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Abstract

3D geometric information is essential for on-board perception in autonomous driving
and driver assistance. Autonomous vehicles (AVs) are equipped with calibrated sensor
suites. As part of these suites, we can find LiDARs, which are expensive active sensors
in charge of providing the 3D geometric information. Depending on the operational
conditions for the AV, calibrated stereo rigs may be also sufficient for obtaining 3D
geometric information, being these rigs less expensive and easier to install than LiDARs.
However, ensuring a proper maintenance and calibration of these types of sensors is
not trivial. Accordingly, there is an increasing interest on performing monocular depth
estimation (MDE) to obtain 3D geometric information on-board. MDE is very appealing
since it allows for appearance and depth being on direct pixelwise correspondence
without further calibration. Moreover, a set of single cameras with MDE capabilities
would still be a cheap solution for on-board perception, relatively easy to integrate and
maintain in an AV.

Best MDE models are based on Convolutional Neural Networks (CNNs) trained
in a supervised manner, i.e., assuming pixelwise ground truth (GT). Accordingly, the
overall goal of this PhD is to study methods for improving CNN-based MDE accuracy
under different training settings. More specifically, this PhD addresses different research
questions that are described below. When we started to work in this PhD, state-of-the-
art methods for MDE were already based on CNNs. In fact, a promising line of work
consisted in using image-based semantic supervision (i.e., pixel-level class labels) while
training CNNs for MDE using LiDAR-based supervision (i.e., depth). It was common
practice to assume that the same raw training data are complemented by both types
of supervision, i.e., with depth and semantic labels. However, in practice, it was more
common to find heterogeneous datasets with either only depth supervision or only
semantic supervision. Therefore, our first work was to research if we could train CNNs
for MDE by leveraging depth and semantic information from heterogeneous datasets.
We show that this is indeed possible, and we surpassed the state-of-the-art results on
MDE at the time we did this research. To achieve our results, we proposed a particular
CNN architecture and a new training protocol.

After this research, it was clear that the upper-bound setting to train CNN-based
MDE models consists in using LiDAR data as supervision. However, in would be cheaper
and more scalable if we would be able to train such models from monocular sequences.
Obviously, this is far more challenging, but worth to research. Training MDE models
using monocular sequences is possible by relying on structure-from-motion (SfM) prin-
ciples to generate self-supervision. Nevertheless, problems of camouflaged objects,
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visibility changes, static-camera intervals, textureless areas, and scale ambiguity, dimin-
ish the usefulness of such self-supervision. To alleviate these problems, we perform
MDE by virtual-world supervision and real-world SfM self-supervision. We call our
proposal MonoDEVSNet. We compensate the SfM self-supervision limitations by lever-
aging virtual-world images with accurate semantic and depth supervision, as well as
addressing the virtual-to-real domain gap. MonoDEVSNet outperformed previous MDE
CNNs trained on monocular and even stereo sequences. We have publicly released
MonoDEVSNet at <https://github.com/HMRC-AEL/MonoDEVSNet>.

Finally, since MDE is performed to produce 3D information for being used in down-
stream tasks related to on-board perception. We also address the question of whether
the standard metrics for MDE assessment are a good indicator for future MDE-based
driving-related perception tasks. By using 3D object detection on point clouds as proxy
of on-board perception, we conclude that, indeed, MDE evaluation metrics give rise to a
ranking of methods which reflects relatively well the 3D object detection results we may
expect.
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Resumen

La información geométrica 3D es esencial para percibir el entorno desde un vehículo
autónomo (VA) o asistido. Para ello, están equipados con sensores calibrados. Pode-
mos encontrar sensores LiDAR que proporcionan esa información 3D, aunque son
relativamente costosos. Dependiendo de las condiciones operativas del VA, los sistemas
estereoscópicos también pueden ser suficientes para obtener información 3D, siendo
sistemas más baratos y fáciles de instalar. Sin embargo, asegurar un correcto manteni-
miento y calibración de este tipo de sensores no es trivial. En consecuencia, existe un
interés creciente en realizar una estimación monocular de la profundidad (EMP) para ob-
tener información 3D. La EMP permite que la apariencia visual y el 3D se correspondan a
nivel de píxel sin una calibración adicional. Un conjunto de cámaras individuales con ca-
pacidad de EMP sería una solución barata para la percepción desde un VA, relativamente
fácil de integrar y mantener.

Los mejores modelos de EMP se basan en redes neuronales convolucionales entrena-
das de manera supervisada. En consecuencia, el objetivo general de esta tesis doctoral es
estudiar métodos para mejorar la precisión de esos modelos en diferentes circunstancias
prácticas que encontramos al realizar su entrenamiento. Más concretamente, esta tesis
aborda las diferentes cuestiones que se describen a continuación.

Al inicio de esta tesis, una línea de trabajo prometedora para entrenar modelos de
EMP consistía en utilizar la supervisión semántica basada en imágenes y supervisión
de profundidad basada en LiDAR. Se suponía que los mismos datos de entrenamiento
tenían ambos tipos de supervisión asociada, es decir, metainformación de profundidad
y semántica. Sin embargo, en la práctica, era más común encontrar conjuntos de datos
con solo supervisión de profundidad o solo semántica. Por lo tanto, nuestro primer
trabajo fue investigar si podíamos entrenar modelos de EMP aprovechando información
de profundidad y semántica proveniente de conjuntos de datos distintos y heterogéneos.
Demostramos que esto es posible, y superamos los resultados de vanguardia en EMP de
aquel momento. Para ello, propusimos un nuevo protocolo de entrenamiento para los
modelos EMP.

Esta investigación también dejó claro que la supervisión basada en LiDAR es la que
da lugar a modelos de EMP más precisos. Sin embargo, sería más barato y escalable si
pudiéramos entrenar esos modelos a partir de secuencias monoculares. Esto es mucho
más complejo ya que requiere utilizar los principios que permiten inferir estructura
a partir del movimiento (SfM en inglés), generando así autosupervisión. Sin embargo,
numerosos problemas prácticos disminuyen la utilidad de este tipo de autosupervisión.
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Para aliviar estos problemas, entrenamos modelos de EMP mediante supervisión de
imágenes virtuales con información de profundidad asociada y autosupervisión vía SfM
de secuencias monoculares reales. A nuestra propuesta la llamamos MonoDEVSNet
<https://github.com/HMRC-AEL/MonoDEVSNet>. MonoDEVSNet superó la precisión
de otros modelos de vanguardia también entrenados en secuencias monoculares e
incluso estéreo.

Finalmente, dado que la EMP se aplica para obtener 3D que será utilizado en tareas
posteriores de percepción, también abordamos la cuestión de si las métricas estándar
para la evaluación de modelos EMP son realmente un buen indicador para esas futuras
tareas. Utilizando la detección de objetos en nubes de puntos 3D como ejemplo de
percepción, llegamos a la conclusión de que, de hecho, las métricas de evaluación EMP
dan lugar a una clasificación de métodos que refleja relativamente bien los resultados
esperables en detección 3D de objetos.
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Resum

La informació geomètrica 3D és essencial per percebre l’entorn des d’un vehicle autònom
(VA) o assistit. Per això, estan equipats amb sensors calibrats. Podem trobar sensors
LiDAR que proporcionen aquesta informació 3D, encara que són relativament costosos.
Depenent de les condicions operatives del VA, els sistemes estereoscòpics també poden
ser suficients per obtenir informació 3D, i són sistemes més barats i fàcils d’instal·lar.
Tot i així, assegurar un correcte manteniment i calibratge d’aquest tipus de sensors no
és trivial. En conseqüència, hi ha un interès creixent a fer una estimació monocular de
la profunditat (EMP) per obtenir informació 3D. L’EMP permet que l’aparença visual i
el 3D es corresponguin a nivell de píxel sense un calibratge addicional. Un conjunt de
càmeres individuals amb capacitat d’EMP seria una solució barata per a la percepció
des d’un VA, relativament fàcil d’integrar i mantenir.

Els millors models EMP es basen en xarxes neuronals convolucionals entrenades
de manera supervisada. En conseqüència, l’objectiu general d’aquesta tesi doctoral és
estudiar mètodes per millorar la precisió d’aquests models en diferents circumstàncies
pràctiques que trobem en l’entrenament. Més concretament, aquesta tesi aborda les
diferents qüestions que es descriuen a continuació.

A l’inici d’aquesta tesi, una línia de treball prometedora per entrenar models d’EMP
consistia a utilitzar la supervisió semàntica basada en imatges i la supervisió de pro-
funditat basada en LiDAR. Se suposava que les mateixes dades d’entrenament tenien
tots dos tipus de supervisió associada, és a dir, meta-informació de profunditat i se-
màntica. No obstant això, a la pràctica, era més comú trobar conjunts de dades amb
només supervisió de profunditat o només semàntica. Per tant, el nostre primer treball
va ser investigar si podíem entrenar models d’EMP aprofitant informació de profunditat
i semàntica provinent de conjunts de dades diferents i heterogenis. Demostrem que això
és possible, i superem els resultats d’avantguarda a l’EMP d’aquell moment. Per això,
vam proposar un nou protocol d’entrenament per als models EMP.

Aquesta investigació també va deixar clar que la supervisió basada en LiDAR és la
que dóna lloc a models més precisos d’EMP. Tot i això, seria més barat i escalable si
poguéssim entrenar aquests models a partir de seqüències monoculars. Això és molt
més complex ja que requereix utilitzar els principis que permeten inferir estructura
a partir del moviment (SfM en anglès), generant així auto-supervisió. No obstant ai-
xò, molts problemes pràctics disminueixen la utilitat d’aquest tipus d’auto-supervisió.
Per alleujar aquests problemes entrenem models d’EMP mitjançant la supervisió d’i-
matges virtuals amb informació de profunditat associada i auto-supervisió via SfM
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de seqüències monoculars reals. Anomenem la nostra proposta com MonoDEVSNet
<https://github.com/HMRC-AEL/MonoDEVSNet>. MonoDEVSNet va superar la precisió
d’altres models d’avantguarda també entrenats en seqüències monoculars i, fins i tot,
estèreo.

Finalment, atès que l’EMP s’aplica per obtenir 3D que serà utilitzat en tasques
posteriors de percepció, també abordem la qüestió de si les mètriques estàndard per a
l’avaluació de models EMP són realment un bon indicador per a aquestes tasques futures.
Utilitzant la detecció d’objectes en núvols de punts 3D com a exemple de percepció,
arribem a la conclusió que, de fet, les mètriques d’avaluació d’EMP donen lloc a una
classificació de mètodes que reflecteix relativament els resultats esperables en detecció
3D d’objectes.
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1 Introduction

“Self-driving cars are the natural extension of active safety and obviously some-
thing we think we should do.”

– Elon Musk

1.1 Autonomous Driving

Before the 1940s, elevators had human drivers and people was concerned about being on-
board new driverless ones. However, during a strike of drivers in New York, the situation
was so annoying that people adopted the driverless technology. In the 20th century,
all commercial flights had cruise control in the air and a highly automated system
for landing in extremely adverse weather conditions (known as CAT III AUTOLAND
procedure). The same automation trend can be seen for train, tram, and underground
mobility. Therefore, it is natural to aim bringing high levels of automation for road
vehicles too. In fact, since the 1980s, Autonomous Vehicles (AVs) on regular roads appear
in Science Fiction books and films. Obviously, this is rather challenging since AVs do
not move on rails, and have to deal with other vehicles and different traffic participants
(pedestrians, bicyclist, etc.) in the wild; thus, requiring such high levels of artificial
intelligence (AI), that at the beginning of this century we were extremely far away.

Fortunately, during the last decade, several research labs from universities as well
as the automotive and AI industries have been pushing forward the state of the art of
AVs. In the following decades, more dramatic advances are foreseen given the worldwide
interest in moving towards mobility solutions based on efficient AVs.

In fact, according to the World Health Origanization (WHO), in the 20th century,
60 million people died due to traffic accidents, 1.3 million per year [122]. About the
93% of the accidents were due to driver errors, which include violating speed limits,
being drugged, being distracted, and making wrong predictions. Therefore, AVs are
developed under the assumption that removing humans from the driving loop will
increase safety even if the AVs are not yet perfect [2]. Beyond traffic accidents, AVs
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can help to reduce CO2 emissions, traffic congestion (30% fewer vehicles on the road),
reducing transportation costs by a 40% (cars, fuel, and infrastructure), and improving
livability [60] . As a matter of fact, the EU considers AVs as one of the top-ten technologies
that will change our lives [135].

Figure 1.1 – SAE Levels of Driving Automation. Source: <sae.org>

Unfortunately, developing AVs is not trivial and we cannot go from human-driven
vehicles to fully-automated ones in just one step, and in a short period of time. Accord-
ingly, a committee of experts from the Society of Automotive Engineers (SAE) categorized
road vehicles into six groups regarding their level of automation, as shown in Fig. 1.1.
Level 0 corresponds to human driving with intelligent driver assistance, while Level 5
corresponds to fully replacing human drivers everywhere and in all conditions. As a
reference, popular Tesla vehicles are somewhere between Levels 2 and 3.
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Figure 1.2 – Pictorial representation of the sensor positioning and their applications.
Reproduced from [143].

1.2 Sensing the Environment

In order to reach the different levels of automation, AVs must be equipped with sensors
that capture information about the environment surrounding them. Sensors can be
passive such as cameras working on the visible or far-infrared (FIR) spectrum, as well as
inertial measurement units (IMUs), or active such as the radio detecting and ranging
(RADAR), the light detecting and ranging (LiDAR), and global navigation satellite systems
(GNSS). The usual placement of the sensors with their respective target applications is
shown in Fig. 1.2.

Ideally, we would like to use only camera sensors since they are passive, relatively easy
to install and maintain, and at least two orders of magnitude cheaper than others such
as LiDARs. Moreover, the visual quality of the captured images, the robustness against
adversarial illumination conditions, the frame rate, and the resolution, are features
constantly improved since cameras are also key assets in the global consumer market
(smartphones, personal computers, gaming, etc.). Images contain a dense and rich
information about the captured scene. The bottleneck, however, is to being able to
interpret its semantic and geometric content in real-time and, in the case of AVs, with
on-board processing hardware. In the last years, GPU technology and Convolutional
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Figure 1.3 – Comparison between LiDAR, RADAR, and Camera (covering the visible
spectrum) systems. Figure reproduced from [116].

Neural Networks (CNNs), have significantly increased the performance on visual tasks
such as 2D object detection [102, 106] and semantic segmentation [10, 51]. However,
when thinking about measuring distances or providing 3D bounding boxes of traffic
participants (e.g., vehicles and pedestrians), which is essential for AVs, sensors such
as LiDAR [27, 118, 144] and RADAR [84, 87, 114] are more accurate and cover a longer
distance than camera-based approaches such as stereo rigs [19, 73, 131]. Therefore, in
the sake of reliability, most AVs of today are based on the fusion of heterogeneous sensor
suites that include cameras, LiDARs, and RADARs [143]. Figure 1.3 summarizes the pros
and cons of this type of sensors according to [116]. On the other hand, note that not
using cameras would make much more difficult to solve crucial tasks such as detecting
horizontal and vertical traffic information (regulatory signals and lights, lane marks, etc.)
since, nowadays, these have been designed to be well-seen by human drivers. Tracking
traffic participants (vehicles, pedestrians) [123, 155] or detecting their intentions [47]
can be extremely difficult, if not impossible, without using cameras. Some AVs require
pre-generated high-definition (HD) 3D maps to navigate [4]. In this case, the global
positioning system (GPS) and inertial measurement units (IMUs) complement cameras,
LiDARs, and RADARs, to compute the 3D ego-motion and localization of the AV.

1.3 Vision-based Depth Computation

Figure 1.3 tell us that working towards vision-based 3D reconstruction would allow us
to simplify on-board sensor suites by, for instance, not using LiDAR technology; after
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Figure 1.4 – Left: Examples of two stereo rigs reproduced from [137]. On top a hand-
crafted stereo rig based on two twin cameras, in the bottom a commercial stereo rig.
Right: Cameras are mounted with their respective image sensors aligned and separated
by a given distance (baseline), so that image content overlaps and seems to be hori-
zontally shifted (up to occlusions). The per-pixel content shift is known as disparity
and, having the intrinsic parameters of one of the cameras, allows to compute depth by
applying triangulation equations.

Figure 1.5 – By using a monocular system in motion, acquiring overlapping images, we
can apply structure-from-motion techniques (SfM) to recover 3D information of the
observed scene. Example reproduced from [20].
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all, the core sense in human driving is vision. In the end, we only need to understand
the 3D structure of the world surrounding the vehicle (which is local) up to the level of
allowing AVs to perform the next maneuver safely. These translates to being able to obtain
vision-based depth for complementing vision-based semantics. For indoor controlled
environments, depth from vision was approached with the help of additional active
elements such as structured light [31, 63], or time-of-flight technology [50]. However,
these approaches are not suitable for AVs driving outdoors in regular traffic conditions.
In fact, vision-based on-board depth computation has been traditionally based on a
stereo rig (Fig. 1.4), i.e. a physical system with two properly aligned cameras (left and
right) separated by a baseline (e.g., 12cm, 24cm) which influences the rig’s working range
(i.e., where depth computation is reliable). Basically, depth computation from a stereo rig
involves an offline calibration process of the left and right cameras [149], and a real-time
feature matching between left and right images to compute the so-called disparity map,
either using traditional methods [148] or deep learning [68]. Using depth-from-stereo,
higher-level geometric representations of the imaged scene have been also used in AVs.
In particular, relying on the so-called stixels [1, 55, 90], which can be combined with
semantic information too [19, 113]. In practice, most of the inaccuracies of stereo-based
depth computation come from feature matching errors and from the deterioration of
the parameters obtained by the offline calibration procedure, which usually requires
on-board corrections [133].

On the other hand, some vehicles are only equipped with a single camera to run
driver assistance functionalities (SAE Level 0 or 1). In these cases, depth has been usually
computed in a more indirect or adhoc manner. For instance, assuming that the vehicle
moves in a flat road and computing the horizon line it is possible to estimate distances to
other traffic participants using a monocular system [93]. It is also possible to learn depth
ranges even using handcrafted features or visual semantics and additional restrictions
coming from projective geometry [9, 57, 67, 77]. Besides, since an on-board monocular
system moves with the ego-vehicle, a priori, structure-from-motion (SfM) [160] (Fig. 1.5)
can also be used to compute depth. However, inaccuracies due to camouflage (objects
moving as the camera may not be distinguished from background), visibility changes
(occlusion changes, non-Lambertian surfaces), static-camera cases (i.e., stopped ego-
vehicle), textureless areas, and scale ambiguity (depth could only be estimated up to an
unknown scale factor), limits the usefulness of SfM as a stand-alone paradigm to obtain
depth from an on-board single camera, especially if we aim at obtaining dense enough
depth maps.
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Figure 1.6 – MDE using a CNN by Eigen et al. [30], image reproduced from their paper.

1.4 Learning to Compute Depth from Single Images

Since purely relying on geometric principles (stereo, SfM) for vision-based depth esti-
mation shows the above outlined problems, related research over the past few years
has pivoted to a different paradigm. In particular, vision-based depth estimation is now
approached as a machine learning problem. More specifically, the objective is to train
a model capable of estimating the depth at which the elements of a scene are located
with respect to the camera that captures it, at the pixel level. In other words, to train a
monocular depth estimation (MDE) model. This task can be tackled thanks to Convolu-
tional Neural Networks (CNNs). To the best of our knowledge, the first attempt to use
CNNs for MDE comes from Eigen et al. [30] (Fig. 1.6), since then many other researchers
have been focusing on this setting [3, 6, 33, 37, 41, 42, 44–46, 48, 49, 52, 53, 66, 69, 78, 91,
101, 110, 138, 146, 152, 154, 160]. Note that these are just some significant references we
can find in the literature and that we cite as related work in further chapters of this PhD
document, but not a complete list. As we will see, beyond the MDE accuracy reached by
each proposal, which, fortunately, is constantly increasing, one major question is the
paradigm used to train the corresponding CNNs.

A priori, the most favorable case for training a CNN to perform MDE corresponds
to the situation in which we are able to collect images calibrated with LiDAR point
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Figure 1.7 – Top: RGB image with LiDAR points acquired in the same scene on top. The
camera and the LiDAR must be calibrated (spatial registration and time synchronization).
Bottom: Color-coded 3D information generated by densifying the raw point cloud
captured by the LiDAR after its projection to the image plane (Top).

Figure 1.8 – Data from Virtual KITTI dataset [5]. Top: Synthetic RGB image. Bottom:
associated depth (color-coded) ground truth (z-buffer used during the image rendering
process). Depth is shown just up to 80m.
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clouds (Fig. 1.7 Top). Since LiDAR point clouds can be densified in image space (Fig.
1.7 Bottom), LiDAR can act as supervision (i.e., as ground truth) for training the MDE
CNN. On the other hand, the most challenging situation is when, at training time, only
a monocular system is available and, then, using self-supervision from SfM is the only
hope to train the MDE CNN, which is really challenging. Another training setting consists
in having a calibrated stereo rig to collect self-supervision. In fact, then SfM and stereo
self-supervision can be combined. We will cite and review works following these different
approaches within the remaining chapters of this PhD.

