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Abstract 

The onset of flower formation and the process of flower development are 

excellent paradigms for developmental studies in plants as they are governed 

by complex regulatory networks. Extensive forward and reverse genetic 

analyses have led to the identification of many key regulatory genes that form 

part of these networks. Additional factors are now being characterized at the 

genome-wide level using multi-omics integrative methods. The genome-

wide characterization of regulatory networks is key to understand, and 

eventually manipulate, the basis of plant development and physiology. 

However, and despite these advances, the emergent global, dynamic view of 

flower developmental processes is lacking an important component: the 

proteome. Current mass spectrometry methods now allow exploring in 

depth the composition of a proteome in its expression and complexity, its 

relationship with the transcriptome and even its dynamic posttranslational 

modifications. In recent years, it has also become evident that there is a 

substantial and still uncharted fraction of eukaryotic proteomes that is 

mainly composed of small, unannotated proteins and peptides (the ‘non-

conventional’ peptidome), with functions yet to be discovered.  

The Arabidopsis genome was sequenced 20 years ago. Since then, there have 

been plenty of public data concerning transcriptomes and their modulation 

throughout organ development, while also describing its plasticity in 

response to the environment. Conversely, the Arabidopsis proteome is far 

less comprehensively characterized. To fulfil this gap, a promising approach 

is the use of mass spectrometry methods for integrating its data with RNA 

sequencing. In this Thesis, the pAP1:AP1-GR ap1 cal Arabidopsis floral 

induction system was used to characterize genome expression at the 

proteome level throughout early Arabidopsis flower development, and its 

correlation to unbiased transcript expression data. Shotgun proteomic 

procedures (LC-MS/MS) and transcript profiling experiments (RNA-seq) 

were performed following a temporal series of five subsequent days after the 

activation of the flower developmental program. Almost 9,000 proteins and 
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around 23,000 transcripts were identified, of which 2,037 proteins and 8,125 

transcripts showed significant abundance changes throughout the time-

course. These experiments allowed to substantially expand the size or scope 

of the transcriptome (i.e., collection of genes) previously known to change its 

expression during the early stages of flower development; to identify RNA-

protein pairs in which RNA and protein showed similar (correlated) or 

opposite (anti-correlated) expression trajectories and that are involved in 

different processes, such as photosynthesis, fatty acid metabolic processes, 

or amino acid biosynthesis; and, through the combined analysis of this novel 

transcriptomic dataset and previously published AP1 genome-wide binding 

data (ChIP-seq), identify novel putative AP1 direct targets.  

Eukaryotic genomes contain many unannotated short open reading frames 

(sORFs) that, localized in different types of RNA molecules, including in long 

non-coding RNAs (lncRNAs), may encode and produce biologically functional 

peptides. Part of this Thesis is focused on the characterization of the 

Arabidopsis flower peptidome, using the floral homeotic mutants apetala1, 

apetala2, apetala3, pistillata, and agamous in comparison to the wild type. 

For peptide identification by LC-MS/MS, an extensive database of 

hypothetical novel Arabidopsis peptides was created. It comprised putative 

surf-encoded peptides (SEPs) from intergenic regions, UTRs, ‘non-coding’ 

RNAs and other transcripts. In total, 1,874 hypothetical peptides were 

detected by mass spectrometry, from which, 132 peptides were selected as 

candidates for further studies (60 of them were also predicted to be 

specifically expressed, or at least enriched, in one type of floral organ). 

Around 25% of the 132 peptide candidates belong to putative gene families 

in A. thaliana, and 103 have possible homologs in other plant species. In 

addition, different gene expression patterns for several peptide candidates 

were identified, with many of them showing specific expression in stamens 

during flower development.  
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Resumen 

El inicio de la formación floral y el posterior desarrollo de las flores son 

paradigmas excelentes para los estudios de desarrollo en plantas, ya que se 

rigen por complejas redes de regulación. Gracias a análisis genéticos 

extensivos directos e inversos ha sido posible identificar multitud de genes 

reguladores clave para estos procesos que forman partes de dichas redes de 

regulación. Actualmente, hay una serie de factores adicionales que se están 

caracterizando a nivel del genoma gracias a métodos de integración de 

diferentes ómicas (‘multi-omics’). La caracterización de las redes de 

regulación a nivel del genoma global es clave para entender, y eventualmente 

manipular, las bases del desarrollo y la fisiología de las plantas. Sin embargo, 

y a pesar de estos avances, la visión global y dinámica del proceso de 

desarrollo floral carece de un componente fundamental: el proteoma. Los 

métodos actuales de espectrometría de masas permiten explorar en 

profundidad la composición de un proteoma en su expresión y complejidad, 

su relación con el transcriptoma e incluso sus modificaciones 

postraduccionales. En los últimos años también se ha puesto de manifiesto 

que existe una parte sustancial de los proteomas eucariotas que no está 

anotada y está compuesta por péptidos y proteínas sin caracterizar (el 

peptidoma ‘no convencional’), con funciones todavía por descubrir.  

El genoma de Arabidopsis se secuenció hace 20 años. Desde entonces, 

diversos repositorios públicos han recogido información acerca de su 

transcriptoma y su modulación a lo largo del desarrollo, describiendo 

también su plasticidad en respuesta al ambiente. En cambio, la 

caracterización del proteoma de Arabidopsis ha sido mucho menos 

exhaustiva. En este respecto, es posible integrar la espectrometría de masas 

y la secuenciación de RNA. En esta Tesis, el sistema de inducción floral 

pAP1:AP1-GR ap1 cal se ha utilizado para caracterizar la expresión génica a 

nivel de proteoma a lo largo del desarrollo floral temprano de Arabidopsis, y 

su correlación con datos de expresión del transcriptoma. Se han combinado 
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métodos de secuenciación de proteínas (LC-MS/MS) y experimentos para la 

anotación del transcriptoma (RNA-seq) siguiendo una serie temporal de los 

cinco días posteriores a la activación del programa de desarrollo floral. Se 

identificaron casi 9000 proteínas y unos 23000 genes, de los cuales, 2037 

proteínas y 8125 genes mostraron cambios significativos en su abundancia a 

lo largo de la serie temporal. Estos experimentos han permitido ampliar 

notablemente el tamaño de la colección de genes conocidos por tener 

cambios en sus niveles de expresión a lo largo de los estadios tempranos del 

desarrollo floral; identificar parejas RNA-proteína en las que ambas 

moléculas mostraban un patrón de abundancias similar (correlacionados), u 

opuesto (anti-correlacionados) y que están involucradas en diferentes 

procesos, como la fotosíntesis, el metabolismo de ácidos grasos o la 

biosíntesis de aminoácidos; y, gracias al análisis combinado de estos nuevos 

datos de transcriptómica y datos previamente publicados sobre la unión de 

AP1 en todo el genoma (ChIP-seq), identificar posibles dianas de AP1 nuevas. 

Los genomas eucariotas contienen muchos marcos de lectura abiertos cortos 

(sORFs) que, localizados en diferentes tipos de moléculas de RNA, incluyendo 

RNA largos no codificantes (lncRNAs), pueden codificar y producir péptidos 

biológicamente funcionales. Parte de esta Tesis está enfocada a la 

caracterización del peptidoma floral de Arabidopsis, utilizando los mutantes 

homeóticos de floración apetala1, apetala2, apetala3, pistillata y agamous en 

comparación con las plantas de tipo silvestre. Para identificar péptidos por 

LC-MS/MS, se creó una extensa base de datos que incluye posibles péptidos 

codificados en sORFs (SEPs) en regiones intergénicas, UTRs, RNAs “no 

codificantes”, y otros transcritos. En total se identificaron 1874 péptidos 

hipotéticos, de los cuales 132 fueron seleccionados como candidatos para 

otros análisis (además se predijo que 60 de ellos podrían estar expresados 

específicamente, o al menos enriquecidos, en alguno de los tipos de órganos 

florales). En torno al 25% de los 132 péptidos candidatos pertenecía a una 

posible familia de genes en A. thaliana, y 103 tenían al menos un homólogo 

en otras especies de plantas. Además, se encontraron diferentes patrones de 

expresión para muchos de los péptidos candidatos, en concreto, la mayoría 

mostró expresión específica en los estambres a lo largo del desarrollo floral.  
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Resum 

L’inici de la formació floral i el posterior desenvolupament de les flors són 

paradigmes excel·lents en l’estudi del desenvolupament de plantes, ja que es 

regeixen per complexes xarxes de regulació. Gràcies a anàlisis genètiques 

extensives directes i inverses ha sigut possible identificar multitud de gens 

reguladors clau en aquets processos que formen part d’aquestes xarxes de 

regulació. Actualment, hi ha una sèrie de factors addicionals que s’estan 

caracteritzant a nivell del genoma gràcies a mètodes d’integració de diferents 

òmiques (‘multi-omics’). La caracterització a nivell del genoma global es clau 

per a entendre, i eventualment, manipular les bases del desenvolupament i 

la fisiologia de les plantes. Tanmateix, i a pesar d’aquets avançaments, la visió 

actual i dinàmica d’aquets processos de desenvolupament manca d’un 

component fonamental: el proteoma. Els mètodes actuals d’espectrometria 

de masses permetran explorar en profunditat la composició d’un proteoma 

en la seva expressió i complexitat, la seva relació amb el transcriptoma, les 

modificacions postraduccionals dinàmiques i, fins i tot, la seva composició 

general. Als últims anys s’ha posat de manifest que existeix una part 

substancial dels proteomes eucariotes que no està anotada i que està 

composta per pèptids i proteïnes sense caracteritzar (el peptidoma ‘no 

convencional’), amb funcions encara desconegudes.  

El genoma d’Arabidopsis es va seqüenciar fa 20 anys. Des-de llavors, diversos 

repositoris públics han recogut informació sobre el seu transcriptoma i la 

seva modulació durant el desenvolupament, descriuen també la seva 

plasticitat en resposta a l’ambient. En canvi, la caracterització del proteoma 

d’Arabidopsis ha sigut molt menys exhaustiva. En aquest sentit, és possible 

integrar l’espectrometria de masses i la seqüenciació de RNA. En aquesta 

Tesi, el sistema d’inducció floral pAP1:AP1-GR ap1 cal ha sigut utilitzat per 

caracteritzar l’expressió gènica a nivell de proteoma al llarg del 

desenvolupament floral inicial d’Arabidopsis, i la seva correlació amb dades 

d’expressió del transcriptoma. S’han combinat mètodes de seqüenciació de 

proteïnes (LC-MS/MS) i experiments d’anotació de transcriptoma (RNA-seq) 
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a una sèrie temporal durant els cinc dies posteriors a l’activació del programa 

de desenvolupament floral. Es van identificar quasi 9000 proteïnes i uns 

23000 gens, dels quals, 2037 proteïnes i 8125 gens van mostrar canvis 

significatius en la seva abundància al llarg de la sèrie temporal. Aquets 

experiments han permès ampliar notablement la mida de la col·lecció de gens 

coneguts per tenir canvis al seus nivells d’expressió al llarg dels estadis 

primerencs del desenvolupament floral; identificar parelles RNA-proteïna a 

les que ambdues molècules mostraven un canvi als seus nivells d’expressió 

similars (correlacionats) o oposats (anti-correlacionats) i que estan 

involucrades a diferents processos, com la fotosíntesi, el metabolisme d’àcids 

grassos o la biosíntesi d’aminoàcids; i, gràcies a l’anàlisi combinat d’aquets 

nous dades de transcriptòmica i dades prèviament publicats sobre la unió 

d’AP1 a tot el genoma (ChIP), identificar possibles dianes d’AP1 noves.  

Els genomes eucariotes contenen molts marcs de lectura oberts corts 

(sORFs) que, localitzats a diferents tipus de molècules de RNA, inclouen RNA 

llargs no codificants (lncRNAs), poden codificar pèptids biològicament 

funcionals. Part d’aquesta Tesi està enfocada a la caracterització del 

peptidoma floral d’Arabdopsis, fent servir els mutants homeòtics de floració 

apetala1, apetala2, apetala3, pistillata i agamous en comparació amb les 

plantes de tipus silvestre. Per identificar pèptids, es va crear una extensa base 

de dades que va incloure potencial pèptids codificats en sORFs (SEPs) en 

regions intergèniques, UTRs, RNAs “no codificants” i altres transcrits. En 

total, es van identificar 1874 pèptids, dels quals 132 van ser seleccionats com 

candidats per altres anàlisis (a més, es va predir que 60 d’aquets estarien 

expressats específicament, o almenys enriquits, en algun dels tipus d’òrgans 

florals). Aproximadament 25% dels nous SEPs pertanyen a una possible 

família gènica en A. thaliana, i 103 té possibles homòlegs en altres especies 

de plantes. A més, es van trobar diferents patrons d’expressió per molts dels 

pèptids candidats, concretament, la majoria presentava expressió específica 

als estams durant el procés de desenvolupament floral.  
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Premises and hypothesis 
This Thesis is built on the following premises:  

1) Integrative multiomics analyses provide a wider interpretation of 

biological processes compared to approaches solely based on one 

type of omics.  

2) Abundance levels of proteins and their corresponding mRNAs are not 

necessarily correlated.  

3) Time-series analyses can provide a broad information on the 

fluctuating dynamics of regulatory networks controlling flower 

development.  

4) The true extent of the peptidome of an organism is difficult to 

estimate due to the several possible origins for peptides and technical 

and experimental issues in peptide detection and identification. 

5) Selection of a proper extraction method is key for peptide LC-MS/MS 

studies.  

 

Based on the aforementioned premises, the following hypothesis is 

proposed for this Thesis:  

“A more global understanding of the flower development process can be 

achieved from the combination of proteomics, peptidomics and 

transcriptomics studies.” 

 

The general aim of this work is to characterise the proteome of Arabidopsis 

in its expression and complexity, relationship with the transcriptome, and 

even in its composition, since it has become clear that plant genomes encode 

a substantial number of yet unknown peptides, and peptides play crucial 

roles in plant development and physiology. 
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Objectives 

This Thesis combines genomic and proteomic technologies to advance 

towards the goal of a complete understanding of the genome-wide regulatory 

network of flower development in Arabidopsis, as well as to help 

understanding the functional information encoded in its genome, with a 

focus on the peptidome.  

The specific objectives for this PhD Thesis are:  

Aim 1.- To establish a chronology of protein expression throughout (early) 

flower development and correlate these trajectories to unbiased transcript 

expression data. 

1.1 To perform shotgun proteomics experiments with the pAP1:AP1-GR 

ap1 cal floral induction system. 

1.2 To develop a data analysis pipeline for the proteomics time-course 

data. 

1.3 To perform transcript profiling experiments (RNA-Seq). 

1.4 To correlate proteomics and transcriptomics data analyses. 

Aim 2.- To characterise the flower Arabidopsis peptidome (sORFs and hidden 

coding sequences in the Arabidopsis genome) and start deciphering its roles in 

flower development. 

2.1 To optimise a peptide extraction protocol and perform shotgun 

peptidomics experiments using the Arabidopsis floral organ identity 

mutants. 

2.2 To develop a data analysis pipeline for the peptidomics data. 

2.3 To identify novel, sORF-derived, unannotated peptides and analyse 

their intrinsic characteristics. 

2.4 To characterise a group of selected peptides via transgenic lines 

expressing reporter constructs and loss-of-function mutants. 
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Chapter 1. General introduction (I) 

1.1 Key points to understand flower development 

The development of multicellular organisms depends on the capacity of cells 

to orchestrate a wide variety of gene expression programs, which result in 

the presence, absence, and differential accumulation of RNAs and proteins 

and allow the differentiation of organs and tissues. This capacity largely 

relies on the genome, in the form of cis-regulatory sequences that interact 

with transcription factors, co-regulators, and other types of regulatory 

proteins or RNAs, and in the structural organization of the genome, 

controlled by histones and their modifications, as well as by other epigenetic 

processes. These elements determine when, where, and how genes are 

expressed.  

The onset of flower formation and the process of flower development in the 

Angiosperms constitute excellent paradigms for developmental studies in 

plants. Extensive genetic analyses have led to the identification of many key 

regulatory genes controlling these processes, and their corresponding gene 

regulatory networks are now being characterized at the genome-wide level 

using omics technologies.  

Inflorescence development and architecture can widely vary among plant 

species, yet the basic organization of floral structure is extensively 

conserved. In angiosperms, flowers are formed when the shoot apical 

meristem (SAM) is transformed into an inflorescence meristem (IM) after the 

transition from vegetative to reproductive behaviours. This crucial shift from 

vegetative to reproductive growth is followed by the activation of a small 

number of floral meristem identity genes, such as LEAFY (LFY) and 

APETALA1 (AP1), which specify floral meristems. These genes were 

originally identified in mutant screens (i.e., forward genetics approach) of 

plants with defects in early flower development. Floral meristems (FM) arise 

from the flanks of the IM and develop into flowers (CHAHTANE ET AL., 2023). 
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Flowers are frequently composed of four different classes of organs arranged 

in four whorls. The most exterior first and second whorls include the sepals 

and petals, respectively, while the internal third and fourth whorls represent 

the pollen-producing stamens and carpels, respectively. The appropriate 

development of a flower requires these whorls to be formed in a sequential 

manner, following a canonical pattern. In the thale or mouse-ear cress 

Arabidopsis thaliana, a plant model species belonging to the Brassicaceae 

family, sepal primordia are initiated first, followed by those determining 

petals and stamens. After that, carpels initiate and develop from the centre of 

the developing flower (SMYTH ET AL., 1990). Previous studies have identified 

several transcription factors and other regulatory molecules as responsible 

for initiating floral developmental programs in a partially overlapping 

manner. Understanding their regulatory networks has been a long-standing 

challenge in plant developmental genetics in relation to the specification of 

the distinct floral organs.  

1.1.1 Floral organ identity: the ABC model 

The organ identity genes, responsible for the formation of different organs in 

the four whorls, are activated by AP1 and LFY after the initiation of the floral 

meristems. The ABC model of flower organ identity describes how floral 

organs are specified by the domain-specific interaction of homeotic genes 

coding for different transcription factors and by their target genes. This 

model was proposed based on genetic studies in the A. thaliana floral 

homeotic mutants, apetala1 (ap1), ap2, ap3, pistillata (pi) and agamous (ag), 

in which there is a replacement of one type of floral organ by another 

(BOWMAN ET AL., 1991; COEN & MEYEROWITZ, 1991). The ap1 and ap2 mutants 

show organ identity defects in the first and second whorls (determining 

sepals and petals). In ap1, sepals are transformed into bract-like organs, and 

petals are absent; while in ap2, petals are missing or transformed into 

stamens and sepals are transformed into carpel-like structures. The mutants 

ap3 and pi are defective in the second and third whorls (petals and stamens): 

petals are replaced by sepals, and stamens, by carpels. Finally, in ag, stamens 

are replaced by petals, and carpels, by extra whorls of sepals and petals 

(BOWMAN ET AL., 1991) (Figure 1.1).  
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Figure 1.1. Floral homeotic mutants of Arabidopsis.  

Mature flowers of A) Landsberg erecta (Ler, wild type flower), 

B) ap1-1, C) ap2-2, D) ag-1, E) pi-1, and F) ap3-3. Taken from 

(WELLMER ET AL., 2004). 

As described by the ABC model, the activities of the genes being affected on 

each homeotic mutant can be assigned to three different functions, namely 

‘A’ (represented by AP1 and AP2 genes), ‘B’ (embodied by AP3 and PI), and ‘C’ 

(AG) with each function required for organ specification in different 

meristematic regions. A-function genes specify sepals, and together with B-

function genes determine petals, while B- and C-function genes act together 

leading stamen development. The C-function genes alone control carpel 

formation (COEN & MEYEROWITZ, 1991).  

Modifications and expansions of the ABC model – but still maintaining its 

basic tenets – have been developed through the years in order to 

accommodate newly identified genes and gene functions as well as the floral 

diversity that exists among angiosperm species (e.g., (PAJORO, BIEWERS, ET AL., 

2014; THOMSON & WELLMER, 2019)). The original model was extended to the 

ABCDE model by (THEIßEN, 2001; THEIßEN & SAEDLER, 2001), with the 

inclusion of D-function genes, such as SEEDSTICK (STK), SHATTERPROOF1 

(SHP1) and SHP2, whose encoded proteins interact with E-class proteins to 

control ovule development (COLOMBO ET AL., 2010; FAVARO ET AL., 2003; 

PINYOPICH ET AL., 2003). On the other hand, E-function genes, like SEPALLATA1 

(SEP1), SEP2, SEP3, and SEP4, are involved in the specification of all types of 

flower organs (DITTA ET AL., 2004; PELAZ ET AL., 2000).  
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As A-function mutants could only be found in A. thaliana, and A- and E-

function genes are both involved in specifying floral meristems, a modified 

(A)BCD model was proposed, with (A) incorporating both A- and E-functions 

(CAUSIER ET AL., 2010; F. WU ET AL., 2017). Similarly, C- and D-functions in the 

Angiosperms are traced back to a combined C/D-function provided by AG-

like genes in extant gymnosperms and stem group seed plants (GRAMZOW ET 

AL., 2014). Hence, the model could be modified again into an (A)B(C) model 

with (C) encompassing C- and D-function genes. The (C) function can specify 

reproductive organ identity, and its expression distinguishes reproductive 

from non-reproductive organs (THEIßEN ET AL., 2016) (Figure 1.2).  

 
Figure 1.2. Proposed models for organ identity determination in 

A. thaliana.  

The upper part of the figure depicts the tetrameric protein complexes 

formed by different classes of homeotic genes described in the floral 

quartet model. Each combination functions in specific whorls of the 

flower to specify floral organ identity. The colours of the proteins 

(circles) indicate the classes to which they belong. “(A)” represents the 

combination of A- and E-class genes, and “(C)”, the combination of C- 

and D-class genes. Adapted from (THOMSON & WELLMER, 2019). 

1.1.2 Molecular control of flower development 

The majority of (A)B(C) genes code for MADS-domain transcription factors 

(MTFs) with the exception of AP2 which codes for an Ethylene Response 

Factor (ERF) type transcription factor (TF). MADS-domain proteins harbour 

DNA-binding, nuclear localization and protein-protein interaction domains 

required to fulfil their roles as (A)B(C) proteins. The floral quartet model 

describes how the flower organ identity is specified during development by 
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tetrameric protein complexes composed of these MADs-domain proteins. 

These floral quartet complexes (FQCs) are asumed to function as 

transcription factors by binding to the DNA of their target genes, activating 

or represing them to control the emergence and development of the 

respective floral organs (THEIßEN, 2001). Homeotic and other flower 

development genes can also enhance or repress each other’s expressions, 

resulting in a complex and stage-dependent transcriptional regulatory 

network (PAJORO, MADRIGAL, ET AL., 2014) (Figure 1.3).  

The MADS-domains of the two dimers of each tetrameric complex bind to 

proximate CArG-box sequences (CArG: C-A-rich-G; consensus: 5’-

CC(A/T)6GG-3’) to induce the looping of chromatin (THEIßEN, 2001; THEIßEN 

& SAEDLER, 2001). First, a single CArG box and its flanking regions are 

recognised by a MTF dimer via a combination of base and shape readout. 

Attractive or repulsive forces between the dimerization interfaces of two 

interacting MTFs facilitate or impede dimerization. The distance between 

two neighbouring CArG boxes and whether both are directed to the same site 

of the DNA double helix determine whether FQCs formation is favoured or 

not. In addition, the ability to form tetramers facilitates cooperative binding 

of a second MTF dimer while looping the DNA in between both binding sites 

(KÄPPEL ET AL., 2023) (Figure 1.4).  

The possible interaction of FQCs with chromatin acting as ‘pioneer 

transcription factors’ to regulate the expression of their target genes has 

been described by (THEIßEN ET AL., 2016). FQCs would act as sequence-

specific transcription factors with (half-) nucleosome-like properties that 

help to establish a permissive or repressive chromatin modification at CArG-

box-containing promoters. After being incorporated to chromatin, in a gene-

activating case, the FQCs would recruit histone-modifying factors, leading to 

the recruitment of the basal transcriptional machinery. Finally, the presence 

of at least one transactivation domain (TAD) in a DNA-bound FQC recruits 

the basal transcription machinery and eventually initiates transcription at 

the transcriptional start site (TSS) (KÄPPEL ET AL., 2023) (Figure 1.4). 
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Figure 1.3. Putative target gene networks at stage 4 and stage 8 of 

flower development reflecting preferential binding of AP1 and 

SEP3 at different time points. 

Representative Gene Ontology (GO) categories are included: meristem 

development, meristem maintenance, regulation of flower 

development, axis specification, and floral organ development (sepal, 

petal, stamen, and carpel development). Only genes that belong to these 

categories and that were found to be preferentially bound by either 

APETALA1 or SEPALLATA3 on a comparison of floral stages 4 and 7/8 

are included. Black line indicates common targets, while pink line 

indicates AP1-specific targets, and green line indicates SEP3 targets. 

Dashed lines are used to indicate gene with significant (FDR <0.001) 

TF-binding peak, while solid lines for genes with higher peak 

respectively at stage 4 or stage 8. Grey: genes not bound at the specific 

stage. Red: upregulated genes. Blue: downregulated genes. Taken from 

(PAJORO, MADRIGAL, ET AL., 2014). 
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Figure 1.4. Possible mechanisms involved in FQC target gene 

recognition. Based on (GOSLIN ET AL., 2023; KÄPPEL ET AL., 2023). 

Another important aspect for the specificity of the FQCs is the cofactor 

binding (GOSLIN ET AL., 2023). The specificities of the different floral organ 

identity MTF tetramers could be in part a result of their interactions with 

different combinations of additional transcription factors on the promoters 

of target genes (NAGY & NAGY, 2020) (Figure 1.4).  

The floral quartet model is well supported by experimental evidence. For 

instance, mass spectrometry analyses demonstrated the existence of all the 

major binary interactions proposed in the floral quartet model and provided 

clues towards deciphering the specificity of their interaction with DNA 

(SMACZNIAK ET AL., 2012), even though their exact stoichiometry remains 

unknown. As the MADS-box genes involved in flower development show very 

specific and restricted expression patterns, what genes are expressed where 

determines the proteins that could interact from the quartets. Moreover, the 

induction of DNA looping by floral quartets has been demonstrated in vitro 

and in vivo (MELZER ET AL., 2009; MENDES ET AL., 2013), although it remains 

unclear whether it is a prerequisite for floral quarter activity. However, the 

model of FQCs evicting nucleosomes to activate or repress chromatin 

modifications (THEIßEN ET AL., 2016) is not well supported by experimental 

evidence yet. 
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1.1.3 APETALA 1 as a main orchestrator of flower meristem initiation 

and development 

In Arabidopsis, flower development is initiated by LFY. LFY encodes a TF and 

is up-regulated by the SUPPRESSOR-OF-OVEREXPRESSION-OF-CO 1 (SOC1) 

and AGAMOUS-LIKE 24 (AGL24) MADS-domain proteins, which are induced 

throughout the inflorescence meristem by environmental and endogenous 

cues. Auxin phytohormone also helps in the induction of LFY expression by 

defining floral meristem initiation sites. LFY is expressed specifically in floral 

primordia because its induction in the SAM is repressed by the TERMINAL 

FLOWER1 (TFL1) inflorescence identity protein. In the floral primordium, 

LFY induces AP1 and its paralog CAULIFLOWER (CAL), which regulate LFY 

with positive feedback, while repressing SOC1, AGL24 and TFL1. Thus, the 

floral fate of the new meristem is stabilised (BOWMAN ET AL., 1993) (Figure 

1.5). 

 
Figure 1.5. Interactions between major floral regulators.  

Red arrows depict activation and blue barred lines indicate repression.  

In addition to its early-stage role during the specification of floral meristems, 

AP1 function is subscribed within the (A)B(C) model, as it promotes both 

sepal and petal identity (THEIßEN ET AL., 2016). In ap1 mutants, the sepals are 

transformed into leaf-like structures with petals failing to develop. In the 

axils of these leaf-like structures, secondary flowers arise that repeat the 

same pattern as the primary ones (BOWMAN ET AL., 1993; MANDEL ET AL., 1992).  

The AP1 network had been extensively delineated through genetic studies. 

However, to better understand the regulatory networks that underlie the 

events that take place after the activation of AP1, it was necessary to study 

the downstream AP1 targets. The result was a highly interconnected network 

with AP1 acting as a transcriptional orchestrator controlling the expression 

of a wide variety of TFs and other types of genes (KAUFMANN ET AL., 2010). 

AP1 acts predominantly as a transcriptional repressor during the earliest 
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stages of flower development, whereas, at more advanced stages, it 

predominantly activates regulatory genes required for floral organ 

formation. In addition, AP1 also acts as a ‘pioneer transcription factor’ 

(PAJORO, MADRIGAL, ET AL., 2014), directly binding condensed chromatin 

exerting both positive and negative effects on transcription. 

1.1.4 The ap1 cal floral induction system 

The floral meristem identity gene AP1 and its paralog CAL control the onset 

of Arabidopsis flower development in a partially redundant manner 

(FERRÁNDIZ ET AL., 2000). In an ap1 cal double mutant background, the 

AP1/LFY positive feedback is absent and TFL1 is not repressed by AP1/CAL 

in the nascent floral meristem. Consequently, young flower primordia cannot 

maintain LFY expression and start expressing TFL1 (Figure 1.5). As a result, 

plants do not transition to flowering and, instead, exhibit massive over-

proliferation of undifferentiated inflorescence-like meristems, leading to a 

cauliflower-like appearance (AZPEITIA ET AL., 2021; BOWMAN ET AL., 1993; 

KEMPIN ET AL., 1995).  

The ap1 cal background allowed to create a floral induction system based on 

the expression of AP1 fused to the binding domain of the rat glucocorticoid 

receptor (GR). At first, under the control of the 35S promoter (WELLMER ET 

AL., 2006), but later, of the endogenous promoter of AP1 (Ó’MAOILÉIDIGH ET 

AL., 2023). The activation of the AP1-GR fusion protein by applying 

dexamethasone (DEX) to the cauliflower structure triggers flower formation 

synchronously throughout the meristematic tissue (Figure 1.6).  

The ap1 cal floral induction system has served for the study of early flower 

development in Arabidopsis at genomic and transcriptomic level (KAUFMANN 

ET AL., 2010; PAJORO, MADRIGAL, ET AL., 2014; WELLMER ET AL., 2006). The 

integration of transcriptomics and regulomics (i.e., ChIP-seq studies) has 

been used in combination with this system to explore the time-scaled 

regulatory networks of AP1 (KAUFMANN ET AL., 2010), SEP1 (PAJORO, 

MADRIGAL, ET AL., 2014), and LFY (GOSLIN ET AL., 2017), for example. However, 

proteomics or metabolomics methods have never been used in the AP1 

induction system.  
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In this Thesis, I extend the analysis to the proteomic level, also comparing the 

data with unbiased transcriptomic data (RNA-sequencing).  

 

Figure 1.6. The pAP1:AP1-GR ap1 cal floral induction system.  

A) Wild-type-like Arabidopsis flower developed after treatment with 

DEX. B) Flowers developed after treatment of inflorescence-like 

meristems with “mock” solution. C) pAP1:AP1-GR ap1 cal mutant 

cauliflower-like inflorescence meristem before DEX induction. D) 

Inflorescence meristem 6 days after the induction of flower 

development triggered by DEX. Based on (Ó’MAOILÉIDIGH ET AL., 2023).  

1.2 Integrative genome-wide analyses and their association to 

proteomic data to understand plant biology 

For the last fifteen years, the technological advances, and lower costs of 

genome-wide approaches, together with the enormous increase of 

computational biology tools to process large biological datasets (often 

referred as omics), are causing a shift in the way developmental studies in 

plants are approached. Several studies of reproductive organ development 

have used genomic analyses of transcription factors and global gene 

expression changes for modelling complex gene regulatory networks 

(reviewed in (MATEOS ET AL., 2017; PAJORO, BIEWERS, ET AL., 2014; WELLMER & 

RIECHMANN, 2010; WILS ET AL., 2017)).  

As a result, hundreds of target genes of the floral homeotic factors in A. 

thaliana have been identified through a combination of genome-wide binding 

analyses and transcriptomics studies (KAUFMANN ET AL., 2010; PAJORO, 

MADRIGAL, ET AL., 2014; WELLMER ET AL., 2006). Nevertheless, the emergent 

global and dynamic view of developmental processes requires an important 

component: the proteome, in its expression, complexity and relationship 

with the transcriptome. Thus, to assert the whole comprehension of a 
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network from a global perspective requires the integration of several types 

of omics data, including proteomics approaches (DECOURCELLE ET AL., 2015; 

KOEHLER ET AL., 2015; LE SIGNOR ET AL., 2017; MERGNER ET AL., 2020).  

Proteomics became a valuable tool to uncover the molecular background of 

many biological processes including plant stress responses and 

developmental and signalling processes. The last advancements of this 

approach have been made possible by significant improvements in methods 

of protein extract preparation, separation of proteins and peptides, mass 

spectrometry instrumentation and downstream bioinformatics analyses 

(TAKÁČ ET AL., 2017).  

Genomics and transcriptomics are closer to the genotype of the studied 

organisms, whereas proteomics and metabolomics are closely related to 

their phenotype. Through these technologies, research has described in 

depth the hierarchical levels of plant organization and functioning, 

improving the odds to predict the behaviour of whole plants (phenome) as a 

response to genetic perturbations and/or environmental changes (DO 

AMARAL & SOUZA, 2017). 

1.2.1 Genomics and transcriptomics methods as the most utilized 

DNA sequencing-based technologies are the most advanced of the omics 

technologies in terms of standardized protocols, analytical tools, and public 

repositories for data sharing. They provide unique opportunities to obtain 

high quality data from small amounts of tissues or individual cells, 

addressing a wide range of biological questions, including the understanding 

of plant biology (MARDIS, 2017; VAN DIJK ET AL., 2018).  

Genome-wide analyses dependent on high-throughput technologies are 

revealing the complexity and scope of regulatory networks that can be 

fluctuant in time and largely plastic by the effects of the environment and that 

are governed by transcription factors (MATEOS ET AL., 2017; T. YU ET AL., 2019; 

Q. G. ZHU ET AL., 2018), microRNAs (LUO ET AL., 2018; SHI ET AL., 2017), movable 

factors (X. LIU ET AL., 2018), hormones (SAHA ET AL., 2016) and chromatin-

modifying proteins (ENGELHORN ET AL., 2018).  
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The progression of genomics has played a noteworthy role in the field of 

flower development research, primarily through the use of gene expression 

profiling (transcriptomics; first DNA microarrays and subsequently RNA-seq 

and related methods) (RICH-GRIFFIN ET AL., 2020; WELLMER ET AL., 2004, 2006) 

and of genome-wide DNA binding studies (ChIP-Seq) (KAUFMANN ET AL., 

2010).  

Nevertheless, high-throughput genomics and transcriptomics might still fall 

sort of proving a full network description or understanding in the context of 

biological function. This is because mRNA abundance is not necessarily a 

reliable indicator of protein quantity and activity (YANSHENG LIU ET AL., 2016). 

Combining data from genomics and transcriptomics with proteomics 

(MERGNER ET AL., 2020) or metabolomics (GARCIA-MOLINA ET AL., 2020; MATUS, 

2016) provides molecular information to further genetic and epigenetic 

changes and variations with phenotypic alterations or differences. 

1.2.2 Proteomics: from the sidelines to the mainstream 

The analysis of the proteome of eukaryotic cells is challenging due to the 

substantial diversity in the properties of the individual proteins that 

compose it (e.g., abundance, stability, molecular weight, structure, 

hydrophobicity, hydrophilicity, or variety of post-translational modifications 

–PTMs–, among others), compared to the relative simplicity of DNA 

molecules. This large heterogeneity represents a significant hurdle for 

achieving ‘genome-wide’ coverage in proteomics experiments and 

complicates the proteomics methodologies and procedures. Yet, proteomics 

approaches provide an important contribution to understanding gene 

function and cell organismal biology.  

Along with an enhancement of throughput, sensitivity and resolution of 

analytical technologies in mass spectrometry (MS), computational methods 

have emerged focusing on the abundance and diversity of proteins in a 

complex sample (ASLAM ET AL., 2017; GROSSMANN ET AL., 2010; MERGNER & 

KUSTER, 2022; TAKÁČ ET AL., 2017). Current proteomics methods can identify 

thousands of proteins in a sample, including information on their 

posttranslational modifications.  
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In plants, MS-based proteomics approaches have been applied for the 

measurement of differential protein expression or the detection of PTMs 

(Navrot et al., 2011; Z. Zhang et al., 2017) in different tissues and biological 

processes (reviewed in (MERGNER & KUSTER, 2022)). Deep proteome studies 

have led to the development of proteome atlases of the major plant organs 

for different plant species (ABRAHAM ET AL., 2013; DUNCAN ET AL., 2017; M. 

KUMAR ET AL., 2022; MARX ET AL., 2016; MERGNER ET AL., 2020; SZYMANSKI ET AL., 

2017). Besides, cell type-specific proteome studies are crucial for a better 

understanding of the unique biological functions and properties of individual 

cell types in a tissue (DAI & CHEN, 2012), as well as subcellular plant 

proteomics and predictions (BERNHOFER ET AL., 2018; BRUCE, 2000; 

EMANUELSSON ET AL., 2001). As the proteome is in constant flux, several 

proteome studies are based on temporal series (BASSAL ET AL., 2020) during 

developmental processes (FENG ET AL., 2022), or stress responses (JAIN ET AL., 

2021; NIU ET AL., 2021).   

1.2.3 Multiomics approaches to maximize the power of data-driven 

research 

In omics-based analyses, collecting as much information as possible is 

especially relevant to elaborate accurate biological models. The power of 

omics could be enhanced by combining them with other experimental 

methods, such as cell biology, biochemistry, molecular biology, and also other 

omics (Figure 1.7). Numerous studies are based in the combination of 

datasets from a single omics, obtained with the same or different techniques 

in various parts of an organism, developmental stages, or related to different 

transcription factors (D. CHEN ET AL., 2018; VALENTIM ET AL., 2015; J. WANG ET 

AL., 2017). Nevertheless, the possibility of combining results from more than 

one type of omics has gained prominence in the past few years as a way to 

explore different aspects of plant biology (KOEHLER ET AL., 2015; LE SIGNOR ET 

AL., 2017; LEHMANN ET AL., 2021; MATUS, 2016; MERGNER ET AL., 2020; G. ZHU ET 

AL., 2018). These integration studies are usually referred as multi-omics, 

trans-omics, or integrated omics in the current literature.  
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Figure 1.7. Integrated omics workflow.  

Datasets can be integrated using machine learning and statistical 

approaches to produce findings in the form of novel pathways and 

networks, adding information to previously known processes, the 

development of new biological models, or the detection at the 

experimental level of proteins and peptides encoded in newly 

annotated ORFs.  

The integration of omics using statistical, or machine learning approaches 

could lead to a better understanding of both known and unknown pathways, 

draw more complex regulatory networks or propose novel data-driven 

models, thanks to the combination of ‘closer to genotype’-datasets (i.e., 

genomics and transcriptomics) with those ‘closer to phenotype’ (i.e., 

proteomics and metabolomics). Successful implementation of more than two 

omics datasets is very rare (MISRA ET AL., 2019), although there are relevant 

cases described in crops (e.g., (DECOURCELLE ET AL., 2015; KOEHLER ET AL., 2015; 

YINGHAO LIU ET AL., 2022)). In this Thesis, I am focusing on the integration of 

two types of omics: transcriptomics and proteomics.  
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The correlation between mRNA expression levels and the abundance of their 

matching proteins has been exhaustively studied in different processes and 

species during the last years (reviewed in (D. KUMAR ET AL., 2016; YANSHENG 

LIU ET AL., 2016; MANZONI ET AL., 2018)). While the genome is more or less 

static through an organism’s life, its proteome and transcriptome vary 

rapidly, albeit in a controlled manner, as a response to different 

environmental perturbations and growth conditions. These changes are not 

only due to transcript and protein expression levels, but also to 

posttranscriptional (e.g., alternative splicing) and posttranslational (e.g., 

phosphorylation) control. Thus, to properly understand developmental or 

environment-responsive cell processes, it is crucial to comprehend their 

proteome expression patterns as a complement to their transcriptome levels 

(D. KUMAR ET AL., 2016).  

In the case of Arabidopsis, there are only a few studies that combine 

transcriptomics and proteomics to analyse developmental processes, such as 

embryogenesis (HUANG ET AL., 2022), seed germination (BAI ET AL., 2021), leaf 

development (OMIDBAKHSHFARD ET AL., 2021), and floral transition (X. WANG 

ET AL., 2020). In addition, other studies in Arabidopsis have focused on the 

photoperiodic control of its proteome (SEATON ET AL., 2018; UHRIG ET AL., 

2021).  

In other plants, combined transcriptome-proteome analyses have already 

been used to study petal shape in peonies (Y. WU ET AL., 2018), carotenoid 

synthesis in maize (DECOURCELLE ET AL., 2015), and fruit development and 

ripening in fruit trees such as orange (J. H. WANG ET AL., 2017) and pear (P. 

WANG ET AL., 2023) trees; as well as reproductive development, in particular, 

male reproductive development in cabbage (HAN ET AL., 2018; JI ET AL., 2018; 

KELLER ET AL., 2018; XING ET AL., 2018), female reproductive development in 

peanut (ZHAO ET AL., 2015), and flower development in general in species as 

jujube (R. CHEN ET AL., 2017) and loquat (JING ET AL., 2020) (Table 1.1).  
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Table 1.1. Combined transcriptomics and proteomics studies in plants.  

Aim of study  Correlation between RNA and protein levels Reference 
I. Development   

A. thaliana   

Characterization of protein changes during 
seed germination 

Higher correlation between RNA levels at a timepoint and 
protein levels at the next timepoint than at the same timepoint 

(BAI ET AL., 2021) 

Analysis of leaf development 
Protein changes showed correlation with changes at 
transcriptome level, but with a certain delay  

(OMIDBAKHSHFARD ET AL., 
2021) 

Study of early embryogenesis proteome Overall positive correlation (HUANG ET AL., 2022) 

Study of transcriptome and proteome of 
floral transition 

Weak correlation between RNA and protein levels, except for 
55 genes which were DEGs and DAPs 

(X. WANG ET AL., 2020) 

Maize   

Study of the correlation between RNA and 
protein abundance during leaf development 

Significant positive correlations between RNA and protein 
levels 

(PONNALA ET AL., 2014) 

Cabbage   

Characterization of a recessive male sterile 
mutant 

Similar changing trend (positive correlation) for most of the 
detected RNA-protein pairs 

(JI ET AL., 2018) 

Analysis of Ogura cytoplasmic male sterility  Generally low correlation, except for some DEGs and DAPs (XING ET AL., 2018) 

Analysis of Ogura cytoplasmic male sterility  Poor correlation (HAN ET AL., 2018) 

Jujube   

Mapping of the jujube floral organ Positive correlation between RNA and protein levels (R. CHEN ET AL., 2017) 

Loquat   

Analysis of flower development Positive correlation between DEGs and DAPs (JING ET AL., 2020) 

Pear tree   

Proteogenomics atlas (fruit development) Overall positive correlation (P. WANG ET AL., 2023) 

Orange tree   

Analysis of the differences among cultivars 
during fruit development and ripening 

Positive correlation between RNA and protein levels (J. H. Wang et al., 2017) 
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Pomegranate   

Understanding the molecular mechanisms 
under petaloidy in pomegranate 

The correlation between DEGs and DAPs was higher than the 
correlation between all genes and all proteins detected 

(HUO ET AL., 2023) 

Watermelon   

Quantitative transcriptomic and proteomic 
analysis of fruit development and ripening 

Low correlation (Y. YU ET AL., 2022) 

II. Stress   

Cucumber   

Understanding post-germinative 
development under salinity and drought 

Good correlation between RNA and protein levels of DEGs and 
DAPs 

(DU ET AL., 2021) 

Maize   

Multi-omics analysis of pathogen-induced 
cell death 

Low when comparing all RNA and protein pairs, stronger 
when dividing the dataset into correlation modules 

(BARGHAHN ET AL., 2023) 

Tomato   

Analysis of transcriptome and proteome 
adaptation during heat stress response 

Low correlation (KELLER ET AL., 2018) 

Soybean   

Study of roots grown under heat stress Low correlation (VALDÉS-LÓPEZ ET AL., 2016) 

Cotton   

Study of genetic regulation of salt tolerance Low correlation  (PENG ET AL., 2018) 

III. Others   

A. thaliana   

Study of the photoperiodic control of the 
proteome 

Stronger correlations of transcript and protein abundance for 
the arrhythmic transcripts 

(SEATON ET AL., 2018) 

Characterization of the diurnal dynamics of 
the rosette proteome / phosphoproteome 

Most proteins with diurnal changes in abundance fluctuated 
independently of their transcript levels 

(UHRIG ET AL., 2021) 

Sweet cherry   

Creation of a proteogenomics atlas Low correlation (XANTHOPOULOU ET AL., 2022) 
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1.2.4 Limitations in multiomics studies 

Within integrative omics studies, the degree of correlation between 

transcript and protein levels (and between changes in transcript and in 

protein levels) is still a lingering issue (BISHOP & HAWLEY, 2022; YANSHENG LIU 

ET AL., 2016) as, whereas some studies conclude that there is not a strong 

correlation, in others such correlation is more apparent (Table 1.1).  

In this regard, a general aspect of label-free quantitative proteomics (and LC-

MS/MS based metabolomics), which can hinder the subsequent data analysis 

and its comparison with other omics data, is the high rate of missing values. 

Statisticians defined three types of missing values depending on the nature 

of the missingness: i) Missing Completely At Random (MCAR) and ii) Missing 

At Random (MAR) values, which are due to minor errors or stochastic 

fluctuations and to conditional dependencies respectively; and iii) Missing 

Not At Random (MNAR) values, which have a targeted effect (LAZAR ET AL., 

2016). These not assigned values (NAs) can be imputed by different methods, 

that must be chosen depending on their nature.  

As there are many types of NAs that coexist in most quantitative datasets, 

hybrid strategies of imputation may be a better approach (JIN ET AL., 2021; 

LAZAR ET AL., 2016). Despite the optimization of imputation methods for 

proteomics, the sensitivity of extraction and quantification techniques highly 

differ from those used in transcriptomics analyses. Moreover, the lack of 

correlation among omics data could be also derived from the difficulties to 

obtain truly comparable datasets. However, the observed differences might 

also be caused by posttranslational regulation of protein levels (VOGEL & 

MARCOTTE, 2013), or by their different expression and degradation kinetics, 

as longer protein half‐lives buffer changes in mRNA levels (CSÁRDI ET AL., 

2015; OLIVA-VILARNAU ET AL., 2020; RAJ ET AL., 2006; TANIGUCHI ET AL., 2011).  

Time-course studies may be an approach for addressing this gap, as 

successive analyses at different time points could allow the discovery of 

correlative behaviours of protein and mRNA levels through time (BAI ET AL., 

2021; OMIDBAKHSHFARD ET AL., 2021; TARAZONA ET AL., 2018). In this regard, the 

use of the AP1-GR floral induction system (Ó’MAOILÉIDIGH ET AL., 2023), in 
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combination with proteomics, offers an opportunity to explore this and other 

questions in Arabidopsis early flower development.  
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Chapter 2. Chronology of transcriptome 

and proteome expression during early 

flower development 

2.1. Background 

The Arabidopsis thaliana flower developmental program has represented a 

proxy to understand the early steps of organ development in plants. In fact, 

the onset of flower formation is a key regulatory event during the life cycle of 

all angiosperms, and it is under a tight and widely-conserved genetic control 

(THEIßEN ET AL., 2016; THOMSON & WELLMER, 2019). The identification of the 

roles of many transcription factors through forward and reverse genetic 

analyses has allowed the understanding of their contribution in flower 

initiation and development and other related developmental processes (e.g., 

fertilization and fruit formation) via gene regulatory networks (WILS ET AL., 

2017). However, a comprehensive view of a regulatory network requires the 

integration of more than one type of omics data (e.g., (MERGNER ET AL., 2020)).  

The characterization of the proteome as a complement of the transcriptome 

is essential for understanding the different developmental and ambient-

responsive cellular processes, as transcriptome and proteome composition 

can vary rapidly as a response to developmental perturbations and growth 

conditions (D. KUMAR ET AL., 2016). The integration of mass spectrometry and 

RNA-sequencing (RNA-seq) has been used to study the correlation, or lack 

thereof, between transcriptome and proteome data in various organisms 

(e.g., (EDFORS ET AL., 2016; GYURICZA ET AL., 2022; HOOGENDIJK ET AL., 2019; L. 

JIANG ET AL., 2020; LINDEBOOM ET AL., 2018; SIDHAYE ET AL., 2023; D. WANG ET AL., 

2019)). Very few studies have specifically addressed this issue to 

characterize developmental processes in plants, although there are examples 

of the combination of omics to analyse the development of leaves 

(OMIDBAKHSHFARD ET AL., 2021; PONNALA ET AL., 2014), flowers (R. CHEN ET AL., 

2017; JING ET AL., 2020; X. WANG ET AL., 2020), and fruits (J. H. WANG ET AL., 
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2017; P. WANG ET AL., 2023; Y. YU ET AL., 2022), as well as seed germination 

(BAI ET AL., 2021) and embryogenesis (HUANG ET AL., 2022). The apparent lack 

of correlation between transcript and protein levels found in some of those 

studies signals the existence of complex control mechanisms for both types 

of molecules, such as post-translational regulation of protein levels, and 

different stability, or expression and degradation kinetics of RNA and 

proteins (CSÁRDI ET AL., 2015; RAJ ET AL., 2006). A possible approach to explore 

if a higher correlation exists is the time-course study of a process, as there 

might be a temporal shift between mRNA and protein level changes (BAI ET 

AL., 2021; HOOGENDIJK ET AL., 2019; HUANG ET AL., 2022; OMIDBAKHSHFARD ET AL., 

2021; P. WANG ET AL., 2023).  

In this regard, the APETALA1 (AP1)-based floral inducible system has been 

used to study the early stages of flower development in A. thaliana through 

genomic approaches (Ó’MAOILÉIDIGH ET AL., 2023). The MADS-domain 

transcription factor (TF) AP1 is a key regulator of floral meristem identity 

and activation of flower development in Arabidopsis (LILJEGREN ET AL., 1999; 

MANDEL ET AL., 1992; NG & YANOFSKY, 2001). The integration of the 

transcriptome, cistrome, and epigenome associated to this TF led to a better 

understanding of early flower development (KAUFMANN ET AL., 2010; PAJORO, 

MADRIGAL, ET AL., 2014; WELLMER ET AL., 2006). However, these studies were 

conducted using microarray setups, whereas in this work a non-biased 

transcriptomics analysis (RNA-seq) was performed. Specifically, the floral 

induction system pAP1:AP1-GR ap1 cal was used as a model to understand 

non-biased abundance changes for transcripts (RNA-seq) and proteins (LC-

MS/MS) in a temporal sequence after the activation of the early flower 

development programme. For the transcript-protein comparison to be 

possible, an imputation guideline was developed for dealing with different 

types of proteomic missing data existing in the quantitative MS dataset. Gene 

and protein expression was analysed on a genome-wide scale, identifying 

transcript-protein pairs with significant expression changes for both 

molecules at different stages of flower development. The differences in 

expression patterns from mRNA and proteins strongly suggest the existence 

of complex regulatory mechanisms for protein and transcript levels.  
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2.2 Results 

2.2.1 Integrated transcriptome and proteome analyses in Arabidopsis 

early flower development 

An APETALA1-based floral induction system (pAP1:AP1-GR ap1 cal line) 

(Ó’MAOILÉIDIGH ET AL., 2013, 2023) was used to characterize proteomics (LC-

MS/MS) and transcriptomics (RNA-seq) changes during early flower 

development. In this system, dexamethasone (DEX) treatment activates the 

AP1 protein fused to a glucocorticoid receptor, causing the simultaneous 

transformation of the inflorescence-like meristems of ap1 cal plants into 

floral primordia and initiating the normal flower development process 

(Ó’MAOILÉIDIGH ET AL., 2023). DEX-treated plants were compared to mock-

treated samples to study whether and how mRNA levels were correlated to 

proteome changes during early flower development. Samples were collected 

at one-day intervals after floral induction, encompassing six time points up 

to day 5 (as in (WELLMER ET AL., 2006)) which included up to stages 6-7 of 

flower development (SMYTH ET AL., 1990) (Figure 2.1). More than 74,000 

peptidic fragments from almost 9,000 proteins were identified in at least one 

sample, and around 23,000 transcripts (84% of the Arabidopsis genome) 

were quantified in the RNA-seq experiments. Overall, 8,708 protein-coding 

genes were identified at both transcript and protein level, although only 

7,003 pairs corresponded to quantifiable proteins. There were 95 proteins 

that did not have their matching transcript in the RNA-seq dataset, although 

expression of 88 of these genes was detected in previous microarray analyses 

(WELLMER ET AL., 2006).  

