
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi doctoral i la seva utilització ha de respectar els drets de la
persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials dʼinvestigació i
docència en els termes establerts a lʼart. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres
utilitzacions es requereix lʼautorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels
seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No
sʼautoritza la seva reproducció o altres formes dʼexplotació efectuades amb finalitats de lucre ni la seva comunicació
pública des dʼun lloc aliè al servei TDX. Tampoc sʼautoritza la presentació del seu contingut en una finestra o marc aliè
a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la
persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de
investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad
Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En
cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona
autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines
lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de
su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de
la tesis como a sus resúmenes e índices.

WARNING. The access to the contents of this doctoral thesis and its use must respect the rights of the author. It can
be used for reference or private study, as well as research and learning activities or materials in the terms established
by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the
author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis
must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX
service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either.
These rights affect both the content of the thesis and its abstracts and indexes.



Computational schemes for defects energetics

Arsalan Akhtar
A Thesis submi�ed in fulfillment of the requirements

for the degree of Doctor of Philosophy in Material Science

Theory & Simulation Group
Catalan Institute of Nanoscience & Nanotechnology

Autonomous University of Barcelona

Supervisors
Dr. Pablo Ordejón

Institut Català de Nanociència i Nanotecnologia

Dr. Miguel Pruneda
Institut Català de Nanociència i Nanotecnologia

Tutor
Dr. Gemma Garcia Alonso

Autonomous University of Barcelona

2022



Supervisors
Dr. Pablo Ordejón
Institut Català de Nanociència i Nanotecnologia

Dr. Miguel Pruneda
Institut Català de Nanociència i Nanotecnologia



0Abstract

Nothing is perfect! All crystalline structures have defects in them, even if their
concentration might be small! These defects are responsible for di�erent proper-
ties of materials and a good understanding of these requires to identify which
defects are present, and in what concentrations for particular external conditions.
Experimental access to this information is di�cult, and computational materials
simulations are a good complementary tool. In particular, �rst principles, or ab
initio methods, that solve the quantum mechanical problem of the electronic
structure of the system are at the forefront of the research on physical and
chemical properties due to point defects, surfaces, grain boundaries, or het-
erostructures at the nanoscale. We have to take into account that modeling these
defect structures is more demanding than simulations of pristine structures,
because a larger number of particles in the simulation box are required. Fur-
thermore, the amount of combinations of defects, structures, and con�gurations
poses a tremendous challenge for these computational approaches. In recent
years, the advent of high-throughput computational (HTC) schemes has triggered
the development of automatized scripts that implement the complex work�ows
to attack this problem.

The objective of this thesis, is to advance on the computational study of defect
properties from an ab initio perspective. We use the Siesta package, a Density
Functional Theory (DFT) code based on localized atomic orbitals, which has
demonstrated to be a powerful tool to predict materials and their properties,
specially when the number of atoms in the system is relatively large. In partic-
ular, we address three di�erent problems which can be classi�ed as (i) Static
Properties, (ii) Dynamic Properties, and (iii) Surface & Interface Properties.

(i) Within Static Properties, I enhance and improve the approaches for cal-
culating the defect formation energy, which can be linked to the probability of
having a speci�c point defect under certain external conditions (temperature,
chemical potentials, etc). I will discuss how charged point defects require special
treatments when periodic boundary conditions are used in the simulations. I
will present and validate a new approach for calculating the formation energy
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of charged defects that leads to very good scaling convergence, and unlike other
standardized approaches does not need any external parameters. The speci�c
approaches required for the basis set in Siesta calculations are also discussed,
and general directives sketched.

(ii) Within Dynamic Properties we include the movements of defects, which
is important for ionic conductivity in solids among many other processes (Li
di�usion in batteries; electromigration; etc). Here, the energy barrier required
for activation of the di�usion of the ions is the information that can be computed
with DFT. I developed di�erent �avors of the nudged elastic band method (NEB) to
calculate the barrier within the Born-Oppenheimer approximation. Using Siesta
as an engine to run these computationally demanding NEB simulations, we
could obtain the energy barriers in a matter of hours, not days, as in typical
plane-wave codes. I developed all the required Siesta machinery under a Siesta
BarriersWorkflows package for AiiDA, another powerful platform that enables
high-throughput computational screening for all possible migration paths.

(iii) Finally, within the Surface & Interface Properties block, I took stan-
dard methodologies for generating the slabs and the know-how for de�ning
Siesta basis set for surfaces to develop a siesta work�ow package (siesta aiida
surfaces). Again having Siesta engine behind it, the package reduces the com-
putational cost with respect to expensive plane-waves approaches in the study
and exploration of surfaces and heterointerfaces along di�erent crystallographic
orientations.

As an illustration of the combination of the di�erent tools developed, we study
the e�ect of vacancy defects at a HfO2/Graphene heterointerface, providing in-
formation that con�rms experimental hypothesis for new hybrid nanostructures
which are of interest for solar generation and storage of energy, and are based
on the combination of carbon nanotubes with dielectric nanoparticles.
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Part I

The Beginning of It All





1 Introduction & Motivation

1.1 Materials in Nature: Defects & Surfaces

Figure 1.1: Ruby gem is crystalline Al2O3 that is red due to the presence of chromium
impurities (The Figure is taken from Wikipedia).

Usually, in condensed matter or solid-state physics, crystals are taken as
perfect, in�nite repetitions of a single unit cell; nonetheless, this is far from reality.
These perfect crystals exist solely in theory. In reality, crystalline materials
come with defects in them! Furthermore, these defects are often responsible for
physical properties that are quite di�erent from the ones corresponding to perfect
or defect-free structures. Defects can modify a range of properties of materials
including optical, magnetic, and electronic. For instance, a Ruby is Al2O3 crystal
with Cr impurities, which modify, the colorless pure material to a precious
intense red color (Figure 1.1). Thus, these impurities, which are a particular type
of defects in the perfect crystalline lattice change the color of the material, which
is one of the many optical properties that can be modi�ed. They can also change
the electrical characteristics. For example, creating interstitial oxygen defects in
(La,Sr,Ca)3CuO6+G with G between 0.08 and 0.12 can transform this insulating
ceramic to metal and then superconductor. In the superconducting phase, the
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Chapter 1 Introduction & Motivation

Figure 1.2: Lowering the critical temperature ()2 ) of (La,Sr,Ca)3CuO6+G as a function
of the number of interstitial oxygen defects between the CuO2 layers, n(O3). Figure is
taken from [Jor+94].

critical temperature )2 continuously increases with decreasing concentration of
oxygen defects inbetween the CuO2 layers, n(O3), until it reaches 44 K, as shown
in Figure 1.2 [Jor+94].

Addition of impurities in the host material in a controlled way is thus a
powerful route to tune its electronic properties, which is sometimes called defect
engineering. This is indeed an essential ingredient of modern technology, where
doped semiconductors are the cornerstone of electronic components in devices.
Because defects in�uence di�erent properties of a material, many technologies
take advantage of it. For instance, photocurrent generation can be enhanced in
solar cell technology by introducing defect states. Magnetic impurities can be
introduced in semiconductors to create new diluted semiconducting materials,
defects can be used to reinforce the structural strength of materials for nuclear
applications, they have been proposed as stable qubit candidates for quantum
technologies, they are essential for enhancing the ionic mobilities in ceramic
materials used for energy storage applications, etc. However, it is not only
important to control how defects can be introduced in a material, but also
identify which type of defects exist in order to relate the observed properties
to the speci�c nature of the structure at the atomic level. Often, uncontrolled
defects are present in the system, or certain defects can be detrimental to the
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Materials in Nature: Defects & Surfaces Section 1.1

desired properties of the compound and mitigation strategies have to be used.
For instance, the short lifetime of charge carriers is one of the limiting factors
that have to be optimized for achieving high-e�ciency solar cells. The creation
of a deep-level due to antisite defect of Te, (TeCd) in CdTe solar cells has been
identi�ed as the dominant reason for low e�ciency, thus these defects should
be avoided [Ma+13; Yan+16].

Solely using experimental techniques to identify defects is challenging. Al-
though there are techniques to characterize defects in bulk, their sensitivity
depends on the defect concentration: for diluted defects measurements are di�-
cult, and for large concentration, the nature of the defects can be substantially
a�ected due to aggregation with other defects, or strong modi�cation in the
host material. Fortunately, theoretical modeling and simulations can be used
to help. Theoretical tools allow to understand the properties due to di�erent
defects, for example something as critical as the probability of having a certain
concentration of defects in a particular material depending on the synthesis
conditions used. The aim of this Thesis is to develop di�erent computational
tools to calculate properties of non-perfect solids, systems where the translational
symmetry of the crystal is broken, either because there are defects, or because
the system is not in�nite, and has surfaces or edges.

From the diverse classes of imperfections in the crystal, we will focus on the
simplest, which are called point defects, examples of which are a single missing
atom or a single atom impurity in the pristine crystal. Our objective is to compute
the energetics of these defects, and in particular:

• Formation Energies. The energy required to create the defect is related to
the probability of having a certain concentration of that defect in thermo-
dynamic equilibrium. To some extent, investigation of general properties
of the defect in its ground state con�guration, such as optical and elec-
tronic properties can also be included into this category. We will see that
charged defects need careful consideration due to their localized charge
distribution and interaction with periodic images.

• Migration Barrier Energies. Once the defects are formed, they can also
move, and hop into di�erent sites in the crystal (either a vacant or an
interstitial site) via di�usion through the crystal. Although this happens
at a much slower rate than in gases or liquids, it remains essential since it
makes the foundation for industrial applications such as electrochemical
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Chapter 1 Introduction & Motivation

cells and batteries, solid oxide fuel cells (SOFC), nanoionics, super-ionic
conductors, corrosion. Besides that, altering the electronic structure tran-
siently upon illumination and changes in light-driven catalytic reactions
can also be included into the dynamic properties.

As we said before, real materials are not in�nite, but have boundaries. This is
the second type of imperfections in the solid that we consider in this work, and
we include under the general label Surfaces & Interfaces. In atomic simulations
a boundary can be modeled as a cleaved surface of the material. The structure
and properties arising from this symmetry breaking are entirely di�erent from
the ideal bulk material. Studying these e�ects is another step towards realizing
real material. Furthermore, creating a functional device requires two or more
materials surfaces to be in contact and create interfaces. Understanding the
physics in interfaces needs to be considered carefully. The study of surfaces
and slabs allows to de�ne concepts and approximations that act as the bridge
to creating and investigating heterostructures. Note that hybrid materials are
also technologically interesting. These materials are composites consisting of
two constituents that enhance desired properties by combining those of the
individual components. Here, the in�uence of point defects can also be critical.
For instance, the heterostructure of (CNT) and metal oxide nanoparticles such as
ZnO, due to defects enhance the UV emission, and has wide range of applications
from photocatalysis [Byr+08], charge separation [ZJY09], �eld electron emission
[Ken+17], photoresponse [Cho+20], gas or electrochemical sensors [BS17], to
other optoelectronic devices [SSN13].

1.2 Defects & electronic properties

Lattice defects and impurities are prone to introduce new localized electronic
states in the host. For example, vacancy defects create a level in the band gap due
to "dangling bonds" (Figure 1.3). This is because orbitals do not substantially over-
lap with other atomic orbitals in crystal, and with no overlap with a neighboring
orbital, there will be no symmetric-antisymmetric energy splitting. Moreover,
orbitals with little or no overlap will look very much like the original atomic
orbitals [Sno20]. The presence of a defect level is dictated by the nature of chem-
ical bonding and crystal structure. If we consider transition metal-oxides, the
presence of intrinsic defects often creates a level inside the bandgap. For instance
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Defects & electronic properties Section 1.2

Figure 1.3: Creating a vacancy atom leaves dangling bonds in surrounding atoms ( the
dangling bond shown with cloud around neighbouring atoms and vacancy position
is shown with ×). Creating impurities creates shallow donors (acceptors) hydrogenic
levels.

interstitial metal ions introduce donor levels M8 →M•8 +4 , M•8 →M••8 +4 , ..., vacan-
cies from the metal ion introduce acceptor levels VM →V′M + ℎ, V′M →V′′M + ℎ, ...
On the other hand, oxygen vacancies give donor levels VO →V•O+4 , V•O →V••O +4 ,
... as shown in Figure 1.4.

Thus, from the computational point of view it is not only interesting to
determine the probability of having these defects (given by their formation
energy), but also whether or not the defects give rise to new electronic levels,
and thus can host di�erent number of charges. In this case we say that the defect
is charged, and these charged defects deserve special attention, as the long-
range Coulomb interactions between periodic images of the defect introduces
uncertainties in the de�nition of the formation energy, as we will discuss in the
thesis. On the side, for some speci�c applications (for example in electronics or
optoelectronics) it is important to �nd the accurate position of the defect level
energy, and to distinguish whether it is a shallow or a deep level. There are thus
two-aspects to consider here:

(i) the accurate description of defect charge distribution.

(ii) the accurate position of defect energy level in the gap
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Figure 1.4: Localized electron states of point defects impurities in metal oxides:
"8=interstitial metal, +"= metal ion vacancy, +$= oxide ion vacancy, �= Acceptor
impurity, �=Donor impurity.

The level of approximation of the theoretical description could a�ect these
two components. Modern approaches to point defect calculations typically use
Density Functional Theory and are based on the supercell approach, where the
defect is introduced in a simulation box with up to a few hundred atoms of
the perfect crystal hosting the defect. Periodic boundary conditions, needed to
describe the crystal host, require the use of these large supercells to avoid arti�cial
interactions between periodic images of the defect. Ab initio calculations are
able to model defects more accurately than empirical potentials, but are limited
by the larger computational demands which critically increase with the number
of atoms in the system (typically as N3, where N is the number of atoms in
the cell). In this sense, the so called linear scaling methods are advantageous
as they allow to describe larger number of atoms at a reduced computational
cost. These approaches normally exploit localization, and use some sort of
localized basis as support functions to describe the electronic wavefunctions.
Numerical atomic orbitals (NAO) which are products of spherical harmonics
times radial functions, solution of the radial Schrödinger equation for an isolated
pseudoatom, have demonstrated to give excellent performance both in terms
of accuracy and computational cost relative to planewave calculations with
equivalent pseudopotentials [Ang+02; Jun+01]. Transferability is generally
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satis�ed when using a few tens of orbitals per atom (versus hundreds of functions
required for planewaves), which can be generated by optimization on a speci�c
model crystal or molecule thanks to the variational principle. [Ang+02]

Here we use the robust Siesta package under the framework of Density
Functional Theory (DFT) along with a localized basis set (Numerical Atomic
Orbitals) Siesta allows us to work with big supercells and systems, which is
an important requirement for defects calculations. One of our focus will be
on the unfavorable side of NAO’s in defect calculations, which is connected to
the �rst issue highlighted above. By default, within localized basis set methods
such as Siesta, when creating a vacancy defect, one removes the corresponding
atom along with its support basis orbitals. These could raise an important issue,
whether the remaining basis set is good enough to describe the defective system
or defect region. In particular, whether the basis set is good enough for describing
the dangling bond state of the system where charges are localized in defected
species’ position. This problem also extends to study dynamic properties, such
as di�usion barriers in which one wants to calculate the migration of the defect
to a di�erent crystal site.

1.3 Computational Material Science

1.3.1 The High-Throughput Computations Era!

The need to develop sophisticated and specialized materials is an unavoidable
requirement for many aspects of our modern life. In the last decades it has become
evident that computational tools play a signi�cant role in these developments
and research, as discussed in the case of point defects. Computational material
science enables an accelerated progress in this process of materials discovery and
optimization [SC03]. With the increasing power of the computer, not only could
one accomplish a simulation at the atomic level, but do it for multiple or di�erent
cases exploring multiple conditions and computing several di�erent properties
simultaneously. Often, the calculation of particular properties requires more
careful consideration or multiple steps. Also, occasionally one needs to explore
thousands of materials to �nd the best candidate for particular properties or
applications. Hence some software infrastructures are needed to automatize
these procedures .

The di�erent automatic infrastructures in the computational materials sci-
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ence community that enable setting up and performing many simultaneous
calculations and then collecting the data to analyze the results with minimal
intervention by the user, have paved the road for rapid materials discovery and
development [Joh+02; Mat+17; Xia+95]. These infrastructures have given birth
to the High-Throughput Computations Era. A general requirement that any
such platform should satisfy, is to provide the means to create, manage, analyze
and share huge amounts of data from the computational simulations. There are
multiple developments in the market, and many options in the public academic
community. Among them, here we pay special attention to AiiDA, developed
at EPFL. [Hub+20; Piz+16; Uhr+21]. The ADES model with four pillars for the
Automation, Data, Environment, and Sharing was established to satisfy the es-
sential requirements, and the AiiDA framework is implemented as an automated
interactive infrastructure, and a database for computational science. One of
the many signi�cant advantages of AiiDA is its dynamic work�ows. Besides
controlling multiple steps in a simulation, these work�ows can automatically
store the data required to be stored, which need to be used later as they run.
Hence, it will be ideal for calculating properties requiring multiple steps, such
as defect formation and defect migration barriers.

1.3.2 Tools Available

Recently, various tools have become available in di�erent ecosystems for extract-
ing di�erent properties, from the fundamental equation of state [Hub+21] to
more advanced properties such as workfunction of slabs [And+21]. In this thesis,
I have developed work�ows for siesta code, which require some distinct features
for their integration on the AiiDA materials informatics platform implemented
by Pizzi et al. [Piz+16]. In particular, we will describe the developments of three
di�erent work�ows that facilitate our practical interests:

• defects workflow to automate the calculation and analysis of the forma-
tion energies of point defects.

• barriers workflow to automate the generation, calculation and analysis
of the energy barrier for migration of defect along di�erent paths.

• surfaces workflow to automate the generation, calculation, and analysis
of di�erent slabs, surfaces and interfaces.
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In the following chapters, we will demonstrate the theory and application of
those tools.

1.4 Our case study systems: defects in Oxides

The family of oxide materials is among the most abundant in nature. They
have astonishingly diverse structures, especially in comparison with simple
metals or elemental semiconductors. For instance, the binary oxides in bulk can
have the simplest rock-salt structure, or more complex ones such as spinel or
anti�uorite structures. Understanding the structures and properties of oxides is
crucial for many modern technologies, from the application of dielectric oxides
in microelectronic devices, or as transparent layers in optical coatings and solar
energy harvesting devices, or even as protective corrosion layers on metals.
Through the thesis, we focus on two relatively simple but interesting examples:
MgO and HfO2. We have chosen these two systems due to their being very well
studied in the literature (thus we can validate our methods and results), and for
their potential interest for applications which still rises questions regarding the
properties of their defects (in particular oxygen vacancies). In the following we
give a brief introduction to these defects.

1.4.1 Magnesium Oxide MgO

Magnesium oxide MgO is a prototypical binary oxide, highly symmetric, ionic,
and with a broad electronic gap (experimental value 7.8 eV [WW69]). The
oxygen vacancy defect gives rise to a well-localized s-like defect state that can
be �lled by 2 (F0), 1 (F+), or 0 (F2+) electrons. This defect is an ideal system to
study the methods developed to treat charge corrections needed to estimate the
formation energies. In this case, the electronic state localized around the defect
has a nice spherical symmetry so that simple standard models can be correctly
applied and can be compared with more advanced methods described below.
Furthermore, the limits of the strictly localized basis set can be tested under
controlled conditions. On the other hand, this is a well-studied material and it is
easy to �nd references in the literature with which we can compare our results,
both for formation energies and migration barriers.

11



Chapter 1 Introduction & Motivation

1.4.2 Hafnium(IV) Oxide HfO2

Another system of interest from the large spectrum of oxides is HfO2 (and also
its cousin ZrO2), which attracted much attention years ago due to their high
dielectric constant ^, and its potential use for replacing silicon dioxide as the
gate dielectric material in metal-oxide-semiconductor (MOS) transistors. Besides
that, HfO2 (and ZrO2) is also used for thermal barrier coating and is one of
the most common electrolyte materials in SOFCs. Notably it has been shown
recently that HfO2 also shows ferroelectricity [Mül+12] and it compatibility with
silicon technology has renewed interest in ferroelectric memory devices, which
make them an excellent candidate for ultrathin ferroelectric random-access
memory (FE-RAM) (< 10=<) for the next commercial use [Mar+13]. In all these
applications, the performance of HfO2 can be potentially a�ected by the presence
of defects. Hence it is interesting to use theoretical modeling to determine the
formation of the most stable forms of oxygen vacancies. Moreover, we have
chosen another interesting problem in the study of a hybrid HfO2/Graphene
heterostructure, which has recently been synthesized and characterized as a
promising candidate for energy harvesting applications. Theoretical modeling
support has been asked from our collaborators to understand the experimental
observations and determine the role of defects and the properties of the interface
in this new hybrid nanomaterials.

1.5 Thesis Outline

The Thesis has four parts. In this �rst Part (i) The Beginning of It All, we
have reviewed the power of �rst-principles, or ab-initio electronic structure
methods, and the need for using these modeling tools to tackle the problem of
defects in materials for technology. In Part (ii), Defects Energies, we will tackle
the static properties of defects, particularly the formation energy of charged
defects, by describing the problem and developing tools to solve the issue and its
applications. Then, in Part (iii) Defects Barriers, we will move to dynamical
properties, mainly defect migration. Finally, in Part (iv) Surfaces & Interfaces,
we will discuss the surfaces and the application of defects on interfaces. Each Part
contains two chapters (except the last Part, which has three chapters) focusing
on the theoretical concepts and the application of the developed tools to the
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issues at hand for that Part. The Last chapter will give the conclusive outlook of
the Thesis. The organization of each chapter is as the following:

• Chapter 2 - Theoretical Background We begin the pilgrimage with
a review of general steps in modeling and then describe the ab-initio
approach. Next, we review the theory behind the power of DFT to extract
the properties we need, which we will use throughout this thesis.

• Chapter 3 - Defects Formation Energies Methods I review the prob-
lem of the charged defect formation, which arises from periodic image
interactions of localized charges, and the approaches to tackle this problem.

• Chapter 4 - Defects Formation Energies Applications I use the de-
veloped tools for di�erent materials’ charged defect formation energies.
We start with MgO and conclude the chapter with HfO2 oxide due to their
peculiar behavior for the properties of the defect.

• Chapter 5 - Potential Energy Surface (PES) Methods I introduce the
potential surface energy and its relation with barriers and di�usion con-
cepts and methods, together with the tools developed here for energy
barrier calculation. Finally, we conclude the chapter by introducing a
catalogue of di�erent types of paths for di�usion barriers in crystals.

• Chapter 6 - Siesta Barriers Applications I use the developed tools for
barrier calculation and discuss the problem and solution for the method
and the basis-set issue for calculating the di�usion barrier in MgO model
system.

• Chapter 7 - Methods for Surfaces & Interfaces discusses di�erent
surfaces in materials and revisits the basis-set issue at the surface. Next, I
review the ab-initio issues dealing with surfaces and solutions for those
problems.

• Chapter 8 - Siesta SurfacesApplications Illustrates the developed tools
to study HfO2/Graphene Heterostructure and the e�ects of defects on its
electronic properties and its possible application in photocurrent produc-
tion.

• Chapter 9 - Conclusions & Outlook I give an outlook and conclusion
to the study of defects, barriers, and surfaces issues.
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2 Theoretical Background

2.1 Materials

In the interdisciplinary �eld of materials science, the aim is to design and dis-
cover new materials. In this thesis, we will work at the theoretical level, which
is the sub�eld of materials science where mathematical tools are combined with
fundamental laws of physics to study and engineer processes of chemical and
physical relevance. In this chapter, I start outlining the di�erent stages of materi-
als modeling while emphasizing the level of complexity. Then, later in this same
chapter, I will show how DFT provides an excellent solution to these problems,
making it a powerful tool for calculating material properties.

