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Abstract

Metric learning refers to the problem in machine learning of learning a distance
or similarity measurement to compare data. In particular, deep metric learning
involves learning a representation, also referred to as embedding, such that in the
embedding space data samples can be compared based on the distance, directly
providing a similarity measure. This step is necessary to perform several tasks in
computer vision. It allows to perform the classification of images, regions or pixels,
re-identification, out-of-distribution detection, object tracking in image sequences
and any other task that requires computing a similarity score for their solution. This
thesis addresses three specific problems that share this common requirement. The
first one is person re-identification. Essentially, it is an image retrieval task that
aims at finding instances of the same person according to a similarity measure.
We first compare in terms of accuracy and efficiency, classical metric learning to
basic deep learning based methods for this problem. In this context, we also study
network distillation as a strategy to optimize the trade-off between accuracy and
speed at inference time. The second problem we contribute to is novelty detection
in image classification. It consists in detecting samples of novel classes, i.e. never
seen during training. However, standard novelty detection does not provide any
information about the novel samples besides they are unknown. Aiming at more
informative outputs, we take advantage from the hierarchical taxonomies that
are intrinsic to the classes. We propose a metric learning based approach that
leverages the hierarchical relationships among classes during training, being able
to predict the parent class for a novel sample in such hierarchical taxonomy. Our
third contribution is in multi-object tracking and segmentation. This joint task
comprises classification, detection, instance segmentation and tracking. Tracking
can be formulated as a retrieval problem to be addressed with metric learning
approaches. We tackle the existing difficulty in academic research that is the lack of
annotated benchmarks for this task. To this matter, we introduce the problem of
weakly supervised multi-object tracking and segmentation, facing the challenge
of not having available ground truth for instance segmentation. We propose a
synergistic training strategy that benefits from the knowledge of the supervised
tasks that are being learnt simultaneously.

Key words: metric learning, novelty detection, hierarchical classification, multi-
object tracking, instance segmentation, person re-identification, autonomous driving,
computer vision, machine learning
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Resumen

El aprendizaje de métricas se refiere al problema del aprendizaje automático de
aprender una medida de distancia o similitud con el objetivo de comparar datos.
En particular, el aprendizaje de métricas profundo implica aprender una represen-
tación de las imágenes tales que en su subespacio las muestras de datos se pueden
comparar en función de la distancia, proporcionando directamente una medida
de similitud. Este paso es necesario para realizar varias tareas en visión artificial.
Permite realizar la clasificación de imágenes, regiones o píxeles, reidentificación,
detección de muestras que no pertenecen a la distribución, seguimiento de objetos
en secuencias de imágenes y cualquier otra tarea que requiera calcular una medi-
da de similitud. Esta tesis aborda tres problemas específicos que comparten este
requisito común. El primero es la reidentificación de personas. En esencia, es una
tarea de recuperación de imágenes que tiene como objetivo encontrar instancias
de la misma persona en base a una medida de similitud. Primero comparamos,
en términos de precisión y eficiencia, el aprendizaje de métricas clásico contra
métodos básicos de aprendizaje profundo para este problema. En este contexto,
también estudiamos la destilación de redes como una estrategia para optimizar
el intercambio entre precisión y velocidad de inferencia. El segundo problema al
que contribuimos es la detección de novedades en la clasificación de imágenes.
Consiste en detectar muestras de clases nuevas, es decir, nunca vistas durante el
entrenamiento. Sin embargo, la detección de novedades estándar no proporcio-
na ninguna información sobre las muestras desconocidas más allá de que lo son.
Con el fin de obtener resultados más informativos, aprovechamos las taxonomías
jerárquicas presentes de forma intrínseca en las clases. Nuestro enfoque basado
en el aprendizaje de métricas aprovecha las relaciones jerárquicas entre las cla-
ses durante el entrenamiento, pudiendo predecir la clase padre en la jerarquía
de una muestra desconocida. Nuestra tercera contribución es el seguimiento y la
segmentación de múltiples objetos. Esta tarea conjunta comprende clasificación,
detección, segmentación de instancias y seguimiento. El seguimiento se puede
formular como un problema de recuperación que se abordará con aprendizaje de
métricas. Abordamos una dificultad existente en la investigación académica, que es
la falta de bases de datos anotados para esta tarea. Introducimos el problema del
seguimiento y segmentación de múltiples objetos débilmente supervisado, enfren-
tándonos al desafío de no tener anotaciones disponibles para la segmentación de
instancias. Proponemos una estrategia sinérgica de entrenamiento que se beneficia
del conocimiento extraído de las tareas supervisadas que se están aprendiendo
simultáneamente.
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jerárquica, seguimiento de múltiples objetos, segmentación de instancias, reidentifi-
cación de personas, conducción autónoma, visión artificial, aprendizaje automático
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Resum

L’aprenentatge de mètriques es refereix al problema de l’aprenentatge automàtic
d’aprendre una mesura de distància o similitud amb l’objectiu de comparar dades.
En particular, l’aprenentatge de mètriques profund implica aprendre una repre-
sentació de les imatges tals que al seu subespai les mostres de dades es poden
comparar en funció de la distància, proporcionant directament una mesura de
similitud. Aquest pas és necessari per a resoldre diverses tasques en visió artificial.
Permet realitzar la classificació d’imatges, regions o píxels, reidentificació, detecció
de mostres que no pertanyen a la distribució, seguiment d’objectes en seqüències
d’imatges i qualsevol altra tasca que requereixi calcular una mesura de similitud.
Aquesta tesi aborda tres problemes específics que comparteixen aquest requisit
comú. El primer és la reidentificació de persones. En essència, és una tasca de
recuperació d’imatges que té com a objectiu trobar instàncies de la mateixa persona
basant-se en una mesura de similitud. Primer comparem, en termes de precisió i efi-
ciència, l’aprenentatge de mètriques clàssic contra mètodes bàsics d’aprenentatge
profund per a aquest problema. En aquest context, també estudiem la destil·lació
de xarxes com una estratègia per a optimitzar l’intercanvi entre precisió i velocitat
d’inferència. El segon problema al qual contribuïm és la detecció de novetats en
la classificació d’imatges. Consisteix a detectar mostres de classes noves, és a dir,
mai vistes durant l’entrenament. No obstant això, la detecció de novetats estàndard
no proporciona cap informació sobre les mostres desconegudes més enllà que ho
són. Amb la finalitat d’obtenir resultats més informatius, aprofitem les taxonomies
jeràrquiques presents de manera natural en les classes. El nostre enfocament basat
en l’aprenentatge de mètriques aprofita les relacions jeràrquiques entre les classes
durant l’entrenament, podent predir la classe pare en la jerarquia d’una mostra
desconeguda. La nostra tercera contribució és el seguiment i la segmentació de
múltiples objectes. Aquesta tasca conjunta comprèn classificació, detecció, seg-
mentació d’instàncies i seguiment. El seguiment es pot formular com un problema
de recuperació que s’abordarà amb aprenentatge de mètriques. Abordem una
dificultat existent en la recerca acadèmica, que és la falta de bases de dades ano-
tades per a aquesta tasca. Introduïm el problema del seguiment i segmentació de
múltiples objectes feblement supervisat, enfrontant-nos al desafiament de no tenir
anotacions disponibles per a la segmentació d’instàncies. Proposem una estratègia
sinèrgica d’entrenament que es beneficia del coneixement extret de les tasques
supervisades que s’estan aprenent simultàniament.

Paraules clau: aprenentatge de mètriques, detecció de novetats, classificació

vii



jeràrquica, seguiment de múltiples objectes, segmentació d’instàncies, reidentificació
de persones, conducció autònoma, visió artificial, aprenentatge automàtic
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1 Introduction

1.1 Metric Learning

Machine learning based technologies have rapidly advanced in the past years due
to the increasing interest of the research community in this field. Among the tasks
these techniques can be applied to, computer vision related problems are some
of the current hot topics. They address real-world challenges such us medical
diagnosis, improving surveillance systems, developing autonomous driving percep-
tion, and broadly, automate any image-based task consisting in predicting certain
output from information that is extracted from images. Deep learning are the state-
of-the-art techniques on these computer vision tasks, having obtained excellent
performance on them.

An important objective in several tasks of machine learning is the ability to
compare data. For instance, some classification algorithms such as k-nearest neigh-
bors rely on distance comparison. Also, any image retrieval method depends on
similarity comparison among data instances. This is achieved by learning similarity
measures or distance metrics. Metric learning refers to the problem of learning a
distance function to be used for a particular task that requires similarity or distance
estimation [46, 92]. This component is common to several computer vision tasks,
e.g. retrieval tasks (face verification, person re-identification, tracking, etc), classi-
fication, clustering, and essentially, any problem that needs to compare features
of instances within an embedding. In this kind of tasks, images are mapped to an
embedding of features, where they can be ordered or classified. Metric learning al-
lows to perform this feature comparison meaningfully, consequently increasing the
performance on the target task. Its objective is to provide a better measurement for
the considered problem. Such measurement can be learnt through leveraging the
supervised data that is already available to solve the task. This data might contain
the exact distance to predict for a pair of images (as in a regression problem), or we
could use instead weaker constraints, e.g. one pair of images is more similar than
another.

Traditionally, metric learning algorithms have been formulated as learning a
linear mapping of the data to a discriminant embedding space. Many initial works
emulate a Mahalanobis distance formulation, thus learning a projection matrix
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that defines the linear transformation. This embedding space is often of lower
dimensionality but tries to preserve the relevant information of feature description
that enable comparison of different instances. However, this formulation cannot
capture non-linear transformations and deal with more complex data distributions
effectively. Kernel approaches were first introduced to overcome this limitation. But
the great potential of the forthcoming deep learning based approaches would focus
the interest of research community on them, overshadowing previous non-linear
methods.

After the emergence of deep learning, previous formulations were substituted
due to the large improvement on performance introduced by these techniques.
Their advantages lie in the abilities to easily learn non-linear mapping functions
introduced by the activation layers, and to work on large amounts of data, that
results into better generalization. Nowadays, deep metric learning [41] methods
constitute the state of the art. The first seminal work that considered to join convo-
lutional neural networks with metric learning was applied to face verification [22].
The authors proposed a siamese architecture, consisting in two parallel network
branches with shared weights. Their loss assigns high similarity to images of the
same identity and low similarity to those that correspond to different people, by
employing similar and dissimilar examples. This work opened the line of research
of the posterior popular contrastive approaches. These build embeddings based
on similarity relationships among samples, e.g. similar and dissimilar samples are
compared to guide the learning. The objective is a discriminative embedding space,
where features of similar samples are pushed together while those of dissimilar
samples are far away. This idea is adopted by the contrastive loss [32]. It employs
pairs of samples to learn the embedding and adds a margin parameter to enforce
separation of the features. Later, the (still currently) widely used triplet loss was
proposed in [37]. Instead of comparing pairs, it employs triplets that satisfy that two
of the samples are more similar among them than to the other. These constraints
build an embedding that yields better performance. For both formulations, min-
ing strategies of samples have been investigated to effectively improve the learnt
embedding [69, 84, 88]. They aim to find difficult or challenging pairs or triplets,
for a faster convergence that leads to better minima. Later on, more recent works
have proposed diverse similar losses aiming at improving its performance on differ-
ent tasks [19, 68, 76]. However, approaches based on this contrastive formulation
have the weaknesses of highly relying on the selection of pairs/triplets for a proper
convergence, and they do not always achieve a discriminant feature space where
features of the same class are mapped together and far from the other samples, as
discussed in [88].

Non-contrastive deep metric learning approaches were later proposed as an
alternative to deal with these issues. These loss functions, differently from the
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aforementioned methods, do not rely on sample selection. The work of [62] in the
field of face recognition, started a new family of methods. The authors proposed a
modification of the softmax loss that includes a new angular margin hyperparame-
ter to push the class decision boundaries, then increasing the inter-class variance.
The softmax loss, in this context, refers to a cross entropy loss preceded by a softmax
activation and a fully connected layer. In its original formulation, it already learns
an embedding space that allows to distinguish different classes according to their
distance. However, this space is not optimized to perform a distance-based classifi-
cation or retrieval. The latter issue is what this family of methods address, aiming
at pushing the discriminative power of the embeddings to later perform distance-
based retrieval. SphereFace [61] applied normalization to the weights of the last
fully-connected layer on the L-Softmax loss, so that they lie on a hyphersphere. This
is specially useful in face verification because this retrieval task uses the cosine
distance at test time. Similar approaches [24, 99, 100, 115, 119] proposed further
improvements pursuing the same goal of increasing the discriminative power of
the embeddings.

In the next sections, we introduce the different topics covered in this disserta-
tion. They approach different problems and applications in computer vision, but
have in common that include a deep metric learning component in their solution.
From classical to contrastive or softmax based formulations, we study some of the
aforementioned variants and apply them on challenging problems of computer
vision, showing the potential and broad applicability of metric learning.

1.2 Person re-identification

Finding a person across a camera network plays an important role in video surveil-
lance. Person re-identification [122] is the problem of, given a person of interest,
retrieving all the available observations of that person at different camera views
and times. This relevant problem with direct application to real-life, is essentially
a retrieval task with a metric learning core. Its objective is to compare a person of
interest against a gallery of many other samples. To perform such comparison, we
clearly need a metric learning component.

As a starting point, in this thesis we aim to study an application of classical
metric learning. By classical methods we refer to those developed before the deep
learning era, i.e. they do not employ Convolutional Neural Network (CNN) archi-
tectures for visual description, as in the current state-of-the-art. Classical person
re-identification approaches are usually composed by hand-crafted feature de-
scriptors and appropriate distance functions that take into account the problem
characteristics. Although Euclidean distance can be used for feature comparison,
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incorporating a supervised metric learning component leads to more discrimina-
tive embeddings that provide a better measurement for this task. This results into
greater performance, as we will see in chapter 2.

A second objective is to compare classical metric learning to a naive deep
learning based approach in its simplest form, that is using the Euclidean distance
on cross-entropy trained features from a CNN. As previously discussed, cross-
entropy training of a fully connected layer followed by a standard softmax function,
already leads to embeddings that can be distinguished based on Euclidean or cosine
distance, although not being optimal for this objective. We consider this simple
baseline to be compared against a classical person re-identification method. In
particular, we consider LOMO and XQDA [55], which are specifically designed for
this problem. In chapter 2, we investigate if the superior feature representations
from CNNs, compared to hand-crafted ones, can compensate the lack of a dedicated
supervised metric learning component.

From the perspective of a real-world person re-identification application, in or-
der to guarantee an optimal time response, it is crucial to find the balance between
accuracy and speed. Besides providing excellent performance, the computational
time the methods takes to fulfill the task is another variable to optimize. A final
objective we tackle is to analyze this trade-off on both hand-crafted and deep learn-
ing based techniques. Additionally, we propose network distillation as a learning
strategy to reduce the computational cost of the deep learning approach at test
time. We aim to show how distillation may help reducing the computational cost at
inference time and its effect on the accuracy. The content of chapter 2 is based on
our publication in [81].

1.3 Hierarchical novelty detection

Image classification has been thoroughly studied in the literature, resulting into
impressive performance achieved by deep learning methods in this task. However,
the problem of classifying what is unknown remains unsolved. Broadly, novelty
or anomaly detection, also named open set recognition, deals with the problem
of how to endow a classifier with the ability of knowing what it does not know.
More precisely, novelty detection consists in the detection of unknown classes. Its
objective is to detect samples of novel classes, never seen during training, while
classifying those that belong to known classes. Recent works have made significant
progress in novelty detection. It has been commonly addressed by probability based
methods that employ the pre-softmax output of CNNs to perform the novel/known
decision. However, we believe metric learning is an alternative that could generalize
better on new unseen data. Contrastive approaches do not depend on the classes
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themselves but on learning similarity/dissimilarity among samples. Therefore, they
are suitable to be extended to new unknown classes. This motivated us to consider
metric learning for novelty detection.

Figure 1.1: 3D projection of an embedding learned with a metric learning based
novelty detection method [66]. Top right: Embedding of known classes. Top left:
Embeddings of both known (blue) and novel samples (orange). Bottom: Same
applied on a traffic signs dataset, showing thumbnails of the samples shaded in
blue for the known samples and orange for the novel ones.

In prior work [66], we studied the feasibility of a metric learning based approach
against cross-entropy based techniques, on a classification framework. Figure 1.1
shows an example of the learned embedding. The image shows a projection to three
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dimensions by applying PCA. Known samples of the same class are pushed together
in the embedding space, while novel samples lie far from the known class clusters.
However, the only information standard novelty detection provides about novel
samples is that they are unknown. Continuing this line of research, we set a new
greater goal: to extend a metric learning based approach for novelty detection to
a hierarchical setting. We aim at performing classification and novelty detection
under hierarchical taxonomies of classes, which is a scarcely explored case.

In this dissertation, we leverage hierarchical taxonomies of classes to provide
informative outputs for samples of novel classes, in particular, we predict the closest
class in the taxonomy, i.e. its parent class. In chapter 3, we address this problem,
known as hierarchical novelty detection [47], by proposing a novel loss, namely
Hierarchical Cosine Loss (HCL). Inspired by previous face recognition literature
[99, 100], HCL is designed to learn class prototypes along with an embedding of
discriminative features consistent with the taxonomy.

Additionally, we aim to apply the developed methods in this thesis to the spe-
cific application of autonomous driving. Autonomous driving is one of the most
significant technological challenges currently. Computer vision techniques have
greatly contributed to its developement in recent years. Among its related problems,
it comprises object detection, traffic sign recognition, road segmentation, tracking,
etc. In chapter 3, we address the task of traffic sign recognition. Due to the intrinsic
hierarchical nature of the class taxonomy of traffic signs, we specifically apply our
developed methods to predict the parent class semantics for novel types of traffic
signs. The content of chapter 3 is based on our publication in [82].

1.4 Weakly Supervised Multi-Object Tracking and Seg-
mentation

Besides traffic sign recognition, we aim to explore other autonomous driving related
problems. In the context of environment perception, object detection, instance
segmentation or tracking are some of the relevant tasks to be solved. Multi-object
tracking and instance segmentation (MOTS) [97] consists in detecting, classifying,
tracking and predicting pixel-wise masks for the object instances present along
a street-level video sequence. It therefore comprises several tasks that are solved
jointly, i.e. object detection, classification, instance segmentation and tracking.