 

Figure 2.1. Experimental setup.  

Inflorescence samples of four biological replicates of 40 to 80 plants 

each were collected immediately after DEX-solution application (D0), 

and at 1, 2, 3, 4 and 5 days (D1-5) after the treatment.  
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2.2.2 Set up of a reliability analysis to deal with missing values in the 

proteomics dataset 

The proteomics data corroborated a substantial number of annotated open-

reading frame borders based on the detection of 1,972 N-terminal and 1,560 

C-terminal peptides (Figure 2.2A), of which 1,761 and 1,499, respectively, 

were unique peptides (discarding peptide sequences that only differ by post-

translational modifications -PTMs-). N-terminal peptides often showed 

cleavage of the initiator methionine, and N-terminal acetylation was strongly 

dependent on the amino acid adjacent to the initiator methionine, as 

previously described (MERGNER ET AL., 2020) (Figure 2.2B, C). The mass 

spectrometry data covered, on average, around 21% of each protein 

sequence, enabling the detection of 75,244 unique peptidic fragments for 

8,924 proteins.  

 

Figure 2.2. Proteomics results overview.  

A) Number of identified amino (N-ter) or carboxy (C-ter) terminal 

peptides of proteins. B) Frequency of amino acids following the 

initiator methionine in N-ter peptides with ([M]-X) or without ([-].M-X) 

cleavage of the initiator methionine. X denotes the amino acid after the 

start codon. C) Frequency of protein N-ter acetylation for amino acids 

in B. 
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As missing mass spectrometry detection data could represent low abundance 

(below detection threshold) or simply no protein presence (i.e., Missing Not 

At Random -MNAR- values) instead of technical artifacts (i.e., Missing At 

Random -MAR- values), a pipeline with a series of rules was elaborated to 

deal with non-assigned (NA) values in the proteomics dataset, taking 

advantage of the characteristics of the experimental design, that is, 

successive timepoints and replicates. In such pipeline, it was considered that 

the reliability of detection of a protein would depend on the number of 

missing values per timepoint (n = 4 biological replicates) in the dataset. A 

protein at a given timepoint was classified as Reliably Detected (RD), 

Unreliably Detected (UD), Unreliably Undetected (UU) or Reliably 

Undetected (RU) depending on the number of replicates of that timepoint 

(day) in which the protein showed NAs, and the number of NAs in the 

immediately adjacent timepoints (Table 2.1; Figures 2.3A, B, 2.4; see also 

Materials and Methods section 2.4.5). In total, 7,033 proteins (out of the 

initial set of 8,924) were considered as ‘quantified’ (RD or UD in at least one 

timepoint), whereas the remaining 1,891 MS-identified proteins were 

discarded for further analyses because they were classified as RU or UU at all 

timepoints (Figure 2.5A; the peptide-based coverage of 1,685 of the 1,891 

discarded proteins was lower than 3 peptides per protein, Figure 2.5B, 

pointing out the limitations of the mass spectrometry technique to measure 

accurately the expression levels of some proteins). In each timepoint, about 

5,000 proteins were classified as RD, and a total of 3,176 proteins were 

classified as RD or UD for all timepoints (Figure 2.3C). The highest number 

of RU proteins corresponded to day 0 (D0) timepoint (Figure 2.3C). Finally, 

in the last step of the pipeline all the remaining NA values were imputed using 

the kNN method.  

To check for the appropriateness of the Reliability Analysis, a group of 69 

flower-‘marker’ proteins was selected on the basis that their corresponding 

genes are known as up- or down-regulated in floral organs and/or 

throughout flower development (KAUFMANN ET AL., 2010; PAJORO, MADRIGAL, 

ET AL., 2014; WELLMER ET AL., 2006), as well as seven ‘supermarker’ proteins 

which met this requirement but also are well-characterized transcription 

factors related to flower initiation and development (Sup Table 2.1). 

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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Approximately 60% of marker and all ‘supermarker’ proteins were retained 

as ‘quantified’ after the Reliability Analysis (RA), as they had at least one 

timepoint classified as RD or UD (Figure 2.4A).  

Table 2.1. Description of the Reliability Analysis. 

Supporting neighbour: 0, 1 or 2 NAs. 

Unsupporting neighbour: 3 or 4 NAs. 

 
Initial/Final timepoint 

(D0/D5) 

Intermediate timepoint 

(D1-D4) 

Reliably 

Detected (RD) 
                                             0 or 1 NA 

Unreliably 

Detected (UD) 
                    2 or 3 NAs + supporting neighbour 

Unreliably 

Undetected (UU) 

2 or 3 NAs + 

unsupporting neighbour 

2 or 3 NAs +  

unsupporting neighbour 

OR 

4 NAs + supporting neighbour 

Reliably 

Undetected (RU) 
4 NAs 

4 NAs + unsupporting 

neighbour 

 

Figure 2.3. Imputation of missing values considering their 

biological context.  

Log2(TOP3) abundances through time of AP3 (A) and TFL1 (B) before 

and after the Reliability Analysis (RA), and after kNN imputation. C) 

Proportion of proteins considered as RD, UD, UU, and RU for each time 

point. For A-C: RD: Dark green, UD: Light green, UU: Light purple, RU: 

Dark purple.  
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Figure 2.4. Expression of the ‘supermarker’ proteins through the 

time-course.  

Representation for the 7 supermarker proteins (A) and AP1 (B) of the 

log2(TOP3) protein abundance values through time before the 

Reliability Analysis (RA), after the RA, and after kNN imputation, and 

the normalized RNA counts. 
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The effect of the RA and kNN imputation was also analysed by Principal 

Component Analysis (PCA) and hierarchical clustering. PCA was performed 

with the subset of proteins without missing values before performing the RA 

and the imputation, and with all the proteins classified as ‘quantified’ after 

those data processing steps (Figure 2.6A). After the RA, the variability 

observed (33% of which could be explained by PC1 and PC2, Figure 2.6B) 

was discretely grouped by timepoint, most clearly in the case of D0 and D1 

but also for D2-D5 replicates (with the exception that replicate 3 of D5 was 

closer to D4 replicates). Hierarchical clustering performed before and after 

the RA and kNN imputation showed that after the classification and 

imputation, replicates all clustered together by day, with adjacent days also 

clustering together (Figure 2.6C). This clearer separation through time and 

according to the flower developmental stages demonstrated the robustness 

of the LC-MS/MS data followed by a Reliability Analysis and imputation 

approach.  

 

Figure 2.5. Proteomics sequence coverage.  

A) Distribution of peptide-based sequence coverage of proteins which 

were Reliably or Unreliably Detected in at least one timepoint – day – 

(quantified) and those that were Reliably or Unreliably Undetected at 

every timepoint (discarded). B) Pie charts showing percentage and 

number of proteins identified by < 3, 3-10 or > 10 peptidic fragments 

before and after the Reliability Analysis.  
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Figure 2.6. Effects of the reliability analysis in the data.  

A) PCA of proteins without NAs before the RA and all proteins after the 

RA and kNN imputation. B) Percentage of variances explained by each 

principal component for the proteomics data (visualization of the 

eigenvalues). C) Hierarchical clustering of all proteins before and after 

RA and kNN imputation. R1D0 was discarded in all analyses because of 

its great differences with the rest of the data (only 165 proteins were 

quantified in this sample, see Materials and Methods section 2.4.5). 

  



34 | Chapter 2 

2.2.3 Stage-variant proteins showed different abundance patterns 

over time 

To determine which of the 7,033 quantified proteins showed significantly 

altered levels throughout early flower development, an ANOVA analysis was 

performed, resulting in the classification of a total of 2,037 proteins as stage-

variant proteins (SVPs) (false discovery rate -FDR- = 5%), among which 

1,430 were considered as RU at least at one timepoint (Table 2.2, Sup Table 

2.2). SVPs presented different expression patterns that can be summarized 

as: i) increased expression over time (groups A.1 and A.2), ii) reduced 

expression over time (groups B.1 and B.2), iii) transient expression at middle 

timepoints (groups C.1 and C.2), and iv) gap of expression at middle 

timepoints (groups D.1 and D.2) (Figure 2.7).  

 

Figure 2.7. Stage-variant proteins (SVP).  

Heatmap of the 2,037 SVPs through the time course. Colour scale 

represents Z-scored TOP3 values. 
  

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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Table 2.2. Summary of stage variant proteins depending on their 

classification in the Reliability Analysis. 

 RD or UD in all 
time points 

RU or UU at some 
time points 

 

SVPs 490 1,547 2,037 

NVPs 2,686 2,310 4,996 
 3,176 3,857 7,033 

 

 

 

 

 

2.2.4 Patterns of gene expression changes throughout the time 

course  

In the RNA-seq experiment, 23,088 genes were identified with more than ten 

counts across all samples. A PCA comprising all these genes separated the 

early flower developmental stages by timepoint (~37% of the variability 

could be explained by PC1 and PC2, Figure 2.8A, B). Samples clustered 

following a trajectory along PC1 that reflects the time factor, with later 

timepoints placed more distant relative to D0 (Figure 2.8A). A moderated 

Likelihood Ratio Test (LRT) was applied in order to get a statistical metric for 

ranking genes according to the differences in their expression profiles over 

time. There were 8,125 transcripts in the dataset with a significant variation 

through time, from now own called Stage-Variant Genes (SVGs) (LRT with 

adjusted p-value ≤ 0.01). These SVGs can be considered as ‘related to’ or 

‘influenced by’ AP1 expression (Sup Tables 2.3, 2.4). 

The total 8,125 genes defined as SVGs showed four different transcript 

accumulation patterns: i) increment in expression through time, ii) higher 

expression during mid-term stages (D1-4), iii) down-regulated expression 

during mid-term stages with high expression levels at D0 and D5, and iv) 

decrease in expression over time (Figure 2.8C). 

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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Figure 2.8. Stage-Variant Genes (SVGs).  

A) PCA of the RNA-seq data, showing each biological replicate (R1 to 

R4) and coloured by timepoint (D0 to D5). Samples clustered according 

to PC1, except for replicate 4 D3, which clustered closer to samples 

from D4. The later the timepoint, the more distant relative to D0. 

Distances between D2 and D1, and D5 and D4 were substantial, while 

distances between D2, D3 and D4 were smaller. B) Percentage of 

variances explained by each principal component for the RNA-seq data 

(visualization of the eigenvalues). C) Heatmap displaying the 

expression patterns of the SVGs (Z-scored RNA counts, n = 8,125). 

Colour scale represents Z-scored normalized RNA counts. 

2.2.5 RNA-seq results expand previously published transcriptome 

data and identify novel AP1 targets 

The RNA-seq results were compared to those obtained in a previous 

microarray study conducted with the same experimental time-course design 

but using a different AP1-based floral induction system (p35S:AP1-GR ap1 

cal; (WELLMER ET AL., 2006)). To make the RNA-seq data results more 

comparable to those of the microarray (a ratiometric gene expression 

platform), a differential expression analysis between subsequent stages (i.e., 

D1 vs D0, D2 vs D1, D3 vs D2, D4 vs D3, and D5 vs D4) was performed as in 

(WELLMER ET AL., 2006). In this analysis, and using the same criteria for 

differential expression (no Logarithmic Fold Change –LFC– cut-off, and an 
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adjusted p-value < 0.05) a total of 5,150 genes were classified as differentially 

expressed genes (DEGs), compared to the 1,653 DEGs identified by Wellmer 

et al. (Figure 2.9A, Sup Table 2.5). That is, the RNA-seq expanded by at least 

three times the scope of the transcriptome previously identified as changing 

during early flower development. Furthermore, with the LRT approach an 

even higher number of variable genes was identified (8,125 SVGs versus 

5,510 DEGs) as the LRT statistic is more sensitive than pairwise comparisons 

to slight changes in expression levels between subsequent days (Figure 

2.9A).  

As observed previously from the microarray data, the RNA-seq results 

showed that, between D1 and D5 and on every day-to-previous day 

comparison, the number of up-regulated genes was higher than that of the 

down-regulated genes – likely corresponding to the initiation of organ 

primordia and potentially representing the activation of genes involved in 

floral organ development –, whereas for the first timepoint after the 

induction (D1 vs D0), there was a preponderance of gene downregulation 

(Figure 2.9B). Interestingly, substantially more gene expression changes 

were detected by RNA-seq in the first and last time points (D1 vs D0, and D5 

vs D4 comparisons, respectively) than in the intermediate timepoints (D2 vs 

D1, D3 vs D2, D4 vs D3 comparisons) (Figure 2.9B). Finally, I compared the 

LFC of those genes whose estimated LFCs were supported by enough 

statistical confidence in the RNA-seq and microarray results (adjusted p-

value < 0.05) at every day-to-previous day comparison. Over 86% of the DEGs 

that were quantified in both the RNA-seq, and microarray experiments were 

either overexpressed, or else underexpressed in both analyses at every day-

to-previous day comparison (Figure 2.9C).  

Focusing on the expression levels over time of the 5,150 RNA-seq DEGs, a 

time-dependent clustering analysis revealed three main kinds of trajectories 

during the early stages of flower development captured by the time-course, 

showing either an increasing (A) or decreasing (B.1, B.2) pattern of 

abundance through time or an increment tendency up to stages 2-3 (D3-D4) 

followed by a decrease thereafter (C.1, C.2) (Figure 2.9D). These were the 

same main trajectories identified for the microarray DEGs in Wellmer et al., 

as well as for the 8,125 RNA-seq SVGs (Figure 2.8C). In addition, in the case 

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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of the SVG classification, a set of genes that were repressed at first and then 

activated was identified as a separated group (Figure 2.8C), whereas for the 

RNA-seq DEGs, individual genes with those trajectories could be visualized 

but were not grouped together (Figure 2.9D).  

 
Figure 2.9. DEGs during early flower development in pAP1:AP1-GR 

ap1 cal plants. Comparison with (WELLMER ET AL., 2006) p35S:AP1-GR 

ap1 cal microarray results.  

A) Venn diagram showing the number of microarray DEGs and RNA-

seq DEGs and SVGs and the overlap between the datasets. B) Bar plots 

showing the number of up- and down-regulated DEGs in RNA-seq and 

microarray results at each day-to-previous-day comparison (adj. p-

value < 0.05). C) Microarray – RNA-seq data comparisons for each day-

to-previous-day combination (adj. p-value < 0.05). The diagonal line 

represents y = x. Grey dots indicate those DEGs with opposite 

trajectories in the two datasets. Up-regulated genes are coloured in red, 

and down-regulated genes are coloured in blue. The number of 

pictured DEGs is indicated in each quadrant. D) Heatmap of the RNA-

seq DEGs (n = 5,150). Colour scale represents Z-scored normalized 

counts values.  
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A combination of genome-wide DNA binding by AP1 (ChIP-seq) and gene 

expression profiling (microarray data) was used in a previous study to 

identify AP1 direct target genes, which was conducted with a 35S:AP1-GR 

ap1 cal line and a 12-hour time-course after floral induction (KAUFMANN ET 

AL., 2010). In that study, 249 AP1-high confidence targets (HCTs) were 

identified. From those, 247 were detected as expressed in the RNA-seq data 

reported here, and 183 were within the group of genes classified as SVGs 

(Sup Tables 2.3, 2.4).  

Since the RNA-seq dataset substantially expanded the scope of the 

transcriptome identified as changing during early flower development, the 

possibility that it could help identify novel AP1 direct targets was explored. 

In the RNA-seq experiment, the D1 versus D0 comparison was the closest one 

to the experimental design used in (KAUFMANN ET AL., 2010) (12-hour time-

course), and it was therefore used for the analysis (i.e., all other timepoints 

were excluded). Among the 2,377 DEGs identified in D1 vs D0 time 

comparison (Figure 2.9B), there were 81 of the HCTs defined in (KAUFMANN 

ET AL., 2010), including key flowering time genes that are downregulated by 

AP1, such as FD, TFL1, SPL9, and SPL15, other downregulated HCTs as AGL20, 

SAP, LSH1, LSH2, and LSH4, and flower development HCT genes that are 

upregulated, for instance LFY, SEP3, GA2ox1, RGA-like2, ATHB1, and AP2. 

These results validated the appropriateness of using the RNA-seq dataset to 

identify novel targets by combining it with the previous ChIP-seq dataset, 

despite the differences in the AP1-GR lines that were used in both studies 

(pAP1:AP1-GR ap1 cal vs 35S:AP1-GR ap1 cal), in the experimental design 

(time-course in days vs time-course in hours), and in the method used to 

detect gene expression (RNA-seq vs microarrays).  

The criteria for classifying a gene as an AP1 HCT in (KAUFMANN ET AL., 2010) 

included (i) containing one or more AP1 ChIP-seq binding sites within 3 kb 

upstream of the 5’ end and 1 kb downstream of the 3’ end of the gene (which 

defined a set of 2,298 putative AP1 targets), and (ii) showing robust 

differential expression in the time-course (> 1.8-fold) (which restricted the 

set of 2,298 genes to 249 HCTs). All the 81 HCTs that were detected in the 

RNA-seq D1 vs D0 comparison were above an absolute LFC of 0.29. 

Therefore, this LFC value was used as a threshold to search for novel AP1-

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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HCTs in the RNA-seq data. The 1,782 D1 vs D0 DEGs that showed robust 

expression changes (with an absolute LFC > 0.29 and adjusted p-value < 0.05) 

were compared to the list of 2,298 putative AP1 targets identified in 

(KAUFMANN ET AL., 2010). In total, this comparison defined a set of 311 

putative AP1-HCTs, the 81 indicated above and 230 that were newly 

identified from this RNA-seq-based analysis (Sup Table 2.3). The latter 

included flowering time genes SVP and AGL24 (known to be regulated by AP1 

but not identified as HCTs in (KAUFMANN ET AL., 2010)) or SPL5, all 

downregulated, or genes that participate in flower development such as 

SEP2, SEP4, BLH11, CUC1, or PIN1, upregulated.  

In summary, all these results have substantially expanded the identification 

of genes whose expression changes during early flower development and the 

set of putative AP1 high confidence targets, in addition to corroborating the 

previous findings indicating that AP1 acts predominantly as a transcriptional 

repressor during the earliest stage of flower development, and 

predominantly as a transcriptional activator afterwards, and to providing 

further support for previously identified AP1 HCTs.  

2.2.6 Correlation between RNA and protein levels during early flower 

development  

The dynamic range of protein and transcript expression, as determined by 

MS and RNA-seq spanned six and four orders of magnitude, respectively 

(Figures 2.10, 2.11A). Protein evidence was underrepresented for low-

abundance transcripts (ANOVA with Tukey post-hoc test; p-value ≤ 0.001), 

as described in other RNA-protein comparison studies (HOOGENDIJK ET AL., 

2019; MERGNER ET AL., 2020), and the median expression levels for transcripts 

were similar within days (Figure 2.11A).  

 
Figure 2.10. Density plot of protein abundance expressed as the 

average Log2 TOP3 for each time point. 
 

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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Figure 2.11. Gene and protein classification depending on 

abundance through time.  

A) Histogram of RNA expression range. Grey: all detected protein-

coding transcripts; orange: protein-coding transcripts not detected as 

protein in MS; dark purple: protein coding transcripts quantified as 

protein; purple: transcripts corresponding to a protein identified by 

LC-MS/MS that was discarded because it was classified as UU or RU at 

every timepoint (i.e., not quantified). Dashed line indicates TPM = 1. B) 

Schema illustrating the number of expressed genes, Stage Variant 

Genes (SVG), quantified proteins and Stage Variant Proteins (SVP) 

identified. The sum of gene-protein pairs differs from the number of 

genes and proteins identified separately because there are cases of the 

same AGI associated to more than one Uniprot code and vice versa. C) 

Scatter plot of protein abundances and RNA expression levels for all 

RNA-protein pairs at every timepoint. Coloured by RNA-protein 

correlation (Spearman’s rank coefficient, ρ). Positive if ρ ≥ 04. Negative 

if ρ ≤ -0.4. Significant if p-value < 0.05.  

Amongst the 7,003 quantified transcript-protein pairs, there were: i) 973 

pairs with stage-dependent variation during early flowering development at 

both RNA and protein levels (SVG-SVP), ii) 1,006 pairs non-variant at the 
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RNA level, but stage-variant for proteins (NVG-SVP), iii) 1,808 pairs stage-

variant at transcript level, and non-variant for proteins (SVG-NVP), iv) and 

3,216 pairs which presented non-variable levels for both molecules (NVG-

NVP) (Figure 2.11B, Sup Table 2.6). The seven supermarker proteins, 37 of 

the marker proteins and 43 of the AP1-bound HCTs defined in (KAUFMANN ET 

AL., 2010) were found as quantified at both transcript and protein levels. 

These three subsets were significantly enriched in SVG-SVP pairs (Fishers’ t-

test, p-value ≤ 0.001), especially the group of supermarkers, from which six 

out of seven were classified as SVG-SVP. In addition, SVG-NVP pairs were 

proportionally more abundant in the AP1-targets group in comparison with 

the markers group (Fishers’ t-test, p-value ≤ 0.05) (Figure 2.12). 

 

Figure 2.12. Relative distribution of absolute numbers of 

transcript-protein pairs in selected classes across the expression 

categories: SVG-SVP, SVG-NVP, NVG-SVP, and NVG-NVP.  

There are two markers which are also AP1-targets (both SVG-SVP), and 

three supermarkers which are also AP1-targets (two SVG-SVP and one 

SVG-NVP). Fisher’s t-test results (asterisks): black = Significantly 

enriched when compared with the summation of the rest of subsets (p-

value < 0.001); red = Significantly enriched when compared with the 

AP1-targets-subset (p-value < 0.05); white = Significantly enriched 

when compared with the markers-subset (p-value < 0.05). 

 To provide a measure of similarity among developmental stages and to check 

whether there is a shift between mRNA and protein levels at different 

timepoints, Pearson’s correlation coefficient (r) was calculated for the gene 

expression and protein abundance of all pairwise timepoint combinations 

(e.g., protein D0 vs protein D0-D5, protein D0 vs RNA D0-D5, etc.). 

Correlations were computed on protein and transcript level for all RNA-

protein pairs and the SVG-SVP pairs (Figure 2.13A) separately. Pearson’s 

coefficients were slightly higher for the SVG-SVP group. For both SVG-SVP 

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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pairs and all transcript-protein pairs, the correlation RNA-protein seemed to 

be moderately shifted at D3 and afterwards in the time course, as protein 

levels at D4 correlated equally well with RNA levels at D3, and protein levels 

at D5 correlated equally well with RNA levels at D4. PCA for average Z-scored 

values (Z-scored independently) showed that RNA-protein levels clustered 

according to the timepoint, being this correlation more obvious at D2, D3 and 

D4 (Figure 2.13B). D0, D1 and D5 presented the greater differences between 

RNA and protein levels; in fact, D5 protein levels correlated better with RNA 

levels at D4 than at D5. Although the distribution along the PCA is similar for 

both groups (all RNA-protein pairs and SVG-SVP pairs), the percentage of 

variability that could be explained by PC1 and PC2 is higher for the SVG-SVP 

pairs (67% against the 43% for all RNA-protein pairs).  

 
Figure 2.13. RNA-protein comparisons.  

A) Pearson’s correlation coefficient (r) matrix of D0-D5 after floral 

induction on the transcriptome and proteome level using all RNA-

protein pairs and SVG-SVP pairs separately. B) PCA for average Z-

scored values of all RNA-protein pairs (Z-scored independently) and 

SVG-SVP pairs. 
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In general, there is a relatively good correlation between RNA levels and 

protein abundances during the early stages of flower development. 

Nevertheless, the differences observed, especially in the limits of the time-

course (i.e., D0 and D5), can be explained by the time lag. This is relevant 

because D1 (versus D0) and D5 (versus D4) are by far the days where there 

were more RNA expression changes (in terms of DEGs) (Figure 2.9B); on D1 

with a preponderance of downregulation, which probably does not correlate 

as well with protein levels as when it is upregulation (as factors such as 

protein half-life or degradation intervene), and on D5 it is new upregulation 

than would be translated into proteins partly on D6, according to the 

detected time lag.  

 The correlation of mRNA and protein levels through time was also measured 

by calculating the Spearman's rank correlation coefficient (ρ) for each RNA-

protein pair. In total, there were 2,540 RNA-protein pairs with a positive 

correlation (ρ ≥ 0.4, as defined in (AKOGLU, 2018)), and almost 6% of these 

pairs had a significant and highly positive correlation (ρ ≥ 0.8 and p-value ≤ 

0.05). In contrast, 975 RNA-protein pairs presented a negative correlation (ρ 

≤ -0.4), and around 1.5% of them with a significant and highly negative 

correlation (ρ ≤ -0.8 and p-value ≤ 0.05) (Figure 2.14, Sup Table 2.6). 

Moreover, the mRNA-to-protein abundance correlation was very different 

for the SVG-SVP, SVG-NVP, NVG-SVP and NVG-NVP subsets (Figure 2.15A, 

Table 2.4). 

RNA-protein pairs that vary at both molecule levels (SVG-SVP) presented the 

strongest positive correlation, with a median ρ of 0.6, a 63% of pairs with 

positive correlation and less than an 8% of pairs with negative correlation. 

For the other subsets, SVG-NVP, NVG-SVP and NVG-NVP, 44%, 30% and 26% 

of the RNA-protein pairs showed a positive correlation, as opposed to 10%, 

16% and 16% of pairs with a negative correlation in each group respectively 

(Table 2.4, Figure 2.15A). To sum up, around 36% of the total RNA-protein 

pairs presented a positive correlation between their RNA and protein 

expression levels, and the correlation between RNA and protein expression 

levels was higher for those RNA-protein pairs with differential expression 

over time for both molecules. 

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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Figure 2.14. Correlation between each RNA-protein pair for the 

complete dataset.  

Correlation analysis of protein-to-RNA abundance (non-Z scored) 

across samples measured as Spearman's rank correlation coefficient 

(ρ) for each RNA-protein pair. Red line represents the median 

correlation. Dashed lines indicate the limits to consider positive and 

negative correlations. The points represent ρ for: supermarkers 

(black), markers (pink) and AP1-targets (grey). The black cross 

represents ρ for AP1. 

Table 2.3. Spearman’s rank coefficient (ρ) among subsets were 

highly variable.  

Spearman correlation between RNA and protein levels of each subset 

depended on the overall expression pattern of the molecules. 

Significant (sig.): adjusted p-value (BH) < 0.05.  
 

Median 
ρ 

 Positive 
(ρ > 0.4) 

Negative 
(ρ < -0.4) 

Uncorrelated 
 

SVG-SVP 0.6  615 (217 sig.) 76 (15 sig.) 282 973 

SVG-NVP 0.31  794 (96 sig.) 197 (18 sig.) 817 1,808 

NVG-SVP 0.13  300 (42 sig.) 167 (28 sig.) 539 1,006 

NVG-NVP 0.08  831 (74 sig.) 535 (36 sig.) 1,850 3,216 
 

0.2  2,540 (429 sig.) 975 (97 sig.) 3,488 7,003 

A total of 80% of both flower-markers and AP1-targets (HCTs) in the SVG-

SVP subset presented a positive correlation, although there were some 

exceptions with a significant and highly negative correlation (e.g., WUSCHEL 

RELATED HOMEOBOX13 -WOX13- and AT4G27980) or without positive nor 

negative ρ (e.g., LUTEIN-DEFICIENT1 -LUT1- and PYRABACTIN 

RESISTANCE1-LIKE1 -PYL1-) (Figure 2.15A, B).  
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Besides, I inspected the time course trajectories (mRNA and protein) of the 

seven supermarkers, which showed a positive ρ above the median, and 

compared them to their previously published expression patterns (WELLMER 

ET AL., 2006) and found them to be in good agreement (Figures 2.4, 2.15B).  

 
Figure 2.15. Correlation and trajectory patterns for gene-protein pairs. 

A) Spearman’s rank correlation coefficient (ρ) between RNA and protein 

levels of each pair depending on the SV – NV classification. Red lines: median 

ρ of each subset. Dashed lines indicate the limits to consider positive and 

negative correlations. Points signal ρ for: supermarkers (black), markers 

(pink) and AP1-targets (grey). Squares represent the ρ for the markers and 

AP1-targets depicted in B. B) Z-scored abundances of RNA and protein levels 

(Z-scored separately) of selected proteins. The seven supermarkers (ρ ≥ 0.4) 

(SVG-SVP: AP2, AP3, PI, TFL1, CRC, FIL-YAB1; SVG-NVP: LFY), two markers 

with ρ ≤ -0.8 (SVG-SVP: WOX13, AT4G27980), one marker and AP1-target 

with ρ ≥ 0.8 (SVG-SVP: SOC1) and two AP1-targets with non-significant ρ 

(NVG-NVP: LUT1, PYL1).  
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2.2.7 RNA-protein pairs clustered in various expression pattern 

modules 

In order to elucidate transcript-protein dynamics of the complete dataset, 

unbiased clustering based on the correlation of mRNA and protein 

expression patterns was performed. Weighted gene co-expression network 

analysis (WGCNA) using the SVG-SVP, NVG-SVP and SVG-NVP transcript-

protein pairs separately resulted in 18, 18 and 25 co-expression eigen-

modules (MEs), respectively, ranging in size from 10 to 485 gene-protein 

pairs (Figure 2.16).  

Combined expression patterns of SVG-SVP pairs were categorized in four 

groups: i) increasing mRNA and protein levels (A.1), ii) increasing mRNA and 

decreasing protein levels (A.2), iii) decreasing mRNA and increasing protein 

levels (B.1), and iv) decreasing mRNA and protein levels (B.2), with groups 

A.1 and B.2 (that is, those in which RNA and protein levels change in the same 

direction) comprising the vast majority of SVG-SVP pairs (and of MEs) and 

with most of the different MEs in those groups showing a high correlation 

(i.e., substantial ρ values) (Figure 2.16A). In groups A.2 and B.1 in which 

mRNA and protein levels are anticorrelated, a few MEs also showed relevant 

ρ values (ME11, 13 and 17 in A.2 and ME19 in B.1), although the number of 

gene-protein pairs encompassed by those MEs is small (64 versus 824 in the 

most significant MEs of A.1 and B.2). These observations support the idea 

that there is a relatively good correlation between RNA and protein level 

changes during early flower development, and also identify a few specific and 

small subgroups of genes in which the changes are anticorrelated (see section 

2.2.8).  

NGV-SVP pairs grouped in clusters with patterns that were similar to those 

observed for the complete list of SVPs (Figures 2.7, 2.15B), that is: i) 

increased protein abundance over time (NVG-SVP ME01, 05, 07, 09), ii) 

reduced levels over time (NVG-SVP ME02, 03, 04, 11, 14), iii) transient 

proteins expression at middle timepoints (NVG-SVP ME06, 10, 12, 13, 15, 16, 

17), and iv) transient proteins with a gap in their expression at intermediate 

timepoints (NVG-SVP ME08, 18). Last, SVG-NVP grouped pairs also showed 

the same trajectory patterns as the complete set of SVGs (Figures 2.8C, 

2.16C): i) increased expression through time (SVG-NVP ME02, 05, 06, 10, 13, 
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25, 26, 27, 29, 30), ii) higher expression during mid-term stages (D1-4) (SGV-

NVP ME09, 14, 17, 29), iii) high expression at D0 and D5, but down-regulated 

expression during mid-term stages (SVG-NVP ME15, 22, 24, 28), and iv) 

expression reduction over time (SVG-NVP ME01, 04, 07, 08, 11, 12, 23).  

The correlation between protein and RNA expression levels was different for 

each one of the modules, and, as indicated above (Figure 2.16A), it was 

especially high for the modules in which both molecules behaved similarly 

(SVG-SVP A.1 and B.2 modules).  

 
Figure 2.16. Trajectory patterns for gene-protein pairs.  

Trajectory clustering (WGCNA) for SVG-SVP (18 modules) (A), NVG-

SVP (18 modules) (B), and SVG-NVP (25 modules) (C). The right bar 

graph in each panel indicates the number of gene-protein pairs 

included in each module. The average ρ values for gene-protein pairs 

included in each SVG-SVP (A) modules are included. This value is not 

included for the NVG-SVP (B) and SVG-NVP (C) modules because it is 

between -0.4 and 0.4 in all cases (no-correlation, ‘grey’).  

2.2.8 Modules with opposite patterns for mRNA and protein levels 

were enriched in hormone responsive pathways  

Gene Ontology (GO) and KEGG enrichment analyses were performed to 

retrieve the functional biological processes that accompany early flower 

development (Sup Tables 2.11, 2.12). Interestingly, a high percentage of 

gene-protein pairs with decreasing levels of RNA combined with increasing 

protein abundance (i.e., SVG-SVP ME19) are known to correspond to proteins 

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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localized to the chloroplasts, whereas gene-protein pairs with increasing 

levels of RNA combined with decreasing protein abundance (i.e., SVG-SVP 

ME11, 13, 17 and 18) contain proteins involved in fatty-acid metabolic 

process related with acetyl-CoA and jasmonic acid (JA) pathways. 

Six out of ten genes included in the SVG-SVP ME19, with decreasing levels of 

RNA and increasing protein abundance, are expressed in chloroplasts 

(AT1G79460, AT3G07310, AT1G29070, AT4G17300, AT2G29180 and 

AT5G23040). Among these, GA2 (AT1G79460) and a putative phosphoserine 

aminotransferase (AT3G07310) are included in the gibberellic acid signalling 

pathway, PRPL34 (AT1G29070) is a structural constituent of the ribosome, 

AT2G29180 (thylakoid membrane protein) positively regulates 

transcription, NS1 (AT4G17300) is also related with chloroplast 

transcription, as it acts as a ligase on tRNA (asparaginyl-tRNA aminoacylation 

for amino acid activation) and CDF1 (AT5G23040) is a thylakoid membrane 

chaperone required for chloroplast biogenesis and development. All these 

proteins are related with cellular response to lipids and gibberellins, 

although nor this module nor any other modules were significantly enriched 

in gibberellin-related pathways (adjusted p-values > 0.05). Gibberellin 

indirectly promotes chloroplast biogenesis to maintain the chloroplast 

population of expanded cells, yet the relationship between chloroplast 

biogenesis with cell division and cell expansion remains poorly understood 

(X. JIANG ET AL., 2012).  

On the other hand, gene-protein pairs with an increasing pattern in their RNA 

levels combined with a decrease in protein abundance (i.e., SVG-SVP ME11, 

13, 17 and 18) are enriched in proteins involved in fatty-acid metabolic 

processes related with acetyl-CoA and jasmonic acid (JA) pathways. These 

pathways are required for proper flower developmental processes such as 

flower maturation (REEVES ET AL., 2012). JA induces the expression of WOX13 

(included in SVG-SVP ME13) orthologous BpWOX9 and BpWOX10 in 

Broussonetia papyrifera (TANG ET AL., 2017). Besides, WOX13 interacts with 

other member of SVG-SVP ME13: RAD-LIKE3 (AT4G36570) (TRIGG ET AL., 

2017), a probable transcription factor assigned as a member of the MYB-

related family, whose members show considerable response to JA signalling 

(ALI & BAEK, 2020; ZHAI ET AL., 2015). TEOSINTE BRANCHED/CYCLOIDEA/PCF 
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(TCP) genes, such as TCP15 also found in this module, controls the 

biosynthesis of JA (SCHOMMER ET AL., 2008). In addition, other gene-protein 

pairs with this specific expression pattern regulate JA-dependent and JA-

independent responses, such as the calmodulines CML11, 16 and 19 and the 

CYTOCHROME P450 family members AT4G12300 and AT1G13080 (LEON ET 

AL., 1998).  

Other modules with increasing levels of mRNA (SVG-NVP ME02 and ME06), 

or of mRNA and proteins (SVG-SVP ME09) were enriched in auxin metabolic 

processes, whereas modules with decreasing levels of mRNA (SVG-NVP 

ME01), or of mRNA and protein (SVG-SVP ME01) were enriched in cytokinin-

responsive processes.  

In summary, the main result from the GO analysis is that modules with 

opposite patterns for mRNA and protein levels were enriched in hormone 

responsive pathways, although determining the possible functional 

significance of this observation and the molecular mechanisms that would 

underlie divergent RNA and protein trajectories would require additional 

studies.  

2.2.9 Physically interacting proteins had different RNA-protein 

expression levels through time 

To investigate possible functions of, or functional relationships within, the 

different MEs (that is, of or within the various groups with different RNA-

protein trajectories), the interaction network of all MS-detected proteins and 

other Arabidopsis proteins was analysed by by collecting information about 

known and predicted protein-protein interactions (ppi) from STRING 

(SZKLARCZYK ET AL., 2017).  

The final ppi network (6,403 nodes, 66,350 edges) was divided into five main 

clusters with more than 30 proteins, and 55 smaller protein groups, ranging 

from two to 23 proteins (Figure 2.17, Sup Tables 2.7-2.9). No clear 

association between RNA-protein trajectory patterns and the interaction 

clusters was found, as each of the interaction clusters contained proteins that 

presented different RNA-protein patterns (Figures 2.17), except for the 

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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interaction cluster 2, which had a central hub composed by proteins whose 

RNA-protein levels were downregulated during the time course and whose 

main KEGG pathway was ‘photosynthesis and carbon fixation’ (Sup Table 

2.10).  

 

Figure 2.17. Protein-protein interaction clusters.  

Network depicting physical interactions and co-expression between 

proteins included in the dataset and other proteins in A. thaliana 

(IntAct, STRING). This figure includes the five largest interaction 

clusters (Clusters 1 to 5), as well as two interaction clusters that only 

contain proteins from a specific metabolic pathway (Clusters 13 and 

16). The main KEGG pathways for each cluster are annotated (Sup 

Table 2.10). Clusters 1, 3 and 5 contained proteins involved in 

developmental processes and stress responses, whereas clusters 2, 4, 

13 and 16 were enriched in proteins related to metabolic pathways. 

Node legend: outer line represents RNA levels and inner circle, protein 

levels. Blue: decreasing trajectories; red: increasing trajectories; 

salmon: trajectories with a maximum peak (increase – decrease); light 

blue: trajectories with a minimum (decrease – increase); grey: non-

variant. Squares represent proteins not included in the MS results.  
  

https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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2.3 Discussion 

In this Chapter, the early flower development process was analysed by 

comparing gene and protein expression profiles in a pAP1:AP1-GR ap1 cal 

inducible line. Despite the inherent complications to combine datasets (RNA-

seq and LC-MS/MS) that are different in their generation, acquisition, and 

analysis, I identified several groups of genes with various cases of protein-

RNA expression patterns of positive, negative, or neutral correlation.  

A major concern in label-free quantitative proteomics that hinders the 

subsequent data analysis and its comparison with other omics data is the 

high rate of missing values. Thanks to the ‘Reliability Analysis’ workflow 

designed in this work, it was possible to distinguish the nature of the data 

missingness, and to treat the not-assigned values (NAs) of the LC-MS/MS 

results accordingly. The highest number of Reliably Undetected proteins 

corresponded to D0 and D5 (Figure 2.3C), when proteins whose expression 

is regulated by AP1 have not been expressed yet, or are strongly 

downregulated, respectively (KAUFMANN ET AL., 2010; PAJORO, MADRIGAL, ET 

AL., 2014; WELLMER ET AL., 2006). After the Reliability Analysis and NA 

imputation, replicates clustered better together by day (Figure 2.6), 

demonstrating the robustness and reproducibility of the LC-MS/MS followed 

by a Reliability Analysis approach.  

The RNA-seq data corroborated previous findings stating that AP1 acts 

predominantly as a transcriptional repressor during the earliest stages of 

flower development, whereas, at more advanced stages, predominantly as an 

activator (KAUFMANN ET AL., 2010; WELLMER ET AL., 2006), but more 

significantly, the RNA-seq data triplicated the number of differentially 

expressed genes (DEGs) identified during early flower development in 

Arabidopsis (5,150 DEGs vs 1,653 DEGs described in (WELLMER ET AL., 2006)). 

In addition, with the likelihood ratio test (LRT) approach, the total number 

of variable genes was even higher (8,125 stage variant genes – SVGs –), as 

this approach is more sensitive than pairwise comparisons to slight changers 

in expression levels between subsequent days. Furthermore, it was possible 

to identify 230 novel putative AP1-high confidence targets (HCTs) based on 

their differentially expression data and previous ChIP-seq data from 
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(KAUFMANN ET AL., 2010), including flowering time genes (e.g., SVP and AGL24) 

and genes that participate in flower development (e.g., SEP2, SEP4, BHLH11, 

CUC1 and PIN1) that were down- and up-regulated during the D1 vs D0 time 

comparison in the RNA-seq data, respectively.  

Multiomics studies provide a wider interpretation of a process than a 

research based solely on one kind of molecule. In this study, the correlation 

of mRNA and protein levels through time of each RNA-protein pair was 

measured by calculating the Spearman's rank correlation coefficient (ρ). In 

total, there were 2,540 RNA-protein pairs with a positive correlation, 975 

RNA-protein pairs presented a negative correlation, and 3,488 were 

considered as not significantly correlated in either way.  

The expression patterns of AP1 high-confidence targets (KAUFMANN ET AL., 

2010) at the mRNA and protein levels were positively correlated (e.g., for the 

case of SUPPRESSOR OF CONSTANS OVEREXPRESSION 1; SOC1), except some 

cases of discordancy, as some examples of RNA-protein comparisons with 

opposite expression patterns between both molecules were also found. This 

was the case of WUSCHEL RELATED HOMEOBOX13 (WOX13) (COSTANZO ET AL., 

2014; H. LIN ET AL., 2013) and AT4G27980 (Y. WANG ET AL., 2008), two of the 

marker proteins whose mRNA levels increased, as in (WELLMER ET AL., 2006), 

whereas their protein levels decreased through time, as in (Y. WANG ET AL., 

2008), showing a significantly negative Spearman’s rank correlation 

coefficient (ρ ≤ 0.8, p-value ≤ 0.05).  

In the analysis for this Thesis, almost 50% of total mRNA-protein pairs 

showed no correlation between their individual abundances, such as the 

AP1-targets LUTEIN-DEFICIENT 1 (LUT1) (TIAN ET AL., 2004) and 

PYRABACTIN RESISTANCE 1 - LIKE 1 (PYL1) (YIN ET AL., 2016), both NVG-NVP 

(Figure 2.15B). The observed apparent lack of correlation between mRNA 

and protein levels could be related to the methods of detection and 

quantification that were used, but also to biologically relevant processes, 

such as post-translational and post-transcriptional regulatory events, etc. 

PCA for averaged Z-scored values of SVG-SVP pairs (Z-scored independently) 

revealed that D0, D1 and D5 had the lower mRNA-protein correlations 

(Figure 2.13B). This observation was somehow expected given the 
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difference in average half-life of mRNA and proteins and the variations in 

transcriptional and translational kinetics, specially at the beginning of the 

induction. In addition, protein levels at D5 also correlated with mRNA levels 

at D4, while following the same trend, protein levels at D4 were slightly 

closer to mRNA levels at D3 than at D4 (Figure 2.13B). This highlights the 

usefulness of time-series analysis to compare gene and protein expression 

and relates with the low correlations found in many similar studies following 

single sampling timepoints (as in (HUANG ET AL., 2022; MERGNER ET AL., 2020; 

P. WANG ET AL., 2023)). 

In some cases, there was a correlation between the behaviour in expression 

of gene-protein pairs and their functions and protein-protein interactions. 

Gene-protein pairs with decreasing levels of RNA and increasing levels of 

protein abundance were mostly chloroplast-related genes (SVG-SVP ME19). 

Gene-protein pairs with increasing RNA levels and decreasing protein 

abundances are related with jasmonate synthesis and metabolism. Jasmonic 

acid, and its derivative metabolites, are important for plant growth and 

development processes, including senescence, growth inhibition, flower 

development and leaf abscission (ZOU ET AL., 2020), as well as, plant response 

to abiotic and biotic stresses (GRIFFITHS, 2020). A network of plant hormones 

such as jasmonic acid with miRNA-transcription factors have a role in flower 

senescence, and probably in floral organ abscission (RUBIO-SOMOZA & WEIGEL, 

2013). 

These differences in RNA levels and protein abundances reflect the existence 

of possible regulatory processes, such as positive and/or negative feedback 

loops or posttranscriptional and posttranslational modifications, affecting 

both molecules differently.  
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2.4 Materials and methods 

2.4.1 Plant lines and plant growth conditions 

The pAP1:AP1-GR ap1 cal (Ó’MAOILÉIDIGH ET AL., 2023) plants were grown on 

a soil:vermiculite:perlite mixture at 21 °C under long day conditions (16 h 

light, 8 h darkness), after a 4-day period of stratification at 4 °C in darkness. 

2.4.2 Tissue collection  

For RNA-seq and LC-MS/MS experiments, 4-week-old pAP1:AP1-GR ap1 cal 

plants were used. Four biological replicates were generated for each time 

point. For each replicate, from around 80 (D0) to 40 plants (D5) were needed 

to obtain 300-500 µg of total protein. Inflorescence tissue was collected using 

jeweler’s forceps as previously described (WELLMER ET AL., 2006). For 

induction, inflorescences were treated with a DEX-induction solution (2 µM 

DEX, 0.01% (v/v) ethanol, and 0.01% Silwet L-77). Using plastic pipettes, the 

solution was directly applied onto the inflorescences so that the cauliflower-

like structures were completely drenched. First induction was performed 8 

h after lights on, and daily inductions, at 4 h after lights on. Samples were 

collected immediately after solution application (D0), as well as at 1, 2, 3, 4 

and 5 days (D1-5) after the first treatment.  

2.4.3 Protein extraction 

Protein and RNA extractions had common initial steps (as described in 

(ÁLVAREZ-URDIOLA, MATUS, ET AL., 2023)). Tissue was ground in liquid 

nitrogen. For each timepoint, ~0.25 g of plant material was used. Ground 

material was resuspended in 1 mL of Trizol and incubated on ice for 5 min. 

Then, 200 µL of chloroform were added and properly mixed by vortexing. 

After a 5-min incubation on ice, samples were centrifuged at 4 °C for 15 min 

at maximum speed. Upon centrifugation, three phases are formed, the 

aqueous phase contains RNA (~550 µL, transparent), the interphase, DNA 

(white), and the organic phase, proteins, and lipids (~450 µL, pink). After the 

aqueous phase was transferred to a new microcentrifuge tube (see RNA 

extraction), 300 µL of ethanol 100% (v/v) were added to the organic phase 

to continue with protein extraction and the mix was incubated on ice. 
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Samples were centrifuged for 10 min at 2,000 x g to separate DNA from 

proteins. The supernatant was placed in a clean 2 mL microcentrifuge tube, 

1 mL of pure isopropanol was added, and samples were incubated at room 

temperature for 10 min. After a 10-min centrifugation at 4 °C at 12,000 x g, 

the supernatant was discarded. The pellet was resuspended in 2 mL of a 

solution of 0.3 M guanidine in ethanol 95% (v/v) for washing and sonicated 

during 5 min. Samples were centrifuged at 4 °C for 5 min at 8,000 x g. This 

washing procedure was repeated twice. The final pellet was stored at -20 °C 

and washed with ethanol 90% (v/v) before the final resuspension in an 

acetonitrile 70% (v/v) buffer for LC-MS/MS.  

2.4.4 RNA extraction 

The organic phase (see Protein extraction) was transferred to a clean 

microcentrifuge tube and mixed vigorously with one volume of pure 

isopropanol. After 15 min of incubation on ice, samples were centrifuged at 

4 °C for 10 min and the supernatant was discarded. Each pellet was 

resuspended in 750 µL of LiCl 3 M, incubated on ice for 10 min and 

centrifuged at 4 °C for 10 min at maximum speed. The supernatant was 

discarded, and each pellet was gently washed with 500 µL of ethanol 85% 

(v/v). The last centrifugation was performed at 4 °C for 10 min at maximum 

speed and supernatant was discarded. Each pellet was resuspended in 21 µL 

of diethylpyrocarbonate (DEPC)-treated water after drying. Samples were 

quantified with a NanoDrop 1000 Spectrophotometer. 

2.4.5 Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) 

Proteomics experiments were conducted in collaboration with Dr. Eduard 

Sabidó and Dra Eva Borrás from the proteomics facility at the Center for 

Genomic Regulation (CRG). 

Sample preparation. Samples were reduced with dithiothreitol (30 nmol, 

37 °C, 60 min) and alkylated in the dark with iodoacetamide (60 nmol, 25°C, 

30 min). The resulting protein extract was first diluted to 2M urea with 200 

mM ammonium bicarbonate for digestion with endoproteinase LysC (1:10 

w:w, 37 °C, o/n, Wako, cat # 129-02541), and then diluted 2-fold with 200 
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mM ammonium bicarbonate for trypsin digestion (1:10 w:w, 37 °C, 8h, 

Promega cat # V5113). After digestion, peptide mix was acidified with formic 

acid and desalted with a MicroSpin C18 column (The Nest Group, Inc) prior 

to LC-MS/MS analysis. 

Chromatographic and mass spectrometric analysis. Samples were 

analysed using an LTQ-Orbitrap Fusion Lumos mass spectrometer (Thermo 

Fisher Scientific, San Jose, CA, USA) coupled to an EASY-nLC 1000 (Thermo 

Fisher Scientific (Proxeon), Odense, Denmark). Peptides were loaded directly 

onto the analytical column and were separated by reversed-phase 

chromatography using a 50 cm column with an inner diameter of 75 μm, 

packed with 2 μm C18 particles spectrometer (Thermo Scientific, San Jose, 

CA, USA). Chromatographic gradients started at 95% buffer A and 5% buffer 

B with a flow rate of 300 nL/min for 5 minutes and gradually increased to 

22% buffer B and 78% A in 79 min and then to 35% buffer B and 65% A in 

11 min. After each analysis, the column was washed for 10 min with 10% 

buffer A and 90% buffer B. Buffer A: 0.1% formic acid in water. Buffer B: 0.1% 

formic acid in acetonitrile.  

The mass spectrometer was operated in positive ionization mode with 

nanospray voltage set at 2.4 kV and source temperature at 275 °C. Ultramark 

1621 for the was used for external calibration of the FT mass analyzer prior 

the analyses, and an internal calibration was performed using the 

background polysiloxane ion signal at m/z 445.1200. The acquisition was 

performed in data-dependent acquisition (DDA) mode and full MS scans with 

1 micro scans at resolution of 120,000 were used over a mass range of m/z 

350-1500 with detection in the Orbitrap mass analyzer. Auto gain control 

(AGC) was set to 1E5 and charge state filtering disqualifying singly charged 

peptides was activated. In each cycle of data-dependent acquisition analysis, 

following each survey scan, the most intense ions above a threshold ion count 

of 10,000 were selected for fragmentation. The number of selected precursor 

ions for fragmentation was determined by the ‘Top Speed’ acquisition 

algorithm and a dynamic exclusion of 60 seconds. Fragment ion spectra were 

produced via high-energy collision dissociation (HCD) at normalized 

collision energy of 28% and they were acquired in the ion trap mass analyzer. 