2.2 Material Simulations

Materials simulation or modeling is the development and use of mathematical
models for describing and predicting speci�c properties of materials. The initial
e�ort is to describe the steps needed to set the theoretical framework for the
modeling.

2.2.1 Fundamental Steps in the modeling

There are four fundamental steps in modeling:

• System description First, we have to de�ne our system and the funda-
mental units or “particles” along with the number of those that are present
there. This comes down to choosing what things we want to describe. If
we want to describe atoms and molecules but not the internal structure of
the atomic nucleus, we choose atomic nuclei and electrons as our building
blocks. If we want to describe molecular structures but not the details of
the electron distribution, we choose atoms as the building blocks. Larger
building blocks can also considered, such as molecules, nanocrystalites,
etc.
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Chapter 2 Theoretical Background

• Interaction The next step describes the interaction between particles that
constitute the system. In our case, we deal with arranged order of nuclei
and electrons (building blocks) in crystalline systems. The interaction
here will be the Coulomb interactions between nuclei and electrons, and
any other possible external electromagnetic �eld.

• Dynamical equation The mathematical dynamical equation form for
evolving the system in time could be di�erent, and solving this equation
might need di�erent recipes. However, after solving those equations, one
can predict the system information at any time (later or earlier) relative to
the starting conditions, which is the Final GOAL!

• Starting condition The �nal step is to de�ne the initial conditions. In the
classical realm, this is basically, to de�ne the particles’ initial positions and
their velocities. This is because the position and velocity of particles make
the entire phase space, and all the dynamics occur in this con�guration
space. Depending on the number of particles of the system that we deal
with, we could only be able to describe a small part of it. So the initial
condition will allow us to focus on relevant parts of this space. So the
initial condition will allow us to focus on relevant parts of this space.

Figure 2.1: The mathematical framework for Four Domains of Dynamical Equations

The mathematical framework for the dynamical equation depends on the mass
and velocity of the particles and can be divided into four regimes Figure 2.1.
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Ab-initio methods for Electronic Structure Calculations Section 2.3

• Classical Non-Relativistic When you deal with large and slow (slower
than the speed of light) particles.

• Classical Relativistic When you deal with large and fast (near speed of
light) particles.

• Quantum Non-Relativistic When you deal with very small particles
(order of atoms) which move slowly (slower than the speed of light).

• Quantum Relativistic When you deal with very small (order of atoms)
and fast (near speed of light) particles.

The atomic nucleus are heavy enough to be described at the classical non-
relativistic regime, while electrons are light particles and require quantum me-
chanic treatment. In this thesis, our main mathematical framework is in the
Quantum Non-Relativistic domain (although some relativistic e�ects might be
included).

2.3 Ab-initio methods for Electronic Structure
Calculations

2.3.1 The Adiabatic and Born–Oppenheimer Approximations

If we are interested in describing the electron distribution in detail, we have to
rely to the Schrödinger equation (Quantum Non-Relativistic domain Figure 2.1).
Solving the Schrödinger equation still requires approximations. We start with the
Born–Oppenheimer approximation, where we decouple the nuclei and electronic
motion, since the nuclei are orders of magnitude heavier than electrons. This
allows the electronic part to be solved with the nuclear positions as parameters,
and then use the resulting Potential Energy Surface (PES) as basis for solving the
atomic nucleus dynamics. In this approximation, the total wave function can be
written as:

RC>C (r,R, C) = Q= (R, C)R4 (r;R(C)) (2.1)

whereQ= are the nuclear wavefunctions (which can be taken as Dirac functions),
andR4 are the electronic wavefunctions which depend parametrically on the
instantaneous atomic positions R(C). In the semiclassical approximation the
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Chapter 2 Theoretical Background

nuclear motion can be described with Newton’s equation following the %�(
de�ned by the electrons, and the electronic wavefunctions can be obtained from
the solution of the time-independent Schödinger equation:

H4R4 = E4R4 (2.2)

with the electronic hamiltonian given by

H4 =
[
T4 + V44 (r) + V4= (r;R)

]
(2.3)

where T4 , V44 , and V4= are the electronic kinetic energy, the electron-electron
and the electron-nuclear interactions respectively.

2.3.2 Density Functional Theory : The Hohenberg-Kohn
Theorems

Within Born–Oppenheimer approximation solving quantum # -body problem
requires to work with wavefunction which for an # electron system contains
4# variables: three spatial (A = G,~, I) and one spin coordinate (U)

R4 (A ;R) −→RU (A1, A2, . . . , A# ;R) (2.4)

There are di�erent methods where the N-particle electronic wave function is
the fundamental object. The Hartree-Fock (HF) model [Har28; HH35] can be
considered as the branching points for more methods and approximations based
on wave function, such as Con�guration Interaction (CI) [Sha77] Coupled Cluster
and Semi-empirical methods [Thi88].

Considering the fact that the electron density d (r) is the square of the wave
function integrated over # − 1 electron coordinates

dU (r) =
∫
|R (A, A2, . . . , A# ;R) |23r23r3 · · ·3rN (2.5)

each spin density only depends on three spatial coordinates independent of the
number of electrons. Density Functional Theory (DFT) uses this charge density
d (r), which depends only on three variables, as the fundamental object that
contains all the relevant information for the quantum system. The pillar of DFT
is based on the Hohenberg-Kohn theorem [HK64], which states that the lowest
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energy of the system (in the ground state) � is a functional 1 of the electron
density d (A ) only.

� = � [d] (2.6)

The proof of Hohenberg-Kohn theorem is based on the following three premises:

(I) In the ground state the electron density d (r) determines, within an additive
constant, the external potential acting on the electrons, +4GC :

d (A ) → +4GC (2.7)

(II) The external potential +4GC determines uniquely the many-electron wave
functionR of the system:

+4GC →R. (2.8)

(III) The total energy � of the system, is a functional of the many-body wave
function through Eq 2.2:

R → � (2.9)

combining all premises indicate that, in the ground state, the density determines
the total energy:

d → +4GC →R → � (2.10)

we can conclude that the total energy is a functional of the density � = � [d].
This energy that can be calculated from the charge density of the system from
the framework of DFT will allow us to derive desired properties of materials.

1 a function is a prescription for producing a number from a set of variables (coordinates), while
a functional is a prescription for producing a number from a function, which in turn depends
on variables. A wave function and the electron density are thus functions, while the energy
depending on a wave function or an electron density is a functional. We will denote a function
depending on a set of variables with parenthesis, 5 (G), while a functional depending on a
function is denoted with square brackets, � [5 ].
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2.3.3 Density Functional Theory: Orbital-Free

Hohenberg and Kohn constructed the foundation for Density Functional The-
ory (DFT) by proving that the electron density d determines the ground state
electronic energy. The energy functional could be divided into three parts,
kinetic energy ) [d], attraction between the nuclei and electrons �=4 [d], and
electron–electron repulsion �44 [d] (the nuclear–nuclear repulsion is a constant
within the Born–Oppenheimer approximation). The interaction between nuclei
and electrons is Coulomb like:

�=4 [d] = −
#=D2;48∑
0

∫
/0 (R0)d (r)
|R0 − r|

3r (2.11)

On the other hand, the �44 [d] term may be divided into a simple Coulomb term,
� [d], and “other stu� which shall include the exchange  [d], and correlations
terms.

� [d] = 1
2

∬
d (r)d (r′)
|r − r′ | 3r3r

′ (2.12)

First de�nition of a functional for the kinetic energy was derived from a simple
model of a uniform electron gas, and is known as the Thomas-Fermi model
(TF) [Blo29].

))� = ��

∫
d5/3(r)3r with �� =

3
10 (3c

2)2/3 (2.13)

The functional �)� [d] = ))� [d] + �=4 [d] + � [d] is known as the Thomas-Fermi
(TF) model. The exchange term for this simple electron gas, derived by Bloch
but commonly associated with the name of Dirac, can be expressed as

 � [d] = −�G
∫

d4/3(r)3r with �G =
3
4

( 3
c

)1/3
(2.14)

Addition of the � [d] exchange part to the TF model gives the Thomas–Fermi–Dirac
(TFD) model [Dir30]. Note that no correlation functionals are included in these
simple models.
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2.3.4 Density Functional Theory: Kohn-Sham Theory

The main problem in orbital-free models is the inadequate representation of the
kinetic energy. In Kohn-Sham (KS) approach, we map the actual density of N
particle system to that of a �ctitious system of independent (non-interacting)
electrons with one electron wavefunctions q8 . The density of this one-electron
wavefunctions is used to represent the exact density of the N electron system.
Now, in the Kohn-Sham (KS) formalism the kinetic energy functional is split
into two parts, one that can be exactly calculated and another that can be
added as a small correction term. The KS model is formally related to the
HF method, sharing identical formulas for the kinetic, electron-nuclear, and
Coulomb electron-electron energies. The non-interacting kinetic energy could
be written by

)( =

#4;42∑
8=1
〈q8 | −

1
2∇

2 |q8〉 (2.15)

The exact density of the interacting electrons system is not known, but it can
be represented by the density of the equivalent system made of auxiliary non-
interacting electrons

d =

#4;42∑
8=1
|q8 |2 (2.16)

The remaining part of total kinetic energy ) [d] now is in exchange-correlation
term, and the total ���) [d] can be written as

���) [d] = )( [d] + �=4 [d] + � [d] + �G2 [d] (2.17)

By setting the ���) to the exact Ground State energy ��( [d], we can de�ne
�G2 from the di�erence between the kinetic energy terms and the electronic
interactions

�G2 [d] = () [d] −)( [d]) + (�44 [d] − � [d]) (2.18)
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2.3.5 On Exchange–Correlation Functionals

Now we have to approximate the+G2 or �G2 [d], which has a direct relation with
it. Beginning with the assumption that this electron density varies slowly at
each point in the solid. One could regard it as a homogenous electron gas (HEG).
This approximation is called Local Density Approximation (LDA) [Dir30; KDT18;
Raj78]. Consequently, we write

�G2 [d] ≈ �!��G2 [d] =
∫

33rd (r)n���G2 [d (r)] (2.19)

If a semi-local generalized gradient of electron density is added to the approx-
imation, it improves the approximation and is called it generalized gradient
approximation (GGA) [PBE96]. Therefore for �G2 [d] we have

�G2 [d] ≈ ����G2 [d,∇d] =
∫

33rd (r)n���G2 [d (r),∇d (r)] (2.20)

These two approximations are widely used in the electronic structure community
and are the workhorse for most of the calculations in the literature. There are
di�erent functional forms for LDA and GGA, and in the technical details of our
calculations we will comment on which ones were used in this thesis.

2.3.6 Self-Consistency Field (SCF) Method

We can rewrite the Kohn-Sham equations as following[
− 1

2∇
2 ++C>C (r)

]
q8 (r) = n8q8 (r) (2.21)

+C>C (r) = +=4 (r) ++� (r) ++G2 (r) (2.22)

+=4 (r) = −
∑
�

/�

|r − R� |
(2.23)

∇2+� (r) = −4cd (r) (2.24)

+G2 =
X�G2 [d]
Xd

(r) (2.25)

d (r) =
∑
8

|q8 (r) | (2.26)
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+=4 (r) = −
∑
�

/�
|r−R� |

Initial guess for the electronic density

+G2 =
X�G2 [d ]
Xd
(r)∇2+� (r) = −4cd (r)

+C>C (r) = +=4 (r) ++� (r) ++G2 (r)

[
− 1

2∇
2 ++C>C (r)

]
q8 (r) = n8q8 (r)

d (r) = ∑
8 |q8 (r) |

d 5 − d8 < Tolerance

Finish

No

Yes

Figure 2.2: self-consistent solution �ow-chart for Kohn-Sham equations

Since the solution depends on the electron density, as in the Hartree-Fock
approach, we have to use a self-consistent procedure to solve the Kohn-Sham
equation as shown in Figure 2.2. Typically, we need an initial guess for the
electronic density, which can be taken as the sum of the densities of isolated
atoms placed at the atomic positions of the new structure. The +C>C is then
computed from that initial density, and the Kohn-Sham equations are solved to
obtain q8 (r). These Kohn-Sham orbitals are then used to de�ne a new electronic

23



Chapter 2 Theoretical Background

density following Eq 2.26. This procedure continues until the changes in the
density between SCF steps are smaller than the tolerance parameter de�ned at
the beginning of the cycle.

2.4 The SIESTA Method

The implementation of the self-consistent Kohn-Sham density functional the-
ory is available in the Siesta package. Siesta (Spanish Initiative for Electronic
Simulations with Thousands of Atoms) is a DFT method based on a �exible
linear combination of atomic orbitals (LCAO) basis set. The implementation of
the method in a computational code allows extremely fast simulations using
minimal basis sets and very accurate calculations with complete multiple-zeta
and polarized bases, depending on the required accuracy and available computa-
tional power. The Siesta method applies two important approximations (i) use
of Pseudopotentials that allows to keep frozen the wavefunctions of the core
electrons in the atom, and thus take into account only on the valence electrons,
that feel a screened electrostatic potential from the nuclei; and (ii) use of strictly
localized Numerical Pseudo-Atomic Orbitals as the basis functions to expand
the electronic wavefunctions. These two approximations require to de�ne two
critical aspects of any Siesta calculation: de�ning the speci�c "input" variables:

• Pseudopotential: the replacement of the core electrons by an e�ective
potential that acts on the valence electrons and provides an explicit de-
scription only for the valence electrons 2 This approximation comes in
very handy and presents several advantages as it not only reduces the
number of electrons, but also the complexity of the wavefunctions. This
helps in the reduction of the basis size since we are dealing with states
involving only the valence electrons. Furthermore, this allows to use a
uniform spatial grid instead of a logarithmically dense grid closer to the
center of the atom that could have been needed due to the acute local-
ization of the core electrons. Moreover, it allows the replacement of the
atomic wavefunction that contains nodes with a smooth function without
nodes. The replacing of the all-electron with pseudo electron function
gives an exact match to the all-electron (true) wavefunction beyond the

2 which is common to many other approaches including the most widely used ones based on
plane-waves such as quantum-espresso, vasp and abinit.
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pseudopotential cut-o� radii A2 . This radii can be �ne-tuned for each
angular channel independently.

• Numerical Pseudo-AtomicOrbitals (NAOorPAO):The NAOs (q�;<= (r))
are orbitals centered on atoms and made up of an spherical harmonic
.;< (r) and a numerical radial function q�;= (r), which is zero beyond a
certain radius, as follows:

q�;<= (r) = q�;= (rI).;< (r̂I) (2.27)

where � is the atoms’ index, = is the principal quantum number, ; is the
angular quantum number,< is the magnetic quantum number and rI =
r − RI is the vector position relative to the center of the atom RI.The
radial function q�;= (rI) can actually be made from just one function, or
a linear combination of several radial functions (zeta) Z for each angular
momentum channel, which corresponds to single-Z or multiple-Z basis
orbitals.

Throughout this Thesis, we have used the implementation of the self-consistent
Kohn-Sham density functional theory available in the Siesta package. We’ll
try to formulate a theory that allows us to describe our system (matter) and
extract the relevant properties. The following section will de�ne the meaning of
property and shortly review a couple of di�erent properties of matter.

2.4.1 Materials Properties

We choose materials to perform well in certain applications. When we use a
material in a certain application, we know that it will be subjected to particular
external conditions, e.g., a constant load, or a high temperature, or perhaps an
electrical current running through the material. In all these cases, we must make
sure that the material responds in the desired way. In general, we want a material
to have a particular response to a given external in�uence. We will represent
the external in�uence by the symbol F, which stands for Field. This could be an
electrical or magnetic �eld, a temperature �eld, the Earth’s gravitational �eld,
etc. The material will respond to this �eld, and its Response is described by the
symbol ℝ. For instance, the response of a steel beam to an external load (e.g.,
a weight at the end of the beam) will be a de�ection of the beam. In the most
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general sense, the relation between �eld and response is described by

ℝ = ℝ(F) (2.28)

If the Response function is a "well behaved" function we could expand the
function with aid of Taylor expansion

ℝ = ℝ0 +
1
1!
mℝ

mF

���
F=0

F + 1
2!
m2ℝ

mF2

���
F=0

F2 + ... + 1
=!
m=ℝ

mF=

���
F=0

F= (2.29)

where ℝ0 describes the “state” of the material at zero �eld. If we truncate the
series after the second term (i.e., we ignore all derivatives of ℝ except for the
�rst one), then the expression for ℝ is simpli�ed dramatically

ℝ = ℝ0 + ℙF with ℙ =
1
1!
mℝ'4B?>=B4

mF

���
F=0

(2.30)

This is a linear equation between the applied �eld and the response. The quantity
ℙ is known as a material property. There are many material properties, and the
most important ones are linear properties, meaning that there is a direct propor-
tionality between the �eld and the response. Other properties are quadratic in
the �eld or even higher order. Out of many di�erent types of material properties,
here we list a couple of them:

• Mechanical Properties

• Magnetic Properties

• Electric Polarization Properties

• Electric Conductivity Properties

• Thermodynamics Properties

• Thermoelectric Properties

• Optical Properties

• Ionic Conductivity Properties

Depending on the desired property, it could be evaluated with linear or higher
order terms. In the �rst approximation, the properties are considered with linear
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dependency. DFT is a theory that allows to obtain the ground state energy,
and thus can be conveniently used to extract, from �rst principles, properties
that derive from changes in the total energy over external perturbations on the
conditions that allow to de�ne the ground state, such as the atomic structure,
the atomic positions, the external electromagnetic �elds, etc. For example, if
we consider deformation of the crystal structure, by application of an external
strain deformation n , we can obtain mechanical properties, such as the stress:

f8, 9 =
1
S

m���)

mn8, 9
(2.31)

Where the f in a linear order property tensor which depends on the change of
the atomic coordinates from equilibrium with

'′�8 =
∑
9

(X8, 9 + n8, 9 )'� , 9 (2.32)

Besides symmetric ideas, the stress property depends on the bonding, hence the
charge density concentration in particular directions in the crystal atoms neigh-
borhood. In this Thesis we focus on general defect properties, mostly energetics.
These include formation energies but also migration energies linked to ionic
conductivity. We also address the e�ects of surfaces on the defect properties in
the material. These properties will be estimated from total energy computed
at the DFT level, and/or derivatives of the energy with respect to the atomic
positions, which are the forces:

F� = −
m���)

m'�
(2.33)

where � is index of atom. Hence we could call them the linear response of energy
to the atomic distortion.
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3 Defects Formation
Energies Methods

3.1 Defects

Defects play an essential part in both the chemical and physical behavior of
solids. An important part of modern science and technology is closely related
to an e�ort to exploit or suppress the properties that defects confer upon a
solid. Batteries, fuel cells, sensors, displays, or computer memories all directly
utilize, or have evolved from, an understanding and manipulation of defects in
materials [Li+19; Qi+20; SH17]. This technology developed over 80–100 years
and started with the most simple ideas [Kre81]. The simplest concept of a defect
is a point defect, which is an imperfection in the crystal site, such as a missing
atom or an impurity. Not long after recognizing point defects, the concept of
more complex structural defects, such as linear defects, termed dislocations, was
invoked to explain the mechanical properties of metals [Fre65; RAC84; Wol89].
In the same period, it became apparent that planar defects, including surfaces and
grain boundaries, and volume defects play essential roles in in�uencing a solid’s
physical and chemical properties [Sak+95]. Moreover, as the defects in�uence
on the properties of the solid gradually became realized, the concept of a defect
underwent considerable evolution [Han+19; Rho+19; Sun+18]. Nowadays, we
can organize defects in a dimensional hierarchy, as shown in Figure 3.1:

(i) Zero-Dimensional defects (point) defects-vacancies [FGC05]

(ii) One-Dimensional (linear) defects—dislocations [Wal+04]

(iii) Two-Dimensional (planar) defects—external and internal surfaces [Li+21]

(iv) Three-Dimensional (volume) defects—point defect clusters [Li+15], voids
[Bag+21], precipitates [Bou+20]

From the di�erent types of defects, point defects in�uence many aspects of
semiconductor behavior. For example, they can be electrically charged in bulk
or on the surface. This charge state of defects can also a�ect defect properties
such as structure, thermal di�usion rates, trapping and recombination rates for
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(a) Zero-dimensional defects—point defects (b) One-dimensional (linear) defects—dislocations

(c) Two-dimensional (planar) defects—external
and internal surfaces

(d) Three-dimensional (volume) defects—point
defect clusters, voids, precipitates.

Figure 3.1: Dimensional hierarchy of defects in crystals (a) 0� defects known as point
defects (b) 1� defects known as linear defects, dislocation is an example of it (c) 2�
defects known as planner defects and (d) 3� defects such as clusters of point defects,
voids and precipitates
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electrons and holes, and luminescence quenching rates [Kre81]. This part of the
Thesis is concerned with "isolated" point defects, that is low concentration of
the defect in almost pure stoichiometric solids. Therefore, it is a good idea to
identify which are these point defects at this moment.

3.1.1 Point Defects Catalogue

Figure 3.2: The diagram of point defect categorization

The starting point for categorizing the defect will be the thermodynamic
stability. If defects form during the crystal growth they are called native defects.
Ultimately, the induced class of defects form after the growth [PFL00], subject to
external in�uence such as irradiation by high-energy particles (ion implantation)
or other forms of radiation. Under thermodynamic equilibrium, some defects
cannot be eliminated from the solid; these defects also fall into the class of
intrinsic point defects [Wat96]. An external chemical specie not belonging to the
host material but present in a crystal for any reason is called an extrinsic defect.

Now we can make further subcategories for these intrinsic, induced, and
extrinsic defects. However, to accomplish this, �rst we go one step ahead to
classify the defects by distinguishing the number of constituting elements in the
crystal. For example, if a crystal is made from just one single atomic specie M,
we call it monoatomic crystal. If it is built from more than one type of atom such
as M, X, Y, Z,... we have a compound crystalline system. The binary compound
MX would be the simplest one of these. Di�erent defect types could be identi�ed,
depending on the nature of the crystal, either monoatomic or compound. Figure
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3.2 shows all the categorization of these defects, and we explain the mentioned
de�nitions in the following sections.

Point Defects in Monoatomic Crystals

The monoatomic crystal’s defects are the �rst we consider. Let us imagine the
M as the crystal element. The simplest point defect is an atom’s absence at the
crystal’s lattice site; this is called vacancy of M and given the Symbol of VM
Figure 3.4-(d). Suppose the atom M does not occupy the usual site of the crystal
during the crystallization. In that case, we call it interstitial and given the Symbol
of M8 Figure 3.4-(a). Finally, we can consider an impurity of a di�erent chemical
specie C which is forced into the crystal by an exterior in�uence. If C occupies
an interstitial site in the crystal, then it is called interstitial impurity, and is given
the symbol of C8 Figure 3.4-(b). If it occupies a crystal site, and replaces a M
atom from its site, then it is called substitutional impurity given the symbol of
CM Figure 3.4-(c). Finally, we could have a Frenkel defect, which is nothing but
an atom M leaving its original site and occupying an interstitial site, that is a
pair of an interstitial and a vacancy.