Among them, tracking can be either addressed as a tracking-by-detection ap-
proach or as a detection free tracking problem. The latter requires manual initial-
ization of the object locations in the first frame, therefore not being able to deal
with new objects entering the scene [10, 50, 51]. Differently, tracking-by-detection
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Figure 1.2: Multi-object tracking and instance segmentation output: detection,
classification, tracking and instance segmentation of the object instances present
along a street-level video sequence.

[11, 89, 97, 104] relies on a previous object detector and a posterior linking strategy
of the candidates. Both formulations actually correspond to a retrieval task that
can be solved by a metric learning based method [10, 50, 51, 89, 97, 104]. Finding
correspondences is essentially a retrieval task, that might be restricted to certain
sets of candidates with additional information of the most likely ones.

Due to the expensive cost of the annotation procedure, one of the limitations
of MOTS is the lack of existing labeled data, necessary for training effectively a
model that is able to solve the joint task. Joint tracking and segmentation requires
annotations for both problems simultaneously. For this reason, the literature is still
scarce on this topic. To overcome this limitation, we initially proposed an automatic
annotation procedure for MOTS benchmarks in [74]. In that work we investigated
an unsupervised approach for the tracking task. In this dissertation, we instead
intend to explore a weakly supervised setting of the instance segmentation task.

In chapter 4, we introduce the problem of weakly supervised Multi-Object
Tracking and Segmentation [80], i.e. joint weakly supervised instance segmentation
and multi-object tracking. In this setting we do not provide any kind of mask
annotation, which is the most expensive kind. To this end, we employ a popular
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strategy in the weakly-supervised instance segmentation field, that consists in using
the activation maps from the classification task [86]. We extract weak foreground
localization information, provided by Grad-CAM heatmaps, to generate a partial
ground truth to learn from. Additionally, RGB image level information is employed
to refine the mask prediction at the edges of the objects. We benefit from our
multi-task problem, so that the supervised tasks, i.e. classification, object detection
and tracking, guide the learning of unsupervised instance segmentation. The
employed model is MOTSNet [74], that similarly to [97], is Mask-RCNN based with
an additional tracking head that is trained by using metric learning. The content of
chapter 4 is based on our publication in [80].

1.5 Objectives and Scope

The aim of this PhD dissertation is to explore the capabilities of deep metric learning
and further apply it to diverse problems in computer vision. We study different
related tasks, such as retrieval, classification, novelty detection or tracking.

The first problem we address in chapter 2 is person re-identification. We aim at
answering the following research questions:

• How important is the metric learning component in this task?

• In terms of efficency and accuracy, how do hand-crafted approaches (i.e.
classical metric learning) compare to basic deep learning based ones?

• Can we improve this trade-off for deep learning based methods by using
network distillation?

The next chapters address the main application covered in this dissertation,
i.e. autonomous driving. As previously discussed, in this thesis we consider the
problems of traffic sign recognition and scene perception via multi-object tracking
and segmentation. For traffic sign recognition, we aim to leverage the natural
hierarchical taxonomy of classes which traffic signs are organized by. For this
purpose, we ask the following questions:

• How do hierarchical taxonomies of classes can be exploited for informative
novelty detection?

• Is it possible to perform hierarchical novelty detection by a metric learning
based approach? How does it compare to probability based methods?

Regarding multi-object tracking and segmentation (MOTS), we aim at finding
a solution for the lack of labeled data. In particular, we study this problem under
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a weakly supervised setting where there is no available ground truth for instance
segmentation. In this context, our research questions are:

• Can we benefit from the joint tasks that are simultaneously solved in MOTS
to provide information for the weakly supervised instance segmentation task?
How?

• What components might help to this objective and to what extent?

1.6 Outline

This PhD thesis is structured as follows. On each chapter we address a different
problem that includes a metric learning component for its solution. They are self-
contained and include: a corresponding concrete introduction to the problem, an
analysis of the related works, description of the method, experimental evaluation
and individual conclusions.

In chapter 2, we address the problem of person re-identification. We first inves-
tigate classical metric learning in contrast to most basic deep learning methods.
Moreover, we propose network distillation to improve the accuracy/speed trade-
off of the pipeline. In chapter 3, we deal with hierarchical novelty detection. We
propose a metric learning based alternative, in contrast to current probability
based state-of-the-art approaches. We additionally present a specific application
to traffic sign recognition. Chapter 4 introduces the problem of weakly supervised
Multi-Object Tracking and Segmentation [80], i.e. joint weakly supervised instance
segmentation and multi-object tracking. Our synergistic training strategy takes
advantage of multi-task learning to solve unsupervised instance segmentation.
To conclude, chapter 5 collects the general conclusions drawn from this disserta-
tion and indicates possible directions for future work. It finally includes the list of
publications made throughout the development of this thesis.
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2 Person Re-identification

2.1 Introduction

Person re-identification refers to the problem of identifying a person of interest
across a camera network [70, 123]. This task is specially important in surveillance
applications, since nowadays the security systems in public areas such as airports,
train stations or crowded city areas, highly rely on video monitoring and are continu-
ously improving to ensure the population’s welfare. In big cities, there are extensive
networks of cameras in the most sensitive locations. Identifying an individual re-
quires finding it among all the instances that are present on the collection of images
captured by the cameras. These images show usually complex crowded scenes,
which further increases the computational complexity of the problem. Therefore,
the automation of this task involving large-scale data becomes essential, as other-
wise it would be a laborious task to be performed by humans.

The aim of person re-identification is to find a person of interest, also referred
as query, across a gallery of images. The difficulty of this problem lies in variations
in the point of view, person pose, light conditions and occlusions that affect the
images. This kind of variability is illustrated on Figure 2.4, that shows examples of
gallery images.

A full person re-identification system, including the previous person detection
stage, is depicted in Figure 2.1. Within the person re-identification module, a query
image of a person of interest is compared against the gallery, to retrieve the images
that correspond to the same identity. The system first extracts a feature representa-
tion that describes every image, either by using a hand-crafted descriptor or a deep
neural network. Usually the features of the gallery are previously computed offline
and stored, so that at test time only the features for the query image are computed.
These can be compared with the features of the gallery by employing a similarity
metric, thus obtaining a ranked list of the most similar images in the gallery to the
person of interest [129], according to the degree of similarity.

In real-life scenarios, in order to have a feasible application that is able to work
with large-scale datasets in an efficient and effective way, we have to address the
problem of optimizing the computational cost of the system at test time, without
decreasing drastically its accuracy. For that purpose, we consider both classical
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Figure 2.1: Pipeline of an end-to-end person re-identification system. The pink
shaded region delimits the person re-identification module.

and deep learning based person re-identification methods. Although deep learning
based techniques outperform significantly hand-crafted methods in terms of ac-
curacy, their drawback is that they require dedicated hardware, i.e. GPUs, and big
amounts of data for training, which takes usually long periods of time, i.e. weeks, in
order to be effective.

To make deep learning approaches computationally efficient, several works
use model compression [5, 16]. The idea behind model compression is to discard
non-informative weights in the deep networks and perform a fine-tuning to fur-
ther improve the performance. Although these methods make the architecture
more efficient in terms of computational complexity, they also result in a drop of
the accuracy on the compressed models. This drop is specially prominent when
the dataset is large or the number of classes is higher, which is often the case in
the person re-identification problem. In contrast, network distillation works have
shown that the smaller or compressed model trained with the support of a much big-
ger/deeper network is able to achieve very similar accuracy as the deeper network
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but having a much lower complexity [5, 78, 114]. Motivated by this good perfor-
mance, in this chapter we explore network distillation in the context of efficient
person-re-identification.

In this chapter, we provide an analysis of the trade-off between accuracy and
computational cost at test time in the person re-identification problem, consid-
ering the most suitable configuration for the conditions of a real-world applica-
tion. We carry out such trade-off analysis on two challenging large-scale person
re-identification benchmarks, i.e. Market-1501 [121] and DukeMTMC-reID [77].
Moreover, we introduce and analyze network distillation [36] for optimizing this
trade-off for the deep learning approach. For this purpose, we use a ResNet-50 [33]
model, acting as the teacher, to transfer the knowledge to a lighter model, in our
case MobileNet [38], acting as the student.

This chapter is structured as follows. In Section 2.2, we review the literature
related with person re-identification and distillation. In Section 2.3 we describe
briefly the methods employed in our experiments, then reviewing the distillation
approach in Section 2.4. The experimental results are reported in Section 2.5. Finally,
in Section 2.7, we present our conclusions and provide some guidelines for future
work.

2.2 Related Work

2.2.1 Person re-identification

Classical methods for person re-identification considered it as two independent
subsequent problems, i.e. feature representation and metric learning. Historically,
for the first task of visual description, popular frameworks such as Bag of Words [126]
or Fisher Vectors [72] were initially used to encode the local features. Later, other
hand-crafted features were introduced. For instance, the LOMO [55] descriptor
became popularized for person re-identification [70, 96, 129]. In the exhaustive
comparison performed by [40], LOMO is the second hand-crafted feature descriptor
that performs best across several datasets. The GOG [67] features are superior in
terms of accuracy at the cost of a higher computational cost, as it requires modeling
each subarea in which the image is divided, by a set of Gaussian distributions.
Indeed, in [67], LOMO features are extracted in 0.016 seconds/image, while GOG
features are extracted in 1.34 second/image.

The second task, metric learning, consists in learning a distance function that
maps from the feature space to a new space in which the vectors of features that
correspond to the same identity are close, while those that correspond to different
identities are farther away, being the distance a measure of the similarity. Specifi-
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cally on person re-identification, this mapping function after being learned is used
to measure the similarity between the features of the person of interest and the
gallery images. One of the most popular classical metrics is KISSME [42], that uses
the Mahalanobis distance. Later, XQDA[55] was introduced as an extension of
KISSME to cross-view metric learning, instead doing the mapping function from
the feature space to a lower dimensionality space, in which the similarity metric
is computed. More recently, [3] proposed a novel metric learning method that
address the small sample size problem, which is due to the high dimensionality of
the features on person re-identification. According to this metric, the samples of
distinct classes are separated with maximum margin while keeping the samples
of same class collapsed to a single point, intended to maximize the separability in
terms of Fisher criterion.

Nowadays, deep learning based methods are outperforming hand-crafted tech-
niques by a large margin. First approaches [6, 109, 122] used deep learning only
to compute better image representations, then employing the similarity metric as
usual. Considering each identity as a different class, the features are extracted from
a classification Convolutional Neural Network (CNN), that is trained on the target
dataset. The features, that we refer to as deep features, are the logits, i.e. the out-
put of the network before the classification layer. A more complex framework was
proposed in [52], where using a multi-scale context-aware network, they compute
features that contain both global and local part-based information.

In a different line of work, siamese models were proposed to learn jointly the rep-
resentations along with computing the similarity between the inputs, that are image
pairs. The similarity measure provided by the output of the network, determines
whether the input images correspond to the same identity or not. This architecture
was first introduced by [13] for signature verification, where the features for two
signature images were extracted and compared by computing the cosine of the
angle between the two feature vectors as a measure of the similarity. Similarly, in
person re-identification, siamese networks take as an input two person images. This
original approach is followed in [113]. Other architectures such as [54] or [2] used
the softmax layer to provide a binary output. Later, based also on a siamese frame-
work, the authors of [124] proposed an architecture with an enhanced attention
mechanism, in order to increase the robustness for cross-view matching. Closely
related to siamese networks, triplet networks, which were introduced in [84] for
face recognition, take triplets of images as inputs, corresponding only two of them
to the same person [20, 117, 120]. Following a similar reasoning, a quadruplet loss
was then proposed in [19].

Recent approaches aim at increasing the robustness of person re-identification
systems. Some address the problem of domain adaptation, i.e. applying to an
unseen dataset a model is trained on a set of source domains without any model
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updating [60, 91]. To this end, image synthesis [25, 130] or domain alignment
[59, 101, 102] are used. Other works instead propose generative approaches for data
augmentation. In [75] the synthesized images help learning view-point invariant
features by normalizing across a set of generated enhanced pose variations, while
in [127] they compose high-quality cross-identities images.

2.2.2 Network Distillation

Network distillation approaches appeared as a computational effective solution to
transfer the knowledge from a large, complex neural network (referred to as teacher
network) to a more compact one (student network), with a significant lower number
of parameters. This idea was originally proposed in [36]. On their approach, the
student network was penalized based on a softened version of the teacher network’s
output. The student was trained to predict the output of the teacher, as well as the
true classification labels. In [78], they proposed an idea to train a student network
which is deeper and thinner than the teacher network. They do not only use the
outputs, but also the intermediate representations learned by the teacher as hints
to improve the training process and final performance of the student. A different
approach was proposed in [65], where the knowledge to be transferred from the
teacher to the student is obtained from the neurons in the top hidden layer, which
preserve as much information as the softened label probabilities, but being more
compact.

Network distillation approaches have also been applied recently to the person
re-identification problem. In [116], the authors propose using a pair of students to
learn collaboratively and teach each other throughout the training process. Each
student is trained with two losses: a conventional supervised learning loss, and a
mimicry loss that aligns each student’s class posterior with the class probabilities of
other students. This way, each student learns better in such peer-teaching scenario
than when learning alone. In [30], feature distillation is used to learn identity-related
and pose-unrelated representations. They adopt a siamese architecture, consisting
each branch of an image encoder/decoder pair, for feature learning with multiple
novel discriminators on human poses and identities. The recent work in [105]
resembles ours in some aspects, although their scope is semi-supervised and unsu-
pervised person re-identification, in contrast to our fully-supervised formulation.
Similarly to us, they consider lightweight models to reduce testing computation
as well as network distillation as an strategy of knowledge transfer. However, their
distillation approach is not probability based, but similarity based. They propose
the Log-Euclidean Similarity Distillation Loss that mimics the pairwise similarity of
the teacher instead of using soft labels as we do. They explore a multiple teacher-
single student setting and propose an adaptive knowledge aggregator to weight the
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contributions of the teachers.

2.3 On Metric Learning in Person Re-identification

2.3.1 Classical methods

Classical methods approach person re-identification as two independent problems,
that are feature representation and metric learning (see Section 2.2.1 for a descrip-
tion of some of them). Hand-crafted feature descriptors are designed by taking into
account the nature of the problem and its data.

In our experiments, we consider the LOMO feature descriptor to work jointly
with the XQDA metric learning algorithms [55], because they aim at being effective
and computationally efficient. As discussed in Section 2.2.1, LOMO presents the
best trade-off between accuracy and computational cost among all the methods
considered in the exhaustive analysis performed in [40].

LOMO features are claimed to be robust against view changes and illumination
variations. The method is based on extracting at different scales and locations of
the image, features that encode color information via HSV histograms plus texture
description computed by the SILTP [56] descriptor. After concatenating features
from different scales, the resulting feature vectors have a dimensionality of 26960.

To deal with this high dimensionality, [55] also propose XQDA as the metric
learning algorithm. It is basically an extension of KISSME [42] to cross-view data.
These approaches involve simultaneously learning a discriminant subspace along
with a metric. XQDA consists in a mapping to a lower dimensional space in which a
quadratic discriminant analysis is performed using cross-view data.

In this analysis, two classes of variations are considered: the intrapersonal
variations ΩI , i.e. the variations between samples that correspond to the same
identity, and the extrapersonal variationsΩE , i.e. the variations between samples
that correspond to different identities. These variations are simply computed as
the difference between features of different samples. The objective is to learn a
mapping from the feature space of high dimensionality d to a subspace W ∈Rd×r

of lower dimensionality r . The projection matrix W = (w1,w2, . . . ,wr) is learned by
maximizing J (w) = σE (w)

σI (w) , where σI (w) = wTΣI w and σE (w) = wTΣE w, being ΣI and
ΣE the covariance matrices ofΩI andΩE , respectively. The problem of optimizing
J(w) is solved by computing its eigenvalue decomposition. Then, the solution is
given by the r largest eigenvalues of J (w). Note that the selection of r determines the
dimensionality of the subspace. The authors propose to only take the eigenvalues
that are greater than 1, since smaller values correspond to the cases where σE <σI ,
thus not providing discriminant information. Finally, the computed distance dW in
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the new XQDA space is defined as (2.1),

dW (x,z) = (x−z)T W (Σ′−1
I −Σ′−1

E )W T (x−z), (2.1)

where x and z are features of samples that belong to different views and Σ′E =
W TΣE W , Σ′ I =W TΣI W .

2.3.2 Deep features

Deep learning based approaches employ the feature representations extracted
from a CNN, as described in more detail in Section 2.2.1. The CNN is trained by
considering the different identities as disjoint classes and benefits from large-scale
datasets, which allow better generalization. The deep features correspond to the
output of the last layer before the softmax. To compare different gallery images, we
normalize the features then computing their Euclidean distance. This measurement
provides a similarity metric which ranking is consistent with the cosine similarity.
Although not being optimal, it enables the comparison among different instances
providing a baseline for deep learning based approaches, as shown in previous
works [109, 122]. Its good performance is consequence of the quality of the features
rather than a metric learning algorithm, differently from classical approaches.

2.4 Reviewing Distillation

Besides improving the performance of the person re-identification pipeline in terms
of computational cost at test time, we also aim at maximizing the performance of
a small network to be as accurate as possible. As discussed in [36], the simplest
way to transfer the knowledge is to use the output of the teacher network as soft
targets for the student network, additionally to the hard targets provided by the
ground truth. However, when the soft targets have high entropy, they provide more
information to learn from. A network that is very confident about its prediction
will generate a probability distribution similar to a Dirac delta function, in which
the correct class has a very high probability while the rest of classes are predicted
with almost zero probability. This probability distribution has very low entropy and
consequently provides less information than a less confident network, which would
assign higher probabilities to the incorrect classes, as shown graphically in Figure
2.2. The intuition behind high entropy distributions help the distillation, is that by
learning from the probabilities assigned to incorrect classes, the student network is
learning how the teacher model generalizes.

The objective is therefore to increase the entropy of the probability distribution
generated by the teacher model, i.e. the output of the softmax layer, to leverage the
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Figure 2.2: Example of (a) low and (b) high entropy probability distributions that are
generated by the softmax layer of the teacher network for the Market-1501 dataset
(751 classes). When the network has high confidence about the predictions, as in
case (a), it provides hard targets with low entropy and therefore less information
than if the network generates a probability distribution similar to the case (b), with
the differences between the predicted probabilities of the incorrect classes being
enhanced. This second case provides more information that is helpful for the
distillation process.

information the student network learns from. In order to maximize the entropy,
the authors, by drawing an analogy with statistical physics, propose to increase the
temperature of this distribution. The logits zi , that are the inputs of the softmax
layer, are converted to probabilities pi by the softmax function as follows,

pi = exp(zi /T )∑
j exp(z j /T )

, (2.2)

where T is the temperature, that is a selected constant value in the distillation case,
and it is equal to 1 when there is no distillation.