1.5 PhD Objective and Outline

Once established MDE based on CNNs as a key task for developing AVs, we can state
that the overall goal of this PhD is to study methods for improving CNN-based MDE
accuracy under different training settings. More specifically, in this PhD we address
different research questions organized per chapter as follows.

Chapter 2. When we started to work in this PhD, state-of-the-art methods for MDE
were already based on CNNs. In fact, a promising line of work consisted in using image-
based semantic supervision (i.e., pixel-level class labels) while training CNNs for MDE
using LiDAR-based supervision (i.e., depth). It was common practice to assume that the
same raw training data are complemented by both types of supervision, i.e., with depth
and semantic labels. However, in practice, it was more common to find heterogeneous
datasets with either only depth supervision or only semantic supervision. Therefore,
our first work on MDE was to research if we could train CNNs for depth estimation by
leveraging the depth and semantic information from heterogeneous datasets. In fact,
as we will show in this chapter, this is indeed possible, and we surpassed the state-of-the-
art results, on MDE at the time we did this research. To achieve our results, we proposed
a particular CNN architecture and a new training protocol.

Chapter 3. After performing the research of previous chapter, it was clear that the
upper-bound setting to train CNN-based MDE models consists in using LiDAR data as
supervision. However, in would be cheaper and more scalable if we would be able to
train such models from monocular sequences. Obviously, this is far more challenging,
but worth to research. As we have mentioned before, training MDE models using monoc-
ular sequences is possible by relying on SfM principles to generate self-supervision.
Nevertheless, problems of camouflaged objects, visibility changes, static-camera in-
tervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-
supervision. In this chapter, we perform monocular depth estimation by virtual-world
supervision (MonoDEVS) and real-world SfM self-supervision. We compensate the
SfM self-supervision limitations by leveraging virtual-world images with accurate se-
mantic and depth supervision (Fig. 1.8), as well as addressing the virtual-to-real do-

9



Chapter 1. Introduction

main gap. At the moment of finishing this research, MonoDEVSNet outperformed
previous MDE CNNs trained on monocular and even stereo sequences. We have publicly
released MonoDEVSNet at https://github.com/HMRC-AEL/MonoDEVSNet.

Chapter 4. During the research conducted in previous chapters, we had to com-
pare quantitative and qualitative results between different MDE models. However,
the targeted task is not MDE. Instead, MDE is performed to produce 3D information
that can be used in downstream tasks related to on-board perception of AVs or driver
assistance. Therefore, the question that arose was whether the standard metrics for
MDE assessment are a good indicator for future MDE-based driving-related percep-
tion tasks. This is the question that we address in this chapter. In particular, we take
the task of 3D object detection on point clouds as proxy of on-board perception. We
train and test Point R-CNN [118], Voxel R-CNN [27], and CenterPoint [144] 3D object
detectors, using point clouds coming from MDE models. We confront the ranking of
object detection results with the ranking given by the depth estimation metrics of the
MDE models. Fortunately, we conclude that, indeed, MDE evaluation metrics give rise
to a ranking of methods which reflects relatively well the 3D object detection results we
may expect. Among the different metrics, the so-called absolute relative (abs-rel) error
seems to be the best for that purpose.

We have written these chapters to be self-contained, following the usual structure of
a paper, i.e. abstract, introduction, related work, proposed method, experimental work
with associated discussion, and summarizing conclusions. Chapter 5 summarizes the
main contributions of this PhD and draws lines of continuation. Finally, we have added
Appendix A listing the publications and patents done while working in this PhD; some of
them from the work here presented, others from additional collaborations.
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2 Monocular Depth Estimation by Learning from
Heterogeneous Datasets

Depth estimation provides essential information to perform autonomous driv-
ing and driver assistance. In particular, monocular depth estimation is interest-
ing from a practical point of view, since using a single camera is cheaper than
many other options and avoids the need for continuous calibration strategies
as required by stereo-vision approaches. State-of-the-art methods for monoc-
ular depth estimation are based on Convolutional Neural Networks (CNNs). A
promising line of work consists of introducing additional semantic information
about the traffic scene when training CNNs for depth estimation. In practice,
this means that the depth data used for CNN training is complemented with im-
ages having pixel-wise semantic labels, which usually are difficult to annotate
(e.g. crowded urban images). Moreover, so far it is common practice to assume
that the same raw training data are associated with both types of ground truth,
i.e., depth and semantic labels. The main contribution of this chapter is to show
that this hard constraint can be circumvented, i.e., that we can train CNNs for
depth estimation by leveraging the depth and semantic information from hetero-
geneous datasets. In order to illustrate the benefits of our approach, we com-
bine KITTI depth and Cityscapes semantic segmentation datasets, outperform-
ing state-of-the-art results on monocular depth estimation.

2.1 Introduction

Depth estimation provides essential information at all levels of driving assistance and
automation. Active sensors such a RADAR and LiDAR provide sparse depth information.
Post-processing techniques can be used to obtain dense depth information from such
sparse data [95]. In practice, active sensors are calibrated with cameras to perform
scene understanding based on depth and semantic information. Image-based object
detection [141], classification [159], and segmentation [51], as well as pixel-wise semantic
segmentation [150] are key technologies providing such semantic information.

Since a camera sensor is often involved in driving automation, obtaining depth

11



2. Monocular Depth Estimation by Learning from Heterogeneous Datasets

Figure 2.1 – Top to bottom: RGB KITTI images; their depth ground truth (LiDAR); our
monocular depth estimation.

directly from it is an appealing approach and so has been a traditional topic from the
very beginning of ADAS1 development. Vision-based depth estimation approaches
can be broadly divided in stereoscopic and monocular camera based settings. The
former includes attempts to mimic binocular human vision. Nowadays, there are robust
methods for dense depth estimation based on stereo vision [56], able to run in real-
time [54]. However, due to operational characteristics, the mounting and installation
properties, the stereo camera setup can loose calibration. This can compromise depth
accuracy and may require to apply on-the-fly calibration procedures [23, 105].

On the other hand, monocular depth estimation would solve the calibration problem.
Compared to the stereo setting, one disadvantage is the lack of the scale information,
since stereo cameras allow for direct estimation of the scale by triangulation. Though,
from a theoretical point of view, there are other depth cues such as occlusion and
semantic object size information which are successfully determined by the human visual
system [22]. These cues can be exploited in monocular vision for estimating scale and
distances to traffic participants. Hence, monocular depth estimation can indeed support
detection and tracking algorithms [9, 58, 93]. Dense monocular depth estimation is also
of great interest since higher level 3D scene representations, such as the well-known
Stixels [1, 55] or semantic Stixels [113], can be computed on top. Attempts to address
dense monocular depth estimation can be found based on either super-pixels [111]
or pixel-wise semantic segmentation [77]; but in both cases relying on hand-crafted

1ADAS: Advanced Driver Assistance Systems
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2.2. Related Work

features and applied to photos mainly dominated by static traffic scenes.
State-of-the-art approaches to monocular dense depth estimation rely on CNNs

[6, 32, 41, 66]. Recent works have shown [61, 86] that combining depth and pixel-wise
semantic segmentation in the training dataset can improve the accuracy. These methods
require that each training image has per-pixel association with depth and semantic class
ground truth labels, e.g., obtained from a RGB-D camera. Unfortunately, creating such
datasets imposes a lot of effort, especially for outdoor scenarios. Currently, no such
dataset is publicly available for autonomous driving scenarios. Instead, there are several
popular datasets, such as KITTI containing depth [38] and Cityscapes [18] containing
semantic segmentation labels. However, none of them contains both depth and semantic
ground truth for the same set of RGB images.

Depth ground truth usually relies on a 360◦ LIDAR calibrated with a camera system,
and the manual annotation of pixel-wise semantic classes is quite time consuming (e.g.
60-90 minutes per image). Furthermore, in future systems, the 360◦ LIDAR may be
replaced by four-planes LIDARs having a higher degree of sparsity of depth cues, which
makes accurate monocular depth estimation even more relevant.

Accordingly, in this chapter we propose a new method to train CNNs for monoc-
ular depth estimation by leveraging depth and semantic information from multiple
heterogeneous datasets. In other words, the training process can benefit from a dataset
containing only depth ground truth for a set of images, together with a different dataset
that only contains pixel-wise semantic ground truth (for a different set of images). In
Sect. 3.2 we review the state-of-the-art on monocular dense depth estimation, whereas
in Sect. 3.3 we describe our proposed method in more detail. Sect. 3.4 shows quantitative
results for the KITTI dataset, and qualitative results for KITTI and Cityscapes datasets. In
particular, by combining KITTI depth and Cityscapes semantic segmentation datasets,
we show that the proposed approach can outperform the state-of-the-art in KITTI (see
Fig. 2.1). Finally, in Sect. 3.5 we summarize the presented work and draw possible future
directions.

2.2 Related Work

First attempts to perform monocular dense depth estimation relied on hand-crafted
features [67, 77]. However, as in many other Computer Vision tasks, CNN-based ap-
proaches are currently dominating the state-of-the-art, and so our approach falls into
this category too.

Eigen et al. [30] proposed a CNN for coarse-to-fine depth estimation. Liu et al. [78]
presented a network architecture with a CRF-based loss layer which allows end-to-end
training. Laina et al. [69] developed an encoder-decoder CNN with a reverse Huber loss
layer. Cao et al. [6] discretized the ground-truth depth into several bins (classes) for train-

13



2. Monocular Depth Estimation by Learning from Heterogeneous Datasets

ing a FCN-residual network that predicts these classes pixel-wise; which is followed by a
CRF post-processing enforcing local depth coherence. Fu et al. [32] proposed a hybrid
model between classification and regression to predict high-resolution discrete depth
maps and low-resolution continuous depth maps simultaneously. Overall, we share
with these methods the use of CNNs as well as tackling the problem as a combination
of classification and regression when using depth ground truth, but our method also
leverages pixel-wise semantic segmentation ground truth during training (not needed in
testing) with the aim of producing a more accurate model, which will be confirmed in
Sect. 3.4.

There are previous methods using depth and semantics during training. The mo-
tivation behind is the importance of object borders and, to some extent, object-wise
consistency in both tasks (depth estimation and semantic segmentation). Arsalan et
al. [86] presented a CNN consisting of two separated branches, each one responsible for
minimizing corresponding semantic segmentation and depth estimation losses during
training. Jafari et al. [61] introduced a CNN that fuses state-of-the-art results for depth
estimation and semantic labeling by balancing the cross-modality influences between
the two cues. Both [86] and [61] assume that for each training RGB image it is available
pixel-wise depth and semantic class ground truths. Training and testing is performed in
indoor scenarios, where a RGB-D integrated sensor is used (neither valid for outdoor
scenarios nor for distances beyond 5 meters). In fact, the lack of publicly available
datasets with such joint ground truths has limited the application of these methods
outdoors. In contrast, a key of our proposal is the ability of leveraging disjoint depth and
semantic ground truths from different datasets, which has allowed us to address driving
scenarios.

The works introduced so far rely on deep supervised training, thus eventually requir-
ing abundant high quality depth ground truth. Therefore, alternative unsupervised and
semi-supervised approaches have been also proposed, which rely on stereo image pairs
for training a disparity estimator instead of a depth one. However, at testing time the
estimation is done from monocular images. Garg et al. [37] trained a CNN where the
loss function describes the photometric reconstruction error between a rectified stereo
pair of images. Godard et al. [41] used a more complex loss function with additional
terms for smoothing and enforcing left-right consistency to improve convergence during
CNN training. Kuznietsov et al. [66] proposed a semi-supervised approach to estimate
inverse depth maps from the CNN by combining an appearance matching loss similar
to the one suggested in [41] and a supervised objective function using sparse ground
truth depth coming from LIDAR. This additional supervision helps to improve accuracy
estimation over [41]. All these approaches have been challenged with driving data and
are the current state-of-the-art.

Note that autonomous driving is pushing forward 3D mapping, where 360◦ LIDAR
sensing plays a key role. Thus, calibrated depth and RGB data are regularly generated.
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2.3. Proposed Approach for Monocular Depth Estimation

Therefore, although, unsupervised and semi-supervised approaches are appealing, at
the moment we have decided to assume that depth ground truth is available; focusing
on incorporating RGB images with pixel-wise class ground truth during training. Overall,
our method outperforms the state-of-the-art (Sect. 3.4 ).

2.3 Proposed Approach for Monocular Depth Estimation

2.3.1 Overall training strategy

As we have mentioned, in contrast to previous works using depth and semantic infor-
mation, we propose to leverage heterogeneous datasets to train a single CNN for depth
estimation; i.e. training can rely on one dataset having only depth ground truth, and a
different dataset having only pixel-wise semantic labels. To achieve this, we divide the
training process in two phases. In the first phase, we use a multi-task learning approach
for pixel-wise depth and semantic CNN-based classification (Fig. 2.2). This means that
at this stage depth is discretized, a task that has been shown to be useful for supporting
instance segmentation [124]. In the second phase, we focus on depth estimation. In
particular, we add CNN layers that perform regression taking the depth classification
layers as input (Fig. 2.3).

Multi-task learning has been shown to improve the performance of different visual
models (e.g. combining semantic segmentation and surface normal prediction tasks in
indoor scenarios; combining object detection and attribute prediction in PASCAL VOC
images) [85]. We use a network architecture consisting of one common sub-net followed
by two additional sub-net branches. We denote the layers in the common sub-net as
DSC (depth-semantic classification) layers, the depth specific sub-net as DC layers and
the semantic segmentation specific sub-net as SC layers. At training time we apply a
conditional calculation of gradients during back-propagation, which we call conditional
flow. More specifically, the common sub-net is always active, but the origin of each data
sample determines which specific sub-net branch is also active during back-propagation
(Fig. 2.2). We alternate batches of depth and semantic ground truth samples.

Phase one mainly aims at obtaining a depth model (DSC+DC). Incorporating seman-
tic information provides cues to preserve depth ordering and per object depth coherence
(DSC+DS). Then, phase two uses the pre-trained depth model (DSC+DC), which we
further extend by regression layers to obtain a depth estimator, denoted by DSC-DRN
(Fig. 2.3). We use standard losses for classification and regression tasks, i.e. cross-entropy
and L1 losses respectively.
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Dataset A

Dataset B

Conv / Deconv blocks 
Dataset A (DC Layers)

Common Conv blocks
(DSC Layers)

Conv / Deconv blocks 
Dataset B (SC Layers)

Dataset A

Dataset B

Conv / Deconv blocks 
Dataset A (DC Layers)

Common Conv blocks
(DSC Layers) Conv / Deconv blocks 

Dataset B (SC Layers)

Figure 2.2 – Phase one: conditional backward passes (see main text). We also use skip
connections linking convolutional and deconvolutional layers with equal spatial sizes.
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2.3. Proposed Approach for Monocular Depth Estimation

Dataset A

Conv / Deconv blocks 
(Pre-trained 
DC Layers)

Regression 
Layers

Common Conv blocks 
(Pre-trained DSC 

Layers)

Figure 2.3 – Phase two: the pre-trained (DSC+DC) network is augmented by regression
layers for fine-tuning, resulting in the (DSC-DRN) network for depth estimation.

2.3.2 Network Architecture

Our CNN architecture is inspired by the FCNDROPOUT of Ros [109], which follows
a convolution-deconvolution scheme. Fig. 2.4 details our overall CNN architecture.
First, we define a basic set of four consecutive layers consisting of Convolution, Batch
Normalization, Dropout and ReLu. We build convolutional blocks (ConvBlk) based on
this basic set. There are blocks containing a varying number of sets, starting from two
to four sets. The different sets of a block are chained and put in a pipeline. Each block
is followed by an average-pooling layer. Deconvolutional blocks (DeconvBlk) are based
on one deconvolution layer together with skip connection features to provide more
scope to the learning process. Note that to achieve better localization accuracy these
features originate from the common layers (DSC) and are bypassed to both the depth
classification (DC) branch and the semantic segmentation branch (SC). In the same
way we introduce skip connections between the ConvBlk and DeconvBlk of the added
regression layers.

At phase 1, the network comprises 9 ConvBlk and 11 DeconvBlk elements. At phase 2,
only the depth-related layers are active. By adding 2 ConvBlk with 2 DeconvBlk elements
to the (DSC+DC) branch we obtain the (DSC-DRN) network. Here, the weights of the
(DSC+DC)-network part are initialized from phase 1. Note that at testing time only
the depth estimation network (DSC-DRN) is required, consisting of 9 ConvBlk and 7
DeconvBlk elements.
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2. Monocular Depth Estimation by Learning from Heterogeneous Datasets

Figure 2.4 – Details of our CNN architecture at training time.
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2.4. Experimental Results

2.4 Experimental Results

2.4.1 Datasets

We evaluate our approach on KITTI dataset [38], following the commonly used Eigen et
al. [30] split for depth estimation. It consists of 22,600 training images and 697 testing
images, i.e. RGB images with associated LiDAR data. we have reprojected the LIDAR data
taken from the Velodyne sensor (i.e. the 360◦ LIDAR). Here the LIDAR data are sparse,
containing only 15% of the information w.r.t. the whole image. Hence we compute
the dense depth maps from the sparse data according to Premebida [95]. We also
introduce errors that correlate to the rotation of the Velodyne, motion of the vehicle
and surrounding object, we add also incorrect data reading due to the occlusion at the
object boundaries. We use a half down-sampled image 188×620 for training and testing
the model. Moreover, we use 2,975 images from Cityscapes dataset [18] with per-pixel
semantic labels.

2.4.2 Implementation Details

We implement and train our CNN using MatConvNet [125], which we modified to include
the conditional flow back-propagation. We use a batch size of 10 and 5 images for depth
and semantic branches, respectively. We use ADAM, with a momentum of 0.9 and weight
decay of 0.0003. The ADAM parameters are pre-selected as α = 0.001, β1 = 0.9 and
β2 = 0.999. Smoothing is applied via L0 gradient minimization [139] as pre-processing
for RGB images, with λ= 0.0213 and κ= 8. We include data augmentation consisting of
small image rotations, horizontal flip, blur, contrast changes, as well as salt & pepper,
Gaussian, Poisson and speckle noises. For performing depth classification we have
followed a linear binning of 24 levels on the range [1,80]m.

2.4.3 Evaluation Metrics

For comparing the obtained results with state-of-the-art we compute several metrics
commonly used in the literature, including:

Average relative error:

abs-rel := 1

n

∑
i j

| dg t −dp |
dg t

(2.1)
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Square average relative error:

sq-rel := 1

n

∑
i j

| dg t −dp |2
dg t

(2.2)

Root mean square error:

rms :=
√

1

n

∑
i j

(
dg t −dp

)2 (2.3)

Root mean square log error:

rms-log :=
√

1

n

∑
i j

(
log(dg t )− log(dp )

)2 (2.4)

Average log10 error:

log10 := 1

n

∑
i j

| log10 dg t − log10 dp | (2.5)

Accuracy with threshold τ :

Percentage (%) max
i j

( | dp |
dg t

,
| dg t |

dp

)
:= δ < τ; (2.6)

where i j stands for pixel coordinates running on all considered images, n is the total
number of valid pixels (i.e. containing depth ground truth) in those images, dg t and dp

are the ground truth and predicted depths at a given i j , respectively. The abs-rel error
and the δ< τ are percentage measurements, log10, sq-rel and rms are reported in meters,
and rms-log is similar (reported in meters) to rms but applied to logarithm depth values.
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2.4.4 Results

We compare our approach to supervised methods such as Liu et al. [78] and Cao et
al. [6], unsupervised methods such as Garg et al. [37] and Godard et al. [41], and semi-
supervised method Kuznietsov et al. [66]. Liu et al., Cao et al. and Kuznietsov et al.
did not release their trained model, but they reported their results on the Eigen et al.
split as us. Garg et al. and Godard et al. provide a Caffe model and a Tensorflow model
respectively, trained on our same split (Eigen et al.’s KITTI split comes from stereo pairs).
We have followed the author’s instructions to run the models for estimating disparity
and computing final depth by using the camera parameters of the KITTI stereo rig (focal
length and baseline). In addition to the KITTI data, Godard et al. also added 22,973
stereo images coming from Cityscapes; while we use 2,975 from Cityscapes semantic
segmentation challenge (19 classes). Quantitative results are shown in Table 2.1 for two
different distance ranges, namely [1,50]m (cap 50m) and [1,80]m (cap 80m). As for the
previous works, we follow the metrics proposed by Eigen et al. as shown in Section 2.4.3.
Note how our method outperforms the state-of-the-art models in all metrics but one
(being second best).

In Table 2.1 we also assess different aspects of our model. In particular, we compare
our depth estimation results with (DSC-DRN) and without the support of the semantic
segmentation task. In the latter case, we distinguish two scenarios. For the first one,
which we denote as DC-DRN, we discard the SC subnet from the 1st phase so that we first
train the depth classifier and later add the regression layers for retraining the network. In
the second scenario, noted as DRN, we train the depth branch directly for regression, i.e.
without pre-training a depth classifier. We see that for both cap 50m and 80m, DC-DRN
and DRN are on par. However, we obtain the best performance when we introduce
the semantic segmentation task during training. Without the semantic information,
our DC-DRN and DRN do not yield comparable performance. This suggests that our
approach can exploit the additional information provided by semantic information to
learn a better depth estimator.