Point Defects in Compound Crystals

These compounds are crystals made from more than one chemical element. The
easiest way to categorize is to consider the most straightforward case of a MX
compound, which is made of an equal number of cations M and anions X. A
Schottky defect is de�ned by a pair of vacancies, one for a cation and one for
an anion, Figure 3.5-(a). If either an anion or a cation moves away from the
sublattice site to an interstitial site we have a Frenkel defect, Figure 3.5-(b), which
is thus formed by an interstitial and a vacancy as in the monoatomic crystal.
Antisites are formed when one chemical specie occupies the site of the other,
Figure 3.5-(c). For example, M placed at a X site forms the MX antisite, and X
placed at the M sites for the XM antisite. The de�nition of Interstitial impurity
Figure 3.5-(d) and Substitutional impurity Figure 3.5-(e) is similar to monoatomic
ones which we discuss in following section.
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(a) Self-Interstitial Defect (b) Interstitial Impurity

(c) Substitutional Impurity (d) Vacancy Defect

Figure 3.3: Type of Defects in Monoatomic crystal

(a) Frenkel Defect

Figure 3.4: Type of Defects in Monoatomic crystal
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(a) Schottky Defect (b) Frenkel Defect

(c) Antisite Defect (d) Interstitials Impurity

(e) Substitutionals Impurity (f) self Interstitials

Figure 3.5: Type of Defects in Compound crystal
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Charges on Defects and Kröger-Vink Notation

Defect Type Notation

M Vacancy at M site VM
X Vacancy at X site VX
Interstitial at M site M8

Interstitial at X site X8
Interstitial Impurity C C8

M Vacancy with negative e�ective charge V′M
X Vacancy with positive e�ective charge V•X

Impurity C at M site CM
Table 3.1: Kröger-Vink Notation for Defects in Crystals

In general, the absence of a positive ion will leave a vacancy with an e�ective
negative charge, thus it is called a negatively charged vacancy. Conversely,
the absence of a negative ion will leave a site with an e�ective positive charge,
and is called positively charged vacancy. Placing back the charges in those
vacancies make them neutral. To describe the di�erent charge states of vacancy,
or any defect for the matter, could be intuitively tricky. To bypass the problem
of notations and de�ne the charge states of defects, we follow the notation of
Kröger-Vink , where they considered the e�ective charge on defects [KV56].

The e�ective charge on a defect is the charge that the defect has, relative to
the charge present at the same site in a perfect crystal. For ionic species, this
is equal to the di�erence between the actual charges on the defect species, I3 ,
minus the actual charge at the site occupied in a perfect crystal, IB :

@4 = I3 − IB (3.1)

To distinguish e�ective charges from real charges, the superscript ′ is used for
each unit of e�ective negative charge and the superscript • is used for each unit
of e�ective positive charge. The real charges of the species are still given the
superscript symbols − and +. Now the Kröger-Vink notation can be written as
A@4
;

, where A is the species, ; is the lattice site and @4 is the e�ective charge. As
an example, let us focus on the oxygen vacancy in ionic crystals such as MgO
(Figure 3.6). In this material, Mg+2 ions carry two positive charges, and O−2
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(a) Removing Atom (b) Removing Ion

Figure 3.6: Illustration of the Kröger-Vink notation for Oxygen vacancies in MgO. Mg
and O atoms are represented as blue and green spheres respectively. (a) neutral O atoms
is removed from the lattice, leaving two electrons at the vacancy site. The surrounding
Mg+2 charges compensate the vacancy charge, resulting in a neutral e�ective charge. (b)
The oxygen anion (with the two electrons on the O) is removed. This leaves a positive
e�ective charge due to the local environment around the vacancy

carry two negative charges. If we remove one neutral atom, O, the two extra
electrons that were linked to the anion will remain in the system (donated by the
surrounding Mg+2 ions), and result on a vacancy site with −24 (panel a). This
gives an e�ective charge

@4 = (−2 − (−2)) = 0 (3.2)

and we call this a neutral defect. Thus, the vacancy appears to take an e�ective
positive charge equivalent to @4 = 0 and is denoted as VO.

On the other hand, when we remove the anion O−2, we remove the neutral O
atom with the two electrons that were linked to the site, which now gives I3=0,
and the e�ective charge becomes:

@4 = (0 − (−2)) = +2 (3.3)

Thus, the vacancy appears to take an e�ective positive charge equivalent to

38



Defects Formation Section 3.2

@4 = +2 and is denoted as V••O . Throughout the thesis, we will follow Kröger-Vink
notation. Hence, in a crystal containing defects, some charge fraction may be
free to move through the matrix unless we remove that extra charge/s and make
the defects in charged states. As a crucial remark, we return to it in Part II & III.

3.2 Defects Formation

The energy and entropy of materials depend on the types of atoms and their
mutual arrangements, parameterized as “state variables”. Thermodynamics
controls the states of matter. In our case, we are interested in �nding out the
likelihood or concentration of defects present in a crystal. In this section we will
focus on this aspect.

When the system is in equilibrium, a Thermodynamics study gives infor-
mation about its possible states. We know that the Gibbs free energy is the
thermodynamical potential which describes the amount of energy required to
add or remove species in the system. We can approximate the Gibbs energy of a
crystal as

G =
∑
8

`8#8 (3.4)

G = H −)S (3.5)

where `8 and #8 are chemical potential and number of particle 8 respectively,H
is the enthalpy, S is the entropy, and ) is the crystal’s temperature in  . Under
equilibrium, if defects such as vacancies form spontaneously in the crystal3, the
change in Gibbs energy with respect to the pristine crystal must be negative.
However, the introduction of more and more defects must cause the Gibbs energy
to increase until at some point it becomes positive (otherwise the crystal will
not be stable and it won’t exist). This behaviour of Gibbs energy implies that, if
defects are to be present at equilibrium, the form of the Gibbs energy curve as a
function of the number of defects must go through a minimum, Figure 3.7.

The change in the Gibbs energy of the crystal by an amount JGvacancy, due to
the introduction of =vacancy vacancies distributed over #Sites possible atom sites

3 Vacancies are easier to analyze since we remove the complexity of interstitial and another
type of defects which have more degrees of freedom. However, all of the concepts from this
analysis can be easily extended to any defects.
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Figure 3.7: Change in Gibbs energy, JG, of a crystal as function of the number of point
defect present. (Figure is taken from [Til08]).

is given by

JGvacancy = JHvacancy −)JSvacancy (3.6)

where JHvacancy is the associated change in enthalpy and JSvacancy the change
in the entropy of the crystal. The JHvacancy term is approximately equivalent to
the bond energy spent in forming the defects. The JSvacancy term is equivalent
to the additional randomness in the crystal due to the defects Figure 3.8. To �nd
JGvacancy, it is necessary to determine the change in the enthalpy JHvacancy and
the change in entropy JSvacancy. Because the enthalpy tends to be associated
more with the bonding energy between nearest neighbors, this term can be
regarded as constant as a �rst approximation (independent of temperature). The
entropy change consists of two terms: (i) vibrational entropies of the atoms
around the defects (which will be an important factor at high temperatures)
Figure 3.8-(b) and (ii) the arrangements of the defects in the crystal Figure 3.8-(c)
and (d). This latter quantity, called the con�gurational entropy, is relatively easy
to assess using well-established methods of statistical mechanics. For defects,
we have a number of vacant sites =vacancy, and the probability of having them
randomly distributed among #(8C4B is given by

=vacancy

#Sites
= exp

(−JGvacancy
')

)
(3.7)
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Figure 3.8: (a) Pristine vibrational entropy (b) defected vibrational entropy (c) Con�g-
urational entropy S�>=5 86DA0C8>=0;1 (d) Con�gurational entropy S�>=5 86DA0C8>=0;2 . Since
it was ordered, the (d) system has smaller con�gurational entropy than system (c)
(S�>=5 86DA0C8>=0;1 > S�>=5 86DA0C8>=0;2 ). (The �gure is adapted from [SL20])

Where#Sites is total number of normally occupied atom sites, ' is the gas constant
and ) temperature in  . Using Eq 3.4 we get

=vacancy

#Sites
= exp

(−JHvacancy

')

)
× exp

(JSvacancy
'

)
(3.8)

The quantities JH and JS are often assumed to be temperature independent.
This is a reasonable approximation, although the vibrational component of the
entropy, which has been neglected altogether, becomes increasingly important at
high temperatures. The e�ects of these factors can cause changes in the expected
defect concentrations as the temperature increases. Thus, neglecting entropic
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contributions, valid for relatively low temperatures, we have

=+

#
= exp

(−JH+
')

)
(3.9)

For the rest of this chapter we focus on the formation energy (enthalpy energy)
of (point) defects, mostly vacancies, and neglect the entropic part. The enthalpy
H is given by

H = � + %+ (3.10)

and the change on enthalpy given by

JHvacancy = J�vacancy +
��

���
���

�:0
J (%vacancy+vacancy) (3.11)

At) = 0, the condition for stable structure at constant pressure % is to have a min-
imum enthalpy. Assuming the volume and pressure of cell in a defective system
is not changing, the second term becomes zero. Finally, the thermodynamically
relevant quantity becomes the Gibbs energy of formation G

JGvacancy = J�vacancy (3.12)

where � can be calculated within the framework provided by DFT using Eq 2.17.
The following section discusses how we can calculate this energy in crystalline
systems.

3.2.1 Calculating defect formation energies under Periodic
Boundary Conditions (PBC)

Dealing with perfect crystalline material means dealing with copies of some
repeating unit (the unit cell [Blo28; Blo29]) in an orderly fashion, as shown in
Figure 3.9-(a). However, a defect in the crystal breaks the translational symmetry
of the host. Periodic Boundary Conditions, which are commonly used in elec-
tronic structure codes, imply that the defect is also periodically repeated. Thus,
to model an isolated defect, we need to use a supercell approach, which places
the point defect within a number of repetitions of the host crystal (the supercell),
which is itself repeated (although with a di�erent periodicity) and should be
large enough for the interactions between the periodic images of the defect to
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(a) The (# ) repeating neutral cell (b) The (# ) repeating charge cell with uniform
jellium charge

Figure 3.9: Neutral and Charge Defect in PBC (a) Total Neutral charge in PBC where
d4;42 (r) and d8>=82 (r) cancel out each other in a cell. (b) The charged system where the
net charge is shown in the cloud distribution and neutralizing uniform charge jellium
〈=〉 is shown as blue background in the cell.

be small and safely neglected. Otherwise, electronic states induced by the defect
can hybridize with their periodic images, giving rise to dispersive bands and
blurring the estimation of the isolated defect’s energy. In the case of a charged
defect, the situation is even more delicate. Introducing an excess of charge adds
extra long range Coulomb interactions with the periodic images. This requires a
very large supercell to have a good screening, making the calculations extremely
expensive. In the following we will revisit the electrostatics under periodic
boundary conditions and sketch the solution for these problems.

To calculate the formation enthalpy (energy) of defects, we take the di�erence
between the energies of the pristine crystal and the system with the defect. So
now, we focus on calculating these energies from DFT and, in particular, in
Periodic Boundary Conditions (PBC). The electrostatic potential, + (r), resulting
from a given charge density, d (r), is obtained by solving the Poisson equation:

∇2+ (r) = −4cd (r) (3.13)

The solution of this equation is relevant in the context of electronic structure

43



Chapter 3 Defects Formation Energies Methods

calculations, where the potentials due to electronic and ionic densities, d4;42 (r)
and d8>=82 (r), are required. Basically, from the charge density of the system, we
calculate the potential and solve the Kohn-Sham equations. Solving Poisson’s
equation we obtain the Coulomb potential:

+ (r) =
∫

3r′
d (r′)
|r − r′ | (3.14)

where the integration is over all space. Under periodic boundary conditions (PBCs),
used for crystals, the potential corresponding to a given periodic charge density
can be obtained by solving the equation in reciprocal space

+̃ (G) = 4c d̃ (G)|G|2 (3.15)

where +̃ (G) is the Fourier component of the potential in reciprocal-space and
d̃ (G) is the corresponding Fourier transform of the charge density. This simple
expression is of signi�cant utility in electronic structure calculations for periodic
system, where Fast Fourier Transform (FFTs) transform the quantities between
real and reciprocal space e�ciently. Just looking at the mathematical expression
of Eq 3.15, we notice that there is a divergence for G0 = 0 which can only be
avoided by setting the numerator to zero. For neutral systems, this condition is
satis�ed because d4;42 (r) and d=D2;48 (r) cancel each other. However, in the case
of charged systems, as in the case where defects have an excess of charge, this is
not the case. In practice, to avoid this problem, one introduces a compensating
homogeneous background charge (jellium) 〈=0〉 Figure 3.9-(b) which is opposite
in sign to the extra charge in the system, which guarantees that the overall
charge in the periodic unit cell is neutral. The electrostatics requires thus to
solve

∇2+ (r) = −4c{d (r) − 〈=0〉} (3.16)

where 〈=0〉 is the average charge density over the volume of the unit cell, S :

〈=0〉 =
1
S

∫
S

3rd (r) (3.17)

= @/S (3.18)
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The subtraction of 〈=0〉 from the real-space charge density, d (r), in Eq 3.16 is
equivalent to setting d̃ (G0) = 0, thus avoiding singularities in Eq 3.15. The
elimination of the divergence at G0 = 0 by introduction of this new term, is
equivalent to a change in the zero reference for the electrostatic potential. We
will look back to this e�ect in the following sections. Now that it is clear how
the electrostatic energies are calculated in PBC, we move on to describe how to
de�ne the formation of defects in two di�erent scenarios: (i) neutral defects and
(ii) charged defects.

3.2.2 Neutral Defect Formation

The calculation of defect formation energy, in the case of neutral defects can be
written as [Dur+18]

� 5 [-@=0] = �C>C [-@=0] − �C>C [?A8BC8=4] − O8=8`8 (3.19)

where �C>C [-@=0] is the total energy of the supercell with the neutral defect specie
- and �C>C [?A8BC8=4] is the total energy of the perfect crystal supercell. The `8
and =8 are the chemical potential and the number of atoms of the corresponding
specie introduced (or removed) in the system. The `8 allows us to de�ne a
reference to an external reservoir which can be used to estimate the stability of
the defect under di�erent chemical conditions. Essentially, atoms will �nd some
more favorable regions energetically, with lower chemical potential during the
growth. Therefore, the (negative) chemical potential gradient acts as a driving
force for atoms to move into these regions. Also since the chemical potential is
equivalent for all defects, the bulk and the environment are in equilibrium; this
parameter gives a major advantage in building a theoretical understanding of
the phase diagram.

3.2.3 Charged Defect Formation

As we mentioned before, when dealing with charged defects, the problem is
more complex. Now, The formation energy is expressed as

� 5 [-@] = �C>C [-@] − �C>C [?A8BC8=4] −
∑
8

=8`8

+ @`4°
�

+@J+#�%´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
� �

+ �@2>AA±
� � �

(3.20)
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there are new terms in the second line that we describe one by one:

(I) As the charge of the defect system no longer matches that of the neutral
reference systems due to excess of charge, the formation energy requires
to de�ne the chemical potential for the electrons known as electrochemical
potential `4 as reference. This electrochemical potential holds the same
concept as chemical potential, which means the energy cost for adding
(or removing) species, in this case, an electrically charged particle. For
"electrons" in metals this is nothing but the Fermi level, `� . In general,
it is convenient to introduce a reference for the Fermi level, even when
the system has a gap `4 = `� − J`� . For slabs and clusters, `4 is often
set to the vacuum level. More frequently, the top of the valence band
(VBM) or the minimum of the conduction band (CBM) in the bulk of the
pristine crystal is used as a reference [Kah16]. Therefore, care must be
taken to identify an appropriate reference for the electronic chemical
potential when using periodic models to calculate formation energies
for isolated charged defects. This brings the additional �rst term to the
formation energy @`4 , where @ is the defect charge state, and `4 is the
electron reservoir energy as mentioned. Here we choose to de�ne the
electronic chemical potential with respect to the top of the valence band,
`4 = [`� + n+�" ].

(II) As we discussed in Section 3.2.2, the �0 = 0 Fourier component of the
electrostatic potential (i.e. the average of the potential) is commonly taken
to de�ne the zero, thus avoiding the divergence coming from the interac-
tions between periodic charges. [IZC79] For neutral defects both �C>C [- 0]
and �C>C [?A8BC8=4] in Eq 3.19 have thus the same common reference. How-
ever, for charged defects we have to use a homogeneous neutralizing
background charge (jellium) to avoid the divergence. This changes the
zero reference point for the potential, and thus the energies �C>C [-@] and
�C>C [?A8BC8=4] are de�ned with respect to di�erent references. When deal-
ing with charged defect system, neglecting the average potential (NAP)
introduces a numerical error in the formation energy of the charged defect.
A potential alignment correction term @J+#�% is often applied to account
for this problem and recover the bulk-like reference also for the defective
supercell.

(III) The interaction between localized charges with the neutralizing back-
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ground and periodic images is long-ranged and slowly converges for the
supercell size !. The interaction energy coming from this Coulomb poten-
tial can be sizable, even in fairly large supercells. Thus, we have to add a
correction term to Eq 3.19, �@2>AA , which will be de�ned soon �@2>AA .

Figure 3.10: The scaling rule for Finite-Size Corrections. The fading red circle represents
the interaction on the# scaled system. Increasing the cell (# ) will reduce this interaction
and essentially be zero in �∞.

The two terms �@2>AA and J+#�% tend to zero as the size of the DFT simulation
supercell increases. Several approaches have been proposed to avoid calculations
with very large supercells. Most of these approaches are based on �nite-size
corrections. So if we consider # as the order of increasing the cell, we want to
know how far we need to go to get those terms to be converged. What will be the
remaining interaction in �# if in�nitely large supercell is used, �∞ ≈ 0? Basically,
the �# represents the energy required to remove these arti�cial interactions
Figure 3.10. We will focus explicitly on calculating these two terms for the rest of
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this chapter, but �rst, we describe the idea behind the �nite-size scale corrections
method in the next section.

3.2.4 Finite-Size Corrections

Assuming # is a parameter that de�nes the size of the simulation box (for
example the number of unit cell repetitions that generate the supercell) we write
the in�nite system energy as

�∞ = �# + (�∞ − �# ) (3.21)
�∞ ' �# + (�≈∞ − �≈# ) + � (# ) (3.22)

where �∞ and �# are the energy of in�nite and N-cell system. The essential
idea behind �nite-size correction formulae is to write the energy of the in�nite
system Eq 3.21 as an approximation (�≈∞ − �≈# ) and extrapolation � (# ) with a
much less expensive scheme Eq 3.22.

A series of calculations are performed for a range of system sizes to obtain �# .
The correction term in parenthesis is approximated using a much less expensive
scheme, for example from a simple point charge model (Madelung), or using
some localized model charges. Then the results are �tted to a chosen functional
form that has the correct scaling with N, thus enabling an estimation of �# .
Typically, (1/! + 1/!3) is used for the scaling function � (# ). Basically, the
(�≈∞ − �≈# ) term is de�ned by one of the a posteriori approaches we will discuss
in the following, which is also linked to a speci�c scaling behaviour.

3.2.5 Long Range Interactions in PBC & Finite-Size Corrections
Terms for Charged Systems

As we mentioned earlier, the cell size must be su�ciently large to neglect the
arti�cial interactions for neutral defects. The long-range Coulomb interaction
between the localized charge distributions in periodic images converges slowly
for charged defects. Consequently, the supercell sizes required to produce con-
verged energies become prohibitively large, Figure 3.11. However, introducing
corrections schemes we can improve the scaling laws with the system size,
enabling a better extrapolation for moderate simulation boxes.

There are di�erent a posteriori correction schemes,4 which are based on a

4 Recently (2021) Self-consistent potential correction for charged periodic systems has been
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Figure 3.11: Illustration of the approach to converge the calculations for defects by
increasing the simulation box. Top panel illustrates a localized defect charge within the
box. Central panel is the actual supercell, which contains N×N×N repetitions of the
crystal unit cell and the point defect that gives the localized defect level. The scaling
rule for charge defects convergence (lower panel) usually requires supercells with a
large number of atoms, becoming prohibitively expensive computationally. For instance,
crystals with a unit cell (1×1×1) containing eight atoms will become computationally
challenging if the supercell required for converged defect energies becomes (4×4×4),
which has a total of 512 atoms!. These cell sizes are not uncommon to have well
converged results even with the best correction schemes available.

�nite-size correction. Among the di�erent corrections methods proposed in the
literature we can mention:

introduced [Cha+21]. However, in this thesis, we aimed to focus exclusively on a posteriori
methods
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• 1995 Makov and Payne (MP) [MP94]

• 2008 Lany and Zunger (LZ) [LZ08]

• 2009 Freysoldt, Neugebauer, and Van de Walle (FNV) [FNW09]

• 2014 Kumagai-Oba (KO) [KO14]

• 2018 The Density Countercharge a Posteriori (DCCP) [Dur+18]

Makov and Payne (MP) Correction Method

The Markov-Payne (MP) Correction method uses the simplest electrostatic model
that can be de�ned for this problem, which approximates the defect as a point
charge (PC). The �rst-order Makov-Payne (MP) correction for a periodic array
of charges is:

�2>AA =
@2U"
2!n²
"%�

(3.23)

Where n is the dielectric constant of the material containing the defect, ! is the
supercell size, which is equivalent to the separation between periodic images of
the defect point charge, and U" is the Madelung constant, which depends only
on the shape of the supercell containing the defect and can be calculated for
any Bravais lattice through the use of the Ewald method [Dab+08; WN04]. For
example, for Simple Cubic (SC), Body-centered cubic (BCC), and Face-centered cubic
(FCC) lattices, U" assumes the value of 2.8373, 3.6392, and 4.5848, respectively
[LG85]. The MP method provides the exact interaction energy of an array of point
charges immersed in neutralizing jellium. The appropriate dielectric constant is
the static dielectric constant n0 when ionic relaxation of the defect is considered
or the high-frequency dielectric constant n∞ when the ionic structure is kept
�xed to the pristine crystal structure. This simple method has been extended
to general supercell shapes and anisotropic dielectrics [MH13]. However, the
charge distribution of a charged point defect such as a vacancy cannot really be
considered as a point charge, as it extends over a certain spatial region, which
is dependent on the characteristics of the defect, due to dangling bonds and
their interactions with neighboring ions. The model correction based on a point
charge is a highly idealized model, which is known to overestimate the strength
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of the image interactions [FNW09]. Makov and Payne also suggested using
multipole expansion to generate higher-order terms to take care of interactions
between the point charge and possible quadrupoles & created by the defect
charge:

�2>AA =
@2U"
2!n²
"%�

+ 2c@&
3!3n²
"%� �

+$ (!−5) (3.24)

Here & is the Quadrupole (second radial) moment of the defect charge model

& =

∫
A 2d2 (r)3r (3.25)

However, the MP method does not provide any systematic way of calculating & ,
so this quadrupole term is rarely considered within the MP method. Obviously,
when the defect charge distribution cannot be considered as a point charge,
the MP expansion Eq 3.24 is no longer valid. In fact, in the limit of an entirely
delocalized charge, the interaction between image charges is completely canceled
because of the compensation due to the background charge. There is no need
to emphasize that another concern of this method is the dependence of the
Madelung parameter U" to the shape of the crystal cell.

Lany and Zunger (LZ) Correction Method

The Lany-Zunger (LZ) correction method [LZ08; LZ09], focuses directly on the
problem of calculating the second term on MP (Eq 3.24), by making a practical
approximation to & . When defects are introduced in solids the defect-induced
charge density is de�ned as

Jddefect = dq − dp (3.26)

Here dq is the charge density of the system with the defect, and dp is the charge
density of the crystal host without any defect. This Jddefect should be replaced
in Eq 3.25 instead of d2 . With this model the two terms for the total energy
correction in Eq 3.24 can be computed. LZ demonstrated that & is actually
dominated by contribution to Jddefect emerging from the screening response
upon introducing a charged defect into the host Figure 3.12. After including the
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interaction energy between screened point-charge into the screened potential,
the point-quadrupole interactions, which accounts for 1/!3 scaling, can be
neglected and the potential alignment correction does the scaling of 1/!3.

Figure 3.12: The Comparison of defect charges before and after screening for the + ′′2
in diamond in a 64-atom supercell. The defect is located at I = 0 with a periodic image
at I = 13.3 bohr. The limit of a homogeneously distributed screening charge is indicated
by the black dash-dotted line. (Figure is taken from [FNV11]).