The knowledge transfer is performed via the loss function of the student model
Ls . The loss function for the k-th training example Lsk is the weighted sum of two
terms and is defined as,

Lsk = H
(
pt (T = T0), ps (T = T0)

)︸ ︷︷ ︸
Distillation term

+λH
(
yk , ps (T = 1)

)︸ ︷︷ ︸
Cross-entropy loss

, (2.3)
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where H(p, q) denotes the cross-entropy between two probability distributions p
and q . The first term is the cross-entropy between the soft targets extracted from
the teacher pt (T = T0) and the softened probability distribution of the student
ps (T = T0). pt (T = T0) is the softened probability distribution of the teacher, that is
obtained by applying the softmax function (2.2) to the logits of the teacher divided
by a temperature T0. For ps (T = T0) we use the same T0 value. The second term
of the loss is the cross-entropy between the hard targets yk , that is the ground
truth distribution for the k-th sample, which has a value equal to 1 assigned to the
correct class and 0 to the rest of them, and the probability distribution of the student
(ps (T = 1)), that is the output of the softmax using a T = 1. This second term is the
standard cross-entropy loss function, which minimizes the cross-entropy between
the prediction of the network and the ground truth. These two terms are balanced
by a regularization parameter λ.

A graphical summary of the process is shown in Figure 2.3. In the current
framework of person re-identification, once the student network is trained via
distillation, it is used to extract the features of the images at test time, to then
measure their similarity using the Euclidean distance.

Figure 2.3: Distillation process. The cross-entropy between the softened distribu-
tions generated by the teacher and the student networks is computed in order to
minimize it additionally to the cross-entropy with the ground truth.
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2.5 Experiments

2.5.1 Datasets

In a real-world application, there are often several cameras that capture images of
people from different points of view in different illumination conditions and even
with occlusions. Market-1501 [121] or DukeMTMC-reID [77] have these character-
istics that match a real-life scenerario, providing images taken from 6 cameras in
the case of Market-1501 and 8 in the case of DukeMTMC-reID, that are captured
in outdoor public areas. They are also two of the largest-scale public datasets for
person re-identification. Sample images are shown in Figure 2.4.

(a)

(b)

Figure 2.4: Subset of gallery images that correspond to 2 identities from the (a)
DukeMTMC-reID and (b) Market-1501 datasets. Each identity can appear in dif-
ferent cameras and may present different points of view, pose, and illumination
conditions.

Market-1501 provides an average of 14.8 cross-camera ground truths for each
query, containing in total 32,668 bounding boxes of 1,501 identities, from which
12,936 bounding boxes with 751 identities belong to the training set. The mean of
images per identity is 17.2. All the bounding boxes are of size 128x64.

The DukeMTMC-reID benchmark is an extension of the DukeMTMC tracking
dataset. The bounding boxes are then extracted from the full frames provided by the
original dataset, resulting into person images of different sizes. It contains 36,441
bounding boxes that belong to 1,404 identities plus 408 distractor identities that
only appear in a single camera. Among them, 16,522 bounding boxes with 702
identities are used for the training set. The mean number of images per identity
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is 20, with a maximum of 426 images for the identity with the largest amount of
images.

2.5.2 Evaluation

In a re-identification task, the query is compared to all the gallery, computing a
similarity metric that is used to rank the gallery images sorted by similarity. The
rank-1 accuracy gives the probability of getting a true match from the gallery in the
first position of the ranking. Similarly, the rank-5 accuracy evaluates if we find a true
match in the five first positions of the ranking. As the person of interest may appear
many times in the gallery, we however need an evaluation metric that also considers
finding all the true matches that exist in the gallery, evaluating also the recall. The
mean average precision (mAP) is suitable for datasets in which an identity appears
more than once in the gallery, such as Market-1501 and DukeMTMC-reID.

We additionally report the computational cost at test time of the algorithms
proposed, by providing the time that feature extraction takes per image of a single
individual. We extract the features for all the gallery and compute the average time
per image. As the computational cost metric, we report the number of images
the system extracts the features from in a second, for the different considered
architectures. Then, the computational cost for the metric learning step is reported
separately.

2.5.3 Implementation details

To analyze the trade-off between accuracy and computational cost at test time, we
compare both classical and deep learning based approaches. In a real world appli-
cation, both of them can be considered depending on the scenario and available
resources.

Hand-crafted features

To evaluate the LOMO features independently to XQDA, we compare the Euclidean
distance, KISSME [42] and XQDA as similarity metrics. Note that PCA is commonly
applied previously to KISSME in order to reduce the dimensionality of the LOMO
features, in our case from 26960 to 200. XQDA instead allows to select the dimen-
sionality of its subspace, which enables to measure the performance of LOMO +
XQDA depending on the XQDA dimensionality. The maximum value that we con-
sider is the highest one with eigenvalues greater than 1. Following this criteria, we
get a maximum dimensionality of 76 for the features extracted from the Market-1501
dataset. Therefore, we consider values of the XQDA dimensionality from 25 to 75.
Finally, to evaluate the computational cost, we measure the inference time of the
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method, running these experiments on a laptop with a CPU Intel Core i5-6300U
CPU @ 2.40GHz.

Deep features

We take as a baseline the approach employed in [122] for the Market-1501 dataset,
using the ResNet-50 [33] model. As ResNet-50 might be too large for the datasets
we consider, we also explore other smaller networks that can be more efficient and
still perform well. In particular, we consider MobileNets [38].

MobileNets are introduced as efficient light weight models suitable for mobile
applications. The MobileNets architecture can be adapted to particular require-
ments of the system. In order to decide the network size, two parameters are
introduced to control its latency and accuracy: the width multiplier α ∈ (0,1] and
the resolution multiplier ρ ∈ (0,1]. The width multiplier can make the model thin-
ner, by multiplying the number of input and output channels on each layer by α. ρ
is implicitly selected when determining the input size of the network and can take
the values of 224, 192, 160 and 128.

Our deep learning based methods are implemented using the TensorFlow library.
The training and validation splits used for deep features are the ones provided on
the original baselines. For Market-1501, [122] use a validation split of 1,294 images
leaving 11,642 for training. The baseline for DukeMTMC-reID [128] uses the entire
set of training images. Finally, to evaluate the computational cost, we measure the
inference time, running the experiments on a NVIDIA GTX1070 GPU.

ResNet-50. The ResNet-50 network is fine-tuned from the weights pre-trained
on ImageNet, considering the person identities as classes. The deep features are
then extracted from the last layer before the softmax, which in the ResNet-50 archi-
tecture, corresponds to the output of the average pooling layer.

It is worth to mention that the high number of classes in the datasets (751
and 702 identities for the training splits of Market-1501 and DukeMTMC-reID
respectively), with few images per class (a mean of 20 for DukeMTMC-reID and 17.2
for Market-1501), is a drawback to train the network since deep neural networks
need a big enough amount of data to converge properly.

To train ResNet-50, we resize the input images to 224×224 and use horizontal
flip for data augmentation. Using Stochastic Gradient Descent (SGD), we initially
set the learning rate to 0.001 with a decay of 0.1 every 20000 steps. Using a batch size
of 16 and momentum of 0.9, we train the network for 21 epochs (15000 iterations)
for the Market-1501 dataset. For DukeMTMC-reID, the learning rate is initially set
to 0.01 and we use a batch size of 32, training it for 29 epoch (15000 iterations).

MobileNets. We choose an input size of 128 because of the size of the images of
the datasets we use. Market-1501 images have a fixed size of 128×64 while the size
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of DukeMTMC-reID images varies. All the images are resized to 128×128, applying
horizontal flip for data augmentation. We consider the width multiplier values of
α= 0.25,0.5,0.75,1.0, which are those with available ImageNet pre-trained weights
being provided. We denote these networks as MobileNet 0.25, 0.5, 0.75 and 1.0,
respectively. α also affects the dimensionality of the extracted features from the
network, which are the output of the final average pooling. The features are of
length 1024, 768, 512 and 256 for values of α= 1.0,0.75,0.5 and 0.25, respectively.

The training hyperparameters we use are those that perform best across several
experiments. We train MobileNet 0.25 for 29 epochs and the rest of MobileNets
for 39 epochs on Market-1501, by using SGD with a batch size of 32, an initial
learning rate of 0.01 with a decay of 0.1 every 20000 steps and momentum of 0.9. On
DukeMTMC-reID, we train all MobileNets for 39 epochs. We set the initial learning
rate to 0.01 for MobileNet 0.25 and to 0.02 for MobileNet 1.0. For MobileNets 0.5
and 0.75 we use a batch size of 16 and a starting learning rate of 0.005.

Network distillation

ResNet-50 plays the role of the teacher as it is the largest network among those con-
sidered. However, we also consider MobileNet 1.0, which has the biggest capacity
of the MobileNets configurations. The number of parameters for MobileNets are
4.24M, 2.59M, 1.34M and 0.47M for width multiplier values of 1.0, 0.75, 0.5 and 0.25
respectively, while ResNet-50 has 23.5M of parameters. Aiming at an efficient net-
work, the student is the MobileNet with the smallest width multiplier, i.e. MobileNet
0.25.

We analyze the effect of the hyperparameters of the distillation, i.e. the tem-
perature T and the regularization weight λ for the distillation loss (Eq. 2.3). We
explore the range of temperatures T ∈ [1−30], being T = 1 the case in which the
entropy of the soft targets is not modified and T = 30 a case of very high temper-
ature. This selection is based on the observed softened probability distribution
that is generated by the teacher network for T = 30, as shown in Figure 2.5. In that
probability distribution the difference between the probabilities assigned to the
incorrect classes and the one assigned to the correct class is less than a 0.1%. This
is due to a very high temperature that causes the probability distribution to be
almost flat and corresponds to the case of maximum entropy. To do the analysis
for T in that range, we use intervals of 5, and 1 for the lowest values. For λ, we
choose the values 0.0001, 0.001 and 0.01. They have been selected by analyzing the
contribution of the loss terms while monitoring the training process, as shown in
Figure 2.6. When using a value of λ= 0.1, the cross-entropy loss leads the training
and the distillation term barely affects. In this situation however, our experiments
showed this makes the training harder to converge, resulting in a performance drop.
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For this reason, we do not consider values of λ≥ 0.1 in our analysis.
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Figure 2.5: Original and softened probability distributions generated by the teacher
network for temperature values of (from top to bottom) T=1,3,5,10,20,30.

For each value of T, we evaluate both the Rank-1 accuracy and mAP with the
features extracted from the student network. We try several combinations of the
hyperparameters, e.g., learning rate, batch size, number of epochs. However, most
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of the experiments perform best using the same hyperparameters, i.e., we obtain
that the same optimum configuration of parameters for several values of T and λ.
All the Rank-1 and mAP values reported in Section 2.6 for each value of T, are those
that perform best among all the experiments performed. Most of the distillation
experiments use SGD, with an initial learning rate of 0.02 that decays 0.1 every
20000 steps, and a momentum of 0.9, being trained for 39 epochs.

(a)

(b)

Figure 2.6: Training loss for the distillation with (a) low (λ= 0.0001) and (b) high
(λ= 0.1) λ values. The distillation loss leads the training in case (a) , while in case
(b) it is done by the cross-entropy loss (see Eq. 2.3).

2.6 Results

Hand-crafted features

For the classical approach using LOMO and XQDA, we report its performance in
Table 2.1. The results verify using metric learning algorithms such as KISSME or
XQDA significantly improves the overall performance over the standard Euclidean
distance. However, we must take into account that in these experiments PCA
is previously applied in the case of KISSME to reduce the dimensionality of the
LOMO features to 200. The dimensionality in the XQDA space is 75, which is
considerably smaller. XQDA then performs better than KISSME even with a stronger
dimensionality reduction.
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However, both XQDA and KISSME require a metric learning step that increases
the computational cost. In particular, the XQDA training, i.e. finding the projection
matrix from the training set samples, takes 892 seconds for Market-1501, whose
training set contains 12936 images. Also, comparing a query image against the
gallery takes an average time of 1,951 ms per image. Using XQDA, the system
compares the individuals’ features at a rate of 0.5 images/s. Regarding the compu-
tational cost for feature extraction with LOMO, the mean CPU time to extract the
LOMO features per image is 17.5ms, i.e. the system is able to get the descriptors for
the images of the individuals at a rate of 57 images/s.

Table 2.1: LOMO and XQDA performance on Market-1501.

Features Similarity metric Rank-1 (%) ↑ mAP (%) ↑
LOMO Euclidean distance 27.11 8.01
LOMO KISSME [42] 41.83 19.37
LOMO XQDA (dimensionality 75) 43.32 22.01
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Figure 2.7: Performance for LOMO + XQDA on Market-1501 depending on the XQDA
dimensionality. (a) Rank-1 accuracy and (b) Mean average precision.

Figure 2.7 shows the dependency of the performance with the XQDA dimension-
ality, while on Table 2.1 the performance reported of LOMO+XQDA corresponds
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to the highest dimensionality value for XQDA. The accuracy increases with the
dimensionality of XQDA, as more information can be encoded in the feature vector.
Although we expect a saturation on the performance from a certain value, we do
not reach such value. This is probably because the maximum dimensionality in our
case is 75, which is considerably low. It is much lower than the dimensionality of the
smallest feature vectors considered in our experiments, that is 256 for MobileNet
0.25.

Deep features

For the deep features baseline, [122] get a 72.54% of rank-1 accuracy and 46% mAP
on the Market-1501 dataset, with deep features extracted from ResNet-50. Following
the same strategy, in [128] the baseline results for the DukeMTMC-reID dataset are
a 65.22% of rank-1 accuracy and 44.99% of mAP.

Table 2.2: Rank-1 accuracy, mean Average Precision (mAP) and computational
cost of the inference for the deep features from the ResNet-50 and MobileNet
architectures trained on the Market-1501 and DukeMTMC-reID datasets.

Market-1501 Rank-1 (%) ↑ mAP (%) ↑ # images/s ↑
ResNet-50 64.46 38.95 128

MobileNet 0.25 59.74 34.13 613
MobileNet 0.5 68.11 41.52 607

MobileNet 0.75 67.34 40.44 574
MobileNet 1.0 67.37 39.54 545

DukeMTMC-reID Rank-1 (%) ↑ mAP (%) ↑ # images/s ↑
ResNet-50 67.1 44.59 128

MobileNet 0.25 49.69 28.67 613
MobileNet 0.5 54.62 32.17 607

MobileNet 0.75 57.32 34.69 574
MobileNet 1.0 57.41 34.86 545

Table 2.2 shows the performance of ResNet-50 and MobileNets fine-tuned to
the target datasets. On Market-1501, the middle size MobileNets perform best,
even slightly better than the biggest one and ResNet-50. However, MobileNet 0.25
achieves a lower performance. The reason why the middle models perform so well
could be that all of them have enough capacity to solve the problem. Then, a bigger
architecture, such as ResNet-50, does not involve an improvement. Moreover, as
mentioned in Section 2.5.3, training the networks on a dataset with a high number
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of classes and a small number of samples per class is not straightforward. The
baseline achieved with ResNet-50 by [122] suggests a higher performance could be
achieved for this network.
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Figure 2.8: Distillation performance on Market-1501. (a) Rank-1 accuracy and
(b) Mean average precision for student model MobileNet 0.25 with teacher model
ResNet-50. (c) Rank-1 accuracy and (d) Mean average precision for student model
MobileNet 0.25 with teacher model MobileNet 1.0. Best viewed in colour.
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Figure 2.9: Distillation performance on DukeMTMC-reID. (a) Rank-1 accuracy and
(b) Mean average precision for student model MobileNet 0.25 with teacher model
ResNet-50. (c) Rank-1 accuracy and (d) Mean average precision for student model
MobileNet 0.25 with teacher model MobileNet 1.0. Best viewed in colour.

For the DukeMTMC-reID dataset, MobileNets do not perform as good as they
do for Market-1501. The reason might be this dataset is more challenging, and
requires a higher capacity of the network to provide a good enough description of
the identities. Since the size of the bounding boxes vary and all of them have to be
resized to 128×128, losing thereby the aspect ratio, the input images have a higher
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variability.

Network Distillation

The network distillation experiments are carried out by using pre-trained ResNet-50
and MobileNet 1.0 networks as teachers, whose performance is reported in Table 2.2.
We show in Figures 2.8 and 2.9 the Rank-1 accuracy and mAP dependency with the
temperature in the distillation, for the Market-1501 and DukeMTMC-reID datasets,
respectively. The performance of the teacher and the student trained independently
is also provided in the previous figures to show the comparison w.r.t. the baseline
without distillation. All the experiments improve significantly the performance
of the student, and even outperform the teacher at low temperatures. The only
case in which the student does not outperform the teacher is for the DukeMTMC-
reID dataset when the teacher network is ResNet-50 (Figure 2.9 (a,b)). In this case,
however, the difference of performance between the teacher and the student is
higher than for the other experiments.

For a fixed value of λ, there is always a peak of performance in T = 3. The worst
performing temperature value is for T=1. This corresponds to the case in which
the temperature is not increased, i.e. the original logits from the teacher models
are used. This demonstrates the importance of raising the temperature to produce
suitable soft targets. Also, from a certain value of T, the performance gets saturated,
probably because the probabilities are already very softened and they do not change
significantly for higher values of T, as Figure 2.5 shows (values of T = 20,30). The
differences of probabilities among both distributions are less than a 0.1%.

Table 2.3 compares our best performing configuration for network distillation
to the state-of-the-art approaches. Our proposed approach is not superior than
the state of the art in terms of performance. However, we must consider that it
is intended to be efficient and simple. The specific design towards an efficient
solution can compromise the accuracy. Also, while we only naively train a classifica-
tion network with standard cross-entropy and network distillation, state-of-the-art
approaches employ more complex architectures. For instance, [30] include gen-
erative adversarial network in their solution. The work in [85] leverages attributes
information that needs to be previously detected automatically. A decorrelation
step applied on the weight vectors of the last fully-connected layer is required in
[94]. All of these approaches are presumably less efficient due to their increased
complexity. The only work that is comparable in terms of efficiency is [116], that
also employs network distillation on the same networks as ours. Their learning
objective, however, is more sophisticated than ours, which might explain the gap in
performance.

