (anti-correlated) expression trajectories and that are involved in
different processes, such as photosynthesis, fatty acid metabolic processes,
or amino acid biosynthesis; and, through the combined analysis of this novel
transcriptomic dataset and previously published AP1 genome-wide binding
data (ChIP-seq), identify novel putative AP1 direct targets.

Eukaryotic genomes contain many unannotated short open reading frames
(sORFs) that, localized in different types of RNA molecules, including in long
non-coding RNAs (IncRNAs), may encode and produce biologically functional
peptides. Part of this Thesis is focused on the characterization of the
Arabidopsis flower peptidome, using the floral homeotic mutants apetalal,
apetalaZ, apetala3, pistillata, and agamous in comparison to the wild type.
For peptide identification by LC-MS/MS, an extensive database of
hypothetical novel Arabidopsis peptides was created. It comprised putative
surf-encoded peptides (SEPs) from intergenic regions, UTRs, ‘non-coding’
RNAs and other transcripts. In total, 1,874 hypothetical peptides were
detected by mass spectrometry, from which, 132 peptides were selected as
candidates for further studies (60 of them were also predicted to be
specifically expressed, or at least enriched, in one type of floral organ).
Around 25% of the 132 peptide candidates belong to putative gene families
in A. thaliana, and 103 have possible homologs in other plant species. In
addition, different gene expression patterns for several peptide candidates
were identified, with many of them showing specific expression in stamens

during flower development.



iii

Resumen

El inicio de la formacion floral y el posterior desarrollo de las flores son
paradigmas excelentes para los estudios de desarrollo en plantas, ya que se
rigen por complejas redes de regulacién. Gracias a andlisis genéticos
extensivos directos e inversos ha sido posible identificar multitud de genes
reguladores clave para estos procesos que forman partes de dichas redes de
regulacion. Actualmente, hay una serie de factores adicionales que se estan
caracterizando a nivel del genoma gracias a métodos de integraciéon de
diferentes Omicas (‘multi-omics’). La caracterizacién de las redes de
regulacion a nivel del genoma global es clave para entender, y eventualmente
manipular, las bases del desarrollo y la fisiologia de las plantas. Sin embargo,
y a pesar de estos avances, la vision global y dindmica del proceso de
desarrollo floral carece de un componente fundamental: el proteoma. Los
métodos actuales de espectrometria de masas permiten explorar en
profundidad la composiciéon de un proteoma en su expresion y complejidad,
su relaciéon con el transcriptoma e incluso sus modificaciones
postraduccionales. En los ultimos afios también se ha puesto de manifiesto
que existe una parte sustancial de los proteomas eucariotas que no esta
anotada y estd compuesta por péptidos y proteinas sin caracterizar (el

peptidoma ‘no convencional’), con funciones todavia por descubrir.

El genoma de Arabidopsis se secuencid hace 20 afios. Desde entonces,
diversos repositorios publicos han recogido informacion acerca de su
transcriptoma y su modulaciéon a lo largo del desarrollo, describiendo
también su plasticidad en respuesta al ambiente. En cambio, la
caracterizacion del proteoma de Arabidopsis ha sido mucho menos
exhaustiva. En este respecto, es posible integrar la espectrometria de masas
y la secuenciaciéon de RNA. En esta Tesis, el sistema de inducciéon floral
pAP1:AP1-GR ap1 cal se ha utilizado para caracterizar la expresion génica a
nivel de proteoma a lo largo del desarrollo floral temprano de Arabidopsis, y

su correlacion con datos de expresion del transcriptoma. Se han combinado
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métodos de secuenciaciéon de proteinas (LC-MS/MS) y experimentos para la
anotacion del transcriptoma (RNA-seq) siguiendo una serie temporal de los
cinco dias posteriores a la activacién del programa de desarrollo floral. Se
identificaron casi 9000 proteinas y unos 23000 genes, de los cuales, 2037
proteinas y 8125 genes mostraron cambios significativos en su abundancia a
lo largo de la serie temporal. Estos experimentos han permitido ampliar
notablemente el tamafno de la coleccién de genes conocidos por tener
cambios en sus niveles de expresién a lo largo de los estadios tempranos del
desarrollo floral; identificar parejas RNA-proteina en las que ambas
moléculas mostraban un patrén de abundancias similar (correlacionados), u
opuesto (anti-correlacionados) y que estdn involucradas en diferentes
procesos, como la fotosintesis, el metabolismo de &cidos grasos o la
biosintesis de aminoacidos; y, gracias al analisis combinado de estos nuevos
datos de transcriptémica y datos previamente publicados sobre la union de
AP1 en todo el genoma (ChIP-seq), identificar posibles dianas de AP1 nuevas.

Los genomas eucariotas contienen muchos marcos de lectura abiertos cortos
(sORFs) que, localizados en diferentes tipos de moléculas de RNA, incluyendo
RNA largos no codificantes (IncRNAs), pueden codificar y producir péptidos
biolégicamente funcionales. Parte de esta Tesis estd enfocada a Ia
caracterizacion del peptidoma floral de Arabidopsis, utilizando los mutantes
homeodticos de floracion apetalal, apetalaZ, apetala3, pistillata y agamous en
comparacion con las plantas de tipo silvestre. Para identificar péptidos por
LC-MS/MS, se cred una extensa base de datos que incluye posibles péptidos
codificados en sORFs (SEPs) en regiones intergénicas, UTRs, RNAs “no
codificantes”, y otros transcritos. En total se identificaron 1874 péptidos
hipotéticos, de los cuales 132 fueron seleccionados como candidatos para
otros analisis (ademas se predijo que 60 de ellos podrian estar expresados
especificamente, o al menos enriquecidos, en alguno de los tipos de 6érganos
florales). En torno al 25% de los 132 péptidos candidatos pertenecia a una
posible familia de genes en A. thaliana, y 103 tenian al menos un homoélogo
en otras especies de plantas. Ademas, se encontraron diferentes patrones de
expresion para muchos de los péptidos candidatos, en concreto, la mayoria

mostré expresion especifica en los estambres a lo largo del desarrollo floral.



Resum

L’inici de la formacid floral i el posterior desenvolupament de les flors s6n
paradigmes excel-lents en I'estudi del desenvolupament de plantes, ja que es
regeixen per complexes xarxes de regulacié. Gracies a analisis genetiques
extensives directes i inverses ha sigut possible identificar multitud de gens
reguladors clau en aquets processos que formen part d’aquestes xarxes de
regulaci6. Actualment, hi ha una série de factors addicionals que s’estan
caracteritzant a nivell del genoma gracies a metodes d’integraci6 de diferents
omiques (‘multi-omics’). La caracteritzaci6 a nivell del genoma global es clau
per a entendre, i eventualment, manipular les bases del desenvolupament i
la fisiologia de les plantes. Tanmateix, i a pesar d’aquets avancaments, la visié
actual i dinamica d’aquets processos de desenvolupament manca d'un
component fonamental: el proteoma. Els métodes actuals d’espectrometria
de masses permetran explorar en profunditat la composicié d'un proteoma
en la seva expressio i complexitat, la seva relacié amb el transcriptoma, les
modificacions postraduccionals dinamiques i, fins i tot, la seva composicid
general. Als udltims anys s’ha posat de manifest que existeix una part
substancial dels proteomes eucariotes que no esta anotada i que esta
composta per peptids i proteines sense caracteritzar (el peptidoma ‘no

convencional’), amb funcions encara desconegudes.

El genoma d’Arabidopsis es va seqiienciar fa 20 anys. Des-de llavors, diversos
repositoris publics han recogut informacié sobre el seu transcriptoma i la
seva modulaci6 durant el desenvolupament, descriuen també la seva
plasticitat en resposta a I'ambient. En canvi, la caracteritzacié del proteoma
d’Arabidopsis ha sigut molt menys exhaustiva. En aquest sentit, és possible
integrar I'espectrometria de masses i la seqiienciacié de RNA. En aquesta
Tesi, el sistema d’inducci6 floral pAP1:AP1-GR ap1 cal ha sigut utilitzat per
caracteritzar l'expressié génica a nivell de proteoma al llarg del
desenvolupament floral inicial d’Arabidopsis, i la seva correlacié amb dades
d’expressio del transcriptoma. S’han combinat métodes de seqiienciacié de

proteines (LC-MS/MS) i experiments d’anotaci6 de transcriptoma (RNA-seq)
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a una série temporal durant els cinc dies posteriors a I'activacié del programa
de desenvolupament floral. Es van identificar quasi 9000 proteines i uns
23000 gens, dels quals, 2037 proteines i 8125 gens van mostrar canvis
significatius en la seva abundancia al llarg de la série temporal. Aquets
experiments han permes ampliar notablement la mida de la col-leccié de gens
coneguts per tenir canvis al seus nivells d’expressi6 al llarg dels estadis
primerencs del desenvolupament floral; identificar parelles RNA-proteina a
les que ambdues molécules mostraven un canvi als seus nivells d’expressio
similars (correlacionats) o oposats (anti-correlacionats) i que estan
involucrades a diferents processos, com la fotosintesi, el metabolisme d’acids
grassos o la biosintesi d’aminoacids; i, gracies a I'analisi combinat d’aquets
nous dades de transcriptomica i dades previament publicats sobre la unié
d’AP1 a tot el genoma (ChIP), identificar possibles dianes d’AP1 noves.

Els genomes eucariotes contenen molts marcs de lectura oberts corts
(sORFs) que, localitzats a diferents tipus de molécules de RNA, inclouen RNA
llargs no codificants (IncRNAs), poden codificar péptids biologicament
funcionals. Part d’aquesta Tesi esta enfocada a la caracteritzacié del
peptidoma floral d’Arabdopsis, fent servir els mutants homeotics de floracid
apetalal, apetala2, apetala3, pistillata i agamous en comparacié amb les
plantes de tipus silvestre. Per identificar peptids, es va crear una extensa base
de dades que va incloure potencial péptids codificats en sORFs (SEPs) en
regions intergeniques, UTRs, RNAs “no codificants” i altres transcrits. En
total, es van identificar 1874 péptids, dels quals 132 van ser seleccionats com
candidats per altres analisis (a més, es va predir que 60 d’aquets estarien
expressats especificament, o almenys enriquits, en algun dels tipus d’organs
florals). Aproximadament 25% dels nous SEPs pertanyen a una possible
familia genica en A. thaliana, i 103 té possibles homolegs en altres especies
de plantes. A més, es van trobar diferents patrons d’expressié per molts dels
peptids candidats, concretament, la majoria presentava expressioé especifica

als estams durant el procés de desenvolupament floral.
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Premises and hypothesis

This Thesis is built on the following premises:

iy

2)

3)

4)

5)

Integrative multiomics analyses provide a wider interpretation of
biological processes compared to approaches solely based on one
type of omics.

Abundance levels of proteins and their corresponding mRNAs are not
necessarily correlated.

Time-series analyses can provide a broad information on the
fluctuating dynamics of regulatory networks controlling flower
development.

The true extent of the peptidome of an organism is difficult to
estimate due to the several possible origins for peptides and technical
and experimental issues in peptide detection and identification.
Selection of a proper extraction method is key for peptide LC-MS/MS

studies.

Based on the aforementioned premises, the following hypothesis is

proposed for this Thesis:

“A more global understanding of the flower development process can be

achieved from the combination of proteomics, peptidomics and

transcriptomics studies.”

The general aim of this work is to characterise the proteome of Arabidopsis

in its expression and complexity, relationship with the transcriptome, and

even in its composition, since it has become clear that plant genomes encode

a substantial number of yet unknown peptides, and peptides play crucial

roles in plant development and physiology.
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Objectives

This Thesis combines genomic and proteomic technologies to advance
towards the goal of a complete understanding of the genome-wide regulatory
network of flower development in Arabidopsis, as well as to help
understanding the functional information encoded in its genome, with a

focus on the peptidome.

The specific objectives for this PhD Thesis are:

Aim 1.- To establish a chronology of protein expression throughout (early)
flower development and correlate these trajectories to unbiased transcript

expression data.

1.1 To perform shotgun proteomics experiments with the pAP1:AP1-GR
ap1 cal floral induction system.

1.2 To develop a data analysis pipeline for the proteomics time-course
data.

1.3 To perform transcript profiling experiments (RNA-Seq).

1.4 To correlate proteomics and transcriptomics data analyses.

Aim 2.- To characterise the flower Arabidopsis peptidome (sORFs and hidden
coding sequences in the Arabidopsis genome) and start deciphering its roles in

flower development.

2.1 To optimise a peptide extraction protocol and perform shotgun
peptidomics experiments using the Arabidopsis floral organ identity
mutants.

2.2 To develop a data analysis pipeline for the peptidomics data.

2.3 To identify novel, sORF-derived, unannotated peptides and analyse
their intrinsic characteristics.

2.4 To characterise a group of selected peptides via transgenic lines

expressing reporter constructs and loss-of-function mutants.
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General introduction (I)

Part of this chapter was published as:
Multi-omics methods applied to flower development.

Alvarez-Urdiola, R., Matus, ].T., Riechmann, J.L. (2023). Methods in Molecular
Biology.
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Chapter 1. General introduction (I)

1.1 Key points to understand flower development

The development of multicellular organisms depends on the capacity of cells
to orchestrate a wide variety of gene expression programs, which result in
the presence, absence, and differential accumulation of RNAs and proteins
and allow the differentiation of organs and tissues. This capacity largely
relies on the genome, in the form of cis-regulatory sequences that interact
with transcription factors, co-regulators, and other types of regulatory
proteins or RNAs, and in the structural organization of the genome,
controlled by histones and their modifications, as well as by other epigenetic
processes. These elements determine when, where, and how genes are

expressed.

The onset of flower formation and the process of flower development in the
Angiosperms constitute excellent paradigms for developmental studies in
plants. Extensive genetic analyses have led to the identification of many key
regulatory genes controlling these processes, and their corresponding gene
regulatory networks are now being characterized at the genome-wide level

using omics technologies.

Inflorescence development and architecture can widely vary among plant
species, yet the basic organization of floral structure is extensively
conserved. In angiosperms, flowers are formed when the shoot apical
meristem (SAM) is transformed into an inflorescence meristem (IM) after the
transition from vegetative to reproductive behaviours. This crucial shift from
vegetative to reproductive growth is followed by the activation of a small
number of floral meristem identity genes, such as LEAFY (LFY) and
APETALA1 (AP1), which specify floral meristems. These genes were
originally identified in mutant screens (i.e., forward genetics approach) of
plants with defects in early flower development. Floral meristems (FM) arise
from the flanks of the IM and develop into flowers (CHAHTANE ET AL., 2023).
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Flowers are frequently composed of four different classes of organs arranged
in four whorls. The most exterior first and second whorls include the sepals
and petals, respectively, while the internal third and fourth whorls represent
the pollen-producing stamens and carpels, respectively. The appropriate
development of a flower requires these whorls to be formed in a sequential
manner, following a canonical pattern. In the thale or mouse-ear cress
Arabidopsis thaliana, a plant model species belonging to the Brassicaceae
family, sepal primordia are initiated first, followed by those determining
petals and stamens. After that, carpels initiate and develop from the centre of
the developing flower (SMYTH ET AL., 1990). Previous studies have identified
several transcription factors and other regulatory molecules as responsible
for initiating floral developmental programs in a partially overlapping
manner. Understanding their regulatory networks has been a long-standing
challenge in plant developmental genetics in relation to the specification of
the distinct floral organs.

1.1.1 Floral organ identity: the ABC model

The organ identity genes, responsible for the formation of different organs in
the four whorls, are activated by AP1 and LFY after the initiation of the floral
meristems. The ABC model of flower organ identity describes how floral
organs are specified by the domain-specific interaction of homeotic genes
coding for different transcription factors and by their target genes. This
model was proposed based on genetic studies in the A. thaliana floral
homeotic mutants, apetalal (ap1), ap2, ap3, pistillata (pi) and agamous (ag),
in which there is a replacement of one type of floral organ by another
(BOWMAN ET AL., 1991; COEN & MEYEROWITZ, 1991). The ap1 and ap2 mutants
show organ identity defects in the first and second whorls (determining
sepals and petals). In ap1, sepals are transformed into bract-like organs, and
petals are absent; while in apZ2, petals are missing or transformed into
stamens and sepals are transformed into carpel-like structures. The mutants
ap3 and pi are defective in the second and third whorls (petals and stamens):
petals are replaced by sepals, and stamens, by carpels. Finally, in ag, stamens
are replaced by petals, and carpels, by extra whorls of sepals and petals
(BOWMANET AL, 1991) (Figure 1.1).
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Figure 1.1. Floral homeotic mutants of Arabidopsis.

Mature flowers of A) Landsberg erecta (Ler, wild type flower),
B) ap1-1, C) ap2-2, D) ag-1, E) pi-1, and F) ap3-3. Taken from
(WELLMERET AL., 2004).

As described by the ABC model, the activities of the genes being affected on
each homeotic mutant can be assigned to three different functions, namely
‘A’ (represented by AP1 and AP2 genes), ‘B’ (embodied by AP3 and PI), and ‘C’
(AG) with each function required for organ specification in different
meristematic regions. A-function genes specify sepals, and together with B-
function genes determine petals, while B- and C-function genes act together
leading stamen development. The C-function genes alone control carpel
formation (COEN & MEYEROWITZ, 1991).

Modifications and expansions of the ABC model - but still maintaining its
basic tenets - have been developed through the years in order to
accommodate newly identified genes and gene functions as well as the floral
diversity that exists among angiosperm species (e.g., (PAJORO, BIEWERS, ET AL.,
2014; THOMSON & WELLMER, 2019)). The original model was extended to the
ABCDE model by (THEIREN, 2001; THEIREN & SAEDLER, 2001), with the
inclusion of D-function genes, such as SEEDSTICK (STK), SHATTERPROOF1
(SHP1) and SHPZ2, whose encoded proteins interact with E-class proteins to
control ovule development (COLOMBO ET AL. 2010; FAVARO ET AL. 2003;
PINYOPICH ET AL., 2003). On the other hand, E-function genes, like SEPALLATA1
(SEP1), SEP2, SEP3, and SEP4, are involved in the specification of all types of
flower organs (DITTA ET AL., 2004; PELAZ ET AL., 2000).
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As A-function mutants could only be found in A. thaliana, and A- and E-
function genes are both involved in specifying floral meristems, a modified
(A)BCD model was proposed, with (A) incorporating both A- and E-functions
(CAUSIER ET AL., 2010; F. WU ET AL., 2017). Similarly, C- and D-functions in the
Angiosperms are traced back to a combined C/D-function provided by AG-
like genes in extant gymnosperms and stem group seed plants (GRAMZOW ET
AL., 2014). Hence, the model could be modified again into an (A)B(C) model
with (C) encompassing C- and D-function genes. The (C) function can specify
reproductive organ identity, and its expression distinguishes reproductive
from non-reproductive organs (THEIREN ET AL., 2016) (Figure 1.2).

ABC model ABCDE model (A)BCD model (A)B(C) model

Zt'als Stamens§ @ ZE? g (j? @

Carpel % % %

Sepals ¥ Ovules “ a a a a %
L) BN D B HD B

A .- e
Figure 1.2. Proposed models for organ identity determination in
A. thaliana.
The upper part of the figure depicts the tetrameric protein complexes
formed by different classes of homeotic genes described in the floral
quartet model. Each combination functions in specific whorls of the
flower to specify floral organ identity. The colours of the proteins
(circles) indicate the classes to which they belong. “(A)” represents the

combination of A- and E-class genes, and “(C)”, the combination of C-
and D-class genes. Adapted from (THOMSON & WELLMER, 2019).

1.1.2 Molecular control of flower development

The majority of (A)B(C) genes code for MADS-domain transcription factors
(MTFs) with the exception of APZ which codes for an Ethylene Response
Factor (ERF) type transcription factor (TF). MADS-domain proteins harbour
DNA-binding, nuclear localization and protein-protein interaction domains
required to fulfil their roles as (A)B(C) proteins. The floral quartet model

describes how the flower organ identity is specified during development by
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tetrameric protein complexes composed of these MADs-domain proteins.
These floral quartet complexes (FQCs) are asumed to function as
transcription factors by binding to the DNA of their target genes, activating
or represing them to control the emergence and development of the
respective floral organs (THEIREN, 2001). Homeotic and other flower
development genes can also enhance or repress each other’s expressions,
resulting in a complex and stage-dependent transcriptional regulatory
network (PAJORO, MADRIGAL, ET AL., 2014) (Figure 1.3).

The MADS-domains of the two dimers of each tetrameric complex bind to
proximate CArG-box sequences (CArG: C-A-rich-G; consensus: 5’-
CC(A/T)6GG-3’) to induce the looping of chromatin (THEIREN, 2001; THEIREN
& SAEDLER, 2001). First, a single CArG box and its flanking regions are
recognised by a MTF dimer via a combination of base and shape readout.
Attractive or repulsive forces between the dimerization interfaces of two
interacting MTFs facilitate or impede dimerization. The distance between
two neighbouring CArG boxes and whether both are directed to the same site
of the DNA double helix determine whether FQCs formation is favoured or
not. In addition, the ability to form tetramers facilitates cooperative binding
of a second MTF dimer while looping the DNA in between both binding sites
(KAPPELET AL., 2023) (Figure 1.4).

The possible interaction of FQCs with chromatin acting as ‘pioneer
transcription factors’ to regulate the expression of their target genes has
been described by (THEIREN ET AL., 2016). FQCs would act as sequence-
specific transcription factors with (half-) nucleosome-like properties that
help to establish a permissive or repressive chromatin modification at CArG-
box-containing promoters. After being incorporated to chromatin, in a gene-
activating case, the FQCs would recruit histone-modifying factors, leading to
the recruitment of the basal transcriptional machinery. Finally, the presence
of at least one transactivation domain (TAD) in a DNA-bound FQC recruits
the basal transcription machinery and eventually initiates transcription at
the transcriptional start site (TSS) (KAPPELET AL., 2023) (Figure 1.4).
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Figure 1.3. Putative target gene networks at stage 4 and stage 8 of
flower development reflecting preferential binding of AP1 and
SEP3 at different time points.

Representative Gene Ontology (GO) categories are included: meristem
development, meristem maintenance, regulation of flower
development, axis specification, and floral organ development (sepal,
petal, stamen, and carpel development). Only genes that belong to these
categories and that were found to be preferentially bound by either
APETALA1 or SEPALLATA3 on a comparison of floral stages 4 and 7/8
are included. Black line indicates common targets, while pink line
indicates AP1-specific targets, and green line indicates SEP3 targets.
Dashed lines are used to indicate gene with significant (FDR <0.001)
TF-binding peak, while solid lines for genes with higher peak
respectively at stage 4 or stage 8. Grey: genes not bound at the specific
stage. Red: upregulated genes. Blue: downregulated genes. Taken from
(PAJORO, MADRIGAL, ET AL., 2014).
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Figure 1.4. Possible mechanisms involved in FQC target gene
recognition. Based on (GOSLIN ET AL., 2023; KAPPEL ET AL., 2023).

Another important aspect for the specificity of the FQCs is the cofactor
binding (GOSLIN ET AL., 2023). The specificities of the different floral organ
identity MTF tetramers could be in part a result of their interactions with
different combinations of additional transcription factors on the promoters
of target genes (NAGY & NAGY, 2020) (Figure 1.4).

The floral quartet model is well supported by experimental evidence. For
instance, mass spectrometry analyses demonstrated the existence of all the
major binary interactions proposed in the floral quartet model and provided
clues towards deciphering the specificity of their interaction with DNA
(SMACZNIAK ET AL, 2012), even though their exact stoichiometry remains
unknown. As the MADS-box genes involved in flower development show very
specific and restricted expression patterns, what genes are expressed where
determines the proteins that could interact from the quartets. Moreover, the
induction of DNA looping by floral quartets has been demonstrated in vitro
and in vivo (MELZER ET AL., 2009; MENDES ET AL., 2013), although it remains
unclear whether it is a prerequisite for floral quarter activity. However, the
model of FQCs evicting nucleosomes to activate or repress chromatin
modifications (THEIREN ET AL., 2016) is not well supported by experimental
evidence yet.
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1.1.3 APETALA 1 as a main orchestrator of flower meristem initiation
and development

In Arabidopsis, flower development is initiated by LFY. LFY encodes a TF and
is up-regulated by the SUPPRESSOR-OF-OVEREXPRESSION-OF-CO 1 (SOC1)
and AGAMOUS-LIKE 24 (AGL24) MADS-domain proteins, which are induced
throughout the inflorescence meristem by environmental and endogenous
cues. Auxin phytohormone also helps in the induction of LFY expression by
defining floral meristem initiation sites. LFY is expressed specifically in floral
primordia because its induction in the SAM is repressed by the TERMINAL
FLOWER1 (TFL1) inflorescence identity protein. In the floral primordium,
LFY induces AP1 and its paralog CAULIFLOWER (CAL), which regulate LFY
with positive feedback, while repressing SOC1, AGL24 and TFL1. Thus, the
floral fate of the new meristem is stabilised (BOWMAN ET AL., 1993) (Figure
1.5).
TFLl/
Auxin
T Lg( — AP1
CAL

soc1 /:///
AGL24 Y

Figure 1.5. Interactions between major floral regulators.
Red arrows depict activation and blue barred lines indicate repression.

In addition to its early-stage role during the specification of floral meristems,
AP1 function is subscribed within the (A)B(C) model, as it promotes both
sepal and petal identity (THEIREN ET AL., 2016). In apI mutants, the sepals are
transformed into leaf-like structures with petals failing to develop. In the
axils of these leaf-like structures, secondary flowers arise that repeat the
same pattern as the primary ones (BOWMAN ET AL., 1993; MANDELET AL., 1992).

The AP1 network had been extensively delineated through genetic studies.
However, to better understand the regulatory networks that underlie the
events that take place after the activation of AP1, it was necessary to study
the downstream AP1 targets. The result was a highly interconnected network
with AP1 acting as a transcriptional orchestrator controlling the expression
of a wide variety of TFs and other types of genes (KAUFMANN ET AL., 2010).

AP1 acts predominantly as a transcriptional repressor during the earliest
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stages of flower development, whereas, at more advanced stages, it
predominantly activates regulatory genes required for floral organ
formation. In addition, AP1 also acts as a ‘pioneer transcription factor’
(PAJORO, MADRIGAL, ET AL., 2014), directly binding condensed chromatin

exerting both positive and negative effects on transcription.

1.1.4 The ap1 cal floral induction system

The floral meristem identity gene AP1 and its paralog CAL control the onset
of Arabidopsis flower development in a partially redundant manner
(FERRANDIZ ET AL., 2000). In an apl cal double mutant background, the
AP1/LFY positive feedback is absent and TFL1 is not repressed by AP1/CAL
in the nascent floral meristem. Consequently, young flower primordia cannot
maintain LFY expression and start expressing TFL1 (Figure 1.5). As a result,
plants do not transition to flowering and, instead, exhibit massive over-
proliferation of undifferentiated inflorescence-like meristems, leading to a
cauliflower-like appearance (AZPEITIA ET AL., 2021; BOWMAN ET AL., 1993;
KEMPIN ET AL., 1995).

The ap1 cal background allowed to create a floral induction system based on
the expression of AP1 fused to the binding domain of the rat glucocorticoid
receptor (GR). At first, under the control of the 35S promoter (WELLMER ET
AL, 2006), but later, of the endogenous promoter of AP1 (O'MAOILEIDIGH ET
AL, 2023). The activation of the AP1-GR fusion protein by applying
dexamethasone (DEX) to the cauliflower structure triggers flower formation

synchronously throughout the meristematic tissue (Figure 1.6).

The ap1 cal floral induction system has served for the study of early flower
development in Arabidopsis at genomic and transcriptomic level (KAUFMANN
ET AL, 2010; PAJORO, MADRIGAL, ET AL., 2014; WELLMER ET AL., 2006). The
integration of transcriptomics and regulomics (i.e., ChIP-seq studies) has
been used in combination with this system to explore the time-scaled
regulatory networks of AP1 (KAUFMANN ET AL., 2010), SEP1 (PAjoRro,
MADRIGAL, ET AL., 2014), and LFY (GOSLIN ET AL., 2017), for example. However,
proteomics or metabolomics methods have never been used in the AP1

induction system.
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In this Thesis, [ extend the analysis to the proteomic level, also comparing the

data with unbiased transcriptomic data (RNA-sequencing).

Figure 1.6. The pAP1:AP1-GR ap1 cal floral induction system.

A) Wild-type-like Arabidopsis flower developed after treatment with
DEX. B) Flowers developed after treatment of inflorescence-like
meristems with “mock” solution. C) pAP1:AP1-GR apl cal mutant
cauliflower-like inflorescence meristem before DEX induction. D)
Inflorescence meristem 6 days after the induction of flower
development triggered by DEX. Based on (O’MAOILEIDIGH ET AL., 202.3).

1.2 Integrative genome-wide analyses and their association to
proteomic data to understand plant biology

For the last fifteen years, the technological advances, and lower costs of
genome-wide approaches, together with the enormous increase of
computational biology tools to process large biological datasets (often
referred as omics), are causing a shift in the way developmental studies in
plants are approached. Several studies of reproductive organ development
have used genomic analyses of transcription factors and global gene
expression changes for modelling complex gene regulatory networks
(reviewed in (MATEOS ET AL., 2017; PAJORO, BIEWERS, ET AL., 2014; WELLMER &
RIECHMANN, 2010; WILS ET AL., 2017)).

As a result, hundreds of target genes of the floral homeotic factors in A.
thaliana have been identified through a combination of genome-wide binding
analyses and transcriptomics studies (KAUFMANN ET AL., 2010; PAJORO,
MADRIGAL, ET AL., 2014; WELLMER ET AL., 2006). Nevertheless, the emergent
global and dynamic view of developmental processes requires an important
component: the proteome, in its expression, complexity and relationship

with the transcriptome. Thus, to assert the whole comprehension of a
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network from a global perspective requires the integration of several types
of omics data, including proteomics approaches (DECOURCELLE ET AL., 2015;
KOEHLER ET AL., 2015; LE SIGNOR ET AL., 2017; MERGNER ET AL., 2020).

Proteomics became a valuable tool to uncover the molecular background of
many Dbiological processes including plant stress responses and
developmental and signalling processes. The last advancements of this
approach have been made possible by significant improvements in methods
of protein extract preparation, separation of proteins and peptides, mass
spectrometry instrumentation and downstream bioinformatics analyses
(TAKACET AL., 2017).

Genomics and transcriptomics are closer to the genotype of the studied
organisms, whereas proteomics and metabolomics are closely related to
their phenotype. Through these technologies, research has described in
depth the hierarchical levels of plant organization and functioning,
improving the odds to predict the behaviour of whole plants (phenome) as a
response to genetic perturbations and/or environmental changes (DO
AMARAL & Souza, 2017).

1.2.1 Genomics and transcriptomics methods as the most utilized

DNA sequencing-based technologies are the most advanced of the omics
technologies in terms of standardized protocols, analytical tools, and public
repositories for data sharing. They provide unique opportunities to obtain
high quality data from small amounts of tissues or individual cells,
addressing a wide range of biological questions, including the understanding
of plant biology (MARDIS, 2017; VAN DIJKET AL., 2018).

Genome-wide analyses dependent on high-throughput technologies are
revealing the complexity and scope of regulatory networks that can be
fluctuant in time and largely plastic by the effects of the environment and that
are governed by transcription factors (MATEOSET AL., 2017; T.YUET AL., 2019;
Q.G.ZHUETAL., 2018), microRNAs (LUOET AL., 2018; SHIET AL.,2017), movable
factors (X. LIU ET AL., 2018), hormones (SAHA ET AL., 2016) and chromatin-
modifying proteins (ENGELHORN ET AL., 2018).
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The progression of genomics has played a noteworthy role in the field of
flower development research, primarily through the use of gene expression
profiling (transcriptomics; first DNA microarrays and subsequently RNA-seq
and related methods) (RICH-GRIFFIN ET AL., 2020; WELLMER ET AL., 2004, 2006)
and of genome-wide DNA binding studies (ChIP-Seq) (KAUFMANN ET AL.,
2010).

Nevertheless, high-throughput genomics and transcriptomics might still fall
sort of proving a full network description or understanding in the context of
biological function. This is because mRNA abundance is not necessarily a
reliable indicator of protein quantity and activity (YANSHENG LIU ET AL., 2016).
Combining data from genomics and transcriptomics with proteomics
(MERGNER ET AL., 2020) or metabolomics (GARCIA-MOLINA ET AL., 2020; MATUS,
2016) provides molecular information to further genetic and epigenetic

changes and variations with phenotypic alterations or differences.

1.2.2 Proteomics: from the sidelines to the mainstream

The analysis of the proteome of eukaryotic cells is challenging due to the
substantial diversity in the properties of the individual proteins that
compose it (e.g, abundance, stability, molecular weight, structure,
hydrophobicity, hydrophilicity, or variety of post-translational modifications
-PTMs-, among others), compared to the relative simplicity of DNA
molecules. This large heterogeneity represents a significant hurdle for
achieving ‘genome-wide’ coverage in proteomics experiments and
complicates the proteomics methodologies and procedures. Yet, proteomics
approaches provide an important contribution to understanding gene

function and cell organismal biology.

Along with an enhancement of throughput, sensitivity and resolution of
analytical technologies in mass spectrometry (MS), computational methods
have emerged focusing on the abundance and diversity of proteins in a
complex sample (ASLAM ET AL., 2017; GROSSMANN ET AL., 2010; MERGNER &
KUSTER, 2022; TAKAC ET AL., 2017). Current proteomics methods can identify
thousands of proteins in a sample, including information on their

posttranslational modifications.
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In plants, MS-based proteomics approaches have been applied for the
measurement of differential protein expression or the detection of PTMs
(Navrot et al,, 2011; Z. Zhang et al., 2017) in different tissues and biological
processes (reviewed in (MERGNER & KUSTER, 2022)). Deep proteome studies
have led to the development of proteome atlases of the major plant organs
for different plant species (ABRAHAM ET AL., 2013; DUNCAN ET AL., 2017; M.
KUMAR ET AL., 2022; MARX ET AL., 2016; MERGNER ET AL., 2020; SZYMANSKI ET AL.,
2017). Besides, cell type-specific proteome studies are crucial for a better
understanding of the unique biological functions and properties of individual
cell types in a tissue (DAl & CHEN, 2012), as well as subcellular plant
proteomics and predictions (BERNHOFER ET AL., 2018; BRUCE, 2000;
EMANUELSSON ET AL., 2001). As the proteome is in constant flux, several
proteome studies are based on temporal series (BASSAL ET AL., 2020) during
developmental processes (FENG ET AL., 2022), or stress responses (JAIN ET AL.,
2021; NIUET AL., 2021).

1.2.3 Multiomics approaches to maximize the power of data-driven
research

In omics-based analyses, collecting as much information as possible is
especially relevant to elaborate accurate biological models. The power of
omics could be enhanced by combining them with other experimental
methods, such as cell biology, biochemistry, molecular biology, and also other
omics (Figure 1.7). Numerous studies are based in the combination of
datasets from a single omics, obtained with the same or different techniques
in various parts of an organism, developmental stages, or related to different
transcription factors (D. CHEN ET AL., 2018; VALENTIM ET AL., 2015; ]. WANG ET
AL, 2017). Nevertheless, the possibility of combining results from more than
one type of omics has gained prominence in the past few years as a way to
explore different aspects of plant biology (KOEHLER ET AL., 2015; LE SIGNOR ET
AL., 2017; LEHMANN ET AL., 2021; MATUS, 2016; MERGNER ET AL., 2020; G. ZHU ET
AL.,, 2018). These integration studies are usually referred as multi-omics,

trans-omics, or integrated omics in the current literature.
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Figure 1.7. Integrated omics workflow.

Datasets can be integrated using machine learning and statistical
approaches to produce findings in the form of novel pathways and
networks, adding information to previously known processes, the
development of new biological models, or the detection at the
experimental level of proteins and peptides encoded in newly
annotated ORFs.

The integration of omics using statistical, or machine learning approaches
could lead to a better understanding of both known and unknown pathways,
draw more complex regulatory networks or propose novel data-driven
models, thanks to the combination of ‘closer to genotype’-datasets (i.e.,
genomics and transcriptomics) with those ‘closer to phenotype’ (i.e,
proteomics and metabolomics). Successful implementation of more than two
omics datasets is very rare (MISRA ET AL., 2019), although there are relevant
cases described in crops (e.g., (DECOURCELLEET AL., 2015; KOEHLERET AL., 2015;
YINGHAO LIU ET AL., 2022)). In this Thesis, I am focusing on the integration of

two types of omics: transcriptomics and proteomics.



General introduction (I) | 17

The correlation between mRNA expression levels and the abundance of their
matching proteins has been exhaustively studied in different processes and
species during the last years (reviewed in (D. KUMAR ET AL., 2016; YANSHENG
LIU ET AL., 2016; MANZONI ET AL., 2018)). While the genome is more or less
static through an organism’s life, its proteome and transcriptome vary
rapidly, albeit in a controlled manner, as a response to different
environmental perturbations and growth conditions. These changes are not
only due to transcript and protein expression levels, but also to
posttranscriptional (e.g., alternative splicing) and posttranslational (e.g.,
phosphorylation) control. Thus, to properly understand developmental or
environment-responsive cell processes, it is crucial to comprehend their
proteome expression patterns as a complement to their transcriptome levels
(D. KUMARET AL., 2016).

In the case of Arabidopsis, there are only a few studies that combine
transcriptomics and proteomics to analyse developmental processes, such as
embryogenesis (HUANG ET AL., 2022), seed germination (BAIET AL., 2021), leaf
development (OMIDBAKHSHFARD ET AL., 2021), and floral transition (X. WANG
ET AL., 2020). In addition, other studies in Arabidopsis have focused on the
photoperiodic control of its proteome (SEATON ET AL., 2018; UHRIG ET AL.,
2021).

In other plants, combined transcriptome-proteome analyses have already
been used to study petal shape in peonies (Y. WU ET AL., 2018), carotenoid
synthesis in maize (DECOURCELLE ET AL., 2015), and fruit development and
ripening in fruit trees such as orange (J. H. WANG ET AL., 2017) and pear (P.
WANG ET AL., 2023) trees; as well as reproductive development, in particular,
male reproductive development in cabbage (HAN ET AL., 2018; JIET AL., 2018;
KELLER ET AL., 2018; XING ET AL., 2018), female reproductive development in
peanut (ZHAO ET AL., 2015), and flower development in general in species as
jujube (R. CHEN ET AL., 2017) and loquat (JING ET AL., 2020) (Table 1.1).
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Table 1.1. Combined transcriptomics and proteomics studies in plants.

Aim of study

Correlation between RNA and protein levels

Reference

I. Development

A. thaliana
Characterization of protein changes during
seed germination

Analysis of leaf development

Study of early embryogenesis proteome
Study of transcriptome and proteome of
floral transition

Higher correlation between RNA levels at a timepoint and
protein levels at the next timepoint than at the same timepoint
Protein changes showed correlation with changes at
transcriptome level, but with a certain delay

Overall positive correlation

Weak correlation between RNA and protein levels, except for
55 genes which were DEGs and DAPs

(BAIET AL., 2021)

(OMIDBAKHSHFARD ET AL.,
2021)

(HUANGET AL., 2022)
(X. WANGET AL., 2020)

Maize

Study of the correlation between RNA and
protein abundance during leaf development

Significant positive correlations between RNA and protein
levels

(PONNALAET AL., 2014)

Cabbage

Characterization of a recessive male sterile
mutant

Analysis of Ogura cytoplasmic male sterility
Analysis of Ogura cytoplasmic male sterility

Similar changing trend (positive correlation) for most of the
detected RNA-protein pairs

Generally low correlation, except for some DEGs and DAPs
Poor correlation

(JETAL,, 2018)

(XINGET AL., 2018)
(HANET AL., 2018)

Jujube
Mapping of the jujube floral organ

Positive correlation between RNA and protein levels

(R.CHENETAL., 2017)

Loquat
Analysis of flower development

Positive correlation between DEGs and DAPs

(JINGET AL., 2020)

Pear tree
Proteogenomics atlas (fruit development)

Overall positive correlation

(P. WANGET AL., 2023)

Orange tree
Analysis of the differences among cultivars
during fruit development and ripening

Positive correlation between RNA and protein levels

(J. H. Wang et al., 2017)
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Pomegranate
Understanding the molecular mechanisms
under petaloidy in pomegranate

The correlation between DEGs and DAPs was higher than the
correlation between all genes and all proteins detected

(HUOETAL., 2023)

Watermelon
Quantitative transcriptomic and proteomic
analysis of fruit development and ripening

Low correlation

(Y.YUETAL, 2022)

II. Stress

Cucumber
Understanding post-germinative
development under salinity and drought

Good correlation between RNA and protein levels of DEGs and
DAPs

(DUETAL., 2021)

Maize
Multi-omics analysis of pathogen-induced
cell death

Low when comparing all RNA and protein pairs, stronger
when dividing the dataset into correlation modules

(BARGHAHN ET AL., 2023)

Tomato
Analysis of transcriptome and proteome
adaptation during heat stress response

Low correlation

(KELLERET AL., 2018)

Soybean
Study of roots grown under heat stress

Low correlation

(VALDES-LOPEZET AL., 2016)

Cotton
Study of genetic regulation of salt tolerance

Low correlation

(PENGET AL., 2018)

II1. Others

A. thaliana

Study of the photoperiodic control of the
proteome

Characterization of the diurnal dynamics of
the rosette proteome / phosphoproteome

Stronger correlations of transcript and protein abundance for
the arrhythmic transcripts

Most proteins with diurnal changes in abundance fluctuated
independently of their transcript levels

(SEATON ET AL., 2018)

(UHRIGET AL., 2021)

Sweet cherry
Creation of a proteogenomics atlas

Low correlation

(XANTHOPOULOU ET AL., 2022)
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1.2.4 Limitations in multiomics studies

Within integrative omics studies, the degree of correlation between
transcript and protein levels (and between changes in transcript and in
protein levels) is still a lingering issue (BISHOP & HAWLEY, 2022; YANSHENG LIU
ET AL., 2016) as, whereas some studies conclude that there is not a strong

correlation, in others such correlation is more apparent (Table 1.1).

In this regard, a general aspect of label-free quantitative proteomics (and LC-
MS/MS based metabolomics), which can hinder the subsequent data analysis
and its comparison with other omics data, is the high rate of missing values.
Statisticians defined three types of missing values depending on the nature
of the missingness: i) Missing Completely At Random (MCAR) and ii) Missing
At Random (MAR) values, which are due to minor errors or stochastic
fluctuations and to conditional dependencies respectively; and iii) Missing
Not At Random (MNAR) values, which have a targeted effect (LAZAR ET AL,
2016). These not assigned values (NAs) can be imputed by different methods,
that must be chosen depending on their nature.

As there are many types of NAs that coexist in most quantitative datasets,
hybrid strategies of imputation may be a better approach (JIN ET AL., 2021;
LAZAR ET AL., 2016). Despite the optimization of imputation methods for
proteomics, the sensitivity of extraction and quantification techniques highly
differ from those used in transcriptomics analyses. Moreover, the lack of
correlation among omics data could be also derived from the difficulties to
obtain truly comparable datasets. However, the observed differences might
also be caused by posttranslational regulation of protein levels (VOGEL &
MARCOTTE, 2013), or by their different expression and degradation kinetics,
as longer protein half-lives buffer changes in mRNA levels (CSARDI ET AL,
2015; OLIVA-VILARNAU ET AL., 2020; RAJ ET AL., 2006; TANIGUCHI ET AL., 2011).

Time-course studies may be an approach for addressing this gap, as
successive analyses at different time points could allow the discovery of
correlative behaviours of protein and mRNA levels through time (BAIET AL,
2021; OMIDBAKHSHFARD ET AL., 2021; TARAZONAET AL., 2018). In this regard, the
use of the AP1-GR floral induction system (O’MAOILEIDIGH ET AL., 2023), in
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combination with proteomics, offers an opportunity to explore this and other

questions in Arabidopsis early flower development.
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Chapter 2. Chronology of transcriptome
and proteome expression during early
flower development

2.1. Background

The Arabidopsis thaliana flower developmental program has represented a
proxy to understand the early steps of organ development in plants. In fact,
the onset of flower formation is a key regulatory event during the life cycle of
all angiosperms, and it is under a tight and widely-conserved genetic control
(THEIREN ET AL., 2016; THOMSON & WELLMER, 2019). The identification of the
roles of many transcription factors through forward and reverse genetic
analyses has allowed the understanding of their contribution in flower
initiation and development and other related developmental processes (e.g.,
fertilization and fruit formation) via gene regulatory networks (WILS ET AL.,
2017). However, a comprehensive view of a regulatory network requires the

integration of more than one type of omics data (e.g., (MERGNER ET AL., 2020)).

The characterization of the proteome as a complement of the transcriptome
is essential for understanding the different developmental and ambient-
responsive cellular processes, as transcriptome and proteome composition
can vary rapidly as a response to developmental perturbations and growth
conditions (D. KUMARET AL., 2016). The integration of mass spectrometry and
RNA-sequencing (RNA-seq) has been used to study the correlation, or lack
thereof, between transcriptome and proteome data in various organisms
(e.g., (EDFORS ET AL., 2016; GYURICZA ET AL., 2022; HOOGENDIJK ET AL., 2019; L.
JIANG ET AL., 2020; LINDEBOOM ET AL., 2018; SIDHAYE ET AL., 2023; D. WANG ET AL.,
2019)). Very few studies have specifically addressed this issue to
characterize developmental processes in plants, although there are examples
of the combination of omics to analyse the development of leaves
(OMIDBAKHSHFARD ET AL., 2021; PONNALA ET AL., 2014), flowers (R. CHEN ET AL.,
2017; JING ET AL., 2020; X. WANG ET AL., 2020), and fruits (J. H. WANG ET AL,
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2017; P. WANG ET AL., 2023; Y. YU ET AL., 2022), as well as seed germination
(BAIET AL, 2021) and embryogenesis (HUANG ET AL., 2022). The apparent lack
of correlation between transcript and protein levels found in some of those
studies signals the existence of complex control mechanisms for both types
of molecules, such as post-translational regulation of protein levels, and
different stability, or expression and degradation kinetics of RNA and
proteins (CSARDIET AL., 2015; RAJET AL., 2006). A possible approach to explore
if a higher correlation exists is the time-course study of a process, as there
might be a temporal shift between mRNA and protein level changes (BAIET
AL.,2021; HOOGENDIJK ET AL., 2019; HUANG ET AL., 2022; OMIDBAKHSHFARD ET AL.,
2021; P. WANGET AL., 2023).

In this regard, the APETALA1 (AP1)-based floral inducible system has been
used to study the early stages of flower development in A. thaliana through
genomic approaches (O’MAOILEIDIGH ET AL, 2023). The MADS-domain
transcription factor (TF) AP1 is a key regulator of floral meristem identity
and activation of flower development in Arabidopsis (LILJEGREN ET AL., 1999;
MANDEL ET AL, 1992; NG & YANOFSKY, 2001). The integration of the
transcriptome, cistrome, and epigenome associated to this TF led to a better
understanding of early flower development (KAUFMANN ET AL., 2010; PAJORO,
MADRIGAL, ET AL., 2014; WELLMER ET AL., 2006). However, these studies were
conducted using microarray setups, whereas in this work a non-biased
transcriptomics analysis (RNA-seq) was performed. Specifically, the floral
induction system pAP1:AP1-GR ap1 cal was used as a model to understand
non-biased abundance changes for transcripts (RNA-seq) and proteins (LC-
MS/MS) in a temporal sequence after the activation of the early flower
development programme. For the transcript-protein comparison to be
possible, an imputation guideline was developed for dealing with different
types of proteomic missing data existing in the quantitative MS dataset. Gene
and protein expression was analysed on a genome-wide scale, identifying
transcript-protein pairs with significant expression changes for both
molecules at different stages of flower development. The differences in
expression patterns from mRNA and proteins strongly suggest the existence

of complex regulatory mechanisms for protein and transcript levels.
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2.2 Results

2.2.1 Integrated transcriptome and proteome analyses in Arabidopsis
early flower development

An APETALA1-based floral induction system (pAP1:AP1-GR apl cal line)
(O’MAOILEIDIGH ET AL., 2013, 2023) was used to characterize proteomics (LC-
MS/MS) and transcriptomics (RNA-seq) changes during early flower
development. In this system, dexamethasone (DEX) treatment activates the
AP1 protein fused to a glucocorticoid receptor, causing the simultaneous
transformation of the inflorescence-like meristems of apl cal plants into
floral primordia and initiating the normal flower development process
(O’MAOILEIDIGH ET AL., 2023). DEX-treated plants were compared to mock-
treated samples to study whether and how mRNA levels were correlated to
proteome changes during early flower development. Samples were collected
at one-day intervals after floral induction, encompassing six time points up
to day 5 (as in (WELLMER ET AL., 2006)) which included up to stages 6-7 of
flower development (SMYTH ET AL., 1990) (Figure 2.1). More than 74,000
peptidic fragments from almost 9,000 proteins were identified in at least one
sample, and around 23,000 transcripts (84% of the Arabidopsis genome)
were quantified in the RNA-seq experiments. Overall, 8,708 protein-coding
genes were identified at both transcript and protein level, although only
7,003 pairs corresponded to quantifiable proteins. There were 95 proteins
that did not have their matching transcript in the RNA-seq dataset, although
expression of 88 of these genes was detected in previous microarray analyses
(WELLMER ET AL., 2006).

