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Resum 
 

Aquesta tesi constitueix una continuació d’un estudi iniciat als anys 2007–2008, 
on l’objectiu principal era analitzar com afectava la limitació d’oxigen en un 
procés de producció de proteïna recombinant (PPR) amb el llevat metilotròfic 
Pichia pastoris. Concretament, la proteïna recombinant expressada era un 
fragment d’anticòs (Fab), que estava sota la regulació del promotor constitutiu 
GAP (PGAP), un promotor àmpliament utilitzat per a l’expressió heteròloga. En les 
primeres etapes d’aquest estudi es va demostrar que una limitació de l’aportació 
d’oxigen en cultius de P. pastoris en quimiòstat, utilitzant glucosa com a font de 
carboni, provocava un augment dels fluxos metabòlics de la glicòlisi degut a la 
sobreexpressió d’alguns gens glicolítics. Un d’aquests gens, el THD3, és el gen 
que de forma natural està regulat pel PGAP en P. pastoris. Per tant, en condicions 
de limitació d’oxigen (o hipòxia), un gen recombinant sota la regulació del PGAP 
també s’hauria de trobar sobreexpressat. En aquests estudis previs també es va 
observar que sota condicions hipòxiques, P. pastoris desenvolupa un 
metabolisme respiro-fermentatiu, produint sub-productes de fermentació com 
són l’etanol, i també en menor mesura arabitol i succinat. 

En una primera etapa de la present tesi, es va dur a terme una caracterització de 
l’efecte de la hipòxia sobre la producció recombinant de la lipasa 1 de Candida 
rugosa (Crl1) mitjançant cultius en continu amb dos clons diferents de P. 
Pastoris, un que disposava d’una còpia del gen CRL1 (single-copy clone o SCC) 
i un altre que en disposava de 5 còpies (multicopy clone o MCC). Es van provar 
diferents graus de limitació d’oxigen variant la concentració d’oxigen en el gas 
d’entrada, definit aquelles condicions que es consideraven òptimes en termes de 
producció de Crl1 i que no comprometien significativament el creixement del 
llevat. La implementació de cultius en continu en estat estacionari (quimiòstats) 
va permetre optimitzar l’estudi de diverses condicions arribant a diferents estats 
estacionaris. Les velocitats específiques de producció (qP) van ser fins a 2 
vegades més grans en hipòxia que en normòxia (condicions completament 
aeròbiques), tot i que aquest increment de producció de Crl1 va resultar més 
important per al SCC que per al MCC. Addicionalment, es va definir el Quocient 
Respiratori (RQ) com a variable per a controlar el nivell de limitació d’oxigen, ja 
que aquesta és una variable que depèn de l’estat fisiològic de la biomassa, és a 
dir, del tipus de metabolisme que aquesta duu a terme (respiratiu, fermentatiu o 
respiro-fermentatiu). A més, aquesta variable és independent de l’equipament i 
del sistema utilitzat, i per tant, es pot utilitzar com a variable indicadora a l’hora 
d’implementar el mateix grau d’hipòxia en un altre equip o mode d’operació. 



Posteriorment, un cop definides les condicions de limitació d’oxigen òptimes, es 
van replicar aquestes condicions en fed-batch. Al tractar-se d’un cultiu dinàmic 
en què la concentració de biomassa augmenta amb el temps, el control sobre el 
nivell de limitació d’oxigen també havia de ser dinàmic. Els resultats obtinguts 
van ser similars als obtinguts en quimiòstat, duplicant la qP del SCC en 
condicions d’hipòxia i obtenint, però, un increment menor en el cas del MCC. A 
més, els resultats van ser corroborats gràcies a un estudi de transcriptòmica  dels 
gens relacionats amb la producció de Crl1 mitjançant qPCR. 

Per finalitzar aquesta primera etapa de la tesi, es va dur a terme dues 
fermentacions a escala pilot, utilitzant el RQ com a criteri de canvi d’escala per 
tal d’aplicar les mateixes condicions d’hipòxia, obtenint una producció de Crl1 
lleugerament més baixa que a escala laboratori però validant l’estratègia de 
limitació d’oxigen i la utilització del RQ com a paràmetre de control transferible 
entre diferents sistemes experimentals. 

Un cop demostrat i caracteritzat l’efecte de la hipòxia sobre la PPR, la segona 
etapa de la tesi va consistir en millorar el controlador de RQ en fed-batch, que 
inicialment estava basat en la modificació manual i intermitent de la velocitat 
d’agitació per tal d’augmentar o disminuir la transferència d’oxigen al medi de 
cultiu (control manual-heurístic). En aquest segon capítol, es van establir dues 
estratègies de control de RQ sofisticades, les quals modificaven la velocitat 
d’agitació de forma automàtica quan era necessari. La primera estratègia, 
anomenada “controlador de lògica Booleana”, va ser dissenyada, programada i 
desenvolupada a través del software Eve, el qual va permetre la implementació 
de soft sensors per tal de fer un càlcul precís i acurat del RQ i actuar sobre la 
velocitat d’agitació de forma automàtica. D’altra banda, la segona estratègia de 
control va consistir en un controlador proporcional adaptatiu, en què el valor del 
paràmetre proporcional del controlador s’anava actualitzant a cada minut de la 
fermentació. Aquesta actualització estava basant en un model d’intel·ligència 
artificial (IA), i va ser dissenyada conjuntament en col·laboració amb membres 
de l’empresa AIZON, que van ser qui en van programar el codi. Aquesta 
estratègia ha esdevingut una prova de concepte per demostrar com es pot 
utilitzar la IA per a dur a terme el control automàtic de bioprocessos, un camp on 
la indústria és encara reticent d’aplicar canvis. 

Finalment, com a últim capítol de la tesi, l’estratègia hipòxica es va provar amb 
dues soques de P. Pastoris més, expressant dues proteïnes diferents: la lipasa 
de Rhizopus oryzae (proRol) i la lipasa B de Candida antarctica (CalB), dues 
lipases amb interès industrial. Les millores de producció obtingudes en aplicar 
condicions hipòxiques van ser equiparables a les obtingudes amb la producció 
de Crl1, validant així l’estratègia hipòxica per a la millora de producció de 
proteïnes recombinants. 



Summary  

 

This thesis represents a continuation of a study started in the years 2007-2008, 
in which the main goal was to analyze the impact of oxygen limitation on 
recombinant protein production (RPP) with the yeast Pichia pastoris. Specifically, 
the recombinant protein expressed was an antibody fragment (Fab), under the 
regulation of the constitutive GAP promoter or PGAP, a widely used promoter for 
RPP. In the initial stages of this study, it was demonstrated that a limitation of the 
oxygen supply in P. pastoris cultures operated in chemostat mode, and using 
glucose as a carbon source, led to an increase in metabolic flux through 
glycolysis due to the overexpression of some glycolytic genes. One of these 
genes, THD3, is the gene that is naturally regulated by the PGAP in P. pastoris. 
Therefore, under oxygen-limiting conditions (or hypoxia), a recombinant gene 
under the regulation of PGAP should be also overexpressed. In these previous 
studies it was also demonstrated that under hypoxic conditions, P. pastoris 
exhibits a respiro-fermentative metabolism, producing fermentation by-products 
such as ethanol, and also to a lesser extent arabitol and succinate. 

In the first stage of the present thesis, a characterization of the effect of hypoxia 
on the recombinant production of Candida rugosa lipase 1 (Crl1) with P. pastoris 
was carried out using continuous cultures. Two different clones of P. pastoris 
were tested, one harboring one copy of the CRL1 gene (single-copy clone or 
SCC) and another harboring 5 copies of it (multicopy clone). Different degrees of 
oxygen limitation were tested by varying the oxygen concentration in the inlet gas 
of the fermenter, and the optimal conditions for Crl1 production, which did not 
compromise severely the yeast growth, were defined. Continuous cultures in 
steady state (chemostats) were used to test different conditions reaching different 
steady states, resulting in specific production rates (qP) up to two-fold higher 
under hypoxia compared to normoxia (completely aerobic conditions), although 
this increase in Crl1 production was higher for the SCC than for the MCC. 
Additionally, the Respiratory Quotient (RQ) was defined as a control variable to 
regulate the oxygen limitation degree, as it depends on the physiological state or 
the type of metabolism that cells conduct. Moreover, this variable is independent 
of the equipment and system used so, it can be used as a reporting variable to 
implement the same hypoxic degree in another equipment or operational mode. 

Subsequently, once these optimal hypoxic conditions had been defined, they 
were replicated in fed-batch cultures. Since they are dynamic cultures where 
biomass concentration increases over time, the control of the process to maintain 
a constant level of oxygen limitation should also be dynamic. The results obtained 
in fed-batch cultures were similar to those in chemostat cultures, doubling the qP 



of SCC under hypoxic conditions, but obtaining a lower increase in the case of 
MCC. In addition, these results were further confirmed through transcriptomic 
analysis of certain genes related to Crl1 production using qPCR. 

To conclude this first stage of the thesis, two pilot-scale fermentations were 
conducted, using RQ as a scale-up criterion to apply the same hypoxic 
conditions. Although Crl1 production was slightly lower at the pilot scale than at 
the lab scale, it validated the oxygen limitation strategy and the use of RQ as a 
transferable control parameter between different experimental setups. 

After having demonstrated and characterized the hypoxic effect on bioprocess 
efficiency, the second stage of the thesis consisted of the refinement of the RQ 
controller in fed-batch, which was initially based on a manual and intermittent 
modification of agitation rate to adjust oxygen transfer into the culture broth 
(manual-heuristic control). Thus, two improved RQ control strategies were 
established in this second chapter, both of which consisted of adjusting the 
agitation rate automatically as the process required. The first strategy, named 
“Boolean-logic controller” was designed, programmed, and developed using a 
specific fermenter control software called Eve. It allowed the implementation of 
soft sensors to make a precise and accurate RQ calculation and act over agitation 
rate in an automated way. In contrast, the second control strategy consisted of 
an adaptive proportional controller, in which the value of the proportional 
parameter was updated every minute. This parameter value adaptation was 
based on an artificial intelligence (AI) model, and it was designed in collaboration 
with members of the company AIZON, who programmed the code. This strategy 
served as a proof of concept to demonstrate how AI can be used for the automatic 
control of bioprocesses, an area where the industry is still reluctant to implement 
changes. 

Finally, as in the last chapter of the thesis, the hypoxic strategy was tested with 
two additional strains of P. pastoris, expressing two different proteins: Rhizopus 
oryzae lipase (proRol) and Candida antarctica lipase B (CalB), two lipases with 
industrial interest. The improvements in production observed under hypoxic 
conditions were comparable to those obtained with Crl1 production, thus 
validating the hypoxic strategy for the enhancement of recombinant protein 
production. 
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1. CONTEXT 



 2 

The research work included in this PhD thesis has been performed in the 

Bioprocess Engineering and Applied Biocatalysis Research Group (Eng4Bio), 

located at the Department of Chemical, Biological, and Environmental 

Engineering of the Engineering School from the Universitat Autònoma de 

Barcelona.  

The Eng4Bio research group is focused on the development of bioprocesses 

mainly for the production of recombinant proteins, but recently also to produce 

metabolites in different cell factories. Thus, the works carried out in the group 

often consist of an initial step of strain engineering to obtain the clones for 

recombinant production, mainly with the cell factory Pichia pastoris. Secondly, 

screenings of several clones to select the best candidates are performed, 

followed by a deep characterization of these producer clones to set the basis for 

bioprocess optimization. Finally, some of the recombinant proteins are used for 

final biocatalysis applications, whereas in other cases these proteins are 

delivered to third parties. 

Thus, the Eng4Bio research group has a library of clones expressing different 

proteins with industrial interest. Most of them are lipases since one of the most 

performed biocatalysis applications in the group is the use of lipases for racemic 

solutions, biofuel production, and the synthesis of natural flavors, among others. 

However, this clone library is relatively limited, and not all the combinations of 

strain + expression cassette (including promoter, secretion signal, etc.) + gene of 

interest are available. 

In addition, the research group has gained extensive and increasing know-how 

in the development of fermentation-based bioprocess and biocatalysis, and proof 

of that is the numerous scientific papers published yearly. Some of the last 

relevant works performed in the group are: 

 3-hydroxypropionic acid production with engineered P. pastoris (Fina et 

al., 2021, 2022). 

 Implementation of a novel secretory signal based on co-translational 

translocation for P. pastoris (Barrero et al., 2018; Barrero, 2020). 
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 Clone construction, characterization, and bioprocess optimization for the 

production of different lipases with P. pastoris (Garrigós-Martínez et al., 

2019; Nieto‐Taype et al., 2020a; López-Fernández et al., 2021a). 

 Synthesis of second and third-generation biodiesel and natural flavors with 

Rhizopus oryzae lipase (Rol) produced by P. pastoris (López-Fernández 

et al., 2021b; López-Fernández et al., 2022). 

 Study of new promoters for recombinant protein production with P. pastoris 

(Garrigós-Martínez et al., 2021; Bernat-Camps et al., 2023). 

Special interest must be placed on a previous work started in 2008, where 

oxygen-limiting conditions (or hypoxia) were found to increase recombinant 

protein production with P. pastoris (Baumann et al., 2008). During the following 

years, several studies thoroughly evaluated the effect of these oxygen-limiting 

conditions on cell growth and recombinant protein production, at a transcriptomic, 

proteomic, metabolomic, and lipidomic level (Carnicer et al., 2009, 2012; 

Adelantado et al., 2017; Baumann et al., 2010). Finally, in 2017, a more practical 

operational point of view was applied to this hypoxic effect, setting the basis for 

the present work (Ponte et al., 2016; Garcia-Ortega et al., 2017). After that, in 

2018, this thesis was begun with the primary aim of studying the production of 

recombinant proteins under hypoxic conditions. Logically, this study would not 

have been possible without the participation of all the researchers who 

participated in these studies, so all of them deserve special recognition. 

On the other hand, some of the work conducted in this thesis has been done in 

the framework of the Parental Drug Association (PDA) project “CPV of the 

Future”. This project aims to set a basis for the implementation of Artificial 

Intelligence (AI) as a valid analytical technique for Continuous Process 

Verification (CPV) in fermentation operations, mainly in the pharma sector, which 

is still reluctant to implement these advancements due to slow and expensive 

regulatory approvals. As can be found on the PDA website, “This PDA initiative 

comprises a set of experimental studies that will focus on improving production 

of the recombined protein generated by the fermentation of the Pichia pastoris 

microorganism under different conditions of oxygen supply. Specific attention will 

be paid to hypoxia settings. Using a bioreactor of five-liter volume, fermentations 
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will be performed that produce batches controlled through automatic and manual 

operations” (Manzano, 2020). 

This section of the thesis has represented a significant challenge for the research 

group, as there was limited knowledge regarding the integration of signals from 

different devices, utilization of local networks, cloud connectivity for continuous 

data transmission, and, in general, the implementation of a digital twin of the 

fermenter. Moreover, there was not extensive expertise in programming within 

the research group, as the work of the Eng4Bio group mainly focuses on strain 

and bioprocess engineering. In this regard, the collaboration with the AIZON team 

has been crucial, as they provided all the necessary knowledge regarding 

equipment connectivity and data transmission on the one hand, and on the other 

hand, their extensive programming experience has been pivotal for the 

development of this work. 
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2. INTRODUCTION 
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2.1 General aspects of Biotechnology 

Biotechnology is a multidisciplinary field in which mainly biological and life 

sciences knowledge is imperative, but where engineering approach, rational 

thinking, and data management skills are also essential. Furthermore, in the last 

years, computational and statistics abilities have emerged as powerful tools to 

improve biotechnology processes. To synthesize, biotechnology is the 

combination of biology and technology to leverage biological systems and 

processes to develop innovative products and services (Lynd et al., 1999). 

Biotechnology started with beer fermentation by the Sumerian and Egyptian 

cultures, more from an empirical approach rather than from a clear understanding 

of the bioprocess, and in the next years it will be evolved to high-tech production 

bioprocesses managed by artificial intelligence (AI) algorithms for the production 

of high added value pharmaceutical drugs (Manzano et al., 2021). 

Another definition of biotechnology is the utilization of any living being to obtain a 

product or service. Therefore, from this point of view, agriculture and livestock 

could also be considered as biotechnology. However, this concept is not very 

accepted, and when it comes to agriculture and livestock, biotechnology and all 

the techniques that it encompasses are considered a way to improve traditional 

farming (European Commission, 2017). 

The fields of biotechnology applications are very wide, ranging from industrial 

applications to medical research and new pharmaceutical products. All these 

subcategories are often divided into different “colors” based on the application 

and the complexity of the products involved. The "colors" of biotechnology include 

white biotechnology (industrial processes, fine chemical products, enzymes, 

biofuels), red biotechnology (health and medical research, including pharma 

industry), green biotechnology (agriculture), blue biotechnology (sea resources), 

and grey biotechnology (environmental bioengineering), among several others 

(DaSilva, 2004), as shown in Figure 1. 

In recent years, industrial (or “white”) biotechnology has gained significant 

attention due to its potential to provide sustainable and eco-friendly solutions for 

industrial processes while reducing the environmental impact of traditional 

chemical manufacturing methods (Soetaert & Vandamme, 2006; Fröhling & 
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Hiete, 2020). The production of valuable products such as biofuels, biopolymers, 

and proteins using microorganisms is an essential aspect of white biotechnology 

(Koutinas et al., 2014; Heux et al., 2015).  

 

  

Figure 1. Graphical summary of the colors of biotechnology. Adapted from 
literature (Kafarski, 2012).  
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2.2 Recombinant proteins 

Proteins are complex biomolecules that play critical roles in virtually every cellular 

process, including biocatalysis, regulation, signaling, transport, and cellular 

scaffolding. Since they are efficient biomolecules, cells do not produce enormous 

amounts of them, so normally the extraction from their native source results in 

insufficient yields and poor productivities. As a result, recombinant DNA 

technologies have been developed for the production of recombinant proteins, 

which are synthesized in a host cell frequently of a different species than their 

origin, often referred to as “cell factories”. Recombinant protein production (RPP) 

processes have become a reliable source of biocatalysts for several industrial 

sectors such as food, detergents, biofuels, textiles, polymers, paper, and pulp 

(Rigoldi et al., 2018), as well as biopharmaceuticals for human and veterinary 

medicine, including therapeutics and diagnostics biomolecules (Gupta & Shukla, 

2017). 

The production of recombinant proteins involves identifying the genes encoding 

the desired protein, cloning them into a microbial host, and optimizing the 

microorganism growth to find the best producing conditions. 

In addition, the recombinant enzymes can be improved for specific applications, 

with a process that is called “protein engineering”. Rational design and directed 

evolution are protein engineering techniques that have been used to develop 

novel recombinant proteins with improved or new properties (Porter et al., 2016; 

Bilal et al., 2018). Rational design involves site-specific alterations of selected 

residues in a protein to cause predicted changes in function, while directed 

evolution involves repeated cycles of generating a library of protein variants and 

selecting the variants with desired properties. For example, a microbial 

acetyltransferase for modification of glyphosate has been improved 7,000-fold in 

enzyme activity and 5-fold in thermostability through directed evolution (Siehl et 

al., 2005). Additionally, in the last years, AI algorithms have been also applied to 

directed protein evolution to improve enzyme activity and thermostability (Yang 

et al., 2019). 
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2.2.1 Lipases 

An industrially relevant class of proteins are lipases, which are a family of 

enzymes that catalyze the hydrolysis of the ester bonds of triglycerides, releasing 

free fatty acids and glycerol, as sketched in Figure 2. They are considered 

promising catalysts for many applications, such as in the food, detergents, pulp, 

and paper or biofuels industries, among many others (Mehta et al., 2020).  

 

 

One of these lipases that has been widely used by flavor, oil, and pharma 

industries is the Candida rugosa lipase (Crl) (Ken Ugo et al., 2017). Specifically, 

seven isoenzymes of Crl (Crl1-7) have been described, with Crl1 being the most 

common in commercialized lipase preparations (Ferrer et al., 2001). It can be 

produced recombinantly in cell factory hosts or purified from native C. rugosa 

extracts (Vanleeuw et al., 2019). 

On the other hand, Rhizopus oryzae lipase (Rol) is a 1,3-regiospecific enzyme 

and highly enantioselective, distinguished in the biochemical synthesis of flavors, 

biofuels, and racemic resolutions in the pharma industry, to name some of its 

uses. It is obtained both from extraction and purification from its native source or 

produced via recombinant synthesis (López-Fernández et al., 2020). 

Figure 2. Schematization of the enzymatic reaction catalyzed by lipases. In this 
example, triolein is hydrolyzed into glycerol and three free molecules of oleic acid by 
the enzymatic action of a lipase. 
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Finally, another interesting lipase from an industrial point of view is Candida 

antarctica lipase B (CalB), which is one of the most widely studied and patented 

lipases. Among other applications, it has been largely used in detergent 

preparations due to its inherent ability to catalyze reactions at low temperatures, 

given the fact that its natural host is adapted to cold environments (Shivaji & 

Prasad, 2009; Rabbani et al., 2015). 

All these three lipases have been recombinantly produced and extensively 

studied in the Eng4Bio research group using P. pastoris as a cell factory (Barrigón 

et al., 2013; Ponte et al., 2016; Garrigós-Martínez et al., 2019, 2021; Nieto‐Taype 

et al., 2020a; Gasset et al., 2022; Bernat-Camps et al., 2023). 
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2.3 Expression hosts 

The production of complex proteins in large quantities while maintaining the 

native structure and biological activity presents significant challenges. The choice 

of a suitable host for recombinant protein expression is crucial and is one of the 

most critical steps in bioprocess design and development. Ideally, a universal 

expression system would enable the expression of all possible recombinant 

genes in a fast, cheap, and proper manner concerning yield, folding, and 

biological activity (Yin et al., 2007; Sørensen, 2010). However, the limitations of 

current systems make the selection of the expression system an empirical 

determination based on production parameters such as cost, yield, production 

timescale, scale-up capacity, downstream processes, and product properties. 

Thus, different applications have different requirements for both quantity and 

quality, and the characteristics of the target protein must be taken into account, 

as displayed in Table 1. Glycosylation represents the most complex and 

widespread post-translational modification (PTM) and selecting the wrong 

expression host can result in the protein being misfolded, poorly expressed, 

lacking the necessary PTMs, or containing inappropriate modifications (Kim et 

al., 2015; Gupta & Shukla, 2017).  

 

 

 

 

 

 

 

 

 



 12 

 

Bacteria are an excellent expression system for proteins that do not require 

glycosylation or extensive PTMs, allowing for fast and inexpensive production 

processes. Escherichia coli has been the pre-eminent host cell for producing 

recombinant proteins for both commercial and research purposes, enabling a 

recombinant protein fraction of up to 50% of total biomass weight. There are 

many protocols available for high cell density cultivation with E. coli. However, 

producing eukaryotic proteins often results in low yields and inclusion body 

formation due to the faster rates of protein synthesis and folding in prokaryotes 

(Baeshen et al., 2015). 

At the other extreme of cellular complexity, mammalian cell lines can overcome 

most of the limitations of producing recombinant eukaryotic proteins due to their 

capacity to perform human PTMs and to correctly fold and assemble complex 

human proteins. Chinese hamster ovary (CHO) cells are the preferred cell type 

Table 1. Pros, cons, and common applications of the most used expression systems for 
recombinant protein production. 
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for the production of monoclonal antibodies and some other recombinant proteins 

due to their authenticity of glycosylation patterns (Ritacco et al., 2018). As a very 

recent example, the Covid-19 vaccine commercialized by HIPRA (Amer, Spain) 

is produced with CHO (Barreiro et al., 2023). However, the specific yields 

obtained with mammalian cell lines are often low, and their use is often non-

prioritized due to their very low growth rates, extremely expensive medium and 

serum costs, and potential for viral product contamination (Yao & Asayama, 

2017).  

Recently, transgenic animals have also been developed as recombinant protein 

production systems, with high-quality proteins and high production yields at low 

cost. However, the production times are very long, and significant safety concerns 

such as transmission of infectious diseases, and adverse allergenic, 

immunogenic, and autoimmune responses of the host exist. Furthermore, the 

regulations are usually very prohibitive, especially in the European Union (Kleter 

& Kok, 2010; Hudson, 2017; Nishu et al., 2020). 

On the other hand, transgenic plants offer an interesting possibility for producing 

recombinant proteins due to their lower production costs, timescale, safety risks, 

and ease of storage and distribution. Since there is a more permissive regulation, 

some bioprocess using genetically modified plants have been approved both in 

the USA and in the EU (Ma et al., 2015; Schillberg & Spiegel, 2022). Actually, 

Spain was in 2019 the only country in the EU growing genetically modified plants 

on a large scale (Karky & Perry, 2019). 

Among all these aforementioned cell factories, yeasts, single-celled eukaryotic 

fungal organisms, offer a halfway house between bacteria and mammalian cells 

as an expression system, presenting important advantages for protein production 

processes. Yeasts are simple, genetically, and physiologically well-characterized, 

able to grow fast and up to very high cell densities in cheap mediums, generating 

high yields of recombinant proteins at low cost, which incorporate PTMs such as 

disulfide bonds and glycosylation (Gomes et al., 2018; Baghban et al., 2019).  

In conclusion, the selection of the optimal expression system for recombinant 

protein production should be based on the specific requirements of the product 
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quality and the production parameters such as yield, cost, scale-up capacity, and 

downstream processes. While each expression system has its advantages and 

disadvantages, yeast and bacterial systems are currently the most widely used 

for commercial and research purposes due to their cost-effectiveness, scalability, 

and ease of production. However, mammalian cell lines, transgenic animals, and 

plants offer unique advantages to produce specific proteins, which may make 

them more attractive for certain applications. 

 

2.3.1 Yeasts as expression hosts 

Yeasts have been used for millennia in traditional and modern biotechnology to 

produce food, wine, beer, and a wide range of biochemical products. In modern 

biotechnology, yeasts are considered a versatile and efficient expression system 

for recombinant protein production due to their eukaryotic nature. As yeast cells 

are complex and compartmentalized, they have a great capacity for protein 

processing, including folding and assembling in the endoplasmic reticulum, 

introducing post-translational modifications (PTMs) such as glycosylation in the 

Golgi apparatus, and secretion to the extracellular medium through the vesicle 

system, among other abilities (Ahmad et al., 2014). In addition, since yeasts are 

single-celled microorganisms, they can grow fast and up to high cell densities in 

a chemically defined low-cost medium, especially compared with the medium 

needed for animal cell culture. Finally, they have a thick cell wall which gives them 

a high endurance and shear stress resistance. 

Among the yeasts used for recombinant protein production, Saccharomyces 

cerevisiae is the most common and well-known yeast system. It is a GRAS 

(Generally Recognized As Safe) organism and has been used for producing 

therapeutic proteins since the approval of recombinant insulin by Novo Nordisk 

in 1986 (Ladisch’ & Kohlmann, 1992). S. cerevisiae has been used to produce 

dozens of other therapeutic proteins, including human growth hormone, hepatitis 

B vaccine, and human serum albumin (Wang et al., 2017). However, one of the 

major drawbacks of using S. cerevisiae for producing biopharmaceuticals is the 
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difference between its glycosylation pattern and that of humans, which may limit 

therapeutic use. 

Pichia pastoris is another yeast with GRAS status that has gained increasing 

attention as an efficient and versatile system for the expression of heterologous 

proteins (Love et al., 2018). P. pastoris is a methylotrophic yeast that can grow 

on methanol as a sole carbon source (Ogata et al., 1969). Due to this 

advantageous feature, it was initially commercially exploited to produce single-

cell protein (SCP) for animal feed in the 70’s by Phillips Petroleum Company 

(Bartlesville, OK, USA) using methanol, a by-product of petroleum distillation, as 

a substrate. Later in the early ’80s, P. pastoris began to be studied as a 

heterologous gene expression system, and finally in the ‘90s Phillips sold its 

patent position with the P. pastoris expression system to RCT (Tucson, AZ, USA) 

and released it to academic laboratories for research purposes (Higgins & Cregg, 

1998). Since then, it has been used to produce a wide range of recombinant 

proteins, including human insulin, interleukins, and monoclonal antibodies, 

among others, and is considered a promising platform to produce 

biopharmaceuticals (Valero, 2013). Already in the 2000’s, the publication of the 

sequenced genome set the stage for P. pastoris to become an even more 

important cell factory for recombinant proteins (De Schutter et al., 2009; 

Sturmberger et al., 2016). In addition, during this decade, P. pastoris was 

taxonomically reclassified as Komagataella phaffii (Kurtzman, 2005, 2009). Even 

so, much of the scientific community has continued to call it “Pichia pastoris” 

(Mattanovich et al., 2017; Gasser & Mattanovich, 2018). 

One of the advantages of P. pastoris over S. cerevisiae is the availability of strong 

promoters that regulate the expression of the desired protein, allowing high 

production yields. The main and most studied P. pastoris promoter is the alcohol 

oxidase 1 promoter or PAOX1, which actually regulates the expression of the first 

gene related to methanol assimilation and was consequently the first to be 

studied (Cregg et al., 1989). Additionally, in S. cerevisiae, the use of vectors that 

are replicated episomally is still dominant, whereas in P. pastoris the recombinant 

gene of interest is integrated into the genome, which is a method that is 

significantly more stable (Baghban et al., 2019).  
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Another main advantage of P. pastoris is that it also has a secretion pathway that 

is more similar to higher eukaryotes than S. cerevisiae, with less elaborate 

hyperglycosylation, which makes it more similar to mammalian cells (Darby et al., 

2012). Thus, it can produce high levels of secreted recombinant proteins, up to 

80% of the total secreted protein (Li et al., 2007). Additionally, P. pastoris has 

been successfully glycoengineered, replacing the native pathway with the 

humanized N-glycosylation pathway to generate a set of strains producing 

proteins with human glycosylation patterns (Beck et al., 2010; Love et al., 2018).  

However, one of the main disadvantages of PAOX1-based processes is the use of 

methanol as a carbon source, which poses an important safety risk from an 

industrial point of view. Methanol-based expression systems using P. pastoris 

have been successful in obtaining high product titers in a cheap strategy, but they 

present significant drawbacks for large-scale bioprocesses associated with the 

storage and delivery of large quantities of methanol, as well as important 

increases in heat production and oxygen requirements (Yang & Zhang, 2018).  

In the last two decades, the use of the glyceraldehyde-3-phosphate 

dehydrogenase promoter (GAP promoter or PGAP) for constitutive expression of 

recombinant proteins in P. pastoris has been also used as an alternative 

methanol-free expression system (Zhang et al., 2009; Waterham et al., 1997). 

PGAP regulates the levels of protein production, leading to strong and constitutive 

gene expression when the yeast grows on glucose, glycerol, or other carbon 

sources as a substrate, including methanol, and it is a promising alternative for 

industrial recombinant protein production using P. pastoris, as it avoids the 

drawbacks associated with methanol (García-Ortega et al., 2019; Gasset et al., 

2022). 
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In conclusion, yeasts are versatile and efficient expression systems for 

recombinant protein production processes, and P. pastoris is a very established 

cell factory due to its efficient secretory pathway, strong promoters, and its ability 

to produce high levels of recombinant proteins. The engineering tools and 

bioprocess engineering know-how developed in P. pastoris, illustrated in Figure 

3, are proof of the extensive use of this yeast. 

 

 

 

 

  

Figure 3. An overview of the know-how of recombinant gene expression with P. 
pastoris: from the DNA sequence optimization to strain selection. 
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2.4 Bioprocess engineering as a powerful tool to optimize RPP 

Bioprocessing has been established as a more sustainable alternative to classic 

chemical industrial processes and for the synthesis of new products such as 

metabolites, proteins, or even whole cells. The optimization of a productive 

bioprocess for recombinant protein production involves a combination of strain 

engineering and bioprocess engineering, as presented in Figure 4. There are 

many different ways in which strain engineering can be applied. Some well-

established examples are promoter engineering, codon usage optimization, co-

expression of transcription factors or molecular chaperones, increasing gene 

dosage, etc. Nonetheless, the focus of this thesis is on bioprocess engineering, 

so it is not necessary to go into more detail since numerous examples can be 

found in the literature (Westbrook et al., 2019; De et al., 2021; Bustos et al., 

2022). However, it must be said that strain engineering can easily improve 

productivity by more than one order of magnitude (Abad et al., 2011; Kroukamp 

et al., 2018). 

Bioprocess engineering involves selecting the best bioreactor design and 

operational strategy, designing, and optimizing the process parameters, selecting 

appropriate culture media, and establishing the best conditions for the cells for 

optimal growth and production. In bioprocess optimization, selecting the correct 

operational mode is a key factor. Although there is a growing trend to move to 

continuous cultivation, batch or fed-batch are still the most established modes for 

production at an industrial scale, while continuous chemostat is often used for 

strain characterization (Looser et al., 2015; Kumar et al., 2020; Nieto-Taype et 

al., 2020b). In fed-batch processes, the feeding strategy is crucial to achieving 

high levels of production, since the expression of recombinant proteins is often 

coupled with cell growth, although in some cases this is not fulfilled (Bernat-

Camps et al., 2023). Increasing the specific growth rate is often beneficial for 

protein production, and an optimal value can be found from which bioprocess 

efficiency no longer increases (Garrigós-Martínez et al., 2019; Brignoli et al., 

2020). Also involved with the feeding strategy, the selection of the appropriate 

substrate is critical to achieve a productive bioprocess (García-Ortega et al., 

2019). 
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On the other hand, maintaining the desired conditions along the bioprocesses is 

challenging, especially in dynamic cultures such as fed-batch. Therefore, control 

is a critical aspect of bioprocess engineering. Industrial control technology 

applied to bioindustry aims to monitor and regulate bioprocess performance to 

ensure the desired product quality and quantity, and it is crucial for ensuring the 

Figure 4. General considerations for recombinant protein production with P. pastoris for both micro- 
(strain optimization) and macro- (bioprocess engineering) scales. The genetic construction of the 
strain has a great influence on the design of the productive bioprocess. 
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reproducibility, scalability, and robustness of industrial bioprocesses. Bioprocess 

control involves the use of various tools and techniques, including statistical 

process control, process analytical technologies, and advanced process control 

systems, to monitor and optimize bioprocesses (Cos et al., 2006; Rathore et al., 

2021). 

Innovatively, the utilization of various cell stress methodologies has been found 

to exert a noteworthy and favorable impact on RPP bioprocesses. These well-

established strategies, when appropriately employed, exhibit the potential to 

improve the overall bioprocess efficiency. For instance, one effective approach 

involves the implementation of substrate-starving periods during the bioprocess. 

By subjecting the cells to controlled periods of substrate deprivation, metabolic 

shifts are induced, prompting the cells to adapt and enhance their productivity 

(Garcia-Ortega et al., 2016; Çalık et al., 2018). 

Similarly, another beneficial technique involves the manipulation of oxygen 

availability within the bioprocess environment. Oxygen limitation can be 

strategically induced, forcing cells to adjust their metabolic pathways to cope with 

reduced oxygen levels. This was demonstrated in previous studies, which 

presented compelling evidence regarding the impact of oxygen limitation on P. 

pastoris cultures grown on glucose as the sole carbon source. This limitation in 

oxygen availability or hypoxia was shown to trigger a notable increase in 

metabolic fluxes along the glycolytic and ethanol generation pathways, 

accompanied by a simultaneous reduction in TCA fluxes, indicating a shift from 

respirative to respiro-fermentative metabolism (Baumann et al., 2010). Moreover, 

these studies did not only report an increase in metabolic fluxes but also an 

upregulation of specific genes, both at the transcription and secretion levels. It is 

noteworthy that TDH3 (glyceraldehyde-3-phosphate dehydrogenase) was one of 

the overexpressed genes. Remarkably, the GAP promoter or PGAP is the natural 

promoter of the TDH3 gene. 