Finally, to summarize all the considered methods, Figure 2.10 and Table 2.4 show
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Table 2.3: Rank-1 accuracy and mean Average Precision (mAP) for network distilla-
tion, taking MobileNet (α=0.25) as the student network, and MobileNet (α=1.0)
and ResNet-50 as the teachers, compared against the state of the art on the Market-
1501 and DukeMTMC-reID benchmarks. * These methods were not yet published
when this work was developed. We added them according to reviewers suggestions.

Market-1501 Rank-1 (%) ↑ mAP (%) ↑
MobileNet 0.25 distilled from ResNet-50 71.29 45.76

MobileNet 0.25 distilled from MobileNet 1.0 70.46 45.24
P2S [132] 70.72 44.27

CADL [58] 73.84 47.11
MSCAN Fusion [52] 80.31 57.53

SVDNet [94] * 82.3 62.1
ACRN [85] 83.61 62.60

DML [116] * 89.34 70.51
FD-GAN [30] * 90.5 77.7

DukeMTMC-reID Rank-1 (%) ↑ mAP (%) ↑
MobileNet 0.25 distilled from ResNet-50 64.99 42.32

MobileNet 0.25 distilled from MobileNet 1.0 59.69 38.48
Dataset baseline with ResNet-50 [128] 65.22 44.99

ACRN [85] 72.58 51.96
SVDNet [94] * 76.7 56.8
FD-GAN [30] * 80.0 64.5

the trade-off between computational cost and accuracy. In Table 2.4 we compare the
performance of the classical approach (LOMO+XQDA), the deep features extracted
from the MobileNets architectures trained with the cross-entropy loss as well as the
deep features extracted from MobileNet 0.25 being distilled from the MobileNet 1.0
and ResNet-50 models. On the Market-1501 dataset, we compute the LOMO features
then applying XQDA with dimensionality 75. The results for the DukeMTMC-reID
dataset instead are reported in [128].

Note that LOMO computational cost is measured in CPU time, while all the deep
features methods are measured in GPU time. The comparison of the computational
cost is therefore not strictly fair. In terms of accuracy, the LOMO+XQDA accuracy
is the lowest by a large margin, as expected for a hand-crafted method. This kind
of method would be suitable only for an application in which either a GPU, or
large amounts of annotated data, are not available. The results show distillation
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Table 2.4: Evaluation of the trade-off between Rank-1 accuracy, mean Average
Precision (mAP) and computational time on the Market-1501 and DukeMTMC-reID
datasets. d.f. stands for distilled from.

Market-1501 Rank-1 (%) ↑ mAP (%) ↑ # images/s ↑
LOMO + XQDA 43.32 22.01 57

ResNet-50 64.46 38.95 128
MobileNet 1.0 independent 67.37 39.54 545

MobileNet 0.25 independent 59.74 34.13 613
MobileNet 0.25 d.f. ResNet-50 71.29 45.76 613

MobileNet 0.25 d.f. MobileNet 1.0 70.46 45.24 613
DukeMTMC-reID Rank-1 (%) ↑ mAP (%) ↑ # images/s ↑

LOMO + XQDA [128] 30.75 17.04 57
ResNet-50 67.1 44.59 128

MobileNet 1.0 independent 57.41 34.86 545
MobileNet 0.25 independent 49.69 28.67 613

MobileNet 0.25 d.f. ResNet-50 64.99 42.32 613
MobileNet 0.25 d.f. MobileNet 1.0 59.69 38.48 613

effectively improves the performance of efficient networks, providing the best
accuracy among all the considered methods, as well as the lowest inference time.
It is also worth mentioning the gap of computational cost between ResNet-50 and
MobileNets, while their performance in terms of accuracy is very similar. This
highlights the importance of choosing a suitable architecture for the target problem.
For Market-1501, a network of the size of MobileNet can describe the features of
the identities effectively while in the case of DukeMTMC-reID, ResNet-50 performs
much better.

2.7 Conclusions

In this chapter we have addressed the problem of person re-identification aiming
at an efficient solution. In a real-life application the working images show crowded
scenes frequently, which justifies the need of having a system that is able to identify
as many individuals as possible in the shortest time. We have considered both
classical (i.e. not deep learning based) as well as current state-of-the-art deep
learning based approaches, as we argue both could be suitable depending on the
data and resources availability.
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2.7 Conclusions

We have evaluated the trade-off between accuracy and computational cost for
both kind of methods. As a classical approach, LOMO and XQDA comprise the two
stages of image description and similarity metric computation. The deep learning
based method employs features that are extracted from ResNet-50 and MobileNets
networks and compared by using the Euclidean distance as the similarity measure.
This evaluation is performed on large-scale person re-identification datasets, aim-
ing to simulate the scenario of a real-world application. We showed that using
features from CNNs outperformed by a large margin the accuracy achieved with
a classical approach, being also much faster, when using a GPU. However, this
requirement as well as the large amount of annotated data that a network needs to
be properly trained are the drawbacks to consider. Both ResNet-50 and MobileNets
achieve a good performance, being the latter four times faster at test time.

Additionally, we have proposed and discussed network distillation as an al-
ternative to improve the performance of MobileNets at test time, demonstrating
its effectiveness. The student MobileNets networks even outperform the teacher
ResNet-50 model, getting an accuracy that could not be achieved by training the
student independently.
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Figure 2.10: Trade-off between the mean average precision (mAP) and the fea-
ture extraction time for the proposed methods on the (a) Market-1501 and (b)
DukeMTMC-reID datasets. Note that the feature extraction time for LOMO is mea-
sured as CPU time while the deep features experiments are run on a GPU. Best
viewed in colour.
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3 Hierarchical Novelty Detection

3.1 Introduction

Deep neural networks have demonstrated to achieve outstanding performance
on image classification. However, the problem of detecting samples that do not
belong to any class known by the model, i.e. novelty detection, remains unsolved.
Two challenges of this task are that, first, classification networks trained by cross-
entropy tend to be overconfident about their predictions, meaning they will assign
a known class to any input fed to the network with very high confidence. The
second difficulty is that by definition there is no training data for what is novel.
There have been some efforts in addressing such problem [34, 48, 49, 66], but the
binary output of these approaches only determines whether the sample belongs to
a known class or is unknown. A desirable feature of classifiers would be, besides
providing a novel/known decision, to produce an approximate prediction of the
novel class by taking advantage from the knowledge of the already learned classes.
In particular, we go beyond vanilla novelty detection and study how to perform
such enhanced novelty detection under the framework of a hierarchical taxonomy
of classes. This problem is known as hierarchical novelty detection [47]. It aims
at correctly classifying samples of known classes, while also allocating the novel
samples to the most suitable node of the hierarchy, i.e. their parent class. Figure 3.1
illustrates a simplified example. Let us assume a model trained on traffic sign
recognition that has learned to only recognize speed limit traffic signs of 10, 20, 50,
90 and 120. If the system is fed a sample image of a 30 speed limit, it then should
predict this sample belongs to a novel class, and more precisely, that it is a speed
limit sign.

This problem has been traditionally studied as two independent tasks in the
literature, i.e. novelty detection and hierarchical classification. Solving the joint task,
however, has the advantage that novelty detection can benefit from the hierarchical
taxonomy of classes. In academia, experiments are often restricted to certain sets
of classes that compose the datasets. This data is limited and cannot comprise all
the possible classes and variability of samples a real-life application faces. These ex-
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Figure 3.1: Example of hierarchical novelty detection on traffic sign recognition.
Our system is trained to recognize speed limit traffic signs of 10, 20, 50, 90 and
120. When it is fed an image of a speed limit traffic sign of 30, it should predict
that it belongs to a novel class (never seen during training), but also that is a speed
limit traffic sign, placing correctly the novel sample in the hierarchical taxonomy of
known classes.

periments, moreover, are based on a closed-world assumption [12, 26], i.e. systems
consider the only existing classes are those seen at training time. Novelty detection
instead, necessarily considers an open world setting. By leveraging the hierarchical
taxonomy of the known classes, we show it is possible to produce approximate
predictions even for unknown samples, by classifying them to the closest concept
in such semantic taxonomy.

In this chapter, we propose to solve the problem of hierarchical novelty detection
by introducing a novel loss function, i.e. Hierarchical Cosine Loss (HCL), which
learns an embedding of discriminative features that is consistent with the taxonomy
class relationships by encoding taxonomy based constraints. In this embedding,
every known class, that corresponds to either a parent or leaf node, is represented
by a prototype. Prototypes enable the classification of any kind of sample, including
novel ones. HCL is based on a normalized version of the softmax loss reformulated
from a cosine perspective. It optimizes the cosine similarity at training time between
features and corresponding class prototypes. Consistently, we perform the novelty
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decision at test time by using the same metric. By mapping the sample into the
embedding space, our approach assigns the sample features to the prototype with
the highest cosine similarity.

To the best of our knowledge, there is only a previous work [47] that has ap-
proached this problem. The authors instead employ confidence calibrated classi-
fiers [48] to overcome the difficulty of the overconfidence of models trained with
standard softmax. Similar approaches to ours [99] have been proved to increase the
performance on the face recognition task in comparison to the standard softmax
formulation that [47] applies. Whereas the mathematical background is similar,
there is a subtle conceptual difference among both formulations. While standard
cross-entropy answers the question What is this sample?, ours tries to find the
response to What does this sample look like most? The latter setting seems to be
more appropriate to classify unknown samples by finding the most similar known
class.

Our solution can be a powerful tool for practical applications. For instance, a po-
tential application is to ease annotation procedures, that could be semi-automated
by providing the closest known class even for novel samples. Also, it could be a
first step towards class incremental learning [49, 131], where one could extend
the model with the newly learned classes. As a concrete application, autonomous
driving technologies can benefit from it, e.g. by detecting new object categories
automatically in a navigation system and suggesting the most similar known class.
The aforementioned class incremental setting could also be used to build adaptive
models to the challenging changing environment that autonomous driving systems
face. We specifically address the traffic sign recognition problem [98]. This task
is of special interest because in the case of traffic signs, the semantic taxonomy is
strongly related to the visual appearance. The categories are human-built so that
the meaning is intended to be visually represented. Therefore, one could build an
adaptive traffic sign detector that is able to infer the meaning, at least partially, of
the detected novel signs.

In summary, the contributions of this chapter are the following:

• A hierarchical novelty detection framework that is able to detect novel sam-
ples that belong to classes not seen during training, also placing them at the
correct node of the taxonomy, i.e. predict the parent class. For this purpose,
we introduce a novel loss function, i.e. Hierarchical Cosine Loss, which in-
corporates hierarchical constraints and optimizes the cosine similarity as
the confidence metric, differently from most of current approaches that are
based on class probabilities.

• A specific application to traffic sign recognition. We introduce the taxonomies
and appropriate splits for two large scale traffic signs datasets, Mapillary
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Traffic Sign Dataset (MTSD) and Tsinghua-Tencent 100K (TT100K).

• We show that HCL significantly outperforms state-of-the-art approaches on
these traffic sign benchmarks. For TT100K and MTSD, our method can detect
novel samples from unknown classes at the correct nodes of the hierarchy
with 75% and 24% of accuracy when it correctly classifies known classes with
90% of accuracy, respectively. It also reaches 81% and 36% of novel accuracy at
80% known accuracy for TT100K and MTSD, respectively. Additionally, on the
natural images datasets AWA2 and CUB, it achieves equivalent performance
to state-of-the-art models.

• A new hierarchical novelty detection metric, i.e. the average error distance
d̄h , to evaluate the errors produced under a hierarchical setting. It measures
how far in the hierarchy we predict novel classes from the correct node.

• An ablation study that analyzes the individual performance of the HCL terms,
discussing their benefits and drawbacks.

3.2 Related Work

3.2.1 Novelty Detection

Broadly, novelty detection belongs to the field of study of out-of-distribution detec-
tion [28, 49, 66, 71], that consists on identifying samples that do not belong to the
distribution of the training data (in-distribution). More specifically, novelty detec-
tion aims to classify known classes while detecting novel samples that correspond
to classes never seen during training. For instance, the authors of [66] address
out-of-distribution detection by proposing a metric learning based approach. They
distinguish among novelties and anomalies depending on the resemblance w.r.t.
the in-distribution data. Similarly to us, they apply it to traffic sign recognition.
However, they only provide a binary output that classifies a sample into either a
known class or a generic class of novelty. Our approach instead, provides informa-
tion about what kind of novelty it is, by predicting its parent class as the expected
output. In a different direction, [49] considers both out of distribution detection and
adversarial attacks, as both problems consist in detecting abnormal samples. They
propose a Gaussian discriminant analysis resulting in a confidence score based
on the Mahalanobis distance. Moreover, they apply their approach into a class
incremental setting framework, showing they are able to incorporate new classes
without retraining the models.

There are no works other than [47] directly addressing hierarchical novelty
detection. The reason is probably it is a concrete and complex task that merges
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two problems traditionally studied separately, i.e. hierarchical classification and
novelty detection. The authors of [47] introduced the problem for the first time
and proposed two different models. The first Top-Down model trains confidence-
calibrated classifiers [48], which besides training the standard cross-entropy loss,
minimize the KL divergence of the probability vector w.r.t. the uniform distribution.
At test time, it makes top-down decisions so that at each node it measures the
KL divergence to evaluate whether the classifier is confident about the prediction,
which determines if the sample is novel or known when compared to a threshold.
The second Flatten model trains the standard cross-entropy loss considering all
classes, i.e. both leaf and super classes, and performs the decision ignoring the
taxonomy. Additionally, they show the hierarchical embeddings can be employed
to improve the performance on generalized zero shot learning. Both their proposed
approaches employ the standard softmax objective and base their training and
decision on class probabilities. Differently to them, we train our embeddings by
optimizing the cosine similarity instead of the inner product and perform the
novelty decision based on this similarity metric. Furthermore, our approach learns
an embedding of discriminative features that is consistent with the taxonomy class
relationships.

Nevertheless, there exist some problems that are conceptually similar. One of
the closest problems is zero-shot learning (ZSL) [31, 87, 107, 108], where the goal is
to classify samples of classes not seen during training. The base idea of hierarchical
novelty detection, i.e. to use the knowledge of the known classes to recognize
the novel ones, is shared with ZSL. It however, requires additional information
about the known classes to be given, in the form of attributes or text description
transformed into embeddings, while hierarchical novelty detection only relies on
the class taxonomy.

3.2.2 Hierarchical Classification

Considering hierarchical class taxonomies in the classification problem has been
widely studied in the literature [9, 14, 15, 17, 29]. The problem of hierarchical novelty
detection actually comprises hierarchical classification of the known classes. In
[9], the authors take advantage from hierarchical taxonomies of classes for error
measurement. They propose two methods based on the cross-entropy loss that aim
to minimize the asymmetric cost of the errors produced. Their error evaluation
employs the height of the lowest common ancestor (LCA) among the predicted
and the ground-truth classes in the taxonomy tree. This is similar to the metric we
propose for the task of hierarchical novelty detection in Section 3.5.2, the average
error distance d̄h . Differently, we use the distance in the tree between both classes,
that corresponds to the sum of distances from both the predicted and ground truth
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classes to their LCA. More recently, a prototypical network is introduced in [29], that
is supervised by employing a cost matrix that encodes hierarchical relationships
among classes, then penalizing large hierarchical errors. It is conceptually similar to
our proposed loss in that they also incorporate hierarchical constraints to learn an
optimal embedding. Also, they consider the Average Hierarchical Cost as a metric
to evaluate classification errors, which matches the definition of our average error
distance d̄h metric, but in the context of hierarchical classification.

Another related problem is long tailed recognition, that consists in correctly
classifying classes from which many of them are underrepresented in the training
data. This often matches a real life scenario, where balanced data for all the classes
is unlikely to have. The obvious differences are their classes are highly imbalanced
but at least one sample per class is seen during training and they do not need
to make a novel/known class decision. Some works employ class hierarchies in
their solution. For instance, the authors of [106] propose to solve this problem
under a hierarchical class taxonomy framework, then providing from coarse to
fine-grained predictions according to the confidence. This enables the models to
reject classification at different levels. More recently, [18] transform the problem
into a hierarchical classification one by building a tree which levels correspond
to different degrees of difficulty according to how imbalanced the data is, then
transferring the knowledge across levels.

3.2.3 Cosine Losses

There exist diverse works that similarly to us, propose loss functions based on
modifying the softmax loss from a cosine perspective to improve its performance.
The softmax loss, in this context, refers to a cross entropy loss preceded by a softmax
activation and a fully connected layer. These works are commonly applied to
the face recognition task, where learning discriminative features is essential to
distinguish identities. They also benefit from this loss formulation because they use
the cosine similarity at test time.

The first work that opened this line of research was [62], where based on the
softmax loss, the proposed L-Softmax loss included a new angular margin hyperpa-
rameter that acts on the class decision boundaries to enforce inter-class variance
then pushing the discriminative power of the features. SphereFace [61] normalized
the weights of the last fully-connected layer on the L-Softmax loss, making them lie
on a hyphersphere. A normalized version of the softmax loss was introduced in [99],
where they normalized both features and class weights so that the only variable to
be optimized is the cosine of the angle between them. Later, the authors of [100]
added a margin parameter to it to increase the discriminative power of features.
This margin separates the decision boundary between classes in the embedding
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space, at the cost of introducing a new hyperparameter. In our approach instead, to
learn discriminative features under a hierarchical setting, we propose additional
terms to the loss that encode hierarchy based constraints, being consistent with
the problem we aim to solve. Similarly to [100], [24] also introduced a margin
hyperparameter, but applied on the angle. Finally, in an effort to improve the
aforementioned methods, AdaCos [115] proposes a hyperparameter-free approach,
leveraging a dynamically adaptive scale parameter that is adjusted automatically.
Simultaneously, RegularFace [119] proposed an exclusive regularization term to
the loss to further push inter-class discriminability by optimizing angular distance
among classes.

3.3 Hierarchical Novelty Detection

In this Section, we first describe the setting of the hierarchical novelty detection
problem in Section 3.3.1, then introducing our proposed Hierarchical Cosine Loss
in Section 3.3.2.

3.3.1 Class taxonomy

In hierarchical novelty detection, the classes are organized by a hierarchy of known
classes that is built based on their semantics. The resulting taxonomies of the
datasets considered in this chapter are trees, where all nodes have at least two
children classes and a single parent. As an example, Figure 3.1 shows a subset of the
taxonomy of MTSD. The dataset is split into two sets of disjoint classes: known and
novel. Known classes are used during training to learn an embedding, while novel
classes are not included in the hierarchy; they are never seen during training and
our goal is to predict the correct parent (known) class for the novel samples at test
time.