AGC was set to 1E4, and an isolation window of 1.6 m/z and a maximum 
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injection time of 200 ms were used. All data were acquired with Xcalibur 

software v4.1.31.9. Digested bovine serum albumin (New England Biolabs 

cat # P8108S) was analysed between each sample to avoid sample carryover 

and to assure stability of the instrument and QCloud (CHIVA ET AL., 2018) has 

been used to control instrument longitudinal performance during the 

project.  

Data Processing. Acquired spectra were analysed using the Proteome 

Discoverer software suite (v2.0, Thermo Fisher Scientific) and the Mascot 

search engine (v2.5 Matrix Science) (PERKINS ET AL., 1999). The data were 

searched against a UniProt A. thaliana database plus a list of common 

contaminants (BEER ET AL., 2017) and all the corresponding decoy entries. For 

peptide identification a precursor ion mass tolerance of 7 ppm was used for 

MS1 level, trypsin was chosen as enzyme, and up to three missed cleavages 

were allowed. The fragment ion mass tolerance was set to 0.5 Da for MS2 

spectra. Oxidation of methionine and N-terminal protein acetylation were 

used as variable modifications whereas carbamidomethylation on cysteines 

was set as a fixed modification.  

False discovery rate (FDR) in peptide identification was set to a maximum of 

5%. Peptide quantification data were retrieved from the ‘Precursor ion area 

detector’ node from Proteome Discoverer (v2.0) using 2 ppm mass tolerance 

for the peptide extracted ion current (XIC). Protein abundance in each 

condition was estimated using the average of the three most intense peptides 

per protein group (TOP3) (SILVA ET AL., 2006). The raw proteomics data have 

been deposited to the PRIDE repository (PEREZ-RIVEROL ET AL., 2022) with the 

dataset identifier PXD038980. For subsequent statistical analysis, median 

normalisation was performed by subtracting from each logged value the 

sample median and adding the global dataset median. Replicate 1 of Day 0 

(R1D0) highly differed from the rest (Figure 2.18), so it was removed from 

the dataset, as well as the 165 proteins that were only detected in this sample. 
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Figure 2.18. Inter-sample variability of the proteomics data before 

D0R1 removal.  

A) PCA of proteins without NAs before the RA and before R1D0 

removal. B) Percentage of variances explained by each principal 

component for the proteomics data before R1D0 removal 

(eigenvalues). 

Not Assigned values: Reliability analysis. For the Reliability Analysis, each 

timepoint for a protein was classified as reliably or unreliably detected or 

undetected depending on its number of NAs and the number of NAs of its 

immediately adjacent days (neighbours). Days 0 and 5 were considered as 

Reliably Undetected when all replicates were NAs, and days 1 – 4, besides 

that, must had at least one neighbour with two or more NAs. Those were 

considered as MNAR missing values, and NAs were replaced by the minimum 

of detection of the dataset (Deterministic Minimum Imputation method 

(MELETH ET AL., 2005)). Days with one or no NAs were defined as Reliably 

Detected and their abundance values were kept. Finally, days with two or 

more NAs were classified as Unreliably Detected when they had at least one 

neighbour with two or less NAs, keeping their quantification values; 

otherwise, they were classified as Unreliably Undetected, and its 

quantification values were replaced by NAs in all replicates. All those 

proteins which were Reliably or Unreliably Undetected in every timepoint 

were discarded. The remaining NA values were estimated by k-Nearest 

Neighbour (kNN) imputation (k = 10) (TROYANSKAYA ET AL., 2001) (Figures 

2.3A, B, 2.4). 
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2.4.6 RNA-seq experiments 

The 24 samples were sequenced on an Illumina HighSeq 2000 machine. 

Cleaned reads together with the transcriptome of A. thaliana (TAIR10) were 

used to quantify gene expression at transcript level, in counts (regularized-

logarithm transformation with DESeq2) and Transcripts Per Million (TPMs) 

using the software Salmon (v0.12.0). The quantification data were grouped 

so that genes instead of transcripts were analysed, using tximport package in 

R. Genes that had less than ten counts across all the samples were removed 

to facilitate further analyses (DESeq2 package in R). Size factors, corrected by 

library size, and dispersions were estimated using DEseq function from the 

package DESeq2 in R. Dispersion estimates for all genes were obtained 

considering the information for each gene separately.  

2.4.7 Representative proteins and genes: Markers, Supermarkers and 

AP1-targets 

A group of 69 proteins were selected as markers on the basis of the detection 

of expression of their corresponding genes in previous time-course 

experiments performed using AP1 floral induction systems, including gene 

expression profiling using DNA microarrays (KAUFMANN ET AL., 2010; 

WELLMER ET AL., 2006), and unpublished data (our laboratory; Bustamante et 

al.). Marker proteins corresponded with up- or down-regulated genes in the 

microarray experiments (absolute FC ≥ 2 for the first replicate when 

comparing days 1 and 0, and BH ≤ 0.05) or in the RNA-seq (absolute FC ≥ 2 

for all replicates when comparing day 2 and 0, and day 4 and 0, and FPKM > 

1). The seven supermarker proteins, with similar characteristics as the 

markers, are transcription factors controlling different aspects of flower 

development (AP2, AP3, PI, TFL1, CRC, LFY, FIL-YABI1). Out of the 249 AP1 

high confidence targets (HCTs) defined in (KAUFMANN ET AL., 2010), 247 were 

quantified in the RNA-seq experiment reported in this thesis. 

2.4.8 Data analysis 

Genome and proteome annotations. Araport11 gene identifiers (AGI 

codes: AT (A. thaliana); 1, 2, 3, 4, 5, M, C (chromosome number, M for 
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mitochondrial, C for chloroplast); G (gene), 00000 (five-digit code for 

position on chromosome)) were mapped to the UniProt A. thaliana reference 

proteome (taxon identifier 3702; UP000006548; downloaded in 2018) based 

on protein sequence. N- and C-terminal peptide sequences were extracted 

from the Mascot.txt file and filtered for zero missed cleavages (Figure 2.2A). 

N-terminal peptides were divided into groups with (n = 1,203) or without (n 

= 769) cleavage of the initiator methionine. Then, the frequency of the 20 

genetically encoded amino acids at the position after the start codon was 

calculated and displayed as a pie chart (Figure 2.2B) for both groups. The 

percentage of acetylated N-terminal peptides with the same amino acids in 

the second position was calculated for both groups and represented as bar 

plot (Figure 2.2C). 

Protein and RNA level variation through time. An ANOVA analysis was 

performed for the normalised proteome dataset, followed by a Tukey post-

hoc test. Proteins were considered as stage variant (SVPs) if their Benjamini 

& Hochberg (BH) adjusted p-value, which can be interpreted as False 

Discovery Rate (FDR) (BENJAMINI & HOCHBERG, 1995), was lower than 0.05. 

For the RNA-seq dataset, a moderated likelihood ratio test (LRT) was applied 

to get a statistic for ranking genes according to the difference in expression 

profiles among timepoints. LRT is a test of significance for differences of any 

level of the factor. Genes with an adjusted p-value (FDR) lower than 0.01 

were considered as stage variant (SVGs). The log2 fold-change (LFC) in 

expression between subsequent stages were calculated for all transcripts. 

The p-values were adjusted for multi-hypothesis testing using the BH 

procedure (FDR). Transcripts with a LFC with an adjusted p-value lower than 

0.05 at any day-to previous day comparison were considered as differentially 

expressed genes (DEGs). No LFC cut-off was applied.  

Gene-protein correlations. 7,003 quantified proteins in the MS proteome 

dataset had their correspondent gene in the RNA-seq transcriptome dataset. 

Protein-gene pairs were grouped in 4 subsets: stage variant at RNA and 

protein levels (SVG-SVP, n = 973), non-variant genes – stage variant proteins 

(NVG-SVP, n = 1006), stage variant genes – non-variant proteins (SVG-NVP, 

n = 1808) and non-variant pairs (NVG-NVP, n = 3216). Pearson’s correlation 

coefficient (rs; p-value ≤ 0.05) was used to find correlations between protein 
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levels and corresponding genes within and between all timepoints, using a 

square matrix (Figure 2.13). The Spearman’s rank correlation coefficient (ρ) 

of each gene-protein pair individually was used for correlating transcriptome 

and proteome levels in each subset (SVG-SVP, SVG-NVP, NVP-SVP, NVG-NVP) 

(Figures 2.14, 2.15A). The slopes were estimated by ranged major-axis 

(RMA) regression, which allows errors in both variables and is symmetric, 

using the R package lmodel2 (CSÁRDI ET AL., 2015) (Figure 2.19).  

PCA of proteome and transcriptome data was performed in R for each 

normalised dataset separately (proteome before and after the Reliability 

Analysis, and transcriptome), but also for their intersection (n = 7003 

transcript-protein pairs), and for the SVG-SVP subset (n = 973). 

Transcript-protein co-expression network analysis. Transcriptome and 

proteome dynamics were evaluated by means of weighted gene co-

expression network analysis (WGCNA) (LANGFELDER & HORVATH, 2008). 

Normalized RNA-seq counts and protein abundances data (after Reliability 

Analysis) were separately z-score transformed for each subgroup, and 

WGCNA was performed with a soft-power of 6 signed network. Modules were 

defined by dynamic tree cut with a minimum size of 10 and deep split of 4. 

To reduce the final number of modules, those with a similitude superior to 

0.9 were merged, leading to the final number of modules that were 

considered. 

Protein-protein interaction network. Arabidopsis protein-protein 

interactions were downloaded from STRING (March 2021, https://stringdb-

static.org/download/protein.links.detailed.v11.0/), and IntAct (March 2021, 

https://www.ebi.ac.uk/intact/). In addition, it was checked which ppi 

between the proteins quantified by MS were annotated in The Arabidopsis 

Information Resource (TAIR, https://arabidopsis.org), finding 598 

interactions (Sup Table 2.13). Interaction clusters were determined using 

the GLay clustering tool (SU ET AL., 2010) of ClusterMaker package (MORRIS ET 

AL., 2011) for Cytoscape (SHANNON ET AL., 2003).  

Proteins from transcript-protein pairs with similar expression patterns 

(from the same interaction module), on average, showed higher STRING co-

expression scores (Figure 2.20A). To determine if among the protein dataset 

https://stringdb-static.org/download/protein.links.detailed.v11.0/
https://stringdb-static.org/download/protein.links.detailed.v11.0/
https://www.ebi.ac.uk/intact/
https://arabidopsis.org/
https://drive.google.com/drive/folders/1Y7RzAckqqbqTTuWCzBbNWaTGBjHutYIM?usp=drive_link
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there were high confidence previously-described physical interactions, the 

STRING data from interactions with high co-expression (above median) were 

combined with IntAct-registered (HERMJAKOB ET AL., 2003) ppi. There were 

129 self-interacting proteins, 70 ppi between proteins in the same module, 

and 2,656 ppi between proteins from different trajectory modules (Figure 

2.20B).  

 

Figure 2.19. Correlation between RNA and protein levels.  

Scatter plot of the median logarithmic representation of TOP3 

abundances for proteins and TPM for RNA molecules for all RNA-

protein pairs at every time-point for all the modules for the different 

groups: SVG-SVP (A), NVP-SVG (B), SVG-NVP (C), and NVG-NVP (D). 

Colours represent some of the marker and supermarker proteins. Cont. 

in next page. 
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Figure 2.19. Correlation between RNA and protein levels (Cont.). 

 

Figure 2.20. STRING and IntAct interaction scores.  

A) STRING co-expression scores for each ppi expressed in the same 

module (yes) or not (no). Interacting proteins from the same module 

have a significantly higher STRING co-expression score (t-test, p-value 

< 0.001). B) IntAct confidence of interaction score for each one of the 

ppi between a protein in the dataset and other which is not included 

(Not in MS), proteins from different or the same module and reported 

polymers (self-interaction).  
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Function data analysis. Gene ontology (GO) (G. YU ET AL., 2012) and KEGG 

term enrichments (KANEHISA & GOTO, 2000) were performed using 

clusterProfiler (G. YU ET AL., 2012). Enrichment was determined with fisher 

exact tests followed by Bonferroni-Yekutieli multiple testing correction. The 

composition of the interaction clusters and the trajectory modules was also 

analysed in the sense of whether they contained proteins from the same 

annotated family according to TAIR, but there was no significant enrichment 

in members of any specific family for the clusters. Family annotations were 

downloaded from TAIR (downloaded on the 18th of March 2021: 

gene_families_sep_29_09_update.txt,). 

2.4.9 Comparison with previous studies 

RNA-seq differential expression results were compared to those found in 

(WELLMER ET AL., 2006). A filter on adjusted p-values (< 0.05) was applied to 

the list of common genes to keep only those with significant values.  

Novel AP1-high confidence targets (HCTs) were defined using the RNA-seq 

data (D1 vs. D0 DEGs, adjusted p-value < 0.05, absolute LFC < 0.29) and ChIP-

seq data from (KAUFMANN ET AL., 2010). 

2.4.10 Data availability statement 

The LC-MS/MS proteomics data for this project have been deposited at the 

ProteomeXchange Consortium with the dataset identifier PXD038980.  

The RNAseq transcriptomics data are available at GEO with the dataset 

identifier GSE217606. 
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Chapter 3. General introduction (II) 

3.1 The plant peptidome 

Peptides play multiple and diverse roles in plants, acting as signalling 

molecules in cell-to-cell interactions or long-distance communication, 

affecting stress or external stimuli responses, controlling development, 

morphogenesis, growth, fertilization, symbiosis with nitrogen-fixing 

bacteria, or by virtue of their antimicrobial activities (BREIDEN & SIMON, 2016; 

GRIENENBERGER & FLETCHER, 2015; MATSUBAYASHI, 2011, 2014; TAKAHASHI ET 

AL., 2019; TAVORMINA ET AL., 2015). They can be classified according to how 

they are generated and to their sequence, structural, and functional 

characteristics, and are generally defined – albeit somewhat arbitrarily – as 

of less than 100 amino acids long (TAVORMINA ET AL., 2015).  

The vast majority of the plant peptides that have been characterized to date 

are produced through the processing of larger, non-functional precursor 

polypeptides, which result in the mature peptide upon removal of an N-

terminal signal sequence (NSS; that directs the precursor to the secretory 

pathway) and/or of other amino acid segment(s) (Table 3.1) (TAVORMINA ET 

AL., 2015). These precursor-derived peptides (‘conventional’ peptides) 

functionally correspond, to a large extent, to small signalling peptides (SSPs) 

and antimicrobial peptides (AMPs), and structurally can be sub-grouped into 

two major classes, post-translationally modified (PTM) peptides and 

cysteine-rich (Cys-rich) peptides, each of them containing several gene 

families; in addition, several non-functional precursor derived peptides are 

not cysteine-rich and are not known to be post-translationally modified 

(Table 3.1). The presence of signature sequences or motifs (NSSs, Cys 

residues) and of sequence similarity within gene families has facilitated the 

identification of these ‘conventional’ peptides within and across plant species 

(MATSUBAYASHI, 2018)  
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Functional or bioactive peptides can also be generated through the 

proteolytic processing of otherwise functional proteins, resulting in so-called 

cryptides, defined by having a biological activity that is distinct to that of the 

protein that the cryptide originates from (SAMIR & LINK, 2011). Only a few 

examples of cryptides with relevant roles in plants have been reported to 

date, which are for instance related to the defence response and other 

stresses (CHEN ET AL., 2014; CHIEN ET AL., 2015; LYAPINA ET AL., 2019; 

TAVORMINA ET AL., 2015; YUAN ET AL., 2019). In fact, the proteolytic degradation 

of proteins generates peptides that can be localized intracellularly or 

extracellularly and, in plants, the composition of this protein “degradome” – 

of which chloroplasts are a major source (KMIEC ET AL., 2018; MAMAEVA ET AL., 

2020) – is affected during stress responses or upon treatment with plant 

stress-related hormones (FESENKO, AZARKINA, ET AL., 2019; FILIPPOVA ET AL., 

2019). Whether multiple cryptides with specific functions exist in the plant 

peptide “degradome”, or if it is rather the existence of a pool of peptide 

degradation products and changes in its abundance or composition what 

may be perceived by the cells as part of stress signalling, is an open question, 

although a potential cryptide with antimicrobial activity has been detected in 

P. patens upon methyl jasmonate treatment (FESENKO, AZARKINA, ET AL., 2019).  

In addition to the peptides that are generated through the processing of non-

functional or functional precursors, peptides can also be produced through 

the direct translation of short/small open reading frames (sORFs/smORFs) 

(Table 3.1). This is the case, for instance, of Arabidopsis ROTUNDIFOLIA4 

and DEVIL1, which were identified in activation-tagging (gain-of-function) 

genetic screens and are the founding members of the RTFL/DVL gene family, 

involved in organogenesis (GUO ET AL., 2015; IKEUCHI ET AL., 2011; NARITA ET 

AL., 2004; VALDIVIA ET AL., 2012; WEN ET AL., 2004). Likewise, KISS-OF-DEATH 

(KOD) was identified through a promoter trap screening and the encoded 

small peptide was shown to act as an inducer of programmed cell death in 

embryo development and during stress (BLANVILLAIN ET AL., 2011), and 

BRICK1 (BRK1; identified in a mutant screen in maize) is an essential 

component of the complex that controls the spatiotemporal dynamics of 

actin nucleation and therefore affecting morphogenesis (CHIN ET AL., 2021; 

DJAKOVIC ET AL., 2006; FRANK & SMITH, 2002; LE ET AL., 2006). More recently, 
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ZENGDA SMALL PEPTIDE 1 (ZSP1) was identified in a search of Arabidopsis 

small genes that lacked functional annotation and was shown to affect organ 

size via the cytokinin pathway (ZENG ET AL., 2022). 

However, the fact is that until relatively recently, the coding potential of 

eukaryotic sORFs at the genome-wide level had mostly been overlooked. This 

was due to traditional assumptions (e.g., a monocistronic nature of 

eukaryotic mRNAs, or that short peptides would be unlikely to fold into 

stable -and functional- structures), to computational constraints for de novo 

sORF identification and annotation in genome sequences, and -particularly- 

to experimental limitations for determining whether these sequences are in 

fact translated. However, the development of high-throughput methods to 

identify translating RNAs (ribosome profiling; Ribo-seq and Polyribo-seq) 

(HSU ET AL., 2016; INGOLIA, 2016; INGOLIA ET AL., 2014; INGOLIA ET AL., 2009; 

INGOLIA ET AL., 2011) evidenced an unanticipated complexity to mammalian 

proteomes and revealed that translation outside of conserved or 

standard/annotated reading frames is pervasive on cytosolic transcripts 

(INGOLIA ET AL., 2014; INGOLIA ET AL., 2011). These observations were quickly 

extended to other eukaryotic organisms, including plants (BAZIN ET AL., 2017; 

HSU ET AL., 2016; JUNTAWONG ET AL., 2014), and demonstrated also through 

mass spectrometry (MS) proteomic studies (MENSCHAERT ET AL., 2013; 

SLAVOFF ET AL., 2013; VANDERPERRE ET AL., 2013). 

As a result and contrary to what was previously considered, it is now well 

established that small and long non-coding RNAs (ncRNAs and lncRNAs) and 

transcripts of unknown function (TUFs), pseudogene transcripts, 5’- and 3´-

UTRs of mRNAs, antisense transcripts, unannotated intergenic regions, 

primary miRNA transcripts (pri-miRs), ribosomal RNAs, and introns and 

circular RNAs, might contain translatable sORFs encoding non-precursor-

derived peptides, which are generally referred to as sORF-encoded peptides 

(SEPs), ‘non-conventional peptides’ (NCPs), microproteins, or micropeptides 

(and also usually defined as shorter than 100 amino acids in length) (Figure 

3.1). These terms therefore generally refer to a class of peptides and proteins 

that are “born small” (SCHLESINGER & ELSASSER, 2022), in contraposition to 

‘conventional’ peptides derived from the processing of larger precursor 

polypeptides (Table 3.1).  
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In addition, mRNAs can also be polycistronic by containing ORFs that, 

although being internal (completely or partially) and out-of-frame to the 

main/annotated coding sequence (CDS), can be translated, mostly into 

peptides or proteins that are also small. These have often been referred to as 

alt-ORFs (for ‘alternative’) and alt-proteins (alt-Prots) (BRUNET ET AL., 2018; 

CARDON ET AL., 2021; LEBLANC ET AL., 2022; SAMANDI ET AL., 2017) (in the 

literature, however, there is overlap but not complete coincidence between 

the categories defined as ‘sORF’ and ‘alt-ORF’ peptides; see (BRUNET ET AL., 

2020; COUSO & PATRAQUIM, 2017; MUDGE ET AL., 2022) for more on terminology 

and classifications).  

 

Figure 3.1. Overview of main sORF classes with respect to the type 

of RNA in which they reside.  

Messenger RNAs might contain, in addition to the main, canonical ORF 

(CDS; coding sequence), sORFs that are located: in the 5´-UTR 

(upstream ORF; uORF); upstream but overlapping the CDS in a different 

reading frame (upstream overlapping ORF; uoORF); internal to the CDS 

in a different reading frame (internal ORF; intORF), internal and in a 

different reading frame but extending downstream of the CDS 

(downstream overlapping; doORF); or fully downstream in the 3´-UTR 

(downstream ORF; dORF). Translatable sORFs can also be located in 

lncRNAs (lncRNA-ORF), in circular RNAS (circRNA-ORF) or in primary 

miRNA transcripts (miORF), as well as in other types of RNAs or genetic 

elements (not pictured). Upstream sORFs (uORFs) and lncRNA sORFs 

constitute the most abundant classes identified in Ribo-Seq 

experiments.  
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 The terms ‘cryptic proteins’ and ‘ghost proteins’ have also been used to refer 

to non-annotated or non-canonical proteins, or proteins encoded in lncRNAs, 

and therefore encompassing -but not being equal to- SEPs/NCPs: a vast 

majority of cryptic proteins are small, but not all of them (RUIZ CUEVAS ET AL., 

2021; ZHENG ET AL., 2023). In a sense, it could be argued that 

SEPs/NCPs/microproteins represent the low end of the spectrum of 

‘canonical’ proteins (SCHLESINGER & ELSASSER, 2022), even though they might 

frequently display some ‘non-canonical’ characteristics (see below), and 

although their origin (i.e., the type of RNA molecules they are derived from) 

is much more varied and continues to expand. It has recently been found, for 

instance, that plant and animal positive-sense single-stranded RNA viruses 

encode functional SEPs in their negative-sense, replication-intermediate 

RNA, previously thought to be devoid of coding capacity (GONG ET AL., 2023). 

In any case, even the known the ‘low end’ of the proteome spectrum is much 

less understood than the ‘standard’ proteins: more than 70% of the genes 

encoding proteins smaller than 50 amino acids that have been already 

annotated in the Arabidopsis genome still lack functional information 

(Figure 3.2).  

 

 

 

Figure 3.2. Proportion of Arabidopsis peptides and proteins with 

functional annotation in TAIR.  

Peptides/proteins classified as ‘hypothetical’ or ‘evidence of 

transcription of purifying selection’ lack functional annotation. There 

are 340 peptides of up to 50 aa, 1,838 peptides from 51 to 100 aa, and 

25,384 proteins of over 100 aa annotated in TAIR (file: 

Araport11_pep_20220914_representative_gene_model.gz; data 

downloaded from https://www.arabidopsis.org/).  
  

https://www.arabidopsis.org/
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Table 3.1. The plant peptidome: summary classification of functional peptides. 

Arabidopsis thaliana (At), Brassica oleracea (Bo), Coffea canephora (Cc), Glycine max (Gm), Ipomoea batatas (Ib), Medicago truncatula (Mt), 

Nicotiana tabacum (Nt), Petunia hybrida (Ph), Oryza sativa (Os), Phaseoulus vulgaris (Pv), Populus tremula and P. tremuloide (Pt), Solanum 

lycopersicum (Sl), S. nigrum (Sn), S. tubersosum (St), Triticum aestivum (Ta), Vigna unguiculata (Vu), Vitis vinifera (Vv), Zea mays (Zm).  

PEPTIDE TYPE 
Family or Class/Type 

Representative 
Peptides 
(Species) 

Size (aa) 
Number of 
members 
(Species) 

Functions References 

I - Precursor-derived peptides ('conventional' peptidome) 

Non-functional precursor 

PTM peptides        

CEP (C-terminally 
encoded peptide) 

CEP (At, Mt), 
ZmCEP1 (Zm) 

 15 (At),  
4 (Mt) 

Plant organogenesis and 
response to abiotic stress. 
Signalling (root-to-shoot). 

(OGILVIE ET AL., 2014; OHYAMA ET 

AL., 2008; ROBERTS ET AL., 2013; 
TABATA ET AL., 2014; XU ET AL., 
2021; ZHOU ET AL., 2019) 

CIF (Casparian strip 
integrity factor) 

CIF1-2 (At) 83 (At) 2 (At) 
Peptide hormone required 
to form the casparian strip. 

(DOBLAS ET AL., 2017; NAKAYAMA 

ET AL., 2017) 

CLE (CLAVATA3/ESR-
related) 

CLV3 (At), CLEs 12-14 
32 (At),  
104 (Ta) 

Plant growth. Signalling. 
(FLETCHER, 2020; GOAD ET AL., 
2017; WHITEWOODS, 2021; 
WILLOUGHBY & NIMCHUK, 2021) 

GLV/RGF/CLEL 
(GOLVEN/ROOT 
MERISTEM GROWTH 
FACTOR/CLE-like) 

GLV1-3 (At) 15-20 (At) 11 (At) 
Plant growth (root 
gravitropism). Signalling. 

(BUHLER ET AL., 2023; FERNANDEZ 

ET AL., 2013; FURUMIZU & SAWA, 
2021; JOURQUIN ET AL., 2023; 

STEGMANN ET AL., 2022; WHITFORD 

ET AL., 2012; XU ET AL., 2023) 

HYPSYS 
HYPSIS I and II 
(Nt) 

15-20 (Nt, 
Sl, St, Ph, Sn, 
Ib, Pt, Cc) 

2 (Nt) Defence signalling. 

(PEARCE ET AL., 2009; PEARCE ET 

AL., 2001; PEARCE ET AL., 2007; 
RYAN & PEARCE, 2003; ZHANG ET 

AL., 2020) 
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IDA/IDL 
(INFLORESCENCE 
DEFICIENT IN 
ABSCISSION/IDA-like) 

IDA, IDL (At) 77 (At) 6 (At) 
Control of floral organ 
abscission and lateral root 
emergence. 

(SANTIAGO ET AL., 2016; VIE ET AL., 
2015; WANG, WU, JIANG, ET AL., 
2023) 

PIP/PIPL/TOLS (PAMP-
INDUCED SECRETED 
PEPTIDE/PIP-like) 

PIP, PIPL, TOLS2 
(At) 

72-86 (At) 5 (At) 

Innate immune response 
and response to abiotic 
stress (signalling). Lateral 
root development. 

(HOU ET AL., 2014; NAJAFI ET AL., 
2020; TOYOKURA ET AL., 2019; VIE 

ET AL., 2015; ZHOU ET AL., 2022) 

PSK (Phytosulfokine) AtPSK (At) 77-87 (At) 6 (At) 
Plant growth. Plant 
immunity. Signalling. 

(DING ET AL., 2023; MATSUBAYASHI 

ET AL., 2006; SAUTER, 2015; 
STUHRWOHLDT ET AL., 2015) 

PSY (PEPTIDE 
CONTAINING 
SULFATED TYROSINE) 

PSY1 (At) 75 (At)  
Cellular proliferation and 
expansion. Seedling 
development. 

(AMANO ET AL., 2007; DE GIORGI ET 

AL., 2021; OGAWA-OHNISHI ET AL., 
2022) 

SCOOP (SERINE-RICH 
ENDOGENOUS 
PEPTIDE) 

(PRO)SCOOP1-
14 (At), EWR1 
(ENHANCER OF 
VASCULAR WILT 
RESISTANCE, At) 

69-140 (At) 23 (At) 
Plant growth and pathogen 
defence. 

(GUILLOU ET AL., 2022; GULLY ET 

AL., 2019; HOU ET AL., 2021) 

Cys-rich peptides        

CYSTM (CYSTEIN-RICH 
TRANSMEMBRANE 
MODULE) 

CYSTM3 (At) 57 (At) 13 (At) 
Response to stress. 
Signalling. 

(XU ET AL., 2018) 

EPF/EPFL/STOMAGEN 
(EPIDERMAL 
PATTERNING FACTOR-
like) 

EPF1 (At), EPFL2 
(At), EPFL9 
(STOMAGEN, At) 

45 (At) 12 (At) 

Plant growth and 
organogenesis (gynoecium 
and fruit growth with ovule 
initiation). Signalling. 

(BESSHO-UEHARA ET AL., 2016; 
HARA ET AL., 2007; KAWAMOTO ET 

AL., 2020; QI ET AL., 2020; SUGANO 

ET AL., 2009) 

LURE AtLURE (At) ~90 (At) 7 (At) 
Plant reproduction (pollen 
tube attractants). Signalling. 

(OKUDA ET AL., 2009; ZHONG ET AL., 
2019) 
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NCR (Nodule-specific 
cysteine-rich) 

NCRs (Mt), 
NFS1-2 (Mt) 

43-47 (Mt) 3 (Mt) Nitrogen-fixing symbiosis. 
(HORVATH ET AL., 2023; PAN & 

WANG, 2017; VAN DE VELDE ET AL., 
2010) 

PCP-B (POLLEN COAT 
PROTEIN B) 

PCP-B (At, Bo) 
76-126 (At, 
Bo) 

4 (At) Pollination. Signalling. 
(LIU ET AL., 2021; WANG ET AL., 
2017) 

RALF/RALFL (RAPID 
ALKALINIZATION 
FACTOR/RALF-like) 

 25-105 (At) > 60 (At) 

Plant development, 
immunity response, pollen 
tube perception, and rupture 
(Polytubey block).  

(LAN ET AL., 2023; ZHONG ET AL., 
2022) 

WIP (WOUND 
INDUCED 
POLYPEPTIDES) 

AtWIP1-5 (At), 
WIPs (Gm) 

83-95 (At), 
~90 (Gm) 

5 (At),  
38 (Gm) 

Immune response and 
symbiotic interactions. 
Signalling. 

(YU ET AL., 2018) 

Non-PTM, Non-Cys-rich-peptides        

CTNIP/SCREW (SMALL 
PHYTOCYTOKINES 
REGULATING DEFENSE 
AND WATER LOSS) 

CTNIP1-5 / 
SCREWs (At) 

60-70 (At) 5 (At) 
Stress response (stomatal 
closure). Signalling.  

(LIU ET AL., 2022; RHODES ET AL., 
2022) 

GRI (GRIM REAPER) GRI (At) 60-70 (At)  

Response to abiotic stress 
(programmed cell death 
induced by extracellular 
reactive oxygen species -
ROS-) and plant 
development (flowers and 
seeds). 

(WRZACZEK ET AL., 2009) 

PEP (PLANT ELICITOR 
PEPTIDE) 

PEP1 (At) 23 (At) 8 (At) Defence response. Signalling.  
(BARTELS & BOLLER, 2015; HANDER 

ET AL., 2019; HUFFAKER ET AL., 
2006) 

SYS (SYSTEMIN) SYS (Sl) 18 (Sl)  Defence response. 
(RYAN & PEARCE, 1998, 2003; 

ZHANG ET AL., 2020) 
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Functional precursor        

Cryptides 

SUBPEP (Gm), 
CAPE1 (Sl), 
INCEPTIN (At, 
Pv, Os, Vu, Zm) 

11-13 (Vu)  Defence response. Signalling. 
(CHEN ET AL., 2014; CHIEN ET AL., 
2015; PEARCE ET AL., 2010; 
SCHMELZ ET AL., 2006) 

II - Non-precursor-derived peptides ('non-conventional' peptidome) 

sORF (small genes, intergenic)        

BRK1 (BRICK1) 
BRK1 (Zm), 
HSPC300 (At) 

84 (Zm)  

Morphogenesis (actin 
nucleation). Component of 
the actin reorganization 
complex. 

(CHIN ET AL., 2021; DJAKOVIC ET AL., 
2006; FRANK & SMITH, 2002; LE ET 

AL., 2006) 

FIS (FLOODING 
INDUCIBLE GENES) 

FIS1-3 (Gm) 70-80 (Gm) 3 (Gm) Response to abiotic stress. (NANJO ET AL., 2011) 

KOD (KISS OF DEATH) KOD (At) 25 (At)  Programmed cell death in 
embryogenesis, stress. 

(BLANVILLAIN ET AL., 2011) 

RTFL/DVL 
(ROTUNDIFOLIA4-
LIKE/DEVIL) 

ROT4 (At), DVL1 
(At) 

40-144 (At) 22 (At) 
Organogenesis, cell 
proliferation, nodule 
development. 

(GUO ET AL., 2015; IKEUCHI ET AL., 
2011; NARITA ET AL., 2004; 
VALDIVIA ET AL., 2012; WEN ET AL., 
2004) 

ZSP1 (ZENGDA SMALL 
PEPTIDE 1) 

ZSP1 (At) 57 (At)  Organ size (cytokinin 
pathway). 

(ZENG ET AL., 2022) 

lncRNA ORFs        

ENOD40 
ENOD40-I/A, 
ENOD40-II/B 
(Mt) 

13, 27 (Mt) 2 (Mt) 
Symbiotic nodule 
development. 

(KERESZT ET AL., 2018; ROHRIG ET 

AL., 2002; SOUSA ET AL., 2001) 

IMA (IRONMAN)/FEP 
(Fe-UPTAKE-INDUCING 
PEPTIDE) 

IMA1-8 (At) ~50 (At) 8 (At) 
Plant response to abiotic 
stress (iron transport). 
Signalling. 

(GRILLET ET AL., 2018; HIRAYAMA 

ET AL., 2018) 
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OSIP108 (OXIDATIVE 
STRESS-INDUCED 
PEPTIDE 108) 

OSIP108 (At) 10 (At)  Oxidative stress tolerance. (DE CONINCK ET AL., 2013) 

PLS (POLARIS) PLS (At) 36 (At)  
Root growth, vascular 
development (hormonal 
crosstalk). 

(CASSON ET AL., 2002; CHILLEY ET 

AL., 2006; LIU ET AL., 2010; MOORE 

ET AL., 2015) 

Zm401p10 Zm401p10 (Zm) 89 (Zm)  Anther development. 
(MA ET AL., 2008; WANG ET AL., 
2009) 

Zm908p11 Zm908p11 (Zm) 97 (Zm)  Pollen germination and tube 
growth. 

(DONG ET AL., 2013) 

pri-miRNA sORFs/mirPEPs        

miPEPs:  
miPEP156a,c; 160b; 162; 163; 164a; 165a; 
167a,b,c; 169; 171b,d; 172b,c; 319a; 395c; 
396a; 858a (At and other species)    

5-50 (At, Bo, 
Mt, Gm, Vv) 

>18 (At) 

Plant growth and 
morphology (flowering, root, 
leaf and flower 
development). 

(GAUTAM ET AL., 2023; 
LAURESSERGUES ET AL., 2015; 
LAURESSERGUES ET AL., 2022; 
ORMANCEY ET AL., 2023; SHARMA ET 

AL., 2020) 
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Regardless of the terms that are used, however, what has become 

increasingly clear over the past ten years is that SEPs/NCPs -the ‘non-

conventional’ peptidome- constitute an important part of the eukaryotic 

proteome. This ‘non-conventional’ peptidome is still poorly defined and 

annotated and largely uncharacterized, but it is already apparent that 

SEPs/NCPs can carry out important biological functions (reviewed in: 

BRUNET ET AL., 2020; HELLENS ET AL., 2016; HSU & BENFEY, 2018; KUTE ET AL., 

2021; MAKAREWICH & OLSON, 2017; MUDGE ET AL., 2022; ORR ET AL., 2020; PLAZA 

ET AL., 2017; SCHLESINGER & ELSASSER, 2022; VITORINO ET AL., 2021; WRIGHT ET 

AL., 2022). In fact, the legume gene early nodulin 40 (ENOD40) was first 

considered as representing a ‘non-translatable’ RNA (CRESPI ET AL., 1994), but 

is arguably the first case of a lncRNA that was found to act through NCPs 

encoded in sORFs (ROHRIG ET AL., 2002; SOUSA ET AL., 2001). ENOD40 

participates in the initiation of symbiotic nodule primordia, and two ENOD40 

peptides (ENOD40-I and ENOD40-II) as well as a structured RNA region of 

the transcript are required for its activity, through binding to sucrose 

synthase and re-localizing the RNA binding protein RBP1, respectively 

(KERESZT ET AL., 2018). Other plant NCPs derived from what could otherwise 

be considered (or were first considered) as lncRNAs are: POLARIS (PLS), 

involved in the auxin-cytokine-ethylene crosstalk in Arabidopsis and 

required for correct root growth and leaf vascular patterning (CASSON ET AL., 

2002; CHILLEY ET AL., 2006; LIU ET AL., 2010; MOORE ET AL., 2015); the 

Arabidopsis IRON MAN peptides (IMA; also called FEP, for FE-UPTAKE-

INDUCING PEPTIDE), that control iron transport (GRILLET ET AL., 2018; 

HIRAYAMA ET AL., 2018); maize Zm908p11, which functions in pollen 

germination and pollen tube growth (DONG ET AL., 2013); and  maize 

Zm401p10, which is essential for anther development (MA ET AL., 2008; WANG 

ET AL., 2009) (for a recent ‘consensus statement’ on lncRNA definitions and 

functions, see (MATTICK ET AL., 2023)). 

The distinction between a ‘non-conventional’ SEP/NCP peptidome that is 

largely derived from highly heterogeneous types of genetic elements, on one 

hand, and otherwise ‘canonical’ but small proteins is nevertheless further 

blurred. For instance, somewhere in between are microProteins (with capital 

P; miPs), a term originally coined in plants (STAUDT & WENKEL, 2011) to 
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specifically refer to small (5-15kDa) proteins that show sequence homology 

and are evolutionary related to larger, multidomain proteins -in particular, 

transcription factors (TFs)-, but that instead contain a single domain, 

specifically a protein-protein interaction domain (BHATI ET AL., 2018; BHATI ET 

AL., 2021; BHATI ET AL., 2020; EGUEN ET AL., 2015; MAGNANI ET AL., 2014; STAUDT 

& WENKEL, 2011). MicroProteins would thus be able to disrupt or modulate 

the formation of protein complexes by their ‘target’ proteins (MAGNANI ET AL., 

2004; STAUDT & WENKEL, 2011). The miPs that have been functionally 

characterized to date usually function through interactions with the TFs that 

they are evolutionary related to (homotypic interactions) (BHATI ET AL., 

2021), although an example of a heterotypic miP interaction with non-

homologous TFs has been reported recently (WU ET AL., 2020). Thus, miPs 

have already been shown to be involved -through modulating the 

interactions of regulatory TFs- in photomorphogenic development (WU ET 

AL., 2020; YADAV ET AL., 2019), axillary meristem formation (ZHANG ET AL., 

2018), shoot apical meristem development (KIM ET AL., 2008; XU ET AL., 2019), 

flowering time (GRAEFF ET AL., 2016; RODRIGUES ET AL., 2021), floral meristem 

termination (BOLLIER ET AL., 2018), or jasmonic acid signalling (HONG ET AL., 

2020), and this variety of physiological roles will continue to expand, as plant 

genomes are thought to encode for hundreds of miPs (BHATI ET AL., 2020; 

MAGNANI ET AL., 2014; STRAUB & WENKEL, 2017). Importantly, however, it 

seems that during plant evolution miPs appeared after their homologous TFs, 

suggesting that they evolved from the TFs by domain loss (MAGNANI ET AL., 

2014), whereas sequences generating SEPs/NCPs have been proposed as 

raw material for de novo gene birth (RUIZ-ORERA & ALBA, 2019; RUIZ-ORERA ET 

AL., 2018; RUIZ-ORERA ET AL., 2020) (see below). 

This chapter will primarily focus on the ‘non-conventional’ peptidome in 

plants, but with the background of the state of knowledge on this topic in 

animals (and in particular humans), in which a vast majority of the studies in 

this emerging field have been conducted so far. Specific types of 

‘conventional’ plant peptides will be mentioned, but for many of those, in-

depth reviews are available elsewhere (see Table 3.1). Several key questions 

should be considered with respect to the non-conventional plant peptidome. 

Where does it originate from, from what types of genetic elements? What is 
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the nature and extent of its composition? How conserved is it across plant 

species? And, most importantly, what are the physiological functions of the 

peptidome, the specific functions carried out by this potentially large number 

of novel peptides, and how do SEPs/NCPs operate at a molecular and 

mechanistic level in plants? Answers to these questions are also emerging 

from mammalian studies that may help guide plant research on this topic. 

3.2 Uncovering SEPs/NCPs: finding the needles in the haystack 

The discovery and identification of functional sORFs embedded in eukaryotic 

genomes relies on three different methodological approaches: (i) ribosome 

and polysome profiling (Ribo-Seq and Poly-Ribo-Seq) for evidence of sORF 

translatability, (ii) mass spectrometry (MS)-based proteomics for direct SEP 

detection, and (iii) computational analyses for sORF prediction (ÁLVAREZ-

URDIOLA, BORRÀS, ET AL., 2023; MAKAREWICH & OLSON, 2017; MOHSEN ET AL., 

2023; PEETERS & MENSCHAERT, 2020; PRENSNER ET AL., 2023; SCHLESINGER & 

ELSASSER, 2022). 

3.2.1 Evidence of sORF translatability: ribosome and polysome 

profiling 

Ribo-seq consists on the deep sequencing of ribosome-protected RNA 

fragments (ribosome footprints, of about 30 nt in length), whereby the 

periodicity of ribosome footprints (ribosomes decipher mRNA every three 

nucleotides) is used to identify bona-fide translation interactions (HSU ET AL., 

2016; INGOLIA, 2016; INGOLIA ET AL., 2014; INGOLIA ET AL., 2009; INGOLIA ET AL., 

2011). Poly-Ribo-Seq is a modification of Ribo-Seq in which polysomes are 

enriched for the ribosome footprinting (ASPDEN ET AL., 2014). Sequencing of 

the ribosome footprints reveals the abundance and positions of ribosomes 

on a given transcript, providing a genome-wide view of active translation 

that can also be used to uncover previously unrecognized or unannotated 

translatable ORFs. In fact, Ribo-Seq provided the first large-scale 

experimental evidence that ‘noncanonical’ translation events existed in 

eukaryotic cells, and indicated that (thousands of) sequences annotated as 

non-coding RNAs, pseudogenes and UTRs could be an important source of 
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novel peptides (ASPDEN ET AL., 2014; BAZZINI ET AL., 2014; CHOTHANI ET AL., 

2022; DUFFY ET AL., 2022; FIELDS ET AL., 2015; HARTFORD & LAL, 2020; INGOLIA 

ET AL., 2014; JI ET AL., 2015; MARTINEZ ET AL., 2020; RAJ ET AL., 2016; RUIZ CUEVAS 

ET AL., 2021; RUIZ-ORERA ET AL., 2014; VAN HEESCH ET AL., 2019). At present 

there is a variety of computational methods to analyse the Ribo-Seq data and 

infer potential coding sORFs, and it is important to note that different data 

processing pipelines may produce substantially different results in terms of 

the overall number, stringency, identity, and specific characteristics of the 

sORFs that are identified as translated, and that different methods may have 

different capacity for identifying certain classes of sORF (for an extensive 

discussion of this topic, see (PRENSNER ET AL., 2023)). It is also important to 

note that the bioinformatic tools that are used for translated ORF detection 

through Ribo-Seq depend on transcript information, either from the 

annotated genome or from RNA-Seq experiments, and therefore that the 

scope of the Ribo-Seq results is also determined by the datasets used for the 

analysis.  Furthermore, it should be kept in mind that sORF translation may 

not result in the production of a stable and functional SEP. For instance, the 

translation of 5´-UTR sORFs (or upstream ORFs; uORFs) may often function 

to regulate the translation of the downstream main ORF of the mRNA 

(SCHLESINGER & ELSASSER, 2022) (see below). 

3.2.2 Direct SEP detection: Mass spectrometry  

Mass spectrometry (MS)-based methods can be used to directly detect SEPs 

encoded by sORFs that are predicted from the sequence of the genome or the 

transcriptome, or by sORFs identified in Ribo-Seq experiments, and thereby 

to confirm the protein-coding nature of the corresponding sequences and 

transcripts (e.g., ASPDEN ET AL., 2014; J. CHEN ET AL., 2020; CHOTHANI ET AL., 

2022; DUFFY ET AL., 2022; KOCH ET AL., 2014; LU ET AL., 2019; MA ET AL., 2014; 

MACKOWIAK ET AL., 2015; MARTINEZ ET AL., 2020; MARTINEZ ET AL., 2023; 

OUSPENSKAIA ET AL., 2022; RUIZ CUEVAS ET AL., 2021; SLAVOFF ET AL., 2013; VAN 

HEESCH ET AL., 2019; VANDERPERRE ET AL., 2013; ZHU ET AL., 2018). Although MS 

methods for peptide detection are still limited in sensitivity with respect to 

Ribo-Seq and have their own experimental limitations, including the 

possibility of producing high false-positive rates, (e.g., (PRENSNER ET AL., 
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2023)), the fact is that over the past few years they have revolutionized our 

understanding of the peptidome, in particular because of the power provided 

by the combination of MS methods with Ribo-Seq or translatomics (i.e., three- 

or six-frame translation of transcriptomic or genomic sequences), in what are 

called peptidogenomic approaches (for review, see FABRE ET AL., 2021; 

NESVIZHSKII, 2014; SCHLESINGER & ELSASSER, 2022; SONG ET AL., 2023). 

However, the detection by MS of novel peptides derived from sORFs presents 

specific challenges that should be taken into consideration (for a more 

detailed description on methodologies, focused on plant peptidomics, see: 

(ÁLVAREZ-URDIOLA, BORRÀS, ET AL., 2023)). First, an efficient and high-quality 

peptide-specific extraction protocol is key to improve the identification and 

sequence coverage of low-abundance SEPs by MS, as well as the use of 

methods for the separation and enrichment of peptides from proteins prior 

to the LC-MS/MS analyses (CAO ET AL., 2023; CARDON ET AL., 2020; KHITUN & 

SLAVOFF, 2019; MA ET AL., 2016). In the end, it is the combination of extraction, 

enrichment, and processing (i.e., protease cleavage prior to MS) methods 

what will determine the identification of a particular set of peptides in any 

given sample (ÁLVAREZ-URDIOLA, BORRÀS, ET AL., 2023; FABRE ET AL., 2021). 

Second, additional difficulties lie in under-sampling (i.e., identification of only 

a subset of the peptides) by conventional data acquisition methods, and in 

that SEPs detection is stochastic due to their size and expression 

characteristics, as suggested for example in a study to optimize a SEP 

discovery MS workflow using human samples (MA ET AL., 2014).  

For peptide identification from tandem mass spectra there are two 

approaches that could be used: database search and de novo sequencing. In 

the database search method, all potential peptide sequences included in a 

specified database are retrieved for each spectrum, and each peptide-

spectrum match is scored via a scoring function calculated by database 

search engines; in contrast, de novo sequencing extracts peptide sequences 

directly from tandem mass spectra using specific algorithms (ÁLVAREZ-

URDIOLA, BORRÀS, ET AL., 2023; FABRE ET AL., 2021). The database search 

method is widely used for proteomics and peptidomics and can be based on 

canonical (annotated) protein databases (e.g., UniProt) or, if the purpose of 

the study is the identification of novel SEPs, customized databases containing 
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putative SEPs defined by bioinformatic or transcriptomic analyses (i.e., RNA-

sequencing or Ribo-Seq). In fact, current integrated peptidomics pipelines 

include different database creation strategies (ÁLVAREZ-URDIOLA, BORRÀS, ET 

AL., 2023), from the use of Ribo-Seq data (e.g., ASPDEN ET AL., 2014; J. CHEN ET 

AL., 2020; DUFFY ET AL., 2022; KOCH ET AL., 2014; MENSCHAERT ET AL., 2013; RAJ 

ET AL., 2016; VAN HEESCH ET AL., 2019) to the three-frame translation of 

transcriptomics datasets (e.g., CHOTHANI ET AL., 2022; DUFFY ET AL., 2022; 

GURUCEAGA ET AL., 2020; LU ET AL., 2019; MA ET AL., 2018; MA ET AL., 2014; 

SLAVOFF ET AL., 2013; VANDERPERRE ET AL., 2013; WRIGHT ET AL., 2016). 

Strategies based on the six-frame translation of the genome sequence have 

also been used, for instance in yeast (HE ET AL., 2018), Drosophila (ZHENG & 

ZHAO, 2022), humans (ZHU ET AL., 2018) and plants (S. WANG ET AL., 2020), 

although it is a challenging approach because searching very large databases 

reduces the sensitivity of peptide identification by introducing more false 

positives, as the likelihood of obtaining high-scoring random matches is 

increased (NESVIZHSKII, 2010, 2014). In comparison to database search, the de 

novo method for peptide identification is less powerful and mature, but in 

plants it has been used for specific peptide characterization or as a 

complement to database search (e.g., CULVER ET AL., 2021; GEMPERLINE ET AL., 

2016; JORGE & BALBUENA, 2021; YE ET AL., 2016). An issue that is still not 

satisfactorily resolved in MS shotgun proteomics is the large number of 

unassigned spectra, i.e., where the originating peptide cannot be identified 

despite the spectra being of reasonable quality (CHICK ET AL., 2015). Several 

factors might contribute to the prevalence of unassigned spectra: from the 

corresponding peptidic sequences not being present in the search databases 

to naturally occurring posttranslational modifications (PTMs), or chemical 

modifications that might have occurred during sample processing, or other 

experimental issues (CHICK ET AL., 2015). The identification of PTMs, however, 

is relevant for improving the understanding of this hidden part of the 

proteome, as PTMs may play important roles in the yet to be discovered 

biological functions of SEPs. 
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3.2.3 Prediction of sORFs: in silico approaches 

Bioinformatic approaches have been used (and continue to be developed) to 

distinguish coding and non-coding sequences and predict sORFs and SEPs 

from eukaryotic genomes and transcriptomes, including lncRNAs (e.g., Z. 

CHEN ET AL., 2023; FRITH ET AL., 2006; HANADA ET AL., 2010; HANADA ET AL., 2007; 

LADOUKAKIS ET AL., 2011; LIN ET AL., 2011; MACKOWIAK ET AL., 2015; TONG ET AL., 

2020; TONG & LIU, 2019; ZHANG ET AL., 2022; Y. ZHANG ET AL., 2021; ZHAO, MENG, 

KANG, ET AL., 2022; ZHAO, MENG, & LUAN, 2022; ZHAO ET AL., 2023; ZHU & 

GRIBSKOV, 2019). These computational tools and analyses for sORF prediction 

can be divided into two categories (alignment-based and alignment-free) and 

be based on detecting sequence conservation and purifying selection, 

sequence similarity, codon pattern, or in the use of machine learning and 

deep learning. 