Subsequent studies demonstrated that under hypoxic conditions, the cells have 

a higher pool of NADH, which leads to an increase in the NADPH/NADP+ ratio 

(Carnicer et al., 2012). In turn, this also could lead to higher recombinant protein 

production (Tomàs-Gamisans et al., 2020). 
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Additionally, other effects of oxygen limitation on P. pastoris were also described, 

which include lipidome, metabolome, and elemental composition, among others 

(Carnicer et al., 2009, 2012; Adelantado et al., 2017; Zahrl et al., 2017). 

Succeeding research further investigated the effects of varying the degree of 

oxygen limitation on the production of an antibody fragment regulated by PGAP. 

Astonishingly, these studies demonstrated that the application of distinct levels 

of oxygen limitation had a favorable influence on the specific production rate (qP) 

of the antibody fragment, leading to an impressive up to 3-fold increase when 

compared to non-limiting conditions (Garcia-Ortega et al., 2017). As a result of 

these findings, it was proposed the adoption of a physiological and system-

independent parameter as a transferable operating criterion to implement desired 

oxygen-limiting conditions in diverse equipment and operational modes. For this 

purpose, two parameters were suggested: the specific ethanol production rate 

(qEtOH) and the respiratory quotient (RQ). 
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2.5 Towards Industry 4.0 

Recently, the bioprocess engineering field has seen a rapid increase in the use 

of artificial intelligence (AI) algorithms to improve the efficiency, accuracy, and 

cost-effectiveness of bioprocesses. The incorporation of machine learning, deep 

learning, and other AI techniques facilitates the design, control, and monitoring 

of bioprocesses, resulting in higher yields, improved product quality, and reduced 

waste (Singh & Singhal, 2022). This trend is part of the larger movement towards 

Industry 4.0, which seeks to integrate advanced technologies such as AI, the 

Internet of Things (IoT), and cloud computing into industrial processes, leading 

to more flexible, responsive, and intelligent manufacturing systems. Therefore, 

the integration of Industry 4.0 into bioprocess engineering has presented new 

opportunities for optimizing and controlling bioprocesses, particularly in the 

context of process validation (PV) in drug manufacturing.  

In 2011, the US Food and Drug Administration (FDA) published the "Guidance 

for Industry. Process Validation: General Principles and Practices" establishing 

some guidelines for the manufacture of drugs and biological products for humans 

and animals, including active pharmaceutical ingredients (FDA, 2011). Shortly 

after, in 2014 the European Medicines Agency (EMA) also joined in, publishing 

the "Guideline on process validation for the manufacture of biotechnology-derived 

active substances and data to be provided in the regulatory submission" (EMA, 

2014). In both cases, they define PV as a systematic collection and analysis of 

data throughout the product and process lifecycle to ensure a consistent and 

high-quality product. It involves three stages: Process Design (PD), Process 

Qualification (PQ), and Continued Process Verification (CPV), as shown in 

Figure 5. 

 

 

 

 



 23 

 

 

CPV, the third stage of PV, plays a crucial role in maintaining control over drug 

manufacturing by utilizing real-time data acquisition and direct interaction with 

production elements. However, the production environment is subject to 

uncertainty due to various factors like equipment stress, seasonality, and raw 

material suppliers. To address this, Stage 3 is divided into two phases: 3A, a 

preliminary production phase, and 3B, based on experimented iterations with 

successful batch releases (Ondracka et al., 2022). 

In this sense, Statistical Process Control (SPC) is a valuable tool for monitoring 

drug manufacturing, enabling data-driven models to establish a mathematical 

mechanism, and therefore allowing to make decisions and interact with the 

system (Keller, 2011). Regulatory bodies encourage the use of multivariable 

statistical approaches and Process Analytical Technologies (PAT) to ensure the 

right batch production, but these mechanisms are not widely deployed (Read et 

al., 2010; FDA, 2019). Thus, in the last years, the tendency to bet on an 

experimental approach has begun, using AI as a multivariate statistical control to 

manage biotech processes (Duong-Trung et al., 2023). A digital twin, a virtualized 

Figure 5. Stages of the Process Validation. Adapted from the "Guidance for Industry. 
Process Validation: General Principles and Practices" (FDA, 2011). 
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version of the physical system, is used for emulation, and AI algorithms are 

applied as valid analytical methods in pharmaceutical contexts (Bao et al., 2019). 

AI's ability to control complex processes with multiple variables, detect 

anomalies, and automate tasks adds value to CPV by keeping the process under 

control and reducing human-related issues during production (Manzano 2021). 

In conclusion, the integration of Industry 4.0 and AI into bioprocess engineering 

has the potential to enhance process validation in drug manufacturing, ensuring 

consistent product quality and operational efficiency. 
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3. OBJECTIVES 
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As summarized in this thesis, all the work conducted during the doctorate was 

aimed at achieving two major objectives. The first main objective had a high 

chance of being achieved since it was focused on characterizing the effect of 

oxygen limitation (or hypoxia) on the production of a recombinant protein, C. 

rugosa lipase 1 (Crl1), under the regulation of the PGAP with P. pastoris. This effect 

had already been characterized before with another protein (Fab) in a chemostat 

system, so the purpose of this study was to go a step further and test this effect 

in a dynamic system, more representative of an industrial process. This main goal 

was divided into five secondary objectives: 

 

1. To characterize the effect of several degrees of hypoxia on the production 

of Crl1 under the regulation of PGAP in chemostat mode and to define the 

optimal conditions regarding oxygen limitation for Crl1 production. 

 

2. To evaluate the effect of different CRL1 gene dosage on the production 

and expression of Crl1 and to test the synergistic effect with oxygen 

limitation. 

 

3. To reproduce in a fed-batch system the optimal hypoxic conditions 

previously defined in chemostat operation, maintaining the same level of 

oxygen limitation throughout the whole process. 

 

4. To analyze the effect of oxygen limitation on the transcription of several 

genes related to substrate consumption (glycolytic genes) and Crl1 

production (the recombinant CRL1 gene and other genes related to protein 

folding and secretion pathways) with the aim of identifying possible 

bottlenecks in transcription, translation, and/or secretion pathways. 

 

5. To evaluate the reproducibility and transferability of the hypoxic production 

process to a higher scale process, validating the strategy from an industrial 

perspective. 
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After achieving the first key objective, the second one was to develop and test a 

control strategy to accurately maintain the required operating conditions 

regarding oxygen limitation during an entire fed-batch process. With this aim, 

several specific objectives were defined: 

 

6. To define which variable/s must be controlled and which parameters must 

be manipulated to maintain a constant hypoxic level in a dynamic culture 

system. 

 

7. To develop an automatic control loop based on some on-line 

measurements of the physiological state of the biomass, integrating all the 

available measurements coming from the bioreactor and external devices. 

 

8. To test the control strategy with different Pichia strains expressing different 

recombinant proteins to validate both the control strategy and the effect of 

hypoxia. 

 

Finally, with the advent of the “CPV of the Future” project and with collaboration 

with the AIZON company, an icing-on-the-cake final goal was defined: 

 

9. To connect the SCADA system containing all the bioprocess 

measurements with a digital twin of the fermenter stored on the cloud. 

 

10. To apply Artificial Intelligence (AI) algorithms to develop an innovative 

control strategy for the hypoxic process and contribute to setting the 

foundations for Industry 4.0. 

 

 

 



 28 

  

4. METHODOLOGY 
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4.1 Strains and clones  

Four clones of P. pastoris expressing different recombinant lipases were used in 

this work: two of them expressing C. rugosa lipase 1 (Crl1), another expressing 

the 28 aminoacids of prosequence jointly with the mature sequence of R. oryzae 

lipase (proRol) and the last one expressing the C. antarctica lipase B (CalB). 

Further details about the prosequence of proRol can be found in the literature 

(López-Fernández et al., 2019). These clones were kindly provided by Dr. Miguel-

Ángel Nieto Taype (Crl1 and CalB clones) and Dr. Josu López Fernández (proRol 

clone).  

Although the clones’ construction was not part of this work, a brief explanation of 

the clone construction, screening, and gene copy number determination is given 

in the following sections. However, only information and details regarding Crl1-

producing clones have been included as an example of clone construction. 

More details concerning proRol- (López-Fernández et al., 2021a; López-

Fernández, 2022) and CalB-producing clones (Nieto-Taype, 2020; Garrigós-

Martínez et al., 2021) can be found in previous works conducted in the research 

group. However, it is noteworthy that the CalB-producing clone was built on the 

BG11 strain, while the remaining clones are derived from an X-33 strain. 

 

4.1.1 Clones expressing C. rugosa lipase 1 (Crl1) 

4.1.1.1 Crl1 clone transformation  

Two recombinant clones of P. pastoris harboring one and five copies of the CRL1 

gene under the regulation of the constitutive GAP promoter (PGAP) were selected 

among a battery of clones. The clones are named from now on as follows: Single-

Copy Clone (SCC) and Multi-Copy Clone (MCC).  

These clones were obtained by transforming a wild-type P. pastoris X-33 strain 

with different concentrations of the plasmid PGAPαA from Invitrogen (Carlsbad, 

CA, USA) containing the codon-optimized sequence of CRL1 gene from 

GeneScript (Piscataway, NJ, USA) inserted through the restriction-ligation 
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method as described previously (Cos et al., 2005a; Cámara et al., 2016). By using 

the α-mating factor of S. cerevisiae the recombinant protein is secreted into the 

culture broth. Both clones had already been used in a previous study, thus the 

clone construction was already described in the literature (Nieto‐Taype et al., 

2020a). 

 

4.1.1.2 Crl1 clone screening 

For the selection of these clones, the protocol described in the manual Pichia 

Expression Kit from Invitrogen (Carlsbad, CA, USA) was followed.  

Firstly, a pre-culture of 10 mL with YPG (2% w/v peptone, 1% w/v yeast extract, 

2% w/v glycerol, pH 7.0) and 100 mg · L-1 of zeocin was inoculated for each clone 

and incubated 24 h at 25 ºC and 150 rpm of agitation. This pre-culture was used 

to inoculate a 40 mL culture in 0.25 L shake-flasks with BMG 1% medium 

(phosphate buffer 0.1 M pH 6.0, 1.34% YNB, 0.4 mg · L-1 biotin and 1% glycerol). 

The inoculum volume was adjusted to achieve an initial OD600 ≈ 0.1 in the shake-

flasks. After approximately 16 h of incubation under the conditions noted above, 

each clone was inoculated in a separate shake-flask with an initial OD600 ≈ 0.1 

with 40 mL BMD 1% medium (phosphate buffer 0.1 M pH 6.0, 1.34% YNB, 0.4 

mg · L-1 biotin and 1% (w/v) glucose) for Crl1 expression. These cultures were 

kept under the same incubation conditions for approximately 48 h before Crl1 

lipase activity determination. 

 

4.1.1.3 CRL1 copy number determination 

Droplet digital PCR (ddPCR) was used to determine the number of the expression 

cassettes integrated. The protocol was adapted from a previous work (Cámara 

et al., 2016). 

Firstly, genomic DNA was isolated using the commercially available DNA 

purification kit QX200 ddPCR EvaGreen Supermix (BioRad, Hercules, CA, USA). 

Then, to assure an accurate quantification, the genomic DNA was digested with 



 31 

the restriction enzymes HindIII and EcoRI (NewEnglandBiolabs, Ipswich, MA, 

USA). Droplet Generator from BioRad (Hercules, CA, USA) was used to generate 

droplets containing PCR reaction mixture. Droplets were transferred to a 96-well 

plate and incubated at 95 ºC for 10 min for the activation of hot-start polymerase, 

followed by 40 cycles of two-step denaturalization (94 ºC, 30 s) and 

annealing/extension (60 ºC, 1 min). Droplet detection was done using the QX200 

Droplet Digital PCR System and the software QuantaSoft from BioRad (Hercules, 

CA, USA). 

More details can be found in the literature (Garrigós-Martínez et al., 2019; Nieto-

Taype et al., 2020a).  
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4.2 Bioreactor operation 

4.2.1 Inoculum preparation 

4.2.1.1 Working cell bank  

1.5 mL cryovials at OD600 ≈ 60 were prepared for each clone utilized in this work. 

Firstly, biomass from an agar plate was inoculated to a 1 L Erlenmeyer flask 

containing 150 mL of sterile YPG medium (1% yeast extract, 2% peptone, and 

1% glycerol). When biomass was supposed to be at the exponential growth 

phase (OD600 ≈ 8 - 12) it was sterilely collected and centrifuged at 6000 xg and 

mixed with a volume of fresh YPG necessary to obtain an OD600 ≈ 90. Then, for 

each 1 mL of this concentrated biomass suspension, 0.5 mL of sterile 

glycerol/water 50% w/w was added, reaching a final OD600 ≈ 60 with a final 

glycerol concentration of 15% w/w, approximately. Finally, 1.5 mL aliquots were 

taken and introduced to cryovials and stored at -80 ºC for future utilization. 

 

4.2.1.2 Pre-inoculum  

For inoculum preparation, 1 to 3 cryovials prepared following the instructions of 

the previous section were mixed with 150 to 450 mL of sterile YPG medium, 

depending on the batch working volume in 1 to 3 sterile 1 L Erlenmeyer flasks 

(maximum 150 mL of YPG per flask). To assure the aseptic cell growth of the 

desired clones, 100 mg · L-1 zeocin were added to the inoculum medium.  

Flasks were placed on a Multitron Shaker (INFORS HT, Bottmingen, Switzerland) 

and incubated at 25 ºC and 120 rpm for approximately 16 h until bioreactor 

inoculation. 
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4.2.2 Chemostat cultivations 

Biological duplicates of chemostat cultivations were performed in a 2 L Biostat B 

fermenter (Braun Biotech, Melsungen, Germany) with a working volume of 1 L. 

Two clones were cultivated in chemostat mode, namely SCC and MCC. As 

detailed below, seven different conditions regarding oxygen supply were tested 

in duplicate for each clone. 

 

4.2.2.1 Initial batch phase and bioreactor preparation 

An initial batch phase was conducted before the chemostat operation. The batch 

medium contained per liter of distilled water: citric acid 1.8 g, glycerol 40 g, 

(NH4)2HPO4 12.6 g, MgSO4·7H2O 0.5 g, KCl 0.9 g, CaCl2·2H2O 0.02 g, antifoam 

Glanapon 2000kz (Bussetti & Co. GmbH, Vienna, Austria) 0.05 ml, biotin 0.4 mg, 

and 4.6 ml PTM1 (trace salts solution). The total volume was 1L. The PTM1 trace 

salts solution contained per liter: CuSO4·5H2O 6.0 g, NaI 0.08 g, MnSO4·H2O 

3.36 g, Na2MoO4·2H2O 0.2 g, H3BO3 0.02 g, CoCl2 0.82 g, ZnCl2 20.0 g, 

FeSO4·7H2O 65.0 g, and 5.0 mL H2SO4 (98%).  

Firstly, the culture medium without trace salts and biotin was introduced to the 

fermenter and the pH sensor was calibrated with pH standard solutions before 

placing it in the fermenter. The pH sensor used in chemostat cultivations was an 

InPro 3030/225 from Mettler Toledo (Columbus, OH, USA). After that, a 

sterilization process (121 ºC, 30 min) was conducted with an Autester Dry 80 

autoclave (JP Selecta, Abrera, Spain). Then, biotin and trace salts solutions were 

sterilized by microfiltration with nylon filters and regenerated cellulose filters, 

respectively, both hydrophilic and with 0.2 µm of nominal pore size, and 

introduced through the septum. The commercial references of these filters are 

“DMSO-Safe Acrodisc™17124311” from Pall (Port Washington, NY, USA) and 

“Syringe filter Minisart RC 17764-ACK”, from Sartorius (Goettingen, Germany), 

respectively.  

After that, the dissolved oxygen (DO) sensor was calibrated. The DO sensor for 

the chemostat cultivations was a polarographic InPro 6820/20/220 from Mettler 
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Toledo (Columbus, OH, USA). Afterward, the inoculum was introduced sterilely 

to the fermenter, leading to the beginning of the batch. The initial OD600 was 

between 1 and 2, leading to different batch durations depending on the 

fermentation schedule, following Equation 1. 

𝑋௧ = 𝑋଴ · 𝑒ఓ·௧      Eq. 1 

Where X0 and Xt are the biomass concentration at the beginning and the end of 

the batch, respectively (both in OD600 units or g · L-1), µ is the specific growth rate 

(h-1) and t is time (h). Xt and µ were empirically defined for each clone.  

Then, the necessary volume of pre-inoculum was defined with Equation 2, 

𝑉ଵ · 𝑂𝐷ଵ = 𝑉ଶ · 𝑂𝐷ଶ    Eq. 2 

where V1 is the batch volume (L) and OD1 is the initial OD600 (X0) defined in 

Equation 1 (in OD600 units). OD2 is the OD600 in the pre-inoculum shake flask (in 

OD600 units) and V2 is the necessary volume of pre-inoculum (L). This volume 

was then sterilely centrifuged, resuspended with sterile water, and sterilely 

introduced to the bioreactor. 

To reduce significatively lag phase at the beginning of the batch, it is noteworthy 

that the biomass used for the inoculum must be at exponential growth phase, so 

the OD600 in the pre-inoculum flasks should be OD600 ≈ 8 - 12. Otherwise, an 

unexpectedly longer batch duration can be observed. 

Temperature was kept at 25 ºC using the temperature control unit of the 

fermenter. Concretely, an external Alpha RA8 cooling device or chiller (Lauda, 

Lauda-Königshofen, Germany) was used to supply cold water at 4 ºC to the 

control system due to intense heat generation within the cultivations. DO was 

maintained above 30% of air saturation by automatically modifying the agitation 

rate, using the fermenter’s own DO cascade controller. No pure oxygen was 

needed to maintain the DO set-point neither the batch nor the chemostat 

operations. pH was controlled at 6.0, far from the pI (isoelectric point) = 4.5 of 

Crl1 (Benjamin & Pandey, 1998), using NH4OH 15% (v/v). Additionally, NH4OH 

also served as a nitrogen source. Evaporation losses were minimized using a gas 
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condenser with cooling water at 4 ºC. Moreover, a 250 mL desiccation column 

filled with silica gel was installed in the outgas stream to reduce its humidity and 

minimize water condensation in the exhaust gas filter. The filters for inlet gas and 

exhaust gas used in all fermenters (including chemostat and fed-batch 

fermentations) were made of polytetrafluoroethylene (PTFE) and hydrophobic, 

with a 0.2 μm of nominal pore size. 

 

4.2.2.2 Chemostat operation 

Right after the batch end, marked by a sudden rise of DO, the dilution rate (D) 

was set at 0.10 h-1 by controlling the out flowrate to 0.10 L·h-1. It is important to 

start the chemostat operation right after the end of the batch to have the biomass 

as close as possible to the exponential growth and avoid long dead times. 

Otherwise, long transitory states, fluctuations, and even bioreactor washout could 

be observed. To assure that the desired D was achieved, the outflow was 

measured every 2-3 residence times (τ), and the feeding pump power was 

adjusted depending on this measurement of the outflow, as detailed in previous 

works (Garcia-Ortega et al., 2016). The peristaltic pump used for these cultures 

was an ISM935C from Ismatec (Glattbrugg, Switzerland), and it was calibrated 

before each chemostat run. The chemostat feeding medium contained per liter of 

distilled water: citric acid 0.9 g, glucose 50 g, (NH4)2HPO4 4.35 g, MgSO4·7H2O 

0.65 g, KCl 1.7 g, CaCl2·2H2O 0.01 g, antifoam Glanapon 2000kz (Bussetti & Co. 

GmbH, Vienna, Austria) 0.2 ml, biotin 1.2 mg, and 15 ml PTM1 trace salts solution. 

Temperature, pH, and agitation were kept constant at 25 ºC, 6.0, and 700 rpm, 

respectively.  

For the chemostat medium preparation, a 10 L or 20 L glass bottle with 2-3 L of 

water and all the necessary amount of antifoam were sterilized via autoclave (121 

ºC, 30 min), since antifoam may block the filter used for medium sterilization. The 

rest of the medium components were dissolved in distilled water and then 

introduced to the 10 L or 20 L bottle through a polyethersulfone (PES) filter which 

consisted of a prefilter membrane of 0.45 µm of nominal pore size and an endfilter 

membrane of 0.2 µm nominal pore size. The commercial reference for this filter 
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is “Sartopore 2 Midicap 5445307H8--OO—A” from Sartorius (Goettingen, 

Germany). 

Seven different conditions regarding oxygen availability were tested with the Crl1-

producing Single- and Multicopy Clones (SCC and MCC) to evaluate the effect 

of oxygen limitation (hypoxia) and to compare with normal aerobic conditions 

(normoxia). To reduce the oxygen supply without altering the mixing conditions 

of the process, different mixtures of air and N2 were implemented using two 

external EL-FLOW mass flow meters/controllers (Bronkhorst, Ruurlo, 

Netherlands), maintaining a constant aeration flowrate of 0.8 nlpm (normal liter 

per minute) (0.8 vvm). The flowrates of air and N2, as well as the nominal 

corresponding oxygen proportion in the inlet gas, are displayed in Table 2. To 

assure an accurate respirometric parameter calculation, O2 and CO2 composition 

from inlet gas were analyzed in every steady state, and constantly from exhaust 

gas. For each condition tested, samples were taken and analyzed at 3, 4, and 5 

residence times to check the achievement of steady state conditions. From these 

samples, cell density, lipolytic activity, and substrate and by-product 

quantification via HPLC were analyzed. 

 

 

 

As carried out in batch phase, temperature, and pH were kept at 25ºC and 6.0, 

respectively. DO was not controlled during chemostat operation since the effect 

of the oxygen availability on the Crl1 production process had to be evaluated and 

consequently diverse DO values were attained for the different conditions tested.  

Oxygen in the 
inlet gas (%) 21 14 12 11 10 9 8 

Air flowrate (nlpm) 0.800 0.540 0.460 0.424 0.385 0.344 0.311 

N2 flowrate (nlpm) 0 0.260 0.340 0.376 0.415 0.456 0.489 

Table 2. Different air and nitrogen flowrates to achieve the desired oxygen 
concentrations in the inlet gas for chemostat cultivations. 
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A picture and a schematic drawing of the experimental set-up for chemostat 

cultivations are displayed in Figure 6. 

 

  

Figure 6. Picture and scheme of the experimental set-up for chemostat fermentations. 
1: substrate feeding tank on top of a magnetic stirrer; 2: pipette for flowrate 
measurement; 3: substrate addition peristaltic pump; 4: bioreactor vessel; 5: desiccation 
column; 6: gas analyzer; 7: bioreactor base pump; 8: bioreactor control unit; 9: base 
bottle; 10: outflow peristaltic pump; 11: outflow tank; 12: chiller 

Created with BioRender.com   
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4.2.3 Fed-batch cultivations 

A total of 20 fed-batch cultures were performed with 4 different P. pastoris clones 

were included in this thesis. To provide a clear picture of all fed-batch 

fermentations and to make them easier to identify, in Table 3 a classification of 

all of them is presented. For each fermentation, a codification related to the clone 

and O2 condition has been assigned. “1” or “2” at the end of the code means they 

are replicates of the same clone and conditions. HIRQ and GASC stand for “High 

RQ” and “Gas-Controlled”, corresponding to a fermentation with a higher RQ set-

point and a fermentation where RQ was controlled through gas mixing, 

respectively. In addition, they are subclassified by the RQ control strategy as 

explained in Chapter 6: Manual-Heuristic Control (MHC), Boolean-Logic Control 

(BLC), and AI-aided Adaptive-Proportional Control (AI-APC). In addition, as 

explained in more detail in Sections 5.4.2 and 7.4, two additional fermentations 

carried out in the Eng4Bio research group have been included for comparative 

purposes, although they are not part of this work. 

Unless otherwise noted, all these fermentations have been carried out in two 

equal 5L Biostat B fermenters (Sartorius Stedim, Goettingen, Germany). NX50L 

and HPX50L fermentations were carried out in a 50 L fermenter prototype from 

ZETA GmbH (Lieboch, Austria), as part of a research stay in Bisy (Wünschendorf, 

Austria). Bisy is a research company specialized in promoter and strain 

engineering, mainly with P. pastoris. It has actively collaborated with the Eng4Bio 

research group, where this thesis has been done. 
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Table 3. Summary of the fed-batch cultivations included in this work.                         

** Fermentations included in this document that are not part of this thesis. 
  

Codification 
O2 

condition 
Scale / 
Volume 

Clone / 
Protein 

RQ 
control 
strategy 

μ  

(h-1) 
Section 

SCC-NX1 Normoxia Lab / 5L SCC 
- 

0.10 5.2 

SCC-NX2 Normoxia Lab / 5L SCC 0.10 5.2 

SCC-HPX1 Hypoxia Lab / 5L SCC 
Manual-
Heuristic 

0.10 5.2, 6.3 

SCC-HPX2 Hypoxia Lab / 5L SCC 0.10 5.2, 6.3 

MCC-NX1 Normoxia Lab / 5L MCC 
- 

0.10 5.2 

MCC-NX2 Normoxia Lab / 5L MCC 0.10 5.2 

MCC-HPX1 Hypoxia Lab / 5L MCC 
Manual-
Heuristic 

0.10 5.2 

MCC-HPX2 Hypoxia Lab / 5L MCC 0.10 5.2 

NX50L Normoxia Pilot / 50L SCC - 0.065 5.4 

HPX50L Hypoxia Pilot / 50L SCC 
Manual-
Heuristic 

0.065 5.4 

HPX-BLC1 Hypoxia Lab / 5L SCC 
Boolean-

Logic 

0.10 6.4 

HPX-BLC2 Hypoxia Lab / 5L SCC 0.10 6.4 

HPX-APC1 Hypoxia Lab / 5L SCC AI-aided 
Adaptive-

Proportional 

0.10 6.5 

HPX-APC2 Hypoxia Lab / 5L SCC 0.10 6.5 

proRol-NX Normoxia Lab / 5L proRol - 0.065 7.2 

proRol-HPX Hypoxia Lab / 5L proRol 
Boolean-

Logic 
0.065 7.2 

CalB-NX Normoxia Lab / 5L CalB - 0.065 7.3 

CalB-HPX Hypoxia Lab / 5L CalB 
Boolean-

Logic 
0.065 7.3 

HPX-HIRQ Hypoxia Lab / 5L SCC 
Manual-
Heuristic 

0.10 Annex 

HPX-GASC Hypoxia Lab / 5L SCC 
Manual-
Heuristic 

0.10 Annex 

**    065-NX Normoxia Lab / 5L SCC - 0.065 5.4, 7.4 

**   065-HPX Hypoxia Lab / 5L SCC 
Boolean-

Logic 
0.065 5.4, 7.4 
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4.2.3.1 Initial batch phase and bioreactor preparation 

A batch phase was carried out before fed-batch operation, following the same 

procedure described in Section 4.2.2.1 with two exceptions in volume and 

cooling system, since different equipment was used, especially in the case of 

pilot-scale fermentations. In addition, different pH and DO sensors were utilized 

in each fermenter used. 

 

Lab-scale batch phase and bioreactor preparation 

For the 18 lab-scale cultivations performed in two Biostat B fermenters (Sartorius 

Stedim, Goettingen, Germany), they had an operational volume of ≈ 5 L, so the 

initial batch volume was 2 L. Additionally, the chiller used for these fermentations 

was a Frigomix FX-1000 (Sartorius Stedim, Goettingen, Germany). Apart from 

that, the pH and DO sensors were an EasyFerm Plus PHI VP 325 and a VisiFerm 

DO 325, respectively, both from Hamilton (Reno, NV, USA). On the other hand, 

for the 5 L fermenter set-up, a bigger desiccation column of 500 mL was used. 

 

Pilot-scale batch phase and bioreactor preparation 

The 2 pilot-scale fermentations were performed in a 50 L fermenter prototype 

from ZETA GmbH (Lieboch, Austria). From this point on, it will be referred to as 

"BIRE", which stands for “Big Reactor” as per the instructions of Bisy's staff.  

On the one hand, the initial batch volume was 30 L, with the same culture medium 

composition described in Section 4.2.2.1. On the other hand, since the fermenter 

was designed for an industrial environment, it had its own temperature control 

unit, which was used to cool down and heat the cooling liquid (glycol water) for 

temperature control. In addition, the fermenter was connected to a boiler for a 

constant steam supply. This enabled to perform the sterilization in-situ following 

the standard procedure in industrial bioprocessing. Additionally, the pH and DO 

sensors used in these fermentations were InPro 3100/120/Pt1000 and InPro 

6800/12/120, respectively, both from Mettler Toledo (Columbus, OH, USA). 
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Contrarily to lab-scale fermentations, the BIRE was not equipped with a gas 

condenser to minimize evaporation losses. It is interesting to note that steam from 

the boiler was used to heat the outgas in order to prevent any water condensation 

that could block the output filter. In addition, no desiccation column was installed 

in the exhaust gas line of this fermenter. Thus, evaporation losses were expected 

to be higher than in the lab-scale. 

 

4.2.3.2 Fed-batch operation 

After the batch phase, a fed-batch phase was conducted with an exponential 

addition of glucose according to the different nominal specific growth rates 

selected. Some of the cultures were conducted under hypoxic conditions, as 

detailed below. However, to compare with non-limiting oxygen conditions, some 

of the cultivations were carried out in normoxic conditions, and they were 

considered as control experiments to assess the improvement in bioprocess 

efficiency when applying oxygen limitation. 

After the end of the batch, indicated by a sudden rise of DO, the culture was kept 

around 1 h without substrate addition before starting the feeding phase to let 

biomass consume all potential by-products generated during the batch phase. 

Then, the addition pump was activated with an exponential pre-programmed 

feeding profile. For lab-scale fermentations, a piston pump Burette 1S (Crison, 

Alella, Spain) was used. This piston pump was named the “microburette”. On the 

other hand, for the pilot-scale fermentations, a peristaltic pump was used for the 

substrate addition, which was calibrated before the first run. As can be observed 

in Table 3, the nominal specific growth rate (μ) was set at 0.10 h-1 in some 

fermentations and at 0.065 h-1 in others by adjusting the feeding flowrate following 

Equation 3. To calculate the initial flowrate (F0), Equation 4 was used. 

 

 𝐹௧ = 𝐹଴ · 𝑒ఓ·௧     Eq. 3 

𝐹଴ =
𝑋଴ · 𝑉଴ · 𝜇

(𝑆଴ · 𝑌௑/ௌ)൘                Eq. 4 
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Where Ft and F0 are the feeding flowrates at t = t and t = 0, respectively (L · h-1), 

X0 and V0 are the biomass concentration (both in OD600 units or g · L-1) and the 

culture broth volume (L) at the beginning of the fed-batch phase, μ is the selected 

nominal specific growth rate (h-1), t is the feeding phase time (h), S0 is the 

substrate concentration in the feeding tank (g · L-1) and YX/S is the overall 

biomass-to-substrate yield (gDCW · gS-1). 

As performed in chemostat cultivations, temperature was kept at 25 ºC using the 

cooling jacket of the fermenter, and pH was maintained using NH4OH 15% (v/v), 

with a set-point of 6.0 when working with SCC and MCC clones expressing Crl1 

and a set-point of 5.0 with the other clones expressing proRol and CalB. 

The feeding medium contained per liter of distilled water: glucose 400 g (unless 

otherwise specified), MgSO4·7H2O 6.45 g, KCl 10 g, CaCl2·2H2O 0.35 g, antifoam 

Glanapon 2000kz 0.2 ml, biotin 1.2 mg, and 15 ml PTM1 trace salts solution.  

A rearrangement of Equations 3 and 4 shows that biomass evolution depends 

on three factors: Ft, S0, and YX/S, as represented in Equation 5. YX/S is a biological 

parameter and highly dependent on oxygen availability, so Ft and S0 are the only 

parameters that can be modified to achieve the desired biomass production. 

𝑋 · 𝑉 · 𝜇 = 𝐹௧ · 𝑆଴ · 𝑌௑/ௌ          Eq. 5 

Therefore, if the biomass production is required to be the same in normoxic and 

hypoxic conditions, where YX/S differs notably, different Ft · S0 must be applied. 

Thus, apart from the obvious exception of the pilot-scale fermentations, which 

had a higher volume and so, higher substrate flowrates, it is important to note 

that the initial flowrate (F0) and the flowrate profile (Ft) were modified in some 

normoxic-hypoxic pair fermentations, whereas in other cases the glucose (and 

salts) concentration in the feeding tank (S0) was the modified parameter between 

the normoxic and the corresponding hypoxic fermentation. This is explained in 

more detail in each subsection where different flowrate profiles or alternatively 

different glucose concentrations were implemented.  
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Regarding oxygen availability, in all normoxic fed-batches DO was maintained 

above 30% of air saturation, as done during the batch phase. This was achieved 

through the modification of the agitation rate during most of the fed-batch phases 

and additionally by mixing air with pure oxygen in the inlet gas during the last 

hours, when agitation was at maximum, except for one case (the pilot-scale 

normoxic fermentation) where fermenter overpressure was applied to increase 

oxygen solubility. A total of 7 fed-batches (SCC-NX1, SCC-NX2, MCC-NX1, 

MCC-NX2, and NX50L, proRol-NX, and CalB-NX) were done in normoxic 

conditions, as previously shown in Table 3. 

On the other hand, 13 hypoxic fed-batches (SCC-HPX1, SCC-HPX2, MCC-

HPX1, MCC-HPX2, HPX50L, HPX-BLC1, HPX-BLC2, HPX-APC1, HPX-APC2, 

proRol-HPX, CalB-HPX, HPX-HIRQ, and HPX-GASC) were included in this work, 

but not all of them were conducted following the same strategy regarding oxygen 

availability, RQ control, and agitation rate modification. Thus, the description of 

the methodology is classified based on the control strategy implemented during 

the feeding phase. Further details regarding the development of the different 

control strategies are included in Chapter 6. 

Manual RQ control  

The manual RQ control was applied in 4 lab-scale hypoxic fermentations and in 

the pilot-scale hypoxic fermentation (SCC-HPX1, SCC-HPX2, MCC-HPX1, MCC-

HPX2, and HPX50L). Basically, it consisted of a manually controlled closed-loop 

system with the RQ and agitation rate as the controlled variable and agitation rate 

as the modified variable.  

Thus, the target degree of oxygen limitation was reached by maintaining the RQ 

at the corresponding set-point value. To do so, RQ was calculated on-line through 

the “CER/OUR/RQ” Plugin from BlueVis software (BlueSens, Herten, Germany). 

Then, the agitation was modified manually following heuristic rules: to increase 

RQ, agitation was reduced to decrease the oxygen transfer rate to the culture 

broth and, therefore, decrease the oxygen uptake rate. To reduce RQ, the 

opposite action was performed. More details about the frequency, intensity, and 

optimization of the control actions are provided in Chapter 6. 
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In the case of lab-scale hypoxic fermentations with manual RQ control, the 

feeding medium composition was identical to the feeding composition of the 

associated normoxic fermentations (glucose concentration = 400 g · L-1). 

Thereby, in order to achieve the same biomass production and specific growth 

rate as in normoxic conditions, the initial flowrate (F0) and the flowrate profile (Ft) 

were higher than in the normoxic fermentations, since YX/S was higher in 

normoxia than in hypoxia, as discussed in Chapter 5. This led to different 

biomass concentration and volume profiles but with comparable total biomass 

production, as discussed throughout the thesis.  