DEX
I+ } } } } |
Days DO D1 D2 D3 D4 D5
Stages IM 2 3 4 56 6-7

I

RNA-seq LC-MS/MS

Figure 2.1. Experimental setup.

Inflorescence samples of four biological replicates of 40 to 80 plants
each were collected immediately after DEX-solution application (D0),
and at 1, 2, 3, 4 and 5 days (D1-5) after the treatment.
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2.2.2 Set up of a reliability analysis to deal with missing values in the
proteomics dataset

The proteomics data corroborated a substantial number of annotated open-
reading frame borders based on the detection of 1,972 N-terminal and 1,560
C-terminal peptides (Figure 2.2A), of which 1,761 and 1,499, respectively,
were unique peptides (discarding peptide sequences that only differ by post-
translational modifications -PTMs-). N-terminal peptides often showed
cleavage of the initiator methionine, and N-terminal acetylation was strongly
dependent on the amino acid adjacent to the initiator methionine, as
previously described (MERGNER ET AL., 2020) (Figure 2.2B, C). The mass
spectrometry data covered, on average, around 21% of each protein
sequence, enabling the detection of 75,244 unique peptidic fragments for
8,924 proteins.
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Figure 2.2. Proteomics results overview.

A) Number of identified amino (N-ter) or carboxy (C-ter) terminal
peptides of proteins. B) Frequency of amino acids following the
initiator methionine in N-ter peptides with ([M]-X) or without ([-].M-X)
cleavage of the initiator methionine. X denotes the amino acid after the
start codon. C) Frequency of protein N-ter acetylation for amino acids
in B.
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As missing mass spectrometry detection data could representlow abundance
(below detection threshold) or simply no protein presence (i.e., Missing Not
At Random -MNAR- values) instead of technical artifacts (i.e.,, Missing At
Random -MAR- values), a pipeline with a series of rules was elaborated to
deal with non-assigned (NA) values in the proteomics dataset, taking
advantage of the characteristics of the experimental design, that is,
successive timepoints and replicates. In such pipeline, it was considered that
the reliability of detection of a protein would depend on the number of
missing values per timepoint (n = 4 biological replicates) in the dataset. A
protein at a given timepoint was classified as Reliably Detected (RD),
Unreliably Detected (UD), Unreliably Undetected (UU) or Reliably
Undetected (RU) depending on the number of replicates of that timepoint
(day) in which the protein showed NAs, and the number of NAs in the
immediately adjacent timepoints (Table 2.1; Figures 2.3A, B, 2.4; see also
Materials and Methods section 2.4.5). In total, 7,033 proteins (out of the
initial set of 8,924) were considered as ‘quantified’ (RD or UD in at least one
timepoint), whereas the remaining 1,891 MS-identified proteins were
discarded for further analyses because they were classified as RU or UU at all
timepoints (Figure 2.5A; the peptide-based coverage of 1,685 of the 1,891
discarded proteins was lower than 3 peptides per protein, Figure 2.5B,
pointing out the limitations of the mass spectrometry technique to measure
accurately the expression levels of some proteins). In each timepoint, about
5,000 proteins were classified as RD, and a total of 3,176 proteins were
classified as RD or UD for all timepoints (Figure 2.3C). The highest number
of RU proteins corresponded to day 0 (D0) timepoint (Figure 2.3C). Finally,
in the last step of the pipeline all the remaining NA values were imputed using
the kNN method.

To check for the appropriateness of the Reliability Analysis, a group of 69
flower-‘marker’ proteins was selected on the basis that their corresponding
genes are known as up- or down-regulated in floral organs and/or
throughout flower development (KAUFMANN ET AL., 2010; PAJORO, MADRIGAL,
ET AL., 2014; WELLMER ET AL., 2006), as well as seven ‘supermarker’ proteins
which met this requirement but also are well-characterized transcription

factors related to flower initiation and development (Sup Table 2.1).


https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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Approximately 60% of marker and all ‘supermarker’ proteins were retained
as ‘quantified’ after the Reliability Analysis (RA), as they had at least one
timepoint classified as RD or UD (Figure 2.4A).

Table 2.1. Description of the Reliability Analysis.
Supporting neighbour: 0, 1 or 2 NAs.
Unsupporting neighbour: 3 or 4 NAs.

Initial /Final timepoint Intermediate timepoint
(D0/D5) (D1-D4)
Reliabl
y 0or1NA
Detected (RD)
Unreliably
2 or 3 NAs + supporting neighbour
Detected (UD) bp gnelg
2 or 3 NAs +
Unreliably 2 or 3 NAs + unsupporting neighbour
Undetected (UU) | unsupporting neighbour OR
4 NAs + supporting neighbour
Reliably 4 NAs 4 NAs + unsupporting
Undetected (RU) neighbour
A AP3 c PBro uw!l uw |l ru
Before RA After RA kNN imputed
= 25 RA class
I o¢ ol * RD 88801
e
= up
g 15 oo oo o RU 1401 671
012345012345012345
Day 1157 984
B TFL1
10621036
Before RA After RA kNN imputed
© 25 RA class 1143 933
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}—
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E’ 15 . o9 * oo o RU
012345012345012345 0 25 50 75 100
Day Proportion [%]

Figure 2.3. Imputation of missing values considering their
biological context.

Log2(TOP3) abundances through time of AP3 (A) and TFL1 (B) before
and after the Reliability Analysis (RA), and after kNN imputation. C)
Proportion of proteins considered as RD, UD, UU, and RU for each time
point. For A-C: RD: Dark green, UD: Light green, UU: Light purple, RU:
Dark purple.
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Figure 2.4. Expression of the ‘supermarker’ proteins through the
time-course.

Representation for the 7 supermarker proteins (A) and AP1 (B) of the
log2(TOP3) protein abundance values through time before the
Reliability Analysis (RA), after the RA, and after kNN imputation, and
the normalized RNA counts.
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The effect of the RA and kNN imputation was also analysed by Principal
Component Analysis (PCA) and hierarchical clustering. PCA was performed
with the subset of proteins without missing values before performing the RA
and the imputation, and with all the proteins classified as ‘quantified” after
those data processing steps (Figure 2.6A). After the RA, the variability
observed (33% of which could be explained by PC1 and PC2, Figure 2.6B)
was discretely grouped by timepoint, most clearly in the case of DO and D1
but also for D2-D5 replicates (with the exception that replicate 3 of D5 was
closer to D4 replicates). Hierarchical clustering performed before and after
the RA and kNN imputation showed that after the classification and
imputation, replicates all clustered together by day, with adjacent days also
clustering together (Figure 2.6C). This clearer separation through time and
according to the flower developmental stages demonstrated the robustness
of the LC-MS/MS data followed by a Reliability Analysis and imputation
approach.
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Figure 2.5. Proteomics sequence coverage.

A) Distribution of peptide-based sequence coverage of proteins which
were Reliably or Unreliably Detected in at least one timepoint - day -
(quantified) and those that were Reliably or Unreliably Undetected at
every timepoint (discarded). B) Pie charts showing percentage and
number of proteins identified by < 3, 3-10 or > 10 peptidic fragments
before and after the Reliability Analysis.
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Figure 2.6. Effects of the reliability analysis in the data.
A) PCA of proteins without NAs before the RA and all proteins after the
RA and kNN imputation. B) Percentage of variances explained by each
principal component for the proteomics data (visualization of the
eigenvalues). C) Hierarchical clustering of all proteins before and after
RA and kNN imputation. R1D0 was discarded in all analyses because of
its great differences with the rest of the data (only 165 proteins were
quantified in this sample, see Materials and Methods section 2.4.5).
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2.2.3 Stage-variant proteins showed different abundance patterns
over time

To determine which of the 7,033 quantified proteins showed significantly
altered levels throughout early flower development, an ANOVA analysis was
performed, resulting in the classification of a total of 2,037 proteins as stage-
variant proteins (SVPs) (false discovery rate -FDR- = 5%), among which
1,430 were considered as RU at least at one timepoint (Table 2.2, Sup Table
2.2). SVPs presented different expression patterns that can be summarized
as: i) increased expression over time (groups A.1 and A.2), ii) reduced
expression over time (groups B.1 and B.2), iii) transient expression at middle
timepoints (groups C.1 and C.2), and iv) gap of expression at middle
timepoints (groups D.1 and D.2) (Figure 2.7).

DO D1 D2 D3 D4 D5
(IM) (St2) (St3) (St4) (St5-6)(St6-7)

Expression after induction A
Stages 2-7 :
Late expression E -_—
Stages 4-7 & - — A.2
Gap at Stage 4 T
Gap at Stage 3 __-_ Z-score
Late repression _- BA 4
IM - stage 6 : 2
0
Stages 4-6 = = — 2
— - N’
. a—
Early expression = =
IM - stage 4 l - ] B.2
Stages 2-4 - ..|C.2

Figure 2.7. Stage-variant proteins (SVP).
Heatmap of the 2,037 SVPs through the time course. Colour scale
represents Z-scored TOP3 values.


https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link

Early flower development transcriptome and proteome | 35

Table 2.2. Summary of stage variant proteins depending on their
classification in the Reliability Analysis.

RD or UD in all RU or UU at some

time points time points
SVPs 490 1,547 2,037
NVPs 2,686 2,310 4,996
3,176 3,857 7,033

2.2.4 Patterns of gene expression changes throughout the time
course

In the RNA-seq experiment, 23,088 genes were identified with more than ten
counts across all samples. A PCA comprising all these genes separated the
early flower developmental stages by timepoint (~37% of the variability
could be explained by PC1 and PC2, Figure 2.8A, B). Samples clustered
following a trajectory along PC1 that reflects the time factor, with later
timepoints placed more distant relative to DO (Figure 2.8A). A moderated
Likelihood Ratio Test (LRT) was applied in order to get a statistical metric for
ranking genes according to the differences in their expression profiles over
time. There were 8,125 transcripts in the dataset with a significant variation
through time, from now own called Stage-Variant Genes (SVGs) (LRT with
adjusted p-value < 0.01). These SVGs can be considered as ‘related to’ or
‘influenced by’ AP1 expression (Sup Tables 2.3, 2.4).

The total 8,125 genes defined as SVGs showed four different transcript
accumulation patterns: i) increment in expression through time, ii) higher
expression during mid-term stages (D1-4), iii) down-regulated expression
during mid-term stages with high expression levels at DO and D5, and iv)

decrease in expression over time (Figure 2.8C).
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Figure 2.8. Stage-Variant Genes (SVGs).

A) PCA of the RNA-seq data, showing each biological replicate (R1 to
R4) and coloured by timepoint (DO to D5). Samples clustered according
to PC1, except for replicate 4 D3, which clustered closer to samples
from D4. The later the timepoint, the more distant relative to DO.
Distances between D2 and D1, and D5 and D4 were substantial, while
distances between D2, D3 and D4 were smaller. B) Percentage of
variances explained by each principal component for the RNA-seq data
(visualization of the eigenvalues). C) Heatmap displaying the
expression patterns of the SVGs (Z-scored RNA counts, n = 8,125).
Colour scale represents Z-scored normalized RNA counts.

2.2.5 RNA-seq results expand previously published transcriptome
data and identify novel AP1 targets

The RNA-seq results were compared to those obtained in a previous
microarray study conducted with the same experimental time-course design
but using a different AP1-based floral induction system (p35S:AP1-GR ap1
cal; (WELLMER ET AL.,, 2006)). To make the RNA-seq data results more
comparable to those of the microarray (a ratiometric gene expression
platform), a differential expression analysis between subsequent stages (i.e.,
D1 vs DO, D2 vs D1, D3 vs D2, D4 vs D3, and D5 vs D4) was performed as in
(WELLMER ET AL., 2006). In this analysis, and using the same criteria for

differential expression (no Logarithmic Fold Change -LFC- cut-off, and an
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adjusted p-value < 0.05) a total of 5,150 genes were classified as differentially
expressed genes (DEGs), compared to the 1,653 DEGs identified by Wellmer
etal. (Figure 2.9A, Sup Table 2.5). That is, the RNA-seq expanded by at least
three times the scope of the transcriptome previously identified as changing
during early flower development. Furthermore, with the LRT approach an
even higher number of variable genes was identified (8,125 SVGs versus
5,510 DEGs) as the LRT statistic is more sensitive than pairwise comparisons
to slight changes in expression levels between subsequent days (Figure
2.9A).

As observed previously from the microarray data, the RNA-seq results
showed that, between D1 and D5 and on every day-to-previous day
comparison, the number of up-regulated genes was higher than that of the
down-regulated genes - likely corresponding to the initiation of organ
primordia and potentially representing the activation of genes involved in
floral organ development -, whereas for the first timepoint after the
induction (D1 vs DO0), there was a preponderance of gene downregulation
(Figure 2.9B). Interestingly, substantially more gene expression changes
were detected by RNA-seq in the first and last time points (D1 vs DO, and D5
vs D4 comparisons, respectively) than in the intermediate timepoints (D2 vs
D1, D3 vs D2, D4 vs D3 comparisons) (Figure 2.9B). Finally, I compared the
LFC of those genes whose estimated LFCs were supported by enough
statistical confidence in the RNA-seq and microarray results (adjusted p-
value < 0.05) at every day-to-previous day comparison. Over 86% of the DEGs
that were quantified in both the RNA-seq, and microarray experiments were
either overexpressed, or else underexpressed in both analyses at every day-

to-previous day comparison (Figure 2.9C).

Focusing on the expression levels over time of the 5,150 RNA-seq DEGs, a
time-dependent clustering analysis revealed three main kinds of trajectories
during the early stages of flower development captured by the time-course,
showing either an increasing (A) or decreasing (B.1, B.2) pattern of
abundance through time or an increment tendency up to stages 2-3 (D3-D4)
followed by a decrease thereafter (C.1, C.2) (Figure 2.9D). These were the
same main trajectories identified for the microarray DEGs in Wellmer et al,,
as well as for the 8,125 RNA-seq SVGs (Figure 2.8C). In addition, in the case


https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link

38 | Chapter 2

of the SVG classification, a set of genes that were repressed at first and then
activated was identified as a separated group (Figure 2.8C), whereas for the
RNA-seq DEGs, individual genes with those trajectories could be visualized

but were not grouped together (Figure 2.9D).
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Figure 2.9. DEGs during early flower developmentin pAP1:AP1-GR
ap1 cal plants. Comparison with (WELLMER ET AL., 2006) p35S:AP1-GR
apl cal microarray results.
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A) Venn diagram showing the number of microarray DEGs and RNA-
seq DEGs and SVGs and the overlap between the datasets. B) Bar plots
showing the number of up- and down-regulated DEGs in RNA-seq and
microarray results at each day-to-previous-day comparison (adj. p-
value < 0.05). C) Microarray - RNA-seq data comparisons for each day-
to-previous-day combination (adj. p-value < 0.05). The diagonal line
represents y = x. Grey dots indicate those DEGs with opposite
trajectories in the two datasets. Up-regulated genes are coloured in red,
and down-regulated genes are coloured in blue. The number of
pictured DEGs is indicated in each quadrant. D) Heatmap of the RNA-
seq DEGs (n = 5,150). Colour scale represents Z-scored normalized
counts values.
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A combination of genome-wide DNA binding by AP1 (ChIP-seq) and gene
expression profiling (microarray data) was used in a previous study to
identify AP1 direct target genes, which was conducted with a 355:AP1-GR
apl cal line and a 12-hour time-course after floral induction (KAUFMANN ET
AL, 2010). In that study, 249 AP1-high confidence targets (HCTs) were
identified. From those, 247 were detected as expressed in the RNA-seq data
reported here, and 183 were within the group of genes classified as SVGs
(Sup Tables 2.3, 2.4).

Since the RNA-seq dataset substantially expanded the scope of the
transcriptome identified as changing during early flower development, the
possibility that it could help identify novel AP1 direct targets was explored.
In the RNA-seq experiment, the D1 versus DO comparison was the closest one
to the experimental design used in (KAUFMANN ET AL., 2010) (12-hour time-
course), and it was therefore used for the analysis (i.e., all other timepoints
were excluded). Among the 2,377 DEGs identified in D1 vs DO time
comparison (Figure 2.9B), there were 81 of the HCTs defined in (KAUFMANN
ET AL, 2010), including key flowering time genes that are downregulated by
AP1,suchas FD, TFL1, SPL9, and SPL15, other downregulated HCTs as AGLZ20,
SAP, LSH1, LSH2, and LSH4, and flower development HCT genes that are
upregulated, for instance LFY, SEP3, GA2o0x1, RGA-like2, ATHB1, and AP2.
These results validated the appropriateness of using the RNA-seq dataset to
identify novel targets by combining it with the previous ChIP-seq dataset,
despite the differences in the AP1-GR lines that were used in both studies
(pAP1:AP1-GR ap1 cal vs 35S:AP1-GR ap1 cal), in the experimental design
(time-course in days vs time-course in hours), and in the method used to

detect gene expression (RNA-seq vs microarrays).

The criteria for classifying a gene as an AP1 HCT in (KAUFMANN ET AL., 2010)
included (i) containing one or more AP1 ChIP-seq binding sites within 3 kb
upstream of the 5’ end and 1 kb downstream of the 3’ end of the gene (which
defined a set of 2,298 putative AP1 targets), and (ii) showing robust
differential expression in the time-course (> 1.8-fold) (which restricted the
set of 2,298 genes to 249 HCTs). All the 81 HCTs that were detected in the
RNA-seq D1 vs DO comparison were above an absolute LFC of 0.29.

Therefore, this LFC value was used as a threshold to search for novel AP1-
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HCTs in the RNA-seq data. The 1,782 D1 vs DO DEGs that showed robust
expression changes (with an absolute LFC > 0.29 and adjusted p-value < 0.05)
were compared to the list of 2,298 putative AP1 targets identified in
(KAUFMANN ET AL., 2010). In total, this comparison defined a set of 311
putative AP1-HCTs, the 81 indicated above and 230 that were newly
identified from this RNA-seq-based analysis (Sup Table 2.3). The latter
included flowering time genes SVP and AGL24 (known to be regulated by AP1
but not identified as HCTs in (KAUFMANN ET AL., 2010)) or SPL5, all
downregulated, or genes that participate in flower development such as
SEP2, SEP4, BLH11, CUC1, or PIN1, upregulated.

In summary, all these results have substantially expanded the identification
of genes whose expression changes during early flower development and the
set of putative AP1 high confidence targets, in addition to corroborating the
previous findings indicating that AP1 acts predominantly as a transcriptional
repressor during the earliest stage of flower development, and
predominantly as a transcriptional activator afterwards, and to providing
further support for previously identified AP1 HCTs.

2.2.6 Correlation between RNA and protein levels during early flower
development

The dynamic range of protein and transcript expression, as determined by
MS and RNA-seq spanned six and four orders of magnitude, respectively
(Figures 2.10, 2.11A). Protein evidence was underrepresented for low-
abundance transcripts (ANOVA with Tukey post-hoc test; p-value < 0.001),
as described in other RNA-protein comparison studies (HOOGENDIJK ET AL.,
2019; MERGNERET AL., 2020), and the median expression levels for transcripts
were similar within days (Figure 2.11A).
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Figure 2.10. Density plot of protein abundance expressed as the
average Logz TOP3 for each time point.
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Figure 2.11. Gene and protein classification depending on
abundance through time.

A) Histogram of RNA expression range. Grey: all detected protein-
coding transcripts; orange: protein-coding transcripts not detected as
protein in MS; dark purple: protein coding transcripts quantified as
protein; purple: transcripts corresponding to a protein identified by
LC-MS/MS that was discarded because it was classified as UU or RU at
every timepoint (i.e., not quantified). Dashed line indicates TPM = 1. B)
Schema illustrating the number of expressed genes, Stage Variant
Genes (SVG), quantified proteins and Stage Variant Proteins (SVP)
identified. The sum of gene-protein pairs differs from the number of
genes and proteins identified separately because there are cases of the
same AGI associated to more than one Uniprot code and vice versa. C)
Scatter plot of protein abundances and RNA expression levels for all
RNA-protein pairs at every timepoint. Coloured by RNA-protein
correlation (Spearman’s rank coefficient, p). Positive if p = 04. Negative
if p <-0.4. Significant if p-value < 0.05.

Amongst the 7,003 quantified transcript-protein pairs, there were: i) 973
pairs with stage-dependent variation during early flowering development at
both RNA and protein levels (SVG-SVP), ii) 1,006 pairs non-variant at the
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RNA level, but stage-variant for proteins (NVG-SVP), iii) 1,808 pairs stage-
variant at transcript level, and non-variant for proteins (SVG-NVP), iv) and
3,216 pairs which presented non-variable levels for both molecules (NVG-
NVP) (Figure 2.11B, Sup Table 2.6). The seven supermarker proteins, 37 of
the marker proteins and 43 of the AP1-bound HCTs defined in (KAUFMANN ET
AL.,, 2010) were found as quantified at both transcript and protein levels.
These three subsets were significantly enriched in SVG-SVP pairs (Fishers’ t-
test, p-value < 0.001), especially the group of supermarkers, from which six
out of seven were classified as SVG-SVP. In addition, SVG-NVP pairs were
proportionally more abundant in the AP1-targets group in comparison with
the markers group (Fishers’ t-test, p-value < 0.05) (Figure 2.12).

SVG-5VP svG-NvP [l NVG-SVP NVG-NVP

Others{ 926 1791  [JS58H 3206
AP1-Targets 21 ¥ 14 - 4
Markers 24 ! s o

Supermarkers 6 E 1
0 25 50 75 100
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Figure 2.12. Relative distribution of absolute numbers of
transcript-protein pairs in selected classes across the expression
categories: SVG-SVP, SVG-NVP, NVG-SVP, and NVG-NVP.

There are two markers which are also AP1-targets (both SVG-SVP), and
three supermarkers which are also AP1-targets (two SVG-SVP and one
SVG-NVP). Fisher’s t-test results (asterisks): black = Significantly
enriched when compared with the summation of the rest of subsets (p-
value < 0.001); red = Significantly enriched when compared with the
AP1-targets-subset (p-value < 0.05); white = Significantly enriched
when compared with the markers-subset (p-value < 0.05).

To provide a measure of similarity among developmental stages and to check
whether there is a shift between mRNA and protein levels at different
timepoints, Pearson’s correlation coefficient (r) was calculated for the gene
expression and protein abundance of all pairwise timepoint combinations
(e.g., protein DO vs protein D0-D5, protein DO vs RNA DO0-D5, etc.).
Correlations were computed on protein and transcript level for all RNA-
protein pairs and the SVG-SVP pairs (Figure 2.13A) separately. Pearson’s
coefficients were slightly higher for the SVG-SVP group. For both SVG-SVP
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pairs and all transcript-protein pairs, the correlation RNA-protein seemed to
be moderately shifted at D3 and afterwards in the time course, as protein
levels at D4 correlated equally well with RNA levels at D3, and protein levels
at D5 correlated equally well with RNA levels at D4. PCA for average Z-scored
values (Z-scored independently) showed that RNA-protein levels clustered
according to the timepoint, being this correlation more obvious at D2, D3 and
D4 (Figure 2.13B). D0, D1 and D5 presented the greater differences between
RNA and protein levels; in fact, D5 protein levels correlated better with RNA
levels at D4 than at D5. Although the distribution along the PCA is similar for
both groups (all RNA-protein pairs and SVG-SVP pairs), the percentage of
variability that could be explained by PC1 and PC2 is higher for the SVG-SVP
pairs (67% against the 43% for all RNA-protein pairs).
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Figure 2.13. RNA-protein comparisons.
A) Pearson’s correlation coefficient (r) matrix of DO-D5 after floral

induction on the transcriptome and proteome level using all RNA-
protein pairs and SVG-SVP pairs separately. B) PCA for average Z-
scored values of all RNA-protein pairs (Z-scored independently) and
SVG-SVP pairs.
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In general, there is a relatively good correlation between RNA levels and
protein abundances during the early stages of flower development.
Nevertheless, the differences observed, especially in the limits of the time-
course (i.e., DO and D5), can be explained by the time lag. This is relevant
because D1 (versus D0) and D5 (versus D4) are by far the days where there
were more RNA expression changes (in terms of DEGs) (Figure 2.9B); on D1
with a preponderance of downregulation, which probably does not correlate
as well with protein levels as when it is upregulation (as factors such as
protein half-life or degradation intervene), and on D5 it is new upregulation
than would be translated into proteins partly on D6, according to the

detected time lag.

The correlation of mRNA and protein levels through time was also measured
by calculating the Spearman's rank correlation coefficient (p) for each RNA-
protein pair. In total, there were 2,540 RNA-protein pairs with a positive
correlation (p = 0.4, as defined in (AKOGLU, 2018)), and almost 6% of these
pairs had a significant and highly positive correlation (p = 0.8 and p-value <
0.05). In contrast, 975 RNA-protein pairs presented a negative correlation (p
< -0.4), and around 1.5% of them with a significant and highly negative
correlation (p < -0.8 and p-value < 0.05) (Figure 2.14, Sup Table 2.6).
Moreover, the mRNA-to-protein abundance correlation was very different
for the SVG-SVP, SVG-NVP, NVG-SVP and NVG-NVP subsets (Figure 2.15A,
Table 2.4).

RNA-protein pairs that vary at both molecule levels (SVG-SVP) presented the
strongest positive correlation, with a median p of 0.6, a 63% of pairs with
positive correlation and less than an 8% of pairs with negative correlation.
For the other subsets, SVG-NVP, NVG-SVP and NVG-NVP, 44%, 30% and 26%
of the RNA-protein pairs showed a positive correlation, as opposed to 10%,
16% and 16% of pairs with a negative correlation in each group respectively
(Table 2.4, Figure 2.15A). To sum up, around 36% of the total RNA-protein
pairs presented a positive correlation between their RNA and protein
expression levels, and the correlation between RNA and protein expression
levels was higher for those RNA-protein pairs with differential expression

over time for both molecules.
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Figure 2.14. Correlation between each RNA-protein pair for the
complete dataset.

Correlation analysis of protein-to-RNA abundance (non-Z scored)
across samples measured as Spearman's rank correlation coefficient
(p) for each RNA-protein pair. Red line represents the median
correlation. Dashed lines indicate the limits to consider positive and
negative correlations. The points represent p for: supermarkers
(black), markers (pink) and AP1-targets (grey). The black cross
represents p for AP1.

Table 2.3. Spearman’s rank coefficient (p) among subsets were
highly variable.

Spearman correlation between RNA and protein levels of each subset
depended on the overall expression pattern of the molecules.

Significant (sig.): adjusted p-value (BH) < 0.05.

Median Positive Negative Uncorrelated
p (p>0.4) (p<-0.4)
SVG-SVP 0.6 615 (217 sig) 76 (15 sig) 282 973
SVG-NVP 0.31 794 (96 sig) 197 (18sig.) 817 1,808
NVG-SVP 0.13 300 (42sig) 167 (28sig.) 539 1,006
NVG-NVP 0.08 831 (74sig) 535 (36sig) 1,850 3,216
0.2 2,540 (429 sig.) 975 (97 sig.) 3,488 7,003

A total of 80% of both flower-markers and AP1-targets (HCTs) in the SVG-

SVP subset presented a positive correlation, although there were some

exceptions with a significant and highly negative correlation (e.g.,, WUSCHEL
RELATED HOMEOBOX13 -WO0X13- and AT4G27980) or without positive nor

negative

(e.g, LUTEIN-DEFICIENT1 -LUT1- and PYRABACTIN

RESISTANCE1-LIKE1 -PYL1-) (Figure 2.15A, B).
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Besides, I inspected the time course trajectories (mMRNA and protein) of the

seven supermarkers, which showed a positive p above the median, and

compared them to their previously published expression patterns (WELLMER

ET AL., 2006) and found them to be in good agreement (Figures 2.4, 2.15B).
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Figure 2.15. Correlation and trajectory patterns for gene-protein pairs.
A) Spearman’s rank correlation coefficient (p) between RNA and protein
levels of each pair depending on the SV - NV classification. Red lines: median
p of each subset. Dashed lines indicate the limits to consider positive and
negative correlations. Points signal p for: supermarkers (black), markers
(pink) and AP1-targets (grey). Squares represent the p for the markers and
AP1-targets depicted in B. B) Z-scored abundances of RNA and protein levels
(Z-scored separately) of selected proteins. The seven supermarkers (p = 0.4)
(SVG-SVP: AP2, AP3, PI, TFL1, CRC, FIL-YAB1; SVG-NVP: LFY), two markers
with p < -0.8 (SVG-SVP: WOX13, AT4G27980), one marker and AP1-target
with p =2 0.8 (SVG-SVP: SOC1) and two AP1-targets with non-significant p
(NVG-NVP: LUT1, PYL1).
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2.2.7 RNA-protein pairs clustered in various expression pattern
modules

In order to elucidate transcript-protein dynamics of the complete dataset,
unbiased clustering based on the correlation of mRNA and protein
expression patterns was performed. Weighted gene co-expression network
analysis (WGCNA) using the SVG-SVP, NVG-SVP and SVG-NVP transcript-
protein pairs separately resulted in 18, 18 and 25 co-expression eigen-
modules (MEs), respectively, ranging in size from 10 to 485 gene-protein

pairs (Figure 2.16).

Combined expression patterns of SVG-SVP pairs were categorized in four
groups: i) increasing mRNA and protein levels (A.1), ii) increasing mRNA and
decreasing protein levels (A.2), iii) decreasing mRNA and increasing protein
levels (B.1), and iv) decreasing mRNA and protein levels (B.2), with groups
A.1and B.2 (that is, those in which RNA and protein levels change in the same
direction) comprising the vast majority of SVG-SVP pairs (and of MEs) and
with most of the different MEs in those groups showing a high correlation
(i.e., substantial p values) (Figure 2.16A). In groups A.2 and B.1 in which
mRNA and protein levels are anticorrelated, a few MEs also showed relevant
p values (ME11, 13 and 17 in A.2 and ME19 in B.1), although the number of
gene-protein pairs encompassed by those MEs is small (64 versus 824 in the
most significant MEs of A.1 and B.2). These observations support the idea
that there is a relatively good correlation between RNA and protein level
changes during early flower development, and also identify a few specific and
small subgroups of genes in which the changes are anticorrelated (see section
2.2.8).

NGV-SVP pairs grouped in clusters with patterns that were similar to those
observed for the complete list of SVPs (Figures 2.7, 2.15B), that is: i)
increased protein abundance over time (NVG-SVP MEO1, 05, 07, 09), ii)
reduced levels over time (NVG-SVP MEO02, 03, 04, 11, 14), iii) transient
proteins expression at middle timepoints (NVG-SVP MEO06, 10, 12, 13, 15, 16,
17), and iv) transient proteins with a gap in their expression at intermediate
timepoints (NVG-SVP MEO08, 18). Last, SVG-NVP grouped pairs also showed
the same trajectory patterns as the complete set of SVGs (Figures 2.8C,
2.160C): i) increased expression through time (SVG-NVP ME02, 05, 06, 10, 13,
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25,26,27,29, 30), ii) higher expression during mid-term stages (D1-4) (SGV-
NVP MEQ9, 14, 17, 29), iii) high expression at DO and D5, but down-regulated
expression during mid-term stages (SVG-NVP ME15, 22, 24, 28), and iv)
expression reduction over time (SVG-NVP MEO1, 04, 07, 08, 11, 12, 23).

The correlation between protein and RNA expression levels was different for
each one of the modules, and, as indicated above (Figure 2.16A), it was
especially high for the modules in which both molecules behaved similarly
(SVG-SVP A.1 and B.2 modules).
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Figure 2.16. Trajectory patterns for gene-protein pairs.

Trajectory clustering (WGCNA) for SVG-SVP (18 modules) (A), NVG-
SVP (18 modules) (B), and SVG-NVP (25 modules) (C). The right bar
graph in each panel indicates the number of gene-protein pairs
included in each module. The average p values for gene-protein pairs
included in each SVG-SVP (A) modules are included. This value is not
included for the NVG-SVP (B) and SVG-NVP (C) modules because it is
between -0.4 and 0.4 in all cases (no-correlation, ‘grey’).

2.2.8 Modules with opposite patterns for mRNA and protein levels
were enriched in hormone responsive pathways

Gene Ontology (GO) and KEGG enrichment analyses were performed to
retrieve the functional biological processes that accompany early flower
development (Sup Tables 2.11, 2.12). Interestingly, a high percentage of
gene-protein pairs with decreasing levels of RNA combined with increasing
protein abundance (i.e., SVG-SVP ME19) are known to correspond to proteins
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localized to the chloroplasts, whereas gene-protein pairs with increasing
levels of RNA combined with decreasing protein abundance (i.e., SVG-SVP
ME11, 13, 17 and 18) contain proteins involved in fatty-acid metabolic

process related with acetyl-CoA and jasmonic acid (JA) pathways.

Six out of ten genes included in the SVG-SVP ME19, with decreasing levels of
RNA and increasing protein abundance, are expressed in chloroplasts
(AT1G79460, AT3G07310, AT1G29070, AT4G17300, AT2G29180 and
AT5G23040). Among these, GA2 (AT1G79460) and a putative phosphoserine
aminotransferase (AT3G07310) are included in the gibberellic acid signalling
pathway, PRPL34 (AT1G29070) is a structural constituent of the ribosome,
AT2G29180 (thylakoid membrane protein) positively regulates
transcription, NS1 (AT4G17300) is also related with chloroplast
transcription, as it acts as a ligase on tRNA (asparaginyl-tRNA aminoacylation
for amino acid activation) and CDF1 (AT5G23040) is a thylakoid membrane
chaperone required for chloroplast biogenesis and development. All these
proteins are related with cellular response to lipids and gibberellins,
although nor this module nor any other modules were significantly enriched
in gibberellin-related pathways (adjusted p-values > 0.05). Gibberellin
indirectly promotes chloroplast biogenesis to maintain the chloroplast
population of expanded cells, yet the relationship between chloroplast
biogenesis with cell division and cell expansion remains poorly understood
(X.JIANGET AL., 2012).

On the other hand, gene-protein pairs with an increasing pattern in their RNA
levels combined with a decrease in protein abundance (i.e., SVG-SVP ME11,
13, 17 and 18) are enriched in proteins involved in fatty-acid metabolic
processes related with acetyl-CoA and jasmonic acid (JA) pathways. These
pathways are required for proper flower developmental processes such as
flower maturation (REEVES ET AL., 2012). JA induces the expression of W0X13
(included in SVG-SVP ME13) orthologous BpWO0X9 and BpWOX10 in
Broussonetia papyrifera (TANG ET AL., 2017). Besides, WOX13 interacts with
other member of SVG-SVP ME13: RAD-LIKE3 (AT4G36570) (TRIGG ET AL,
2017), a probable transcription factor assigned as a member of the MYB-
related family, whose members show considerable response to JA signalling
(ALI & BAEK, 2020; ZHAIET AL., 2015). TEOSINTE BRANCHED/CYCLOIDEA/PCF
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(TCP) genes, such as TCP15 also found in this module, controls the
biosynthesis of JA (SCHOMMER ET AL., 2008). In addition, other gene-protein
pairs with this specific expression pattern regulate JA-dependent and JA-
independent responses, such as the calmodulines CML11, 16 and 19 and the
CYTOCHROME P450 family members AT4G12300 and AT1G13080 (LEON ET
AL., 1998).

Other modules with increasing levels of mRNA (SVG-NVP MEO2 and ME06),
or of mRNA and proteins (SVG-SVP ME09) were enriched in auxin metabolic
processes, whereas modules with decreasing levels of mRNA (SVG-NVP
MEO1), or of mRNA and protein (SVG-SVP MEO1) were enriched in cytokinin-

responsive processes.

In summary, the main result from the GO analysis is that modules with
opposite patterns for mRNA and protein levels were enriched in hormone
responsive pathways, although determining the possible functional
significance of this observation and the molecular mechanisms that would
underlie divergent RNA and protein trajectories would require additional

studies.

2.2.9 Physically interacting proteins had different RNA-protein
expression levels through time

To investigate possible functions of, or functional relationships within, the
different MEs (that is, of or within the various groups with different RNA-
protein trajectories), the interaction network of all MS-detected proteins and
other Arabidopsis proteins was analysed by by collecting information about
known and predicted protein-protein interactions (ppi) from STRING
(SZKLARCZYK ET AL., 2017).

The final ppi network (6,403 nodes, 66,350 edges) was divided into five main
clusters with more than 30 proteins, and 55 smaller protein groups, ranging
from two to 23 proteins (Figure 2.17, Sup Tables 2.7-2.9). No clear
association between RNA-protein trajectory patterns and the interaction
clusters was found, as each of the interaction clusters contained proteins that

presented different RNA-protein patterns (Figures 2.17), except for the
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interaction cluster 2, which had a central hub composed by proteins whose
RNA-protein levels were downregulated during the time course and whose
main KEGG pathway was ‘photosynthesis and carbon fixation’ (Sup Table
2.10).
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Figure 2.17. Protein-protein interaction clusters.

Network depicting physical interactions and co-expression between
proteins included in the dataset and other proteins in A. thaliana
(IntAct, STRING). This figure includes the five largest interaction
clusters (Clusters 1 to 5), as well as two interaction clusters that only
contain proteins from a specific metabolic pathway (Clusters 13 and
16). The main KEGG pathways for each cluster are annotated (Sup
Table 2.10). Clusters 1, 3 and 5 contained proteins involved in
developmental processes and stress responses, whereas clusters 2, 4,
13 and 16 were enriched in proteins related to metabolic pathways.
Node legend: outer line represents RNA levels and inner circle, protein
levels. Blue: decreasing trajectories; red: increasing trajectories;
salmon: trajectories with a maximum peak (increase - decrease); light
blue: trajectories with a minimum (decrease - increase); grey: non-
variant. Squares represent proteins not included in the MS results.
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2.3 Discussion

In this Chapter, the early flower development process was analysed by
comparing gene and protein expression profiles in a pAP1:AP1-GR ap1 cal
inducible line. Despite the inherent complications to combine datasets (RNA-
seq and LC-MS/MS) that are different in their generation, acquisition, and
analysis, | identified several groups of genes with various cases of protein-

RNA expression patterns of positive, negative, or neutral correlation.

A major concern in label-free quantitative proteomics that hinders the
subsequent data analysis and its comparison with other omics data is the
high rate of missing values. Thanks to the ‘Reliability Analysis’ workflow
designed in this work, it was possible to distinguish the nature of the data
missingness, and to treat the not-assigned values (NAs) of the LC-MS/MS
results accordingly. The highest number of Reliably Undetected proteins
corresponded to DO and D5 (Figure 2.3C), when proteins whose expression
is regulated by AP1 have not been expressed yet, or are strongly
downregulated, respectively (KAUFMANN ET AL., 2010; PAJORO, MADRIGAL, ET
AL., 2014; WELLMER ET AL., 2006). After the Reliability Analysis and NA
imputation, replicates clustered better together by day (Figure 2.6),
demonstrating the robustness and reproducibility of the LC-MS/MS followed
by a Reliability Analysis approach.

The RNA-seq data corroborated previous findings stating that AP1 acts
predominantly as a transcriptional repressor during the earliest stages of
flower development, whereas, at more advanced stages, predominantly as an
activator (KAUFMANN ET AL, 2010; WELLMER ET AL., 2006), but more
significantly, the RNA-seq data triplicated the number of differentially
expressed genes (DEGs) identified during early flower development in
Arabidopsis (5,150 DEGs vs 1,653 DEGs described in (WELLMERET AL., 2006)).
In addition, with the likelihood ratio test (LRT) approach, the total number
of variable genes was even higher (8,125 stage variant genes - SVGs -), as
this approach is more sensitive than pairwise comparisons to slight changers
in expression levels between subsequent days. Furthermore, it was possible
to identify 230 novel putative AP1-high confidence targets (HCTs) based on
their differentially expression data and previous ChIP-seq data from
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(KAUFMANNET AL., 2010), including flowering time genes (e.g., SVPand AGL24)
and genes that participate in flower development (e.g., SEP2, SEP4, BHLH11,
CUC1 and PIN1) that were down- and up-regulated during the D1 vs DO time

comparison in the RNA-seq data, respectively.

Multiomics studies provide a wider interpretation of a process than a
research based solely on one kind of molecule. In this study, the correlation
of mRNA and protein levels through time of each RNA-protein pair was
measured by calculating the Spearman's rank correlation coefficient (p). In
total, there were 2,540 RNA-protein pairs with a positive correlation, 975
RNA-protein pairs presented a negative correlation, and 3,488 were
considered as not significantly correlated in either way.

The expression patterns of AP1 high-confidence targets (KAUFMANN ET AL.,
2010) at the mRNA and protein levels were positively correlated (e.g., for the
case of SUPPRESSOR OF CONSTANS OVEREXPRESSION 1; SOC1), except some
cases of discordancy, as some examples of RNA-protein comparisons with
opposite expression patterns between both molecules were also found. This
was the case of WUSCHEL RELATED HOMEOBOX13 (W0X13) (COSTANZO ET AL.,
2014; H. LIN ET AL., 2013) and AT4G27980 (Y. WANG ET AL., 2008), two of the
marker proteins whose mRNA levels increased, as in (WELLMER ET AL., 2006),
whereas their protein levels decreased through time, as in (Y. WANG ET AL,
2008), showing a significantly negative Spearman’s rank correlation
coefficient (p < 0.8, p-value < 0.05).

In the analysis for this Thesis, almost 50% of total mRNA-protein pairs
showed no correlation between their individual abundances, such as the
AP1-targets LUTEIN-DEFICIENT 1 (LUT1) (TiAN ET AL, 2004) and
PYRABACTIN RESISTANCE 1 - LIKE 1 (PYL1) (YINET AL., 2016), both NVG-NVP
(Figure 2.15B). The observed apparent lack of correlation between mRNA
and protein levels could be related to the methods of detection and
quantification that were used, but also to biologically relevant processes,
such as post-translational and post-transcriptional regulatory events, etc.
PCA for averaged Z-scored values of SVG-SVP pairs (Z-scored independently)
revealed that DO, D1 and D5 had the lower mRNA-protein correlations
(Figure 2.13B). This observation was somehow expected given the
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difference in average half-life of mRNA and proteins and the variations in
transcriptional and translational kinetics, specially at the beginning of the
induction. In addition, protein levels at D5 also correlated with mRNA levels
at D4, while following the same trend, protein levels at D4 were slightly
closer to mRNA levels at D3 than at D4 (Figure 2.13B). This highlights the
usefulness of time-series analysis to compare gene and protein expression
and relates with the low correlations found in many similar studies following
single sampling timepoints (as in (HUANG ET AL., 2022; MERGNER ET AL., 2020;
P. WANG ET AL., 2023)).

In some cases, there was a correlation between the behaviour in expression
of gene-protein pairs and their functions and protein-protein interactions.
Gene-protein pairs with decreasing levels of RNA and increasing levels of
protein abundance were mostly chloroplast-related genes (SVG-SVP ME19).
Gene-protein pairs with increasing RNA levels and decreasing protein
abundances are related with jasmonate synthesis and metabolism. Jasmonic
acid, and its derivative metabolites, are important for plant growth and
development processes, including senescence, growth inhibition, flower
development and leaf abscission (ZOU ET AL., 2020), as well as, plant response
to abiotic and biotic stresses (GRIFFITHS, 2020). A network of plant hormones
such as jasmonic acid with miRNA-transcription factors have a role in flower
senescence, and probably in floral organ abscission (RUBI0-SOM0ZA & WEIGEL,
2013).

These differences in RNA levels and protein abundances reflect the existence
of possible regulatory processes, such as positive and/or negative feedback
loops or posttranscriptional and posttranslational modifications, affecting

both molecules differently.
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2.4 Materials and methods

2.4.1 Plant lines and plant growth conditions

The pAP1:AP1-GR ap1 cal (O’MAOILEIDIGH ET AL., 2023) plants were grown on
a soil:vermiculite:perlite mixture at 21 °C under long day conditions (16 h

light, 8 h darkness), after a 4-day period of stratification at 4 °C in darkness.

2.4.2 Tissue collection

For RNA-seq and LC-MS/MS experiments, 4-week-old pAP1:AP1-GR ap1 cal
plants were used. Four biological replicates were generated for each time
point. For each replicate, from around 80 (D0) to 40 plants (D5) were needed
to obtain 300-500 pg of total protein. Inflorescence tissue was collected using
jeweler’s forceps as previously described (WELLMER ET AL., 2006). For
induction, inflorescences were treated with a DEX-induction solution (2 uM
DEX, 0.01% (v/v) ethanol, and 0.01% Silwet L-77). Using plastic pipettes, the
solution was directly applied onto the inflorescences so that the cauliflower-
like structures were completely drenched. First induction was performed 8
h after lights on, and daily inductions, at 4 h after lights on. Samples were
collected immediately after solution application (D0), as well as at 1, 2, 3, 4
and 5 days (D1-5) after the first treatment.

2.4.3 Protein extraction

Protein and RNA extractions had common initial steps (as described in
(ALVAREZ-URDIOLA, MATUS, ET AL, 2023)). Tissue was ground in liquid
nitrogen. For each timepoint, ~0.25 g of plant material was used. Ground
material was resuspended in 1 mL of Trizol and incubated on ice for 5 min.
Then, 200 pL of chloroform were added and properly mixed by vortexing.
After a 5-min incubation on ice, samples were centrifuged at 4 °C for 15 min
at maximum speed. Upon centrifugation, three phases are formed, the
aqueous phase contains RNA (~550 pL, transparent), the interphase, DNA
(white), and the organic phase, proteins, and lipids (~450 pL, pink). After the
aqueous phase was transferred to a new microcentrifuge tube (see RNA
extraction), 300 pL of ethanol 100% (v/v) were added to the organic phase

to continue with protein extraction and the mix was incubated on ice.
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Samples were centrifuged for 10 min at 2,000 x g to separate DNA from
proteins. The supernatant was placed in a clean 2 mL microcentrifuge tube,
1 mL of pure isopropanol was added, and samples were incubated at room
temperature for 10 min. After a 10-min centrifugation at 4 °C at 12,000 x g,
the supernatant was discarded. The pellet was resuspended in 2 mL of a
solution of 0.3 M guanidine in ethanol 95% (v/v) for washing and sonicated
during 5 min. Samples were centrifuged at 4 °C for 5 min at 8,000 x g. This
washing procedure was repeated twice. The final pellet was stored at -20 °C
and washed with ethanol 90% (v/v) before the final resuspension in an
acetonitrile 70% (v/v) buffer for LC-MS/MS.

2.4.4 RNA extraction

The organic phase (see Protein extraction) was transferred to a clean
microcentrifuge tube and mixed vigorously with one volume of pure
isopropanol. After 15 min of incubation on ice, samples were centrifuged at
4 °C for 10 min and the supernatant was discarded. Each pellet was
resuspended in 750 pL of LiCl 3 M, incubated on ice for 10 min and
centrifuged at 4 °C for 10 min at maximum speed. The supernatant was
discarded, and each pellet was gently washed with 500 uL of ethanol 85%
(v/v). The last centrifugation was performed at 4 °C for 10 min at maximum
speed and supernatant was discarded. Each pellet was resuspended in 21 pL
of diethylpyrocarbonate (DEPC)-treated water after drying. Samples were
quantified with a NanoDrop 1000 Spectrophotometer.

2.4.5 Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

Proteomics experiments were conducted in collaboration with Dr. Eduard
Sabidé and Dra Eva Borras from the proteomics facility at the Center for

Genomic Regulation (CRG).

Sample preparation. Samples were reduced with dithiothreitol (30 nmol,
37 °C, 60 min) and alkylated in the dark with iodoacetamide (60 nmol, 25°C,
30 min). The resulting protein extract was first diluted to 2M urea with 200
mM ammonium bicarbonate for digestion with endoproteinase LysC (1:10
w:w, 37 °C, o/n, Wako, cat # 129-02541), and then diluted 2-fold with 200
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mM ammonium bicarbonate for trypsin digestion (1:10 w:w, 37 °C, 8h,
Promega cat # V5113). After digestion, peptide mix was acidified with formic
acid and desalted with a MicroSpin C18 column (The Nest Group, Inc) prior
to LC-MS/MS analysis.

Chromatographic and mass spectrometric analysis. Samples were
analysed using an LTQ-Orbitrap Fusion Lumos mass spectrometer (Thermo
Fisher Scientific, San Jose, CA, USA) coupled to an EASY-nLC 1000 (Thermo
Fisher Scientific (Proxeon), Odense, Denmark). Peptides were loaded directly
onto the analytical column and were separated by reversed-phase
chromatography using a 50 cm column with an inner diameter of 75 um,
packed with 2 um C18 particles spectrometer (Thermo Scientific, San Jose,
CA, USA). Chromatographic gradients started at 95% buffer A and 5% buffer
B with a flow rate of 300 nL/min for 5 minutes and gradually increased to
22% buffer B and 78% A in 79 min and then to 35% buffer B and 65% A in
11 min. After each analysis, the column was washed for 10 min with 10%
buffer A and 90% buffer B. Buffer A: 0.1% formic acid in water. Buffer B: 0.1%

formic acid in acetonitrile.