Datasets provide samples for known leaf classes, however, our approach also
needs sets of samples that represent the parent classes. To this end, we employ a
relabeling strategy as in [47]. We select a percentage of the samples of the leaf classes
to be relabeled as their parent class. We refer to this percentage as the relabeling
rate rr ate . This procedure is recursively repeated in a bottom-up manner from the
bottom nodes to their parents until we reach the root and all the nodes are assigned
samples. The subset of samples is chosen randomly and is different for each epoch.
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3.3.2 Hierarchical Cosine Loss

We introduce the Hierarchical Cosine Loss (HCL) in order to learn an embedding for
the known classes. HCL comprises a layer of learnable parameters that corresponds
to a fully connected layer with no bias. The HCL layer is appended after the feature
layer of a ResNet-101 backbone, which serves as a feature extractor. Our loss, HCL, is
composed by a set of terms that enforce learning discriminative features, leveraging
the class hierarchy. It is defined as follows,

HC L =λN S LN S +λHC LHC +λC T LC T +λHT LHT , (3.1)

where LN S , LHC , LC T and LHT stand for Normalized Softmax, Hierarchical Centers,
C-triplet and Hierarchical Triplet loss, respectively, and λN S , λHC , λC T and λHT are
their regularization parameters.

Normalized Softmax Loss LN S . A reformulation of the softmax loss was intro-
duced in [99], consisting in applying normalization on both the weights from the
last fully-connected layer, whose bias is set to 0, and the feature vectors. This results
in optimizing the cosine similarity instead of the inner product. We refer to this loss
as Normalized Softmax Loss (NSL). NSL is defined as

LN S = 1

N

∑
i
−l og

e s cos(θyi ,i )∑
j e s cos(θ j ,i )

, (3.2)

where yi is the ground truth label of the i -th sample, N is the number of samples and
θ j ,i is the angle between W j and xi , being W j a weight vector of the fully-connected
layer for the j -th class and xi the feature vector of the i -th sample. A weight vector
W j can be interpreted as a representative vector of the j -th class, we refer to it as a
class prototype. For a class which features are properly separated in the embedding
space, its prototype would correspond to the mean of the features. By applying
L2 normalization, we fix ∥W j ∥ = 1 and ∥x∥ = s. This results in optimizing only the
cosine of the angle, as the norms will not contribute to the loss. After normalization,
the feature vectors lie on a hypersphere, where the scaling parameter s controls its
radius and the resulting features are separable in the angular space, reducing intra-
class angular variability and pushing inter-class variance within the hypersphere.
This consequently enforces removing radial variations.

C-Triplet loss LC T . This re-formulation of the softmax loss can also be translated
into the Constrastive or Triplet losses, which inspired us to propose the following
loss terms that incorporate hierarchical constraints. In [99], the authors introduce
the C-triplet loss LT ′ as the modified version of the triplet loss, that is defined as
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follows,

LT ′ = max(0,m +∥x̃i −W j ∥2
2 −∥x̃i −Wk∥2

2), ∀yi = j , yi ̸= k, (3.3)

where x̃ = x
s and m is a margin parameter. Note that both x̃ and W j are normalized,

then we could re-formulate it in terms of the cosine similarity. Considering that
∥x̃i −W j ∥2

2 = 2−2W T
j x̃i and W T

j x̃i = cosθ j ,i , LT ′ can also be defined as

LT ′ = max(0,m +2cosθk,i −2cosθ j ,i ), ∀yi = j , yi ̸= k. (3.4)

Then, considering pairs of different classes i , j , we define our C-triplet loss term
LC T as

LC Ti = max(0,cosθ j ,i −cosθi ,i +mC T ), ∀yi ̸= j . (3.5)

where the margin parameter mC T is set to zero in all our experiments for simplicity.
This term is intended to increase the discriminative power of the features, increasing
the inter-class variance. It encodes that the features of a class should be closer to
their class than to other class centers, i.e. the cosine similarity is higher among the
features of a class xi and its prototype Wyi than to the prototypes of different classes
W j | yi ̸= j .

Hierarchical Triplet loss LHT . To further enforce discriminative features based
on the hierarchical relationships, we propose the Hierarchical Triplet term LHT that
is defined as

LHTi = max(0,cosθk,i −cosθ j ,i +mHT ), ∀i , j ,k | yi ̸= j ̸= k, dh(yi , j ) < dh(yi ,k),

(3.6)

where dh is the hierarchical distance between two nodes in the taxonomy, we refer
the reader to Section 3.5.2 for more details on this distance. mHT is a margin
parameter and is set to zero in all our experiments. The purpose of this term is
that features of a class should be closer to the prototypes of those classes that are
closer in the taxonomy. For instance, a speed limit traffic sign class will be closer to
any other speed limit sign than to any direction traffic sign. Figure 3.2 illustrates an
example. The effect of this term is then to distribute the features in the hypersphere
according to the taxonomical relationships.

Hierarchical Centers loss LHC . Similarly to the Hierarchical Triplets term LHT ,
the Hierarchical Centers loss LHC aims to increase the separation in the angular
space of the class prototypes W j based on the hierarchical relationships between
classes. The difference is that instead of being applied to the distance among
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Figure 3.2: Interpretation of Hierarchical Triplet loss term LHT . Samples are forced
to be closer to prototypes of classes that are closer in the taxonomy. In this example,
the anchor sample is a speed limit sign of 30, while the positive class is the speed
limit sign of 90, which is closer in the taxonomy than the direction sign class, that is
the negative class of the triplet.

features and prototypes, it only affects the class prototypes W j . Thus, this term
enforces a higher similarity among class prototypes that are closer in the taxonomy.
LHC is defined as

LCi = max(0,cosφyi ,k−cosφyi , j +mC ), ∀i , j ,k | yi ̸= j ̸= k, dh(yi , j ) < dh(yi ,k),

(3.7)

where φyi , j is the angle between Wyi and W j . mC is a margin parameter and is set
to 0.05 in all our experiments.

3.3.3 Inference

By training HCL for both known leaf and super classes, we learn the set of class
prototypes, i.e. class weights W j from the last fully connected layer that identify all
the known classes. These, at test time, can be compared against the features of the
test samples to perform classification.

At inference time, for every test sample we compute the cosine similarity be-
tween its features and all the class prototypes W j . These features are extracted from
the ResNet-101 model as we do at training time. We add an offset to the cosine
similarities of the super classes, which controls the trade-off between known and
novel class accuracies. Its value can be varied within a range to select the desired
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working point. This is needed to compute the metrics detailed in Section 3.5.2. The
test samples are finally classified to the class which prototype W j has the highest
similarity w.r.t. their features, after applying the offset. Then, if a sample is assigned
a leaf class, it means it corresponds to a sample of this known leaf class, while if the
sample is assigned a super class, it is considered as a novelty under this parent class.
For instance, a sample classified as a regulatory traffic sign is a sign of an unknown
class of type regulatory that in the taxonomy would be a child class of regulatory.

Note that, differently from other hierarchical classification methods [47], we
do not follow a top-down strategy. This avoids top-down error aggregation that
happens when the prediction at the top-most levels is wrong, and is magnified with
complex and deep taxonomies. Therefore, we do the classification at inference time
not considering any class taxonomy, being all the classes equally probable.

3.4 Datasets

We consider two kinds of datasets to assess the performance of our approach. First,
to compare it against the state-of-the-art methods of hierarchical novelty detection,
we employ the evaluation setting proposed in [47] as well as the datasets, CUB [103]
and AWA2 [107]. Additionally, because we aim to apply our method on a traffic
sign recognition framework, we choose two large scale traffic sign benchmarks:
Tsinghua-Tencent 100K (TT100K) [133] and Mapillary Traffic Sign Dataset (MTSD)
[27].

The original classes of these datasets are split into known and novel. Those that
are known correspond to the leaf classes of the hierarchy. Among the samples of the
known leaf classes, we build train, validation and test splits. Train samples are used
to train the model, validation for hyperparameter optimization and test samples
are used to evaluate the classification accuracy on the known classes. The details
on how we make the splits are detailed in the following sections for each dataset.
The data to reproduce our experiments is available in [79].

A dataset is more challenging as it has a larger number of samples, categories
and has a more complex taxonomy of classes [23]. Table 3.1 contains this data for
the datasets evaluated in this chapter. Note this information corresponds to the
samples used in our experiments, where we have discarded some of the samples,
and may differ from original benchmark statistics. Finally, the class taxonomies for
these benchmarks are shown graphically in Appendix A.1.2.
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Table 3.1: Datasets overview: number of samples, parent and leaf classes in the
taxonomy tree and its height, for both known and novel splits. The height of a tree
is the height of its root class, so that a tree of two levels is of height 1.

Known Novel
Dataset # Samples # Parents # Leaves Height # Classes # Samples
AWA2 29408 21 40 5 10 7913
CUB 8814 43 150 5 50 2966

TT100K 21956 14 80 2 23 1735
MTSD 65312 40 164 3 39 4743

3.4.1 Tsinghua-Tencent 100K (TT100K)

The Tsinghua-Tencent 100K [133] dataset is one of the first large scale traffic sign
benchmarks. It contains samples under different illuminance and weather condi-
tions, extracted from real-life street view panoramas. In our experiments, we have
used the cropped images of traffic signs. A difficulty of this dataset is that it is highly
imbalanced. It is built from real-life images, where different traffic signs do not
appear with the same frequency. Only 45 classes out of 221 have more than 100
examples, while the largest class has 2819 samples.

The criteria to decide which classes belong to the novel split is based on the
number of samples per class. We first discard the classes with less than 10 samples
to avoid errors. From the remaining classes, we take 20% of those least populated as
novel, regardless of their position in the taxonomy. We think this split is the one that
best simulates the data in a real world application, i.e. for a novel class the goal is
to correctly classify its samples in the taxonomy, not needing many of them, while
known classes should be properly learnt from a larger number of samples. The most
logical option is therefore to select the classes with fewer samples as novel. To build
the train/test splits, for each known class we keep 20% of the samples for test and
within the remaining samples, 20% are used for validation.

Since this dataset has not been previously used for hierarchical novelty detec-
tion, we have built a taxonomy based on class semantics, e.g. for traffic signs of
prohibition limit of 20, they should have a parent class that comprises prohibition
limit signs at other speeds, while this class should have a parent class that comprises
any kind of prohibition sign as well. A visual representation of the built taxonomy is
shown in Appendix A.1.2.
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3.4.2 Mapillary Traffic Sign Dataset (MTSD)

Recently, the Mapillary Traffic Sign Dataset has been introduced in [27]. It is the
largest and most diverse traffic sign benchmark up to date. While TT100K contains
only standard circular and triangular shaped signs, MTSD includes also direction,
information or highway signs. Moreover, the images have been captured by multiple
different camera devices all over the world. The benchmark provides fully and
partially annotated traffic signs, although our experiments are restricted to only the
fully annotated samples. Similarly to TT100K, MTSD is imbalanced despite having
a larger number of samples per class.

The original class taxonomy of MTSD distinguishes as independent classes
those that contain templates with the same semantics and similar appearance.
However, we consider semantic based taxonomies, i.e. our application intends to
classify the samples according to their meaning and not their appearance. For
consistency we choose to merge different groups of templates that share the same
semantics but are different in terms of appearance, into a single class, as shown in
Figure 3.3. This increases the intra-class variability, but in exchange simplifies the
taxonomy we would have if we distinguished these classes. From 313 classes in the
original taxonomy, after merging those classes with same semantics, the resulting
taxonomy has 203 leaf classes. Among these, 74 classes have less than 100 samples,
while the largest class has 2775 samples.

Figure 3.3: Two examples of samples of MTSD that are distinguished as disjoint
classes in the original benchmark because they share the same semantics but have a
different appearance. Aiming at classifying according to semantics, we merge them
as single classes. In the left case, we merge five classes into one (complementary–
chevron-left) and in the right case, we merge four classes into one (regulatory–no-
parking).

To build the hierarchical taxonomy, we create super classes that encompass
the traffic sign categories provided in MTSD that share similar semantics, e.g. the
classes regulatory–no-left-turn and regulatory–no-right-turn have a parent class
regulatory–no-turn, that at the same time will have a regulatory parent class that
comprises all the regulatory signs. Note that due to the different composition of
classes of TT100K and MTSD, they do not share a unified traffic sign taxonomy.
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There is no universal traffic sign taxonomy, to the best of our knowledge. It would be
an interesting objective to explore in future work or a practical application, however.

Finally, we make the novel/known and train/test/validation splits by employing
the same criteria and percentages as for TT100K.

3.4.3 AWA2, CUB

We employ the taxonomies of AWA2 and CUB provided in [47], which are built
from the WordNet hierarchy by using its hypernym-hyponym relationships. Visual
representations of the resulting hierarchies can be found in Appendix A.1.2. An
interesting aspect of these taxonomies, differently to traffic signs, is that they obey
to semantic hierarchical categories such as: placental mammal → carnivore →
canine → dog → shepherd dog, where carnivore contains children classes as diverse
as bear or feline. These high-level categories have no clear common features based
on visual appearance. It is probably harder to learn how a carnivore looks like than
how a prohibition sign looks like, since the concept is not reflected in the appearance
but in deeper knowledge about what being a carnivore involves. These broad
concepts are translated into a larger variability of samples under such conceptually
high-level classes as well.

3.5 Evaluation

3.5.1 Experimental Setup

We compare our method against the state-of-the-art models proposed in [47]. They
propose three models, from which we consider TD+LOO and Relabel for the sake
of a fair comparison. TD+LOO is their best performing model while Relabel uses
the same relabel strategy as ours to assign samples to parent classes. We run the
implementation of these models provided by the authors.

To train our model, we consider two settings depending on the experiment. The
first one consists in using fixed precomputed features by freezing the weights of
the ResNet-101 backbone, while training the HCL fully connected layer to learn the
prototypes W j of the classes, as detailed in Section 3.3.2. In this setting we train HCL,
but not the ResNet-101 backbone. In the second setting instead, we train jointly all
the layers of ResNet-101 and HCL.

While carrying out the experiments, we noticed there was a moderate variability
in the results even when using the same set of hyperparameters. Therefore, we
repeat several times each experiment for a fixed set of hyperparameters. Instead of
reporting the best-performing experiment from a set, the variability of the method
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is worth to be analyzed. As we shall optimize our model to the validation set, a
method whose performance is highly variable is not reliable, because we do not
know how it will perform on the test set.

All our experiments are run on a set of GeForce GTX 1080, using multiple devices
(at most four) in parallel when necessary, depending on the batch size.

3.5.2 Metrics

In order to assess the performance of our method on hierarchical novelty detection,
we consider the following metrics. For comparison against the state-of-the-art
approach proposed in [47], we employ the AUC of the novel/known accuracy curve
and the novel accuracy at a fixed known accuracy point. In their work they select
the point of 50% known accuracy as a reference. We use the average top-1 accuracy,
so that a correct prediction is defined as follows, depending on the split. For known
classes, their correct prediction is the ground truth label, while for novel classes,
a correct prediction involves classifying it as the closest class in the taxonomy,
i.e. its parent known class. The accuracy is averaged by the number of samples,
independently of their label.

The novel/known accuracy curve is obtained by adding an offset to the similarity
metrics of the potential novel classes, i.e. parent nodes. This offset value is varied
so that we increase/decrease novel accuracy in detriment/favor of known accuracy,
as both splits hold a trade-off relationship. The novel/known accuracy curve is built
from a range of offset values that allows to explore all the available accuracy ranges.
Accordingly, the AUC value is independent from the offset, i.e. it is independent
from the working point.

On traffic sign benchmarks, we additionally consider points of interest at higher
known accuracy points. In this context, we are interested in a working point in
which our system classifies correctly most of the known classes, while performs as
best as possible on the unknown ones. For this reason, the metrics that are more
relevant are those of higher known accuracy points. In particular, we report the
novel accuracy at 70% and 80% known accuracies, although we are interested in the
range of known accuracy over 70%. For this reason, the AUC value is not a highly
representative metric in our analysis, as it corresponds to the area for the full range.

Hierarchical error distance

The accuracy only evaluates if the prediction matches the correct label, but does not
provide a measurement of the errors made. Specially under a hierarchical setting,
we find this metric to be insufficient. Two wrong predictions of different degree of
importance are treated as equally wrong by the accuracy. For instance, if the true
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class of a sample is a 20 maximum speed limit regulatory sign, predicting its class as
a 10 speed limit regulatory sign should be considered a smaller error than predicting
it as a chevron left complementary sign. Figure 3.4 shows an alternative example. In
fact, other works on hierarchical image classification [9, 29], stress the importance
of optimizing error based metrics besides accuracy.

Figure 3.4: Example of the hierarchical error distance metric. For this sample, the
value of the metric is equal to three, that corresponds to the shortest path in the
tree among prediction and ground truth.

As a complementary metric to the accuracy, we introduce the hierarchical
average error distance d̄h . It corresponds to the distance between the predicted and
the correct class in the taxonomy tree. For the i -th sample, the hierarchical error
distance dh(pi , yi ) between the predicted class pi and its ground truth label yi is
defined as the length of the shortest path in the tree, that corresponds to the sum of
distances from both classes pi and yi to their lowest common ancestor (LCA). The
average error distance d̄h is then defined as

d̄h = 1

N

∑
i

dh(pi , yi ), (3.8)

where N is the total number of samples. Note this distance metric is not normalized
by the height of the taxonomy tree which affects its maximum value, e.g. in a
taxonomy of 5 levels, the maximum error distance is 10, while in a taxonomy of 2
levels, it is 4.

In our experiments, we report the hierarchical average error distance for the
novel split only, to analyze its dependency w.r.t. the accuracy of the known split.
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This provides a measurement of the novelty detection error under such hierarchical
setting.

3.6 Results and Discussion

Our experiments are divided into three parts. To evaluate the performance of our
approach, HCL, in Section 3.6.1 we compare it to the state-of-the-art models in
hierarchical novelty detection, i.e. TD+LOO [47] and Relabel [47]. In Section 3.6.1
we first consider the benchmarks where these models were originally evaluated,
i.e. AWA2 and CUB. Then, in Section 3.6.1 we perform the evaluation on the target
traffic signs benchmarks TT100K and MTSD. In the next sections we provide a more
exhaustive evaluation of HCL on TT100K and MTSD. We compare the performance
of different training strategies in Section 3.6.2. Finally, in Section 3.6.3 we analyze
the individual contribution of each of the terms of HCL.