On the other hand, two fermentations were carried out in a 50 L BIRE fermenter 

(HPX50L and NX50L) to test the performance of the hypoxic strategy with the 

manually controlled closed-loop system in pilot scale, and the results obtained 

are included in Section 5.4. These fermentations were intended to represent a 

change of scale from the lab-scale cultivations, so all parameters except for the 

volume were planned to be the same. Thus, the RQ control strategy for the 

hypoxic fermentation was the same as the one applied in the lab-scale, consisting 

of a manual modification of the agitation rate, and in the normoxic fermentation, 

the DO was kept at > 30%, as mentioned previously. The fed-bath phase of the 

pilot-scale fermentations was mainly conducted in the same manner as for the 

lab-scale cultures with only slight differences.  

Firstly, as previously pointed out, substrate addition was achieved using an 

internal peristaltic pump of the fermenter equipment, which was calibrated only 

at the beginning of the normoxic fermentation since it was the first one to be done.  

Secondly, glucose concentration in the feeding tank was increased in the hypoxic 

fermentation. Contrary to the lab-scale fermentations, where different feeding 

flowrate profiles were applied for the normoxic and hypoxic fermentations due to 

the distinct YX/S, in this case, the feeding flowrate profiles were the same and the 

S0 was the modified variable. Thus, with the aim of reaching equal biomass 

concentration and volume profiles in both the normoxic and the hypoxic pilot-

scale fermentations, S0 = 440 g · L-1 in the hypoxic fermentation.  
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Finally, the μ selected was lower than in the lab-scale fermentations (μ = 0.065 

h-1) to avoid the need to enrich the inlet gas with pure oxygen, especially in the 

normoxic fermentation, as done in the 5 L scale. However, this was not enough 

to maintain the complete aerobic conditions at the last stages of the normoxic 

pilot-scale fermentation, and the internal pressure of the fermenter had to be 

slightly increased to increase oxygen solubility. This is discussed in Section 5.4. 

Boolean logic RQ control 

Four hypoxic fed-batches were carried out with Boolean logic RQ control mode. 

The procedure was the same as described for the “manual RQ controlled” fed-

batches but with two important differences. On the one hand, glucose 

concentration in the feeding tank was increased (S0 = 440 g · L-1) for the same 

reason as in the pilot-scale hypoxic fermentation. 

On the other hand, the Eve software (INFORS HT, Bottmingen, Switzerland) was 

used for these fermentations as a “Supervisory Control And Data Acquisition” or 

“SCADA” system (Ivarsson, 2017; Brunner et al., 2021). The software allowed 

the development of several soft sensors used for the RQ control, as further 

detailed in Section 6.4. So, in this case, the “CER/OUR/RQ” Plugin from BlueVis 

software was not necessary. Additionally, the automation of the control actions 

through Eve software also led to an increase in their frequency. 

As discussed later, humidity both in the inlet and exhaust gas has a significant 

impact on RQ calculation. Thus, for these automated control fermentations, a 500 

mL desiccation column filled with silica gel was installed also in the inlet gas 

stream before the inlet gas filter. Apart from that, in terms of methodology, no 

other variations concerning the manual control strategy were implemented in this 

experimental set-up. 

AI-aided Adaptive-P RQ control 

Finally, two fed-batches were conducted with SCC and with the Artificial 

Intelligence-aided Adaptive-Proportional RQ controller. However, apart from the 

RQ control strategy, the fermenter and peripherals set-up were the same as 

described for the Boolean logic RQ-controlled fermentations with no exceptions. 
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A picture and a schematic drawing of the experimental set-up for fed-batch 

cultivations are displayed in Figure 7. 

   

Figure 7. Picture and scheme of the experimental set-up for fed-batch fermentations.  
1: substrate feeding bottle on top of a magnetic stirrer; 2: scale for flowrate verification; 
3: substrate addition piston pump (microburette); 4: bioreactor vessel; 5: ethanol sensor; 
6: desiccation column; 7: gas analyzer; 8: bioreactor base pump; 9: bioreactor control 
unit; 10: base bottle; 11: computer for monitoring and control; 12: chiller 

Created with BioRender.com 
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4.3 Analytical methods 

4.3.1 Biomass quantification by Optical Density (OD600)  

To be able to make decisions during the process based on the biomass 

measurement, the optical density (OD) was measured at λ = 600 nm with a DR 

3900 spectrophotometer from Hach Lange (Düsseldorf, Germany). Samples 

were diluted until the OD600 was within the range from 0.2 to 0.8 to ensure a linear 

correlation between OD600 and biomass concentration. Dilutions were made with 

0.9% NaCl dissolved in distilled water to avoid osmotic cell lysis. 

 

4.3.2 Biomass quantification by Dry Cell Weight (DCW) 

In addition to OD600 measurement, in order to have a precise and reliable biomass 

concentration value, as well as to be able to calculate the different process 

parameters in mass units, the value of the dry cell weight (DCW) was measured 

in quadruplicate for each fermentation sample.  

Firstly, pre-labeled filters (0.7 µm) were dried for 24 h in a stove at 105 ºC and 

then placed in a desiccator for 2 h to cool down, before weighting with a precision 

scale ME204 from Mettler (Columbus, OH, USA). Worth mentioning, “Glass Fiber 

Prefilters” (APFF04700, Millipore, Billerica, MA, USA) were used for DCW 

analysis.  

After taking a bioreactor sample during a fermentation, these weighted filters 

were pre-moistened with 10 mL of 0.9% NaCl dissolved with distilled water, using 

a Kitasato flask connected to a vacuum pump and equipped with a magnetic filter 

funnel on the top. After that, 2 mL of fresh sample were filtered with the aid of the 

vacuum pressure. 2 mL of 0.9% NaCl were used to clean the micropipette’s tip 

and added to the filtration cup. Finally, 10 mL of 0.9% NaCl were poured into the 

filtration cup to wash the filter and drag all the salts precipitated in the filter to 

avoid overweighting. 

Again, the filters were dried for 24 h on a stove at 105 ºC and then placed in a 

desiccator for 2 h to cool down. Then the filters were weighed with a precision 
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scale to obtain the dry cell weight. It is important to ensure that after 24 h the 

weight of the filter does not decrease further, as this would indicate that it has not 

dried completely. If that were the case, it would be necessary to leave it in the 

oven for more hours until it has a constant weight. 

When biomass in the bioreactor exceeds OD600 > 200 (≈ 60 gDCW · L-1), only 1 mL 

of sample was necessary to obtain an accurate DCW determination. The Relative 

Standard Deviation (RSD) was always below 5%.  

 

4.3.3 Biomass composition 

With the aim of determining carbon and electron balances, biomass elemental 

composition was analyzed in terms of C, H, O, N, and S content. 

Firstly, 40 mL samples from SCC producing Crl1 from a chemostat culture at an 

intermediate hypoxic level (RQ ≈ 1.4) were taken in a 50 mL falcon tube and 

centrifuged at 4 ºC and 4500 xg for 5 min. Then, the supernatant was discarded, 

and cells were resuspended with 35 mL of Tris-HCl 20 mM, pH 7.5, and 

centrifuged again with the same conditions. This washing step was repeated a 

total of three times. Then, the falcon tube containing the pellet was introduced 

overnight at the -80 ºC freezer. After that, the falcon tube was introduced to a 

freeze-dryer container and lyophilized for 24 h with a VirTis Sentry freeze dryer 

(SP Scientific, Warminster, PA, USA).  

Lyophilized samples were manually ground and hermetically sealed until 

analysis. Elemental composition determination was done in triplicate with an 

elemental analyzer EA CE 1108 for C, H, N, and S determination and EA Flash 

2000 for O determination, both from Thermo Fisher Scientific (Waltham, MA, 

USA).  

Finally, to define the biomass’ chemical formula, the percentages of each element 

were divided by its molecular weight and normalized by the C content. The 

molecular weight (MW) of biomass expressed in C-mol (grams of biomass per 

mole of carbon of the biomass) can be calculated using Equation 6: 



 49 

𝑀𝑊 𝐶 − 𝑚𝑜𝑙 = 1
%஼

ଵ଴଴ൗ

ଵଶ

൘    Eq. 6 

Where MW C-mol is the molecular weight (MW) of biomass expressed in C-mol 

(g · C-mol-1) and %C is the mass percentage of carbon in the biomass (gCarbon · 

gDCW-1). 

The elemental composition, chemical formula, and molecular weight in C-mol 

used within this work are displayed in Table 4. 

 

% C % H % O % N % S Chemical formula 
MW in 
C-mol 

43.63 ± 
0.17 

6.66 ± 
0.38 

34.38 ± 
0.41 

7.50 ± 
0.05 

0.13 ± 
0.02 CH1.831O0.591N0.147S0.001 27.50 

 

4.3.4 Carbon source and by-products quantification 

Glycerol, glucose, as well as potential fermentation by-products (mainly ethanol, 

arabitol, and succinate) were detected via HPLC. An Ultimate 3000 system 

(Dionex, Sunnyvale, CA, USA) equipped with an ICSep Coregel 87H3 ion 

exchange column (Transgenomic, Omaha, NE, USA) was used for the analyses. 

The detection of each component was performed with a 2410 Refractive Index 

Detector from Waters Corporation (Milford, MA, USA). The column and software 

used for this purpose are further described elsewhere (Jordà et al., 2014). RSD 

was below 1%. 

 

4.3.5 Ethanol concentration monitorization 

In addition to the analysis of the ethanol concentration of the samples through 

HPLC, a Methanol Sensor MRK002 from Raven Biotech (Vancouver, Canada) 

was used in all fermentations performed in the 5 L Biostat B fermenters to monitor 

Table 4. Chemical composition of the biomass considered in this work.  
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the ethanol production during the hypoxic feeding phases. Although 

commercialized as a methanol sensor and usually used for this purpose, this 

sensor is actually a volatile compounds sensor, and it is described as capable of 

measuring all volatile compounds that can diffuse through the probe membrane 

(Barrigon et al., 2015; Ponte et al., 2016; López-Fernández et al., 2019). Thus, it 

can be also used for ethanol measurement (Gasset et al., 2022; Ondracka et al., 

2022). 

After each fermentation, a correlation between the ethanol probe signal in 

millivolts and the real ethanol concentration measured by HPLC was 

experimentally determined following Equation 7. 

𝐶ா௧ைு = 𝑎 · (𝑒(௕ · (௏ି ௏బ) − 1)    Eq. 7 

Where V is the signal of the probe (mV), V0 is the basal signal of the probe (≈ 800 

– 1000 mV), a (g · L-1) and b (mV-1) are the fitting coefficients of the correlation 

and CEtOH is ethanol concentration (g · L-1). 

 

4.3.6 Inlet- and outgas analysis 

A BlueInOne FERM gas analyzer (BlueSens, Herten, Germany) was used in both 

chemostat and fed-batch cultures. CO2 and O2 molar fractions and absolute 

humidity were monitored and recorded online from exhaust gas and intermittently 

measured from inlet gas. The gas analyzer was re-calibrated every steady-state 

in chemostat cultures and every fed-batch cultivation to assure an accurate 

measurement. For the gas analyzer calibration, several gas mixes with different 

and known CO2 and O2 concentrations were passed through the analyzer, and a 

linear correlation between CO2 / O2 and the sensor electronic signal (in millivolts) 

was established. 

The data obtained were used to calculate the respirometric parameters: oxygen 

uptake rate (OUR), carbon dioxide evolution rate (CER), their corresponding 

specific rates (qO2 and qCO2), and respiratory quotient (RQ). RSD was below 5%. 
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4.3.7 Lipolytic activity determination 

Since in all the fermentations performed in this work, the recombinant proteins 

produced were lipases, an enzymatic assay based on colorimetric changes was 

used for product quantification.  

The substrate of this enzymatic assay was para-nitrophenyl butyrate (p-NPB) 

(2635 – 84 – 9, Sigma Aldrich, Burlington, MA, USA), an ester that can be 

hydrolyzed by lipases to para-nitrophenol (p-NP) and butyrate. p-NP has a 

maximum of absorbance at 317 nm. However, at assay conditions, p-NP is 

spontaneously deprotonated to para-nitrophenolate (pKa = 7.15 at 25ºC), which 

has a yellow coloration due to a maximum of absorbance at 405 nm. The 

isosbestic point, defined as the specific wavelength at which the total absorbance 

of the sample does not change during a chemical reaction such as a 

protonation/deprotonation, for para-nitrophenol/para-nitrophenolate, is at 348 nm 

(Biggs, 1954). One activity unit (AU) was defined as the amount of enzyme 

needed to obtain 1 µmol of product per min under assay conditions. The reaction 

scheme is shown in Figure 8. 

Figure 8. Scheme of the enzymatic hydrolysis of p-NPB catalyzed by a lipase, used in 
this work to determine the amount of lipase produced in each fermentation. 
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The assay conditions and duration were slightly different for each lipase, and so 

was the molar attenuation coefficient (ε). More details are given in the next 

sections. This enzymatic assay was adapted from literature, and variations of it 

(concerning temperature and pH) have been used in several laboratories (Chang 

et al., 2006). 

 

4.3.7.1 Crl1 activity 

For Crl1 enzymatic activity determination, the reaction buffer contained 1 mM p-

NPB, 50 mM phosphate buffer (pH 7.00), and 4% (v/v) acetone. To prepare this 

reaction buffer, firstly 10 μL of pure p-NPB were dissolved in 2.5 mL of pure 

acetone. Subsequently, 0.4 mL of this mix was added to 9.6 mL of 50 mM 

phosphate buffer (pH 7.00) to obtain the reaction buffer. This way, p-NPB is 1 

mM. 

Then, after centrifuging the samples taken from the bioreactor for 90 s at 13400 

rpm with a MiniSpin Plus (Eppendorf, Hamburg, Germany) and diluting the 

resulting supernatant with 50 mM phosphate buffer (pH 7.00) to enter in the 

selected range of the absorbance slope, 20 μL of properly diluted supernatant 

were mixed with 980 μL of reaction buffer, which was pre-heated at 30 ºC by 

using a thermoblock. The absorbance at λ = 348 nm was measured by using a 

Specord 200 Plus spectrophotometer from Analytic Jena (Jena, Germany) for 

120 s, with temperature controlled at 30 ºC. 

Absorbance slope was considered correct if it was within the range of 0.15 – 0.35 

Absorbance Units · min-1. If a lower or a higher slope was obtained, a different 

dilution had to be applied. 

At these conditions (pH 7.00, temperature = 30ºC, phosphate buffer 50 mM, and 

a wavelength of λ = 348 nm) the molar attenuation coefficient (ε) was 5.47 mM-1· 

cm-1. RSD was less than 5%. 
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4.3.7.2 proRol activity 

As already mentioned, for proRol activity determination the substrate and product 

of the enzymatic reaction were the same, as well as the equipment used. 

However, in this case, the reaction buffer contained 1 mM p-NPB, 50 mM 

phosphate buffer (pH 7.25), and 4% (v/v) acetone. To summarize, the preparation 

was the same as for the Crl1 assay but with a slightly higher pH, since a proper 

comparison with other proRol-producing bioprocesses was intended (López-

Fernández et al., 2019, 2020).  

In the following step, 500 μL of sample supernatant diluted with 50 mM phosphate 

buffer (pH 7.25), was mixed with 800 μL of reaction buffer pre-heated to 30°C, 

and the absorbance at λ = 348 nm was measured during 420 s at a temperature 

of 30 ºC. Again, the absorbance slope was considered correct if it was within the 

range of 0.15 – 0.35 Absorbance Units · min-1. With this assay conditions (pH 

7.25, temperature = 30ºC, phosphate buffer 50 mM, and a wavelength of λ = 

348), nm, and buffer composition ε = 5.37 mM-1· cm-1. RSD was less than 5%. 

 

4.3.7.3 CalB activity 

For the CalB enzymatic assay, the procedure was very similar to that for the 

previous lipases except for the buffer composition and the detection wavelength. 

In this case, for the preparation of the reaction buffer, 10 μL of p-NPB were 

dissolved in 109 μL of acetone. Then, 100 μL of this dissolved substrate were 

added to 9.9 mL of 300 mM Tris-HCl buffer (pH 7.00), giving a final concentration 

of 5.25 mM of p-NPB and 1% (v/v) acetone. 

For the assay, 100 μL of supernatant from the centrifuged samples were diluted 

with 300 mM Tris-HCl buffer (pH 7.00) and then mixed with 900 μL of reaction 

buffer previously heated to 30 ºC. The absorbance was measured during 120 s 

at λ = 405 nm and with a temperature of 30 ºC. The absorbance slope was 

considered correct if it was within the range of 0.15 – 0.35 Absorbance Units · 

min-1. With this assay conditions (pH 7.00, temperature = 30ºC, Tris-HCl buffer 
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300 mM and a wavelength of λ = 405), ε = 9.06 mM-1· cm-1. RSD was less than 

5%. 

Importantly, in this case, a different wavelength was used for the enzymatic 

product detection. This implies that only the absorbance of the deprotonated form 

of p-NP (para-nitrophenolate) was measured. Thus, to have reliable and 

comparable results, it was imperative to adjust the buffer pH to 7.00. Otherwise, 

the pH of the buffer could have affected the activity measurement.  

 

4.3.7.4 Determination of the molar attenuation coefficient (ε) of para-

nitrophenol/para-nitrophenolate in different conditions. 

For the determination of ε, six 1:2 serial dilutions of p-NP were prepared, starting 

from 1.265 mM and decreasing to 0.020 mM. The absorbance was measured for 

all dilutions, and a linear correlation between absorbance and p-NP concentration 

was established, discarding those points where linearity was not maintained. This 

was done in duplicate for each assay condition. The slope of this regression 

equals ε in mM-1· cm-1 units. 
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4.3.8 Transcriptional analysis 

Transcriptional analyses were carried out with samples taken from chemostats 

and for lab-scale SCC and MCC fed-batch fermentations. 

 

4.3.8.1 RNA extraction 

Samples of 1 mL were taken from both chemostat and fed-batch cultures, mixed 

with 0.5 mL of a 95% ethanol:5% phenol mixture, and centrifuged at maximum 

speed for 2 min at 4 ºC. Samples were then stored at -80 ºC until RNA extraction. 

For RNA extraction, samples were first mixed with 300 μL of glass beads (425–

600 μm, Sigma-Aldrich, St. Louis, MO, USA) and vortexed with a TissueLyser 

(Qiagen, Hilden, Germany). RNA extraction was then carried out with the SV 

Total RNA Isolation System kit (Promega, Madison, WI, USA) following the 

manufacturer’s instructions. 

 

4.3.8.2 cDNA synthesis and qPCR 

cDNA synthesis was performed as reported previously (Garrigós-Martínez et al., 

2019; Nieto‐Taype et al., 2020a).  

For the qPCR, a set of primers was designed to amplify the target cDNA, which 

are displayed in Table 5. The set of genes included: CRL1 (the recombinant 

gene), TDH3 (the gene encoding glyceraldehyde-3-phosphate dehydrogenase, 

which is the native gene expressed under the regulation of PGAP), and the PGK1 

gene (which encodes phosphoglycerate kinase, another glycolytic enzyme). 

Additional genes involved in the unfolded protein response (UPR), such as KAR2 

and HAC1, were also studied (Raschmanová et al., 2019; Guerfal et al., 2010). 

To ensure maximum accuracy, reaction mixes were prepared by the EpMotion 

robot (Eppendorf, Hamburg, Germany), and the SYBR™ Select Master Mix 

(Thermo Fisher Scientific, Waltham, MA, USA) was used for qPCR amplification. 

The qPCR was performed on the QuantStudio 12K Flex Real-Time equipment 
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from Thermo Fisher Scientific (Waltham, MA, USA) with an annealing/extension 

temperature of 57.4°C, following the same procedure as reported previously 

(Garrigós-Martínez et al., 2019; Nieto‐Taype et al., 2020), with the only exception 

that in this case the β-actin gene (ACT1) was selected as the house-keeping 

gene, as done in previous transcriptional analyses under hypoxic conditions 

(Adelantado et al., 2017).  

 

Gene Primers’ sequence 

CRL1 
CCTGAGGGTACTTACGAAG 

CCAGGTGGTCTAACAACG 

TDH3 
GGTGAGGTTTCTGCCAGC 

GTGGACTCAATGACGTAGTC 

PGK1 
AGAACGGTGGAACTGTCATCGT 

AAAGAAGCTCCTCCTCCAGTGG 

HAC1 
CATTACAGCAGGCTCCATC 

GTCAACTGATATGTGCCAAC 

KAR2 
GATGAAGTCGGGTCGTGTAC 

TCTTAGCAGCATCACCCAACC 

ACT1 
CACCACACCTTCTACAAC 

AGAAGGCTGGAACGTTG 

 

  

Table 5. Pairs of primers used for the qPCR analysis. 
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4.4 Calculations 

4.4.1 Mass balances, stoichiometric equations, and kinetic 

parameters 

A single overall reaction defined on a C-molar basis could be used to describe 

the oxidative and oxidoreductive processes in which the culture growth consists 

of. This so-called “Black Box” model is a simplification of all the biochemical 

reactions involved and it is described by Equation 8. 

𝑆 + 𝑌ைమ/ௌ𝑂ଶ → 𝑌௑/ௌ𝑋 + 𝑌஼ைమ/ௌ𝐶𝑂ଶ + 𝑌௉/ௌ𝑃  Eq. 8 

where S represents the single limiting substrate as the carbon and energy source; 

O2, oxygen; X, biomass; CO2, carbon dioxide, and P denotes the potential 

products or by-products. Yi/s are the stoichiometric coefficients, but they can also 

be referred to as overall "i" component-substrate yields. More generally, overall 

yields (Yi/j) are defined as positive ratios between rates (ri) or specific rates (qi), 

as reflected in Equation 9. Accordingly, specific rates (qi) are conversion rates 

related to the biomass concentration and can be defined for each component of 

the system as shown in Equation 10. 

𝑌௜/௝ =
௥೔

௥ೕ
=

௤೔

௤ೕ
    Eq. 9 

𝑞௜ =
௥೔

௑
           Eq. 10 

The units of these parameters can be defined as: Yi/j (gi · gj-1), ri (gi · L-1 · h-1), ri 

(gi · gDCW-1 · h-1), and X, which is the biomass concentration (g · L-1). 

Thus, mass balance equations can be formulated for an ideal stirred tank-reactor, 

considering conversion rates of biomass formation, substrate uptake, oxygen 

consumption, carbon dioxide generation, and product or by-products formation, 

for both continuous operations at steady-state and fed-batch operation. These 

equations are necessary for the estimation of specific rates and overall yields, 

and thereby essential for the understanding of the behavior of the bioprocess 

under different operating conditions. Furthermore, they can be used to compare 
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different bioprocess efficiencies and to optimize the bioprocess variables to 

achieve the desired outcome. Therefore, a precise and accurate determination of 

the concentration of the main components is essential to obtain reliable results. 

 

4.4.2 Correction of substrate and product concentrations 

The concentration of biomass, substrate, product, and by-products was 

determined using the methods described in Section 4.3. Although the biomass 

concentration (X) was related to the total volume (Vbroth), the substrates (SLiq), 

products, and by-products (PLiq) were measured on the supernatant after 

centrifuging the sample, without taking the volume of biomass into account. To 

overcome this issue, the substrate concentration (S), lipase titer (P), and by-

products concentration (EtOH, Ara, Suc) were recalculated on the total volume 

using Equation 11, 

𝐶 = 𝐶ᇱ · ቀ1 −
௑

ఙ·ఘ
ቁ     Eq. 11 

where C is the concentration or activity of any compound (substrate, lipase, by-

products, etc. in g · L−1 or AU · L−1), X is the biomass concentration (g · L−1), σ is 

the fraction of dry matter in the biomass (g · g−1) and ρ is the yeast density (g · 

L−1), which had been experimentally determined in the literature as σ = 0.304 g · 

g−1 and ρ = 1068 g · L−1, respectively (Barrigón et al., 2013; Garcia-Ortega et al., 

2013). 

 

4.4.3 Determination of kinetic parameters in chemostat cultures 

In a continuous cultivation operated at steady state, the time derivative is 

eliminated, as well as derivatives with respect to the volume. This is because in 

a steady state all variables remain constant, and it makes the determination of 

the kinetic parameter quite easier. 

Equation 12 describes mass balance equations for chemostat operation, 
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⎣
⎢
⎢
⎢
⎡

𝜇
𝑞ௌ

𝑞௉

𝑞ைమ

𝑞஼ைమ⎦
⎥
⎥
⎥
⎤

· 𝑋𝑉 =

⎣
⎢
⎢
⎢
⎡

𝐹௢௨௧ · 𝑋
−𝐹 · 𝑆଴ + 𝐹௢௨௧ · 𝑆

𝐹௢௨௧ · 𝑃
𝑂𝑈𝑅 · 𝑉
𝐶𝐸𝑅 · 𝑉 ⎦

⎥
⎥
⎥
⎤

    Eq. 12 

where µ is the specific growth rate (h−1); qS, specific substrate uptake rate (gS · 

gDCW−1· h−1); qP, specific production rate (AU · gDCW−1· h−1); qO2, specific oxygen 

uptake rate (molO2 · gDCW−1· h−1); qCO2, specific carbon dioxide production rate 

(molCO2 · gDCW−1· h−1); F, substrate feeding rate (L · h−1); Fout, outlet flow rate (L · 

h−1); V, volume of broth in the reactor (L); S0, substrate feeding concentration (g 

· L−1); OUR, oxygen uptake rate (molO2 · L−1· h−1); CER, carbon dioxide evolution 

rate (molCO2 · L−1· h−1). For the specific case of ethanol, an additional term was 

included to correctly estimate its corresponding specific rate taking into account 

stripping losses. 

In chemostat, Fout can be obtained by the total mass balance for an ideal stirred 

tank reactor in continuous operation at steady state, as reflected by Equation 13, 

𝐹௢௨௧ =
𝜌ி௘௘ௗ · 𝐹 − 𝜌ுమை · 𝐹ா௩௔௣ + 𝜌஻௔௦௘ · 𝐹஻௔௦௘ − 𝜌஻௥௢ · 𝐹௢ + 𝑀ீ஺ௌ

𝜌஻௥௢௧௛
 

Eq. 13 

where ρFeed denotes the substrate feeding density (g · L-1); ρH2O, water density (g 

· L-1);  FEvap is the water evaporation rate (L · h-1); ρBase, NH4OH 15% (v/v) density 

(g · L-1); FBase, base addition rate (L · h-1); ρBroth, mean broth density (g · L-1); Fo, 

exit flowrate (L · h-1); and finally, MGAS is the net mass gas flowrate (g · h-1). The 

latter, in turn, is defined by Equation 14, 

𝑀ீ஺ௌ =  −(𝑊ைమ
· 𝑂𝑈𝑅 · 𝑉 + 𝑊஼ைమ

· 𝐶𝐸𝑅 · 𝑉) Eq. 14 

where WO2 is the oxygen molecular weight (32 g · mol-1) and WCO2 is the carbon 

dioxide molecular weight (44 g · mol-1). 
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4.4.4 Determination of kinetic parameters in fed-batch cultures 

In a fed-batch culture, all variables change over time, including volume. The 

calculation of key process parameters is therefore not trivial, being necessary to 

make an estimation of the volume throughout fed-batch fermentation as 

described below. 

Equation 15 describes mass balance equations for fed-batch operation, 

𝑑

⎣
⎢
⎢
⎢
⎡

𝑋𝑉
𝑆𝑉
𝑃𝑉

𝑂ଶ𝑉
𝐶𝑂ଶ𝑉⎦

⎥
⎥
⎥
⎤

𝑑𝑡൙ =

⎣
⎢
⎢
⎢
⎡

𝜇
𝑞ௌ

𝑞௉

𝑞ைమ

𝑞஼ைమ⎦
⎥
⎥
⎥
⎤

· 𝑋𝑉 +

⎣
⎢
⎢
⎢
⎡

−𝐹௢ · 𝑋
𝐹 · 𝑆଴ − 𝐹௢ · 𝑆

−𝐹௢ · 𝑃
𝑂𝑇𝑅 · 𝑉−𝐹௢ · 𝑂ଶ

−𝐶𝑇𝑅 · 𝑉−𝐹௢ · 𝐶𝑂ଶ⎦
⎥
⎥
⎥
⎤

   Eq. 15 

where V is volume of broth in the fermenter (L); µ, specific growth rate (h−1); qS, 

specific substrate uptake rate (gS · gDCW−1· h−1); qP, specific production rate (AU 

· gDCW−1· h−1); qO2, specific oxygen uptake rate (molO2 · gDCW−1· h−1); qCO2, specific 

carbon dioxide production rate (molCO2 · gDCW−1· h−1); Fo, outlet flowrate  (L · h−1), 

which includes sampling; F, substrate feeding rate (L · h−1); S0, substrate feeding 

concentration (g · L−1); S, substrate concentration in the broth (g · L−1);  OUR 

oxygen uptake rate (molO2 · L−1· h−1); and CER carbon dioxide evolution rate 

(molCO2 · L−1· h−1), being OUR and CER considered equal to OTR and CTR, 

respectively (oxygen and carbon dioxide transfer rates). Again, for the case of 

ethanol, a stripping term was included. Although included in Equation 15, the 

“exit” term of the mass balances was considered negligible, since it only included 

very small sample volumes. 

In order to estimate the culture volume, mass balance equations can be applied 

for the total mass of broth in the reactor, taking into account several elements 

such as the feeding rate of substrate, addition of ammonium hydroxide used in 

the pH control loop, volume of the samples withdrawn from the bioreactor, water 

evaporation losses, and gaseous exchange term. The expression used for this 

approximation is shown in Equation 16, 
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𝑑𝑉

𝑑𝑡
=

𝜌ி௘௘ௗ · 𝐹 − 𝜌ுమை · 𝐹ா௩௔௣ + 𝜌஻௔௦௘ · 𝐹஻௔௦௘ − 𝜌஻௥௢௧ · 𝐹ௌ + 𝑀ீ஺ௌ

𝜌஻௥௢௧௛
 

Eq. 16 

 where V is the volume of broth in the bioreactor (L); ρFeed, feeding medium 

density (g · L-1); F, flowrate of feeding medium (L · h-1); ρBase, NH4OH 15% (v/v) 

density (g · L-1); FBase base addition rate (L · h-1); ρBroth, broth density (g · L-1); FS 

is the sampling withdrawal (L · h-1) and MGAS is the net mass gas flowrate (g · h-

1), which is defined by Equation 14 from the previous Section 4.4.3. 

Final broth densities and volumes were determined gravimetrically at the end of 

the fermentations, obtaining slight deviations between estimated and measured 

volumes. Specific correction factors for the volume profiles were therefore applied 

to all the fermentations. 

Then, since some variables may be time-varying, a distinction between discrete 

values and mean values comes into necessity in the calculation of key process 

parameters. 

Discrete values can be calculated at each time point considering the variation 

between two consecutive samples and they are useful to analyze whether the 

fed-batch process has reached a pseudo steady-state or not. On the other hand, 

mean values are mean specific rates of the overall feeding phase, and they are 

of great interest when comparing different processes or strategies. 

 

Determination of discrete values of specific rates 

The estimation procedure for determining the discrete rates or time-dependent 

specific growth rate (µ(t)), specific substrate consumption rate (qS(t)), specific 

product (or by-product) formation rate (qP(t)), specific O2 consumption rate qO2(t), 

and specific CO2 production rate qCO2(t) was adapted from a previous study(Cos, 

Serrano, et al., 2005). Initially, the global state variables (biomass (XV), substrate 

(SV), and product (PV)) were estimated using off-line data within the feeding 

phase. The smoothing tool Matlab R2015a Curvefit Toolbox (The Mathworks Inc., 
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Natick, MA, USA) was applied to obtain the smoothed curves of the global state 

variables, and their first time-derivatives were calculated. In parallel, on-line data 

of O2 and CO2 concentration was used to calculate OUR and CER, as explained 

in more detail in Chapter 6. Finally, the specific rates of µ(t), qS(t), and qP(t) were 

obtained by applying their corresponding mass balances, as described by 

Equations 17, 18, and 19, respectively. On the other hand, qO2(t), and qCO2(t) 

were calculated by dividing OUR and CER (calculated on-line) by the biomass 

concentration measured from off-line samples, as shown in Equations 20 and 

21. The uncertainties in the discrete specific rates can be calculated by error 

propagation. 

𝜇(௧) =
ଵ

(𝑋𝑉)೟
·

ௗ(௑௏)೟

ௗ௧
    Eq. 17 

𝑞ௌ(௧)
= −

ଵ

(௑௏)೟
· ቀ𝐹௧ · 𝑆଴ −

ௗ(ௌ௏)೟

ௗ௧
ቁ   Eq. 18 

𝑞௉(௧)
=

ଵ

(௉௏)೟
·

ௗ(௉௏)೟

ௗ௧
     Eq. 19 

𝑞ைమ(௧)
=

ை௎ோ೟

௑೟
      Eq. 20 

𝑞஼ைమ(௧)
=

஼ாோ೟

௑೟
      Eq. 21 

 

The units of all variables included in these equations are the same as in Equation 

15, in this case expressed as discrete values. 

 

Determination of mean values of specific rates 

Several methods have been proposed in the literature for estimating the mean 

specific induction rates, including arithmetic mean rates, time-weighted average 

rates, and linear regressions (Potgieter et al., 2010; Albaek et al., 2011; Garcia-

Ortega et al., 2013). However, the first two methods require the calculation of 

discrete specific rates for each off-line value, which can lead to increased 
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estimation errors due to the need for calculating first time-derivatives of the global 

variables. In this work, a linear regression method was employed to estimate the 

mean specific rates without the need for calculating first-time derivatives.  

The method utilized off-line data of some of the global state variables (biomass, 

substrate, and product concentrations), while for other variables on-line data was 

available and therefore used for the calculations (feed flow rate and O2 and CO2 

concentrations in the exhaust gas). Equations 22, 23, 24, 25, and 26 show the 

linear regression equations applied for mean specific rates calculation. It is 

noteworthy that in this study several potential by-products were considered as 

product.  

 

 

The units of all variables included in these equations are the same as in Equation 

15, in this case expressed as mean values. 

 

 

න 𝑑(𝑋𝑉) = 𝜇௠௘௔௡

(௑௏)

(௑௏)బ

· න (𝑋𝑉)𝑑𝑡
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𝑆଴ · න 𝐹 𝑑𝑡
௧

௧బ

− න 𝑑(𝑆𝑉) = −𝑞ௌ௠௘௔௡

(ௌ௏)

(ௌ௏)బ
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௧
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න 𝑑(𝑃𝑉) = 𝑞௉௠௘௔௡
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(௉௏)బ

· න (𝑋𝑉)𝑑𝑡
௧

௧బ

 

න 𝑂𝑈𝑅 · 𝑉 𝑑𝑡
௧

௧బ

= 𝑞ைమ௠௘௔௡
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௧

௧బ

 

න 𝐶𝐸𝑅 · 𝑉 𝑑𝑡
௧
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Eq. 22 

 

Eq. 23 

 

Eq. 24 

 

Eq. 25 

 

Eq. 26 
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4.4.5 Calculation of bioprocess yields and productivities 

Yields are critical parameters in bioprocess engineering as they represent the 

conversion efficiency of one variable with respect to another. For example, the 

overall biomass-to-substrate yield is defined as the amount of biomass produced 

per unit of substrate consumed.  

However, these coefficients are not constant throughout the entire fermentation 

process, as they rapidly change according to the energy needs of the 

microorganism. Additionally, there is a close relationship between the overall 

biomass-to-substrate yield and the substrate maintenance coefficient (Pirt, 1982). 

They can be calculated over a specific interval of the fermentation process, 

resulting in partial overall yields, or alternatively, over the entire fermentation 

process, resulting in total overall yields. 