Sequence conservation, determined by analysing the occurrence of 

synonymous and non-synonymous codon substitutions, is frequently used to 

detect coding regions and assess their protein-coding potential, on the basis 

that as synonymous substitutions do not lead to amino acid sequence 

changes, they occur more frequently in coding regions. In the case of SEPs, 

the short length of the aligned sequences and the limited number of possible 

changes pose a difficulty for obtaining statistical significance in these 

analyses, but a tool such as PhyloCSF takes a phylogenetic approach by 

analysing a multispecies nucleotide sequence alignment to determine 

whether it is likely to represent a conserved protein-coding region, based on 

a formal statistical comparison of phylogenetic codon models (LIN ET AL., 

2011). PhyloCSF has been used extensively to detect sORFs in multiple 

eukaryotic genomes, and in particular in combination with Ribo-Seq for 

either the Ribo-Seq data to provide support for the sORFs identified through 

PhyloCSF comparative genomics (MACKOWIAK ET AL., 2015) or, conversely, for 

PhyloCSF to support translated sORFs detected by Ribo-Seq (e.g., BAZZINI ET 

AL., 2014; JI ET AL., 2015; LI ET AL., 2016; MARTINEZ ET AL., 2020). Other tools 

specifically test for the coding potential of sORFs without the need for 

sequence alignments, such as sORF finder (HANADA ET AL., 2010), which is 

based on the distinct hexamer composition in coding versus non-coding 

sequences and has been used in plant and animal genomes (CRAPPE ET AL., 
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2013; HANADA ET AL., 2007); MiPepid (ZHU & GRIBSKOV, 2019), a machine 

learning tool developed specifically for the prediction of micropeptides 

directly from DNA sequences that is based on nucleotide patterns (4-mer 

features); CPPred (TONG ET AL., 2020; TONG & LIU, 2019), which estimates 

transcript coding potential by using multiple features derived from RNA and 

protein sequences and improves distinguishing between coding and non-

coding RNAs; or the more recently developed DeepCPP (Y. ZHANG ET AL., 

2021), a deep neural network for RNA coding potential prediction; csORF-

finder (ZHANG ET AL., 2022); and, specifically tailored for the identification of 

sORFs in plant lncRNAS, sORFplnc (ZHAO ET AL., 2023), sORFPred (Z. CHEN ET 

AL., 2023), lncPepid (ZHAO, MENG, & LUAN, 2022), and ISPL (ZHAO, MENG, KANG, 

ET AL., 2022). The development of computational tools to predict translatable 

sORFs and characterize their coding potential is a very active area of current 

research, but in any case, the results are computational predictions that 

require experimental verification through Ribo-Seq, MS, or functional 

screening approaches (see below). 

Another strategy for SEP identification is based on sequence similarity with 

previously identified proteins. This approach would miss on species-specific 

candidates and orphan genes and, in general, it is not well suited for global 

NCP searches because their levels of homology and conservation tend to be 

lower than those of canonical proteins (see below), even though some NCPs 

have been found to be highly conserved in animals (e.g., KOH ET AL., 2021). In 

plants, sequence similarity has been extensively used to identify families of 

conventional precursor-derived peptides across different species. For 

instance, a search for RGF/GLV/CLEL-family peptides (initially discovered as 

signalling peptides involved in root development in Arabidopsis) led to the 

identification of hundreds of homologs in all major extant land plant lineages 

(except hornworts) (FURUMIZU & SAWA, 2021) (Table 3.1). Likewise, a BLAST 

approach was used to identify in Medicago members of several SSP gene 

families (e.g., CLE, CEP, RGF/GLV/CLEL, IDA, PSK, PSY, CIF, EPF; Table 3.1), 

generating a database that was then used in MS data analyses to detect 

secreted peptides (PATEL ET AL., 2018) (see also below). 

A variety of databases and online repositories have been created to store and 

make available information on peptides and sORFs detected through Ribo-

file:///C:/Users/user/Documents/CRAG/8.%20Writing/Thesis%20drafts/3.%20Intro_peptidomics_Review.docx%23Table3_1
file:///C:/Users/user/Documents/CRAG/8.%20Writing/Thesis%20drafts/3.%20Intro_peptidomics_Review.docx%23Table3_1
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Seq, MS and/or bioinformatic approaches. Examples include repositories 

devoted to sORF-encoded peptides in Arabidopsis (e.g., ARA-PEPs (HAZARIKA 

ET AL., 2017)), in multiple plants (e. g., PsORF (Y. CHEN ET AL., 2020)), or in 

animals (e. g., SmProt (Y. LI ET AL., 2021), sORFs.org (OLEXIOUK ET AL., 2018), 

or OpenProt (BRUNET ET AL., 2021)). These repositories might in turn be used 

to ensemble the search databases that are required in MS experiments. 

Peptide databases that are literature- or sequence similarity-based are also 

available (e. g., PlantPepDB (DAS ET AL., 2020)).  

sORFs and SEPs that are discovered through these prospective, genome-wide 

approaches can then be specifically confirmed and further investigated 

through low-throughput molecular biology methods (epitope-tagging and 

expression, subcellular localization studies, antibody generation, in vitro 

translation experiments, etc.). 

3.3 The non-conventional eukaryotic peptidome: lessons from 

animals 

Studies in mammals (mouse, human) have demonstrated that SEPs can be 

present in the cell at concentrations that are within the range of typical 

cellular proteins and that they can exhibit different and specific subcellular 

localizations (e.g., PRENSNER ET AL., 2021; SLAVOFF ET AL., 2013; VAN HEESCH ET 

AL., 2019). SEPs can be structural or regulatory components of 

macromolecular complexes, participate in signalling cascades, or act in an 

autonomous fashion (SCHLESINGER & ELSASSER, 2022). Specific human SEPs 

have already been found to play significant roles in cancer, metabolism, 

mitochondrial processes, muscle physiology, development, DNA repair, 

apoptosis or immunology (for an extensive summary of functions already 

determined for human SEPs, see SCHLESINGER & ELSASSER, 2022; WRIGHT ET AL., 

2022). Moreover, the massive and widespread transcription of the 

eukaryotic genome and the pervasive translation of lncRNAs habilitate sORFs 

and the resulting small peptides or microproteins as raw materials for de 

novo gene origin and evolution (RUIZ-ORERA & ALBA, 2019; RUIZ-ORERA ET AL., 

2018; RUIZ-ORERA ET AL., 2020; SCHLOTTERER, 2015). In fact, recent results 

demonstrate that there has been de novo birth of (functional) microproteins 
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in the human (SANDMANN ET AL., 2023; VAKIRLIS ET AL., 2022) and Drosophila 

(ZHENG & ZHAO, 2022) lineages, as well as in Oryza (rice) (Zhang et al., 2019). 

For instance, in rice the de novo gene GSE9 evolved from a previous non-

coding region of wild rice Oryza rufipogon through the ORF acquisition of a 

start codon and contributes to grain shape difference between the indica and 

japonica rice varieties (GSE9 codes for a small protein, 107 aa long) (R. CHEN 

ET AL., 2023). Furthermore, using random sequence libraries it has been 

shown in E. coli that randomly generated sORFs can confer beneficial effects 

to cells and that new functions can emerge de novo from these SORFS (BABINA 

ET AL., 2023; NEME ET AL., 2017). 

3.3.1 General observations  

Several general – and to some extent intriguing – observations that can be 

deduced from the current findings on the mammalian peptidome include the 

following:  

(i) Translatable sORFs are abundant in lncRNAs, and lncRNAs can be an 

important source of SEPs, as determined by Ribo-Seq and MS. For 

instance, ribosome profiling of the human heart resulted in the identification 

of 1,577 noncanonical ORFs, of which 339 (22%) were sORFs from lncRNAs, 

and also determined that over 20% of the heart lncRNAs (169 out of 783) 

were translated; furthermore, over 40% of those lncRNA SEPs were 

confirmed by MS (VAN HEESCH ET AL., 2019) (in this study the most abundant 

class of sORFs, 69%, were uORFs). Likewise, a Ribo-seq study of human 

neural cultures detected 706 ncRNAs (mostly lncRNAs) whose expression 

was altered by neuronal activity, and 128 (18%) of those showed active 

translation of novel sORFs, with a subset being also verified by MS (DUFFY ET 

AL., 2022). Specific lncRNAs whose physiological functions are carried out by 

the encoded NCP (e.g., D'LIMA ET AL., 2017; KONDO ET AL., 2007; MAGNY ET AL., 

2013; MATSUMOTO ET AL., 2017; MISE ET AL., 2022; NELSON ET AL., 2016; ZHANG 

ET AL., 2017), or by both the encoded NCP and the RNA itself (e.g., ANDERSON 

ET AL., 2015; LEE ET AL., 2021; LIN ET AL., 2014; SENIS ET AL., 2021; YU ET AL., 

2017) have in fact been identified. It may then be that for perhaps many 

lncRNAs the emerging question would not be if they have a physiological role 

as non-coding RNAs, but rather whether they function solely through the 
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encoded SEP or whether the RNA and the encoded microprotein or peptide 

have distinct and independent functions (DUFFY ET AL., 2022). Although the 

exact proportion of sORFs/SEPs that are derived from lncRNAs may vary 

among different genome-wide studies, it consistently represents a 

substantial fraction in random sampling experiments of all possible sORFs 

(frequently around 25% (J. CHEN ET AL., 2020; OUSPENSKAIA ET AL., 2022), but 

may reach up to 40% (HUANG ET AL., 2021)). In this context, it is also 

noteworthy that out of a list of 42 human SEPs already characterized as 

functionally or physiologically significant (WRIGHT ET AL., 2022), 55% are 

derived from lncRNAs (Figure 3.3). The mean length for lncRNA-encoded 

sORFs in humans has been estimated in ~54 aa (NEVILLE ET AL., 2021). 

 

Figure 3.3. Human sORF-encoded non-canonical peptides that 

have been functionally or physiologically characterized.  

Boxplot depicting the size and number of characterized human NCPs 

according to the type of RNA in which the corresponding sORF resides 

(lncRNAs, circRNAs, mitochondrial transcripts, transcript isoforms, 

transcripts of unknown function, and uORFs). Data from (WRIGHT ET AL., 

2022). 

(ii) uORFs are a major source, and perhaps the primary source, of 

translatable sORFs. For instance, in a recent ultra-high-depth RNA- and 

Ribo-Seq study that encompassed six human primary cell types and five 

human tissues as well as a tailored data analysis pipeline to generate a high 

resolution map of human RNA translation, 7,767 high-confidence translated 
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sORFs were detected, of which 5,308 (68%) were located in the 5´-UTRs of 

known protein-coding transcripts (CHOTHANI ET AL., 2022). The second major 

class of translated sORFs identified in the study was that of novel sORFs in 

annotated lncRNAs (1,652 sORFs, 21%), with the remaining being 3´-UTR 

sORFs (807 sORFs, 10%). Using previously available MS datasets, a total of 

614 of the corresponding SEPs were detected (8% of the 7,767 sORFs) 

although, interestingly, the lncRNA-encoded peptides were detected much 

more frequently than the 5´-UTR peptides (286, or 17% of lncRNA sORFs, 

versus 281, or 5.3% of 5´-UTR sORFs) despite the fact that the level of 

translation of lncRNA sORFs was generally lower than that of 5´-UTR sORFs 

(CHOTHANI ET AL., 2022). These observations might suggest that, overall, 

lncRNA sORFs are a more probable source of biologically functional SEPs 

than the 5´-UTR sORFs. Although uORF-encoded microproteins with critical 

roles in cellular processes have already been identified, as for example MP31, 

Kastor, Pollucks, SEHBP, and EMBOW (120 aa) (see below, and (Y. CHEN ET 

AL., 2023; HUANG ET AL., 2021; KOH ET AL., 2021; MISE ET AL., 2022)), a general 

assumption is that many uORFs may simply function to downregulate the 

expression of the downstream main ORF. 

(iii) A ‘traditional’ characteristic for predicting protein-coding ORFs is 

the presence of an ATG start codon. However, it is now apparent that non-

AUG translation initiation of SEPs is extended, and that sORFs show a trend 

towards a much-increased use of near-cognate or alternative start codons 

relative to canonical ORFs (CAO & SLAVOFF, 2020; CHU ET AL., 2015). Various 

MS-based (e.g., MA ET AL., 2016; MA ET AL., 2014; MENSCHAERT ET AL., 2013; RUIZ 

CUEVAS ET AL., 2021; SLAVOFF ET AL., 2013; VANDERPERRE ET AL., 2013; Q. ZHANG 

ET AL., 2021) and Ribo-Seq (e.g., J. CHEN ET AL., 2020; CHOTHANI ET AL., 2022; 

DUFFY ET AL., 2022; MARTINEZ ET AL., 2020; RUIZ CUEVAS ET AL., 2021) studies 

have indicated that up to 35-75% of the identified sORFs/SEPs would initiate 

with non-AUG start codons. 

(iv) In general, sORFs/SEPs are less evolutionary conserved than 

standard ORFs/proteins and have lower conservation scores (e.g., J. CHEN 

ET AL., 2020; FESENKO, KIROV, ET AL., 2019; FESENKO ET AL., 2021; RUIZ-ORERA ET 

AL., 2018; SANDMANN ET AL., 2023; VAN HEESCH ET AL., 2019; WRIGHT ET AL., 

2022), which is also in agreement with the concept that ncRNA sORFs may 
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facilitate de novo gene evolution. For instance, out of 3,877 microprotein-

encoding sORFs from mouse adipocytes, 991 (25.5%) showed homology to 

rat sequences, but only approximately 250 (6.5%) to more distant species 

such as human, dog, or pig (MARTINEZ ET AL., 2023). Likewise, an analysis of 

over 7,000 Ribo-Seq human sORFs only identified 273 (4%) as showing high 

similarity to mouse sequences (MARTINEZ ET AL., 2020) and, in another study, 

approximately 68% of the sORFs identified as translated in human brain 

were not detected in other species, including primates (DUFFY ET AL., 2022). 

These observations were further strengthened by a recent study on the 

conservation and evolutionary origin a of a set of 7,264 high-confidence 

human sORFs, which found that a vast majority were evolutionary young 

(6,506, 90%) as they lacked significant protein homology outside of primate 

mammals, and identified 222 as being human specific (SANDMANN ET AL., 

2023). 

(v) sORFs with limited sequence conservation or a de novo origin can 

produce functional microproteins that participate in crucial cellular and 

biological processes, i.e., functionality is not limited to highly conserved SEPs 

(e.g., SANDMANN ET AL., 2023; VAN HEESCH ET AL., 2019). For example, a subset 

of 124 of the sORFs that showed evidence of translation in the human brain 

had been previously identified as causing growth phenotypic changes when 

knocked-out in human induced pluripotent stem cells (iPSCs) and in a 

leukemia cell line (see below) and, strikingly, 101 (81%) of those sORFs were 

human-specific, lending support to the idea that newly evolved, species-

specific SEPs can acquire important functions (DUFFY ET AL., 2022). It has also 

been shown that novel, adaptive transmembrane NCPs can emerge from 

thymine-rich non-genic regions in yeast (VAKIRLIS ET AL., 2020).  

(vi) The mechanisms of action of SEPs/NCPs are varied. Because of their 

reduced size, frequent presence of intrinsically disordered regions or of 

transmembrane (TM) helices, and other physicochemical characteristics, it is 

assumed that SEPs would primarily act by interacting with proteins and 

other cellular components and modifying or modulating their functions. 

SEPs containing single-pass TM α-helices are, for example, a group of 

micropeptides that interact with SERCA calcium transporters and regulate 
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muscle relaxation and contractility (e.g., myoregulin –46 aa, MLN–, DWORF –

34 aa–, or Sarcolamban –28 aa, SCL–, among others (ANDERSON ET AL., 2015; 

ANDERSON ET AL., 2016; MAGNY ET AL., 2013; NELSON ET AL., 2016)) or neural 

differentiation and cellular homeostasis in pancreatic β cells (e.g., 

pTUNAR/BNLN, 48 aa (M. LI ET AL., 2021; SENIS ET AL., 2021)). 

Myomixer/Minion/Myomerger (84 aa) is a membrane-localized 

micropeptide that is involved in myoblast fusion during skeletal muscle 

development, perhaps through the interaction with Myomaker (a 

transmembrane protein) and/or other proteins (BI ET AL., 2017; QUINN ET AL., 

2017; ZHANG ET AL., 2017). Other examples are provided by SPAR (90 aa), 

which localizes to the lysosomes and regulates mTORC1 activation 

(MATSUMOTO ET AL., 2017), and by Kastor (53 aa) and Pollucks (40 aa), which 

insert in the outer mitochondrial membrane and directly interact with 

voltage-dependent anion channel (VDAC) affecting spermatogenesis and 

fertility (MISE ET AL., 2022). It could be that the activity of many membrane 

proteins is regulated by interactions with TM micropeptides. 

Beyond membrane compartments, SEPs have also been found to interact 

directly with a variety of proteins in other subcellular contexts. For instance, 

the intrinsically disordered NoBody micropeptide (68 aa) is a component of 

the mRNA decapping complex via direct interaction with EDC4 and localizes 

to the cytoplasmic ribonucleoprotein granules called P-bodies (D'LIMA ET AL., 

2017; NA ET AL., 2020); and MP31 (31 aa) interacts with lactate 

dehydrogenase inhibiting its activity in mitochondria and having a tumour-

suppressing role (HUANG ET AL., 2021).  

Short NCPs can also function as signalling molecules in the control of 

metabolic homeostasis (MOTS-c, 16 aa, (LEE ET AL., 2015)), act in a non-cell-

autonomous manner in development (pri peptides, 11 or 32 aa, (KONDO ET AL., 

2007)), or have cytoprotective activity (humanin, 24 aa, (LEE ET AL., 2013)) 

despite being devoid of characteristic N-terminal signal sequences for 

secretion. 

Transcriptional regulation and gene expression can also be affected by NCP 

activity. For example, SEHBP (46 aa) is a mammalian conserved SEP that 

interacts with chromatin associated proteins, localizes to distinct loci in the 
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genome and can affect transcription, perhaps playing a role in epigenetic 

regulation (KOH ET AL., 2021); and the lncRNA-derived GATA3-interacting 

cryptic protein (GT3-INCP, 120 aa) is detected in the nucleus, binds DNA, and 

interacts with the GATA3 transcription factor, facilitating GATA3 binding to 

the common cis regulatory elements and coregulating genes associated with 

estrogen response/cell proliferation (ZHENG ET AL., 2023). EMBOW is an 

overlapping uORF microprotein (120 aa) that interacts with WD40-repeat 

protein WDR5 and regulates its binding to other partners, thus affecting cell 

cycle and gene expression (Y. CHEN ET AL., 2023). 

In summary, and as these examples illustrate, there is an extensive functional 

and molecular mechanistic diversity among SEPs, which will undoubtedly 

increase as more of them are identified and characterized. 

3.3.2 Unanswered questions 

Beyond the results and observations summarized above and once that the 

existence of an extensive (and still largely unannotated and uncharacterized) 

eukaryotic peptidome is accepted, several outstanding issues remain to be 

addressed: 

– The SEP/NCP-coding capacity of any eukaryotic genome is still 

unclear, but probably large. Many Ribo-Seq experiments in humans or 

mouse have each revealed thousands of translated sORFs, but estimates of 

the actual number that exist in the genome vary from the thousands to the 

tens of thousands (PRENSNER ET AL., 2023). In addition, and from an 

experimental point of view, the overlap among the sets of sORFs/SEPs 

identified in different Ribo-Seq studies (or among different MS studies) can 

be limited. This is undoubtedly the result of both experimental aspects and 

the fact that sORF/SEP expression can be tissue, cell-type or condition 

dependent. Among the experimental aspects are differences in Ribo-Seq 

protocols, depth of sequencing and, in particular, data processing pipelines 

(CHOTHANI ET AL., 2022; PRENSNER ET AL., 2023). However, even when only 

high-confidence sORF sets resulting from the in-depth analyses of multiple 

Ribo-Seq samples are compared, the results are still more additive than 

overlapping. For instance, two high-confidence human sets of 7,264 (MUDGE 
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ET AL., 2022) and 7,767 (CHOTHANI ET AL., 2022) Ribo-Seq sORFs, both derived 

from multiple tissues and cell types,  showed only 1,702 (22%) sORFs in 

common (although that percentage increased to 70% when additional 

filtering criteria were introduced such that the number of sORFs that were 

compared was reduced to 2,475 (PRENSNER ET AL., 2023)). Furthermore, the 

extensive presence of potentially translatable sORFs requires experimental 

demonstration of their capacity to actually produce stable (detectable) 

SEPs/NCPs in the cell, and although MS-based evidence is accumulating for 

some organisms, in particular human and mouse (J. CHEN ET AL., 2020; 

CHOTHANI ET AL., 2022; DUFFY ET AL., 2022; MARTINEZ ET AL., 2020; MARTINEZ ET 

AL., 2023; OUSPENSKAIA ET AL., 2022; PRENSNER ET AL., 2021; SLAVOFF ET AL., 

2013; VAN HEESCH ET AL., 2019; ZHU ET AL., 2018), even in those cases their 

peptidome is still far from completely defined. Particularly relevant is the fact 

the three available approaches for sORF/SEP genome-wide detection 

identify sORFs/SEPs in different orders of magnitude: usually hundreds to 

low thousands in the case of MS proteomics, thousands to tens of thousands 

in Ribo-Seq experiments and up to hundreds of thousands in computational 

predictions. This, together with the inherent -but distinct- limitations of each 

methodology, inevitably leads to discordances in sORF/SEP number 

estimations and hampers the overlapping between sORF/SEP sets obtained 

through the different approaches (BRUNET ET AL., 2020; PRENSNER ET AL., 2023; 

RATHORE ET AL., 2018). As illustrated above, in studies that combine Ribo-Seq 

and MS-proteomics, only a minority of the Ribo-Seq identified sORFs are also 

detected as SEPs, due to both the lower sensitivity of MS-based detection 

versus Ribo-Seq and that some sORFs might generate unstable and 

undetectable peptides. In summary, the ‘non-conventional’ peptidome has 

substantially expanded the limits of the eukaryotic proteome, but where 

those limits reside for any organism is still unclear. 

– Relatively few SEPs/NCPs have been functionally characterized. 

Experimental evidence for the biological functionality of a vast majority of 

the predicted or identified SEPs/NCPs is still lacking in any organism. 

However, as the sORFeomes and peptidomes of human and mouse become 

established, systematic, large-scale genetic, functional, or molecular 

screenings are starting to address this issue. For instance, a screen of 553 
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noncanonical ORFs (primarily from lncRNAs) in human cancer lines 

determined that a majority of them could induce gene expression changes 

when expressed and that this biological effect was mediated by the 

corresponding protein/peptide and not by the RNA; furthermore, a 

CRISPR/Cas-9 loss-of-function viability screen showed that many affected 

cell survival (PRENSNER ET AL., 2021). Similarly, in another CRISPR-based 

knock-out screen of 2,353 noncanonical CDSs, including 1,098 uORFs and 

613 lncRNA ORFs, that was performed in human induced pluripotent stem 

cells (iPSCs) and a leukemia cell line, disruption of the translatable ORF 

resulted in consistent growth defects in over 400 of the cases (J. CHEN ET AL., 

2020). In another study, the combination of Ribo-seq, a CRISPR/Cas9 

knockout pooled screen, and large scale computational analysis of 

molecular/clinical data for breast cancer to analyse 758 lncRNA-encoded 

ORFs, led to the identification of 28 sORFs that could be clinically relevant, 

and it was further demonstrated that one of these lncRNA-encoded 

microproteins is an integrated component of the transcriptional regulatory 

network that drives aberrant transcription in cancer (ZHENG ET AL., 2023). At 

a smaller scale, a screening of SEPs of human vascular muscle cells and a gain- 

and loss-of-function approach identified NCPs with regulatory functions in 

those cells and potentially linked to atherosclerosis (LI ET AL., 2023). The 

specific interaction of SEPs with other cellular proteins can also be taken as 

an indication of SEP functionality, and the identity of the interacting partners 

help identify the biological process that the SEP might be involved in. 

Accordingly, methods have been developed to identify cellular SEP 

interactors (e.g., DITTMAR ET AL., 2019; KOH ET AL., 2021; SANDMANN ET AL., 

2023) and used in medium-size screens. For example, a MS-based 

interactome screen was conducted for a set of 266 selected human SEPs 

revealing interactions for the vast majority of them with proteins involved in 

a variety of cellular processes, including with proteins essential for cell 

survival (SANDMANN ET AL., 2023). Interestingly, most of the SEPs included in 

this study were either recently evolved (showing that the capacity of a SEP 

to interact may be present at its evolutionary origin or appear shortly 

afterwards, i.e., that de novo originated proteins can quickly become 

functional) or very short in length, between 3 and 15 amino acids 
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(questioning if a clear-cut lower size limit for SEP functionality exists) 

(SANDMANN ET AL., 2023). 

The sampling of the human peptidome that these various studies represent 

further demonstrates – far and beyond the individual cases of biologically 

active human SEPs/NCPs that have already been characterized – that the 

eukaryotic peptidome constitutes an important source of unrecognized small 

proteins with important biological roles in physiology, development, and 

disease, and that in humans it could be a potential target for the development 

of novel therapies. The full repertoire of their functions and molecular 

mechanisms of action remains to be established. 

These questions and issues are also very pertinent to plants. 

3.4 The non-conventional plant peptidome: current status 

The ‘non-conventional’ or sORF-derived plant peptidome is largely 

undefined and unexplored. However, as in mammals and yeast, the existence 

of novel, uncharacterized small peptides has been inferred from 

transcriptome data (e.g., in Populus (YANG ET AL., 2011)), and in particular as 

Ribo-Seq has been used to demonstrate extensive translation of open reading 

frames, including novel sORFs, in species such as Arabidopsis (BAZIN ET AL., 

2017; HSU ET AL., 2016; KURIHARA ET AL., 2020), maize (LIANG ET AL., 2021), 

wheat (GUO ET AL., 2023) or tomato (WU ET AL., 2019) (for review, see FUJITA 

ET AL., 2019; HSU & BENFEY, 2018; KAGE ET AL., 2020) (Table 3.2). Initial 

experiments in Arabidopsis showed ribosome association with some 

noncoding RNAs (JIAO & MEYEROWITZ, 2010; JUNTAWONG ET AL., 2014) and that 

uORFs could be translated (JUNTAWONG ET AL., 2014; LIU ET AL., 2013), and 

ribosome profiling of Arabidopsis roots and shoots identified actually 

translated sORFs in noncoding transcripts, at least some of which could 

produce stable SEPs in planta as determined by epitope tagging (HSU ET AL., 

2016). 
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Table 3.2. Plant Ribo-Seq studies and translated sORF detection.  

Species 
Tissue / 
Process 

Identified 
sORFs 

sORF type 
Average SEP 
Length (aa) 

Experiment Reference 

Arabidopsis 
Root and 
shoot 

208  
(<100 aa) 

173 uORFs; 
9 dORFs;  
26 sORFs in 
ncRNAs 

26 aa (uORFs); 
48 aa (sORFs) 

Ribo-Seq ORFs were selected without 
length cut-off; 3 uORFs and 1 ncRNA-
derived sORF > 99 aa were also 
detected. 

(HSU ET AL., 
2016) 

Arabidopsis 
Root / Pi 
response 

197  
(<100 aa) 

lncRNA sORFs 36 aa 

sORFs were selected by translational 
efficiency (TE) and ribosome release 
score (RRS), witout length cut-off; 30 
ORFs > 99 aa were included for a total 
set of 227 lncRNA-derived sORFs. MS 
evidence for 19 of these sORFs. 

(BAZIN ET 

AL., 2017) 

Arabidopsis 
Seedling / 
Blue light 
response 

1,613  
(<50 aa) 

1378 uORFs; 32 
dORFs; 203 
sORFs in ncRNAs 

21 aa (uORFs); 
30 aa (sORFs) 

 
(KURIHARA 

ET AL., 
2020) 

Tomato Root 
1,540  
(<100 aa) 

1290 uORFs; 250 
sORFs in novel 
transcripts 

25 aa (uORFs); 
47 aa (sORFs) 

A small subset of the peptides 
encoded by these uORFs and sORFs 
(16 and 12, respectively) were 
detected by MS. 68 sORFs showed a 
predicted signal peptide and could 
represent secreted peptides. 

(WU ET AL. 
2019) 

Wheat 
Grain / 
Development 

2,737  
(<100 aa) 

1041 uORFs; 274 
dORFs; 655 
internal ORFs; 
767 lncRNA 
sORFs 

39 aa (uORFs); 
67 aa (sORFs) 

Ribo-Seq ORFs were selected without 
length cut-off, for a total of 1254 
uORFs, 367 dORFs, 825 internal ORFs 
and 914 lnc RNA ORFs. Approximately 
22% of the ORFs use non-AUG start 
codons. 

(GUO ET AL. 
2019) 
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A subsequent Ribo-Seq study of the root translatome in response to 

phosphorous (Pi) limitation largely expanded those initial observations, 

identifying 1,140 lncRNAs as ribosome-associated (50% of all lncRNAs 

detected) and in particular 225 sORFs with a higher potential of being 

functionally translated (BAZIN ET AL., 2017). Analysis of previously obtained 

proteomic datasets provided MS evidence for some of these sORFs, 

demonstrating peptide stability in the plant, and it was also determined that 

translation of some of the sORFs was upregulated or downregulated by Pi 

deficiency, suggesting that the encoded SEPs could be of physiological 

importance (BAZIN ET AL., 2017). 

Some of those novel, translated plant sORFs identified through Ribo-Seq 

were shown to be evolutionary conserved, but in many instances homologs 

were detected only in closely related species. For instance, 31 of the 225 

lncRNA sORFs identified in the Pi-starvation study were detected in 

Brassicaceae outside of the Arabidopsis genus, of which 9 were broadly 

conserved in angiosperms (BAZIN ET AL., 2017), and 15 of the 19 single-exon 

sORFs detected in ncRNAs of roots and shots (HSU ET AL., 2016) showed at 

least one homolog outside of A. thaliana (6 were detected only in 

Brassicaceae, and 9 were also detected in other plants). Similarly, a Ribo-Seq 

analysis of the translatome of tomato roots revealed 1,540 sORFs (<100 aa 

long), of which 1,290 were uORFs and 250 sORFs detected in novel 

transcripts (WU ET AL., 2019). Further analysis of a subset of 157 of those 250 

sORFs (selected by being single-exon sORFs) indicated that a majority of 

them (96, or 61%) were specific to the Solanaceae, including 18 unique to 

tomato and 78 shared by tomato and either wild tomato or potato, whereas 

a total of 139 had homologs in at least one other plant genome (including 

non-Solanaceae species) (WU ET AL., 2019). Similarly, in a study of the 

Arabidopsis seedling translatome and its response to blue light, 203 sORFs 

were identified in non-coding intergenic or antisense RNAs: 55% of them 

were conserved in A. lyrata and 20% in B. napus (KURIHARA ET AL., 2020). 

Although the level and degree of sORF/SEP evolutionary conservation that is 

detected varies among these different studies, it is apparent that some 

sORFs/SEPs can be highly conserved across plants (but perhaps a minority), 
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whereas others may be relevant for the evolution of lineage- or species-

specific characteristics, paralleling what has been observed in animals. 

In bread wheat, a recent study of the translatome during grain development 

identified 2,737 unannotated sORFs, including uORFs (1,041; 38%) and 

sORFs in lncRNAs (767; 28%) (GUO ET AL., 2023). A large number of these 

sORFs (1,883) showed differential expression dynamics at the translational 

level throughout grain development, and analysis of the corresponding SEP 

sequences indicated that a third of them harboured potential signal peptides, 

altogether suggesting that these sORFs might encode true functional 

peptides. Considering that the translatome of only one particular 

developmental process was characterized in the experiments (grain 

development at 5, 10, and 15 days after anthesis), it seems reasonable to 

expect that the total number of potential sORFs and SEPs in bread wheat will 

eventually be substantially large. These results also provide a strong 

indication of the potential relevance of the non-conventional peptidome in 

flower and fruit development. 

In addition to Ribo-Seq studies, computational analyses had previously 

suggested that several thousands of novel, potentially coding sORFs could 

exist in the intergenic regions of the Arabidopsis genome (HANADA ET AL., 

2007). In fact, it was found that when overexpressed, some of those novel 

sORF sequences could induce developmental alterations in plant growth, 

development, or cause lethality, raising the possibility that (many) sORFs 

with coding potential but that are still uncharacterized in plant genomes 

might be associated with morphogenesis and other developmental and 

physiological processes (HANADA ET AL., 2013; HIGUCHI-TAKEUCHI ET AL., 2020). 

Homologs for some of these computationally identified sORFs were detected 

in rice (OKAMOTO ET AL., 2014). But whether the phenotypic effects reported 

in those gain-of-function studies were caused by the sORF RNA or by a 

derived SEP was not determined, and neither was a loss-of-function 

approach pursued. However, for a specific sORF of that set it was 

subsequently found that it acts as a hormone-like peptide -AtPep3- involved 

in salinity stress tolerance (NAKAMINAMI ET AL., 2018), illustrating that non-

conventional peptides identified through genome-wide approaches can play 

physiological roles in plants, much like it is being discovered in animals. 
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Initial experiments in moss (Physcomitrella patens) (FESENKO, KIROV, ET AL., 

2019; FESENKO ET AL., 2021), maize (LIANG ET AL., 2021; S. WANG ET AL., 2020), 

Eucalyptus (JORGE & BALBUENA, 2021), pear (WANG, WU, SHI, ET AL., 2023) and 

Arabidopsis (S. WANG ET AL., 2020) have attempted the analysis of the global 

plant peptidome through MS-based approaches (Table 3.3). In addition, in 

the case of Arabidopsis the MS-based characterization of its global proteome 

also allowed the identification of a small number of SEPs (CASTELLANA ET AL., 

2008; MERGNER ET AL., 2020); in soybean, MS analysis was used to obtain 

coding evidence for lncRNAs, identifying 153 NCPs derived from 179 

lncRNAs (LIN ET AL., 2020); and in Populus a few tens of novel sORFs predicted 

through computational analyses of its transcriptome were confirmed by 

proteomics data (YANG ET AL., 2011). From these limited experiments, as well 

as the Ribo-seq studies described above, it appears that key observations on 

the characteristics of sORFs/SEPs from animals, such as the relevance of 

lncRNAs as a source of SEPs, the limited sequence conservation of SEPs, and 

the -extended- use of near-cognate or alternative start codons, also apply to 

plants. 

In moss, a genome-wide bioinformatic analysis resulted in the identification 

of 70,095 novel potentially coding sORFs that were: AUG-initiated, single 

exon, 10-100 aa long, and located on either annotated transcripts (uORFs, 

internal ORFs, or dORFs; 63,109, or 90%), lncRNAs (5,745, 8%), or intergenic 

regions (unannotated transcripts; 1,241, 2%) (FESENKO, KIROV, ET AL., 2019). 

These sequences were then used as search database in an MS analysis that 

included samples from three different types of moss cells, which led to 

confirming the translation and peptide accumulation for 46 of the sORFs (36 

located in annotated transcripts, 1 intergenic, and 9 in lncRNAs -20%-). The 

degree of sORF evolutionary conservation was low: 5,034 (7%) of the total 

sORFs were conserved among the transcriptomes of at least 1 out of 10 plant 

species, as well as 5 (11%) out the 46 translated sORFs, with three of these 

five corresponding to lncRNA-sORFs. Furthermore, functional analysis of 

four of the translated lncRNA-sORFs revealed that knocking them out 

affected moss growth and development, and that phenotypic alterations 

were also caused by their overexpression (FESENKO, KIROV, ET AL., 2019). Thus, 

this study provided evidence that different types of sORFs are translated in 

plants and demonstrated that some of them encode functional SEPs. 
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Table 3.3. Analysis of the global plant peptidome through MS-based approaches. 

Species Tissue/Process Aim of study Identified peptides Reference 

Moss 
(Physcomitrella 
patens) 

Protonemata 
Identification of 
translated sORFs in 
plant cells 

828 peptide sequences: 46 high 
confidence SEPs (17 in 
gametophores, 29 in protonemata, 
14 in protoplasts) (14-99 aa) 

(FESENKO, KIROV, ET 

AL., 2019) 

Maize 
(Zea mays) 

Maize inbred line B73 
leaves (three-leaf stage) 

Large-scale discovery 
of novel peptides 

1,993 novel SEPs 
(S. WANG ET AL., 
2020) 

Maize 
(Z. mays) 

Inbred line B73 seeds 
Identification and 
characterization of 
small peptides 

2,695 small peptides (up to 100aa) (LIANG ET AL., 2021) 

Arabidopsis  
Columbia-0 leaves (four-
leaf stage) 

Large-scale discovery 
of novel peptides 

1,860 novel SEPs 
(S. WANG ET AL., 
2020) 

Pear 
(Pyrus 
bretscneiden) 

Twenty-four different 
tissues/samples covering 
all major organs 

Global protein 
expression patterns. 
Discovery of novel 
proteins and peptides 

607 novel SEPs (up to 100 aa) 
(WANG, WU, SHI, ET 

AL., 2023) 

Soybean 
(Glycine max, 
Glycine soja) 

Various tissues and 
conditions 

lncRNA discovery 
153 unique novel small peptides 
encoded by 179 lncRNA genes  

(LIN ET AL., 2020) 

Note: Only examples of studies that attempted the global characterization of the plant peptidome and to expand the annotation 

of the corresponding genome are listed. For more comprehensive lists of peptidogenomic and proteogenomics experiments in 

plants, see: (ÁLVAREZ-URDIOLA, BORRÀS, ET AL., 2023; SONG ET AL., 2023).  
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In a subsequent and more comprehensive analysis of P. patens lncRNAs, 

175,272 sORFs were identified computationally, approximately 50% of 

which were AUG-initiated and the rest initiating from the near-cognate 

codons UUG or CUG. These lncRNA-sORFs were assessed for conservation 

across nearly 500 plant species: approximately 86% were not conserved, 

whereas 22,524 sORFs (13%) were moss-specific, and 645 were highly 

conserved, suggesting that a large pool of potential SEPs encoded by lncRNAs 

exists in plants but that a vast majority of them would be lineage- or species-

specific (FESENKO ET AL., 2021). Mirroring SEP characteristics already 

identified in animals, putative transmembrane domains, signal peptides, or 

‘consensus disorder prediction’ motifs were identified in subsets of the 

lncRNA-sORFs (4,978, 9,472, and 8,595, respectively), and evidence of 

translation for 195 sORFs was obtained from various moss MS datasets. 

Altogether, these first analyses of the moss ‘non-conventional’ peptidome 

support the idea that lncRNAs could be an important source of functional 

SEPs in plants, as is the case in animals. The limits of sequence conservation 

of putative SEPs among different plant species also highlight the importance 

of species-specific MS analyses for the characterization of the plant 

peptidome, and are also in agreement with the idea that sORFs/SEPs are raw 

materials for de novo gene origin and evolution. 

In the case of maize two different peptidogenomics studies are available. The 

first one was based on a six-frame translation of the maize genome and 

reported the identification of 2,837 peptides by MS, 1,993 of which were 

derived from ‘not-annotated’ sequences (i.e., were identified as NCPs in the 

study) and 844 were derived from annotated proteins/peptides (identified 

as conventional peptides, CPs) (S. WANG ET AL., 2020). Ribo-seq analyses 

provided further evidence for 732 (37%) of the identified NCPs and, 

interestingly, a certain NCP enrichment was detected within genomic regions 

associated with phenotypic variation and domestication selection, 

suggesting that NCPs could potentially be involved in the genetic regulation 

of complex traits and domestication in this species (S. WANG ET AL., 2020). In 

the second study, Ribo-seq and RNA-seq data were used to generate a search 

database of 9,388 sORFs, which comprised uORFs (2,907), dORFs (3,445), 

and also uoORFs, intORFs, and doORFs (see Figure 3.1 for nomenclature), 
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but only 49 sORFs derived from non-coding transcripts (i.e., the database was 

essentially based on alternative translation of annotated mRNAs), and that 

led to the identification by MS of 2,695 NCPs (LIANG ET AL., 2021). However, 

the overlap between the sets of peptides identified in the two studies was 

very limited: it consists of only a few CPs, and no NCP was independently 

identified by both studies (Figure 3.4). Moreover, Liang et al. (LIANG ET AL., 

2021) analysed the MS data from (S. WANG ET AL., 2020) using their custom 

translatome database of 9,388 sORFs, identifying 158 NCPs, 66 of which were 

also among the 2,695 NCPs that they had reported (i.e., a 2.4% overlap when 

the translatome database was confronted with the two different MS 

datasets). This limited overlap is not necessarily surprising. First, the 

database and approach used for MS peptide search were very different in the 

two studies, and in fact in (S. WANG ET AL., 2020) it was reported that a vast 

majority (1,652, 83%) of the 1,993 NCPs identified by the six-frame genome 

translation could be assigned to lncRNAs through transcriptomic analyses, 

whereas lncRNA-sORFs were largely absent from the translatome database 

used in (LIANG ET AL., 2021). In addition, it is well-known that the combination 

of experimental protocols used for peptide extraction, enrichment, and MS 

analysis will influence the set of SEPs that are identified in the experiment 

(see above, and (FABRE ET AL., 2021)). Last, the two studies utilized different 

sample types, six tissues in (LIANG ET AL., 2021) versus only seedling leaves in 

(S. WANG ET AL., 2020). 

In any case, the comparison of the two studies makes clear that the real size 

and scope of the maize peptidome (or, in fact, of the peptidome from any 

plant) are still undefined. It is worth noting that even for the much better 

characterized human peptidome and in studies that not only identify SEPs 

but that also include large-scale functional analyses (summarized above, J. 

CHEN ET AL., 2020; PRENSNER ET AL., 2021) the hit overlap is relatively limited 

(15-25%), indicating that the functional sORFs that those studies identified 

represent only a fraction of those encoded by the human genome. Similarly, 

in a study that used extensive Ribo-Seq profiling and three different human 

cell lines, > 7,500 sORFs were detected, but only ~1,500 (20%) in at least two 

of the three cell lines, and only ~480 (6.4%) in the three of them (MARTINEZ 

ET AL., 2020).  
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Figure 3.4. Genome-wide non-canonical peptide identification in 

maize.  

Analysis of the overlap between two different published studies for 

maize peptide identification by MS. A) Scatter plot representing the 

differences between the aligned sequences of the MS peptidic 

fragments identified by Wang et al. (S. WANG ET AL., 2020), as derived 

from conventional peptides (CPs) and non-conventional peptides 

(NCPs), and the SEPs identified by Liang et al. (LIANG ET AL., 2021). 

BLASTp was used to compare the amino acid sequences of the peptides 

identified in the two studies. B) Venn diagram showing the overlap 

between the datasets of (S. WANG ET AL., 2020) and (LIANG ET AL., 2021). 

The intersection in the diagram corresponds to peptides (peptidic 

fragments) identified in (S. WANG ET AL., 2020) whose sequences align 

in 100% of their length and with more than 90% of identity to peptide 

sequences from (LIANG ET AL., 2021). The overlap between the two 

datasets is limited to CPs, as no NCP was identified by both studies. 

 

These observations all further highlight the technical challenges and the 

complexity of defining and characterizing the peptidome in eukaryotes and, 

importantly, also point to a substantial level of cell-/tissue-/condition-

specificity. 

The six-frame genome translation peptidogenomics strategy was also 

applied to Arabidopsis (leaf tissue), which resulted in the identification of 

1,860 NCPs; of those, 666 (36%) were derived from intergenic regions (i.e., 

potential ncRNAs), 154 (8%) from UTRs, 651 (35%) from out-of-frame exons 

(i.e., intORFs), and the rest from introns and junctions (S. WANG ET AL., 2020). 
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A large-scale proteogenomic atlas or pear has recently been developed 

through the integration and correlation of transcriptome and proteome data 

from 24 tissues and/or developmental stages, including seedling tissues, 

floral organs and tissues, fruit tissues, and fruit developmental stages (WANG, 

WU, SHI, ET AL., 2023). Although the main purpose of the study was not the 

identification of NCPs per se, as neither a small peptide MS strategy nor a 

customized putative sORF search database were employed, the annotation of 

the pear genome was improved through the identification of 4,294 ‘new 

protein-encoding events’, of which 607 were of no more than 100 codons and 

therefore represented small ORFs. Some of those small ORFs were fully 

localized in intergenic regions (206), or in introns (17) or in the opposite 

strand (49) of annotated genes, and could therefore represent different types 

of sORFs/SEPs (WANG, WU, SHI, ET AL., 2023). 

In addition to these broad peptidogenomic approaches, ‘targeted’ peptidomic 

experiments that in general address known families of plant peptides, in 

particular secreted signaling peptides/small proteins (SSPs), have been used 

to confirm peptide presence in planta and to associate peptides to specific 

physiological or developmental processes. These studies do not attempt to 

characterize the whole-genome ‘non-conventional’ plant peptidome, but can 

nevertheless identify new members of the corresponding gene families. 

Examples include: SSPs affecting root growth in Medicago truncatula (Patel 

et al., 2018); Arabidopsis SSPs (OHYAMA ET AL., 2008), including potential 

auxin-responsive SSPs (LUO ET AL., 2019); rice SSPs induced by the blast 

fungus Magnaporthe oryzae that could be involved in immunity – which also 

led to the discovery of an additional 51 unannotated SSPs – (P. WANG ET AL., 

2020); or cysteine-rich, potential antimicrobial peptides (AMPs) in Capsicum 

(CULVER ET AL., 2021), among others.  

In summary, knowledge on the ‘non-conventional’ plant peptidome is 

starting to accumulate and it appears that most or all of the overall findings 

that have been pioneered by research on animal, particularly human, SEPs 

will also apply to plants, and that newly identified SEPs will be found to play 

important roles in plant development and physiology. 
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3.5 The ‘non-conventional’ plant peptidome and flower 

development: the tip of the iceberg? 

Precursor-derived peptides have long been known to play important roles in 

flower and fruit development and physiology (Table 3.1, Figure 3.5), from 

CLAVATA3 (CLV3), which is expressed in the shoot apical and floral 

meristem stem cell reservoirs and forms part of the network that maintains 

stem cell homeostasis (FLETCHER, 2020; FLETCHER ET AL., 1999), to RALF 

peptides that control an intergeneric hybridization barrier on Brassicaceae 

stigmas (LAN ET AL., 2023). Moreover, it is starting to become clear that non-

precursor-derived peptides and in particular novel SEPs/NCPs identified 

through genome-wide analyses, that is, the ‘non-conventional’ peptidome, 

should also be taken into consideration to understand flower, fruit, and seed 

development. 

 
Figure 3.5. Arabidopsis peptides with functions related to flowering 

and flower and fruit development.  

GO enrichment results of peptides annotated in Sup Table 3.1 (in black) 

and other peptides described in the literature that are known to have a 

role in flower development (in white). GO results in Sup Table 3.2.  

https://drive.google.com/drive/folders/1O3Vo-g2Pm_2r14CBr3sR_8hDtBaAiGlk?usp=drive_link
https://drive.google.com/drive/folders/1O3Vo-g2Pm_2r14CBr3sR_8hDtBaAiGlk?usp=drive_link
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 As summarized above, a recent Ribo-seq study of bread wheat grain 

development identified a large number of sORFs as differentially expressed 

during the process (GUO ET AL., 2023), and although there was no functional 

characterization of any of those sORFs, nor a demonstration by proteomics 

or other methods of the accumulation of the corresponding SEPs, it is 

reasonable to expect that some of them will indeed produce functional SEPs. 

Interestingly, a rice de novo gene (GSE9) was recently shown to contribute to 

grain shape differences between indica and japonica varieties, and to have 

been evolved from a previous non-coding region of wild rice (Oryza 

rufipogon) through the acquisition of a start codon (R. CHEN ET AL., 2023). 

Although the GSE9 protein is slightly larger (107 aa) than the arbitrary upper 

size limit for SEPs, it otherwise fulfils many of the characteristics outlined 

above: it contains intrinsic disordered regions, is predominantly localized in 

the plasma membrane, and shows no significant similarity with proteins 

from other eukaryotic species, as befits a de novo, sORF-generated, functional 

gene (R. CHEN ET AL., 2023). These studies suggest that SEPs might play 

specific functional roles in monocot grain physiology. 

In maize, lncRNA-sORF encoded SEPs that play a role in anther development 

and pollen tube growth have been identified. Zm908 is expressed 

predominantly in mature pollen grains and encodes a 97 aa-long SEP 

(Zm908p11) that functions in maize pollen germination and tube growth. 

Transgenic analyses in tobacco demonstrated that the peptide is necessary 

for Zm908 function, and it was also found that it interacts with maize profilin 

1, suggesting that Zm908p11 could be involved in the actin dynamics that are 

essential for pollen tube growth (DONG ET AL., 2013). Zm401 is expressed 

primarily in the anthers (tapetal cells as well as microspores) in a 

developmentally regulated manner, and a knockdown of this gene led to 

aberrant development of the microspore and tapetum, and finally male 

sterility (MA ET AL., 2008). Zm401p10 peptide accumulates in the nucleus and 

its overexpression in maize retarded tapetal degeneration and caused 

microspore abnormalities (WANG ET AL., 2009). 
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Last, in the proteogenomic analysis of pear described above, 69 (10%) of the 

607 ‘new coding event’ small ORFs identified by MS were detected in style 

tissue, 18 of which were style-specific. Eight of those style-specific SEPs (49 

to 88 aa in length) were expressed and purified as recombinant proteins and 

tested in pollen tube growth in vitro assays: four promoted pollen tube 

growth whereas one inhibited it, demonstrating that the newly identified 

SEPs could be biologically functional (WANG, WU, SHI, ET AL., 2023) and 

suggesting that the plant ‘non-conventional’ peptidome could play important 

roles in flower and fruit development and physiology. 
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Chapter 4. Arabidopsis ‘non-

conventional’ peptidome as related to 

flower development 

4.1 Background 

The transcriptional and post-transcriptional regulation of flower 

development, as summarised in Chapter 1, has been characterized in the last 

decade using genomics and transcriptomics approaches (GREGIS ET AL., 2013; 

KAUFMANN ET AL., 2010; PAJORO, MADRIGAL, ET AL., 2014; YANT ET AL., 2010). 

These methods, alone or in combination with more traditional genetic 

studies, have validated the complex and highly interconnected gene 

regulatory network of the most innovative process that allowed angiosperms 

to rapidly expand during plant evolution. However, a wider view of these 

processes requires the study of the proteome, as recent studies have shown 

that translational regulation is determinant in developmental programs and 

that protein levels can vary despite mRNA levels being constant, and vice-

versa (Y. GUO ET AL., 2023) (see Chapter 2). Over the past few years, it has also 

become evident that there is a substantial but uncharted fraction of the 

eukaryotic proteomes that is mainly composed of small proteins 

(peptidome), with roles and functions yet to be discovered (see Chapter 3).  

The sources of plant peptides are numerous, either reliant on the processing 

of a polypeptide precursor or encoded by a short Open Reading Frame 

(sORF). Contrary to what was previously thought, long non-coding RNAs 

(lncRNAs), transcripts of unknown function (TUFs), 3’UTR´s, 5’UTR´s, 

intergenic regions, junctions, introns and primary miRNA transcripts (pri-

miRs) might contain translatable sORFs (HANADA ET AL., 2013; HAZARIKA ET AL., 

2017; LAURESSERGUES ET AL., 2022; S. WANG ET AL., 2020). Although 

peptidomics approaches have a lower sensitivity for detecting SEPs than 

RNA-based methods to detect potentially translating sORFs (ASPDEN ET AL., 
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2014), a few mass spectrometry (MS)-based studies have been conducted in 

monocot and dicot plants for identifying novel alternative sORFs (LIANG ET 

AL., 2021; MERGNER ET AL., 2020; S. WANG ET AL., 2020).  