The mass spectrometer was operated in positive ionization mode with
nanospray voltage set at 2.4 kV and source temperature at 275 °C. Ultramark
1621 for the was used for external calibration of the FT mass analyzer prior
the analyses, and an internal calibration was performed using the
background polysiloxane ion signal at m/z 445.1200. The acquisition was
performed in data-dependent acquisition (DDA) mode and full MS scans with
1 micro scans at resolution of 120,000 were used over a mass range of m/z
350-1500 with detection in the Orbitrap mass analyzer. Auto gain control
(AGC) was set to 1E5 and charge state filtering disqualifying singly charged
peptides was activated. In each cycle of data-dependent acquisition analysis,
following each survey scan, the mostintense ions above a threshold ion count
0f 10,000 were selected for fragmentation. The number of selected precursor
ions for fragmentation was determined by the ‘Top Speed’ acquisition
algorithm and a dynamic exclusion of 60 seconds. Fragment ion spectra were
produced via high-energy collision dissociation (HCD) at normalized
collision energy of 28% and they were acquired in the ion trap mass analyzer.

AGC was set to 1E4, and an isolation window of 1.6 m/z and a maximum
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injection time of 200 ms were used. All data were acquired with Xcalibur
software v4.1.31.9. Digested bovine serum albumin (New England Biolabs
cat # P8108S) was analysed between each sample to avoid sample carryover
and to assure stability of the instrument and QCloud (CHIVA ET AL., 2018) has
been used to control instrument longitudinal performance during the

project.

Data Processing. Acquired spectra were analysed using the Proteome
Discoverer software suite (v2.0, Thermo Fisher Scientific) and the Mascot
search engine (v2.5 Matrix Science) (PERKINS ET AL., 1999). The data were
searched against a UniProt A. thaliana database plus a list of common
contaminants (BEERET AL.,, 2017) and all the corresponding decoy entries. For
peptide identification a precursor ion mass tolerance of 7 ppm was used for
MS1 level, trypsin was chosen as enzyme, and up to three missed cleavages
were allowed. The fragment ion mass tolerance was set to 0.5 Da for MS2
spectra. Oxidation of methionine and N-terminal protein acetylation were
used as variable modifications whereas carbamidomethylation on cysteines
was set as a fixed modification.

False discovery rate (FDR) in peptide identification was set to a maximum of
5%. Peptide quantification data were retrieved from the ‘Precursor ion area
detector’ node from Proteome Discoverer (v2.0) using 2 ppm mass tolerance
for the peptide extracted ion current (XIC). Protein abundance in each
condition was estimated using the average of the three most intense peptides
per protein group (TOP3) (SILVAET AL., 2006). The raw proteomics data have
been deposited to the PRIDE repository (PEREZ-RIVEROL ET AL., 2022) with the
dataset identifier PXD038980. For subsequent statistical analysis, median
normalisation was performed by subtracting from each logged value the
sample median and adding the global dataset median. Replicate 1 of Day 0
(R1DO0) highly differed from the rest (Figure 2.18), so it was removed from

the dataset, as well as the 165 proteins that were only detected in this sample.
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Figure 2.18. Inter-sample variability of the proteomics data before
DOR1 removal.

A) PCA of proteins without NAs before the RA and before R1DO
removal. B) Percentage of variances explained by each principal
component for the proteomics data before R1D0 removal
(eigenvalues).

Not Assigned values: Reliability analysis. For the Reliability Analysis, each
timepoint for a protein was classified as reliably or unreliably detected or
undetected depending on its number of NAs and the number of NAs of its
immediately adjacent days (neighbours). Days 0 and 5 were considered as
Reliably Undetected when all replicates were NAs, and days 1 - 4, besides
that, must had at least one neighbour with two or more NAs. Those were
considered as MNAR missing values, and NAs were replaced by the minimum
of detection of the dataset (Deterministic Minimum Imputation method
(MELETH ET AL., 2005)). Days with one or no NAs were defined as Reliably
Detected and their abundance values were kept. Finally, days with two or
more NAs were classified as Unreliably Detected when they had at least one
neighbour with two or less NAs, keeping their quantification values;
otherwise, they were classified as Unreliably Undetected, and its
quantification values were replaced by NAs in all replicates. All those
proteins which were Reliably or Unreliably Undetected in every timepoint
were discarded. The remaining NA values were estimated by k-Nearest
Neighbour (kNN) imputation (k = 10) (TROYANSKAYA ET AL., 2001) (Figures
2.3A,B,2.4).
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2.4.6 RNA-seq experiments

The 24 samples were sequenced on an Illumina HighSeq 2000 machine.
Cleaned reads together with the transcriptome of A. thaliana (TAIR10) were
used to quantify gene expression at transcript level, in counts (regularized-
logarithm transformation with DESeq2) and Transcripts Per Million (TPMs)
using the software Salmon (v0.12.0). The quantification data were grouped
so that genes instead of transcripts were analysed, using tximport package in
R. Genes that had less than ten counts across all the samples were removed
to facilitate further analyses (DESeq2 package in R). Size factors, corrected by
library size, and dispersions were estimated using DEseq function from the
package DESeqZ in R. Dispersion estimates for all genes were obtained

considering the information for each gene separately.

2.4.7 Representative proteins and genes: Markers, Supermarkers and
AP1-targets

A group of 69 proteins were selected as markers on the basis of the detection
of expression of their corresponding genes in previous time-course
experiments performed using AP1 floral induction systems, including gene
expression profiling using DNA microarrays (KAUFMANN ET AL., 2010;
WELLMER ET AL., 2006), and unpublished data (our laboratory; Bustamante et
al.). Marker proteins corresponded with up- or down-regulated genes in the
microarray experiments (absolute FC = 2 for the first replicate when
comparing days 1 and 0, and BH < 0.05) or in the RNA-seq (absolute FC = 2
for all replicates when comparing day 2 and 0, and day 4 and 0, and FPKM >
1). The seven supermarker proteins, with similar characteristics as the
markers, are transcription factors controlling different aspects of flower
development (AP2, AP3, PI, TFL1, CRC, LFY, FIL-YABI1). Out of the 249 AP1
high confidence targets (HCTs) defined in (KAUFMANN ET AL., 2010), 247 were

quantified in the RNA-seq experiment reported in this thesis.

2.4.8 Data analysis

Genome and proteome annotations. Araportll gene identifiers (AGI
codes: AT (A. thaliana); 1, 2, 3, 4, 5, M, C (chromosome number, M for
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mitochondrial, C for chloroplast); G (gene), 00000 (five-digit code for
position on chromosome)) were mapped to the UniProt A. thaliana reference
proteome (taxon identifier 3702; UP000006548; downloaded in 2018) based
on protein sequence. N- and C-terminal peptide sequences were extracted
from the Mascot.txt file and filtered for zero missed cleavages (Figure 2.2A).
N-terminal peptides were divided into groups with (n = 1,203) or without (n
= 769) cleavage of the initiator methionine. Then, the frequency of the 20
genetically encoded amino acids at the position after the start codon was
calculated and displayed as a pie chart (Figure 2.2B) for both groups. The
percentage of acetylated N-terminal peptides with the same amino acids in
the second position was calculated for both groups and represented as bar
plot (Figure 2.2C).

Protein and RNA level variation through time. An ANOVA analysis was
performed for the normalised proteome dataset, followed by a Tukey post-
hoc test. Proteins were considered as stage variant (SVPs) if their Benjamini
& Hochberg (BH) adjusted p-value, which can be interpreted as False
Discovery Rate (FDR) (BENJAMINI & HOCHBERG, 1995), was lower than 0.05.
For the RNA-seq dataset, a moderated likelihood ratio test (LRT) was applied
to get a statistic for ranking genes according to the difference in expression
profiles among timepoints. LRT is a test of significance for differences of any
level of the factor. Genes with an adjusted p-value (FDR) lower than 0.01
were considered as stage variant (SVGs). The log2 fold-change (LFC) in
expression between subsequent stages were calculated for all transcripts.
The p-values were adjusted for multi-hypothesis testing using the BH
procedure (FDR). Transcripts with a LFC with an adjusted p-value lower than
0.05 at any day-to previous day comparison were considered as differentially

expressed genes (DEGs). No LFC cut-off was applied.

Gene-protein correlations. 7,003 quantified proteins in the MS proteome
dataset had their correspondent gene in the RNA-seq transcriptome dataset.
Protein-gene pairs were grouped in 4 subsets: stage variant at RNA and
protein levels (SVG-SVP, n = 973), non-variant genes - stage variant proteins
(NVG-SVP, n = 1006), stage variant genes - non-variant proteins (SVG-NVP,
n = 1808) and non-variant pairs (NVG-NVP, n = 3216). Pearson’s correlation

coefficient (rs; p-value < 0.05) was used to find correlations between protein
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levels and corresponding genes within and between all timepoints, using a
square matrix (Figure 2.13). The Spearman’s rank correlation coefficient (p)
of each gene-protein pair individually was used for correlating transcriptome
and proteome levels in each subset (SVG-SVP, SVG-NVP, NVP-SVP, NVG-NVP)
(Figures 2.14, 2.15A). The slopes were estimated by ranged major-axis
(RMA) regression, which allows errors in both variables and is symmetric,
using the R package Imodel2 (CSARDIET AL., 2015) (Figure 2.19).

PCA of proteome and transcriptome data was performed in R for each
normalised dataset separately (proteome before and after the Reliability
Analysis, and transcriptome), but also for their intersection (n = 7003
transcript-protein pairs), and for the SVG-SVP subset (n = 973).

Transcript-protein co-expression network analysis. Transcriptome and
proteome dynamics were evaluated by means of weighted gene co-
expression network analysis (WGCNA) (LANGFELDER & HORVATH, 2008).
Normalized RNA-seq counts and protein abundances data (after Reliability
Analysis) were separately z-score transformed for each subgroup, and
WGCNA was performed with a soft-power of 6 signed network. Modules were
defined by dynamic tree cut with a minimum size of 10 and deep split of 4.
To reduce the final number of modules, those with a similitude superior to
0.9 were merged, leading to the final number of modules that were

considered.

Protein-protein interaction network. Arabidopsis protein-protein
interactions were downloaded from STRING (March 2021, https://stringdb-
static.org/download/protein.links.detailed.v11.0/), and IntAct (March 2021,
https://www.ebi.ac.uk/intact/). In addition, it was checked which ppi
between the proteins quantified by MS were annotated in The Arabidopsis
Information Resource (TAIR, https://arabidopsis.org), finding 598
interactions (Sup Table 2.13). Interaction clusters were determined using
the GLay clustering tool (SUET AL., 2010) of ClusterMaker package (MORRIS ET
AL., 2011) for Cytoscape (SHANNON ET AL., 2003).

Proteins from transcript-protein pairs with similar expression patterns
(from the same interaction module), on average, showed higher STRING co-

expression scores (Figure 2.20A). To determine if among the protein dataset


https://stringdb-static.org/download/protein.links.detailed.v11.0/
https://stringdb-static.org/download/protein.links.detailed.v11.0/
https://www.ebi.ac.uk/intact/
https://arabidopsis.org/
https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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there were high confidence previously-described physical interactions, the
STRING data from interactions with high co-expression (above median) were
combined with IntAct-registered (HERMJAKOB ET AL., 2003) ppi. There were
129 self-interacting proteins, 70 ppi between proteins in the same module,
and 2,656 ppi between proteins from different trajectory modules (Figure
2.20B).
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Figure 2.19. Correlation between RNA and protein levels.

Scatter plot of the median logarithmic representation of TOP3
abundances for proteins and TPM for RNA molecules for all RNA-
protein pairs at every time-point for all the modules for the different
groups: SVG-SVP (A), NVP-SVG (B), SVG-NVP (C), and NVG-NVP (D).
Colours represent some of the marker and supermarker proteins. Cont.
in next page.
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Figure 2.19. Correlation between RNA and protein levels (Cont.).
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Function data analysis. Gene ontology (GO) (G. YU ET AL., 2012) and KEGG
term enrichments (KANEHISA & GOTO, 2000) were performed using
clusterProfiler (G. YU ET AL., 2012). Enrichment was determined with fisher
exact tests followed by Bonferroni-Yekutieli multiple testing correction. The
composition of the interaction clusters and the trajectory modules was also
analysed in the sense of whether they contained proteins from the same
annotated family according to TAIR, but there was no significant enrichment
in members of any specific family for the clusters. Family annotations were
downloaded from TAIR (downloaded on the 18t of March 2021:
gene_families_sep_29_09_update.txt,).

2.4.9 Comparison with previous studies

RNA-seq differential expression results were compared to those found in
(WELLMER ET AL., 2006). A filter on adjusted p-values (< 0.05) was applied to

the list of common genes to keep only those with significant values.

Novel AP1-high confidence targets (HCTs) were defined using the RNA-seq
data (D1 vs. DO DEGs, adjusted p-value < 0.05, absolute LFC < 0.29) and ChIP-
seq data from (KAUFMANN ET AL., 2010).

2.4.10 Data availability statement

The LC-MS/MS proteomics data for this project have been deposited at the
ProteomeXchange Consortium with the dataset identifier PXD038980.

The RNAseq transcriptomics data are available at GEO with the dataset
identifier GSE217606.
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Chapter 3. General introduction (ll)

3.1 The plant peptidome

Peptides play multiple and diverse roles in plants, acting as signalling
molecules in cell-to-cell interactions or long-distance communication,
affecting stress or external stimuli responses, controlling development,
morphogenesis, growth, fertilization, symbiosis with nitrogen-fixing
bacteria, or by virtue of their antimicrobial activities (BREIDEN & SIMON, 2016;
GRIENENBERGER & FLETCHER, 2015; MATSUBAYASHI, 2011, 2014; TAKAHASHI ET
AL., 2019; TAVORMINA ET AL., 2015). They can be classified according to how
they are generated and to their sequence, structural, and functional
characteristics, and are generally defined - albeit somewhat arbitrarily - as
of less than 100 amino acids long (TAVORMINA ET AL., 2015).

The vast majority of the plant peptides that have been characterized to date
are produced through the processing of larger, non-functional precursor
polypeptides, which result in the mature peptide upon removal of an N-
terminal signal sequence (NSS; that directs the precursor to the secretory
pathway) and/or of other amino acid segment(s) (Table 3.1) (TAVORMINA ET
AL, 2015). These precursor-derived peptides (‘conventional’ peptides)
functionally correspond, to a large extent, to small signalling peptides (SSPs)
and antimicrobial peptides (AMPs), and structurally can be sub-grouped into
two major classes, post-translationally modified (PTM) peptides and
cysteine-rich (Cys-rich) peptides, each of them containing several gene
families; in addition, several non-functional precursor derived peptides are
not cysteine-rich and are not known to be post-translationally modified
(Table 3.1). The presence of signature sequences or motifs (NSSs, Cys
residues) and of sequence similarity within gene families has facilitated the
identification of these ‘conventional’ peptides within and across plant species
(MATSUBAYASHI, 2018)
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Functional or bioactive peptides can also be generated through the
proteolytic processing of otherwise functional proteins, resulting in so-called
cryptides, defined by having a biological activity that is distinct to that of the
protein that the cryptide originates from (SAMIR & LINK, 2011). Only a few
examples of cryptides with relevant roles in plants have been reported to
date, which are for instance related to the defence response and other
stresses (CHEN ET AL., 2014; CHIEN ET AL. 2015; LYAPINA ET AL., 2019;
TAVORMINAET AL., 2015; YUANET AL., 2019). In fact, the proteolytic degradation
of proteins generates peptides that can be localized intracellularly or
extracellularly and, in plants, the composition of this protein “degradome” -
of which chloroplasts are a major source (KMIEC ET AL., 2018; MAMAEVA ET AL.,
2020) - is affected during stress responses or upon treatment with plant
stress-related hormones (FESENKO, AZARKINA, ET AL., 2019; FILIPPOVA ET AL.,
2019). Whether multiple cryptides with specific functions exist in the plant
peptide “degradome”, or if it is rather the existence of a pool of peptide
degradation products and changes in its abundance or composition what
may be perceived by the cells as part of stress signalling, is an open question,
although a potential cryptide with antimicrobial activity has been detected in
P. patens upon methyl jasmonate treatment (FESENKO, AZARKINA, ET AL., 2019).

In addition to the peptides that are generated through the processing of non-
functional or functional precursors, peptides can also be produced through
the direct translation of short/small open reading frames (sORFs/smORFs)
(Table 3.1). This is the case, for instance, of Arabidopsis ROTUNDIFOLIA4
and DEVIL1, which were identified in activation-tagging (gain-of-function)
genetic screens and are the founding members of the RTFL/DVL gene family,
involved in organogenesis (GUO ET AL., 2015; IKEUCHI ET AL., 2011; NARITA ET
AL., 2004; VALDIVIA ET AL., 2012; WEN ET AL., 2004). Likewise, KISS-OF-DEATH
(KOD) was identified through a promoter trap screening and the encoded
small peptide was shown to act as an inducer of programmed cell death in
embryo development and during stress (BLANVILLAIN ET AL., 2011), and
BRICK1 (BRK1; identified in a mutant screen in maize) is an essential
component of the complex that controls the spatiotemporal dynamics of
actin nucleation and therefore affecting morphogenesis (CHIN ET AL., 2021;
DJAKOVIC ET AL., 2006; FRANK & SMITH, 2002; LE ET AL., 2006). More recently,
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ZENGDA SMALL PEPTIDE 1 (ZSP1) was identified in a search of Arabidopsis
small genes that lacked functional annotation and was shown to affect organ
size via the cytokinin pathway (ZENG ET AL., 2022).

However, the fact is that until relatively recently, the coding potential of
eukaryotic SORFs at the genome-wide level had mostly been overlooked. This
was due to traditional assumptions (e.g, a monocistronic nature of
eukaryotic mRNAs, or that short peptides would be unlikely to fold into
stable -and functional- structures), to computational constraints for de novo
sORF identification and annotation in genome sequences, and -particularly-
to experimental limitations for determining whether these sequences are in
fact translated. However, the development of high-throughput methods to
identify translating RNAs (ribosome profiling; Ribo-seq and Polyribo-seq)
(HSU ET AL., 2016; INGOLIA, 2016; INGOLIA ET AL., 2014; INGOLIA ET AL., 2009;
INGOLIA ET AL., 2011) evidenced an unanticipated complexity to mammalian
proteomes and revealed that translation outside of conserved or
standard/annotated reading frames is pervasive on cytosolic transcripts
(INGOLIA ET AL., 2014; INGOLIA ET AL., 2011). These observations were quickly
extended to other eukaryotic organisms, including plants (BAZIN ET AL., 2017;
HSU ET AL., 2016; JUNTAWONG ET AL., 2014), and demonstrated also through
mass spectrometry (MS) proteomic studies (MENSCHAERT ET AL., 2013;
SLAVOFF ET AL., 2013; VANDERPERRE ET AL., 2013).

As a result and contrary to what was previously considered, it is now well
established that small and long non-coding RNAs (ncRNAs and IncRNAs) and
transcripts of unknown function (TUFs), pseudogene transcripts, 5’- and 3’-
UTRs of mRNAs, antisense transcripts, unannotated intergenic regions,
primary miRNA transcripts (pri-miRs), ribosomal RNAs, and introns and
circular RNAs, might contain translatable sORFs encoding non-precursor-
derived peptides, which are generally referred to as SORF-encoded peptides
(SEPs), ‘non-conventional peptides’ (NCPs), microproteins, or micropeptides
(and also usually defined as shorter than 100 amino acids in length) (Figure
3.1). These terms therefore generally refer to a class of peptides and proteins
that are “born small” (SCHLESINGER & ELSASSER, 2022), in contraposition to
‘conventional’ peptides derived from the processing of larger precursor
polypeptides (Table 3.1).
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In addition, mRNAs can also be polycistronic by containing ORFs that,
although being internal (completely or partially) and out-of-frame to the
main/annotated coding sequence (CDS), can be translated, mostly into
peptides or proteins that are also small. These have often been referred to as
alt-ORFs (for ‘alternative’) and alt-proteins (alt-Prots) (BRUNET ET AL., 2018;
CARDON ET AL., 2021; LEBLANC ET AL., 2022; SAMANDI ET AL., 2017) (in the
literature, however, there is overlap but not complete coincidence between
the categories defined as ‘sORF’ and ‘alt-ORF’ peptides; see (BRUNET ET AL.,
2020; Couso & PATRAQUIM, 2017; MUDGE ET AL., 2022) for more on terminology
and classifications).

sORFs in mMRNAs sORFs in circRNAs
UORF Main ORF
uoORF circRNA-ORF
intORF
doORF
dORF

- sORFs in pri-miRNAs

sORFs in IncRNAs
IncRNA-ORF miORF
L |

Figure 3.1. Overview of main sORF classes with respect to the type
of RNA in which they reside.

Messenger RNAs might contain, in addition to the main, canonical ORF
(CDS; coding sequence), sORFs that are located: in the 5-UTR
(upstream ORF; uORF); upstream but overlapping the CDS in a different
reading frame (upstream overlapping ORF; uoORF); internal to the CDS
in a different reading frame (internal ORF; intORF), internal and in a
different reading frame but extending downstream of the CDS
(downstream overlapping; doORF); or fully downstream in the 3"-UTR
(downstream ORF; dORF). Translatable sORFs can also be located in
IncRNAs (IncRNA-ORF), in circular RNAS (circRNA-ORF) or in primary
miRNA transcripts (miORF), as well as in other types of RNAs or genetic
elements (not pictured). Upstream sORFs (uORFs) and IncRNA sORFs
constitute the most abundant classes identified in Ribo-Seq
experiments.
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The terms ‘cryptic proteins’ and ‘ghost proteins’ have also been used to refer
to non-annotated or non-canonical proteins, or proteins encoded in IncRNAs,
and therefore encompassing -but not being equal to- SEPs/NCPs: a vast
majority of cryptic proteins are small, but not all of them (RUIZ CUEVAS ET AL.,
2021; ZHENG ET AL, 2023). In a sense, it could be argued that
SEPs/NCPs/microproteins represent the low end of the spectrum of
‘canonical’ proteins (SCHLESINGER & ELSASSER, 2022), even though they might
frequently display some ‘non-canonical’ characteristics (see below), and
although their origin (i.e., the type of RNA molecules they are derived from)
is much more varied and continues to expand. It has recently been found, for
instance, that plant and animal positive-sense single-stranded RNA viruses
encode functional SEPs in their negative-sense, replication-intermediate
RNA, previously thought to be devoid of coding capacity (GONG ET AL., 2023).
In any case, even the known the ‘low end’ of the proteome spectrum is much
less understood than the ‘standard’ proteins: more than 70% of the genes
encoding proteins smaller than 50 amino acids that have been already
annotated in the Arabidopsis genome still lack functional information
(Figure 3.2).

Up to 50 aa Between 51 and 100 aa Over 100 aa

520 5794

200 50

Hypothetical peptide/protein
Evidence of transcription or purifying selection
I Annotated function/description

Peptide/Protein
description in TAIR

Figure 3.2. Proportion of Arabidopsis peptides and proteins with
functional annotation in TAIR.

Peptides/proteins classified as ‘hypothetical’ or ‘evidence of
transcription of purifying selection’ lack functional annotation. There
are 340 peptides of up to 50 aa, 1,838 peptides from 51 to 100 aa, and
25,384 proteins of over 100 aa annotated in TAIR (file:
Araportl1_pep_20220914_representative_gene_model.gz; data
downloaded from https://www.arabidopsis.org/).
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Table 3.1. The plant peptidome: summary classification of functional peptides.
Arabidopsis thaliana (At), Brassica oleracea (Bo), Coffea canephora (Cc), Glycine max (Gm), Ipomoea batatas (Ib), Medicago truncatula (Mt),
Nicotiana tabacum (Nt), Petunia hybrida (Ph), Oryza sativa (Os), Phaseoulus vulgaris (Pv), Populus tremula and P. tremuloide (Pt), Solanum
lycopersicum (Sl), S. nigrum (Sn), S. tubersosum (St), Triticum aestivum (Ta), Vigna unguiculata (Vu), Vitis vinifera (Vv), Zea mays (Zm).

I - Precursor-derived peptides (‘conventional’ peptidome)

Non-functional precursor

CEP (C-terminally
encoded peptide)

CIF (Casparian strip
integrity factor)

CLE (CLAVATA3/ESR-
related)

GLV/RGF/CLEL
(GOLVEN/ROOT
MERISTEM GROWTH
FACTOR/CLE-like)

HYPSIS I and II
(NY)

HYPSYS

PTM peptides

CEP (At, M),
ZmCEP1 (Zm)

CIF1-2 (Af)

CLV3 (At), CLEs

GLV1-3 (At)

83 (At)

12-14

15-20 (Af)

15-20 (Nt
S, St, Ph, Sn,
Ib, Pt, Cc)

15 (A¢),
4 (Mt)

2 (AD)
32 (A1),
104 (Ta)

11 (At)

2 (Nt

Plant organogenesis and
response to abiotic stress.
Signalling (root-to-shoot).

Peptide hormone required

to form the casparian strip.

Plant growth. Signalling.

Plant growth (root
gravitropism). Signalling.

Defence signalling.

(OGILVIE ET AL., 2014; OHYAMA ET
AL., 2008; ROBERTS ET AL., 2013;
TABATAET AL., 2014; XU ET AL.,
2021; ZHOU ET AL., 2019)

(DOBLAS ET AL., 2017; NAKAYAMA
ET AL, 2017)

(FLETCHER, 2020; GOAD ET AL.,
2017; WHITEWO0ODS, 2021;
WILLOUGHBY & NIMCHUK, 2021)
(BUHLERET AL., 2023; FERNANDEZ
ET AL., 2013; FURUMIZU & SAWA,
2021; JOURQUIN ET AL., 2023;
STEGMANN ET AL., 2022; WHITFORD
ET AL, 2012; XUETAL., 2023)
(PEARCEET AL., 2009; PEARCE ET
AL.,2001; PEARCEET AL., 2007;
RYAN & PEARCE, 2003; ZHANG ET
AL., 2020)



IDA/IDL
(INFLORESCENCE
DEFICIENT IN
ABSCISSION/IDA-like)

PIP/PIPL/TOLS (PAMP-
INDUCED SECRETED

IDA, IDL (4¢)

PIP, PIPL, TOLS2

PEPTIDE,/PIP-like) (1)
PSK (Phytosulfokine) AtPSK (At)
PSY (PEPTIDE
CONTAINING PSY1 (4¢)
SULFATED TYROSINE)

(PRO)SCOOP1-
SCOOP (SERINE-RICH 14 (A¢), EWR1
ENDOGENOUS (ENHANCER OF
PEPTIDE) VASCULAR WILT

RESISTANCE, At)
Cys-rich peptides
CYSTM (CYSTEIN-RICH

TRANSMEMBRANE CYSTM3 (At)
MODULE)

EPF/EPFL/STOMAGEN .. (A1), EPFL2
(EPIDERMAL (Af), EPFL9
F.'ATTERNING FACTOR- (STOMAGEN, A¢)
like)

LURE AtLURE (4¢)

77 (At)

72-86 (At)

77-87 (At)

75 (A¢)

69-140 (At)

57 (Af)

45 (4f)

~90 (At)

6 (At)

5 (Af)

6 (At)

23 (A¢)

13 (At)

12 (At)

7 (AD)

Control of floral organ
abscission and lateral root
emergence.

Innate immune response
and response to abiotic
stress (signalling). Lateral
root development.

Plant growth. Plant
immunity. Signalling.

Cellular proliferation and
expansion. Seedling
development.

Plant growth and pathogen
defence.

Response to stress.
Signalling.

Plant growth and
organogenesis (gynoecium
and fruit growth with ovule
initiation). Signalling.

Plant reproduction (pollen

tube attractants). Signalling.
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(SANTIAGO ET AL., 2016; VIE ET AL,
2015; WANG, WU, JIANG, ET AL.,
2023)

(HOU ET AL., 2014; NAJAFI ET AL.,
2020; TOYOKURAET AL., 2019; VIE
ET AL., 2015; ZHOU ET AL., 2022)

(DINGET AL., 2023; MATSUBAYASHI
ET AL., 2006; SAUTER, 2015;
STUHRWOHLDT ET AL., 2015)
(AMANO ET AL., 2007; DE GIORGI ET

AL., 2021; OGAWA-OHNISHI ET ALL.,
2022)

(GUILLOU ET AL., 2022; GULLY ET
AL.,2019; HOU ET AL., 2021)

(XUETAL., 2018)

(BESSHO-UEHARA ET AL., 2016;
HARAET AL., 2007; KAWAMOTO ET
AL., 2020; QIET AL., 2020; SUGANO
ET AL., 2009)

(OKUDAET AL., 2009; ZHONG ET AL,
2019)
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NCR (Nodule-specific
cysteine-rich)

NCRs (Mt),
NFS1-2 (M¢)

PCP-B (POLLEN COAT
PROTEIN B) PCP-B (4, Bo)
RALF/RALFL (RAPID
ALKALINIZATION
FACTOR/RALF-like)

WIP (WOUND
INDUCED
POLYPEPTIDES)
Non-PTM, Non-Cys-rich-peptides
CTNIP/SCREW (SMALL
PHYTOCYTOKINES
REGULATING DEFENSE
AND WATER LOSS)

AtWIP1-5 (40),
WIPs (Gm)

CTNIP1-5 /
SCREWs (At)

GRI (GRIM REAPER) GRI (At)
PEP (PLANT ELICITOR

PEPTIDE) PEP1 (A1)
SYS (SYSTEMIN) SYS (SI)

43-47 (Mt)

76-126 (At,
Bo)

25-105 (4¢)

83-95 (A1),
~90 (Gm)

60-70 (At)

60-70 (At)

23 (At)

18 (S])

3 (M¢)

4 (AD)

> 60 (A4t)

5 (AD),
38 (Gm)

5 (46)

8 (At)

Nitrogen-fixing symbiosis.

Pollination. Signalling.

Plant development,
immunity response, pollen
tube perception, and rupture
(Polytubey block).

Immune response and
symbiotic interactions.
Signalling.

Stress response (stomatal
closure). Signalling.

Response to abiotic stress
(programmed cell death
induced by extracellular
reactive oxygen species -
ROS-) and plant
development (flowers and
seeds).

Defence response. Signalling.

Defence response.

(HORVATHET AL., 2023; PAN &
WANG, 2017; VAN DE VELDE ET AL.,
2010)

(LIUETAL., 2021; WANGET AL.,
2017)

(LANET AL., 2023; ZHONG ET AL.,
2022)

(YUETAL, 2018)

(LIUET AL., 2022; RHODES ET AL.,
2022)

(WRZACZEK ET AL., 2009)

(BARTELS & BOLLER, 2015; HANDER
ET AL., 2019; HUFFAKER ET AL.,
2006)

(RYAN & PEARCE, 1998, 2003;
ZHANGET AL., 2020)



Functional precursor
SUBPEP (Gm),
CAPE1 (8D,
INCEPTIN (4t,
Py, Os, Vu, Zm)

II - Non-precursor-derived peptides ('non-conventional' peptidome)

Cryptides

sORF (small genes, intergenic)

BRK1 (BRICK1)

FIS (FLOODING
INDUCIBLE GENES)

KOD (KISS OF DEATH)

RTFL/DVL
(ROTUNDIFOLIA4-
LIKE/DEVIL)

ZSP1 (ZENGDA SMALL
PEPTIDE 1)

(At)

IncRNA ORFs
ENOD40-1/A,
ENOD40-11/B
(Mt)

ENOD40

IMA (IRONMAN) /FEP

(Fe-UPTAKE-INDUCING IMA1-8 (A¢)

PEPTIDE)

BRK1 (Zm),
HSPC300 (A¢)

FIS1-3 (Gm)
KOD (At)

ROT4 (At), DVL1

ZSP1 (At)

11-13 (Vu)

84 (Zm)

70-80 (Gm)

25 (A¢)

40-144 (At)

57 (Af)

13,27 (Mt)

~50 (At)

3 (Gm)

22 (Af)

2 (M¢)

8 (At)
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Defence response. Signalling.

Morphogenesis (actin
nucleation). Component of
the actin reorganization
complex.

Response to abiotic stress.

Programmed cell death in
embryogenesis, stress.

Organogenesis, cell
proliferation, nodule
development.

Organ size (cytokinin
pathway).

Symbiotic nodule
development.

Plant response to abiotic
stress (iron transport).
Signalling.

(CHEN ET AL., 2014; CHIEN ET AL.,
2015; PEARCEET AL., 2010;
SCHMELZ ET AL., 2006)

(CHIN ET AL., 2021; DJAKOVIC ET AL.,
2006; FRANK & SMITH, 2002; LEET
AL, 2006)

(NANJOET AL., 2011)

(BLANVILLAIN ET AL., 2011)

(GUOET AL., 2015; IKEUCHI ET AL.,
2011; NARITAET AL., 2004;
VALDIVIAET AL., 2012; WEN ET AL.,
2004)

(ZENGET AL., 2022)

(KERESZT ET AL., 2018; ROHRIG ET

AL.,, 2002; SOUSAET AL., 2001)

(GRILLET ET AL., 2018; HIRAYAMA
ET AL, 2018)
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OSIP108 (OXIDATIVE

STRESS-INDUCED

PEPTIDE 108)

PLS (POLARIS)

Zm401p10

Zm908p11

miPEPs:

0SIP108 (46

PLS (Af)

Zm401p10 (Zm)

Zm908p11 (Zm)
pri-miRNA sORFs/mirPEPs

miPEP156a,c; 160b; 162; 163; 164a; 165a;
167a,b,c; 169; 171b,d; 172b,c; 319a; 395¢;
396a; 858a (At and other species)

10 (Af)

36 (At)

89 (Zm)

97 (Zm)

5-50 (At, Bo,
Mt, Gm, Vv)

>18 (At)

Oxidative stress tolerance.

Root growth, vascular
development (hormonal
crosstalk).

Anther development.

Pollen germination and tube
growth.

Plant growth and
morphology (flowering, root,
leaf and flower
development).

(DE CONINCK ET AL., 2013)

(CASSON ET AL., 2002; CHILLEY ET
AL., 2006; LIU ET AL., 2010; MOORE
ET AL, 2015)

(MAETAL., 2008; WANGET AL.,
2009)

(DONGET AL., 2013)

(GAUTAM ET AL., 2023;
LAURESSERGUES ET AL., 2015;
LAURESSERGUES ET AL., 2022;
ORMANCEY ET AL., 2023; SHARMA ET
AL, 2020)
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Regardless of the terms that are used, however, what has become
increasingly clear over the past ten years is that SEPs/NCPs -the ‘non-
conventional’ peptidome- constitute an important part of the eukaryotic
proteome. This ‘non-conventional’ peptidome is still poorly defined and
annotated and largely uncharacterized, but it is already apparent that
SEPs/NCPs can carry out important biological functions (reviewed in:
BRUNET ET AL., 2020; HELLENS ET AL., 2016; HSu & BENFEY, 2018; KUTE ET AL,
2021; MAKAREWICH & OLSON, 2017; MUDGE ET AL., 2022; ORRET AL., 2020; PLAZA
ET AL., 2017; SCHLESINGER & ELSASSER, 2022; VITORINO ET AL., 2021; WRIGHT ET
AL, 2022). In fact, the legume gene early nodulin 40 (ENOD40) was first
considered as representing a ‘non-translatable’ RNA (CRESPIET AL., 1994), but
is arguably the first case of a IncRNA that was found to act through NCPs
encoded in sORFs (ROHRIG ET AL., 2002; SOUSA ET AL. 2001). ENOD40
participates in the initiation of symbiotic nodule primordia, and two ENOD40
peptides (ENOD40-1 and ENOD40-II) as well as a structured RNA region of
the transcript are required for its activity, through binding to sucrose
synthase and re-localizing the RNA binding protein RBP1, respectively
(KERESZT ET AL., 2018). Other plant NCPs derived from what could otherwise
be considered (or were first considered) as IncRNAs are: POLARIS (PLS),
involved in the auxin-cytokine-ethylene crosstalk in Arabidopsis and
required for correct root growth and leaf vascular patterning (CASSON ET AL.,
2002; CHILLEY ET AL., 2006; LIU ET AL., 2010; MOORE ET AL. 2015); the
Arabidopsis IRON MAN peptides (IMA; also called FEP, for FE-UPTAKE-
INDUCING PEPTIDE), that control iron transport (GRILLET ET AL., 2018;
HIRAYAMA ET AL., 2018); maize Zm908p11, which functions in pollen
germination and pollen tube growth (DONG ET AL, 2013); and maize
Zm401p10, which is essential for anther development (MAET AL., 2008; WANG
ET AL., 2009) (for a recent ‘consensus statement’ on IncRNA definitions and
functions, see (MATTICK ET AL., 2023)).

The distinction between a ‘non-conventional’ SEP/NCP peptidome that is
largely derived from highly heterogeneous types of genetic elements, on one
hand, and otherwise ‘canonical’ but small proteins is nevertheless further
blurred. For instance, somewhere in between are microProteins (with capital
P; miPs), a term originally coined in plants (STAUDT & WENKEL, 2011) to
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specifically refer to small (5-15kDa) proteins that show sequence homology
and are evolutionary related to larger, multidomain proteins -in particular,
transcription factors (TFs)-, but that instead contain a single domain,
specifically a protein-protein interaction domain (BHATIET AL., 2018; BHATIET
AL.,2021; BHATIET AL., 2020; EGUEN ET AL., 2015; MAGNANI ET AL., 2014; STAUDT
& WENKEL, 2011). MicroProteins would thus be able to disrupt or modulate
the formation of protein complexes by their ‘target’ proteins (MAGNANIET AL.,
2004; STAUDT & WENKEL, 2011). The miPs that have been functionally
characterized to date usually function through interactions with the TFs that
they are evolutionary related to (homotypic interactions) (BHATI ET AL.,
2021), although an example of a heterotypic miP interaction with non-
homologous TFs has been reported recently (WU ET AL., 2020). Thus, miPs
have already been shown to be involved -through modulating the
interactions of regulatory TFs- in photomorphogenic development (WU ET
AL, 2020; YADAV ET AL., 2019), axillary meristem formation (ZHANG ET AL.,
2018), shoot apical meristem development (KIM ET AL., 2008; XU ET AL., 2019),
flowering time (GRAEFF ET AL., 2016; RODRIGUES ET AL., 2021), floral meristem
termination (BOLLIER ET AL., 2018), or jasmonic acid signalling (HONG ET AL.,
2020), and this variety of physiological roles will continue to expand, as plant
genomes are thought to encode for hundreds of miPs (BHATI ET AL., 2020;
MAGNANI ET AL., 2014; STRAUB & WENKEL, 2017). Importantly, however, it
seems that during plant evolution miPs appeared after their homologous TFs,
suggesting that they evolved from the TFs by domain loss (MAGNANI ET AL.,
2014), whereas sequences generating SEPs/NCPs have been proposed as
raw material for de novo gene birth (RUIZ-ORERA & ALBA, 2019; RUIZ-ORERA ET
AL., 2018; RUIZ-ORERA ET AL., 2020) (see below).

This chapter will primarily focus on the ‘non-conventional’ peptidome in
plants, but with the background of the state of knowledge on this topic in
animals (and in particular humans), in which a vast majority of the studies in
this emerging field have been conducted so far. Specific types of
‘conventional’ plant peptides will be mentioned, but for many of those, in-
depth reviews are available elsewhere (see Table 3.1). Several key questions
should be considered with respect to the non-conventional plant peptidome.

Where does it originate from, from what types of genetic elements? What is
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the nature and extent of its composition? How conserved is it across plant
species? And, most importantly, what are the physiological functions of the
peptidome, the specific functions carried out by this potentially large number
of novel peptides, and how do SEPs/NCPs operate at a molecular and
mechanistic level in plants? Answers to these questions are also emerging

from mammalian studies that may help guide plant research on this topic.

3.2 Uncovering SEPs/NCPs: finding the needles in the haystack

The discovery and identification of functional sORFs embedded in eukaryotic
genomes relies on three different methodological approaches: (i) ribosome
and polysome profiling (Ribo-Seq and Poly-Ribo-Seq) for evidence of sORF
translatability, (ii) mass spectrometry (MS)-based proteomics for direct SEP
detection, and (iii) computational analyses for sORF prediction (ALVAREZ-
URDIOLA, BORRAS, ET AL., 2023; MAKAREWICH & OLSON, 2017; MOHSEN ET AL,
2023; PEETERS & MENSCHAERT, 2020; PRENSNER ET AL., 2023; SCHLESINGER &
ELSASSER, 2022).

3.2.1 Evidence of sORF translatability: ribosome and polysome
profiling

Ribo-seq consists on the deep sequencing of ribosome-protected RNA
fragments (ribosome footprints, of about 30 nt in length), whereby the
periodicity of ribosome footprints (ribosomes decipher mRNA every three
nucleotides) is used to identify bona-fide translation interactions (HSU ET AL.,
2016; INGOLIA, 2016; INGOLIA ET AL., 2014; INGOLIA ET AL., 2009; INGOLIA ET AL.,
2011). Poly-Ribo-Seq is a modification of Ribo-Seq in which polysomes are
enriched for the ribosome footprinting (ASPDEN ET AL., 2014). Sequencing of
the ribosome footprints reveals the abundance and positions of ribosomes
on a given transcript, providing a genome-wide view of active translation
that can also be used to uncover previously unrecognized or unannotated
translatable ORFs. In fact, Ribo-Seq provided the first large-scale
experimental evidence that ‘noncanonical’ translation events existed in
eukaryotic cells, and indicated that (thousands of) sequences annotated as

non-coding RNAs, pseudogenes and UTRs could be an important source of
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novel peptides (ASPDEN ET AL., 2014; BAZZINI ET AL., 2014; CHOTHANI ET AL.,
2022; DUFFY ET AL., 2022; FIELDS ET AL., 2015; HARTFORD & LAL, 2020; INGOLIA
ETAL. 2014; JIET AL., 2015; MARTINEZ ET AL., 2020; RAJ ET AL., 2016; RUIZ CUEVAS
ET AL., 2021; RUIZ-ORERA ET AL., 2014; VAN HEESCH ET AL., 2019). At present
there is a variety of computational methods to analyse the Ribo-Seq data and
infer potential coding sORFs, and it is important to note that different data
processing pipelines may produce substantially different results in terms of
the overall number, stringency, identity, and specific characteristics of the
sORFs that are identified as translated, and that different methods may have
different capacity for identifying certain classes of sORF (for an extensive
discussion of this topic, see (PRENSNER ET AL., 2023)). It is also important to
note that the bioinformatic tools that are used for translated ORF detection
through Ribo-Seq depend on transcript information, either from the
annotated genome or from RNA-Seq experiments, and therefore that the
scope of the Ribo-Seq results is also determined by the datasets used for the
analysis. Furthermore, it should be kept in mind that sORF translation may
not result in the production of a stable and functional SEP. For instance, the
translation of 5"-UTR sORFs (or upstream ORFs; uORFs) may often function
to regulate the translation of the downstream main ORF of the mRNA
(SCHLESINGER & ELSASSER, 2022) (see below).

3.2.2 Direct SEP detection: Mass spectrometry

Mass spectrometry (MS)-based methods can be used to directly detect SEPs
encoded by sORFs that are predicted from the sequence of the genome or the
transcriptome, or by sORFs identified in Ribo-Seq experiments, and thereby
to confirm the protein-coding nature of the corresponding sequences and
transcripts (e.g., ASPDEN ET AL., 2014; ]. CHEN ET AL., 2020; CHOTHANI ET AL.,
2022; DUFFY ET AL., 2022; KOCH ET AL., 2014; LU ET AL., 2019; MA ET AL., 2014;
MACKOWIAK ET AL., 2015; MARTINEZ ET AL. 2020; MARTINEZ ET AL., 2023;
OUSPENSKAIA ET AL., 2022; RU1Z CUEVAS ET AL., 2021; SLAVOFF ET AL., 2013; VAN
HEESCH ET AL., 2019; VANDERPERRE ET AL., 2013; ZHU ET AL., 2018). Although MS
methods for peptide detection are still limited in sensitivity with respect to
Ribo-Seq and have their own experimental limitations, including the
possibility of producing high false-positive rates, (e.g., (PRENSNER ET AL.,
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2023)), the fact is that over the past few years they have revolutionized our
understanding of the peptidome, in particular because of the power provided
by the combination of MS methods with Ribo-Seq or translatomics (i.e., three-
or six-frame translation of transcriptomic or genomic sequences), in what are
called peptidogenomic approaches (for review, see FABRE ET AL. 2021;
NESVIZHSKII, 2014; SCHLESINGER & ELSASSER, 2022; SONG ET AL., 2023).

However, the detection by MS of novel peptides derived from sORFs presents
specific challenges that should be taken into consideration (for a more
detailed description on methodologies, focused on plant peptidomics, see:
(ALVAREZ-URDIOLA, BORRAS, ET AL., 2023)). First, an efficient and high-quality
peptide-specific extraction protocol is key to improve the identification and
sequence coverage of low-abundance SEPs by MS, as well as the use of
methods for the separation and enrichment of peptides from proteins prior
to the LC-MS/MS analyses (CAO ET AL., 2023; CARDON ET AL., 2020; KHITUN &
SLAVOFF, 2019; MAET AL., 2016). In the end, it is the combination of extraction,
enrichment, and processing (i.e., protease cleavage prior to MS) methods
what will determine the identification of a particular set of peptides in any
given sample (ALVAREZ-URDIOLA, BORRAS, ET AL., 2023; FABRE ET AL., 2021).
Second, additional difficulties lie in under-sampling (i.e., identification of only
a subset of the peptides) by conventional data acquisition methods, and in
that SEPs detection is stochastic due to their size and expression
characteristics, as suggested for example in a study to optimize a SEP
discovery MS workflow using human samples (MAET AL., 2014).

For peptide identification from tandem mass spectra there are two
approaches that could be used: database search and de novo sequencing. In
the database search method, all potential peptide sequences included in a
specified database are retrieved for each spectrum, and each peptide-
spectrum match is scored via a scoring function calculated by database
search engines; in contrast, de novo sequencing extracts peptide sequences
directly from tandem mass spectra using specific algorithms (ALVAREZ-
URDIOLA, BORRAS, ET AL., 2023; FABRE ET AL., 2021). The database search
method is widely used for proteomics and peptidomics and can be based on
canonical (annotated) protein databases (e.g., UniProt) or, if the purpose of

the study is the identification of novel SEPs, customized databases containing
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putative SEPs defined by bioinformatic or transcriptomic analyses (i.e., RNA-
sequencing or Ribo-Seq). In fact, current integrated peptidomics pipelines
include different database creation strategies (ALVAREZ-URDIOLA, BORRAS, ET
AL., 2023), from the use of Ribo-Seq data (e.g., ASPDEN ET AL., 2014; ]. CHEN ET
AL., 2020; DUFFY ET AL., 2022; KOCH ET AL., 2014; MENSCHAERT ET AL., 2013; RAJ
ET AL., 2016; VAN HEESCH ET AL, 2019) to the three-frame translation of
transcriptomics datasets (e.g., CHOTHANI ET AL., 2022; DUFFY ET AL., 2022;
GURUCEAGA ET AL., 2020; LU ET AL, 2019; MA ET AL., 2018; MA ET AL., 2014;
SLAVOFF ET AL. 2013; VANDERPERRE ET AL. 2013; WRIGHT ET AL., 2016).
Strategies based on the six-frame translation of the genome sequence have
also been used, for instance in yeast (HE ET AL., 2018), Drosophila (ZHENG &
ZHAO, 2022), humans (ZHU ET AL., 2018) and plants (S. WANG ET AL., 2020),
although it is a challenging approach because searching very large databases
reduces the sensitivity of peptide identification by introducing more false
positives, as the likelihood of obtaining high-scoring random matches is
increased (NESVIZHSKII, 2010,2014). In comparison to database search, the de
novo method for peptide identification is less powerful and mature, but in
plants it has been used for specific peptide characterization or as a
complement to database search (e.g.,, CULVER ET AL., 2021; GEMPERLINE ET AL.,
2016; JORGE & BALBUENA, 2021; YE ET AL., 2016). An issue that is still not
satisfactorily resolved in MS shotgun proteomics is the large number of
unassigned spectra, i.e.,, where the originating peptide cannot be identified
despite the spectra being of reasonable quality (CHICK ET AL., 2015). Several
factors might contribute to the prevalence of unassigned spectra: from the
corresponding peptidic sequences not being present in the search databases
to naturally occurring posttranslational modifications (PTMs), or chemical
modifications that might have occurred during sample processing, or other
experimental issues (CHICKET AL., 2015). The identification of PTMs, however,
is relevant for improving the understanding of this hidden part of the
proteome, as PTMs may play important roles in the yet to be discovered

biological functions of SEPs.
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3.2.3 Prediction of sORFs: in silico approaches

Bioinformatic approaches have been used (and continue to be developed) to
distinguish coding and non-coding sequences and predict sORFs and SEPs
from eukaryotic genomes and transcriptomes, including IncRNAs (e.g., Z.
CHENET AL., 2023; FRITH ETAL., 2006; HANADAET AL., 2010; HANADA ET AL., 2007;
LADOUKAKIS ET AL., 2011; LIN ET AL., 2011; MACKOWIAK ET AL., 2015; TONG ET AL.,
2020; TONG & LU, 2019; ZHANG ET AL., 2022; Y. ZHANG ET AL., 2021; ZHAO, MENG,
KANG, ET AL. 2022; ZHAO, MENG, & LUAN, 2022; ZHAO ET AL., 2023; ZHU &
GRIBSKOV, 2019). These computational tools and analyses for sORF prediction
can be divided into two categories (alignment-based and alignment-free) and
be based on detecting sequence conservation and purifying selection,
sequence similarity, codon pattern, or in the use of machine learning and

deep learning.