As mentioned in Section 4.4.1, overall yields can be estimated as quotients 

between ratios (ri) or specific ratios (qi), as shown in Equations 9 and 10. 

However, if overall yields are to be calculated as mean values over a fed-batch 

culture, a similar approach to that used to calculate specific rates can be 

employed based on measurements of the state variables X, S and P, as well as 

V, F, and S0 as functions of time, as shown in Equations 27 and 28 for the overall 

biomass-to-substrate yield (YX/S) and the overall product-to-biomass yield (YP/X). 

On the contrary, for chemostat cultivations, overall yields can easily be obtained 

by dividing rates (ri) or specific rates (qi). 

න 𝑑(𝑋𝑉) = 𝑌௑/ௌ

(௑௏)

(௑௏)బ

·  ቆ 𝑆଴ · න 𝐹 𝑑𝑡
௧

௧బ

− න 𝑑(𝑆𝑉)
(ௌ௏)

(ௌ௏)బ

ቇ  

න 𝑑(𝑃𝑉) = 𝑌௉/௑ · න 𝑑(𝑋𝑉)
(௑௏)

(௑௏)బ

(௉௏)

(௉௏)బ

 

 

 

Eq. 27 

 

Eq. 28 
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Where X and S are biomass and substrate concentrations (g· L-1) in the culture 

broth, P is the product titer (AU · L-1), S0 is the substrate concentration in the 

feeding tank (g · L-1), F is the feeding flowrate (L · h-1), V is broth volume (L), YX/S 

is the overall biomass-to-substrate yield (gDCW · gS-1) and YP/X is the overall 

product-to-biomass yield (AU · gDCW-1). 

On the other hand, productivity is defined as the ratio of the product obtained to 

the factors required to produce it during a specific time interval. Specifically, in 

bioprocess engineering, volumetric productivity or Space-time-yield (QV or STY) 

is defined as the amount of product formed per unit of volume and time, while 

specific productivity (Qe) is calculated as the amount of product formed per unit 

of cell mass and time, as shown in Equations 29 and 30. 

𝑄௏ =
∆(𝑃𝑉)

𝑉௙ · ∆𝑡
 

𝑄௘ =
∆(𝑃𝑉)

(𝑋𝑉)௙ · ∆𝑡
 

 

Where Qv is the volumetric productivity or Space-time-yield (AU · L-1 · h-1), Qv is 

the specific productivity (AU · gDCW-1 · h-1), X and P are biomass concentration (g· 

L-1) and product titer (AU · L-1), V and Vf volume and final volume, respectively 

(L) and t is time (h). 

Similar to yields, productivities can be calculated over a specific time interval or 

the entire culture, with the latter providing more valuable information. 

In a chemostat culture, the specific productivity Qe and the qP are the same, since 

a steady state for X, P, and V is reached and therefore they do not vary over time. 

In this case, the residence time (D-1) is considered as Δt in Equation 30.  

Consequently, from the application of product mass balances in a chemostat, the 

following relation shown by Equation 31 can be derived:  

Eq. 29 

 

Eq. 30 
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𝑞௉ =
𝐷 · (𝑃 − 𝑃଴)

𝑋
= 𝑄௘ =

𝐷 · ∆𝑃

𝑋
 

Where qP is the specific production rate (AU · gDCW-1 · h-1), D is the dilution rate 

(h-1), P and P0 are the product titers in the broth and in the feeding flowrate, the 

latter being normally negligible (AU · L-1), Qe is the specific productivity (AU · 

gDCW-1 · h-1), and X is the biomass (g · L-1). 

However, in batch or fed-batch modes, the specific productivity (Qe) is a ratio 

between variables calculated at the endpoint, contrarily to the specific product 

formation rate (qP), which is calculated within the process evolution, although both 

have the same units (AU · gDCW-1 · h-1).  

 

From the equation that allows the calculation of qPmean (Eq. 24), another 

relationship including qPmean and (XV)mean can be derived as shown in Equation 

32. Note that all variables shown in the following equations and their 

corresponding units have already been described in previous equations, using 

the same abbreviations. 

∆(𝑃𝑉) =  𝑞௉೘೐ೌ೙.
·  (𝑋𝑉)௠௘௔௡ ·  ∆𝑡 

So, in combination with Equation 30, the ratio between qPamean. and Qe can be 

easily obtained, as defined by Equation 33: 

𝑞௉೘೐ೌ೙

𝑄௘
=  

(𝑋𝑉)௙

(𝑋𝑉)௠௘௔௡
 

A detailed explanation can be stated from the definition of (XV)mean itself. In its 

calculation, a time mean is done following Equation 34:  

(𝑋𝑉)௠௘௔௡ =
1

∆𝑡
න (𝑋𝑉)𝑑𝑡

௧

௧బ

 

 

Eq. 31 

Eq. 32 

Eq. 33 

Eq. 34 
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Thus, for a process where µ is rather constant, the time evolution of the total 

biomass (XV)t follows an exponential trend, as explained by Equation 1 in 

Section 4.2.2.1 for biomass concentration, but it can also be applied to total 

biomass (XV), as shown in Equation 35: 

𝑋𝑉 = 𝑋଴𝑉଴ · 𝑒ఓ·(௧ି௧బ)     Eq. 35 

Equation 35 can be integrated with t0 = 0 to give a new valuable expression for 

(XV)mean, demonstrated by Equation 36.  

(𝑋𝑉)௠௘௔௡ =
(𝑋𝑉)௙ − 𝑋଴𝑉଴

𝜇 ·  ∆𝑡
≈

(𝑋𝑉)௙

𝜇 ·  ∆𝑡
  

In turn, it can be combined with Equation 33, and considering an exponential cell 

growth, Equation 37 can be obtained, a worthy expression to compare qPmean. 

and Qe values easily. 

𝑞௉೘೐ೌ೙

𝑄௘
≈ 𝜇 · ∆𝑡 = ln ቆ

(𝑋𝑉)௙

𝑋଴𝑉଴
ቇ 

Where Δt here refers to the total cultivation time (h) considered for qPmean. and Qe 

calculations. 

Therefore, it can be concluded that the ratio between qPmean. and Qe depends on 

the total biomass reached in the process related to its initial value. 

Therefore, in those cases when qP and Qe are not both calculated in the same 

way, such is a batch or a fed-batch cultivation, and their values vary depending 

on how and how much total biomass is increased during the process, is quite 

common to obtain up to 2-3 fold higher qP than Qe. In the present work, this ratio 

had values always around 2.  

 

 

 

Eq. 36 

Eq. 37 
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4.4.6 Consistency check and data reconciliation 

The accurate determination of specific rates and yields is essential in bioprocess 

engineering to evaluate the performance of a system. However, the calculation 

of these parameters can be influenced by random errors, drifts, and gross errors, 

which can affect their reliability. Mean values or moving average methods are 

typically used to reduce random noise. Elemental balances are applicable 

constraints that can remove measurement errors with little prior knowledge (van 

der Heijden et al., 1994a). Specifically, carbon and redox balances are often used 

as constraints to evaluate the consistency of the measurements. 

To ensure the consistency of the measurements, standard statistical tests were 

used, considering carbon and redox balances as constraints (Wang & 

Stephanopoulos, 1983; Stephanopoulos et al., 1998). The measurement of the 7 

key specific rates in the black−box process model was performed, considering 

the lipase production negligible in carbon and redox balances. The specific rates 

included in the balances were: biomass specific growth rate (µ), glucose uptake 

(qS), oxygen uptake (qO2), carbon dioxide production (qCO2), and ethanol, arabitol, 

and succinate production (qEtOH, qAra, qSuc). The system was therefore 

overdetermined, with the degree of redundancy equal to the number of 

constraints, allowing for the detection of gross errors as well as unidentified 

metabolites and improving the accuracy of measured conversion rates using data 

reconciliation methods (van der Heijden et al., 1994b).  

The statistical test output for the presence of gross errors or neglected 

components was the h value, which was determined by the sum of the weighted 

squares of the residuals ε, as shown in Equation 38, 

ℎ = 𝜀் · 𝑃ିଵ · 𝜀     Eq. 38 

where ε corresponds to the vector of error attributed to each specific rate, εT is 

the transposed vector, and P is the covariance matrix. If the h value exceeded 

the threshold value, it was concluded that significant errors were present in the 

measurements or that any compound had not been considered in the black box 

process model. The threshold value, in turn, depends on the confidence level, 
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defined as 95% in this work, and the degree of redundancy according to the χ2 

distribution. The variances of all specific rate measurements were estimated by 

the variability between replicates and/or measurement errors. 

In this study, the χ2-test showed that the measurements mostly satisfied the 

stoichiometric model, with both C-balance and e-balance. It is worth mentioning 

that in the case of fed-batch cultivations, this accomplishment was lower than in 

chemostat cultures, especially in those fed-batches conducted under hypoxic 

conditions. Therefore, a reconciliation data procedure was applied to all data sets 

for all specific rates, considering the h values of each specific rate and the 

mandatory accomplishment of both carbon and redox balances (Wang & 

Stephanopoulos, 1983; van der Heijden et al., 1994b; Verheijen, 2009). 
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5. RESULTS I 
 
Establishing a hypoxic strategy for Crl1 
production 
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5.1 Characterization of hypoxia and gene dosage effects on 

recombinant Crl1 production and cell physiology using 

chemostat cultures 

In the first approach, to evaluate the combined effect of gene dosage and oxygen 

limitation on P. pastoris physiology and Crl1 production, a set of chemostat 

cultures was performed using SCC and MCC, applying a wide range of different 

oxygen supply conditions.  

Chemostat cultures are often used for strain characterization since they allow 

testing a wide range of environmental conditions such as pH or temperature, 

analyzing substrate utilization or studying the production kinetics, for example, 

with relatively little effort and eliminating dead times in cleaning and sterilization 

procedures as well as in mounting and dismounting steps compared with batch 

and fed-batch cultures (Hoskisson & Hobbs, 2005; Nieto-Taype et al., 2020b). 

As detailed in the methodology section, to achieve these different oxygenation 

conditions air was mixed with nitrogen in different proportions, so the proportion 

of oxygen in the inlet gas was the only manipulated variable among all the 

chemostat conditions tested. The oxygen composition in the inlet gas ranged from 

21%, which corresponded to normoxic conditions, to 8%, corresponding to 

severe hypoxia, passing through intermediate conditions (14%, 12%, 11%, 10%, 

and 9%). In previous studies with these two clones under normoxic conditions, 

the Crl1 production rate (qP) showed an increasing trend with respect to μ with a 

saturation tendency at μ > 0.10 h-1, especially for the MCC (Nieto-Taype et al., 

2020a). Therefore, a dilution rate of D = μ = 0.10 h-1 was selected for testing all 

the conditions. Since an important reduction of μmax was expected when applying 

oxygen limiting conditions, and also considering that μmax ≈ 0.19 h-1 when growing 

on glucose, half of μmax was applied to be conservative and avoid bioreactor 

washout (Mattanovich et al., 2009, 2017). Other operational parameters are 

described in the methodology section. 

The values of biomass (measured as Dry Cell Weight, DCW), ethanol 

concentration, Crl1 titer, and dissolved oxygen (DO) at different steady states 
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with distinct oxygen proportions are plotted in Figure 9A for SCC and Figure 9B 

for MCC.  

This primary data indicates that within the range from 21% to 14% of oxygen in 

the inlet gas, DO was still above 0%, although it reaches relatively low values 

with the 14% condition. Thus, these two conditions can be considered normoxia 

or fully aerobic conditions since no ethanol was detected either. Biomass 

concentrations of SCC and MCC were constant within this range of oxygen 

supply. The same behavior was observed with Crl1 titers, despite being 2- to 3-

fold higher in MCC than in SCC. 

Below 12% of oxygen in the inlet gas, DO = 0%, and fermentation by-products 

were detected in the broth as explained below, so the conditions became hypoxic. 

Clear increases in Crl1 titers were observed for both clones, with similar profiles 

but higher values for MCC as observed in normoxia. Regarding biomass and 

ethanol production, similar profiles were observed for both clones: as the oxygen 

supply is reduced, biomass generation decreases linearly and ethanol production 

increases proportionally, since metabolism is redirected (Carnicer et al., 2009; 

Baumann et al., 2010; Adelantado et al., 2017; Garcia-Ortega et al., 2017). 

Although a preliminary comparison between SCC, MCC, hypoxic, and normoxic 

conditions can be done with this primary data, a deeper analysis of specific rates 

must be done to establish the optimal oxygen limiting condition among all 

conditions tested. Otherwise, false conclusions could be reached, thereby 

correlating the maximum in Crl1 titer with the maximum in productivity or qP, 

because biomass concentration also depends on oxygen-limitation as clearly 

shown in Figure 9. With this aim, in the next section, a proper comparison of qS, 

YX/S, qEtOH, and qP between clones and also between oxygenation levels is carried 

out. 
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Figure 9. Primary data of the main key process parameters for the chemostat cultivations grown 
at different oxygen-limiting conditions. Biomass concentration (⬤, g · L-1); DO, dissolved oxygen 
(▼, %); Crl1 Titer (▲, kAU · L-1); EtOH, Ethanol concentration (⬛, g · L-1). (A) SCC, (B) MCC. 
Error bars represent the SD of biological replicates. 
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5.1.1 Increased gene dosage and oxygen limitation application for the 

enhancement of Crl1 production 

The variation of different key parameters (qS, YX/S, qEtOH, qO2, qCO2, RQ, qP, and 

YP/X) at different oxygenation levels can be observed in Figure 10 and Figure 11 

for SCC and MCC, respectively. The numeric values of these parameters are 

also shown in Tables 5 and 6, together with other relevant parameters such as 

biomass concentration, Crl1 titer, and ethanol concentration. 

Generally, the behavior of both clones is shown to be rather similar, except for 

the production parameters qP and YP/X, which are between 2-fold and 4-fold 

higher for MCC, depending on the oxygenation condition. Thus, it can be stated 

that having a higher gene dosage does not significantly affect the yeast’s 

physiology and its capacity to grow at μ = 0.10 h-1. This fact has already been 

observed in some previous studies with the same promoter. Different clones 

expressing a recombinant protein under the regulation of the PGAP with different 

gene dosage showed rather similar physiologic parameter values (Marx et al., 

2009; Aw & Polizzi, 2013; Nieto-Taype et al., 2020a), whereas in other studies, 

clones with different gene dosage also under the regulation of the PGAP did show 

different behavior regarding substrate consumption and growth capacities 

(Hohenblum et al., 2004; Aw & Polizzi, 2013; Zheng et al., 2014). Thus, it seems 

that it may depend on the target protein. Alternatively, in other studies, clones 

with different copy number of a recombinant expression cassette with AOX1 

promoter (PAOX1), another widely used Pichia’s promoter, did show different 

physiologic behavior concerning substrate consumption (Zhu et al., 2009a, 

2009b; Cámara et al., 2017; Garrigós-Martínez et al., 2019). The authors first 

hypothesized and later provided evidence that the cause might be the limited 

amount of AOX1-related transcription factors, as discussed thoroughly in Section 

5.3. In addition, the results show that the increases in qP and YP/X between both 

clones are not proportional to the increase in gene dosage, since MCC has 

between 2- and 3-fold higher qP values and between 2- and 4-fold higher YP/X 

values than SCC while the gene copy number is 5 versus 1. Similar effects were 

also reported previously (Macauley-Patrick et al., 2005; Cámara et al., 2016), 

indicating that it may be protein-dependent. 



 75 

  

% O2 in the inlet gas

6 8 10 12 14 16 18 20 22

q
S
 (

g S
· 

g D
C

W
-1

· 
h

-1
),

 q
E

tO
H
 (

g E
tO

H
· 

g
D

C
W

-1
· 

h
-1

)

0,00

0,05

0,10

0,15

0,20

0,25
Y

X
/S

 (
g

D
C

W
· 

g
S

-1
 )

0,0

0,2

0,4

0,6

0,8

1,0

q
P
 (

A
U

 ·
 g

D
C

W
-1

· 
h

-1
)

0

500

1000

1500

2000

2500

% O2 in the inlet gas

6 8 10 12 14 16 18 20 22

q
O

2, q
C

O
2 (

m
m

o
l O

2, C
O

2 ·
 g

D
C

W
-1

· 
h

-1
)

0

1

2

3

4

R
Q

0,0

0,4

0,8

1,2

1,6

YX/S

qP

qEtOH

qS

qCO2

qO2

RQ

(B)   

(A)   

Figure 10. Main physiological and production parameters for chemostat cultures at different molar 
fractions of oxygen in the inlet gas with SCC. (A) Specific substrate consumption rate, qS (▼, gS 

· gDCW
-1 · h-1); overall biomass-to-substrate yield, YX/S (⬤, gDCW · gS

-1); specific ethanol production 
rate, qEtOH (⬛, gEtOH · gDCW

-1 · h-1); and specific Crl1 production rate, qP (▲, AU · gDCW
-1 · h-1); (B) 

Respiratory quotient, RQ (◆); specific oxygen consumption rate, qO2 (▲, mmolO2 · gDCW
-1 · h-1); 

and specific carbon dioxide production rate, qCO2 (▼, mmolCO2 · gDCW
-1 · h-1). Error bars represent 

the SD of biological replicates. 
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Figure 11. Main physiological and production parameters for chemostat cultures at different molar 
fractions of oxygen in the inlet gas with MCC. (A) Specific substrate consumption rate, qS (▼, gS 

· gDCW
-1 · h-1); overall biomass-to-substrate yield, YX/S (⬤, gDCW · gS

-1); specific ethanol production 
rate, qEtOH (  ईउ, gEtOH · gDCW

-1 · h-1); and specific Crl1 production rate, qP (▲, AU · gDCW
-1 · h-1); (B) 

Respiratory quotient, RQ (◆); specific oxygen consumption rate, qO2 (▲, mmolO2 · gDCW
-1 · h-1); 

and specific carbon dioxide production rate, qCO2 (▼, mmolCO2 · gDCW
-1 · h-1). Error bars represent 

the SD of biological replicates. 
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Regarding the effect of oxygen limitation, no physiological changes are observed 

within the range of 21% to 14% of oxygen in the inlet gas, which corresponds to 

a fully aerobic or oxygen non-limiting condition (normoxia). As of 12% and lower, 

oxygen availability becomes a crucial factor, implying that cells cannot oxidize the 

glucose to carbon dioxide completely, and so less energy is obtained from 

glucose. This causes a decrease in overall biomass-to-substrate yield (YX/S) and 

subsequently, a lower production of biomass. This fact is confirmed by the 

absence of glucose in the culture medium. Therefore, the specific substrate 

consumption rate (qS) increases, since the same amount of glucose is introduced 

to the system and consumed by a lesser amount of biomass.  

At this point, with around 12% of oxygen in the inlet gas, the cells cannot maintain 

a completely oxidative metabolism, so there is a shift from respirative to respiro-

fermentative metabolism (Baumann et al., 2010; Garcia-Ortega et al., 2017), 

confirmed by the accumulation of fermentative by-products such as ethanol, 

arabitol, and succinic acid, already detected in comparable glucose-based 

hypoxic chemostat and fed-batch cultures (Baumann et al., 2008, 2010; Carnicer 

et al., 2009; Adelantado et al., 2017). It is described in the literature that increased 

glycolysis fluxes cause a metabolic imbalance, especially with NADH/NAD+ 

cofactor, so cell metabolism re-adapts by generating these by-products (Heyland 

et al., 2011; Ata et al., 2018; Tomàs-Gamisans et al., 2020). The specific ethanol 

production rate (qEtOH = 0.021 ± 0.006 gEtOH · gDCW-1 · h-1) is higher but comparable 

to that observed in similar hypoxic chemostat cultures (qEtOH = 0.014 ± 0.002 gEtOH 

· gDCW-1 · h-1 (Adelantado et al., 2017); qEtOH = 0.017 ± 0.001 gEtOH · gDCW-1 · h-1  

(Tomàs-Gamisans et al., 2020) with the same D = μ = 0.10 h-1, and the same 

hypoxic level (RQ = 1.4 ± 0.1) expressing a Fab antibody. It has been described 

that high ethanol concentrations can result in yeast growth inhibition. However, 

the maximum concentrations reached in these chemostat fermentations (~7.5 

g·L-1) did not attain these inhibitory levels, which were hypothesized above 30 

g·L-1 (Ergün et al., 2019; Wehbe et al., 2020). 

As the oxygen molar fraction in the inlet gas decreases, hypoxia increases, but 

no glucose accumulation is observed until the oxygen molar fraction in the inlet 

gas is reduced below 8%, where bioreactor washout could be observed (data not 
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shown). This indicates that, under such severe hypoxic conditions, critical dilution 

(DC) is lower than 0.10 h-1 (DC < 0.10 h-1) because μmax decreases substantially. 

Regarding Crl1 production, around 5-fold and 2.5-fold increases in qP are 

observed in hypoxic conditions for SCC and MCC, respectively, compared with 

normoxic conditions. On the other hand, the increases in YP/X in hypoxic 

conditions with respect to normoxic conditions are around 4-fold and 2-fold for 

SCC and MCC, respectively. Strikingly, it is worth mentioning that both qP and 

YP/X reach rather similar values under all normoxic conditions (21% and 14% of 

oxygen in the inlet gas) and under all hypoxic conditions (11%, 10%, 9%, and 8% 

of oxygen in the inlet gas), regardless of the particular oxygen proportion value in 

the inlet gas, appearing to be only two main different states (normoxia and 

hypoxia) concerning Crl1 production. 

The highest variability between replicates, in terms of both qP and YP/X, is 

observed in the transition between normoxic and hypoxic conditions (around 12% 

of oxygen molar fraction in the inlet gas) as previously described (Garcia-Ortega 

et al., 2017). This fact could indicate, accordingly, that is around this point where 

the transition from respirative to respiro-fermentative metabolism is being 

attained.  



 79 

  

O2 molar fraction  
in the inlet gas  

21  14  12  11  10  9  8  

Biomass  
(gDCW · L-1) 

30.6  
± 1.0 

30.2  
± 1.0 

29.9  
± 1.5 

27.3  
± 1.2 

26.4  
± 2.7 

23.8  
± 0.1 

21.9  
± 0.4 

qS  
(gS · gDCW

-1· h-1)  
0.17  

± 0.00  
0.17  

± 0.01  
0.18  

± 0.01  
0.19  

± 0.01  
0.20  

± 0.01  
0.21  

± 0.01  
0.22  

± 0.01  

YX/S  
(gDCW · gS

-1)  
0.61  

± 0.01  
0.60  

± 0.01  
0.61  

± 0.01  
0.56  

± 0.01  
0.52  

± 0.01  
0.51  

± 0.03  
0.44  

± 0.02  

Ethanol  
(gEtOH · L-1) 

n.d. n.d. 
0.06  

± 0.09 
1.12  

± 0.40 
3.13  

± 0.23 
3.27  

± 0.25 
5.64  

± 0.07 

qEtOH  
(gEtOH · gDCW

-1· h-1)  
n.d.  n.d.  

0.001  
± 0.001  

0.004  
± 0.001  

0.013  
± 0.003 

0.015  
± 0.001  

0.026  
± 0.001  

qO2  
(mmolsO2 · gDCW

-1· h-1)  
1.72  

± 0.08  
1.75  

± 0.04  
1.80  

± 0.08  
1.71  

± 0.11  
1.60  

± 0.11  
1.60  

± 0.16  
1.59  

± 0.08  

qCO2  
(mmolsCO2 · gDCW

-1· h-1)  
1.92  

± 0.07  
1.94  

± 0.05  
2.02  

± 0.07  
2.03  

± 0.07  
2.08  

± 0.16  
2.14  

± 0.14  
2.37  

± 0.08  

RQ  1.12  
± 0.01  

1.11  
± 0.01  

1.12  
± 0.01  

1.18  
± 0.03  

1.30  
± 0.01  

1.34  
± 0.05  

1.49  
± 0.03  

Crl1 Titer  
(kAU · L-1) 

31  
± 3 

34  
± 5 

53  
± 24 

111  
± 4 

122  
± 2 

107  
± 2 

108  
± 12 

qP  
(AU · gDCW

-1· h-1)  
106  
± 6  

115  
± 11  

194  
± 100  

435  
± 9  

482  
± 56  

480  
± 25  

489  
± 42  

YP/X  
(kAU · gDCW

-1)  
1.02  

± 0.06  
1.14  

± 0.21  
1.79  

± 0.90  
4.07  

± 0.02  
4.63  

± 0.38  
4.50  

± 0.12  
4.94  

± 0.66  

Table 5. Values of key process parameters obtained in chemostat fermentations with 
SCC. Biomass concentration (gDCW · L-1); specific substrate consumption rate, qS (gS · 
gDCW

-1· h-1); biomass-to-substrate yield, YX/S (gDCW · gS
-1); ethanol concentration (gEtOH · 

L-1); specific ethanol production rate, qEtOH (gEtOH · gDCW
-1· h-1); specific oxygen 

consumption rate, qO2 (mmolsO2 · gDCW
-1· h-1); specific carbon dioxide evolution rate, qCO2 

(mmolsCO2 · gDCW
-1· h-1); respiratory quotient, RQ; Crl1 Titer (kAU · L-1); specific Crl1 

production rate, qP (AU · gDCW
-1· h-1); and product-to-biomass yield, YP/X (kAU · gDCW

-1). 
± indicate standard deviation (SD) of the biological replicates. 
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O2 molar fraction  
in the inlet gas  

21  14  12  11  10  9  8  

Biomass  
(gDCW · L-1) 

29.9  
± 1.5 

30.0  
± 1.8 

28.6  
± 0.7 

26.7  
± 1.2 

25.4  
± 1.4 

22.7  
± 0.2 

20.4  
± 0.5 

qS  
(gS · gDCW

-1· h-1)  
0.17  

± 0.01 
0.17  

± 0.01 
0.18  

± 0.01 
0.19  

± 0.01 
0.20  

± 0.00 
0.22  

± 0.01 
0.24  

± 0.01 

YX/S  
(gDCW · gS

-1)  
0.61  

± 0.01 
0.62  

± 0.01 
0.59  

± 0.02 
0.56  

± 0.01 
0.52  

± 0.01 
0.47  

± 0.06 
0.43  

± 0.02 

Ethanol  
(gEtOH · L-1) 

n.d. n.d. 
0.26  

± 0.37 
1.21  

± 0.07 
2.84  

± 0.20 
5.02  

± 2.70 
6.53  

± 1.17 

qEtOH  
(gEtOH · gDCW

-1· h-1)  
n.d. n.d. 

0.001  
± 0.001 

0.005  
± 0.001 

0.012  
± 0.002 

0.021  
± 0.009 

0.032  
± 0.005 

qO2  
(mmolsO2 · gDCW

-1· h-1)  
1.71  

± 0.07 
1.63  

± 0.12 
1.76  

± 0.04 
1.72  

± 0.19 
1.63  

± 0.15 
1.65  

± 0.02 
1.64  

± 0.03 

qCO2  
(mmolsCO2 · gDCW

-1· h-1)  
1.92  

± 0.07 
1.84  

± 0.12 
1.99  

± 0.08 
2.04  

± 0.19 
2.10  

± 0.11 
2.33  

± 0.22 
2.56  

± 0.07 

RQ  1.12  
± 0.01 

1.13  
± 0.01 

1.13  
± 0.02 

1.19  
± 0.02 

1.29  
± 0.05 

1.41  
± 0.12 

1.55  
± 0.07 

Crl1 Titer  
(kAU · L-1) 

107  
± 6 

119  
± 34 

131  
± 45 

225  
± 21 

226  
± 27 

179  
± 11 

185  
± 13 

qP  
(AU · gDCW

-1· h-1)  
374  
± 36 

425  
± 150 

483  
± 181 

897  
± 37 

920  
± 31 

808  
± 6 

934  
± 85 

YP/X  
(kAU · gDCW

-1)  
3.60  

± 0.38 
4.00  

± 1.36 
4.59  

± 1.70 
8.43  

± 0.40 
8.89  

± 0.57 
7.90  

± 0.55 
9.08  

± 0.40 

Table 6. Values of key process parameters obtained in chemostat fermentations with 
MCC. Biomass concentration (gDCW · L-1); specific substrate consumption rate, qS (gS · 
gDCW

-1· h-1); biomass-to-substrate yield, YX/S (gDCW · gS
-1); ethanol concentration (gEtOH · 

L-1); specific ethanol production rate, qEtOH (gEtOH · gDCW
-1· h-1); specific oxygen 

consumption rate, qO2 (mmolsO2 · gDCW
-1· h-1); specific carbon dioxide evolution rate, qCO2 

(mmolsCO2 · gDCW
-1· h-1); respiratory quotient, RQ; Crl1 Titer (kAU · L-1); specific Crl1 

production rate, qP (AU · gDCW
-1· h-1); and product-to-biomass yield, YP/X (kAU · gDCW

-1). 
± indicate standard deviation (SD) of the biological replicates.  
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5.1.2 RQ dependence on hypoxia degree 

In Figures 10B and 11B, the values of respirometric parameters (specific oxygen 

consumption rate, qO2; specific carbon dioxide evolution rate, qCO2; and RQ) for 

SCC and MCC, respectively, can be observed. The value of these parameters 

under normoxic conditions (qO2 = 1.72 ± 0.08 mmolO2 · gDCW-1 · h-1; RQ = 1.12 ± 

0.01) is within the range of those reported in previous glucose-based chemostat 

cultures (qO2 = 1.80 ± 0.01 mmolO2 · gDCW-1 · h-1; RQ = 1.15 ± 0.05) (Nieto-Taype 

et al., 2020a); (qO2 = 1.65 ± 0.25 mmolO2 · gDCW-1 · h-1; RQ = 1.05 ± 0.05) (Tomàs-

Gamisans et al., 2020); or glucose/methanol co-feeding fed-batch fermentations 

(qO2 = 1.75 ± 0.25 mmolO2 · gDCW-1 · h-1; RQ = 1.03 ± 0.07) (Zavec et al., 2020). 

As observed in the previous section, both clones performed very similarly, 

regardless of the gene dosage.  

Regarding the oxygenation level, from 21% to 14% of oxygen in the inlet gas, the 

respirometric behavior of both clones is constant, corresponding to the values of 

normoxic conditions mentioned above. When the oxygen molar fraction is 

reduced below 12%, the biomass has less oxygen available, so qO2 decreases. 

This fact, combined with a slight increase in qCO2, has a direct impact on RQ 

values, which present a linear increase from 1.1 under normoxic conditions to 1.6 

with the most severe hypoxic conditions, indicating a direct relationship between 

RQ and the degree of oxygen limitation (from 12% to 8% of oxygen in the inlet 

gas). The values of qO2, qCO2 and RQ under the most severe hypoxic conditions 

(qO2 = 1.59 ± 0.08 mmolO2 · gDCW-1 · h-1; qCO2 = 2.37 ± 0.08 mmolO2 · gDCW-1 · h-1; 

RQ = 1.49 ± 0.03) is comparable to those reported in previous glucose-based 

hypoxic chemostat cultures (qO2 = 1.4 mmolO2 · gDCW-1 · h-1; qCO2 = 2.0 mmolO2 · 

gDCW-1 · h-1; RQ = 1.48) (Tomàs-Gamisans et al., 2020). 
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5.1.3 Respiratory Quotient (RQ) as a transferable operational 

parameter to apply oxygen limitation 

As stated in a preliminary study (Garcia-Ortega et al., 2017), the oxygen 

proportion in the inlet gas is an easy-to-manipulate operational parameter that 

becomes useful for the application of different levels of oxygen limitation, but it 

cannot be directly correlated with the degree of hypoxia and the effect that it 

generates over P. pastoris metabolism, since the effect of different molar fractions 

of oxygen in the inlet gas is specific for each culture system. The reason for this 

is that the oxygen transfer rate (OTR) to the culture broth does not rely only on 

the oxygen molar fraction in the inlet gas, but also on other operational conditions 

such as the gas flow rate, the agitation rate, the number, size, type, and position 

of stirrer impellers and even the pressure and temperature of the system, among 

others, which affect KLa and oxygen solubility (Garcia-Ochoa & Gomez, 2009; 

Garcia-Ochoa et al., 2010; Doran 2013). 

On the other hand, RQ is a parameter that is also related to oxygen consumption 

and carbon dioxide production, giving very valuable information about the degree 

of oxygen limitation affecting biomass and so, the type of metabolism that it is 

carrying out (respirative or respiro-fermentative). At the same time, RQ is a 

parameter that does not depend on the configuration of the culture system but 

solely and exclusively on the physiological state of the cells. Thus, RQ can be 

used as a transferable operating criterion to apply the same hypoxic level to a 

different system. 

Considering the results shown in Figures 10A and 11A, qEtOH could be also 

considered a reporting parameter of the hypoxic conditions, since it also presents 

a correlation with respect to the degree of oxygen limitation. However, its on-line 

determination would represent additional complexity since the on-line 

determination of biomass and ethanol concentrations would be necessary. In 

contrast, RQ determination is expected to be less complex, being a parameter 

commonly calculated on-line through O2 and CO2 analysis from the outgas 

stream. 
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In Figure 12, the relationship between qP, qEtOH, and RQ for SCC and MCC is 

presented. In both cases, two sets of grouped dots with low qP (triangles) and 

zero qEtOH (squares) corresponding to an RQ ≈ 1.1 are observed, which 

corresponds to normoxic conditions. When RQ reaches values around 1.2, a 

sudden rise in qP can be observed, which becomes saturated when RQ > 1.3. 

From this point and above, qP remains rather constant regardless of the RQ 

value. As stated before, in terms of production there seem to be only two main 

conditions: normoxia (RQ < 1.2) and hypoxia (RQ > 1.2), and a transition zone 

between them (RQ ≈ 1.2). On the contrary, qEtOH presents a clear correlation with 

RQ, being zero in normoxic conditions and increasing linearly when RQ 

increases. Moreover, the same values of qEtOH are observed for both clones. 

Considering both applied strategies, namely gene dosage increase and oxygen 

limitation, an improvement of about one order of magnitude for mean qP values 

is achieved comparing SCC in normoxia (qP = 106 ± 6 Crl1 UA · gDCW-1 · h-1) with 

MCC in hypoxia (qP = 934 ± 85 Crl1 UA · gDCW-1 · h-1). A similar increase of 8.9-

fold in YP/X is also obtained.  
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Figure 12. Relationships of specific Crl1 production rate, qP (▲, AU · gDCW
-1 · h-1) and 

specific ethanol production rate, qEtOH (  ईउ, gEtOH · gDCW
-1 · h-1) with respect to respiratory 

quotient (RQ) with SCC (light symbols) and MCC (dark symbols) observed in 
chemostat cultures. Error bars represent the SD of biological replicates. 
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5.2 Fed-batch culture strategy to improve bioprocess efficiency 

5.2.1 Agitation rate as manipulated variable to achieve target RQ 

Once the combined effect of gene dosage and oxygen limitation had been 

characterized, the next step was to transfer the bioprocess to a fed-batch mode, 

which is more representative of an industrial production process (Kumar et al., 

2020; Nieto-Taype et al., 2020b; De Brabander et al., 2023). 

A set of eight fed-batch cultures was performed with a feeding strategy consisting 

of a pre-programmed exponential profile with μ = 0.10 h-1, mimicking the carbon-

limited growth applied in chemostat. With this strategy, a pseudo-steady state is 

reached during the feeding phase, so a calculation of a mean value for each 

physiological key parameter and a comparison with chemostat results can be 

conducted (Cos et al., 2005b; Garcia-Ortega et al., 2013). Four of these fed-

batches were done with SCC and four with MCC, applying two different 

conditions: normoxia (dissolved oxygen higher than 30%, RQ ≈ 1.1) and hypoxia 

(RQ set-point = 1.4), and duplicates for each condition were carried out to ensure 

the reliability and robustness of the results. 