Using the charge di�erence obtained directly from the total charge densities
between the charged defect supercell dq(r) and pristine (host) dp(r) DFT calcu-
lations d2 (r) = dq(r) − dp(r) in the Eq 3.25, they calculated the second radial
moment "%� � in Eq 3.24. They found a proportionality between both "%� and
"%� � :

�"%� � = 2Bℎ�"%� (3.27)

where 2Bℎ depends only on the shape of the supercell again [LZ09]. For a cubic
cell, c/3U ≈ −0.369. Combining with the "%� term

�!/2>AA =

[
1 + 2Bℎ

(
1 − 1

n

)] @2U"
2n! (3.28)

Of course, more accurate evaluations require the calculation of 2Bℎ for the adopted
cell shape [LZ09]. Ultimately, using the DFT charge density di�erence leads
to some di�culties where we need to use shape-dependent parameter 2Bℎ . The
correction formulation relies only on 1/!−1, not 1/!−3, and it is not clear how
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to treat the higher-order terms in the expansion. Furthermore, defect charge
distribution must be well localized for this approximation to be valid.

Figure 3.13: The long and short-range Coulomb potential pro�le where short-range
fall very fast to zero with respect to the long-range . (Figure is taken and modi�ed from
[Hua+10]).

Freysoldt, Neugebauer, and Van de Walle (FNV) Correction Method

The approach by Freysoldt, Neugebauer, and Van de Walle [FNW09] combines a
Gaussian charge distribution to model the charge, along with the DFT potential
to obtain explicitly an improved model of the electrostatics. They divided the
single defect interactions with its periodic images into two parts, one to account
for long range interactions, and one for the short-range contribution Figure 3.13

+defect(r) = + long−range(r) ++ short−range(r) (3.29)

The long-range contribution is given by a Gaussian distribution charge model
@model(r′),

+ long−range(r) ' +model(r) =
∫

33r
@model(r′)
n |r − r′ | (3.30)

and the short-range will fall to zero much faster then long-range.
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Figure 3.14: The schematic diagram for charge defect Model potential defect-defect
interactions in PBC, @model is the charge model for representing the localized defect
charge, + (A ) is DFT potential, and + lr represents the long-range interactions with
periodic defect image after the screening of material. (Figure is taken and modi�ed from
[FNV11]).

The the periodic repetition of the long-range interaction, results in a “lattice
energy", �lat which can be estimated from the screened lattice energy (Madelung
energy) or solving Poisson in PBC with the FFT (Eq 3.15) of the model charge.
They assume the short-range potential is essentially zero outside big enough
supercell and the interaction comes from long-range as shown in Figure 3.14.
Finally, the correction is given as the sum of interaction energy of the defect
charge model used, and the alignment term:

��#+2>AA = �lat − @J+#�% (3.31)

The potential alignment termJ+#�% is obtained by comparing the potential from
the model charge to the di�erence of the DFT potentials between the pristine
crystal, +��)p , and the charged defect system +��)q :

J+#�% ≈ J+q/p =

(
+��)q −+��)p

)���
far
−+model

���
far

(3.32)
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The alignment of these potentials has to be done su�ciently far from the defect
position. In this method, di�erent shapes of charge models give di�erent �;0C .
Nevertheless, the FNV scheme yields corrected formation energies independent
of the adopted charge model due to scaling. However, it requires the defect
charge to be well localized within the simulation cell so that it represents correct
long and short-range interactions.

The FNV scheme de�nes a general framework for calculating energy cor-
rections for defects in supercells. The method has also been extended to treat
surfaces and interfaces [KP13]. However, there are two main limitations for this

Figure 3.15: The Alignment approach in the KO correction method where average
+#�%,@/? is taken at the atomic positions in the region outside of the sphere that is in
contact with the Wigner-Seiz cell with radius ',( . [Adapted from “Electrostatics-based
�nite-size corrections for �rst-principles point defect calculations„” by Yu Kumagai et al.
[KO14]]

method, (i) the alignment term can be problematic when the atomic relaxations
are included in the potential because it can be di�cult to de�ne a region far from
the defect that resembles the potential in the pristine system, and (ii) de�ning the
model charge becomes problematic when the defect charge distribution is spread
throughout the whole simulation cell. Furthermore, the atomic relaxations can
give charge distributions that cannot be described with a simple Gaussian shape.

Kumagai-Oba (KO) Correction Method

In the cases where atomic relaxations are considered, the displacement of the
ions can introduce long-range interactions that decay slowly. This can be under-
stood by considering that the atomic relaxation can modify the characteristics of
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charged defects and give dipole and higher-order terms for electrostatic interac-
tions that have di�erent decay lengths at long distances. The Kumagai-Oba (KO)
method addresses this issue [KO14]. They include the long-range interaction
inside the alignment term. They propose to take the average potential +#�%,@/?
around the vicinity of atomic positions in the region outside of the sphere that
is in contact with the Wigner-Seiz cell with radius ',( instead of J+#�%,@/? |5 0A
as illustrated in Figure 3.15.

The Density Countercharge a posteriori (DCCP) Correction Method

Figure 3.16: The V•O defect charge in MgO calculated from DFT as in Eq 3.35. The Mg
and O ions denoted by blue and red dots, respectively. The black dot show the position
of the oxygen vacancy.

The DCCP is similar to the density countercharge (DCC) method of Dabo et
al. [Dab+08], where an explicit charge distribution model of the charge due to
the defect and a complete electrostatic model system correction is de�ned. The
correction is applied to each SCF step within the DFT calculation. However in
the DCCP method, the correction is applied only at the end of the calculation.
So it is considered a posterior application of the DCC method. In the DCCP, the
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spurious interaction with images is de�ned as

�2>AA =
1
2

∫
d (r)+2>AA (r) (3.33)

where this correction potential contains two contributions

+2>AA (r) = +8B>;0C43 (r) −+%�� (r) (3.34)

+8B>;0C43 (r) comes from the isolated system in the absence of other image charges,
and +%�� (r) is the interaction of the charge surrounded by its periodic images.
The charge distribution of Eq 3.33 comes directly from the DFT calculation

ddefect(r) = dq(r) − dnd(r) (3.35)

Where the dq(r) is the DFT charge in a relaxed structure of charge defect and
dnd(r) is the DFT charge distribution obtained for a neutral defect system com-
puted with the structure of the relaxed charged defect (we call this the neutralized
defect). For the alignment potential term we can decompose the contribution in
three intermediate steps, as shown in Figure 3.17:

J@/? (r) = J�� (r) + J�� (r) + J�� (r) (3.36)

Where J�� (r) is the di�erence of potential going from pristine to the defect
crystal without any atomic relaxation, J�� (r) is the potential di�erence in
defected crystal going from unrelaxed to the relaxed structure. Finally, the
J�� (r) is the potential di�erence from the relaxed charged defect structure
to the neutral defect keeping the relaxed structure �xed (neutralized case as
discussed earlier). In principle, far from the defect, the potential should be
aligned to the bulk potential. Durrant et al. discuss each di�erent component
of alignment in Eq 3.36, and they claim that the most important contribution is
usually coming from the AB part. [Dur+18]

Our Approach

In FNV, the essential idea is to capture defect-induced long-range interactions
with a simpli�ed charge model and to correct for the short-range interactions
consistently. However, di�erent charge models give di�erent long-range interac-
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Figure 3.17: The alignment approach in the DCCP correction method has four com-
ponents. Each sketch in the �gure denotes a DFT single calculation. A is the host
material without any defects. D corresponds to the relaxed structure of a charged
defect introduced in the host crystal. This charged defect can be a vacancy, impurity, or
interstitial with a corresponding charge state. Two intermediate steps can be de�ned:
In B, the same defect in its neutral state (no extra charges in the box) is introduced in
the pristine system without any ionic relaxation. Similarly, C is also a neutral system
but this time taking the relaxed geometry of D (also called neutralized defect. [Adapted
from “Relation between image charge and potential alignment corrections for charged
defects in periodic boundary conditions,” by T.R.Durrant et al. [Dur+18]]

tions. Nevertheless, the FNV scheme can correct formation energies independent
of the adopted charge model as long as the long-range term can capture the
periodic image interactions and the short-range interactions decay to zero within
the supercell. In the DCCP method, one uses the DFT charge density ddefect to
calculate the interactions between defect images and the alignment is achieved
by decomposing potentials in di�erent parts, and there is no systematic way
to �nd which component gives the converged value. Here, we calculate ddefect
as the DCCP method. Then, we calculate the long-range (periodic) interaction
+ long−range coming from this charge model. This is done solving the Poisson
equation with the dielectric constant of the material, n , to include screening
e�ects. We use �nite scaling with 1/! dependence to �nd the �2>AA . These
steps allow having a general method which does not depend on any external
parameter such as 2Bℎ , or the Madelung constant, or the broadening parameter
for the Gaussian model. Finally, for the alignment term, we use a value of the
planar average of the potentials far from defect as follows:

J+#�% ≈ J+q/p |far = (+q −+p) |far (3.37)
(3.38)
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Figure 3.18: In our approach, potential alignment is done with J+?/@ de�ned from the
di�erence between the planar averaged potentials for the pristine and relaxed charge
defects. Dashed lines represent di�erent directions between periodic defect images that
de�ne the normal to the plane where the average of the potential is computed, and the
perpendicular solid black line represents the mid point regions which are taken to de�ne
|far.

where J+q/p is the di�erence between the potentials for the pristine crystal (+p)
and the charged defect in its relaxed geometry (+q). Here, the "|far" is de�ned as
the intermediate distance between periodic images of the defect, and the user
can choose which planes (or directions) are taken for computing the average
potentials as shown in Figure 3.2.5.

3.2.6 Charge Defect Formation Phase Stability Diagram

Here our interest is on point defects, and their charge states, which depend
on the chemical potential of the constituent species (atoms and electrons), as
discussed in Eq 3.20. When studying defect formation energies it is common to
represent the energy as a function of these chemical potentials, `8 as it allows
to correlate the stability of defects on the chemical environment. The electron
chemical potential (or the Fermi energy) can also be taken as a free parameter
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Figure 3.19: The point defects formation vs. Electron chemical potential known as
charged defect stability diagram. A positive slope corresponds to a positively charged
defect, while a negative slope corresponds to a negatively charged defect con�guration.
Neutral defects are independent on the electronic chemical potential. Depending on what
is the position of the Fermi level, di�erent charge states for the defect can be stabilized.
In the �gure, a Fermi level close to the conduction band will stabilize negatively charge
defects, while Fermi levels close to the valence band stabilize positively charged defects.
The crossings between curves with di�erent slopes are linked to the position of a defect
level that can populated/depopulated.
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that could be used to de�ne which charge state con�guration is more stable. If a
large number of extra electrons are available in a semiconductor, the Fermi level
would be closer to the conduction band and the possible defect levels within the
gap would be populated. If, however, electrons are removed or scarce, the Fermi
level will be closer to the top of the valence band, and defect levels in the gap will
be depopulated. Here we call Charged Defect Stability Diagram to the plots of
the defect formation energies as a function of the electronic chemical potential,
as shown in Figure 3.19. These plots contain information of the stability of the
di�erent charge states of the defect and the energy of defect levels within the
gap.

3.3 Implementation of Sisl ToolBox Siesta Defects
and AiiDA Siesta Defects

As we witnessed from the discussion of the charge defect formation, its calcula-
tion required some automation and has di�erent terms as shown in Figure 3.20.
I developed two separate packages to take care of defect correction methods and
their calculation automation:

• Sisl ToolBox Siesta defects: is a python package tool inside the Sisl
toolbox to correct charge defect formation energy. To see the manual one
could access to web page :
http://zerothi.github.io/sisl/docs/latest/index.html

• AiiDA Siesta Defects : is a python package to automate calculations of
defective system with siesta through the AiiDA platform. To have access
to the work�ows and manual one could reach to web page :
https://github.com/arsalan-akhtar/aiida-defects/tree/siesta-dev

The motivation behind two separate packages is that we want to keep the
freedom of choice for the users since some of them don’t want to do high-
throughput calculations so we provide them a standalone python package in sisl
to allow them to correct their desired method for formation energy correction.

In the following chapter, we will use the implemented package to calculate
and test the corrections for vacancy point defects on MgO, GaAs, HfO2, and
Diamond.
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Figure 3.20: Schematic diagram of di�erent terms in formation energy of charged
defects. �C>C [-@] is the DFT energy of the supercell containing a defect of - with a
charge state of @, �C>C [?A8BC8=4] is the DFT energy of the pristine supercell,

∑
8 =8`8 is

the energy cost of introducing =8 species with chemical potential `8 and can be used
to take into account the chemical environment and the growth conditions, @`4 is the
electronic potential for the electron reservoir, the �@2>AA accounts for spurious localized
charge defect interactions with PBC and �nally @J+#�% aligns the potential to have the
same references for pristine and defective system.
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4 Defects Formation En-
ergies: Applications

4.1 Defects and Charged Defects in Materials

(a) The V•O defect in MgO (b) The V′′′G0 defect in GaAs

Figure 4.1: DFT calculated Defect charge distribution d345 42C from di�erence of d@−d=3
as in Eq 3.35 for (a) V•O in MgO the Mg and O ions denoted by blue and red dots,
respectively and (b) V′′′G0 in GaAs, the Ga and As ions denoted by orange and gray dots,
respectively. The black dots show the position of the respective vacancies in both cases.

Removing species from a crystal leaves a vacancy, and depending on the
number of electrons in the system and the nature of the species, the vacancy
site can host charges (charged defect) or not (neutral defect). Let us suppose
the defect is charged. Usually, this extra charge is localized around the vacancy.
However, as discussed in the previous chapter, this extra charge interacts with
the periodic images, giving an arti�cial contribution to the computed electronic
properties. We can use di�erent approaches to correct these spurious interactions
and calculate the formation energy of this kind of defects. In this chapter we
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show how our tools can be used to calculate the formation energies of di�erent
charged vacancy types in di�erent systems.

The degree of localization of the defect’s charge distribution depends on two
things: (i) the type of defected species and (ii) amount of charge around the
defect in the particular host crystal. For example, in MgO, the oxygen vacancy
has a well-localized s-like electronic defect state, as shown in Figure 4.1-(a). Due
to oxygen’s oxidation state of −2 in this material, the vacancy can be �lled by
2, 1 or 0 electrons, leading respectively to V$ , V•O, or V••O defect con�gurations,
which are also known as color centers and labeled as F0, F+, and F2+. On the other
hand, the Ga vacancy (VG0) in GaAs has a localized defect state with extended
tails which have B?3 orbital shape. In contrast with the VO defect in MgO, the
VG0 defect gives a charge cloud distribution that cannot be correctly described
with a Gaussian charge model. In this chapter, we will show "how" the use of
DFT charge ddefect from Eq 3.35 to calculate the �2>AA , converges the formation
energy correctly. We will study four di�erent scenarios, starting from the simple
ionic system (MgO) with a well localized defect level at VO, and continuing with
more delocalized vacancies in GaAs and diamond (which is as an example of a
covalent system). Finally, we will focus on oxygen vacancies in HfO2 as a system
that stresses the importance of structural relaxations induced by defect.

One important technicality of the Siesta code is that when we create a vacancy
by removing the atom from the system, we also remove its atomic orbitals from
the basis set. Thus, the basis set of the defective system is di�erent to the basis
set of the pristine system and this can a�ect the energetics under investigation.
Conceptually this is similar to the problem of absorption energies of molecules
on surfaces, which is typically known as the Basis Set Superposition Error (BSSE).
But the problem now is not just restricted to the comparison of the energies of
the pristine versus defective system with di�erent basis. It goes beyond, to the
fundamental description of the electronic states of the vacancy, i.e. whether or
not the standard basis set is enough to describe the localized electronic levels
when the orbitals are removed from the vacant site. This will be addressed in
the next subsection.

4.1.1 Importance of Ghost (or floating) orbitals

Although strictly localized atomic orbitals are advantageous for computational
e�ciency, they come with an unfavorable side which is that they might fail
to describe electronic states that extend into regions where there are no sup-
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(a) The Pristine MgO (b) The V in MgO

(c) The V•O in MgO (d) The V••O in MgO

Figure 4.2: The Spin polarised electronic band structure of Oxygen neutral and posi-
tively charge defects in MgO along a high symmetry path in the Brillouin Zone. The
Fermi energy is shifted to zero for all bands; this is due to taking the reference of it
from the valence band maximum of the pristine as we discussed in chapter 3. (a) The
pristine MgO with a clear gap of ≈5 eV (experimental = 7.8 eV). (b) The VO in MgO
with a doubly generated state in the gap, which is populated by two electrons. (c) The
V•O in MgO with only one spin state populated (d) The V••O in MgO with completely
depopulated state in the gap.

port orbitals. Known examples are the surfaces of noble metals,[Gar+09b] or
low-dimensional systems such as graphene or carbon nanotubes, where the
image-potential states extend well into vacuum. [Sil+09] Another example is
the formation of vacancies, where atoms (and their corresponding orbitals) are
removed from the lattice, reducing the quality of the basis set. The description of
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possible localized electronic states linked to the defect is then completely relying
on the surrounding orbitals, which should be long enough to extend into the
vacant site. Hence, a compromise between long cuto� radii, able to give a proper
description of the electronic states, and short orbitals for optimal computation is
required.

This section aims to provide a general framework to extract formation energies
for vacancies using strictly localized basis sets that can accurately describe the
electronic properties of these point defects. Our model system is the widely
studied oxygen vacancy defect (V$ ) in MgO, also known as the F center, which
gives rise to a well-localized electronic level in the gap and can hold up to two
electrons [MD11]. In the neutral system F0, formed by removing the O nucleus
with its 8 electrons, the defect level is fully occupied Figure 4.2-(b). Removing
one or two electrons from the system (F+-center Figure 4.2-(c) and F2+-center
Figure 4.2-(d) respectively), results in charged simulation cells, which require a
compensating jellium [MP94] and corresponding energy correction schemes
as discussed in previous chapter 3. Obviously, the three defects have di�erent
electronic (and structural) properties, and the description of the electronic defect
state is critical. To describe the electronic structure around the vacancy we
consider three di�erent approximations:

i) when the atom is removed to form the vacancy we also remove its orbitals
from the basis set (this is referred as ”no ghost” basis in the following);

ii) the orbitals of the removed atom are kept as ghost orbitals in the basis.

iii) the orbitals of the atom that is removed are also removed, but the cuto�
radii for the orbitals surrounding the vacancy is increased so that the basis
has a better coverage of the empty site;

The e�ect of ghost orbitals on the Charge distribution of Defect

First, we compare the total energy and defect charge distribution ddefect of a
neutral system using di�erent basis types. Using the ghost, and without any
relaxation, the energy is 0.56 eV lower with respect to no ghost, which is due
to a better description of the system. Lowering the energy by improving the
quality of the basis set (i.e. adding the ghost orbitals) is in line with the expected
behaviour behind the variational principle method. In Figure 4.3 we plot the
charge distribution ddefect around the vacancy to illustrate the e�ect of the ghost
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Figure 4.3: Contour plots with the charge redistribution around the neutral oxygen
vacancy (VO). Left panel shows dpristine − ddefect with ghost orbital in the basis and the
unrelaxed structure. Central panel plots the di�erence between the densities obtained
with ghost and without ghost, in the unrelaxed structure. Right panel is equivalent to
central panel, but for the relaxed geometry obtained with the ghost. The Mg and O
atoms positions are shown as blue and red circles, and the black dot corresponds to the
position of the vacancy. Bottom panel shows an isosurface corresponding to a density
of 0.005 e/Å3.

orbitals. We show (i) the di�erence between the DFT charge distribution in the
pristine system, dpristine, and the charge for the system with the defect d0, but
also (ii) the di�erence of the defect with ghost and the same defect without ghost
in the unrelaxed geometry, and (iii) in the relaxed structure obtained with the
ghost. The former gives an idea of where is the defect charge, while the later
(central and right panels) illustrate the e�ect of the ghost itself. In the unrelaxed
structure (left panel) we see that the charge is well localized around the vacancy.
The di�erence between ghost and “no ghost” calculations shows that a much
better localization of the charge around the defect position is obtained when
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the ghost orbitals are included (dark sphere in the center of the image). The
e�ect of lattice relaxation is minor in this particular case, and indeed the energy
gain in the optimized geometry is below 10 meV. As we will see later, structural
relaxation is signi�cantly stronger for the charged vacancies.

Figure 4.4: Electronic charge distribution after relaxation for di�erent charge states
(a) V••O (b) V•O. Left panel shows results obtained with ghost orbitals, while right panels
correspond to calculations run without ghost. Notice the hollow region (light grey) in
the system without ghost. The charge density is de�ned as in Eq 3.35 (di�erence between
the charged and the neutralized defect calculations) and plotted over the (100) plane
that contains the vacancy site. Blue and red dots correspond respectively to the Mg and
O atoms surrounding the oxygen vacancy.
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It is important to remark that for charged defects, V•O and V••O , the energy
correction scheme relies on a defect charge density calculated from Eq 3.35.
In this case, the ghost orbitals are required to properly describe the charge
distribution around the defect, as can be seen in Figure 4.4 where a hollow region
is clearly visible in the position of the vacancy when the ghost is not included
(light gray area in the center of the images). Critically, the di�erent charge
distributions obtained with di�erent basis give rise to slightly di�erent atomic
relaxations (Table 4.1), which has consequences on the computed energy of the
defect, and on the di�erent corrections to the formation energy of the charged
defects, as we will discuss later.

Table 4.1: Structural properties around the vacancy in di�erent charge states, with ghost
and without ghost in the orbital basis set. The interatomic distances between Mg atoms
�rst-neighbors to VO, and the next Mg-O bonds are shown. The percentage shows the
variation with respect to the distances in the pristine system.

Distance (Å) VO V•O V••O
ghost w/o ghost w/o ghost w/o

Mg–Mg 4.24 4.20 4.41 4.37 4.59 4.60
0.2% -0.7% 4.2% 3.4% 8.6% 8.7%

Mg–O 2.11 2.13 2.04 2.05 1.97 1.97
-0.2% 0.6% -3.7% -3.2% -6.7% -6.8%

The e�ect of ghost orbitals on the electronic structure

The Projected Density of States (PDOS) over the basis orbitals of interest are
plotted in Figure 4.5 for the VO (neutral) defect con�guration. The presence of
the defect level in the gap (occupied for the neutral defect state) is reproduced
whether the ghost orbitals are included or not, as long as the cuto� radii of the
surrounding orbitals around the vacancy are large enough. However, as we saw
above, the localization of the charge is slightly di�erent, resulting in slightly
di�erent structural features, as we discussed. The next neighbor Mg 3s orbitals,
and to less extend the 2p orbitals pointing towards the vacancy site, contribute
to describe the defect level with a bonding character which tends to decrease the
surrounding Mg-Mg interatomic distances. However, when the ghost orbitals
are included, the defect level is mostly described with their B character, resulting
in a more localized defect state and slightly increased Mg-Mg distances. The
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Figure 4.5: Projected Density of States around the electronic gap showing the defect
level due to VO. Panels (a) and (b) correspond to the Ground State defect con�guration.
The valence and conduction bands are shown as striped grey areas, and the energy is
aligned to the top of the valence band. Dashed horizontal lines are guidelines to the
defect level position. The projection on bulk Mg and O orbitals (far from the defect) are
black and dark grey shaded areas, respectively. Black thick line corresponds to oxygen
atoms that are close to the defect (O==), while red line is used for Mg next neighbors to
VO. The projection onto the ghost orbitals is plotted as shaded cyan regions in panels
(b).

di�erent localization of the defect level is evident in any charge partitioning
scheme, such as Mulliken, Voronoi, or Hirshfeld populations, with larger charges
spread over the �rst neighbors shells around the vacancy when ghost orbitals
are not included in the basis set, and more charge localized on the ghosts when
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they are added to the basis. Interestingly, when the defect is depopulated, there
is an expansion of the vacancy region which can be measured from the Mg-Mg
interatomic distances (Table 4.1). This can be rationalized from the bonding
character of the defect level, which favors a decrease in the Mg-Mg distance
of surrounding atoms when occupied, and the consequent expansion when
depopulated.