Fig. 2.5 shows qualitative results on KITTI. Note how well relative depth is estimated,
also how clear are seen vehicles, pedestrians, trees, poles and fences. In addition, we
show more qualitative results on KITTI compared with Godard et al. [41] in Fig. 2.6.
Fig. 2.7 shows similar results for Cityscapes; illustrating generalization since the model
was trained on KITTI. In this case, images are resized at testing time to KITTI image
size (188×620) and the result is resized back to Cityscapes image size (256×512) using
bilinear interpolation.
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2. Monocular Depth Estimation by Learning from Heterogeneous Datasets

Figure 2.6 – Left to right: RGB image (KITTI), depth ground truth, Godard et al. [41]
and our depth estimation results. In this figure, we show on the right side of the image
that Godard et al. [41] results yield poor detection quality along with inaccurate depth
estimation for specific relevant objects such as cars, tram or poles. On the other hand,
our method provides a more accurate depth estimation which can be seen on the right
most column.
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2.4. Experimental Results

Figure 2.7 – Depth estimation results on Cityscapes validation and testing set images.
This Cityscapes dataset is used for the task of semantic segmentation and we couldn’t
provide quantitative results as it doesn’t have depth ground truth. Note: The validation
set images are not used for training the network.
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2. Monocular Depth Estimation by Learning from Heterogeneous Datasets

2.5 Conclusion

We have presented a method to leverage depth and semantic ground truth from different
datasets for training a CNN-based depth-from-mono estimation model. Thus, up to the
best of our knowledge, allowing for the first time to address outdoor driving scenarios
with such a training paradigm (i.e. depth and semantics). In order to validate our
approach, we have trained a CNN using depth ground truth coming from KITTI dataset
as well as pixel-wise ground truth of semantic classes coming from Cityscapes dataset.
Quantitative results on standard metrics show that the proposed approach improves
performance, even yielding new state-of-the-art results.
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3 Monocular Depth Estimation through Virtual-
world Supervision and Real-world SfM Self-
Supervision

Depth information is essential for on-board perception in autonomous driving
and driver assistance. Monocular depth estimation (MDE) is very appealing since
it allows for appearance and depth being on direct pixelwise correspondence
without further calibration. Best MDE models are based on Convolutional Neu-
ral Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise
ground truth (GT). Usually, this GT is acquired at training time through a cali-
brated multi-modal suite of sensors. However, also using only a monocular sys-
tem at training time is cheaper and more scalable. This is possible by relying
on structure-from-motion (SfM) principles to generate self-supervision. Never-
theless, problems of camouflaged objects, visibility changes, static-camera inter-
vals, textureless areas, and scale ambiguity, diminish the usefulness of such self-
supervision. In this chapter, we perform monocular depth estimation by virtual-
world supervision (MonoDEVS) and real-world SfM self-supervision. We com-
pensate the SfM self-supervision limitations by leveraging virtual-world images
with accurate semantic and depth supervision, and addressing the virtual-to-real
domain gap. Our MonoDEVSNet outperforms previous MDE CNNs trained on
monocular and even stereo sequences.

3.1 Introduction

Augmenting semantic information with depth is essential for on-board perception in
autonomous driving and driver assistance. In this context, active sensors such as LiDAR
and RADAR, or passive ones such as stereo rigs, are traditionally used to obtain depth
information. For instance, in [28] RADAR and V2V communications are used to detect
vehicles and estimate their distance to the ego-vehicle; LiDAR can be used for the same
purpose [157], and it allows to perform road border detection too [25]; finally, note
also that recent advances in deep stereo computation [16] can bring stereo rigs as a
LiDAR alternative for some driving use cases. However, due to cost and maintenance
considerations, we wish to predict depth from the same single camera used to predict
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semantics, so having a direct pixelwise correspondence without further calibration.
Therefore, in this chapter, we focus on monocular depth estimation (MDE) on-board
vehicles in outdoor traffic. Recent advances on MDE rely on Convolutional Neural
Networks (CNNs). Let Ψ be a CNN architecture for MDE with weights θ, which takes a
single image x as input, and estimates its pixelwise depth map d as output, i.e., Ψ(θ; x) →
d . The Ψ’s can be trained in a supervised manner, i.e., finding the values of θ by assuming
access to a set of images with pixelwise depth ground truth (GT). Usually, such a GT
is acquired at training time through a multi-modal suite of sensors, at least consisting
of a camera calibrated with a LiDAR or some type of 3D laser scanner variant [6, 30, 33,
49, 52, 69, 78, 110, 138, 145]. Alternatively, we can use self-supervision based on either a
calibrated stereo rig [37, 41, 91, 112], or a monocular system and structure-from-motion
(SfM) principles [44, 146, 152, 154], or a combination of both [42]. Combining stereo self-
supervision and LiDAR supervision has been also analyzed [46, 53, 66]. The cheaper and
simpler the suite of sensors used at training time, the better in terms of scalability and
general access to the technology; however, the more challenging training a Ψ. Currently,
supervised methods tend to outperform self-supervised ones [24], thus, improving the
latter is an open challenge worth to pursue.

We are interested in the most challenging setting, namely, when at training time we
only have a single on-board camera allowing for SfM-based self-supervision. However,
using only such a self-supervision may give rise to depth estimation inaccuracies due to
camouflage (objects moving as the camera may not be distinguished from background),
visibility changes (occlusion changes, non-Lambertian surfaces), static-camera cases
(i.e., stopped ego-vehicle), and textureless areas, as well as to scale ambiguity (depth
could only be estimated up to an unknown scale factor). In fact, an interesting approach
to compensate for these problems could be leveraging virtual-world images (RGB) with
accurate pixelwise depth (D) supervision. Using virtual worlds [5, 29, 34, 82, 107, 108, 115],
we can acquire as many RGBD virtual-world samples as needed. However, these virtual-
world samples can only be useful provided we address the virtual-to-real domain gap
[15, 88, 92, 151, 153], which links MDE with visual domain adaptation (DA), a realm of
research in itself [21, 129, 134].

Accordingly, our contributions to MDE are the following:

• We propose a CNN architecture to perform MDE by training on virtual-world
supervision and real-world SfM self-supervision, i.e., requiring just monocular
sequences even at training time. We show that this architecture can accommodate
different feature extraction backbones.

• We reduce domain discrepancies between supervised (virtual world) and semi-
supervised (real world) data at the space of the extracted features (backbone
bottleneck) by using the idea of gradient reversal layer (GRL) [35, 36]. Thus, not
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3.2. Related Work

adding computational burden at testing time.

• Despite using SfM-based semi-supervision, thanks to the virtual-world supervised
data, we can compute a global scaling factor at training time, which allows us to
output absolute depth at testing time.

In summary, we propose to perform monocular depth estimation by virtual-world
supervision (MonoDEVS) and real-world SfM self-supervision, estimating depth in ab-
solute scale. By relying on standard benchmarks, we show that our MonoDEVSNet
outperforms previous ones trained on monocular and even stereo sequences. We think
our released code and models1 will help researchers and practitioners to address appli-
cations requiring on-board depth estimation, also establishing a strong baseline to be
challenged in the future.

In the following, Section 3.2 summarizes previous works related to ours. Section 3.3
details our proposal. Section 3.4 describes the experimental setting and discusses the
obtained results. Finally, Section 3.5 summarizes the presented work and conclusions,
and draws the work we target for the near future.

3.2 Related Work

MDE was first based on hand-crafted features and shallow machine learning [67, 77, 112,
120]. Nowadays, best performing models are based on CNNs [24], thus, we focus on
them.

3.2.1 Supervised MDE

Relying on depth GT, Eigen et al. [30] developed a Ψ architecture for coarse-to-fine
depth estimation with a scale-invariant loss function. This pioneering work inspired new
CNN-based architectures to MDE [6, 33, 52, 69, 78, 110, 138], which also assume depth
GT supervision. MDE has been also tackle as a task on a multi-task learning framework,
typically together with semantic segmentation as both tasks aim at producing pixelwise
information and, eventually, may help each other to improve their predictions at object
boundaries. For instance, this is the case of some Ψ’s for indoor scenarios [61, 62,
86]. These proposals assume that pixelwise depth and class GT are simultaneously
available at training time. However, this is expensive, being scarcely available for outdoor
scenarios. In order to address this problem, Gurram et al. [49] proposed a training
framework which does not require depth and class GT to be available for the same
images. Guizilini et al. [45] used an out-of-the-box CNN for semantic segmentation to
train semantically-guided depth features while training Ψ.

1https://github.com/HMRC-AEL/MonoDEVSNet
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The drawback of these supervised approaches is that the depth GT usually comes
from expensive LiDARs, which must be calibrated and synchronized with the cameras;
i.e., even if the objective is to use only cameras for the functionality under development.
Moreover, LiDAR depth is sparse compared to available image resolutions. Besides,
surfaces like vehicle glasses or dark vehicles may be problematic for LiDAR sensing.
Consequently, depth self-supervision and alternative sources of supervision are receiving
increasing interest.

3.2.2 Self-supervised MDE

Using a calibrated stereo rig to provide self-supervision for MDE is a much cheaper
alternative to camera-LiDAR suites. Garg et al. [37] pioneered this approach by training
Ψ with a warping loss involving pairs of stereo images. Godard et al. [41] introduced
epipolar geometry constraints with additional terms for smoothing and enforcing con-
sistency between left-right image pairs. Chen et al. [11] improved MDE results by enforc-
ing semantic consistency between stereo pairs, via a joint training of Ψ and semantic
segmentation. Pillai et al. [91] implemented sub-pixel convolutional layers for depth
super-resolution, as well as a novel differentiable layer to improve depth prediction on
image boundaries, a known limitation of stereo self-supervision. Other authors [53, 66]
still complement stereo self-supervision with sparse LiDAR supervision.

SfM principles [160] can be also followed to provide self-supervision for MDE. In fact,
in this setting we can assume a monocular on-board system at training time. Briefly,
the underlying idea is that obtaining a frame, xt , from consecutive ones, xt±1, can be
decomposed into jointly estimating the scene depth for xt and the camera pose at time t
relative to its pose at time t ±1; i.e., the camera ego-motion. Thus, we can train a CNN to
estimate (synthesize) xt from xt±1, where, basically, the photo-metric error between xt

and x̂t acts as training loss, being x̂t the output of this CNN (i.e., the synthesized view).
After the training process, part of the CNN can perform MDE up to a scale factor (relative
depth).

Zhou et al. [154] followed this idea, adding an explainability mask to compensate
for violations of SfM assumptions (due to frame-to-frame changes on the visibility of
frame’s content, textureless surfaces, etc.). This mask is estimated by a CNN jointly
trained with Ψ to output a pixelwise belief on the synthesized views. Later, Yin et
al. [146] proposed GeoNet, which aims at improving MDE by also predicting optical
flow to explicitly consider the motion introduced by dynamic objects (e.g., vehicles,
pedestrians), i.e. a motion that violates SfM assumptions. However, this was effective
on predicting occlusions, but not in significantly improving MDE accuracy. Godard et
al. [42] followed the idea of having a mask to indicate stationary pixels, which should
not be taken into account by the loss driving the training. Such pixels typically appear
on vehicles moving at the same speed as the camera, or can even correspond to full
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frames in case the ego-vehicle stops and, thus, the camera becomes stationary for a
while. Pixels of similar appearance in consecutive frames are considered as stationary.
A simple definition which can work because, instead of using a training loss based on
absolute photo-metric errors (i.e. on minimizing pairwise pixel differences), it is used
the structure similarity index measurement (SSIM) [132]. Moreover, within the so-called
MonoDepth2 framework, Godard et al. [42] combine SfM and stereo self-supervision
to establish state-of-the-art results. Alternatively, Guizilini et al. [45] addressed the
presence of dynamic objects by a two-stage MDE training process. The first stage ignores
the presence of such objects, returning a Ψ trained with a loss based on SSIM. Then,
before running the second stage, the training sequences are processed to filter out frames
that may contain erroneous depth estimations due to moving objects. Such frames are
identified by applying Ψ, a RANSAC algorithm to estimate the ground plane from their
estimated depth, and determining if there is a significant number of pixels that would be
projected far below the ground plane. Finally, in the second stage, Ψ is retrained form
scratch without the filtered frames.

Zhao et al. [152] focused on avoiding scale inconsistencies among frames as produced
by SfM self-supervision, specially when they are from sequences whose underlying depth
range is too different. Depth and optical flow estimation CNNs are trained, but not a
pose estimation one. Instead, the optical flow between two frames is used to find
robust pixel correspondences between them, which are used to compute their relative
camera pose, computing the fundamental matrix by the 8-point algorithm, and then
performing triangulation between the corresponding pixels of these frames. Overall,
a sparse depth pseudo-GT is estimated and used as supervision to train Ψ. However,
even robustifying scale consistency among frames, this method still outputs just relative
depth. To avoid this problem, Guizilini et al. [46] used sparse LiDAR supervision with
SfM self-supervision, relying on depth and pose estimation networks. More recently,
Guizilini et al. [44] relied on ego-vehicle velocity to solve scale ambiguity in a pure
SfM self-supervision setting. A velocity supervision loss trains the pose estimation
CNN to learn scale-aware camera translation which, in turn, enables scale-aware depth
estimation.

Overall, this literature shows the relevance of achieving MDE via SfM self-supervision
and strategies to account for violation of SfM assumptions, as well as to obtain absolute
depth values. Among these strategies, complementing SfM self-supervision with super-
vision (depth GT) coming from additional sensors such as a LiDAR and/or a stereo rig
seems to be the most robust approach to address all the problems at once. However,
then, a single camera would not be enough at training time. In this chapter, we also
complement SfM self-supervision with accurate depth supervision. However, instead of
relying on additional sensors, we use virtual-world data.
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3.2.3 Virtual-world data for MDE

Training Ψ on virtual-world images to later perform on real-world ones, requires to
address the virtual-to-real domain gap. Many approaches perform a virtual-to-real
image-to-image translation coupled to the training of Ψ. This translation usually relies
on generative adversarial networks (GANs) [17, 43], since to train them only unpaired
and unlabeled sets of real- and virtual-world images are required.

Zheng et al. [153] proposed T 2Net. In this case, a GAN and Ψ are jointly trained,
where the GAN aims at performing virtual-to-real translation while acting as an auto-
encoder for real-world images. The translated images are the input for Ψ since they have
depth supervision. Additionally, a GAN operating on the encoder weights (features) of Ψ
was incorporated during training to force similar depth feature distributions between
translated and real-world images. However, this feature-level GAN worsen MDE results
in outdoor scenarios. Kundu et al. [88] proposed AdaDepth, which trains a common
feature space for real- and virtual-world images, i.e., a space where it is not possible to
distinguish the domain of the input images. Then, depth estimation is trained from this
feature space. To achieve this, adversarial losses are used at the feature space level as
well as at the estimated depth level.

Cheng et al. [15] proposed S3Net, which extends T 2Net with SfM self-supervision.
In this case, GAN training involves semantic and photo-metric consistency. Semantic
consistency between the virtual-world images and their GAN-translated counterparts is
required, which is measured via semantic segmentation (which involves also to jointly
train a CNN for this task). Photo-metric consistency is required for consecutive GAN-
translated images, which is measured via optical flow. Note that semantic segmentation
and optical flow GT is available for virtual-world images. Ψ uses the GAN-translated
images as input and is trained end-to-end with the GAN. Then, a further fine-tuning
step of Ψ is performed using only the real-world sequence and SfM self-supervision, i.e.,
involving the training of a pose estimation CNN while fine-tuning. During this process,
a masking mechanism inspired in [42] is also used to compensate for SfM-adverse
scenarios. Contrary to AdaDepth and T 2Net, S3Net just outputs relative depth.

Zhao et al. [151] proposed GASDA, which leverages real-world stereo and virtual-
world data. In this case, the CycleGAN idea [158] is used to perform DA, which actually
involves two GANs, one for virtual-to-real image translation and another for real-to-
virtual. Two Ψ’s are trained coupled to CycleGAN, one intended to process images with
real-world appearance (actual real-wold images or GAN-translated from the virtual
domain), the other to process images with synthetic appearance (actual virtual-world
images or GAN-translated from the real domain). In fact, at testing time, the most
accurate depth results are obtained by averaging the output of these two Ψ’s, which also
involves to translate the real-world images to the virtual domain by the corresponding
GAN. Thanks to the stereo data, left-right depth and geometry consistency losses are
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also included during training aiming at obtaining a more accurate Ψ. PNVR et al. [92]
proposed SharinGAN for training a DA GAN coupled to a specific task. One of the
selected tasks is MDE with stereo self-supervision, as in [151]. In this case, real- and
virtual-world images are transformed to a new image domain where their appearance
discrepancies are minimized to perform MDE from them, i.e. the GAN and the Ψ are
jointly trained end-to-end. SharinGAN outperformed GASDA. However, at testing time,
before performing the MDE, the real-world images must be translated by the GAN to the
new image domain. Both GASDA and SharinGAN produce absolute scale depth.

3.2.4 Relationship of MonoDEVSNet with previous literature

In term of operational training conditions, the most similar paper to ours is S3Net [15].
However, contrary to S3Net, our MonoDEVSNet can estimate depth in absolute scale.
On the other hand, for the SfM self-supervision we leverage from the state-of-the-art
proposal in [42]. Note that methods based on pure SfM self-supervision such as [42]
(only SfM setting), [154], [146], and [45], just report relative depth. In order to compare
MonoDEVSNet with them, we have estimated relative depth too. We will see how we
outperform these methods, proving the usefulness of leveraging depth supervision from
virtual worlds. In fact, regarding relative depth, we also outperform S3Net. Methods
leveraging virtual-world data such as GASDA [151] and SharinGAN [92], rely on real-
world stereo data at training time, while we only require monocular sequences. On the
other hand, our training framework can be extended to accommodate stereo data if
available, although it is not our current focus. S3Net, GASDA, SharinGAN, T 2Net [153],
and AdaDepth [88], leverage ideas from GAN-based DA to reduce the virtual-to-real
domain gap, either in image space (S3Net, GASDA, SharinGAN, T 2Net) or in feature
space (AdaDepth). We have analyzed both, image and feature based DA, finding that
the later outperforms the former. In particular, by using the Gradient-Reversal-Layer
(GRL) DA strategy [35, 36], up to the best of our knowledge, not previously applied to
MDE. Currently, we outperform the SfM self-supervision framework in [44] thanks to
the virtual-world supervision and our GRL DA strategy. However, using vehicle velocity
to obtain absolute depth as in [44], is a complementary strategy that could be also
incorporated in our framework, although it is not the focus on this chapter.

3.3 Methods

In this section, we introduce MonoDEVSNet, which aims at leveraging virtual-world
supervision to improve real-world SfM self-supervision. Since we train from both real-
and virtual-world data jointly, we describe our supervision and self-supervision losses,
the loss for addressing the virtual-to-real domain gap, and the strategy to obtain depth
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in absolute scale. Our proposal is visually summarized in Fig. 3.1.

3.3.1 Training data

For training MonoDEVSNet, we assume two sources of data. On the one hand, we have
image sequences acquired by a monocular system on-board a vehicle while driving in
real-world traffic. We denote as xr

t one of such frames acquired at time t . We denote
these data as X r = {xr

t }N r

t=1, where N r is the number of frames from the real-world se-
quences. These frames do not have associated GT. On the other hand, we have analogous
sequences but acquired on a virtual world, i.e., on-board a vehicle immersed in a traffic
simulation. We denote as xs

t one of such virtual-world frames acquired at time t . We
refer to these data as X s = {xs

t }N s

t=1, where N s is the number of frames from the virtual-
world sequences. The images in X s do have associated GT, since it can be automatically
generated. In particular, as it is commonly available in today’s simulators, we assume
pixelwise depth and semantic class GT. We define Y s = {< d s

t ,c s
t >}N s

t=1 to be this GT; i.e.,
given xs

t , d s
t is its depth GT, and c s

t its semantic class GT.

3.3.2 MonoDEVSNet architecture: Ψ(θ; x)

MonoDEVSNet, i.e., our Ψ(θ; x), is composed of three main blocks: a encoding block
of weights θenc, a multi-scale pyramidal block, θpyr, and a decoding block inspired
in [42], θdec. Therefore, the total set of weights is θ = {θenc,θpyr,θdec}. Here, θenc acts as a
backbone of features. Moreover, since we aim at evaluating several encoders, the role of
the multi-scale pyramid block is to adapt the bottleneck of the chosen encoder to the
decoder. At testing time Ψ(θ; x) will process any real-world image x acquired on-board
the ego-vehicle, while at training time either x ∈ X r or x ∈ X s .