Sequence conservation, determined by analysing the occurrence of
synonymous and non-synonymous codon substitutions, is frequently used to
detect coding regions and assess their protein-coding potential, on the basis
that as synonymous substitutions do not lead to amino acid sequence
changes, they occur more frequently in coding regions. In the case of SEPs,
the short length of the aligned sequences and the limited number of possible
changes pose a difficulty for obtaining statistical significance in these
analyses, but a tool such as PhyloCSF takes a phylogenetic approach by
analysing a multispecies nucleotide sequence alignment to determine
whether it is likely to represent a conserved protein-coding region, based on
a formal statistical comparison of phylogenetic codon models (LIN ET AL,
2011). PhyloCSF has been used extensively to detect sORFs in multiple
eukaryotic genomes, and in particular in combination with Ribo-Seq for
either the Ribo-Seq data to provide support for the sORFs identified through
PhyloCSF comparative genomics (MACKOWIAK ET AL., 2015) or, conversely, for
PhyloCSF to support translated sORFs detected by Ribo-Seq (e.g., BAZZINI ET
AL., 2014; JIET AL., 2015; L1 ET AL., 2016; MARTINEZ ET AL., 2020). Other tools
specifically test for the coding potential of sORFs without the need for
sequence alignments, such as sORF finder (HANADA ET AL., 2010), which is
based on the distinct hexamer composition in coding versus non-coding

sequences and has been used in plant and animal genomes (CRAPPE ET AL.,
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2013; HANADA ET AL, 2007); MiPepid (ZHU & GRIBSKOV, 2019), a machine
learning tool developed specifically for the prediction of micropeptides
directly from DNA sequences that is based on nucleotide patterns (4-mer
features); CPPred (TONG ET AL. 2020; TONG & LIu, 2019), which estimates
transcript coding potential by using multiple features derived from RNA and
protein sequences and improves distinguishing between coding and non-
coding RNAs; or the more recently developed DeepCPP (Y. ZHANG ET AL,
2021), a deep neural network for RNA coding potential prediction; csORF-
finder (ZHANG ET AL., 2022); and, specifically tailored for the identification of
sORFs in plant IncRNAS, sORFplInc (ZHAO ET AL., 2023), sORFPred (Z. CHEN ET
AL., 2023), IncPepid (ZHAO, MENG, & LUAN, 2022), and ISPL (ZHAO, MENG, KANG,
ETAL., 2022). The development of computational tools to predict translatable
sORFs and characterize their coding potential is a very active area of current
research, but in any case, the results are computational predictions that
require experimental verification through Ribo-Seq, MS, or functional

screening approaches (see below).

Another strategy for SEP identification is based on sequence similarity with
previously identified proteins. This approach would miss on species-specific
candidates and orphan genes and, in general, it is not well suited for global
NCP searches because their levels of homology and conservation tend to be
lower than those of canonical proteins (see below), even though some NCPs
have been found to be highly conserved in animals (e.g., KOHET AL.,, 2021). In
plants, sequence similarity has been extensively used to identify families of
conventional precursor-derived peptides across different species. For
instance, a search for RGF/GLV/CLEL-family peptides (initially discovered as
signalling peptides involved in root development in Arabidopsis) led to the
identification of hundreds of homologs in all major extant land plant lineages
(except hornworts) (FURUMIZU & SAWA, 2021) (Table 3.1). Likewise, a BLAST
approach was used to identify in Medicago members of several SSP gene
families (e.g., CLE, CEP, RGF/GLV/CLEL, IDA, PSK, PSY, CIF, EPF; Table 3.1),
generating a database that was then used in MS data analyses to detect
secreted peptides (PATELET AL., 2018) (see also below).

Avariety of databases and online repositories have been created to store and

make available information on peptides and sORFs detected through Ribo-
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Seq, MS and/or bioinformatic approaches. Examples include repositories
devoted to sORF-encoded peptides in Arabidopsis (e.g., ARA-PEPs (HAZARIKA
ET AL., 2017)), in multiple plants (e. g, PsORF (Y. CHEN ET AL., 2020)), or in
animals (e. g., SmProt (Y. LIET AL., 2021), sORFs.org (OLEXIOUK ET AL., 2018),
or OpenProt (BRUNETET AL., 2021)). These repositories might in turn be used
to ensemble the search databases that are required in MS experiments.
Peptide databases that are literature- or sequence similarity-based are also
available (e. g., PlantPepDB (DASET AL., 2020)).

sORFs and SEPs that are discovered through these prospective, genome-wide
approaches can then be specifically confirmed and further investigated
through low-throughput molecular biology methods (epitope-tagging and
expression, subcellular localization studies, antibody generation, in vitro

translation experiments, etc.).

3.3 The non-conventional eukaryotic peptidome: lessons from
animals

Studies in mammals (mouse, human) have demonstrated that SEPs can be
present in the cell at concentrations that are within the range of typical
cellular proteins and that they can exhibit different and specific subcellular
localizations (e.g., PRENSNER ET AL., 2021; SLAVOFF ET AL., 2013; VAN HEESCH ET
AL, 2019). SEPs can be structural or regulatory components of
macromolecular complexes, participate in signalling cascades, or act in an
autonomous fashion (SCHLESINGER & ELSASSER, 2022). Specific human SEPs
have already been found to play significant roles in cancer, metabolism,
mitochondrial processes, muscle physiology, development, DNA repair,
apoptosis or immunology (for an extensive summary of functions already
determined for human SEPs, see SCHLESINGER & ELSASSER, 2022; WRIGHT ET AL.,
2022). Moreover, the massive and widespread transcription of the
eukaryotic genome and the pervasive translation of IncRNAs habilitate SORFs
and the resulting small peptides or microproteins as raw materials for de
novo gene origin and evolution (RUIZ-ORERA & ALBA, 2019; RUIZ-ORERA ET AL,
2018; RUIZ-ORERA ET AL., 2020; SCHLOTTERER, 2015). In fact, recent results
demonstrate that there has been de novo birth of (functional) microproteins
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in the human (SANDMANN ET AL., 2023; VAKIRLIS ET AL., 2022) and Drosophila
(ZHENG & ZHAO, 2022) lineages, as well as in Oryza (rice) (Zhang et al., 2019).
For instance, in rice the de novo gene GSE9 evolved from a previous non-
coding region of wild rice Oryza rufipogon through the ORF acquisition of a
start codon and contributes to grain shape difference between the indica and
japonica rice varieties (GSE9 codes for a small protein, 107 aa long) (R. CHEN
ET AL., 2023). Furthermore, using random sequence libraries it has been
shown in E. coli that randomly generated sORFs can confer beneficial effects
to cells and that new functions can emerge de novo from these SORFS (BABINA
ET AL., 2023; NEME ET AL., 2017).

3.3.1 General observations

Several general - and to some extent intriguing - observations that can be
deduced from the current findings on the mammalian peptidome include the

following:

(i) Translatable sORFs are abundant in IncRNAs, and IncRNAs can be an
important source of SEPs, as determined by Ribo-Seq and MS. For
instance, ribosome profiling of the human heart resulted in the identification
of 1,577 noncanonical ORFs, of which 339 (22%) were sORFs from IncRNAs,
and also determined that over 20% of the heart IncRNAs (169 out of 783)
were translated; furthermore, over 40% of those IncRNA SEPs were
confirmed by MS (VAN HEESCH ET AL., 2019) (in this study the most abundant
class of sORFs, 69%, were uORFs). Likewise, a Ribo-seq study of human
neural cultures detected 706 ncRNAs (mostly IncRNAs) whose expression
was altered by neuronal activity, and 128 (18%) of those showed active
translation of novel sORFs, with a subset being also verified by MS (DUFFY ET
AL., 2022). Specific IncRNAs whose physiological functions are carried out by
the encoded NCP (e.g., D'LIMA ET AL., 2017; KONDO ET AL., 2007; MAGNY ET AL.,
2013; MATSUMOTO ET AL., 2017; MISE ET AL., 2022; NELSON ET AL., 2016; ZHANG
ET AL, 2017), or by both the encoded NCP and the RNA itself (e.g., ANDERSON
ET AL., 2015; LEE ET AL., 2021; LIN ET AL., 2014; SENIS ET AL., 2021; YU ET AL,
2017) have in fact been identified. It may then be that for perhaps many
IncRNAs the emerging question would not be if they have a physiological role

as non-coding RNAs, but rather whether they function solely through the
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encoded SEP or whether the RNA and the encoded microprotein or peptide
have distinct and independent functions (DUFFY ET AL., 2022). Although the
exact proportion of sORFs/SEPs that are derived from IncRNAs may vary
among different genome-wide studies, it consistently represents a
substantial fraction in random sampling experiments of all possible sORFs
(frequently around 25% (J. CHEN ET AL., 2020; OUSPENSKAIA ET AL., 2022), but
may reach up to 40% (HUANG ET AL., 2021)). In this context, it is also
noteworthy that out of a list of 42 human SEPs already characterized as
functionally or physiologically significant (WRIGHT ET AL., 2022), 55% are
derived from IncRNAs (Figure 3.3). The mean length for IncRNA-encoded
sORFs in humans has been estimated in ~54 aa (NEVILLE ET AL., 2021).
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Figure 3.3. Human sORF-encoded non-canonical peptides that
have been functionally or physiologically characterized.

Boxplot depicting the size and number of characterized human NCPs
according to the type of RNA in which the corresponding sORF resides
(IncRNAs, circRNAs, mitochondrial transcripts, transcript isoforms,
transcripts of unknown function, and uORFs). Data from (WRIGHT ET AL.,
2022).

(ii) uORFs are a major source, and perhaps the primary source, of
translatable sORFs. For instance, in a recent ultra-high-depth RNA- and
Ribo-Seq study that encompassed six human primary cell types and five
human tissues as well as a tailored data analysis pipeline to generate a high
resolution map of human RNA translation, 7,767 high-confidence translated



90 | Chapter 3

sORFs were detected, of which 5,308 (68%) were located in the 5-UTRs of
known protein-coding transcripts (CHOTHANI ET AL., 2022). The second major
class of translated sORFs identified in the study was that of novel sORFs in
annotated IncRNAs (1,652 sORFs, 21%), with the remaining being 3"-UTR
sORFs (807 sORFs, 10%). Using previously available MS datasets, a total of
614 of the corresponding SEPs were detected (8% of the 7,767 sORFs)
although, interestingly, the IncRNA-encoded peptides were detected much
more frequently than the 5"-UTR peptides (286, or 17% of IncRNA sORFs,
versus 281, or 5.3% of 5°-UTR sORFs) despite the fact that the level of
translation of IncRNA sORFs was generally lower than that of 5"-UTR sORFs
(CHOTHANI ET AL., 2022). These observations might suggest that, overall,
IncRNA sORFs are a more probable source of biologically functional SEPs
than the 5°-UTR sORFs. Although uORF-encoded microproteins with critical
roles in cellular processes have already been identified, as for example MP31,
Kastor, Pollucks, SEHBP, and EMBOW (120 aa) (see below, and (Y. CHEN ET
AL., 2023; HUANG ET AL., 2021; KOH ET AL., 2021; MISE ET AL., 2022)), a general
assumption is that many uORFs may simply function to downregulate the

expression of the downstream main ORF.

(iii) A ‘traditional’ characteristic for predicting protein-coding ORFs is
the presence of an ATG start codon. However, it is now apparent that non-
AUG translation initiation of SEPs is extended, and that sORFs show a trend
towards a much-increased use of near-cognate or alternative start codons
relative to canonical ORFs (CAO & SLAVOFF, 2020; CHU ET AL., 2015). Various
MS-based (e.g., MAET AL., 2016; MAET AL., 2014; MENSCHAERT ET AL., 2013; RUIZ
CUEVAS ET AL., 2021; SLAVOFF ET AL., 2013; VANDERPERRE ET AL., 2013; Q. ZHANG
ET AL, 2021) and Ribo-Seq (e.g., ]. CHEN ET AL., 2020; CHOTHANI ET AL., 2022;
DUFFY ET AL., 2022; MARTINEZ ET AL., 2020; Ruiz CUEVAS ET AL., 2021) studies
have indicated that up to 35-75% of the identified sORFs/SEPs would initiate

with non-AUG start codons.

(iv) In general, sORFs/SEPs are less evolutionary conserved than
standard ORFs/proteins and have lower conservation scores (e.g., ]. CHEN
ET AL., 2020; FESENKO, KIROV, ET AL., 2019; FESENKO ET AL., 2021; RUIZ-ORERA ET
AL., 2018; SANDMANN ET AL., 2023; VAN HEESCH ET AL., 2019; WRIGHT ET AL.,
2022), which is also in agreement with the concept that ncRNA sORFs may
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facilitate de novo gene evolution. For instance, out of 3,877 microprotein-
encoding sORFs from mouse adipocytes, 991 (25.5%) showed homology to
rat sequences, but only approximately 250 (6.5%) to more distant species
such as human, dog, or pig (MARTINEZ ET AL., 2023). Likewise, an analysis of
over 7,000 Ribo-Seq human sORFs only identified 273 (4%) as showing high
similarity to mouse sequences (MARTINEZ ET AL., 2020) and, in another study,
approximately 68% of the sORFs identified as translated in human brain
were not detected in other species, including primates (DUFFY ET AL., 2022).
These observations were further strengthened by a recent study on the
conservation and evolutionary origin a of a set of 7,264 high-confidence
human sORFs, which found that a vast majority were evolutionary young
(6,506, 90%) as they lacked significant protein homology outside of primate
mammals, and identified 222 as being human specific (SANDMANN ET AL,
2023).

(v) sORFs with limited sequence conservation or a de novo origin can
produce functional microproteins that participate in crucial cellular and
biological processes, i.e., functionality is not limited to highly conserved SEPs
(e.g., SANDMANN ET AL., 2023; VAN HEESCH ET AL., 2019). For example, a subset
of 124 of the sORFs that showed evidence of translation in the human brain
had been previously identified as causing growth phenotypic changes when
knocked-out in human induced pluripotent stem cells (iPSCs) and in a
leukemia cell line (see below) and, strikingly, 101 (81%) of those sORFs were
human-specific, lending support to the idea that newly evolved, species-
specific SEPs can acquire important functions (DUFFY ET AL., 2022). It has also
been shown that novel, adaptive transmembrane NCPs can emerge from

thymine-rich non-genic regions in yeast (VAKIRLIS ET AL., 2020).

(vi) The mechanisms of action of SEPs/NCPs are varied. Because of their
reduced size, frequent presence of intrinsically disordered regions or of
transmembrane (TM) helices, and other physicochemical characteristics, it is
assumed that SEPs would primarily act by interacting with proteins and

other cellular components and modifying or modulating their functions.

SEPs containing single-pass TM a-helices are, for example, a group of

micropeptides that interact with SERCA calcium transporters and regulate
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muscle relaxation and contractility (e.g., myoregulin -46 aa, MLN-, DWORF -
34 aa-, or Sarcolamban -28 aa, SCL-, among others (ANDERSON ET AL., 2015;
ANDERSON ET AL., 2016; MAGNY ET AL., 2013; NELSON ET AL., 2016)) or neural
differentiation and cellular homeostasis in pancreatic  cells (e.g,
pTUNAR/BNLN, 48 aa (M. LI ET AL, 2021; SENIS ET AL, 2021)).
Myomixer/Minion/Myomerger (84 aa) is a membrane-localized
micropeptide that is involved in myoblast fusion during skeletal muscle
development, perhaps through the interaction with Myomaker (a
transmembrane protein) and/or other proteins (BIET AL., 2017; QUINN ET AL.,
2017; ZHANG ET AL., 2017). Other examples are provided by SPAR (90 aa),
which localizes to the lysosomes and regulates mTORC1 activation
(MATSUMOTO ET AL., 2017), and by Kastor (53 aa) and Pollucks (40 aa), which
insert in the outer mitochondrial membrane and directly interact with
voltage-dependent anion channel (VDAC) affecting spermatogenesis and
fertility (MISE ET AL., 2022). It could be that the activity of many membrane
proteins is regulated by interactions with TM micropeptides.

Beyond membrane compartments, SEPs have also been found to interact
directly with a variety of proteins in other subcellular contexts. For instance,
the intrinsically disordered NoBody micropeptide (68 aa) is a component of
the mRNA decapping complex via direct interaction with EDC4 and localizes
to the cytoplasmic ribonucleoprotein granules called P-bodies (D'LIMAET AL.,
2017; NA ET AL, 2020); and MP31 (31 aa) interacts with lactate
dehydrogenase inhibiting its activity in mitochondria and having a tumour-
suppressing role (HUANG ET AL., 2021).

Short NCPs can also function as signalling molecules in the control of
metabolic homeostasis (MOTS-c, 16 aa, (LEE ET AL., 2015)), act in a non-cell-
autonomous manner in development (pri peptides, 11 or 32 aa, (KONDOET AL.,
2007)), or have cytoprotective activity (humanin, 24 aa, (LEE ET AL., 2013))
despite being devoid of characteristic N-terminal signal sequences for

secretion.

Transcriptional regulation and gene expression can also be affected by NCP
activity. For example, SEHBP (46 aa) is a mammalian conserved SEP that

interacts with chromatin associated proteins, localizes to distinct loci in the
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genome and can affect transcription, perhaps playing a role in epigenetic
regulation (KoH ET AL, 2021); and the IncRNA-derived GATA3-interacting
cryptic protein (GT3-INCP, 120 aa) is detected in the nucleus, binds DNA, and
interacts with the GATA3 transcription factor, facilitating GATA3 binding to
the common cis regulatory elements and coregulating genes associated with
estrogen response/cell proliferation (ZHENG ET AL, 2023). EMBOW is an
overlapping uORF microprotein (120 aa) that interacts with WD40-repeat
protein WDR5 and regulates its binding to other partners, thus affecting cell
cycle and gene expression (Y. CHEN ET AL., 2023).

In summary, and as these examples illustrate, there is an extensive functional
and molecular mechanistic diversity among SEPs, which will undoubtedly

increase as more of them are identified and characterized.

3.3.2 Unanswered questions

Beyond the results and observations summarized above and once that the
existence of an extensive (and still largely unannotated and uncharacterized)
eukaryotic peptidome is accepted, several outstanding issues remain to be
addressed:

- The SEP/NCP-coding capacity of any eukaryotic genome is still
unclear, but probably large. Many Ribo-Seq experiments in humans or
mouse have each revealed thousands of translated sORFs, but estimates of
the actual number that exist in the genome vary from the thousands to the
tens of thousands (PRENSNER ET AL, 2023). In addition, and from an
experimental point of view, the overlap among the sets of sORFs/SEPs
identified in different Ribo-Seq studies (or among different MS studies) can
be limited. This is undoubtedly the result of both experimental aspects and
the fact that sORF/SEP expression can be tissue, cell-type or condition
dependent. Among the experimental aspects are differences in Ribo-Seq
protocols, depth of sequencing and, in particular, data processing pipelines
(CHOTHANI ET AL., 2022; PRENSNER ET AL., 2023). However, even when only
high-confidence sORF sets resulting from the in-depth analyses of multiple
Ribo-Seq samples are compared, the results are still more additive than
overlapping. For instance, two high-confidence human sets of 7,264 (MUDGE
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ET AL, 2022) and 7,767 (CHOTHANI ET AL., 2022) Ribo-Seq sORFs, both derived
from multiple tissues and cell types, showed only 1,702 (22%) sORFs in
common (although that percentage increased to 70% when additional
filtering criteria were introduced such that the number of sORFs that were
compared was reduced to 2,475 (PRENSNER ET AL., 2023)). Furthermore, the
extensive presence of potentially translatable sORFs requires experimental
demonstration of their capacity to actually produce stable (detectable)
SEPs/NCPs in the cell, and although MS-based evidence is accumulating for
some organisms, in particular human and mouse (J. CHEN ET AL., 2020;
CHOTHANI ET AL., 2022; DUFFY ET AL., 2022; MARTINEZ ET AL., 2020; MARTINEZ ET
AL., 2023; OUSPENSKAIA ET AL., 2022; PRENSNER ET AL., 2021; SLAVOFF ET AL.,
2013; VAN HEESCH ET AL., 2019; ZHU ET AL., 2018), even in those cases their
peptidome is still far from completely defined. Particularly relevant is the fact
the three available approaches for sORF/SEP genome-wide detection
identify sORFs/SEPs in different orders of magnitude: usually hundreds to
low thousands in the case of MS proteomics, thousands to tens of thousands
in Ribo-Seq experiments and up to hundreds of thousands in computational
predictions. This, together with the inherent -but distinct- limitations of each
methodology, inevitably leads to discordances in sORF/SEP number
estimations and hampers the overlapping between sORF/SEP sets obtained
through the different approaches (BRUNETET AL., 2020; PRENSNER ET AL., 2023;
RATHORE ET AL., 2018). As illustrated above, in studies that combine Ribo-Seq
and MS-proteomics, only a minority of the Ribo-Seq identified sORFs are also
detected as SEPs, due to both the lower sensitivity of MS-based detection
versus Ribo-Seq and that some sORFs might generate unstable and
undetectable peptides. In summary, the ‘non-conventional’ peptidome has
substantially expanded the limits of the eukaryotic proteome, but where

those limits reside for any organism is still unclear.

- Relatively few SEPs/NCPs have been functionally characterized.
Experimental evidence for the biological functionality of a vast majority of
the predicted or identified SEPs/NCPs is still lacking in any organism.
However, as the sORFeomes and peptidomes of human and mouse become
established, systematic, large-scale genetic, functional, or molecular

screenings are starting to address this issue. For instance, a screen of 553
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noncanonical ORFs (primarily from IncRNAs) in human cancer lines
determined that a majority of them could induce gene expression changes
when expressed and that this biological effect was mediated by the
corresponding protein/peptide and not by the RNA; furthermore, a
CRISPR/Cas-9 loss-of-function viability screen showed that many affected
cell survival (PRENSNER ET AL. 2021). Similarly, in another CRISPR-based
knock-out screen of 2,353 noncanonical CDSs, including 1,098 uORFs and
613 IncRNA ORFs, that was performed in human induced pluripotent stem
cells (iPSCs) and a leukemia cell line, disruption of the translatable ORF
resulted in consistent growth defects in over 400 of the cases (J. CHEN ET AL,
2020). In another study, the combination of Ribo-seq, a CRISPR/Cas9
knockout pooled screen, and large scale computational analysis of
molecular/clinical data for breast cancer to analyse 758 IncRNA-encoded
ORFs, led to the identification of 28 sORFs that could be clinically relevant,
and it was further demonstrated that one of these IncRNA-encoded
microproteins is an integrated component of the transcriptional regulatory
network that drives aberrant transcription in cancer (ZHENG ET AL., 2023). At
a smaller scale, a screening of SEPs of human vascular muscle cells and a gain-
and loss-of-function approach identified NCPs with regulatory functions in
those cells and potentially linked to atherosclerosis (LI ET AL., 2023). The
specific interaction of SEPs with other cellular proteins can also be taken as
an indication of SEP functionality, and the identity of the interacting partners
help identify the biological process that the SEP might be involved in.
Accordingly, methods have been developed to identify cellular SEP
interactors (e.g., DITTMAR ET AL., 2019; KOH ET AL., 2021; SANDMANN ET AL.,
2023) and used in medium-size screens. For example, a MS-based
interactome screen was conducted for a set of 266 selected human SEPs
revealing interactions for the vast majority of them with proteins involved in
a variety of cellular processes, including with proteins essential for cell
survival (SANDMANN ET AL., 2023). Interestingly, most of the SEPs included in
this study were either recently evolved (showing that the capacity of a SEP
to interact may be present at its evolutionary origin or appear shortly
afterwards, i.e., that de novo originated proteins can quickly become

functional) or very short in length, between 3 and 15 amino acids
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(questioning if a clear-cut lower size limit for SEP functionality exists)
(SANDMANN ET AL., 2023).

The sampling of the human peptidome that these various studies represent
further demonstrates - far and beyond the individual cases of biologically
active human SEPs/NCPs that have already been characterized - that the
eukaryotic peptidome constitutes an important source of unrecognized small
proteins with important biological roles in physiology, development, and
disease, and that in humans it could be a potential target for the development
of novel therapies. The full repertoire of their functions and molecular

mechanisms of action remains to be established.

These questions and issues are also very pertinent to plants.

3.4 The non-conventional plant peptidome: current status

The ‘non-conventional’ or sORF-derived plant peptidome is largely
undefined and unexplored. However, as in mammals and yeast, the existence
of novel, uncharacterized small peptides has been inferred from
transcriptome data (e.g., in Populus (YANG ET AL., 2011)), and in particular as
Ribo-Seq has been used to demonstrate extensive translation of open reading
frames, including novel sORFs, in species such as Arabidopsis (BAZIN ET AL,
2017; HSU ET AL., 2016; KURIHARA ET AL., 2020), maize (LIANG ET AL., 2021),
wheat (GUO ET AL., 2023) or tomato (WU ET AL., 2019) (for review, see FUJITA
ET AL., 2019; HSU & BENFEY, 2018; KAGE ET AL, 2020) (Table 3.2). Initial
experiments in Arabidopsis showed ribosome association with some
noncoding RNAs (JIA0 & MEYEROWITZ, 2010; JUNTAWONG ET AL., 2014) and that
uORFs could be translated (JUNTAWONG ET AL., 2014; LIU ET AL., 2013), and
ribosome profiling of Arabidopsis roots and shoots identified actually
translated sORFs in noncoding transcripts, at least some of which could
produce stable SEPs in planta as determined by epitope tagging (HSU ET AL.,
2016).



Table 3.2. Plant Ribo-Seq studies and translated sORF detection.
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Tissue /

Identified

Average SEP

Species Process SORFs sORF type Length (aa) Experiment Reference
173 uORFs; Ribo-Seq ORFs were selected without
e R Root and 208 9 dORFs; 26 aa (uORFs); length cut-off; 3 uORFs and 1 ncRNA- (HSUET AL,
shoot (<100 aa) 26 sORFs in 48 aa (sORFs) derived sORF > 99 aa were also 2016)
ncRNAs detected.
sORFs were selected by translational
efficiency (TE) and ribosome release
. . Root / Pi 197 score (RRS), witout length cut-off; 30 (BAZINET
Arabidopsis response (<100 aa) IncRNA sORFs 36aa ORFs > 99 aa were included for a total ~ AL.,2017)
set of 227 IncRNA-derived sORFs. MS
evidence for 19 of these sORFs.
. . Seedli.ng / 1613 1378 uORFs; 32 21 aa (UORFs); (KURIHARA
Arabidopsis Blue light (<50 aa) dORFs; 203 30 aa (SORFs) ET AL.,
response sORFs in ncRNAs 2020)
A small subset of the peptides
. encoded by these uORFs and sORFs
Tomato Root 1,540 :g?{gsuﬁiis‘;ezlso 25aa (uORFs); (16 and 12, respectively) were (WUET AL.
(<100 aa) . 47 aa (sORFs) detected by MS. 68 sORFs showed a 2019)
transcripts . : .
predicted signal peptide and could
represent secreted peptides.
1041 uORFs; 274 Ribo-Seq ORFs were selected without
dORFs: 655 length cut-off, for a total of 1254
Wheat Grain / 2,737 interna;l ORFs: 39 aa (uORFs); uORFs, 367 dORFs, 825 internal ORFs  (GUO ET AL.
Development (<100 aa) ’ 67 aa (sORFs)  and 914 Inc RNA ORFs. Approximately 2019)
767 IncRNA
SORFs 22% of the ORFs use non-AUG start

codons.
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A subsequent Ribo-Seq study of the root translatome in response to
phosphorous (Pi) limitation largely expanded those initial observations,
identifying 1,140 IncRNAs as ribosome-associated (50% of all IncRNAs
detected) and in particular 225 sORFs with a higher potential of being
functionally translated (BAZIN ET AL., 2017). Analysis of previously obtained
proteomic datasets provided MS evidence for some of these sORFs,
demonstrating peptide stability in the plant, and it was also determined that
translation of some of the sORFs was upregulated or downregulated by Pi
deficiency, suggesting that the encoded SEPs could be of physiological
importance (BAZIN ET AL., 2017).

Some of those novel, translated plant sORFs identified through Ribo-Seq
were shown to be evolutionary conserved, but in many instances homologs
were detected only in closely related species. For instance, 31 of the 225
IncRNA sORFs identified in the Pi-starvation study were detected in
Brassicaceae outside of the Arabidopsis genus, of which 9 were broadly
conserved in angiosperms (BAZIN ET AL., 2017), and 15 of the 19 single-exon
sORFs detected in ncRNAs of roots and shots (HSU ET AL., 2016) showed at
least one homolog outside of A. thaliana (6 were detected only in
Brassicaceae, and 9 were also detected in other plants). Similarly, a Ribo-Seq
analysis of the translatome of tomato roots revealed 1,540 sORFs (<100 aa
long), of which 1,290 were uORFs and 250 sORFs detected in novel
transcripts (WUET AL., 2019). Further analysis of a subset of 157 of those 250
sORFs (selected by being single-exon sORFs) indicated that a majority of
them (96, or 61%) were specific to the Solanaceae, including 18 unique to
tomato and 78 shared by tomato and either wild tomato or potato, whereas
a total of 139 had homologs in at least one other plant genome (including
non-Solanaceae species) (WU ET AL., 2019). Similarly, in a study of the
Arabidopsis seedling translatome and its response to blue light, 203 sORFs
were identified in non-coding intergenic or antisense RNAs: 55% of them
were conserved in A. lyrata and 20% in B. napus (KURIHARA ET AL., 2020).

Although the level and degree of sORF/SEP evolutionary conservation that is
detected varies among these different studies, it is apparent that some
sORFs/SEPs can be highly conserved across plants (but perhaps a minority),
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whereas others may be relevant for the evolution of lineage- or species-

specific characteristics, paralleling what has been observed in animals.

In bread wheat, a recent study of the translatome during grain development
identified 2,737 unannotated sORFs, including uORFs (1,041; 38%) and
sORFs in IncRNAs (767; 28%) (GUO ET AL., 2023). A large number of these
sORFs (1,883) showed differential expression dynamics at the translational
level throughout grain development, and analysis of the corresponding SEP
sequences indicated that a third of them harboured potential signal peptides,
altogether suggesting that these sORFs might encode true functional
peptides. Considering that the translatome of only one particular
developmental process was characterized in the experiments (grain
development at 5, 10, and 15 days after anthesis), it seems reasonable to
expect that the total number of potential SORFs and SEPs in bread wheat will
eventually be substantially large. These results also provide a strong
indication of the potential relevance of the non-conventional peptidome in

flower and fruit development.

In addition to Ribo-Seq studies, computational analyses had previously
suggested that several thousands of novel, potentially coding sORFs could
exist in the intergenic regions of the Arabidopsis genome (HANADA ET AL,
2007). In fact, it was found that when overexpressed, some of those novel
sORF sequences could induce developmental alterations in plant growth,
development, or cause lethality, raising the possibility that (many) sORFs
with coding potential but that are still uncharacterized in plant genomes
might be associated with morphogenesis and other developmental and
physiological processes (HANADA ET AL., 2013; HIGUCHI-TAKEUCHI ET AL., 2020).
Homologs for some of these computationally identified sORFs were detected
in rice (OKAMOTO ET AL., 2014). But whether the phenotypic effects reported
in those gain-of-function studies were caused by the sORF RNA or by a
derived SEP was not determined, and neither was a loss-of-function
approach pursued. However, for a specific sORF of that set it was
subsequently found that it acts as a hormone-like peptide -AtPep3- involved
in salinity stress tolerance (NAKAMINAMI ET AL., 2018), illustrating that non-
conventional peptides identified through genome-wide approaches can play

physiological roles in plants, much like it is being discovered in animals.



100 | Chapter 3

Initial experiments in moss (Physcomitrella patens) (FESENKO, KIROV, ET AL.,
2019; FESENKO ET AL., 2021), maize (LIANG ET AL., 2021; S. WANG ET AL., 2020),
Eucalyptus (JORGE & BALBUENA, 2021), pear (WANG, WU, SHI, ET AL., 2023) and
Arabidopsis (S. WANG ET AL., 2020) have attempted the analysis of the global
plant peptidome through MS-based approaches (Table 3.3). In addition, in
the case of Arabidopsis the MS-based characterization of its global proteome
also allowed the identification of a small number of SEPs (CASTELLANA ET AL.,
2008; MERGNER ET AL., 2020); in soybean, MS analysis was used to obtain
coding evidence for IncRNAs, identifying 153 NCPs derived from 179
IncRNAs (LIN ETAL., 2020); and in Populus a few tens of novel sORFs predicted
through computational analyses of its transcriptome were confirmed by
proteomics data (YANG ET AL., 2011). From these limited experiments, as well
as the Ribo-seq studies described above, it appears that key observations on
the characteristics of sORFs/SEPs from animals, such as the relevance of
IncRNAs as a source of SEPs, the limited sequence conservation of SEPs, and
the -extended- use of near-cognate or alternative start codons, also apply to

plants.

In moss, a genome-wide bioinformatic analysis resulted in the identification
of 70,095 novel potentially coding sORFs that were: AUG-initiated, single
exon, 10-100 aa long, and located on either annotated transcripts (uORFs,
internal ORFs, or dORFs; 63,109, or 90%), IncRNAs (5,745, 8%), or intergenic
regions (unannotated transcripts; 1,241, 2%) (FESENKO, KIROV, ET AL., 2019).
These sequences were then used as search database in an MS analysis that
included samples from three different types of moss cells, which led to
confirming the translation and peptide accumulation for 46 of the SORFs (36
located in annotated transcripts, 1 intergenic, and 9 in IncRNAs -20%-). The
degree of sORF evolutionary conservation was low: 5,034 (7%) of the total
sORFs were conserved among the transcriptomes of at least 1 out of 10 plant
species, as well as 5 (11%) out the 46 translated sORFs, with three of these
five corresponding to IncRNA-sORFs. Furthermore, functional analysis of
four of the translated IncRNA-sORFs revealed that knocking them out
affected moss growth and development, and that phenotypic alterations
were also caused by their overexpression (FESENKO, KIROV, ET AL., 2019). Thus,
this study provided evidence that different types of sORFs are translated in

plants and demonstrated that some of them encode functional SEPs.
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Table 3.3. Analysis of the global plant peptidome through MS-based approaches.

Species Tissue/Process Aim of study Identified peptides Reference
Moss Identification of 828 .peptide Sequences: ol
(Physcomitrella Protonemata translated sORFs in confidence SEPs (1.7 n (FESENKO, KIROV, BT
atens) e —— gametophores, 29 in protonemata, AL, 2019)
p 14 in protoplasts) (14-99 aa)
Maize Maize inbred line B73 Large-scale discovery (S. WANGETAL.,
(Zea mays) leaves (three-leaf stage) of novel peptides 1,993 novel SEPs 2020)
Maize Identification and
(Z mays) Inbred line B73 seeds characterization of 2,695 small peptides (up to 100aa)  (LIANGET AL., 2021)
- may small peptides
. . Columbia-0 leaves (four-  Large-scale discovery (S. WANGETAL.,

Arabidopsis leaf stage) of novel peptides 1,860 novel SEPs 2020)
Pear Twenty-four different Global proteln

. . expression patterns. (WANG, WU, SHI, ET
(Pyrus tissues/samples covering Discoverv of novel 607 novel SEPs (up to 100 aa) AL, 2023)
bretscneiden) all major organs very . ’

proteins and peptides
Soybean . . . .
, Various tissues and . 153 unique novel small peptides

(G?;}:'?rlxr;es:)r]l'z})c conditions IncRNA discovery encoded by 179 IncRNA genes (LINET AL, 2020)

Note: Only examples of studies that attempted the global characterization of the plant peptidome and to expand the annotation
of the corresponding genome are listed. For more comprehensive lists of peptidogenomic and proteogenomics experiments in

plants, see: (ALVAREZ-URDIOLA, BORRAS, ET AL., 2023; SONG ET AL., 2023).
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In a subsequent and more comprehensive analysis of P. patens IncRNAs,
175,272 sORFs were identified computationally, approximately 50% of
which were AUG-initiated and the rest initiating from the near-cognate
codons UUG or CUG. These IncRNA-sORFs were assessed for conservation
across nearly 500 plant species: approximately 86% were not conserved,
whereas 22,524 sORFs (13%) were moss-specific, and 645 were highly
conserved, suggesting that a large pool of potential SEPs encoded by IncRNAs
exists in plants but that a vast majority of them would be lineage- or species-
specific (FESENKO ET AL, 2021). Mirroring SEP characteristics already
identified in animals, putative transmembrane domains, signal peptides, or
‘consensus disorder prediction’ motifs were identified in subsets of the
IncRNA-sORFs (4,978, 9,472, and 8,595, respectively), and evidence of
translation for 195 sORFs was obtained from various moss MS datasets.
Altogether, these first analyses of the moss ‘non-conventional’ peptidome
support the idea that IncRNAs could be an important source of functional
SEPs in plants, as is the case in animals. The limits of sequence conservation
of putative SEPs among different plant species also highlight the importance
of species-specific MS analyses for the characterization of the plant
peptidome, and are also in agreement with the idea that sORFs/SEPs are raw

materials for de novo gene origin and evolution.

In the case of maize two different peptidogenomics studies are available. The
first one was based on a six-frame translation of the maize genome and
reported the identification of 2,837 peptides by MS, 1,993 of which were
derived from ‘not-annotated’ sequences (i.e., were identified as NCPs in the
study) and 844 were derived from annotated proteins/peptides (identified
as conventional peptides, CPs) (S. WANG ET AL., 2020). Ribo-seq analyses
provided further evidence for 732 (37%) of the identified NCPs and,
interestingly, a certain NCP enrichment was detected within genomic regions
associated with phenotypic variation and domestication selection,
suggesting that NCPs could potentially be involved in the genetic regulation
of complex traits and domestication in this species (S. WANG ET AL., 2020). In
the second study, Ribo-seq and RNA-seq data were used to generate a search
database of 9,388 sORFs, which comprised uORFs (2,907), dORFs (3,445),
and also uoORFs, intORFs, and doORFs (see Figure 3.1 for nomenclature),
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but only 49 sORFs derived from non-coding transcripts (i.e., the database was
essentially based on alternative translation of annotated mRNAs), and that
led to the identification by MS of 2,695 NCPs (LIANG ET AL., 2021). However,
the overlap between the sets of peptides identified in the two studies was
very limited: it consists of only a few CPs, and no NCP was independently
identified by both studies (Figure 3.4). Moreover, Liang et al. (LIANG ET AL.,
2021) analysed the MS data from (S. WANG ET AL., 2020) using their custom
translatome database of 9,388 sORFs, identifying 158 NCPs, 66 of which were
also among the 2,695 NCPs that they had reported (i.e., a 2.4% overlap when
the translatome database was confronted with the two different MS
datasets). This limited overlap is not necessarily surprising. First, the
database and approach used for MS peptide search were very different in the
two studies, and in fact in (S. WANG ET AL., 2020) it was reported that a vast
majority (1,652, 83%) of the 1,993 NCPs identified by the six-frame genome
translation could be assigned to IncRNAs through transcriptomic analyses,
whereas IncRNA-sORFs were largely absent from the translatome database
used in (LIANGETAL., 2021). In addition, itis well-known that the combination
of experimental protocols used for peptide extraction, enrichment, and MS
analysis will influence the set of SEPs that are identified in the experiment
(see above, and (FABRE ET AL., 2021)). Last, the two studies utilized different
sample types, six tissues in (LIANG ET AL., 2021) versus only seedling leaves in
(S. WANGET AL., 2020).

In any case, the comparison of the two studies makes clear that the real size
and scope of the maize peptidome (or, in fact, of the peptidome from any
plant) are still undefined. It is worth noting that even for the much better
characterized human peptidome and in studies that not only identify SEPs
but that also include large-scale functional analyses (summarized above, ].
CHEN ET AL., 2020; PRENSNER ET AL., 2021) the hit overlap is relatively limited
(15-25%), indicating that the functional sORFs that those studies identified
represent only a fraction of those encoded by the human genome. Similarly,
in a study that used extensive Ribo-Seq profiling and three different human
celllines, > 7,500 sORFs were detected, but only ~1,500 (20%) in atleast two
of the three cell lines, and only ~480 (6.4%) in the three of them (MARTINEZ
ET AL., 2020).
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Figure 3.4. Genome-wide non-canonical peptide identification in
maize.

Analysis of the overlap between two different published studies for
maize peptide identification by MS. A) Scatter plot representing the
differences between the aligned sequences of the MS peptidic
fragments identified by Wang et al. (S. WANG ET AL., 2020), as derived
from conventional peptides (CPs) and non-conventional peptides
(NCPs), and the SEPs identified by Liang et al. (LIANG ET AL., 2021).
BLASTp was used to compare the amino acid sequences of the peptides
identified in the two studies. B) Venn diagram showing the overlap
between the datasets of (S. WANG ET AL., 2020) and (LIANG ET AL., 2021).
The intersection in the diagram corresponds to peptides (peptidic
fragments) identified in (S. WANG ET AL., 2020) whose sequences align
in 100% of their length and with more than 90% of identity to peptide
sequences from (LIANG ET AL, 2021). The overlap between the two
datasets is limited to CPs, as no NCP was identified by both studies.

These observations all further highlight the technical challenges and the
complexity of defining and characterizing the peptidome in eukaryotes and,
importantly, also point to a substantial level of cell-/tissue-/condition-

specificity.

The six-frame genome translation peptidogenomics strategy was also
applied to Arabidopsis (leaf tissue), which resulted in the identification of
1,860 NCPs; of those, 666 (36%) were derived from intergenic regions (i.e.,
potential ncRNAs), 154 (8%) from UTRs, 651 (35%) from out-of-frame exons
(i.e., intORFs), and the rest from introns and junctions (S. WANG ET AL., 2020).
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A large-scale proteogenomic atlas or pear has recently been developed
through the integration and correlation of transcriptome and proteome data
from 24 tissues and/or developmental stages, including seedling tissues,
floral organs and tissues, fruit tissues, and fruit developmental stages (WANG,
WU, SHI, ET AL., 2023). Although the main purpose of the study was not the
identification of NCPs per se, as neither a small peptide MS strategy nor a
customized putative sORF search database were employed, the annotation of
the pear genome was improved through the identification of 4,294 new
protein-encoding events’, of which 607 were of no more than 100 codons and
therefore represented small ORFs. Some of those small ORFs were fully
localized in intergenic regions (206), or in introns (17) or in the opposite
strand (49) of annotated genes, and could therefore represent different types
of sORFs/SEPs (WANG, WU, SHI, ET AL., 2023).

In addition to these broad peptidogenomic approaches, ‘targeted’ peptidomic
experiments that in general address known families of plant peptides, in
particular secreted signaling peptides/small proteins (SSPs), have been used
to confirm peptide presence in planta and to associate peptides to specific
physiological or developmental processes. These studies do not attempt to
characterize the whole-genome ‘non-conventional’ plant peptidome, but can
nevertheless identify new members of the corresponding gene families.
Examples include: SSPs affecting root growth in Medicago truncatula (Patel
et al., 2018); Arabidopsis SSPs (OHYAMA ET AL. 2008), including potential
auxin-responsive SSPs (LUO ET AL., 2019); rice SSPs induced by the blast
fungus Magnaporthe oryzae that could be involved in immunity - which also
led to the discovery of an additional 51 unannotated SSPs - (P. WANG ET AL,
2020); or cysteine-rich, potential antimicrobial peptides (AMPs) in Capsicum
(CULVERET AL., 2021), among others.

In summary, knowledge on the ‘non-conventional’ plant peptidome is
starting to accumulate and it appears that most or all of the overall findings
that have been pioneered by research on animal, particularly human, SEPs
will also apply to plants, and that newly identified SEPs will be found to play

important roles in plant development and physiology.
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3.5 The ‘non-conventional’ plant peptidome and flower
development: the tip of the iceberg?

Precursor-derived peptides have long been known to play important roles in
flower and fruit development and physiology (Table 3.1, Figure 3.5), from
CLAVATA3 (CLV3), which is expressed in the shoot apical and floral
meristem stem cell reservoirs and forms part of the network that maintains
stem cell homeostasis (FLETCHER, 2020; FLETCHER ET AL., 1999), to RALF
peptides that control an intergeneric hybridization barrier on Brassicaceae
stigmas (LAN ET AL., 2023). Moreover, it is starting to become clear that non-
precursor-derived peptides and in particular novel SEPs/NCPs identified
through genome-wide analyses, that is, the ‘non-conventional’ peptidome,
should also be taken into consideration to understand flower, fruit, and seed

development.
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Figure 3.5. Arabidopsis peptides with functions related to flowering
and flower and fruit development.

GO enrichment results of peptides annotated in Sup Table 3.1 (in black)
and other peptides described in the literature that are known to have a
role in flower development (in white). GO results in Sup Table 3.2.


https://drive.google.com/drive/folders/1O3Vo-g2Pm_2r14CBr3sR_8hDtBaAiGlk?usp=drive_link
https://drive.google.com/drive/folders/1O3Vo-g2Pm_2r14CBr3sR_8hDtBaAiGlk?usp=drive_link
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As summarized above, a recent Ribo-seq study of bread wheat grain
development identified a large number of sORFs as differentially expressed
during the process (GUO ET AL., 2023), and although there was no functional
characterization of any of those sORFs, nor a demonstration by proteomics
or other methods of the accumulation of the corresponding SEPs, it is
reasonable to expect that some of them will indeed produce functional SEPs.
Interestingly, a rice de novo gene (GSE9) was recently shown to contribute to
grain shape differences between indica and japonica varieties, and to have
been evolved from a previous non-coding region of wild rice (Oryza
rufipogon) through the acquisition of a start codon (R. CHEN ET AL., 2023).
Although the GSE9 protein is slightly larger (107 aa) than the arbitrary upper
size limit for SEPs, it otherwise fulfils many of the characteristics outlined
above: it contains intrinsic disordered regions, is predominantly localized in
the plasma membrane, and shows no significant similarity with proteins
from other eukaryotic species, as befits a de novo, sORF-generated, functional
gene (R. CHEN ET AL., 2023). These studies suggest that SEPs might play
specific functional roles in monocot grain physiology.

In maize, IncRNA-sORF encoded SEPs that play a role in anther development
and pollen tube growth have been identified. Zm908 is expressed
predominantly in mature pollen grains and encodes a 97 aa-long SEP
(Zm908p11) that functions in maize pollen germination and tube growth.
Transgenic analyses in tobacco demonstrated that the peptide is necessary
for Zm908 function, and it was also found that it interacts with maize profilin
1, suggesting that Zm908p11 could be involved in the actin dynamics that are
essential for pollen tube growth (DONG ET AL., 2013). Zm401 is expressed
primarily in the anthers (tapetal cells as well as microspores) in a
developmentally regulated manner, and a knockdown of this gene led to
aberrant development of the microspore and tapetum, and finally male
sterility (MAET AL., 2008). Zm401p10 peptide accumulates in the nucleus and
its overexpression in maize retarded tapetal degeneration and caused
microspore abnormalities (WANG ET AL., 2009).
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Last, in the proteogenomic analysis of pear described above, 69 (10%) of the
607 ‘new coding event’ small ORFs identified by MS were detected in style
tissue, 18 of which were style-specific. Eight of those style-specific SEPs (49
to 88 aain length) were expressed and purified as recombinant proteins and
tested in pollen tube growth in vitro assays: four promoted pollen tube
growth whereas one inhibited it, demonstrating that the newly identified
SEPs could be biologically functional (WANG, WU, SHI, ET AL, 2023) and
suggesting that the plant ‘non-conventional’ peptidome could play important

roles in flower and fruit development and physiology.
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Chapter 4. Arabidopsis ‘non-
conventional’ peptidome as related to
flower development

4.1 Background

The transcriptional and post-transcriptional regulation of flower
development, as summarised in Chapter 1, has been characterized in the last
decade using genomics and transcriptomics approaches (GREGIS ET AL., 2013;
KAUFMANN ET AL., 2010; PAJORO, MADRIGAL, ET AL., 2014; YANT ET AL., 2010).
These methods, alone or in combination with more traditional genetic
studies, have validated the complex and highly interconnected gene
regulatory network of the most innovative process that allowed angiosperms
to rapidly expand during plant evolution. However, a wider view of these
processes requires the study of the proteome, as recent studies have shown
that translational regulation is determinant in developmental programs and
that protein levels can vary despite mRNA levels being constant, and vice-
versa (Y. GUOET AL., 2023) (see Chapter 2). Over the past few years, it has also
become evident that there is a substantial but uncharted fraction of the
eukaryotic proteomes that is mainly composed of small proteins
(peptidome), with roles and functions yet to be discovered (see Chapter 3).

The sources of plant peptides are numerous, either reliant on the processing
of a polypeptide precursor or encoded by a short Open Reading Frame
(sORF). Contrary to what was previously thought, long non-coding RNAs
(IncRNAs), transcripts of unknown function (TUFs), 3’'UTR’s, 5’'UTR’s,
intergenic regions, junctions, introns and primary miRNA transcripts (pri-
miRs) might contain translatable sORFs (HANADA ET AL., 2013; HAZARIKAET AL,
2017; LAURESSERGUES ET AL., 2022; S. WANG ET AL., 2020). Although
peptidomics approaches have a lower sensitivity for detecting SEPs than
RNA-based methods to detect potentially translating SORFs (ASPDEN ET AL.,
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2014), a few mass spectrometry (MS)-based studies have been conducted in
monocot and dicot plants for identifying novel alternative sORFs (LIANG ET
AL.,2021; MERGNER ET AL., 2020; S. WANG ET AL., 2020).