3.6.1 Comparison to State of the Art

AWA2 and CUB

For these experiments, we train HCL, TD+LOO and Relabel on top of features
extracted from a ResNet-101 model that is only trained on ImageNet. This is the
setting the authors of [47] chose, in their case claiming speed reasons. We use
the exact hyperparameters and setting indicated by the authors. For HCL, the
hyperparameters are chosen by optimizing them to the validation set (see Appendix
A.1.1 for details on hyperparameters).

Table 3.2: Comparison of HCL against TD+LOO [47] and Relabel [47] on AWA2 and
CUB. Performance is measured by the novel/known accuracy AUC and the novel
accuracy and average hierarchical error distance d̄h at 50% known accuracy. The
reported values are the average from a set of 50 experiments ±2σ.

AWA2 CUB
Method AUC Novel acc Novel d̄h AUC Novel acc Novel d̄h

@50% ↑ @50% ↓ @50% ↑ @50% ↓
TD+LOO 25.7±4.3 33.1±6.1 1.82±0.23 18.0±1.0 9.9±1.1 2.56±0.10
Relabel 33.7±5.9 38.7±6.8 1.65±0.12 28.9±2.2 38.1±3.5 1.56±0.07

HCL 32.8±1.8 36.4±2.2 1.95±0.05 27.6±0.6 35.7±1.2 1.34±0.03

We report in Table 3.2 the metrics introduced in section 3.5.2 comparing the
performance of our approach to TD+LOO and Relabel. The values of the metrics
correspond to the average of 50 experiments and we provide an error of ±2σ. Fig-
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ure 3.5 shows the novel/known accuracy trade-off and the average hierarchical error
distance on the novel split over the known split accuracy. The dark curves of the
plots correspond to the average of the set of 50 repeated experiments, while the
shaded area around illustrates ±2σ for each point.

(a)

(b)

Figure 3.5: Novel/known accuracy trade-off and novel average hierarchical error dis-
tance over known accuracy, for HCL (red) and the state-of-the-art models TD+LOO
[47] (green) and Relabel [47] (blue) for (a) AWA2 and (b) CUB.

AWA2. Considering only the mean of the experiments, Relabel [47] is superior
in terms of accuracy in the range up to 70% known accuracy, while HCL performs
better in the highest known accuracy range. This is the reason why Relabel gets the
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highest AUC. However, if we take into account the variability of the methods, HCL
and Relabel perform very similarly, i.e. their curves overlap except for the highest
known accuracy range. Regarding the novel hierarchical error distance d̄h , Relabel
[47] consistently makes smaller errors on the novel split.

CUB. In terms of accuracy, both Relabel and HCL perform similarly although the
variability of Relabel is higher. Relabel performs better than the other variants up to
∼ 60% known accuracy while HCL is superior in the uppermost known accuracy
range. HCL makes a consistent smaller average error throughout all the accuracy
ranges.

Our results show HCL performs similarly to the state-of-the-art methods [47]
on the natural images benchmarks, AWA2 and CUB. It shows a slightly higher novel
accuracy at the highest known accuracy ranges, while the errors made by the model
are smaller than TD+LOO and Relabel on CUB but higher on AWA2.

TT100K and MTSD

Instead of using the features from a model trained on ImageNet as in the previous
experiments, for TT100K and MTSD we find necessary to perform a fine-tuning
of ResNet-101 using the cross-entropy loss. This is because traffic signs are a very
specific kind of data, with a visual appearance different to ImageNet images. The
comparison of performance when using features finetuned or not to the target
dataset, will be discussed later in section 3.6.2.

Table 3.3: Comparison of HCL against the state-of-the-art models on TT100K and
MTSD. Performance is measured by the novel/known accuracy AUC and the novel
accuracy and average hierarchical error distance d̄h at 50% and 70% known accura-
cies. The values are the average from a set of 50 experiments ±2σ.

Dataset Method AUC Novel acc ↑ Novel d̄h ↓
@50% @70% @50% @70%

TD+LOO [47] 42.2±2.6 55.8±4.6 12.6±1.5 0.68±0.09 1.47±0.20
TT100K Relabel [47] 48.4±3.7 52.3±4.0 48.7±4.2 0.63±0.06 0.66±0.07

HCL 84.1±0.7 87.2±0.8 83.7±1.1 0.15±0.01 0.18±0.01
TD+LOO [47] 30.6±1.5 36.4±2.6 9.5±1.9 1.31±0.10 2.12±0.08

MTSD Relabel [47] 27.3±3.8 30.9±5.0 24.6±3.6 1.28±0.11 1.44±0.09
HCL 44.2±1.6 47.7±2.1 40.5±2.3 0.78±0.04 0.89±0.05

The fine-tuning is performed by training ResNet-101 for 1000 epochs using a
batch size of 140 and a learning rate of 1 ·10−4 with an Adam optimizer, for both
datasets. Once ResNet-101 is trained, we extract the features to train TD+LOO,
Relabel and our model, as we did for AWA and CUB. It is also possible to train
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simultaneously the ResNet-101 backbone and HCL. However, we chose to do a
separate fine-tuning to keep the setting proposed in [47] for the sake of a fair
comparison. The fine-tuning was performed only once, while the experiments for
HCL, TD+LOO and Relabel were repeated for 50 times with the set of best performing
hyperparameters on the validation set. We refer the reader to Appendix A.1.1 for
details on hyperparameters.

(a)

(b)

Figure 3.6: Novel/known accuracy trade-off and novel average hierarchical error dis-
tance over known accuracy, for HCL (red) and the state-of-the-art models TD+LOO
(green) and Relabel (blue) for (a) TT100K and (b) MTSD.

We compare in Table 3.3 HCL to TD+LOO and Relabel. The reported metrics
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are the average value ±2σ from the set of 50 experiments. Figure 3.6 shows the
novel/known accuracy trade-off and the average hierarchical error distance on the
novel split over the known split accuracy.

On both datasets, HCL consistently outperforms Relabel [47] and TD+LOO [47]
by a large margin throughout all the ranges of accuracy both in terms of accuracy
and average novel hierarchical error distance. Our results suggest our approach
is more suitable for traffic signs datasets. A possible explanation is related to the
taxonomy of these datasets. Both TD+LOO and Relabel solely rely on the cross-
entropy loss, but HCL learns an embedding of discriminative features that could
benefit from taxonomies related to the visual appearance of the classes, e.g. pro-
hibition signs have common visual features, while carnivore images have not an
indistinguishable visual feature.

3.6.2 Training Strategies

We consider three different settings to train HCL. In particular, we train HCL on top
of features that are extracted from ResNet-101 models that are previously trained,
either on only ImageNet, or finetuned to the target dataset via the cross-entropy
loss. The third setting we compare is when we train simultaneously HCL and the
ResNet-101 backbone, that is pretrained on ImageNet. We keep the fine-tuning
procedure that is detailed in the previous Section 3.6.1.

Table 3.4: Comparison of different training strategies for HCL on MTSD and TT100K.
I stands for ImageNet features, F for finetuned features and B for training both the
backbone and HCL simultaneously. Performance is measured by the novel/known
accuracy AUC and the novel accuracy and average hierarchical error distance d̄h at
50%, 70% and 80% known accuracy points.

AUC Novel acc ±2σ ↑ Novel d̄h ±2σ ↓
±2σ @50% @70% @80% @50% @70% @80%

TT100K
I 54.0±3.2 63.2±2.8 45.3±4.5 27.4±4.6 0.43±0.03 0.69±0.02 0.95±0.02
F 84.1±0.7 87.2±0.8 83.7±1.1 80.7±1.0 0.15±0.01 0.18±0.01 0.22±0.01
B 71.4±4.1 80.0±7.8 60.6±9.3 50.9±6.5 0.22±0.08 0.42±0.09 0.54±0.06

MTSD
I 25.9±1.0 34.3±1.4 00.0±0.0 00.0±0.0 1.36±0.02 - -
F 44.2±1.6 47.7±2.1 40.5±2.3 35.8±2.2 0.78±0.04 0.89±0.05 0.99±0.05
B 43.1±8.2 47.4±11.3 36.7±10.9 30.8±7.1 1.01±0.20 1.16±0.22 1.26±0.19

Using the hyperparameters from Table A.1, we repeat each new experiment for
10 times, as some training variants we compare in this section are time consuming
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and HCL was shown to be not so variable in previous results.
Table 3.4 reports the average metrics ±2σ for these three training strategies at

50%, 70% and 80% known accuracy points, while the performance throughout the
entire range is depicted at Figure 3.7.

(a)

(b)

Figure 3.7: Novel/known accuracy trade-off and novel average hierarchical error
distance over known accuracy, for different training strategies for HCL on (a) TT100K
and (b) MTSD. I stands for ImageNet features, F for finetuned features and B for
training both the backbone and HCL simultaneously.

The gap of performance on both datasets between using features from a network
only trained on Imagenet, and features finetuned to the target dataset, justifies the
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need of performing such fine-tuning. Specially because in a traffic sign recognition
application we aim to maximize the novel accuracy at the highest known accuracy
range.

On TT100K, training HCL on top of finetuned features works significantly better
than training jointly HCL and the ResNet-101 backbone. This is probably because
fine-tuning on TT100K is overfitting the dataset, which has few samples of a very
specific kind of data (traffic signs). Then, training HCL from high quality features
as a starting point is much easier than jointly learning suitable features along with
proper class prototypes that are consistent with the taxonomy.

However, MTSD is a much larger dataset with a greater number of classes with
higher inter and intra-class variability, as discussed in section 3.4.2. The gap of
performance in this case is therefore smaller. The accuracy curve overlaps for
almost the entire range, although the gap in error distance is consistent. This means
for a very similar number of correct predictions, the errors of the wrong predictions
are smaller when we use finetuned features, presumably because these finetuned
features allow to do a more precise classification of novel samples. The reason
might be learning two objectives, i.e. class prototypes and suitable features, is a
more challenging task than only learning the prototypes with a fixed set of features.
This involves a less noisy signal to learn from, since features are not being updated
during training. This effect, that also occurred on TT100K at a smaller scale, is
magnified with larger datasets with high intra-class variability, as in this case.

As expected, the variability of the experiments when we train the backbone is
higher than when we only train HCL, for both datasets. This is due to the additional
variability introduced by training ResNet-101.

To conclude, our proposed approach, HCL, reaches its highest performance
when trained from features finetuned to the target dataset. It is able to predict
correctly 75% and 24% of novel samples, for TT100K and MTSD respectively, when
we predict known samples with 90% of accuracy. It also predicts novel samples
with an accuracy of 81% and 36% at 80% known accuracy for TT100K and MTSD,
respectively.

3.6.3 Ablation Study of Hierarchical Cosine Loss

In order to analyze the individual contribution of the terms of HCL (Eq. 3.1), we
conduct the following ablation study. We take as a baseline the contribution of
only the Normalized Softmax loss (NSL) LN S , then adding the contribution of the
remaining terms, that will be finally compared to an experiment in which all the
terms contribute to the training. The latter is the best performing HCL experiment,
according to the validation set. We train the terms of HCL over a set of constant
features, finetuned to the target dataset. These finetuned features correspond to
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those used in the previous experiments. Note this independent training of HCL
allows to isolate the effect of the loss. Otherwise, training jointly the backbone
and HCL would introduce a variability that would mask the actual variation of the
individual loss terms.

In Table 3.5 we assess the individual performance of the different terms of
HCL, defined in section 3.3.2, on features finetuned to MTSD or TT100K. For
each dataset, the first row shows, as a baseline, the metrics when we set the
HCL regularization parameters to {λN S ,λHC ,λC T ,λHT } = {1,0,0,0}, i.e. we train
using only the NSL LN S . In the experiments of the next rows we keep λN S = 1 and
add the different terms on each experiment, e.g. the second row corresponds to
{λN S ,λHC ,λC T ,λHT } = {1,10,0,0} where only the NSL LN S and Hierarchical Centers
term LHC are contributing to the training. Similarly, the third row corresponds
to the experiments where we use only the LN S and LC T terms with regularization
parameters {λN S ,λHC ,λC T ,λHT } = {1,0,1,0}, and in the fourth row we train using
LN S and LHT regularized by {λN S ,λHC ,λC T ,λHT } = {1,0,0,0.1}. The last row, where
{λN S ,λHC ,λC T ,λHT } = {1,10,1,0.1}, reports the performance of the full version of
HCL, including all the terms. Despite the NSL weight λN S is always set to 1, we
made sure its contribution to the loss was not leading the training, i.e. the loss that
is being analyzed individually at each case, is not being neglected and actually con-
tributes to the training. This is, we made sure the weights applied to the individual
terms were appropriate to show the individual effect of the loss terms. Each training
variant has been repeated for 10 times and we report an error of 2σ on Table 3.5.

For TT100K, the first experiment in which we only use the NSL LN S , gets the
best average metrics among the compared variants. However, the difference of
performance is very small. In fact, if we take into account the variability of the
experiments, we could consider all the variants to perform similarly. The cause of
this result might be the performance on this dataset is so good that reaches a limit
that is hard to surpass. Making small modifications on the loss is not translated
into a significant change on performance. In this scenario, making even very small
improvements is not straightforward and it would probably mean it is overfitting
the dataset.

The results on MTSD are more enlightening, it is a more challenging dataset,
closer to a real life scenario. Using the different terms of HCL always improves the
average novel accuracy at 70% and 80% known accuracies w.r.t. the NSL baseline.
The variant that performs best on these metrics is the full version of HCL. The
distance error is also decreased for all the variants except for LN S ,LC T , that gets
equivalent performance. The best error distance is achieved by LN S ,LHT , but as
before, if we consider the variability of the results, the differences w.r.t. the full
version of HCL are not significant.

A remarkable outcome we can draw from these experiments is that the Hierar-
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Table 3.5: Ablation study of the HCL terms. Performance is measured by the nov-
el/known accuracy AUC and the novel accuracy and average hierarchical error
distance d̄h at 70% and 80% known accuracy points. The metrics are the average of
10 experiments ±2σ.

Losses {λN S ,λHC , AUC Novel acc ±2σ ↑ Novel d̄h ±2σ ↓
λC T ,λHT } ±2σ @70% @80% @70% @80%

TT100K
LN S {1,0,0,0} 84.1±0.6 83.9±0.8 80.9±0.7 0.18±0.01 0.21±0.01

LN S ,LHC {1,10,0,0} 84.0±0.4 83.7±0.5 80.7±0.7 0.19±0.01 0.22±0.01
LN S ,LC T {1,0,1,0} 83.8±0.9 83.6±1.3 80.6±1.2 0.19±0.01 0.22±0.01
LN S ,LHT {1,0,0,0.1} 84.1±0.7 83.8±0.9 80.7±0.8 0.18±0.01 0.22±0.01

HCL {1,10,1,0.1} 84.1±0.7 83.7±1.1 80.7±1.0 0.18±0.01 0.22±0.01
MTSD

LN S {1,0,0,0} 41.8±0.5 37.6±0.7 33.7±0.7 0.93±0.01 1.03±0.01
LN S ,LHC {1,10,0,0} 42.8±1.1 38.9±1.4 34.7±1.4 0.91±0.03 1.01±0.02
LN S ,LC T {1,0,1,0} 42.5±2.2 38.5±2.8 34.1±2.8 0.94±0.07 1.04±0.07
LN S ,LHT {1,0,0,0.1} 43.7±1.2 39.9±1.7 35.7±1.8 0.88±0.03 0.97±0.03

HCL {1,10,1,0.1} 44.2±1.6 40.5±2.3 35.8±2.2 0.89±0.05 0.99±0.05

chical Triplets term LHT improves the average metrics at the cost of increasing the
variability of the method. This is expected as this constraint introduces different
information that depends on the training data. As discussed in section 3.3.2, we
make triplets from the batch that is fed to the network. If batches are different, so
will be the triplets. In the case of MTSD, which is a much larger dataset than TT100K,
it is possible to make a much larger number of triplets, that introduce different
information, consequently affecting the training result. This is also applied to the
C-triplet term LC T for the same reason. There are more available pairs of different
classes in a larger dataset, therefore affecting the training outcome.

It is also worth to mention that the variability of LHC is expected to be low due
to the kind of experiments we carry. Its cost depends on the angle between class
prototypes. Using fixed pre-computed features that are not changing throughout
the training only requires to find the class prototypes. Training also the ResNet-101
backbone would be translated into a higher variability for this term.

In summary, this ablation study shows the proposed HCL terms can help im-
proving the performance, as shown on MTSD results. On TT100K, they do not
improve the performance of the NSL alone in average, because it already reaches
a very high value. Some of the HCL terms (LHT ,LC T ) have shown to increase the
potential performance at the cost of increasing the variability of the results. Triplet
mining strategies might help to mitigate this issue.
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3.7 Conclusions

We have addressed the problem of hierarchical novelty detection, specifically fo-
cused on traffic sign recognition. It involves classification along with detection
of novel classes, and consists in predicting not only that a sample belongs to a
novel class (never seen during training), but also its closest position in a semantic
hierarchy of known classes. We have introduced a novel loss function, Hierarchical
Cosine Loss, that learns jointly an embedding of discriminative features consistent
with the class taxonomy, as well as prototype representations for both leaf and
parent classes. HCL achieves equivalent results to state-of-the-art approaches on
natural images benchmarks, AWA2 and CUB, and significantly outperforms them
on traffic sign datasets. For the latter experiments, we have contributed taxonomies
and corresponding training splits for TT100K and MTSD, two challenging large
scale traffic signs benchmarks that simulate real data of a traffic sign recognition
application. Our approach is able to detect novel samples from unknown classes at
the correct nodes of the hierarchy with 75% and 24% of accuracy when we classify
known classes with 90% of accuracy, for TT100K and MTSD, respectively. It also
reaches 81% and 36% of novel accuracy at 80% known accuracy, for TT100K and
MTSD, respectively. Finally, we have contributed an ablation study that analyzes
the individual performance of the HCL terms.
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4 Weakly Supervised Multi-Object Tracking
and Segmentation

4.1 Introduction

Computer vision based applications often involve solving many tasks simulta-
neously. For instance, in a real-life autonomous driving system, tasks regarding
perception and scene understanding comprise the problems of detection, tracking,
semantic segmentation, etc. In the literature, however, these are usually approached
as independent problems. This is the case of multi-object tracking and instance seg-
mentation, which are usually evaluated as disjoint tasks on separate benchmarks.
The problem of Multi-Object Tracking and Segmentation (MOTS) was recently de-
fined in [97]. As an extension of the Multi-Object Tracking problem to also comprise
instance segmentation, it consists in detecting, classifying, tracking and predicting
pixel-wise masks for the object instances present along a video sequence.