The e�ect of ghost orbitals on the Energetics

Table 4.2: Calculated formation energies for the di�erent charge states

+$ + •
$

+ ••
$

+
@

$

�
@=0
5
[4+ ] �

@=+1
5
[4+ ] �

@=+2
5
[4+ ]

With Ghost 9.59 6.92 5.03
Without Ghost 10.19 7.58 5.25

Longer Mg Basis 9.07 6.56 5.05
Others (PW) PBEsol [Dur+18] 10.27 7.78 6.19

Others (NAO) GGA [Ric13] 7.09 - -

We calculate the formation energy for the di�erent basis sets and present the
results in Table 4.2. As expected, the formation energy is sensitive to the basis set
used. We expect overestimated formation energy when we do not use the ghost.
As we saw, the use of the ghost orbital improves the description of the defect
state and decreases the defect formation energy by ∼0.5 eV in better agreement
with the experimental value (9.29 eV) reported by Kappers et al. [KKH70] for
the neutral vacancy. Comparison with other calculations is tricky, as it has been
shown that the formation energies are very sensitive to the exchange-correlation
used, with variations of up to a 0.5 eV depending on the numerical method used
even with the same functional. [Ric13] Nevertheless, in the table we show the
results from Durrant and collaborators [Dur+18] as reference. For the positively
charged defects (V•O and V••O ), the electronic defect level is either partially or
fully depopulated, and its localization determines the model charge density
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(typically a gaussian) required to account for the long-range electrostatic energy
correction as we discussed previously in chapter 3. For V••O the energetics, and
the structural properties obtained with ghost and without ghost orbitals in the
basis are essentially equivalent (as there is no charge localized at the defect, the
need for ghost is not critical).

Having discussed the need for a good basis set to have an accurate description
of the defect level, we move on to analyze the correction schemes used to compute
�5 [-@] (Eq 3.20).
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4.2 Charged Defects: The case where the charge is
well-behaved (localized & spherical)

As a �rst case to illustrate the methods developed in chapter 3, we will continue
with oxygen vacancies in MgO, where the defect level is well localized, and can
it be reasonably described with s-type orbitals, as we have just discussed. We
will compute the formation energies for the vacancy in +1 and +2 charge states.

4.2.1 Positively Charged Oxygen Vacancies (V•O,V••O ) in MgO

(a) The relaxed structure (b) The unrelaxed structure

Figure 4.6: The formation energy vs 1/! for oxygen vacancy (VO) in @ = +1, +2 states,
using ddefect as in Eq 3.35. Dashed lines correspond to uncorrected data, while solid lines
are the corrected energies. The dielectric constants used to compute the electrostatic
energy are n0 for the relaxed structure (panel a), and n∞ for the unrelaxed structure
(panel b).

To check the validity of the correction approach, we check the convergence of
formation energy as a function of supercell size for the two di�erent charge states.
To examine the convergence, we plot the charge-corrected formation energy
vs. 1/! . Figure 4.6 shows the results for the relaxed and unrelaxed structures
with static (n0) and high-frequency dielectric constant (n∞), respectively. Note
that in MgO the static dielectric constant n0 = 9.41 is three times larger than the
dynamic n∞ = 3.19, and that the former has to be used for relaxed structures.
For the unrelaxed case, on the contrary, the electrostatic screening is coming
from the fast frequency response of the electrons and n∞ is needed. As we can
see, the formation energy converges nicely for both charge states, although the
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values are slightly overestimated for the smallest supercell. Note that structural
relaxation has a strong e�ect on the stabilization of the defects, which goes from
≈8.5 eV (8.0 eV) in the unrelaxed structures to ≈5.0 eV (7.0 eV) in the relaxed
system for + ••

$
(+ •
$

).

4.2.2 The Gaussian Model (qmodel) vs. The 1 correction scheme

(a) The formation energy vs 1/!

(b) The V•O Gaussian f variation (c) The V••O Gaussian f variation

Figure 4.7: Results obtained for the formation energies of oxygen vacancy (VO) in
@ = +1, +2 using a Gaussian charge model. (a) dependence with supercell size !; (b) and
(c) show the dependence of the formation energies with the width of the Gaussian (f)
for the +1 and +2 charge states computed with a 2 × 2 × 2 supercell. The value obtained
with the DFT charge is shown with the red square for reference.

To compare our correction scheme, using the ddefect charge, to the more
conventional approach that uses a Gaussian model charge as originally proposed
by FNV,[FNW09] we calculate the formation energies in the relaxed structure
and present the results in Figure 4.7. The correction in this scheme also shows
rather good convergence. However, now we must provide external parameters
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that de�ne a suitable description of the charge distribution around the defect,
and as we saw previously, even if such distribution could be described with a
Gaussian, the parameters might depend not only on the material and type of
defect, but also on the degree of occupation of the defect level (see table 4.1 and
�gure 4.4). The charge model used here is a simple function determined with a
width f :

ddefect = @#f exp−A 2/f (4.1)

where #f = (cf2)−3/2 is the corresponding normalization factor. In Figure 4.7
(b) and (c) we show the dependence of the results with f , and as we can see the
sensitivity of the formation energy for + ••

$
can be of the order of several eV. In

principle, we could �t our Gaussian to reproduce the exact charge distribution
ddefect, however this is rarely done in the literature, and a �xed value of f is used,
no matter the system, nor the charge state. In the Figure, as reference, we plot the
result obtained with d (red square in panels b and c). As expected, the di�erent
localization of the charges for + •

$
and + ••

$
result in signi�cant di�erences in

the optimal value of f , which can mean errors of the order of up to eV in the
formation energy!. But things could be worse. As we will see next, sometimes
the Gaussian model is not able to describe at all the charge around the defect.

4.3 Charged Defects: When things go wrong.

The Gaussian model works reasonable well when the charge distribution is well
localized around the defect. However, often the size of the supercells that can be
used in DFT calculations are not large enough to contain the charge distribution.
The arti�cial interactions, or hybridization between defects’ images, result in
defect states that form defect bands, as we will see in the following. This also
implies that the defect charges spread over the whole cell, or have long tails
which cannot be described with the Gaussian. Several improved models have
been proposed. For example, we can have a correction to the Gaussian function
which includes an exponential tail: [KRP12]

ddefect = @(1 −|)#f exp−A 2/f +@|#W exp−A/W (4.2)
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where #W = (8cW3)−1 is the normalization factor, and | is a weight factor that
determines the charge contained in the tail of the function. For very delocalized
charges, another alternative is to take [KRP12]:

ddefect = @(1 −|)#f exp−A 2/f +@|/S (4.3)

In the following, we will show some simple examples discussed in the litera-
ture that highlight the simplicity of our approach, which does not rely on any
parameter �tting but uses the charge density obtained directly from the DFT
calculations.

4.3.1 Carbon Vacancies in Diamond Structure

Figure 4.8: The carbon vacancy charge distribution ddefect as in Eq 3.35 for charge state
@ = −44 in diamond structure shown from (100) lattice plane. Blue dots correspond to
the C positions surrounding the vacancy, which is represented by the black dot. The left
panel represents contour plots of the charge distribution, while the right panel plots a
3D isosurface corresponding to density of 0.1 e/Å3.

We shift our focus now to a covalent system where the defect charge is more
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delocalized: The carbon vacancy defect in diamond (Figure 4.8). In diamond, due
to B?3 hybridization, we have four bonding orbitals in each C site. Thus, removing
one C leaves four C neighbors with one dangling bond each, pointing towards
the vacancy. If we call them 0, 1, 2, 3 , then we can form linear combinations
of these orbitals, and form one singlet (0 + 1 + 2 + 3) and one triplet state
(0 + 1 − 2 − 3),(0 − 1 − 2 + 3) and (0 − 1 + 2 − 3). The singlet is lower in energy
(with the valence bands), and the triplet corresponds to the three states that we
see in the gap (Figure 4.9). We have 44 moving around the vacancy in the neutral
con�guration, 4.9-(b), the singlet level populated with spin up and down, and the
triplet with two unpaired electrons. So total spin moment = 2`� for the neutral
case. There is an extra available state in the triplet, so that adding one electron,
gives a spin moment = 3`� Figure 4.9-(c). Adding two-electrons reduces the spin
moment to 2`� , Figure 4.9-(d). Adding three electrons will give a spin moment
of = 1`� Figure 4.9-(e). Finally adding the fourth electron all the defect states
are populated and gives zero spin moment = 0`� , Figure 4.9-(f). The localized
carbon vacancy in @ = −44 charge states is shown in Figure 4.8. Similarly, we
could remove one electron from the neutral vacancy, thus having spin moment
= 1`� Figure 4.10-(a). If we remove 2, then spin moment= 0`� , Figure 4.10-(b).

We used the d correction scheme for relaxed structures with carbon vacancies
in di�erent charged states in Diamond with static dielectric n0 = 5.76 (n0 =

n∞[Dur+18]), and the results are presented in Figure 4.11. As we can notice from
Figure 4.11, all charge defects converged very nicely with our approach, and
we don’t have the di�culties discussed by Komsa and collaborators [KRP12]
in building the model charge distribution (Gaussian plus delocalized constant
charge). Also, we note that our approach gives results (Figure 4.11) in good
agreement with Durrant et al. [Dur+18].
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(a) The pristine diamond (b) The VC defect

(c) The V′C defect (d) The V′′C defect

(e) The V′′′C defect (f) The V′′′′C defect

Figure 4.9: Spin polarised electronic band structure for carbon vacancy in Diamond
along the high symmetry path in the Brillouin Zone, for di�erent charge con�gurations.
Bands for spin up and down are plotted as blue and red lines. The Fermi level is placed at
0 eV. (a) bands for the pristine system. (b) neutral vacancy, with two electrons populating
the up spin triplet state. (c) an additional electron �lls the triplet band with spin up.
(d) to (f) correspond to adding additional electrons that populate the down spin triplet
bands.
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(a) The V•C defect (b) The V••C defect

Figure 4.10: Spin polarised electronic band structure for positively charged carbon
vacancy in Diamond. Bands for spin up and down are plotted as blue and red lines.
The Fermi level is placed at 0 eV. (a) Positively charged V•C, where only one electron
populates the up spin triplet state. (b) V••C defect, where no electrons are placed at the
triplet state.

Figure 4.11: The Formation Energies of +� in di�erent supercell of diamond vs. 1/!
using d345 42C as in Eq 3.35 for correction scheme with static dielectric n0 = 5.76
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4.3.2 Negatively Charged Ga Vacancy (V′Ga ,V′′Ga ,V′′′Ga) in GaAs

(a) The pristine (b) The VG0 defect

(c) The V′G0 defect (d) The V′′
�0

defect

(e) The V′′′G0 defect

Figure 4.12: Spin polarised electronic band structure of pristine (a) and VG0 in GaAs
along a typical high symmetry path in the Brillouin Zone. Di�erent electrons are added
to the system to populate the triplet defect state, from zero (neutral defect) to −34 (V′′′G0),
panels b to e. The Fermi energy is shifted to Zero for all bands.

We also use the d corrections for Ga vacancy (VGa) in GaAs, that shows a
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deep localized defect which is even more spread than the one discussed for the
carbon vacancy in Diamond.

(a) The V′′′G0 in 2 × 2 × 2 supercell (b) The V′′′G0 in 3 × 3 × 3 supercell

(c) The V′′′G0 in 4 × 4 × 4 supercell (d) The V′′′G0 in 5 × 5 × 5 supercell

Figure 4.13: Band structure of V′′′Ga defect in GaAs using di�erent supercells: (a) 2×2×2;
(b) 3 × 3 × 3; (c) 4 × 4 × 4; and (d) 5 × 5 × 5. The dispersion of the triplet state reduces
with the size of the cell.

In GaAs, each Ga is surrounded by four As atoms (and vice versa). Creation of
a vacancy, VG0 , breaks those bonds to As and creates dangling bonds. Following
similar reasoning as for carbon vacancy in diamond, those dangling bonds
have B?3 hybridization and form bonding and antibonding states. To conserve
)3 symmetry of the zincblende structure, antibonding states belonging to the
threefold-degenerate )2 representation form deep localized states in the energy
gap. In contrast, the bonding state belongs to�1 and lies within the valence band
[NZ94]. Therefore, creating neutral gallium vacancy three valence electrons
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become localized at the defect level and allows to accommodate three more
electrons in the system as illustrated in Figure 4.12. As opposed to VC in diamond,
where a clear defect level was observed in the gap, here there seems to be just a
reduction of the band gap, and a new dispersive band above the valence band.
The reality is that there is a defect level, which contains 3 electrons, but this is
very broad and dispersive. This dispersion is due to size of the supercell used in
this calculation (2×2×2).

(a) For relaxed con�guration (b) For unrelaxed con�guration

Figure 4.14: The formation energy of @ = −14,−24,−34 charged gallium vacancy (VG0)
as a function of the size of the supercell. The correction scheme (solid lines) uses d345 42C
as in Eq 3.35 and n0 = 12.9 for relaxed and n∞ = 10.89 for unrelaxed structures. The
dashed lines correspond to the uncorrected energies.

Using larger supercells clearly illustrates this e�ect, as shown in Figure 4.13
for V′′′Ga. In this charge state, the defect level is completely occupied, and it
becomes clear from the �gure that at least a 4×4×4 supercell is required to avoid
the arti�cial interaction between periodic images of the defect level that give
rise to the dispersive band in the smaller supercells. Note that the localization of
the defect density could be sensitive to the exchange-correlation used. Typically,
such large supercells are not used to study defects with DFT, and the defect
state would be spread throughout the whole supercell. This poses a problem to
correction schemes that assume a nicely localized Gaussian charge distribution,
as reported in the literature, and was the motivation for improving the model
charges to more the delocalized expressions, as the ones in Eq 4.2 or 4.3. A
correction scheme that converges for smaller supercells (even when the defect
charge spreads throughout the whole cell) without the need to parametrize
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a model potential is an advantage for automatic, unsupervised work�ows for
high-throughput calculations.

We validate the quality of our approach to correct the defect formation energy
based on the use of d studying the gallium vacancy in GaAs with di�erent
charge states (@ = −14,−24,−34). The static dielectric n0 = 12.9 is used for the
relaxed and n∞ = 10.89 for the unrelaxed structure. The results are presented in
Figure 4.14. The good convergence of the energy, even for the smaller supercells
indicates that our approach is able to reproduce the correct behaviour even in
these critical cases where a simple Gaussian model fails because of the large
delocalization of the defect charge. Note that the method seems to overcorrect
for small supercells when structural relaxations are not included.

4.3.3 Oxygen Vacancies (VO,V•O,V••O ) in HfO2

As we just saw, structural relaxations can a�ect the localization of the defect
charge. However, they can also introduce di�culties in determining the potential
alignment term. Here we illustrate two di�erent problems which can come up
when studying charged defects applying the correction schemes. Our example
is on cubic HfO2, where neutral oxygen vacancies are linked to a populated
defect state in the gap, as shown in Fig. 4.16-(1). As for MgO, removing one
electron leaves a single spin state occupied, Figure 4.16-(2), and extracting the
second electron completely depopulates the defect state, Figure 4.16-(3). Note
that in this case, unlike the V••O in MgO, the defect level falls in the conduction
band. This could be a shortcoming of the exchange correlation functional, which
underestimates the band gap, or fails to localize the electronic state of the defect.
If we plot the charge distributions for the charged defects (Figure 4.15) we clearly
see a well localized distribution for @ = +1 but an entirely delocalized distribution
for @ = +2. A similar e�ect was discussed by Komsa et al [KRP12] for charged VC
in diamond, although we saw that our method did have the same problem there.
Note however that these problems are linked to a failure of DFT, not failure of
the correction schemes for charged defects. In these cases, improvements on
the XC-functional, such as a simple Hubbard correction, or more elaborated
approximations such as hybrid functionals, could be used to improve the correct
description of the electronic structure. In any case, our computed formation
energies for VO, V•O, and V••O in Oxygen-rich are 8.51, 5.50 and 2.08 eV not far
from the values reported in the literature [Ala+21].
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(a) V•O defect charge distribution

(b) V••O defect charge distribution

Figure 4.15: Oxygen vacancy charge distribution d345 42C as in Eq 3.35 shown from (011)
lattice plan for charge state in @ = +1, +2 in cubic HfO2 structure. Green and red dots
denote the Hf and O atoms surrounding the oxygen vacancy, respectively. The left panel
represents 2D contour plots of the charge distribution, while the right panel plots a
3D isosurface corresponding to density of 0.015 e/Å3 and 0.005 e/Å3 for V•O and V••O
respectively.
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(a) Pristine HfO2 bandstructure (b) Neutral oxygen vacancy

(c) +1 charge state for oxygen vacancy (d) +2 oxygen vacancy

Figure 4.16: Spin polarised electronic band structure of pristine (a), neutral (b) and
positively charged (c-d) oxygen vacancy defect in HfO2 along the high symmetry path
in the Brillouin Zone. The Fermi energy is shifted to Zero for all bands. (a) Pristine
system with a clear band gap (b) A defect state in the gap, which is partially �lled with
2 electrons (c) The defect states in the gap, which is partially �lled with 1 electrons. (d)
Completely depopulated defect state falls in the conduction band and is not visible in
the gap.
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4.3.4 Comments on negatively charged oxygen vacancies

Figure 4.17: Relaxed structure obtained for “cubic HfO2 with V′O and V•O defect. (a) The
relaxation of V′O defect induces a global structural distortion, and the �nal structure
corresponds to the tetragonal phase of HfO2. (b) The relaxation of V•O defect induces a
local distortion, but the cubic phase remains far from the defect.

To showcase another potential problem that can arise when studying charged
defects, we present results for negatively charged oxygen vacancies in HfO2. We
plot V′O and V′′O charge distributions in Figure 4.18, which shows that although
there is delocalization of the charge around the vacancy, part of the charge
is localized. Although the charge distribution is quite spread, this does not
signi�cantly a�ect the calculation of the defect formation energy. However, the
extra electrons added to the vacancy destabilize the cubic structure resulting in
strong structural distortions which drive a transition from the cubic phase into
the tetragonal phase, as shown in Figure 4.17. Thus, the structural relaxation of
the negatively charged vacancy is not a local deformation of the atomic structure
around the defect, but a complete crystal deformation in the simulation box. This
poses a challenge for a correct alignment of the electronic potential of the defect
structure to the reference bulk pristine value: it is impossible to �nd a region
far from the defects structure (which is now tetragonal) where the potential can
be aligned to the bulk region (which was cubic). We encountered this problem
both in HfO2 and in ZrO2. One possible route to partially alleviate this problem
is to impose constrains on the relaxations, although this introduces conceptual
problems as it hides the physical mechanism behind the distortion.
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(a) V′O defect charge distribution

(b) V′′O defect charge distribution

Figure 4.18: Oxygen vacancy defect charge distribution ddefect as in Eq 3.35 shown
from (011) lattice plan for @ = −14,−24 in cubic HfO2 structure (a) delocalized charge
(b) delocalized charge with longer tail. Green and red dots denote the Hf and O atoms
surrounding the oxygen vacancy, respectively. The left panel represents 2D contour
plots of the charge distribution, while the right panel plots a 3D isosurface corresponding
to density of 0.02 e/ Å3 for both V′O and V′′O.
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4.4 Charged Defect Formation Stability Diagram

(a) Cubic MgO (b) Cubic Diamond

(c) Cubic GaAs (d) Cubic HfO2

Figure 4.19: The Phase Diagram of MgO, Diamond, GaAs, HfO2, (a) For Cubic MgO the
oxygen vacancies (V@4O ) in @4 = 0, +1, +2 charge states phase diagram (b) Cubic Diamond
VC defect formation phase diagram (c) Cubic GaAs VG0 defect formation stability diagram
(d) Cubic HfO2 oxygen vacancy (VO) defect formation stability diagram

It is common in the literature to plot the defect formation energies for charged
defects as a function of the electronic chemical potential, which is the position
of the Fermi level within the band gap. In Figure 4.19 we plot such stability
diagrams for the charged defects discussed in the chapter. This stability diagram
shows which charged defect is more stable depending on the value of `4 . For
example, in MgO the V••O is more stable below ∼2 eV above the valence band.
After that, the stable defect is V•O until above ∼2.5 eV, when the defect level
becomes fully occupied and the neutral vacancy is the most stable con�guration.
For cubic HfO2, on the other hand, V••O is the most stable up until very close to
the conduction band, where there is a transition to the neutral vacancy. This is
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known as negative-* behaviour, as it is energetically favorable for the vacancy
to trap to electrons.

4.5 Computational Details

Table 4.3: The DFT exchange-correlation functional, basis sets, :-points, and the mesh
cuto� that we used for each system

System Functional :-points Mesh-Cuto� [Ry]
MgO GGA-PBEsol [CFD11a] 6×6×6 750
Diamond GGA-PBEsol [CFD11b] 8×8×8 750
GaAs LDA-PW92 [RRA18] 8×8×8 600
HfO2 GGA-PBEsol [CFD11b] 8×8×8 800

As we noted, to calculate the defect charge distribution, we relax the system
in the required charge state and re-calculate the electronic structure using this
relaxed atomic structure but as a neutral system (which we call neutralized
defect) without any further relaxation. We use the charge di�erence between the
charged and the neutralized systems to de�ne the defects charge distribution,
which we then use to calculate its periodic potential using the dielectric constant
of the material, and remove the arti�cial interaction of the periodic local charges
from the formation energy of the defect. The alignment potential term is obtained
by taking the value of the planar averaged potential at an intermediate region
between the defect and one of its images. In all the calculated formation energies,
the electron chemical potential is set to `4 = +�" which essentially means the
Fermi level is placed at zero (`� = 0). Finally the total formation energy is
calculated by Eq 3.20. To describe the electronic wavefunctions we used double-
Z with polarization orbitals (DZP) basis set.

For MgO pseudopotentials include B, ?, 3 , shells with cuto� radii of 2B (1.16),
2? (1.56) for Mg and 2B (1.26), 2? (1.36), 33 (1.26) for O. For diamond, C pseu-
dopotentials include B, ? , shells with cuto� radii of 2s(1.20),2p(1.26). For GaAs
Pseudopotentials include B, ?, 3 , shells with cuto� radii of 4B (1.67), 4? (1.75),
33 (1.90) for Ga and 4B (1.81), 4? (1.61), 33 (1.81) for As. For HfO2 Pseudopo-
tentials include B, ?, 3, 5 , shells with cuto� radii of 5B (1.56), 5? (1.62), 53 (1.40),
45 (1.62) for Hf and 2B (1.26), 2? (1.36), 33 (1.26) for O.

The DFT exchange-correlation functional, basis sets, :-points in unit cell, and
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the mesh cuto� that we used for each system are presented in Table 4.3. All the
Pseudopotentials are in the psml format and obtained from pseudo-dojo vault
[Gar+18]. Note that for supercell calculation we reversely scale the :-points
from the vales used for unit cell, as an accepted common rule .

4.6 Conclusions

In this chapter we illustrate the use of our new developed tools to investigate
the Formation Energy of charged defects with Siesta. We compare the Gaus-
sian charge model and the scheme based directly on the d obtained from DFT,
highlighting the problems in the Gaussian scheme and the sensitivity of the
results on the parameters that de�ne the model. These problems are not present
when using d , as we showed for di�erent vacancy charged defects in di�erent
materials. We demonstrated the need to include ghost orbitals in the basis set to
correctly describe vacancies’ localized electronic states and their charge distribu-
tion. Supercell scaling diagrams show very good convergence in the Formation
Energy with our scheme, unlike other models based on simple charge models.
Finally, we illustrate the problem in convergence due to

• (i) Not using big enough supercells, which results in very large interactions
with periodic images, and can give charge delocalization problems (defect
band formation),

• (ii) failure of DFT functionals when localizing the charge density around
the point defect,

• (iii) complex PES of materials where a small perturbation in atomic co-
ordinates (such a point defect) can drive a lattice instability (or a phase
transition), bringing problems for the potential alignment with respect to
the pristine neutral crystal.
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Defects Barriers





5 Potential Energy Sur-
face (PES) Methods

5.1 Introduction

One common and signi�cant problem in computational chemistry is estimating
the reaction rates for chemical processes, which is given as the energy cost
required for a chemical reaction to happen. This problem is similar to the
calculation of di�usion rate in condensed matter physics. In this chapter, our
focus will be on di�usion barriers. To understand the barriers, �rst we will
discuss the concept of transition states and theories to calculate the transition
states height "barrier," speci�cally in solid.