Functional proteomics or gene-editing approaches are now available to
characterize peptide roles. In Arabidopsis, well-characterized peptides have
been found to be involved in organogenesis and development (GHORBANI ET
AL.,2015; P. GUOET AL., 2015; VALDIVIA ET AL., 2012). Besides the experimental
validation for revealing the biological function of the peptidome, the
biological function of new SEPs can also be studied using sequence features
and their conservation across species (KiM ET AL, 2018). For a coding
sequence (CDS), a non-synonymous substitution rate that is significantly
lower compared to the synonymous substitution rate indicates that the
sequence has experienced purifying selection or functional constraint
(HANADAET AL., 2007). Nevertheless, these criteria are not always applicable,
as some non-conserved sORFs could evolve as newly coding ORFs with
relevant roles (YEASMIN ET AL., 2018) or possess functions unrelated to their
conservation (LAURESSERGUES ET AL., 2022).

The computational predictions and functional peptide characterizations
recently available (GHORBANI ET AL., 2015; SLAVOFF ET AL., 2013; VANDERPERRE
ETAL., 2013) motivated our group to explore the nature and true extent of the
Arabidopsis peptidome, with the goal of understanding the potential role of
non-conventional peptides in developmental programs. This study is aimed
at continuing the understanding of the molecular mechanisms involved in the
process of floral development in A. thaliana by the characterization of its
sORF-encoded peptidome. The objective was to find novel functional
peptides potentially encoded in IncRNAs, TUFs, and intergenic regions of the
Arabidopsis genome, and upstream, downstream, or alternative ORFs
(uORFs, dORFs, altORFs) of annotated Arabidopsis genes. Specifically, I
addressed whether these SEPs could be involved in flower development by
virtue of their differential expression in the Arabidopsis floral homeotic
mutants. For this Thesis, a combination of transcriptomics, proteomics, and
genetic techniques was used, including liquid chromatography with tandem
mass spectrometry (LC-MS/MS) guided by a reference database composed of

hypothetical and canonical SEPs and proteins.
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4.2 Results

4.2.1 Detection of novel SEPs by mass spectrometry

Inflorescences of wild-type (WT, Ler-0 ecotype) and floral homeotic mutants
(apl, ap2, ap3, pi and ag) (Figure 4.1) were collected and peptides were
extracted using size-selection by a 30K-ultrafiltration method followed by
reverse phase chromatography (as described in (ALVAREZ-URDIOLA, BORRAS,
ET AL., 2023)) of four independent biological replicates for each genotype. For
the identification of novel SEPs in the peptide samples, a database-guided
mass spectrometry approach was used. The custom database that was
generated was composed of ~100,000 non-redundant sequences that
included, in addition to the annotated peptides and proteins from The
Arabidopsis Information Resource (TAIR, Araport11; www.arabidopsis.org),
potential  peptides encoded (i) by IncRNAs (CNTdb 2.0;
http://cantata.amu.edu.pl/) (SZCZESNIAK ET AL., 2019) and other transcripts
(TAIR ‘non-coding’ -‘nc’-) (potential peptides were directly inferred from the
three-frame translation of those transcripts), (ii) in intergenic regions as
identified by in silico analyses (HANADA ET AL., 2007, 2013), and (iii) poly-
Ribo-seq identified sORFs present up- and down-stream of the main ORF of
annotated genes or in alternative ORFs (HSU ET AL., 2016) (Dataset S4.1).

Figure 4.1. Floral phenotypes of the lines used in this study.
Landsberg erecta (WT - Ler-0), ag, ap1, ap2, pi and ap3 inflorescences
and mature flowers (bottom left of each panel) are shown.


http://www.arabidopsis.org/
http://cantata.amu.edu.pl/
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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In these LC/MS-MS experiments, 5,608 proteins (longer than 100 aa) and
2,084 peptides (of up to 100 aa) were identified in the Arabidopsis flower
homeotic mutants and wild type plants. Among the identified peptides, I
distinguished between those already annotated and described in TAIR (210
peptides; referred to as ‘canonical peptides’ in the text below), and those
annotated as “hypothetical proteins” in TAIR or those from other sources in
the custom database (1,874 peptides; collectively referred to as ‘hypothetical
peptides’ below) (Table 4.1, Dataset S4.2).

Table 4.1. Number of identified peptides and proteins from each
database.

Araport11 Araport11 Hsu Hanada CNT TAIR
(Canonical) (Hypothetical) etal. etal. db2.0 ‘nc

Proteins
5,387 122 - - ez
(> 100 aa)
Peptides 210 22 21 42 1224 565
(100 aa)
C ical
paer;otlil(;z Hypothetical peptides

The dynamic range of protein and peptide abundance spanned six orders of
magnitude. In all genotypes, the average intensity abundance of the peptides
was slightly higher than that of the proteins for Araportl1, CNTdb2.0 and
TAIR ‘nc’ sequences (Figure 4.2). This corroborated that the peptide
extraction worked properly in the sense that the samples were enriched in
small peptides rather than in proteins. The LC-MS/MS data resulted in the
detection of the N-terminal aminoacidic sequences of 682 peptides and 1,892
proteins, and of the C-terminal sequences of 321 peptides and 889 proteins,
altogether corroborating a substantial number of annotated open-reading
frame borders from Araportll and of predicted sORFs borders for other
sequences of the customized database (Figure 4.3A). Moreover, 28 of the
smallest predicted peptides (with 10 aa) were detected as a single
aminoacidic sequence containing both, N- and C-terminal ends (Figure
4.3A). N-terminal peptides often showed cleavage of the initiator
methionine, especially for those sequences corresponding to hypothetical
peptides. N-terminal acetylation was strongly dependent on the amino acid

adjacent to the initial amino acid (Figure 4.3B-E).


https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.2. Dynamic range of protein and peptide expression in the
different genotypes.

Density plot of protein abundance expressed as the average Logz TOP3
abundance for each genotype depending on their origin.
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Figure 4.3. Amino acid composition of the sequences detected by
mass spectrometry.

A) Bar graph indicating the number of identified N-terminal (N-ter) or
C-terminal (C-ter) peptides (black) or proteins (grey). B) Frequency of
N-terminal acetylation for sequences starting with M or not (1st aa). C)
Frequency of N-terminal acetylation depending on the amino acid
which follows the initiator (2nd aa).

M: methionine, nc: non-conventional. [M]-X, [nc]-X: missing first amino
acid, M-X and nc-X: not missing first amino acid. Cont. in next page.
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Figure 4.3. Amino acid composition of the sequences detected by
mass spectrometry (Cont.).

D) Firstamino acid for those sequences beginning with a non-canonical
initiation codon (different from AUG -M-). E) Second amino acid for the
different detected sequences, depending on the cleavage of the initiator
amino acid.

In most cases, the number of fragments detected for each peptide and protein
was lower than three. This was the expected distribution due to the small size
of the peptides (of up to 100 aa) and the exclusion of most proteins thanks to
the size-filtration during peptide extraction. Nevertheless, the LC-MS/MS
data covered, on average, ~30% and ~12% of each peptide and protein
sequence, respectively, enabling the detection of unique amino acid
sequences for 2,084 peptides and 5,608 proteins. (Figure 4.4). The median
length of the peptides differed depending on their source, that is, on the type
of genetic element from which their sequences were derived. The median
peptide length was also affected by the cut-off that was established for the
generation of each part of the database (i.e., 30 aa for peptides from Hanada
et al,, and 10 aa for peptides from Hsu et al., CNTdb 2.0 and TAIR ‘nc’). The
detected hypothetical peptides were in general smaller than the canonical
peptides (Figure 4.5A, B).
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Figure 4.4. Sequence coverage in LC-MS/MS results.

Pie charts showing percentage of total sequences (A) and peptides and
proteins separately (B) identified by < 3, 3-10 or > 10 peptide
fragments. Distribution of peptide-based sequence coverage of all
peptides and proteins (C) depending on their source (D).
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Figure 4.5. Canonical and Hypothetical peptides in A. thaliana.
A) Length distribution of peptides (AAs) included in the different
databases represented as a violin plot for each database and as a

histogram for the complete dataset. Lines in the histogram depicts the
density distribution of the peptides of each database. B) Molecular
weight distribution of peptides (kDa). Coloured by their source.
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4.2.2 Overlap with previous a peptidomics study

Arecent LC-MS/MS study of the non-conventional peptidome in maize leaves
also included Arabidopsis leaf samples (S. WANG ET AL., 2020). BLASTp was
used to investigate the possible overlap between the set of peptides
identified in this Thesis and the peptide fragments identified by (S. WANG ET
AL, 2020). I compared the sequences of the 2,084 peptides that were
identified by LC-MS/MS in inflorescence tissues with the 2,363 conventional
peptidic fragments (CPs) and 1,860 non-conventional peptidic fragments
(NCPs) detected by Wang et al. in leaves (Sup Table 4.1).

The BLASTp results indicated that the two datasets were largely different,
and very few bona fide identity matches were retrieved: most of the BLASTp-
aligned peptide fragments from Wang et al. covered less than half the
sequence of their corresponding match in the LC-MS/MS dataset, and less
than 20% of the aligned sequences had an identity greater than the 75%
(Figure 4.6A). Nevertheless, there were 91 peptides that had at least 90%
identity between datasets, and also more than 90% of the sequence from
Wang et al. aligned with the peptide sequence that was identified by LC-
MS/MS. From these, 68 peptide pair matches corresponded to canonical
Araportll peptides and CPs from Wang et al; one corresponded to a
hypothetical Araport11 peptide and a CP from Wang et al.; 20 to Hsu et al
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Figure 4.6. Data comparison (BLASTp results).

A) Scatter plot representing the differences between the aligned
percentage of the total length of the peptidic fragments identified by MS
by Wang et al. and SEPs identified in the LC-MS/MS peptidomics study,
coloured by the percentage of identity. B) Venn diagram representing
the intersection of those peptides with more than the 90% of identity
between the datasets and more than the 90% of the Wang et al. peptidic
sequence aligned.
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uORFs, dORFs and altORFs and CPs from Wang et al,; and two CNTdb 2.0
peptides, one paired with a CP from Wang et al. and the other with a NCP
(Figure 4.6B). In summary, the Arabidopsis non-conventional peptidome
identified in leaf tissue by Wang et al. is mostly non-overlapping with that

identified in this Thesis from floral tissues.

4.2.3 Identification of over a hundred novel peptides specific to floral
buds

Most identified peptides had a low Mascot Score (below 90) which, although
considered as a low confidence of detection, is related to the fact that - as a
consequence of their reduced length — many peptides were detected through
a single peptidic fragment (Figure 4.7A). Another indicator of confidence can
be derived from the total number of identifications and not-assigned values
(NAs) for each peptide (Figure 4.7B). The criteria to select a final list of
candidate peptides for further analyses were defined on the basis of the
number of NAs for each peptide (Sup Table 4.2).

The main goal was to find new peptides encoded in sORFs and ‘nc’ RNAs, and
with a potential role in floral organ development. Two different selection
pathways were established: i) genotype-independent peptide discovery, and
ii) genotype-dependent selection of peptides with a floral organ-specific
accumulation pattern. These selection pathways were used in parallel, as
there were peptides that would meet both (see below). On one hand,
hypothetical peptides with less than 21 NAs (out of a total of 24 samples: 4
biological replicates for each of the 6 genotypes) were classified as genotype-
independent discovery peptides. With this criterium, 106 discovery peptide
candidates were selected, half of which had a high or medium confidence of
detection (Mascot score) (Figure 4.7B). On the other hand, to predict organ-
specific peptides and proteins, [ considered their quantification in the
different mutants at both complete peptide or protein and single peptidic
fragment detection levels (i.e., raw spectra). Peptides and proteins, as well as
their individual detected peptidic fragments, were classified as suitable for
the floral organ classification analysis when they had less than three NAs in
at least one genotype (quantified for that genotype/s) (Figure 4.7C). These

criteria to select peptides based in the number of NAs, in both pathways,
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were actually very conservative, given the stochastic nature of peptide
detection in MS experiments (see below).

A Peptides Proteins
300 FDR
& 200 M righ
* 100 . Medium
) . It o
0 1 2 3 4 0 1 2 3 4
logyo(Mascot Score + 1)
B Peptides Proteins c Canonical Hypothetical
(up to 100aa) (>100aa)
— ]
220 = 2
]
Z15 8
@ u—
5 10 S
# 5 =
0 . - . , - " . - - 0 5
200 400 600 8000 250 500 750 1000 1250 Peptide Protein Peptide Protein
#1Ds
For [ High [l Medium [ Low W Unsuitable [l Suitable

Discovery candidate < 21 NAs/ 24 total samples
Suitable for the floral organ analysis < 3 NAs /4 samples in a genotype

Figure 4.7. Selection criteria depending on the number of NAs.

A) Distribution of Mascot Scores for the peptides and proteins in LC-
MS/MS results. B) Histogram of the number of IDs depending on their
number of NAs in the dataset (0-24NAs). ‘Discovery’ candidates (less
than 21 NAs) are framed in panel. A-B) panels are coloured by their
FDR (high, medium, or low). C) Proportion and total number of
peptides and proteins that were ‘Suitable’ and ‘Unsuitable’ for the floral
organ classification. Canonical peptides are significantly enriched in
‘Suitable’ IDs when compared to canonical proteins (Fisher’s p-value =
1.68e-07). Hypothetical peptides are significantly enriched in
Unsuitable IDs when compared to hypothetical proteins (Fisher’s p-
value = 2.2e-16).

To make use of the different genotypes used in the experiment, I took
advantage of the combinatorial nature of the (A)B(C) model of flower
development (similarly to what was done in a previous work to predict
organ-specific transcript expression (WELLMER ET AL., 2004)). Potential sepal-
specific peptides were those quantified in ap3, pi and ag mutants, but not in
apl nor apZ2. Petal-specific peptides would be identified by exclusively being
present in ag. Stamen-specific peptides would be detected in ap1 and/or ap2,
but notin ap3, pi or ag. Finally, carpel-specific peptides would be those found

in ap3 and pi and absent from ag samples, irrespectively of their
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quantification in apl and apZ2 (Figure 4.8A). To be considered as organ-
specific, proteins needed to be quantified in Ler-0 as well, however this was
not a requirement for peptides (up to 100aa) (Figure 4.9). This criterion was
different between proteins and peptides to avoid discarding potentially
interesting peptides with low abundances that were not quantified in the

wild type samples.

A" Sepal Petal Stamen Carpel B stamen [l Sepal [l Petal | carpel
[=2]
o
ap1 o on TAIR 'nc Eg
ap2- - @ CNTdb2.0 5
3 X X %_ Hsu et al. ]
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pi V V Araport11 (C) 1 "
ag v % Araport11 (H)
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Pep| 2 14 71 6 Proportion [%]

Figure 4.8. Selection of possible organ-specific proteins and
peptides.

A) Criteria to select peptides and proteins specific to a certain type of
floral organ. Tick: quantified (0, 1 or 2 NAs) in the indicated genetic
background; cross: unquantified (3 or 4 NAs) in the indicated genetic
background. B) Proportion of peptides and proteins identified in LC-
MS/MS which were associated to each one of the floral organs divided
according to their source. H: hypothetical, C: canonical. The squared
section comprehends the 60 ‘floral organ’ peptide candidates.

Using this set of criteria, 60 floral organ peptide candidates were selected
(Figure 4.8B), from which 34 had been also retrieved as genotype-
independent discovery peptide candidates, for a total of 132 peptides initially
selected for further consideration (Figure 4.10A, B). The selection of
candidates was not length-dependent (Sup Table 4.3, Figure 4.10C). In
addition, the 132 candidates were evenly distributed among the complete
genome of A. thaliana independently of their genetic element of origin
(annotated ORFs -CDS-, intergenic regions, altORFs, uORFs, dORFs or
ncRNAs) (Figure 4.10D).


https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link

122 | Chapter 4

A

200

150

103 104
100 ¢ I

50

# Proteins

8
- 19 2019 19

) - 16 16
el 3126 91_23 1_0_11 10%d -

221

0
Ler C0000 0® 000 60 & 000 &0 o & o e e o [ ] L ]
apl (000 000" 000 00 0 0 00 00 0 0 0 0 0 O 0 0O O L] [ ]
ap2 (00 0000 00 00 90 0 00 00 S 0 O * 0 0 o [ ] [ ]
ap3 e 0808 o 000 200 000 Lod 00 ® [ L J L4 L] ®
pi 9008 9000 000000 0000 000 000 4 L]
ag 2000000000 0000 L ]

200

900

600 300 0

Set size (# Proteins)

B 89
75
w
o
=]
2 50
@
a
3t
27
23
25 0 o
] 13
8 8 . 6
3,2f2%2 2,123202,2422,,322,K43224°,43 4
1 111211 121224 10 - 11
0 | I-l LT | ma lé Bo-ib | I
Ler ® e o ® o0 0 o o °
apl ® 1) ° o
ap? ® e o e oo o °
aps ® e o eoe ° °
pi ® (11X L] (1 1) (1] ® ®
. : : . ag © eeeee eeesecee s ssee ®
150 100 50 0

Set size (# Peptides)

Figure 4.9. Number of possible organ-specific proteins and
peptides.

Upset plots to visualize the intersections between proteins (A) and
peptides (B) in each genetic background (Ler, ap1, ap2, ap3, pi, ag).
Rows (left, horizontal bar graph) correspond to the total proteins (A)
and peptides (B) detected in genetic background, and columns (top,
vertical bar graph) correspond to the intersections. For each column,
the filled in circles signal the genetic backgrounds that are part of the
intersection. Vertical bars are coloured depending on the confidence of
detection (low: grey, medium: light blue, high: dark blue), and circles
are coloured by the organ assignation (stamen: orange, carpel: yellow,
sepal: green, petal: purple). Besides the represented proteins and
peptides, there were 2,257 proteins identified in all genotypes.
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Figure 4.10. General information about the candidates.

A) Venn diagram indicating the number of peptide candidates selected through each
method. B) NA distribution of the ‘Discovery’ (purple), and ‘Floral Organ’ (orange)
peptide candidates. In black: peptides which are ‘discovery’ and ‘floral’ peptide
candidates. C) Violin plots (and boxplots) showing the size distribution for the
detected hypothetical peptides (up to 100 aa; grey shadow), with the selected
peptide candidates superimposed with filled circles according to whether they had
been identified as ‘floral’ (orange), ‘discovery’ (purple) or both (black), according to
their confidence of detection (high, medium, low) and their source (Araport11, Hsu
et al,, Hanada et al., CNTdb2.0, TAIR ‘nc’). Numbers indicate the total number of
candidates (nc) and the total number of hypothetical peptides detected (nr) for each
group. D) Genome-wide distribution of all hypothetical peptides detected by MS
(coloured by their origin). Candidates are also separately shown with different
shapes and colours depending on their origin and ORF type.
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The obtained results about organ-specific proteins and peptides were
compared to those obtained at transcript level by (WELLMER ET AL., 2004). In
the LC-MS/MS results, most of the possible floral-organ proteins and
canonical peptides were associated to stamens, followed by carpels, and then
petals and sepals (Figure 4.8B), as in Wellmer et al. at transcript level (Table
4.2). In the case of the floral organ candidate peptides (hypothetical
peptides), the proportion of peptides assigned to each organ was slightly
different. As in the case of the proteins and canonical peptides, the highest
number of possible floral-organ hypothetical peptides were associated with
stamens. However, the proportion of possible petal-specific peptide
candidates was higher than expected, and there was only one putative carpel-

specific peptide candidate and none in the case of the sepals (Figure 4.8B).

Table 4.2. LC-MS/MS identified peptides and proteins classified as
organ-specific in comparison to the organ-specific transcripts
identified by (WELLMERET AL., 2004).

Araportll Araportll Hsu Hanada CNTdb TAIR

€ (H) etal etal 2.0 ‘nc’
Carpel 32 1 0 0 0 1
Petal 4 0 0 0 9
Sepal 12 0 0 0 0 0
Stamen 183 10 4 0 28 11
Unassigned 3,456 71 3 1 43 30
Unsuitable 1,961 64 14 41 1,206 556
Wellmer et al. Wellmer et al.
(and in LC-MS/MS) (in total)
Carpel 89 260
Petal 4 18
Sepal 4 13
Stamen 242 (C) +8 (H) 1,162

The accuracy of the organ-specific classification criteria was also checked by
performing a Gene Ontology (GO) enrichment analysis of the proteins and
peptides annotated in Araportll that through the candidate selection
process were classified as organ-specific. The groups of peptides and
proteins that were classified as specific for each organ type were indeed
enriched in peptides and proteins known to be related with the development

of that organ (Figure 4.11A). Moreover, a correlation network was created
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based on the LC-MS/MS abundances of proteins and peptides, and a new GO
enrichment analysis of the abundance modules calculated using the Random
Matrix Theory was performed (Figure 4.11B). The module MEO1 included
192 peptides and proteins that were classified as stamen-specific peptides,
and it is enriched in pollen exine formation AGIs according to the GO results
(Table 4.3, Sup Table 4.4).

Table 4.3. Number of peptides and proteins forming the modules
of the correlation network.

Carpel Petal Sepal Stamen Unassigned
Module TOTAL
Pep Prot | Pep Prot | Pep Prot | Pep Prot | Pep Prot
MEO1 4 1 1 27 165 23 327 548
MEO02 16 11 7 137 171
MEO3 2 12 3 3 1 10 3 32 485 551
ME04 26 3 309 338
MEO5 15 10 165 190
MEO6 28 146 174
MEO7 7 123 130
MEO8 3 89 92
ME77 22 215 237
ME78 3 34 37
A GO enrichment analysis (Araport11 IDs) B Precursor metabolites Pyruvate metabolic
and energy process & Response to
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Figure 4.11. Validation of the ‘floral organ’ classification criteria.
A) GO enrichment analysis: main category for those Araportll
peptides and proteins that were associated to each organ type. B)
Correlation network for peptides and proteins identified in LC-MS/MS
results. The main GO categories of each correlation module (ME) are
indicated in the graph. Coloured by correlation ME. Circles represent
peptides in MS and rectangles, proteins.
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4.2.4 Translation initiation sites of the identified peptides

From the 1,874 hypothetical peptides identified by LC-MS/MS, only 131 of
the corresponding sORFs were predicted to start with an AUG (14 annotated
in Araportl1, 117 in other sources). Furthermore, the sORFs of 292 peptides
began with a near-cognate codon, that is, triplets that differ from AUG by only
one nucleotide (e.g., AUC or AAG, Figure 4.12A, D). In addition to the initial
annotation and prediction, it should be noted that the mass spectrometry
results identified the complete N-terminal fragment for 551 of the 1,874
hypothetical peptides. Of this particular subset, 156 TIS were AUG or near-
cognate (69 and 87, respectively), and 394 were other codons (similar to
(CAO & SLAVOFF, 2020; NAET AL., 2018)).

For those hypothetical peptides for which the fragment identified by mass
spectrometry did not correspond to the N-terminus, their putative
translation initiation sites (TIS) were searched for and re-annotated on the
basis of the specific amino acid sequences (internal peptidic fragments)
identified by LC-MS/MS (see Materials and Methods section 4.4.4)

In summary, the sORFs of 26% of the total 1,874 hypothetical peptides, and
34% of the selected candidates held putative canonical start codons (AUG).
The sORFs of another 45% of the total hypothetical peptides commenced
with a near cognate codon, as was the case for the 36% of the selected
candidates. Ten candidates had more than one TIS in a sequential
arrangement (e.g., AUG-AAG or AAG-AUG). Finally, no potential AUG and
near-cognate codon TIS was identified for about 30% of the hypothetical
peptides and selected candidates (Figure 4.12B, C, E). That is, it appears that
for the SEPs identified in this study, in addition to AUG-mediated translation
initiation, near-cognate codons are also frequently used, and that the
possibility of non-AUG, non-near-cognate initiation also exists, since for a
subset of the hypothetical peptides a clear ‘conventional’ TIS could not be
identified despite the fact that for some of those peptides the MS peptidic

fragment corresponded to the peptide N-terminus.
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Figure 4.12. TIS of the hypothetical peptides identified by LC-
MS/MS.

A-B) Pie chart depicting the number of peptides with each kind of TIS
among all the hypothetical peptides identified by LC-MS/MS (n=1,874)
and for the selected candidates (n = 132) before (A) and after (B) the
re-annotation based on LC-MS/MS spectra. C) Percentage of peptides
whose start codon is AUG or a near-cognate codon before and after the
re-annotation. D-E) Bar plot representing the number of peptides from
each source (colours) that began with each possible codon for the 132
candidates before (D) and after (E) the re-annotation.
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In addition to the identification of putative TIS, I categorised thirteen
candidates as putative precursors of small-secreted peptides (SSPs) based on
the mass spectrometry results (i.e., the peptidic fragment that was detected
lacked a tryptic beginning and did not correspond to the TIS of the sequence).
Two candidates (#014 and #101, which correspond to AT5G43695.1 and
AT2G05215.1_29 respectively) were confirmed as carriers of potential
secretory signals using the online tool SignalP (Figure 4.13, Sup Table 4.3).
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Figure 4.13. Identification of putative secretory signals in
candidate peptides.

A) Probability of containing a Sec/SPI secretory signal. SignalP 6.0
results for candidates #014 (B) and #101 (C). Schematic map of
candidates with putative secretory signals #014 (D) and #101 (E). The
dark purple arrow represents the CDS of each candidate in their
corresponding RNA. In grey, the peptidic sequence identified by mass
spectrometry. In pink, other putative SEPs identified in the same RNA.
The orange arrow in E represents the fragment that I identified as the
possible SSP. The secretory signal is indicated in red (secretory signal
n), orange (secretory signal h) and yellow (secretory signal c). Pink
arrows represent the CDS of other peptides from the MS database that
could be encoded by the same transcript as candidate #101.
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4.2.5 Several SEPs belong to putative peptide families in A. thaliana

The custom database described above (see 4.2.1) without the proteins and
peptides annotated in Araport11 was searched against itself using BLASTp in
order to identify peptide families and to determine whether the SEPs
identified through LC-MS/MS formed part of them (see Materials and
Methods section 4.4.5 for the strategy used to filter the results of the BLAST

analysis; the strategy took into account the length of each peptide sequence

query).

Among the ~100K peptides and proteins in the database, there were 14,366
families with two to eleven members (Table 4.4, Sup Table 4.5). Some
families were exclusively formed by members encoded in the same
transcript, including peptides from Hsu et al, CNTdb 2.0 and TAIR ‘nc’.
Around 55% of the families were comprised by peptides with the same origin
(Figure 4.14). Besides, the 85% of the families were formed exclusively by
putative peptides encoded in IncRNAs and TUFs (CNTdb 2.0, TAIR ‘nc’ or a
combination of both sources). Out of the 1,874 hypothetical SEPs in the LC-
MS/MS results, 515 were associated to at least one of these families, and
there were 15 families with two members detected in the LC-MS/MS results
(Table 4.4, Sup Table 4.5).

Table 4.4. Putative peptide families in A. thaliana.

Number of putative peptide families with member(s) detected or not in
the LC-MS/MS results. Families include two to eleven peptides encoded
in one to eleven different transcripts. The members of families encoded
in more than one transcript can be encoded in overlapping loci, or in
completely separated loci (e.g., in different chromosomes).

Families encoded in more Families encoded in a
than one transcript single transcript

0 peptides in

a2 12,248 1,356
LC-MS/MS

1 peptide in LC-

pep 664 83

MS/MS
2 peptides in

a2 13 2
LC-MS/MS
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(45.2%)

CNTdb TAIR 'nc'

Figure 4.14. Peptides grouped in families by BLASTp have multiple
origins.

Venn Diagram representing the origin (Hanada et al, Hsu et al,
CANTATA db2.0 or TAIR ‘nc’) of the members of each family. The
number (and percentage) of families formed by members of each origin
is indicated.

In the case of the 132 selected candidates, I searched for homologous
sequences along the complete A. thaliana genome with a BLASTn analysis, to
identify putative families at genome level that were not detected at peptide
level using the custom database (e.g., peptides annotated in Araport11). In
this case, there were 68 candidates with homologous sequences within the
Arabidopsis genome (Sup Tables 4.3, 4.6).

4.2.6 Amino acid sequences of SEPs are conserved across species

When inspecting the conservation of the 132 selected candidate peptides,
putative homologs were found for 103 of them in the genome of at least one
of other twelve plant species, namely A. lyrata, Brassica oleracea, Camelina
sativa, Vitis vinifera, Citrus clementina, Cucumis melo, Glyine max, Medicago
truncatula, Populus trichocarpa, Solanum lycopersicum, Oryza sativa and Zea
mays (Table 4.5, Sup Table 4.7). The putative homologs of the peptide
candidates were evenly distributed in the genome of the different analysed
species, as it was already shown for the candidates in A. thaliana (Figure
4.10D). For some species, the putative homologs for the peptide candidates
were larger than 100 aa (up to 200 aa) (Figure 4.15). I also explored if any
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transcripts and/or peptide sequences for the putative homologs were
already listed in the transcriptomes and proteomes of the twelve species
used in the homology study (Table 4.5, Sup Tables 4.3, 4.7). Whereas the
identified homologs for a majority of the selected candidates (76 out of 132)
were localized in annotated transcripts in at least one of the corresponding
species, many others (56) were identified only from the corresponding
genome sequence. This was expected given that transcriptome depth (and in
particular identification of IncRNAs) and quality of the genome annotation
varies greatly among species (Figure 4.16).
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Figure 4.15. Length distribution of the 132 selected candidates
and their putative homologs.

Histogram representing the length distribution of the selected
candidates (A) and their putative homologs (B). Red line: 100 aa of
length.
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Table 4.5. Species for the homology analysis.
Twelve species selected depending on their evolutionary distance to A. thaliana and their available genome information,
indicating the number of candidates with putative homologs in each species, and the number of possible transcripts and
peptides for those putative homologs in the different species that are already annotated in their corresponding databases.

Species Mon'ocot Family Reference genome # Homologs # Transcripts # Peptides

/ dicot (tBLASTn) (BLASTn) (BLASTp)
A. lyrata Dicot Malvids A. lyrata subsp. lyrata (v.1.0) 95 63 27
B. oleracea Dicot Malvids B. oleracea var. oleracea (BOL) 54 44 19
C. sativa Dicot Malvids C. sativa (Cs) 70 56 25
V. vinifera Dicot Rosids V. vinifera (12X) 33 31 18
C. clementina Dicot Malvids C. clementina (Citrus_clementina_v1.0) 39 31 18
C. melo Dicot Cucurbitales Melon_v.4 39 30 18
G. max Dicot Fabids G. max (assembly Glycine_max_v2.1) 30 28 18
M. truncatula Dicot Fabids M. truncatula (MtrunA17r5.0-ANR) 39 33 19
P. trichocarpa Dicot Fabids P. trichocarpa (assembly Pop_tri_v3) 39 29 15
S. lycopersicum Dicot Asterids S. lycopersicum (SL3.0) 35 30 19
0. sativa Monocot Poales 0. sativa Japonica Group (IRGSP-1.0) 28 21 11
Z. mays Monocot Poales Z. mays (Zm-B73-REFERENCE-NAM-5.0) 20 17 + 3 ncRNAs 10
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Figure 4.16. Distribution of the selected candidate peptides according to
their length and whether their homologs are identified in the
transcriptome or proteome of the corresponding species.
Diagrams reflect the length of the candidate peptide (AAs) and the number
species in which homologs were identified. Coloured depending on the database
of origin of each candidate. Point size depicts the confidence (FDR) of detection
of the candidate in the LC-MS/MS results. Black lines represent the median
values for each group. A candidate is described as annotated transcript/peptide
in other species if at least one of its assigned putative homologs is present in the
transcriptome and/or proteome of its corresponding species.
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Figure 4.17. Distribution of the selected candidate peptides according to
their length and the number of species in which they may have a putative
homolog.

Coloured depending on the origin of each candidate. Point size depicts the
confidence of detection of the candidate in the LC-MS/MS results. Black lines
represent the median values for each group; n indicates the number of peptide
candidates per group.
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A substantial number of the selected candidates (29) seemed to be specific to
A. thaliana; eighteen were also identified in A. [yrata; and fourteen also in B.
oleracea and C. sativa, for a total of 61 candidates that were apparently
specific to the Brassicaceae. There were also fourteen candidates with
possible homologs in the twelve species. In contrast, the number of
candidates present in four to eight species was smaller (Figure 4.17, Sup
Tables 4.3, 4.7).

When non-synonymous substitutions (dny) and synonymous substitutions
(ds) were compared, the resulting dn/ds ratios (w) were very variable among
different candidates and their putative homologs. A. lyrata followed by C.
sativa and B. oleracea were the species with higher rates of positive selection
for the putative homologs (w > 1) (Figure 4.18A). For those candidates with
putative homologs in at least three species, the frequency of site categories
(negative [pi(-)], neutral [pi(N)], positive [pi(+)]) was calculated for each
alignment. Almost 40% of the candidates presented pi(-) < 60% of the total
length of the candidate, and another 5% had pi(-) < 60% of the aligned
fraction of the candidate (Figure 4.18B, Sup Tables 4.3, 4.7). This
conservation of the peptide candidates could be interpreted as an indicator
of their translation and also of a possible common functionality in different

plant species.

Fourteen of the candidates showed homologs in the twelve species analysed,
whereas another twelve could be deemed as relatively conserved, as
homologs were detected in ten or more species (i.e., 26 peptide candidates
out of the set of 132). Of those fourteen, only one candidate with putative
homologs in the twelve species had also a pi(-) £ 60% value (#002:
AT1G47278.2). This candidate was detected with high confidence in LC-
MS/MS and corresponds to the AT1G47278.2 locus, which is annotated in
Araport11 as hypothetical and was also detected in the RNA-seq experiments
described in Chapter 2.
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Figure 4.18. Sequence conservation of selected peptides.

A) Upset plot representing the number of candidates with each species
combination of putative homologs. Coloured according to the general
sequence selection of the homologs: all negative (w<1) in purple, at
least one homolog with positive (w>1) in orange, and a total pi(-) of the
sequence < 60% in light orange. The bar graph on the left represents
the number of putative homologs of each species with positive (w>1,
orange), negative (w<1, purple) or indetermined (grey) selection in
different species. B) Proportion of conserved and non-conserved
positions for each candidate with putative homologs in at least three
species. The candidates are grouped by their number of putative
homologs (3-12) and sorted by size (10-100 from left to right in each
group). The brown line signals the 40% threshold for a candidate to be
considered as totally conserved and the brown dots the 40% threshold
to consider the aligned part of the candidate as conserved. The length
difference between the largest putative homolog compared to the
candidate is displayed in dark purple (‘extra’ in the colour legend).
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4.2.7 SEPs identified in floral buds show differential gene expression
patterns across tissues

The RNA expression levels of the selected candidates in different tissues at
various developmental stages were evaluated through quantitative real time
PCR (qRT-PCR). RNA samples were obtained from inflorescences of the
homeotic mutants and wild type Ler-O plants, pAP1:AP1-GR apl cal
inflorescences at various time-points after flower development induction
(samples described in Chapter 2), young and mature siliques of wild type
plants, and seedlings and rosette leaves of wild type plants (Ler-0).

Among the 53 candidates that were classified as tissue variant genes in this
experiment (TVGs, ANOVA p-value < 0.05), five different general expression
patterns were observed, encompassing 46 of those candidates (Figure 4.19).
As expected from the samples that were used for the LC-MS/MS experiment
(floral tissues), the differential expression that was observed by qRT-PCR
mostly consisted of flower-specific expression (44 out of the 46 candidates).
In some cases, a certain enrichment of expression in the homeotic mutants
associated with the presence of sepals (ap3, pi, and ag; 7 candidates) or of
stamens (apl and ap2; 9 candidates) was observed, and four candidates
(#008, #010, #043 and #048) seemed to be enriched in mature flowers and
siliques. In addition, two candidates (#020 and #122) showed higher
expression levels in seedlings and leaves. Differential gene expression
suggests that the corresponding selected candidates might participate or
play a role in specific tissues or developmental processes or stages,
suggesting a plausible role during fruit development.

Forty candidates had a flower-specific expression pattern; from which seven
showed certain enrichment in the homeotic mutants associated with the
presence of sepals (ap3, pi and ag), and nine presented an enrichment in
those homeotic mutants associated with the presence of stamens (apl and
ap2). Besides, candidates #020 and #122 showed higher expression levels in
seedlings and leaves, while candidates #008, #010, #043 and #048 seemed
to be enriched in mature flowers and siliques, suggesting a plausible role

during fruit development (Figure 4.19).
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Figure 4.19. Gene expression of the candidates.

Heatmap depicting the results of the qPCR chip. Coloured by their z-
scored relative gene expression (purple: low; orange: high). Samples:
inflorescences of WT plants and the homeotic mutants (IF, ap1, ap2,
ap3, pi, ag), inflorescences of pAP1:AP1-GR ap1 cal inflorescences 0, 2
and 4 days after flower development induction with dexamethasone
(DO, D2, D4), WT mature flowers (Fw), young siliques (YS), old siliques
(0S), rosette leaves (RL), germinated seeds (gs), seedling roots (sR) and
seedling shoots (sS). Seven candidates were classified as differentially
expressed by the ANOVA analysis but did not show a specific
expression pattern (‘Other patterns’ in the figure).
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The transcripts of 553 hypothetical peptides (out of the 1,874 detected by
LC-MS/MS) were quantified at RNA level in the RNA-seq data described in
Chapter 2. In addition, the transcripts of another 5,810 proteins and
peptides were also detected at RNA level in the RNA-seq. In total, 2,310 stage
variant genes (i.e., genes with expression changes in at least one stage; SVGs)
were detected among the different time-points analysed by RNA-seq
(moderated Likelihood Ratio Test - LRT - with an adjusted p-value < 0.01,
Figure 4.20A). These corresponded to 2,222 canonical proteins and
peptides, 39 hypothetical proteins and 49 hypothetical peptides, of which ten
were discovery candidates (Figure 4.20B, C).

The genes defined as SVGs showed three different transcript accumulation
patterns for both the total dataset of 2,310 proteins and peptides (Figure
4.20A) and the 49 hypothetical peptides (Figure 4.20B): i) higher
expression at later time-points, ii) increment in expression during mid-term
time-points (D1-D4), and iii) higher expression at the initial time-points. In
the case of the ten discovery candidates classified as SVGs, there were eight
that could be included in the described generic patterns: i) three with higher
expression at later time-points (#012, #016, and #068), ii) two showing
higher levels at intermediate time-points (#046, and #087), and iii) three
with higher levels at the initial time-points (#020, #029, and #039).
However, candidates #007 and #109 described a U-like pattern, being down-
regulated during mid-term time-points and with high expression levels at DO
and D5, as it was described in Chapter 2 (section 2.2.4) (Figure 4.20C).
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Figure 4.20. RNA expression during early flower development in

A. thaliana.

A-B) Z-score representation of the 2,310 SVGs (LRT adjusted p-value <
0.01) corresponding to all peptides and proteins (A) or to the 49
hypothetical peptides (B) detected in the homeotic mutants at protein
level and at RNA level in pAP1:AP1-GR ap1 cal plants (samples of
inflorescence meristem after DEX induction) (see Chapter 2). C) Z-
scored RNA abundance of the 10 SVG candidates through time.
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4.2.8 Expression patterns for selected candidates determined by
reporter gene fusions

The initial set of 132 peptide candidates that were selected through the
‘genotype-independent’ (‘discovery’) and ‘organ-specific’ selection pipelines
was further narrowed down to a set of 37, a more manageable number for
subsequent molecular genetic studies. This additional selection step was
based on all the available data for each peptide, including the analyses
described above on putative translation initiation sites, homolog
identification, sequence conservation, gene families, expression patterns, etc.
(see Materials and Methods section 4.4.7). Green fluorescent protein - f3-
glucuronidase (GFP-GUS) translational fusion constructs were generated
using the putative protomer regions (1.5 kb upstream from the putative
peptide translation initiation site) (pXXX:GFP-GUS constructs). Independent
transgenic reporter lines were obtained for 20 of the selected candidate

constructs.

Histochemical GUS assays were performed with three independent lines for
each of the 20 candidate reporter constructs (Figure 4.21). Consistent with
the fact that the candidate peptides were identified from developing
inflorescences, the transgenic pXXX:GFP-GUS lines showed GUS staining in
floral tissues. Ten of the 20 candidate reporter constructs were classified as
possible stamen-specific peptides, and another two as possible petal-specific.
In the GUS assays, the most frequent pattern was staining in developing
stamens and anthers: staining in anthers during stamen formation at early
stages of development (p004, p005, p010, p019, p022, p025, p043, p050,
p061, p062, p077, p121, p128, and p131); in anthers up to more advanced
stages (p008, p011); or during the complete anther development process
(p101). In addition, p018:GFP-GUS plants were stained in anthers and at the
tip of the sepals, and p087:GFP-GUS plants showed GUS staining in mature
anthers, pedicels, and carpels. Only one of the twenty reporter gene fusions

(p032) failed to show staining in floral tissues.
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Figure 4.21. Examples of GUS staining patterns of pXXX:GFP-GUS
lines in floral tissues.
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4.2.9 Future perspectives: characterization of knock-out lines of
selected SEPs

Whereas the results from the various analyses and assays described above
raise the strong possibility that at least some of the identified novel peptides
play a role in flower development or physiology, demonstrating and
elucidating those roles might require genetic loss-of-function and gain-of-
function approaches. Thus, a total of 21 potential SEPs were selected for
generating knock-out lines using CRISPR-Cas9 technology (Table 4.6);
thirteen candidates from these LC-MS/MS experiments and that showed
different expression patterns according to the results from the GUS staining
assays (above), and eight additional potential candidates that were identified
in previous analyses by the research group (based on computational
predictions, transcriptomics, and 5’- and 3’-RACE) and that also showed
defined and particular expression patterns in reporter gene fusion
experiments (Figure 4.22).

DEB4-AP1 DEB12

DEB13 DEB56
> y’
DEB57-AP1 '
% ¢ m‘a!““

Figure 4.22. GUS staining patterns of pXXX:GFP-GUS lines of
putative SEPs identified by computational predictions,
transcriptomics and 3’- and 5’-RACE. Data from Dr Thilia Ferrier.
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[ managed to generate the plasmids carrying two guide RNAs per candidate
and the Cas9 cassette for the 21 SEPs (Figure 4.23), and transformed wild
type plants (Columbia ecotype, Col-0) by the floral dip method.

gRNA scaffold 1

pVS1 StaA

PHEE401E with two gRNA guides

(pvS1 oriv) 16.485 bp

nucleoplasmin NLS

Figure 4.23. Map of the construction used to generate knock-out
mutant lines.

The different knock-out lines are currently being generated. Once the T3
homozygous lines carrying the mutation while lacking the Cas9 gene are
obtained, they will be evaluated by inspecting flowering or developmental
traits. Additional functional studies could be complemented with the

generation of overexpression lines for the different candidates.



144 | Chapter 4

Table 4.6. Data about the peptide candidates that were selected for the generation of loss-of-function mutant lines.

Consecutive Possible

Length

ID Candidate OREF type Source Putative TIS putative TIS  SSP (aa) GUS staining
#004 AT2G20480.1 CDS Araportll  AUG ﬁg(é-AUG- 63 Developing anthers
#005 AT2G21195.1 CDS Araportl1 AUG 93 Developing anthers
#008 AT2G46360.1 CDS Araportl1 AUG 97 Developing anthers
#010 AT4G23885.1 CDS Araport11 AUG AAG-AUG LC-MS/MS 77 Developing anthers
#011 AT4G35980.1 CDS Araportll  AUG 87 Developing anthers
#022 ?g3?2851656349459- intergenic ;{l‘:"mda e Novel AUG AUG-AAG 35 Developing anthers
#043 CNT2086293.4  IncRNA-ORF CNTdb2.0 I(‘I:SE')COgnate 43 Developing anthers
#050 Eggfggsggzg)‘z 1 ?rrllct[i{sl\elgngF CNTdb2.0 Fﬁg—)cognate 27 Developing anthers
#062 %Egggggg 53)—8 f‘r?ctfiflf}gngF CNTdb2.0 Eﬁgog“ate 23 Developing anthers
#077 CNT2088303_1 IncRNA-ORF CNTdb2.0 Novel AUG 16 Developing anthers
#087 CNT2088823 20  IncRNA-ORF CNTdb2.0  Novel AUG 28 f:rt;‘;‘;s' pedicels,
#101 AT2G05215.1_29 IncRNA-ORF TAIR 'nc' Novel AUG ilcgrll\zlsf;i/[(;, 82 Developing anthers
#121 AT4G052051.14 IncRNA-ORF TAIR'nc¢'  Near-cognate 39 Developing anthers

(GUG)
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Table 4.6. Cont. Consecutive putative TIS: candidates that had more than one TIS in a sequential arrangement. Possible SSP:
putative small-secreted peptides according to LC-MS/MS spectra or SignalP6.0 online tool. # Ath homologs: Number of homologs
in the A. thaliana genome. # Species: Number of species with at least one putative homolog for the candidate.

D Contdence type  omgan  Ath . homelogs  (homelogs) KVASCd  GPCR

#004 Medium Both Stamen FALSE 0 11 NVG Flower

#005 High Discovery - FALSE 0 9 NVG Stamen

#008 Low Discovery - FALSE 0 3 - Flower — Silique
#010 High Discovery - TRUE 1 10 NVG Flower — Silique
#011 High Discovery - FALSE 0 12 NVG Flower

#022 Low Discovery - FALSE 4 0 - -

#043 Low Discovery - TRUE 2 0 NVG Flower — Silique
#050 Low Discovery - FALSE 2 8 - Carpel, Sepal
#062 Low Floral Petal FALSE 1 2 - Sepal

#077 Low Floral Stamen FALSE 1 - -

#087 Low Both Stamen FALSE 0 3 SVG Sepal

#101 Medium Discovery - TRUE 1 5 NVG Stamen, Petal

#121 Low Floral Stamen TRUE 0 0 - -
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Table 4.6. Cont. Consecutive putative TIS: candidates that had more than one TIS in a sequential arrangement. Possible SSP:
putative small-secreted peptides according to LC-MS/MS spectra or SignalP6.0 online tool.

. Putative Consecutive Possible Length ..

ID Candidate ORF type Source TIS putative TIS SSP (aa) GUS staining

DEA15 AT3G19274 novel CDS Insilico Novel AUG 50 =

DEB4 AT1G31319 novel CDS Insilico Novel AUG AUA-AUG 35 Vascular tissue

DEB12 intergenic Insilico Novel AUG ﬁgg -AUG-AUA- 43 Stamens and carpels

Alternative . : .
DEB12 Alt SORF of DEB12 intergenic Insilico Novel AUG 66 Stamens and carpels
. . - : Anthers and sepal

DEB13 intergenic Insilico Novel AUG SignalP 6.0 65 . : .
dehiscence junction

DEB56 intergenic Insilico Novel AUG 60 Stamen fllam.ents, .
ovules, seedling stipules

DEB57 intergenic Insilico Novel AUG 55 Anthers

DEB63 AT5G66607 novel CDS Insilico Novel AUG AUG-AUA 37 Developing anthers
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4.3 Discussion

The first large-scale experimental evidence of non-canonical translation in
eukaryotic cells was provided by ribosome profiling. Thanks to this
technique, thousands of sequences annotated as non-coding RNAs,
pseudogenes or UTRs have been redefined as an important source of novel
peptides in plant species such as Arabidopsis (BAZIN ET AL., 2017; HSU ET AL.,
2016; KURIHARA ET AL., 2020; LIANG ET AL., 2021), maize (LIANG ET AL., 2021),
tomato (H.Y.L. WUET AL., 2019) or wheat (Y. GUO ET AL., 2023). Despite these
advances, the evaluation of the coding potential of the sequences identified
through ribosome profiling is computation-wise (MAKAREWICH & OLSON,
2017), meaning that sORF translation may not result in the production of a
stable and functional SEP. To solve this issue, it is also possible to use MS-

based methods to confirm the protein-coding nature of a SORF.

In the last years, several efforts have been conducted for the characterization
of the Arabidopsis proteome and peptidome using MS-based methods to
identify novel sORFs and SEPs (e.g.,, (MERGNER ET AL., 2020; S. WANG ET AL.,
2020)). In this work, almost 2,000 unannotated peptides were identified
thanks to the consideration and application of several key aspects for peptide
identification. To begin with, the selection of an adequate peptide extraction
method is crucial. The processing of cellular proteins increases the
complexity of the peptidome, deteriorating the signal-to-noise ratio. Besides,
protein and peptide separation strategies are important for the identification
and quantification of low-abundance peptides and for increasing their
overall sequence coverage (BARASHKOVA & ROGOZHIN, 2020; KULJANIN ET AL.,
2017). In this Thesis, two extraction methods were compared, namely
ultrafiltration and ammonium sulphate precipitation, while also testing
different kinds of filtration devices for separating peptides of various sizes.
Finally, the best method resulted in the 30K-ultrafiltration. However, it is

important to design and test several methods that adapt to each special need.

In a typical MS/MS data analysis, more than 60% of the spectra remains
unassigned, even after database improvements for guided identification and
the use of de novo identification algorithms. Although some of these could be

attributed to the low quality of the unassigned spectra, a portion can still be
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classified as high-quality (PATHAN ET AL., 2017). Good quality spectra could be
further analysed and reinspected for modifications, mutations, and sequence
variants using peptidogenomics for new database generation (S. WANG ET AL.,
2020), or by mass-tolerant database searches for PTM considerations (CHICK
ET AL., 2015). To try to overcome this issue in the experiments sorted here,
the initial search database was expanded during the process of spectra
identification by considering noncanonical peptides derived from IncRNAs,
and in addition by performing a more comprehensive search using a Semi-
tryptic approach (see Materials and Methods section 4.4.3 Reference
database).