Due to the lack of suitable datasets, the first two MOTS benchmarks were intro-
duced in [97] in order to assess their model, which were annotated manually. The
annotation procedure involves providing bounding boxes and accurate pixel-level
segmentation masks for each object instance of predefined classes, plus an unique
identity instance tag, consistent along the video sequence. Moreover, this needs
to be done on a significant amount of data to effectively train a MOTS model. This
results in a high annotation cost and makes infeasible to perform it manually. This
issue can be mitigated by investigating approaches that do not require all this data
to solve the MOTS task. In this chapter, we address this unexplored line of research.

We define the weakly supervised MOTS problem as the combination of weakly
supervised instance segmentation and multi-object tracking. It aims at detecting,
classifying, tracking and generating pixel-wise accurate masks, without providing
any kind of instance segmentation annotation, the most expensive annotation
type of MOTS datasets. We propose an approach that solves this task by using only
detection and tracking annotations: bounding boxes along with their corresponding
classes and identities. By taking advantage of multi-task learning, we design a
synergistic training scheme where the supervised tasks support the unsupervised
one. We are able to solve the instance segmentation task by relying on the learning
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t-1

t
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Figure 4.1: Output of our weakly supervised approach on KITTI MOTS. Different
colors represent the different identities.

of the parallel supervised tasks (see Figure 4.1 for an output example). Specifically,
we provide weak supervision from the classification and tracking tasks, along with
RGB image level information. The learning of the instance segmentation task solely
depends on this novel supervision. The proposed weak supervision consists of three
losses that integrate: localization information via activation heatmaps extracted
from the classification task, tracking information and RGB image level information,
to refine the prediction at the objects boundaries. To the best of our knowledge, we
solve for the first time the MOTS problem under a weakly supervised setting.

Our main contributions are the following:

• We define the weakly supervised MOTS problem as joint weakly supervised
instance segmentation and multi-object tracking. This is the first work that,
to the best of our knowledge, considers this variant of the MOTS problem and
solves it not using any kind of instance segmentation annotations.

• We design a novel training strategy to address weakly supervised MOTS. The
different branches of our architecture, MaskR-CNN based, act synergistically
to supervise the instance segmentation task, i.e. classification and tracking
actively help segmentation.
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• We compare our method to the fully supervised baseline on the KITTI MOTS
dataset, showing that the drop of performance, on the MOTSP metric is just
12% and 12.7% for cars and pedestrians, respectively.

• Finally, we provide an ablation study about the contribution of the compo-
nents of our approach.

4.2 Related Work

4.2.1 Multi-Object Tracking and Segmentation

The MOTS problem was introduced in [97]. The solution proposed by the authors
consists in a MaskR-CNN based architecture that comprises an additional tracking
branch that learns an embedding, later used to match the object instances along the
frame sequence. Despite it is a recently introduced topic, there already exist works
related to the MOTS problem on a fully-supervised setting. In [39], instead of joining
the problems of instance segmentation and tracking, they solve jointly panoptic
segmentation and tracking. A similar idea to our approach, in the sense of using
multi-object tracking to help other tasks, is presented in [63]. On their approach,
MOTSFusion, tracking helps 3D reconstruction and vice-versa. Very recently, a new
framework has been proposed in [110] along with a new MOTS dataset, APOLLO
MOTS. Differently from the previous works, the instance segmentation task is not
solved in a two stage manner from the bounding box predictions. Instead, they use
the SpatialEmbedding method, which is bounding box independent and faster. An
extension is done in [111].

There are no previous works addressing weakly supervised settings of the MOTS
problem. However, stressing the importance of the need of annotations for MOTS,
an automatic annotation procedure for MOTS benchmarks was proposed in [74],
where the authors also presented a similar architecture to [97]. As the result of
their automatic annotation pipeline, they obtain instance segmentation masks
and tracking annotations. However, the masks are obtained from a network that is
previously trained using instance segmentation masks from a different benchmark,
with a domain gap presumably small with respect to the target dataset. Our model
instead, is trained with no previous knowledge of how a mask "looks like".

4.2.2 Weakly Supervised Segmentation

The literature in the field of semantic segmentation is extensive and there exist
many works that address the weakly supervised setting. A widely used strategy is
to predict an initial weak estimate of the mask, that is then refined by using extra

63



Chapter 4. Weakly Supervised Multi-Object Tracking and Segmentation

information extracted from the image, e.g. using Conditional Random Fields (CRF)
as a post-processing step is a common approach to get precise boundaries of the
objects.

Some works that follow such strategy are [43, 83], which employ a dense CRF
[44] to improve their mask prediction. In [43], the authors propose to minimize
the KL divergence between the outputs of the network and the outputs of the CRF,
while in [83], they smooth their initial mask approximation by using the CRF. They
then minimize a loss that computes the difference between the network prediction
and the CRF output. Both of them use activations of the network as an initial
mask estimation. More recently, [90] employs CRF post-processing to refine initial
rectangle-shaped proposals, that are later used to compute the mean filling rates of
each class. With their proposed filling rate guided loss, they rank the values of the
score map, then selecting the most confident locations for back propagation and
ignoring the weak ones.

The mean-field inference of the CRF model [44] was later formulated in [125] as
a Recurrent Neural Network, which allows to integrate it as a part of a CNN, and train
it end-to-end. This formulation is used in the architecture from [4, 53]. In [4], it is
used to refine the initial semantic segmentation and the final instance segmentation
predictions. A weakly supervised panoptic segmentation method is proposed in
[53]. Two outputs are proposed as the initial masks. If bounding box annotations
are available, they use a classical foreground segmentation method. Otherwise,
the approximate masks are localization heatmaps from multi-class classification
[86], similarly to us. However, their classification network is previously trained and
only used to extract the heatmaps. We instead, train all the classification, detection,
instance segmentation and tracking tasks simultaneously. Also, we do not have an
independent classification network dedicated to extract the heatmaps, it is part
of the main architecture. Another advantage of our method is that it extracts the
heatmap individually for each ROI proposal, instead of doing it for the whole image.

Differently from the previous methods, the work of [95], that considers the
problem of training from partial ground truth, integrates the CRF regularizer into
the loss function, then avoiding extra CRF inference steps. Their weakly-supervised
segmentation loss function is composed by a ground truth plus a regularization
term. They propose and evaluate several regularization losses, based on Potts/CRF,
normalized cut and KernelCut regularizers.

4.2.3 Video Object Segmentation

Video Object Segmentation (VOS) is a problem related to ours, as it also comprises
tracking and segmentation. In VOS, all the salient objects that appear in the se-
quence must be segmented and tracked, regardless of their category. Salient objects
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are those that catch and maintain the gaze of a viewer across the video sequence.
Differently, in MOTS, we only track and segment objects that belong to specific
classes of interest, therefore needing a classification model. Some recent works in
the field of VOS are [21, 93, 118]. If we add classification to VOS, then distinguishing
object instances, it becomes Video Instance Segmentation (VIS) [8, 57, 112]. The
datasets designed to assess this task do not usually present strong multi-object
interaction, then lacking hard scenarios with occlusions and objects that disappear
and enter again to the scene, as it is characteristic of MOTS benchmarks.

There exist semi and unsupervised approaches of the VOS problem. In the semi-
supervised setting the masks of the objects to be tracked are given in the first frame.
Only these objects need to be tracked and segmented throughout the rest of the
video. The unsupervised approach, however, consists in detecting all the possible
objects in the video and track and segment them throughout the whole sequence.
The work of [64] addresses the unsupervised VOS problem with a MaskR-CNN based
architecture, trained on COCO. They do the inference for the 80 classes of COCO,
using for mask prediction a very low (0.1) confidence threshold, then merging the
mask predicted for all the categories, taking the most confident one when there is
overlapping. This method was extended to VIS by just adding classification, also
provided by Mask R-CNN.
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Figure 4.2: Overview of our architecture. We modify MOTSNet [74] by adding 1×1
convolutional layers on the classification and detection branch to extract locali-
zation information via Grad-CAM [86] heatmaps. We show in purple the losses,
Lloc , LC RF and LT , that supervise the instance segmentation task in the weakly
supervised setting.
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4.3 Method

We build upon the MOTSNet architecture proposed in [74]. It is a MaskR-CNN
based architecture with an additional Tracking Head. Its backbone is composed
by a ResNet-50 followed by a Feature Pyramid Network which extracts features at
different resolutions, later fed to a Region Proposal Head (RPH). The features of
the bounding box candidates predicted by the RPH enter the Region Segmentation
Head, that learns the classification, detection and instance segmentation tasks and
the Tracking Head, that learns an embedding. We add two 1×1 convolutional layers
at the classification and detection branch of the Region Segmentation Head, aimed
at Grad-CAM [86] computation for the ROI proposals, as described in section 4.3.1.
This is needed to extract activation information, as the original branch does not
include any convolutional layer. The complete architecture is shown in Figure 4.2.

First, we describe the general fully supervised setting to finally introduce our
weakly supervised approach. To train the model under a fully supervised setting,
we employ the loss function defined in [74], with minor differences in the tracking
loss, described below. The loss function L is then defined as

L = LT +λ(LRPH +LRSH ) , (4.1)

where LT , LRPH and LRSH denote the Tracking, Region Proposal Head and Region
Segmentation Head losses, respectively. We refer the reader to [73] for a detailed
description of the two latter.
Tracking. MOTSNet is based on MaskR-CNN but comprises a new Tracking Head
(TH) that learns an embedding at training time and predicts class specific em-
bedding vectors for each proposal. The TH first applies the mask-pooling [74]
operation on the input features, thereby only considering the foreground of the
proposal to compute its embedding vector. This embedding is trained by min-
imizing a hard-triplet loss [35], so that instances of the same object are pushed
together in the embedding space, while instances of different objects are pushed
away. The distance in the embedding space is then used at inference time to as-
sociate the proposals and build the tracks. We define the distance as the Cosine
distance d(v, w) = v ·w

∥v∥∥w∥ between two embedding vectors v and w .
Then, the tracking loss LT is defined as

LT = 1

|R̆|
∑

r̆∈R̆

max

(
max

r̂∈R̆|i dr̂ =i dr̆

d(ar̂ , ar̆ )− min
r̂∈R̆|i dr̂ ̸=i dr̆

d(ar̂ ,ar̆ )+α,0

)
, (4.2)

where R̆ denotes the set of positive matched region proposals in the batch. The
positive proposals are those that match a bounding box from the ground truth

66



4.3 Method

with an IoU > 0.5. ar̆ and i dr̆ stand for the corresponding embedding vector and
assigned identity from the ground truth track, of the proposal r̆ ∈ R̆. α is the margin
parameter of the hard triplet loss.

At inference time, the tracking association is performed as follows. To link
positive proposals from consecutive frames, we first discard those whose detection
confidence is lower than a threshold. We then compute a similarity function for
each pair of objects. We consider the pairs between the current frame objects and
the objects present in the previous frames comprised in a temporal window whose
length is previously decided.

The similarity function Si m(r̆ , r̂ ) of two proposals r̆ and r̂ takes into account
the embedding distance and the bounding box overlapping as

Si m(r̆ , r̂ ) = I oU (br̆ ,br̂ )d(ar̆ , ar̂ ) , (4.3)

where br̆ , br̂ are the predicted bounding boxes associated to r̆ and r̂ , respectively.
From this similarity, we define a cost

Cost (r̆ , r̂ ) =
[

max
r̆ ,r̂∈R̆

Si m(r̆ , r̂ )

]
−Si m(r̆ , r̂ ) . (4.4)

Finally, the matching is solved by using the Hungarian algorithm.

4.3.1 Weakly supervised approach

The loss function that trains the model under a fully supervised setting is defined in
Eq. 4.1, where LRSH is

LRSH = Lcl s
RSH +Lbb

RSH +Lmsk
RSH , (4.5)

Lcl s
RSH , Lbb

RSH and Lmsk
RSH stand for the classification, bounding box regression and

mask segmentation losses of the Region Segmentation Head. In the fully super-
vised case, Lmsk

RSH corresponds to a cross-entropy loss that compares the instance
segmentation ground truth to the predicted masks.

In our weakly supervised setting, we do not have any instance segmentation
ground truth available. To train the instance segmentation task, we propose a new
approach that benefits from the multi-task design of the MaskR-CNN base architec-
ture, i.e. it has a common backbone followed by task-specific heads. We exploit this
architecture so that the different branches of MOTSNet act in a synergistic manner,
guiding the unsupervised task. In particular, we propose a new definition of Lmsk

RSH ,

Lmsk
RSH = Ll oc +λC RF LC RF , (4.6)
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where Lloc and LC RF stand for the Foreground localization and CRF losses, respec-
tively and λC RF is a regularization parameter.
Foreground localization loss Ll oc . To provide information to the network about
where the foreground is, we use a localization mechanism. In particular, we propose
Grad-CAM [86], i.e. weak localization heatmaps obtained from the activations and
gradients that flow trough the last convolutional layer of a classification network,
when it classifies the input as a certain class. Since our architecture naturally
comprises a classification branch, we take advantage of that, using the MOTSNet
classification branch to compute Grad-CAM heatmaps. As explained in section 4.3,
we add two 1×1 convolutional layers to the classification and detection branch,
before the fully connected layers. The Grad-CAM heatmaps are computed then
on the second added convolutional layer by using the implementation variant
discussed in section 4.3.2.
Let R be the set of bounding boxes from the ground truth. For every bounding
box r ∈R, we compute the Grad-CAM heatmap Gr corresponding to that ground
truth region, for its associated class. We normalize it so that Gr ∈ [0,1]28×28. The
heatmaps Gr are intended to produce mask pseudo labels to learn from. For a
region proposal r̆ , its corresponding pseudo label Y r̆ ∈ {0,1,;}28×28 is a binary mask
generated from the heatmaps, where ; denotes a void pixel that does not contribute
to the loss. The assignment of the pseudo label Y r̆

i j to the cell (i , j ) is defined as

Y r̆
i j =


0 ∀ i j ∉P r ∀r ∈R

1 if Gr
i j ≥µA ∀ i j ∈P r

; if Gr
i j <µA ∀ i j ∈P r ,

(4.7)

where P r is the set of pixels that belong to the area defined by the ground truth
bounding box r . We consider as foreground the pixels of the ground truth bounding
boxes whose Grad-CAM value Gr is above a certain threshold µA and background
all the pixels outside the bounding boxes. We ignore those pixels that are inside the
bounding boxes but below the threshold. Figure 4.3 shows a visualization exemple
of the generated pseudo labels.

Then, the foreground localization loss Ll oc is a cross entropy loss, defined for a
proposal r̆ as

Ll oc (Y r̆ ,S r̆ ) =− 1

|P r̆
Y |

∑
(i , j )∈P r̆

Y

Y r̆
i j l og S r̆

i j −
1

|P r̆
Y |

∑
(i , j )∈P r̆

Y

(1−Y r̆
i j )log (1−S r̆

i j ) ,

(4.8)

where S r̆ ∈ [0,1]28×28 denotes the mask prediction for the proposal r̆ for its predicted
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Figure 4.3: Visualization of the generated pseudo labels. The blue and green boxes
represent a possible candidate and a ground truth bounding boxes, respectively.
The blue shaded area will be considered as background, while the red shaded
area (heatmap pixels above the threshold) will be considered foreground in the
Foreground localization loss.

class, whose entries S r̆
i j are the probability of cell (i , j ) to belong to the predicted

class. P r̆
Y ⊂ P r̆ denotes the set of all the non-void pixels in the 28×28 pseudo

label mask Y r̆ , letting P r̆ be the set of all the pixels in Y r̆ . The loss values of all
the positive proposals (those with a bounding box IoU > 0.5) are averaged by the
number of proposals to compute the loss.
CRF Loss LC RF . We use the loss proposed in [95] to improve the instance segmenta-
tion prediction on the object boundaries. This loss integrates CRF regularizers, that
can act over a partial input, improving the quality of the predicted mask. Thus, we
avoid additional CRF inference steps that many weakly supervised segmentation
methods do [4, 43, 53, 83]. The CRF loss LC RF is a regularization loss, result of
applying a relaxation of the dense CRF regularizer.
The Potts model can be expressed as∑

(i j ,kl )∈P r̆

Wi j kl [S r̆
i j ̸= S r̆

kl ] ≈∑
k

S r̆ k ′
W (1−S r̆ k ) = LC RF (S r̆ ) , (4.9)

The right hand side of the equation above is a quadratic relaxation of the Potts
model, proposed by [95]. LC RF provides the cost of a cut between segments, as the
Potts model in the left hand side of Eq. 4.9. W represents an affinity matrix, i.e. the
matrix of pairwise discontinuity costs, k denotes the class and S r̆ k ∈ [0,1]128×128

is the predicted mask for that class, resized from 28×28 to 128×128 in order to
extract quality information from the RGB image. Following the implementation of
[95], we consider a dense Gaussian kernel over RGBXY, then W is a relaxation of
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DenseCRF [45]. The loss is implemented by computing its gradient as

∂LC RF (S r̆ )

∂S r̆ k
=−2W S r̆ k (4.10)

The gradient computation becomes standard Bilateral filtering that can be imple-
mented by using fast methods such as [1]. Similarly as with the Ll oc loss, we average
the losses for all the positive proposals.
Tracking loss LT . As described before, the TH first applies the mask pooling opera-
tion, i.e. the embedding vector predicted by the TH only considers the foreground
according to the predicted mask. The tracking loss is then also indirectly supervising
the instance segmentation branch.

In summary, the training of the instance segmentation branch is guided by the
linear combination of these losses. The algorithm overview is depicted in Figure
4.2. The RGB image is used along with the mask prediction to compute LC RF , while
the ground truth bounding boxes are used to compute Grad-CAM heatmaps that
produce pseudo labels to learn from, via a cross-entropy loss applied on the mask
prediction. Finally, the TH employs the mask prediction to produce embedding
vectors, then indirectly supervising the instance segmentation task. The effect of
the combination of the aforementioned losses is shown on Figure 4.4, where we
show the initial Grad-CAM heatmaps that are used to produce pseudo labels and
the final predicted mask by the weakly supervised mask branch.

4.3.2 Grad-CAM analysis

In the original implementation of [86], the Grad-CAM heatmap Gc ∈ R28x28 for a
certain class c is computed as

Gc = ReLU

(∑
k
αc

k Ak
)

, (4.11)

where the importance weights αc
k are defined as the global-average-pooled gradi-

ents ∂yc

∂Ak
i j

over the width and height dimensions i , j ,

αc
k = 1

Z

∑
i

∑
j︸ ︷︷ ︸

global average pooling

∂yc

∂Ak
i j

, (4.12)
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where yc is the classification score for class c and Ak are the activations of the
feature map k of the last convolutional layer in the classification architecture.