Functional proteomics or gene-editing approaches are now available to 

characterize peptide roles. In Arabidopsis, well-characterized peptides have 

been found to be involved in organogenesis and development (GHORBANI ET 

AL., 2015; P. GUO ET AL., 2015; VALDIVIA ET AL., 2012). Besides the experimental 

validation for revealing the biological function of the peptidome, the 

biological function of new SEPs can also be studied using sequence features 

and their conservation across species (KIM ET AL., 2018). For a coding 

sequence (CDS), a non-synonymous substitution rate that is significantly 

lower compared to the synonymous substitution rate indicates that the 

sequence has experienced purifying selection or functional constraint 

(HANADA ET AL., 2007). Nevertheless, these criteria are not always applicable, 

as some non-conserved sORFs could evolve as newly coding ORFs with 

relevant roles (YEASMIN ET AL., 2018) or possess functions unrelated to their 

conservation (LAURESSERGUES ET AL., 2022).  

The computational predictions and functional peptide characterizations 

recently available (GHORBANI ET AL., 2015; SLAVOFF ET AL., 2013; VANDERPERRE 

ET AL., 2013) motivated our group to explore the nature and true extent of the 

Arabidopsis peptidome, with the goal of understanding the potential role of 

non-conventional peptides in developmental programs. This study is aimed 

at continuing the understanding of the molecular mechanisms involved in the 

process of floral development in A. thaliana by the characterization of its 

sORF-encoded peptidome. The objective was to find novel functional 

peptides potentially encoded in lncRNAs, TUFs, and intergenic regions of the 

Arabidopsis genome, and upstream, downstream, or alternative ORFs 

(uORFs, dORFs, altORFs) of annotated Arabidopsis genes. Specifically, I 

addressed whether these SEPs could be involved in flower development by 

virtue of their differential expression in the Arabidopsis floral homeotic 

mutants. For this Thesis, a combination of transcriptomics, proteomics, and 

genetic techniques was used, including liquid chromatography with tandem 

mass spectrometry (LC-MS/MS) guided by a reference database composed of 

hypothetical and canonical SEPs and proteins.  
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4.2 Results 

4.2.1 Detection of novel SEPs by mass spectrometry 

Inflorescences of wild-type (WT, Ler-0 ecotype) and floral homeotic mutants 

(ap1, ap2, ap3, pi and ag) (Figure 4.1) were collected and peptides were 

extracted using size-selection by a 30K-ultrafiltration method followed by 

reverse phase chromatography (as described in (ÁLVAREZ-URDIOLA, BORRÀS, 

ET AL., 2023)) of four independent biological replicates for each genotype. For 

the identification of novel SEPs in the peptide samples, a database-guided 

mass spectrometry approach was used. The custom database that was 

generated was composed of ~100,000 non-redundant sequences that 

included, in addition to the annotated peptides and proteins from The 

Arabidopsis Information Resource (TAIR, Araport11; www.arabidopsis.org), 

potential peptides encoded (i) by lncRNAs (CNTdb 2.0; 

http://cantata.amu.edu.pl/) (SZCZEŚNIAK ET AL., 2019) and other transcripts 

(TAIR ‘non-coding’ –‘nc’–) (potential peptides were directly inferred from the 

three-frame translation of those transcripts), (ii) in intergenic regions as 

identified by in silico analyses (HANADA ET AL., 2007, 2013), and (iii) poly-

Ribo-seq identified sORFs present up- and down-stream of the main ORF of 

annotated genes or in alternative ORFs (HSU ET AL., 2016) (Dataset S4.1).  

 

Figure 4.1. Floral phenotypes of the lines used in this study.  

Landsberg erecta (WT – Ler-0), ag, ap1, ap2, pi and ap3 inflorescences 

and mature flowers (bottom left of each panel) are shown. 

http://www.arabidopsis.org/
http://cantata.amu.edu.pl/
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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In these LC/MS-MS experiments, 5,608 proteins (longer than 100 aa) and 

2,084 peptides (of up to 100 aa) were identified in the Arabidopsis flower 

homeotic mutants and wild type plants. Among the identified peptides, I 

distinguished between those already annotated and described in TAIR (210 

peptides; referred to as ‘canonical peptides’ in the text below), and those 

annotated as “hypothetical proteins” in TAIR or those from other sources in 

the custom database (1,874 peptides; collectively referred to as ‘hypothetical 

peptides’ below) (Table 4.1, Dataset S4.2).  

Table 4.1. Number of identified peptides and proteins from each 

database.  

 Araport11 

(Canonical) 

Araport11 

(Hypothetical) 

Hsu 

et al. 

Hanada 

et al. 

CNT 

db2.0 

TAIR 

‘nc’ 

Proteins 

(> 100 aa) 
5,387 122 - - 62 37 

Peptides 

(≤ 100 aa) 
210 22 21 42 1,224 565 

 
Canonical 

peptides 
Hypothetical peptides 

The dynamic range of protein and peptide abundance spanned six orders of 

magnitude. In all genotypes, the average intensity abundance of the peptides 

was slightly higher than that of the proteins for Araport11, CNTdb2.0 and 

TAIR ‘nc’ sequences (Figure 4.2). This corroborated that the peptide 

extraction worked properly in the sense that the samples were enriched in 

small peptides rather than in proteins. The LC-MS/MS data resulted in the 

detection of the N-terminal aminoacidic sequences of 682 peptides and 1,892 

proteins, and of the C-terminal sequences of 321 peptides and 889 proteins, 

altogether corroborating a substantial number of annotated open-reading 

frame borders from Araport11 and of predicted sORFs borders for other 

sequences of the customized database (Figure 4.3A). Moreover, 28 of the 

smallest predicted peptides (with 10 aa) were detected as a single 

aminoacidic sequence containing both, N- and C-terminal ends (Figure 

4.3A). N-terminal peptides often showed cleavage of the initiator 

methionine, especially for those sequences corresponding to hypothetical 

peptides. N-terminal acetylation was strongly dependent on the amino acid 

adjacent to the initial amino acid (Figure 4.3B-E).  

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.2. Dynamic range of protein and peptide expression in the 

different genotypes.  

Density plot of protein abundance expressed as the average Log2 TOP3 

abundance for each genotype depending on their origin.  

 

Figure 4.3. Amino acid composition of the sequences detected by 

mass spectrometry.  

A) Bar graph indicating the number of identified N-terminal (N-ter) or 

C-terminal (C-ter) peptides (black) or proteins (grey). B) Frequency of 

N-terminal acetylation for sequences starting with M or not (1st aa). C) 

Frequency of N-terminal acetylation depending on the amino acid 

which follows the initiator (2nd aa).  

M: methionine, nc: non-conventional. [M]-X, [nc]-X: missing first amino 

acid, M-X and nc-X: not missing first amino acid. Cont. in next page. 
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Figure 4.3. Amino acid composition of the sequences detected by 

mass spectrometry (Cont.). 

D) First amino acid for those sequences beginning with a non-canonical 

initiation codon (different from AUG -M-). E) Second amino acid for the 

different detected sequences, depending on the cleavage of the initiator 

amino acid. 

In most cases, the number of fragments detected for each peptide and protein 

was lower than three. This was the expected distribution due to the small size 

of the peptides (of up to 100 aa) and the exclusion of most proteins thanks to 

the size-filtration during peptide extraction. Nevertheless, the LC-MS/MS 

data covered, on average, ~30% and ~12% of each peptide and protein 

sequence, respectively, enabling the detection of unique amino acid 

sequences for 2,084 peptides and 5,608 proteins. (Figure 4.4). The median 

length of the peptides differed depending on their source, that is, on the type 

of genetic element from which their sequences were derived. The median 

peptide length was also affected by the cut-off that was established for the 

generation of each part of the database (i.e., 30 aa for peptides from Hanada 

et al., and 10 aa for peptides from Hsu et al., CNTdb 2.0 and TAIR ‘nc’). The 

detected hypothetical peptides were in general smaller than the canonical 

peptides (Figure 4.5A, B).  
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Figure 4.4. Sequence coverage in LC-MS/MS results.  

Pie charts showing percentage of total sequences (A) and peptides and 

proteins separately (B) identified by < 3, 3-10 or > 10 peptide 

fragments. Distribution of peptide-based sequence coverage of all 

peptides and proteins (C) depending on their source (D).  

 

Figure 4.5. Canonical and Hypothetical peptides in A. thaliana.  

A) Length distribution of peptides (AAs) included in the different 

databases represented as a violin plot for each database and as a 

histogram for the complete dataset. Lines in the histogram depicts the 

density distribution of the peptides of each database. B) Molecular 

weight distribution of peptides (kDa). Coloured by their source. 
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4.2.2 Overlap with previous a peptidomics study  

A recent LC-MS/MS study of the non-conventional peptidome in maize leaves 

also included Arabidopsis leaf samples (S. WANG ET AL., 2020). BLASTp was 

used to investigate the possible overlap between the set of peptides 

identified in this Thesis and the peptide fragments identified by (S. WANG ET 

AL., 2020). I compared the sequences of the 2,084 peptides that were 

identified by LC-MS/MS in inflorescence tissues with the 2,363 conventional 

peptidic fragments (CPs) and 1,860 non-conventional peptidic fragments 

(NCPs) detected by Wang et al. in leaves (Sup Table 4.1).  

The BLASTp results indicated that the two datasets were largely different, 

and very few bona fide identity matches were retrieved: most of the BLASTp-

aligned peptide fragments from Wang et al. covered less than half the 

sequence of their corresponding match in the LC-MS/MS dataset, and less 

than 20% of the aligned sequences had an identity greater than the 75% 

(Figure 4.6A). Nevertheless, there were 91 peptides that had at least 90% 

identity between datasets, and also more than 90% of the sequence from 

Wang et al. aligned with the peptide sequence that was identified by LC-

MS/MS. From these, 68 peptide pair matches corresponded to canonical 

Araport11 peptides and CPs from Wang et al.; one corresponded to a 

hypothetical Araport11 peptide and a CP from Wang et al.; 20 to Hsu et al  

 
Figure 4.6. Data comparison (BLASTp results).  

A) Scatter plot representing the differences between the aligned 

percentage of the total length of the peptidic fragments identified by MS 

by Wang et al. and SEPs identified in the LC-MS/MS peptidomics study, 

coloured by the percentage of identity. B) Venn diagram representing 

the intersection of those peptides with more than the 90% of identity 

between the datasets and more than the 90% of the Wang et al. peptidic 

sequence aligned.  

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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uORFs, dORFs and altORFs and CPs from Wang et al.; and two CNTdb 2.0 

peptides, one paired with a CP from Wang et al. and the other with a NCP 

(Figure 4.6B). In summary, the Arabidopsis non-conventional peptidome 

identified in leaf tissue by Wang et al. is mostly non-overlapping with that 

identified in this Thesis from floral tissues.  

4.2.3 Identification of over a hundred novel peptides specific to floral 

buds  

Most identified peptides had a low Mascot Score (below 90) which, although 

considered as a low confidence of detection, is related to the fact that – as a 

consequence of their reduced length – many peptides were detected through 

a single peptidic fragment (Figure 4.7A). Another indicator of confidence can 

be derived from the total number of identifications and not-assigned values 

(NAs) for each peptide (Figure 4.7B). The criteria to select a final list of 

candidate peptides for further analyses were defined on the basis of the 

number of NAs for each peptide (Sup Table 4.2).  

The main goal was to find new peptides encoded in sORFs and ‘nc’ RNAs, and 

with a potential role in floral organ development. Two different selection 

pathways were established: i) genotype-independent peptide discovery, and 

ii) genotype-dependent selection of peptides with a floral organ-specific 

accumulation pattern. These selection pathways were used in parallel, as 

there were peptides that would meet both (see below). On one hand, 

hypothetical peptides with less than 21 NAs (out of a total of 24 samples: 4 

biological replicates for each of the 6 genotypes) were classified as genotype-

independent discovery peptides. With this criterium, 106 discovery peptide 

candidates were selected, half of which had a high or medium confidence of 

detection (Mascot score) (Figure 4.7B). On the other hand, to predict organ-

specific peptides and proteins, I considered their quantification in the 

different mutants at both complete peptide or protein and single peptidic 

fragment detection levels (i.e., raw spectra). Peptides and proteins, as well as 

their individual detected peptidic fragments, were classified as suitable for 

the floral organ classification analysis when they had less than three NAs in 

at least one genotype (quantified for that genotype/s) (Figure 4.7C). These 

criteria to select peptides based in the number of NAs, in both pathways, 

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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were actually very conservative, given the stochastic nature of peptide 

detection in MS experiments (see below). 

 
D 

Discovery candidate < 21 NAs / 24 total samples 

Suitable for the floral organ analysis < 3 NAs / 4 samples in a genotype 
  

Figure 4.7. Selection criteria depending on the number of NAs.  

A) Distribution of Mascot Scores for the peptides and proteins in LC-

MS/MS results. B) Histogram of the number of IDs depending on their 

number of NAs in the dataset (0-24NAs). ‘Discovery’ candidates (less 

than 21 NAs) are framed in panel. A-B) panels are coloured by their 

FDR (high, medium, or low). C) Proportion and total number of 

peptides and proteins that were ‘Suitable’ and ‘Unsuitable’ for the floral 

organ classification. Canonical peptides are significantly enriched in 

‘Suitable’ IDs when compared to canonical proteins (Fisher’s p-value = 

1.68e-07). Hypothetical peptides are significantly enriched in 

Unsuitable IDs when compared to hypothetical proteins (Fisher’s p-

value = 2.2e-16).  

To make use of the different genotypes used in the experiment, I took 

advantage of the combinatorial nature of the (A)B(C) model of flower 

development (similarly to what was done in a previous work to predict 

organ-specific transcript expression (WELLMER ET AL., 2004)). Potential sepal-

specific peptides were those quantified in ap3, pi and ag mutants, but not in 

ap1 nor ap2. Petal-specific peptides would be identified by exclusively being 

present in ag. Stamen-specific peptides would be detected in ap1 and/or ap2, 

but not in ap3, pi or ag. Finally, carpel-specific peptides would be those found 

in ap3 and pi and absent from ag samples, irrespectively of their 



Arabidopsis floral peptidome | 121 

quantification in ap1 and ap2 (Figure 4.8A). To be considered as organ-

specific, proteins needed to be quantified in Ler-0 as well, however this was 

not a requirement for peptides (up to 100aa) (Figure 4.9). This criterion was 

different between proteins and peptides to avoid discarding potentially 

interesting peptides with low abundances that were not quantified in the 

wild type samples.  

 

Figure 4.8. Selection of possible organ-specific proteins and 

peptides.  

A) Criteria to select peptides and proteins specific to a certain type of 

floral organ. Tick: quantified (0, 1 or 2 NAs) in the indicated genetic 

background; cross: unquantified (3 or 4 NAs) in the indicated genetic 

background. B) Proportion of peptides and proteins identified in LC-

MS/MS which were associated to each one of the floral organs divided 

according to their source. H: hypothetical, C: canonical. The squared 

section comprehends the 60 ‘floral organ’ peptide candidates. 

Using this set of criteria, 60 floral organ peptide candidates were selected 

(Figure 4.8B), from which 34 had been also retrieved as genotype-

independent discovery peptide candidates, for a total of 132 peptides initially 

selected for further consideration (Figure 4.10A, B). The selection of 

candidates was not length-dependent (Sup Table 4.3, Figure 4.10C). In 

addition, the 132 candidates were evenly distributed among the complete 

genome of A. thaliana independently of their genetic element of origin 

(annotated ORFs -CDS-, intergenic regions, altORFs, uORFs, dORFs or 

ncRNAs) (Figure 4.10D). 

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.9. Number of possible organ-specific proteins and 

peptides.  

Upset plots to visualize the intersections between proteins (A) and 

peptides (B) in each genetic background (Ler, ap1, ap2, ap3, pi, ag). 

Rows (left, horizontal bar graph) correspond to the total proteins (A) 

and peptides (B) detected in genetic background, and columns (top, 

vertical bar graph) correspond to the intersections. For each column, 

the filled in circles signal the genetic backgrounds that are part of the 

intersection. Vertical bars are coloured depending on the confidence of 

detection (low: grey, medium: light blue, high: dark blue), and circles 

are coloured by the organ assignation (stamen: orange, carpel: yellow, 

sepal: green, petal: purple). Besides the represented proteins and 

peptides, there were 2,257 proteins identified in all genotypes.  
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Figure 4.10. General information about the candidates.  

A) Venn diagram indicating the number of peptide candidates selected through each 

method. B) NA distribution of the ‘Discovery’ (purple), and ‘Floral Organ’ (orange) 

peptide candidates. In black: peptides which are ‘discovery’ and ‘floral’ peptide 

candidates. C) Violin plots (and boxplots) showing the size distribution for the 

detected hypothetical peptides (up to 100 aa; grey shadow), with the selected 

peptide candidates superimposed with filled circles according to whether they had 

been identified as ‘floral’ (orange), ‘discovery’ (purple) or both (black), according to 

their confidence of detection (high, medium, low) and their source (Araport11, Hsu 

et al., Hanada et al., CNTdb2.0, TAIR ‘nc’). Numbers indicate the total number of 

candidates (nC) and the total number of hypothetical peptides detected (nT) for each 

group. D) Genome-wide distribution of all hypothetical peptides detected by MS 

(coloured by their origin). Candidates are also separately shown with different 

shapes and colours depending on their origin and ORF type. 
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The obtained results about organ-specific proteins and peptides were 

compared to those obtained at transcript level by (WELLMER ET AL., 2004). In 

the LC-MS/MS results, most of the possible floral-organ proteins and 

canonical peptides were associated to stamens, followed by carpels, and then 

petals and sepals (Figure 4.8B), as in Wellmer et al. at transcript level (Table 

4.2). In the case of the floral organ candidate peptides (hypothetical 

peptides), the proportion of peptides assigned to each organ was slightly 

different. As in the case of the proteins and canonical peptides, the highest 

number of possible floral-organ hypothetical peptides were associated with 

stamens. However, the proportion of possible petal-specific peptide 

candidates was higher than expected, and there was only one putative carpel-

specific peptide candidate and none in the case of the sepals (Figure 4.8B).  

Table 4.2. LC-MS/MS identified peptides and proteins classified as 

organ-specific in comparison to the organ-specific transcripts 

identified by (WELLMER ET AL., 2004).  

 Araport11 

(C) 

Araport11 

(H) 

Hsu  

et al. 

Hanada 

et al. 

CNTdb 

2.0 

TAIR 

‘nc’ 

Carpel 32 1 0 0 0 1 

Petal 4 0 0 0 9 4 

Sepal 12 0 0 0 0 0 

Stamen 183 10 4 0 28 11 

Unassigned 3,456 71 3 1 43 30 

Unsuitable 1,961 64 14 41 1,206 556 
  

 Wellmer et al.  

(and in LC-MS/MS) 

Wellmer et al.  

(in total) 

Carpel 89 260 

Petal 4 18 

Sepal 4 13 

Stamen 242 (C) + 8 (H) 1,162 

The accuracy of the organ-specific classification criteria was also checked by 

performing a Gene Ontology (GO) enrichment analysis of the proteins and 

peptides annotated in Araport11 that through the candidate selection 

process were classified as organ-specific. The groups of peptides and 

proteins that were classified as specific for each organ type were indeed 

enriched in peptides and proteins known to be related with the development 

of that organ (Figure 4.11A). Moreover, a correlation network was created 
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based on the LC-MS/MS abundances of proteins and peptides, and a new GO 

enrichment analysis of the abundance modules calculated using the Random 

Matrix Theory was performed (Figure 4.11B). The module ME01 included 

192 peptides and proteins that were classified as stamen-specific peptides, 

and it is enriched in pollen exine formation AGIs according to the GO results 

(Table 4.3, Sup Table 4.4).  

Table 4.3. Number of peptides and proteins forming the modules 

of the correlation network. 

Module 
Carpel Petal Sepal Stamen Unassigned 

TOTAL 
Pep Prot Pep Prot Pep Prot Pep Prot Pep Prot 

ME01 4 1   1  27 165 23 327 548 

ME02  16 11      7 137 171 

ME03 2 12 3 3 1 10 3  32 485 551 

ME04       26  3 309 338 

ME05       15  10 165 190 

ME06         28 146 174 

ME07         7 123 130 

ME08         3 89 92 

ME77         22 215 237 

ME78         3 34 37 

 

Figure 4.11.  Validation of the ‘floral organ’ classification criteria.   

A) GO enrichment analysis: main category for those Araport11 

peptides and proteins that were associated to each organ type. B) 

Correlation network for peptides and proteins identified in LC-MS/MS 

results. The main GO categories of each correlation module (ME) are 

indicated in the graph. Coloured by correlation ME. Circles represent 

peptides in MS and rectangles, proteins. 

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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4.2.4 Translation initiation sites of the identified peptides  

From the 1,874 hypothetical peptides identified by LC-MS/MS, only 131 of 

the corresponding sORFs were predicted to start with an AUG (14 annotated 

in Araport11, 117 in other sources). Furthermore, the sORFs of 292 peptides 

began with a near-cognate codon, that is, triplets that differ from AUG by only 

one nucleotide (e.g., AUC or AAG, Figure 4.12A, D). In addition to the initial 

annotation and prediction, it should be noted that the mass spectrometry 

results identified the complete N-terminal fragment for 551 of the 1,874 

hypothetical peptides. Of this particular subset, 156 TIS were AUG or near-

cognate (69 and 87, respectively), and 394 were other codons (similar to 

(CAO & SLAVOFF, 2020; NA ET AL., 2018)).  

For those hypothetical peptides for which the fragment identified by mass 

spectrometry did not correspond to the N-terminus, their putative 

translation initiation sites (TIS) were searched for and re-annotated on the 

basis of the specific amino acid sequences (internal peptidic fragments) 

identified by LC-MS/MS (see Materials and Methods section 4.4.4) 

In summary, the sORFs of 26% of the total 1,874 hypothetical peptides, and 

34% of the selected candidates held putative canonical start codons (AUG). 

The sORFs of another 45% of the total hypothetical peptides commenced 

with a near cognate codon, as was the case for the 36% of the selected 

candidates. Ten candidates had more than one TIS in a sequential 

arrangement (e.g., AUG-AAG or AAG-AUG). Finally, no potential AUG and 

near-cognate codon TIS was identified for about 30% of the hypothetical 

peptides and selected candidates (Figure 4.12B, C, E). That is, it appears that 

for the SEPs identified in this study, in addition to AUG-mediated translation 

initiation, near-cognate codons are also frequently used, and that the 

possibility of non-AUG, non-near-cognate initiation also exists, since for a 

subset of the hypothetical peptides a clear ‘conventional’ TIS could not be 

identified despite the fact that for some of those peptides the MS peptidic 

fragment corresponded to the peptide N-terminus.  
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Figure 4.12. TIS of the hypothetical peptides identified by LC-

MS/MS.  

A-B) Pie chart depicting the number of peptides with each kind of TIS 

among all the hypothetical peptides identified by LC-MS/MS (n = 1,874) 

and for the selected candidates (n = 132) before (A) and after (B) the 

re-annotation based on LC-MS/MS spectra. C) Percentage of peptides 

whose start codon is AUG or a near-cognate codon before and after the 

re-annotation. D-E) Bar plot representing the number of peptides from 

each source (colours) that began with each possible codon for the 132 

candidates before (D) and after (E) the re-annotation. 
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In addition to the identification of putative TIS, I categorised thirteen 

candidates as putative precursors of small-secreted peptides (SSPs) based on 

the mass spectrometry results (i.e., the peptidic fragment that was detected 

lacked a tryptic beginning and did not correspond to the TIS of the sequence). 

Two candidates (#014 and #101, which correspond to AT5G43695.1 and 

AT2G05215.1_29 respectively) were confirmed as carriers of potential 

secretory signals using the online tool SignalP (Figure 4.13, Sup Table 4.3).  

 

 

Figure 4.13. Identification of putative secretory signals in 

candidate peptides.  

A) Probability of containing a Sec/SPI secretory signal. SignalP 6.0 

results for candidates #014 (B) and #101 (C). Schematic map of 

candidates with putative secretory signals #014 (D) and #101 (E). The 

dark purple arrow represents the CDS of each candidate in their 

corresponding RNA. In grey, the peptidic sequence identified by mass 

spectrometry. In pink, other putative SEPs identified in the same RNA. 

The orange arrow in E represents the fragment that I identified as the 

possible SSP. The secretory signal is indicated in red (secretory signal 

n), orange (secretory signal h) and yellow (secretory signal c). Pink 

arrows represent the CDS of other peptides from the MS database that 

could be encoded by the same transcript as candidate #101.  

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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4.2.5 Several SEPs belong to putative peptide families in A. thaliana 

The custom database described above (see 4.2.1) without the proteins and 

peptides annotated in Araport11 was searched against itself using BLASTp in 

order to identify peptide families and to determine whether the SEPs 

identified through LC-MS/MS formed part of them (see Materials and 

Methods section 4.4.5 for the strategy used to filter the results of the BLAST 

analysis; the strategy took into account the length of each peptide sequence 

query).  

Among the ~100K peptides and proteins in the database, there were 14,366 

families with two to eleven members (Table 4.4, Sup Table 4.5). Some 

families were exclusively formed by members encoded in the same 

transcript, including peptides from Hsu et al., CNTdb 2.0 and TAIR ‘nc’. 

Around 55% of the families were comprised by peptides with the same origin 

(Figure 4.14). Besides, the 85% of the families were formed exclusively by 

putative peptides encoded in lncRNAs and TUFs (CNTdb 2.0, TAIR ‘nc’ or a 

combination of both sources). Out of the 1,874 hypothetical SEPs in the LC-

MS/MS results, 515 were associated to at least one of these families, and 

there were 15 families with two members detected in the LC-MS/MS results 

(Table 4.4, Sup Table 4.5).  

Table 4.4. Putative peptide families in A. thaliana.  

Number of putative peptide families with member(s) detected or not in 

the LC-MS/MS results. Families include two to eleven peptides encoded 

in one to eleven different transcripts. The members of families encoded 

in more than one transcript can be encoded in overlapping loci, or in 

completely separated loci (e.g., in different chromosomes).  

 
Families encoded in more 

than one transcript 

Families encoded in a 

single transcript 

0 peptides in 

LC-MS/MS 
12,248 1,356 

1 peptide in LC-

MS/MS 
664 83 

2 peptides in 

LC-MS/MS 
13 2 

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.14. Peptides grouped in families by BLASTp have multiple 

origins.  

Venn Diagram representing the origin (Hanada et al., Hsu et al., 

CANTATA db2.0 or TAIR ‘nc’) of the members of each family. The 

number (and percentage) of families formed by members of each origin 

is indicated. 

In the case of the 132 selected candidates, I searched for homologous 

sequences along the complete A. thaliana genome with a BLASTn analysis, to 

identify putative families at genome level that were not detected at peptide 

level using the custom database (e.g., peptides annotated in Araport11). In 

this case, there were 68 candidates with homologous sequences within the 

Arabidopsis genome (Sup Tables 4.3, 4.6). 

4.2.6 Amino acid sequences of SEPs are conserved across species 

When inspecting the conservation of the 132 selected candidate peptides, 

putative homologs were found for 103 of them in the genome of at least one 

of other twelve plant species, namely A. lyrata, Brassica oleracea, Camelina 

sativa, Vitis vinifera, Citrus clementina, Cucumis melo, Glyine max, Medicago 

truncatula, Populus trichocarpa, Solanum lycopersicum, Oryza sativa and Zea 

mays (Table 4.5, Sup Table 4.7). The putative homologs of the peptide 

candidates were evenly distributed in the genome of the different analysed 

species, as it was already shown for the candidates in A. thaliana (Figure 

4.10D). For some species, the putative homologs for the peptide candidates 

were larger than 100 aa (up to 200 aa) (Figure 4.15). I also explored if any 

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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transcripts and/or peptide sequences for the putative homologs were 

already listed in the transcriptomes and proteomes of the twelve species 

used in the homology study (Table 4.5, Sup Tables 4.3, 4.7). Whereas the 

identified homologs for a majority of the selected candidates (76 out of 132) 

were localized in annotated transcripts in at least one of the corresponding 

species, many others (56) were identified only from the corresponding 

genome sequence. This was expected given that transcriptome depth (and in 

particular identification of lncRNAs) and quality of the genome annotation 

varies greatly among species (Figure 4.16).  

 

Figure 4.15. Length distribution of the 132 selected candidates 

and their putative homologs. 

Histogram representing the length distribution of the selected 

candidates (A) and their putative homologs (B). Red line: 100 aa of 

length.  
   

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Table 4.5. Species for the homology analysis.  

Twelve species selected depending on their evolutionary distance to A. thaliana and their available genome information, 

indicating the number of candidates with putative homologs in each species, and the number of possible transcripts and 

peptides for those putative homologs in the different species that are already annotated in their corresponding databases.  

Species 
Monocot 

/ dicot 
Family Reference genome 

# Homologs 
(tBLASTn) 

# Transcripts 
(BLASTn) 

# Peptides 
(BLASTp) 

A. lyrata Dicot Malvids A. lyrata subsp. lyrata (v.1.0) 95 63 27 

B. oleracea Dicot Malvids B. oleracea var. oleracea (BOL) 54 44 19 

C. sativa Dicot Malvids C. sativa (Cs) 70 56 25 

V. vinifera Dicot Rosids V. vinifera (12X) 33 31 18 

C. clementina Dicot Malvids C. clementina (Citrus_clementina_v1.0) 39 31 18 

C. melo Dicot Cucurbitales Melon_v.4 39 30 18 

G. max Dicot Fabids G. max (assembly Glycine_max_v2.1) 30 28 18 

M. truncatula Dicot Fabids M. truncatula (MtrunA17r5.0-ANR) 39 33 19 

P. trichocarpa Dicot Fabids P. trichocarpa (assembly Pop_tri_v3) 39 29 15 

S. lycopersicum Dicot Asterids S. lycopersicum (SL3.0) 35 30 19 

O. sativa  Monocot Poales O. sativa Japonica Group (IRGSP-1.0) 28 21 11 

Z. mays Monocot Poales Z. mays (Zm-B73-REFERENCE-NAM-5.0) 20 17 + 3 ncRNAs 10 
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Figure 4.16. Distribution of the selected candidate peptides according to 

their length and whether their homologs are identified in the 

transcriptome or proteome of the corresponding species.  

Diagrams reflect the length of the candidate peptide (AAs) and the number 

species in which homologs were identified. Coloured depending on the database 

of origin of each candidate. Point size depicts the confidence (FDR) of detection 

of the candidate in the LC-MS/MS results. Black lines represent the median 

values for each group. A candidate is described as annotated transcript/peptide 

in other species if at least one of its assigned putative homologs is present in the 

transcriptome and/or proteome of its corresponding species.  

 
Figure 4.17. Distribution of the selected candidate peptides according to 

their length and the number of species in which they may have a putative 

homolog.  

Coloured depending on the origin of each candidate. Point size depicts the 

confidence of detection of the candidate in the LC-MS/MS results. Black lines 

represent the median values for each group; n indicates the number of peptide 

candidates per group. 
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A substantial number of the selected candidates (29) seemed to be specific to 

A. thaliana; eighteen were also identified in A. lyrata; and fourteen also in B. 

oleracea and C. sativa, for a total of 61 candidates that were apparently 

specific to the Brassicaceae. There were also fourteen candidates with 

possible homologs in the twelve species. In contrast, the number of 

candidates present in four to eight species was smaller (Figure 4.17, Sup 

Tables 4.3, 4.7).  

When non-synonymous substitutions (dN) and synonymous substitutions 

(dS) were compared, the resulting dN/dS ratios (ω) were very variable among 

different candidates and their putative homologs. A. lyrata followed by C. 

sativa and B. oleracea were the species with higher rates of positive selection 

for the putative homologs (ω > 1) (Figure 4.18A). For those candidates with 

putative homologs in at least three species, the frequency of site categories 

(negative [pi(-)], neutral [pi(N)], positive [pi(+)]) was calculated for each 

alignment. Almost 40% of the candidates presented pi(-) ≤ 60% of the total 

length of the candidate, and another 5% had pi(-) ≤ 60% of the aligned 

fraction of the candidate (Figure 4.18B, Sup Tables 4.3, 4.7). This 

conservation of the peptide candidates could be interpreted as an indicator 

of their translation and also of a possible common functionality in different 

plant species.  

Fourteen of the candidates showed homologs in the twelve species analysed, 

whereas another twelve could be deemed as relatively conserved, as 

homologs were detected in ten or more species (i.e., 26 peptide candidates 

out of the set of 132). Of those fourteen, only one candidate with putative 

homologs in the twelve species had also a pi(-) ≤ 60% value (#002: 

AT1G47278.2). This candidate was detected with high confidence in LC-

MS/MS and corresponds to the AT1G47278.2 locus, which is annotated in 

Araport11 as hypothetical and was also detected in the RNA-seq experiments 

described in Chapter 2.  

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.18. Sequence conservation of selected peptides.  

A) Upset plot representing the number of candidates with each species 

combination of putative homologs. Coloured according to the general 

sequence selection of the homologs: all negative (ω<1) in purple, at 

least one homolog with positive (ω>1) in orange, and a total pi(-) of the 

sequence ≤ 60% in light orange. The bar graph on the left represents 

the number of putative homologs of each species with positive (ω>1, 

orange), negative (ω<1, purple) or indetermined (grey) selection in 

different species. B) Proportion of conserved and non-conserved 

positions for each candidate with putative homologs in at least three 

species. The candidates are grouped by their number of putative 

homologs (3-12) and sorted by size (10-100 from left to right in each 

group). The brown line signals the 40% threshold for a candidate to be 

considered as totally conserved and the brown dots the 40% threshold 

to consider the aligned part of the candidate as conserved. The length 

difference between the largest putative homolog compared to the 

candidate is displayed in dark purple (‘extra’ in the colour legend).  
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4.2.7 SEPs identified in floral buds show differential gene expression 

patterns across tissues 

The RNA expression levels of the selected candidates in different tissues at 

various developmental stages were evaluated through quantitative real time 

PCR (qRT-PCR). RNA samples were obtained from inflorescences of the 

homeotic mutants and wild type Ler-0 plants, pAP1:AP1-GR ap1 cal 

inflorescences at various time-points after flower development induction 

(samples described in Chapter 2), young and mature siliques of wild type 

plants, and seedlings and rosette leaves of wild type plants (Ler-0).  

Among the 53 candidates that were classified as tissue variant genes in this 

experiment (TVGs, ANOVA p-value ≤ 0.05), five different general expression 

patterns were observed, encompassing 46 of those candidates (Figure 4.19). 

As expected from the samples that were used for the LC-MS/MS experiment 

(floral tissues), the differential expression that was observed by qRT-PCR 

mostly consisted of flower-specific expression (44 out of the 46 candidates). 

In some cases, a certain enrichment of expression in the homeotic mutants 

associated with the presence of sepals (ap3, pi, and ag; 7 candidates) or of 

stamens (ap1 and ap2; 9 candidates) was observed, and four candidates 

(#008, #010, #043 and #048) seemed to be enriched in mature flowers and 

siliques. In addition, two candidates (#020 and #122) showed higher 

expression levels in seedlings and leaves. Differential gene expression 

suggests that the corresponding selected candidates might participate or 

play a role in specific tissues or developmental processes or stages, 

suggesting a plausible role during fruit development.  

Forty candidates had a flower-specific expression pattern; from which seven 

showed certain enrichment in the homeotic mutants associated with the 

presence of sepals (ap3, pi and ag), and nine presented an enrichment in 

those homeotic mutants associated with the presence of stamens (ap1 and 

ap2). Besides, candidates #020 and #122 showed higher expression levels in 

seedlings and leaves, while candidates #008, #010, #043 and #048 seemed 

to be enriched in mature flowers and siliques, suggesting a plausible role 

during fruit development (Figure 4.19).  
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Figure 4.19. Gene expression of the candidates.  

Heatmap depicting the results of the qPCR chip. Coloured by their z-

scored relative gene expression (purple: low; orange: high). Samples: 

inflorescences of WT plants and the homeotic mutants (IF, ap1, ap2, 

ap3, pi, ag), inflorescences of pAP1:AP1-GR ap1 cal inflorescences 0, 2 

and 4 days after flower development induction with dexamethasone 

(D0, D2, D4), WT mature flowers (Fw), young siliques (YS), old siliques 

(OS), rosette leaves (RL), germinated seeds (gs), seedling roots (sR) and 

seedling shoots (sS). Seven candidates were classified as differentially 

expressed by the ANOVA analysis but did not show a specific 

expression pattern (‘Other patterns’ in the figure).  
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The transcripts of 553 hypothetical peptides (out of the 1,874 detected by 

LC-MS/MS) were quantified at RNA level in the RNA-seq data described in 

Chapter 2. In addition, the transcripts of another 5,810 proteins and 

peptides were also detected at RNA level in the RNA-seq. In total, 2,310 stage 

variant genes (i.e., genes with expression changes in at least one stage; SVGs) 

were detected among the different time-points analysed by RNA-seq 

(moderated Likelihood Ratio Test – LRT – with an adjusted p-value ≤ 0.01, 

Figure 4.20A). These corresponded to 2,222 canonical proteins and 

peptides, 39 hypothetical proteins and 49 hypothetical peptides, of which ten 

were discovery candidates (Figure 4.20B, C).  

The genes defined as SVGs showed three different transcript accumulation 

patterns for both the total dataset of 2,310 proteins and peptides (Figure 

4.20A) and the 49 hypothetical peptides (Figure 4.20B): i) higher 

expression at later time-points, ii) increment in expression during mid-term 

time-points (D1-D4), and iii) higher expression at the initial time-points. In 

the case of the ten discovery candidates classified as SVGs, there were eight 

that could be included in the described generic patterns: i) three with higher 

expression at later time-points (#012, #016, and #068), ii) two showing 

higher levels at intermediate time-points (#046, and #087), and iii) three 

with higher levels at the initial time-points (#020, #029, and #039). 

However, candidates #007 and #109 described a U-like pattern, being down-

regulated during mid-term time-points and with high expression levels at D0 

and D5, as it was described in Chapter 2 (section 2.2.4) (Figure 4.20C).  
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Figure 4.20. RNA expression during early flower development in 

A. thaliana.  

A-B) Z-score representation of the 2,310 SVGs (LRT adjusted p-value ≤ 

0.01) corresponding to all peptides and proteins (A) or to the 49 

hypothetical peptides (B) detected in the homeotic mutants at protein 

level and at RNA level in pAP1:AP1-GR ap1 cal plants (samples of 

inflorescence meristem after DEX induction) (see Chapter 2). C) Z-

scored RNA abundance of the 10 SVG candidates through time.  
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4.2.8 Expression patterns for selected candidates determined by 

reporter gene fusions 

The initial set of 132 peptide candidates that were selected through the 

‘genotype-independent’ (‘discovery’) and ‘organ-specific’ selection pipelines 

was further narrowed down to a set of 37, a more manageable number for 

subsequent molecular genetic studies. This additional selection step was 

based on all the available data for each peptide, including the analyses 

described above on putative translation initiation sites, homolog 

identification, sequence conservation, gene families, expression patterns, etc. 

(see Materials and Methods section 4.4.7). Green fluorescent protein – β-

glucuronidase (GFP-GUS) translational fusion constructs were generated 

using the putative protomer regions (1.5 kb upstream from the putative 

peptide translation initiation site) (pXXX:GFP-GUS constructs). Independent 

transgenic reporter lines were obtained for 20 of the selected candidate 

constructs.  

Histochemical GUS assays were performed with three independent lines for 

each of the 20 candidate reporter constructs (Figure 4.21). Consistent with 

the fact that the candidate peptides were identified from developing 

inflorescences, the transgenic pXXX:GFP-GUS lines showed GUS staining in 

floral tissues. Ten of the 20 candidate reporter constructs were classified as 

possible stamen-specific peptides, and another two as possible petal-specific. 

In the GUS assays, the most frequent pattern was staining in developing 

stamens and anthers: staining in anthers during stamen formation at early 

stages of development (p004, p005, p010, p019, p022, p025, p043, p050, 

p061, p062, p077, p121, p128, and p131); in anthers up to more advanced 

stages (p008, p011); or during the complete anther development process 

(p101). In addition, p018:GFP-GUS plants were stained in anthers and at the 

tip of the sepals, and p087:GFP-GUS plants showed GUS staining in mature 

anthers, pedicels, and carpels. Only one of the twenty reporter gene fusions 

(p032) failed to show staining in floral tissues.  
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Figure 4.21. Examples of GUS staining patterns of pXXX:GFP-GUS 

lines in floral tissues.  
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4.2.9 Future perspectives: characterization of knock-out lines of 

selected SEPs  

Whereas the results from the various analyses and assays described above 

raise the strong possibility that at least some of the identified novel peptides 

play a role in flower development or physiology, demonstrating and 

elucidating those roles might require genetic loss-of-function and gain-of-

function approaches. Thus, a total of 21 potential SEPs were selected for 

generating knock-out lines using CRISPR-Cas9 technology (Table 4.6); 

thirteen candidates from these LC-MS/MS experiments and that showed 

different expression patterns according to the results from the GUS staining 

assays (above), and eight additional potential candidates that were identified 

in previous analyses by the research group (based on computational 

predictions, transcriptomics, and 5’- and 3’-RACE) and that also showed 

defined and particular expression patterns in reporter gene fusion 

experiments (Figure 4.22).  

 

 

Figure 4.22. GUS staining patterns of pXXX:GFP-GUS lines of 

putative SEPs identified by computational predictions, 

transcriptomics and 3’- and 5’-RACE. Data from Dr Thilia Ferrier. 
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I managed to generate the plasmids carrying two guide RNAs per candidate 

and the Cas9 cassette for the 21 SEPs (Figure 4.23), and transformed wild 

type plants (Columbia ecotype, Col-0) by the floral dip method.  

 

Figure 4.23. Map of the construction used to generate knock-out 

mutant lines. 

The different knock-out lines are currently being generated. Once the T3 

homozygous lines carrying the mutation while lacking the Cas9 gene are 

obtained, they will be evaluated by inspecting flowering or developmental 

traits. Additional functional studies could be complemented with the 

generation of overexpression lines for the different candidates.  
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Table 4.6. Data about the peptide candidates that were selected for the generation of loss-of-function mutant lines.  

ID Candidate ORF type Source Putative TIS 
Consecutive 
putative TIS 

Possible 
SSP 

Length 
(aa) 

GUS staining 

#004 AT2G20480.1 CDS Araport11 AUG 
ACG-AUG-
AAG 

  63 Developing anthers 

#005 AT2G21195.1 CDS Araport11 AUG   93 Developing anthers 

#008 AT2G46360.1 CDS Araport11 AUG     97 Developing anthers 

#010 AT4G23885.1 CDS Araport11 AUG AAG-AUG LC-MS/MS 77 Developing anthers 

#011 AT4G35980.1 CDS Araport11 AUG     87 Developing anthers 

#022 
AT3+0 15349459-
15349566 

intergenic 
Hanada et 
al.  

Novel AUG AUG-AAG  35 Developing anthers 

#043 CNT2086293_4 lncRNA-ORF CNTdb2.0 
Near-cognate 
(AUC) 

    43 Developing anthers 

#050 
CNT2086628_21 
(AT1G05833) 

antisense 
lncRNA-ORF 

CNTdb2.0 
Near-cognate 
(AAG) 

  27 Developing anthers 

#062 
CNT2087373_8 
(AT2G08335) 

antisense 
lncRNA-ORF 

CNTdb2.0 
Near-cognate 
(AAG) 

    23 Developing anthers 

#077 CNT2088303_1 lncRNA-ORF CNTdb2.0 Novel AUG   16 Developing anthers 

#087 CNT2088823_20 lncRNA-ORF CNTdb2.0 Novel AUG     28 
Anthers, pedicels, 
carpels 

#101 AT2G05215.1_29 lncRNA-ORF TAIR 'nc' Novel AUG  SignalP6.0, 
LC-MS/MS 

82 Developing anthers 

#121 AT4G05205.1_14 lncRNA-ORF TAIR 'nc' 
Near-cognate 
(GUG) 

    39 Developing anthers 
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Table 4.6. Cont. Consecutive putative TIS: candidates that had more than one TIS in a sequential arrangement. Possible SSP: 

putative small-secreted peptides according to LC-MS/MS spectra or SignalP6.0 online tool. # Ath homologs: Number of homologs 

in the A. thaliana genome. # Species: Number of species with at least one putative homolog for the candidate. 

ID 
Mascot 
Confidence 

Candidate 
type 

Assigned 
organ 

Family in 
Ath  

# Ath 
homologs 

# Species 
(homologs) 

RNA-seq qPCR 

#004 Medium Both Stamen FALSE 0 11 NVG Flower 

#005 High Discovery - FALSE 0 9 NVG Stamen 

#008 Low Discovery - FALSE 0 3 - Flower → Silique 

#010 High Discovery - TRUE 1 10 NVG Flower → Silique 

#011 High Discovery - FALSE 0 12 NVG Flower 

#022 Low Discovery - FALSE 4 0 - - 

#043 Low Discovery - TRUE 2 0 NVG Flower → Silique 

#050 Low Discovery - FALSE 2 8 - Carpel, Sepal 

#062 Low Floral Petal FALSE 1 2 - Sepal 

#077 Low Floral Stamen FALSE  1 - - 

#087 Low Both Stamen FALSE 0 3 SVG Sepal 

#101 Medium Discovery - TRUE 1 5 NVG Stamen, Petal 

#121 Low Floral  Stamen TRUE 0 0 - - 
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Table 4.6. Cont. Consecutive putative TIS: candidates that had more than one TIS in a sequential arrangement. Possible SSP: 

putative small-secreted peptides according to LC-MS/MS spectra or SignalP6.0 online tool. 

ID Candidate ORF type Source 
Putative 
TIS 

Consecutive 
putative TIS 

Possible 
SSP 

Length 
(aa) 

GUS staining 

DEA15 AT3G19274 novel CDS In silico Novel AUG   50 - 

DEB4 AT1G31319 novel CDS In silico Novel AUG AUA-AUG  35 Vascular tissue 

DEB12  intergenic In silico Novel AUG 
AUG-AUG-AUA-
ACG 

 43 Stamens and carpels 

DEB12 Alt 
Alternative 
sORF of DEB12 

intergenic In silico Novel AUG   66 Stamens and carpels 

DEB13  intergenic In silico Novel AUG  SignalP 6.0 65 
Anthers and sepal 
dehiscence junction 

DEB56  intergenic In silico Novel AUG   60 
Stamen filaments, 
ovules, seedling stipules 

DEB57  intergenic In silico Novel AUG   55 Anthers 

DEB63 AT5G66607 novel CDS In silico Novel AUG AUG-AUA  37 Developing anthers 
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4.3 Discussion 

The first large-scale experimental evidence of non-canonical translation in 

eukaryotic cells was provided by ribosome profiling. Thanks to this 

technique, thousands of sequences annotated as non-coding RNAs, 

pseudogenes or UTRs have been redefined as an important source of novel 

peptides in plant species such as Arabidopsis (BAZIN ET AL., 2017; HSU ET AL., 

2016; KURIHARA ET AL., 2020; LIANG ET AL., 2021), maize (LIANG ET AL., 2021), 

tomato (H. Y. L. WU ET AL., 2019) or wheat (Y. GUO ET AL., 2023). Despite these 

advances, the evaluation of the coding potential of the sequences identified 

through ribosome profiling is computation-wise (MAKAREWICH & OLSON, 

2017), meaning that sORF translation may not result in the production of a 

stable and functional SEP. To solve this issue, it is also possible to use MS-

based methods to confirm the protein-coding nature of a sORF. 

In the last years, several efforts have been conducted for the characterization 

of the Arabidopsis proteome and peptidome using MS-based methods to 

identify novel sORFs and SEPs (e.g., (MERGNER ET AL., 2020; S. WANG ET AL., 

2020)). In this work, almost 2,000 unannotated peptides were identified 

thanks to the consideration and application of several key aspects for peptide 

identification. To begin with, the selection of an adequate peptide extraction 

method is crucial. The processing of cellular proteins increases the 

complexity of the peptidome, deteriorating the signal-to-noise ratio. Besides, 

protein and peptide separation strategies are important for the identification 

and quantification of low-abundance peptides and for increasing their 

overall sequence coverage (BARASHKOVA & ROGOZHIN, 2020; KULJANIN ET AL., 

2017). In this Thesis, two extraction methods were compared, namely 

ultrafiltration and ammonium sulphate precipitation, while also testing 

different kinds of filtration devices for separating peptides of various sizes. 

Finally, the best method resulted in the 30K-ultrafiltration. However, it is 

important to design and test several methods that adapt to each special need.  

In a typical MS/MS data analysis, more than 60% of the spectra remains 

unassigned, even after database improvements for guided identification and 

the use of de novo identification algorithms. Although some of these could be 

attributed to the low quality of the unassigned spectra, a portion can still be 
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classified as high-quality (PATHAN ET AL., 2017). Good quality spectra could be 

further analysed and reinspected for modifications, mutations, and sequence 

variants using peptidogenomics for new database generation (S. WANG ET AL., 

2020), or by mass-tolerant database searches for PTM considerations (CHICK 

ET AL., 2015). To try to overcome this issue in the experiments sorted here, 

the initial search database was expanded during the process of spectra 

identification by considering noncanonical peptides derived from lncRNAs, 

and in addition by performing a more comprehensive search using a Semi-

tryptic approach (see Materials and Methods section 4.4.3 Reference 

database). 

The database extension considered that lncRNAs can be an important source 

of SEPs as they encode translatable sORFs, as shown by Ribo-Seq and mass 

spectrometry experiments (HSU ET AL., 2016; H. Y. L. WU ET AL., 2019). For 

instance, ribosome profiling of the human heart resulted in the identification 

of 1,577 noncanonical ORFs, of which 339 (22%) were sORFs from lncRNAs. 

Furthermore, over 40% of those lncRNA SEPs were confirmed by mass 

spectrometry (VAN HEESCH ET AL., 2019). Although the exact proportion of 

sORFs/SEPs that are derived from lncRNAs may vary among different 

studies, it consistently represents a substantial fraction, frequently around 

25% (J. CHEN ET AL., 2020; OUSPENSKAIA ET AL., 2021). In this context, it is also 

noteworthy that out of a list of 42 human SEPs that have already been already 

characterized as functionally or physiologically relevant, 55% are derived 

from lncRNAs (WRIGHT ET AL., 2022). In plants, 153 lncRNA-encoded peptides 

have been identified by LC-MS/MS in soybean (X. LIN ET AL., 2020). As a 

consequence, the research community is beginning to contemplate the 

revision of the classification criteria of lncRNAs, due to the presence of 

translatable sequences shorter than 100 aa despite their definition of “non-

coding” (X. LIN ET AL., 2020; PALOS ET AL., 2022). My results are also an example 

of the overlooked coding potential of lncRNAs, intergenic regions and other 

transcripts. In this study, almost 60% of the identified peptides derived from 

lncRNAs annotated in CNTdb 2.0, and another 26% from other transcripts 

classified as “non-coding” in TAIR. Nevertheless, the number of unassigned 

spectra did not decrease significantly, leaving the door open for further 

analyses using an even wider database or other identification approaches.  
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Most of the hypothetical peptides identified in the LC-MS/MS analysis were 

detected in only one out of the 24 total samples (Figures 4.7B, 4.24A). This 

paucity of SEP detection was also observed in a study in which samples of 24 

different tissues of pear were analysed with the objective of creating a 

proteomics atlas, and that also resulted in identifying 608 novel peptides (P. 