3.3.3 Problem formulation

Training Ψ(θ; x) consists in finding the optimum weight values, θ∗, by solving the prob-
lem:

θ∗ = min
θ

L(θ; X r , X s .Y s ) ,

where L is a loss function, and X s .Y s indicates the use of the virtual-world frames with
their GT. As we are going to detail, L relies on three different losses, namely, Lsf,Lsp

and LDA. The loss Lsf focuses on training θ based on SfM self-supervision, thus, only
relying on real-world data sequences. The SfM self-supervision is achieved with the
support of a camera pose estimation task performed by a CNN, T, of weights ϑsf. Thus,
we have Lsf(θ,ϑsf; X r ). The loss Lsp focuses on training θ with virtual-world supervision,
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3.3. Methods

Figure 3.1 – Training framework for MonoDEVSNet, i.e., Ψ(θ; x). We show the involved
images, GT, weights, and losses. Red and blue lines are paths of real and virtual-world
data, respectively. The discontinuous line is a common path.
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in particular, using depth and semantic GT from virtual-world sequences. Therefore,
we have Lsp(θ; X s .Y s ). Finally, LDA focuses on creating domain-invariant features θenc

as part of θ. In particular, we rely on a binary real/virtual domain-classifier CNN, D, of
weights {θenc,ϑDA}. Thus, we have LDA(θenc,ϑDA; X r , X s ).

3.3.4 SfM Self-supervised loss: Lsf(θ,ϑsf; X r )

Since we focus on improving MDE by the additional use of virtual-world data, for the
SfM self-supervision we leverage from the state-of-the-art proposal in [42], which we
briefly summarize here for the sake of completeness as:

Lsf(θ,ϑsf; X r ) =
N r −1∑

t=2
P r

t (θ,ϑsf)+λSr
t (θ) . (3.1)

As introduced in [41], the term λSr
t (θ) is a constant weighted loss to force local smooth-

ness on Ψ(θ; xr
t ), taking into account the edges of xr

t . The term P r
t (θ,ϑsf) is the actual

SfM-inspired loss. It involves the joint training of the depth estimation weights, θ, and
the relative camera pose estimation weights, ϑsf. Figure 3.1 illustrates the CNN, T, associ-
ated to these weights, which takes as input two consecutive frames, e.g., (xr

t , xr
t+1), and

outputs the pose transform (rotation and translation), T̂ r
t→t+1 = T(ϑsf; xr

t , xr
t+1), between

them. Then, as can be seen in Fig. 3.1, a projection module takes T̂ r
t→t+1, xr

t+1, and the
depth estimation Ψ(θ; xr

t ), to generate the synthesized frame x̂r
t+1→t (θ,ϑsf) which, ide-

ally, should match xr
t . In fact, both frames adjacent to xr

t are considered for robustness.
Thus, the SfM-inspired component of Lsf is defined as:

P r
t (θ,ϑsf) = cpe(xr

t , x̂r
t±1→t (θ,ϑsf), xr

t±1) ,

where cpe() is a pixelwise conditioned photo-metric error and cpe() its average over the
pixels. Obtaining cpe() starts by computing two pixelwise photo-metric error measure-
ments, pe(xr

t−1, xr
t , xr

t+1) and pe(x̂r
t−1→t (θ,ϑsf), xr

t , x̂r
t+1→t (θ,ϑsf)), where pe(xr

−1, xr
0 , xr

+1) =
min(pe(xr

0 , xr
−1), pe(xr

0 , xr
+1)), and pe(xr

A , xr
B ) is the pixelwise photo-metric error between

xr
A and xr

B defined in [41], i.e., based on local structural similarity (SSIM) and pixelwise
photo-metric absolute differences between xr

A and xr
B . Thus, min() applies pixelwise.

Then, a pixelwise binary auto-mask [42] is computed as:

$r
t (xr

t , x̂r
t±1→t (θ,ϑsf), xr

t±1) = [
pe(x̂r

t−1→t (θ,ϑsf), xr
t , x̂r

t+1→t (θ,ϑsf)) <
pe(xr

t−1, xr
t , xr

t+1)
]

I,
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where [ ]I denotes the Iverson bracket applied pixelwise. Finally, cpe() is computed as:

cpe(xr
t , x̂r

t±1→t (θ,ϑsf), xr
t±1) = $r

t (xr
t , x̂r

t±1→t (θ,ϑsf), xr
t±1)¯

pe(x̂r
t−1→t (θ,ϑsf), xr

t , x̂r
t+1→t (θ,ϑsf)) ,

where ¯ stands for pixelwise multiplication. The auto-mask $r
t () conditions which pixels

of pe() are considered during the gradient computation of Lsf. As explained in [42], the
aim of $r

t () is to remove, during training, the influence of pixels which remain the same
between adjacent frames because they are assumed to often indicate SfM violations such
as a static camera, objects moving as the camera, or low texture regions. The support of
ϑsf is not needed at testing time.

3.3.5 Supervised loss: Lsp(θ; X s .Y s)

In this case, since we address an estimation problem and we have accurate GT, we base
Lsp on the L1 metric. On the other hand, MDE is specially interesting to determine how
far is the ego-vehicle from vehicles, pedestrians, etc. Accordingly, since Y s includes
semantic class GT, we use it to increase the relevance of accurately estimating the depth
for such major traffic protagonists. Moreover, since virtual-world depth maps are based
on the Z-buffer involved on image rendering, the range of depth values available as GT
tend to be over-optimistic even for active sensors such as LiDAR. For instance, there can
be depth values larger than 300 m in the Z-buffer. Since we do not aim at estimating
depth beyond a reasonable threshold (in m), d max, to compute Lsp we will also discard
pixels p with d s

t (p) ≥ d max. For each xs
t , both the semantic class relevance and the out-of-

range depth values, can be codified as real-valued weights running on [0,1] and arranged
on a mask, $s

t . Thus, $s
t depends on d s

t ,d max, and c s
t . However, contrarily to $r

t (), we
can compute $s

t offline, i.e., before starting the training process. Taking all these details
into account, we define our supervised loss as:

Lsp(θ; X s .Y s ) =
N s∑
t=1

‖$s
t ¯ (Ψ(θ; xs

t )−d s
t )‖1 . (3.2)

3.3.6 Domain adaptation loss: LDA(θenc,ϑDA; X r , X s)

As can be seen in Fig. 3.1, we aim at learning depth features, θenc, so that it cannot
be distinguished whether they were generated from a real-world input frame (target
domain) or a virtual-world one (source domain); in other words, learning a domain
invariant θenc. Taking into account that we do not have accurate depth GT in the target
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domain, while we do have it for the source domain, we need to apply an unsupervised
DA technique to train θenc. In addition, as part of θ, the training of θenc must result
on an accurate Ψ(θ; x). Achieving this accuracy and domain invariance are adversarial
goals. Accordingly, we propose to use the Gradient-Reversal-Layer (GRL) idea introduced
in [35], which, up to the best of our knowledge, has not been applied before for DA in the
context of MDE. In this approach, the domain invariance of θenc is measured by a binary
target/source domain-classifier CNN, D, of weights {θenc,ϑDA}. In [35], a logistic loss is
proposed to train the domain classifier. In our case, this is set as:

LDA(θenc,ϑDA; X r , X s ) =
N r∑
t=1

log(D(θenc,ϑDA; xr
t ))+ (3.3)

N s∑
t=1

log(1−D(θenc,ϑDA; xs
t )) ,

where we assume that D(θenc,ϑDA; x) outputs 1 if x ∈ X r and 0 if x ∈ X s . The GRL has no
parameters and connects θenc with ϑDA (see Fig. 3.1). Its behavior is exactly as explained
in [35]. This means that during forward passes of training, it acts as an identity function,
while, during back-propagation, it reverses the gradient vector passing through it. Both
the GRL and ϑDA are required at training time, but not at testing time.

3.3.7 Overall training procedure

Algorithm 1 summarizes the steps to compute the needed gradient vectors for mini-batch
optimization. In particular, we need the gradients related to MonoDEVSNet weights,
θ = {θenc,θpyr,θdec}, and the weights of the auxiliary tasks, i.e., ϑsf for SfM self-supervision,
and ϑDA for DA. Regarding gradient computation, we do not need to distinguish θpyr

from θdec, so we define θpyde = {θpyr,θdec}. In Alg. 1, we introduce an equalizing factor
between supervised and self-supervised losses, ωsf ∈R, which aims at avoiding one loss
dominating over the other. A priori, we could set a constant factor. However, in practice,
we have found that having an adaptive value is more useful. Therefore, inspired by the
GradNorm idea [14], we use the ratio between the supervised and self-supervised losses.
Algorithm 1 also introduces the scaling factor ωDA ∈ R which, following [35], controls
the trade-off between optimizing θenc to obtain an accurate Ψ(θ; x) model versus being
domain invariant. Finally, LDA(θenc,ϑDA;;, X s

B ) and LDA(θenc,ϑDA; X r
B ,;) indicate whether

this loss must be computed only using virtual- or real-world data, respectively.
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Algorithm 1: Computing the gradients ∆
θenc , ∆

θpyde , ∆
ϑsf , ∆

ϑDA for a mini-batch

X r
B ⊂ X r , X s

B .Y s
B ⊂ X s .Y s . ∇ξi F (ξ1,ξ2) refers to back-propagation on F (ξ1,ξ2) with

respect to weights ξi ⊂ ξ1 ∪ξ2. ; is the empty set.

Forward Passes with {X s
B ,Y s

B }

`sp(θ) ←Lsp(θ; X s
B .Y s

B )

`DA,s (θenc,ϑDA) ←ωDALDA(θenc,ϑDA;;, X s
B )

Back-propagation for Supervision & DA

∆s
θpyde ←∇

θpyde`
sp(θ)

∆s
θenc ←∇θenc (`sp(θ)−`DA,s (θenc,ϑDA))

∆s
ϑDA ←∇ϑDA`DA,s (θenc,ϑDA)

Forward Passes with X r
B

`sf(θ,ϑsf) ←Lsf(θ,ϑsf; X r
B )

`DA,r (θenc,ϑDA) ←ωDALDA(θenc,ϑDA; X r
B ,;)

Back-propagation for Self-supervision & DA

∆r
θpyde ←∇

θpyde`
sf(θ,ϑsf)

∆r
θenc ←∇θenc (`sf(θ,ϑsf)−`DA,r (θenc,ϑDA))

∆r
ϑDA ←∇ϑDA`DA,r (θenc,ϑDA)

Setting the final gradient vectors

∆
ϑsf ←∇ϑsf`

sf(θ,ϑsf)

∆ϑDA ←∆s
ϑDA +∆r

ϑDA

ωsf ←`sp(θ)/`sf(θ,ϑsf)

∆
θpyde ←∆s

θpyde +ωsf∆r
θpyde

∆θenc ←∆s
θenc +ωsf∆r

θenc
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3.3.8 Absolute depth computation

The virtual-world supervised data trains Ψ(θ; x) on absolute depth values, while the
real-world SfM self-supervised data trains Ψ(θ; x) on relative depth values. Thanks
to the unsupervised DA, the depth features θenc are trained to be domain invariant.
However, according to our experiments, this is not sufficient for Ψ(θ; x) producing
accurate absolute depth values at testing time. Fortunately, thanks to the use of virtual-
world data, we can still compute a global scaling factor, ψ ∈R, so that ψΨ(θ; x) is accurate
in absolute depth terms. For that, we assume that the sequences in X s are acquired with
a camera analogous to the one used to acquire the sequences in X r . Here analogous
refers to using the same number of pixels, field of view, frame rate, and mounted on-
board in similar heading directions. Note that simulators are flexible enough for setting
these camera parameters as needed. Accordingly, we train a Ψ(θ; x) model using only
data from X s and SfM self-supervision, i.e. as if we would not have supervision for X s .
Then, we find the median depth value produced by this model on the virtual-world data,
d̂ s,m ∈R. Finally, we set ψ= d s,m/d̂ s,m, where d s,m ∈R is the median depth value of the
GT. This pre-processing step is performed once and the model discarded afterwards.
Other works apply a similar approach [15, 42, 45, 152, 154] but relying on LiDAR data as
GT reference, while we only rely on virtual-world data.

3.4 Experimental Results

We start by defining the datasets and evaluation metrics used in our experiments. After,
we provide relevant implementation and training details of MonoDEVSNet. Finally, we
present and discuss our quantitative and qualitative results, comparing them with those
from previous literature as well as performing an ablative analysis over MonoDEVSNet
components.

3.4.1 Datasets and evaluation metrics

We use publicly available datasets and metrics which are de facto standards in MDE
research. In particular, we use KITTI Raw (KR) [38] and Virtual KITTI (VK) [5] as real-
and virtual-world sequences, respectively. We follow Zhou et al. [154] training-testing
split. From the training split we select 12K monocular triplets, i.e., samples of the form
{xr

t−1, xr
t , xr

t+1}. The testing split consists of 697 isolated images with LiDAR-based GT,
actually introduced by Eigen et al. [30]. In addition, for considering the semantic content
of the images in the analysis of results, we also use KITTI Stereo 2015 (KS) [83] for testing.
This dataset consists of 200 isolated images with enhanced depth maps and semantic
labels. VK is used only for training, we also use 12K monocular triplets (non-rotated
camera subset) with associated depth GT. In this case, the triplets are used to calibrate
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the global scaling factor ψ (see Sect. 3.3.8), while for actual training supervision only 12K
isolated frames are used. As the depth GT of VK ranges up to ∼ 655m, to match the range
of KR’s LiDAR-based GT, we clip it to 80m (d max). VK includes similar weather conditions
as KR/KS, and adds situations with fog, overcast, and rain, as well as sunrise and sunset
illumination.

As is common practice since [41], we use Make3D dataset [111] for assessing general-
ization. It contains photographs of urban and natural areas. Thus, Make3D shows views
and content pretty much different from those on-board a vehicle as KR, KS, and VK. The
images come with depth GT acquired by a 3D scanner. There are 534 images with depth
GT, organized in a standard split of 400 for training and 134 for testing. We use the latter,
since we rely on Make3D only for testing.

In order to assess quantitative MDE results, we use the standard metrics introduced
by Eigen et al. [30] and described in Section 2.4.3, i.e., the average absolute relative error
(abs-rel), the average squared relative error (sq-rel), the root mean square error (rms),
and the rms log error (rms-log). For these metrics, the lower the better. In addition, the
accuracy (termed as δ) under a threshold τ ∈ {1.25,1.252,1.253} is also used as metric.
In this case, the higher the better. We remind that the abs-rel error and the δ< τ are
percentage measurements, sq-rel and rms are reported in meters, and rms-log is similar
(reported in meters) to rms but applied to logarithm depth values.

These metrics are applied to absolute depth values for MDE models trained with
depth supervision coming from either LiDAR [6, 30, 33, 46, 49, 52, 69, 78, 110, 138, 145],
stereo [37, 41, 42, 91, 112], real-world stereo and virtual-world depth [92, 151], or stereo
and LiDAR [53,66]. However, MDE models trained on pure SfM self-supervision can only
estimate depth in relative terms, i.e., up to scale. Moreover, the scale factor varies from
image to image, a problem known as scale inconsistency. In this case, before computing
the above metrics, it is applied a per-image correction factor computed at testing time
[15, 42, 45, 146, 152, 154]. In particular, given a test image x with GT and estimated
depth d(x) and d̂(x), respectively, the common practice consists of computing a scale
ψ(x) ∈R as the ratio median(d(x))/median(d̂(x)), and then compare ψ(x)d̂(x) with d(x).
On the other hand, SfM self-supervision with the help of additional information can
train models able to produce absolute scale in testing time. For instance, [44] uses the
ego-vehicle speed and, in fact, virtual-world supervision can help too [88, 153]. The
latter approach is the one followed in this chapter, especially thanks to the procedure
presented in Sect. 3.3.8. Therefore, Ψ(θ; x) will be evaluated in relative scale terms, and
ψΨ(θ; x) in absolute terms. Please, note that our ψ ∈R scaling factor is constant for all
the evaluated images and computed at training time. In the following, when presenting
quantitative results, we will make clear if they are in relative or absolute terms.
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Table 3.1 – Comparing ResNet and HRNet as backbone for Ψ(θ; x), training only on SfM
self-supervision (relative scale) using the framework in [42]. MW column stands for
millions of θenc weights to be learnt. FPS stands for frames per second as required by
Ψ(θ; x) to process x, while GFLOPS refers to the giga floating-point operations per second
required by θenc; in both cases using an NVIDIA RTX 2080Ti GPU. The 1.25n columns,
n ∈ {1,2}, refer to the τ in the usual δ< τ accuracy metrics. In all the tables of Sect. 3.4,
bold stands for best and underline for second-best. (∗) Currently, HRNet branches do
not run in parallel in PyTorch, thus, compromising speed.

θenc Backb. MW GFLOPS FPS abs-rel sq-rel rms 1.25 1.252

ResNet-18 11.6 4.47 141.2 0.115 0.882 4.701 0.879 0.961
ResNet-50 25.5 10.14 77.06 0.110 0.831 4.642 0.883 0.962

ResNet-101 44.5 19.29 43.26 0.110 0.809 4.712 0.878 0.960
ResNet-152 60.2 28.47 30.71 0.107 0.800 4.629 0.885 0.962
HRNet-W18 9.5 8.29 15.79∗ 0.107 0.846 4.671 0.887 0.962
HRNet-W32 29.3 19.50 15.53∗ 0.107 0.881 4.794 0.886 0.961
HRNet-W48 65.3 40.04 15.48∗ 0.105 0.791 4.590 0.888 0.963

3.4.2 Implementation details

We start by selecting the actual CNN layers to implement Ψ(θ; x). Since we leverage the
SfM self-supervision idea from [42], a straightforward implementation would be to use
its ResNet-based architecture as it is. However, the High-Resolution Network (HRNet)
architecture [128], exhibits better accuracy in visual tasks such as semantic segmentation
and object detection, suggesting that it can be a better backbone than ResNet. Thus,
we decided to start our experiments by comparing ResNet and HRNet backbones using
the SfM self-supervision framework provided in [42]. In particular, we assess different
ResNet/HRNet architectures for θenc, while using the proposal in [42] for θdec. Then,
when using ResNet we have θpyr =;, while for HRNet θpyr consists of pyramidal layers
adapting the θenc and θdec CNN architectures under test. For these experiments, we rely
on KR. Table 3.1 shows the accuracy (in relative scale terms) of the tested variants and
their number of weights. We see how HRNet outperforms ResNet, being HRNet-W48
the best. Indeed, HRNet is slower than ResNet, and HRNet-W48 is the one requiring
more GFLOPS by far. However, at this stage of our research we target the architecture
which potentially can provide higher depth estimation accuracy. Thus, for our following
experiments, we will rely on HRNet-W48 although being the heaviest. We show the
corresponding pyramidal architecture of θpyr in Fig. 3.2. It is composed of five blocks
(Pi ), where each block is a pipeline of three consecutive layers consisting of convolution,
batch normalization, and ReLU. As a deep learning framework, we use PyTorch 1.5v [89].
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Figure 3.2 – Pyramidal architecture of θpyr.

In order to train the camera pose estimation network, T(ϑsf; xr
t , xr

t±1), we follow [42]
but using ResNet-50 instead of ResNet-18 since the former is more accurate. Four
convolutional layers are used to convert the ResNet-50 bottleneck features to the 6-DoF
relative pose vector (3D translation and rotation). For training the classification block of
D(θenc,ϑDA; x), i.e., ϑDA, we use a standard classification pipeline based on convolutions,
ReLU and fully connected layers. Finally, we remark that these networks are not required
at testing time.

3.4.3 Training details

The input images are processed (at training and testing time) at a resolution of 640×192
(W × H), where LANCZOS interpolation is performed from the ∼ 1242×375 original
resolution. As optimizer, we use Adam [64] with learning rate l r = 10−4, and the rest of
its hyper-parameters set to default values. The weights θenc are initialized from available
ImageNet [26] pre-training, θpyr,θdec, and ϑDA are randomly initialized with Kaiming
weights, while the ResNet-50 part of ϑsf is also initialized with ImageNet and the rest
(convolutional layers to output the pose vector) following Kaiming. The mini-batch size
is of 16 images, 50%/50% from real/virtual domains. To minimize over-fitting, we apply
standard data augmentation such as horizontal flip, a 50% chance of random brightness,
contrast, saturation, and hue jitter with ranges of ±0.2, ±0.2, ±0.2, and ±0.1, respectively.
Remaining hyper-parameters were set as λ= 0.001 in Eq. 3.1, ωDA = 10 in Alg. 1, and in Eq.
3.2 our mask $s

t is set to have values of 1.0 for traffic participants (vehicles, pedestrians,
etc.), 0.5 for static infrastructure (buildings, road, vegetation, etc.), and 0.0 for the sky
and pixels with depth over d max (here 80m).
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Table 3.2 – Relative depth results up to 80m on the (KR) Eigen et al. [30] testing split. These
methods rely on SfM self-supervision. In addition, methods in gray use DA supported by
VK. (1) MonoDepth2 is based only on SfM self-supervision.