Applying a constant level of oxygen limitation in a dynamic culture poses a 

challenge since the control action over RQ will not be constant. If RQ is to be 

maintained at a certain value and biomass grows exponentially, oxygen supply 

to the culture should also be increased exponentially. 

As observed in chemostat cultures, the variation of the oxygen fraction in the inlet 

gas is an easy-to-modify parameter by means of mixing nitrogen with air. 

However, at an industrial scale the use of pure gases, either nitrogen or oxygen, 

involves associated costs that should be avoided if possible. Instead, agitation is 

also an easy-to-modify parameter and is directly related to oxygen supply, since 

it notably affects the volumetric oxygen transfer coefficient (kLa). 

Thus, after having checked that the modification of both the oxygen molar fraction 

in the inlet gas and the stirring rate can be successfully used to maintain RQ 

within a particular range in a dynamic culture such as fed-batch (data included in 

Annex I), it was decided to implement an RQ control based on agitation rate 
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variation. This entails a new strategy, different from that implemented in 

chemostat cultures, which allows a possible saving in energy and pure gases, 

and, a priori, it seems easier to implement in an industrial process, whenever 

proper mixing can be guaranteed and no heterogeneities in the bioreactor are 

produced. Actually, agitation rate is a parameter commonly used to modify the 

oxygen transfer rate to the culture broth, although not to maintain hypoxic 

conditions but to keep the dissolved oxygen (DO) above a certain value (Garcia-

Ochoa & Gomez, 2009; Garcia-Ochoa et al., 2010; Doran 2013). 

The entire strategy applied in this work aims to be more robust and reproducible 

than that reported in previous studies, which was based on a start-and-stop 

substrate feeding that only targeted the avoidance of high ethanol accumulation, 

considered to be inhibitory, without taking into account other parameters than can 

affect qP and productivity, such as µ and degree of oxygen limitation (Baumann 

et al., 2008). 

As seen from the chemostat results in Figure 12, maximum qP values were 

reached at RQ > 1.2. Even so, too high RQ values might cause an important 

ethanol production and a significant YX/S decrease. Consequently, in fed-batch 

cultures, ethanol is accumulated in the culture broth and can reach inhibitory 

concentrations (Ergün et al., 2019; Potvin et al., 2016; Wehbe et al., 2020), which 

does not occur in chemostat since the medium is constantly renewed. On the 

other hand, a significant YX/S decrease entails a remarkably lower biomass 

production, since in a carbon-limited fed-batch, the open-loop feeding profile is 

designed considering a constant and known YX/S. If YX/S were to decrease during 

the feeding phase due to a highly fermentative metabolism, so would μ. This, in 

turn, would cause a decrease in the specific production rate and productivity of 

the bioprocess and a potential substrate accumulation if μmax decreases below 

0.10 h-1, which was observed in those chemostat conditions with less than 8% of 

oxygen in the inlet gas. This effect differs from that observed in chemostat, where 

μ is governed by the dilution rate (μ = D), whenever μ = D < DC ~ μmax. 

A preliminary exploratory fed-batch, with RQ controlled above 1.8, was performed 

to check this possible ethanol inhibition effect. Ethanol accumulation achieved 

inhibitory concentrations (> 30 g/L) and caused a progressive halt in biomass 
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growth, as well as a YX/S reduction of more than 50% (included in the Annex). 

This ethanol inhibitory effect was not observed within the RQ range of 1.2 to 1.6. 

Consequently, an RQ set-point of 1.4 was selected. Thus, possible minor 

deviations of RQ due to the non-automatization of the RQ control are expected 

to have a smaller effect on qP, since specific productivity is quite constant within 

this RQ range, as observed in Figure 12.  

In this first approach of RQ control operation, the actuation over agitation rate 

was performed manually approximately every hour, following heuristic rules: to 

increase RQ, agitation was reduced in order to decrease oxygen transfer rate to 

the culture broth and therefore decrease the oxygen uptake rate, since in an 

oxygen-limited fed-batch one can consider OUR ≈ OTR. To reduce RQ, the 

opposite action was conducted.  

On the other hand, as mentioned in Section 4.2.3.2, in the normoxic 

fermentations DO was kept above 30% of air saturation by modifying the agitation 

rate and also mixing air with pure oxygen in the inlet gas steam, especially at the 

last stages of the fermentation when the oxygen demand was higher. 
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5.2.2 Implementation of an optimal hypoxic fed-batch strategy for Crl1 

production based on previous chemostat characterization 

The time evolutions of biomass (dry cell weight), ethanol concentration, and Crl1 

titer throughout the feeding phase, both for SCC and MCC and under normoxic 

and hypoxic conditions are shown in Figure 13. Accordingly, in Table 7, the final 

values of biomass and ethanol concentrations, Crl1 titers, and volumes, together 

with the mean values of their related key process parameters (μ, qS, YX/S, qEtOH, 

qO2, qCO2, RQ, qP, YP/X) are presented. 

The feeding phase lasted for 20 hours for all fermentations, reaching a final 

biomass concentration of around 110 g·L-1 in the normoxic fermentations and 

around 90 g·L-1 in the hypoxic ones. As observed in chemostat cultures, both 

clones (SCC and MCC) exhibit similar behavior, except for Crl1 production, which 

increases when applying hypoxia. As explained in more detail in the methodology 

section, the feeding flowrate profile was slightly higher in the hypoxic 

fermentations to counteract the expected YX/S reduction. However, results could 

seem to indicate that this difference was not enough, since considerably lower 

biomass concentrations were obtained in hypoxia. Nevertheless, the difference 

in the total volume due to this differential feeding profile must be considered, 

since lower biomass concentrations combined with higher volumes result in quite 

comparable total biomass profiles. As presented in Figure 14, the total biomass 

productions are very similar for both clones and conditions, despite being slightly 

smaller in hypoxia. This leads to the conclusion that, in order to offset the 

differences in YX/S between normoxic and hypoxic conditions, another variable 

should be modified instead of the volume of feeding addition, since although the 

total biomass production is comparable for both conditions, different 

concentration profiles can lead to misinterpretations. For instance, varying the 

substrate concentration of the feeding tank in the same proportion that YX/S 

decreases between normoxia and hypoxia should be enough to achieve a priori 

identical biomass profiles with identical fermentation volumes. This will be 

discussed in Section 5.4. 
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Figure 13. Primary data of the main key process parameters for the fed-batch cultivations grown 
at hypoxic (dark symbols) and normoxic (dark symbols) conditions with SCC and MCC. Biomass 
concentration (⬤, g · L-1); Crl1 Titer (▲, kAU · L-1); EtOH, Ethanol concentration (  ईउ, g · L-1). (A) 
SCC (SCC-NX1, SCC-NX2, SCC-HPX1, and SCC-HPX2) (B) MCC (MCC-NX1, MCC-NX2, 
MCC-HPX1, and MCC-HPX-2). Error bars represent the SD of biological replicates. 
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The values shown in Table 7 corroborate these results. In hypoxic conditions, 

YX/S decreases by about 20% on average, and qS increases accordingly 

compared with normoxic conditions.  

 

 

 

 

 

HPLC analysis results showed an ethanol accumulation of up to 10 g·L-1 in 

hypoxic conditions, although no growth inhibition was observed. Furthermore, 

arabitol (up to 7 g·L-1) and succinic acid (up to 1 g·L-1) were also detected in the 

culture broth in hypoxic fermentations. The concentration of these by-products 

was higher than those observed in chemostats due to the accumulation effect, 

typical of this operational mode. Finally, no glucose accumulation was detected 

neither in normoxia nor in hypoxia.  

 

Figure 14. Total biomass generation with SCC (⊙) and MCC (⬤) obtained under 
hypoxic (dark symbols) and normoxic (light symbols) conditions (SCC-NX1, SCC-
NX2, SCC-HPX1, SCC-HPX2, MCC-NX1, MCC-NX2, MCC-HPX1, and MCC-HPX-
2). Error bars represent the SD of biological replicates. 
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O2 supply condition 
SCC MCC 

Normoxia Hypoxia Normoxia Hypoxia 

Biomass 
(gDCW · L-1) 

110  
± 5 

94  
± 7 

105  
± 2 

86  
± 3 

µ 
(h-1) 

0.107  
± 0.003 

0.101  
± 0.006 

0.106  
± 0.006 

0.105  
± 0.010 

qS 
(gS · gDCW

-1· h-1) 
0.18  

± 0.01 
0.21  

± 0.01 
0.18  

± 0.01 
0.22  

± 0.01 

YX/S 
(gDCW · gS

-1) 
0.59  

± 0.00 
0.47  

± 0.04 
0.58  

± 0.01 
0.50  

± 0.01 

Ethanol 
(gEtOH · L-1) 

n.d. 
9.64  

± 3.04 
n.d. 

9.73  
± 1.00 

qEtOH 
(gEtOH · gDCW

-1· h-1) 
n.d. 

0.03  
± 0.01 

n.d. 
0.03  

± 0.01 

qO2 
(mmolsO2 · gDCW

-1· h-1) 
1.93  

± 0.07 
1.67  

± 0.04 
2.02  

± 0.04 
1.78  

± 0.24 

qCO2 
(mmolsCO2 · gDCW

-1· h-1) 
2.13  

± 0.08 
2.30  

± 0.10 
2.23  

± 0.05 
2.42  

± 0.19 

RQ 
1.11  

± 0.00 
1.38  

± 0.09 
1.10  

± 0.00 
1.37  

± 0.07 

Crl1 Titer 
(kAU · L-1)  

182  
± 5 

290  
± 64 

770  
± 22 

921  
± 30 

qP 
(AU · gDCW

-1· h-1) 
164  
± 8 

329  
± 27 

696  
± 7 

1029  
± 45 

YP/X  
(kAU · gDCW

-1)  
1.55  

± 0.02 
3.51  

± 0.12 
6.61  

± 0.31 
10.49  
± 0.20 

Volume 
(L) 

3.65  
± 0.12 

3.72  
± 0.24 

3.66  
± 0.02 

3.92  
± 0.00 

Table 7. Value of key process parameters obtained in fed-batch fermentations with SCC 
and MCC. Final biomass concentration (gDCW · L-1); specific growth rate, µ (h-1); specific 
substrate consumption rate, qS (gS · gDCW

-1· h-1); biomass-to-substrate yield, YX/S (gDCW · 
gS

-1); final ethanol concentration (gEtOH · L-1); specific ethanol production rate, qEtOH (gEtOH 
· gDCW

-1· h-1); specific oxygen consumption rate, qO2 (mmolsO2 · gDCW
-1· h-1); specific 

carbon dioxide evolution rate, qCO2 (mmolsCO2 · gDCW
-1· h-1); respiratory quotient, RQ; Crl1 

Titer (kAU · L-1); specific Crl1 production rate, qP (AU · gDCW
-1· h-1); product-to-biomass 

yield, YP/X (kAU · gDCW
-1); and final volume (L). ± indicate standard deviation (SD) of the 

biological replicates.  
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With regards to Crl1 production, Crl1 titers are clearly higher than in chemostat. 

As expected, MCC production is higher than SCC and, in parallel, in hypoxic 

conditions Crl1 production increases compared to normoxic state. However, due 

to differential volume profiles in hypoxic and normoxic fermentations, a proper 

comparison of Cr1 production should be made in terms of total production, qP, 

and YP/X. 

Crl1 total production is presented in Figure 15, where Crl1 titers (total kAU - 

kiloActivity Units) are plotted. Regarding oxygen limitation, SCC has 70% higher 

Crl1 production under hypoxic rather than normoxic conditions, whereas the 

increase for MCC is only 20%. On the other hand, with regard to gene dosage, 

MCC presents 4-fold higher Crl1 production than SCC in normoxia, whereas only 

3-fold higher in hypoxia. Accordingly, considering the results from Table 7, qP 

increases considerably with oxygen limitation. As observed in chemostat, the qP 

increase when applying hypoxia is higher for SCC (2-fold) than for MCC (1.5-

fold). In terms of YP/X, a similar effect can be observed. Whereas in normoxic 

conditions the YP/X is higher in fed-batch than in chemostat, the increase of YP/X 

when applying hypoxia is lower in fed-batch, so in these conditions, higher YP/X 

values are observed in chemostat. In general, both qP and YP/X follow similar 

trends. 

This represents an overall 6.3-fold increase of qP and a 6.7-fold increase of YP/X, 

considering both increased gene dosage and oxygen limitation effects, lower than 

that achieved in chemostat cultures but still very important, considering the save 

in the use of pure gases and power consumption by a lower agitation whenever 

possible.  

From the results obtained in chemostat cultures, fed-batch data seem to indicate 

that, in this operational mode the application of oxygen limitation is less effective 

than in chemostat, since higher Crl1 titers, qP, and YP/X values were expected 

when implementing hypoxic conditions to fed-batch cultures, especially with 

MCC. This could be explained by the combination of two effects: firstly, oxygen 

limitation causes metabolic stress, forcing cell metabolism towards the 

fermentative branch, generating a lower quantity of energetic molecules such as 

ATP (Carnicer et al., 2009; Baumann et al., 2010; Tomàs-Gamisans et al., 2020); 
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secondly, cell aging caused by the time-effect related to fed-batch bioprocesses, 

which has also been described to affect RPP (Curvers et al., 2001; Cos et al., 

2006), probably amplifies the metabolic stress, which does not occur in 

chemostats, were cells are constantly being renewed. 
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Figure 15. Total Crl1 production with SCC (▲) and MCC (▼) obtained under 
hypoxic (dark symbols) and normoxic (light symbols) conditions (SCC-NX1, SCC-
NX2, SCC-HPX1, SCC-HPX2, MCC-NX1, MCC-NX2, MCC-HPX1, and MCC-HPX-
2). Error bars represent the SD of biological replicates. 
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5.2.3 Strong dependence between ethanol production, RQ, and 

hypoxia degree 

In Figure 16 the off-line calculation of RQ and the off-line measurements of 

ethanol concentration for SCC (16A) and MCC (16B) are plotted. In order to 

further investigate the relationship between RQ and ethanol production in fed-

batch mode as well as to assess the variability between duplicates, each replica 

is plotted separately: HPX1 and HPX2 corresponding to replicas 1 and 2 with 

hypoxic conditions; NX1 and NX2 for replicas 1 and 2 with normoxic conditions.  

As explained in more detail in Section 6.3, it can be stated that RQ has been 

satisfactorily controlled within the desired range, being within the range from 1.0 

to 1.2 in normoxic fermentations and between 1.2 and 1.8 in hypoxic ones, by 

means of an intermittent manual modification of agitation rate. However, high 

peaks in the RQ profile are detected, corresponding to those manual control 

actions increasing or reducing the agitation rate, especially when applying 

oxygen limitation. As detailed in Section 6.3, in these hypoxic fermentations the 

on-line calculation of RQ did not take into account neither the humidity 

concentration of the inlet and exhaust gases nor the updated calibration values 

of the gas analyzer. Likewise, this data was collected and incorporated a 

posteriori to the RQ calculated on-line to give the “off-line” RQ profile shown in 

Figure 16. For these reasons, mainly due to the inability to incorporate the gas 

analyzer’s calibration data in the RQ calculation during the feeding phase, the 

final RQ values are not so constant and may differ considerably between replicas. 

Very interestingly, a strong correlation between RQ values and ethanol 

production rate (shown by the slope of ethanol concentration profiles) can be 

established. The fermentations with higher final ethanol concentration (SCC-

HPX2 and MCC-HPX2) are those with higher RQ values during the feeding 

phase. Furthermore, in SCC-HPX1 a sudden halt in ethanol production is 

observed at t = 5 h, corresponding to a decrease in the respiratory quotient from 

RQ ≈ 1.5 to RQ ≈ 1.2. Besides, in SCC-HPX2, ethanol is not detected until the 

third sample, when RQ rapidly increases from 1.2 to 1.7. These facts confirm the 

great influence of the oxygen limitation degree on the metabolism of P. pastoris 

growing on glucose as the sole carbon source, as observed in Section 5.1.2.  
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Figure 16. Off-line calculation of RQ and ethanol concentration for the fed-batch 
cultivations grown at hypoxic (red) and normoxic (purple) conditions with SCC and 
MCC. Off-line RQ (lines); Ethanol concentration (  ईउ, g · L-1). (A) SCC (SCC-NX1, SCC-
NX2, SCC-HPX1, and SCC-HPX2), (B) MCC (MCC-NX1, MCC-NX2, MCC-HPX1, 
and MCC-HPX-2). 
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In concordance with these results, as seen in Table 7, qO2 decreases by about 

15% under hypoxic conditions, while qCO2 has rather the same value regardless 

of the oxygenation conditions. Apart from the Crl1 production already discussed, 

no significant differences were observed between both clones. 

Anticipating the discussion of Section 6.3, from these results it can be concluded 

that this manual-heuristic RQ control strategy, based on manual actions on 

agitation rate, is sufficient to maintain the RQ within the range of 1.2 – 1.6, but is 

definitely unsatisfactory if a certain RQ set-point has to be maintained with minor 

deviations. Furthermore, it ends up being a high labor- and time-consuming 

strategy which is not the perfect scenario for its application to a realistic industrial 

process. Besides, more reproducibility in terms of RQ control should be achieved 

before its final robust and reliable industrial application. 

As already said, it is noteworthy the relatively high variability between replicates, 

not only for RQ values in hypoxic fermentations but also for Crl1 production, 

which has more variability in hypoxic duplicates than in normoxic ones, since 

error bars from hypoxic Crl1 profiles shown in Figure 15 are clearly higher than 

those of normoxic fermentations. This indicates that the reproducibility of the 

hypoxic conditions, which seems a priori more difficult to implement than in 

normoxic conditions, can be further improved. This will be assessed in Chapter 

6. 
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5.3 Hypoxia and gene dosage effects on transcriptional patterns 

It has been thoroughly described that harboring several copies of a recombinant 

gene can affect the physiology and fitness of P. pastoris (Zhu et al., 2009; Jordà 

et al., 2012; Cámara et al., 2017). Besides, it is well-known that P. pastoris 

regulates its response to different carbon sources at the transcriptional level 

(Prielhofer et al., 2015). This can be extended to oxygen availability since it has 

been also demonstrated that oxygen limitation significantly alters transcriptional 

patterns (Baumann et al., 2010). Thus, transcriptional analysis of key genes was 

performed with the aim of identifying potential correlations between gene 

regulation and protein production under hypoxic conditions. 

The genes selected were the recombinant CRL1 gene, which allows the 

expression of the target product of the bioprocess, the glycolytic genes TDH3 and 

PGK1 that encode two crucial enzymes for central carbon metabolism 

(Glyceraldehyde-3-phosphate dehydrogenase and Phosphoglycerate Kinase 1, 

respectively), and the Unfolded Protein Response (UPR)-related genes HAC1 

and KAR2, described as a UPR-related transcription factor and a UPR-related 

chaperone, respectively (Guerfal et al., 2010; Raschmanová et al., 2019). 

The transcription levels of the genes of interest have been analyzed in 

accordance with the protocol described in Section 4.3.8. The results of the 

relative transcription levels (RTL) for CRL1, TDH3, and PGK1, combined with the 

mean qP values, are shown via bar graphs in Figure 17, and the numerical values 

are displayed in Table 8.  

In order to facilitate a comprehensive comparison of both chemostat and fed-

batch results, the formers are grouped into normoxic (1.1 < RQ < 1.2) and hypoxic 

results (RQ > 1.2) as the RTL of all the genes plotted presented no significant 

differences between any condition for each of the two groups (normoxic and 

hypoxic). As previously pinpointed, the same pattern was observed with qP, so 

the values of this parameter are also grouped into normoxic and hypoxic values.  
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No clear trends could be observed for HAC1 and KAR2 RTLs with respect to 

neither RQ nor CRL1 gene dosage, so they are excluded from the graphs and 

the discussion. Previous studies, in which the same two Crl1-producer clones 

were studied, showed that these genes remained unregulated under different 

specific growth rate (µ) conditions (Nieto-Taype et al., 2020a). 

 

 

 

 

 

 

Figure 17. Comparison of qP and relative transcript levels (RTL) of key genes related to 
Crl1 production and glucose metabolism under all conditions and operational modes 
tested. Error bars represent the SD of all samples belonging to the same group of culture 
conditions (hypoxic and normoxic). 
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As regards the glycolytic genes selected, TDH3 and PGK1, as expected, there 

are no significant differences with respect to CRL1 gene dosage in terms of 

transcript levels. Interestingly, on the other hand, the transcription levels of the 

glycolytic genes analyzed are boosted under oxygen limitation conditions. 

Accordingly, it could be stated that oxygen-limiting conditions have a significant 

effect on the upregulation of glycolysis-related gene expression, as previously 

reported (Baumann et al., 2010; Tomàs-Gamisans et al., 2020). Additionally, in 

previous studies using the same clones but analyzing the effect of the specific 

growth rate, a direct correlation between TDH3 RTL and µ was also observed. 

However, this effect was not that evident with PGK1 RTL (Nieto-Taype et al., 

2020a). 

When comparing qP and CRL1 RTL, a similar trend could be observed: they 

increase in MCC with respect to SCC. In addition, oxygen-limiting conditions also 

increase qP and CRL1 RTL. Interestingly, it is clearly seen that the largest 

increase is due to the higher gene copy number rather than the effect of oxygen 

limitation. 

It is also important to note that no main differences could be observed between 

chemostat and fed-batch transcriptional results, although the effects of gene 

dosage and oxygen limitation seem to have more impact on chemostat than on 

fed-batch cultures, except for the TDH3 gene, where the differences between the 

normoxic and hypoxic state are clearer in fed-batch cultures. 

To provide further insights regarding the transcriptional results, two new 

parameters were defined: gene dosage fold-change (FCGD) which corresponds 

to the RTL quotient or fold-change between MCC and SCC of the aforementioned 

genes (and qP quotient or fold-change); and oxygen limitation fold-change (FCOL), 

which corresponds to the RTL (and qP) quotient or fold-change between hypoxic 

and normoxic conditions. The former facilitates the comprehension of the effect 

of gene dosage, while the latter highlights the effect of oxygen limitation. The 

values of these ratios are plotted in Figures 18 and 19. The values of these 

parameters are discussed in Sections 5.3.1 and 5.3.2. 
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O2 supply condition 
Chemostat Fed-batch 

Normoxia Hypoxia Normoxia Hypoxia 

SCC 

CRL1 RTL 
2.75 

± 0.31 
5.17 

± 0.66 
2.39  

± 0.02 
3.78  

± 0.73 

TDH3 RTL 
6.17 

± 2.23 
9.18 

± 0.02 
4.64  

± 0.38 
9.06  

± 2.59 

PGK1 RTL 
3.90 

± 0.09 
7.18 

± 0.65 
5.04  

± 0.89 
5.67  
± 0.8 

HAC1 RTL 
0.30 

± 0.11 
0.26 

± 0.02 
0.34  

± 0.13 
0.54  

± 0.08 

KAR2 RTL 
0.91 

± 0.34 
0.69 

± 0.01 
0.59  

± 0.17 
0.89  

± 0.01 

MCC 

CRL1 RTL 
11.23 
± 1.57 

14.07 
± 0.96 

12.87  
± 0.05 

13.25  
± 0.55 

TDH3 RTL 
8.21 

± 0.79 
10.21 
± 0.34 

5.24  
± 0.57 

9.35  
± 0.02 

PGK1 RTL 
3.14 

± 0.85 
5.24 

± 0.42 
3.95  

± 0.06 
5.36  

± 0.24 

HAC1 RTL 
0.22 

± 0.04 
0.22 

± 0.05 
1.21  

± 0.08 
0.24  

± 0.02 

KAR2 RTL 
0.91 

± 0.02 
1.48 

± 0.30 
1.30  

± 0.11 
0.80  

± 0.19 

Table 8. Value of Relative Transcript Levels (RTL) of key genes related to Crl1 
production (CRL1), glucose metabolism (TDH3 and PGK1), and UPR (HAC1 and 
KAR2) under all conditions and operational modes tested. ± indicate standard 
deviation (SD) of the biological replicates. 
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5.3.1 FCGD – Gene dosage fold-change 

Concerning gene dosage (FCGD), as expected, there is no effect on glycolytic 

reporting genes (TDH3, PGK1), since the values of TDH3 FCGD and PGK1 FCGD 

are around 1 in all cases, as can be observed in Figure 18. However, these 

results identified a possible bottleneck regarding Crl1 production in MCC, 

considering that the CRL1 FCGD ratio is systematically superior to the qP FCGD, 

irrespective of the operational mode or oxygenation conditions. This fact 

suggests a possible limitation in Crl1 processing, including translation, folding, 

and/or secretion, as already described in the literature for RPP processes 

(Ahmad et al., 2014; Puxbaum et al., 2015). Specifically, under normoxic 

conditions, the CRL1 FCGD values are around 5, in consonance with the 

increased number of CRL1 gene copies, whereas qP FCGD values are between 3 

– 4. A similar effect at high µ with this Crl1 producer MCC was also reported and 

thoroughly discussed (Nieto-Taype et al., 2020a).  

 

Importantly, CRL1 copy number was determined through ddPCR from samples 

taken after several steady-states of chemostats and from final fed-batch samples 

Figure 18. Gene dosage fold-change (FCGD) or ratio between MCC and SCC for qP and 
relative transcript levels (RTL) of key genes under all conditions and operational modes 
tested. 
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to ensure the genetic stability of the clones and to remark that there were no 

losses of CRL1 expression cassettes, as reported in the literature for different 

recombinant multicopy strains (Zhu et al., 2009; Aw & Polizzi, 2013). 

Very interestingly, the values of the CRL1 FCGD and qP FCGD in chemostat with 

D = µ = 0.10 h-1 and under normoxic conditions (CRL1 FCGD = 4.09 ± 0.73; qP 

FCGD = 3.09 ± 1.15) are very similar to those obtained in the previous work (CRL1 

FCGD = 4.60 ± 0.60; qP FCGD = 3.40 ± 0.40), which demonstrates the robustness 

and accuracy of both the chemostat cultures and the transcriptional analysis 

(Nieto-Taype et al., 2020a). 
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5.3.2 FCOL – Oxygen limitation fold-change 

Concerning the oxygen limitation effect (FCOL), Figure 19 shows that glycolytic 

genes (TDH3 and PGK1) are about 1.5-fold overexpressed under hypoxic 

conditions, with small deviations. This aligns with the generally observed qS 

increase of about 1.25-fold. Furthermore, in previous works where hypoxic 

conditions were implemented, an important increase in TDH3 transcription was 

also observed (Tomàs-Gamisans et al., 2020). On the other hand, regarding Crl1 

production, and reiterating the above results, hypoxic conditions have less impact 

on MCC than on SCC, both at the transcription (CRL1 RTL) and protein secretion 

(qP) levels. A plausible explanation for this effect is given in the next Section 

5.3.3. Strikingly, the positive effect of oxygen limitation over Crl1 production is 

quite more pronounced in chemostat operational mode, but only in terms of qP. 

This supports the hypothesis that cell stress caused by hypoxic conditions 

combined with the cell aging effect, characteristic of fed-batch operation, leads to 

smaller Crl1 production with the latter operational mode. Besides, since CRL1 

FCOL values are similar in both operational modes but qP FCOL is higher in 

chemostat, this limitation in Crl1 production probably occurs in a step somewhere 

after transcription, namely folding, secretion, etc. 
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Figure 19. Oxygen limitation fold-change (FCOL) or ratio between hypoxic and 
normoxic conditions for qP and relative transcript levels (RTL) of key genes for both 
clones and operational modes tested. 
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5.3.3 Possible bottleneck in transcription due to a limited pool of 

transcription factors  

From the results shown in Figures 17, 18, and 19, it can be stated that both 

parameters studied in this work enhance the CRL1 transcription rate. However, 

the gene dosage effect is reduced under hypoxic conditions, where both CRL1 

FCGD and qP FCGD are lower. This could indicate that, when combining both the 

heterologous gene copy number increase and hypoxic conditions, the 

transcriptional machinery is working closer to its upper rate limit, apart from the 

potential protein processing limitation mentioned previously.  

Although there is not much information about the cis- and trans-acting elements 

involved in PGAP regulation (Vogl & Glieder, 2013; Ata et al., 2017), a plausible 

explanation for such effect could be a finite availability of TDH3-related 

transcription factors (TF), such as Gal4-like family, found to be crucial in the 

central carbon metabolism regulation (Ata et al., 2017, 2018; Kalender & Çalık, 

2020). Specifically, it was found that Cra1, a TF from the Gal4-like family, plays 

an important role in the shift from respirative to respiro-fermentative metabolism 

through the interaction with PGAP and other glycolytic promoters, being able to 

activate the so-called Crabtree effect, increasing the metabolic fluxes through 

glycolysis and ethanol generation pathway and reducing the tricarboxylic acid 

cycle (TCA) activity (Ata et al., 2017, 2018; Prielhofer et al., 2018). This effect 

was also described for S. cerevisiae with GAL4 (the homolog of CRA1 in S. 

cerevisiae) (Frick & Wittmann, 2005; Vemuri et al., 2007). Thus, dramatically 

increasing the number of transcription factor binding sites (TFBSs), which occurs 

in MCC, with a limited pool of these transcription factors, could cause an 

attenuation of the transcription of all PGAP regulated genes, as previously 

described for clones with multiple copies of a recombinant gene under the 

regulation of PAOX1 (Cámara et al., 2017; Garrigós-Martínez et al., 2019).  

Indeed, this would align with the results from a previous study: a clone in which 

CRA1 was overexpressed and the Cra1-binding site (within the sequence of 

PGAP) was duplicated showed about 1.5-fold higher recombinant production than 

a clone in which only the Cra1-binding site was duplicated, indicating a possible 

scarcity of this TF when its TFBSs are duplicated (Ata et al., 2017). Thus, the 
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same effect might be happening in this case with MCC, which has 5 copies of 

PGAP and so, many more Cra1-binding sites than SCC. However, in this work, no 

significant attenuation of neither TDH3 nor PGK1 transcription was observed, and 

qS had very similar values regardless of the gene dosage. 

To sum up, the combination of oxygen limitation and increased gene dosage has 

a synergic but not summatory effect at the transcriptional level. Accordingly, the 

increase in Crl1 production achieved by the combination of these two strategies 

is larger than that obtained using these two strategies separately. Moreover, the 

insights described shed light on the implications of the PGAP regulation over RPP 

and bioprocess and strain engineering. 
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5.4 Scale up of the Crl1 production process 

5.4.1 Using RQ as a transferable operating parameter to scale up 

Scaling up a fermentation bioprocess is a complex engineering procedure that 

involves several critical factors, from biological to physical and chemical (Hewitt 

& Nienow, 2007; Takors, 2012). Traditionally, different scaling up strategies have 

been described in the literature, using distinct criteria to be able to reproduce the 

results obtained in the lab to an industrial scale. Some of these strategies are 

based on engineering principles, often related to the mixing properties or the 

oxygen transfer capacity. For example, keeping a constant kLa or applying a 

constant volumetric power consumption (P/V) are the most common strategies in 

industrial production applications to scale up, although geometry is also used as 

a scale up criterion (Marques et al., 2010; Neubauer & Junne, 2016). Other 

strategies are based on avoiding excessive shear stress to damage the cells, 

whenever it can be a critical factor. For instance, constant impeller tip speed is 

also used as a rule for scale up purposes (Dubey et al., 2008; Marques et al., 

2010; Neubauer & Junne, 2016). More recently, scale up strategies based on the 

use of metabolic mathematical models combined with computational fluid 

dynamics (CFD) have been successfully applied (Xia et al., 2015; Wang et al., 

2020). 

However, a common problem in a scaling up procedure is the relatively low 

representativeness of the measures on which the control of these bioprocesses 

is based, since it is quite usual to observe chemical heterogeneities in a large-

scale fermenter regarding substrate availability, for example, or temporal pH 

gradients due to relatively high mixing times, frequent in large-scale fermenter 

(Hewitt & Nienow, 2007; Takors, 2012; Neubauer & Junne, 2016; Ask & Stocks, 

2022). In addition, the great height of industrial fermenters, compared to their 

laboratory counterparts, generates higher hydrodynamic pressures at the bottom 

of the fermenters than at the top. This fact, combined with the aeration at the 

underside of the fermenter, generates huge oxygen gradients in the culture broth 

(Onyeaka et al., 2003; Takors, 2012; Neubauer & Junne, 2016). All these 

heterogeneities lead cells to be exposed to an alternating environment regarding 

oxygen and substrate availability, pH, and even temperature (Xia et al., 2015).  
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On the other hand, exhaust gas analysis is a very reliable measurement, and it 

is not affected by possible heterogeneities or concentration gradients since 

mixing in the gas phase is much more complete than in the liquid phase due to 

the fluid characteristics. Therefore, using a scale up strategy based on the 

exhaust gas analysis instead of another invasive measurement seems a priori a 

good starting point for a scaling up process (Garcia-Ortega et al., 2017).  

With this approach, a series of two fermentations, one under normoxic conditions 

and another under hypoxic conditions were carried out in a pilot-scale 50 L 

fermenter, trying to mimic the same conditions applied in the fed-batches from 

Section 5.2 but with a starting batch volume of 30 L and a final volume of around 

50 L at the end of the fed-batch, giving an important scaling factor of 1:15. 

However, due to operational limitations associated to the non-availability of pure 

oxygen to enrich the inlet gas in the pilot plant, implementing a µ = 0.10 h-1 was 

not possible, since in the last stages of the fed-batch, especially for the 

fermentation under normoxic conditions, some pure oxygen would have been 

necessary. Thus, a lower µ was selected to avoid having operational limitations. 

In a preliminary study whose results have not been included in this work, it was 

established for SCC that 0.12 h-1 < µmax < 0.15 h-1 under hypoxic conditions with 

RQ = 1.4. Thus, a medium µ = 0.065 h-1 was selected for these scaling up 

fermentations, which is about half of the µmax and allows to avoid the use of pure 

oxygen. As in both the normoxic and the hypoxic fermentations, the same µ = 

0.065 h-1 was implemented, a proper comparison between both conditions can 

be carried out. Besides, since the improvement in Crl1 production and 

productivity is less important with MCC, as observed in Sections 5.1 and 5.2, 

SCC was selected for this scale up implementation. Additionally, bringing 

biomass from cell bank storage to the final industrial fermenter requires several 

additional steps compared to a lab-scale fermentation, which can affect the 

genetic stability of multicopy strains and force them to lose expression cassettes, 

thus giving more obvious reasons to test only the SCC (Takors, 2012). 
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As explained in Section 4.2.3, these fermentations were carried out in the 

facilities of Bisy GmbH (Wünschendorf, Austria) as part of an international 

research stay. In addition, these fermentations were also used by ZETA’s team 

to gain further understanding of the behavior of the BIRE fermenter, which is 

actually a scale-down of one of their large-scale fermenters. Among other factors, 

the relationship between agitation and kLa was especially studied with the aim of 

developing a DO cascade control. 

The values of biomass dry cell weight, Crl1 titer, and ethanol concentration during 

the feeding phase of normoxic and hypoxic fermentations are plotted in Figure 

20.  