WANG ET AL., 2023) (Figure 4.24B). Although the number of novel peptides 

identified by P. Wang et al. was lower than that obtained in this Thesis (the 

pear samples were not processed to enrich for peptides and small proteins, 

and a specific data analysis pipeline for SEP detection was not developed), it 

is noteworthy that more than 75% of the peptides were identified exclusively 

in one or two of the samples. This points to the influence of chance in the 

detection of peptides that are found in smaller amounts in the samples, and 

for that reason also in problems in mass spectrometry when it comes to 

reproducibility of replicates. In the pear study, 124 peptides were identified 

only in floral organs (Figure 4.24C). Among them, the number of peptides 

identified exclusively in stamens is the highest, as was the case in the results 

reported in this chapter (Figures 4.8, 4.24D). Thus, it appears that the 

general conclusions that are or might be obtained from the study of the non-

conventional peptidome in Arabidopsis will extend to other flowering plants.  

It is worth to note the existence of a high number of peptides with non-AUG 

translation initiation sites (TIS). In spite of the “traditional” feature for 

predicting protein-coding ORFs through the presence of an ATG start codon, 

it is now apparent that non-AUG translation initiation cases might be 

abundant, and that sORFs show a trend towards an increased use of near-

cognate or alternative start codons relative to canonical ORFs (CAO & SLAVOFF, 

2020). There are several MS-based (e.g., (MA ET AL., 2014; SLAVOFF ET AL., 

2013; VANDERPERRE ET AL., 2013; S. WANG ET AL., 2020)) and Ribo-Seq (e.g., (J. 

CHEN ET AL., 2020; Y. GUO ET AL., 2023; INGOLIA ET AL., 2011; LI & LIU, 2020; 

MARTÍNEZ ET AL., 2020)) studies that also indicated that 35-50% of the 

identified sORFs use non-AUG start codons. According to my results, around 

45% of the total novel peptides identified by LC-MS/MS had near-cognate 

codons as TIS, while another 29% corresponded to peptides beginning with 

other codons that also differ from AUG. It remains unclear whether the amino 

acid corresponding to the non-AUG start codon is incorporated at the TIS or 
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methionine is still incorporated. According to (NA ET AL., 2018) methionine 

seems to be incorporated at almost all non-canonical TISs identified by LC-

MS/MS.  

 

Figure 4.24. Comparison of the peptidomics results with a 

proteogenomics study in pear.  

A) Bar graph depicting the number of peptides identified in 1 to 24 of 

the samples (4 biological replicates x 6 genotypes) in the LC-MS/MS of 

inflorescences in Arabidopsis. B) Bar graph representing the number 

of peptides identified in 1 to 24 of the samples (1 replicate x 24 tissues) 

in a LC-MS/MS analysis in pear. C) Venn diagram indicating the number 

of peptides identified in pear in floral tissues (flower), vegetative 

tissues (vegetative) and fruit tissues (fruit). D) Number of peptides 

identified in exclusively in floral tissues in pear. Dark grey: organ-

specific peptides (identified exclusively in one sample). Light grey: 

peptides detected in more than one floral tissue. Data of panels B-D 

extracted from (P. WANG ET AL., 2023). 
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 Despite the variation in the absolute frequencies of AUG and non-AUG 

initiation codons, there is an increasing trend of near-cognate start codons in 

the novel peptidome relative to main ORFs and annotated ORFs. In the case 

of putative TISs with non-AUG and non-near cognate start codons, there are 

at least three possibilities to consider: i) the identification of the peptide was 

incorrect (e.g., a false positives), ii) the identification of the peptide was 

correct, but it was not possible to elucidate the real TIS (e.g., there is a splicing 

region or an intron that was not identified), and iii) the identification of the 

peptide was correct and it truly starts with a codon that differs from AUG and 

near-cognate codons. This third case would be much less frequent than AUG- 

or near-cognate codon-initiated translation, but there are studies that have 

demonstrated the existence of non-AUG and non-near-cognate translation 

initiation events for SEPs (e.g., (CAO & SLAVOFF, 2020; NA ET AL., 2018)).  

Amino acid sequences of certain SEPs are conserved across species, but, in 

general, sORFs/SEPs are less evolutionary conserved than standard proteins 

(e.g., (J. CHEN ET AL., 2020; FESENKO ET AL., 2019, 2021; RUIZ-ORERA ET AL., 2018; 

VAN HEESCH ET AL., 2019; WRIGHT ET AL., 2022)). Their lower conservation 

scores are also in agreement with the concept of lncRNA-derived sORFs 

facilitating de novo gene evolution. Among the peptide candidates from A. 

thaliana identified in this Thesis, 103 peptides seemed to have putative 

peptide homologs in other plant species, and around the 40% of those 

peptides had a positive or neutral selection of a good fraction of their amino 

acidic sequence, which might be related to their function.  

Whereas SEPs that show evidence of conservation across multiple and 

distant species are (more) likely to have specific biological functions, it is also 

apparent that limited conservation does not exclude the production of 

functional peptides (LAURESSERGUES ET AL., 2022; VAN HEESCH ET AL., 2019; 

YEASMIN ET AL., 2018). Some plant peptides identified through classic and 

molecular genetic approaches are known to play significant roles in various 

processes (development, stress, signalling, etc.), however, the plant 

peptidome is largely undefined and experimental evidence for the biological 

functionality of the vast majority of the predicted or identified SEPs is still 

lacking (HSU & BENFEY, 2018; TAVORMINA ET AL., 2015).  
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For the set of identified floral-specific peptides, I hope to find specific 

phenotypes for the loss-of-function mutants being currently generated. 

Alternatively, we will also generate overexpression lines for some of the 

candidates to characterize them at functional level.  

 

  



Arabidopsis floral peptidome | 153 

4.4 Materials and Methods 

4.4.1 Plant lines, growth conditions, and tissue collection 

The mutant strains used in this study were ap1-1/-, ap2-2/-, ap3-3/+, pi-1/+, 

and ag1-1/+ (BOWMAN ET AL., 1989, 1991, 1993; JACK ET AL., 1992). Plants of 

the accession Landsberg erecta (Ler-0) were used as wild type reference, 

except for the generation of knock-out lines that Columbia (Col-0) plants 

were used. In addition, pAP1:AP1 ap1cal D0, D2 and D4 inflorescence 

material (see Chapter 2) was used for the qRT-PCR analysis. Plants were 

grown, after a 1-week period of stratification at 4 °C in darkness, on a 

soil:vermiculite:perlite mixture at 21 °C under long day conditions (16h light, 

8h darkness), or in plates of 0.5 x Murashige and Skoog (MS) salt mixture 

with vitamins, and 0.8% plant agar after being surface sterilized and 

stratified at 4 °C for 48 h. Plates were incubated vertically at 22 °C and 70% 

humidity under long day conditions.  

Four biological replicates of around 144 plants each of 5-week-old 

inflorescence meristem and floral buds, corresponding to floral stages 1 to 

13 (SMYTH ET AL., 1990), were collected for Ler-0 plants, and ap1, ap2, ap3, pi, 

and ag mutant lines, as done for the initial characterization of spatial gene 

expression in Arabidopsis flowers (WELLMER ET AL., 2004). These samples 

were used in the mass spectrometry experiments and for RNA extraction. 

Two biological replicates were collected for RNA extraction from other 

tissues: Ler-0 mature flower, young siliques and mature siliques (with seeds) 

from 5-week-old plants grown in soil (n = 144 plants per replicate), Ler-0 

rosette leaves from 19-day-old plants grown in soil (n = 72 per replicate), 

Ler-0 germinating seeds (2-day-old plants grown in plates, 3 plates per 

replicate), and Ler-0 seedling roots and shoots (4-day-old plants grown in 

plates, 2 plates per replicate). Grinded samples of each tissue were preserved 

at -80 °C until their use.  

4.4.2 Peptide extraction  

To choose the optimal peptide extraction method, two different techniques 

were compared, ultrafiltration, and ammonium sulphate precipitation, both 

followed by reverse phase chromatography. The final extraction method was 
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chosen based on the results of both techniques for samples of Ler-0 

inflorescence tissue and mature flowers. As the number of obtained and 

identified peaks by mass spectrometry was better for the ultrafiltration with 

30K filters followed by reverse phase chromatography, this was the 

extraction method of choice (ÁLVAREZ-URDIOLA, BORRÀS, ET AL., 2023). 

Ultrafiltration. For each sample, ~0.5 g of blended tissue distributed in two 

2 mL microcentrifuge tubes were used. A total of 1.2 mL of extraction buffer 

(phosphate-buffered saline (PBS) 1x, urea 1.5M, DTT 10mM, acetonitrile 2% 

v/v, trifluoroacetic acid (TFA) 0.5%, MG-132 10µM, Proteinase Inhibitor 

cocktail cOmplete 1x, and PMSF 1mM) were added to the tissue, mixed by 

vortexing and incubated the samples with continuous shaking for 1 h at 4 °C. 

Samples were spined twice for 1 min at 4 °C (max speed) to precipitate 

cellular debris and solid particles in suspension. All the supernatant of each 

sample was filtered in 30K- or 100K- Amicon ® Ultra-0.5 Centrifugal Filter 

devices as indicated by the manufacturer (~500 µL of supernatant at a time 

were centrifuged at 14,000 x g for 10 min at 4 °C). Filtrates containing the 

smallest peptides depending on the weight limit of the filter device were kept 

for reverse phase chromatography.  

Ammonium sulphate precipitation. For each sample, ~0.5 g of blended 

tissue distributed in two 2 mL microcentrifuge tubes were used. A total of 1.2 

mL of extraction buffer (PBS 1x, urea 2M, acetonitrile (ACN) 2% v/v, DTT 

10mM, acetonitrile 2% v/v, trifluoroethanol (TFE) 5%, Tris pH 7.6 50mM, 

MG-132 10µM, cOmplete 1x, and PMSF 1mM) were added to the tissue, mixed 

by vortexing and incubated the samples with continuous shaking for 30 min 

at 4°C. Samples were spined for 1 min at 4°C (max speed) to precipitate 

cellular debris and solid particles in suspension. Then, 75% of ammonium 

sulphate was added to the supernatant to precipitate the proteins in solution. 

Ammonium sulphate calculator from EnCor Biotechnology Inc. 

(http://www.encorbio.com/protocols/AM-SO4.htm) was used to calculate 

the needed amount of ammonium sulphate for each specific sample. The 

mixes were centrifuged at maximum speed for 25 min at 4 °C, and 

supernatants were kept for further reverse phase chromatography.   

http://www.encorbio.com/protocols/AM-SO4.htm
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Reverse phase chromatography. Samples obtained with both previous 

methods were mixed with sample buffer (2% TFA in 20% ACN) in 3:1 

sample:sample buffer proportion. Final samples contained 0.5% TFA in 5% 

ACN. C18 resin columns (Pierce, Thermo Scientific) were prepared as 

indicated by the manufacturer before loading the samples on top of the resin 

beds (150 µL at a time). Samples were centrifuged at 1500 x g for 1 min as 

many times as needed to pass all the sample volume through the resin. 

Peptides were eluted from the column by adding 21 µL of elution buffer on 

top (0.1% formic acid in 70% ACN) and centrifuge at 1500 x g for 1 min (this 

step was repeated twice to increment the final concentration of the samples). 

The concentration (270 – 830 µg/mL) and amount of total protein (15 – 40 

µg) in each sample were quantified using a Qubit Protein Assay Kit. 

4.4.3 Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) 

Peptidomics experiments were conducted in collaboration with Dr Eduard 

Sabidó and Dr Eva Borrás from the proteomics facility at the Center for 

Genomic Regulation (CRG).  

Sample preparation. Samples (10 µg) were reduced with dithiothreitol (30 

nmol, 37 °C, 60 min) and alkylated in the dark with iodoacetamide (60 nmol, 

25 °C, 30 min). The resulting protein extract was first diluted to 2M urea with 

200 mM ammonium bicarbonate for digestion with endoproteinase LysC 

(1:10 w:w, 37°C, o/n, Wako, cat # 129-02541), and then diluted 2-fold with 

200 mM ammonium bicarbonate for trypsin digestion (1:10 w:w, 37°C, 8h, 

Promega cat # V5113). After digestion, peptide mix was acidified with formic 

acid and desalted with a MicroSpin C18 column (The Nest Group, Inc) prior 

to LC-MS/MS analysis.  

Chromatographic and mass spectrometric analysis. Samples were 

analysed using a LTQ-Orbitrap Velos Pro mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA, USA) coupled to an EASY-nLC 1000 (Thermo Fisher 

Scientific (Proxeon), Odense, Denmark). Peptides were loaded onto the 2-cm 

Nano Trap column with an inner diameter of 100 μm packed with C18 

particles of 5 μm particle size (Thermo Fisher Scientific) and were separated 

by reversed-phase chromatography using a 25-cm column with an inner 
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diameter of 75 μm, packed with 1.9 μm C18 particles (Nikkyo Technos Co., 

Ltd. Japan). Chromatographic gradients started at 93% buffer A and 7% 

buffer B with a flow rate of 250 nl/min for 5 minutes and gradually increased 

65% buffer A and 35% buffer B in 60 min. After each analysis, the column 

was washed for 15 min with 10% buffer A and 90% buffer B. Buffer A: 0.1% 

formic acid in water. Buffer B: 0.1% formic acid in acetonitrile. The mass 

spectrometer was operated in positive ionization mode with nanospray 

voltage set at 2.1 kV and source temperature at 300°C. Ultramark 1621 for 

the was used for external calibration of the FT mass analyzer prior the 

analyses, and an internal calibration was performed using the background 

polysiloxane ion signal at m/z 445.1200.  

The acquisition was performed in data-dependent acquisition (DDA) mode 

and full MS scans with 1 micro scans at resolution of 60,000 were used over 

a mass range of m/z 350-2000 with detection in the Orbitrap. Auto gain 

control (AGC) was set to 1E6, dynamic exclusion (60 seconds) and charge 

state filtering disqualifying singly charged peptides was activated. In each 

cycle of DDA analysis, following each survey scan, the top twenty most 

intense ions with multiple charged ions above a threshold ion count of 5000 

were selected for fragmentation. Fragment ion spectra were produced via 

collision-induced dissociation (CID) at normalized collision energy of 35% 

and they were acquired in the ion trap mass analyzer. AGC was set to 1E4, 

isolation window of 2.0 m/z, an activation time of 10 ms and a maximum 

injection time of 100 ms were used. All data were acquired with Xcalibur 

software v2.2. Digested bovine serum albumin (New England Biolabs cat # 

P8108S) was analysed between each sample to avoid sample carryover and 

to assure stability of the instrument and QCloud (CHIVA ET AL., 2018) has been 

used to control instrument longitudinal performance during the project.  

Data analysis. Acquired spectra were analysed using the Proteome 

Discoverer software suite (v2.3, Thermo Fisher Scientific) and the Mascot 

search engine (v2.6, Matrix Science) (PERKINS ET AL., 1999). The data were 

searched against two different databases (see Reference database), plus a 

list common contaminants (BEER ET AL., 2017) and all the corresponding 

decoy entries. For peptide identification a precursor ion mass tolerance of 7 

ppm was used for MS1 level, trypsin was chosen as enzyme, and up to three 
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missed cleavages were allowed. The fragment ion mass tolerance was set to 

0.5 Da for MS2 spectra.  

Oxidation of methionine and N-terminal protein acetylation were used as 

variable modifications whereas carbamidomethylation on cysteines was set 

as a fixed modification. False discovery rate (FDR) in peptide identification 

was set to a maximum of 5%. Peptide quantification data were retrieved from 

the “Precursor ion area detector” node from Proteome Discoverer (v2.0) 

using 2 ppm mass tolerance for the peptide extracted ion current (XIC). 

Protein abundance in each condition was estimated using the average of the 

three most intense peptides per protein group (TOP3). The obtained values 

were used for subsequent statistical analysis. The raw peptidomics data will 

be deposited to PRIDE (PEREZ-RIVEROL ET AL., 2022). Median normalisation 

was performed by subtracting from each logged value the sample median and 

adding the global dataset median. Biological replicates from the different 

genotypes clustered together when Principal Component Analysis (PCA) was 

performed (Figure 4.25A). The selection of the candidates was performed 

using the presence / absence criteria as the expression levels did not provide 

enough information for the classification of the peptides and proteins 

(Figure 4.25B). The Floral Organ criteria were applied to individual peptidic 

fragments for each protein and peptide, and to the TOP3 results for each 

peptide and protein. For a peptide or protein to be considered as specific for 

an organ, it must be classified for that organ at both levels.  

 
Figure 4.25. Clustering of peptides and proteins quantified in at 

least one genotype. 

A) PCA of the LC-MS/MS results for the different genotypes. B) 

Heatmap of z-scored abundance values for peptides and proteins in the 

different homeotic mutants. 
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 Reference database. The LC-MS/MS data were searched with a tryptic 

analysis against a database (DB1) containing 40,798 non-redundant 

Araport11 (CHENG ET AL., 2017) protein coding genes (downloaded October 

2019, Araport11_genes.201606.pep.fasta), 1,684 short Open Reading 

Frames (sORFs) identified in root and shoot by RiboTaper (HSU ET AL., 2016), 

and 7,016 putative sORFs identified in intergenic regions (HANADA ET AL., 

2007, 2013), plus a list of common contaminants (BEER ET AL., 2017) and all 

the corresponding decoy entries. For the final peptide identification, a second 

database (DB2) containing (i) those proteins (with more than 100 aa) and 

peptides (≤ 100 aa) that had been identified in the LC-MS/MS spectra using 

DB1 (6,124 proteins and peptides) plus (ii) all peptide sequences (of ≥10 aa) 

derived from a three-frame translation of lncRNAs (SZCZEŚNIAK ET AL., 2019) 

(CNTdb2.0) and TUFs (other RNA, lncRNA, antisense lncRNA, antisense RNA, 

novel transcribed region and uORF genes in Araport11) (TAIR ‘nc’). Sequence 

redundancy at amino acid sequence level was removed by grouping into 

clusters each subset using CD-HIT (https://www.bioinformatics.org/cd-

hit/). The priority order that was used to remove redundancy was: 

Araport11 > Hsu et al. > Hanada et al. > CNTdb 2.0 > TAIR ‘nc’.  

MS spectra were matched with the peptides in DB2 in a tryptic and semi-

tryptic manner (DB2T, DB2ST). For the final peptide quantification, all the 

information obtained for the three analyses was kept. The most reliable 

quantifications were those from the first analysis (DB1T), then the 

information of those new detections in DB2T and the new peaks in DB2ST 

were added. For the final dataset, the origin of the information was annotated 

(DB1T, DB2T, DB2ST or a combination of more than one analysis). Finally, 

two lists of data were analysed: one with the average abundance of the top 

three aminoacidic sequences for each accession (ID of peptides or proteins, 

TOP3) and one with all the aminoacidic partial sequences quantified for each 

accession (sequences). To each dataset, median normalisation was 

performed by subtracting from each logged value the sample median and 

adding the global dataset median. 

Comparison with previous data. BLASTp (NCBI, v2.11.0+) was used to 

compare the amino acid sequences of the peptides detected by LC-MS/MS in 

this Thesis against the amino acid sequences of novel SEPs detected in (S. 

https://www.bioinformatics.org/cd-hit/
https://www.bioinformatics.org/cd-hit/
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WANG ET AL., 2020). All the sORFs from the MS database were also compared 

to a list of novel genes described by (R. ZHANG ET AL., 2021), however, I did not 

find any match between both datasets.  

Candidate selection and validation of selection criteria. A gene ontology 

(GO) enrichment analysis (G. YU ET AL., 2012) of the annotated proteins and 

peptides classified as organ-specific was performed to check whether the 

floral organ filter worked properly. Moreover, a correlation network was 

created using the LC-MS/MS expression levels of the proteins and peptides, 

followed by a new GO enrichment analysis of the different modules 

calculated using the Random Matrix Theory.  

4.4.4 Re-annotation of Translation Initiation Sites (TIS) 

The LC-MS/MS database for peptide identification was created without any 

limitations for TIS, that is, the CDS of the possible peptides did not have to 

start necessarily in an AUG codon. As it was possible that there were more 

suitable TIS for the detected peptides in their corresponding genomic 

sequences, a set of TIS selection criteria was established for the sequences 

based on the peptidic fragments detected in the MS analysis for each peptide: 

i) AUG was selected over near-cognate or other non-AUG codons as TIS, and 

near-cognate codons were selected over other non-AUG codons. ii) If the 

detected peptide fragment closer to the annotated TIS of the peptide had a 

tryptic beginning (i.e., it started with lysine or arginine), the annotated TIS 

was kept, unless there was a more suitable TIS (according to the first 

criterium) between the annotated TIS and the codon corresponding to the 

beginning of the detected fragment. In the latter case, the TIS was re-

annotated with the more suitable codon. If there were more than one 

possibility, the more suitable TIS closer to the annotated start of the peptide 

was chosen. iii) If the detected peptide fragment closer to the annotated TIS 

of the peptide had a non-tryptic beginning (i.e., it started with any amino acid 

but lysine or arginine) and the previous codon was an AUG or a near-cognate 

codon, it was selected as the new putative TIS. Otherwise, the more suitable 

TIS closer to the previously annotated start codon was selected (according to 

the first criteria). iv) If the detected peptide fragment included the annotated 

TIS, the annotation remained unmodified. 
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To deepen in the analysis of the sequence of sORFs encoding for the peptide 

candidates, the online tool SignalP 6.0 was used to find putative secretory 

signals (https://services.healthtech.dtu.dk/service.php?SignalP).  

Candidates were classified as putative precursors of small-secreted peptides 

(SSPs) using the information from SignalP 6.0 and also the LC-MS/MS data (a 

peptidic fragment without any tryptic end was found).  

4.4.5 Conservation analyses 

Analysis of related sequences within the sORF list. A customized database 

containing exclusively the amino acid sequences of non-redundant sORFs 

from Hsu et al., 2016, Hanada et al., 2007 and 2013, the CANTATAdb 2.0 and 

TAIR ‘nc’ RNA sequences was generated using the makeblastdb program 

included in the blast+ package (BLAST+, NCBI, v2.10.1+). The database was 

blasted (protein-protein BLASTp, NCBI, v2.10.1+) against itself. Top ten hits 

for each query were filtered depending on their bit-score (hit: bit score ≥ self-

score*0.6). 

 

Figure 4.26. Decision tree to select putative homologs among the 

sequences obtained with BLAST (homology-threshold). 

 

 

https://services.healthtech.dtu.dk/service.php?SignalP
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Homology analysis. The amino acidic sequences of the 132 candidates were 

searched by BLAST (tblastn, NCBI, v2.11.0+) against the genomes of A. 

thaliana (gene family search) and twelve different plant species separately 

(A. lyrata, B. oleracea, C. sativa, V. vinifera, C. clementina, C. melo, G. max, M. 

truncatula, P. trichocarpa, S. lycopersicum, O. sativa and Z. mays) (Sup Tables 

4.6, 4.7). Sequences with an e-value ≤ 0.001 were classified as putative 

homologs, as well as sequences with length up to 30 amino acids with more 

than a 50% of identity and more than a 70% of alignment, independently of 

their e-value (Figure 4.26). Most of the putative homologs passed the e-value 

threshold (≤ 0.001), and had higher percentages of identity and alignment, 

independently of their length (Figure 4.27). There was a dependency of 

query coverage on the bit-score of all the tBLASTn (best) hits for all the 

genomes, shorter peptides presented lower bit-score values, and discarded 

matches had the lowest bit-score values independently of their coverage 

(Figure 4.28).  

 

Figure 4.27. Selection criteria for putative homologs.  

Scatter plot of alignment vs identity data for each candidate-putative 

homolog pair coloured by e-value (≤ 0.001). Points represent peptides 

up to 30 amino acids, and triangles, peptides from 31 to 100 amino 

acids. Red lines delimit the 70% alignment / 50% identity threshold. 

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.28. Scatterplot showing the dependency of query 

coverage on the Bit Score of the tBLASTn best hits grouped by 

genome.  

 

 

 

 

 

For each A. thaliana candidate, the number of matches with tBLASTn for each 

species fluctuated between 0 and 140, though only 1-36 sequences passed 

the “homology-threshold” for each candidate (Sup Table 4.7). The number 

of matches per candidate varied depending on the species, although in most 

of them almost 50% of the candidates had only one match that passed the 

threshold (46% A. lyrata, 25% B. oleracea, 8% C. sativa, 45% V. vinifera, 53% 

C. clementina, 53% C. melo, 13% G. max, 43% M. truncatula, 41% P. 

trichocarpa, 57% S. lycopersicum, 57% O. sativa, and 45% Z. mays) (Figure 

4.29). For further analyses, only the hit with the lower e-value and the higher 

percentages of identity and alignment among the putative homologs for each 

candidate in each species was used. 

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.29. Distribution of the number of matches per candidate 

in each species.  

Percentage of matches that did not pass (discarded, black solid line) or 

did pass (putative homologs, orange dashed line) the homology-

threshold. 

The nucleotide sequences of the putative homologs were obtained using 

blasdbcmd (NCBI, v2.11.0+). To check whether the homology can be found in 

both directions, BLASTx (NCBI, v2.11.0+) was used to compare the resulting 

homologs with the A. thaliana candidates. The CDS of the putative homologs 

were also blasted against the transcriptome (cDNA and ncRNA databases) 

and the proteome (peptides and proteins) of their correspondent plant 

species using blastn and blastx respectively. The same threshold as for the 

tblastn was used to select sequences in this part. The putative CDS of A. 

thaliana were aligned with those of their putative homologs in the other 

species using MEGA-X (megacc v10.2.5) (S. Kumar et al., 2012). The 

alignment was performed for nucleotide sequences and amino acidic 

sequences, for which CDS were translated using Transeq (EMBOSS online 
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tool, https://www.ebi.ac.uk/Tools/st/emboss_transeq/), and in-frame STOP 

codons were removed using perl, as the alignment of nucleotides is defective 

when in-frame STOP codons are present before the 3’-end of the aligned 

sequences.  

Finally, the synonymous and non-synonymous substitution rates and 

phylogenetic trees were calculated using yn00 (YANG, 2007; YANG & NIELSEN, 

2000) or MrBayes (RONQUIST ET AL., 2012) depending on the number of 

sequences per alignment were available, as MrBayes requires at least 4 

taxons to calculate the median synonymous and non-synonymous 

substitution rate (ω, dN/dS). For candidates with one or two homologs, the 

program yn00 was used to calculate the number of synonymous positions 

(S), number of non-synonymous positions (N), sequence divergence level 

(time or distance measured by the expected number of substitutions per 

codon, t), transition/transversion ratio (κ), synonymous and non-

synonymous substitution rate (ω, dN/dS), non-synonymous substitution per 

non-synonymous site (dN), and synonymous substitutions per synonymous 

site (dS). For candidates with homologs in three or more species, MrBayes 

was the programme of choice. Less than the 25% of the parameters obtained 

with MrBayes statistical analysis had a total effective sample size (average 

ESS x 4 runs) lower than 100, thus the analysis could be considered as 

successful and accurate with the selected parameters (Ngen = 60k, nruns = 

4). The program calculates the frequency of site categories (negative, neutral, 

positive) for each alignment considering the maximum length aligned 

(longest “length” parameter in tBLASTn results among the different species). 

However, in the alignments there were gaps because of the different size of 

the putative homologs in each case. To avoid over-representation of negative 

sites, the frequency of site categories was re-calculated considering the 

length of the candidates which was aligned for each pairwise comparison in 

the alignments. The necessary format modifications (from *.meg to *.nex) 

were performed using PGDSpider (LISCHER ET AL., 2012). 

Genomes, transcriptomes, and proteomes were downloaded from 

ENSEMBLE (http://ftp.ensemblgenomes.org), except for V. vinifera 

(https://urgi.versailles.inra.fr/files), C. melo (https://melonomics.net), and 

C. clementina (https://www.citrusgenomedb.org/analysis/156).  

https://www.ebi.ac.uk/Tools/st/emboss_transeq/
http://ftp.ensemblgenomes.org/vol1/pub/plants/current
https://urgi.versailles.inra.fr/files
https://melonomics.net/
https://www.citrusgenomedb.org/analysis/156
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4.4.6 Gene expression of SEPs in different tissues 

RNA extraction and cDNA obtention. RNA was extracted from 20-100mg 

of each sample (see Plant lines, growth conditions, and tissue collection) 

using a Maxwell® RSC Plant RNA Kit, and Transcriptor High Fidelity cDNA 

Synthesis Kit (Roche) was used to obtain cDNA from ~1µg of RNA.  

qPCR primer design and testing. The selection of appropriate reference 

genes for the normalization of qRT-PCR data is a crucial component for 

successful expression studies (ÁLVAREZ-URDIOLA, BUSTAMANTE, ET AL., 2023). A 

list of 23 possible combinations of primers was created for classic and novel 

reference genes, which were previously described (CZECHOWSKI ET AL., 2005) 

or selected using RefGenes, an online tool based on the Genevestigator 

database (HRUZ ET AL., 2011) (www.genevestigator.com). qPCR primers for 

each gene (housekeeping and candidates) were designed using primer-

BLAST (primer3 algorithm combined with a BLAST analysis against the A. 

thaliana transcriptome, https://www.ncbi.nlm.nih.gov/tools/primer-

blast/) as guide. Amplicons vary from 50 to 178bp length, the melting 

temperatures (Tm) of the different primers vary from 54 to 61.5°C, their GC 

content from 29 to 69%, their self-complementarity from 1 to 8 (primer Blast 

scale), their self-3’-complementarity from 0 to 6, and their length from 16 to 

25 bp (Sup Table 4.8). Specific amplification of the primers was checked by 

RT-PCR using a cDNA mix of the 16 tissues of interest as template. The 

primers of housekeeping genes were checked using as template cDNA of each 

sample separately and by RT-PCR and qPCR. The primers of 8 housekeeping 

genes detected at RT-PCR level in all tissues were also tested by qPCR, as well 

as 2 pairs of primers for candidate genes randomly selected (#006 and 

#048), to calculate the optimal cDNA concentration for the chip (25 ng of 

cDNA for each individual reaction). Finally, 5 reference genes were used for 

the analyses (ACTIN2, GADPH, UBC, AT4G26410, UBC30) (Sup Table 4.8, 

Figure 4.30).  

http://www.genevestigator.com/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Figure 4.30. Validation of housekeeping genes.  

Cp per gene coloured by tissue. Red crosses indicate (if any) the Cp 

value of negative controls. The number of total samples with a 

measurement for each gene (n) was 32, except for AT4G26410 (HK_20), 

which was 31. Samples: inflorescences of WT plants and the homeotic 

mutants (IF, ap1, ap2, ap3, pi, ag), pAP1:AP1-GR ap1 cal inflorescences 

0, 2 and 4 days after flower development induction with 

dexamethasone (D0, D2, D4), WT mature flowers (Fw), young siliques 

(YS), old siliques (OS), rosette leaves (RL), germinated seeds (gs), 

seedling roots (sR) and seedling shoots (sS). 

Quantitative Real Time PCR – BioMarkTM System. The 48x48 array was 

used following the protocol described in (ÁLVAREZ-URDIOLA, BUSTAMANTE, ET 

AL., 2023). 

Other data. RNA-seq data were obtained as described in Chapter 2. 

4.4.7 Generation of mutant reporter lines 

Candidate selection. Method 1 considers the database of origin of each 

candidate, its translation initiation site (TIS), its coordinates within its 

corresponding mRNA and its homology in different species (41 candidates). 

As this method is biased for the selection of larger peptides (Figure 4.31A), 

a second selection method (method 2) for smaller peptides (up to 50 amino 

acids) was established considering exclusively their TIS and coordinates 

within their corresponding mRNA (26 “novel” candidates) (Figure 4.31B).  
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Method 1 (total n = 41 candidates): i) Araport11 candidates detected with 

high confidence and medium confidence and less than 20 NAs (n = 10); ii) 

Hsu et al. candidates classified as discovery candidates and assigned to a 

floral organ, plus a discovery candidate that lacked gene families in A. 

thaliana (n = 5); iii) CANTATAdb 2.0 and TAIR ‘nc’ candidates starting with 

AUG or near-cognate codons and that had homologs in other species and a 

reasonable start point (near the 5’ UTR of the transcript) (n = 22 and 6, 

respectively).  

Method 2: All peptides with up to 50 amino acids, ATG or near-cognate TIS 

and a start (in the transcript) before the position 800 (n = 44).  

 
Figure 4.31. Selection of candidates for further analyses.  

A) Length distribution of the candidates coloured according to the 

selection method used (1, 2, both or non-selected). B) Venn diagram of 

the number of candidates selected by each method and the number of 

candidates in common. 

Finally, 37 candidates were selected. Eight peptides selected by Methods 1 

and 2 that had less than six putative homologs in A. thaliana (without gene 

families) and/or less than three AUGs upstream their CDS and that were not 

encoded in antisense lncRNAs (#019, #025, #026, #052, #055, #061, #124, 

#128). From Method 1, two floral candidates with less than three AUGs 

upstream (#004, #097) and eight discovery candidates with good qPCR 

results (#001, #003, #005, #009, #010, #011, #017, #084). From Method 2, 

six floral candidates with less than three AUGs upstream and that were not 

encoded in antisense lncRNAs (#032, #044, #077, #116, #121, #131). 

Besides, 13 extra peptides were selected due to their interesting 

characteristics: two SSPs (Signal IP6.0) (#014 and #101); a dORF, as there 
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are no functional peptides encoded in dORFs in plants that have been already 

characterized according to the literature (#016); the candidate from Hanada 

et al. (#022) and nine TVGs (qPCR results) with interesting expression 

patterns (#008, #018, #030, #038, #043, #050, #062, #070, #087). 

Promoter amplification. The promoter regions of the peptide candidates 

(1.5kb upstream the annotated 5’ UTR of the transcripts) were amplified 

using Phusion ® High-Fidelity DNA polymerase (New England Biolabs Inc., 

#ref:M0530S) and specific primers (Sup Table 4.9). PCR products were 

purified using the NZYGelpure purification kit (nzytech, #ref:MB01101).  

Gateway vectors. Purified fragments were cloned in pENTR/D-TOPO entry 

vectors (Invitrogen; www.thermofisher.com) following the manufacturers’ 

instructions. The resulting plasmids were sequenced to confirm the 

sequences and the gene cassette transferred into the destiny binary vector 

pBGWFS7 using the Gateway (Invitrogen) LR-reaction. Final constructs 

carried the promoter of each candidate (pXXX) fused with GFP and GUS 

(pXXX:GFP-GUS).  

Bacterial strains. Vector cloning was performed in the Escherichia coli 

strain TOP10. Cells were transformed by heat shock and were grown in 

culture dishes with Luria Bertani medium (LB), agar and the appropriate 

selection antibiotics. Transformed bacterial colonies were confirmed by 

colony PCR with M13F and M13R primers for the entry vector and with 5’ – 

CGACCTGCAGGCATGCAAGCTC – 3’ and the reverse primer of the promoter 

of each candidate for the destiny vector. Positive colonies were grown in 

liquid LB containing the corresponding selection antibiotics. Binary vectors 

were purified using the QIAprep® Spin Miniprep Kit (QIAGEN, #ref:27106). 

Agrobacterium tumefaciens cells strain GV3101 were transformed with the 

destiny vectors by heat shock (HÖFGEN & WILLMITZER, 1988). A. tumefaciens 

cells were grown 48 h at 28 °C in culture dishes with yeast extract broth 

(YEB) medium, agar and the appropriate selection antibiotics. Transformed 

bacterial colonies were confirmed by colony PCR. Positive colonies were 

grown in liquid YEB containing the corresponding selection antibiotics. 

These cultures were used for glycerinate-preservation and to be scaled for A. 

thaliana transformation.  

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
http://www.thermofisher.com/
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Floral dip. Transgenic plants were generated by the floral dip method 

(CLOUGH & BENT, 1998). Transgenic lines were selected on MS medium 

supplemented with L-Phosphinothricin (PPT, 16μg/mL). 

4.4.8 GUS staining  

Inflorescences of at least three independent lines for each pXXX:GFP-GUS 

construction were placed in 2 mL tubes and kept in acetone 90% for 20 min 

at -20 °C to remove surface wax. Acetone was removed and samples were 

washed twice in phosphate buffer pH 7.2 50 mM. After removing the buffer, 

1 mL of GUS staining solution (Triton X-100 0.1%, EDTA 1 mM, phosphate 

buffer 50 mM, potassium ferrocyanide 1 mM, potassium ferricyanide 1 mM, 

100 mg of X-Gluc diluted in DMSO) was added to each tube and samples were 

incubated in vacuum in darkness for at least 30 min. Samples were kept at 37 

°C in darkness for 36 h. After removing the GUS staining solution, samples 

were washed with a series of EtOH dilutions (10-30-50-70-80-96-100% 

EtOH; 30 min each) at room temperature. Samples were kept on 100% EtOH 

upon their observation under a stereomicroscope Olympus SZX16.  

4.4.9 Generation of knock-out lines 

Candidate selection. All candidates with reproducible GUS expression 

patterns were selected for the generation of mutant lines, except candidates 

#018 and #019, as both are altORFs (HSU ET AL., 2016) and their modification 

will alter the main ORF sequence as well. Besides, eight peptides from a 

previous work in the laboratory were added to the list due to their interesting 

GUS staining patterns and transcript characterization by RACE PCR (HANADA 

ET AL., 2007, 2013).  

Guide design. Two CRISPR/Cas9 guides were designed for each candidate 

using CCTop - CRISPR/Cas9 target online predictor (https://cctop.cos.uni-

heidelberg.de:8043/index.html) (STEMMER ET AL., 2015) and CRISPR-P 2.0 

(http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR) (LEI ET AL., 2014). In 

this step, candidates #025 and #061 were discarded because it was not 

possible to find suitable guides.  

https://cctop.cos.uni-heidelberg.de:8043/index.html
https://cctop.cos.uni-heidelberg.de:8043/index.html
http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR
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Vector assembly. GoldenGate assembly was used to generate the final 

constructs using pCBC for guide amplification and pHEE401E as the final 

vector. For each pair of guides, two forward primers (DT1-BsF, DT1-F0) and 

two reverse primers (DT2-R0, DT2-BsR) were designed to amplify a 

fragment of vector pCBC containing a terminator for the first guide, and a 

promoter for the second one. Forward primers were designed to overlap 

with each other to add a BsaI site (GGTCTCN) and the first guide, and reverse 

primers to add the second guide and a BsaI site. (N)20 is the guide sequence 

without the PAM region. 

- DT1-BsF: ATATATGGTCTCGATTG(N)20GTT 

- DT1-F0: TG(N)20GTTTTAGAGCTAGAAATAGC 

- DT2-R0: AAC(N)20CAATCTCTTAGTCGACTCTAC 

- DT2-BsR: ATTATTGGTCTCGAAAC(N)20CAA  

The reaction was conducted as follows:  

Component Volume Cycling conditions 
PrimeStar Buffer 10 µL 

One cycle:  
         95 °C for 2 min 
30 cycles:  
         95 °C for 15 sec;  
         60°C for 30 sec;  
         68 °C for 1 min 
One cycle:  
         68 °C for 10 min 

dNTPs (10mM) 4 µL 
PrimeStar high fidelity polymerase 2 µL 
pCBC 1 µL 
DT1-BsF (20 µM) 1 µL 
DT1-F0 (1 µM) 1 µL 
DT2-R0 (1 µM) 1 µL 
DT2-BsR (20 µM) 1 µL 
ddH20 29 µL 

Total volume 50 µL  

PCR amplified fragments were purified from gel and used to conduct the 

GoldenGate assembly protocol as follows: 

Component Volume Cycling conditions 
PCR purified fragment (~100 ng/µL) 2 µL 

5 h at 37 °C 
5 min at 50 °C 
10 min at 80 °C 

pHEE401E (~100 ng/µL) 2 µL 
10x T4 DNA Ligase Buffer 1.5 µL 
10x BSA 1.5 µL 
BsaI 1 µL 
T4 DNA ligase 1 µL 
ddH20 6 µL 

Total volume 15 µL  
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Primers and guides used for the generation of knock-out lines are included in 

Sup Table 4.10. 

Bacterial strains. Vector cloning using 5 µL of GoldenGate reaction mixture 

was performed in the E. coli strain DH5α. Cells were transformed by heat 

shock and were grown in culture dishes with LB and kanamycin. 

Transformed bacterial colonies were confirmed by colony PCR with pHEE-

seq-Fw (5’ – GTCACGACGTTGTAAAACGACG – 3’) and pHEE-seq-Rev (5’ – 

CAATGATAAACCAAACGCAAATGC – 3’) primers. Positive colonies were 

grown in liquid LB containing kanamycin. Binary vectors were purified using 

the NucleoSpin Plasmid, Mini kit for plasmid DNA (Macherey-Nagel, #ref: 

740588.50). 

A. tumefaciens cells strain GV3101 were transformed with the destiny vectors 

by electroporation. A. tumefaciens cells were grown 48 h at 28 °C in culture 

dishes with LB medium, agar and the appropriate selection antibiotics 

(kanamycin, rifampicin, tetracycline and gentamycin). Transformed bacterial 

colonies were confirmed by colony PCR. Positive colonies were grown in 

liquid LB containing the corresponding selection antibiotics. These cultures 

were used for glycerinate-preservation and to be scaled for A. thaliana 

transformation.  

Floral dip. Transgenic plants were generated by the floral dip method 

(CLOUGH & BENT, 1998). Transgenic lines were selected on MS medium 

supplemented with hygromycin.  

  

https://drive.google.com/drive/folders/1Ow2YQ-33UGTUFYq3SJhSXbzp20ovv13T?usp=drive_link
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Conclusions 
Within this work, innovative transcriptomic-proteomic integrative methods 

and peptide discovery approaches were applied to further the understanding 

of flower development in the plant model species Arabidopsis thaliana. The 

main conclusions of this Thesis are hereby described in terms of their 

respective objectives.  

Aim 1.- To establish a chronology of protein expression throughout (early) 

flower development and correlate these trajectories to unbiased transcript 

expression data. 

• The customized method used for imputing missing values depending 

on their nature improved considerably the interpretation of the LC-

MS/MS results. 

• The size of the transcriptome (i.e., collection of genes) previously 

known to change its expression during the early stages of flower 

development was expanded several-fold.  

• The correlation between mRNA levels and protein abundance was 

higher for those gene-protein pairs with significant changes through 

time for both molecules.  

• Around 36% of the quantified gene-protein pairs had a positive 

correlation between the mRNA levels and protein abundance.  

• Gene-protein pairs with opposite patterns for mRNA level and 

protein abundance were enriched in different hormone responsive 

pathways, suggesting that there might be regulatory processes (e.g., 

positive and / or negative feedback loops) affecting mRNA and 

protein levels differently.  

• A total of 230 novel AP1-high confidence targets were identified 

through the combined analysis of the RNA-seq data and previously 

published AP1 genome-wide binding data (ChIP-seq). 
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Aim 2.- To characterise the flower Arabidopsis peptidome (sORFs and hidden 

coding sequences in the Arabidopsis genome) and start deciphering its roles in 

flower development. 

• A total of 1,874 hypothetical peptides were identified in this Thesis 

using a MS-based method for the identification of novel peptides.  

• Sixty hypothetical peptides were classified as possible floral organ-

specific peptides.  

• A majority of peptide candidates identified as specific or enriched in 

floral organs were so in stamens, which is in agreement with 

previously published results for the floral organ differential gene 

expression of standard, annotated genes. 

• The putative or confirmed Translation Initiation Site (TIS) for around 

71% of the 1,874 hypothetical peptides was identified as either an 

AUG or a near-cognate codon (26% and 45%, respectively), and 

similar percentages were found for the reduced set of 132 candidates 

(33% and 36% respectively).  

• Non-AUG translation initiation is abundant among the identified 

SEPs. This expands the criteria that should be taken into 

consideration for protein and peptide predictions from Arabidopsis 

genomic or transcriptomic sequences.  

• Plant SEPs can be conserved across species, but also be species- or 

family-specific. Sixty-one of the peptide candidates, out of 132, were 

apparently specific to the Brassicaceae, as they were found 

exclusively in A. thaliana, A. lyrata, B. oleracea and / or C. sativa, and 

29 of those appeared to be specific to A. thaliana.  

• There were fourteen candidates with possible homologs in the 

twelve plant species analysed. The conservation of these sequences 

could indicate or be related to a conserved function.  

• Analysis of gene expression patterns using SEP promoter-GUS 

reporter fusions revealed distinct and different expression domains, 

but with most of the analysed SEPs expressed in developing stamens. 
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Peptidomics Methods Applied to the Study of Flower 
Development 

Raquel Álvarez-Urdiola, Eva Borràs, Federico Valverde, 
José Tomás Matus, Eduard Sabidó, and José Luis Riechmann 

Abstract 

Understanding the global and dynamic nature of plant developmental processes requires not only the study 
of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. 
Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) 
have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional 
peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of 
proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small 
(up to ~100 aa, 6–7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges 
that need to be addressed both experimentally and with computational biology resources. Several methods 
have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we 
outline two different peptide extraction protocols and the subsequent peptide identification by mass 
spectrometry using the database search or the de novo identification methods. 

Key words Peptidome, Ultrafiltration, Ammonium sulphate, Reverse-phase chromatography, C-18, 
Arabidopsis, Mass spectrometry, Database 

1 Introduction 

Although a variety of peptides have been well documented in both 
animal and plant genomes, until recently the coding potential of 
eukaryotic short open reading frames (sORFs) at the genome-wide 
level had mostly been overlooked. One of the reasons behind this 
gap is the computational and experimental difficulties for their 
identification and functional characterization, and particularly for 
determining whether these sequences are in fact translated. How-
ever, it has become clear over the past few years that small peptides 
(usually defined as shorter than 100 amino acids in length) consti-
tute an important part, largely still uncharacterized, of the eukary-
otic proteome [1–13]. Moreover, the massive and widespread
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transcription of the eukaryotic genome and the pervasive transla-
tion of long noncoding RNAs (lncRNAs) habilitate sORFs and the 
resulting small peptides as raw materials for de novo gene origin 
and evolution [14–19].
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In plants, several peptides have been functionally characterized 
as key players in diverse signalling pathways of plant development, 
including flower formation and maturation, in Arabidopsis and 
other plant species (i.e., [20–22]). Moreover, the presence of 
novel, uncharacterized Arabidopsis small peptides has been inferred 
from transcriptome data, in particular ribosome profiling (Poly-
Ribo-Seq) experiments [23–25], leaving the door open for their 
identification through proteomics and peptidomics approaches. In 
fact, in studies with human cells and for selected SEPs identified 
from lncRNAs, primarily by Poly-Ribo-Seq, it was experimentally 
estimated that SEPs can be present in the cell at concentrations that 
are within the range of typical cellular proteins [26], that SEPs can 
exhibit different and specific subcellular localizations [27, 28], and 
that they can carry out important biological functions (e.g., [29– 
33]). Furthermore, in addition to transcriptomics, computational 
tools have also been used as a source of knowledge on new poten-
tially coding sORFs, in plants as well as in other eukaryotic organ-
isms and bacteria (e.g., [34–36]). 

The sources of peptides that altogether would constitute the 
peptidome of a plant are several and include the following: (1) pro-
cessing from larger functional or nonfunctional precursors; 
(2) additional short open reading frames (sORFs) in known 
protein-coding genes (up- or downstream the main ORF, in 
introns, as short splice variants or in a different reading frame 
from that of the main ORF); and (3) sORFs in long noncoding 
RNAs (lncRNAs), transcripts of unknown function (TUFs), inter-
genic regions, junctions, and microRNA precursors [37–40]. For 
instance, computational analyses suggested that several thousands 
of novel, potentially coding sORFs could exist in the intergenic 
regions of the Arabidopsis genome [35]. In fact, it was found that 
when overexpressed, some of those novel sORFs could induce 
developmental alterations in plant size, leaf number and shape, 
fertility, or cause lethality, raising the possibility that (many) 
sORFs with coding potential but that are still uncharacterized in 
plant genomes might be associated with morphogenesis [37] and 
other developmental and physiological processes. 

RNA-based methods are a very powerful tool to detect poten-
tially translating sORFs, and the analysis of ribosome profiling data 
obtained from a variety of eukaryotic organisms provided strong 
support to the idea that lncRNAs are an important source of new 
peptides [41, 42]. Ribosome profiling has also been used to dem-
onstrate extensive translation of open reading frames, including 
novel sORFs, in plant species such as Arabidopsis [23, 25, 43], 
maize [44] and tomato [45]. The evaluation of the coding



potential of the sequences identified through ribosome profiling is 
mostly computational but there are mass spectrometry (MS)-based 
methods able to detect peptides that are translated from novel 
sORFs, thereby directly validating the protein-coding potential of 
the transcripts [27, 38, 44, 46–53]. 
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Fig. 1 Workflow for peptide discovery and characterization based on mass spectrometry. Extraction method 
and MS data analysis 

In parallel, the improvement of mass spectrometry and data 
interpretation bioinformatic algorithms have facilitated the analysis 
of complex protein mixtures. However, the detection of novel plant 
peptides derived from small ORFs that are not annotated in refer-
ence databases presents specific challenges that need to be 
addressed, both experimentally and with computational resources 
(Fig. 1). 

The first requirement is an efficient and high-quality extraction 
from abundant starting material, for which several methods have 
been developed and optimized. Most basic protocols used for 
protein extraction from plant tissue are trichloroacetic acid 
(TCA)-acetone and phenol-based methods. The optimal composi-
tion of the extraction buffer depends on the species and tissue of 
interest [54, 55], but other aspects must be considered, such as 
heat treatment of the sample to diminish nonspecific protease 
digestions [38, 56, 57] or the addition of protease inhibitors to 
avoid protein degradation [38, 44, 46, 49, 58, 59] (Table 1). 
Besides, the processing and degradation of cellular proteins can 
generate peptidic fragments that increase the complexity of the 
peptidome sample, deteriorating the signal-to-noise ratio in the 
experiments. Therefore, strategies to separate larger proteins from 
peptides prior to LC-MS/MS analyses are crucial to improve the
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514 Raquel Álvarez-Urdiola et al.



identification and sequence coverage of low-abundance peptides 
[55, 60]. Peptides can be separated and purified using different 
methods such as electrophoresis gels [27, 47, 48, 61] or molecular 
weight cut-off (MWCO) filters [38, 52, 54, 58, 59, 62] (Table 1). 
Moreover, the optimal polypeptide size for detection by LC-MS/ 
MS is approximately 10–20 amino acids, suggesting that trypsin 
(or trypsin + Lys-C) cleavage is crucial for high-sensitivity SEP 
detection. Nevertheless, smaller peptides that may be amenable to 
protease cleavage should be detectable as well [26].
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An additional difficulty lies in undersampling (i.e., identifica-
tion of only a subset of the peptides) by conventional data acquisi-
tion methods [63]. According to a study to optimize a SEP 
discovery MS workflow using human samples [52], SEP detection 
is stochastic due to their size and expression characteristics. There-
fore, to avoid undersampling and thus identify more SEPs, it is 
often more efficient to perform multiple technical and/or 
biological replicates (multiple runs on the MS platform) than, for 
example, introduce extensive fractionation methods before 
LC-MS/MS analyses (as in [26]). 

For peptide identification from tandem mass spectra, there are 
two approaches that could be used: database search and de novo 
sequencing. In database search, all potential peptide sequences 
included in a specified database are retrieved for each spectrum, 
and each peptide-spectrum match is scored via a scoring function 
calculated by database search engines (such as SEQUEST [64], 
Mascot [65], Phenyx [66], X! Tandem [67], OMSSA [68], pFind 
[69], InsPecT [70], ByOnic [71], Comet [72], MS-GF+ [73], 
MaxQuant [74], or MSTracer [75]). This guided approach is 
widely used for peptidomics and proteomics, and can be based on 
canonical (well-annotated) protein databases (e.g., UniProt) or 
customized databases containing putative SEPs identified by bioin-
formatic (e.g., sORFinder) [76] or transcriptomic analyses (i.e., 
RNA-sequencing or ribosome profiling). 