The database extension considered that IncRNAs can be an important source
of SEPs as they encode translatable sORFs, as shown by Ribo-Seq and mass
spectrometry experiments (HSU ET AL., 2016; H. Y. L. WU ET AL., 2019). For
instance, ribosome profiling of the human heart resulted in the identification
of 1,577 noncanonical ORFs, of which 339 (22%) were sORFs from IncRNAs.
Furthermore, over 40% of those IncRNA SEPs were confirmed by mass
spectrometry (VAN HEESCH ET AL., 2019). Although the exact proportion of
sORFs/SEPs that are derived from IncRNAs may vary among different
studies, it consistently represents a substantial fraction, frequently around
25% (J. CHEN ET AL., 2020; OUSPENSKAIA ET AL., 2021). In this context, it is also
noteworthy that out of a list of 42 human SEPs that have already been already
characterized as functionally or physiologically relevant, 55% are derived
from IncRNAs (WRIGHT ET AL., 2022). In plants, 153 IncRNA-encoded peptides
have been identified by LC-MS/MS in soybean (X. LIN ET AL, 2020). As a
consequence, the research community is beginning to contemplate the
revision of the classification criteria of IncRNAs, due to the presence of
translatable sequences shorter than 100 aa despite their definition of “non-
coding” (X. LINETAL., 2020; PALOSET AL., 2022). My results are also an example
of the overlooked coding potential of IncRNAs, intergenic regions and other
transcripts. In this study, almost 60% of the identified peptides derived from
IncRNAs annotated in CNTdb 2.0, and another 26% from other transcripts
classified as “non-coding” in TAIR. Nevertheless, the number of unassigned
spectra did not decrease significantly, leaving the door open for further

analyses using an even wider database or other identification approaches.
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Most of the hypothetical peptides identified in the LC-MS/MS analysis were
detected in only one out of the 24 total samples (Figures 4.7B, 4.24A). This
paucity of SEP detection was also observed in a study in which samples of 24
different tissues of pear were analysed with the objective of creating a
proteomics atlas, and that also resulted in identifying 608 novel peptides (P.
WANG ET AL., 2023) (Figure 4.24B). Although the number of novel peptides
identified by P. Wang et al. was lower than that obtained in this Thesis (the
pear samples were not processed to enrich for peptides and small proteins,
and a specific data analysis pipeline for SEP detection was not developed), it
is noteworthy that more than 75% of the peptides were identified exclusively
in one or two of the samples. This points to the influence of chance in the
detection of peptides that are found in smaller amounts in the samples, and
for that reason also in problems in mass spectrometry when it comes to
reproducibility of replicates. In the pear study, 124 peptides were identified
only in floral organs (Figure 4.24C). Among them, the number of peptides
identified exclusively in stamens is the highest, as was the case in the results
reported in this chapter (Figures 4.8, 4.24D). Thus, it appears that the
general conclusions that are or might be obtained from the study of the non-

conventional peptidome in Arabidopsis will extend to other flowering plants.

It is worth to note the existence of a high number of peptides with non-AUG
translation initiation sites (TIS). In spite of the “traditional” feature for
predicting protein-coding ORFs through the presence of an ATG start codon,
it is now apparent that non-AUG translation initiation cases might be
abundant, and that sORFs show a trend towards an increased use of near-
cognate or alternative start codons relative to canonical ORFs (CAO & SLAVOFF,
2020). There are several MS-based (e.g., (MA ET AL., 2014; SLAVOFF ET AL,
2013; VANDERPERRE ET AL., 2013; S. WANG ET AL., 2020)) and Ribo-Seq (e.g., (J.
CHEN ET AL., 2020; Y. GUO ET AL., 2023; INGOLIA ET AL., 2011; L1 & Liu, 2020;
MARTINEZ ET AL., 2020)) studies that also indicated that 35-50% of the
identified sORFs use non-AUG start codons. According to my results, around
45% of the total novel peptides identified by LC-MS/MS had near-cognate
codons as TIS, while another 29% corresponded to peptides beginning with
other codons that also differ from AUG. It remains unclear whether the amino

acid corresponding to the non-AUG start codon is incorporated at the TIS or



150 | Chapter 4
methionine is still incorporated. According to (NA ET AL., 2018) methionine
seems to be incorporated at almost all non-canonical TISs identified by LC-

MS/MS.
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Figure 4.24. Comparison of the peptidomics results with a
proteogenomics study in pear.

A) Bar graph depicting the number of peptides identified in 1 to 24 of
the samples (4 biological replicates x 6 genotypes) in the LC-MS/MS of
inflorescences in Arabidopsis. B) Bar graph representing the number
of peptides identified in 1 to 24 of the samples (1 replicate x 24 tissues)
in a LC-MS/MS analysis in pear. C) Venn diagram indicating the number
of peptides identified in pear in floral tissues (flower), vegetative
tissues (vegetative) and fruit tissues (fruit). D) Number of peptides
identified in exclusively in floral tissues in pear. Dark grey: organ-
specific peptides (identified exclusively in one sample). Light grey:
peptides detected in more than one floral tissue. Data of panels B-D
extracted from (P. WANGET AL., 2023).
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Despite the variation in the absolute frequencies of AUG and non-AUG
initiation codons, there is an increasing trend of near-cognate start codons in
the novel peptidome relative to main ORFs and annotated ORFs. In the case
of putative TISs with non-AUG and non-near cognate start codons, there are
at least three possibilities to consider: i) the identification of the peptide was
incorrect (e.g., a false positives), ii) the identification of the peptide was
correct, butit was not possible to elucidate the real TIS (e.g., there is a splicing
region or an intron that was not identified), and iii) the identification of the
peptide was correct and it truly starts with a codon that differs from AUG and
near-cognate codons. This third case would be much less frequent than AUG-
or near-cognhate codon-initiated translation, but there are studies that have
demonstrated the existence of non-AUG and non-near-cognate translation
initiation events for SEPs (e.g., (CAO & SLAVOFF, 2020; NAET AL., 2018)).

Amino acid sequences of certain SEPs are conserved across species, but, in
general, SORFs/SEPs are less evolutionary conserved than standard proteins
(e.g., (J. CHENET AL., 2020; FESENKO ET AL., 2019, 2021; RUIZ-ORERA ET AL., 2018;
VAN HEESCH ET AL., 2019; WRIGHT ET AL., 2022)). Their lower conservation
scores are also in agreement with the concept of IncRNA-derived sORFs
facilitating de novo gene evolution. Among the peptide candidates from A.
thaliana identified in this Thesis, 103 peptides seemed to have putative
peptide homologs in other plant species, and around the 40% of those
peptides had a positive or neutral selection of a good fraction of their amino

acidic sequence, which might be related to their function.

Whereas SEPs that show evidence of conservation across multiple and
distant species are (more) likely to have specific biological functions, it is also
apparent that limited conservation does not exclude the production of
functional peptides (LAURESSERGUES ET AL., 2022; VAN HEESCH ET AL., 2019;
YEASMIN ET AL, 2018). Some plant peptides identified through classic and
molecular genetic approaches are known to play significant roles in various
processes (development, stress, signalling, etc.), however, the plant
peptidome is largely undefined and experimental evidence for the biological
functionality of the vast majority of the predicted or identified SEPs is still
lacking (HSU & BENFEY, 2018; TAVORMINA ET AL., 2015).
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For the set of identified floral-specific peptides, I hope to find specific
phenotypes for the loss-of-function mutants being currently generated.
Alternatively, we will also generate overexpression lines for some of the

candidates to characterize them at functional level.
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4.4 Materials and Methods

4.4.1 Plant lines, growth conditions, and tissue collection

The mutant strains used in this study were ap1-1/-, ap2-2/-, ap3-3/+, pi-1/+,
and ag1-1/+ (BOWMAN ET AL., 1989, 1991, 1993; JACK ET AL., 1992). Plants of
the accession Landsberg erecta (Ler-0) were used as wild type reference,
except for the generation of knock-out lines that Columbia (Col-0) plants
were used. In addition, pAP1:AP1 aplcal DO, D2 and D4 inflorescence
material (see Chapter 2) was used for the gqRT-PCR analysis. Plants were
grown, after a 1-week period of stratification at 4 °C in darkness, on a
soil:vermiculite:perlite mixture at 21 °C under long day conditions (16h light,
8h darkness), or in plates of 0.5 x Murashige and Skoog (MS) salt mixture
with vitamins, and 0.8% plant agar after being surface sterilized and
stratified at 4 °C for 48 h. Plates were incubated vertically at 22 °C and 70%

humidity under long day conditions.

Four biological replicates of around 144 plants each of 5-week-old
inflorescence meristem and floral buds, corresponding to floral stages 1 to
13 (SMYTHET AL., 1990), were collected for Ler-0 plants, and ap1, ap2, ap3, pi,
and ag mutant lines, as done for the initial characterization of spatial gene
expression in Arabidopsis flowers (WELLMER ET AL., 2004). These samples
were used in the mass spectrometry experiments and for RNA extraction.
Two biological replicates were collected for RNA extraction from other
tissues: Ler-0 mature flower, young siliques and mature siliques (with seeds)
from 5-week-old plants grown in soil (n = 144 plants per replicate), Ler-0
rosette leaves from 19-day-old plants grown in soil (n = 72 per replicate),
Ler-0 germinating seeds (2-day-old plants grown in plates, 3 plates per
replicate), and Ler-0 seedling roots and shoots (4-day-old plants grown in
plates, 2 plates per replicate). Grinded samples of each tissue were preserved
at -80 °C until their use.

4.4.2 Peptide extraction

To choose the optimal peptide extraction method, two different techniques
were compared, ultrafiltration, and ammonium sulphate precipitation, both

followed by reverse phase chromatography. The final extraction method was
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chosen based on the results of both techniques for samples of Ler-0
inflorescence tissue and mature flowers. As the number of obtained and
identified peaks by mass spectrometry was better for the ultrafiltration with
30K filters followed by reverse phase chromatography, this was the
extraction method of choice (ALVAREZ-URDIOLA, BORRAS, ET AL., 2023).

Ultrafiltration. For each sample, ~0.5 g of blended tissue distributed in two
2 mL microcentrifuge tubes were used. A total of 1.2 mL of extraction buffer
(phosphate-buffered saline (PBS) 1x, urea 1.5M, DTT 10mM, acetonitrile 2%
v/v, trifluoroacetic acid (TFA) 0.5%, MG-132 10uM, Proteinase Inhibitor
cocktail cOmplete 1x, and PMSF 1mM) were added to the tissue, mixed by
vortexing and incubated the samples with continuous shaking for 1 h at 4 °C.
Samples were spined twice for 1 min at 4 °C (max speed) to precipitate
cellular debris and solid particles in suspension. All the supernatant of each
sample was filtered in 30K- or 100K- Amicon ® Ultra-0.5 Centrifugal Filter
devices as indicated by the manufacturer (~500 pL of supernatant at a time
were centrifuged at 14,000 x g for 10 min at 4 °C). Filtrates containing the
smallest peptides depending on the weight limit of the filter device were kept
for reverse phase chromatography.

Ammonium sulphate precipitation. For each sample, ~0.5 g of blended
tissue distributed in two 2 mL microcentrifuge tubes were used. A total of 1.2
mL of extraction buffer (PBS 1x, urea 2M, acetonitrile (ACN) 2% v/v, DTT
10mM, acetonitrile 2% v/v, trifluoroethanol (TFE) 5%, Tris pH 7.6 50mM,
MG-132 10uM, cOmplete 1x, and PMSF 1mM) were added to the tissue, mixed
by vortexing and incubated the samples with continuous shaking for 30 min
at 4°C. Samples were spined for 1 min at 4°C (max speed) to precipitate
cellular debris and solid particles in suspension. Then, 75% of ammonium
sulphate was added to the supernatant to precipitate the proteins in solution.
Ammonium sulphate calculator from EnCor Biotechnology Inc.
(http://www.encorbio.com/protocols/AM-S04.htm) was used to calculate
the needed amount of ammonium sulphate for each specific sample. The
mixes were centrifuged at maximum speed for 25 min at 4 °C, and

supernatants were kept for further reverse phase chromatography.
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Reverse phase chromatography. Samples obtained with both previous
methods were mixed with sample buffer (2% TFA in 20% ACN) in 3:1
sample:sample buffer proportion. Final samples contained 0.5% TFA in 5%
ACN. C18 resin columns (Pierce, Thermo Scientific) were prepared as
indicated by the manufacturer before loading the samples on top of the resin
beds (150 pL at a time). Samples were centrifuged at 1500 x g for 1 min as
many times as needed to pass all the sample volume through the resin.
Peptides were eluted from the column by adding 21 uL of elution buffer on
top (0.1% formic acid in 70% ACN) and centrifuge at 1500 x g for 1 min (this
step was repeated twice to increment the final concentration of the samples).
The concentration (270 - 830 pg/mL) and amount of total protein (15 - 40

ug) in each sample were quantified using a Qubit Protein Assay Kit.

4.4.3 Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

Peptidomics experiments were conducted in collaboration with Dr Eduard
Sabidé and Dr Eva Borras from the proteomics facility at the Center for

Genomic Regulation (CRG).

Sample preparation. Samples (10 pg) were reduced with dithiothreitol (30
nmol, 37 °C, 60 min) and alkylated in the dark with iodoacetamide (60 nmol,
25°C, 30 min). The resulting protein extract was first diluted to 2M urea with
200 mM ammonium bicarbonate for digestion with endoproteinase LysC
(1:10 w:w, 37°C, o/n, Wako, cat # 129-02541), and then diluted 2-fold with
200 mM ammonium bicarbonate for trypsin digestion (1:10 w:w, 37°C, 8h,
Promega cat # V5113). After digestion, peptide mix was acidified with formic
acid and desalted with a MicroSpin C18 column (The Nest Group, Inc) prior
to LC-MS/MS analysis.

Chromatographic and mass spectrometric analysis. Samples were
analysed using a LTQ-Orbitrap Velos Pro mass spectrometer (Thermo Fisher
Scientific, San Jose, CA, USA) coupled to an EASY-nLC 1000 (Thermo Fisher
Scientific (Proxeon), Odense, Denmark). Peptides were loaded onto the 2-cm
Nano Trap column with an inner diameter of 100 pm packed with C18
particles of 5 um particle size (Thermo Fisher Scientific) and were separated

by reversed-phase chromatography using a 25-cm column with an inner



156 | Chapter 4

diameter of 75 um, packed with 1.9 pm C18 particles (Nikkyo Technos Co.,
Ltd. Japan). Chromatographic gradients started at 93% buffer A and 7%
buffer B with a flow rate of 250 nl/min for 5 minutes and gradually increased
65% buffer A and 35% buffer B in 60 min. After each analysis, the column
was washed for 15 min with 10% buffer A and 90% buffer B. Buffer A: 0.1%
formic acid in water. Buffer B: 0.1% formic acid in acetonitrile. The mass
spectrometer was operated in positive ionization mode with nanospray
voltage set at 2.1 kV and source temperature at 300°C. Ultramark 1621 for
the was used for external calibration of the FT mass analyzer prior the
analyses, and an internal calibration was performed using the background

polysiloxane ion signal at m/z 445.1200.

The acquisition was performed in data-dependent acquisition (DDA) mode
and full MS scans with 1 micro scans at resolution of 60,000 were used over
a mass range of m/z 350-2000 with detection in the Orbitrap. Auto gain
control (AGC) was set to 1E6, dynamic exclusion (60 seconds) and charge
state filtering disqualifying singly charged peptides was activated. In each
cycle of DDA analysis, following each survey scan, the top twenty most
intense ions with multiple charged ions above a threshold ion count of 5000
were selected for fragmentation. Fragment ion spectra were produced via
collision-induced dissociation (CID) at normalized collision energy of 35%
and they were acquired in the ion trap mass analyzer. AGC was set to 1E4,
isolation window of 2.0 m/z, an activation time of 10 ms and a maximum
injection time of 100 ms were used. All data were acquired with Xcalibur
software v2.2. Digested bovine serum albumin (New England Biolabs cat #
P8108S) was analysed between each sample to avoid sample carryover and
to assure stability of the instrument and QCloud (CHIVA ET AL., 2018) has been

used to control instrument longitudinal performance during the project.

Data analysis. Acquired spectra were analysed using the Proteome
Discoverer software suite (v2.3, Thermo Fisher Scientific) and the Mascot
search engine (v2.6, Matrix Science) (PERKINS ET AL., 1999). The data were
searched against two different databases (see Reference database), plus a
list common contaminants (BEER ET AL, 2017) and all the corresponding
decoy entries. For peptide identification a precursor ion mass tolerance of 7

ppm was used for MS1 level, trypsin was chosen as enzyme, and up to three
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missed cleavages were allowed. The fragment ion mass tolerance was set to
0.5 Da for MS2 spectra.

Oxidation of methionine and N-terminal protein acetylation were used as
variable modifications whereas carbamidomethylation on cysteines was set
as a fixed modification. False discovery rate (FDR) in peptide identification
was set to a maximum of 5%. Peptide quantification data were retrieved from
the “Precursor ion area detector” node from Proteome Discoverer (v2.0)
using 2 ppm mass tolerance for the peptide extracted ion current (XIC).
Protein abundance in each condition was estimated using the average of the
three most intense peptides per protein group (TOP3). The obtained values
were used for subsequent statistical analysis. The raw peptidomics data will
be deposited to PRIDE (PEREZ-RIVEROL ET AL., 2022). Median normalisation
was performed by subtracting from each logged value the sample median and
adding the global dataset median. Biological replicates from the different
genotypes clustered together when Principal Component Analysis (PCA) was
performed (Figure 4.25A). The selection of the candidates was performed
using the presence / absence criteria as the expression levels did not provide
enough information for the classification of the peptides and proteins
(Figure 4.25B). The Floral Organ criteria were applied to individual peptidic
fragments for each protein and peptide, and to the TOP3 results for each
peptide and protein. For a peptide or protein to be considered as specific for

an organ, it must be classified for that organ at both levels.
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Figure 4.25. Clustering of peptides and proteins quantified in at
least one genotype.

A) PCA of the LC-MS/MS results for the different genotypes. B)
Heatmap of z-scored abundance values for peptides and proteins in the
different homeotic mutants.
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Reference database. The LC-MS/MS data were searched with a tryptic
analysis against a database (DB1) containing 40,798 non-redundant
Araportl1 (CHENG ET AL., 2017) protein coding genes (downloaded October
2019, Araportll_genes.201606.pep.fasta), 1,684 short Open Reading
Frames (sORFs) identified in root and shoot by RiboTaper (HSUET AL., 2016),
and 7,016 putative sORFs identified in intergenic regions (HANADA ET AL.,
2007, 2013), plus a list of common contaminants (BEER ET AL., 2017) and all
the corresponding decoy entries. For the final peptide identification, a second
database (DB2) containing (i) those proteins (with more than 100 aa) and
peptides (< 100 aa) that had been identified in the LC-MS/MS spectra using
DB1 (6,124 proteins and peptides) plus (ii) all peptide sequences (of 210 aa)
derived from a three-frame translation of IncRNAs (SZCZESNIAK ET AL., 2019)
(CNTdb2.0) and TUFs (other RNA, IncRNA, antisense IncRNA, antisense RNA,
novel transcribed region and uORF genes in Araport11) (TAIR ‘nc’). Sequence
redundancy at amino acid sequence level was removed by grouping into
clusters each subset using CD-HIT (https://www.bioinformatics.org/cd-
hit/). The priority order that was used to remove redundancy was:
Araport11 > Hsu et al. > Hanada et al. > CNTdb 2.0 > TAIR ‘nc’.

MS spectra were matched with the peptides in DB2 in a tryptic and semi-
tryptic manner (DB2T, DB2ST). For the final peptide quantification, all the
information obtained for the three analyses was kept. The most reliable
quantifications were those from the first analysis (DB1T), then the
information of those new detections in DB2T and the new peaks in DB2ST
were added. For the final dataset, the origin of the information was annotated
(DB1T, DB2T, DB2ST or a combination of more than one analysis). Finally,
two lists of data were analysed: one with the average abundance of the top
three aminoacidic sequences for each accession (ID of peptides or proteins,
TOP3) and one with all the aminoacidic partial sequences quantified for each
accession (sequences). To each dataset, median normalisation was
performed by subtracting from each logged value the sample median and

adding the global dataset median.

Comparison with previous data. BLASTp (NCBI, v2.11.0+) was used to
compare the amino acid sequences of the peptides detected by LC-MS/MS in

this Thesis against the amino acid sequences of novel SEPs detected in (S.
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WANG ET AL., 2020). All the sORFs from the MS database were also compared
to alist of novel genes described by (R. ZHANG ET AL., 2021), however, I did not

find any match between both datasets.

Candidate selection and validation of selection criteria. A gene ontology
(GO) enrichment analysis (G. YU ET AL., 2012) of the annotated proteins and
peptides classified as organ-specific was performed to check whether the
floral organ filter worked properly. Moreover, a correlation network was
created using the LC-MS/MS expression levels of the proteins and peptides,
followed by a new GO enrichment analysis of the different modules

calculated using the Random Matrix Theory.

4.4.4 Re-annotation of Translation Initiation Sites (TIS)

The LC-MS/MS database for peptide identification was created without any
limitations for TIS, that is, the CDS of the possible peptides did not have to
start necessarily in an AUG codon. As it was possible that there were more
suitable TIS for the detected peptides in their corresponding genomic
sequences, a set of TIS selection criteria was established for the sequences
based on the peptidic fragments detected in the MS analysis for each peptide:
i) AUG was selected over near-cognate or other non-AUG codons as TIS, and
near-cognate codons were selected over other non-AUG codons. ii) If the
detected peptide fragment closer to the annotated TIS of the peptide had a
tryptic beginning (i.e., it started with lysine or arginine), the annotated TIS
was kept, unless there was a more suitable TIS (according to the first
criterium) between the annotated TIS and the codon corresponding to the
beginning of the detected fragment. In the latter case, the TIS was re-
annotated with the more suitable codon. If there were more than one
possibility, the more suitable TIS closer to the annotated start of the peptide
was chosen. iii) If the detected peptide fragment closer to the annotated TIS
of the peptide had a non-tryptic beginning (i.e., it started with any amino acid
but lysine or arginine) and the previous codon was an AUG or a near-cognate
codon, it was selected as the new putative TIS. Otherwise, the more suitable
TIS closer to the previously annotated start codon was selected (according to
the first criteria). iv) If the detected peptide fragment included the annotated

TIS, the annotation remained unmodified.
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To deepen in the analysis of the sequence of sORFs encoding for the peptide
candidates, the online tool SignalP 6.0 was used to find putative secretory
signals (https://services.healthtech.dtu.dk/service.php?SignalP).

Candidates were classified as putative precursors of small-secreted peptides
(SSPs) using the information from SignalP 6.0 and also the LC-MS/MS data (a

peptidic fragment without any tryptic end was found).

4.4.5 Conservation analyses

Analysis of related sequences within the sORF list. A customized database
containing exclusively the amino acid sequences of non-redundant sORFs
from Hsu et al,, 2016, Hanada et al., 2007 and 2013, the CANTATAdb 2.0 and
TAIR ‘nc’ RNA sequences was generated using the makeblastdb program
included in the blast+ package (BLAST+, NCBI, v2.10.1+). The database was
blasted (protein-protein BLASTp, NCBI, v2.10.1+) against itself. Top ten hits
for each query were filtered depending on their bit-score (hit: bit score = self-
score*0.6).

e-value < 0.001
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v | v
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Figure 4.26. Decision tree to select putative homologs among the
sequences obtained with BLAST (homology-threshold).
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Homology analysis. The amino acidic sequences of the 132 candidates were
searched by BLAST (tblastn, NCBI, v2.11.0+) against the genomes of A.
thaliana (gene family search) and twelve different plant species separately
(A. lyrata, B. oleracea, C. sativa, V. vinifera, C. clementina, C. melo, G. max, M.
truncatula, P. trichocarpa, S. lycopersicum, O. sativa and Z. mays) (Sup Tables
4.6, 4.7). Sequences with an e-value < 0.001 were classified as putative
homologs, as well as sequences with length up to 30 amino acids with more
than a 50% of identity and more than a 70% of alignment, independently of
their e-value (Figure 4.26). Most of the putative homologs passed the e-value
threshold (< 0.001), and had higher percentages of identity and alignment,
independently of their length (Figure 4.27). There was a dependency of
query coverage on the bit-score of all the tBLASTn (best) hits for all the
genomes, shorter peptides presented lower bit-score values, and discarded
matches had the lowest bit-score values independently of their coverage
(Figure 4.28).
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Figure 4.27. Selection criteria for putative homologs.
Scatter plot of alignment vs identity data for each candidate-putative

homolog pair coloured by e-value (< 0.001). Points represent peptides
up to 30 amino acids, and triangles, peptides from 31 to 100 amino
acids. Red lines delimit the 70% alignment / 50% identity threshold.


https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.28. Scatterplot showing the dependency of query
coverage on the Bit Score of the tBLASTn best hits grouped by
genome.

For each A. thaliana candidate, the number of matches with tBLASTn for each
species fluctuated between 0 and 140, though only 1-36 sequences passed
the “homology-threshold” for each candidate (Sup Table 4.7). The number
of matches per candidate varied depending on the species, although in most
of them almost 50% of the candidates had only one match that passed the
threshold (46% A. lyrata, 25% B. oleracea, 8% C. sativa, 45% V. vinifera, 53%
C. clementina, 53% C. melo, 13% G. max, 43% M. truncatula, 41% P.
trichocarpa, 57% S. lycopersicum, 57% O. sativa, and 45% Z. mays) (Figure
4.29). For further analyses, only the hit with the lower e-value and the higher
percentages of identity and alignment among the putative homologs for each

candidate in each species was used.


https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.29. Distribution of the number of matches per candidate
in each species.

Percentage of matches that did not pass (discarded, black solid line) or
did pass (putative homologs, orange dashed line) the homology-
threshold.

The nucleotide sequences of the putative homologs were obtained using
blasdbcmd (NCBI, v2.11.0+). To check whether the homology can be found in
both directions, BLASTx (NCBI, v2.11.0+) was used to compare the resulting
homologs with the A. thaliana candidates. The CDS of the putative homologs
were also blasted against the transcriptome (cDNA and ncRNA databases)
and the proteome (peptides and proteins) of their correspondent plant
species using blastn and blastx respectively. The same threshold as for the
tblastn was used to select sequences in this part. The putative CDS of A.
thaliana were aligned with those of their putative homologs in the other
species using MEGA-X (megacc v10.2.5) (S. Kumar et al, 2012). The
alignment was performed for nucleotide sequences and amino acidic

sequences, for which CDS were translated using Transeq (EMBOSS online
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tool, https://www.ebi.ac.uk/Tools/st/emboss_transeq/), and in-frame STOP
codons were removed using perl, as the alignment of nucleotides is defective
when in-frame STOP codons are present before the 3’-end of the aligned

sequences.

Finally, the synonymous and non-synonymous substitution rates and
phylogenetic trees were calculated using yn00 (YANG, 2007; YANG & NIELSEN,
2000) or MrBayes (RONQUIST ET AL, 2012) depending on the number of
sequences per alignment were available, as MrBayes requires at least 4
taxons to calculate the median synonymous and non-synonymous
substitution rate (w, dn/ds). For candidates with one or two homologs, the
program yn00 was used to calculate the number of synonymous positions
(S), number of non-synonymous positions (N), sequence divergence level
(time or distance measured by the expected number of substitutions per
codon, t), transition/transversion ratio (k), synonymous and non-
synonymous substitution rate (w, dn/ds), non-synonymous substitution per
non-synonymous site (dn), and synonymous substitutions per synonymous
site (ds). For candidates with homologs in three or more species, MrBayes
was the programme of choice. Less than the 25% of the parameters obtained
with MrBayes statistical analysis had a total effective sample size (average
ESS x 4 runs) lower than 100, thus the analysis could be considered as
successful and accurate with the selected parameters (Ngen = 60Kk, nruns =
4). The program calculates the frequency of site categories (negative, neutral,
positive) for each alignment considering the maximum length aligned
(longest “length” parameter in tBLASTn results among the different species).
However, in the alignments there were gaps because of the different size of
the putative homologs in each case. To avoid over-representation of negative
sites, the frequency of site categories was re-calculated considering the
length of the candidates which was aligned for each pairwise comparison in
the alignments. The necessary format modifications (from *.meg to *.nex)
were performed using PGDSpider (LISCHER ET AL., 2012).

Genomes, transcriptomes, and proteomes were downloaded from
ENSEMBLE (http://ftp.ensemblgenomes.org), except for V. vinifera
(https://urgi.versailles.inra.fr /files), C. melo (https://melonomics.net), and
C. clementina (https://www.citrusgenomedb.org/analysis/156).


https://www.ebi.ac.uk/Tools/st/emboss_transeq/
http://ftp.ensemblgenomes.org/vol1/pub/plants/current
https://urgi.versailles.inra.fr/files
https://melonomics.net/
https://www.citrusgenomedb.org/analysis/156
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4.4.6 Gene expression of SEPs in different tissues

RNA extraction and cDNA obtention. RNA was extracted from 20-100mg
of each sample (see Plant lines, growth conditions, and tissue collection)
using a Maxwell® RSC Plant RNA Kit, and Transcriptor High Fidelity cDNA
Synthesis Kit (Roche) was used to obtain cDNA from ~1pg of RNA.

gPCR primer design and testing. The selection of appropriate reference
genes for the normalization of qRT-PCR data is a crucial component for
successful expression studies (ALVAREZ-URDIOLA, BUSTAMANTE, ET AL., 2023). A
list of 23 possible combinations of primers was created for classic and novel
reference genes, which were previously described (CZECHOWSKI ET AL., 2005)
or selected using RefGenes, an online tool based on the Genevestigator
database (HRUZ ET AL., 2011) (www.genevestigator.com). qPCR primers for
each gene (housekeeping and candidates) were designed using primer-
BLAST (primer3 algorithm combined with a BLAST analysis against the A.
thaliana  transcriptome,  https://www.ncbi.nlm.nih.gov/tools/primer-
blast/) as guide. Amplicons vary from 50 to 178bp length, the melting
temperatures (Tm) of the different primers vary from 54 to 61.5°C, their GC
content from 29 to 69%, their self-complementarity from 1 to 8 (primer Blast
scale), their self-3’-complementarity from 0 to 6, and their length from 16 to
25 bp (Sup Table 4.8). Specific amplification of the primers was checked by
RT-PCR using a ¢cDNA mix of the 16 tissues of interest as template. The
primers of housekeeping genes were checked using as template cDNA of each
sample separately and by RT-PCR and qPCR. The primers of 8 housekeeping
genes detected at RT-PCR level in all tissues were also tested by qPCR, as well
as 2 pairs of primers for candidate genes randomly selected (#006 and
#048), to calculate the optimal cDNA concentration for the chip (25 ng of
cDNA for each individual reaction). Finally, 5 reference genes were used for
the analyses (ACTINZ, GADPH, UBC, AT4G26410, UBC30) (Sup Table 4.8,
Figure 4.30).


http://www.genevestigator.com/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.30. Validation of housekeeping genes.

Cp per gene coloured by tissue. Red crosses indicate (if any) the Cp
value of negative controls. The number of total samples with a
measurement for each gene (n) was 32, except for AT4G26410 (HK_20),
which was 31. Samples: inflorescences of WT plants and the homeotic
mutants (IF, ap1, ap2, ap3, pi, ag), pAP1:AP1-GR ap1 cal inflorescences
0, 2 and 4 days after flower development induction with
dexamethasone (DO, D2, D4), WT mature flowers (Fw), young siliques
(YS), old siliques (OS), rosette leaves (RL), germinated seeds (gs),
seedling roots (sR) and seedling shoots (sS).

Quantitative Real Time PCR - BioMark™ System. The 48x48 array was

used following the protocol described in (ALVAREZ-URDIOLA, BUSTAMANTE, ET
AL., 2023).

Other data. RNA-seq data were obtained as described in Chapter 2.

4.4.7 Generation of mutant reporter lines

Candidate selection. Method 1 considers the database of origin of each
candidate, its translation initiation site (TIS), its coordinates within its
corresponding mRNA and its homology in different species (41 candidates).
As this method is biased for the selection of larger peptides (Figure 4.31A),
a second selection method (method 2) for smaller peptides (up to 50 amino
acids) was established considering exclusively their TIS and coordinates
within their corresponding mRNA (26 “novel” candidates) (Figure 4.31B).
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Method 1 (total n = 41 candidates): i) Araportl1 candidates detected with
high confidence and medium confidence and less than 20 NAs (n = 10); ii)
Hsu et al. candidates classified as discovery candidates and assigned to a
floral organ, plus a discovery candidate that lacked gene families in A.
thaliana (n = 5); iii) CANTATAdD 2.0 and TAIR ‘nc’ candidates starting with
AUG or near-cognate codons and that had homologs in other species and a
reasonable start point (near the 5’ UTR of the transcript) (n = 22 and 6,

respectively).

Method 2: All peptides with up to 50 amino acids, ATG or near-cognate TIS
and a start (in the transcript) before the position 800 (n = 44).

A B
0 5
g | Selection Method 1 Method 2
2 41 | B wethod 1
53- B vetosiz2
=0 | B vethod2 23
,9 | | Non-selected
o il
0 . : "
0 25 50 75 100
Length

Figure 4.31. Selection of candidates for further analyses.

A) Length distribution of the candidates coloured according to the
selection method used (1, 2, both or non-selected). B) Venn diagram of
the number of candidates selected by each method and the number of
candidates in common.

Finally, 37 candidates were selected. Eight peptides selected by Methods 1
and 2 that had less than six putative homologs in A. thaliana (without gene
families) and/or less than three AUGs upstream their CDS and that were not
encoded in antisense IncRNAs (#019, #025, #026, #052, #055, #061, #124,
#128). From Method 1, two floral candidates with less than three AUGs
upstream (#004, #097) and eight discovery candidates with good qPCR
results (#001, #003, #005, #009, #010, #011, #017, #084). From Method 2,
six floral candidates with less than three AUGs upstream and that were not
encoded in antisense IncRNAs (#032, #044, #077, #116, #121, #131).
Besides, 13 extra peptides were selected due to their interesting
characteristics: two SSPs (Signal IP6.0) (#014 and #101); a dORF, as there
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are no functional peptides encoded in dORFs in plants that have been already
characterized according to the literature (#016); the candidate from Hanada
et al. (#022) and nine TVGs (qPCR results) with interesting expression
patterns (#008, #018, #030, #038, #043, #050, #062, #070, #087).

Promoter amplification. The promoter regions of the peptide candidates
(1.5kb upstream the annotated 5’ UTR of the transcripts) were amplified
using Phusion ® High-Fidelity DNA polymerase (New England Biolabs Inc.,
#ref:M0530S) and specific primers (Sup Table 4.9). PCR products were
purified using the NZYGelpure purification kit (nzytech, #ref:MB01101).

Gateway vectors. Purified fragments were cloned in pENTR/D-TOPO entry
vectors (Invitrogen; www.thermofisher.com) following the manufacturers’
instructions. The resulting plasmids were sequenced to confirm the
sequences and the gene cassette transferred into the destiny binary vector
pBGWFS7 using the Gateway (Invitrogen) LR-reaction. Final constructs
carried the promoter of each candidate (pXXX) fused with GFP and GUS
(pXXX:GFP-GUS).

Bacterial strains. Vector cloning was performed in the Escherichia coli
strain TOP10. Cells were transformed by heat shock and were grown in
culture dishes with Luria Bertani medium (LB), agar and the appropriate
selection antibiotics. Transformed bacterial colonies were confirmed by
colony PCR with M13F and M13R primers for the entry vector and with 5’ -
CGACCTGCAGGCATGCAAGCTC - 3’ and the reverse primer of the promoter
of each candidate for the destiny vector. Positive colonies were grown in
liquid LB containing the corresponding selection antibiotics. Binary vectors
were purified using the QIAprep® Spin Miniprep Kit (QIAGEN, #ref:27106).

Agrobacterium tumefaciens cells strain GV3101 were transformed with the
destiny vectors by heat shock (HOFGEN & WILLMITZER, 1988). A. tumefaciens
cells were grown 48 h at 28 °C in culture dishes with yeast extract broth
(YEB) medium, agar and the appropriate selection antibiotics. Transformed
bacterial colonies were confirmed by colony PCR. Positive colonies were
grown in liquid YEB containing the corresponding selection antibiotics.
These cultures were used for glycerinate-preservation and to be scaled for A.

thaliana transformation.


https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
http://www.thermofisher.com/
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Floral dip. Transgenic plants were generated by the floral dip method
(CLOUGH & BENT, 1998). Transgenic lines were selected on MS medium
supplemented with L-Phosphinothricin (PPT, 16pg/mL).

4.4.8 GUS staining

Inflorescences of at least three independent lines for each pXXX:GFP-GUS
construction were placed in 2 mL tubes and kept in acetone 90% for 20 min
at -20 °C to remove surface wax. Acetone was removed and samples were
washed twice in phosphate buffer pH 7.2 50 mM. After removing the buffer,
1 mL of GUS staining solution (Triton X-100 0.1%, EDTA 1 mM, phosphate
buffer 50 mM, potassium ferrocyanide 1 mM, potassium ferricyanide 1 mM,
100 mg of X-Gluc diluted in DMSO) was added to each tube and samples were
incubated in vacuum in darkness for at least 30 min. Samples were kept at 37
°C in darkness for 36 h. After removing the GUS staining solution, samples
were washed with a series of EtOH dilutions (10-30-50-70-80-96-100%
EtOH; 30 min each) at room temperature. Samples were kept on 100% EtOH
upon their observation under a stereomicroscope Olympus SZX16.

4.4.9 Generation of knock-out lines

Candidate selection. All candidates with reproducible GUS expression
patterns were selected for the generation of mutant lines, except candidates
#018 and #019, as both are altORFs (HSUET AL., 2016) and their modification
will alter the main ORF sequence as well. Besides, eight peptides from a
previous work in the laboratory were added to the list due to their interesting
GUS staining patterns and transcript characterization by RACE PCR (HANADA
ET AL., 2007,2013).

Guide design. Two CRISPR/Cas9 guides were designed for each candidate
using CCTop - CRISPR/Cas9 target online predictor (https://cctop.cos.uni-
heidelberg.de:8043/index.html) (STEMMER ET AL., 2015) and CRISPR-P 2.0
(http://crispr.hzau.edu.cn/cgi-bin/CRISPR2 /CRISPR) (LEI ET AL., 2014). In
this step, candidates #025 and #061 were discarded because it was not

possible to find suitable guides.


https://cctop.cos.uni-heidelberg.de:8043/index.html
https://cctop.cos.uni-heidelberg.de:8043/index.html
http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR
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Vector assembly. GoldenGate assembly was used to generate the final

constructs using pCBC for guide amplification and pHEE401E as the final

vector. For each pair of guides, two forward primers (DT1-BsF, DT1-F0) and

two reverse primers (DT2-R0O, DT2-BsR) were designed to amplify a

fragment of vector pCBC containing a terminator for the first guide, and a

promoter for the second one. Forward primers were designed to overlap
with each other to add a Bsal site (GGTCTCN) and the first guide, and reverse

primers to add the second guide and a Bsal site. (N)2o is the guide sequence

without the PAM region.

- DT1-BsF: ATATATGGTCTCGATTG(N)20GTT

- DT1-FO: TG(N)20GTTTTAGAGCTAGAAATAGC

- DT2-R0: AAC(N)20CAATCTCTTAGTCGACTCTAC
- DT2-BsR: ATTATTGGTCTCGAAAC(N)20CAA

The reaction was conducted as follows:

Component Volume Cycling conditions
PrimeStar Buffer 10 pL 0 le:

dNTPs (10mM) 4L snegre: .
PrimeStar high fidelity polymerase 2 pL 95 C for 2 min
pCBC 1uL Abcpeles: ‘ _
DT1-BsF (20 uM) Ll 2(5)°(§: foorr3105 sseecc-’
DT1-FO (1 uM) 1 uL 68 °C for 1 min’
DT2-RO (1 uM) 1 pL 0 e

DT2-BsR (20 uM) LuL L?BC%% for 10 min
ddH20 29 pL

Total volume 50 uL

PCR amplified fragments were purified from gel and used to conduct the

GoldenGate assembly protocol as follows:

Component Volume Cycling conditions
PCR purified fragment (~100 ng/pL) 2 pL

pHEE401E (~100 ng/pL) 2 pL

10x T4 DNA Ligase Buffer 1.5 pL. 5hat37°C

10x BSA 1.5 uL 5 min at 50 °C

Bsal 1 pL 10 min at 80 °C

T4 DNA ligase 1 pL

ddHz0 6 uL

Total volume

15 pL
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Primers and guides used for the generation of knock-out lines are included in
Sup Table 4.10.

Bacterial strains. Vector cloning using 5 pL of GoldenGate reaction mixture
was performed in the E. coli strain DH5a. Cells were transformed by heat
shock and were grown in culture dishes with LB and kanamycin.
Transformed bacterial colonies were confirmed by colony PCR with pHEE-
seq-Fw (5" - GTCACGACGTTGTAAAACGACG - 3") and pHEE-seq-Rev (5’ -
CAATGATAAACCAAACGCAAATGC - 3’) primers. Positive colonies were
grown in liquid LB containing kanamycin. Binary vectors were purified using
the NucleoSpin Plasmid, Mini kit for plasmid DNA (Macherey-Nagel, #ref:
740588.50).

A. tumefaciens cells strain GV3101 were transformed with the destiny vectors
by electroporation. A. tumefaciens cells were grown 48 h at 28 °C in culture
dishes with LB medium, agar and the appropriate selection antibiotics
(kanamycin, rifampicin, tetracycline and gentamycin). Transformed bacterial
colonies were confirmed by colony PCR. Positive colonies were grown in
liquid LB containing the corresponding selection antibiotics. These cultures
were used for glycerinate-preservation and to be scaled for A. thaliana

transformation.

Floral dip. Transgenic plants were generated by the floral dip method
(CLOUGH & BENT, 1998). Transgenic lines were selected on MS medium
supplemented with hygromycin.


https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Conclusions

Within this work, innovative transcriptomic-proteomic integrative methods

and peptide discovery approaches were applied to further the understanding

of flower development in the plant model species Arabidopsis thaliana. The

main conclusions of this Thesis are hereby described in terms of their

respective objectives.

Aim 1.- To establish a chronology of protein expression throughout (early)

flower development and correlate these trajectories to unbiased transcript

expression data.

The customized method used for imputing missing values depending
on their nature improved considerably the interpretation of the LC-
MS/MS results.

The size of the transcriptome (i.e., collection of genes) previously
known to change its expression during the early stages of flower
development was expanded several-fold.

The correlation between mRNA levels and protein abundance was
higher for those gene-protein pairs with significant changes through
time for both molecules.

Around 36% of the quantified gene-protein pairs had a positive
correlation between the mRNA levels and protein abundance.
Gene-protein pairs with opposite patterns for mRNA level and
protein abundance were enriched in different hormone responsive
pathways, suggesting that there might be regulatory processes (e.g.,
positive and / or negative feedback loops) affecting mRNA and
protein levels differently.

A total of 230 novel AP1-high confidence targets were identified
through the combined analysis of the RNA-seq data and previously
published AP1 genome-wide binding data (ChIP-seq).
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Aim 2.- To characterise the flower Arabidopsis peptidome (sORFs and hidden

coding sequences in the Arabidopsis genome) and start deciphering its roles in

flower development.

A total of 1,874 hypothetical peptides were identified in this Thesis
using a MS-based method for the identification of novel peptides.
Sixty hypothetical peptides were classified as possible floral organ-
specific peptides.

A majority of peptide candidates identified as specific or enriched in
floral organs were so in stamens, which is in agreement with
previously published results for the floral organ differential gene
expression of standard, annotated genes.

The putative or confirmed Translation Initiation Site (TIS) for around
71% of the 1,874 hypothetical peptides was identified as either an
AUG or a near-cognate codon (26% and 45%, respectively), and
similar percentages were found for the reduced set of 132 candidates
(33% and 36% respectively).

Non-AUG translation initiation is abundant among the identified
SEPs. This expands the criteria that should be taken into
consideration for protein and peptide predictions from Arabidopsis
genomic or transcriptomic sequences.

Plant SEPs can be conserved across species, but also be species- or
family-specific. Sixty-one of the peptide candidates, out of 132, were
apparently specific to the Brassicaceae, as they were found
exclusively in A. thaliana, A. lyrata, B. oleracea and / or C. sativa, and
29 of those appeared to be specific to A. thaliana.

There were fourteen candidates with possible homologs in the
twelve plant species analysed. The conservation of these sequences
could indicate or be related to a conserved function.

Analysis of gene expression patterns using SEP promoter-GUS
reporter fusions revealed distinct and different expression domains,

but with most of the analysed SEPs expressed in developing stamens.
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Peptidomics Methods Applied to the Study of Flower
Development

Raquel AIvarez-UrdioIa, Eva Borras, Federico Valverde,
José Tomas Matus, Eduard Sabido, and José Luis Riechmann

Abstract

Understanding the global and dynamic nature of plant developmental processes requires not only the study
of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction.
Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling)
have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional
peptides. To validate the accumulation in tissues of sSORF-encoded polypeptides (SEPs), the basic setup of
proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small
(up to ~100 aa, 67 kDa) and novel (i.c., not annotated in reference databases) presents specific challenges
that need to be addressed both experimentally and with computational biology resources. Several methods
have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we
outline two different peptide extraction protocols and the subsequent peptide identification by mass
spectrometry using the database search or the de novo identification methods.

Key words Peptidome, Ultrafiltration, Ammonium sulphate, Reverse-phase chromatography, C-18,
Arabidopsis, Mass spectrometry, Database

1 Introduction

Although a variety of peptides have been well documented in both
animal and plant genomes, until recently the coding potential of
eukaryotic short open reading frames (sORFs) at the genome-wide
level had mostly been overlooked. One of the reasons behind this
gap is the computational and experimental difficulties for their
identification and functional characterization, and particularly for
determining whether these sequences are in fact translated. How-
ever, it has become clear over the past few years that small peptides
(usually defined as shorter than 100 amino acids in length) consti-
tute an important part, largely still uncharacterized, of the eukary-
otic proteome [1-13]. Moreover, the massive and widespread

José Luis Riechmann and Cristina Ferrandiz (eds.), Flower Development: Methods and Protocols,
Methods in Molecular Biology, vol. 2686, https://doi.org/10.1007/978-1-0716-3299-4_24,
© Springer Science+Business Media, LLC, part of Springer Nature 2023

509


http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3299-4_24&domain=pdf
https://doi.org/10.1007/978-1-0716-3299-4_24#DOI

510

Raquel Alvarez-Urdiola et al.

transcription of the eukaryotic genome and the pervasive transla-
tion of long noncoding RNAs (IncRNAs) habilitate sORFs and the
resulting small peptides as raw materials for de novo gene origin
and evolution [14-19].

In plants, several peptides have been functionally characterized
as key players in diverse signalling pathways of plant development,
including flower formation and maturation, in Arabidopsis and
other plant species (i.e., [20-22]). Moreover, the presence of
novel, uncharacterized Arabidopsis small peptides has been inferred
from transcriptome data, in particular ribosome profiling (Poly-
Ribo-Seq) experiments [23-25], leaving the door open for their
identification through proteomics and peptidomics approaches. In
fact, in studies with human cells and for selected SEPs identified
from IncRNAs, primarily by Poly-Ribo-Seq, it was experimentally
estimated that SEPs can be present in the cell at concentrations that
are within the range of typical cellular proteins [26], that SEPs can
exhibit different and specific subcellular localizations [27, 28], and
that they can carry out important biological functions (e.g., [29-
33]). Furthermore, in addition to transcriptomics, computational
tools have also been used as a source of knowledge on new poten-
tially coding sORFs, in plants as well as in other eukaryotic organ-
isms and bacteria (e.g., [34-36]).

The sources of peptides that altogether would constitute the
peptidome of a plant are several and include the following: (1) pro-
cessing from larger functional or nonfunctional precursors;
(2) additional short open reading frames (sORFs) in known
protein-coding genes (up- or downstream the main ORE, in
introns, as short splice variants or in a different reading frame
from that of the main ORF); and (3) sORFs in long noncoding
RNAs (IncRNAs), transcripts of unknown function (TUFs), inter-
genic regions, junctions, and microRNA precursors [37—40]. For
instance, computational analyses suggested that several thousands
of novel, potentially coding sORFs could exist in the intergenic
regions of the Arabidopsis genome [35]. In fact, it was found that
when overexpressed, some of those novel sORFs could induce
developmental alterations in plant size, leat number and shape,
fertility, or cause lethality, raising the possibility that (many)
sORFs with coding potential but that are still uncharacterized in
plant genomes might be associated with morphogenesis [37] and
other developmental and physiological processes.

RNA-based methods are a very powerful tool to detect poten-
tially translating sSORFs, and the analysis of ribosome profiling data
obtained from a variety of eukaryotic organisms provided strong
support to the idea that IncRNAs are an important source of new
peptides [41, 42]. Ribosome profiling has also been used to dem-
onstrate extensive translation of open reading frames, including
novel sORFs, in plant species such as Arabidopsis [23, 25, 43],
maize [44] and tomato [45]. The evaluation of the coding
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Fig. 1 Workflow for peptide discovery and characterization based on mass spectrometry. Extraction method

and MS data analysis

potential of the sequences identified through ribosome profiling is
mostly computational but there are mass spectrometry (MS)-based
methods able to detect peptides that are translated from novel
sORFs, thereby directly validating the protein-coding potential of
the transcripts [27, 38, 44, 46-53].