In contrast to the previous fed-batch cultures, which were grown at µ = 0.10 h-1 

and lasted for 20 h, in this case, the feeding phase was longer and ended at t = 

30 h. In the normoxic fermentation, the final biomass dry cell weight was around 

110 g · L-1, considerably higher than for the hypoxia, which reached almost 90 g 

· L-1. As explained below in more detail, the biomass profile in the hypoxic 

fermentation had some deviation from the expected exponential profile during the 

first 10 h. This deviation can be detected more clearly in Figure 23 in the next 

Section 5.4.2. 
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Contrary to the previous lab-scale fermentation, in this case, the total volume of 

substrate added to the fermenter was 20 L for both fermentations, since together 

with the 30 L batch medium, it was the maximum limit of the fermenter’s working 

capacity (50 L). Then, to rectify the reduced biomass generation in hypoxic 

conditions due to the decrease in biomass-to-substrate yield (YX/S), the glucose 

concentration of the feeding was notably higher in the feeding tank of the hypoxic 

fermentation (glucose concentration = 455 g · L-1). Compared to the normoxic 

fermentation (glucose concentration = 410 g · L-1), it accounted for 10% more 

substrate addition. However, the expected yields estimated from lab-scale 

fermentations were YX/S = 0.59 gDCW · gS-1 and YX/S = 0.47 gDCW · gS-1, respectively, 

giving a YX/S decrease of about 20% in hypoxic conditions. Still, it was decided to 

be conservative and not to reduce the substrate concentration even more in the 

normoxic fermentation, since it was the first occasion when this procedure of 

Figure 20. Primary data of the main key process parameters for the pilot-scale fed-
batch cultivations grown at hypoxic (dark symbols) and normoxic (dark symbols) 
conditions (HPX50L, NX50L). Biomass concentration (⬤, g · L-1); Crl1 Titer (▲, kAU 
· L-1); EtOH, Ethanol concentration (⬛, g · L-1). 
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varying substrate concentration was tested. As a result, this correction of the 

substrate concentration and thus of the substrate addition was not sufficient to 

counteract the reduction of YX/S, since the final biomass concentration differs 

greatly between the two fermentations. Indeed, as observed in Table 9 from 

section 5.4.2, the final reduction of YX/S when implementing hypoxia was around 

25%, slightly higher than the expected 20% reduction and clearly higher than the 

10% reduction of substrate concentration applied in this pair of fermentations.  

Crl1 production increased through the feeding phase, reaching a final Crl1 

enzymatic activity of 140 kAU · L-1 in normoxic conditions and 254 kAU · L-1 in 

hypoxic conditions. During the hypoxic fermentation, higher Crl1 production than 

the achieved was expected. However, the same operational issue that caused 

the growth deviation described above also caused a low level of Crl1 production 

during the first half of fermentation. It is discussed at the end of this section. 

Regarding RQ control through manual agitation rate modification, Figure 21 

shows the time evolution of RQ together with the agitation speed for both 

strategies. As previously mentioned, in industrial scale dissolved oxygen (DO) 

gradients are likely to be present in the culture broth (Onyeaka et al., 2003; 

Takors, 2012; Neubauer & Junne, 2016). Thus, since the DO probe was installed 

at the bottom of the fermenter, it was decided to keep the agitation constant at 

900 rpm in the normoxic fermentation to assure complete aerobic conditions, 

maintaining a DO > 30% for all the fed-batch. Furthermore, this was done also to 

avoid a having variable agitation rate that could lead to operational issues related 

to foam formation, which is known to impact more in large-scale fermenters 

(Vardar-Sukan, 1998). It is noteworthy that 200 mbar of overpressure was applied 

to the fermenter in the last 2 hours of the feeding phase to maintain the DO at the 

set-point since oxygen transfer increases with overpressure following the Henry-

Dalton’s law (Garcia-Ochoa & Gomez, 2009; Takors, 2012). On the other hand, 

in the hypoxic fermentation, the DO was just above zero and no overpressure 

was found necessary. 
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RQ during the normoxic feeding phase was rather constant around 1.1 – 1.25 

with some oscillations in the first hours. DO sensor values above 30% during all 

the normoxic fermentation confirmed that there was no oxygen limitation, 

although these RQ values are slightly higher than those observed in lab-scale 

normoxic fermentations. Inasmuch as these fermentations were not performed 

with the same fermentation equipment, external measuring devices, and software 

as all the other lab-scale fermentations carried out in this thesis, the calculation 

of RQ was not so accurate. Basically, the gas analyzer could not be calibrated 

with different gas mixtures with known O2 and CO2 concentrations as done in the 
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Figure 21. Off-line calculation of RQ and on-line data of agitation rate for the pilot-
scale fed-batch cultivations grown at hypoxic (discontinuous lines) and normoxic 
(continuous lines) conditions (HPX50L and NX50L). Off-line RQ (upper lines); 
Agitation rate (lower lines, rpm).  

*A gap in the RQ measurements indicates an unexpected stop of the data logging 
software during the night hours. 



 113 

lab-scale fermentations, as explained in Section 4.3.6, and it was only calibrated 

with air. This could have led to a small overestimation of CO2 concentration during 

the first fermentation (normoxic) which, in turn, caused an overestimated CER 

values and thus, a higher RQ profile than it actually was. This could explain why 

RQ > 1.2 when DO > 30%, since in lab-scale normoxic fermentations RQ had 

been always between 1.0 and 1.1. 

Bearing this in mind, in the subsequent fermentation, which was the hypoxic one, 

RQ was controlled with an RQ set-point = 1.5, higher than 1.4 applied in lab-

scale. However, this manual control at a large-scale was not sufficiently accurate, 

and RQ oscillated between 1.5 and 1.8 approximately, with small peaks 

associated with manual control actions over agitation rate, as can be observed in 

Figure 21. 

This uncertainty in the RQ measurement and control during the hypoxic 

fermentation caused more severe hypoxic conditions than those applied in lab-

scale, thus causing an increase of the fermentative metabolism confirmed by a 

higher ethanol accumulation than those observed with the 5 L benchtop 

fermenter. Specifically, the final ethanol concentration reached in this 

fermentation was above 17 g · L-1, significantly superior to the 10 g · L-1 obtained 

in the lab-scale. Additionally, up to 1.3 and 1.2 g · L-1 of arabitol and succinic acid, 

respectively, were detected in the culture broth at the end of the feeding phase. 

As advanced previously, in the hypoxic fermentation, due to a malfunction of the 

feeding pump during the first 8 hours of the feeding phase, the substrate addition 

was higher than desired. Therefore, the biomass generation was also higher, as 

can be detected in the hypoxic biomass profile (t = 8 h) in Figure 20. After 

realizing this operational issue, the feeding profile was slightly recalculated to 

reach a total substrate addition of 20 L at t = 30 h, thus leading to a reduced 

substrate addition from t = 8 h to t = 15 h. 

Nonetheless, this deviation from the predefined exponential feeding profile had 

some effect on the growth rate, thus causing a µ >> 0.065 h-1 during the first 8 

hours and a µ << 0.065 h-1 from this point to t = 15 h. During these periods, µ can 

be estimated as µ ≈ 0.10 h-1 and µ ≈ 0.05 h-1, respectively. From this point on, µ 



 114 

was controlled appropriately. Although the final mean µ calculated for all the 

feeding phase was µ = 0.062 h-1, really close to the µ set-point, this deviation 

caused a gradual halt in Crl1 production. Figure 22 shows the discrete values of 

µ and qP, calculated at each sample time point as explained in the methodology 

section. The deviation of µ from the set-point and its relationship with a clear 

reduction of qP when µ was decreased can be clearly observed in the graph. This 

is consistent with previous results obtained at lab-scale with this clone, in which 

a clear correlation between µ and qP was observed (Nieto-Taype et al., 2020a). 

Meaningfully, if µ was lower than the predefined value, so was qP. In addition, 

these values seem to indicate that this negative effect on recombinant production 

was more extended in time than the effect on growth. 

 

 

  

Figure 22. Off-line calculation of discrete values of specific growth rate, µ (green 
continuous line, h-1) and specific production rate, qP (blue discontinuous line, AU · 
gDCW

-1 · h-1) for the hypoxic pilot-scale fermentation (HPX50L). A gray horizontal band 
indicates the µset-point = 0.065 h-1 with a ± 5% deviation. 
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5.4.2 Performance comparison between pilot and lab-scales 

The values of different key process parameters (µ, qS, YX/S, qEtOH, RQ, qP, YP/X, 

and final product P·V) are displayed in Table 9. It is worth noting that the qP value 

of the pilot-scale hypoxic fermentation was calculated considering only the last 

three sample points, considering all the explained in the previous section and 

shown in Figures 20 and 22. To provide a proper comparison, two lab-scale 

fermentations, one under normoxic conditions and one under hypoxic conditions, 

grown at µ = 0.065 h-1 (065-NX and 065-HPX), have also been included in Table 

9. These fermentations are part of a set of cultivations conducted with SCC and 

applying different specific growth rates, to evaluate the production kinetics, and 

they were performed by the PhD candidates Albert Sales and Guillermo 

Requena, who gently provided the data (Sales et al., 2023). 

 

 

 

 

O2 supply condition 
Pilot-Scale (50 L) Lab-Scale (5 L) 

Normoxia Hypoxia Normoxia Hypoxia 

µ 
(h-1) 

0.066 0.062 0.059 0.064 

qS 
(gS · gDCW

-1· h-1) 
0.11 0.14 0.13 0.15 

YX/S 
(gDCW · gS

-1) 
0.58 0.43 0.48 0.42 

qEtOH 
(gEtOH · gDCW

-1· h-1) 
n.d. 0.027 n.d. 0.027 

RQ 1.10 1.45 1.05 1.43 

qP 
(AU · gDCW

-1· h-1) 
84 198 128 267 

YP/X  
(kAU · gDCW

-1)  
1.40 2.91 2.17 4.18 

P·V 

(·106 AU) 6.99 12.7 0.53 1.33 

Table 9. Value of key process parameters obtained in fed-batch fermentations with SCC 
at lab- and pilot-scales. Specific growth rate, µ (h-1); specific substrate consumption rate, 
qS (gS · gDCW

-1· h-1); biomass-to-substrate yield, YX/S (gDCW · gS
-1); specific ethanol 

production rate, qEtOH (gEtOH · gDCW
-1· h-1); respiratory quotient, RQ; specific Crl1 

production rate, qP (AU · gDCW
-1· h-1); product-to-biomass yield, YP/X (kAU · gDCW

-1); and 
final total product amount, expressed as multiple of 106 (AU).  
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A general reduction of around 25% in qP was observed comparing lab- and pilot-

scale fermentations, which is commonly found in industrial scaling up (Lara et al., 

2006; Xia et al., 2015). Accordingly, comparing the YP/X values achieved at pilot-

scale with values obtained at the lab-scale, an approximate 30% reduction is 

observed both in hypoxic but also in normoxic conditions. This indicates that, 

although a sub-optimal performance could be considered for the pilot-scale 

hypoxic fermentation, the reduction of Crl1 production could be associated more 

with the scale-up process rather than the capability to reproduce normoxic and 

hypoxic conditions. 

Figure 23 shows the total amount of biomass and ethanol produced in pilot- and 

lab-scales. To evaluate the reproducibility of the results, the ratio between y-axes 

(left: lab-scale; right: pilot-scale) has been defined at 15, the same as the scale 

up factor. Thus, it can be observed that biomass and ethanol concentrations are 

comparable in both scales. However, slightly higher ethanol concentration is 

observed in the large-scale fermentation, caused by highly hypoxic conditions 

due to the improper RQ measurement and control already mentioned. 
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Regarding Crl1 production, Figure 24 shows the total Crl1 titer in lab-scale and 

pilot-scale fermentations, also with a ratio of 15 between the y-axis scales. 

Whereas in normoxic conditions the Crl1 production was quite comparable 

between lab- and pilot-scales, a proportionally lower Crl1 production was 

observed in the 50 L hypoxic fermentation. As already stated, the slowdown in 

Crl1 production observed in this fermentation should be ascribed to the halt in 

biomass growth that caused the transient lower µ.  

 

 

 

Figure 23. Total biomass and ethanol generation in the 50 L pilot-scale (opaque 
symbols) and 5L lab-scale (clear symbols) fermentations grown in hypoxic (dark 
symbols) and normoxic (light symbols) conditions (HPX50L, NX50L, 065-HPX, and 
065-NX). Total biomass amount (⬤, g); Total ethanol amount (⬛, g). For a fair 
comparison, the relationship between y-axes is the same as the scale-up factor (15x). 
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From these results, it can be concluded that the Crl1 production process has been 

partially successfully scaled up by a factor of 1:15, slightly higher than the 

standard 1:10 generally employed in industry (Garcia-Ochoa & Gomez, 2009). 

Although not achieving the same levels of Crl1 production, biomass grew as 

expected and no gross differences in µ, qS, and YX/S were observed, indicating 

an equivalent biomass performance. Despite the mentioned operational 

constraints, a 2.3-fold increase in qP was achieved between hypoxic and 

normoxic conditions, quite similar to the 2-fold qP improvement obtained in lab-

scale.  
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Figure 24. Total Crl1 production in the 50 L pilot-scale (opaque symbols) and 5L lab-
scale (clear symbols) fermentations grown in hypoxic (dark symbols) and normoxic 
(light symbols) conditions (HPX50L, NX50L, 065-HPX, and 065-NX). Total Crl1 Titer 
(▲, kAU). For a fair comparison, the relationship between y-axes is the same as the 
scale-up factor (15x). 
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More importantly, as stated previously, this scale up procedure is based on a 

non-invasive measurement of the exhaust gas, less vulnerable to the presence 

of substrate heterogeneities or oxygen gradients inside the fermenter, 

characteristic of large-scale fermenters and easier to apply to an already 

implemented production process, giving an innovative scale up criterion to an 

industrial field where no universal criteria are defined for scaling up purposes 

(Hewitt & Nienow, 2007; Marques et al., 2010; Takors, 2012; Xia et al., 2015; De 

Brabander, 2023). Nonetheless, proper calibration of the gas analyzer is highly 

necessary to apply this strategy, since the control of the bioprocess depends on 

it, as these results show. 
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An article containing an adapted and summarized version of Chapter 6 is being prepared for submission 
to Frontiers in Bioengineering and Biotechnology: 

Gasset, A., Van Wijngaarden, J., Mirabent, F., Sales, A., Garcia-Ortega, X., Montesinos-Seguí, J. L., Manzano, T., 
Valero, F. (2023/2024). Continued Process Verification 4.0 application in upstream: Adaptiveness implementation 
managed by AI in hypoxic bioprocess of Pichia pastoris. Frontiers in Bioengineering and Biotechnology. 

 

The information included in Chapter 6 is complemented by a research paper that has been published in 
PDA Journal of Pharmaceutical Science and Technology: 

Ondracka, A., Gasset, A., Garcia-Ortega, X., Hubmayr, D., van Wijngaarden, J., Montesinos-Seguí, J. L., Valero, 
F., Manzano, T.  (2023). CPV of the Future: AI-powered continued process verification for bioreactor processes. 
PDA Journal of Pharmaceutical Science and Technology, 77(3), 146-165.                     
https://doi.org/10.5731/pdajpst.2021.012665 
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6.1 Defining the desirable characteristics of a hypoxic control 

strategy 

As a conclusion from Chapter 5, a clear increase in RPP under PGAP regulation 

is observed in hypoxic conditions. As confirmed by transcriptional analyses, this 

increase can be attributed to the overexpression of glycolytic genes, due to the 

aforementioned shift from respirative to respiro-fermentative metabolism. Among 

them, TDH3 is the glycolytic gene that has PGAP as its natural promoter, so 

recombinant genes under PGAP regulation are also overexpressed (Gasset et al., 

2022). 

As also stated in the previous section, this increase in RPP is quite constant 

regardless of the oxygen limitation level, being only two different states in terms 

of Crl1 productivity or qP: normoxia (RQ < 1.2) and hypoxia (RQ > 1.2). 

Nevertheless, the oxygen limitation level does have a clear impact on the 

metabolism of the yeast, since qEtOH and qS increase linearly with RQ, and YX/S 

decrease also proportionally to RQ, as observed in Section 5.1.  

A very precise control of the RQ is therefore not essential in order to achieve an 

improvement in Crl1 production, but it is necessary to ensure that the whole 

bioprocess can be reproducible, since oscillations in RQ or deviations from the 

set-point may cause different metabolic states (distinct glucose utilization) and 

so, different YX/S, qEtOH, and biomass generation. Although qP may remain the 

same for the whole range of hypoxic conditions, Crl1 production will differ from 

one fermentation to another if biomass generation is not equivalent. From an 

industrial perspective, reproducibility is crucial when implementing a productive 

bioprocess (Galvanauskas et al., 2019; Simutis & Lübbert, 2015; Veloso & 

Ferreira, 2017). It is therefore necessary to develop a precise RQ control strategy 

if the project is to be scaled up to an industrial level. As mentioned in Section 

2.5, both EMA and FDA specify that reproducibility is an essential aspect of the 

validation process of the manufacturing of biotechnological or biomedical 

products (FDA, 2011; EMA, 2014). Furthermore, the selection of a suitable set-

point of RQ is equally essential to assure the desired results. The selection of the 

appropriate RQ set-point is addressed in Section 5.2.1, but it can be summarized 

in the following two points: first, hypoxic conditions can be assured if RQ > 1.2, 



 122 

so a higher set-point should be selected. Secondly, the higher the RQ, the greater 

the ethanol production and the lower the YX/S, both factors affecting the efficiency 

of the bioprocess. As shown in the Annex, a set-point for RQ greater than 1.6 

resulted in an excessive amount of ethanol being produced, which can result in 

growth-inhibitory (Ergün et al., 2019; Wehbe et al., 2020). Additionally, such a 

high RQ led to a very low YX/S, resulting in less biomass production than was 

desired. Taking into account these considerations, RQ should be maintained 

within the range of 1.2 to 1.6, with 1.4 being the optimal value. 

Besides reproducibility, automation is also an imperative step in the 

implementation of industrial bioprocesses, especially in those with a high degree 

of complexity, as can be a fed-batch with controlled hypoxic conditions. 

Automation is crucial not only to guarantee the quality of the product but also to 

improve the reliability and the economics of the process and to be able to deal 

with process failures appropriately (Alford, 2006; Stanke & Hitzmann, 2013; 

Rathore et al., 2021). Aside from improving product quality and safety, 

automation also enhances human security by reducing the number of manual 

control activities required by plant operators, which can be potentially dangerous 

or jeopardize the whole bioprocess (Clementschitsch & Bayer, 2006; Stanke & 

Hitzmann, 2013; Daniyan et al., 2014; Luo et al., 2021). It should be noted, 

however, that despite both the EMA and FDA encourage biotech and biopharma 

industries to automate their bioprocesses as a method for continuous process 

verification, these industries still seem unenthusiastic about automation applying 

novel control strategies, such as those based on AI, as this entails re-validation 

steps (FDA, 2011; EMA, 2014; Embury & Clayton, 2017). 

Considering all the above, when establishing a precise, reproducible, and 

automated control strategy, another thing to keep in mind is the requirements of 

the bioprocess in terms of its control. To put it another way, it is important to be 

aware of how the process evolves and when softer or more severe control actions 

will be needed. 

Regarding the present bioprocess, during the initial stages of the feeding phase, 

when biomass concentration is low, the system dynamics are relatively slow. 

Contrarily, at the end of the fed-batch phase, biomass concentration and 
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substrate addition rate are much higher than at the beginning, causing much 

faster dynamics. Regardless of the duration of the whole process, the fed-batch 

phase can therefore be divided into three parts, each lasting one third of the entire 

feeding phase duration. Figure 25 shows the total biomass generation and Crl1 

production through the feeding phase of the couple of hypoxic fermentations 

performed with SCC and presented in Section 5.2.2. According to biomass 

profiles, the increase of biomass during the first third of the fed-batch phase 

constitutes less than 15% - 20% of the overall increase. During the intermediate 

third of the fed-batch phase, it can be estimated that the biomass increase is 

approximately 25% - 30% of the total biomass increase, and during the final third 

of the fed-batch phase, the biomass increase is approximately 50% - 60% of the 

overall biomass increase. The same effect can also be observed in Crl1 titers 

shown in Figure 25, and the same pattern can be inferred from substrate addition 

whenever it follows an exponential profile. In short, because of the exponential 

growth of the biomass, there are many more changes in the culture conditions 

during the last third of the feeding phase rather than during the first two thirds of 

the fed-batch (total volume, biomass amount, oxygen and heat removal 

requirements, etc.) (Funke et al., 2010; Garcia-Ortega et al., 2013).  

From the control perspective, this implies that the control actions, whether manual 

or automated, during the first third of the fed-batch phase should be few and soft. 

Ideally, control actions should be performed more often throughout the 

intermediate third, and almost constantly during the last third of the fed-batch 

phase, with more marked actions, being critical at the last hours when biomass 

concentration reaches 100 g·L-1 (Brignoli et al., 2020). Hence, the control strategy 

should take this time-effect variation into consideration. 
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Three different approaches have been evaluated with progressively greater 

complexity but also with progressively better results to develop a highly precise, 

accurate, and fully automated RQ control. As mentioned in Chapter 1, the 

development and implementation of these control strategies outlined in the 

following sections have been done within the framework of the “CPV of the future” 

project, together in collaboration with AIZON (Barcelona, Spain). Especially, the 

last control strategy based on artificial intelligence (AI) was the final goal of the 

project. 
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6.2 Selecting the manipulated variable for a hypoxic control 

strategy 

In contrast to chemostat fermentations, which are characterized by a steady state 

and constant oxygen consumption, non-stationary carbon-limited fed-batch 

fermentations exhibit an exponential increase in biomass, product titer, and all 

other growth-related components, but they are also defined by an exponential 

increase in oxygen consumption and carbon dioxide production. Then, any 

control action performed over this process must have exponential behavior. This 

is generally accepted for pH or temperature, for example: the amount of acid or 

base added to the culture to regulate pH increases exponentially during a fed-

batch phase, and the heat amount added or removed from the fermenter through 

the jacket or other cooling systems also increases exponentially if the specific 

growth rate is kept constant (Dabros et al., 2010; Funke et al., 2010; Katla et al., 

2019). According to a classic DO cascade control, the agitation rate is typically 

the first manipulated variable in the cascade, and it increases exponentially within 

the defined operational range. As the agitation rate reaches its maximum level, 

the second variable comes into action, which is often the oxygen proportion in 

the inlet gas, by mixing air with pure oxygen (or nitrogen) (Baeza, 2017; de 

Macedo Robert et al., 2019; Rathore et al., 2021). Nonetheless, the combined 

action of agitation rate and gas mixing allows an exponentially increasing OTR, 

thus maintaining the set-point of DO. 

Then, a variable with a high impact on RQ should be used for the control strategy 

implementation. Some examples can be found in the literature where 

respirometric parameters are used as measured variables to implement a control 

strategy. Nonetheless, in these studies, the modified variable was the feeding 

addition, therefore not maintaining the desired μ (Jenzsch et al., 2006; Wang et 

al., 2007; Ranjan & Gomes, 2009; Mesquita et al., 2019). If μ is to be maintained 

constant, then another variable or variables should be selected for the RQ control 

strategy. 

As shown in Equations 39, 40, and 41, biological and operational variables 

affecting RQ can be stated as qO2, qCO2, and X. 
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𝐶𝐸𝑅 = 𝑞஼ைଶ · 𝑋         Eq. 39 

𝑂𝑈𝑅 = 𝑞ைଶ · 𝑋        Eq. 40 

𝑅𝑄 =  𝐶𝐸𝑅
𝑂𝑈𝑅ൗ        Eq. 41 

Where CER and OUR are the Carbon Evolution Rate (molsCO2 · L-1 · h-1) and 

Oxygen Uptake Rate (molsO2 · L-1 · h-1); qCO2 and qO2 are the specific carbon 

dioxide production rate (molsCO2 · gDCW-1 · h-1) and the specific oxygen 

consumption rate (molsO2 · gDCW-1 · h-1), respectively; X is biomass concentration 

(g · L-1); and finally, RQ stands for Respiratory Quotient (molsCO2 · molsO2-1, but 

normally expressed as a non-dimensional variable). They are intrinsic to biomass 

growth and physiologic state and therefore they cannot be manually modified 

without altering μ or altering RQ, since they are included in both CER and OUR 

terms. X is biomass concentration, and since it is meant to grow exponentially, it 

cannot be used as a control variable either.  

However, in an oxygen-limited system, all the oxygen transferred to the culture is 

supposed to be consumed immediately by the cells, so the oxygen transfer rate 

(OTR) is equal to the oxygen uptake rate (OUR), with the same units (molsO2 · L-

1 · h-1). 

𝑂𝑇𝑅 = 𝑂𝑈𝑅        Eq. 42 

Then, it is possible to modify the RQ by modifying the OTR, although this can 

also have an impact on CER. 

Equation 43 shows the variables involved in the OTR term: 

𝑂𝑇𝑅 = 𝑘௅𝑎 · (𝑂ଶ
ௌ௔௧ − 𝑂ଶ)      Eq. 43 

Were kLa is the volumetric mass transfer coefficient (h-1, or more commonly s-1), 

O2Sat is the saturation oxygen concentration in the culture broth (molsO2 · L-1) and 

O2 is the actual oxygen concentration (molsO2 · L-1). In hypoxic conditions, O2 ≈ 

0, so two parameters can be considered for OTR adjustment: kLa and O2Sat.  
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Therefore, two different variables can be proposed as manipulated variables to 

implement the RQ control: agitation rate and oxygen proportion in the inlet gas. 

The former has a significant impact on kLa, since it affects both the turbulent 

regime in the bioreactor (kL) and the interfacial area between the gas and liquid 

phases (a), whereas the latter influences the oxygen saturation in the culture 

broth (O2Sat) (Garcia-Ochoa & Gomez, 2009; Garcia-Ochoa et al., 2010). In fact, 

oxygen proportion is not directly manipulated. Flowrates of air and pure oxygen 

or pure nitrogen are actually the manipulated variables to modify the oxygen 

proportion in the inlet gas. From an industrial perspective, the use of pure gases 

is not very attractive since it entails additional transport and storage costs, safety 

risks, etc. (Liu et al., 2016). For this reason, agitation rate was initially selected 

as the manipulated variable to implement the RQ control. Aside from that, having 

only one manipulated variable instead of three facilitates the implementation of 

an automated RQ controller. 

Still, a fed-batch with an RQ control based on the modification of the inlet gas 

composition was performed (HPX-GASC), just to ensure the viability of this 

option, obtaining similar results compared with those fermentations where the RQ 

control was achieved by modifying the agitation rate. Results are shown in the 

Annex. 
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6.3 First approach to RQ control: manual-heuristic modification 

of agitation rate (MHC) 

As it has been shown in Section 5.2, the initial approach to RQ control was to 

perform manual control actions on the agitation rate. This set of experiments had 

three main objectives: firstly, and more obviously, to ensure that the improvement 

in RPP under hypoxic conditions observed in the chemostat cultures was also 

observed in a fed-batch system. Secondly, to assess the viability of a dynamic 

RQ control based on agitation modification. Additionally, these experiments also 

had a less apparent, yet equally relevant goal, which was to generate enough 

data to subsequently build an RQ control model using AI algorithms, which 

require large amounts of data in order to be trained (Das et al., 2015; Zhou et al., 

2019; Ondracka et al., 2022). This question will be further discussed in the 

following sections. 

As commented in Section 5.2, a total of 4 hypoxic fermentations were carried 

out, 2 of them with SCC and the other 2 with MCC. However, only SCC hypoxic 

fermentations are discussed in this section, since only SCC was tested with the 

other control strategies presented in this chapter. Both SCC hypoxic 

fermentations consisted of an initial batch with glycerol as the sole carbon source, 

followed by a fed-batch phase with an exponential feeding profile of glucose at μ 

= 0.10 h-1 at a constant air flow rate of 2 L · min-1 and an agitation rate from 600 

to 1500 rpm. In addition, as reported in Section 5.2.1, hypoxic conditions were 

maintained by keeping the RQ approximately constant by manually adjusting the 

agitation.  

The manual modification of the agitation rate followed heuristic rules: as 

commented in the previous section, increasing the agitation caused a reduction 

of RQ, so control actions were based on this principle. An operational RQ range 

was defined as 1.2 < RQ < 1.6. 

Thus, at the beginning of the fed-batch phase, where hypoxic conditions were to 

be implemented, an initial agitation rate was set by trial and error to achieve, 

approximately, RQ = 1.4. Then, approximately every hour after the beginning of 

the fed-batch, RQ was evaluated. If RQ > 1.6, then the agitation rate was 
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increased by a step of either 50 or 100 rpm, mainly depending on the researcher’s 

expertise (∆rpm = 50 or 100). Since the inertia of the system is that substrate 

uptake rate (SUR) grows exponentially as substrate addition increases, CER also 

increases exponentially. To maintain a constant RQ, OTR should also increase 

exponentially, so the agitation rate should follow the same trend. Reductions in 

agitation rate during the fed-batch were therefore not expected.  

In this first approach to RQ control, the on-line calculation of RQ was carried out 

through BlueVis software from BlueSens (Herten, Germany), with the pre-defined 

“CER/OUR/RQ Plugin”. The software allowed the integration of data coming from 

the O2 and CO2 analyzers to calculate the OUR, CER, and RQ on-line, using 

Equations 44 and 45, from the “BlueVis Handbook” (BlueSens, 2017). 

𝐶𝐸𝑅 =
ி೒·௉

௏·ோ·்
· (

ଵ଴଴ିைమ೔ି஼ைమ೔

ଵ଴଴ିைమ೚ି஼ைమ೚

· 𝐶𝑂ଶ௢
− 𝐶𝑂ଶ௜

)  Eq. 44 

𝑂𝑈𝑅 =
ி೒·௉

௏·ோ·்
· (𝑂ଶ௜

−
ଵ଴଴ିைమ೔ି஼ைమ೔

ଵ଴଴ିைమ೚ି஼ைమ೚

· 𝑂ଶ௢
)      Eq. 45 

Where Fg is the inlet gas flowrate (constant at 2 L · min-1), P and T are the 

standard pressure (1.0133 bar) and temperature (0º C) with which the massflow 

controllers were calibrated, V is the volume of culture broth (starting at 2 L and 

increasing), R is the gas constant (8.314 · 10-2 bar · L · K-1 · mol-1) and CO2i, 

CO2o, O2i, and O2o are the carbon dioxide and oxygen concentrations (%) in the 

inlet (i) and outlet (o) gas. CO2i and O2i were assumed to be 0.04% and 20.97%, 

respectively.  

This method was found to have several limitations. Firstly, humidity both in the 

inlet and outlet gas plays a non-crucial but still significant role in RQ calculation, 

mainly affecting the “inert factor” (
ଵ଴଴ିைమ೔ି஼ைమ೔ିுమை೔

ଵ଴଴ିைమ೚ି஼ைమ೚ିுమை೚
), which accounts for the 

difference between the inlet and the outgas flowrates. With the “CER/OUR/RQ 

Plugin” from BlueVis, humidity could not be taken into account in the on-line RQ 

calculation, as shown in Equations 44 and 45. However, the gas analyzer 

includes a humidity sensor, so humidity measurements were included a posteriori 



 130 

in the RQ calculation, when processing all fermentation data after finishing the 

process. 

On the other hand, the other main drawback was the inability to include the 

analyzer’s fine-tune calibration values in the O2 and CO2 measurements. As 

explained in Section 4.3.6, gas analyzers were calibrated before each 

fermentation with a set of different gas mixtures with different O2 and CO2 

proportions. For each analyzer, a calibration line was set, relating the analog 

signal of the analyzer to the real concentration of each gas (O2 or CO2). However, 

using the BlueVis software with the standard “CER/OUR/RQ Plugin”, there was 

no option to include these calibration values to correct the O2 or CO2 

measurements. Then, the on-line RQ calculation was carried out using the digital 

signal of the gas analyzer, which only considered the manufacturer’s initial 

calibration averaged by a one-point calibration performed once at the beginning 

of this set of experiments and only with air (20.97% O2 and 0.04% CO2). Even 

so, the calibration information was included in the RQ calculation a posteriori, 

during data treatment and processing, as done with humidity measurement. A 

flowchart of the manual-heuristic control algorithm is shown in Figure 26. 
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Figure 26. Flowchart of the manual-heuristic control strategy. The initial agitation rate 
was set at 600 rpm. RQ was calculated (on-line RQ calculation) using O2 and CO2 
measurements, and every 15/30/60 min (variable time) the agitation rate was 
increased by 25/50/100 rpm (variable Δrpm) only if RQ > 1.6. This control strategy 
was manually implemented step by step, using the BlueVis software to calculate the 
RQ and the BiostatB interface to increase the agitation rate.  

After finishing the fermentation, an off-line RQ calculation was carried out taking into 
account humidity measurements and gas analyzer’s calibration data. 
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Because of these two main limitations, there were some significant differences 

between the RQ calculated on-line, which was used to monitor and control the 

hypoxic conditions during the experiment, and the final RQ calculated a posteriori 

and included in both all graphs, tables, and, in general, all results presented in 

this work. For this reason, although the "On-line RQ” was always kept within the 

range from 1.2 to 1.6, some deviations from this range can be observed in the 

plotted RQ or “Off-line RQ”, as well as in the final results given in this work. 

The results of these experiments are already discussed in Section 5.2.2, where 

a comparison between hypoxic and normoxic fermentations is presented. 

However, in this current section, only hypoxic fermentations are compared from 

a bioprocess control perspective. Besides, in order to evaluate the reproducibility 

of the process, each replicate is plotted separately. 

Biomass and ethanol concentrations, as well as the Crl1 titer of SCC hypoxic 

fermentations are plotted in Figure 27A, whereas RQ and agitation rate profiles 

are plotted in Figure 27B. As already mentioned, each replicate is plotted 

separately to evaluate the reproducibility between replicates. These results are 

also discussed in Section 5.2.2, so the discussion does not focus on them here. 

Therefore, what is to be noted here is the low reproducibility of the process. As 

pointed out in Section 5.1.2 and Section 5.2.3, the hypoxic level has a significant 

impact on the physiology of the yeast, so significant differences in RQ due to a 

non-automated and non-accurate controller can lead to significant differences in 

biomass, Crl1, and ethanol production, and, ultimately, to different process 

efficiencies. 

In general, RQ was kept within the desired range, with large oscillations and 

numerous peaks. As advanced in the previous section, during the first third of the 

fed-batch phase, almost no control actions were required since the dynamics of 

the system were slow. From a practical standpoint, they were scheduled to occur 

during the night hours, which allowed the researcher to avoid spending the entire 

fed-batch phase in the laboratory. During the intermediate third, control actions 

were performed more often, and in the last third the agitation was increased every 

hour, so at the maximum pre-defined frequency. 
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It is noteworthy that manual control actions were not carried out strictly according 

to the defined control algorithm. In some cases, control actions were performed 

not every hour but when they were deemed necessary, i.e., when RQ was higher 

than 1.6 even if agitation had been increased less than one hour earlier. 

Moreover, in some periods when there was more time availability, agitation was 

increased stepwise by smaller but more frequent steps, looking for finer RQ 

control. An example of this is the period from t = 10 h to t = 15 h in SCC-HPX1 

(R1, black line). During this period, there seemed to be fewer oscillations in RQ, 

although the differences were not so clear. However, it could indicate what is 

evident from the outset, namely, that smoother and more frequent control actions 

lead to improved controller performance. 
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Figure 27. Primary data of the main key process parameters and RQ control for the two 
duplicates (R1 and R2) of the hypoxic fed-batch cultivations with the manual-heuristic 
control strategy (SCC-HPX1 and SCC-HPX2). (A) Biomass concentration (⬤, g · L-1); 
Crl1 Titer (▲, kAU · L-1); EtOH, Ethanol concentration (  ईउ, g · L-1). (B) Off-line RQ 
calculation (continuous lines); agitation rate (discontinuous lines, rpm). 
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Still, apart from the oscillations, whether large or small, attention must be paid to 

the low accuracy of the RQ controller, since with this strategy it becomes almost 

impossible to maintain a specific RQ set-point. Reasons for that are the two 

aforementioned drawbacks: the inability to include humidity measurements and 

calibration values into the on-line RQ calculation. This indicates a potential 

advance in the development of a more effective RQ control strategy. 