The annotation of the genome of the organism under study is 
the first source for preparing the database for MS database search 
(i.e.,, all proteins and peptides that are already known or identified 
from that genome). However, for the identification of novel SEPs 
in MS data, it is necessary to design more specific, expanded data-
bases that should also include the potential novel coding sORFs. 
Current integrated peptidomics pipelines include different database 
creation strategies, from the use of ribosome profiling data to the 
six-frame or three-frame identification of sORFs at the genome or 
transcriptome level, respectively (Tables 2 and 3; see also the Notes 
section). For instance, a recent MS-based study identified over 
1000 novel human proteins derived from alternative ORFs identi-
fied by RNA-seq (mostly corresponding to SEPs, 57aa median 
length) [27]. In plants, approximately 70,000 transcribed sORFs 
were detected in Physcomitrella patents (moss) using “sORF
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Table 2 
Repositories for SEP-database generation 

Database Description Collected data Organism References 

ARA-PEP Putative peptides 
encoded by 
sORFs in the 
A. thaliana 
genome 

Tiling arrays, RNA-seq 
data, and other publicly 
available datasets 

A. thaliana [39] 

PsORF sORFs across 
different plant 
species 

Genomic, transcriptomic, 
ribo-seq, and MS data 

35 plant species [104] 

PlantPepDB Manually curated 
database of 
plant-derived 
peptides 

Experimentally validated 
peptides, peptides with 
evidence at transcript 
level, based on 
computational 
predictions or inferred 
by homology 

Several plant species 
including algae, 
bryophyte, 
angiosperms, and 
gymnosperms 

[124] 

RPFdb v2.0 Genome-wide 
information of 
translated 
mRNA 

Ribo-seq samples Plants: A. thaliana 
Others: 28 different 
species 

[103] 

CANTATAdb 
2.0 

lncRNA data from 
plant and algae 

lncRNA identified 
computationally using 
publicly available RNA-
seq data 

39 plant species 
(including three algae) 

[125] 

AlnC Angiosperm 
lncRNA 
Catalogue 

lncRNA in angiosperms 
(1KP transcriptome 
data) 

682 angiosperm plant 
species (809 tissues) 

[126] 

GWIPS-viz Online 
visualization 
tool for ribo-seq 
data 

Ribo-seq samples Plants: A.thaliana, 
Z. mays 

Others: bacteria, 
animals, etc. 

[102] 

uORFlight Database for the 
evaluation of 
uORF frequency 
among different 
accessions 

uORF identified in 
genome and 
transcriptome 
annotations 

Plants: A. thaliana, 
O. sativa, B. napus, 
G. max, G. raimondii, 
M. truncatula, 
S. lycopersicum, 
S. tuberosum, 
T. aestivum, Z. mays 

Others: fungus, 
metazoan, and 
vertebrate 

[127] 

uORFdb Comprehensive 
literature 
database on 
eukaryotic 
uORFs 

uORF-related references; 
manually curated from 
all uORF-related 
literature listed at the 
PubMed database 

Plants: A. thaliana 
Others: human, mouse, 

rat, virus, yeast, etc. 

[105]



Table 2

Finder” [76], from which 828 distinct peptide sequences were 
identified by LC-MS/MS [49]. Customized peptide databases 
can also be derived from the six-frame translation of genomic 
sequences, an approach that has been successfully used in micro-
organisms [62, 77], and recently also in both monocot and dicot 
plants, where a total of 1993 and 1860 SEPs were identified in 
maize and Arabidopsis, respectively [38]. Altogether, these and 
other studies illustrate the existence of a substantial, uncharted 
fraction of the eukaryotic proteome that is mainly composed of 
small proteins (peptidome) (Table 1).
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(continued)

Database Description Collected data Organism References 

C-PAmP Computationally 
predicted plant 
antimicrobial 
peptides 

Selection of peptides 
included in the 
Antimicrobial Peptide 
Database (APD) and the 
Collection of Anti-
Microbial Peptides 
(CAMP) 

2112 plant species in 
UniProtKB/Swiss-
Prot 

[128] 

StraPep Structure database 
of bioactive 
peptides 

Structural data collected 
from UniProtKB and 
PDB 

452 different species 
including bacteria, 
yeast, animals, 
humans, and plants 

[129] 

DRAMP 3.0 Manually curated 
data repository 
of antimicrobial 
peptides 

Peptides retrieved from 
Pubmed, Swiss-prot, 
and Lens 

Variety of organisms, 
including bacteria, 
archaea, protists, 
fungi, animals, and 
plants 

[130] 

In contrast to database search, for de novo peptide sequencing, 
peptide sequences are extracted directly from tandem mass spectra 
using specific algorithms such as PEAKS [78], SPIDER [79], 
UniNovo [80], pNovo+ [81], Novor [82], DeepNovo [83], or 
DeepNovo-DIA [84]. The de novo method is less powerful than 
database search, as many spectra cannot be unambiguously 
sequenced due to incomplete fragmentation. In addition, the de 
novo method is relatively slow when compared with the database-
search engines, and the large search space of all possible amino acid 
sequences for each spectrum often leads to higher false discovery 
rates. Moreover, the complexity of tandem mass spectra can be 
significantly increased when posttranslational modifications 
(PTMs) are considered as well [85]. Some algorithms have been 
used for solving the de novo identification problems involving 
dynamic programming, integer linear programming, machine 
learning or other methods, and advances in mass spectrometry
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Table 3 
Tools for database design 

Tool Description Method Example References 

SPADA Small peptide alignment 
discovery application. 
Free software tool that 
identifies and predicts 
the gene structure for 
short peptides with one 
or two exons 

Sequence 
similarity 

Creation of an 
M. truncatula small 
secreted peptide 
database (MtSSPdb) 
using SPADA and sORF 
Finder [131] 

[112] 

sORF Finder Program package for the 
identification of sORFs 
with high coding 
potential 

Codon pattern, 
codon 
substitution 
and cross-
species 
conservation 

51 new sORFs identified 
using sORF finder and 
the ARA-PEP repository 
(LC-MS/MS results) 
[46] 

[35, 76] 

PhyloCSF Phylogenetic Codon 
Substitution 
Frequencies: method to 
determine whether a 
multispecies nucleotide 
sequence alignment is 
likely to represent a 
protein-coding region 

Codon pattern, 
codon 
substitution 
and cross-
species 
conservation 

Identification of small 
peptide-coding “long 
noncoding” RNAs in 
soybean [132] 

[34] 

MiPepid RNA-seq sORF annotation 
in mammalian species 

Machine 
learning 

Identification of 82 novel 
species-specific 
translated sORFs 
(LC-MS/MS) from 
lncRNA (database 
generated using 
MiPepid) [19] 

[113] 

lncPepid RNA-seq sORF annotation 
in plants. A discovery 
tool trained using maize 
and Arabidopsis data that 
considers sequence 
composition and 
physicochemical 
properties 

Machine 
learning 

[115] 

CPPred-
sORF 

Predicts the coding 
potential of sORFs based 
on non-AUG initiation 
of translation 

Machine 
learning 

sORF finder, miPepid, 
CPPred, and DeepCPP 
used as control groups 
[115] 

[114] 

DeepCPP Optimization of CPPred Deep learning sORF finder, miPepid, 
CPPred, and DeepCPP 
used as control groups 
[115] 

[116]



Table 3

instruments have improved de novo sequencing results [86]. How-
ever, further optimizations of algorithms, particularly with respect 
to data confidence, are still necessary to turn the technique into an 
actual alternative to commonly used database search peptide iden-
tification methods. Despite the difficulties, de novo identification 
has been successfully implemented for SEP detection in several
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(continued)

Tool Description Method Example References 

RiboTaper Statistical approach that 
identifies translated 
regions based on the 
characteristic three-
nucleotide periodicity of 
ribo-seq data 

Ribo-seq Identification of uORFs, 
dORFs, and altORFs in 
A. thaliana [23] 

[106] 

PRICE Computational method 
that models 
experimental noise to 
resolve overlapping 
sORFs and noncanonical 
translation initiation in 
an accurate manner 

Ribo-seq Validation of the method 
using major 
histocompatibility 
complex class I (MHC I) 
peptidomics [107] 

[107] 

RiboCode Unbiased method to 
recover the signal of 
active translation from 
the ribo-seq data 

Ribo-seq Identification of 9388 
sORF encoding peptides 
(2-100aa) in maize, from 
which 2695 SEPs were 
verified by MS data [44] 

[108] 

RiboStreamR Quality control platform 
for Ribo-seq data in the 
form of an R shine web 
application 

Ribo-seq [109] 

RiboPlotR Visualization package 
written in 
R. Representation of 
RNA-seq coverage and 
Ribo-seq reads in 
genomic coordinates for 
all annotated transcript 
isoforms of a gene 

Ribo-seq RiboPlotR combines 
transcriptome 
annotation files, standard 
RNA-seq bam files, and 
Ribo-seq P-site 
position/count files to 
plot RNA-seq and Ribo-
seq data with genomic 
coordinates for each 
isoform. Tested in 
Arabidopsis and tomato 
[110] 

[110] 

RiboNT Noise-tolerant sORF 
predictor that can use 
RPFs with poor 
periodicity 

Ribo-seq Identification of sORFs in 
Arabidopsis seedlings 
that are evolutionary 
conserved in diverse 
plant species [111] 

[111]



plant species [48, 59, 87–89]. When combined with classic data-
base search strategies, de novo approaches can help to provide more 
comprehensive results [59, 90, 91] (Table 1). In fact, several 
research groups have developed software that directly combines 
both, database search and de novo sequencing, for peptide identifi-
cation from mass spectra [71, 92].
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Despite the advances in mass spectrometry and data interpreta-
tion, however, a problem still not fully addressed is the (high) 
number of unassigned spectra. New mass spectrometry sampling 
methods, such as data-independent acquisition (DIA [93]), 
together with the development of new machine learning tools to 
predict peptide fragmentation [94–97] promise a bright and very 
exciting future in the peptidome field, in which a significant 
amount of information will be confidently recovered from the 
acquired data. 

In this chapter, we provide two plant peptide extraction meth-
ods based on different extraction buffers and precipitation techni-
ques, and describe an example of an LC-MS/MS pipeline, also 
introducing some suggestions for database design. 

2 Materials 

2.1 General 1. Protein low-binding microcentrifuge tubes (1.5 or 2 mL). 

2. Mortar and pestle. 

3. Liquid nitrogen. 

2.2 Ultrafiltration 1. Extraction buffer: 1× phosphate-buffered saline (PBS), 1.5 M 
urea, 10 mM dithiothreitol (DTT), 2% v/v acetonitrile (ACN), 
0.5% v/v trifluoroacetic acid (TFA), 10 μM MG-132 protea-
some inhibitor, 1 tablet of Proteinase Inhibitor cocktail cOm-
plete (Roche) per each 50 mL of buffer, and 1 mM 
phenylmethylsulfonyl fluoride (PMSF) (see Note 1). Prepare 
fresh for each experiment (see Note 2). 

2. 10× phosphate buffer saline (PBS): 1.37 M NaCl, 0.027 M 
KCl, 80 mM Na2HPO4, and 20 mM KH2PO4 pH 7 (NaOH). 
Prepare 1 L and autoclave it. 

3. Ultra-0.5 mL 30-K centrifugal filter devices (Amicon® ) (see 
Note 3). 

2.3 Ammonium 

Sulphate Precipitation 

1. Extraction buffer: 1× PBS, 2 M urea, 2% v/v acetonitrile, 
10 mM DTT, 5% v/v trifluoroethanol (TFE), 50 mM Tris– 
HCl pH 7.6, 10 μM MG-132, 1 tablet of Proteinase Inhibitor 
cocktail cOmplete (Roche) per each 50 mL of buffer, and 
1 mM PMSF. Prepare fresh for each experiment (see Note 2). 

2. Ammonium sulphate (salt, EM/HPLC grade).
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2.4 Reverse-Phase 

Chromatography 

Peptide Extraction 

1. C18 spin columns, containing 8 mg of resin each (Pierce, 
Thermo Scientific). 

2. Activation solution: 50% v/v ACN in distilled water (400 μL 
per sample). 

3. Equilibration solution: 0.5% v/v TFA in 5% v/v ACN (400 μL 
per sample). 

4. Sample buffer: 2% v/v TFA in 20% v/v ACN (1 μL for every 
3 μL of sample) (see Note 4). 

5. Wash solution: 0.5% v/v TFA in 5% v/v ACN (400–800 μL per 
sample) (see Note 5). 

6. Elution buffer: 0.1% v/v formic acid in 70% v/v ACN (42 μL 
per sample) (see Note 6). 

7. Qubit protein assay kit. 

8. Qubit fluorometer. 

2.5 LC-MS/MS 1. DL-dithiothreitol (DTT) (see Note 7). 

2. Iodoacetamide. 

3. Urea. 

4. Ammonium bicarbonate. 

5. Lysyl endopeptidase. 

6. Trypsin. 

7. Formic acid. 

8. MicroSpin C18 columns (The Nest Group, Inc). 

9. Nano Trap C18 columns with an inner diameter of 100 μm 
packed with C18 particles of 5 μm particle size (Thermo Fisher 
Scientific) (optional, depending on the setup of each laboratory). 

10. Reverse-phase chromatography columns (C18, 2 μm, 
15–50 cm length) (see Note 8). 

11. Buffer A: 0.1% v/v formic acid in water. 

12. Buffer B: 0.1% v/v formic acid in acetonitrile. 

13. Bovine serum albumin (New England Biolabs cat # P8108S). 

14. Orbitrap Eclipse mass spectrometer (Thermo Fisher Scientific) 
(see Note 9). 

15. EASY-nLC 1000 (Thermo Fisher Scientific). 

3 Methods 

Below we provide two peptide extraction methods based on differ-
ent extraction buffers and precipitation techniques (see Subhead-
ings 3.1 and 3.2), both of which are to be followed by a reverse-
phase chromatography (see Subheading 3.3) (Fig. 2) and describe 
an example of an LC-MS/MS pipeline (see Subheading 3.4).
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Fig. 2 Schematic representation of the two peptide extraction methods described in this chapter. AS, 
activation solution; ES, equilibration solution; WS, wash solution; EB, elution buffer 

3.1 Ultrafiltration 1. Collect tissue of interest with clean material (see Note 10) and 
freeze directly in liquid nitrogen. Keep at -80 °C until 
required. 

2. Using a different mortar and pestle for each sample, grind the 
tissue with liquid nitrogen until obtaining a whitish fine pow-
der (see Note 11). 

3. Collect 0.5 g of blended tissue distributed in two 2 mL Eppen-
dorf tubes (see Note 12). 

4. Add a total of 1.2 mL of extraction buffer to 0.5 g of tissue, 
vortex immediately, and transfer to ice while preparing the rest 
of the samples (see Note 13). 

5. Incubate the samples with continuous shaking for 1 h at 4 °C. 

6. Spin the samples for 1 min at 4 °C in a microcentrifuge (max 
speed, ≥14,000 × g) to precipitate cellular debris and solid 
particles in suspension. Repeat as many times as necessary (see 
Note 14). 

7. Insert each Amicon filter device in one of the provided micro-
centrifuge tubes. 

8. Add up to 500 μL of the clean supernatant in the Amicon filter 
device and centrifuge at 14,000 × g for 10 min at 4 °C  a  
indicated by manufacturer (see Notes 15 and 16). Repeat 
until all sample has passed through the same Amicon filter.



Sample preparation:

Column preparation:
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9. Keep the filtrate in the provided microcentrifuge tubes (flow-
through) (see Note 17). Keep the samples on ice to immedi-
ately continue with the reverse-phase chromatography or store 
them at -80 °C until use. 

3.2 Ammonium 

Sulphate Precipitation 

1. Collect tissue of interest with clean material (see Note 10) and 
freeze directly in liquid nitrogen. Keep at -80 ° C until 
required. 

2. Using a different mortar and pestle for each sample, grind the 
tissue with liquid nitrogen until obtaining a whitish fine pow-
der (see Note 11). 

3. Collect 0.5 g of blended tissue distributed in two 2 mL Eppen-
dorf tubes (see Note 12). 

4. Add a total of 1.2 mL of extraction buffer to 0.5 g of tissue, 
vortex immediately, and transfer to ice while preparing the rest 
of the samples (see Note 13). 

5. Incubate the samples shaking for 30 min at 4 °C. 

6. Spin the samples for 1 min at 4 °C in a microcentrifuge (max 
speed, ≥14,000 × g) to precipitate cellular debris and solid 
particles in suspension (see Note 14). 

7. Add 75% (w/v) of ammonium sulphate to the supernatant to 
precipitate the proteins in solution at 4 °C. The salt must be 
added little by little pipetting slowly each time until proteins 
precipitate (see Note 18). 

8. Centrifuge at maximum speed (≥14,000 - g) for 25 min at 
4 °C. 

9. Place the supernatant in a new low-binding protein tube (smal-
ler peptides will remain in the supernatant, whereas larger 
proteins precipitate). Keep the samples on ice to immediately 
continue with the reverse-phase chromatography or store them 
at -80 °C until use. 

3.3 Reverse-Phase 

Chromatography 

Peptide Extraction 

Prepare the reverse phase chromatography C18 columns as indi-
cated by the manufacturer protocol. In brief: 

1. Mix 3:1 parts of sample:sample buffer. The final sample mix will 
contain approximately 0.5% TFA in 5% ACN (see Note 19). 

2. Tap the column to settle the resin on the bottom of each 
column. Remove top and bottom caps (in that order). Place 
the column into a 2 mL receiver tube. 

3. Add 200 μL of activation solution to wet the resin. Make sure 
to rinse the walls of the spin column (see Note 20).



Sample binding:

Column wash:

Elution:
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4. Centrifuge at 1000 × g for 1 min. Discard the flow-through 
and repeat steps 3 and 4. 

5. Add 200 μL of equilibration solution, centrifuge at 1500 × g 
for 1 min, and discard the flow-through. Repeat this step once. 

6. Place the column into a receiver tube and load up to 150 μL of  
sample on top of resin bed (see Note 21). 

7. Centrifuge at 1500 × g for 1 min. Repeat steps 6 and 7 as many 
times as needed to load all the sample in the same column (see 
Notes 22 and 23). 

8. Add 200 μL of wash solution to the column and centrifuge at 
1500 × g for 1 min. Repeat this step once (see Note 5). 

9. Place the column in a new protein low-binding receiver tube 
and add 21 μL of elution buffer to the top of the resin bed. 

10. Centrifuge at 1500 × g for 1 min and repeat steps 9 and 10 
with the same receiver tube. 

11. Quantify the concentration and amount of total protein in each 
sample using a Qubit protein assay kit: Mix 199 μL of Qubit 
buffer with 1 μL of Qubit reagent for each sample. Add 2 μL of  
sample to 198 μL of the reaction mixture, vortex, and spin the 
tube. Incubate at room temperature for 15 min before 
measuring. 

12. Store the samples at -80 °C until further analysis. 

3.4 LC-MS/MS 1. Prepare or dissolve samples in 6 M urea, 200 mM ammonium 
bicarbonate. 

3.4.1 Sample 

Preparation 2. Reduce the samples (10 μg of protein) with 30 nmols of 
dithiothreitol at 37 °C for 1 h. 

3. Alkylate the samples (10 μg of protein) in the dark with 
60 nmols of iodoacetamide at 25 °C for 30 min. 

4. Dilute the sample extract to 2 M urea with 200 mM 
ammonium bicarbonate for digestion with endoproteinase 
LysC (1:10 w:v), and incubate at 37 °C overnight. 

5. Dilute twofold with 200 mM ammonium bicarbonate for tryp-
sin digestion (1:10 w:w), and incubate at 37 °C for 8 h. 

6. After digestion, add formic acid (10% v/v of the final volume) 
to acidify the peptide mix. 

7. Desalt the samples with MicroSpin C18 columns prior to 
LC-MS/MS analysis, following manufacturer’s instructions.



Flower Development Peptidomics 525

3.4.2 Chromatographic 

and Mass Spectrometric 

Analysis 

1. Load the peptides onto the analytical column (C18, 2 μm, 
15–50 cm length). 

2. Separation of the peptides by reverse-phase chromatography 
with the corresponding columns. 

3. Chromatographic gradients start at 93% buffer A and 7% buffer 
B with a flow rate of 250 nL/min for 5 min and gradually 
increase 65% buffer A and 35% buffer B in 60 min. 

4. After each analysis, wash the column for 15 min with 10% 
buffer A and 90% buffer B. 

5. Peptide eluates are dried in a vacuum centrifuge, and resus-
pended with buffer A at a final concentration of 1 μg/μL prior 
to analysis by LC-MS/MS. 

6. Operate the mass spectrometer to acquire peptide spectra (see 
Note 24). 

3.4.3 Data Analysis for 

Database-Search Peptide 

Identification 

1. Search the acquired spectra against the desired peptide data-
base (see Note 25), plus a list of common contaminants (sug-
gested: [98]), and all the corresponding decoy entries. 

2. Set the parameters accordingly to the experimental and mass 
spectrometric settings and, if appropriate, select variable post-
translational modifications to be detected (see Notes 26 
and27). 

3. Determine the peptide abundance estimation [99, 100]. 

4. Add the information to the appropriate repositories (see Note 
28). 

4 Notes 

1. Octyl-glucoside, a detergent, could be added (0.1% v/v) to the 
extraction buffer. The use of detergents is only necessary for 
the extraction and solubilization of hydrophobic peptides and 
proteins. However, the presence of detergents in peptide sam-
ples decreases chromatographic resolution in LC-MS/MS. 
Thus, they must be removed prior to MS analysis [101]. As a 
general rule for MS/MS experiments, keep laboratory wear 
and high-quality chemicals separated from the rest of the labo-
ratory materials, always use gloves and, if possible, disposable 
plastic material of the highest quality. 

2. Prepare a new extraction buffer on every extraction day as 
protease inhibitors could not work properly otherwise. 
MG-132 is available from several suppliers (we have routinely 
used MG-132 from Sigma-Aldrich). Proteinase Inhibitor cock-
tail cOmplete is from Roche. Different extraction buffers have 
been proposed in the recent years, and their final composition
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needs to be selected considering the final objective of the study 
and the type of analytes of interest (e.g., phosphopeptides), 
because its formulation may affect the final state of the peptides 
and proteins in the samples (Table 1). 

3. The Amicon® Ultra-0.5 product line includes five different 
cut-offs depending on its nominal molecular weight limit 
(NMWL); 30-K (30 kDa filter) devices are recommended, as 
peptides would normally be below the 30 kDa cut-off. 

4. ACN can be substituted for methanol in all sample preparation 
buffers, depending on the desired composition of the final 
elution buffer. 

5. The required washing volume will be dependent upon amount 
and type of contaminants present in the samples. Samples 
already containing large amounts of urea or >100 mM ammo-
nium bicarbonate derived from the extraction buffer (Table 1) 
need to be washed one or two additional times. 

6. The elution buffer used can be tailored to the downstream 
application. Acceptable buffers include 50–70% (v/v) ACN or 
methanol with or without 0.1% (v/v) TFA. For best results in 
LC-MS/MS analysis, TFA is replaced with 0.1% (v/v) 
formic acid. 

7. Reagents for LC-MS/MS can be obtained from several suppli-
ers. As an example, we list here the specific products we use: 
urea (GE Healthcare; Sigma-Aldrich, P/N 17-1319-01), 
ammonium bicarbonate (BioUltra, ≥99.5% (T); Sigma-
Aldrich, P/N 09830), iodoacetamide (BioUltra; Sigma-
Aldrich, P/N I1149), DL-dithiothreitol (for electrophoresis, 
≥99%; Sigma-Aldrich, P/N D9163), formic acid for analysis 
EMSURE® (ACS Reag. Merck, P/N 1.00264.0100), 
sequencing grade modified trypsin (Promega, P/N V5111), 
and lysyl endopeptidase (Wako Chemicals GmbH, P/N 
129-02541). 

8. Suitable reverse-phase chromatography columns that we have 
used are, for instance, 25 cm columns with an inner diameter of 
75 μm, packed with 1.9 μm C18 particles (Nikkyo Technos 
Co.); and 50 cm columns with an inner diameter of 75 μm, 
packed with 2 μm C18 particles (EASY-Column, Thermo 
Fisher Scientific, ES903). 

9. This is just a concrete example of a “modern high-resolution 
mass spectrometer”; other instruments could be used. 

10. To reduce sample contamination with human proteins (i.e., 
keratins and collagen) during sample collection, the use of 
nitrile gloves and laboratory coats is recommended. Take pre-
caution to avoid hair contamination. If flower organs or tissues 
are going to be dissected, cool tweezers and any other sampling 
instrument with liquid nitrogen.
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11. Keep samples (before and after grinding) always frozen by 
pouring liquid nitrogen in the mortar sporadically. Cool col-
lection spatulas before using them to collect homogenized 
tissue. 

12. The extraction yields are around 1 mg of total protein for each 
0.5 g of tissue. Peptides might represent about 1% of the total 
protein, and therefore the expected yield for these extraction 
methods would be 10–15 μg of peptides. For Arabidopsis 
inflorescences, a volume of 1 mL of blended tissue in a 2 mL 
Eppendorf tube is equivalent to approximately 0.5 g of tissue. 
Dividing the sample in different tubes facilitates its dissolution 
in the extraction buffer, that is, using tubes with only 0.25 g 
(equivalent to 0.5 mL of volume) of blended tissue. After 
finishing the entire extraction protocol (including the reverse-
phase chromatography with C18 columns), 10–30 μg of total 
peptides are obtained when using 30-K filters. The efficiency of 
the ammonium sulphate precipitation method may be lower 
(~6 μg of total peptides) (Fig. 2). 

13. If total sample has been divided in two tubes, add approxi-
mately 0.6 mL of extraction buffer to each tube (with 0.25 g of 
blended tissue). 

14. After each 1 min spin, transfer the supernatant to a new tube. 
Be careful to avoid both the pellet and remaining particles in 
suspension. Repeat the spin in a new tube as many times as 
needed until supernatant is clear (2 or 3 times should be 
enough). 

15. When the sample has been divided in two tubes, the efficiency 
of using one single Amicon filter for all subsamples and the 
same collection tube is sufficient to achieve a suitable yield. 

16. The required centrifugation time may vary according to the 
NMWL of the columns used. This protocol is defined for 30-K 
(or upper) devices, yet a higher centrifugation time is necessary 
for 10-K or 3-K devices (15 and 30 min, respectively). 

17. The filtrate contains the smallest peptides depending on the 
weight limit of the filter device. However, if needed, it is 
possible to recover the concentrated solute by placing the filter 
device upside down in a clean microcentrifuge tube and cen-
trifuging at 1000 × g for 2 min at 4 °C. For optimal recovery, it 
is important to perform the reverse spin immediately after 
filtrating. Besides, desalting, buffer exchange or diafiltration 
of this concentrated solute can be accomplished before eluting 
it by reconstituting the concentrate retained in the column to 
the original sample volume with the desired solvent and repeat-
ing the ultrafiltration process from the beginning to the con-
centrated solute elution.
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18. Ammonium sulphate calculator from EnCor Biotechnology 
Inc. (http://www.encorbio.com/protocols/AM-SO4.htm) 
(selecting 4 °C temperature) can be used to calculate the 
needed amount of ammonium sulphate for each specific sam-
ple. The salt addition will increase the sample volume, which 
should be considered for the reverse-phase chromatography. 
For smallest peptides, ammonium sulphate could be added up 
to 80–85%. 

19. The final exact concentrations of TFA and ACN will vary 
according to the extraction buffer, that is, ultrafiltration or 
ammonium sulphate precipitation protocol. In these examples, 
the concentration of the sample:sample buffer mix prior to 
reverse-phase chromatography would be 6.5% (v/v) of ACN 
for both extraction methods, 0.875% (v/v) TFA for ultrafiltra-
tion and 0.5% (v/v) TFA for ammonium sulphate precipita-
tion. Nevertheless, these slight variations do not appear to 
result in significant differences in the efficiency of the reverse-
phase chromatography process. 

20. Add solutions carefully, especially in the activation step. Pour 
the solution through the walls of the column to avoid produc-
ing irregularities in the resin. 

21. Each column can bind up to 30 μg of total peptide from 10 to 
150 μL sample volumes. 

22. In some cases, the extraction yield can be increased by 
recovering the flow-through and recentrifuging it after 
each step. 

23. Flow-through may be retained to confirm sample binding. 

24. 1–2 μg of peptides are loaded onto an analytical column (25 cm 
C18 2 μm particle size) using an autosampler device (e.g., 
EASY nLC 1000 and Thermo Fisher Scientific) and the pep-
tides are then separated by reverse-phase chromatography 
using a water-acetonitrile chromatographic gradient. Modern 
high-resolution mass spectrometers are recommended for data 
acquisition (e.g., Orbitrap or qTOF). The mass spectrometer is 
operated in data-dependent acquisition (DDA) mode, in which 
a full MS scan is recorded in each cycle, followed by the 
fragmentation of the 10–30 most intense precursor ions to 
obtain the fragment ion spectra. 

25. Obtained raw data are analyzed using a database search strat-
egy. However, the results are susceptible to the characteristics 
of the reference database used for peptide identification. It is 
advisable to add the lists of putative SEPs to a database contain-
ing the canonical peptides and proteins of each organism (avail-
able in ENSEMBL, Uniprot, or other databases). The total 
number of sequences included in the database is also impor-
tant, as an excessively large database (e.g., over 100,000 
sequences) may lead to a higher false discovery rate in the

http://www.encorbio.com/protocols/AM-SO4.htm
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identifications. There are several different approaches for the 
identification of novel potential SEP sequences to be included 
in the reference database. 

One approach that has often been used is to make use of 
Ribo-seq data. There are multiple repositories that contain 
sORFs identified by Ribo-seq for plant species such as 
GWIPS-viz (Arabidopsis thaliana and Zea mays) [102], 
RPFdb v2.0 (A. thaliana) [103], PsORF (35 plant species) 
[104], and uORFdb (A. thaliana and others) [105] (Table 2); 
as well as several tools for the analysis of Ribo-seq data and 
sORF identification such as RiboTaper [106], PRICE [107], 
RiboCode [108], RiboStreamR [109], RiboPlotR [110], or 
RiboNT [111] (Table 3). 

An alternative (and complementary) approach for the 
identification of putative novel SEPs is to make use of the 
genome or lncRNA transcriptome sequences through sORF-
prediction tools such as SPADA [112], sORF Finder [35, 76], 
PhyloCSF (Phylogenetic Codon Substitution Frequencies) 
[34], MiPepid [113], CPPred [114], lncPepid [115], or 
DeepCPP [116] (Table 3). 

In addition, the putative peptide databases can also be 
derived from the six-frame translation of the corresponding 
genome sequence or from the three-frame translation of tran-
scriptomic datasets (e.g., RNA-seq data and lncRNA), an 
approach referred to as peptidogenomics [117]. It is a strategy 
that has been successfully implemented in microorganisms 
[62, 77], and plants [38]. 

An additional consideration for the generation of the puta-
tive SEP database is whether the presence of translation initia-
tion codons in the ORFs (the standard ATG or noncanonical 
codons such as CTG or ACG; see [118–120]) is a requirement 
or not, as both approaches have been used (e.g., [35, 38]). 

26. Once the database has been constructed, the raw LC-MS/MS 
data needs to be interpreted using a database search engine 
(such as SEQUEST [64], Mascot [65], Phenyx [66], X! Tan-
dem [67], OMSSA [68], pFind [69], InsPecT [70], ByOnic 
[71], Comet [72], MS-GF+ [73], MaxQuant [74], or MSTra-
cer [75]). As example, the Mascot search engine (v2.6) can be 
used, using the search parameters accordingly to the experi-
mental and mass spectrometry settings. For peptide identifica-
tion a precursor ion mass tolerance below 10–20 ppm is 
recommended, whereas the fragment ion mass tolerance can 
go from 10 to 20 ppm for high-resolution mass analyzers 
(Orbitrap and TOF) to 0.5 Da if a linear ion trap is used for 
the analysis of the tandem mass spectra. Common peptide 
modifications such as oxidation of methionine and 
N-terminal protein acetylation are used as variable modifica-
tions. False discovery rate (FDR) in peptide identification is set 
to a maximum of 1%.
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27. Validation of (selected) identified peptides is highly recom-
mended due to the intrinsic limitations of FDR estimation 
when working with large databases, although this cannot be 
done yet in a high-throughput manner. Peptide identifications 
that pass the FDR threshold can be further validated with the 
purchase and full LC-MS/MS characterization of synthetic 
peptides with the same identified sequence (e.g., [38]), 
and/or by comparison with the fragmentation patterns and 
retention time predicted by the new machine learning algo-
rithms (e.g., Prosit and MS2 PIP) [94, 95, 97]. 

28. Share data and results in a public repository. Data sharing in the 
public domain is the standard for omics research and a require-
ment for publication. For proteomics, the Proteomics IDEnti-
fications (PRIDE) database (https://www.ebi.ac.uk/pride/) 
at the European Bioinformatics Institute (EMBL-EBI, Hinx-
ton, Cambridge, UK) has enabled public data deposition of 
MS data since 2004, and its archival component has become 
the largest repository for proteomics data sharing worldwide 
[121]. The PRIDE database provides access to most of the 
experimental proteomics data described in MS-related scien-
tific publications. Moreover, several repositories for sORFs and 
SEPs in plants have been developed with different purposes 
and using information from multiple in silico and experimental 
approaches (Table 2). 
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de Recerca) to JLR, and by institutional grant SEV-2015-0533 
(funded by MCIN/AEI/10.13039/501100011033) and by the 
CERCA Programme/Generalitat de Catalunya. R.A. is supported 
by fellowship PRE2018-084278 funded by MCIN/AEI/ 
10.13039/501100011033 and by “ESF Investing in your future.” 
The CRG/UPF Proteomics Unit is part of the Spanish Infrastruc-
ture for Omics Technologies (ICTS OmicsTech). We also acknowl-
edge “Secretaria d’Universitats i Recerca del Departament 
d’Economia i Coneixement de la Generalitat de Catalunya” 
(2017SGR595) and support of the Spanish Ministry of Science 
and Innovation to the EMBL partnership, the Centro de Excelen-
cia Severo Ochoa, and the CERCA Programme/Generalitat de 
Catalunya.

https://www.ebi.ac.uk/pride/


Flower Development Peptidomics 531

References 

1. Tavormina P, De Coninck B, Nikonorova N, 
De Smet I, Cammuea BPA (2015) The plant 
peptidome: an expanding repertoire of struc-
tural features and biological functions. Plant 
Cell 27(8):2095–2118 

2. Hsu PY, Benfey PN (2018) Small but mighty: 
functional peptides encoded by small ORFs in 
plants. Proteomics 18:1700038 

3. Brunet MA, Leblanc S, Roucou X (2020) 
Reconsidering proteomic diversity with func-
tional investigation of small ORFs and alter-
native ORFs. Exp Cell Res 393(1):112057 

4. Brunet MA, Levesque SA, Hunting DJ, 
Cohen AA, Roucou X (2018) Recognition 
of the polycistronic nature of human genes is 
critical to understanding the genotype-
phenotype relationship. Genome Res 28(5): 
609–624 

5. Mudge JM, Ruiz-Orera J, Prensner JR, Bru-
net MA, Calvet F, Jungreis I et al (2022) 
Standardized annotation of translated open 
reading frames. Nat Biotechnol 40(7): 
994–999 

6. Lyapina I, Ivanov V, Fesenko I (2021) Pepti-
dome: chaos or inevitability. Int J Mol Sci 22: 
13128 

7. Hellens RP, Brown CM, Chisnall MAW, 
Waterhouse PM, Macknight RC (2016) The 
emerging world of small ORFs. Trends Plant 
Sci 21(4):317–328 

8. Takahashi F, Hanada K, Kondo T, Shinozaki 
K (2019) Hormone-like peptides and small 
coding genes in plant stress signaling and 
development. Curr Opin Plant Biol 51:88–95 

9. Andrews SJ, Rothnagel JA (2014) Emerging 
evidence for functional peptides encoded by 
short open reading frames. Nat Rev Genet 
15(3):193–204 

10. Couso JP, Patraquim P (2017) Classification 
and function of small open reading frames. 
Nat Rev Mol Cell Biol 18(9):575–589 

11. Plaza S, Menschaert G, Payre F (2017) In 
search of lost small peptides. Annu Rev Cell 
Dev Biol 33:391–416 

12. Wright BW, Yi Z, Weissman JS, Chen J (2022) 
The dark proteome: translation from nonca-
nonical open reading frames. Trends Cell Biol 
32(3):243–258 

13. Orr MW, Mao Y, Storz G, Qian SB (2021) 
Alternative ORFs and small ORFs: shedding 
light on the dark proteome. Nucleic Acids Res 
48(3):1029–1042 

14. Ruiz-Orera J, Hernandez-Rodriguez J, 
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(2016) Examination of endogenous peptides 
in Medicago truncatula using mass spectrom-
etry imaging. J Proteome Res 15:4403–4411 

89. Gemperline E, Keller C, Li L (2016) Mass 
spectrometry in plant-omics. Anal Chem 
88(7):3422–3434 

90. Ye X, Zhao N, Yu X, Han X, Gao H, Zhang X 
(2016) Extensive characterization of peptides 
from Panax ginseng C. A. Meyer using mass 
spectrometric approach. Proteomics 16: 
2788–2791 

91. Zhang K, Mckinlay C, Hocart CH, Djordjevic 
MA (2006) The Medicago truncatula small 
protein proteome and peptidome. J Proteome 
Res 12:3355–3367 

92. Wang X, Li Y, Wu Z, Wang H, Tan H, Peng J 
(2014) JUMP: a tag-based database search 
tool for peptide identification with high sensi-
tivity and accuracy. Mol Cell Proteomics 
13(12):3663–3673 
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Miladinović SM, Schubert OT et al (2014) 
OpenSWATH enables automated, targeted 
analysis of data-independent acquisition MS 
data. Nat Biotechnol 32:219–223 

94. Wilhelm M, Zolg DP, Graber M, Gessulat S, 
Schmidt T, Schnatbaum K et al (2021) Deep 
learning boosts sensitivity of mass 
spectrometry-based immunopeptidomics. 
Nat Commun 12:3346 

95. Gessulat S, Schmidt T, Zolg DP, Samaras P, 
Schnatbaum K, Zerweck J et al (2019) Prosit: 
proteome-wide prediction of peptide tandem 
mass spectra by deep learning. Nat Methods 
16:509–518 

96. Ekvall M, Truong P, Gabriel W, Wilhelm M, 
K€all L (2022) Prosit transformer: a trans-
former for prediction of MS2 spectrum inten-
sities. J Proteome Res 21(5):1359–1364



Flower Development Peptidomics 535

97. Gabriels R, Martens L, Degroeve S (2019) 
Updated MS2 PIP web server delivers fast 
and accurate MS2 peak intensity prediction 
for multiple fragmentation methods, instru-
ments and labeling techniques. Nucleic Acids 
Res 47(W1):W295–W299 

98. Beer LA, Liu P, Ky B, Barnhart KT, Speicher 
DW (2017) Efficient quantitative compari-
sons of plasma proteomes using label-free 
analysis with MaxQuant. Methods Mol Biol 
1619:339–352 

99. Gerster S, Kwon T, Ludwig C, Matondo M, 
Vogel C, Marcotte EM et al (2014) Statistical 
approach to protein quantification. Mol Cell 
Proteomics 13(2):666–677 

100. Fabre B, Lambour T, Bouyssié D, 
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Chapter 20 

Gene Expression Analysis by Quantitative Real-Time PCR 
for Floral Tissues 

Raquel Álvarez-Urdiola, Mariana Bustamante, Joana Ribes, 
and José Luis Riechmann 

Abstract 

Real-time, or quantitative, reverse transcription polymerase chain reaction (qRT-PCR) is a powerful 
method for rapid and reliable quantification of mRNA abundance. Although it has not featured promi-
nently in flower development research in the past, the availability of novel techniques for the synchronized 
induction of flower development, or for the isolation of cell-specific mRNA populations, suggests that 
detailed quantitative analyses of gene expression over time and in specific tissues and cell types by qRT-PCR 
will become more widely used. In this chapter, we discuss specific considerations for studying gene 
expression by using qRT-PCR, such as the identification of suitable reference genes for the experimental 
set-up used. In addition, we provide protocols for performing qRT-PCR experiments in a multiwell plate 
format (with the LightCycler® 480 system, Roche) and with nanofluidic arrays (BioMark™ system, 
Fluidigm), which allow the automatic combination of sets of samples with sets of assays, and significantly 
reduce reaction volume and the number of liquid-handling steps performed during the experiment. 

Key words Real-time PCR, qRT-PCR, Quantitative PCR (qPCR), SYBR Green I dye 

1 Introduction 

Differential gene expression, over time or among different cell and 
tissue types, is central to the developmental processes of all organ-
isms. In flower development studies, this aspect of gene function 
has usually been approached by using methods to characterize 
spatial patterns or domains of gene expression, such as in situ 
hybridization and promoter-reporter gene fusions. Several groups 
have also progressed in the characterization of flower development 
in different plant species using quantitative real-time reverse tran-
scription polymerase chain reaction (qRT-PCR) analyses [1–6], 
although this technique has not traditionally featured prominently 
in flower development research. Nevertheless, as a result of the 
development of techniques for the synchronized induction of

José Luis Riechmann and Cristina Ferrándiz (eds.), Flower Development: Methods and Protocols, 
Methods in Molecular Biology, vol. 2686, https://doi.org/10.1007/978-1-0716-3299-4_20, 
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flower development and for the isolation of cell-specific mRNA 
populations, detailed quantitative analyses of gene expression over 
time and in specific tissues and cells are becoming more broadly 
used. QRT-PCR is a powerful method for rapid and reliable quan-
tification of mRNA abundance, which involves three processes: 
(i) the conversion of mRNA into cDNA via reverse-transcription; 
(ii) the amplification of the resulting cDNA by PCR; and (iii) the 
detection and quantification in real time of the synthesized PCR 
amplification products [7–9]. The reliability of the data obtained in 
qRT-PCR experiments can be affected by several factors that impact 
those processes, including template quality (RNA integrity 
[9, 10]), purity [9, 11] and quantity, efficiency of the RT reaction, 
PCR primer design, and efficiency of the PCR amplification [9]. To 
compensate for between-sample variations in the amount of start-
ing material and in the efficiency of the qRT-PCR process, expres-
sion levels of the genes of interest are reported relative to one or 
more reference genes that are presumed to be uniformly and stably 
expressed across the tissues or conditions tested in the experiment, 
and whose abundance reflects the total amount of mRNA present 
in each sample. Thus, the reliability of qRT-PCR analyses is largely 
affected by the suitability of the gene (or genes) that is selected as a 
reference, that is, by whether or not such a gene really fulfils the 
requirements of a normalization control [12, 13].
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Housekeeping genes, which function in basic cellular processes 
and are expressed in all cells of an organism, have often been used as 
reference genes to normalize the data in qRT-PCR experiments 
(e.g., genes such as glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), elongation factor-1α (EF-1α), actin (ACT), or tubulin 
(TUB)). Although the initial evidence indicating that housekeeping 
genes are stably expressed was obtained using methods that are 
mostly qualitative (for instance, RNA gel-blots and end-point 
RT-PCR), subsequent studies demonstrated that in some circum-
stances their expression may be regulated or be unstable, showing 
changes in transcript levels throughout development or among 
different conditions or tissues. Besides, housekeeping genes are 
usually expressed at higher levels than the typical genes of interest. 
For these reasons, using them as reference genes may introduce 
biases in the results obtained by qRT-PCR [12, 13]. For example, 
in a series of experiments designed to assess traditional Arabidopsis 
reference genes (including ACT2, ACT7, ACT8, ADENINE PH 
OSPHORIBOSYLTRANSFERASE 1 (APT1), EF1α, EUKARY-
OTIC TRANSLATION INITIATION FACTOR 4A1 (eIF4A), 
TUB2, TUB6, TUB9, UBIQUITIN 4 (UBQ4), UBQ5, UBQ10, 
and UBQ11), it was found that eIF4A would appear to be stably 
expressed over the course of silique development when APT1, 
UBQ5, or eF1α were used to normalize the data, whereas its expres-
sion would appear quite variable when TUB6 was used as reference 
gene [13].
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In summary, the validity of “housekeeping” reference genes is 
not universal, and is highly dependent on the experimental condi-
tions [12]. Thus, the selection of appropriate reference genes for 
the normalization of qRT-PCR data has emerged as a crucial com-
ponent for successful expression studies carried out with this tech-
nology, and statistical algorithms like geNorm [14] or  BestKeeper 
[15] have been developed for that purpose (see Note 1). 

Concomitantly, the use of genome-wide technologies (i.e., 
initially DNA microarrays and subsequently RNA-Seq) to charac-
terize gene expression changes across many different tissues and 
developmental stages, environmental conditions, or in response to 
biotic and abiotic stresses or perturbations has resulted in very rich 
datasets (e.g., [16]) that can be mined to identify novel, better 
suited reference genes for the desired experimental set-up. For 
instance, Czechowski et al. analyzed a very large set of Arabidopsis 
data obtained with Affymetrix ATH1 GeneChip arrays to identify 
several hundred genes that outperform traditional reference genes 
in terms of expression stability throughout development and under 
a range of environmental conditions [17]. Subsequent qRT-PCR 
experiments performed with a subset of those novel reference genes 
confirmed that they showed superior expression stability and lower 
absolute expression levels [17] (see Note 2). The results obtained in 
Arabidopsis have informed the selection of reference genes in other 
plant species, as the corresponding orthologous genes may also 
show stable expression (e.g., in Leafy spurge, see [18]). If candidate 
reference genes are selected based on orthology, however, their 
suitability needs to be confirmed experimentally, as such character 
is not always maintained across all experimental conditions in all 
organisms [9] (for instance, see [19]). 

Candidate reference gene selections for various species, such as 
maize [20–23], rice [24–27], wheat [28–30], or strawberry 
[31, 32] and for specific conditions, tissues, or developmental 
stages (e.g., rice anther development, wheat meiosis, or strawberry 
fruits) have also been published. In addition, a literature review by 
Joseph et al. compiled a collection of reference genes for Arabidop-
sis and other plant species [33] (see Table 1). 

The approach of using genome-wide data to select reference 
genes has been further expanded and refined with RefGenes,  a  
online tool that allows easy identification of condition-specific ref-
erence genes [34]. RefGenes is based on the Genevestigator data-
base of normalized and well-annotated microarray and RNA-Seq 
experiments and is accessible through the Genevestigator web page 
(www.genevestigator.com). The appropriateness of using 
condition-specific reference genes is based on the observation that 
for each biological context a subset of stable genes exists that has a 
smaller variance than either commonly used reference genes or 
genes that were selected for their stability across all conditions

http://www.genevestigator.com
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Table 1 
Arabidopsis general reference genes according with their expression stability under different 
conditions [33] 

Accession 
number 

At1g50010 α-Tubulin GATGTACCGTGGTGATGTC 
GAGCCTCTGAAAATTCTCC 

Abiotic stress Sulfate starvation, salt, 
drought, ABA 

AT3G18780 Actin 2 CTTGCACCAAGCAGCATGAA 
CCGATCCAGACACTGTAC 
TTCCTT 

Abiotic stress Dehydration, cold, salt, 
oxidative, 
exposure to high light 
intensity 

TATGTGGCTATTCAGGCTGT 
TGGCGGTGCTTCTTCTCTG 

Abiotic stress Salt, mannitol, drought, 
and cold 

ATGCCATCCTCCGTCTTGAC 
CGCTCTGCTGTTGTGGTGAA 

Biotic stress A. tumefaciens, 
H. schachtii, B. cinerea, 
P. syringae pv. 
maculicola, P. syringae 
pv. tomato 

At3g53750 Actin 3 GAGGCTCCTCTTAACCCAA 
TACAATTTCCCGCTCTGC 

Abiotic stress Salt stress, drought stress, 
ABA 

At1g49240 Actin 8 TATGTGGCTATTCAGGCTGT 
TGGCGGTGCTTCTTCTCTG 

Abiotic stress Salt, mannitol, drought, 
and cold 

GGTGATGGTGTGTCT 
ACTGAGCACAATGTTAC 

Biotic stress A. tumefaciens 

At1g13440 GAPDH TTGGTGACAACAGG 
TCAAGCA 

AAACTTGTCGCTCAATGCAA 
TC 

Abiotic stress Salt, mannitol, drought, 
and cold 

At2g41540 GAPDH GAAGCAAGGCAAAGAAAT 
GAAGCAAGGCAAAGAAAT 

Biotic stress A. tumefaciens 

At5g25760 UBC21 TTCAAATGGACCGCTCTTA 
TCA 

AAACACCGCCTTCGTAAGGA 

Biotic stress A. tumefaciens 

At1g64230 UBC28 TCCAGAAGGATCCTCCAAC 
TTCCTGCAGT 

ATGG 
TTACGAGAAAGACACCGCC 
TGAATA 

Abiotic stress Salt, osmotic, 
temperature, 
radiomimetic, 
oxidative, 
UV, Zebularine, 
Trichostatin A, Sodium 
butyrate 

At3g62250 UBQ5 GTAAACGTAGGTGAGTCC 
GACGCTTCATCTCGTCC 

Abiotic stress Drought, mannitol, and 
salt 

GACGCTTCATCTCGTCC 
GTAAACGTAGGTGAGTCC 

Biotic stress B. cinerea; P. syringae 
pv. maculicola, 
P. syringae pv. Tomato 

At5g62690 Tubulin 2 CTCTGACCTCCGAAAGC 
TTGC 

Abiotic stress 

(continued)
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(continued)

Accession 
number Conditions 

Sucrose, NaCl, man 
paclobutrazol, 

nitol, 

hormonal 
AGCAATACCAAGATGCAAC 
TGCG 

TAACTAAATTATTCTCAGTAC 
TCTTCC 

Biotic stress B. cinerea; P. syringae 
pv. maculicola, 
P. syringae pv. Tomato 

At5g15710 F-BOX TTTCGGCTGAGAGGTTCGAG 
T 

GATTCCAAGACG 
TAAAGCAGATCAA 

Abiotic stress Metal stress 

At5g08290 YLS8 TTACTGTTTCGGTTGTTC 
TCCATTT 

CACTGAATCATG 
TTCGAAGCAAGT 

Abiotic stress Metal stress 

At2g28390 SAND AACTCTATGCAGCATTTGA 
TCCACT 

TGATTGCATATCTTTA 
TCGCCATC 

Abiotic stress Metal stress 

AACTCTATGCAGCATTTGA 
TCCACT 

TGATTGCATATCTTTA 
TCGCCATC 

Biotic stress P. infestans, A. laibachii 

At5g60390 EF1-α TGAGCACGCTCTTCTTGC 
TTTCA 

GGTGGTGGCATCCATCTTG 
TTACA 

Abiotic stress Metal stress 

AT5G46630 AP2M 
(CACS) 

TCGATTGCTTGG 
TTTGGAAGAT 

GCACTTAGCGTGGACTCTG 
TTTGATC 

Development Different tissues, organs, 
developmental stages, 
and genotypes 

At1g58050 Helicase CCATTCTACTTTTTGGCGGC 
T 

TCAATGGTAACTGATCCAC 
TCTGATG 

Development Different tissues, organs, 
developmental stages, 
and genotypes 

AT4G26410 Expressed GAGCTGAAGTGGCTTCCA 
TGAC 

GGTCCGACATACCCATGA 
TCC 

Development Different tissues, organs, 
developmental stages, 
and genotypes 

AT4G34270 TIP41-
like 

GTGAAAACTG 
TTGGAGAGAAGCAA 

TCAACTGGATACCC 
TTTCGCA 

Development Different tissues, organs, 
developmental stages, 
and genotypes 

Primer sequences indicated in the table correspond to those used in the original experiment, as referenced in [33]



[34]. In other words, there is no gene that is universally stable, and 
the most appropriate set of reference genes for each biological 
context and specific experimental condition does vary.
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Through RefGenes, users can select the transcriptomic experi-
ments that are most similar to their chosen experimental conditions 
(including tissue, developmental stage, treatment, etc.). Afterward, 
the user indicates the set of target genes of interest (up to ten genes 
can be tested at once). A search is then triggered to identify those 
genes that have the lowest variance within the selected set of 
experiments and a range of expression that is similar to that of the 
target gene set. The result of the search is graphically displayed, 
showing the top 20–25 best candidate reference genes for the 
selected conditions. The behavior of these candidate genes in the 
chosen (or in additional) tissues or experimental conditions can 
then be explored using the Conditions tool of Genevestigator [35]. 