In parallel, the improvement of mass spectrometry and data
interpretation bioinformatic algorithms have facilitated the analysis
of complex protein mixtures. However, the detection of novel plant
peptides derived from small ORFs that are not annotated in refer-
ence databases presents specific challenges that need to be
addressed, both experimentally and with computational resources
(Fig. 1).

The first requirement is an efficient and high-quality extraction
from abundant starting material, for which several methods have
been developed and optimized. Most basic protocols used for
protein extraction from plant tissue are trichloroacetic acid
(TCA)-acetone and phenol-based methods. The optimal composi-
tion of the extraction buffer depends on the species and tissue of
interest [54, 55], but other aspects must be considered, such as
heat treatment of the sample to diminish nonspecific protease
digestions [38, 56, 57] or the addition of protease inhibitors to
avoid protein degradation [38, 44, 46, 49, 58, 59] (Table 1).
Besides, the processing and degradation of cellular proteins can
generate peptidic fragments that increase the complexity of the
peptidome sample, deteriorating the signal-to-noise ratio in the
experiments. Therefore, strategies to separate larger proteins from
peptides prior to LC-MS/MS analyses are crucial to improve the
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identification and sequence coverage of low-abundance peptides
[55, 60]. Peptides can be separated and purified using different
methods such as electrophoresis gels [27, 47, 48, 61] or molecular
weight cut-off (MWCO) filters [38, 52, 54, 58, 59, 62] (Table 1).
Moreover, the optimal polypeptide size for detection by LC-MS/
MS is approximately 10-20 amino acids, suggesting that trypsin
(or trypsin + Lys-C) cleavage is crucial for high-sensitivity SEP
detection. Nevertheless, smaller peptides that may be amenable to
protease cleavage should be detectable as well [26].

An additional difficulty lies in undersampling (i.c., identifica-
tion of only a subset of the peptides) by conventional data acquisi-
tion methods [63]. According to a study to optimize a SEP
discovery MS workflow using human samples [52], SEP detection
is stochastic due to their size and expression characteristics. There-
fore, to avoid undersampling and thus identify more SEDPs, it is
often more efficient to perform multiple technical and/or
biological replicates (multiple runs on the MS platform) than, for
example, introduce extensive fractionation methods before
LC-MS/MS analyses (as in [26]).

For peptide identification from tandem mass spectra, there are
two approaches that could be used: database search and de novo
sequencing. In database search, all potential peptide sequences
included in a specified database are retrieved for each spectrum,
and each peptide-spectrum match is scored via a scoring function
calculated by database search engines (such as SEQUEST [64],
Mascot [65], Phenyx [66], X! Tandem [67], OMSSA [68], pFind
[69], InsPecT [70], ByOnic [71], Comet [72], MS-GF+ [73],
MaxQuant [74], or MSTracer [75]). This guided approach is
widely used for peptidomics and proteomics, and can be based on
canonical (well-annotated) protein databases (e.g., UniProt) or
customized databases containing putative SEPs identified by bioin-
formatic (e.g., sORFinder) [76] or transcriptomic analyses (i.e.,
RNA-sequencing or ribosome profiling).

The annotation of the genome of the organism under study is
the first source for preparing the database for MS database search
(i.c.,, all proteins and peptides that are already known or identified
from that genome). However, for the identification of novel SEPs
in MS data, it is necessary to design more specific, expanded data-
bases that should also include the potential novel coding sORFs.
Current integrated peptidomics pipelines include different database
creation strategies, from the use of ribosome profiling data to the
six-frame or three-frame identification of sORFs at the genome or
transcriptome level, respectively (Tables 2 and 3; see also the Notes
section). For instance, a recent MS-based study identified over
1000 novel human proteins derived from alternative ORFs identi-
fied by RNA-seq (mostly corresponding to SEPs, 57aa median
length) [27]. In plants, approximately 70,000 transcribed sORFs
were detected in Physcomitrella patents (moss) using “sORF
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Repositories for SEP-database generation

Database Description Collected data Organism References
ARA-PEP Putative peptides  Tiling arrays, RNA-seq A. thaliana [39]
encoded by data, and other publicly
sORFs in the available datasets
A. thaliana
genome
PsORF sORFs across Genomic, transcriptomic, 35 plant species [104]
different plant ribo-seq, and MS data
species
PlantPepDB  Manually curated  Experimentally validated ~ Several plant species [124]
database of peptides, peptides with including algae,
plant-derived evidence at transcript bryophyte,
peptides level, based on angiosperms, and
computational gymnosperms
predictions or inferred
by homology
RPEdb v2.0  Genome-wide Ribo-seq samples Plants: A. thaliana [103]
information of Others: 28 different
translated species
mRNA
CANTATAdDb IncRNA data from IncRNA identified 39 plant species [125]
2.0 plant and algae computationally using (including three algae)
publicly available RNA-
seq data
AlnC Angiosperm IncRNA in angiosperms 682 angiosperm plant  [126]
IncRNA (1KP transcriptome species (809 tissues)
Catalogue data)
GWIPS-viz Online Ribo-seq samples Plants: A.thaliana, [102]
visualization Z. mays
tool for ribo-seq Others: bacteria,
data animals, etc.
uORFlight Database for the ~ uOREF identified in Plants: A. thaliana, [127]
evaluation of genome and O. sativa, B. napus,
uOREF frequency  transcriptome G. max, G. raimondii,
among different annotations M. truncatula,
accessions S. lycopersicum,
S. tuberosum,
T. aestivum, Z. mays
Others: fungus,
metazoan, and
vertebrate
uORFdb Comprehensive uORF-related references;  Plants: A. thaliana [105]
literature manually curated from  Others: human, mouse,
database on all uORF-related rat, virus, yeast, etc.
cukaryotic literature listed at the
uORFs PubMed database

(continued)



Flower Development Peptidomics 517

Table 2
(continued)
Database Description Collected data Organism References
C-PAmP Computationally  Selection of peptides 2112 plant species in [128]
predicted plant included in the UniProtKB /Swiss-
antimicrobial Antimicrobial Peptide Prot
peptides Database (APD) and the
Collection of Anti-
Microbial Peptides
(CAMPD)
StraPep Structure database Structural data collected 452 different species [129]
of bioactive from UniProtKB and including bacteria,
peptides PDB yeast, animals,
humans, and plants
DRAMP 3.0  Manually curated  Peptides retrieved from Variety of organisms, [130]
data repository Pubmed, Swiss-prot, including bacteria,
of antimicrobial and Lens archaea, protists,
peptides fungi, animals, and

plants

Finder” [76], from which 828 distinct peptide sequences were
identified by LC-MS/MS [49]. Customized peptide databases
can also be derived from the six-frame translation of genomic
sequences, an approach that has been successfully used in micro-
organisms [62, 77 ], and recently also in both monocot and dicot
plants, where a total of 1993 and 1860 SEPs were identified in
maize and Arabidopsis, respectively [38]. Altogether, these and
other studies illustrate the existence of a substantial, uncharted
fraction of the eukaryotic proteome that is mainly composed of
small proteins (peptidome) (Table 1).

In contrast to database search, for de novo peptide sequencing,
peptide sequences are extracted directly from tandem mass spectra
using specific algorithms such as PEAKS [78], SPIDER [79],
UniNovo [80], pNovo+ [81], Novor [82], DeepNovo [83], or
DeepNovo-DIA [84]. The de novo method is less powerful than
database search, as many spectra cannot be unambiguously
sequenced due to incomplete fragmentation. In addition, the de
novo method is relatively slow when compared with the database-
search engines, and the large search space of all possible amino acid
sequences for each spectrum often leads to higher false discovery
rates. Moreover, the complexity of tandem mass spectra can be
significantly increased when posttranslational modifications
(PTMs) are considered as well [85]. Some algorithms have been
used for solving the de novo identification problems involving
dynamic programming, integer linear programming, machine
learning or other methods, and advances in mass spectrometry
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Table 3

Tools for database design

Tool Description Method Example References
SPADA Small peptide alignment Sequence Creation of an [112]
discovery application. similarity M. truncatuly small
Free software tool that secreted peptide
identifies and predicts database (MtSSPdb)
the gene structure for using SPADA and sORF
short peptides with one Finder [131]
or two exons
sORF Finder Program package for the = Codon pattern, 51 new sORFs identified  [35, 76]
identification of sORFs codon using sSORF finder and
with high coding substitution the ARA-PEP repository
potential and cross- (LC-MS/MS results)
species [46]
conservation
PhyloCSF Phylogenetic Codon Codon pattern, Identification of small [34]
Substitution codon peptide-coding “long
Frequencies: method to substitution noncoding” RNAs in
determine whether a and cross- soybean [132]
multispecies nucleotide species
sequence alignment is conservation
likely to represent a
protein-coding region
MiPepid RNA-seq sORF annotation Machine Identification of 82 novel [113]
in mammalian species learning species-specific
translated sORFs
(LC-MS/MS) from
IncRNA (database
generated using
MiPepid) [19]
IncPepid RNA-seq sORF annotation Machine [115]
in plants. A discovery learning
tool trained using maize
and Arabidopsis data that
considers sequence
composition and
physicochemical
properties
CPPred- Predicts the coding Machine sOREF finder, miPepid, [114]
sORF potential of sSORFs based  learning CPPred, and DeepCPP
on non-AUG initiation used as control groups
of translation [115]
DeepCPP Optimization of CPPred  Deep learning sORF finder, miPepid, [116]

CPPred, and DeepCPP

used as control groups

[115]

(continued)



Flower Development Peptidomics 519

Table 3
(continued)
Tool Description Method Example References
RiboTaper  Statistical approach that Ribo-seq Identification of uORFs,  [106]
identifies translated dORFs, and altORFs in
regions based on the A. thaliana [23]
characteristic three-
nucleotide periodicity of
ribo-seq data
PRICE Computational method Ribo-seq Validation of the method  [107]
that models using major
experimental noise to histocompatibility
resolve overlapping complex class I (MHC I)
sORFs and noncanonical peptidomics [107]
translation initiation in
an accurate manner
RiboCode Unbiased method to Ribo-seq Identification of 9388 [108]
recover the signal of sORF encoding peptides
active translation from (2-100aa) in maize, from
the ribo-seq data which 2695 SEPs were
verified by MS data [44 ]
RiboStreamR  Quality control platform  Ribo-seq [109]
for Ribo-seq data in the
form of an R shine web
application
RiboPlotR  Visualization package Ribo-seq RiboPlotR combines [110]
written in transcriptome
R. Representation of annotation files, standard
RNA-seq coverage and RNA-seq bam files, and
Ribo-seq reads in Ribo-seq P-site
genomic coordinates for position/count files to
all annotated transcript plot RNA-seq and Ribo-
isoforms of a gene seq data with genomic
coordinates for each
isoform. Tested in
Arabidopsis and tomato
[110]
RiboNT Noise-tolerant SORF Ribo-seq Identification of sORFsin [111]
predictor that can use Arabidopsis seedlings
RPFs with poor that are evolutionary
periodicity conserved in diverse

plant species [111]

instruments have improved de novo sequencing results [86]. How-
ever, further optimizations of algorithms, particularly with respect
to data confidence, are still necessary to turn the technique into an
actual alternative to commonly used database search peptide iden-
tification methods. Despite the difficulties, de novo identification
has been successfully implemented for SEP detection in several
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plant species [48, 59, 87-89]. When combined with classic data-
base search strategies, de novo approaches can help to provide more
comprehensive results [59, 90, 91] (Table 1). In fact, several
research groups have developed software that directly combines
both, database search and de novo sequencing, for peptide identifi-
cation from mass spectra [71, 92].

Despite the advances in mass spectrometry and data interpreta-
tion, however, a problem still not fully addressed is the (high)
number of unassigned spectra. New mass spectrometry sampling
methods, such as data-independent acquisition (DIA [93]),
together with the development of new machine learning tools to
predict peptide fragmentation [94-97] promise a bright and very
exciting future in the peptidome field, in which a significant
amount of information will be confidently recovered from the
acquired data.

In this chapter, we provide two plant peptide extraction meth-
ods based on different extraction buffers and precipitation techni-
ques, and describe an example of an LC-MS/MS pipeline, also
introducing some suggestions for database design.

2 Materials

2.1 General

2.2 Ultrafiltration

2.3 Ammonium
Sulphate Precipitation

1. Protein low-binding microcentrifuge tubes (1.5 or 2 mL).
2. Mortar and pestle.
3. Liquid nitrogen.

1. Extraction buffer: 1x phosphate-buftered saline (PBS), 1.5 M
urea, 10 mM dithiothreitol (DTT), 2% v/v acetonitrile (ACN),
0.5% v/v trifluoroacetic acid (TFA), 10 pM MG-132 protea-
some inhibitor, 1 tablet of Proteinase Inhibitor cocktail cOm-
plete (Roche) per each 50 mL of buffer, and 1 mM
phenylmethylsulfonyl fluoride (PMSF) (see Note 1). Prepare
fresh for each experiment (see Note 2).

2. 10x phosphate buffer saline (PBS): 1.37 M NaCl, 0.027 M
KCl, 80 mM Na,HPOy,, and 20 mM KH,PO,4 pH 7 (NaOH).
Prepare 1 L and autoclave it.

3. Ultra-0.5 mL 30-K centrifugal filter devices (Amicon®) (see
Note 3).

1. Extraction buffer: 1x PBS, 2 M urea, 2% v/v acetonitrile,
10 mM DTT, 5% v/v trifluoroethanol (TFE), 50 mM Tris—
HClpH 7.6, 10 pM MG-132, 1 tablet of Proteinase Inhibitor
cocktail cOmplete (Roche) per each 50 mL of buffer, and
1 mM PMSE. Prepare fresh for each experiment (see Note 2).

2. Ammonium sulphate (salt, EM/HPLC grade).
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. C18 spin columns, containing 8 mg of resin each (Pierce,

Chromatography Thermo Scientific).
Peptide Extraction 2. Activation solution: 50% v/v ACN in distilled water (400 pL
per sample).
3. Equilibration solution: 0.5% v/v TFA in 5% v/v ACN (400 pL
per sample).
4. Sample bufter: 2% v/v TFA in 20% v/v ACN (1 pL for every
3 pL of sample) (see Note 4).
5. Wash solution: 0.5% v/v TFA in 5% v/v ACN (400-800 pL per
sample) (see Note 5).
6. Elution bufter: 0.1% v/v formic acid in 70% v/v ACN (42 pL.
per sample) (see Note 6).
7. Qubit protein assay Kkit.
8. Qubit fluorometer.
2.5 LC-MS/MS 1. DL-dithiothreitol (DTT) (see Note 7).
2. Todoacetamide.
3. Urea.
4. Ammonium bicarbonate.
5. Lysyl endopeptidase.
6. Trypsin.
7. Formic acid.
8. MicroSpin C18 columns (The Nest Group, Inc).
9. Nano Trap C18 columns with an inner diameter of 100 pm
packed with C18 particles of 5 pm particle size (Thermo Fisher
Scientific) (optional, depending on the setup of each laboratory).
10. Reverse-phase chromatography columns (C18, 2 pm,
15-50 cm length) (see Note 8).
11. Buffer A: 0.1% v/v formic acid in water.
12. Buffer B: 0.1% v/v formic acid in acetonitrile.
13. Bovine serum albumin (New England Biolabs cat # P8108S).
14. Orbitrap Eclipse mass spectrometer (Thermo Fisher Scientific)
(see Note 9).
15. EASY-nL.C 1000 (Thermo Fisher Scientific).
3 Methods

Below we provide two peptide extraction methods based on ditfer-
ent extraction buffers and precipitation techniques (see Subhead-
ings 3.1 and 3.2), both of which are to be followed by a reverse-
phase chromatography (see Subheading 3.3) (Fig. 2) and describe
an example of an LC-MS/MS pipeline (see Subheading 3.4).
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Ultrafiltration

v ¥

Reverse phase chromatography Ammonium sulphate precipitation

T T 0.5g powder- Column preparation Sample preparation '| 1 '|' ' 0.5g powder-
ground tissue - | | | ground tissue
/' (0.25g per tube) " hE '/ (0.259 per tube)
or F
I 0.6 mL Extraction Buffer ‘ o +* 0.6 mL Extraction

1h, 4°C shaking
4°C | Spin (x3)
\ \‘."'_=

v @

4°C 5 500pL of supematant

5l Amicon® Ultra-0.5
@ 30-K
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Wy New receiver tube %
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1min 1500g r | 70% ACN
‘= 0,1% formic acid

Final extract

Fig. 2 Schematic representation of the two peptide extraction methods described in this chapter. AS,
activation solution; ES, equilibration solution; WS, wash solution; EB, elution buffer

3.1 Ultrafiltration 1.

Collect tissue of interest with clean material (see Note 10) and
freeze directly in liquid nitrogen. Keep at —80 °C until
required.

. Using a different mortar and pestle for each sample, grind the

tissue with liquid nitrogen until obtaining a whitish fine pow-
der (see Note 11).

. Collect 0.5 g of blended tissue distributed in two 2 mL Eppen-

dorf tubes (see Note 12).

. Add a total of 1.2 mL of extraction buffer to 0.5 g of tissue,

vortex immediately, and transfer to ice while preparing the rest
of the samples (see Note 13).

. Incubate the samples with continuous shaking for 1 h at 4 °C.

6. Spin the samples for 1 min at 4 °C in a microcentrifuge (max

speed, >14,000 x g) to precipitate cellular debris and solid
particles in suspension. Repeat as many times as necessary (see
Note 14).

. Insert each Amicon filter device in one of the provided micro-

centrifuge tubes.

. Add up to 500 pL of the clean supernatant in the Amicon filter

device and centrifuge at 14,000 x g for 10 min at 4 °C as
indicated by manufacturer (se¢ Notes 15 and 16). Repeat
until all sample has passed through the same Amicon filter.



3.2 Ammonium
Sulphate Precipitation

3.3 Reverse-Phase
Chromatography
Peptide Extraction
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. Keep the filtrate in the provided microcentrifuge tubes (flow-

through) (see Note 17). Keep the samples on ice to immedi-
ately continue with the reverse-phase chromatography or store
them at —80 °C until use.

. Collect tissue of interest with clean material (se¢ Note 10) and

freeze directly in liquid nitrogen. Keep at —80 ° C until
required.

. Using a different mortar and pestle for each sample, grind the

tissue with liquid nitrogen until obtaining a whitish fine pow-
der (see Note 11).

. Collect 0.5 g of blended tissue distributed in two 2 mL Eppen-

dorf tubes (see Note 12).

. Add a total of 1.2 mL of extraction buffer to 0.5 g of tissue,

vortex immediately, and transfer to ice while preparing the rest
of the samples (see Note 13).

. Incubate the samples shaking for 30 min at 4 °C.

6. Spin the samples for 1 min at 4 °C in a microcentrifuge (max

speed, >14,000 x g) to precipitate cellular debris and solid
particles in suspension (see Note 14).

. Add 75% (w/v) of ammonium sulphate to the supernatant to

precipitate the proteins in solution at 4 °C. The salt must be
added little by little pipetting slowly each time until proteins
precipitate (see Note 18).

. Centrifuge at maximum speed (>14,000 — g) for 25 min at

4 °C.

. Place the supernatant in a new low-binding protein tube (smal-

ler peptides will remain in the supernatant, whereas larger
proteins precipitate). Keep the samples on ice to immediately
continue with the reverse-phase chromatography or store them
at —80 °C until use.

Prepare the reverse phase chromatography C18 columns as indi-
cated by the manufacturer protocol. In brief:

Sample preparation:

1. Mix 3:1 parts of sample:sample buffer. The final sample mix will

contain approximately 0.5% TFA in 5% ACN (sec Note 19).

Column preparation:

2. Tap the column to settle the resin on the bottom of each

column. Remove top and bottom caps (in that order). Place
the column into a 2 mL receiver tube.

3. Add 200 pL of activation solution to wet the resin. Make sure

to rinse the walls of the spin column (se¢ Note 20).
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3.4 LC-mMS/MS

3.4.1 Sample
Preparation

4.

Centrifuge at 1000 x g for 1 min. Discard the flow-through
and repeat steps 3 and 4.

5. Add 200 pL of equilibration solution, centrifuge at 1500 x g

for 1 min, and discard the flow-through. Repeat this step once.

Sample bindinyg:

6.

7.

Place the column into a receiver tube and load up to 150 pL of
sample on top of resin bed (see Note 21).

Centrifuge at 1500 x g for 1 min. Repeat steps 6 and 7 as many
times as needed to load all the sample in the same column (see
Notes 22 and 23).

Column wash:

8. Add 200 pL of wash solution to the column and centrifuge at

1500 x g for 1 min. Repeat this step once (se¢ Note 5).

Elution:

9.

10.

11.

Place the column in a new protein low-binding receiver tube
and add 21 pL of elution buffer to the top of the resin bed.

Centrifuge at 1500 x g for 1 min and repeat steps 9 and 10
with the same receiver tube.

Quantify the concentration and amount of total protein in each
sample using a Qubit protein assay kit: Mix 199 pL of Qubit
buffer with 1 pL of Qubit reagent for each sample. Add 2 pL of
sample to 198 pL of the reaction mixture, vortex, and spin the
tube. Incubate at room temperature for 15 min before
measuring.

12. Store the samples at —80 °C until further analysis.

. Prepare or dissolve samples in 6 M urea, 200 mM ammonium

bicarbonate.

. Reduce the samples (10 pg of protein) with 30 nmols of

dithiothreitol at 37 °C for 1 h.

. Alkylate the samples (10 pg of protein) in the dark with

60 nmols of iodoacetamide at 25 °C for 30 min.

. Dilute the sample extract to 2 M urea with 200 mM

ammonium bicarbonate for digestion with endoproteinase
LysC (1:10 w:v), and incubate at 37 °C overnight.

. Dilute twofold with 200 mM ammonium bicarbonate for tryp-

sin digestion (1:10 w:w), and incubate at 37 °C for 8 h.

. After digestion, add formic acid (10% v/v of the final volume)

to acidify the peptide mix.

. Desalt the samples with MicroSpin C18 columns prior to

LC-MS/MS analysis, following manufacturer’s instructions.
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3.4.3 Data Analysis for
Database-Search Peptide
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. Load the peptides onto the analytical column (C18, 2 pm,

15-50 cm length).

. Separation of the peptides by reverse-phase chromatography

with the corresponding columns.

. Chromatographic gradients start at 93% buffer A and 7% buffer

B with a flow rate of 250 nL/min for 5 min and gradually
increase 65% buffer A and 35% buftfer B in 60 min.

. After each analysis, wash the column for 15 min with 10%

buffer A and 90% buffer B.

. Peptide eluates are dried in a vacuum centrifuge, and resus-

pended with buffer A at a final concentration of 1 pg/pL prior
to analysis by LC-MS/MS.

. Operate the mass spectrometer to acquire peptide spectra (see

Note 24).

. Search the acquired spectra against the desired peptide data-

base (see Note 25), plus a list of common contaminants (sug-
gested: [98]), and all the corresponding decoy entries.

. Set the parameters accordingly to the experimental and mass

spectrometric settings and, if appropriate, select variable post-
translational modifications to be detected (see Notes 26
and27).

. Determine the peptide abundance estimation [99, 100].

4. Add the information to the appropriate repositories (see Note

28).

4 Notes

. Octyl-glucoside, a detergent, could be added (0.1% v/v) to the

extraction buffer. The use of detergents is only necessary for
the extraction and solubilization of hydrophobic peptides and
proteins. However, the presence of detergents in peptide sam-
ples decreases chromatographic resolution in LC-MS/MS.
Thus, they must be removed prior to MS analysis [101]. As a
general rule for MS/MS experiments, keep laboratory wear
and high-quality chemicals separated from the rest of the labo-
ratory materials, always use gloves and, if possible, disposable
plastic material of the highest quality.

. Prepare a new extraction buffer on every extraction day as

protease inhibitors could not work properly otherwise.
MG@G-132 is available from several suppliers (we have routinely
used MG-132 from Sigma-Aldrich). Proteinase Inhibitor cock-
tail cOmplete is from Roche. Different extraction buffers have
been proposed in the recent years, and their final composition
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10.

needs to be selected considering the final objective of the study
and the type of analytes of interest (e.g., phosphopeptides),
because its formulation may affect the final state of the peptides
and proteins in the samples (Table 1).

. The Amicon® Ultra-0.5 product line includes five different

cut-offs depending on its nominal molecular weight limit
(NMWL); 30-K (30 kDa filter) devices are recommended, as
peptides would normally be below the 30 kDa cut-off.

. ACN can be substituted for methanol in all sample preparation

buftfers, depending on the desired composition of the final
elution buffer.

. The required washing volume will be dependent upon amount

and type of contaminants present in the samples. Samples
already containing large amounts of urea or >100 mM ammo-
nium bicarbonate derived from the extraction buffer (Table 1)
need to be washed one or two additional times.

. The elution buffer used can be tailored to the downstream

application. Acceptable bufters include 50-70% (v/v) ACN or
methanol with or without 0.1% (v/v) TFA. For best results in
LC-MS/MS analysis, TFA is replaced with 0.1% (v/v)
formic acid.

. Reagents for LC-MS/MS can be obtained from several suppli-

ers. As an example, we list here the specific products we use:
urea (GE Healthcare; Sigma-Aldrich, P/N 17-1319-01),
ammonium bicarbonate (BioUltra, >99.5% (T); Sigma-
Aldrich, P/N 09830), iodoacetamide (BioUltra; Sigma-
Aldrich, P/N 11149), DL-dithiothreitol (for electrophoresis,
>99%; Sigma-Aldrich, P/N D9163), formic acid for analysis
EMSURE® (ACS Reag. Merck, P/N 1.00264.0100),
sequencing grade modified trypsin (Promega, P/N V5111),
and lysyl endopeptidase (Wako Chemicals GmbH, P/N
129-02541).

. Suitable reverse-phase chromatography columns that we have

used are, for instance, 25 cm columns with an inner diameter of
75 pm, packed with 1.9 pm C18 particles (Nikkyo Technos
Co.); and 50 ¢cm columns with an inner diameter of 75 pm,
packed with 2 pm C18 particles (EASY-Column, Thermo
Fisher Scientific, ES903).

. This is just a concrete example of a “modern high-resolution

mass spectrometer”; other instruments could be used.

To reduce sample contamination with human proteins (i.e.,
keratins and collagen) during sample collection, the use of
nitrile gloves and laboratory coats is recommended. Take pre-
caution to avoid hair contamination. If flower organs or tissues
are going to be dissected, cool tweezers and any other sampling
instrument with liquid nitrogen.
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Keep samples (before and after grinding) always frozen by
pouring liquid nitrogen in the mortar sporadically. Cool col-
lection spatulas before using them to collect homogenized
tissue.

The extraction yields are around 1 mg of total protein for each
0.5 g of tissue. Peptides might represent about 1% of the total
protein, and therefore the expected yield for these extraction
methods would be 10-15 pg of peptides. For Arabidopsis
inflorescences, a volume of 1 mL of blended tissue in a 2 mL
Eppendorf tube is equivalent to approximately 0.5 g of tissue.
Dividing the sample in different tubes facilitates its dissolution
in the extraction buffer, that is, using tubes with only 0.25 g
(equivalent to 0.5 mL of volume) of blended tissue. After
finishing the entire extraction protocol (including the reverse-
phase chromatography with C18 columns), 10-30 pg of total
peptides are obtained when using 30-K filters. The efficiency of
the ammonium sulphate precipitation method may be lower
(~6 pg of total peptides) (Fig. 2).

If total sample has been divided in two tubes, add approxi-
mately 0.6 mL of extraction buffer to each tube (with 0.25 g of
blended tissue).

After each 1 min spin, transfer the supernatant to a new tube.
Be careful to avoid both the pellet and remaining particles in
suspension. Repeat the spin in a new tube as many times as
needed until supernatant is clear (2 or 3 times should be
enough).

When the sample has been divided in two tubes, the efficiency
of using one single Amicon filter for all subsamples and the
same collection tube is sufficient to achieve a suitable yield.

The required centrifugation time may vary according to the
NMWL of the columns used. This protocol is defined for 30-K
(or upper) devices, yet a higher centrifugation time is necessary
for 10-K or 3-K devices (15 and 30 min, respectively).

The filtrate contains the smallest peptides depending on the
weight limit of the filter device. However, if needed, it is
possible to recover the concentrated solute by placing the filter
device upside down in a clean microcentrifuge tube and cen-
trifuging at 1000 x g for 2 min at 4 °C. For optimal recovery, it
is important to perform the reverse spin immediately after
filtrating. Besides, desalting, buffer exchange or diafiltration
of this concentrated solute can be accomplished before eluting
it by reconstituting the concentrate retained in the column to
the original sample volume with the desired solvent and repeat-
ing the ultrafiltration process from the beginning to the con-
centrated solute elution.
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18.

19.

20.

21.

22.

23.
24.

25.

Ammonium sulphate calculator from EnCor Biotechnology
Inc.  (http://www.encorbio.com/protocols/AM-SO4.htm)
(selecting 4 °C temperature) can be used to calculate the
needed amount of ammonium sulphate for each specific sam-
ple. The salt addition will increase the sample volume, which
should be considered for the reverse-phase chromatography.
For smallest peptides, ammonium sulphate could be added up
to 80-85%.

The final exact concentrations of TFA and ACN will vary
according to the extraction buffer, that is, ultrafiltration or
ammonium sulphate precipitation protocol. In these examples,
the concentration of the sample:sample buffer mix prior to
reverse-phase chromatography would be 6.5% (v/v) of ACN
for both extraction methods, 0.875% (v/v) TFA for ultrafiltra-
tion and 0.5% (v/v) TFA for ammonium sulphate precipita-
tion. Nevertheless, these slight variations do not appear to
result in significant differences in the efficiency of the reverse-
phase chromatography process.

Add solutions carefully, especially in the activation step. Pour
the solution through the walls of the column to avoid produc-
ing irregularities in the resin.

Each column can bind up to 30 pg of total peptide from 10 to
150 pL sample volumes.

In some cases, the extraction yield can be increased by
recovering the flow-through and recentrifuging it after
each step.

Flow-through may be retained to confirm sample binding.

1-2 pg of peptides are loaded onto an analytical column (25 cm
C18 2 pm particle size) using an autosampler device (e.g.,
EASY nLL.C 1000 and Thermo Fisher Scientific) and the pep-
tides are then separated by reverse-phase chromatography
using a water-acetonitrile chromatographic gradient. Modern
high-resolution mass spectrometers are recommended for data
acquisition (e.g., Orbitrap or qTOF). The mass spectrometer is
operated in data-dependent acquisition (DDA) mode, in which
a full MS scan is recorded in each cycle, followed by the
fragmentation of the 10-30 most intense precursor ions to
obtain the fragment ion spectra.

Obtained raw data are analyzed using a database search strat-
egy. However, the results are susceptible to the characteristics
of the reference database used for peptide identification. It is
advisable to add the lists of putative SEPs to a database contain-
ing the canonical peptides and proteins of each organism (avail-
able in ENSEMBL, Uniprot, or other databases). The total
number of sequences included in the database is also impor-
tant, as an excessively large database (e.g., over 100,000
sequences) may lead to a higher false discovery rate in the
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identifications. There are several different approaches for the
identification of novel potential SEP sequences to be included
in the reference database.

One approach that has often been used is to make use of
Ribo-seq data. There are multiple repositories that contain
sORFs identified by Ribo-seq for plant species such as
GWIPS-viz (Arabidopsis thaliana and Zea wmays) [102],
RPFEdb v2.0 (A. thaliana) [103], PsORF (35 plant species)
[104], and uORFdb (A. thaliana and others) [105] (Table 2);
as well as several tools for the analysis of Ribo-seq data and
sOREF identification such as RiboTaper [106], PRICE [107],
RiboCode [108], RiboStreamR [109], RiboPlotR [110], or
RiboNT [111] (Table 3).

An alternative (and complementary) approach for the
identification of putative novel SEPs is to make use of the
genome or IncRNA transcriptome sequences through sORFE-
prediction tools such as SPADA [112], sORF Finder [35, 76],
PhyloCSF (Phylogenetic Codon Substitution Frequencies)
[34], MiPepid [113], CPPred [114], IncPepid [115], or
DeepCPP [116] (Table 3).

In addition, the putative peptide databases can also be
derived from the six-frame translation of the corresponding
genome sequence or from the three-frame translation of tran-
scriptomic datasets (e.g., RNA-seq data and IncRNA), an
approach referred to as peptidogenomics [117]. It is a strategy
that has been successfully implemented in microorganisms
[62, 771, and plants [38].

An additional consideration for the generation of the puta-
tive SEP database is whether the presence of translation initia-
tion codons in the ORFs (the standard ATG or noncanonical
codons such as CTG or ACG; see [118-120]) is a requirement
or not, as both approaches have been used (e.g., [35, 38]).

Once the database has been constructed, the raw LC-MS,/MS
data needs to be interpreted using a database search engine
(such as SEQUEST [64], Mascot [65], Phenyx [66], X! Tan-
dem [67], OMSSA [68], pFind [69], InsPecT [70], ByOnic
[71], Comet [72], MS-GF+ [73], MaxQuant [74 ], or MSTra-
cer [75]). As example, the Mascot search engine (v2.6) can be
used, using the search parameters accordingly to the experi-
mental and mass spectrometry settings. For peptide identifica-
tion a precursor ion mass tolerance below 10-20 ppm is
recommended, whereas the fragment ion mass tolerance can
go from 10 to 20 ppm for high-resolution mass analyzers
(Orbitrap and TOF) to 0.5 Da if a linear ion trap is used for
the analysis of the tandem mass spectra. Common peptide
modifications such as oxidation of methionine and
N-terminal protein acetylation are used as variable modifica-
tions. False discovery rate (FDR) in peptide identification is set
to a maximum of 1%.
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27. Validation of (selected) identified peptides is highly recom-
mended due to the intrinsic limitations of FDR estimation
when working with large databases, although this cannot be
done yet in a high-throughput manner. Peptide identifications
that pass the FDR threshold can be further validated with the
purchase and full LC-MS/MS characterization of synthetic
peptides with the same identified sequence (e.g., [38]),
and/or by comparison with the fragmentation patterns and
retention time predicted by the new machine learning algo-
rithms (e.g., Prosit and MS?PIP) [94, 95, 97].

28. Share data and results in a public repository. Data sharing in the
public domain is the standard for omics research and a require-
ment for publication. For proteomics, the Proteomics IDEnti-
fications (PRIDE) database (https://www.ebi.ac.uk/pride/)
at the European Bioinformatics Institute (EMBL-EBI, Hinx-
ton, Cambridge, UK) has enabled public data deposition of
MS data since 2004, and its archival component has become
the largest repository for proteomics data sharing worldwide
[121]. The PRIDE database provides access to most of the
experimental proteomics data described in MS-related scien-
tific publications. Moreover, several repositories for sORFs and
SEPs in plants have been developed with different purposes
and using information from multiple in silico and experimental
approaches (Table 2).
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Gene Expression Analysis by Quantitative Real-Time PCR
for Floral Tissues

Raquel Alvarez-Urdiola, Mariana Bustamante, Joana Ribes,
and Joseé Luis Riechmann

Abstract

Real-time, or quantitative, reverse transcription polymerase chain reaction (QRT-PCR) is a powerful
method for rapid and reliable quantification of mRNA abundance. Although it has not featured promi-
nently in flower development research in the past, the availability of novel techniques for the synchronized
induction of flower development, or for the isolation of cell-specific mRNA populations, suggests that
detailed quantitative analyses of gene expression over time and in specific tissues and cell types by qRT-PCR
will become more widely used. In this chapter, we discuss specific considerations for studying gene
expression by using qRT-PCR, such as the identification of suitable reference genes for the experimental
set-up used. In addition, we provide protocols for performing qQRT-PCR experiments in a multiwell plate
format (with the LightCycler® 480 system, Roche) and with nanofluidic arrays (BioMark™ system,
Fluidigm), which allow the automatic combination of sets of samples with sets of assays, and significantly
reduce reaction volume and the number of liquid-handling steps performed during the experiment.

Key words Real-time PCR, qRT-PCR, Quantitative PCR (qPCR), SYBR Green I dye

1 Introduction

Difterential gene expression, over time or among different cell and
tissue types, is central to the developmental processes of all organ-
isms. In flower development studies, this aspect of gene function
has usually been approached by using methods to characterize
spatial patterns or domains of gene expression, such as in situ
hybridization and promoter-reporter gene fusions. Several groups
have also progressed in the characterization of flower development
in different plant species using quantitative real-time reverse tran-
scription polymerase chain reaction (qRT-PCR) analyses [1-6],
although this technique has not traditionally featured prominently
in flower development research. Nevertheless, as a result of the
development of techniques for the synchronized induction of
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flower development and for the isolation of cell-specific mRNA
populations, detailed quantitative analyses of gene expression over
time and in specific tissues and cells are becoming more broadly
used. QRT-PCR is a powerful method for rapid and reliable quan-
tification of mRNA abundance, which involves three processes:
(i) the conversion of mRNA into cDNA via reverse-transcription;
(ii) the amplification of the resulting cDNA by PCR; and (iii) the
detection and quantification in real time of the synthesized PCR
amplification products [ 7-9]. The reliability of the data obtained in
qRT-PCR experiments can be affected by several factors that impact
those processes, including template quality (RNA integrity
[9, 10]), purity [9, 11] and quantity, efficiency of the RT reaction,
PCR primer design, and efficiency of the PCR amplification [9]. To
compensate for between-sample variations in the amount of start-
ing material and in the efficiency of the QRT-PCR process, expres-
sion levels of the genes of interest are reported relative to one or
more reference genes that are presumed to be uniformly and stably
expressed across the tissues or conditions tested in the experiment,
and whose abundance reflects the total amount of mRNA present
in each sample. Thus, the reliability of QRT-PCR analyses is largely
affected by the suitability of the gene (or genes) that is selected as a
reference, that is, by whether or not such a gene really fulfils the
requirements of a normalization control [12, 13].

Housekeeping genes, which function in basic cellular processes
and are expressed in all cells of an organism, have often been used as
reference genes to normalize the data in qRT-PCR experiments
(e.g., genes such as glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), elongation factor-la (EF-1a), actin (ACT), or tubulin
(TUB)). Although the initial evidence indicating that housekeeping
genes are stably expressed was obtained using methods that are
mostly qualitative (for instance, RNA gel-blots and end-point
RT-PCR), subsequent studies demonstrated that in some circum-
stances their expression may be regulated or be unstable, showing
changes in transcript levels throughout development or among
different conditions or tissues. Besides, housekeeping genes are
usually expressed at higher levels than the typical genes of interest.
For these reasons, using them as reference genes may introduce
biases in the results obtained by qRT-PCR [12, 13]. For example,
in a series of experiments designed to assess traditional Arabidopsis
reference genes (including ACT2, ACT7, ACTS, ADENINE PH
OSPHORIBOSYLTRANSFERASE 1 (APTI), EFla, EUKARY~
OTIC TRANSLATION INITIATION FACTOR 4Al (elF4A),
TUB2, TUB6, TUBY, UBIQUITIN 4 (UBQ4), UBQ5, UBQI0,
and UBQ11), it was found that eIF4A would appear to be stably
expressed over the course of silique development when APTI,
UBQ5, or eFla were used to normalize the data, whereas its expres-
sion would appear quite variable when TUB6 was used as reference
gene [13].
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In summary, the validity of “housekeeping” reference genes is
not universal, and is highly dependent on the experimental condi-
tions [12]. Thus, the selection of appropriate reference genes for
the normalization of qRT-PCR data has emerged as a crucial com-
ponent for successful expression studies carried out with this tech-
nology, and statistical algorithms like geNorm [14] or BestKeeper
[15] have been developed for that purpose (see Note 1).

Concomitantly, the use of genome-wide technologies (i.e.,
initially DNA microarrays and subsequently RNA-Seq) to charac-
terize gene expression changes across many different tissues and
developmental stages, environmental conditions, or in response to
biotic and abiotic stresses or perturbations has resulted in very rich
datasets (e.g., [16]) that can be mined to identify novel, better
suited reference genes for the desired experimental set-up. For
instance, Czechowski et al. analyzed a very large set of Arabidopsis
data obtained with Affymetrix ATH1 GeneChip arrays to identify
several hundred genes that outperform traditional reference genes
in terms of expression stability throughout development and under
a range of environmental conditions [17]. Subsequent qRT-PCR
experiments performed with a subset of those novel reference genes
confirmed that they showed superior expression stability and lower
absolute expression levels [17] (see Note 2). The results obtained in
Arabidopsis have informed the selection of reference genes in other
plant species, as the corresponding orthologous genes may also
show stable expression (e.g., in Leafy spurge, see [18]). If candidate
reference genes are selected based on orthology, however, their
suitability needs to be confirmed experimentally, as such character
is not always maintained across all experimental conditions in all
organisms [9] (for instance, see [19]).

Candidate reference gene selections for various species, such as
maize [20-23], rice [24-27], wheat [28-30], or strawberry
[31, 32] and for specific conditions, tissues, or developmental
stages (e.g., rice anther development, wheat meiosis, or strawberry
fruits) have also been published. In addition, a literature review by
Joseph et al. compiled a collection of reference genes for Arabidop-
sis and other plant species [33] (see Table 1).

The approach of using genome-wide data to select reference
genes has been further expanded and refined with RefGenes, an
online tool that allows easy identification of condition-specific ref-
erence genes [34]. RefGenes is based on the Genevestigator data-
base of normalized and well-annotated microarray and RNA-Seq
experiments and is accessible through the Genevestigator web page
(www.genevestigator.com). The appropriateness of using
condition-specific reference genes is based on the observation that
for each biological context a subset of stable genes exists that has a
smaller variance than either commonly used reference genes or
genes that were selected for their stability across all conditions
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Arabidopsis general reference genes according with their expression stability under different
conditions [33]

Accession
number

Gene

Primers (5'-3')

Conditions

Atl1y50010 a-Tubulin

AT3G18780 Actin 2

At3753750

At1549240

Atly13440

At2541540

At5725760

Atl564230

At3762250

At5762690

Actin 3

Actin 8

GAPDH

GAPDH

UBC21

UBC28

UBQ5

GATGTACCGTGGTGATGTC
GAGCCTCTGAAAATTCTCC

CTTGCACCAAGCAGCATGAA
CCGATCCAGACACTGTAC

TTCCTT

TATGTGGCTATTCAGGCTGT
TGGCGGTGCTTCTTCTCTG
ATGCCATCCTCCGTCTTGAC
CGCTCTGCTGTTGTGGTGAA

GAGGCTCCTCTTAACCCAA
TACAATTTCCCGCTCTGC

TATGTGGCTATTCAGGCTGT
TGGCGGTGCTTCTTCTCTG

GGTGATGGTGTGTCT
ACTGAGCACAATGTTAC

TTGGTGACAACAGG
TCAAGCA

AAACTTGTCGCTCAATGCAA

TC

GAAGCAAGGCAAAGAAAT
GAAGCAAGGCAAAGAAAT

TTCAAATGGACCGCTCTTA

TCA

AAACACCGCCTTCGTAAGGA
TCCAGAAGGATCCTCCAAC

TTCCTGCAGT
ATGG

TTACGAGAAAGACACCGCC

TGAATA

GTAAACGTAGGTGAGTCC

GACGCTTCATCTCGTCC
GACGCTTCATCTCGTCC

GTAAACGTAGGTGAGTCC

Tubulin 2 CTCTGACCTCCGAAAGC

TTGC

Abiotic stress

Abiotic stress

Abiotic stress

Biotic stress

Abiotic stress

Abiotic stress

Biotic stress

Abiotic stress

Biotic stress

Biotic stress

Abiotic stress

Abiotic stress

Biotic stress

Abiotic stress

Sulfate starvation, salt,
drought, ABA

Dehydration, cold, salt,
oxidative,
exposure to high light
intensity

Salt, mannitol, drought,
and cold

A. tumefuciens,
H. schachtii, B. cinerea,
P. syringae pv.
maculicoln, P. syringoe
pv. tomato

Salt stress, drought stress,

ABA

Salt, mannitol, drought,
and cold
A. tumefuciens

Salt, mannitol, drought,
and cold

A. tumefuciens

A. tumefaciens

Salt, osmotic,
temperature,
radiomimetic,
oxidative,

UV, Zebularine,
Trichostatin A, Sodium
butyrate

Drought, mannitol, and
salt

B. cineren; P. syringae
pv. maculicoln,
P. syringae pv. Tomato

(continued)
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Table 1
(continued)
Accession
number Gene Primers (5’-3') Conditions
TCACCTTCTTCATCCGCAG Sucrose, NaCl, mannitol,
TT paclobutrazol,
hormonal
AGCAATACCAAGATGCAAC Biotic stress  B. cineren; P. syringae
TGCG pv. maculicoln,
TAACTAAATTATTCTCAGTAC P. syringae pv. Tomato
TCTTCC
At5915710 F-BOX TTTCGGCTGAGAGGTTCGAG Abiotic stress Metal stress
T
GATTCCAAGACG
TAAAGCAGATCAA
Ar5708290 YLS8 TTACTGTTTCGGTTGTTC Abiotic stress Metal stress
TCCATTT
CACTGAATCATG
TTCGAAGCAAGT
At2528390 SAND AACTCTATGCAGCATTTGA  Abiotic stress Metal stress
TCCACT
TGATTGCATATCTTTA
TCGCCATC
AACTCTATGCAGCATTTGA Biotic stress P, infestans, A. laibachii
TCCACT
TGATTGCATATCTTTA
TCGCCATC
At5760390 EFl-a TGAGCACGCTCTTCTTGC Abiotic stress Metal stress
TTTCA
GGTGGTGGCATCCATCTTG
TTACA
AT5G46630 AP2M TCGATTGCTTGG Development Different tissues, organs,
(CACS) TTTGGAAGAT developmental stages,
GCACTTAGCGTGGACTCTG and genotypes
TTTGATC
Atl1y58050 Helicase CCATTCTACTTTTTGGCGGC Development Different tissues, organs,
T developmental stages,
TCAATGGTAACTGATCCAC and genotypes
TCTGATG
AT4G26410 Expressed GAGCTGAAGTGGCTTCCA Development Different tissues, organs,
TGAC developmental stages,
GGTCCGACATACCCATGA and genotypes
TCC
AT4G34270 TIP41- GTGAAAACTG Development Different tissues, organs,
like TTGGAGAGAAGCAA developmental stages,
TCAACTGGATACCC and genotypes
TTTCGCA

Primer sequences indicated in the table correspond to those used in the original experiment, as referenced in [33]
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[34]. In other words, there is no gene that is universally stable, and
the most appropriate set of reference genes for each biological
context and specific experimental condition does vary.

Through RefGenes, users can select the transcriptomic experi-
ments that are most similar to their chosen experimental conditions
(including tissue, developmental stage, treatment, etc.). Afterward,
the user indicates the set of target genes of interest (up to ten genes
can be tested at once). A search is then triggered to identify those
genes that have the lowest variance within the selected set of
experiments and a range of expression that is similar to that of the
target gene set. The result of the search is graphically displayed,
showing the top 20-25 best candidate reference genes for the
selected conditions. The behavior of these candidate genes in the
chosen (or in additional) tissues or experimental conditions can
then be explored using the Conditions tool of Genevestigator [35].

It is worth noting that the novel candidate reference genes that
are identified using RefGenes and the aforementioned algorithms
(ygeNorm or Bestkeeper) should be validated for the specific
biological conditions of the experiments to be performed, for
example, tissue type [36], growth conditions [24, 37], stresses
[22, 38], treatments [39], etc. The evaluation of reference genes
should be done by comparing the results with those obtained for
other algorithms, experimentally, and preferably together with
commonly used reference genes.