To conclude this section, the three initial goals had been accomplished, namely 

testing the improvement of RPP in hypoxic conditions in fed-batch, assessing the 

viability of an RQ controller based on agitation modification, and generating 

enough data for the subsequent development and training of an AI model. 

Furthermore, the two main shortcomings of this strategy have been identified, 

which are the inability to include humidity measurements and the external 

calibration data in the RQ measurement, in addition to the obvious inference that 

the automation of the controller would improve its efficiency. 
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6.4 Automation of the RQ control: integration of external signals 

and development of a Boolean logic-based controller (BLC) 

After having identified the main shortcomings of the manual control strategy, the 

next step was the implementation of an automated control strategy. In essence, 

the idea was to automate the same control strategy. Therefore, the whole control 

system had to be capable of calculating the RQ with high precision before 

deciding whether to increase agitation. In addition, this decision had to be 

completely automated, as automation allows to perform smoother and more 

frequent control actions, resulting in a finer RQ control without major fluctuations 

(Craven et al., 2014; Brignoli et al., 2020). 

At this point, a software platform capable of integrating data coming from 

bioreactor and data coming from gas analyzers was strictly necessary. Bearing 

in mind the idea of a further implementation of an AI-based model, which is fed 

with as much data as possible, the decision was made to acquire software able 

to collect all data from all external devices, together with data from the bioreactor. 

Besides, this data had to be manipulated in order to calculate RQ accurately, and 

finally, the software had to be able to perform control actions based on a simple 

rule: if RQ > RQ set-point, then agitation must be increased. 

Considering all of the above, the implementation of the so-called soft sensors 

was crucial. A soft sensor is a software application that can integrate direct 

measurement data, process it according to a predefined model, and perform 

indirect measurements. Simple/basic soft sensors to calculate CER, OUR, and 

RQ are among the most widely used in bioprocessing, although soft sensors to 

determine μ are also frequently described (Luttmann et al., 2012; Barrigón et al., 

2013; Stanke & Hitzmann, 2013). Moreover, there is a lot of literature available 

on the use of soft sensor measurements to implement control strategies 

(Goodwin, 2000; Sagmeister et al., 2013; Randek & Mandenius, 2018; Beiroti et 

al., 2019; Rathore et al., 2021; Allampalli et al., 2022).  

Among all the options evaluated, the Eve software from Infors (Bottmingen, 

Switzerland) was selected for this purpose, being able to read data not only from 

bioreactor and gas analyzers but also from microburette (piston pump) and 
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ethanol sensor. Furthermore, the implementation of soft sensors within the Eve 

interface was very easy, and the coding language was based on C++. The latter 

was an imperative point, as learning programming skills were beyond the scope 

of this thesis or the research group's objectives. Thus, a relatively well-

established coding language and one that could be modified by outside parties 

was needed. 

After configuring the software, all data coming from the bioreactor and external 

devices was integrated into Eve, therefore the software acted as a “Supervisory 

Control And Data Acquisition” or SCADA system (Ivarsson, 2017; Brunner et al., 

2021). In addition, all data was available for the soft sensors and the controller 

implementation in the Eve interface (Macdonald, 2018). Table 10 includes a list 

of all the available variables and implemented soft sensors.  

  



 138 

 

 

 

 

Variable Origin Description Variable Origin Description 

TEMP Biostat B 
Broth 

temperature 
Microburette 

Flowrate 
Microburette 

Substrate 
flowrate 

JTEMP Biostat B 
Jacket 

temperature 
MeOH Value* 

Volatile 
sensor 

Ethanol 
signal value 

STIRR Biostat B Agitation rate CO2 Gas analyzer 
%CO2 

(internal 
calibration) 

pH Biostat B pH O2 Gas analyzer 
%O2 (internal 
calibration) 

pO2 Biostat B 
Dissolved 

oxygen (DO) 
Humidity Gas analyzer % Humidity 

BASE Biostat B 
NH4OH 15% 

Added  
EXT A Gas analyzer 

CO2 sensor 
signal 

GF_AIR Biostat B Air flowrate EXT B Gas analyzer 
O2 sensor 

signal 

GF_O2 Biostat B 
Pure oxygen 

flowrate 
   

Soft sensor Inputs Outputs Description 

ExitCO2 CO2 
Outgas 
%CO2  

Concentration of CO2 in the outgas. Sensor 
signal multiplied by calibration values 

ExitO2 O2 Outgas %O2   
Concentration of O2 in the outgas. Sensor 

signal multiplied by calibration values 

Volume 
Microburette 

flowrate 
Volume 

Volume estimation considering substrate 
addition (for OUR and CER calculation) 

RQ 

CO2, O2, 
Humidity, 
GF_AIR, 
GF_O2, 
Volume 

CER, OUR, 
RQ 

CER, OUR, and RQ calculation 

Ethanol MeOH Value* 
Ethanol 

concentration 
Ethanol concentration calculation using MeOH 

sensor with mean calibration values 

Table 10. Set of variables coming from bioreactor and peripheral devices available in the 
Eve interface and soft sensors implemented using these variables as input data. 
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Implementing soft sensors enabled the calibration values of the gas analyzers 

and the humidity measurements to be incorporated into RQ calculation to provide 

a more accurate value on which the control of the bioprocess is based. On the 

one hand, two simple soft sensors called “ExitO2” and “ExitCO2” were defined. As 

displayed in Table 10, these soft sensors basically convert the analog signal of 

the analyzer to molar fraction by using the calibration values of each analyzer. 

On the other hand, a soft sensor called “RQ” encompasses the corrected O2 and 

CO2 values and the humidity measurements to calculate CER, OUR, and RQ. 

Equations 46 and 47 show the CER and OUR calculations taking into account 

the humidity in both the inlet and the outgas steams. 

𝐶𝐸𝑅 =
ி೒·௉

௏·ோ·்
· (

ଵ଴଴ିைమ೔ି஼ைమ೔ିுమை೔

ଵ଴଴ିைమ೚ି஼ைమ೚ିுమை೚
· 𝐶𝑂ଶ௢

− 𝐶𝑂ଶ௘
)  Eq. 46 

𝑂𝑈𝑅 =
ி೒·௉

௏·ோ·்
· (𝑂ଶ௜

−
ଵ଴଴ିைమ೔ି஼ைమ೔ିுమை೔

ଵ଴଴ିைమ೚ି஼ைమ೚ିுమை೚
· 𝑂ଶ௢

)     Eq. 47 

Where H2Oi and H2Oo are the humidity in the inlet gas and in the outgas, 

respectively (%). All other variables have the same units as in Equations 44 and 

45.  

As shown in Table 10, two other soft sensors were defined: “Ethanol 

concentration” and “Volume”. The former calculates ethanol concentration from 

the probe’s analog signal using Equation 7 from Section 4.3.5, and the latter 

determines the volume of culture broth based on feeding addition. According to 

a formal definition, except for the “RQ” soft sensor, all these parameters are not 

essentially soft sensors, since they are only simple calculations based on direct 

measurements, but they were considered soft sensors in the Eve environment.  

Besides the soft sensors application, and as mentioned previously, the control 

strategy was built using the same principles as the manual control strategy, with 

three key upgrades: 1) an increase of the control actions frequency, 2) a reduction 

of the ∆rpm and 3) the ability to reduce the agitation rate if needed. However, in 

this case, the control algorithm was designed to be as much automated as 

possible. Thus, although using the same control law as for the manual control (“If 

RQ > RQ set-point, then increase the agitation”), in this case, the control law was 
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defined as a Boolean logic controller (BLC), having only TRUE or FALSE values. 

The term “Boolean logic control” has been used with similar control approaches 

(Premier et al., 2011). When RQ > 1.4, the control law was TRUE and therefore 

the agitation was increased. 

The first improvement was the frequency of control actions, which was increased 

from every 1 hour to every 10 minutes. This frequency was defined based on the 

response time of the system, from the moment a modification of the agitation was 

made until a change in the outgas composition was observed. It was estimated 

empirically with a range of between 5 and 10 minutes based on the results of the 

manual control fermentations, to avoid the overacting of the controller (Simutis & 

Lübbert, 2015). Such a time response is mainly due to the fermenter’s 

headspace, which is not occupied by liquid and is therefore full of gas, and it is, 

by far, larger than the time response of the gas analyzer (Christensen et al., 

1995). Changing the agitation immediately changes the intrinsic O2 transfer rate, 

as well as for CO2 and other gases, but these differences cannot be observed 

until the headspace gas has been displaced. Furthermore, the volume of the 

headspace is variable throughout fermentation since the culture broth increases 

over time. To be conservative, a 10-minute time window was then left between 

each increase in agitation, so the frequency of control actions was defined at 10 

min.  

In consistency with the increase in frequency, the second improvement of the 

automated controller was the gain of rpm. This was drastically reduced with the 

aim of avoiding big changes in OTR and so, avoiding high peaks and fluctuations 

in RQ. However, as advanced in Section 6.1, the increase in agitation throughout 

the feeding phase should not be constant. Ideally, the rpm steps at the beginning 

should be lower than at the end. Thus, to meet bioprocess requirements, the 

increase in agitation, defined as ∆rpm, was variable over time. In general terms 

but not in a totally strict manner, this trend was followed: during approximately 

the first third of the feeding phase, ∆rpm = 10. Then, during the middle third, ∆rpm 

= 15, and finally, during the last third of the fermentation, ∆rpm = 25. This change 

in ∆rpm was done manually, so the automated control strategy was not strictly 

fully automated, but it only required two small modifications for the whole feeding 

phase. As it represented an already significant improvement in terms of 
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automation over the previous control strategy, it was considered acceptable. 

Furthermore, these moments were used by the researcher as checkpoints in 

order to ensure that the controller was functioning correctly. 

The last improvement of the automated control strategy was the addition of new 

functionality allowing for a decrease in agitation if RQ was too low. For an RQ < 

1.3, the controller applied an agitation step of ∆rpm = -10. This upgrade gave 

more precision and accuracy to the controller at the initial third of the fed-batch, 

because the arbitrarily selected initial agitation rate of 600 rpm could not be 

appropriate. Apart from these initial hours, it shouldn’t be necessary, since as 

pointed out previously, the inertia of the system is that RQ continuously increases 

as long as substrate addition continues to increase.  

Considering that this control strategy was intended to be as much automated as 

possible, it was decided to avoid enriching the inlet gas with pure oxygen 

manually at the last stages of the feeding phase, whenever RQ could be 

maintained at the set-point without reaching the physical limit of agitation rate. A 

flowchart of the Boolean logic control algorithm can be observed in Figure 28. 
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Figure 28. Flowchart of the Boolean-logic control strategy. The initial agitation rate 
was set at 600 rpm, and every 10 min RQ was calculated applying Equations 46 and 
47 and using O2 and CO2 measurements (including the calibration data of the 
analyzers and the humidity in the inlet and offgas steams), and RQ data was saved. 
Then, if RQ > 1.4, the agitation rate was increased by 10/15/25 rpm (variable Δrpm1) 
and if RQ < 1.3, it was decreased by 10 rpm (Δrpm2). This control strategy was 
automated using the Eve software, being necessary to manually modify only Δrpm1.  
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The previously mentioned optimal ∆rpm for each subphase of the feeding phase 

were found empirically, so several tests were run to fine-tune the controller. 

These fermentations were performed as part of the thesis of the PhD candidate 

Albert Sales, and also in the framework of the “CPV of the future” international 

project. These fermentations consisted of a study of the effect of μ in hypoxic 

conditions. Specifically, four different μ were tested (μ = 0.03 h-1, μ = 0.065 h-1, μ 

= 0.10 h-1, μ = 0.12 h-1) with SCC to evaluate the effect of specific growth rate on 

Crl1 production and other physiologic parameters, maintaining an RQ set-point 

of 1.4 using this control strategy implemented in Eve. The results are not included 

in this work, but they can be found in the literature (Sales et al., 2023). 

Once the controller had been adjusted, a hypoxic fermentation was performed in 

two replicates to test the efficiency of the controller. The fermentation strategy 

was exactly the same as in the previous section, with the obvious exception of 

the RQ control strategy. Only SCC was tested with this strategy since no 

differences concerning RQ control were expected between clones. 

The results of these fermentations are plotted in Figure 29. In terms of 

production, in both fermentations the SCC behaved equally, giving practically 

identical biomass, Crl1, and ethanol profiles, as shown in Figure 29A. However, 

in the last hours of the second replicate R2 (grey lines) biomass growth and Crl1 

production were reduced. At this point, the specific growth rate could not be 

maintained in its set-point value, so μ < 0.10 h-1, and glucose accumulation up to 

7.5 g · L-1 was observed, indicating that at this high biomass concentration and 

glucose addition, the process becomes slightly unstable. The reason for this 

reduction of the specific growth rate was unidentified, although the problem was 

not related to the controller but to the bioprocess. Additionally, higher ethanol 

concentrations were observed in this second replicate.  

Regarding controller efficiency, as can be observed in Figure 29B, there is a 

really huge improvement in terms of RQ control performance compared with the 

manual control results from the previous section. In both replicates RQ was kept 

at 1.4 with only small deviations of approximately ± 0.05, except for the first 1 – 

2 hours, when the optimal agitation rate had to be found by the controller, having 

an initial input of 600 rpm. However, since the controller had the ability to increase 
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and reduce the agitation rate, this optimal agitation was rapidly found. 

Interestingly, the RQ values deviate from the set point during the last 30 - 45 

minutes of the replica R1, because with a ∆rpm = 25 rpm and a control action 

frequency of 10 minutes, the controller was unable to maintain this RQ set point. 

However, the deviation was only about 0.1 RQ units. 

As commented in Section 6.1, the frequency and magnitude of the control 

actions vary throughout the feeding phase. However, in this case, it can be seen 

more clearly. During the initial third of the feeding phase (from approximately t = 

0 to t = 7 h), almost no control actions were carried out, and those few that were 

performed were tiny increases or decreases of agitation to adjust the correct RQ 

value. During the intermediate third of the fed-batch, the controller increased 

agitation constantly, but still not acting every 10 minutes. From approximately t = 

14 h to the end, coinciding with the last third of the feeding phase, ∆rpm was set 

to 25 rpm, and the controller increased the agitation almost every 10 minutes, 

i.e., with the maximum frequency, especially in the last 2 hours. The ∆rpm should 

have been increased even more in the last 30 to 45 minutes to maintain a steady 

RQ set-point, or alternatively, the inlet gas should have been enriched with pure 

oxygen. However, because of the small deviation from the set-point, it was 

decided not to make any further changes to this parameter. 

Based on these results, the main conclusion is that ∆rpm should be adaptive to 

the process requirements. Ideally, this adaptation should be automated. Hence, 

the power of the controller could be varied throughout the process to achieve the 

desired outcome. 
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Figure 29. Primary data of the main key process parameters and RQ control for the 
two duplicates (R1 and R2) of the hypoxic fed-batch cultivations with the Boolean-logic 
control strategy (HPX-BLC1 and HPX-BLC2). (A) Biomass concentration (⬤, g · L-1); 
Crl1 Titer (▲, kAU · L-1); EtOH, Ethanol concentration (  ईउ, g · L-1). (B) On-line RQ 
calculation (continuous lines); agitation rate (discontinuous lines, rpm). 
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The results of these experiments demonstrate that the process is highly 

reproducible in terms of RQ control. Moreover, discarding the last hours of R2, 

results also indicate that Crl1 production is more reproducible with the automated 

controller rather than the manual controller, and suggest that the lack of RQ 

oscillations provides a better environment for cell growth and RPP (Xia et al., 

2015).  

Despite not being shown in the graphs, arabitol and succinic acid were detected 

in the culture broth, although final concentrations were smaller than those 

obtained with the manual control fermentations. As a result, this reaffirms that the 

absence of RQ oscillations and, therefore, the lack of metabolic changes ease 

biomass growth and partially prevent undesirable byproduct formation. Actually, 

RQ oscillations generate instability in terms of glucose metabolization, since the 

fluxes through the oxidative and the fermentative pathways are highly dependent 

on the level of oxygen limitation (Baumann et al., 2010). RQ oscillations can thus 

be considered as harmful as fluctuations in substrate concentration, which have 

been reported to affect production yields with P. pastoris as well as with another 

cell factories (Neubauer et al., 1995; Junne et al., 2011; Lorantfy et al., 2013; 

Wang et al., 2020). 

To sum up, a very efficient RQ controller has been satisfactorily implemented, 

leading to a far more reproducible process and slightly more efficient in terms of 

production and substrate utilization. Based on the same heuristic rules as the 

manual control strategy, the automation has led to a finer and more accurate RQ 

control and a much less labor-consuming productive bioprocess. Nonetheless, 

there is still some room for improvement, namely developing a strategy with a 

variable ∆rpm (scheduled or even adaptive), so that it can be adjusted according 

to process time. The last implemented control strategy, presented in the next 

section, is focused on that point. 
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6.5 Implementing an Adaptive-Proportional Controller (APC) 

using Artificial Intelligence algorithms: a foundation for 

Industry 4.0 

In the framework of the “CPV of the Future” project, an RQ controller based on 

AI algorithms was developed and implemented as the last step in making the 

control strategy more complex. As mentioned before, the development of this 

controller was carried out in collaboration with AIZON. Upon developing the AI 

Model outlined below, AIZON's team extensively trained it using the data 

obtained from all hypoxic fermentation experiments described in Sections 6.3 

and 6.4 and also those conducted under hypoxic conditions at different µ (Sales 

et al., 2023). Also, AIZON's team developed the code necessary to apply an RQ 

control in the Eve environment based on the data derived from the AI model. 

As stated in Section 6.4, having a variable and adaptive ∆rpm was the next and 

last step in the development of an optimal control strategy to maintain the desired 

hypoxic conditions through the feeding phase. It was previously determined that 

this parameter should increase throughout the process, in accordance with the 

exponential growth of biomass. However, with the automated control strategy 

presented in Section 6.4, this increase was implemented following the 

researcher's discretion and expertise. Strictly speaking, for a fully automated 

control strategy, the controller should have the ability to define the correct ∆rpm 

at any time during the process. Thus, for its relative simplicity and adjustability, 

an adaptive proportional (Adaptive-P) controller was considered the best option. 

Due to the relatively slow dynamics of the process compared with the time 

response of the system, proportional-integrative (PI), proportional-derivative 

(PD), or proportional-integrative-derivative (PID) controllers were discarded as 

the first option. Furthermore, the decision criterion was to combine a controller 

that was as simple as possible with as much data as possible in order to train the 

AI model used by this controller. 

The term proportional (P) control is used in bioprocess control science to describe 

a controller that, in general terms, measures a variable and takes action based 

on the difference between the measurement of this variable and the variable's 
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set-point, multiplying this difference or “error (ε)” by a “Proportional Gain (KP)”. It 

can also be more complex and include more terms like weights (Vilanova, 2008). 

P is the proportional part of a generic PID control (Gnoth et al., 2008; Baeza, 

2017). However, depending on the application, not all elements of the PID control 

are necessary, as they can cause the control to increase in complexity 

unnecessarily (Rathore et al., 2021). On the other hand, an adaptive controller is 

a controller that is capable of changing its behavior in response to changes in the 

process dynamics or disturbances in the system (Bastin & Dochain, 1990; 

Ferreira et al., 2012).  

Obviously, the controlled variable was RQ, which had a fixed set-point of 1.4. RQ 

was calculated in the Eve environment using the same “RQ” soft sensor 

described in Section 6.4 and shown in Table 10, using “ExitCO2” and “ExitO2” as 

inputs to the function. By doing so, the calibration values of the gas analyzers 

could be incorporated into the RQ measurement, as explained in Section 6.4. 

However, unlike the previous control strategy, in this case, the controller was not 

implemented only through the Eve software. Data collected from the bioreactor 

and external devices, including raw data that resulted from measurements and 

calculations done by the soft sensors, was continuously uploaded to a cloud 

platform from AIZON using a “REST API” call function from Eve. By using this 

function, the software sent a data package once per minute to a selected IP 

address. This made this data available for the AIZON software stored on the 

cloud platform, which then performed the estimation of the "Adaptive Proportional 

(P) Gain". The methodology used to calculate this parameter is described in 

Section 6.5.1.  

In parallel, AIZON's team developed a program that was essentially an RQ 

controller, implemented in Phyton, in order to continuously receive data from the 

bioreactor, including the RQ value from the “RQ soft sensor”, and calculate the 

function output (∆rpm) based on Equation 48. This equation basically multiplied 

the Adaptive-P Gain or “KP” by the “ε” value that corresponds to the error between 

the calculated RQ and the RQ set-point. This function was applied to obtain a 

∆rpm, used in Equation 49 to predict the optimal agitation rate. Then, the 

updated agitation rate was sent back to the Eve software, which applied it in the 
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bioreactor, also utilizing the REST API call function. Using this procedure, the 

Eve program did not make any decisions regarding the bioprocess control. 

Rather, all task was given to the controller working in the cloud, and Eve only 

acted as a command executor. The controller function is defined by Equations 

48 and 49.  

∆𝑟𝑝𝑚 =   ൫𝑅𝑄 − 𝑅𝑄ୱୣ୲ି୮୭୧୬୲൯ · "𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑃 𝐺𝑎𝑖𝑛"  Eq. 48 

𝑟𝑝𝑚 =   𝑟𝑝𝑚 +  ∆𝑟𝑝𝑚   Eq. 49 

Where Adaptive P Gain is the proportional parameter of the control function 

(rpm), and the difference RQ – RQset-point is equal to ε. The Adaptive P Gain was 

continuously calculated every minute to predict the ideal agitation required to 

maintain the desired RQ. Furthermore, Equation 48 enables the controller to 

lower the agitation, since if RQ < RQset-point then the ∆rpm becomes negative, and 

the controller decreases the agitation following Equation 49. 

Although a new agitation speed was predicted every minute, the actual 

modification of the parameter was only carried out with a maximum frequency of 

7 minutes in order to account for the system time response, as detailed in Section 

6.4. Specifically, the controller ran Equation 48 once a minute to calculate the 

necessary ∆rpm, but it only applied this modification once every 7 minutes 

following Equation 48. To achieve this, a parameter was defined to account for 

this performance time window. The inclusion of this parameter also permitted this 

performance time window to be modified quickly and easily if necessary. 

Besides, if the difference between the current and the predicted agitation was 

lower than 3 rpm (∆rpm < 3), this modification was not implemented, and the 

controller repeated this procedure the following minute. Therefore, the frequency 

of control actions was variable, with intervals from at least 7 minutes to intervals 

of approximately half an hour, depending on the requirements of the process. The 

result is that both adaptive ∆rpm and frequency in control actions could be 

applied, thereby overcoming the main weaknesses defined in Section 6.4 for the 

automated control strategy. A simplified flowchart of the AI-aided Adaptive-P 

control algorithm is shown in Figure 30. 
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Figure 30. Flowchart of the AI-aided adaptive proportional control strategy. The initial 
agitation rate was set at 550 rpm, and every min RQ was calculated using Equations 
46 and 47, and RQ data was saved together with all data coming from the bioreactor 
and the peripheral devices. Next, ε (error between RQ and RQ set-point) was 
calculated. In parallel, KP (proportional gain) was calculated through an AI model 
(random forest regression algorithm) using all data coming from the bioreactor and 
peripherals. Finally, Δrpm (positive or negative) was calculated using ε and KP and 
finally agitation was modified every 7 minutes only if Δrpm ≥ 3, following Equations 
48 and 49. 
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To evaluate the performance of the controller toward a disturbance in the system, 

and based on the facts exposed in Section 6.1, the composition of the inlet gas 

was modified at t = 13.33 h of the feeding phase, coinciding with the beginning of 

the last third of the fermentation. At that point, the air flowrate was automatically 

modified from 2.0 L · min-1 to 1.8 L · min-1, and a flowrate of 0.2 L · min-1 of pure 

oxygen was added, giving an oxygen concentration of 28.87% in the inlet gas. A 

reduction in the agitation rate was therefore expected at this point, although the 

nature of the response was still unknown. This modification was applied by 

adding a command in the RQ controller code implemented in Phyton. 

When the controller had been implemented and tested with simulated hypoxic 

conditions, two hypoxic fermentations were conducted to check if the AI-based 

controller could provide better results than the Boolean logic automated 

controller. As was done with the previous control strategy, both fed-batches were 

carried out with the SCC, with a pre-programmed exponential profile of glucose 

feeding with μ = 0.10 h-1 and an RQ set-point = 1.4. 

Figure 31 illustrates the results of these two AI-controlled fermentations. 

Regarding biomass, Crl1 and ethanol production of both replicates, shown in 

Figure 31A, they were very similar to those obtained with the BLC. They were 

especially comparable between them, highlighting the remarkable reproducibility 

achieved with this controller. However, biomass production slightly decreased in 

the last hours compared to the previous set of fermentations from Section 6.4 

with the BLC. This could be explained by the increase of RQ, which leads to a 

reduction in YX/S and thereby a lower biomass generation since higher ethanol 

profiles were also observed, as shown in figure X in the following section. 

In Figure 31B, where the agitation and RQ profiles are plotted, a very precise 

RQ control can be observed, which is very close to the set-point and exhibits very 

small oscillations. This strategy performed at least as good as the BLC in terms 

of controller efficiency. In contrast, the time commitment necessary to keep these 

fermentations running was significantly decreased compared to the previous 

strategy and extremely minor compared to the manual control strategy. Since the 

∆rpm was automatically predicted every minute and agitation was automatically 

modified every 7 (or more) minutes, it was not necessary to assess whether the 
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∆rpm was appropriate at each point in the process, and the researcher only had 

to be present in the laboratory for sampling and supervising. Due to the fact that 

the process was controlled without having to be present, there were fewer 

samples and longer intervals between them. 

Meaningfully, the RQ control did not perform perfectly during the last third of each 

fermentation, coinciding with the moment when the gas composition was 

modified. This is not surprising, since the Artificial Intelligence model for 

predicting the "Adaptive-P Gain" was not trained with data in which the gas 

composition was altered. This is further discussed in Section 6.5.1. Even so, the 

RQ deviation was very slight, only about 0.1 RQ units above the set-point. On the 

other hand, the controller’s response toward a disturbance was really fast, being 

able to make the RQ return to the set-point in less than 1 hour for R2 and less 

than 30 min for R1. 

As already commented in Section 6.4, the high RQ stability led to a more 

reproducible Crl1 production as well as a lower byproducts generation, including 

ethanol as well as arabitol and succinate, compared to the manual control 

strategy described in Section 6.3, emphasizing that oscillations in metabolic 

conditions adversely affect the process. 

In summary, a fully automated and precise RQ controller based on AI algorithms 

has been satisfactorily implemented. High controller efficiency has been 

achieved, comparable to the BLC in terms of bioprocess productivity and yields, 

but with improved adaptability and automation. Although it did not perform 

perfectly when the inlet gas composition was modified, it probably could have 

been avoided if the model was trained with a wider range of data. Additionally, 

the performance toward a disturbance was extremely fast and precise, proving 

AI is a tool that can be used to control bioprocesses efficiently. 
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Figure 31. Primary data of the main key process parameters and RQ control for the two 
duplicates (R1 and R2) of the hypoxic fed-batch cultivations with the AI-aided adaptive 
proportional control strategy (HPX-APC1 and HPX-APC2). (A) Biomass concentration 
(⬤, g · L-1); Crl1 Titer (▲, kAU · L-1); EtOH, Ethanol concentration ( ईउ, g · L-1). (B) On-
line RQ calculation (continuous lines); agitation rate (discontinuous lines, rpm). 
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6.5.1 Application of Artificial Intelligence algorithms to adaptive 

bioprocess control 

The calculation of the “Adaptive-P Gain” parameter or “KP” was achieved through 

the application of AI algorithms. Specifically, a random forest algorithm was 

applied.  The random forest algorithm is a machine learning technique that seeks 

to make accurate predictions by leveraging the power of multiple decision trees. 

The algorithm randomly selects features from a large dataset and uses these 

features to create multiple decision trees, each of which making its own 

prediction. During the training process, each decision tree iteratively selects 

features and divides the data into smaller groups until it has made a final 

prediction. The algorithm continues to create decision trees until it has a set 

number of trees or until it reaches a certain level of accuracy. The mechanism of 

operation of the algorithm is schematically shown in Figure 32. 

One of the main characteristics of the random forest algorithm is its ability to 

handle a large number of variables, even if many of these variables are not 

relevant for an accurate prediction. By creating multiple decision trees and 

combining their predictions, the algorithm can effectively filter out irrelevant 

features and focus on the most important ones. It is a powerful technique for 

making data-driven decisions since it is able to decide whether a variable has a 

relevant impact or not on the estimation of a certain parameter, and it has already 

been used in bioprocess engineering applications (Mowbray et al., 2021; Singh 

& Singhal, 2022). 

In this case, 100 decision trees were implemented, each one trained with a 

different subset of the data. Thus, when making a prediction, the algorithm 

passes the input through each decision tree, and the results from all decision 

trees are combined to form a final prediction. In this case, when the algorithm 

was trying to predict a numerical value, such as the optimal agitation rate, the 

average of the predicted values from all decision trees was taken (Breiman, 

2001). It is noteworthy that all sets of data with which the model was trained 

included the results from the fermentations performed with the MHC from Section 

6.3 and with the BLC, both the included in Section 6.4 and some of the previously 

mentioned fermentations carried out with different μ detailed in the bibliography, 
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where no pure oxygen was used (Sales et al., 2023). Thus, it makes sense that 

during the last third of the cultivations controlled with the AI-APC, when inlet air 

was enriched with pure oxygen, the controller did not control the RQ as fine as 

during the rest of the feeding phase. 

 

  

Figure 32. Scheme of a random forest regressor algorithm. 100 decision trees, each 
one trained with a different subset of data, predict the necessary agitation rate to 
maintain RQ = 1.4, and the final value is obtained by averaging all predictions. In 
addition, each decision tree may assign different priorities to each parameter or 
process variable, depending on the subset of data used in its training process.  

x, y and z represent different variables or process parameters. 

x

y

z

z

x

y

y

z

x

Agitation rate = 600 rpm Agitation rate = 650 rpm Agitation rate = 580 rpm

Input: x, y, z... (11 parameters)

...

Decision Tree 1 Decision Tree 2 Decision Tree 100

Average agitation rate  = 610 rpm

(Random Forest regression)
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6.6 Performance comparison between the implemented control 

strategies 

To evaluate the proper functioning of each RQ controller, a comparison of the 

three implemented control strategies in terms of bioprocess performance and 

reproducibility is conducted in this section. 

Table 11 shows the numerical values of key process parameters obtained in each 

hypoxic fermentation. Additionally, the mean value and the standard deviation 

(SD) are displayed. In parallel, Figure 33 shows the profiles of the total 

production of biomass and ethanol as well as Crl1 titers for those fermentations. 

Similar values for key process parameters were observed for all strategies. 

Furthermore, biomass and Crl1 production profiles were very similar, reaching a 

final biomass production of 300 g of DCW and a final Crl1 titer of approximately 

1000 kAU. However, ethanol production differed between strategies, with the last 

one exhibiting higher levels of production. Additionally, an undesired reduction of 

around 7% of μ was detected with the third strategy. As mentioned before, this 

could be explained by the increase in RQ observed in the last third of the feeding 

phase, which led to an inversely proportional decrease of YX/S. As mentioned, 

ethanol production was also higher, as observed in Figure 33 and reflected in 

the qEtOH values in Table 11. 
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It is worth noting that RQ values from Table 11 are the mean RQ values 

throughout each fermentation. As a result, the mean and standard deviation 

values shown in bold are indicative of the variability between replicates, rather 

than the deviation from the set-point, which is in this case a more suitable 

indicator of the controller’s accuracy, or the deviation from the mean RQ value, 

which is an indicator of the controller’s precision. 

 MHC  BLC AI-APC 

 R1 R2 R1 R2 R1 R2 

μ 
(gDCW · gDCW

-1 · h-1) 
0.105 0.096 0.103 0.097 0.095 0.091 

0.101 ± 0.006 0.100 ± 0.004 0.093 ± 0.003 

qS 

(gS · gDCW
-1 · h-1) 

0.21 0.22 0.22 0.21 0.22 0.21 

0.21 ± 0.01 0.22 ± 0.01 0.22 ± 0.01 

YX/S 

(gDCW · gS
-1) 

0.50 0.45 0.47 0.45 0.43 0.43 

0.47 ± 0.04 0.46 ± 0.01 0.43 ± 0.01 

qEtOH 

(gEtOH · gDCW
-1 · h-1) 

0.020 0.034 0.027 0.030 0.040 0.037 

0.027 ± 0.010 0.029 ± 0.002 0.038 ± 0.002 

RQ 
1.41 1.53 1.38 1.38 1.40 1.44 

1.47 ± 0.09 1.38 ± 0.01 1.42 ± 0.02 

qP 

(AU · gDCW
-1 · h-1) 

348 310 335 358 317 311 

329 ± 27 347 ± 16 314 ± 4 

YP/X 3.60 3.42 3.83 3.92 3.67 3.83 

(kAU · gDCW
-1) 3.51 ± 0.12 3.88 ± 0.06 3.75 ± 0.12 

Table 11. Value of key process parameters obtained in fed-batch hypoxic 
fermentations with the three control strategies tested. Specific growth rate, µ (h-1); 
specific substrate consumption rate, qS (gS · gDCW

-1· h-1); biomass-to-substrate yield, 
YX/S (gDCW · gS

-1); specific ethanol production rate, qEtOH (gEtOH · gDCW
-1· h-1); respiratory 

quotient, RQ; specific Crl1 production rate, qP (AU · gDCW
-1· h-1); and product-to-biomass 

yield, YP/X (kAU · gDCW
-1). Values in bold represent the mean and SD (±) between 

biological replicates (R1 and R2). 
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Thereby, in terms of bioprocess reproducibility, the application of two more 

sophisticated RQ controllers led to a reduction in the variability between replicas, 

especially concerning Crl1 production, since standard deviation was smaller for 

the BLC and AI-APC. This is also reflected in Figure 33 by the error bars of the 

BLC and AI-APC, which are almost unappreciable. 

 

 

 

Figure 33. Comparison of primary data of the main key process parameters of the 
hypoxic fed-batch cultivations with the three presented control strategies (SCC-
HPX1, SCC-HPX2, HPX-BLC1, HPX-BLC2, HPX-APC1, and HPX-APC2). Total 
biomass amount (⬤, g); total Crl1 Titer (▲, kAU); total ethanol amount (  ईउ, g). Error 
bars represent the SD of biological replicates. 
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However, to assess the controller’s efficiency, its autonomy, accuracy, and 

precision should also be considered. Regarding autonomy, the manual control 

strategy was obviously the least efficient. When comparing the BLC and the AI-

APC, in the case of the former several ∆rpm updates were required during 

cultivation, whereas in the case of the latter, this change was applied 

automatically in accordance with the prediction of an AI model, therefore turning 

it into the most autonomous.  

As mentioned above, the RQ deviation from its set-point highlights the controller’s 

accuracy. On the other hand, the deviation from the mean RQ can be considered 

as an estimator of the controller’s precision. With this aim, two independent 

statistical performance indicators were calculated to assess this accuracy and 

precision: Mean Relative Error (MRE) and Root Mean Square Deviation (RMSD), 

which are defined by Equations 50 and 51. MRE can be considered as a relative 

value of a mean RQ error through the fed-batch phases, having values between 

0 (good performance) and 1 (bad performance), and it was used to assess the 

accuracy of the controllers. On the other hand, RMSD could be seen as a mean 

standard deviation between the RQ values throughout the fed-batch phases and 

the mean RQ value of each fermentation, shown in Table 11, and it was used to 

determine the precision of the controller. 