Method abs-rel sq-rel rms rms-log 1.25 1.252 1.253

[154] (Zhou et al.) 0.183 1.595 6.709 0.270 0.734 0.902 0.959
[146] GeoNet 0.149 1.060 5.567 0.226 0.796 0.935 0.975
[42] MonoDepth21 0.115 0.903 4.863 0.193 0.877 0.959 0.981
[152] (Zhao et al.) 0.113 0.704 4.581 0.184 0.871 0.961 0.984
[45] (Guizilini et al.) 0.102 0.698 4.381 0.178 0.896 0.964 0.984
[15] S3Net (VK_v1) 0.124 0.826 4.981 0.200 0.846 0.955 0.982
MonoDEVSNet / VK_v1 0.105 0.753 4.389 0.179 0.890 0.965 0.983
MonoDEVSNet / VK_v2 0.102 0.685 4.303 0.178 0.894 0.966 0.984

3.4.4 Results and discussion

Relative depth assessment

We start by assessing MDE in relative terms. Table 3.2 presents MonoDEVSNet results
(Ours) and those from previous works based on SfM self-supervision. From this table
we can draw several observations. Regarding DA, MonoDEVSNet (VK_v1) outperforms
S3Net (VK_v1) in all metrics. The new version of VK (VK_v2) allows us to obtain even
better results. MonoDEVSNet with virtual-world supervision outperforms the version
with only SfM self-supervision (best result in Table 3.1) in all metrics, no matter the VK
version we use. Overall, MonoDEVSNet outperforms most previous methods, being on
pair with [45].

Absolute depth assessment

While assessing depth in relative terms is a reasonable option to compare methods purely
based on SfM self-supervision, the most relevant evaluation is in terms of absolute depth.
These are presented in Table 3.3. The first (top) block of this table shows results based
on depth supervision from LiDAR, thus, a priori they can be thought of as upper-bounds
for methods based on self-supervision. The second block shows methods that only use
virtual-world supervision. The third and fourth (bottom) blocks show results based on
stereo and SfM self-supervision, respectively. Methods in gray use DA supported by
VK. We can draw several observations from this table. MonoDEVSNet (Ours) is the best
performing among those leveraging supervision from VK_v1 and, consistently with the
results on relative depth, by using VK_v2 we improve MonoDEVSNet results. In fact,
MonoDEVSNet based on VK_v2 outperforms all self-supervised methods, including

44



3.4. Experimental Results

Table 3.3 – Absolute depth results up to 80m on the (KR) Eigen et al. [30] testing split. We
divide the results into four blocks. From top to bottom, the blocks refer to: methods
based on LiDAR supervision, only virtual-world supervision, stereo self-supervision,
SfM self-supervision. In these blocks, we remark best and second-best results per block.
Methods in gray use DA supported by VK. We remark some additional comments: (1)
in addition to LiDAR supervision, it also uses stereo self-supervision; (2) it uses stereo
and SfM self-supervision; (3) in this case, the MDE network is pre-trained on Cityscapes
dataset [18] and then fine-tuned on KITTI.

Method abs-rel sq-rel rms rms-log 1.25 1.252 1.253

[30] (Eigen et al.) 0.203 1.548 6.307 0.282 0.702 0.890 0.890
[78] (Liu et al.) 0.217 1.841 6.986 0.289 0.647 0.882 0.961
[6] (Cao et al.) 0.115 N/A 4.712 0.198 0.887 0.963 0.982
[66] (Kuzni. et al.)1 0.113 0.741 4.621 0.189 0.862 0.960 0.986
[138] (Xu et al.) 0.122 0.897 4.677 N/A 0.818 0.954 0.985
[49] (Gurram et al.) 0.100 0.601 4.298 0.174 0.874 0.966 0.989
[33] DORN 0.098 0.582 3.666 0.160 0.899 0.967 0.986

[88] AdaDepth / VK_v1 0.167 1.257 5.578 0.237 0.771 0.922 0.971
[153] T 2Net / VK_v1 0.174 1.410 6.046 0.253 0.754 0.916 0.966

[37] (Garg et al.) 0.169 1.512 5.763 0.236 0.836 0.935 0.968
[91] SuperDepth 0.112 0.875 4.958 0.207 0.852 0.947 0.977
[42] MonoDepth2 0.109 0.873 4.960 0.209 0.864 0.948 0.975
[42] MonoDepth22 0.106 0.806 4.630 0.193 0.876 0.958 0.980
[151] GASDA / VK_v1 0.120 1.022 5.162 0.215 0.848 0.944 0.974
[92] SharinGAN / VK_v1 0.116 0.939 5.068 0.203 0.850 0.948 0.978

[44] PackNet-SfM 0.111 0.829 4.788 0.199 0.864 0.954 0.980
[44] PackNet-SfM3 0.108 0.803 4.642 0.195 0.875 0.958 0.980
MonoDEVSNet / VK_v1 0.108 0.775 4.464 0.188 0.875 0.961 0.982
MonoDEVSNet / VK_v2 0.104 0.721 4.396 0.185 0.880 0.962 0.983

those using stereo rigs instead of monocular systems. We are not yet able to reach the
performance of the best methods supervised with LiDAR data. However, it is clear that
our proposal is able to successfully combine real-world SfM self-supervision and virtual-
world supervision. Thus, we think it is worth to keep this line of research until reaching
the LiDAR-based upper-bounds.
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Table 3.4 – Absolute depth ablative results of MonoDEVSNet (VK_v2) up to 80m on the
(KR) Eigen testing split [30]. Rows 1-6 show the progressive use of the components of
our proposal (each row adds a new component). 50/50 refers to mini-batches of 50%
real-world samples and 50% or virtual-world ones; not using 50/50 (rows 1-2) means
that we alternate mini-batches of pure real- or virtual-world samples. Row 7 corresponds
to a simplification of the SfM self-supervised loss. ϑG (rows 8-9) refers to a GAN-based
DA approach. LB (lower bound, row 10) indicates the use of only virtual-world data.
UB (upper bound, row 12) indicates the use of KITTI LiDAR-based supervision instead
of virtual-world data. Rows 11 and 13 show the difference of our best model (All) with
respect to LB and UB, respectively. ↑ D means that All is D units better, while ↓ D means
that it is D units worse. All/W18 (row 14) and All/W32 (row 15) refer to using the All
configuration by relying on HRNet-W18 and HRNet-W32, respectively.

Configuration abs-rel sq-rel rms rms-log 1.25 1.252 1.253

1. {X r , X s .Y s } 0.368 2.601 8.025 0.514 0.080 0.478 0.883
2. +ψ 0.140 0.876 4.915 0.217 0.828 0.950 0.980
3. +50/50 0.128 0.880 4.618 0.198 0.844 0.957 0.982
4. +ϑDA 0.110 0.724 4.450 0.187 0.873 0.960 0.983
5. +ωsf 0.106 0.716 4.441 0.188 0.876 0.962 0.982
6. +$s

t (All) 0.104 0.721 4.396 0.185 0.880 0.962 0.983
7. Simplified Lsf 0.105 0.736 4.471 0.190 0.875 0.960 0.981

8. All+ϑG;−ϑDA 0.119 0.809 4.654 0.196 0.857 0.958 0.982
9. All+ϑG 0.106 0.748 4.503 0.191 0.873 0.959 0.981

10. LB 0.165 1.280 5.628 0.248 0.777 0.916 0.965
11. ↑All vs. ↓LB ↑0.061 ↑0.559 ↑1.232 ↑0.063 ↑0.103 ↑0.046 ↑0.018
12. UB 0.088 0.583 3.978 0.164 0.906 0.970 0.986
13. ↑All vs. ↓UB ↓0.016 ↓0.138 ↓0.418 ↓0.021 ↓0.026 ↓0.008 ↓0.003

14. All/W18 0.109 0.773 4.524 0.190 0.871 0.960 0.982
15. All/W32 0.107 0.754 4.510 0.188 0.875 0.960 0.982

Ablative analysis of MonoDEVSNet

It is also worth to analyze the contribution of the main components of our proposal.
In rows 1-6 of Table 3.4, we add one component at a time showing performance for
absolute depth. The 1st row corresponds to using the real-world data with SfM self-
supervision and the virtual-world images with only depth supervision, i.e., without
using neither semantic supervision ($s

t ), nor gradient equalization (ωsf), nor domain
adaptation (ϑDA), nor mixed mini-batches (50/50), nor the global scaling factor (ψ). By
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comparing 1st and 2nd rows (i.e., w/o ψ and w/ ψ, resp.), we can see how relevant
is obtaining a good global scaling factor to output absolute depth. In fact, adding ψ

to the virtual-world depth supervision shows the higher improvement among all the
components of our proposal. Then, using mixed mini-batches of real- and virtual-world
data improves the performance over alternating mini-batches of only either real- or
virtual-world data. This can be seen by comparing 2nd and 3rd rows (i.e., w/o 50/50
and w/ 50/50, resp.). If we alternate the domains, the optimization of a mini-batch
is dominated by self-supervision (real-world data), and the optimization of the next
mini-batch is dominated by supervision (virtual-world data). Thus, there is not an
actual joint optimization of SfM self-supervised and supervised losses, which turns to
be relevant. Yet, as can be seen in 4th row, when we add the DA component (ϑDA) we
improve further the depth estimation results. As can bee seen in 5th row, adding the
equalization (ωsf) between gradients coming from supervision and self-supervision also
improves the depth estimation results. Finally, adding the virtual-world mask ($s

t ) leads
to the best performance in 6th row. Overall, this analysis shows how all the considered
components are relevant in our proposal. We also remark that these components are
needed only to train θ, but only ψ and θ are required at testing time. Additionally, we
have assessed the effect of simplifying the SfM self-supervised loss that we leverage
from [42], here summarized in Sect. 3.3.4. In particular, we neither use the auto-mask
($r

t ()), nor the multi-scale depth loss, and we replaced the minimum re-projection loss
by the usual average re-projection loss (i.e., we re-define pe(xr

−1, xr
0 , xr

+1) in Sect. 3.3.4).
Results are shown in the 7th row. The metrics show worse values than in 6th row (All),
but still outperforming or being on pair with PackNet-SfM and the stereo self-supervised
methods of Table 3.3.

We also did additional experiments changing the DA mechanism. Instead of taking
direct real- and virtual-world images as input to train Ψ(θ; x), a GAN-based CNN, G, pro-
cesses them to create an image space in which (hopefully) it is not possible to distinguish
the domain. We train a CNN, Ψ(θ;G(ϑG; x)), where x can come from either the real or the
virtual domain, and ϑG are the weights of G. These weights are jointly trained with θ,ϑsf,
and ϑDA to optimize depth estimation and minimize the possibility of discriminating the
original domain of a sample xG =G(ϑG; x). Table 3.4 shows results using this GAN when
removing ϑDA (8th row) and when keeping it (9th row). As we can see, this approach does
not improve performance. Moreover, the training is more complex and G(ϑG; x) would
be required at testing time. Thus, we discarded it.

We also assessed the improvement of our proposal with respect a lower-bound model
(LB) trained on virtual-world images and their depth GT (X s .Y s ), but neither using real-
world data (X r ), nor DA (ϑsf), nor the mask ($s

t ). Results are shown in 10th row of Table
3.4, and we explicitly show the improvement of our proposal over such LB in 11th row.
Likewise, we have trained an upper-bound model (UB) replacing VK data by KR data
with LiDAR-based supervision, so that DA is not required. Results are shown in 12th row,
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and the distance of our model to this UB is explicitly shown in 13th row. Comparing 11th
and 13th rows we can see how we are clearly closer to the UB than to the LB.

Finally, we have done experiments using HRNet-W18 and HRNet-W32. The results
are shown in 14th and 15th rows of Table 3.4, respectively. Indeed, as it happens with the
results on relative depth (Table 3.1), HRNet-W48 outperforms these more lightweight
versions of HRNet. However, by using HRNet-W18 and HRNet-W32 we still outperform
or are on pair with the state-of-the-art self-supervised methods shown in Table 3.3, i.e.,
those based on stereo self-supervision and PackNet-SfM.

Qualitative results

Figure 3.3 presents qualitatively results relying on the depth color map commonly used
in the MDE literature. We show results for representative methods in Table 3.3, namely,
DORN (LiDAR supervision), SharinGAN (stereo self-supervision and virtual-world su-
pervision), PackNet-SfM (SfM self-supervision and ego-vehicle speed supervision), and
MonoDEVSNet (Ours) using VK_v1 and VK_v2 (SfM self-supervision and virtual-world
supervision). We also show the corresponding LiDAR-based GT. This GT shows that for
LiDAR configurations such as the one used to acquire KITTI dataset, detecting some
close vehicles may be problematic since only a few LiDAR points capture their presence.
Despite being trained on LiDAR supervision, DORN provides more accurate depth infor-
mation in these corner cases than the raw LiDAR, which is an example of the relevance of
MDE in general. However, DORN shows worse results in these corner cases than the rest
(SharinGAN/PackNet-SfM/Ours), even being more accurate in terms of MDE metrics,
which focus on global assessment. SharinGAN has more difficulties than PackNet-SfM
and our proposal for providing sharp borders in vertical objects/infra-structure (e.g.,
vehicles, pedestrians, traffic signs, trees). An interesting point to highlight is also the
qualitative difference that we observe on our results depending on the use of VK ver-
sion. In VK_v1 data, vehicle windows appear as transparent to depth, like in many cases
happens with LiDAR data, while in VK_v2 they appear as solid. This is translated to the
MDE results as we can observe comparing the two bottom rows of Fig. 3.3. Technically,
we think the qualitative results of VK_v2 make more sense since the windows are there
at the given depth. However, what we would like to highlight is that we can select one
option or another thanks to the use of virtual-world data.
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Additional insights

In terms of qualitative results we think the best performing and most similar approaches
are PackNet-SfM and MonoDEVSNet, both relying on real-world monocular systems.
Thus, we perform a deeper comparison of them. First, following PackNet-SfM article [44],
Fig. 3.4 plots the abs-rel error as a function of depth. Since this is a relative error, we also
plot rms. Results are similar within a close range of up to 20m. Within 20m and 70m,
our proposal clearly outperforms PackNet-SfM and beyond 70m both methods perform
similarly. How these differences translate to abs-rel and rms global scores depends on
the number of pixels falling in each distance range, which we show as an histogram in
the same plot. We see how for the KR testing set most of the pixels fall in the 5−20m
depth range, where both methods perform more similarly. Second, we provide further
comparative insights by using KS data since it has associated per-class semantic GT. Note
that, although KS is a different data split than the one used in the experiments shown so
far (KR), still is KITTI data; thus, we are not yet facing experiments about generalization.
Figure Fig. 3.5 compares qualitative results of PackNet-SfM vs. MonoDEVSNet. We can
see how PackNet-SfM misses some vehicles that our proposal does not. We believe
that these vehicles may be moving at a similar speed w.r.t the ego-vehicle, which may
be problematic for pure SfM-based approaches and we hypothesize that virtual-world
supervision can help to avoid this problem. Figure Fig. 3.6 shows the corresponding
abs-rel metric per-class, focusing on the most relevant classes for driving. Note how the
main differences between PackNet-SfM and MonoDEVSNet are observed on vehicles,
especially on cars.

Figure 3.4 – Abs-rel and rms errors as a function of depth, for KR Eigen testing split
[30]. The histogram of depth GT is shown with bars. We compare PackNet-SfM and
MonoDEVSNet.
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Figure 3.5 – Qualitative results on KS data. From left to right: input images, PackNet-SfM,
MonoDEVSNet.

Figure 3.6 – Per-class abs-rel and rms errors for KS, computed by averaging over the
pixels of each class, for PackNet-SfM and MonoDEVSNet. The % of pixels of each class is
shown.

Additional qualitative results are added in Fig. 3.7, where we can see how original
images from KR and KS can be rendered as a textured point cloud. In particular, the
viewpoint of these renders can change with respect to the original images thanks to the
absolute depth values obtained with MonoDEVSNet.
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Figure 3.7 – Point cloud representation on KR Eigen test split [30] and KS data from left
to right. From top to bottom: input images, MonoDEVSNet textured point cloud.

Generalization results

As done in the previous literature using VK to support MDE [88, 92, 151, 153], we assess
generalization on Make3D dataset. As in this literature, we follow the standard data
conditioning (cropping and resizing) for models trained on KR, as well as the standard
protocol introduced in [41] to compute MDE evaluation metrics (e.g. only depth below
70m is considered). Table Table 3.5 presents the quantitative results usually reported
for Make3D, and ours. Note how, in generalization terms, our method also outperforms
the rest. Moreover, Fig. 3.8 shows how our proposal captures the depth structure even
better than the depth GT, which is build from 55×305 depth maps acquired by a 3D
scanner. In addition, we show qualitative results on two datasets: ApolloStereo [75] and
Cityscapes [18] datasets which are recording in a real-world driving setup similar to
car-mounted videos of KITTI. A visual survey showing the results of MonoDEVSNet on
ApolloStereo and Cityscapes dataset is summerized in Fig. 3.9 and Fig. 3.10 respectively.
However, its difficult to compute MDE evaluation metrics on these datasets, as the depth
maps from Cityscapes are precomputed by using SGM and as the ApolloStereo doesnt
provide baseline for the conversion of disparity to depth maps.
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Table 3.5 – Absolute depth results on Make3D testing set. All the shown methods use

Make3D only for testing (generalization), except (1) which fine-tunes on Make3D training
set too.

Method abs-rel sq-rel rms

[153] T 2Net / VK_v1 0.508 6.589 8.935
[88] AdaDepth-S1 / VK_v1 0.452 5.71 9.559
[151] GASDA / VK_v1 0.403 6.709 10.424
[92] SharinGAN / VK_v1 0.377 4.900 8.388
MonoDEVSNet / VK_v1 0.381 3.997 7.949
MonoDEVSNet / VK_v2 0.377 3.782 8.011

Figure 3.8 – Qualitative results of MonoDEVSNet on Make3D. From left to right: input
images, depth GT, MonoDEVSNet.

53



3. Monocular Depth Estimation through Virtual-world Supervision and Real-world
SfM Self-Supervision

F
ig

u
re

3.
9

–
Q

u
al

it
at

iv
e

re
su

lt
s

o
n

A
p

o
llo

st
er

eo
d

at
as

et
.

54



3.4. Experimental Results

Figure 3.10 – Qualitative results of MonoDEVSNet on Cityscapes dataset. From left to
right: input images, MonoDEVSNet estimated depth maps.

Failure cases

Fig. 3.11 shows qualitative results where some errors in the depth map are highlighted:
(1) overexposed pixel columns lead to hallucinate a vertical structure; (2) saturated fence
segments are not seen; (3) pedestrians are visible but with an approximate silhouette;
(4) a bridge is not seen; (5) saturated skies do not appear as faraway. Thinking in the
information required to drive and assuming that depth estimation is combined with
semantic segmentation, we think that the cases (3) and (5) are not a problem and the
(2) would be only if the unseen segment is too large (which is not the case in the shown
example). The case (4) could be a problem for an autonomous bus/truck provided it
does not fit below the bridge, but usually those would have predefined routes where this
should not happen. However, (1) can be a problem depending where the hallucinated
structure appears, e.g., in the example probably it would not be a problem, but it would
be if the structure appears in the middle of the road. Behind some errors, we can find
the lack of training data (e.g., for the bridge not seen). Behind others, we find extreme
imaging conditions (like overexposed image areas). In the former case, we need to re-
train by taking these cases into account; while, in the latter case, we need to prevent
such undesired effects (e.g. by using HDR camera settings). It is worth to mention that
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we have seen similar errors in other methods in the literature.

Figure 3.11 – Failure cases in the depth map.
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Revisiting θenc architectures

We selected HRNet-W48 because it provides the most accurate results, however, we
may need to sacrifice accuracy to reduce the computational burden. Thus, we have run
more experiments with the final MonoDEVS training approach, just changing θenc. These
include representative architectures of ResNet and HRNet types, as well as, DenseNet [59].
As ResNet, DenseNet does not need adding the pyramidal blocks (θpyr). Moreover, as
we mentioned in Sect. 3.4.1, to keep our experimental work manageable, we used 12K
triplets (samples) from the real- and virtual-world training sets; however, it is possible
to use ∼ 40K samples from KR, which is the common practice in the literature (as those
using KR in Tables 3.1-3.3). Likewise, we use∼ 22K samples from VK_v2 as other literature
methods in Table 3.5 do with VK_v1. Table 3.6 presents the corresponding results. The
block ∼ 40K/22K can be directly compared to the literature in Table 3.3). We see how,
indeed, HRNet-W48 is the best in term of accuracy metrics. However, we see that
DenseNet-121 offers the best trade-off between memory (MW) and computational
(GFLOPS) requirements, offering real-time (FPS) with accuracy close to the state-of-the-
art. If we need to reduce the computational burden and significantly increase the FPS,
then ResNet-18 is a reasonable alternative.

Table 3.6 – Absolute depth. We provide final experimental results for different versions
of three different architectures. In the upper block of the table we have used the same
training set as in previous experiments, i.e., 12K/12K from KR/VK_v2. In the bottom
block, as is usual in the literature, we use all the available training data, i.e., ∼ 40K and
∼ 22K, respectively.