5.2 Transition States

Figure 5.1: Di�erent geometrical con�gurations (images) energies along the reaction
path with the highest energy geometrical con�guration known as transition states

We start from the de�nition of Transition State (TS) by considering a chemical
reaction of

Reactant⇐⇒ Product (5.1)

Both reactant and product are in stable con�gurations corresponding to minima
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Figure 5.2: Geometrical con�guration of the di�erent interstitial sites energies along
the reaction path for a BCC crystal [adapted from Defects in Solids by Richard.J.D. Tilley,
Wiley 2008 [Til08]]

on the potential energy surface within the Born–Oppenheimer approximation.
Atoms (both nuclei and electrons) moving from one minimum to another de-
scribe the chemical reaction. There is a barrier energy for the reaction to be
activated (atoms to move). As a �rst approximation, we could assume that these
motions of atoms are along the path of least energy, which forms the basis for
Transition State Theory (TST). This minimum energy state for activation is called
the Transition State. We call Transition Structure to the geometrical con�guration
that corresponds to the energy maximum along the reaction path (Figure 5.1)
that separates the two local minima of the reactants. The TS is a �rst-order
saddle point in the multidimensional potential energy surface. From Boltzmann
distribution, the probability of �nding a molecule in a given quantum state is
proportional to exp(J�/:) ). This concept could be transformed into di�usion
of species in the crystal. Let us consider for example a body-centered cubic (BCC)
structure. There are two octahedral and tetrahedral interstitial sites that could
be occupied by a defect. The interstitial species could hop and occupy these
sites. In each site, the defect is in a local stable con�guration Figure 5.2. The
probability of a successful jump is estimated with Maxwell-Boltzman statistics.
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Thus, the probability of moving from one minimum to adjacent minima site is

? = exp
(
− �1
:)

)
(5.2)

where : is Boltzmann constant and �1 is the height of the barrier (di�erence
between TS and minimum energy).

5.3 Methods for Calculating TS

As we just mentioned, the TS is a �rst-order saddle point on the potential energy
surface. Within the DFT framework, we can calculate the �rst & second order
derivatives of the energy. However, the second derivative is be computation-
ally expensive, and one would want to avoid it. Hannes Jónsson et al. [HJ00]
developed an alternative approach to tackle this problem. Their method is based
on the re�nement of the earlier "Chain-of-states" method which aims to de�ne
the minimum energy path (MEP) between two local minima. First, a guess of
the MEP is found by constructing a set of images 5 (a chain-of-states) of the
system between two local minima, the initial and �nal con�guration Figure 5.3.
An optimization of the chain-of-states (also known as Bands) takes the forces in
con�guration space to bring the images or chain-of-states (bands) to the MEP.
Hence, as commonly done when optimizing structures from forces, iterative
methods can be applied to �nd the transition state because they generate a
series of con�gurations in the con�guration space that move downhill toward
minimum, Figure 5.3. The following section explains di�erent �avors of the
method for �nding the saddle point (TS).

5.3.1 Nudged Elastic Band (NEB)

As mentioned, one of the alternative methods to �nd the TS was developed by
Hannes Jonsson et al. and called Nudged Elastic Band (NEB) method. In the NEB
method, the elastic band with # + 1 images is de�ned by {X0,X1,X2, ...,X# },
where the endpoints, X0 (initial) and X# (�nal) 6, are �xed and given by the

5 by image, we mean all the atomic positions of the system in a particular state. This state could
be the initial or transition state or anything between these two states. Later we will see we
could add also cell parameters to describe the con�guration space of our system

6 these are 3"-Dimensional vectors, for a system with " atoms
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Figure 5.3: The geometrical con�guration of the di�erent image energies from reactant
to product goes through a saddle point in MEP

energy minima corresponding to the initial and �nal con�gurations. The opti-
mization algorithm adjusts the # − 1 intermediate images. The calculated DFT
atomic force acting on an image 8 is

FDFTi = F⊥i + F
‖
i (5.3)

where ⊥ and ‖ are perpendicular and parallel forces on image 8 respectively.
Here the concept parallel refers to the direction that connects two neighbouring
images in the band as we will soon de�ne. The �rst contribution is de�ned as:

F⊥i = −∇� (X8)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
FDFTi

+∇� (X8) · ĝ8ĝ8´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−F‖i

(5.4)

where ∇ is the derivative with respect to the atomic coordinates, � is the DFT
energy of the system, function of all the atomic coordinates, and ĝ8 is the nor-
malized local tangent vector at image 8 , which we de�ne below. In the original
formulation of the NEB method, the tangent at an image 8 was estimated from the
two adjacent images along the path, X8+1 and X8−1. The most straightforward
estimate is to use the normalized line segment between the two consecutive
images

ĝ8 =
X8+1 −X8−1
|X8+1 −X8−1 |

(5.5)
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However, computationally speaking, a slightly better way is to bisect the two-unit
vectors 7:

g8 =
X8 −X8−1
|X8 −X8−1 |

+ X8+1 −X8
|X8+1 −X8 |

(5.6)

= JX− + JX+ (5.7)

and then normalize

ĝ =
g

|g | (5.8)

In the NEB method the force � ‖
8

is replaced by a model spring constant, and the
force is replaced by:

FNEBi = F⊥i + F
S‖
i (5.9)

where the second term is the spring force, de�ned along the local tangent,

F( ‖
8

= : ( |X8+1 −X8 | − |X8 −X8−1 |)ĝ8 (5.10)

which keeps the image distances equivalent to each other. Here : is the spring
constant and is an input parameter of the method. The di�erent forces in the
NEB method are illustrated in Figure 5.4

5.3.2 Climbing Image Nudged Elastic Band

In the NEB method, when the parallel force to the MEP is considerable compared
to perpendicular force, there are kinks in the elastic band which prevent smooth
convergence to the MEP. A slight modi�cation to the NEB method is the climbing
image NEB (CI-NEB) method. This method allows the algorithm to identify the
image with the highest energy 8<0G . The force on this one image is not given by
Eq 5.9 but rather by

F��8<0G = F8<0G − 2(F8<0G · ĝ8)ĝ8 (5.11)

This means that after a couple of iterations, if the force on particular a image is
large, the parallel spring force on that image will be ignored and the full inverted
7 we used this approach in the �os library for NEB

97



Chapter 5 Potential Energy Surface (PES) Methods

Figure 5.4: The Components of Forces in PES [ Figure is taken from Optimization
methods for �nding minimum energy paths [STH08] ©

force due to the potential with the component along the band is applied to the
image. This allows that image to move further to reduce the force acting on
it. Besides the fact that this minor modi�cation retains the shape of MEP and
converges to a saddle point, it does not add any computational cost.

5.3.3 Doubly Climbing Image Nudged Elastic Band

There is a minor addition to the spring force in the Doubly Nudged Elastic Band
(DNEB) modi�cation to the NEB. In this modi�cation, proposed by Trygubenko
and Wales [TW04], a perpendicular component of the spring force that acts on
the path is added to the NEB force. Explicitly, taking the component of the spring
force, we get

F(8 = : [(X8+1 −X8) − (X8 −X8−1)] (5.12)

which is perpendicular to the tangent ĝ8

F(⊥8 = F(8 − (F(8 · ĝ8)ĝ8 (5.13)

The perpendicular force F⊥8 and the perpendicular spring force F(⊥8 are both in
same plane of the normal to the tangent ĝ8 at image 8 . The double nudging force
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Figure 5.5: (a) DNEB di�erent force components to keep band straight. the (b) is force
on image perpendicular to the band [ Figure is taken from Optimization methods for
�nding minimum energy paths [STH08] ©

F�#��8 is the component of F(⊥8 which is orthogonal to F⊥8

F�#��8 = F(⊥8 − (F(⊥8 · F⊥8 )F⊥8 (5.14)

The addition of this force to all nonclimbing images of the NEB is the DNEB.
This method performs nicely in long pathways with high initial forces [STH08].

5.3.4 Variable Cell Climbing Image Nudged Elastic Band

Up to here, a set of images {X0,X1,X2, ...,X# } connecting the two endpoints
were used to describe the transition path containing a special con�guration
space of coordinates, and we �xed out cell shape and vectors. Now we extend
the NEB to Variable cell NEB (VC-NEB), which also has the components from
the cell in the con�guration space [Qia+13]. If the lattice matrix is described by
h the volume will be S = 34C (h). The vector describing the full con�guration
space is

Y = (n18 , n28 , n38 ; A1, A2, ..., A# ) 8 = 1, 2, 3 (5.15)

With 9 + 3# components. Here, the n8 9 (8, 9 = 1, 2, 3) is the 9 strain tensor compo-
nents that is chosen for the variable instead of h along with 3# con�gurational
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components {X}. we could write

h = (1 + n̄)h0 (5.16)

Now under the applied pressure % , the enthalpy H = � + %S is determined
by the (9 + 3# )-dimensional potential energy surface we called the "enthalpy
surface" and we could rewrite the force vector as follows

ℍ = ℍ(n18 , n28 , n38 ; A1, A2, ..., A# ) 8 = 1, 2, 3 (5.17)

The derivative of the enthalpy can de�ne the expanded "force vector" in a 9 + 3#
con�guration space concerning Y as following

F = − mℍ
mY

���
?

(5.18)

The strain components of F on the lattice are the derivatives of ℍ with respect to

5(n̄) = −(f + %+ ) (1 + n̄) )−1 (5.19)

Where f is the quantum-mechanical stress tensor at a given con�guration X,
the forces on atoms, 51, 52, ..., 5# , can be obtained from the Hellmann–Feynman
theorem. Finally, the general force F can be written as

F = (5(n̄) , 651, ..., 65# )) (5.20)

To keep the symmetry during structure relaxation, we use the metric tensor 6 =

hh) . The g is tangent vector along the path of NEB, the transverse components
of the potential forces acting on the lattices and atoms are respectively de�ned
as 5 ∇⊥(n̄) and 5 ∇⊥a , and �nally the nudging spring forces on lattices and atoms to
keep the image spacings are 5 ( ‖(n̄) and 5 ( ‖a . Now we introduce the VC-NEB force
F+�−#�� which consists of two-component. The one component is the cell force
5 +�−#��(n̄) acting to reshape the new image of the cell, and the second component
is the atom force 5 +�−#��a shifting the atoms component.

5 +�−#��(n̄) = 5
( ‖
(n̄) + 5

∇⊥
(n̄) (5.21)

5 +�−#��a = 5
( ‖
a + 5 ∇⊥a (5.22)
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F+�−#�� =

(
5 +�−#��(n̄) , 65 +�−#��1 , 65 +�−#��2 , ..., 65 +�−#��#

)
(5.23)

The basic procedure of the VC-NEB technique is similar to the NEB. Nonethe-
less, in each image, we have more degree of freedom (lattice degree of freedom).

5.4 Image Generations

As discussed, �nding the TS with NEB methods involves �nding a discrete
representation of the MEP. As a starting point, one needs some initial guess
to de�ne the MEP and begin the NEB algorithm. We will show two possible
methods for generating those images in the following.

5.4.1 Linear Interpolation Method

One of the �rst methods to generate the NEB images is a Linear Interpolation (LI)
of the coordinates of # atoms between the two endpoint con�gurations, namely
{X8=8C80; } and {X5 8=0; }. Here, X represent the vectors of 3# coordinates of the
atoms in a given con�guration, {X1,X2, ...X# }. Speci�cally, given that # − 1
intermediate discretization points, here referred to as "images" of the system
and as the initial path (images) for NEB calculations, LI is simply generated as
follows

X=
!�,8 = X8=8C80;

8 + =
(X5 8=0;

8
−X8=8C80;

8

#

)
(5.24)

5.4.2 Image Dependent Pair Potential Method

Using LI paths can be unrealistic and give atoms becoming too close, which
leads to large atomic forces or even convergence problems in the electronic
self-consistency. These issues can be solved by preventing the atoms from being
too close. A procedure was �rst proposed by Halgren and Lipscomb [HL77] and
then re�ned by Jonsson et al. [Smi+14] and known as Image Dependent Pair
Potential (IDPP). This method generates a path with evenly distributed images,
where atom pair distances gradually change from one image to another.
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5.5 Defects Di�usion & Barriers

We will use these tools to generate new paths for di�erent kinds of barriers in
crystalline solids. But �rst we review the de�nition of barriers and di�usion in
the crystal structure. Di�usion is a physical phenomenon in which particles (in
general, atoms, ions, or molecules) �ow through a surrounding medium. Here
we talk in particular about the di�usion of atoms in a crystal, so there are two
main players for consideration: (i) the structure of the solid that host the moving
specie, and (ii) the moving specie itself, which is considered as a defect (a dopant,
an impurity, or a vacancy, etc). Di�usion involves the movement of this specie
from a stable position in con�guration space (minimum in PES) to another stable
position (minimum in PES) through some less stable positions in con�guration
space. The di�erence between the minima and the highest energy point in going
to another minimum is what we call energy barrier. Any disorder in the solid
due to other defects can a�ect the energy barrier, increasing or decreasing it.
Next, we will discuss and categorize the di�erent migration paths that we have
considered.

5.5.1 Defects Di�usion Types

Vacancy & Interstitial Di�usion

Figure 5.6: vacancy & interstitial Di�usion scheme

In the simplest case, an interstitial can jump to a neighboring interstitial
position Figure 5.6. This is called interstitial di�usion and is occasionally referred
to as direct di�usion to distinguish it from vacancy di�usion (indirect di�usion).
Di�usion parallel to a cubic axis in body center crystal structure is an example.
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If interstitials, self-interstitials, or impurities such as dopants are presented in
crystal, di�usion is feasible if these species jump between alternating empty
sites Figure 5.2.

To explain the vacancy di�usion, we start assuming a metal crystal where
all-atom sites are occupied. Naturally, di�usion from one normally occupied site
to another would be possible only if some vacant sites are present in the crystal.
Atoms can jump from a normal site (occupied by specie) into a neighboring
vacancy (vacant site) and gradually move through the crystal. The movement of
a di�using atom into a vacant site corresponds to the movement of the vacancy
in the other direction Figure 5.6. We call this vacancy di�usion.

Kick Di�usion

Figure 5.7: kick-in/out scheme

Another di�usion mechanism are, consisting of two subcategories which
we name kick-in and kick-out. Kick-in is an alternative mechanism by which
interstitial atoms can di�use. This process involves a jump to a normally occupied
site and a simultaneous displace in of the occupant into a neighboring interstitial
site. This knock-on process is also called interstitialcy di�usion Figure 5.7. Finally,
an interstitial impurity can move onto a normal lattice site by interstitialcy
di�usion, leaving a self-interstitial and a substitutional defect. This process is
called the kick-out mechanism. An interstitial atom in the lattice can jump to
an occupied lattice site, displacing the atom from the lattice (which becomes
now an interstitial) and replacing it. This is known as interstitialcy di�usion, or
kick di�usion. The kick mechanism could also be subcategorized into straight
(co-linear) or elbow (non-colinear) interstitialcy di�usion depending on the
displacement direction of the species.
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Exchange & Vacancy Exchange

Figure 5.8: exchange & vacancy exchange scheme

Substitutional impurities or vacancies can swap places, as shown in Figure
5.8, and this process is called Exchange. The main di�erence between vacancy or
interstitial di�usion and exchange here is that there is no need for a vacant site.
Instead, the species swap their place using available space in the host structure.

Ring or n Exchange

As well as vacancy di�usion, an impurity can swap places with a neighboring
atom in a circular way and we can call this =-exchange di�usion as shown in
Figure 5.8. In contrast to exchange, in a ring di�usion or =-exchange , cooperation
between several atoms is needed to make the =-exchange Figure 5.9.

Figure 5.9: ring or =-exchange scheme
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Structural transition

Figure 5.10: Structural Transition scheme

Finally, we consider a barrier path that does not include any di�usion but just
atomic displacement and/or structural deformations. Although, it does not fall
into the ionic conductivity properties of the material as earlier barrier types, it is
of great importance in material science. In materials such as BaTiO3, the origin
of ferroelectricity is due to ion displacements in the unit cell, which induce an
electric dipole moment Figure 5.10. The structural distortion usually comes with
a change in the crystal symmetry. For example a structural transition between
the cubic and tetragonal/orthorhombic phases of the material.

5.6 Implementation of Sisl ToolBox Siesta Barriers
and AiiDA Siesta Barriers

As we discussed, many ionic mobility paths in crystals depend on their symmetry,
dopant characteristics, surfaces, the coexistence of phases, etc. Therefore having
a work�ow for computational screening for general materials investigation
seems as a useful tool. I develop all mentioned paths in crystalline solids for
calculating the barriers/di�usion in two separate packages:

• Sisl ToolBox Siesta barriers: is a python package tool inside the Sisl
toolbox to generate di�erent types of paths to calculate corresponding
barriers. To see the manual, one could access to web page :

http://zerothi.github.io/sisl/docs/latest/index.html

105



Chapter 5 Potential Energy Surface (PES) Methods

• AiiDA Siesta Barriers : is a python package to automate calculations
of di�erent types of barriers with siesta through the AiiDA platform. To
have access to the work�ows and manual one can be found in web page :
https://github.com/siesta-project/aiida-siesta-barrier

Again the motivation behind two separate packages is to keep the freedom of
choice for the users. Since some do not want to do high-throughput calculations,
so we provide them with a standalone python package in sisl to allow them to
generate and calculate their desired path barriers.

The following chapter will use these implementations to calculate and illus-
trate their use to compute Barrier energy.
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As discussed in the previous Chapter, calculating the minimum energy path (MEP)
for atomic-scale processes in materials can be of great interest. In Solid State
physics, one can use Nudged Elastic Band (NEB) methods to calculate the (MEP)
for migration of defects.

The migration of ions through a crystal often require the presence of vacancies
in the material. The same concerns that were taken into account in selecting
a good basis to describe the ground state defect structure (in chapter 4 where
we discussed the importance of ghost orbitals) must be considered for TS. Note
that TS for a vacancy migration can be viewed as a defect structure with two
vacancies and one interstitial, as illustrated in Figure 6.1-(b), and the basis should
be capable of describing this complex scenario. It must be stressed that a basis
that gives a good description for the initial NEB image Figure 6.1-(a) might not
be appropriate for the �nal image Figure 6.1-(c), or the TS.

V V

V Vff

i i

I
TS

(a) (b) (c)

Figure 6.1: Scheme for the migration of a vacancy from the initial con�guration (a)
to the �nal (c). The Transition State (TS) is equivalent to an interstitial atom and two
vacant sites placed at the initial and �nal positions.)

In addition, caution must be taken in applying for charged defects energy
corrections, as the localization of the model charge used, for example in the FNV
method. [FNW09] might be di�erent in the initial, �nal and TS con�gurations.
As we discussed before, ghost or �oating orbitals are atomic orbitals centered
at points where there are no real atoms (for example, the original position
of the removed atom that forms the vacancy). For structural relaxations it is
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commonly advised to keep �xed the position of the �oating orbitals, as they are
not associated to a mass and their movement tend to be erratic, usually leaving
the empty vacancy site where they are more needed. Use of �oating orbitals
poses a few questions regarding the study of vacancy migration with NEB. How
can we describe the simple process illustrated in Figure 6.1? If description of
V8 requires a �oating orbital, so will happen for V5 , which means that either
the �oating orbital is placed at di�erent positions in each NEB image state, or
there are more than one such orbitals. How do we determine the positions of the
orbitals? What will be the e�ect of having a �oating orbital close to a real atom?
Would there be problems coming from linear dependencies in the basis functions
(basis over-completeness)? How important would the basis set superpositon error
(BSSE) be?

In this chapter we address the feasibility of using these �oating orbitals in
NEB calculations within the Siesta package, focusing on a prototypical example
in which a well localized defect level exists: V$ in MgO.

6.1 Vacancy Exchange & Importance of ghosts species

Here we take Density Functional Theory (DFT) as the engine that drives the NEB
method. Considering that modeling defects typically require cells with up to
a few hundred atoms, and that the structural optimizations can be complex
and require a number of force calculations, the computational cost and time to
solution of a NEB calculation can be large, as we have to take M-images with a
relatively large number of atoms. Siesta is a very good option for running this
kind of simulations e�ciently, using relatively small but accurate basis sets at a
modest computational cost. One of the key parts of the mentioned computational
e�ciency is the strict localization of the atomic orbitals basis set, in which the
radial part of the orbital is forced to be zero beyond a given con�nement radius
A2 . Hence choosing good radii is important to acquired fast and accurate results.
In analogy with our discussion on the use of ghost orbitals to properly describe
the properties of vacancies (Chapter 4), here we will address the use of ghost
orbitals on computing the migration energy barriers of vacancies.

As we anticipated in the introduction to the chapter, we take Magnesium Oxide
(MgO), as test bed system which is simple and hosts the electronic characteristics
that we want to put at test, in particular the presence of a localized defect level. It
is also a well studied system and comparison with literature is possible. [El-+18;
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(a) One ghost species (VO) in Mi-
gration Path

(b) Exchange ghost oxygen
species (VO) in Migration Path

(c) Two ghost species (VO) in Mi-
gration Path

(d) All ghost species (VO) in Mi-
gration Path

Figure 6.2: Possible approach of vacancy exchange barrier calculation (reds oxygen
and gray ghost species)

MD11]. Having demonstrated that the use of an appropriate basis set is critical to
describe the electronic properties of the ground state for a vacant site in Chapter
4, we move on to address how to de�ne local basis to describe the di�erent
structural images of a NEB calculation. As discussed in Figure 6.1, we have to
keep in mind that the displacements of the vacancy requires a basis that adapts
to the di�erent localization of possible defect-related electronic states in each of
the image structures of the migration path. Here, we will consider these speci�c
scenarios:

8) A naïve basis composed by a single ghost orbital placed at the initial
position of the vacancy (and �xed at that position). As shown in Figure
6.2-(a) this setup will give a good description of that �rst NEB image, but
not of the intermediate images. In particular, the �nal image con�guration
will have a vacant site with no support orbitals, while the initial position of
the vacancy will have, in addition to the ghost orbitals, the basis orbitals of
the migrating oxygen atom that moved to that site. It is easy to understand
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that under these circumstances the total energy pro�le through the NEB
path will be asymmetric, with a lower energy for the initial image as
compared to the �nal (because the description of the electronic state will
be worse in the latter), even though both structures should be energetically
equivalent.

88) A possible better description could be obtained if the ghost orbital is
displaced from the initial to the �nal position, in the same way as the
moving vacancy (or migrating oxygen atom) is displaced through the
NEB algorithm. In this way (panel b in the Figure 6.2), the initial and
�nal con�guration are equivalent, with one ghost orbital placed on the
corresponding vacant site. However, this approach might pose problems
for the NEB algorithm, as the positions of the ghost orbital must be kept
�xed for each image at a position which is somewhat randomly de�ned.
Typically, the center of the ghost orbital can be de�ned from an interpola-
tion between the vacancy position in the initial, although it involves some
arbitrariness. A simple linear interpolation, or a more elaborate scheme
such as the IDPP (Image Dependent Pair Potential) method [Smi+14] can
be applied. Furthermore, the intermediate images, and in particular the
transition state, might be poorly described, as the two empty sites at the
initial and �nal positions for the vacancy would have lower support basis
coverage, while the migrating oxygen atom and the ghost orbital might
be closely placed and prone to over-completeness. This might result in an
inaccurate description of the transition state energy, and thus the energy
barrier.