𝑀𝑅𝐸 =  
ଵ

௡
∑

ห௬೔ି௬ೞ೛ห

௬ೞ೛

௡
௜ୀଵ        Eq. 50 

𝑅𝑀𝑆𝐷 = ට∑
(௬೔ିȳ)మ

௡

௡
௜ୀଵ            Eq. 51 

Where yi is the value of the variable (RQ) at each time-point (i), ysp is the RQ set-

point, since the scope is to evaluate the accuracy of the controller (MRE), and ȳ 

is the mean RQ, for the analysis of the controller’s precision (RMSD). Although 

they can give redundant information, the analysis of two different statistics can 

help avoiding data artifacts. 

Using all datapoints from each pair of replicates, the values shown in Table 12 

were obtained.  
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Based on the analysis of these statistics, in terms of accuracy, the two last 

strategies outperformed the manual control strategy, having lower MRE values. 

These numbers indicate that the mean error was about 5% (R1) and 14% (R2) 

with the MHC, about 4.5% with the BLC, and lower than 4% with the AI-APC 

strategy. On the other hand, in terms of precision, the same trend was observed 

when comparing RMSD values. As mentioned previously, RMSD could be 

considered as a mean standard deviation from the mean RQ value, becoming 

lower as the complexity of the controller increases. Additionally, these results also 

demonstrated the higher reproducibility achieved with the automated control 

strategies: the Boolean-logic and the AI Adaptive-P controllers.  

In addition, as mentioned before during the last third of the AI-APC fermentations 

the RQ was constantly above the set-point, suggesting that the RQ control during 

the rest of the fed-batch was more effective. This point added to the fact that in 

those fermentations there was a disturbance in the inlet gas composition, which 

had a direct impact on RQ and therefore also on MRE and RMSD, turns the third 

strategy into the most efficient and accurate. 

Ultimately, automation of control actions, their increase in frequency, and their 

variation in intensity result in a more efficient control of bioprocesses. Additionally, 

the use of AI algorithms to implement adaptive-P controllers has proved 

successful in the field of bioprocess engineering. 

  MHC BLC AI-APC 

  R1 R2 R1 R2 R1 R2 

MRE 
Accuracy  

(how close is RQ to 
the set-point) 

0.049 0.141 0.045 0.046 0.035 0.040 

RMSD 

Precision  
(how close are RQ 
measurements to 

each other) 

0.083 0.194 0.108 0.112 0.083 0.105 

Table 12. Value of Mean Relative Error (MRE) and Root Mean Square Deviation 
(RMSD) for each hypoxic fed-batch fermentation with the three control strategies tested.  
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7. RESULTS III 
 
Evaluation of hypoxic strategy on the 
production of different recombinant 
lipases 

An adapted version of Chapter 7 has been submitted to be published as a research article in 
Microbial Biotechnology: 

Sales, A., Gasset, A., Requena-Moreno, G., Valero, F., Montesinos-Seguí, J. L., Garcia-Ortega, X. (2023). 
Synergic kinetic and physiological stress control to improve bioprocess efficiency of Komagataella phaffii 
recombinant protein production bioprocesses. Microbial Biotechnology 
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7.1 Implementation of the automated RQ control system 

Once the automated Boolean logic RQ control algorithm had been established, 

the hypoxic strategy was tested with two different P. pastoris strains expressing 

different proteins to check if the positive effect over recombinant production of 

Crl1 was also observed with other lipases. As stated in the methodology section, 

the selected strains were, firstly, an X-33 P. pastoris strain producing the 

recombinant R. oryzae lipase (proRol) under the regulation of the PGAP, and 

secondly, a commercial BG11 P. pastoris strain producing C. antarctica lipase B 

(CalB), also under the regulation of the GAP promoter.  

It is noteworthy that the mature sequence of the R. oryzae lipase (recombinant-

Rol or rRol) had never been expressed under the regulation of PGAP, since it 

presented UPR-related problems which prevented its constitutive expression and 

secretion. In another work conducted in the research group shortly before this 

thesis, it was demonstrated that the inclusion of a pro-sequence facilitated the 

intracellular expression and folding of this lipase, thus allowing for a constitutive 

expression (López-Fernández et al., 2019, 2021). On the other hand, CalB is a 

very industrially attractive enzyme that has been extensively expressed in the 

Pichia cell factory (Eom et al., 2013; Looser et al., 2017). However, the use of the 

commercial P. pastoris strain BG11 from BioGrammatics (Carlsbad, CA, USA) 

presented a challenge, since it was not so well characterized in the research 

group. These strains were already used in previous studies and more details 

about their genetic construction can be found in the literature (Nieto-Taype, 2020; 

Garrigós-Martínez et al., 2021; López-Fernández et al., 2021a).  

In contrast to the hypoxic fermentations conducted with SCC and MCC strains 

producing Crl1 and reported in Section 5.2, in this case, the RQ control was 

achieved through the Boolean-logic RQ control strategy (BLC) instead of a 

manual actuation over this manipulated variable, as explained in Chapter 6. As 

also detailed before, this improvement made the process more reliable and 

reproducible, but it also presented a major drawback: the automatic RQ control 

algorithm had a single manipulated variable (agitation rate) and did not act over 

the air and pure oxygen flowrates. Therefore, the increment in oxygen demand 

along the process had to be satisfied only by acting on the agitation rate, rather 
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than enriching the inlet gas with pure oxygen, since the controller could not act 

on the gas flowrates. As explained in Section 4.2.3.2, with a μ = 0.10 h-1, the 

oxygen demand was not met only by incrementing the agitation rate but also by 

incrementing the oxygen proportion in the inlet gas. This was done in all the 

normoxic fermentations but also in one of the MCC hypoxic fermentations. So, a 

lower μ should be selected to avoid the use of pure oxygen, especially in the 

hypoxic fermentations, and also to avoid reaching very high agitation rates. 

However, in the early stages of the feeding phase, the oxygen demand is much 

lower than in the final stages, and there is a physical minimum agitation rate from 

which it should not be lowered since complete homogeneity must be guaranteed 

to avoid any oxygen or substrate gradients in the culture broth (Alford, 2006; Ask 

& Stocks, 2022). Therefore, the only way to reduce OTR would be to aerate the 

fermenter with a mix of air with nitrogen. Thus, considering the results from the 

aforementioned study of the production kinetics (μ - qP relationship), obtained in 

the research group but not included in this work, a μ = 0.065 h-1 was selected and 

implemented for these four fermentations (two with each strain, in normoxic and 

hypoxic conditions). With this μ and the equipment’s oxygen transfer capacity, 

hypoxic conditions could be applied without the use of either pure oxygen or pure 

nitrogen, and RQ could be controlled by solely modifying the agitation rate. 

Furthermore, as explained in more detail in Sections 4.2.3.2 and 5.4.1, for these 

fermentations the feeding flowrate profiles were equal for the normoxic and the 

hypoxic fermentations, whereas the glucose concentrations in the feeding tank 

were different for each condition. This was done to counteract the reduction in 

the YX/S caused by hypoxic conditions and with the goal of achieving the same 

final volume, as done in the pilot-scale fermentations from Section 5.4.1. 

Nevertheless, in this case, it proved to be more effective. Therefore, biomass 

concentration profiles for all these normoxic and hypoxic fermentations were 

practically identical, reaching a final biomass dry cell weight of around 90 - 95 g 

· L-1. Thus, as pointed out in Section 5.2.2, this strategy results in a more 

comparable and reproducible biomass profiles, rather than modifying the feeding 

flowrates, which led to comparable biomass productions but slightly different final 

volumes and so, different biomass concentrations, as shown in Figures 13 and 

14 from Section 5.2.2.  
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7.2 proRol production under normoxic and hypoxic conditions 

The time evolution of proRol titer and biomass and ethanol concentrations of the 

normoxic (dark symbols) and hypoxic (light symbols) are plotted in Figure 34. 

These fermentations were carried out with the X-33 strain. 

Biomass profiles of both fermentations are identical, reaching a final biomass 

concentration of 92 g · L-1 in both conditions, thereby confirming that the 

modification of the feeding substrate concentration (S0 from Equation 4) is a very 

beneficial strategy to achieve equal biomass productions with same volume 

profiles in different conditions regarding substrate utilization or even different 

substrates. Specifically, glucose concentrations were 325 g · L-1 and 427 g · L-1 

for normoxic and hypoxic fermentations, respectively. 
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Figure 34. Primary data of the main key process parameters for the fed-batch 
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(⬤, g · L-1); proRol Titer (▲, kAU · L-1); EtOH, Ethanol concentration (  ईउ, g · L-1). 
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Concerning lipase production, proRol titers at the end of both batch phases were 

practically identical, thus confirming the reliability of the glycerol-based batch 

phase. On the other hand, at the end of the feeding phase, it reached a final 

proRol titer of 24.1 kAU · L-1 in hypoxic conditions, clearly higher than the 13.8 

kAU · L-1 obtained in normoxic conditions. This difference is even more 

pronounced if the lipase activity produced during the batch phase (around 6 – 7 

kAU · L-1) is not considered, obtaining a proRol production through the feeding 

phase 2.0-fold higher in hypoxic conditions, slightly lower than the increase in 

Crl1 titer previously observed in Section 5.2.2.  

Regarding by-products generation, up to 9.4 g · L-1 of ethanol and 3.3 g · L-1 of 

arabitol were detected in the culture broth at the end of the feeding phase in 

hypoxic conditions, confirming the shift from respirative to respiro-fermentative 

metabolism in these conditions (Baumann et al., 2008, 2010; Carnicer et al., 

2009; Adelantado et al., 2017). As reported in Section 5.2.2, similar 

concentrations of ethanol and arabitol were observed with the same P. pastoris 

strain X-33 expressing Crl1 in hypoxic conditions. Neither ethanol nor arabitol 

were detected in normoxic fermentations. 

The proRol production in normoxic conditions was higher but in the same unit 

range as the one observed with the same strain in previous works performed in 

the research group, where a glucose-based fed-batch with a μ = 0.045 h-1 was 

implemented (≈ 6 kAU · L-1) (López-Fernández et al., 2021a), indicating a slightly 

higher production with higher μ and a potential better fermentation performance 

in the current work. Furthermore, proRol titer was higher than those observed 

historically in the research group, where Rol was expressed with different strains, 

using the AOX1 and FLD1 promoters (PAOX1 and PFLD1) and applying several 

optimized strategies such as methanol limited and non-limited fed-batch cultures 

(MLFB and MNLFB, respectively), DO-stat with different dissolved oxygen set-

points, etc. (Cos et al., 2005a, 2005b; Barrigón et al., 2013; Ponte et al., 2016). 

However, the effect of the pro-sequence of proRol possibly plays an important 

role in these production differences. A comparison of the proRol and rRol titers 

obtained in different works is displayed in Table 13.  
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Due to the highly dependent nature of enzymatic activity on assay conditions, it 

is difficult to compare this process with other Rol-producing bioprocesses 

developed in other laboratories. So, to avoid misinterpretations, it has only been 

compared with works conducted in the same research group.  

Additionally, the proRol enzymatic activity measured using the methodology 

described in this work (Section 4.3.7) must be correlated with proRol and Rol 

activity measured considering the methodology used in those other works. 

Basically, in those other works proRol and Rol activity was measured using a 

commercial lipase analytic kit from Roche (Basel, Switzerland), which was not 

based on p-NPB hydrolysis. As explained in more detail in the bibliography, 

Equation 52 provides this correlation (López-Fernández, 2022). 

𝐴𝑐𝑡(௣ே௉஻)  = 0.0178 · 𝐴𝑐𝑡(ோ௢௖௛௘) − 0.1101       Eq. 52 

Where both Act(pNPB) and Act(Roche) are expressed in kAU · L-1. 
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Concerning RQ control, as can be observed in Figure 35, in the hypoxic 

fermentation the value of RQ was controlled between 1.25 – 1.4, close to the 

setpoint defined at RQ = 1.4 but slightly lower. A peak can be observed at t = 5 

h, corresponding to the moment when the broth level surpassed the upper 

impeller and consequently the OTR decreased. At this point, the controller began 

to raise the agitation by steps of 10 RPM every 10 minutes, and the RQ recovered 

its setpoint value approximately 1.5 hours later, approximately. After that 

moment, agitation increased slowly and exponentially, according to the addition 

of glucose since an exponential substrate addition must be accompanied by an 

exponential increase in oxygen transfer capacity to maintain a constant RQ (Knoll 

et al., 2007; Garcia-Ortega et al., 2017). On the other hand, concerning normoxic 

fermentation (continuous lines), RQ presented values around 1.1, already 

observed in Sections 5.1 and 5.2 with the Crl1 SCC and MCC and also in other 

studies where a glucose feeding strategy was implemented (Nieto-Taype et al., 

2020a; Tomàs-Gamisans et al., 2020; Zavec et al., 2020). The agitation 

increased exponentially to maintain a DO setpoint of 30% of air saturation, 

although in this case, the agitation rate was higher than in the hypoxic 

fermentation because completely aerobic conditions were requested. A sudden 

decrease of the stirring rate, indicated by a grey arrow, can be observed at t = 26 

h, corresponding to a manual enrichment with pure oxygen in the inlet gas to 

avoid reaching too high agitation rates. 
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In Table 15 from Section 7.4, where a proper comparison between different 

lipases produced under normoxic and hypoxic conditions is conducted, the mean 

values of related key process parameters (μ, qS, YX/S, qEtOH, RQ, and, qP) of the 

normoxic and hypoxic fermentations of proRol- and CalB-producing strains are 

presented, as well as oxygen limitation fold-change values for qP and YX/S.  

It can be stated that for this P. pastoris X-33 strain producing proRol, RQ has 

been satisfactorily controlled around the setpoint. Furthermore, through the 

oxygen limitation strategy, an improvement of 2.0-fold in qP has been achieved. 

In addition, when implementing hypoxic conditions, a reduction of 0.81-fold in YX/S 

is observed, comparable to that obtained in Section 5.2.2 and in other studies 

where equivalent hypoxic conditions were implemented (Baumann et al., 2008; 

Adelantado et al., 2017; Garcia-Ortega et al., 2017). 
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Figure 35. On-line calculation of RQ and agitation rate for the fed-batch cultivations 
grown at hypoxic and normoxic conditions with the proRol-producing strain (proRol-HPX 
and proRol-NX). Off-line RQ (continuous lines); agitation rate (discontinuous lines, rpm). 

A gray arrow indicates the moment from which the inlet air was enriched with pure O2.  
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7.3 CalB production under normoxic and hypoxic conditions  

Analogously to Figure 34, in Figure 36 the concentrations of biomass, ethanol, 

and CalB titer through the feeding phase of the normoxic and hypoxic 

fermentations with the P. pastoris BG11 strain producing recombinant CalB under 

the PGAP regulation are plotted. 

Cell density was comparable in both fermentations, with a slight halt in biomass 

growth being detectable in the last hours of the normoxic fermentation. Because 

of this, the final biomass dry cell weight at the end of the feeding phase was 

higher in hypoxia (97 gDCW · L-1) than in normoxia (90 gDCW · L-1). Except for the 

last hours, the biomass concentration was equal for both conditions. 

 

 

 

 

Figure 36. Primary data of the main key process parameters for the fed-batch 
cultivations grown at hypoxic (dark symbols) and normoxic (light symbols) conditions 
with the CalB-producing strain (CalB-HPX and CalB-NX). Biomass concentration (⬤, 
g · L-1); CalB Titer (▲, kAU · L-1); EtOH, Ethanol concentration (  ईउ, g · L-1). 
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In terms of production, as observed with the proRol fermentations, the enzymatic 

activity at the end of the batch phase was equal for both fermentations, giving 

robustness to these results. Considering the feeding phase, the CalB titer was 

almost duplicated in hypoxic conditions, reaching a value of 10.5 kAU · L-1 

compared to the 5.8 kAU · L-1 obtained in normoxia.  

The qP value for CalB in normoxic conditions can be compared with those 

obtained in parallel works using the same strain but with glycerol as a carbon 

source. In those works, an operational range of μ from 0.025 h-1 to 0.15 h-1 was 

tested in fed-batch mode, although no fermentation at μ = 0.065 h-1 was 

conducted, thus preventing a direct comparison between those works and the 

results presented in this thesis. However, the μ of both normoxic and hypoxic 

fermentations was within the range of the μ tested in those parallel works, and qP 

in normoxic conditions was also within the qP range obtained there (Bernat-

Camps et al., 2023). Besides, an interpolation of qP at μ = 0.065 h-1 can be carried 

out, giving a theoretical value of qP ≈ 4.70 AU · gDCW-1 · h-1, which is very close to 

the qP obtained in this work (qP = 4.15 AU · gDCW-1 · h-1), providing robustness to 

these results. 

On the other hand, qP in hypoxic conditions was notably higher, even higher than 

the qP obtained in normoxia with the highest μ = 0.15 h-1 (Bernat-Camps et al., 

2023). A numeric comparison is given in Table 14. In addition, comparing 

normoxic results with chemostat glycerol-based cultivations with the same strain, 

higher titers and qP were obtained in normoxic fed-batch (Garrigós-Martínez et 

al., 2021). The same effect has already been observed for Crl1 in Chapter 5 and 

was also expected for CalB, since the qP values are generally higher in fed-batch 

compared to chemostat, although in some cases this relationship is not fulfilled 

(Garrigós-Martínez et al., 2019; Nieto-Taype et al., 2020a, 2020b; Gasset et al., 

2022). 

Moreover, as shown in Table 14, qP values in hypoxic conditions are in the same 

order of magnitude as those obtained following different optimized fed-batch 

strategies with different strains expressing CalB under the regulation of different 

novel methanol-free promoters such as PDF, PUPP, and PDH, even being higher in 

some cases (Garrigós-Martínez et al., 2021; Bernat-Camps et al., 2023). 
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Again, it is worth mentioning that no comparisons have been made with CalB-

producing bioprocesses developed in other laboratories, as CalB enzymatic 

activity is highly dependent on temperature and pH, and different assay 

conditions are often used in different laboratory settings (Eom et al., 2013; Looser 

et al., 2017).  

Strikingly, in this case with the BG11 strain, ethanol concentrations detected in 

hypoxic conditions were significantly higher than those observed in other hypoxic 

fermentations with the X-33 strain, regardless of neither the protein expressed 

nor the growth rate. In all the lab-scale X-33 hypoxic fermentations the final 

ethanol concentration was within the range between 9 – 10 g · L-1, whereas in 

this case, the final ethanol concentration was about 13 g · L-1. In addition, no 

arabitol accumulation was detected in this fermentation, indicating a possible 

divergence in metabolic readjustment under hypoxic conditions due to the 

differential genetic background. However, the BG11 strain is only a MutS variant 

of BG10 and, according to the reviewed bibliography, BG10 and X-33 strains 

differ in only 24 point mutations and for the fact that the BG10 strain has its killer 

plasmids removed, which theoretically do not encode for any known catabolic 

enzyme (Vogl & Glieder, 2013; Sturmberger et al., 2016). Killer plasmids are DNA 

fragments typically encoding for toxins to enable the cells to kill other yeasts, and 

they have been found in several yeasts’ genera (Gunge et al., 1981; Hayman & 

Bolen, 1991). 

Regarding RQ control, in Figure 37 the on-line value of the respiratory quotient 

can be observed (continuous lines). In normoxic conditions, RQ was around 1 – 

1.1, equivalent to the other normoxic fermentations, while in hypoxia RQ was 

adequately controlled within the range of 1.25 – 1.4 except for the first 3 h when 

manually adjusting the initial rpm value. The agitation rate of the hypoxic 

fermentation presented an exponential time profile in contrast to the relatively 

constant profile observed in the normoxic fermentation. Nonetheless, it must be 

noted that the normoxic fermentation was performed in a different BiostatB 

fermenter, with equal configuration but in which the DO control cascade was still 

not properly configured at that moment, so it was decided to keep a constant 

agitation and manually increase it by a step of 100 rpm at t = 23.5 h and t = 29.5 

h to avoid potential problems related to oxygen availability. Moreover, grey arrows 
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indicate when inlet gas was enriched with pure oxygen, as done in the previous 

case with the normoxic fermentation producing proRol. Interestingly, comparing 

Figures 35 and 37, in the case of the CalB hypoxic fermentation no major RQ 

peaks were observed since the position of the impellers was modified to avoid 

the detrimental effect over OTR previously described in Section 7.2 when the 

broth level surpassed the upper impeller. 

 

 

 

 

It can be concluded that with this CalB-producing BG11 strain, an important 

increase of 2.6-fold in qP was achieved, together with a reduction of 0.85-fold in 

YX/S already expected. In addition, although the generation by-products were 

different for this strain rather than for the previously X-33 tested strains (Crl1-

SCC, Crl1-MCC, proRol), the RQ controller performed very similarly and with 

comparable good results. 
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Figure 37. On-line calculation of RQ and agitation rate for the fed-batch cultivations 
grown at hypoxic and normoxic conditions with the CalB-producing strain (CalB-HPX 
and CalB-NX). Off-line RQ (continuous lines); agitation rate (discontinuous lines, rpm). 

A gray arrow indicates the moment from which the inlet air was enriched with pure O2.  
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7.4 Comparison of lipase production with hypoxic strategy 

As previously pointed out, Table 15 shows the numeric values of key process 

parameters obtained for proRol- and CalB-producing strains, together with the 

value of FCOL-YX/S and FCOL-qP, or oxygen-limitation fold-change for YX/S and qP. 

These last two parameters have been added to make a proper comparison of the 

hypoxic effect, since proRol and CalB have different lipase activities with different 

orders of magnitude, and so the comparison of qP becomes useless. 

Additionally, results from a hypoxic and a normoxic fermentation with an X-33 

strain producing Crl1 (SCC) with a μ = 0.065 h-1 have been also included in Table 

15. This last set of data corresponds to two fermentations not included in this 

work, and they have been added only for comparison purposes, as previously 

done in Section 5.4.2 when a comparison between lab scale and pilot scale 

fermentations with a μ = 0.065 h-1 was conducted. These results have been kindly 

provided by the PhD candidates Albert Sales and Guillermo Requena (Sales et 

al., 2023). 

Considering results from Table 15, similar values for key process parameters 

were obtained with these two clones producing different lipases. Besides, similar 

YX/S ratios between hypoxia and normoxia or FCOL-YX/S were obtained for three 

different strains producing three different lipases, confirming that the 

physiological stress the cells are subjected to is equivalent in all three cases 

(Crl1, proRol, and CalB).  

However, the qP ratios or FCOL-qP were notably different for the three strains, 

indicating that the positive effect of the use of PGAP combined with oxygen 

limitation on recombinant production is somehow protein- or strain-dependent. 

Interestingly, the lower FCOL-qP was obtained for the proRol-producing strain. In 

agreement with these results, the overexpression of recombinant Rol has been 

described as having a detrimental impact on the growth and fitness of the host 

cells (Beer et al., 1998; Minning et al., 2001; Cámara et al., 2016, 2017). 
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Comparing these results with the reference strain used in this thesis (SCC), it can 

be stated that the hypoxic strategy had been satisfactorily applied to produce 

three different lipases that have an important industrial interest (Sharma et al., 

2001; Jaeger & Eggert, 2002; Ken Ugo et al., 2017). However, the application of 

the hypoxic strategy with the BLC or with the AI-APC for the production of other 

proteins with more important structural and functional differences, also under the 

regulation of PGAP, would have been very interesting. Nonetheless, as explained 

in Chapter 1, there were limited available strains expressing a recombinant 

 X-33 - proRol  BG11 - CalB  X-33 – Crl1  

 NX HPX NX HPX NX HPX 

μ 
(h-1) 

0.065 0.068 0.065 0.071 0.059 0.064 

qS 

(gS · gDCW
-1 · h-1) 

0.12 0.16 0.12 0.16 0.13 0.15 

YX/S 

(gDCW · gS
-1) 

0.520 0.421 0.536 0.455 0.48 0.42 

qEtOH 

(gEtOH · gDCW
-1 · h-1) 

0.00 0.021 0.00 0.020 0.00 0.027 

RQ 1.03 1.37 1.01 1.35 1.05 1.43 

qP 

(AU · gDCW
-1 · h-1) 

8.8 17.4 4.2 10.8 128 267 

YP/X 

(kAU · gDCW
-1) 

0.134 0.209 0.058 0.120 2.17 4.18 

FCOL-YX/S 0.81 0.85 0.86 

FCOL-qP 2.0 2.6 2.1 

Table 15. Values of key process parameters obtained in fed-batch fermentations in 
normoxic and hypoxic conditions with all the strains tested. Specific growth rate, µ (h-1); 
specific substrate consumption rate, qS (gS · gDCW

-1· h-1); biomass-to-substrate yield, YX/S 
(gDCW · gS

-1); specific ethanol production rate, qEtOH (gEtOH · gDCW
-1· h-1); respiratory 

quotient, RQ; specific Crl1 production rate, qP (AU · gDCW
-1· h-1); product-to-biomass yield, 

YP/X (kAU · gDCW
-1); YX/S oxygen-limitation fold-change, FCOL-YX/S; and qP oxygen-

limitation fold-change, FCOL-qP.  
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protein under PGAP regulation in the research group. The construction of new 

strains was not the focus of this thesis, and due to time limitations, it was 

discarded. 

Besides, although in the past a Fab-expressing X-33 strain had been tested in 

hypoxic conditions in the research group, it was never tested in fed-batch mode, 

only in chemostat operation. In those chemostat cultivations, a 3-fold increase in 

qP was achieved when applying hypoxic conditions, comparable to those 

obtained in this work (Garcia-Ortega et al., 2017).  

As future research, testing this strategy with different strains and proteins would 

validate it as an efficient tool to improve recombinant protein production. 

Furthermore, other glycolytic promoters used in recombinant protein production, 

such as PPGK1, PENO1, and PTPI1, should provide similar improvements when 

applying hypoxic conditions (Stadlmayr et al., 2010; Vogl & Glieder, 2013; De 

Macedo Robert et al., 2017). Conspicuously, the PGK1 gene showed similar 

expression patterns to TDH3, as seen in Section 5.3, so the use of its promoter 

(PPGK1) for protein production in hypoxic conditions becomes very promising. 

To conclude, it can be stated that these results give evidence that bioprocess 

optimization is as powerful a tool as strain or promoter engineering, considering 

the qP enhancements achieved in this work. With the lipases tested, qP 

enhancements were from 2- to 2.6-fold. 
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8. CONCLUSIONS 
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Non-conventional production strategies are difficult to be accepted in an industrial 

context, especially for regulatory issues. Even so, with a few optimizations of the 

process control parameters, important increases in bioprocess productivities can 

be achieved. In combination with the wide variety of strain engineering strategies 

available, this can facilitate improvements of up to some orders of magnitude in 

the performance of bioprocesses.  

In this study, an initial characterization of the hypoxic and gene dosage effects 

on the production of recombinant Crl1 under PGAP regulation with the yeast P. 

pastoris has been satisfactorily conducted using chemostat cultures applying 

different oxygen concentrations in the inlet gas. As a conclusion, the optimal 

hypoxic conditions with regards to Crl1 production have been defined at RQ = 

1.4, where a 4.3-fold and a 2.2-fold increase in qP has been observed with SCC 

and MCC, respectively. Therefore, from the results obtained, it can be stated that 

the combination of increased gene dosage and hypoxia has resulted in a 

synergistic but not summatory effect since the improvement in productivity has 

resulted in greater with SCC than with MCC. 

The definition of the optimal RQ has allowed to transfer this strategy to a dynamic 

fed-batch culture using the agitation rate as a manipulated variable to control the 

process in the optimal hypoxic degree. In this first approach, repetitive manual 

modifications of the agitation rate have been carried out to maintain the RQ at its 

optimal value. This has led to an improvement in qP of 2-fold for SCC and 1.5-

fold for MCC when applying hypoxic conditions. However, in summary, the control 

of RQ with manual actions has become imprecise and inaccurate. 

Then, an exhaustive analysis of the transcription patterns of several genes of 

interest related to physiology and recombinant production has been carried out. 

The combination of chemostat and fed-batch cultivations with transcriptional 

analysis has contributed to gaining a deep understanding of the process, 

identifying possible bottlenecks in the transcription, translation, and secretion 

pathways. 

The implementation of a scaling-up procedure with a scale-up factor of 15 has 

been satisfactorily carried out. Although on the pilot scale, the same productivity 
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as on the lab scale has not been attained when implementing hypoxic conditions, 

the results are very promising and have validated the scaling-up criterion 

consisting of using the RQ as the controlled variable. Additionally, a more precise 

and automated control strategy could likely have improved these results. 

Following the characterization and validation of the hypoxic effect, an automated 

control strategy has been defined and implemented to achieve a more robust and 

reproducible process, since important deviations from the RQ set-point were 

observed when implementing the manual control, which led to high variability in 

the process, really unattractive from an industrial point of view. Thus, the signal 

of different measurement devices, especially the values of CO2 and O2 

composition in the exhaust gas, have had to be integrated into a SCADA system 

for a proper on-line calculation of the RQ. This control strategy, named Boolean 

logic controller (BLC), has provided a very reliable control strategy with very 

reproducible results.  

After doing so, an innovative control strategy based on the combination of artificial 

intelligence (AI) algorithms with an Adaptive-Proportional controller (AI-APC) has 

been developed together with AIZON company and implemented with highly 

satisfactory results. This represents a clear and successful example of the 

application of AI in the control of bioprocesses, a field in which these new 

technologies are still little implemented.  

For the implementation of these two improved control strategies, the integration 

of the signals of all measurement devices in a SCADA system and the connection 

with a digital twin of the fermenter stored on the cloud have been successfully 

implemented. As a main outcome, the accuracy of the RQ control has improved 

around 3-fold for both control strategies with respect to the manual control 

strategy. On the other hand, the precision enhancement has been around 1.3-

fold for the BLC and 1.5-fold for the AI-APC. 

Finally, the hypoxic strategy has been also tested for the production of two 

different recombinant lipases of interest, Rhizopus oryzae lipase and Candida 

antarctica lipase, obtaining comparable improvements in the final titers and 
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productivities to those observed with Crl1, corroborating the enhancements in 

recombinant protein production achieved with hypoxic conditions. 

Overall, it can be concluded that the combination of strain engineering, 

bioprocess optimization, omics, scale-up process, integration of several 

peripheral devices in a SCADA system with a digital twin, and the programming 

of two different control codes based on a very reliable RQ calculation from 

exhaust gas analysis makes this thesis a thorough and comprehensive work as 

well as a foundation for the application of AI-based strategies in the biotech and 

pharma industries. 
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9. ANNEX 
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This section presents two cultivations that are not included in the set of 

fermentations presented in Chapter 5, but which have been considered to 

demonstrate relevant information. These two fermentations consisted of two 

initial tests with the manual-heuristic RQ control. One of them (HPX-HIRQ) was 

run under more severe hypoxic conditions, with an RQ set-point ≈ 2.0, to test the 

potential inhibitory effect of high ethanol concentrations at high RQ. The other 

one (HPX-GASC) was controlled with an RQ set-point ≈ 1.4 but instead of acting 

over agitation rate, the manipulated variables were the flowrates of air, nitrogen, 

and oxygen, maintaining a total aeration flowrate of 2 L · min-1.  

Figures 38 and 39 show the evolution of key variables (biomass and ethanol 

concentrations, as well as Crl1 titer) and the controlled RQ and the variables 

involved in this control (agitation rate or gas flowrate) of these two fermentations. 

Accordingly, Table 16 shows the values of related key process parameters of 

these two fermentations, together with results from SCC-HPX1 for comparison 

purposes. 

In general terms, in HPX-HIRQ the production of biomass was lower than in other 

hypoxic fermentations, and an important reduction of more than 50% in YX/S was 

observed, compared to normoxic conditions. On the other hand, ethanol 

production was higher, reaching around 23 g · L-1 at the end of the fermentation. 

In consonance, qEtOH was much higher than that observed in other hypoxic 

fermentations with lower RQ, as can be observed in Table 16. However, despite 

achieving lower biomass production, Crl1 titers were very similar to those 

observed in SCC-HPX1 and SCC-HPX2, suggesting that there was more Crl1 

production per unit of biomass in HPX-HIRQ, also confirmed by qP and YP/X 

values observed in Table 16. Nevertheless, due to the high ethanol accumulation, 

the specific growth rate could not be maintained at 0.1 h-1, and glucose 

accumulation up to 15 g · L-1 was detected in the culture broth, thus causing the 

process to be unstable. 

In the case of HPX-GASC, the performance of the fermentation was comparable 

to those fermentations where RQ control was achieved by modifying the agitation 

rate (SCC-HPX1 and SCC-HPX2), in terms of biomass and ethanol generation 

and Crl1 production. However, RQ control by modifying the gas composition with 
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different flowrates of air, N2, and O2 proved to be more inefficient, since high 

fluctuations in RQ can be observed in Figure 39, and the mean RQ was slightly 

higher than the set-point, as shown in Table 16. Apart from that, the values of the 

key process parameters were in the same range as those achieved in SCC-HPX1 

and SCC-HPX2, confirming that gas mixing could be used as a manipulated 

variable to control RQ. However, three different variables (air, N2, and O2 

flowrates) must be manipulated, instead of one. 

It must be noted that the reconciliation procedure explained in Section 4.4.6 was 

not applied to the values of the key process parameters from HPX-HIRQ and 

HPX-GASC displayed in Table 16. 

 

 

 

 

 HPX-HIRQ  HPX-GASC  SCC-HPX1 

μ 
(h-1) 

0.075 0.084 0.105 

qS 

(gS · gDCW
-1 · h-1) 

0.32 0.21 0.21 

YX/S 

(gDCW · gS
-1) 

0.24 0.41 0.50 

qEtOH 

(gEtOH · gDCW
-1 · h-1) 

0.033 0.011 0.020 

RQ 2.06 1.49 1.31 

qP 

(AU · gDCW
-1 · h-1) 

405 319 348 

YP/X 

(kAU · gDCW
-1) 

5.35 3.78 3.60 

Table 16. Values of key process parameters obtained in hypoxic fed-batch fermentations 
HPX-HIRQ, HPX-GASC and SCC-HPX1. Specific growth rate, µ (h-1); specific substrate 
consumption rate, qS (gS · gDCW

-1· h-1); biomass-to-substrate yield, YX/S (gDCW · gS
-1); 

specific ethanol production rate, qEtOH (gEtOH · gDCW
-1· h-1); respiratory quotient, RQ; 

specific Crl1 production rate, qP (AU · gDCW
-1· h-1); and product-to-biomass yield, YP/X (kAU 

· gDCW
-1).  
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Figure 38. Primary data of the main key process parameters and RQ control of HPX-HIRQ. 
(A) Biomass concentration (⬤, g · L-1); Crl1 Titer (▲, kAU · L-1); EtOH, Ethanol 
concentration (⬛, g · L-1). (B) Off-line RQ calculation (pink lines); agitation rate (dashed 
lines, rpm). 
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Figure 39. Primary data of the main key process parameters and RQ control of HPX-GASC. 
(A) Biomass concentration (⬤, g · L-1); Crl1 Titer (▲, kAU · L-1); EtOH, Ethanol 
concentration (⬛, g · L-1). (B) Off-line RQ calculation (pink lines); air flowrate (gray lines, L 
· min-1); nitrogen flowrate (dashed lines, L · min-1); oxygen flowrate (dotted lines, L · min-1). 
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