The use of RefGenes to select reference genes for flower devel-
opment studies is illustrated in Figs. 1, 2, and 3, and in Table 2. Ten
genes that participate in and/or are expressed at early stages of
Arabidopsis flower development were used as target set to search
for reference genes using the genome-wide expression profiling
data available in Genevestigator (SUPERMAN -SUP, At3g23130-
, LEAFY -LFY, At5g61850-, AGL24 -At4g24540-, YABBY3 -
YAB3, At4g00180-, APETALA2 -AP2, AT4g36920-, AGL42
-At5g62165-, SHATTERPROOF2 -SHP2, At2g42830-, AGA-
MOUS -AG, AT4gl8960-, SEPALLATA3 -SEP3, Atlg24260-,
and APETALA3 - AP3, At3g54340-, see [40]). RefGenes returns a
list of candidate novel reference genes (Fig. 1, Table 2), which in
this chapter are then compared to traditional reference genes (list of
genes from [17]) and to reference genes for developmental pro-
cesses (genes from [33] included in Table 1). The novel reference
genes and the reference genes specifically selected for studying plant
development are more stably expressed throughout all plant stages
of development, and their mean expression level is generally lower
than that of traditional reference genes, and thus closer to that of
the typical genes of interest (see Fig. 2). Besides, novel reference
genes selected for flower development studies are more stably
expressed in floral tissues than traditional reference genes and the
reference genes selected for studying other developmental pro-
cesses (Fig. 3).
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Dataset: 10562 samples from data selection: ATH all
Search Space: Gene

Found 20 measure(s) of 21 gene(s)

Level of expression (log2 scale)

Low | MEDIUM (=IQR) |
4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

Target genes Median SD
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created with GENEVESTIGATOR

Fig. 1 Example of output results obtained when using the RefGenes tool (Anatomy-Inflorescence category in
Genevestigator) with a set of floral regulatory genes (SUP (AT3G23130), LFY (AT5G61850), AGL24
(AT4G24540), YAB3 (AT4G00180), AP2 (AT4G36920), AGL42 (AT5G62165), SHP2 (AT2G42830), AG
(AT4G18960), SEP3 (AT1G24260), and AP3 (AT3G54340))

The detection of product formation in real-time during the
amplification reaction of qRT-PCR experiments is carried out by
measuring the emission signal from either fluorescent double-
stranded DNA-binding dyes (such as SYBR® Green I and Eva-
Green®, see below), or template-specific fluorescent probes (such
as the TagMan® probe technology). A general protocol for using
SYBR Green I dye in a qRT-PCR experiment performed in a Light-
Cycler® 480 Real-Time PCR system (Roche) is provided in this
chapter (equally suited real-time PCR machines are available from
various manufacturers). In addition to standard real-time PCR
systems, in which reactions are performed either in thin-wall PCR
tubes or in multiwell plates, newer systems based on nanofluidic
arrays (such as the BioMark™ system, Fluidigm) have been devel-
oped for high-throughput analyses. These arrays contain nanoflui-
dic networks that allow the automatic combination of sets of
samples with sets of assays, significantly reducing reaction volume
(and thus the amount of material needed to perform an assay) and
the number of liquid-handling steps performed during the experi-
ment. A protocol for a qRT-PCR experiment using EvaGreen® and
the BioMark™ system is also provided.
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2 Materials

—

2.1 Tissue Collection RNase-free microcentrifuge tubes (1.5 mL).

and RNA Extraction

[\

. Plastic pellet pestles for 1.5 mL microcentrifuge tubes
(optional: a mixer motor or an electric drill).

. Forceps (e.g., Dupont size #5).
. Liquid nitrogen.

. Vortex.

N Ul W

. Microcentrifuge.

Dataset: 10 developmental stages from data selection: ATH all

Showing 5 measure(s) of 5 gene(s) on selection: Traditional HK Czechowski et al. (17)

©® GAPA1 @ ACT2 uBQ10
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created with GENEVESTIGATOR

Fig. 2 Expression characteristics during plant development of some commonly used and novel reference
genes in Arabidopsis inflorescences. (a) Traditional reference genes: GAPDH (AT3G26650, GAPA1), ACT2
(AT3G18780), UBQ10 (AT4G05320), TUBB6 (AT5G12250), TUBAS (AT5G19780) [17]. (b) Reference genes for
developmental processes: AP2M (AT5G46630), AT1G58050, AT4G26410, AT4G34270 [33]. (¢) Novel refer-
ence genes based on the expression of floral regulatory genes: AT2G28390, AT5G15710, VPS45 (AT1G77140),
AT5G10700, and CLT2 (AT4G24460)
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Dataset: 10 developmental stages from data selection: ATH all

Showing 4 measure(s) of 4 gene(s) on selection: HK Joseph et al (33)
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Fig. 2 (continued)
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7. Spectrum Plant Total RNA Kit (Sigma-Aldrich) or an equiva-
lent total RNA isolation kit or reagents (sec Note 3).

8. Spectrophotometer (such as a Nanodrop).

9. Agilent Bioanalyzer and associated reagents (Agilent RNA

6000 Nano kit).

2.2 Reverse 1. High-Capacity cDNA Reverse Transcription Kit (e.g., Applied

Transcription Reaction

Biosystems; other commercial kits are available, but the proto-

cols provided below are based on this kit) containing dNTPs
(100 mM), MultiScribe reverse transcriptase (50 U/mL),
reverse transcription Random Primers, reverse transcription
buffer (10x), RNase inhibitor (20 U/mL).
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Dataset: 10 developmental stages from data selection: ATH all

Showing 5 measure(s) of 5 gene(s) on selection: HK for flower development
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Fig. 2 (continued)
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2. RNase-free PCR-tubes.

2.3 Quantitative Real 1.

Time PCR—
LightCycler® 480
System

w

. Nuclease-free water.

LightCycler® 480 SYBR Green I Master (Roche Diagnostics;
other commercial kits are available, but the protocols provided
in the following text are based on this kit): ready-to-use
hot-start PCR mix containing FastStart Taqg DNA Polymerase,
reaction buffer, dNTP mix (with dUTP, instead of dTTP),
SYBR Green I dye, and MgCl,.

. LC 480 Multiwell Plate 96 (Roche Diagnostics) (see Note 4).
. Forward and reverse PCR primers at 100 pM each.

4. Nuclease-free water.
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Dataset: 127 anatomical parts from data selection: ATH all
Showing 5 measure(s) of 5 gene(s) on selection: Traditional HK Czechowski et al. (17)

GAPA1 ACT2 uBQ10
TUBB6 TUBAS

Level of expression (log2 scale)
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Dataset: 127 anatomical parts from data selection: ATH all
Showing 4 measure(s) of 4 gene(s) on selection: HK Joseph et al (33)

AP2M AT1G58050
AT4G26410 AT4G34270

Level of expression (log2 scale)
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Fig. 3 Expression characteristics in different floral tissues of some commonly used and novel reference genes
in Arabidopsis inflorescences. (a) Traditional reference genes. (b) Reference genes for developmental
processes. (¢) Novel reference genes based on the expression of floral regulatory genes (as in Fig. 2)
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Dataset: 127 anatomical parts from data selection: ATH all

Showing 5 measure(s) of 5 gene(s) on selection: HK for flower development

AT2G28390 AT5G15710 VPS45
AT5G10700 CLT2

Level of expression (log2 scale)

Arabidopsis thaliana (127) Low MEDIUM (=IQR)

8 8.5 9 9.5 10 10.5 " 1.5 12 12.5 samples  avg. expr.

callus 900 [ ] 31 12.02

cell culture / primary cell o O [ ) 714 11.76

seedling ceo [ ] 2331 11.68

inflorescence o [ ] 801 11.82

raceme D 00 [ ] 327 1164

flower D 00 [ ] 324 11.64

stamen [ ¢ { ] { ] 118 11.62

anther » O [ ) 52 11.18

pollen i [ ] [ ] 52 11.18

abscission zone | § [ ] [ ] 15 11.74

pistil [ [ ) 40 11.75

carpel ® ( ] " 11.74

stigma @ ® 3 11.69

ovary [ 3 J o 6 11.69

ovule [ _J @ 2 11.69

petal (C ] [ ) 6 172

sepal - [ X ) 6 11.40

pedicel q [ X ] 3 11.38

silique o0 [ ] 372 12.00

shoot ) ] o0 4606 11.66

roots | | | | 09 @ | @ 1081 1165
& 85 9 95 10 105 11 115 12 125

created with GENEVESTIGATOR

Fig. 3 (continued)

2.4 Quantitative Real 1. TagMan PreAmp Master Mix 2% (Applied Biosystems).

Ti_me PCR— 2. SsoFast EvaGreen SuperMix with Low ROX (Biorad): 2x real-
BioMark™ System time PCR mix, containing dNTPs, Sso7d fusion polymerase,
MgCl,, ROX passive reference dye and stabilizers.

. 2x Assay Loading Reagent (Fluidigm).

. 20x DNA Binding Dye Sample Loading Reagent (Fluidigm).
Exonuclease I (E. colz) (20,000 U/mL; New England Biolabs).
Exonuclease I Reaction Buffer 10x (New England Biolabs).
Forward and reverse PCR primers at 100 uM each.
Nuclease-free water.

TE Buffer: 10 mM Tris-HCl, pH 8.0, 1.0 mM EDTA
(TEKnova).

10. DNA Suspension Buffer; 10 mM Tris-HCI, pH 8.0, 0.1 mM
EDTA (TEKnova).

11. 48.48 Dynamic Array IFC (Fluidigm).

0 % N o U R W

3 Methods

The performance of the primers for a qRT-PCR experiment is
crucial for obtaining high-quality results, and several aspects must
be considered for successful primer design (see Note 5). There are
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Candidate novel reference genes for Arabidopsis proteins and peptides expressed in floral tissues
identified using RefGenes. These genes were selected using as search set a list of floral regulatory

genes

Gene Annotation Search set
AT2G28390  SAND family protein (MON1) Floral regulatory genes
AT5G15710  Galactose oxidase/kelch repeat superfamily protein Floral regulatory genes
ATIG77140  Vacuolar protein sorting 45 (VPS45) Floral regulatory genes
AT5G10700  Peptidyl-tRNA hydrolase II (PTH2) family protein Floral regulatory genes
AT4G24460  CRT (chloroquine-resistance transporter)-like Floral regulatory genes

transporter 2 (CLT2)
AT5G22760  PHD finger family protein (DDP2) Floral regulatory genes
AT5G11380  1-deoxy-D-xylulose 5-phosphate synthase 3 (DXPS3) Floral regulatory genes
AT5G04270  DHHC-type zinc finger family protein (PAT15) Floral regulatory genes
ATIG50170  Sirohydrochlorin ferrochelatase B (SIRB) Floral regulatory genes
AT3G59000  E-box/RNI-like superfamily protein Floral regulatory genes
AT2G36480 ENTH/VHS family protein Floral regulatory genes
AT5G52880  F-box family protein Floral regulatory genes
AT5G65620  Zincin-like metalloproteases family protein (TOP1) Floral regulatory genes
AT5G60750  CAAX amino terminal protease family protein. Encodes Floral regulatory genes

a chloroplast endoproteinase required for photosynthetic

acclimation to higher light intensities (SCO4)
AT5G64970  Mitochondrial substrate carrier family protein Floral regulatory genes
AT3G61180  RING/U-box superfamily protein Floral regulatory genes
AT2G41790  Insulinase (Peptidase family M16) family protein Floral regulatory genes
AT5G13050  5-formyltetrahydrofolate cycloligase (5FCL) Floral regulatory genes
AT5G04920  EAP30/Vps36 family protein (VPS36) Floral regulatory genes
AT3G59770  Sacl homology domain-containing protein / Floral regulatory genes

WW domain-containing protein (SAC9)

many online resources for primer design, some of which also pro-
vide access to a consultative design service, such as:

+ Oligoarchitect: http: //www.oligoarchitect.com/LoginServlet

* RealTimeDesign: https://www.biosearchtech.com/support/
tools/design-software /realtimedesign-software
* QuantPrime: http: //www.quantprime.de /

* IDT-qPCR: http://eu.idtdna.com/scitools/Applications/
RealTimePCR/


http://www.oligoarchitect.com/LoginServlet
https://www.biosearchtech.com/support/tools/design-software/realtimedesign-software
https://www.biosearchtech.com/support/tools/design-software/realtimedesign-software
http://www.quantprime.de/
http://eu.idtdna.com/scitools/Applications/RealTimePCR/
http://eu.idtdna.com/scitools/Applications/RealTimePCR/
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3.1 Tissue Collection
and RNA Extraction

3.2 Reverse
Transcription Reaction

* Primer3: http: //primer3.sourceforge.net/

* Primer-BLAST: http://www.ncbi.nlm.nih.gov/tools/primer-
blast/

RNA quality (integrity and purity) is a critical factor for qRT-PCR
experiments.

1. Harvest at least 100 mg of the desired plant tissue (e.g., inflor-
escences), into a 1.5 mL RNase-free microcentrifuge tube
containing liquid nitrogen.

2. Grind the tissue to a fine powder with the pellet pestles (and a
mixer motor), keeping the bottom of the tube immersed in
liquid nitrogen throughout the grinding process to avoid RNA
degradation (see Notes 6 and 7).

3. Follow the manufacturer’s instructions for the RNA
extraction kit.

4. Analyze the integrity of the isolated RNA using a Bioanalyzer
(or by using the 3’ /5’ integrity assay, se¢[9]) and determine the
concentration by absorption at 260 nm (e.g., with a Nanodrop
spectrophotometer).

The reverse transcription reaction to synthesize cDNA from the
starting RNA material can be performed with various priming
strategies, enzymes, and experimental conditions [8, 9]. However,
to compare gene expression data across different experiments or
laboratories, these variables should be kept constant, particularly
ensuring that the same amount of RNA is added to each reaction
(or that the enzyme /protocol used results in a proportional cDNA
yield).

1. Prepare an RT master mix in a 1.5 mL tube:

Component Volume (per reaction) (pL)
Water 4.2

10x RT Buffer (1x) 2

25x ANTP Mix (100 mM) 0.8

10x RT Random Primers 2

MultiScribe Reverse Transcriptase 1

2. Add 10 pL of Master Mix to each individual PCR-tube. Then
add 100-1000 ng of each RNA sample, in a volume of 10 pL.
The final reaction volume is 20 pL. No-RT control reaction
(s) should be included in the experiment.


http://primer3.sourceforge.net/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/

3.3 Quantitative Real
Time PCR:
LightCycler™ 480
System
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3. Briefly centrifuge the tubes to collect the contents and to
eliminate any air bubbles.

4. Place the tubes in a thermal cycler using the following
conditions:

Step 1 Step 2 Step 3 Step 4
Temperature (°C) 25 37 85 4
Time 10 min 120 min 5 min 00

5. Store cDNA samples at 4 °C (short term) or at —20 °C (for up
to 6 months).

1. Set up the samples:

1.1. Every gene/primer-pair combination used in a qPCR
should be tested to calculate primer efficiency (see
Note 8).

1.2. The cDNA samples resulting from the RT reaction can be
diluted in water, to obtain a final estimated concentration
between 5 and 10 ng/pL (estimation based on the initial
amount of RNA used in the RT reaction). This concentra-
tion range is ideal for the qRT-PCR. All amplification
reactions should have a similar concentration of cDNA.

2. Before loading the PCR plate, and in order to minimize pipet-
ting errors, it is important to prepare master mixes for each
primer pair used. The accuracy of qPCRis highly dependent on
accurate pipetting and thorough mixing of solutions. The pro-
tocol provided here uses SYBR® Green I chemistry, but other
PCR-product detection chemistries could be used (see Note 9).
To prepare the qPCR Master Mix, add components in the
following order:

Volume (per reaction)

Component for 96-well plate (pL)
LC480 SYBR®™ Green I Master (2x) 10

(Roche Diagnostics)

Water 6.4

Primer Forward (10 pM) 0.8

Primer Reverse (10 uM) 0.8

3. Loading the plate: Once all master mixes for each pair of
primers are prepared, start loading the plate by adding first
the Master Mix (18 pL) and then the cDNA samples (2 pL).
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3.4 Quantitative Real
Time PCR: BioMark™
System

Avoid producing bubbles. The final reaction volume in each
well is 20 pL.. Then add the No Template Control (NTC) and
no-Reverse Transcription control (no-RT, or RT) reactions (see
Note 10). Seal the plate with LightCycler® 480 Sealing Foil by
pressing it firmly to the plate surface, using your hand or a
scraper. Sealing the plate properly is crucial to eliminate evapo-
ration at high temperatures.

4. Place the multiwell plate in a standard swing-bucket centrifuge
equipped with a rotor for multiwell plates with suitable adap-
tors. Balance it with a suitable counterweight (e.g., another
multiwell plate). Centrifuge the plate at 1500 x g for 2 min.

5. Load the multiwell plate into the LightCycler® 480 Instrument
and set-up the qPCR program (annealing temperature in the
PCRis primer-dependent):

Temperature (°C) Time Acquisition
Activation 95 10 min None
PCR (45 Cycles) 95 10s None

60 30s None

72 30s Single
Melting 95 2s None

65 15 s None

95 - Continuous
Cooling 40 30s None

BioMark System arrays allow for the automatic combination of sets
of samples with sets of assays, significantly reducing reaction vol-
ume and the number of liquid-handling steps performed during the
experiment. For instance, using the 48 x 48 array (as described in
this protocol), 48 different samples (e.g., time-points in a time-
course experiment) can be tested with up to 48 different assays

(e.g., genes).
1. Specific Target Amplification (STA): This step is recommended
to increase the number of copies of target DNA.
1.1. STA Primer Mix (500 nM):
1.1.1. Pool together 1 pL aliquots of all 100 pM primer

sets to be included in the STA reaction (up to
100 different assays).

1.1.2. Add DNA Suspension Buffer to make the final
volume 200 pL.

1.1.3. Vortex to mix and briefly spin reaction tube.
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1.2. STA Pre-Mix:
1.2.1. In a DNA-free hood, prepare a Pre-Mix for the

STA reaction:
Component Volume (per reaction) (L)
TagMan PreAmp Master Mix 2.5
500 nM pooled STA Primer Mix 0.5
Water 0.75

1.2.2. Add 3.75 pL of STA Pre-Mix for each sample in a 96-well
plate.

1.2.3. Add 1.25 pL of cDNA (at 10-20 ng/pL) to each reaction
well, making a final volume of 5 pL. Include a
no-PreAmplification control: add water instead of cDNA.

1.2.4. Seal the plate properly. Then, vortex and briefly spin the
plate.

1.3. STA thermal cycle reaction:

1.3.1. Place the plate into the thermal cycler and run the
following program (annealing temperature in the
PCR is primer-dependent):

Activation 16 cycles Hold
Temperature (°C) 95 95 60 4
Time 10 min 15 4 min 00

1.3.2. Eliminate the unincorporated primers from the STA ampli-
fication reaction. Prepare Exonuclease Mix as follows:

Component Per 5 L Sample
Water 1.4 pL
Exonuclease I Reaction Buffer 0.2 pL
Exonuclease I (20 units/pL) 0.4 pL

1.3.3. Add 2 pL of Exonuclease Mix to each 5 plL STA reaction.
Vortex, centrifuge, and place in a thermal cycler.

Digest Inactivate Hold

Temperature (°C) 37 80 4

Time 30 min 15 min 00
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1.3.4. Dilute the STA reaction to an appropriate final product
concentration, as shown in the following text. A minimum

dilution of five-fold should be used.

Volume of water or TE Buffer

Volume of STA Rx  5-fold dilution  10-fold dilution  20-fold dilution
7 puL 18 pL 43 pL 93 pL

Store diluted STA products at —20 °C or use immedi-
ately for on-chip PCR.

2. Sample and Assay Mix preparation:

2.1. Prepare Sample mix as shown in the following text:

Volume per inlet

Component with overage (pL)
2x SsoFast EvaGreen Supermix with Low ROX 3.0
20x DNA Binding Dye Sample Loading Reagent 0.3

2.2. In a new 96-well plate aliquot 3.3 pL of Sample mix and add
2.7 pL of each STA and Exo I-treated and diluted sample.

2.3. Seal the plate properly. Then, vortex and spin plate. Keep
on ice.

2.4. Prior to preparing the Assay mix, combine the two primers of
each primer pair making a final concentration of 20 pM.

2.5. Prepare Assay mix as shown in the following text:

Volume per inlet

Component with overage (pL)
2x Assay Loading Reagent 3.0
1x DNA Suspension Buffer 24

2.6. Inanew 96-well plate, aliquot 5.4 pL of Assay mix and add in
1 pL of the 100 pM combined forward and reverse primers
primer pair mix. The final concentration of each primer pair is
5 pM in the inlet and 500 nM in the final reaction.

2.7. Seal the plate properly. Then, vortex and spin the plate. Keep
on ice.

3. Priming the 48 x 48 Dynamic Array™ IFC.

3.1. Inject control line fluid into each accumulator on the chip.
Load the chip within 60 min of priming (refer to instru-
ment manufacturer’s instructions for details).
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3.2. Remove and discard the blue protective film from the
bottom of the chip.

3.3. Place the chip into the IFC controller for the 48 x 48
Dynamic Array IFC.

3.4. Run the Prime script for the 48 x 48 Dynamic Array IFC.

3.5. Pipette 5 pL of each assay and 5 pL of each sample into
their respective inlets on the chip. Avoid creating bubbles
while vortexing and when transferring reagents to the
IFC, failure to do so may result in a decrease in data
quality.

3.6. Place the chip to the IFC controller and run the Load Mix
program.

3.7. After the program has run, take out the chip from the IFC

controller and remove any dust particle from the chip
surface.

3.8. Place the chip in the Biomark System and run the follow-
ing program (annealing temperature in the PCRis primer-

dependent):
Activation 30 Cycles Melting
Temperature (°C) 95 96 60 60 95
Time 60s 5s 20s 3s 1°C/3s

Different methodologies can be used for determination of the
Quantification Cycle, Cq [41] (previously referred to as Ct/Cp/
take off point):

* The threshold cycle method measures the Cq at a constant
fluorescence level. These constant threshold methods assume
that all samples have the same amplicon DNA concentration at
the threshold fluorescence. The strength of this method is that it
is extremely robust, but the threshold value needs to be adjusted
for each experiment.

* The second derivative method calculates Cq as the second deriv-
ative maximum of the amplification curve. It is not user-
dependent and is widely used.

Before performing the actual analysis, it is important to validate
the data according to a variety of criteria (preferably following the
Minimum Information for Publication of Real Time PCR Experi-
ments: MIQE guidelines) (see Note 11, [41]). In particular:

* Check amplification curves. A normal amplification plot has
three distinct phases: linear baseline, exponential, and plateau.

* Check controls (RT-, NTC).



422 Raquel Alvarez-Urdiola et al.

3.5.1 Absolute
Quantification

3.5.2 Relative
Quantification

» Check that the slope of the standard curve is between —3.2 and
—3.5.

» Check technical replicates. They should be within 0.5 Cq of each
other.

* Check melting peaks (when using a binding dye, or probes such
as Molecular Beacons or Scorpions that are not hydrolyzed
during the reaction) to verify that single, specific amplification
products have been synthesized in the reaction.

Absolute quantification relies on measurement to a standards curve
constructed using the real-time PCR data obtained from amplifica-
tion of these standards of known concentrations of template. Com-
monly, standards are derived from purified dsDNA plasmid,
in vitro-transcribed RNA or in vitro-synthesized ssDNA. A stan-
dard curve (plot of Cq value against log of amount of standard) is
generated using different dilutions of the standard. The Cq value of
the target is compared with the standard curve, allowing calculation
of the initial amount of the target. It is important to select an
appropriate standard for the type of nucleic acid to be quantified.
This method requires having the same efficiency of amplification in
all reactions (reactions with experimental samples and reactions
with the external standards). When using absolute quantification
for determination of mRNA concentration, it is usual to correct
absolute copy number of the specific target relative to absolute copy
number of one or more reference genes.

Relative quantification relies on comparing the expression level of a
target gene relative to a reference gene between a control sample
and the test samples. Normalization to reference genes is the most
common method for controlling for variation in qRT-PCR experi-
ments. It is used to measure the relative change in mRNA expres-
sion levels. Many mathematical models are available. Most common
relative quantification methods are:

(a) Pfaftl model [42]: combines gene quantification and normali-
zation into a single calculation (Eq. 1). This model adjusts the
amplification efficiencies (E) from target and reference genes in
order to correct differences between the two assays.

ACq target (control —sample)
o Fez

ACq reference (control —sample)
(Ercfcrcncc)

(1)

(b) 27249 method [43]: This is a simpler version of the first
model. Target and control amplification efficiency (Earger
and  E,cference) are assumed to be maximum (100%, i.e., a
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value of 2, indicating amplicon doubling during each cycle)
(Eq. 2). In addition, the relative expression of the target in all
test samples is compared to that in a control or calibrator
sample.

Ratio=2" [ACq Sample-ACq control] (2)

4 Notes

. y¢eNormis a widely used algorithm to determine the most stable

reference from a given set of candidate genes on the basis of the
M value (the M value is the internal control gene-stability
measure, defined as the average pair-wise variation of a particu-
lar gene with all other control genes; genes with the lowest M
values have the most stable expression) [18]. ge Norm calculates
and compares the M value of each pair of genes, and eliminates
the gene with the highest M value, and then repeats this process
with the remaining genes until the pair of genes with the lowest
M value is identified. Thus, the genes forming this pair are
considered as optimal reference genes among the initial
candidate set.

. The genome-wide analyses performed by Czechowski et al. led

to the identification of many novel reference gene candidates,
with purportedly better expression characteristics than tradi-
tional reference genes [17]. In these analyses the SD/MYV ratio
(SD/mean expression value, i.e., the coefficient of variation, or
CV) for each gene in all the given experimental conditions
(developmental series, abiotic stress series, hormone series,
nutrient starvation and re-addition series, diurnal series, light
series, and biotic stress series) is calculated. The gene that has
the lowest CV value is considered as the gene with the most
stable expression, and therefore a potential reference gene.
Through these analyses, 25 reference genes, including
20 novel and 5 traditional ones, were recommended
[17]. These genes were then validated by qRT-PCR and their
expression stability ranked using the ge Norm algorithm.

. There are specific plates and films for the LC480 system that

have been designed to ensure the best heat transfer from the
thermal block and minimal autofluorescence, which is impor-
tant to achieve a good signal-to-noise ratio in the detection of
amplification products. In this protocol, we suggest using the
LC 480 Multiwell Plate 96 from Roche.

. The RNA preparation should be free of contaminating geno-

mic DNA, so we recommend using a previously tested com-
mercial kit for RNA isolation (see Note 10).
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5. For primer design, it is important to consider the following

points: (1) PCR products should be short (ideal length is from
70 to 250 bp). (2) The gene-specific forward and reverse
primers should have similar melting temperatures (Tm) and
length. (3) Primers should be between 15 and 25 nucleotides
long and with a G/C content of around 50%. (4) Primers
should have low or no self-complementarity to avoid the for-
mation of primer dimers. (5) For the same reason, avoid pairs
of primers that show sequence complementarity at their 3’
ends. (6) Primers that span introns or cross intron/exon
boundaries are advantageous because they allow to distinguish
amplification from cDNA or from contaminant genomic DNA.
Primers should be ordered with desalt purification. Primer
stock solutions should be prepared with DNase /RNase-free
water. Make aliquots to avoid contamination and repeated
freezing /thawing. Original stock of PCR primers should be
stored at —20 °C and working dilutions at 4 °C for up to
2 weeks.

. The presence of liquid nitrogen inside the microcentrifuge

tubes during tissue grinding should be avoided, to prevent
potential loss of tissue by nitrogen spill, or by the popping of
the tube if closed with liquid nitrogen inside. Tubes can be
pre-chilled in liquid nitrogen. As an alternative for grinding the
tissue, mortar and pestle could be used instead of pellet pestles
and an electric drill.

. Both fresh and frozen (—80 °C) tissue can be used as starting

material, and ground plant material can be stored at —80 °C
before RNA purification. However, do not allow the frozen
material to thaw before grinding or before the first solution of
the RNA purification procedure is added.

. Make a 4-step dilution series (1:4 dilutions) from cDNA sam-

ples. To evaluate the efficiency of the PCR reaction, it is impor-
tant to generate at least one standard curve for each primer pair.
A standard curve graph is made by plotting the Ct/Cp values
on the y-axis and the logarithm of the input amounts on the x-
axis. The slope of the line of this plot will give the efficiency of
the reaction according to the equation E = [10A(-1/slope)] _ 1.
slope should be between —3.2 and —3.5 and R* > 0.98.

. SYBR®™ Green I and EvaGreen®™ are the most used dye chemis-

tries, due to cost and simple optimization process. However,
these dyes bind to any double-stranded DNA formed in the
reaction, including primer-dimers and other non-specific reac-
tion products, which may result in an overestimation of the
target concentration. Other methods, such as hydrolysis
probes, may also be used. Probe-based qRT-PCR relies on
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the sequence-specific detection of a desired PCR product. It
utilizes a fluorescently labelled target-specific probe, which
results in increased specificity and sensitivity.

10. No template controls (NTC) should be included for each pair
of primers tested to ensure that there is no reagent contamina-
tion. In these control reactions, water is added instead of
sample, so no amplification is expected. In case the NTC
reaction shows the synthesis of amplification products (i.e.,
the presence of a contaminant), measures such as pipette
decontamination, using new primers aliquots, or thorough
bench cleaning might be necessary. No reverse transcription
controls (no-RT, or RT-) are used to detect the presence of
contaminant genomic DNA in the RNA samples. If the RT-
reaction shows the synthesis of amplification products, the
corresponding RNA samples should be treated with DNase
prior to their use in the reverse transcription reaction. If the
primers were designed to span an intron or an intron/exon
boundary, it is not necessary to perform a no-RT control.

11. MIQE Guidelines [41]. The MIQE guidelines were published
in response to the recognition that several publications contain
little information that describes the qPCR or that gives the
reader the opportunity to determine the quality of the experi-
ment. The result of these omissions is that several publications
contain misleading conclusions based on inadequate quality
control of the technical process. The MIQE guidelines contain
a step-by-step guide and checklist, which leads the experi-
menter through the process of experiment validation. This
has the additional function of providing a framework for pub-
lication analysis by peer reviewers and journal editors. Several
publishing houses are now requiring that MIQE guidelines are
followed for papers containing qPCR data.
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Multi-Omics Methods Applied to Flower Development

Raquel Alvarez-Urdiola, José Tomas Matus, and José Luis Riechmann

Abstract

Developmental processes in multicellular organisms depend on the proficiency of cells to orchestrate
different gene expression programs. Over the past years, several studies of reproductive organ development
have considered genomic analyses of transcription factors and global gene expression changes, modeling
complex gene regulatory networks. Nevertheless, the dynamic view of developmental processes requires, as
well, the study of the proteome in its expression, complexity, and relationship with the transcriptome. In
this chapter, we describe a dual extraction method—for protein and RNA—for the characterization of
genome expression at proteome level and its correlation to transcript expression data. We also present a
shotgun proteomic procedure (LC-MS/MS) followed by a pipeline for the imputation of missing values in
mass spectrometry results.

Key words Protein extraction, RNA extraction, Proteomics, Transcriptomics, Flower development,
LC-MS/MS, Arabidopsis

1 Introduction

The capacity of cells to orchestrate different gene expression pro-
grams is crucial for developmental processes in multicellular organ-
isms, and it is hardwired and encoded in the genome in the form of
cis-regulatory sequences that interact with transcription factors,
co-regulators, and other types of regulatory proteins or RNAs, as
well as of epigenetic marks, altogether determining when, where,
and how genes are expressed. For the past 20 years, the exponential
advances in technologies and informatics tools for generating and
processing large biological datasets (omics) have added new
approaches to development studies in plants. Through the use of
genomics and transcriptomics (in particular, RNA-Seq, ChIP-Seq,
and other high-throughput sequencing-derived methods), the
hierarchical levels of plant genetic and molecular organization are
being described in detail. In particular, several studies of reproduc-
tive organ development have considered genome-wide analyses of
transcription factor DNA-binding and global gene expression
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changes (e.g., [1-5]) and modeled complex gene regulatory net-
works (reviewed in [6-9]). Even so, a global and comprehensive
view of developmental processes would also benefit from the char-
acterization of the corresponding proteome.

The analysis of the proteome of eukaryotic cells is challenging
due to the substantial diversity in the properties of the individual
proteins that compose it (e.g., abundance, stability, molecular
weight, structure, hydrophobicity, hydrophilicity, posttranslational
modifications (PTMs), and so on). Nevertheless, along with an
enhancement of throughput, sensitivity, and resolution of analytical
technologies in MS, computational methods have been developed
focusing on the identification and quantification of proteins in
complex samples [10-13]. In plants, MS-based proteomics
approaches have been applied for the measurement of differential
protein expression or the detection of PTMs (e.g., [14, 15]) in
different tissues and biological processes (reviewed in [13]). Deep
proteome studies have led to the development of proteome atlases
of the major plant organs for different plant species [16-
21]. Besides, cell type-specific proteome studies are crucial for a
better understanding of the unique biological functions and prop-
erties of individual cell types in a tissue [22], as well as subcellular
plant proteomics and predictions [23-25]. As the proteome is in
constant flux, several proteome studies are based on temporal series
during developmental processes or stress responses [26-29].

Furthermore, results from more than one type of omics can be
matched in order to obtain deeper insights into biological processes
[16, 30-33]. These integration studies are usually referred as multi-
omics, trans-omics, or integrated omics in current literature. Quan-
titative proteomics allows to study at a genome-wide level the
correlation between mRNA expression levels and the abundance
of the corresponding proteins (reviewed in [34, 35]), an issue that
has been extensively studied in different species and processes
during the past few years. For instance, in plants combined
transcriptome-proteome analyses have already been used to study
petal shape [36], carotenoid synthesis [37], photoperiodic control
of the proteome [38], or leaf development [39], as well as repro-
ductive development; in particular, embryogenesis [40], male
reproductive development [41-43], and flower development
cither in general [44, 45] or focusing on the functions of specific
proteins [46].

In these combined studies, the interpretation of the existence,
or lack thereof, of correlation between the changes in transcript
dynamics and protein abundance, and its biological meaning, is still
a lingering issue: numerous studies conclude that there is not a
strong correlation between the levels of these macromolecules
[41, 43, 47-51], whereas in others such correlation is more appar-
ent [38—40, 45]. The lack of correlation could be in part derived
from the difficulties to obtain truly comparable datasets at the
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transcript and protein levels, and because the sensitivity of extrac-
tion and quantification techniques for mRNAs and proteins highly
differ. However, the observed differences might also be caused by
posttranslational regulation of protein levels [47], or by their dif-
ferent expression and degradation kinetics, as longer protein half-
lives buffer changes in mRNA levels [48-51]. Time-lapse studies
could be an approach for addressing this gap, as successive analyses
at different time points could allow the discovery of correlative
behaviors of protein and mRNA levels through time [52, 53].

In addition, a major concern in label-free quantitative proteo-
mics that hinders the subsequent data analysis and its comparison
with other omics data is the high rate of missing values. Three types
of missing values can be defined, depending on the nature of the
missingness: (1) missing completely at random (MCAR) and
(2) missing at random (MAR) values, which are due to minor errors
or stochastic fluctuations and to conditional dependencies, respec-
tively; and (3) missing not at random (MNAR) values, which have a
targeted effect [54]. Depending on the nature of these “not
assigned values” (NAs), different methods can be used to impute
them. As there are many types of NAs that coexist in most quanti-
tative datasets, hybrid strategies of imputation could be a better
approach [54, 55].

In this chapter, we describe a protocol for common extraction
of total proteins and RNA from the same Arabidopsis inflorescence
samples to maximize comparability between the proteomic and
transcriptomic data. We also present a shotgun proteomic proce-
dure by liquid chromatography-tandem mass spectrometry
(LC-MS/MS), and a pipeline for the imputation of missing values
in the mass spectrometry results to distinguish the nature of the
missingness and to treat NAs accordingly.

2 Materials

2.1 Protein
Extraction

1. Mortar and pestle.
2. Liquid nitrogen.

w

Microcentrifuge tubes.

Protein low-binding tubes (2 mL).
Isopropanol.

0.3 M guanidine in 95% ethanol.
90% ethanol.

SDS-PAGE 5x bulffer.

E buffer: 125 mM Tris—HCl pH 8.8, 1% (w/v) SDS, 10% (v/v)
glycerol, 50 mM Na,S,05 [56].

AN
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2.2 RNA Extraction

2.3 LC-MS/MS

10.

11.
12.
13.
14.

15.

1. RNase free tubes (1.5 mL).
2. Trizol.

3. Chloroform.

4,
5
6
7

Phenol:chloroform:isoamyl alcohol (25:24:1).

. LiCl 3 M.
. 85% and 100% (v/v) ethanol.
. DEPC water.

. DL-dithiothreitol (DTT) (see Note 1).
. Jodoacetamide.
. Urea.

Ammonium bicarbonate.

. Endoproteinase LysC.

. Trypsin.

. Formic acid.

. MicroSpin C18 columns (The Nest Group, Inc).

. Nano Trap CI18 columns with an inner diameter of 100 pm

packed with C18 particles of 5 pm particle size (Thermo Fisher
Scientific) (optional, depending on the setup of each
laboratory).

Reverse-phase  chromatography columns (Cl18, 2 pm,
15-50 cm length) (see Note 2).

Buffer A: 0.1% formic acid in water.
Buffer B: 0.1% formic acid in acetonitrile.
Bovine serum albumin (New England Biolabs cat # P8108S).

Orbitrap Eclipse mass spectrometer (Thermo Fisher Scientific)
(see Note 3).

EASY-nLC 1000 (Thermo Fisher Scientific).

3 Methods

3.1 Protein
Extraction

. With a different mortar and pestle for each sample, grind the

tissue (i.e., inflorescences) with liquid nitrogen until obtaining
a whitish fine powder (se¢ Notes 4 and 5).

. Place the powder in a microcentrifuge tube (~250 mg per

sample).

. Add 1 mL of Trizol, vortex for at least 15 s until it is completely

homogenized, and incubate on ice for 5 min. This step must be
done in an extraction hood.
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Aqueous

Interphase

Organic phase

Fig. 1 Picture of the three phases formed in step 4 of the protein extraction
method (see Subheading 3.1)

4. Add 200 pL of chloroform, vortex for 15 s, incubate on ice for
5 min, and centrifuge at 4 °C for 15 min at maximum speed (see
Note 6) (Fig. 1).

5.a. Transfer 500-600 pL of the top, aqueous phase into a clean
microcentrifuge tube (RNase free) and add the same volume
of phenol:chloroform:isoamyl alcohol, vortex for 10 s, incu-
bate on ice for 5 min, and centrifuge at 4 °C for 15 min at
maximum speed (to continue with RNA extraction from the
sample, see Subheading 3.2).

5.b. Add 300 pL of ethanol 100% to the organic phase in the
original microcentrifuge tube to continue with protein
extraction. Incubate on ice.

6. Centrifuge for 10 min at 2000 g. Place the supernatant in a
clean 2 mL microcentrifuge tube (protein low bind).

7. Add 1 mL ofisopropanol and incubate at room temperature for
10 min (see Note 7).

8. Centrifuge at 4 °C for 10 min at 12,000 g. Discard superna-
tant, which contains phenol, into a container adequate for its
controlled elimination.

9. Wash by resuspending the pellet in 2 mL of a solution of 0.3 M
guanidine in 95% ethanol (see Note 8).

10. Sonicate in a sonication bath for 5 min and centrifuge at 4 °C
for 5 min at 8000 g.
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11.

12.

13.

14.

3.2 RNA Extraction 1.

3.3 LC-MS/MS 1.

3.3.1 Sample
Preparation

Repeat the washing procedure (steps 9 and 10) twice. The
obtained pellet can be stored at —20 °C for months.

Wash again by the same procedure (steps 9-11) with 90%
ethanol.

Let the pellet dry for a few minutes and resuspend in an
appropriate buffer (see Note 9).

Quantify by Bradford with 1 and 2 pL of sample. Add
SDS-PAGE 5x butffer to obtain a final 1% concentration when
loading the gel.

Transfer approximately 500 pL of the top, aqueous phase after
the centrifugation in protein extraction step 5.a to a clean
microcentrifuge tube (RNase free) and add 1 volume
(500 pL) of pure isopropanol. Shake and mix.

. Incubate on ice for 15 min, centrifuge at 4 °C for 10 min at

maximum speed, and discard supernatant.

. Resuspend the pellet in 750 pL of LiCl 3 M, incubate on ice for

10 min, and centrifuge at 4 °C for 10 min at maximum speed.

. Discard supernatant and wash the pellet with 500 pL of ethanol

85% (v/v), vortexing gently for 10 s.

. Centrifuge at 4 °C for 10 min at maximum speed and discard

supernatant.

. Let the pellet dry and resuspend in 21 pL of diethylpyrocarbo-

nate (DEPC)-treated water (see Note 10).

. Sample quantification with NanoDrop spectrophotometer.

Prepare or dissolve protein samples (see Subheading 3.1, step
13)in 6 M urea 200 nM ammonium bicarbonate.

. Reduce the samples (10 pg of protein) with 30 nmol DTT at

37 °C for 1 h.

. Alkylate the samples (10 pg of protein) in the dark with

60 nmol of iodoacetamide at 25 °C for 30 min.

. Dilute the protein extract to 2 M urea with 200 mM

ammonium bicarbonate for digestion with endoproteinase
LysC (1:10 w:w), and incubate 37 °C overnight.

. Dilute twofold with 200 mM ammonium bicarbonate for tryp-

sin digestion (1:10 w:w), and incubate at 37 °C for 8 h.

. After digestion, add formic acid (10% of the final volume) to

acidify the peptide mix.

. Desalt the samples with MicroSpin C18 columns prior to

LC-MS/MS analysis, following manufacturer’s instructions.
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and Mass Spectrometric
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3.3.3 Data Analysis

3.3.4 Treatment of
Missing Values and Data
Imputation
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. Load the peptides onto the analytical column (C18, 2 pm,

15-50 cm length).

. Separation of the peptides by reverse-phase chromatography

with the corresponding columns.

. Chromatographic gradients start at 93% buffer A and 7% buffer

B with a flow rate of 250 nL/min for 5 min and gradually
increase 65% buffer A and 35% buftfer B in 60 min.

. After each analysis, wash the column for 15 min with 10%

buffer A and 90% buffer B.

. Peptide eluates are dried in a vacuum centrifuge, and resus-

pended with buffer A at a final concentration of 1 pg/pL prior
to analysis by LC-MS/MS.

. Operate the mass spectrometer to acquire peptide spectra (see

Note 11).

. Search the acquired spectra against the desired peptide data-

base (see Note 12), plus a list of common contaminants (sug-
gested: [57]), and all the corresponding decoy entries.

. Set the parameters accordingly to the experimental and mass

spectrometric settings and, if appropriate, select variable post-
translational modifications to be detected (see Note 13).

. Determine the protein abundance estimation [58, 59].

. Add the information to the appropriate repositories (see

Note 14).

. Missing values should first be classified as M(C)AR or MNAR

depending on their nature. For instance, for a given protein, if
the data from all replicates of the same condition or time point
show NAs, probably they are MNAR missing values, whereas if
there is only one missing value out of four replicates, it is
probably a MAR. Other cases may be more difficult to classify
as M(C)AR or MNAR, for instance if there are two NAs out of
four replicates. In those instances, other parameters can be
considered, for example, the presence or absence of NAs in
the adjacent time points (in a time-course experiment) or in the
most similar samples in the experiment.

2. Discard all proteins with MNARs or MARs in every sample.
. Replace MNARSs by the minimum of detection of the dataset

(deterministic minimum imputation method [60]).

. Estimate the remaining MARs and MCARs by other imputa-

tion method (e.g., k-nearest neighbor (kNN) imputation

[61]).
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3.3.5 Example:
Treatment of Missing
Values in a Time Series
Experiment

A AP3
Before RA After RA kNN imputed
§25- : = i
gzo— o0 T o6 T o6
5
215-....-..?.....?....RACI&SS
012345012345012345 e RD
Day
ubD
B TFL1 o RU
Before RA After RA kNN imputed uu

25 1
15 @ @ ee

012345012345012345
Day

Abundance
S

Fig. 2 Stringent analysis to identify reliably undetected and detected fraction of a
proteome. The analysis allows to impute values for MAR and MNAR considering
their biological meaning. The figure illustrates results from a time-course
experiment using the Arabidopsis floral induction system pAP1:AP1-GR apical
[1], in which samples were collected at 1-day intervals after floral induction (day
0), up to day 5. Log2 TOP3 abundances through time of two flower development
regulators, APETALA 3 (AP3) (a) and TERMINAL FLOWER 1 (TFL1) (b), before and
after the “reliability analysis” (RA), and after kNN imputation (from left to right)
(n = 4 biological replicates)

This missing value classification and data imputation approach can
be readily used in, for instance, time-course developmental studies
[1, 62], as illustrated in Fig. 2 as an example. In this case, the data
processing pipeline consisted on:

1. Classification of each time point (day) for each protein depend-
ing on its number of NAs (number of replicates with missing
values at a certain time point) and the number of NAs of its
immediately adjacent days (neighbors).

(a) Neighbors are considered as:

* Unreliable neighbor: Over 50% NAs.

* Reliable neighbor: Up to 50% NAs (included).
(b) Initial and final time points are considered as:

* Reliably undetected: 100% NAs (MNARs).

* Unreliably undetected: Over 50% NAs (included)
(unclear MNARs) + unreliable neighbor.



Flower Development Multi-Omics 503

* Unreliably detected: Over 50% NAs (included)
(unclear MARSs) + reliable neighbor.

* Reliably detected: Up to 35% NAs (MARs).
(¢c) Intermediate time points are considered as:
* Reliably undetected: 100% NAs + unreliable neighbors
(MNARs).
e Unreliably = undetected: Over 50% NAs
(included) + unreliable neighbors (probably MNARs).

* Unreliably detected: Over 50% NAs (included) + reli-
able neighbors (probably MARs).

+ Reliably detected: Up to 35% NAs (MARs).

. Replace reliably undetected time points by the minimum of

detection of the dataset (deterministic minimum imputation
method [60]).

. Replace unreliably undetected time points by NAs in all

replicates.

. Discard all proteins which are reliably or unreliably undetected

in every time point.

. Estimate the remaining NAs by k-nearest neighbor (kNN)

imputation (k= 10) [61].

4 Notes

. Reagents for LC-MS/MS can be obtained from several suppli-

ers. As an example, we list here the specific products we use:
urea (GE Healthcare; Sigma-Aldrich, P/N 17-1319-01),
ammonium bicarbonate (BioUltra, >99.5% (T); Sigma-
Aldrich, P/N 09830), iodoacetamide (BioUltra; Sigma-
Aldrich, P/N 11149), DL-dithiothreitol (for electrophoresis,
>99%; Sigma-Aldrich, P/N D9163), formic acid for analysis
EMSURE® (ACS Reag. Merck, P/N 1.00264.0100),
sequencing grade modified trypsin (Promega, P/N V5111),
and lysyl endopeptidase (Wako Chemicals GmbH, P/N
129-02541).

. Suitable reverse-phase chromatography columns are, for

instance, 25 ¢cm columns with an inner diameter of 75 pm,
packed with 1.9 pm C18 particles (Nikkyo Technos Co.); and
50 cm columns with an inner diameter of 75 pm, packed with
2 pm C18 particles (EASY-Column, Thermo Fisher Scientific,
ES903).

. This is just a concrete example of a “modern high-resolution

mass spectrometer”; other instruments could be used.

. For sample collection, to reduce sample contamination with

human proteins (i.e., keratins and collagen), make sure to
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10.
11.

12.

13.

always use nitrile gloves (instead of latex) and laboratory coats.
Pipets, materials, and solutions exclusively used for proteomics.
Take precaution to avoid hair contamination. If flower organs
or tissues are going to be dissected, cool tweezers and any other
sampling instrument with liquid nitrogen.

. If samples are grown in petri dishes (e.g., Arabidopsis seed-

lings), discard white clots which correspond to agar.

Three phases are formed, the aqueous phase contains RNA
(~550 pL, transparent), the interphase, DNA (white), and the
organic phase, proteins and lipids (~450 pL, pink) (Fig. 1).

. It is possible to stop the protocol here and store the samples at

—20 °C for a few days.

. Use a pipette crushing against the bottom of the tube and leave

in a colloidal suspension as thin as possible.

Resuspend final proteins in acetonitrile, acetic, or formic acid,
depending on the analysis protocol. For Western Blot, use E
buffer [56]. The bufter volume should be chosen depending
on the desired protein concentrations, varying from 20 to
50 pL.

Use high pure water, reagents, and products.

1-2 pg of peptides are loaded onto an analytical column
(25 cm, C18 2 pm particle size) using an autosampler device
(e.g., EASY nLC 1000, Thermo Fisher Scientific) and the
peptides are then separated by reverse-phase chromatography
using a water-acetonitril chromatographic gradient. Modern
high-resolution mass spectrometers are recommended for data
acquisition (e.g., Orbitrap or TOF). The mass spectrometer is
operated in data-dependent acquisition (DDA) mode, in which
a full MS scan is recorded in each cycle, followed by the
fragmentation of the 10-30 most intense precursor ions to
obtain the fragment ion spectra.

The results may vary significantly depending on the character-
istics of the reference database for peptide identification. It is
possible to use public repositories of proteins for the different
organisms or to design a specific database.

Once the database has been constructed, the raw LC-MS/MS
data needs to be interpreted using a database search engine
(such as SEQUEST [63], Mascot [64], Phenyx [65], X! Tan-
dem [66], OMSSA [67], pFind [68], InsPecT [69], ByOnic
[70], Comet [71], MS-GF+ [72], MaxQuant [73], or MSTra-
cer [74]). As example, the Mascot search engine (v2.6) can be
used, using the search parameters accordingly to the experi-
mental and mass spectrometry settings. For peptide identifica-
tion a precursor ion mass tolerance below 10-20 ppm is
recommended, whereas the fragment ion mass tolerance can
go from 10 to 20 ppm for high-resolution mass analyzers
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(Orbitrap, TOF) to 0.5 Da if a linear ion trap is used for the
analysis of the tandem mass spectra. Common peptide mod-
ifications such as oxidation of methionine and N-terminal pro-
tein acetylation are used as variable modifications. False
discovery rate (FDR) in peptide identification is set to a maxi-
mum of 1%.

14. Share data and results in a public repository. Data sharing in the
public domain is the standard for omics research and a require-
ment for publication. For proteomics, the Proteomics IDEnti-
fications (PRIDE) database (https://www.ebi.ac.uk/pride/)
at the European Bioinformatics Institute (EMBL-EBI, Hinx-
ton, Cambridge, UK) has enabled public data deposition of
MS data since 2004, and its archival component has become
the largest repository for proteomics data sharing worldwide
[75]. The PRIDE database provides access to most of the
experimental proteomics data described in MS-related scien-
tific publications.
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