Figure 4.4: Pairs of Grad-CAM heatmaps used as a cue and the corresponding
predicted masks.

We instead, use the absolute value of αc
k in our implementation, then not need-

ing the ReLU operation. The ReLU is intended to only consider the features that
have a positive influence on the class of interest, as negative pixels are likely to
belong to other categories, according to the authors. By using our alternative, we
do not discard the weights that are big in magnitude but of negative sign, which in
our experiments leaded to better instance segmentation cues. A comparison of the
computed Grad-CAM heatmaps when using both the original implementation and
the absolute weights variant is shown in Figure 4.5. The original Grad-CAM imple-
mentation can lead us to incomplete or not so suitable heatmaps to act as an initial

71



Chapter 4. Weakly Supervised Multi-Object Tracking and Segmentation

Figure 4.5: Comparison of Grad-CAM heatmaps when using the original Grad-CAM
definition (top) and an implementation variant that uses the absolute value of the
global-average-pooled gradients (bottom). The activations are color-coded in the
heatmap from the lowest (blue) to the highest (red).

approximate of the masks. In our variant, while the highest value is located in the
foreground of the object, the high activation areas cover a region of the foreground
that can also be useful.

4.4 Experiments

We assess the performance of our method on the most representative MOTS bench-
mark, KITTI MOTS [97]. It provides balanced training and validation sets of cars
and pedestrians. It is comprised of 21 sequences, extracted from the original KITTI
tracking dataset, and a total of 8k frames that contain 11k pedestrian instances and
27k car instances.

4.4.1 Metrics

The MOTS performance is evaluated by the metrics defined in [97]. The authors
proposed an extension of the MOT metrics [7] to assess the instance segmentation
performance. Instead of considering the IoU of the predicted bounding boxes with
the ground truth, as in the original metrics, they define them in terms of the mask
IoU, as follows

sMOT S A = T̃ P −|F P |− |I DS|
|M | (4.13)
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MOT S A = |T P |− |F P |− |I DS|
|M | (4.14)

MOT SP = T̃ P

|T P | , (4.15)

where M stands for the set of ground truth masks, I DS is the number of identity
switches, T P account for the masks mapped to a ground truth mask with an IoU
> 0.5, T̃ P is the sum of IoUs between all the predicted and ground truth masks
whose IoU is at least 0.5, that is, the sum of the IoUs between the predicted masks
counted as TP and their associated ground truth.

MOTSP is a pure segmentation metric; it measures the IoU of the TP predicted
masks with the ground truth, which provides a measurement of the segmentation
quality alone. MOTSA and sMOTSA also consider the detection and tracking perfor-
mance, being sMOTSA more restrictive on the instance segmentation contribution.
MOTSA only considers the number of predicted masks with an IoU > 0.5 with the
ground truth, while sMOTSA counts the IoU value itself, thus penalizing low IoUs,
despite being greater than 0.5.

4.4.2 Experimental setup

To show the effectiveness of our method, our backbone ResNet-50 is just pretrained
on ImageNet. Pretraining on other benchmarks significantly boosts the perfor-
mance of the models, as shown in [74]. However, we are not interested in optimiz-
ing a fully supervised baseline but in comparing the proposed weakly supervised
approach with respect to the fully supervised baseline under the same pre-training
conditions.

On our main experiments, we set the hyperparameters to the values reported in
Table 4.1. Training is run on four V100 GPUs with 32GB of memory.

4.4.3 Weakly supervised approach

Since there are no previous works on weakly supervised MOTS, we compare the
performance of our weakly supervised approach to the performance of our same
model under the fully-supervised setting. To demonstrate that our model can
achieve state-of-the-art performance under the supervised setting, we compare
it against the current state of the art models under the same training conditions,
i.e. just pre-training the ResNet-50 backbone on ImageNet. In Table 4.2, on the
top section, we compare the performance of our method trained in a fully super-
vised manner, with the state-of-the-art model [74]. The second section shows the
performance of our weakly supervised approach. Our model on both supervised

73



Chapter 4. Weakly Supervised Multi-Object Tracking and Segmentation

Table 4.1: Hyperparameters.

Hyperparameter Value

Training
Optimizer SGD
Learning rate 0.02
Number of Epochs 150
Total batch size 24
Embedding dimensionality Nd 8
Hard triplet loss margin α 0.2
Loss weight λC RF 2 ·10−7

Grad-CAM threshold µA 0.5
Tracking
Length of temporal window 10
Detection threshold 0.9

Table 4.2: Results of our approach on KITTI MOTS. The ResNet50 backbone is just
pretrained on ImageNet for all the models reported.

Method sMOTSA MOTSA MOTSP
Car Ped Car Ped Car Ped

Fully supervised
MOTSNet [74] 69.0 45.4 78.7 61.8 88.0 76.5
Ours 69.1 35.1 80.1 52.0 87.0 75.3
Weakly supervised
Ours 54.6 20.3 72.5 39.7 76.6 65.7
Relative performance drop 21.0 42.2 9.5 23.7 12.0 12.7
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and weakly supervised settings uses the same training hyperparameters (see Table
4.1). When our model is trained on a supervised setting, it achieves slightly superior
performance than the state of the art on cars, but is inferior on some metrics for
pedestrians. However, MOTSP, defined in Eq. 4.15, measures the quality of the
segmentation masks without taking into account the detection or tracking perfor-
mance. Our values on this metric, when we train fully supervised, are equivalent to
the state of the art on both classes.

Finally, the relative drop of performance when training weakly supervised with
respect to the supervised case is shown at the bottom line of the table. The per-
formance drop on MOTSP is just a 12.0 % and 12.7 % for cars and pedestrians,
respectively. This indicates the drop in segmentation quality is not drastic, consid-
ering that our model has never been trained with any mask annotation. Regarding
MOTSA and sMOTSA, the performance is significantly worse on pedestrians than
on cars due to the nature of pedestrians masks. Pedestrians are smaller objects
and present more irregular shapes, then retrieving precisely the edges on 128×128
patches is harder. Moreover, Grad-CAM heatmaps can sometimes present high
values on the surrounding area of the legs, which leads to incorrect foreground
information. Qualitative results are shown on Figure 4.6.

Figure 4.6: Qualitative results on test sequences of KITTI MOTS. Different colors
represent the different identities.
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Table 4.3: Results of the ablation study on the weakly supervised approach on KITTI
MOTS (run on a previous weaker baseline).

Weakly supervised sMOTSA MOTSA MOTSP
losses Car Ped Car Ped Car Ped

Ll oc +LC RF +LT 49.3 13.1 67.6 32.0 75.0 64.8
Ll oc +LT 44.3 10.2 66.9 30.7 69.6 63.5
Ll oc +LC RF 55.0 11.0 73.0 31.2 76.7 62.5

4.4.4 Ablation study

In order to assess the contribution of our proposed losses to the instance seg-
mentation supervision, we conduct an ablation study in which we test the overall
performance when removing the supervision of each loss individually. In the case of
the LT loss, we still train the Tracking Head and consider the predicted foreground
of the ROIs to compute the tracking embedding vectors, but we do not propagate
the gradients to the instance segmentation branch. Thus, we still train the tracking
task but it does not affect to the instance segmentation supervision.

On Table 4.3, we report the performance of our approach when training with
the three losses on the first row. The ablation study was performed in a weaker
baseline than our main results from Table 4.2. The second and third row correspond
to the experiments, trained with the same hyperparameters, when removing the
supervision of LC RF and LT losses, respectively. The LC RF loss clearly helps the
supervision, as all the metrics suffer a performance drop when it is not applied.
The tracking loss LT , however, does help on pedestrians but not on cars. Then,
the contribution of the mask-pooling layer as a form of supervision on the weakly
supervised case is not always positive.

4.5 Conclusions

We have introduced the problem of weakly supervised MOTS, i.e. the joint problem
of weakly supervised instance segmentation and tracking. We have contributed
a novel approach that solves it by taking advantage of the multitask problem we
address. Our architecture is trained in a synergistic manner so that the supervised
tasks support the learning of the unsupervised one. In particular, we extract Grad-
CAM heatmaps from the classification head, which encode foreground localization
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information and provide a partial foreground cue to learn from, together with RGB
image level information that is employed to refine the prediction at the edges of the
objects. We have evaluated our method on KITTI MOTS, the most representative
MOTS benchmark, and shown that the drop of performance between the fully
supervised and weakly supervised approaches on MOTSP is just a 12 and 12.7 %
for cars and pedestrians, respectively. Finally, we have provided an analysis of the
components of our proposed method, assessing their individual contribution.
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5 Conclusions and Future work

5.1 Conclusions

In this PhD dissertation we have addressed the problem of metric learning applied
to several computer vision tasks. In the following discussion we answer the research
questions raised in Section 1.5.

In chapter 2, we approached person re-identification by both classical and deep
learning based approaches. As classical approaches, we chose a state-of-the-art
method for hand-crafted feature descriptors along with a proper metric learning
algorithm, specifically designed for person re-identification. Our results show the
importance of the metric learning component, noticing a dramatic performance
drop when removed. However, the performance of the classical method is signifi-
cantly lower than employing a naive deep learning based strategy. The latter consists
in cross-entropy trained features, simply compared with Euclidean distance. This
shows the superiority of deep-learning based feature description. It is able to learn
discriminant features, even not needing a dedicated supervised metric-learning
component. Nevertheless, we believe the performance of this approach could be
further increased by training the model with the specific objective of distinguishing
identities, i.e. training it with a metric learning objective rather than classification
by cross-entropy. The main objective of this chapter was to optimize the speed of
the deep learning based variant at inference time, not compromising the accuracy.
To this end, we have proposed network distillation to reduce the size of the network
while keeping the performance of the originally trained larger network. Our re-
sults showed that smaller networks trained by this method even outperformed the
larger network. This distilled learning, in contrast to just learning from hard-targets,
increased their generalization ability.

We addressed hierarchical novelty detection by proposing a novel loss based on
metric learning in chapter 3. The current state of the art is based on probabilities
instead. We showed that hierarchical taxonomies of classes can be exploited for
informative novelty detection. Our loss learns class prototypes (i.e. class representa-
tions in the embedding space), that allow to assign any kind of sample (including
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novel ones) to the closest known class in the embedding. This enabled to assign
novel samples to their parent known classes by a distance based decision. Our
model beats state-of-the art approaches on two large scale traffic sign benchmarks,
Mapillary Traffic Sign Dataset (MTSD) and Tsinghua-Tencent 100K (TT100K), and
performs similarly on natural images benchmarks (AWA2, CUB). For TT100K and
MTSD, our approach is able to detect novel samples at the correct nodes of the hier-
archy with a 81% and 36% of accuracy, respectively, at 80% known class accuracy.

Finally, chapter 4 introduced the problem of weakly supervised Multi-Object
Tracking and Segmentation, i.e. joint weakly supervised instance segmentation and
multi-object tracking, in which we do not provide any kind of mask annotation. To
address it, we have designed a novel synergistic training strategy by taking advantage
of multi-task learning, i.e. classification and tracking tasks guide the training of the
unsupervised instance segmentation. We evaluated our method on KITTI MOTS,
the most representative benchmark for this task, reducing the performance gap on
the MOTSP metric between the fully supervised and weakly supervised approach
to just 12% and 12.7 % for cars and pedestrians, respectively. Finally, we provided
an analysis of the components of our proposed method, assessing their individual
contribution.

5.2 Contributions

In this PhD dissertation we have researched metric learning related problems,
contributing to several fields of computer vision. We have shown its importance
and the need of a metric learning component in very diverse applications.

First, we have dealt with the problem of person re-identification. We have
applied metric learning to compare instances and we have further studied the
optimization of the trade-off between speed and accuracy of the method. The main
contributions of this chapter are:

• Fast and accurate compressed person re-identification via network distil-
lation, showing that distillation helps reducing the computational cost at
inference time while even increasing the accuracy performance.

• Trade-off analysis between accuracy and computational cost at test time
considering both classical and current state-of-the-art deep learning based
approaches, from the perspective of a real-life application.

Later on, we focus on two autonomous driving related problems: traffic sign
recognition and multi-object tracking and segmentation. For traffic sign recogni-
tion, in chapter 3 we take advantage from the hierarchical taxonomy of classes that
traffic signs obey. The contributions of this chapter are summarized as:
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• Informative novelty detection via semantic hierarchical taxonomies of classes.

• Metric learning based hierarchical novelty detection that enables assigning
novel samples to their parent known classes by a distance based decision.

• Specific application to traffic sign recognition. We introduce the taxonomies
and appropriate splits for two large scale traffic signs datasets, Mapillary
Traffic Sign Dataset (MTSD) and Tsinghua-Tencent 100K (TT100K).

• New hierarchical novelty detection metric, i.e. the average error distance. It
evaluates the errors produced under a hierarchical setting.

Finally, to mitigate the problem of the lack of labeled data in multi-object track-
ing and segmentation, in chapter 4 we have investigated a weakly supervised ap-
proach in terms of segmentation annotations. Its contributions are summarized as
follow:

• A novel problem: weakly supervised multi-object tracking and segmentation,
i.e. joint weakly supervised instance segmentation and multi-object tracking.

• New synergistic training strategy that takes advantage from multi-task learn-
ing, i.e. classification and tracking tasks guide the training of the unsupervised
instance segmentation.

5.3 Future Work

The different problems covered throughout this thesis are still actively researched
and have plenty of room for improvement.

We introduced a person re-identification pipeline in chapter 2, aiming at an
efficient solution. There are still some aspects to improve from the perspective of
a real-life application. This system might face the problem of domain adaptation.
It refers to the difficulty of training networks with labeled datasets, that are then
applied to new data recorded in different conditions, expecting them to still perform
well. Also, in the direction of improving the efficiency of the person re-identification
pipeline, the retrieval module can be further optimized. Since a brute-force search is
needed to compare the person of interest against all the gallery images, this can lead
to a bottleneck. The comparison time therefore increases with the size of the gallery,
which is a real issue in a practical application. In this matter, a promising line of
work is adding clustering and indexing techniques to reduce the computational
cost at test time.

In chapter 3, we proposed a hierarchical novelty detection approach that learns
class prototypes for every class in a semantic taxonomy of classes. As a future
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line of research, our model could be applied to class incremental learning. By
adding the detected novel classes at the proper taxonomy locations along with
their corresponding class prototypes to our learned embedding, our model could be
extended to recognize new classes in an incremental learning loop.

In a different line of work, we introduced the problem of weakly supervised
multi-object tracking and segmentation in chapter 4. Although the problem of
multi-object tracking and segmentation (MOTS) has been introduced recently, it
has already attracted the attention of the research community. Weak forms of su-
pervision for MOTS are still scarcely explored, however. Due to the difficulty of
this joint task and its requirement of large amounts of annotated data to ensure
a proper generalization, this is a promising direction to be explored in the forth-
coming years. Weak supervision can be in the form of lacking either tracking or
instance segmentation annotations. For unsupervised tracking, relying on optical
flow could be an interesting direction to study. Regarding instance segmentation,
the achieved performance on the predicted masks is still far from the fully super-
vised case. Strategies to improve the prediction at the borders of the objects would
substantially improve the overall performance.

Finally, we believe some of the approaches presented in this dissertation might
be complementary and combined towards solutions of more complex problem
pipelines. For instance, combining person re-identification with novelty detection
could lead to open-world person re-identification. A solution to such scenario
would perform re-identification of known identities but should also recognize
when it encounters a new individual then adding it to the dataset. Also, merging
hierarchical novelty detection with MOTS could lead to an adaptive system that
is suitable for autonomous driving open-world recognition. Such pipeline could
be appropriate to automate annotation procedures or even design unsupervised
approaches that include in their loop learning the newly detected classes.
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A Appendix

A.1 Hierarchical Novelty Detection

A.1.1 Hyperparameters

All the hyperparameters were tuned by optimizing them to the validation set. Note
that in hierarchical novelty detection there is no split of novel samples used as
validation to search for hyperparameters. This, as discussed in [47], makes the
problem more challenging, as we can only optimize our model to the validation set
of the known classes, but the novel classes will always remain unknown.

State-of-the-art models. For the experiments on CUB and AWA, we use the
parameters provided by the authors [47]. They train in a full-batch manner using
an Adam optimizer with an initial learning rate of 10−2 and it decays at most two
times when loss improvement is less than 2 compared to the last epoch. They apply
L2 norm weight decay with parameter 10−2.

For MTSD and TT100K we keep the same setting, except for the relabeling rate
of the Relabel model, that was set to 15% and 30%, respectively.

HCL. For all the experiments on HCL, we use an Adam optimizer with a learning
rate of 0.01 and the hyperparameters from Table A.1. In the experiments where
we jointly train the backbone and HCL, the Adam optimizer uses a learning rate
of 10−4 for the ResNet-101 backbone, for both datasets. Table A.1 contains: the
regularization parameters for the HCL loss, {λN S ,λHC ,λC T ,λHT }, the batch size
(BS), number of epochs (nepochs ) and relabeling rate rr ate . On the experiments of
HCL being trained on precomputed features, we employ a full-batch training. The s
parameter from the Normalized Softmax loss is always set to 40.

For the experiments in the ablation study, we keep the same hyperparameters
as when we train the full version of HCL.
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Table A.1: Hyperparameters to train HCL.

Experiment {λN S ,λHC ,λC T ,λHT } BS nepochs rr ate (%)
AWA2

Imagenet feat. {1,1,1,0.01} full-batch 1000 15
CUB

Imagenet feat. {1,1,1,0.01} full-batch 1000 15
TT100K

Imagenet feat. {1,1,1,0.01} full-batch 1000 30
Finetuned feat. {1,10,1,0.1} full-batch 1000 30

Backbone + HCL {1,10,1,10} 280 300 30
MTSD

Imagenet feat. {1,1,1,0.01} full-batch 1000 15
Finetuned feat. {1,10,1,0.1} full-batch 1000 15

Backbone + HCL {1,10,1,10} 280 300 15

A.1.2 Taxonomy figures

Taxonomies for TT100K, MTSD, AWA2 and CUB are depicted in Figures A.1, A.2, A.3
and A.4, respectively.
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Figure A.2: MTSD class taxonomy. It contains both novel and known classes. See at
full size at [79].
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A.1 Hierarchical Novelty Detection
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Figure A.4: CUB class taxonomy. It contains both novel and known classes. See at
full size at [79].
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