888) Using two �xed ghost orbitals at the initial and �nal vacancy positions
might reduce the problems above (Figure 6.2-(c)). Now, both initial and
�nal NEB images will have the same good description of possible localized
defect states, and the transition state image will have a good support
basis for the vacant sites. The main problem with this approach would
be that there will be a large overlap between the (�xed) ghost orbitals
and the basis of the moving specie (oxygen in our case) at the initial
and �nal images. Note that this situation a�ects also the �nal state for
the �rst case discussed above. Such approach can result in strong linear
dependencies in the basis set (over-completeness), making the electronic
structure convergence di�cult. We alleviate these issues by de�ning
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di�erent Numerical Pseudo-Atomic Orbitals (NAOs) for the ghost orbitals
and the orbitals of the real oxygen atom, so that Cholesky decomposition
of the overlap matrix is stable. Alternative methods, such as the pivoted
Cholesky decomposition could also be applied [Leh19].

8{) A further possible improvement from the previous prescription can be
obtained by adding a homogeneous distribution of ghost orbitals located
along the migration path (Figure 6.2-(d)). Although this approach is also
susceptible to over-completeness issues, it guarantees a good description of
the whole empty space through-out the migration process. We de�ned the
positions of the ghost orbitals from the initial IDPP images of the migrating
oxygen atom, keeping �xed their centers through the NEB calculations.

Figure 6.3: NEB migration barriers for VO using di�erent basis set descriptions. Red
�lled (empty) circles correspond to type 8 (88); empty blue squares to type 888 basis, and
�lled blue squares to 8{. The energy of the initial state for the 8{ is taken as the origin.
Calculations without any ghost orbitals are also included for comparison.

Figure 6.3 shows the migration energy pro�les obtained with NEB using the
di�erent approaches to de�ne the basis, and Table 6.1 reports the computed
energy barriers. Results obtained with plane-wave codes and extracted from
the literature can be used as a reference [El-+18; MD11]. Note however that the
use of di�erent exchange-correlation functionals (or di�erent pseudopotentials)
tends to give rather di�erent barriers.

From our data, it becomes clear that the use of a single ghost orbital (cases (8)
and (88)) gives a poor description of the migration path. As expected, the path is
asymmetric, and the initial and �nal images have slightly di�erent energies in
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case (8) (∼0.5 eV di�erence). The barrier is slightly overestimated in both cases,
because the transition state geometry can be considered as a complex linear
defect with an interstitial oxygen and two vacancies, which are not described
with an adequate support basis (hence, the energy of that NEB image is higher
than expected). Although the total energy for (8{) is lower than that with (888),
the results obtained for the barrier with both basis descriptions are very similar,
and in excellent agreement with the energy barriers computed with plane-waves
combined with Gaussian orbitals and PBE exchange-correlation [El-+18]. Note
that when no ghost orbitals are included at all: a) the total energy of the system
is almost 1 eV higher than the best basis description used, i,e. type (8{); b)
the migration barriers is underestimated by ∼0.5 eV, because the defect is not
described correctly in that case. This e�ect is even stronger when the basis set
is made of shorter orbitals (“bad basis” in the table). To understand this we need
to analyse further the electronic structure of the defect in the transition state.

Table 6.1: Calculated energy barriers (in eV) using di�erent basis set representations
and for di�erent defect charge states. Note that two barriers are reported for case (8),
which correspond to forward and backward migrations in the asymmetric path shown
in �gure 6.3. Ref. [MD11] uses VASP (PW) and PW91 xc-functional while Ref. [El-+18]
uses CP2K (Gaussian + plane-waves) and PBE functional.

VO V•O V••O

Without ghost 4.14 3.12 2.19
(8) With One ghost 4.58, 4.09 -
(88) Exchange ghost 4.62 - -
(888) With Two ghost 4.52 3.54 2.29

(8{) All ghost 4.57 - -
Longer Mg Basis 4.52 3.60 2.29

Without ghost “Short Basis” 2.29 2.30 2.33

Ref. [MD11] 4.81 3.68 2.38
Ref. [El-+18] 4.50 3.54 2.24

Figure 6.4 shows the projected density of states at the geometry of the NEB
transition state, over the more relevant orbitals: the migrating oxygen atom (O8 ,
in blue), Mg orbitals closer to O8 (red), and the ghost orbitals if present (cyan). As
mentioned before, the TS can be viewed as an interstitial oxygen in between two
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Figure 6.4: Projected Density of States around the electronic gap showing the defect
level due to VO. Panels (a)-(c) correspond to the Transition State geometry obtained
with the NEB method. The valence and conduction bands are shown as striped grey
areas, and the energy is aligned to the top of the valence band. Dashed horizontal lines
are guidelines to the defect level position (the position of the Fermi level would depend
on the whether the defect state is populated or depopulated). The projection on bulk Mg
and O orbitals (far from the defect) are black and dark grey shaded areas, respectively.
Black thick line corresponds to oxygen atoms that are close to the defect (O==), while
red line is used for Mg next neighbors to VO. The projection onto the ghost orbitals is
plotted as shaded cyan regions in panels (a)-(c) to facilitate visualization. Panel (c) has
two ghost orbitals placed in the initial and �nal positions for the migrating oxygen, but
only the projection over one of them is plotted (both give similar contribution). For the
Transition State panels, the PDOS for the migrating oxygen atom (which resembles an
interstitial oxygen, O8 ) is plotted as shaded blue also on the left subpanel.

vacant sites where electronic defect levels localize. Thus the oxygen orbitals can
hybridize with the defect level and form bonding, non-bonding and anti-bonding
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states within the gap of MgO. The sharp peak above the top of the valence band
is due to migrating oxygen’s 2?I orbitals (perpendicular to the plane de�ned by
the two vacant sites and the two Mg atoms �rst-neighbours to O8 ). The next state,
which is doubly occupied in the neutral VO con�guration, has bonding character
and involves both defect states coming from the vacant sites. In principle, as
we discussed before, ghost orbitals are needed to properly describe these states,
but there is also some contribution from near Mg atoms. If there are no ghost
orbitals, then polarization 3 orbitals from O8 are borrowed to describe this defect
level (? orbitals would not be allowed by symmetry). The corresponding anti-
bonding state, which is unoccupied and just below the conduction band, has
mainly contributions from the ghost orbitals (when present), and from O8 − 2?
orbitals. Structurally, the geometries obtained with ghost and without ghost are
very similar, because the electronic structure of the defect states at the TS can
be su�ciently described with the orbitals of the moving O8 . With this in mind,
the underestimation of the energy barrier when no ghost orbitals are included
in the basis should be attributed to the poor description of the initial defect
con�guration, and not to the TS itself.

The barriers reported in table 6.1 for V•O and V••O using di�erent basis orbitals
do not include the charge correction schemes, but highlight that there is a strong
dependence of the migration barrier with the population of the defect state. The
barrier decreases almost by a factor 2 when going from the neutral vacancy to
V••O . Note that the dependence of the barrier with the basis is strongly suppressed
for V••O , when the defect level is completely unoccupied. Obviously, in this case
the need for a good description of the localized defect level is not critical. Special
consideration is needed for a “Bad Basis” which has very short-range orbitals
and does not include any ghost orbital. In this case, we found no dependence of
the barrier with the defect state population, basically because this basis is not
even capable of describing the existence of the defect level!

6.2 Comments on localized charge correction and
BSSE

Following the correction scheme described in chapter 3, we calculated the total
energies required for the initial and TS images for V•O and V••O . We just considered
the basis type (888), as it seems to give a su�ciently good description of the
migration. We used both the Gaussian model and the d approach and the results

114



Comments on localized charge correction and BSSE Section 6.2

for total correction, in barrier value and corrected barrier are presented in Table
6.2. Although the total correction on the formation energy can be relatively
large (of the order of 250 and 780 meV for V•O and V••O respectively), we see that
the e�ect on the barrier is small. In other words, the correction at the initial
image is similar to the correction at the TS image. The e�ect is similar for the
Gaussian model, although of opposite sign, which might be reminiscence of the
di�erent localization of the defect state at both images.

Table 6.2: The Correction on calculated energy barriers (in eV) for di�erent defect
charge states using Two ghost basis system

V•O V••O V•O V••O
with d with d with Gaussian with Gaussian

Correction [eV] 0.03 0.04 -0.02 -0.04
Barrier Corrected [eV] 3.57 2.33 3.52 2.25

(a) Two ghost orbitals (VO) (b) Three ghost orbitals (VO) for BSSE cor-
rection

Figure 6.5: Scheme of the BSSE correction we consider for NEB barriers. The VO and
O species are represented by gray and red colors, respectively. The shadows with a
gradient represent the basis of each species. (a) two ghost orbitals are included at the
initial and �nal positions of the migration. At the transition state the moving oxygen
is placed in-between the ghosts. (b) For calculating the BSSE the energy of the initial
image is recomputed with an additional ghost orbital placed at the position that the
moving oxygen occupies at TS.

Finally, to close the chapter we address the last question raised at the beginning
of the chapter, regarding the Basis Set Superposition Error (BSSE). Figure 6.5-(a)
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shows the schematic of the problem, in particular for the basis type (888). In
the initial image, there are two ghost orbitals, one placed at the position of the
vacancy, and a second placed at the same site than the moving oxygen atom. At
the transition state, however the support basis orbitals are placed at di�erent
sites, essentially because now the moving oxygen is at the TS. Thus, the basis
coverage seems to be better in this con�guration than in the initial. To correct
for this e�ect, we can add one extra ghost orbital site at the interstitial site also
for the initial image, as shown in Figure 6.5-(b). In this case, the basis set used
for both initial and TS will be the same, and we avoid the BSSE. The di�erence
between the two initial images and the di�erence between the two TS images in
panels (a) and (b) of the �gure, gives 0.06 eV and 0.11 eV respectively. The barrier
in (b) is reduced to 4.47 eV as compared to (a). The di�erence in the barrier
energy between both approaches gives us an estimate for the BSSE, which in
this system is of ∼ 0.05 eV, and can be considered of the order of the error bar
for the energy barrier. In the future it might be interesting to evaluate the BSSE
for other barriers.

6.3 Computational Details

Figure 6.6: VO Migration Path in 〈110|110〉 MgO FCC Structure

The NEB method was implemented in Siesta within a Lua interface frame-
work [Gar+20b]. For our calculations we used the PBEsol [CFD11a] exchange-
correlation functional form of the generalized gradient approximation. Well
converged and tested pseudopotential from pseudo-dojo vault [Gar+18] were
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used. A mesh cuto� of 750 Ry is used to perform real space integrals in Siesta,
and the reciprocal space sampling density is equivalent to 6×6×6 Monkhorst-
Pack grid in the unit cell. The simulation cell is 3 × 3 × 3 unit cells of MgO (216
ions) and was relaxed until the forces converge with a tolerance below 0.04 eV/Å.
The obtained relaxed structure was used to construct the images for calculating
the migration pathway for NEB along the 〈110|110〉 direction (an oxygen atom
moves along the 〈110|110〉 direction into the vacancy) as shown in Figure 6.6,
which is known to give the minimum energy barrier. A total of 8 images were
considered, and the spring constant was 5.0.

6.4 Conclusions

In this chapter we used the tools to compute migration barriers for defect in
crystals using the Siesta package, and developed a general framework to set the
speci�c input parameters required. In particular, we focused on the following
aspects:

(i) Basis sets, and the need to include ghost orbitals to describe vacancies in
crystals. We showed that a scheme in which two ghosts placed at the initial
and �nal positions of the vacancy are enough to describe the electronic
properties of the migration path.

(ii) The ghost orbitals are more important to describe properly the initial/�nal
con�gurations than the Transition State itself. The orbitals from the
migrating atom (in our case the moving oxygen) are su�cient to describe
the electronic properties of this con�guration, and the sensitivity of the
barrier to the basis used comes from the reference initial state.

(iii) For charged vacancies we con�rmed a strong sensitivity of the barrier
with the occupation of the defect level. Although the correction schemes
that take into account the long-range electrostatic interactions in periodic
boundary conditions can be important for defect formation energies, we
observed that the e�ect on the migration energies is small.

(iv) We proposed a scheme to estimate the Basis Set Superposition Error in
NEB calculations with localized atomic orbitals. The estimated value for
the system under consideration is su�ciently small that can be safely
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neglected. However, further investigation for other systems would be
needed
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Surfaces & Interfaces





7 Methods for Sur-
faces & Interfaces

Physical phenomena explicitly linked to condensed matter surfaces have been
studied for centuries. Surfaces are the �rst frontier when studying matter and
as such they are scenarios for a number of novel physical and chemical ef-
fects, including friction, molecular absorption, surface plasmons, heterogeneous
catalysis, surface electronic states, electric and magnetic deadlayers, etc. These
phenemena has attracted signi�cant interest, both from the fundamental scien-
ti�c questions they pose and the need to control these properties for applications
of the materials. Thus many experimental techniques have been developed
over the years to study surfaces, from surface X-ray scattering, to Auger or
X-ray photoelectron Spectroscopy, Low-Energy Electron Di�raction, Surface
Enhanced Raman Spectroscopy, the scanning probe microscopies in its many
di�erent �avors, etc. Similarly to the experimental e�orts, from the theoretical
perspective we also need adequate tools to explore the phenomena that arise
from surfaces. This chapter explores the methodologies and concepts for de�n-
ing a crystal surface, and studying its electronic and structural properties, in
particular, making use of the Siesta package.

7.1 Surfaces

7.1.1 Types of Surfaces

The use of periodic boundary conditions in most DFT codes, poses a problem
when studying surfaces, which can be circumvented as we did for point defects.
The problem as in that case, is that the surface breaks the translational symmetry
of the crystal along the surface normal direction. For defects, we had to use a
supercell, so that the interactions between periodic images is minimized. For
surfaces instead we use a slab structure, which keeps periodicity on the plane
of the surface, and includes enough vacuum region to avoid interactions with
the periodic images. Such slabs are built from the bulk structure, including a
speci�c number of unit repetitions along the desired non-periodic direction. The
thickness of the slab is determined by the number of repetitions, and the idea
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is that the properties of the bulk crystal are reproduced at the center of the
slab. Note that these model slabs include not one but two surfaces. To de�ne
them one needs to specify the speci�c surface orientation relative to the crystal
coordinates, and the chemical composition at the termination.

Structural features at the slab termination, and possible atomic relaxations
require special attention. Surface formation by cleavage leads to broken bonds on
the surface, and a highly unstable atomic arrangement. This induces considerably
large elastic and chemical energies, the creation of charged or polar layers, all
of which can result on surface reconstruction, with strong structural relaxations
that are required to facilitate formation of new bonds. When we have surfaces
where the relaxation of the atomic positions of the exposed boundary are small,
we talk of an ideal surface.

Figure 7.1: The Type-� Non-Polar termination of the surface

Among various classi�cations for surfaces, we follow Tasker’s notation [Tas79]
which is based on electrostatic arguments according to whether the layers are
charged and the structural repetition unit bears a dipole moment or not. There
are three types of surfaces that can be distinguished.

• Type-� surfaces are usually the most stable, with no net charge nor dipole
moment in the unit cell (& = 0 and ` = 0), as shown in Figure 7.1.

• Type-� � surfaces involve charged layers (& ≠ 0) but no dipole moments
(` = 0), as illustrated in Figure 7.2. The unit cell can be of type IIa, as in
the �gure, where the anions and cations comprising the layers are not
coplanar, but which allows for some surface cuts to split the layers in such
a way as to produce no dipole; alternatively, in type IIb termination, some
ions at the top surface must be moved to the bottom to remove the dipole.
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Figure 7.2: Type-� � Non-Polar termination of the surface

Figure 7.3: The Type-� � � Polar termination of the surface

• Type-� � � (polar surfaces) this surface, as opposed to Type-� surfaces, expe-
rience a strong electrostatic instability due to the presence of a net dipole
moment (` ≠ 0) in the repeat unit and electric charge in layers (& ≠ 0),
Figure 7.3.

7.1.2 Surface Energy

To describe the stability of a surface we de�ne the surface energy W , which is
a measure of the energetic cost to create the surface. This energy is due to a
variety of factors, including bond breaking that yield undercoordinated atoms,
or the removal/addition of atoms that change the stoichiometry of the system.
Surface energy is a fundamental quantity to understand the surface structure,
reconstruction, roughening, and the crystal’s equilibrium shape. Typically W
depends on the surface orientation and chemical composition, and should be
de�ned for a given surface orientation. Thus, we label it Wf

ℎ:;
for a speci�c facet
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with Miller index (hkl), and compute it with a slab model using the following
expression: [Tra+16]

WL
ℎ:;

=
�
ℎ:;,L

B;01
− (�ℎ:;

1D;:
× =B;01)

2 ×�B;01
(7.1)

Here �ℎ:;,L
B;01

is the total energy of the slab with termination L, �ℎ:;
1D;:

is the energy
per atom of the bulk unitcell oriented along the slab direction, =B;01 is the total
number of atoms in the slab structure, �B;01 is the surface area of the slab and
the prefactor 2 accounts for the two surfaces in slab (assuming the slab was built
with equal termination on both sides).

7.1.3 The Workfunction

The Workfunction is the energy required to remove an electron from the solid
and place it at in�nity. The �nal electron position is far from the surface on the
atomic scale but still too close to the solid to be in�uenced by ambient electric
�elds in the vacuum. In physics, the term work function is frequently used to
represent the energy of electrons in metals.

Q = �5 4A<8 − 〈+ℎ0ACA44〉 (7.2)

in DFT the 〈+ℎ0ACA44〉 is choosen as vacuum level. To compute the workfunction
we need to calculate the electronic potential in a slab geometry, and determine
the value of 〈+ℎ0ACA44〉 in vacuum, far from the slab. This value, and the value
for the Fermi level in slab are then used in Eq 7.2.

7.2 Surfaces Electrostatics

Regarding the electrostatic of the slab model we have to take into account two
critical aspects which are intertwined [MV01a]:

• Issue (i): The appropriate boundary conditions for the electrostatic poten-
tial in the polarized state.

• Issue (ii): The e�ect of the periodic boundary conditions on the electrostatic
potential.
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In an isolated slab with a polarization perpendicular to the surfaces, 8 the
polarized slab exhibits an electric dipole moment

< =

∫ ∞

−∞
d̄ (I)I3I (7.3)

normal to the surface, where d̄ (I) is the planar averaged charge density

d̄ (I) = 1
�

∬
�

d (A )3G3~ (7.4)

and � is the area of the surface unit cell. The electrostatic potential { (A ) experi-
enced by the electrons can be calculated by solving the Poisson equation

∇2{ (A ) = 4c4d (A ) (7.5)

But the external boundary conditions determine the solution that we obtain.

7.2.1 Issue (i): Isolated Boundary Conditions

(a) Vanishing external electric �eld equiva-
lent to � = 0.

(b) Vanishing internal electric �eld � = 0.

Figure 7.4: Schematic illustration of the planar-averaged potential +̄ (I) for an iso-
lated slab with a dipole moment < perpendicular to the surface. (Figure is taken
from [MV01b]).

We can distinguish two cases depending on whether there is a vanishing

8 We choose the surface normal =̂ to be parallel to the I axis, and we assume the charge density
d (A ) of the slab to be periodic in the G and ~ directions.
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external electric �eld, �4GC = 0 as in Figure 7.4, or a net electric �eld is present,
�4GC ≠ 0. In general, when determining the properties of free surfaces, we are
mainly considering the case where �4GC = 0. The dielectric displacement �eld D
inside the slab must be oriented parallel to the I axis and be equal to �4GC (easily
derived from the interfacial boundary conditions when there is no unbound
charges at the surface, (Di= − DeGC ) · =̂ = 0). The polarization of slab P leads to
surface bound charges f = P · n, which create an internal depolarization �eld
E = D − 4cP = −4cP inside the slab 9. The main consequence is that, although
the potential in vacuum is �at, there is a jump between both sides of the slab,
which depends on the dipole<. This comes with a problem when using periodic
boundary conditions, as we will discuss next.

7.2.2 Issue (ii): Periodic Boundary Conditions

(a) with periodic boundary conditions (b) potential of the dipole layer

(c) dipole-corrected slabs with vanishing ex-
ternal electric �eld

(d) dipole-corrected slabs with vanishing in-
ternal electric �eld

Figure 7.5: Schematic illustration of the planar-averaged potential +̄ (I)for repeated slab
with a dipole moment m perpendicular to the surface. (Figure is taken from [MV01b]).

In supercell calculations, with periodic boundary conditions, if the slabs have

9 � does not depend on the thickness of the slab

126



Heterostructures Section 7.3

a non-vanishing dipole moment perpendicular to the surface, the electrostatic
potentials typically look like Figure 7.5-(a). This potential pro�le does not
correspond to the scenario in Figure 7.4 because there is an arti�cial external
electric �eld in vacuum. The strength of this �eld depends on the thickness of the
vacuum region included in the supercell, decreasing for larger supercells. The
way to remove this external �eld is to introduce an external dipole layer in the
vacuum region of the supercell, [Ben99; NS93] which gives rise to a compensating
electric �eld of opposite direction, as shown in Figure 7.5-(b). The sum of both
potentials (a+b) results in a potential pro�le like the one shown in Figure 7.5-
(c) which has the �at behaviour in the vacuum region. This approach also
allows to play with di�erent electrostatic boundary conditions, and by properly
setting the strength of the external dipole we can, for example, completely cancel
the internal electric �eld in the slab, Figure 7.5-(d), while keeping a polarized
solution (i.e. we can de�ne a non-zero displacement �eld � = �eGC ). This method
is particularly useful when studying ferroelectric slabs.

The external dipole �eld correction is available in Siesta. It calculates the
electric �eld required to compensate the dipole of the system at every iteration
of the self-consistent cycle. The potential added to the grid corresponds to the
dipole layer in the middle of the vacuum layer. For slabs, this exactly compensates
the electric �eld at the vacuum created by the system’s dipole moment, thus
allowing the treatment of asymmetric slabs (including systems with an adsorbate
on one surface) and computing properties such as the work function for each of
the two surfaces in the slab.

7.3 Heterostructures

Generally, a heterostructure is a composite structure in which more than one
material combine to form a new system (Figure 7.6). The interface can be
thought as the superposition of the surfaces of the di�erent materials combined,
and has unique properties which might be very di�erent from those of the
constituents. Physical phenomena such as one-way injection, superinjection,
electron con�nement, optical con�nement,. . . happen at interfaces. Historically
the idea of using heterostructures emerged at the very beginning of electronics.
We can think of the p − n junction in transistors as a major breakthrough
that comes from speci�c properties of heterostructures: The idea proposed by
Shockley is used to achieve one-way injection in a wide-gap emitter [Bon].
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(a) HeteroStructure Interface (b) HeteroStructure Junctions

Figure 7.6: Schematic view of di�erent Heterostructure. (Figure is adapted from
[Das+18]).

This was the beginning of the classical era semiconductors technology, which
has evolved into a new quantum era with the miniaturization of electronic
devices and con�nement of electrons. New quantum phenomena arise, which
require investigations, and quickly open new research topics that need new code
developments. Two-dimensional electron gas, the quantum Hall e�ect, and the
existence of excitons at room temperature are just a few of many examples that
emerged in the last few decades [Alf96].

To study heterostructures we must consider that the lattice parameters of the
two materials might be di�erent. Commensurability can be imposed by choosing
appropriate supercells for each material component so that the heterostructure
satis�es lateral periodicity under a moderate level of strain. Once the geometry is
de�ned under periodic boundary conditions, and the structure is relaxed, we can
determine the electronic structure, and extract the relevant band characteristics,
and in particular the electronic Levels Alignment or the Band O�sets between
the two materials.