θenc Backb. MW GFLOPS FPS abs-rel sq-rel rms 1.25 1.252

ResNet-18 11.6 4.47 141.2 0.116 0.836 4.735 0.860 0.954
ResNet-152 60.2 19.29 30.71 0.108 0.759 4.559 0.870 0.960
HRNet-W18 9.5 8.29 15.79 0.109 0.773 4.524 0.871 0.960
HRNet-W48 65.3 40.04 15.48 0.104 0.721 4.396 0.880 0.962

DenseNet-121 6.9 7.09 32.60 0.116 0.812 4.646 0.854 0.960
DenseNet-161 26.5 19.21 24.87 0.111 0.763 4.516 0.864 0.960

ResNet-18 11.6 4.47 141.2 0.114 0.838 4.734 0.860 0.954
ResNet-152 60.2 19.29 30.71 0.104 0.784 4.560 0.878 0.0.960
HRNet-W18 9.5 8.29 15.79 0.105 0.745 4.470 0.877 0.961
HRNet-W48 65.3 40.04 15.48 0.101 0.703 4.413 0.882 0.962

DenseNet-121 6.9 7.09 32.60 0.111 0.786 4.536 0.870 0.960
DenseNet-161 26.5 19.21 24.87 0.109 0.760 4.440 0.873 0.962
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3.5 Conclusion

For on-board perception, we have addressed monocular depth estimation by virtual-
world supervision (MonoDEVS) and real-world SfM-inspired self-supervision; the former
compensating for the inherent limitations of the latter. This challenging setting allows to
rely on a monocular system not only at testing time, but also at training time; a cheap
and scalable approach. We have designed a CNN, MonoDEVSNet, which seamlessly
trains on real- and virtual-world data, exploiting semantic and depth supervision from
the virtual-world data, and addressing the virtual-to-real domain gap by a relatively
simple approach which does not add computational complexity in testing time. We
have performed a comprehensive set of experiments assessing quantitative results in
terms of relative and absolute depth, generalization, and we show the relevance of the
components involved on MonoDEVSNet training. Our proposal yields state-of-the-art
results within the SfM-based setting, even outperforming stereo-based self-supervised
approaches. Qualitative results also confirm that MonoDEVSNet properly captures the
depth structure of the images. As a result, we show the usefulness of leveraging virtual-
world supervision to ultimately reach the upper-bound performance of methods based
on LiDAR supervision.
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4 On the Metrics for Evaluating Monocular
Depth Estimation

In previous chapters, we evaluated different MDE models. However, MDE is per-
formed to produce 3D information that can be used in downstream tasks related
to on-board perception of AVs or driver assistance. Therefore, the question that
arises is whether the standard metrics for MDE assessment are a good indicator
for future MDE-based driving-related perception tasks. We address this question
in this chapter. In particular, we take the task of 3D object detection on point
clouds as proxy of on-board perception. We train and test state-of-the-art 3D ob-
ject detectors using 3D point clouds coming from MDE models. We confront the
ranking of object detection results with the ranking given by the depth estimation
metrics of the MDE models. We conclude that, indeed, MDE evaluation metrics
give rise to a ranking of methods which reflects relatively well the 3D object de-
tection results we may expect. Among the different metrics, the absolute relative
(abs-rel) error seems to be the best for that purpose.

4.1 Introduction

In previous chapters, we address the problem of MDE from different perspectives de-
fined by the data available at training time. In Chapter 2, the focus is on leveraging
different types of supervision from different datasets (e.g., semantics from cityscapes
and depth from KITTI). In Chapter 3, the focus is on using SfM self-supervision (monoc-
ular sequences from an on-board camera) and depth supervision from virtual images,
thus, not requiring the use of expensive sensors such as LiDAR. While doing the many
experiments involved in this research, we reported our results and compare them with
those in the state-of-the-art. This has been done by using de facto standard metrics
for evaluating depth estimation, e.g., abs-rel, rms, etc. (see Equations 2.1-2.6). We can
see examples of such comparison of results both in Table 2.1 and Table 3.3. Looking
at these quantitative results, we can rank the different MDE models according to one
or several metrics. For instance, we can rank them by abs-rel or rms metrics. However,
the difference is not too large even the way of training the model is quite different. For
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instance, let us focus on the abs-rel values for MonoDEVSNet/VK_v2 and DORN in Table
3.3. We can see that for DORN abs-rel=0.098, while for MonoDEVNet abs-rel=0.104. The
former is based on LiDAR supervision, the latter does not use LiDAR for training, just
monocular sequences and virtual images. In other words, eventually DORN requires a
much elaborated sensor suite setting (calibrated camera and LiDAR) for training. Thus,
does the difference of ∼ 0.06 points justify the use of a LiDAR-based setting? This kind
of question was around, but not the focus, in previous chapters. Note that, when per-
forming MDE on-board an autonomous or assisted vehicle, obtaining depth estimation
maps is just an intermediate step of a perception stack. Thus, one may wonder if those
differences on depth estimation will be consolidated once such MDE models are used to
support the targeted perception task. The aim of this chapter is to do a step forward to
answer this question, using 3D object detection as targeted perception task.

More specifically, we use different MDE models to generate depth maps. These
depth maps are then used to generate 3D point clouds, which we term as Pseudo-
LiDAR in analogy with LiDAR point clouds. Pseudo-LiDAR is used for training and
testing 3D object detectors. We compare the ranking of MDE models according to their
performance estimating depth, and their performance supporting 3D object detection
through the generation of Pseudo-LiDAR. We consider eight MDE models working at
two resolutions (low and high), as well as three different CNN architectures for 3D object
detection (Point R-CNN [118], Voxel R-CNN [27], CenterPoint [144]). After analysing
our experimental results, based on KITTI benchmark [38], we have seen that the abs-rel
metric is well aligned with 3D object detection results in terms of ranking the MDE
methods. What remains as future work is to investigate if we can predict accuracy
improvements in 3D object detection from the improvements observed in the abs-rel
metric. Otherwise, we recommend to incorporate 3D object detection as part of the
evaluation of MDE models.

The rest of this chapter is organized as follows. In Sect. 4.2, we review the state-
of-the-art on 3D object detection. Note that we have reviewed the state-of-the-art on
MDE in previous chapters, while 3D object detection is new in this chapter. In Sect.
4.3, we present the models and methods we use in our experimental work, namely, the
MDE models, the 3D object detection models, and the procedure to generate Pseudo-
LiDAR from depth maps. In Sect. 4.4, we present quantitative and qualitative results. In
particular, we present the performance of the MDE models for both estimating depth and
supporting 3D object detection. This allows to compare the rankings of MDE generated
by MDE metrics vs. 3D object detection metrics, which is also done in this section.
Finally, Sect. 4.5 summarizes the work presented and the conclusions derived.
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4.2 Related Work

4.2.1 2D Object Detection

Given an image, object detection is the task of locating instances of semantic classes.
With the recent advancement in deep learning, object detection has witnessed significant
improvement over time. There have been two important contributions to solving the 2D
object detection problems, namely, R-CNN [40] and YOLO [103].

The Region-based Convolutional Neural Networks (R-CNNs)–known as a two-stage
detector–consists of two main stages: region proposal and detection network. Initially,
in the region proposal stage, the network provides the region of interest (ROI) of an
image based on some assumptions, such as texture, size, and pixel intensities. Later the
extracted feature vector for each region-proposal candidate is passed to the detection
module to classify the object and create a bounding box (BB) for each object. Neverthe-
less, training time is expensive as it has to process each region proposal individually at a
time. Considering this drawback of R-CNN, Fast R-CNN [39] was developed to reduce the
training time by running the neural network once on the whole image. This pioneering
work inspired developing faster networks to solve 2D object detection [51, 94, 106].

Another significant contribution to 2D object detection is YOLO, a single-stage detec-
tor. Unlike the region proposal-based methods, YOLO sees the entire image by dividing
it into N ×N grids and produces a class probability map to each grid cell. YOLO builds
the confidence value with the possible object class per grid and localizes with a BB in a
single step using a regression model. This work inspired further extensions to develop
end-to-end frameworks [76, 79, 102, 104, 121, 126, 127]. Hence, the single-stage and
two-stage detectors have emerged as a classical 2D and 3D object detection model by
combining prior knowledge and labeled datasets.

4.2.2 3D Object Detection

3D object detection plays a significant role in autonomous driving tasks such as path
planning, motion prediction, collision avoidance, etc. Like in 2D, 3D object detection can
also be solved as a single-stage detector [70, 71, 140, 157] which tends to be faster at the
inference time, while the two-stage detector [7,12,13,27,73,118,144,147] tends to be more
accurate. Besides, We can further categorize the 3D object detection task into two types
based on the sensor generating the input data, namely, LiDAR [27, 74, 118, 142, 144, 157]
and vision [7, 12, 13, 72, 73, 99, 130, 147] based. Currently, LiDAR-based performs better
than vision-based ones. But due to the high sparseness, irregularity of the point cloud,
computationally expensive, and limited semantic information, the research focus is
shifting towards vision-based methods [100]. Since in this chapter we strive for accuracy,
we analyze LiDAR and vision-based two-stage detectors in the rest of this section.
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LiDAR-based Methods

With the progress in deep learning, training a supervised 2D/3D object detector has
become reliable. But by directly applying CNNs on the LiDAR point cloud data, the
models suffer to learn shape information due to sparsity and high variance of the config-
uration of the 3D points. Hence learning feature vectors from the sparse point cloud is
a fundamental task for LiDAR-based methods, which leads to the development of 3D
CNNs [74] (inspired from PointNet [97]). Moreover, these methods can be classified as
point-based and voxel-based according to how they represent the raw 3D point clouds.

LiDAR point-based methods: These methods generally work directly with the
unstructured form of the raw point clouds coming from LiDARs. They preserve the
geometry information of the 3D scene as much as possible. Nevertheless, retrieving a 3D
point from the point cloud data is computationally expensive compared with volumetric
grids [80]. PointNet pioneered using point cloud data to learn 3D representation for
classification and segmentation tasks without converting input data into voxels or an-
other structure. PointNet++ [98] extended it further by running PointNet recursively in a
hierarchical manner to capture local structures and granular patterns of the point cloud.
Hence, point-based methods such as Point R-CNN [118], 3DSSD [142] started using
PointNet++ as a backbone network to extract pointwise features for 3D object detection
tasks. In Point R-CNN, the extracted 3D features from PointNet++ helps to produce
object proposals as 3D BBs. Using additional 3D CNNs, the new features categorize 3D
BB proposals and, then, each proposal is classified, and its BB is refined too (aiming
for a better adjustment). The limitation of Point R-CNN is the inference time: both the
backbone (PointNet++) and refinement modules in stage two are time-consuming.

LiDAR voxel-based methods: These methods generally transform the raw point
clouds to the a volumetric representation (voxel) in compact shape to efficiently extract
point features for 3D object detection via 3D CNNs (also known as voxelization). The
voxel-based methods are computationally efficient, sometimes with a drop of accuracy
because of information loss during the data quantization process [27,117]. VoxelNet [157]
was the first end-to-end trainable network to learn the informative features by dividing
the point cloud into equally spaced 3D voxels and processing through Voxel Feature
Encoding (VFE) network to extract the features. These 3D features are fed to the region
proposal network to construct probability scores and regress 3D BBs. Later, VoxelNet was
used as a 3D backbone network for several 3D object detection architectures [27, 144].
Voxel R-CNN [27] uses the voxel grid to compute the 3D features from the VoxelNet and
then transform them into 2D features using a 2D CNN. The output of this network is
processed by Region Proposal Networks (RPNs) to propose object candidates in the form
of 3D BBs. Then, given the 3D features and the 3D BBs, a voxel grouping is performed by
a process called voxel query (inspired in Ball query [98]). In addition, a PointNet inspired
process is applied to obtain grid point features, which are fed to fully connected networks
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(FCNs) to perform the final refinement and classification of the BBs. CenterPoint [144]
inspired by CenterNet [156], converts the 3D point cloud into voxels or pillars, using a
LiDAR-based backbone network i.e. VoxelNet or PointPillars [70]. For instance, using
VoxelNet as backbone network, voxels are the input to construct 3D features and flatten
them to produce 2D features. Then, the CenterNet keypoint detector is applied on the
2D features to find the object center. After, the anchor-free network makes heatmaps
to extract other object properties such as 3D size, orientation, and velocity from the
center location. In the second stage, based on the estimated geometric structure of the
3D center, the light-weighted point network extracts the point features at the center of
each side of the 3D BBs. All the point-feature vectors, including the feature vector of the
center point, are concatenated to pass through MLP layers to improve the confidence of
the classification output and regress the 3D BBs.

Vision-based Methods

These methods only take monocular or stereo images to produce 3D BBs for each object
instance. There are two main categories to predict the 3D BBs: template matching and
geometric properties-based methods. In the template matching-based methods, we
rely extensively on the depth maps computed from stereo images [13], sampling 3D
proposals produced by Fast R-CNN and sliding window [12], and the object templates
obtained from CAD models [7]. Instead of relying on the templates or 3D proposals,
geometric properties-based methods use accurate 2D BBs and estimate 3D pose from the
geometric and semantic information acquired by monocular images [72]. In comparison,
Stereo R-CNN [73] exploits 3D semantic information by using left and right features to
extract better RoI features for the 3D object detection task.

Since the recent high-performing point cloud-based methods [27, 118, 144] are ac-
cessible, another way to develop a vision-based method is to replace LiDAR point cloud
with reprojected estimated depth maps into 3D space, which is known as Pseudo-LiDAR.
Pseudo-LiDAR was first introduced in [130] by producing 3D points in camera coordi-
nates using depth estimation models ((monocular) [33] or (stereo) [8]) to mimic LiDAR,
then using these 3D points an input to train 3D object detectors [65, 96]. The conversion
from estimated depth maps to 3D points may produce noise that creates misalignment
and artifacts. To reduce their impact, Pseudo-LiDAR++ [147] uses depth cost volumes
instead of disparity to improve the stereo depth estimation results and later uses cheaper
LiDAR sensors to rectify the artifacts to enhance the 3D object detection results. However,
these two modules are trained separately. Later, Pseudo-LiDAR-e2e [99] has combined
the depth estimator and 3D object detection as a single end-to-end framework by using
differentiable Change of Representation (CoR) modules.

In order to perform the research addressed in this chapter, we rely on Point R-CNN
[118] (Fig. 4.3), Voxel R-CNN [27] (Fig. 4.4), and CenterPoint [144] (Fig. 4.5).
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4.3 Methods

In order to assess the usefulness of MDE methods for performing 3D object detection,
we consider different MDE approaches and 3D object detectors which work on 3D point
clouds. While LiDAR already provides such point clouds, for MDE we have to produce the
so-called Pseudo-LiDAR [130] point clouds by properly sampling the respective depth
maps. For MDE we consider recent state-of-the-art methods based on self-supervision
such as MonoDepth2 [42] and PackNet [44], as well as our MonoDEVSNet (Chapter 3). We
also consider state-of-the-art methods based on LiDAR supervision, such as AdaBins [3],
and MonoDELSNet, a modification of MonoDEVSNet where we replace virtual-world
supervision by LiDAR supervision. In the role of upper-bounds, we consider dense LiDAR
data as well as Pseudo-LiDAR based on depth-from-stereo computed by SDNet [147].
Regarding 3D object detection, we consider three relatively different approaches which
are Point R-CNN [118], Voxel R-CNN [27], and CenterPoint [144]. Accordingly, in Sect.
4.3.1 we introduce Pseudo-LiDAR generation, in Sect. 4.3.2 we summarize the above
mentioned 3D object detectors, and Sect. 4.3.3 introduces our MonoDELSNet variants
for MDE. Figure 4.1, briefly illustrates the overall idea of performing 3D object detection
from monocular images.

4.3.1 Pseudo-LiDAR Generation

From a depth map to a 3D point cloud: %

In order to generate a Pseudo-LiDAR point cloud, %, from a depth map, d , estimated
from an image, I , we need the intrinsic parameters, K, of the camera that generated this
image. More especifically, we need its optical center (Cu ,Cv ) and focal length1 F , which
can be obtained by well-established camera calibration methods [81]. Therefore, we
have K= {Cu ,Cv ,F }. Given this information, we can assign a 3D point, (x, y, z), to each
pixel, (u, v), of the depth map (an so of the input image) as follows:

z ← du,v ,

y ← (z/F )(v −Cv ) ,

x ← (z/F )(u −Cu) .

(4.1)

Therefore, % is generated by applying Eq. 4.1 in all pixels. Afterwards, we can even
visualize the 3D point cloud % from different viewpoints.

1In practice, calibration software allows to estimate a different focal length parameters per image axis, i.e.,
Fu and Fv . However, it is expected that Fu ≈ Fv , since this is basically a numerical trick. Thus, for the sake of
simplicity, we keep the idea of using a single focal length parameter.
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LiDAR-inspired
Sampling

d

3D Object Detections

Figure 4.1 – MDE-based 3D object detection in a nutshell. Given an image (I ) we apply a
MDE model (Ψ) to generate its corresponding depth map (d). With the intrinsic parame-
ters, K, of the camera capturing the images, as well as a set of parameters, L, defining
a LiDAR-inspired sampling procedure, the depth map can be converted to a 3D point
cloud, %̂. Then, %̂ is used to train and test a 3D object detector (Ξ) originally developed
to work with LiDAR point clouds. The 3D bounding boxes (BBs) of the detected objects
are projected to the image just for visualization purposes, but training and inference of
the object detectors are done on 3D point clouds. In case of directly working with LiDAR
point clouds, only the 3D object detection in the bottom box (discontinuous blue) is
required (we may not even have corresponding images to project the BBs). In case of
working with stereo data, the processing within the top box (discontinuous red) consists
of disparity estimation from the usual left-right stereo pair of images and the final depth
computation.
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Sampled Pseudo-LiDAR: %̂

As we will see in Sect. 4.4 (Table 4.5), directly working with % drives to poor 3D object
detection results. We believe that this is because the design of the state-of-the-art 3D
object detectors is biased towards the typical 3D pattern distributions present in point
clouds captured by actual LiDARs. Therefore, we introduce a LiDAR-inspired sampling
procedure which aims at making Pseudo-LiDAR point clouds to be more similar to
LiDAR ones. Note that here we are not addressing a domain adaptation problem, since
training and testing data will come from the same domain. Instead, we aim at adjusting
our generated point clouds to be better suited for training and testing models such as
Point R-CNN, Voxel R-CNN, and CenterPoint (Sect. 4.3.2).

Let us introduce the parameters, L, required for such LiDAR-inspired sampling. We
assume a rotational LiDAR mounted with the rotation axis mainly perpendicular with
respect to the road plane. The Velodyne LiDAR HDL 64e used in KITTI dataset, is an
example. We term as Nb the number of beams of the LiDAR under consideration. We
term as V and H the vertical and horizontal field of view (FOV) of the LiDAR, respectively.
The vertical angle resolution is V/Nb and the horizontal angle resolution, θH, depends
on the rotation mechanism. For instance, for the mentioned Velodyne used in KITTI
dataset, we have Nb = 64, V ≈ 26.9◦, H = 360◦, and θH ≈ 0.08◦. Moreover, d max and
hmax denote the maximum depth and height we want to consider above the camera,
respectively. Finally, it is common to discard the rows of the depth map above a threshold
r min. Therefore, we have L= {Nb ,V,H,θH,d max,hmax,r min}.

Now we can think of the sampling procedure as follows. We have a virtual ray
originated in the camera optical center (Cu ,Cv ). This ray samples the image plane
(which is at a distance F from the principal point), by increments of θH in its horizontal-
component motion, and increments of V/Nb in its vertical-component motion. In
addition, V,H,d max and hmax set bounds in the 3D space to be considered, while r min

sets a bound in the image space. For the research carried out in this chapter, we have
set V and H so that we consider the full image area, d max = 80m (points with greater
depth are not considered), hmax = 1m (points with higher height above the camera are
not considered), and r min is set to discard the top 40% rows of the depth maps. Note also
that the mentioned ray will intersect the image plane in sub-pixel coordinates, however,
we take the nearest neighborhood approach to select corresponding pixel coordinates.
Fig. 4.2 shows what pixels from a depth map would be sampled to generate the final 3D
point cloud following Eq. 4.1. We term this Pseudo-LiDAR 3D point cloud as %̂.
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Figure 4.2 – Top: depth map. Mid-Bottom: white pixels would be sampled according to
the LiDAR-inspired procedure, for Nb = 64 (Mid) and Nb = 16 (Bottom).
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Figure 4.3 – Point R-CNN 3D object detector [118].
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...

 

...

Figure 4.6 – MonoDELSNet-St uses stereo self-supervision and LiDAR supervision
for training. See Fig. 3.1 to compare with MonoDEVSNet (in this chapter called
MonoDEVSNet-SfM).

...

.

Figure 4.7 – MonoDELSNet-SfM uses SfM self-supervision and LiDAR supervision
for training. See Fig. 3.1 to compare with MonoDEVSNet (in this chapter called
MonoDEVSNet-SfM).
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Table 4.1 – Models to produce depth from images. For (?) a stereo rig is needed at testing
time, while for the rest just a monocular system. For (†) absolute depth is obtained via
ego-vehicle velocity. MW column stands for millions of model weights. In all cases, these
are camera-based models to obtain Pseudo-LiDAR point clouds.