It is worth noting that the novel candidate reference genes that 
are identified using RefGenes and the aforementioned algorithms 
(geNorm or Bestkeeper) should be validated for the specific 
biological conditions of the experiments to be performed, for 
example, tissue type [36], growth conditions [24, 37], stresses 
[22, 38], treatments [39], etc. The evaluation of reference genes 
should be done by comparing the results with those obtained for 
other algorithms, experimentally, and preferably together with 
commonly used reference genes. 

The use of RefGenes to select reference genes for flower devel-
opment studies is illustrated in Figs. 1, 2, and 3, and in Table 2.  Ten  
genes that participate in and/or are expressed at early stages of 
Arabidopsis flower development were used as target set to search 
for reference genes using the genome-wide expression profiling 
data available in Genevestigator (SUPERMAN -SUP, At3g23130-
, LEAFY -LFY, At5g61850-, AGL24 -At4g24540-, YABBY3 -
YAB3, At4g00180-, APETALA2 -AP2, AT4g36920-, AGL42
-At5g62165-, SHATTERPROOF2 -SHP2, At2g42830-, AGA-
MOUS -AG, AT4g18960-, SEPALLATA3 -SEP3, At1g24260-, 
and APETALA3 -AP3, At3g54340-, see [40]). RefGenes returns a 
list of candidate novel reference genes (Fig. 1, Table 2), which in 
this chapter are then compared to traditional reference genes (list of 
genes from [17]) and to reference genes for developmental pro-
cesses (genes from [33] included in Table 1). The novel reference 
genes and the reference genes specifically selected for studying plant 
development are more stably expressed throughout all plant stages 
of development, and their mean expression level is generally lower 
than that of traditional reference genes, and thus closer to that of 
the typical genes of interest (see Fig. 2). Besides, novel reference 
genes selected for flower development studies are more stably 
expressed in floral tissues than traditional reference genes and the 
reference genes selected for studying other developmental pro-
cesses (Fig. 3).
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Fig. 1 Example of output results obtained when using the RefGenes tool (Anatomy-Inflorescence category in 
Genevestigator) with a set of floral regulatory genes (SUP (AT3G23130), LFY (AT5G61850), AGL24 
(AT4G24540), YAB3 (AT4G00180), AP2 (AT4G36920), AGL42 (AT5G62165), SHP2 (AT2G42830), AG 
(AT4G18960), SEP3 (AT1G24260), and AP3 (AT3G54340)) 

The detection of product formation in real-time during the 
amplification reaction of qRT-PCR experiments is carried out by 
measuring the emission signal from either fluorescent double-
stranded DNA-binding dyes (such as SYBR® Green I and Eva-
Green® , see below), or template-specific fluorescent probes (such 
as the TaqMan® probe technology). A general protocol for using 
SYBR Green I dye in a qRT-PCR experiment performed in a Light-
Cycler® 480 Real-Time PCR system (Roche) is provided in this 
chapter (equally suited real-time PCR machines are available from 
various manufacturers). In addition to standard real-time PCR 
systems, in which reactions are performed either in thin-wall PCR 
tubes or in multiwell plates, newer systems based on nanofluidic 
arrays (such as the BioMark™ system, Fluidigm) have been devel-
oped for high-throughput analyses. These arrays contain nanoflui-
dic networks that allow the automatic combination of sets of 
samples with sets of assays, significantly reducing reaction volume 
(and thus the amount of material needed to perform an assay) and 
the number of liquid-handling steps performed during the experi-
ment. A protocol for a qRT-PCR experiment using EvaGreen® and 
the BioMark™ system is also provided.
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2 Materials 

2.1 Tissue Collection 

and RNA Extraction 

1. RNase-free microcentrifuge tubes (1.5 mL). 

2. Plastic pellet pestles for 1.5 mL microcentrifuge tubes 
(optional: a mixer motor or an electric drill). 

3. Forceps (e.g., Dupont size #5). 

4. Liquid nitrogen. 

5. Vortex. 

6. Microcentrifuge. 
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Showing 5 measure(s) of 5 gene(s) on selection: Traditional HK Czechowski et al. (17) 

10 developmental stages from data selection: ATH allDataset: 

created with GENEVESTIGATOR 

Fig. 2 Expression characteristics during plant development of some commonly used and novel reference 
genes in Arabidopsis inflorescences. (a) Traditional reference genes: GAPDH (AT3G26650, GAPA1), ACT2 
(AT3G18780), UBQ10 (AT4G05320), TUBB6 (AT5G12250), TUBA5 (AT5G19780) [17]. (b) Reference genes for 
developmental processes: AP2M (AT5G46630), AT1G58050, AT4G26410, AT4G34270 [33]. (c) Novel refer-
ence genes based on the expression of floral regulatory genes: AT2G28390, AT5G15710, VPS45 (AT1G77140), 
AT5G10700, and CLT2 (AT4G24460)
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Showing 4 measure(s) of 4 gene(s) on selection: HK Joseph et al (33) 

10 developmental stages from data selection: ATH allDataset: 

created with GENEVESTIGATOR 

Fig. 2 (continued) 

7. Spectrum Plant Total RNA Kit (Sigma-Aldrich) or an equiva-
lent total RNA isolation kit or reagents (see Note 3). 

8. Spectrophotometer (such as a Nanodrop). 

9. Agilent Bioanalyzer and associated reagents (Agilent RNA 
6000 Nano kit). 

2.2 Reverse 

Transcription Reaction 

1. High-Capacity cDNA Reverse Transcription Kit (e.g., Applied 
Biosystems; other commercial kits are available, but the proto-
cols provided below are based on this kit) containing dNTPs 
(100 mM), MultiScribe reverse transcriptase (50 U/mL), 
reverse transcription Random Primers, reverse transcription 
buffer (10×), RNase inhibitor (20 U/mL).
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Showing 5 measure(s) of 5 gene(s) on selection: HK for flower development 
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created with GENEVESTIGATOR 

Fig. 2 (continued) 

2. RNase-free PCR-tubes. 

3. Nuclease-free water. 

2.3 Quantitative Real 

Time PCR— 
LightCycler® 480 

System 

1. LightCycler® 480 SYBR Green I Master (Roche Diagnostics; 
other commercial kits are available, but the protocols provided 
in the following text are based on this kit): ready-to-use 
hot-start PCR mix containing FastStart Taq DNA Polymerase, 
reaction buffer, dNTP mix (with dUTP, instead of dTTP), 
SYBR Green I dye, and MgCl2. 

2. LC 480 Multiwell Plate 96 (Roche Diagnostics) (see Note 4). 

3. Forward and reverse PCR primers at 100 μM each. 

4. Nuclease-free water.
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Fig. 3 Expression characteristics in different floral tissues of some commonly used and novel reference genes 
in Arabidopsis inflorescences. (a) Traditional reference genes. (b) Reference genes for developmental 
processes. (c) Novel reference genes based on the expression of floral regulatory genes (as in Fig. 2)
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Fig. 3 (continued) 

2.4 Quantitative Real 

Time PCR— 
BioMark™ System 

1. TaqMan PreAmp Master Mix 2× (Applied Biosystems). 

2. SsoFast EvaGreen SuperMix with Low ROX (Biorad): 2× real-
time PCR mix, containing dNTPs, Sso7d fusion polymerase, 
MgCl2, ROX passive reference dye and stabilizers. 

3. 2× Assay Loading Reagent (Fluidigm). 

4. 20× DNA Binding Dye Sample Loading Reagent (Fluidigm). 

5. Exonuclease I (E. coli) (20,000 U/mL; New England Biolabs). 

6. Exonuclease I Reaction Buffer 10× (New England Biolabs). 

7. Forward and reverse PCR primers at 100 μM each. 

8. Nuclease-free water. 

9. TE Buffer: 10 mM Tris-HCl, pH 8.0, 1.0 mM EDTA 
(TEKnova). 

10. DNA Suspension Buffer; 10 mM Tris-HCl, pH 8.0, 0.1 mM 
EDTA (TEKnova). 

11. 48.48 Dynamic Array IFC (Fluidigm). 

3 Methods 

The performance of the primers for a qRT-PCR experiment is 
crucial for obtaining high-quality results, and several aspects must 
be considered for successful primer design (see Note 5). There are



many online resources for primer design, some of which also pro-
vide access to a consultative design service, such as: 
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Table 2 
Candidate novel reference genes for Arabidopsis proteins and peptides expressed in floral tissues 
identified using RefGenes. These genes were selected using as search set a list of floral regulatory 
genes 

Gene Annotation Search set 

AT2G28390 SAND family protein (MON1) Floral regulatory genes 

AT5G15710 Galactose oxidase/kelch repeat superfamily protein Floral regulatory genes 

AT1G77140 Vacuolar protein sorting 45 (VPS45) Floral regulatory genes 

AT5G10700 Peptidyl-tRNA hydrolase II (PTH2) family protein Floral regulatory genes 

AT4G24460 CRT (chloroquine-resistance transporter)-like 
transporter 2 (CLT2) 

Floral regulatory genes 

AT5G22760 PHD finger family protein (DDP2) Floral regulatory genes 

AT5G11380 1-deoxy-D-xylulose 5-phosphate synthase 3 (DXPS3) Floral regulatory genes 

AT5G04270 DHHC-type zinc finger family protein (PAT15) Floral regulatory genes 

AT1G50170 Sirohydrochlorin ferrochelatase B (SIRB) Floral regulatory genes 

AT3G59000 F-box/RNI-like superfamily protein Floral regulatory genes 

AT2G36480 ENTH/VHS family protein Floral regulatory genes 

AT5G52880 F-box family protein Floral regulatory genes 

AT5G65620 Zincin-like metalloproteases family protein (TOP1) Floral regulatory genes 

AT5G60750 CAAX amino terminal protease family protein. Encodes 
a chloroplast endoproteinase required for photosynthetic 
acclimation to higher light intensities (SCO4) 

Floral regulatory genes 

AT5G64970 Mitochondrial substrate carrier family protein Floral regulatory genes 

AT3G61180 RING/U-box superfamily protein Floral regulatory genes 

AT2G41790 Insulinase (Peptidase family M16) family protein Floral regulatory genes 

AT5G13050 5-formyltetrahydrofolate cycloligase (5FCL) Floral regulatory genes 

AT5G04920 EAP30/Vps36 family protein (VPS36) Floral regulatory genes 

AT3G59770 SacI homology domain-containing protein / 
WW domain-containing protein (SAC9) 

Floral regulatory genes

• Oligoarchitect: http://www.oligoarchitect.com/LoginServlet

• RealTimeDesign: https://www.biosearchtech.com/support/ 
tools/design-software/realtimedesign-software

• QuantPrime: http://www.quantprime.de/

• IDT-qPCR: http://eu.idtdna.com/scitools/Applications/ 
RealTimePCR/

http://www.oligoarchitect.com/LoginServlet
https://www.biosearchtech.com/support/tools/design-software/realtimedesign-software
https://www.biosearchtech.com/support/tools/design-software/realtimedesign-software
http://www.quantprime.de/
http://eu.idtdna.com/scitools/Applications/RealTimePCR/
http://eu.idtdna.com/scitools/Applications/RealTimePCR/
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• Primer3: http://primer3.sourceforge.net/

• Primer-BLAST: http://www.ncbi.nlm.nih.gov/tools/primer-
blast/ 

3.1 Tissue Collection 

and RNA Extraction 

RNA quality (integrity and purity) is a critical factor for qRT-PCR 
experiments. 

1. Harvest at least 100 mg of the desired plant tissue (e.g., inflor-
escences), into a 1.5 mL RNase-free microcentrifuge tube 
containing liquid nitrogen. 

2. Grind the tissue to a fine powder with the pellet pestles (and a 
mixer motor), keeping the bottom of the tube immersed in 
liquid nitrogen throughout the grinding process to avoid RNA 
degradation (see Notes 6 and 7). 

3. Follow the manufacturer’s instructions for the RNA 
extraction kit. 

4. Analyze the integrity of the isolated RNA using a Bioanalyzer 
(or by using the 3′/5′ integrity assay, see [9]) and determine the 
concentration by absorption at 260 nm (e.g., with a Nanodrop 
spectrophotometer). 

3.2 Reverse 

Transcription Reaction 

The reverse transcription reaction to synthesize cDNA from the 
starting RNA material can be performed with various priming 
strategies, enzymes, and experimental conditions [8, 9]. However, 
to compare gene expression data across different experiments or 
laboratories, these variables should be kept constant, particularly 
ensuring that the same amount of RNA is added to each reaction 
(or that the enzyme/protocol used results in a proportional cDNA 
yield). 

1. Prepare an RT master mix in a 1.5 mL tube: 

Component Volume (per reaction) (μL) 

Water 4.2 

10× RT Buffer (1× 2  

25× dNTP Mix (100 mM) 0.8 

10× RT Random Primers 2 

MultiScribe Reverse Transcriptase 1 

2. Add 10 μL of Master Mix to each individual PCR-tube. Then 
add 100–1000 ng of each RNA sample, in a volume of 10 μL. 
The final reaction volume is 20 μL. No-RT control reaction 
(s) should be included in the experiment.

http://primer3.sourceforge.net/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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3. Briefly centrifuge the tubes to collect the contents and to 
eliminate any air bubbles. 

4. Place the tubes in a thermal cycler using the following 
conditions: 

Step 1 Step 2 Step 3 Step 4 

Temperature (°C) 25 37 85 4 

Time 10 min 120 min 5 min 

5. Store cDNA samples at 4 °C (short term) or at -20 °C (for up 
to 6 months). 

3.3 Quantitative Real 

Time PCR: 

LightCycler® 480 

System 

1. Set up the samples: 

1.1. Every gene/primer-pair combination used in a qPCR 
should be tested to calculate primer efficiency (see 
Note 8). 

1.2. The cDNA samples resulting from the RT reaction can be 
diluted in water, to obtain a final estimated concentration 
between 5 and 10 ng/μL (estimation based on the initial 
amount of RNA used in the RT reaction). This concentra-
tion range is ideal for the qRT-PCR. All amplification 
reactions should have a similar concentration of cDNA. 

2. Before loading the PCR plate, and in order to minimize pipet-
ting errors, it is important to prepare master mixes for each 
primer pair used. The accuracy of qPCR is highly dependent on 
accurate pipetting and thorough mixing of solutions. The pro-
tocol provided here uses SYBR® Green I chemistry, but other 
PCR-product detection chemistries could be used (see Note 9). 
To prepare the qPCR Master Mix, add components in the 
following order: 

Volume (per reaction) 
for 96-well plate (μL) 

LC480 SYBR® Green I Master (2×) 
(Roche Diagnostics) 

10 

Water 6.4 

Primer Forward (10 μM) 0.8 

Primer Reverse (10 μM) 0.8 

3. Loading the plate: Once all master mixes for each pair of 
primers are prepared, start loading the plate by adding first 
the Master Mix (18 μL) and then the cDNA samples (2 μL).
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Avoid producing bubbles. The final reaction volume in each 
well is 20 μL. Then add the No Template Control (NTC) and 
no-Reverse Transcription control (no-RT, or RT) reactions (see 
Note 10). Seal the plate with LightCycler® 480 Sealing Foil by 
pressing it firmly to the plate surface, using your hand or a 
scraper. Sealing the plate properly is crucial to eliminate evapo-
ration at high temperatures. 

4. Place the multiwell plate in a standard swing-bucket centrifuge 
equipped with a rotor for multiwell plates with suitable adap-
tors. Balance it with a suitable counterweight (e.g., another 
multiwell plate). Centrifuge the plate at 1500 × g for 2 min. 

5. Load the multiwell plate into the LightCycler® 480 Instrument 
and set-up the qPCR program (annealing temperature in the 
PCR is primer-dependent): 

Temperature (°C) Time Acquisition 

Activation 95 10 min None 

PCR (45 Cycles) 95 10 s None 
60 30 s None 
72 30 s Single 

Melting 95 2 s None 
65 15 s None 
95 – Continuous 

Cooling 40 30 s None 

3.4 Quantitative Real 

Time PCR: BioMark™ 
System 

BioMark System arrays allow for the automatic combination of sets 
of samples with sets of assays, significantly reducing reaction vol-
ume and the number of liquid-handling steps performed during the 
experiment. For instance, using the 48 × 48 array (as described in 
this protocol), 48 different samples (e.g., time-points in a time-
course experiment) can be tested with up to 48 different assays 
(e.g., genes). 

1. Specific Target Amplification (STA): This step is recommended 
to increase the number of copies of target DNA. 

1.1. STA Primer Mix (500 nM): 

1.1.1. Pool together 1 μL aliquots of all 100 μM primer 
sets to be included in the STA reaction (up to 
100 different assays). 

1.1.2. Add DNA Suspension Buffer to make the final 
volume 200 μL. 

1.1.3. Vortex to mix and briefly spin reaction tube.



Component Volume (per reaction) (μL)

1

1

1.2. STA Pre-Mix: 

1.2.1. In a DNA-free hood, prepare a Pre-Mix for the 
STA reaction: 
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TaqMan PreAmp Master Mix 2.5 

500 nM pooled STA Primer Mix 0.5 

Water 0.75 

1.2.2. Add 3.75 μL of STA Pre-Mix for each sample in a 96-well 
plate. 

1.2.3. Add 1.25 μL of cDNA (at 10–20 ng/μL) to each reaction 
well, making a final volume of 5 μL. Include a 
no-PreAmplification control: add water instead of cDNA. 

1.2.4. Seal the plate properly. Then, vortex and briefly spin the 
plate. 

1.3. STA thermal cycle reaction: 

1.3.1. Place the plate into the thermal cycler and run the 
following program (annealing temperature in the 
PCR is primer-dependent): 

Activation 16 cycles Hold 

Temperature (°C) 95 95 60 4 

Time 10 min 15 s 4 min 

1.3.2. Eliminate the unincorporated primers from the STA ampli-
fication reaction. Prepare Exonuclease Mix as follows: 

Component Per 5 μL Sample 

Water 1.4 μL 

Exonuclease I Reaction Buffer 0.2 μL 

Exonuclease I (20 units/μL) 0.4 μL 

1.3.3. Add 2 μL of Exonuclease Mix to each 5 μL STA reaction. 
Vortex, centrifuge, and place in a thermal cycler. 

Digest Inactivate Hold 

Temperature (°C) 37 80 4 

Time 30 min 15 min
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1.3.4. Dilute the STA reaction to an appropriate final product 
concentration, as shown in the following text. A minimum 
dilution of five-fold should be used. 

Volume of water or TE Buffer 

of STA Rx 5-fold dilution 10-fold dilution 20-fold dilution 

18  μL 43  μL 93  μL 

Volume 

7 μ 

Store diluted STA products at -20 °C or use immedi-
ately for on-chip PCR. 

2. Sample and Assay Mix preparation: 

2.1. Prepare Sample mix as shown in the following text: 

Volume per inlet 
with overage (μL) 

2× SsoFast EvaGreen Supermix with Low ROX 3.0 

20× DNA Binding Dye Sample Loading Reagent 0.3 

2.2. In a new 96-well plate aliquot 3.3 μL of Sample mix and add 
2.7 μL of each STA and Exo I-treated and diluted sample. 

2.3. Seal the plate properly. Then, vortex and spin plate. Keep 
on ice. 

2.4. Prior to preparing the Assay mix, combine the two primers of 
each primer pair making a final concentration of 20 μM. 

2.5. Prepare Assay mix as shown in the following text: 

Volume per inlet 
with overage (μL) 

2× Assay Loading Reagent 3.0 

1× DNA Suspension Buffer 2.4 

2.6. In a new 96-well plate, aliquot 5.4 μL of Assay mix and add in 
1 μL of the 100 μM combined forward and reverse primers 
primer pair mix. The final concentration of each primer pair is 
5 μM in the inlet and 500 nM in the final reaction. 

2.7. Seal the plate properly. Then, vortex and spin the plate. Keep 
on ice. 

3. Priming the 48 × 48 Dynamic Array™ IFC. 

3.1. Inject control line fluid into each accumulator on the chip. 
Load the chip within 60 min of priming (refer to instru-
ment manufacturer’s instructions for details).
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3.2. Remove and discard the blue protective film from the 
bottom of the chip. 

3.3. Place the chip into the IFC controller for the 48 × 48 
Dynamic Array IFC. 

3.4. Run the Prime script for the 48 × 48 Dynamic Array IFC. 

3.5. Pipette 5 μL of each assay and 5 μL of each sample into 
their respective inlets on the chip. Avoid creating bubbles 
while vortexing and when transferring reagents to the 
IFC, failure to do so may result in a decrease in data 
quality. 

3.6. Place the chip to the IFC controller and run the Load Mix 
program. 

3.7. After the program has run, take out the chip from the IFC 
controller and remove any dust particle from the chip 
surface. 

3.8. Place the chip in the Biomark System and run the follow-
ing program (annealing temperature in the PCR is primer-
dependent): 

Activation 30 Cycles Melting 

Temperature (°C) 95 96 60 60 95 

Time 60 s 5 s 20 s 3 s 1 °C/3 s 

3.5 Data Analysis Different methodologies can be used for determination of the 
Quantification Cycle, Cq [41] (previously referred to as Ct/Cp/ 
take off point):

• The threshold cycle method measures the Cq at a constant 
fluorescence level. These constant threshold methods assume 
that all samples have the same amplicon DNA concentration at 
the threshold fluorescence. The strength of this method is that it 
is extremely robust, but the threshold value needs to be adjusted 
for each experiment.

• The second derivative method calculates Cq as the second deriv-
ative maximum of the amplification curve. It is not user-
dependent and is widely used. 

Before performing the actual analysis, it is important to validate 
the data according to a variety of criteria (preferably following the 
Minimum Information for Publication of Real Time PCR Experi-
ments: MIQE guidelines) (see Note 11, [41]). In particular:

• Check amplification curves. A normal amplification plot has 
three distinct phases: linear baseline, exponential, and plateau.

• Check controls (RT-, NTC).
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• Check that the slope of the standard curve is between -3.2 and
-3.5.

• Check technical replicates. They should be within 0.5 Cq of each 
other.

• Check melting peaks (when using a binding dye, or probes such 
as Molecular Beacons or Scorpions that are not hydrolyzed 
during the reaction) to verify that single, specific amplification 
products have been synthesized in the reaction. 

3.5.1 Absolute 

Quantification 

Absolute quantification relies on measurement to a standards curve 
constructed using the real-time PCR data obtained from amplifica-
tion of these standards of known concentrations of template. Com-
monly, standards are derived from purified dsDNA plasmid, 
in vitro-transcribed RNA or in vitro-synthesized ssDNA. A stan-
dard curve (plot of Cq value against log of amount of standard) is 
generated using different dilutions of the standard. The Cq value of 
the target is compared with the standard curve, allowing calculation 
of the initial amount of the target. It is important to select an 
appropriate standard for the type of nucleic acid to be quantified. 
This method requires having the same efficiency of amplification in 
all reactions (reactions with experimental samples and reactions 
with the external standards). When using absolute quantification 
for determination of mRNA concentration, it is usual to correct 
absolute copy number of the specific target relative to absolute copy 
number of one or more reference genes. 

3.5.2 Relative 

Quantification 

Relative quantification relies on comparing the expression level of a 
target gene relative to a reference gene between a control sample 
and the test samples. Normalization to reference genes is the most 
common method for controlling for variation in qRT-PCR experi-
ments. It is used to measure the relative change in mRNA expres-
sion levels. Many mathematical models are available. Most common 
relative quantification methods are: 

(a) Pfaffl model [42]: combines gene quantification and normali-
zation into a single calculation (Eq. 1). This model adjusts the 
amplification efficiencies (E) from target and reference genes in 
order to correct differences between the two assays. 

Ratio= 
Etarget 

ΔCq target control- sampleð Þ  

Ereferenceð ÞΔCq reference control- sampleð Þ ð1Þ 

(b) 2-ΔΔCq method [43]: This is a simpler version of the first 
model. Target and control amplification efficiency (Etarget 

and Ereference) are assumed to be maximum (100%, i.e., a
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value of 2, indicating amplicon doubling during each cycle) 
(Eq. 2). In addition, the relative expression of the target in all 
test samples is compared to that in a control or calibrator 
sample. 

Ratio=2- ΔCq Sample–ΔCq control½ ð2Þ 

4 Notes 

1. geNorm is a widely used algorithm to determine the most stable 
reference from a given set of candidate genes on the basis of the 
M value (the M value is the internal control gene-stability 
measure, defined as the average pair-wise variation of a particu-
lar gene with all other control genes; genes with the lowest M 
values have the most stable expression) [18]. geNorm calculates 
and compares the M value of each pair of genes, and eliminates 
the gene with the highest M value, and then repeats this process 
with the remaining genes until the pair of genes with the lowest 
M value is identified. Thus, the genes forming this pair are 
considered as optimal reference genes among the initial 
candidate set. 

2. The genome-wide analyses performed by Czechowski et al. led 
to the identification of many novel reference gene candidates, 
with purportedly better expression characteristics than tradi-
tional reference genes [17]. In these analyses the SD/MV ratio 
(SD/mean expression value, i.e., the coefficient of variation, or 
CV) for each gene in all the given experimental conditions 
(developmental series, abiotic stress series, hormone series, 
nutrient starvation and re-addition series, diurnal series, light 
series, and biotic stress series) is calculated. The gene that has 
the lowest CV value is considered as the gene with the most 
stable expression, and therefore a potential reference gene. 
Through these analyses, 25 reference genes, including 
20 novel and 5 traditional ones, were recommended 
[17]. These genes were then validated by qRT-PCR and their 
expression stability ranked using the geNorm algorithm. 

3. There are specific plates and films for the LC480 system that 
have been designed to ensure the best heat transfer from the 
thermal block and minimal autofluorescence, which is impor-
tant to achieve a good signal-to-noise ratio in the detection of 
amplification products. In this protocol, we suggest using the 
LC 480 Multiwell Plate 96 from Roche. 

4. The RNA preparation should be free of contaminating geno-
mic DNA, so we recommend using a previously tested com-
mercial kit for RNA isolation (see Note 10).
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5. For primer design, it is important to consider the following 
points: (1) PCR products should be short (ideal length is from 
70 to 250 bp). (2) The gene-specific forward and reverse 
primers should have similar melting temperatures (Tm) and 
length. (3) Primers should be between 15 and 25 nucleotides 
long and with a G/C content of around 50%. (4) Primers 
should have low or no self-complementarity to avoid the for-
mation of primer dimers. (5) For the same reason, avoid pairs 
of primers that show sequence complementarity at their 3′ 
ends. (6) Primers that span introns or cross intron/exon 
boundaries are advantageous because they allow to distinguish 
amplification from cDNA or from contaminant genomic DNA. 
Primers should be ordered with desalt purification. Primer 
stock solutions should be prepared with DNase/RNase-free 
water. Make aliquots to avoid contamination and repeated 
freezing/thawing. Original stock of PCR primers should be 
stored at -20 °C and working dilutions at 4 °C for up to 
2 weeks. 

6. The presence of liquid nitrogen inside the microcentrifuge 
tubes during tissue grinding should be avoided, to prevent 
potential loss of tissue by nitrogen spill, or by the popping of 
the tube if closed with liquid nitrogen inside. Tubes can be 
pre-chilled in liquid nitrogen. As an alternative for grinding the 
tissue, mortar and pestle could be used instead of pellet pestles 
and an electric drill. 

7. Both fresh and frozen (-80 °C) tissue can be used as starting 
material, and ground plant material can be stored at -80 °C 
before RNA purification. However, do not allow the frozen 
material to thaw before grinding or before the first solution of 
the RNA purification procedure is added. 

8. Make a 4-step dilution series (1:4 dilutions) from cDNA sam-
ples. To evaluate the efficiency of the PCR reaction, it is impor-
tant to generate at least one standard curve for each primer pair. 
A standard curve graph is made by plotting the Ct/Cp values 
on the y-axis and the logarithm of the input amounts on the x-
axis. The slope of the line of this plot will give the efficiency of 
the reaction according to the equation E = [10^(-1/slope) ] - 1; 
slope should be between -3.2 and -3.5 and R2 > 0.98. 

9. SYBR® Green I and EvaGreen® are the most used dye chemis-
tries, due to cost and simple optimization process. However, 
these dyes bind to any double-stranded DNA formed in the 
reaction, including primer-dimers and other non-specific reac-
tion products, which may result in an overestimation of the 
target concentration. Other methods, such as hydrolysis 
probes, may also be used. Probe-based qRT-PCR relies on
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the sequence-specific detection of a desired PCR product. It 
utilizes a fluorescently labelled target-specific probe, which 
results in increased specificity and sensitivity. 

10. No template controls (NTC) should be included for each pair 
of primers tested to ensure that there is no reagent contamina-
tion. In these control reactions, water is added instead of 
sample, so no amplification is expected. In case the NTC 
reaction shows the synthesis of amplification products (i.e., 
the presence of a contaminant), measures such as pipette 
decontamination, using new primers aliquots, or thorough 
bench cleaning might be necessary. No reverse transcription 
controls (no-RT, or RT-) are used to detect the presence of 
contaminant genomic DNA in the RNA samples. If the RT-
reaction shows the synthesis of amplification products, the 
corresponding RNA samples should be treated with DNase 
prior to their use in the reverse transcription reaction. If the 
primers were designed to span an intron or an intron/exon 
boundary, it is not necessary to perform a no-RT control. 

11. MIQE Guidelines [41]. The MIQE guidelines were published 
in response to the recognition that several publications contain 
little information that describes the qPCR or that gives the 
reader the opportunity to determine the quality of the experi-
ment. The result of these omissions is that several publications 
contain misleading conclusions based on inadequate quality 
control of the technical process. The MIQE guidelines contain 
a step-by-step guide and checklist, which leads the experi-
menter through the process of experiment validation. This 
has the additional function of providing a framework for pub-
lication analysis by peer reviewers and journal editors. Several 
publishing houses are now requiring that MIQE guidelines are 
followed for papers containing qPCR data. 
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Multi-Omics Methods Applied to Flower Development 

Raquel Álvarez-Urdiola, José Tomás Matus, and José Luis Riechmann 

Abstract 

Developmental processes in multicellular organisms depend on the proficiency of cells to orchestrate 
different gene expression programs. Over the past years, several studies of reproductive organ development 
have considered genomic analyses of transcription factors and global gene expression changes, modeling 
complex gene regulatory networks. Nevertheless, the dynamic view of developmental processes requires, as 
well, the study of the proteome in its expression, complexity, and relationship with the transcriptome. In 
this chapter, we describe a dual extraction method—for protein and RNA—for the characterization of 
genome expression at proteome level and its correlation to transcript expression data. We also present a 
shotgun proteomic procedure (LC-MS/MS) followed by a pipeline for the imputation of missing values in 
mass spectrometry results. 

Key words Protein extraction, RNA extraction, Proteomics, Transcriptomics, Flower development, 
LC-MS/MS, Arabidopsis 

1 Introduction 

The capacity of cells to orchestrate different gene expression pro-
grams is crucial for developmental processes in multicellular organ-
isms, and it is hardwired and encoded in the genome in the form of 
cis-regulatory sequences that interact with transcription factors, 
co-regulators, and other types of regulatory proteins or RNAs, as 
well as of epigenetic marks, altogether determining when, where, 
and how genes are expressed. For the past 20 years, the exponential 
advances in technologies and informatics tools for generating and 
processing large biological datasets (omics) have added new 
approaches to development studies in plants. Through the use of 
genomics and transcriptomics (in particular, RNA-Seq, ChIP-Seq, 
and other high-throughput sequencing-derived methods), the 
hierarchical levels of plant genetic and molecular organization are 
being described in detail. In particular, several studies of reproduc-
tive organ development have considered genome-wide analyses of 
transcription factor DNA-binding and global gene expression
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changes (e.g., [1–5]) and modeled complex gene regulatory net-
works (reviewed in [6–9]). Even so, a global and comprehensive 
view of developmental processes would also benefit from the char-
acterization of the corresponding proteome.
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The analysis of the proteome of eukaryotic cells is challenging 
due to the substantial diversity in the properties of the individual 
proteins that compose it (e.g., abundance, stability, molecular 
weight, structure, hydrophobicity, hydrophilicity, posttranslational 
modifications (PTMs), and so on). Nevertheless, along with an 
enhancement of throughput, sensitivity, and resolution of analytical 
technologies in MS, computational methods have been developed 
focusing on the identification and quantification of proteins in 
complex samples [10–13]. In plants, MS-based proteomics 
approaches have been applied for the measurement of differential 
protein expression or the detection of PTMs (e.g., [14, 15]) in 
different tissues and biological processes (reviewed in [13]). Deep 
proteome studies have led to the development of proteome atlases 
of the major plant organs for different plant species [16– 
21]. Besides, cell type-specific proteome studies are crucial for a 
better understanding of the unique biological functions and prop-
erties of individual cell types in a tissue [22], as well as subcellular 
plant proteomics and predictions [23–25]. As the proteome is in 
constant flux, several proteome studies are based on temporal series 
during developmental processes or stress responses [26–29]. 

Furthermore, results from more than one type of omics can be 
matched in order to obtain deeper insights into biological processes 
[16, 30–33]. These integration studies are usually referred as multi-
omics, trans-omics, or integrated omics in current literature. Quan-
titative proteomics allows to study at a genome-wide level the 
correlation between mRNA expression levels and the abundance 
of the corresponding proteins (reviewed in [34, 35]), an issue that 
has been extensively studied in different species and processes 
during the past few years. For instance, in plants combined 
transcriptome-proteome analyses have already been used to study 
petal shape [36], carotenoid synthesis [37], photoperiodic control 
of the proteome [38], or leaf development [39], as well as repro-
ductive development; in particular, embryogenesis [40], male 
reproductive development [41–43], and flower development 
either in general [44, 45] or focusing on the functions of specific 
proteins [46]. 

In these combined studies, the interpretation of the existence, 
or lack thereof, of correlation between the changes in transcript 
dynamics and protein abundance, and its biological meaning, is still 
a lingering issue: numerous studies conclude that there is not a 
strong correlation between the levels of these macromolecules 
[41, 43, 47–51], whereas in others such correlation is more appar-
ent [38–40, 45]. The lack of correlation could be in part derived 
from the difficulties to obtain truly comparable datasets at the



transcript and protein levels, and because the sensitivity of extrac-
tion and quantification techniques for mRNAs and proteins highly 
differ. However, the observed differences might also be caused by 
posttranslational regulation of protein levels [47], or by their dif-
ferent expression and degradation kinetics, as longer protein half-
lives buffer changes in mRNA levels [48–51]. Time-lapse studies 
could be an approach for addressing this gap, as successive analyses 
at different time points could allow the discovery of correlative 
behaviors of protein and mRNA levels through time [52, 53]. 
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In addition, a major concern in label-free quantitative proteo-
mics that hinders the subsequent data analysis and its comparison 
with other omics data is the high rate of missing values. Three types 
of missing values can be defined, depending on the nature of the 
missingness: (1) missing completely at random (MCAR) and 
(2) missing at random (MAR) values, which are due to minor errors 
or stochastic fluctuations and to conditional dependencies, respec-
tively; and (3) missing not at random (MNAR) values, which have a 
targeted effect [54]. Depending on the nature of these “not 
assigned values” (NAs), different methods can be used to impute 
them. As there are many types of NAs that coexist in most quanti-
tative datasets, hybrid strategies of imputation could be a better 
approach [54, 55]. 

In this chapter, we describe a protocol for common extraction 
of total proteins and RNA from the same Arabidopsis inflorescence 
samples to maximize comparability between the proteomic and 
transcriptomic data. We also present a shotgun proteomic proce-
dure by liquid chromatography-tandem mass spectrometry 
(LC-MS/MS), and a pipeline for the imputation of missing values 
in the mass spectrometry results to distinguish the nature of the 
missingness and to treat NAs accordingly. 

2 Materials 

1. Mortar and pestle. 

2. Liquid nitrogen. 

3. Microcentrifuge tubes. 

2.1 Protein 

Extraction 

1. Protein low-binding tubes (2 mL). 

2. Isopropanol. 

3. 0.3 M guanidine in 95% ethanol. 

4. 90% ethanol. 

5. SDS-PAGE 5× buffer. 

6. E buffer: 125 mM Tris–HCl pH 8.8, 1% (w/v) SDS, 10% (v/v) 
glycerol, 50 mM Na2S2O5 [56].
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2.2 RNA Extraction 1. RNase free tubes (1.5 mL). 

2. Trizol. 

3. Chloroform. 

4. Phenol:chloroform:isoamyl alcohol (25:24:1). 

5. LiCl 3 M. 

6. 85% and 100% (v/v) ethanol. 

7. DEPC water. 

2.3 LC-MS/MS 1. DL-dithiothreitol (DTT) (see Note 1). 

2. Iodoacetamide. 

3. Urea. 

4. Ammonium bicarbonate. 

5. Endoproteinase LysC. 

6. Trypsin. 

7. Formic acid. 

8. MicroSpin C18 columns (The Nest Group, Inc). 

9. Nano Trap C18 columns with an inner diameter of 100 μm 
packed with C18 particles of 5 μm particle size (Thermo Fisher 
Scientific) (optional, depending on the setup of each 
laboratory). 

10. Reverse-phase chromatography columns (C18, 2 μm, 
15–50 cm length) (see Note 2). 

11. Buffer A: 0.1% formic acid in water. 

12. Buffer B: 0.1% formic acid in acetonitrile. 

13. Bovine serum albumin (New England Biolabs cat # P8108S). 

14. Orbitrap Eclipse mass spectrometer (Thermo Fisher Scientific) 
(see Note 3). 

15. EASY-nLC 1000 (Thermo Fisher Scientific). 

3 Methods 

3.1 Protein 

Extraction 

1. With a different mortar and pestle for each sample, grind the 
tissue (i.e., inflorescences) with liquid nitrogen until obtaining 
a whitish fine powder (see Notes 4 and 5). 

2. Place the powder in a microcentrifuge tube (~250 mg per 
sample). 

3. Add 1 mL of Trizol, vortex for at least 15 s until it is completely 
homogenized, and incubate on ice for 5 min. This step must be 
done in an extraction hood.
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Fig. 1 Picture of the three phases formed in step 4 of the protein extraction 
method (see Subheading 3.1) 

4. Add 200 μL of chloroform, vortex for 15 s, incubate on ice for 
5 min, and centrifuge at 4 °C for 15 min at maximum speed (see 
Note 6) (Fig. 1). 

5.a. Transfer 500–600 μL of the top, aqueous phase into a clean 
microcentrifuge tube (RNase free) and add the same volume 
of phenol:chloroform:isoamyl alcohol, vortex for 10 s, incu-
bate on ice for 5 min, and centrifuge at 4 °C for 15 min at 
maximum speed (to continue with RNA extraction from the 
sample, see Subheading 3.2). 

5.b. Add 300 μL of ethanol 100% to the organic phase in the 
original microcentrifuge tube to continue with protein 
extraction. Incubate on ice. 

6. Centrifuge for 10 min at 2000 g. Place the supernatant in a 
clean 2 mL microcentrifuge tube (protein low bind). 

7. Add 1 mL of isopropanol and incubate at room temperature for 
10 min (see Note 7). 

8. Centrifuge at 4 °C for 10 min at 12,000 g. Discard superna-
tant, which contains phenol, into a container adequate for its 
controlled elimination. 

9. Wash by resuspending the pellet in 2 mL of a solution of 0.3 M 
guanidine in 95% ethanol (see Note 8). 

10. Sonicate in a sonication bath for 5 min and centrifuge at 4 °C 
for 5 min at 8000 g.
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11. Repeat the washing procedure (steps 9 and 10) twice. The 
obtained pellet can be stored at -20 °C for months. 

12. Wash again by the same procedure (steps 9–11) with 90% 
ethanol. 

13. Let the pellet dry for a few minutes and resuspend in an 
appropriate buffer (see Note 9). 

14. Quantify by Bradford with 1 and 2 μL of sample. Add 
SDS-PAGE 5× buffer to obtain a final 1× concentration when 
loading the gel. 

3.2 RNA Extraction 1. Transfer approximately 500 μL of the top, aqueous phase after 
the centrifugation in protein extraction step 5.a to a clean 
microcentrifuge tube (RNase free) and add 1 volume 
(500 μL) of pure isopropanol. Shake and mix. 

2. Incubate on ice for 15 min, centrifuge at 4 °C for 10 min at 
maximum speed, and discard supernatant. 

3. Resuspend the pellet in 750 μL of LiCl 3 M, incubate on ice for 
10 min, and centrifuge at 4 °C for 10 min at maximum speed. 

4. Discard supernatant and wash the pellet with 500 μL of ethanol 
85% (v/v), vortexing gently for 10 s. 

5. Centrifuge at 4 °C for 10 min at maximum speed and discard 
supernatant. 

6. Let the pellet dry and resuspend in 21 μL of diethylpyrocarbo-
nate (DEPC)-treated water (see Note 10). 

7. Sample quantification with NanoDrop spectrophotometer. 

3.3 LC-MS/MS 1. Prepare or dissolve protein samples (see Subheading 3.1, step 
13) in 6 M urea 200 nM ammonium bicarbonate. 

3.3.1 Sample 

Preparation 2. Reduce the samples (10 μg of protein) with 30 nmol DTT at 
37 °C for 1 h. 

3. Alkylate the samples (10 μg of protein) in the dark with 
60 nmol of iodoacetamide at 25 °C for 30 min. 

4. Dilute the protein extract to 2 M urea with 200 mM 
ammonium bicarbonate for digestion with endoproteinase 
LysC (1:10 w:w), and incubate 37 °C overnight. 

5. Dilute twofold with 200 mM ammonium bicarbonate for tryp-
sin digestion (1:10 w:w), and incubate at 37 °C for 8 h. 

6. After digestion, add formic acid (10% of the final volume) to 
acidify the peptide mix. 

7. Desalt the samples with MicroSpin C18 columns prior to 
LC-MS/MS analysis, following manufacturer’s instructions.
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3.3.2 Chromatographic 

and Mass Spectrometric 

Analysis 

1. Load the peptides onto the analytical column (C18, 2 μm, 
15–50 cm length). 

2. Separation of the peptides by reverse-phase chromatography 
with the corresponding columns. 

3. Chromatographic gradients start at 93% buffer A and 7% buffer 
B with a flow rate of 250 nL/min for 5 min and gradually 
increase 65% buffer A and 35% buffer B in 60 min. 

4. After each analysis, wash the column for 15 min with 10% 
buffer A and 90% buffer B. 

5. Peptide eluates are dried in a vacuum centrifuge, and resus-
pended with buffer A at a final concentration of 1 μg/μL prior 
to analysis by LC-MS/MS. 

6. Operate the mass spectrometer to acquire peptide spectra (see 
Note 11). 

3.3.3 Data Analysis 1. Search the acquired spectra against the desired peptide data-
base (see Note 12), plus a list of common contaminants (sug-
gested: [57]), and all the corresponding decoy entries. 

2. Set the parameters accordingly to the experimental and mass 
spectrometric settings and, if appropriate, select variable post-
translational modifications to be detected (see Note 13). 

3. Determine the protein abundance estimation [58, 59]. 

4. Add the information to the appropriate repositories (see 
Note 14). 

3.3.4 Treatment of 

Missing Values and Data 

Imputation 

1. Missing values should first be classified as M(C)AR or MNAR 
depending on their nature. For instance, for a given protein, if 
the data from all replicates of the same condition or time point 
show NAs, probably they are MNAR missing values, whereas if 
there is only one missing value out of four replicates, it is 
probably a MAR. Other cases may be more difficult to classify 
as M(C)AR or MNAR, for instance if there are two NAs out of 
four replicates. In those instances, other parameters can be 
considered, for example, the presence or absence of NAs in 
the adjacent time points (in a time-course experiment) or in the 
most similar samples in the experiment. 

2. Discard all proteins with MNARs or MARs in every sample. 

3. Replace MNARs by the minimum of detection of the dataset 
(deterministic minimum imputation method [60]). 

4. Estimate the remaining MARs and MCARs by other imputa-
tion method (e.g., k-nearest neighbor (kNN) imputation 
[61]).
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Fig. 2 Stringent analysis to identify reliably undetected and detected fraction of a 
proteome. The analysis allows to impute values for MAR and MNAR considering 
their biological meaning. The figure illustrates results from a time-course 
experiment using the Arabidopsis floral induction system pAP1:AP1-GR ap1cal 
[1], in which samples were collected at 1-day intervals after floral induction (day 
0), up to day 5. Log2 TOP3 abundances through time of two flower development 
regulators, APETALA 3 (AP3) (a) and TERMINAL FLOWER 1 (TFL1) (b), before and 
after the “reliability analysis” (RA), and after kNN imputation (from left to right) 
(n = 4 biological replicates) 

3.3.5 Example: 

Treatment of Missing 

Values in a Time Series 

Experiment 

This missing value classification and data imputation approach can 
be readily used in, for instance, time-course developmental studies 
[1, 62], as illustrated in Fig. 2 as an example. In this case, the data 
processing pipeline consisted on: 

1. Classification of each time point (day) for each protein depend-
ing on its number of NAs (number of replicates with missing 
values at a certain time point) and the number of NAs of its 
immediately adjacent days (neighbors). 

(a) Neighbors are considered as:

• Unreliable neighbor: Over 50% NAs.

• Reliable neighbor: Up to 50% NAs (included). 

(b) Initial and final time points are considered as:

• Reliably undetected: 100% NAs (MNARs).

• Unreliably undetected: Over 50% NAs (included) 
(unclear MNARs) + unreliable neighbor.
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• Unreliably detected: Over 50% NAs (included) 
(unclear MARs) + reliable neighbor.

• Reliably detected: Up to 35% NAs (MARs). 

(c) Intermediate time points are considered as:

• Reliably undetected: 100% NAs + unreliable neighbors 
(MNARs).

• Unreliably undetected: Over 50% NAs 
(included) + unreliable neighbors (probably MNARs).

• Unreliably detected: Over 50% NAs (included) + reli-
able neighbors (probably MARs).

• Reliably detected: Up to 35% NAs (MARs). 

2. Replace reliably undetected time points by the minimum of 
detection of the dataset (deterministic minimum imputation 
method [60]). 

3. Replace unreliably undetected time points by NAs in all 
replicates. 

4. Discard all proteins which are reliably or unreliably undetected 
in every time point. 

5. Estimate the remaining NAs by k-nearest neighbor (kNN) 
imputation (k = 10) [61]. 

4 Notes 

1. Reagents for LC-MS/MS can be obtained from several suppli-
ers. As an example, we list here the specific products we use: 
urea (GE Healthcare; Sigma-Aldrich, P/N 17-1319-01), 
ammonium bicarbonate (BioUltra, ≥99.5% (T); Sigma-
Aldrich, P/N 09830), iodoacetamide (BioUltra; Sigma-
Aldrich, P/N I1149), DL-dithiothreitol (for electrophoresis, 
≥99%; Sigma-Aldrich, P/N D9163), formic acid for analysis 
EMSURE® (ACS Reag. Merck, P/N 1.00264.0100), 
sequencing grade modified trypsin (Promega, P/N V5111), 
and lysyl endopeptidase (Wako Chemicals GmbH, P/N 
129-02541). 

2. Suitable reverse-phase chromatography columns are, for 
instance, 25 cm columns with an inner diameter of 75 μm, 
packed with 1.9 μm C18 particles (Nikkyo Technos Co.); and 
50 cm columns with an inner diameter of 75 μm, packed with 
2 μm C18 particles (EASY-Column, Thermo Fisher Scientific, 
ES903). 

3. This is just a concrete example of a “modern high-resolution 
mass spectrometer”; other instruments could be used. 

4. For sample collection, to reduce sample contamination with 
human proteins (i.e., keratins and collagen), make sure to
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always use nitrile gloves (instead of latex) and laboratory coats. 
Pipets, materials, and solutions exclusively used for proteomics. 
Take precaution to avoid hair contamination. If flower organs 
or tissues are going to be dissected, cool tweezers and any other 
sampling instrument with liquid nitrogen. 

5. If samples are grown in petri dishes (e.g., Arabidopsis seed-
lings), discard white clots which correspond to agar. 

6. Three phases are formed, the aqueous phase contains RNA 
(~550 μL, transparent), the interphase, DNA (white), and the 
organic phase, proteins and lipids (~450 μL, pink) (Fig. 1). 

7. It is possible to stop the protocol here and store the samples at
-20 °C for a few days. 

8. Use a pipette crushing against the bottom of the tube and leave 
in a colloidal suspension as thin as possible. 

9. Resuspend final proteins in acetonitrile, acetic, or formic acid, 
depending on the analysis protocol. For Western Blot, use E 
buffer [56]. The buffer volume should be chosen depending 
on the desired protein concentrations, varying from 20 to 
50 μL. 

10. Use high pure water, reagents, and products. 

11. 1–2 μg of peptides are loaded onto an analytical column 
(25 cm, C18 2 μm particle size) using an autosampler device 
(e.g., EASY nLC 1000, Thermo Fisher Scientific) and the 
peptides are then separated by reverse-phase chromatography 
using a water-acetonitril chromatographic gradient. Modern 
high-resolution mass spectrometers are recommended for data 
acquisition (e.g., Orbitrap or qTOF). The mass spectrometer is 
operated in data-dependent acquisition (DDA) mode, in which 
a full MS scan is recorded in each cycle, followed by the 
fragmentation of the 10–30 most intense precursor ions to 
obtain the fragment ion spectra. 

12. The results may vary significantly depending on the character-
istics of the reference database for peptide identification. It is 
possible to use public repositories of proteins for the different 
organisms or to design a specific database. 

13. Once the database has been constructed, the raw LC-MS/MS 
data needs to be interpreted using a database search engine 
(such as SEQUEST [63], Mascot [64], Phenyx [65], X! Tan-
dem [66], OMSSA [67], pFind [68], InsPecT [69], ByOnic 
[70], Comet [71], MS-GF+ [72], MaxQuant [73], or MSTra-
cer [74]). As example, the Mascot search engine (v2.6) can be 
used, using the search parameters accordingly to the experi-
mental and mass spectrometry settings. For peptide identifica-
tion a precursor ion mass tolerance below 10–20 ppm is 
recommended, whereas the fragment ion mass tolerance can 
go from 10 to 20 ppm for high-resolution mass analyzers
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(Orbitrap, TOF) to 0.5 Da if a linear ion trap is used for the 
analysis of the tandem mass spectra. Common peptide mod-
ifications such as oxidation of methionine and N-terminal pro-
tein acetylation are used as variable modifications. False 
discovery rate (FDR) in peptide identification is set to a maxi-
mum of 1%. 

14. Share data and results in a public repository. Data sharing in the 
public domain is the standard for omics research and a require-
ment for publication. For proteomics, the Proteomics IDEnti-
fications (PRIDE) database (https://www.ebi.ac.uk/pride/) 
at the European Bioinformatics Institute (EMBL-EBI, Hinx-
ton, Cambridge, UK) has enabled public data deposition of 
MS data since 2004, and its archival component has become 
the largest repository for proteomics data sharing worldwide 
[75]. The PRIDE database provides access to most of the 
experimental proteomics data described in MS-related scien-
tific publications. 
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