Model Training Data Backbone Encoder MW

SDNet? LiDAR & Stereo PSMNet 5.22
AdaBins LiDAR EfficientNet B5 78.25
MonoDepth2-St Stereo ResNet-18 14.84
MonoDepth2-St+SfM Stereo & Monocular Seq. ResNet-18 14.84
PackNet-SfM† Monocular seq. PackNet 129.88
MonoDEVSNet-SfM Virtual depth & Monocular Seq. HRNet-w48 93.34
MonoDELSNet-St LiDAR & Stereo HRNet-w48 93.34
MonoDELSNet-SfM LiDAR & Monocular Seq. HRNet-w48 93.34
MonoDELSNet-SfM/RN LiDAR & Monocular Seq. ResNet-18 14.84

Table 4.2 – Instances of car, pedestrian, and cyclist, in KITTI 3D obj. detect. benchmark.
Class Total Training set Validation set

Car 28,742 14,357 14,385
Pedestrian 4,487 2,207 2,280
Cyclist 1,627 734 893

4.3.2 3D object detectors

In order to perform the research of this chapter, we have selected three state-of-the-art
3D object detectors, namely, Point R-CNN [118], Voxel R-CNN [27], and CenterPoint [144].
In terms of Fig. 4.2, any of these 3D object detectors can play the role of Ξ. Beyond
differences in their respective CNN architectures, an important difference for our study
is the fact that they rely on different strategies to represent the 3D point clouds. More
specifically, Point R-CNN assumes a point-based representation, while Voxel R-CNN
and CenterPoint rely on a voxel-based representation. The representation conditions
the design of the respective CNN architectures, however, as we can see in Fig. 4.3 (Point
R-CNN), Fig. 4.4 (Voxel R-CNN), and Fig. 4.5 (CenterPoint), globally they share a similar
approach borrowed from 2D object detection. They have a first stage for extracting
features from the point cloud. In the case of Point R-CNN feature extraction relies on
PointNet++ [98], while for Voxel R-CNN and CenterPoint it relies on VoxelNet [140, 157].
After feature extraction, there is a stage for proposing candidates to be classified later as
objects or rejected as such. The candidates are proposed in the form of 3D bounding
boxes (BBs) with attached features. Then there is a final stage where the proposed BBs
are classified and their coordinates are refined too.
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4.3.3 Depth estimation methods

In order to generate point clouds for 3D object detection, we will use the following
MDE methods already introduced in Chapter 3: MonoDepth2 [42], PackNet [44], and
MonoDEVSNet. In addition, we also consider a recent state-of-the-art method for MDE,
AdaBins [3], which uses LiDAR supervision. We also consider two variants of MonoDE-
VSNet, which we call MonoDELSNet-SfM and MonoDELSNet-St. In the two variants, we
replace the supervision coming from the virtual data to supervision coming from LiDAR
data, this is why we use the term MonoDELSNet instead of MonoDEVSNet. Moreover,
we have also considered the use of stereo-based self-supervision, and we use the term
MonoDELSNet-St (Fig. 4.6) in this case, while we use the term MonoDELSNet-SfM (Fig.
4.7) in case of keeping the original SfM-based self-supervision. As we mentioned in
Chapter 3, MonoDepth2 can also use self-supervision from either SfM or SfM plus stereo.
Therefore, in this chapter, for the sake of terminology coherence, we will use the terms
MonoDepth2-SfM and MonoDepth2-St+SfM. For the same reason, we will use the terms
MonoDEVSNet-SfM and PackNet-SfM. Obviously, for training the 3D object detectors,
we will use raw LiDAR point clouds as upper-bound. Therefore, for completeness we will
use a state-of-the-art depth-from-stereo model. In particular, we will use the so-called
SDNet [147]. SDNet requires stereo and LiDAR information at training time. At testing
time only the stereo images are required to estimate the depth. Thus, comparing to
MDE models we can consider SDNet also as an upper-bound. Table 4.1 summarizes the
models we consider in this chapter for producing 3D point clouds (Pseudo-LiDAR).

4.4 Experimental Results

4.4.1 Datasets and evaluation metrics

To train the MDE models in Table 4.1, we follow Chapter 3 in terms of protocol and
datasets. Thus, we use the training set of the Eigen et al. [30] split of the KITTI Raw [38]
dataset, considering the subset established by Zhou et al. [154] when using SfM self-
supervision. Note that, regarding Table 4.1, the models corresponding to AdaBins,
MonoDepth2, and PackNet-SfM, are taken from the authors, while the rest are trained by
us. Overall, we ensure that all the models are trained and validated on the same splits.

For evaluating 3D object detectors, we consider KITTI object detection benchmark
[38]. Moreover, we use the Chen et al. [13] split, consisting of 3,712 images for training
and 3,769 for validation. As we have mentioned before, we use Point R-CNN, Voxel
R-CNN, and CenterPoint as 3D object detectors. In order to make the most of the hyper-
parameter tuning done by the respective authors, we use their corresponding framework
settings. This implies to train Voxel R-CNN only for the class car, while Point R-CNN
and Center point will also include the classes pedestrian and cyclist. Table 4.2 shows the
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Figure 4.8 – Experiment protocol. DE stands for depth estimation (monocular or stereo
based). TS and VS stand for training and validation set, respectively. In our experiments,
the DE TS is the training set of the Eigen et al. [30] split, the 3D-OD TS and 3D-OD
VS are the training and validation sets of the Chen et al. [13] split. Thus, the datasets
are from KITTI benchmark [38]. Eval DE is based on the standard metrics to evaluate
depth estimation (abs-rel, rms, etc.), while Eval 3D-OD is based on metrics to assess
3D object detection accuracy (APBEV , AP3D ). Blue paths work at training time, while
red paths work at inference/validation time. In the datasets, images and LiDAR are in
correspondence, so that each image has an aligned 3D point cloud. Thus, the same 3D
BBs can be used with LiDAR and Pseudo-LiDAR data. Refer to the main text for details.

number of instances of each class in the training and validation sets with associated 3D
bounding boxes (BBs). An important question for our experiments is that this total of
7,481 images come with stereo pairs and, even more essential, with corresponding 3D
point clouds based on a 64-beams Velodyne LiDAR. Camera calibration matrices are
also available. In the rest of the chapter, we term all these data as KITTI-3D-OD.

As in Chapter 3, we use the de facto standard metrics to evaluate depth estimation
(abs-rel, rms, etc.). For 3D object detection we use KITTI metrics [38]. More specifically,
we report Average Precision (AP) for 3D and bird-eye-view (BEV), i.e., AP3D and APBEV .
Specific results for the detection-difficulty categories used with KITTI metrics are also
reported, i.e., for easy, moderate, and hard. In order to compute these APs, we consider
an intersection-over-union (IoU) threshold equal to 0.7 (over 1.0) for the easy case,
and 0.5 for the moderate and hard cases. Moreover, as we have mentioned above,
the car class is the only in common for the default configurations of Point R-CNN,
Voxel R-CNN, and CenterPoint. We also trained Voxel R-CNN for the multi-class task.
However, performance on pedestrians and cyclists is poor. In fact, for Point R-CNN and
CenterPoint neither is so good. Thus, we focus the quantitative analysis on car detection,
while qualitative results are presented for the classes that each detector considers.
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4.4.2 Experiment Protocol

The protocol to conduct our experiments is summarized in Fig. 4.8 together with the
following description of the Steps:

1. Training depth estimation. The depth estimation models (Table 4.1) are trained
on the training set of the Eigen split (from KITTI Raw dataset).

2. Testing depth estimation. The trained depth estimation models are applied to
the images of the validation set of the Chen split. Their performance is assessed
with the LiDAR-based ground truth (depth) of the same validation set. This is done
by collecting the de facto metrics on depth estimation accuracy (abs-rel, rms, etc.).

3. Generating 3D point clouds. The trained depth estimation models are applied
to the images of the training set of the Chen split (from KITTI-3D-OD dataset).
This generates the corresponding depth maps, which are converted into 3D point
clouds as explained in Sect. 4.3.1. We do the same for the images of the validation
set of the Chen split. These 3D point clouds are the Pseudo-LiDAR data. Note that
KITTI images and LiDAR data are calibrated, so it is right to assume that we can
use the same 3D BBs for LiDAR and Pseudo-LiDAR data. Note that, in case of using
an on-board vision-based system to fully replace LiDAR, these 3D BBs should be
directly annotated in the Pseudo-LiDAR.

4. Training 3D object detection. The Pseudo-LiDAR obtained from the images of
the training set of the Chen split are used to train the 3D objected detection models
summarized in Sect. 4.3.2 (i.e., Point R-CNN, Voxel R-CNN, CenterPoint), focusing
on the classes of Table 4.2 (i.e., cars, pedestrians, and cyclists).

5. Testing 3D object detection. The trained 3D object detectors are applied to the
Pseudo-LiDAR obtained from the images of the validation set of the Chen split.
The performance is assessed by computing the de facto metrics on 3D object
detection accuracy (APBEV , AP3D ).

6. Depth estimation vs. 3D object detection. Select a metric on depth estimation
and rank the depth estimation models accordingly. Assess if this ranking matches
with the rankings that would result from metrics on 3D object detection. The better
is the matching, the better the depth estimation metric is for comparing depth
models regarding its expected performance when used for 3D object detection.

At the moment of developing this research, there were not other publicly available
datasets with the proper ground truth to follow the above mentioned steps. Still, this
protocol is not as perfect as we would like. The reason is that there is a ∼ 25% overlapping
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between the training set of the Eigen et al. split (used to train the depth estimation mod-
els, not the 3D object detectors) and the validation set of the Chen et al. split (used in this
chapter to test the depth estimation models and the 3D object detectors). This was also
recently noted in [119], who propose another split avoiding the problem. Unfortunately,
this new split was not publicly available to perform the research of this chapter on time.
However, we believe this ∼ 25% overlapping will not affect our conclusions, since at the
end we are comparing rankings.

An additional detail to take into account concerns image resolution, which turns
out not to be equal for all images of the KITTI dataset. We can find differences of ∼ 6
pixels in the number of rows, and 22 pixels in the number of columns. The LiDAR-based
depth maps (ground truth) are generated to have the same resolution as their associated
images. This fact together with the differences among the CNN architectures for depth
estimation have provoked differences on the working resolution of the depth estimation
models. In order to clarify this, we must consider Table 4.3. We see that all the models
except AdaBins are prepared to work on two resolutions, namely, high and low. The high
one varies a bit from model to model. The low one is the same for all models and has been
the standard one used in the literature to research on MDE. Since the resolution of KITTI
original images runs on [1224−1242]× [370−376] pixels, working with both high and
low resolution involves resizing the KITTI images (e.g., using LANCZOS interpolation)
for training and inference. For the high resolution, the resizing is relatively small, for the
low resolution there is a strong down-scaling.

For evaluating the depth estimation results (using abs-rel, rms, etc.), no matter the
working resolution of the depth estimation models, nearest neighbourhood is applied to
compare each estimated depth with the ground truth. As we have mentioned before, for
each KITTI image its LiDAR-based depth map (ground truth) has the same resolution.
Thus, these ground truth maps are of higher resolution than the estimated ones, specially
in case of using the low resolution setting. On the other hand, for generating Pseudo-
LiDAR, the estimated depth maps are resized to the resolution of the original KITTI
images using nearest neighbourhood too. Again, when working at high resolution, this
resizing is relatively small, while for low resolution this implies a more significant up-
scaling. Finally, AdaBins handles the images of KITTI at their original resolution at
training and inference times.

4.4.3 Testing depth estimation

After training depth estimation models, we can perform the step of testing depth es-
timation. The results are shown in Table 4.4, for both low (standard) and high reso-
lutions. Comparing resolutions, we see that the higher the resolution the better the
performance of the same models. For both resolutions MonoDELSNet-SfM outperforms
MonoDEVSNet-SfM. This was expected since the supervision of the former comes from
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Table 4.3 – Working resolutions (in pixels) of the different models we consider in this
chapter. (?) It runs on [1224−1242]× [370−376] pixels.

Model High Resolution
SDNet 1248×384
MonoDepth2-St &
MonoDepth2-St+SfM 1024×320
PackNet-SfM,
MonoDEVSNet-SfM,
MonoDELSNet-St, 1280×384
MonoDELSNet-SfM, &
MonoDELSNet-SfM/RN

Low Resolution
All models above 640×192

AdaBins KITTI Original?

LiDAR (L) while for the latter comes from virtual (V) depth data. On the other hand, the
best performing variant is MonoDELSNet-St, which, in addition to LiDAR supervision,
replaces structure-from-motion (SfM) by stereo (St) self-supervision. We remark that
this is done at training time, since at testing time these are MDE models. In fact, in the
standard resolution, MonoDELSNet-St is the best performing model. At the higher reso-
lution, it still performs the best together with AdaBins, which is also trained with LiDAR
supervision. For PackNet, MonoDepth2, and AdaBins we are using models trained by the
authors at the respective resolutions. However, for all models the training and testing
sets corresponds to the same splits. This was not the case of SDNet, thus, we trained
this model for a fair comparison, using high resolution. Since SDNet uses stereo pairs at
testing time, it outperforms all the other models (which work on single images). In order
to have more models, we have also trained and tested MonoDELSNet-SfM/RN, i.e., using
ResNet-18 instead of HRNet-w48 (see Table 4.1). It performs worse than MonoDELSNet-
SfM, which is expected since HRNet-w48 uses ∼ 93M weights while ResNet-18 uses
∼ 18M weights. However, this model is still useful in this chapter because we aim at
having different MDE models showing different performance to further investigate if
this has an impact in 3D object detection.

4.4.4 Evaluation of sampling methods

In order to bound the number of experiments on 3D object detection, we have started
by selecting the best performing method for sampling depth maps and so generating 3D
point clouds from images. In Sect. 4.3.1 we described two alternatives. One consists in
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Table 4.4 – Absolute depth results (up to 80m) for the images of the validation set of
the Chen et al. [13] split. We use the models trained by the corresponding authors for
PackNet, MonoDepth2, and AdaBins, the rest are trained by us. All the models are based
on the same training and validation sets. SDNet must be considered an upper-bound
since it uses a stereo pair at testing time, while all the other models work on single images.
Bold stands for best and underline for second best.

Model abs-rel sq-rel rms rms-log 1.25 1.252 1.253

Low (standard) resolution (see Table 4.3)

PackNet-SfM 0.103 0.804 4.780 0.198 0.882 0.954 0.977

MonoDepth2-St 0.097 0.852 4.919 0.205 0.875 0.948 0.974

MonoDepth2-St+SfM 0.096 0.795 4.746 0.192 0.885 0.957 0.978

MonoDEVSNet-SfM 0.094 0.660 4.297 0.180 0.896 0.964 0.982

MonoDELSNet-SfM 0.082 0.535 3.915 0.169 0.910 0.966 0.983

MonoDELSNet-St 0.079 0.527 3.900 0.167 0.910 0.966 0.984

High resolution (see Table 4.3)

PackNet-SfM 0.101 0.901 4.774 0.199 0.888 0.955 0.972

MonoDepth2-St 0.096 0.788 4.719 0.198 0.883 0.952 0.976

MonoDepth2-St+SfM 0.095 0.769 4.609 0.188 0.892 0.959 0.979

MonoDEVSNet-SfM 0.090 0.617 4.107 0.177 0.903 0.966 0.982

MonoDELSNet-SfM 0.077 0.511 3.837 0.172 0.911 0.966 0.982

MonoDELSNet-St 0.073 0.495 3.761 0.166 0.918 0.967 0.983

MonoDELSNet-SfM/RN 0.079 0.537 3.904 0.171 0.909 0.966 0.982

AdaBins 0.080 0.512 3.821 0.164 0.920 0.969 0.984

SDNet 0.044 0.365 3.050 0.136 0.962 0.978 0.987
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using all the pixels of the generated depth map for obtaining the corresponding Pseudo-
LiDAR, which we called %. The other consists in using a LiDAR-inspired sampling to
obtain the Pseudo-LiDAR, which we called %̂. Since we have seen that by working at
high resolution we obtain the best depth estimation results (Table 4.4), we focus on this
setting to select the sampling method. Moreover, we select two MDE models to bound
the number of experiments, namely, AdaBins and MonoDELSNet-SfM. The former is
trained with LiDAR supervision (Table 4.1) and is one of the two top-performing methods
in depth estimation using high resolution (Table 4.4), while the later also uses SfM self-
supervision (Table 4.1) and is the top-performing MDE among those using SfM (Table
4.4). To detect objects, we consider the three approaches introduced in Sect. 4.3.2, i.e.,
Point R-CNN, Voxel R-CNN, and CenterPoint. Table 4.5 summarizes the results for their
common class (car). We can see clearly that the LiDAR-inspired sampling gives rise to
significantly better performing object detectors, particularly, when using voxel-based
representations as is the case of Voxel R-CNN and CenterPoint.

4.4.5 Testing 3D object detection

According to previous results, the rest of experiments on 3D object detection will rely
on the LiDAR-inspired sampling method. Now we consider all the depth estimation
methods in Table 4.1, for low and high resolution (Table 4.3), and for Point R-CNN, Voxel
R-CNN, and CenterPoint. Table 4.6, Table 4.7, and Table 4.8 present the corresponding
quantitative results for the class car. The images used to generate the depth maps (and
so the Pseudo-LiDAR %̂) are from the training set of the Chen et al. [13] split, while the
validation is performed on the validation set of this split too. Concerning 3D object
detection, we can see that MonoDELSNet-SfM and MonoDELSNet-St are consistently
outperforming the rest of MDE models, both for low and high resolution. The results are
still significantly far from the two upper-bounds, one obtained by working with actual
LiDAR point clouds, the other with Pseudo-LiDAR from stereo-based depth estimation
(SDNet). If we pay attention to MonoDEVSNet-SfM, the MDE model we developed
in Chapter 3 for challenging MDE training conditions, we see that still there is quite
a lot of room for improvement if the final target is 3D car detection. Comparing the
best performing MDE models, we see that resolution matters, since given the same
MDE approach, training on higher resolution gives rise to higher detection performance.
Considering only the detection results corresponding to the use of actual LiDAR point
clouds, voxel-based methods (i.e., Voxel R-CNN and CenterPoint) outperform Point
R-CNN. This is not as clear when using Pseudo-LiDAR, most probably because those
must reach higher performances to show such differences.

In addition to the quantitative analysis, Figures 4.9-4.13 present qualitative results. In
Fig. 4.9, we show results based on the different MDE methods we consider in this chapter,
combined with Point R-CNN. In Fig. 4.10, we show results based on MonoDELSNet-St,

79



4. On the Metrics for Evaluating Monocular Depth Estimation

Table 4.5 – 3D car detection results (APBEV , AP3D ) by using different strategies for sam-
pling depth maps, as well as different 3D object detectors (Point R-CNN, Voxel R-CNN,
CenterPoint). The sampling is applied to depth maps obtained from MDE models (Ad-
aBins, MonoDELNet-SfM). % stands for Pseudo-LiDAR obtained by using all the pixels of
the corresponding depth maps, while %̂ stands for Pseudo-LiDAR obtained by applying
a LiDAR-inspired sampling to the same depth maps (Fig. 4.2, with Nb = 64). L stands
for LiDAR point clouds, thus, for the three detectors this setting produces upper-bound
results. These LiDAR point clouds have a one-to-one correspondence with the RGB
images used to generate the depth maps with the MDE models. Thus, after sampling
these maps, the 3D BBs used with L as object supervision, can be also used with % and %̂.
The images used to generate the depth maps (and so % and %̂) are from the training set
of the Chen et al. [13] split. The LiDAR training data for the setting L is from the same
training set. In all cases, the validation is performed on the validation set of this split.

APBEV AP3D
Model Input easy mod. hard easy mod. hard

Point R-CNN
L 90.63 89.55 89.35 90.62 89.51 89.28

% 65.33 41.16 33.42 61.03 39.50 32.27

AdaBins %̂ 70.86 48.31 41.12 65.66 45.98 39.56

Difference %̂−% ↑05.53 ↑07.15 ↑07.70 ↑04.63 ↑06.48 ↑07.29

% 67.87 48.68 40.72 66.21 46.26 38.71

MonoDELSNet-SfM %̂ 75.58 56.07 48.68 71.15 53.31 45.92

Difference %̂−% ↑07.71 ↑07.39 ↑07.96 ↑04.94 ↑07.05 ↑07.21

Voxel R-CNN
L 97.33 89.71 89.35 97.29 89.70 89.33

% 20.22 14.13 13.22 18.07 12.72 11.21

AdaBins %̂ 70.77 52.34 46.46 66.18 47.44 43.90

Difference %̂−% ↑50.55 ↑38.21 ↑33.24 ↑48.11 ↑34.72 ↑32.69

% 12.18 08.72 08.10 09.15 07.19 06.47

MonoDELSNet-SfM %̂ 74.91 56.07 53.17 71.51 53.11 47.06

Difference %̂−% ↑63.72 ↑48.67 ↑46.13 ↑64.82 ↑48.45 ↑42.26

CenterPoint
L 95.25 89.88 89.30 95.17 89.85 89.21

% 11.21 09.09 09.09 09.91 09.09 09.09

AdaBins %̂ 67.92 47.21 43.04 63.62 44.85 38.63

Difference %̂−% ↑56.71 ↑38.12 ↑33.95 ↑53.71 ↑35.76 ↑29.54

% 10.74 09.81 09.09 10.06 09.09 09.09

MonoDELSNet-SfM %̂ 69.23 52.87 46.46 63.60 48.56 43.29

Difference %̂−% ↑58.49 ↑43.06 ↑37.37 ↑53.54 ↑39.47 ↑34.20
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combined with Point R-CNN, Voxel R-CNN, and CenterPoint. Figures 4.11, 4.12, and 4.13,
show more results using MonoDELSNet-St too. Overall, despite we can see errors (false
positives and negatives), we think these are very promising results taking into account
we are able to provide relatively accurate 3D object BBs (for the true positives) from
single images.

4.4.6 Depth estimation vs. 3D object detection

Despite examining the results of Table 4.6, Table 4.7, and Table 4.8 has a great interest in
itself, in this chapter we are even more interested in assessing if ranking MDE models by
depth estimation metrics correlates with ranking them according to 3D object detection
performance, i.e., using Pseudo-LiDAR generated by MDE. In order to compare rankings,
we focus on three different an relevant MDE metrics, namely, abs-rel (which is relative
error), rms (in meters), and δ< 1.25 (which is a %). Concerning the 3D object detection
metrics, it is common practice to focus in the moderate setting (mod.). Moreover,
we see that APBEV and AP3D give rise to analogous rankings in terms of 3D object
detection under the moderate setting. Thus, we just focus on APBEV for such setting.
Accordingly, Fig. 4.14 and Fig. 4.15, compare the APBEV −mod ranking with the abs-
rel ranking, for all the considered 3D object detection models, both for low and high
resolution settings. Fig. 4.16 and Fig. 4.17 are analogous using the rms metric, while
Fig. 4.18 is based on δ < 1.25 metric. Briefly, the correlation between the MDE and
object detection rankings can be visually observed by looking at the arrows in these
figures. A perfect correspondence between rankings shows as parallel arrows, while
the lower the correspondence the more arrows crossing each other. When working on
low resolution, it seems that the correspondence is higher than when working at high
resolution. However, high resolution is more interesting since we have seen that the
produced Pseudo-LiDAR gives rise to better performing 3D object detectors. Then, if we
focus in this case, it seems that the abs-rel metric still corresponds well with 3D object
detection rankings, while the others (rms, δ< 1.25) are less informative.
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Table 4.6 – Results on 3D car detection (APBEV , AP3D ) using Point R-CNN. We comple-
ment these results with two depth estimation metrics (abs-rel, rms). Taking Fig. 4.8 as
reference, APBEV and AP3D play the role of Eval 3D-OD, while abs-rel and rms are part
of Eval DE. Raw LiDAR P. Cloud refers to training with actual LiDAR 3D point clouds,
and SDNet estimates depth from stereo images. Thus, these two methods can be seen
as upper-bounds for the rest, which generate the corresponding 3D point clouds after
performing MDE. Focusing on the MDE models, bold stands for best and underline for
second best within each resolution block.

APBEV AP3D DE

Model easy mod. hard easy mod. hard abs-rel rms

Raw LiDAR P. Cloud 90.63 89.55 89.35 90.62 89.51 89.28 - -

Low resolution (see Table 4.3)

PackNet-SfM 43.27 28.93 24.20 39.48 26.92 23.17 0.103 4.780

MonoDepth2-St 59.48 38.93 32.08 54.37 36.28 30.94 0.097 4.919

MonoDepth2-St+SfM 54.97 35.84 30.77 51.09 31.55 27.69 0.096 4.746

MonoDEVSNet-SfM 64.36 44.30 38.86 60.00 39.54 36.22 0.094 4.297

MonoDELSNet-SfM 65.43 47.01 39.82 62.08 43.61 37.94 0.082 3.915

MonoDELSNet-St 66.23 47.24 40.13 63.85 44.42 38.31 0.079 3.900

High resolution (see Table 4.3)

PackNet-SfM 47.86 32.53 30.50 45.74 31.39 27.84 0.101 4.774

MonoDepth2-St 64.34 40.88 37.21 59.96 39.36 32.41 0.096 4.719

MonoDepth2-St+SfM 58.81 37.68 31.63 53.14 35.37 30.10 0.095 4.609

MonoDEVSNet-SfM 66.17 47.66 45.30 64.33 45.93 40.01 0.090 4.107

MonoDELSNet-SfM 75.58 56.07 48.68 71.15 53.31 45.92 0.073 3.837

MonoDELSNet-St 74.57 54.35 47.25 68.13 47.42 42.84 0.077 3.761

MonoDELSNet-SfM/RN 70.50 48.97 45.41 64.89 47.15 39.87 0.079 3.904

AdaBins 70.86 48.31 41.12 65.66 45.98 39.56 0.080 3.821

SDNet 89.79 77.98 69.62 89.59 75.61 67.36 0.044 3.050
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Table 4.7 – Analogous to Table 4.6 but using Voxel R-CNN.

APBEV AP3D DE

Model easy mod. hard easy mod. hard abs-rel rms

Raw LiDAR P. Cloud 97.33 89.71 89.35 97.29 89.70 89.33 - -

Low resolution (see Table 4.3)

Packnet-SfM 48.11 33.71 29.27 42.31 29.68 26.97 0.103 4.780

MonoDepth2-St 59.17 41.88 36.32 54.85 37.38 34.01 0.097 4.919

MonoDepth2-St+SfM 56.12 37.27 34.52 53.01 34.60 29.74 0.096 4.746

MonoDEVSNet-SfM 63.96 45.08 42.62 60.42 42.47 37.51 0.094 4.297

MonoDELSNet-SfM 65.04 46.85 43.62 62.22 44.68 38.72 0.082 3.915

MonoDELSNet-St 69.32 47.77 44.80 64.20 45.67 42.40 0.079 3.900

High resolution (see Table 4.3)

PackNet-SfM 55.23 37.12 35.80 52.19 34.71 33.86 0.101 4.609

MonoDepth2-St 65.21 45.74 42.64 62.21 42.54 37.47 0.096 4.719

MonoDepth2-St+SfM 57.98 37.72 35.09 52.87 35.40 30.54 0.095 4.774

MonoDEVSNet-SfM 65.73 46.90 45.24 63.06 44.69 42.84 0.090 4.107

MonoDELSNet-SfM 74.91 56.07 53.17 71.51 53.11 47.06 0.077 3.837

MonoDELSNet-St 75.90 57.39 54.23 73.97 55.64 48.73 0.073 3.761

MonoDELSNet-SfM/RN 69.94 52.59 46.62 65.42 47.68 43.87 0.079 3.904

AdaBins 70.77 52.34 46.46 66.18 47.44 43.90 0.080 3.821

SDNet 90.35 79.15 76.35 90.28 78.39 70.35 0.044 3.050
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Table 4.8 – Analogous to Table 4.6 but using CenterPoint.

APBEV AP3D DE

Model easy mod. hard easy mod. hard abs-rel rms

Raw LiDAR P. Cloud 95.25 89.88 89.30 95.17 89.85 89.21 - -

Low resolution (see Table 4.3)

PackNet-SfM 42.34 29.74 25.92 36.55 26.09 23.25 0.103 4.780

MonoDepth2-St 56.50 39.79 34.97 52.63 35.92 31.93 0.097 4.919

MonoDepth2-St+SfM 54.00 35.49 32.01 50.29 32.32 28.31 0.096 4.746

MonoDEVSNet-SfM 57.46 40.86 36.28 51.71 38.02 33.85 0.094 4.297

MonoDELSNet-SfM 62.48 45.61 40.99 56.97 42.25 37.14 0.082 3.915

MonoDELSNet-St 62.75 45.38 41.23 58.80 42.69 37.36 0.079 3.900

High resolution (see Table 4.3)

PackNet-SfM 49.89 35.10 32.10 45.44 32.33 29.10 0.101 4.774

Monodepth2-St 62.14 43.22 37.59 56.43 39.82 34.96 0.096 4.719

MonoDepth2-St+SfM 51.00 35.12 31.72 47.01 31.50 28.12 0.095 4.609

MonoDEVSNet-SfM 61.13 44.63 42.16 56.66 41.63 37.10 0.090 4.107

MonoDELSNet-SfM 69.23 52.87 46.46 63.60 48.56 43.29 0.077 3.837

MonoDELSNet-St 74.04 56.14 51.96 68.69 53.58 47.27 0.073 3.761

MonoDELSNet-SfM/RN 66.72 49.65 44.82 62.57 45.65 41.14 0.079 3.904

AdaBins 67.92 47.21 43.04 63.62 44.85 38.63 0.080 3.821

SDNet 89.78 77.76 73.75 89.27 75.70 68.51 0.044 3.050
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Figure 4.9 – 3D object detection based on the different MDE methods combined with
Point R-CNN. Red BBs are ground truth, green ones are detections. Detections are shown
for cars, pedestrians, and cyclists.
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Figure 4.10 – 3D object detection based on MonoDELSNet-St combined with either
Point R-CNN, or Voxel R-CNN, or CenterPoint. Red BBs are ground truth, green ones are
detections. For Point R-CNN and CenterPoint detections are shown for cars, pedestrians,
and cyclists; while Voxel R-CNN only detects cars.
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Figure 4.11 – 3D object detection based on MonoDELSNet-St combined with Point R-
CNN. Red BBs are ground truth, green ones are detections. Detections are shown for
cars, pedestrians, and cyclists.

87



4. On the Metrics for Evaluating Monocular Depth Estimation

Figure 4.12 – 3D object detection based on MonoDELSNet-St combined with Voxel R-
CNN. Red BBs are ground truth, green ones are detections. Detections are shown for
cars.
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Figure 4.13 – 3D object detection based on MonoDELSNet-St combined with CenterPoint.
Red BBs are ground truth, green ones are detections. Detections are shown for cars,
pedestrians, and cyclists.
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Figure 4.14 – Comparing rankings: abs-rel (MDE) vs. APBEV −mod working at high reso-
lution. In the mid column, we have ordered the MDE models from best (top/1) to worse
(bottom/8). Then, we have replicated the mid columns as left (voxel-based detectors,
which produce the same ranking) and right (Point R-CNN) columns. Afterwards, we
have connected the models in left and right columns to its ranking number according
to APBEV −mod . Thus, a perfect correspondence between rankings shows as parallel
arrows, and the lower correspondence the more arrows crossing each other.

Figure 4.15 – Analogous to Fig. 4.14 for low resolution.
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Figure 4.16 – Analogous to Fig. 4.14 using rms metric.

Figure 4.17 – Analogous to Fig. 4.15 using rms metric.
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Figure 4.18 – Analogous to Fig. 4.14 using δ< 1.25 metric.

Figure 4.19 – Analogous to Fig. 4.15 using δ< 1.25 metric.
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4.5 Conclusion

When performing MDE on-board an autonomous or assisted vehicle, obtaining depth
estimation maps is just an intermediate step of a perception stack. For instance, the
perception goal may be to perform semantic segmentation or/and object detection with
attached depth information to allow for actual vehicle navigation. On the other hand,
reviewing the literature of MDE, it is common to see relatively small quantitative differ-
ences among the evaluated MDE models. Thus, one may wonder if those differences
will be consolidated once such MDE models are used in the targeted perception task.
We have addressed this question by using 3D object detection as target perception task.
Depth maps based on different MDE models have been converted to a Pseudo-LiDAR 3D
point clouds, where 3D object detectors can be trained and tested. We have considered
eight MDE models working at two resolutions (low and high), as well as three different
CNN architectures for 3D object detection (Point R-CNN, Voxel R-CNN, CenterPoint).
Using KITTI benchmark data, we have seen that, indeed, the abs-rel metric commonly
used in MDE assessment, is well aligned with 3D object detection results in terms of
ranking the MDE methods. What remains as future work is to investigate if we can
predict accuracy improvements in 3D object detection (in absolute terms), from the
improvements observed in the abs-rel metric. In case this is not possible, we recommend
to incorporate 3D object detection as part of the evaluation of MDE models. It is worth
to mention that we have also seen that the way depth maps are sampled to produce
Pseudo-LiDAR matters because of the dependency that 3D object detectors have on
this.
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During the last decade, several research labs from universities as well as the automotive
and AI industries have been pushing forward the state of the art of autonomous vehicles
(AVs). Given the worldwide interest in mobility solutions based on efficient AVs, more
dramatic advances are envisioned in the following decades. In general, AVs are equipped
with a suite of sensors to capture appearance (cameras), measure the distance (LiDAR),
speed (RADAR), and for better localization (GPS, IMU). These sensor suites are expensive
and not trivial to maintain as to be used by millions of AVs. For building efficient AVs,
being able to use only cameras would be ideal since these are significantly cheaper and
easier to install and maintain compared to other sensors such as LiDARs. However, using
only cameras challenges the capture of the 3D information of the driving environment.
Note that both semantic and corresponding 3D information is essential to drive safely.
For this reason, to capture 3D information, the most common approach so far has been
to use LiDARs. Depending on the operational conditions for the AV, calibrated stereo rigs
may also be sufficient for obtaining 3D information, being these rigs less expensive and
easier to install than LiDARs. However, ensuring proper maintenance and calibration of
these rigs is not trivial. Hence, in order to obtain 3D information, the research focus is
shifting towards monocular depth estimation (MDE). Accordingly, in this PhD thesis, we
researched and developed novel MDE frameworks to improve accuracy under different
training settings. Besides, we further analyze several MDE approaches applicable to the
downstream tasks, namely, 3D object detection.

Ultimately, high-performing MDE models are based on Convolutional Neural Net-
works (CNNs) trained with depth supervision. With the aim of obtaining more accurate
MDE models, we can include additional supervision while training the MDE CNN; in
particular, semantic information about the traffic scene. Depth supervision is usually
obtained by having LiDAR and camera calibrated sensors, i.e., depth is not manually
annotated. However, pixel-wise semantic supervision relies on manual annotations,
which are typically cumbersome to obtain. In practice, it is common to find different
datasets with different supervision information. However, the same dataset does not
always have all the required supervision (here depth and semantics) associated with the
same raw data. Therefore, in the second chapter of this PhD thesis, we show that this
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challenging circumstance can be circumvented by training CNNs for MDE by leveraging
the depth and semantic information from multiple heterogeneous datasets in a condi-
tional flow approach. In other words, the training process can benefit from a dataset
containing only depth supervision for a set of images, together with a different dataset
that only contains pixelwise semantic supervision for another set of images. To validate
our proposal, we trained CNNs utilizing depth supervision from the KITTI dataset and
pixel-level semantic segmentation coming from the Cityscapes dataset. We obtained
state-of-the-art results at the time we did this research, thus, confirming that semantic
supervision can complement depth supervision even if it comes from different data
sources.

On the other hand, as we have mentioned, depth supervision comes from LiDAR
sensors. Acquiring it through a calibrated multi-modal suite of sensors is an expensive
process not affordable for many teams. Alternatively, training CNNs using monocular
cameras is cheaper and highly scalable, and this is possible using depth self-supervision
from Structure-from-Motion (SfM) principles. However, this is not enough since SfM can
produce depth only up to an unknown scale factor. Besides, SfM-based self-supervision
may produce more issues which might lead to depth inaccuracies due to visibility
changes (occlusion changes, non-Lambertian surfaces), camouflage (objects moving as
the camera may not be distinguished from background), static-camera cases (i.e. stopped
ego-vehicle), and textureless areas. An interesting approach to compensate for these
problems could be training CNNs using a virtual-world dataset with pixelwise accurate
depth and semantic segmentation supervision along with SfM-based self-supervision
on the real-world data. This approach is what we explore in the third chapter of this PhD
thesis. More specifically, the main tasks we performed are the following:

• We designed a CNN, MonoDEVSNet, which effortlessly train SfM-based self-
supervision using real-world monocular sequences and supervision using precise
pixelwise RGB-depth images taken from a virtual world.

• We reduce domain differences between the virtual-world supervision and real-
world SfM self-supervision by using the gradient reversal layer (GRL) technique at
training time, i.e., this is not needed at testing time.

• We show several experiments with different backbone CNNs to analyze quantita-
tive results on relative and absolute depth. In addition, we describe the importance
of each component involved in MonoDEVSNet training through an ablative analy-
sis.

In summary, we show MonoDEVSNet outperforms state-of-the-art MDE models trained
with monocular or stereo self-supervision. According to the qualitative results, MovoDE-
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VSNet accurately captures the 3D geometric structure of the images, further supporting
quantitative results. We think our released code and models1 will help researchers and
practitioners to address applications requiring on-board depth estimation, also estab-
lishing a strong baseline to be challenged in the future.

In the second and third chapters of this PhD thesis, we assess MDE models based on
standard metrics for this purpose, which focus on MDE as a standalone task. However,
MDE is performed to produce 3D information that can be used in downstream tasks
related to on-board perception of AVs or driver assistance. Thus, in the fourth chapter, we
wonder if the slight performance differences among MDE models usually seen in terms
of MDE metrics actually have an impact in the targeted perception task. Due to its great
relevance, we consider 3D object detection as such task. We use eight different MDE
models working at two image resolutions (low and high) with diverse training protocols
to generate MDE-based depth maps. We considered three state-of-the-art frameworks
for 3D object detection, namely, Point R-CNN, Voxel R-CNN, and CenterPoint. The
estimated depth maps are transformed into point cloud representations (Pseudo-LiDAR)
to train and evaluate these 3D object detectors. Using KITTI benchmark data, we show
that the performance ranking on 3D object detection is well aligned with one of the
metrics used for MDE evaluation, in particular, with the abs-rel metric. Such alignment
is worse with others such as RMS or δ < 1.25. Overall, we advise to use the 3D object
detection task as a component for assessing the performance of MDE models.

During the research conducted in this thesis, we have developed several MDE models
by comparing quantitative and qualitative results. Besides, we also examined whether
the standard metrics are a good criterion for developing future MDE-based AV-related
perception tasks. As a result, several ideas emerge for improving MDE results, which
we believe are worth seeking as future work. We think our MonoDEVSNet framework
can be further extended with a multi-task setting. Currently, the models take monocular
images as input and produce depth as output. However, as a multi-task framework, we
think adding further task-specific decoders for semantic and/or instance segmentation,
2D/3D object detection and tracking, scene flow estimation, etc., could provide higher
scope to the encoder to learn 3D scene structure while training with the virtual-world
dataset. We would also like to improve the performance of 3D object detection based
on Pseudo-LiDAR by additionally including training data from virtual-world datasets,
i.e., containing 3D object bounding boxes and accurate depth. Besides, we would like
to extend our analysis on how MDE performance affects the further downstream tasks
by addressing end-to-end driving [136], i.e., rather than assessing perception models
assessing sensorimotor models for driving. Finally, in line with our work, we would like

1https://github.com/HMRC-AEL/MonoDEVSNet
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5. Conclusions

to apply the ideas to the challenging indoor environment for humanoid robots maneuver
or VR/AR applications.
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A Appendix

List of Contributions

International Journals and Magazines

• Akhil Gurram, Ahmet Faruk Tuna, Fengyi Shen, Onay Urfalioglu, and Antonio M.
López. "Monocular Depth Estimation through Virtual-world Supervision and Real-
world SfM Self-Supervision." in IEEE Transactions on Intelligent Transportation
Systems, 2021.

• Akhil Gurram, Onay Urfalioglu, Ibrahim Halfaoui, Fahd Bouzaraa, and Antonio M.
Lopez. "Semantic Monocular Depth Estimation Based on Artificial Intelligence."
in IEEE Intelligent Transportation Systems Magazine, 2020.

• Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, and Antonio M. López.
"Multimodal end-to-end Autonomous Driving." in IEEE Transactions on Intelligent
Transportation Systems, 2020.

International Conferences

• Fengyi Shen, Akhil Gurram, Ahmet Faruk Tuna, Onay Urfalioglu, and Alois Knoll.
"TridentAdapt: Learning Domain-invariance via Source-Target Confrontation and
Self-induced Cross-domain Augmentation." in British Machine Vision Conference
(BMVC), 2021.

• Akhil Gurram, Onay Urfalioglu, Ibrahim Halfaoui, Fahd Bouzaraa, and Antonio M.
López. "Monocular Depth Estimation by Learning from Heterogeneous Datasets."
in IEEE Intelligent Vehicles Symposium (IV), 2018.

Patents

• Akhil Gurram, Onay Urfalioglu: Domain Adaptation based on Self-supervised
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Depth and Relative-Pose Estimation. European Patent - 2020. Pending/Filed-
86937254.

• Onay Urfalioglu, Akhil Gurram, Ibrahim Halfaoui: Sampling-based Self-Supervised
Depth and Pose Estimation. European Patent - 2020. Pending/Filed-86934297.

• Onay Urfalioglu, Akhil Gurram, Fahd Bouzaraa: Learnable Localization using
Images. European Patent - 2019. WO2020182297A1
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