7.4 Implementation of Sisl ToolBox Siesta Surfaces
and AiiDA Siesta Surfaces

I develop surface generation in two separate packages:

• Sisl ToolBox Siesta surfaces: is a python package tool inside the Sisl tool-
box to generate di�erent slab surfaces and thicknesses to found most stable
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face and other properties such as workfunction. To see the manual one
could access to web page : http://zerothi.github.io/sisl/docs/latest/index.html

• AiiDA Siesta Surfaces : is a python package to automate to generate
and calculate di�erent slab surfaces and thicknesses to found most stable
face and other properties such as workfunction with siesta through the
AiiDA platform. To have access to the work�ows and manual one could
reach to web page : https://github.com/siesta-project/aiida-siesta-surfaces

In the following chapter, we will show how these packages can be combined
with the tools developed to study defects, and illustrate their usage to address
the simulation of the electronic properties of defects at the interface of an hybrid
nanostructure: carbon nanotubes functionalized with HfO2 nanoparticles.

7.4.1 The problem of localized basis set

(a) Surface atom species with di�use basis (b) Surface atom species with ghost (�oating)

Figure 7.7: Schematic view of di�erent schemes for basis sets for the surface

One particularity of SIESTA is the short localization of the atomic orbitals.
We addressed this issue when studying vacancy defects in previous chapters,
but in surfaces the problem is enhanced, as in vacuum there are no support basis
functions that can describe dispersive surface electronic states. In a previous
study, Gil et al. [Gar+09a] explored methodologies to enhance the NAO basis
sets for the surface atoms to accurately describe surface electronic states and
extract properties such as surface energies and work functions. They showed
that augmentation of the local orbitals with either a shell of di�use orbitals in
the surface atomic layer ,Figure 7.7 (a), or with one or two shells of �oating
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orbitals in the vacuum region, Figure 7.7 (b), gives a dramatic improvement both
in the estimate of surface energies and in the description of the wavefunction’s
decay into vacuum.

We have considered these methodologies in the implementation of Sisl ToolBox
Siesta Surfaces and AiiDA Siesta Surfaces Package when constructing the models
to simulate slabs.
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High permittivity (high-:) materials have attracted a great deal of interest in
the semiconductor industry as they are needed as ultrathin dielectric gates in
MOSFET technologies. Among the many possible candidate materials, HfO2 with
its relatively high-dielectric constant, wide bandgap, high thermal stability, and
low leakage current has been a strong player [Lia+10a; Lia+10b; Mer+08; Rob+10;
Rot+22; ZHZ11]. More recently, the fast implantation of graphene applications
has triggered substantial research for good dielectrics that are compatible with
carbon-based electronic devices. [KJ13]. These new hybrid materials, made of
an organic component, which is abundant and more bio-compatible, and non-
carbon-based material (inorganic) are versatile for many applications and their
combination can produce novel distinct properties. In this line, the combination
of HfO2 nanoparticles and carbon nanotubes (CNT) has recently shown unusual
visible photoluminescence, and optoelectronic properties [Rau+17b] that make
these hybrid materials of interest for energy generation and storage. Experiments
suggest that the properties of these materials are strongly a�ected by defects
that are present close to the surface of the material [Rau+; Rau+12; Rau+17a;
Rau+19a; RGR15; RR14].

Motivated by these experimental observations, in this chapter we exploit the
tools developed to study surfaces and interfaces to explore the e�ect of defects on
HfO2/CNT nanocomposites. In particular, we focus our study on a model system
of the HfO2(111)/Graphene hybrid nanostructure and the e�ects of oxygen and
carbon vacancies on its electronic properties. The structure of the chapter is the
following. First, we calculate the stability of low index surfaces for cubic HfO2
and explore the properties of an isolated oxygen vacancy on the system. Next, we
build a heterostructure between HfO2 and Graphene, and analyse the electronic
structure, paying attention to the possible charge transfer e�ects. Finally, we
explore the e�ects of defects (vacancies of oxygen and/or carbon) and their role
in bonding, Fermi level pinning and charge transfers.
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8.1 (100),(110),(111) surfaces in cubic HfO2

Figure 8.1: classifying the low-index surfaces of cubic HfO2

HfO2 has various crystalline phases [Ala+21], from monoclinic (the most stable
at low temperatures) to tetragonal, to cubic, including several orthorhombic
phases. Usually, dopants are introduced to increase the stability of the cubic
phase at room temperature, as this phase has a larger permittivity than the
monoclinic phase. The introduction of divalent or trivalent dopants has been
linked to an increased number of oxygen vacancies. However, it has been shown
that synthesized nanoparticles with diameters of around 2.6 nm can also be
stabilized in the cubic phase without introducing dopants,[Rau+12] which is
advantageous as these impurities also modify the electronic properties of HfO2.
The stabilization of the cubic phase in the nanoparticles has also been rationalized
in terms of an increased number of oxygen vacancies at the nanoscale. These
vacancies have also been linked[RR14] to the nanoparticles photoluminescence
at photon energies well below the bulk band gap (E6 ∼5.7 eV). Thus, we focus
here on the cubic phase and its heterostructure with graphene, as a simpli�ed

132



Oxygen Vacancy in HfO2 (111) Section 8.2

model for a wide diameter carbon nanotube (i.e. the hybrid structure described
in the experiments from P. Rauwel and coworkers[Rau+19b]).

We �rst analyze the stability of HfO2 surfaces, calculating the surface energy
for di�erent low-index orientations and terminations. In particular, we addressed
polar and non-polar slabs cut along (111), (110) and (100) directions, illustrated
in Figure 8.1. The computed surface formation energies (f) as a function of the
thickness of the slab (i.e. number of layers used to build the surface model), are
plotted it in Figure 8.2, and show a fast convergence for relatively thin slabs.
We note that HfO2(111) has the lowest formation energy and HfO2(100) the
highest, thus justifying that we focus on the following in the (111) orientation
as the most representative case.

Figure 8.2: Surface Formation Energy of all low-index surfaces of cubic HfO2. The solid
and dashed lines correspond to relaxed and unrelaxed structures.

8.2 Oxygen Vacancy in HfO2(111)

We take the HfO2(111) slab model with eight layers (≈ 21.87 Å) and create
2 × 2 × 1 lateral supercell to study the properties of oxygen vacancies. This
thickness is su�ciently large to recover bulk-like properties at the center of the
slab, and the lateral dimensions of the 2 × 2 supercell are similar to the ones
used to study defects in bulk in chapter 4. We calculate the pristine slab, the
slab with neutral oxygen vacancy in the center of the slab (Vcenter

O ), and the
slab with a neutral oxygen vacancy at the surface (Vsurface

O ). We also checked
that the formation energy for the neutral vacancy at the center of the slab is
in good agreement with that of a bulk structure, which proves that the model
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(a) The band structure of pristine HfO2 (111) (b) The band structure of Vc4=C4A
O in HfO2 (111)

(c) The band structure of VsDA 5 024
O in

HfO2 (111)

Figure 8.3: The Band Structure of HfO2 (111) with neutral oxygen vacancy in center
and surface of the slab

thickness is appropriate. Although the energy of the unrelaxed structure for
the vacancy in the center of the slab (bulk-like) is about 0.5 eV lower than the
vacancy at the surface, upon structural relaxation there is an energy gain that
favors energetically the vacancy at the surface (formation energies of 6.78 4+
and 6.58 4+ for Vcenter

O and Vsurface
O , respectively). This goes in the line of an

increased stability of oxygen vacancies in nanoparticles, where the surface to
bulk ratio is larger, which can explain the formation of the nanoparticles with
the cubic phase.

Figure 8.3 shows the band structure of the pristine slab, together with those
of the slab holding a vacancy in the center and at the surface. An occupied
defect state is clearly visible in the gap. However, the position of the defect
level depends on the position of the vacancy within the slab, being pinned
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near the bottom of the conduction band when the defect is at the surface layer
(note however that the DFT gap is substantially underestimated with respect
to the experimental one). Therefore, the Vsurface

O has an electronic level almost
3 eV above the top of the valence band, which is reasonable agreement with
the PL emission at 3.1 eV reported for cubic nanoparticles [RR14]. Figure 8.4
plots the pDOS of the defective slab structures, showing that the new electronic
state is localized mostly at the ghost orbitals, with some additional weight on
neighbouring Hf atoms.

(a) The pDOS of Vcenter
O in HfO2 (111) (b) The pDOS of Vsurface

O in HfO2 (111)

Figure 8.4: The pDOS of HfO2 (111) with neutral oxygen vacancy in center and surface
of the slab

8.3 Graphene on cubic HfO2(111) surface

Multiwall carbon nanotubes (CNT) functionalized with cubic-HfO2 nanoparticles,
as synthesized by Rauwel and collaborators, [Rau+16] have been shown to be
promising nanocomposite material for light harvesting applications. The optical
properties of the oxide nanoparticles combine with the conducting and �exible
properties of the nanotubes, showing photocurrent generation under UV-vis
illumination. The attachment of the nanoparticle to the sidewalls of the nanotube
seems to be related to the presence of defects in the graphitic structure, most
likely C dangling bonds. On the other hand, the optical properties are closely
linked to the presence of defects on the surface of HfO2. Upon illumination,
the photocurrent presents a rapid response, with an initial spike due to �lling
and discharging of the defect states, followed by a stable photoresponse that
suggests that photogenerated electrons are easily transferred to the CNT. Using
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Figure 8.5: The Structure of HfO2/Graphene from (a) side and (b) top view. The vacancy
position is either on the surface of HfO2 or in the center where the region is bulk-like.
The carbon vacancy is located on top of oxygen, where we created the vacancy in the
surface of HfO2.

our simulation tools for this heterostructure and studying the e�ect of point
defects on the electronic properties is the objective of this section.

Modeling the nanoparticle+CNT is beyond reach of DFT calculations (the
average diameter of the CNT is around 10 nm), thus we introduce a simpli�ed
system to study the heterostructure: a slab of HfO2 interfaced to a graphene
monolayer, which can be a good approximation for large diameter nanotubes.
The lattice mismatch between HfO2 and graphene can be handled using the
2×2×1 HfO2 supercell and a 3×3 graphene cell (mismatch∼4.0%), with a modest
strain applied to the later so that the cubic phase of HfO2 remains stable. The
e�ect of this strain on the graphene bandstructure in this case is su�ciently small.
Indeed, Kamiya et al.[KUO11] investigated the hybrid structure of graphene
absorbed on pure cubic HfO2(111) surface (HfO2(111)/G) using LDA for the
exchange-correlation and a similar in-plane superlattice. They found a slight
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modi�cation of the graphenes linear bands close to the Dirac point due to the
interaction with HfO2 and ascribed the origin of this change to the hybridization
of the c states from graphene with the mixture of O − ? and Hf − 3 states from
the substrate. To our knowledge, there is no bibliography on the e�ect of defects
over the electronic properties of this hybrid structure.

To explore the binding of Graphene with HfO2(111) we monitor the energy
of the hybrid system as a function of the interlayer spacing between them in the
pristine and defective systems. Upon structural relaxation, and in agreement
with the results reported by Kamiya, the optimal interlayer distance is close to
3 Å and the binding energy is of about 100 meV per C atom. Table 8.1 collects
the e�ect of di�erent defect types on the binding energy between both systems.
We considered four di�erent scenarios: (i) an oxygen defect in the center of the
slab; (ii) the oxygen vacancy on the surface at the interface with graphene; (iii) a
carbon vacancy in graphene; and (iv) both oxygen vacancy on the surface and
carbon vacancy in graphene. It can be seen that while oxygen vacancies reduce
the binding energy, the presence of carbon vacancy in graphene increases the
binding energy. Thus, an enhanced adhesion of HfO2 nanoparticles to defective
carbon nanotubes can be con�rmed, in agreement with experimental suggestions.
Having both carbon vacancy and surface oxygen vacancies increases this e�ect
dramatically, as the interaction between the electronic states linked to both
defects is strong, as we will discuss in the following.

Defect Binding Energy [meV/C atom]

Pristine 102
Vsurface

O 65
Vcenter

O 89
+C 145

Vsurface
O & VC 340

Table 8.1: Binding energy per carbon atom for (i) the oxygen defects on the center
of the slab, (ii) the oxygen defects on the surface of the slab, (iii) the carbon defect in
graphene and (iv) the oxygen defects on the surface of the slab and carbon defect in
graphene.

The band structures for the di�erent systems modeled are plotted in Figure
8.6. These fatbands contain information on the weights that the di�erent orbitals
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in the basis set have on the eigenenergies of the heterostructure, Y8,: , and can be
used to quickly distinguish the character of the di�erent bands. In particular, here
we are interested in highlighting graphenes bands over HfO2 band structure. For
the pristine hybrid heterostructure our results are in good agreement with the
work by Kamiya et al. [KUO11]. The linear dispersive bands of graphene appear
within the large band gap of HfO2, and the Dirac point is clearly distinghished
(note that is bandfolding due to the use of a supercell).

The Fermi level is pinned at the Dirac point, and evidences that there is no
charge transfer between graphene and HfO2. When there is an oxygen vacancy
in the center of the slab, the bandstructure resembles the combination of the
features obtained for the defective slab (with a localized defect level below the
Fermi level) and the pristine heterostructure with graphene, with its clearly
identi�able Dirac cone. However, there is a slight shift in the position of the
Dirac cone, due to a small charge transfer from the defect level towards the
carbon monolayer. This e�ect is further enhanced when the oxygen vacancy is
at the surface (interface with graphene), where there is a clear transfer of charge
from the vacancy level towards graphene, leaving a spin-polarized defect with
magnetic moment of 0.45 `� . Thus we can con�rm that the presence of oxygen
vacancies on HfO2 nanoparticles favors the extraction of possible photogenerated
carriers through the carbon nanotubes, as reported in the experiments.

Introducing carbon vacancies in this relatively small supercell (which is equiv-
alent to modeling a high concentration of impurities in the system) induces a
strong structural deformation on the graphene monolayer, and enhances the hy-
bridization with the substrate. This results in a strong modi�cation in graphene’s
bands, as shown in Figure 8.6-(d). There is also an opening of a gap in the Dirac
cone (X ∼ 0.2 eV), and a defect level above the Fermi level (�at band at around
0.8 eV). Previous calculations of vacancies in free-standing graphene show both
localized f and semilocalized c defect levels [RPP16], which are spin polarized
and give a net magnetization induced by the defect [Ma+04]. We expect that the
interaction with the substrate can shift the energy of these states, and in our
calculations the spin magnetization is lost. However our supercell is too small
to describe isolated vacancies, and we can not clearly identify f states due to
the strong modi�cation of the graphene structure. Nevertheless, we believe that
the increased binding between the oxide and the carbon nanostructure can be
understood in terms of the electronic structure, with c defect levels from the
vacancy interacting strongly with the surface, proving that defects on carbon
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(a) Pristine graphene on HfO2 (111)/G (b) Pristine graphene on defective HfO2 (111)/G with
Vc4=C4A

O

(c) Pristine graphene on defective HfO2 (111)/G with
VsDA 5 024

O

(d) Defective graphene (VC) on HfO2 (111)/G

(e) (VC & VsDA 5 024
O ) on HfO2 (111)/G

Figure 8.6: The fatBands of hybrid HfO2 (111)/Graphene heterostructures with di�erent
types of vacancies. The weigths on the di�erent chemical species on the character of
each electrinic state (band) is plotted with a color code, highlighting that graphenes
bands (dark grey) are clearly distinguishable from HfO2’s valence band (mostly Oxygen
bands in red) and the conduction band (with more weight on Hfs 33 orbitals).
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nanotubes act as anchoring sites for the adhesion to the nanoparticles. The
e�ect is even stronger when both O and C vacancies are considered, and are
placed close together. In the atomic structure we observe how one of the C
atoms displaces signi�cantly from the graphene layer, approaching the HfO2
surface. This obviously a�ects the defect levels from the vacancy (both f and
c ). Figure 8.6-(d) shows the strong modi�cation of graphene’s bands, and the
presence of defect levels formed from the interaction between VO and VC states.

It is worth mentioning that we have only considered neutral defect calculations
to avoid problems with de�ning a common reference energy for the di�erent
structural models that we studied. However, from the stability diagram discussed
in Section 4.4 we know that the most stable defect con�guration for the oxygen
vacancy in HfO2 is V+2

$
for almost all values of the electronic chemical potential

within the gap. The essential di�erence will be that in this case the defect
level will be depopulated, but the physical picture will not be a�ected. Once an
electron from the valence band of HfO2 is photoexcited to the defect level, it will
be easily transferred to the carbon bands, and generate the photocurrent.

8.4 Computational Details

For our calculations we used the PBEsol [CFD11a] exchange-correlation func-
tional form of the generalized gradient approximation from well converged and
tested pseudopotential pseudo-dojo vault [Gar+18]. A mesh cuto� of 800 Ry is
used to perform real space integrals in Siesta, and the reciprocal space sampling
density is equivalent to 9×9×1 Monkhorst-Pack grid in the supercell for converg-
ing the charge density and relaxation of structure. The structure was relaxed
until the forces converge with a tolerance below 0.04 eV/Å. For Post-Processing
reciprocal space sampling density equivalent to 35×35×1 is used.

8.5 Conclusions

We have built model structures of the heterostructure between HfO2 and a
graphene monolayer to gain a better understanding of the physical properties
of hybrid HfO2/CNT nanocomposites and validate the experimental hypothesis
suggested by the Rauwell and collaborators. As modelization of a HfO2 nanopar-
ticle is too complex, we decided to take a �rst approach by considering surfaces
with di�erent crystallographic orientations. In agreement with literature we
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found that the (111) orientation gives the most stable termination. These will
give a reasonable description of the facets of large nanoparticles. Over the slab
we considered a graphene monolayer, which gives a reasonable description of
nanotubes with large diameter. A commensurate supercell can be built with a
2 × 2 HfO2 slab and a 3 × 3 graphene layer. Then, we addressed the e�ect of
candidate vacancy defects on the properties of the heterointerface. In particular
we show:

• (i) The lower energy formation of vacancies at the surface as compared to
the bulk, which con�rms the possibility of a larger concentration of defects
in systems with larger surface/bulk ratio, as is the case of HfO2 nanoparti-
cles. The shift of the defect level within the gap is also in agreement with
features reported for the photoluminescence spectra.

• (ii) a larger absorption of graphene to the oxide interface can be linked
to the presence of C dangling bonds (in our case vacancies that induce a
substantial deformation of the graphene monolayer).

• (iii) The presence of oxygen vacancies in the interface between the nanopar-
ticle and graphene seems to favor charge transfer towards graphene. The
e�ect of these vacancies on the electronic properties of graphene are
negligible.
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In this Thesis, we have developed a set of computational tools to enable studies
of the physical properties of defects from DFT simulations. We have categorized
these properties in three di�erent groups: (i) Static, where we include energetics
of neutral and charged point defects, (ii) Dynamic which are related to the
energy barriers required to activate the movement of the defects in the material,
and (iii) Surface & Interface Properties where we focused on utilities that
facilitate building models to study materials boundaries. Through the di�erent
chapters of this report we have described the theoretical methods required to
tackle each one of the properties, and the use of their implementations in a set of
examples and case studies. It is worth mentioning that each implementation is
not a monolithic unit but might include several intermediate steps, and the tools
here developed can be combined to have greater �exibility. For example, we can
include the corrections taken for charged defects also in the study of migration
barriers at an heterostructure between complex transition metal oxides. On the
following, I will highlight the main results and conclusions of the work.

• We investigated the need to include ghost orbitals in the basis set to
correctly describe localized electronic states created at vacancies and their
charge distribution. This is a critical aspect of the use of strictly localized
atomic orbitals, which is one of the foundations of the Siesta method. We
showed that the computational cost of these ghost orbitals is negligible, and
although support basis orbitals from neighbour atoms might be capable of
describing the defect level in bulk (as long as their cuto� radii are not too
short), it is highly advisable to include ghost orbitals when dealing with
vacancies, as the description of the charge localization is improved. For the
computation of migration barriers, we suggest the use of two �xed ghost
orbitals placed at the initial and �nal images of the NEB path. Indeed, we
show that the ghost orbitals seem to be more important to describe the
initial and �nal positions of the vacancy than the Transition State itself.

• We used the Freysoldt, Neugebauer, and Van de Walle (FNV) correction
scheme for charged point defects in periodic boundary conditions. In
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agreement with previous reports in the literature, we showed that the
use of a Gaussian charge model does not work well if the defect charge
density is not well localized. This delocalization could be an artifact of
the calculation, either because of limitations with the DFT functionals, or
because the supercell used is simply too small and the defect states interact
with periodic images forming a defect electronic band. Furthermore, we
highlighted the strong sensitivity of the corrected defect energetics to the
parameters used to de�ne the Gaussian distribution, even in cases where
the charge is reasonable localized such as VO in MgO.

• Based on the FNV method, we developed an alternative approach for taking
care of the image-charge correction for charged point defects in periodic
boundary conditions. Our method makes use of the DFT charge density,
and unlike previous approaches does not rely on parametrized models.
We validated our methodology in systems that had been reported to be
problematic for the conventional FNV scheme, such as carbon vacancy
in diamond, or Ga vacancies in GaAs. Our method shows very good
convergence of the formation energy even for relatively small supercells.

• We attribute possible problems in the correction scheme to three main
reasons: (i) Not using big enough supercells, which results in very large
interactions with periodic images, and thus dispersive defect bands that
give rather delocalized charge densities. This problem is easily solved by
increasing the simulation box. With our scheme, issues with delocalization
of the charge seem to be minimized. (ii) Failures of DFT functionals when
localizing the charge density around the point defect. These problems
require a higher level of theory, but are beyond the scope of the methodol-
ogy for computing the formation energy of the defect that are discussed
here. (iii) Materials where complex PES can give strong lattice deforma-
tions due to the presence of the defect, bringing problems for the correct
potential alignment with respect to the pristine neutral crystal. These
lattice instabilities (or phase transitions) are the harder to control from
the automatic computational perspective, as they really hide a physical
e�ect that requires attention (although it might also be linked to issues
with the DFT functional).

• The Nudged Elastic Band method implemented in Siesta adds a pow-
erful functionality to the code, which is very well suited to treat defect
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structures at a low computational footprint. Based on our experience we
can compute larger supercells (thus more realistic defect concentrations)
at a fraction of the cost of alternative planewave codes, with equivalent
accuracy. We tested our NEB implementation in a simple system (VO in
MgO) that allowed us to quantify, for the �rst time to our knowledge, the
e�ect of the Basis Set Superposition Error (BSSE), and the image charge
interaction correction schemes for the migration of ions. Both e�ects
seem to give minor contributions for V$ in MgO, although this could be
system-dependent and further investigations might be needed. On the
other hand, we con�rm a strong sensitivity of the migration barrier with
the charge state of the migrating vacancy.

• We combined the tools to generate slabs, with the methodologies for
studying point defects to investigate the physical properties of hybrid
HfO2/CNT nanocomposites and validate the experimental hypothesis sug-
gested by Rauwel and collaborators. In particular, (i) we proved the lower
formation energy of vacancies at surfaces as compared to the bulk, which
con�rms the possibility of a larger concentration of defects in systems
with a larger surface/bulk ratio, as is the case of HfO2 nanoparticles. (ii)
the shift in the defect level for vacancies close to the surface agrees with
features reported for the photoluminescence spectra. (iii) The presence
of both oxygen and carbon vacancies at the HfO2/graphene interface in-
creases the binding energy, and agrees with experimental suggestions for
defects acting as anchoring sites for nanoparticle’s adhesion to carbon
nanotubes. Furthermore, we show that oxygen vacancies favor charge
transfer towards graphene, facilitating the extraction of photogenerated
charges from the nanoparticle.

We have paid special attention to the limits of the approximations that are
more commonly used in simulations of point defects, and in particular to the
more technical aspects which are speci�c of the Siesta methodology, such as
the use of strictly localized atomic orbitals. This is particularly critical for the
development of ab initio high-throughput work�ows that require unsupervised
calculations for many di�erent defect con�gurations and systems, as described
for example in [Ang+14; Goy+17; MM16].

In addition to the sisl toolbox implementations, and in view of the increased
demand for high-throughput calculations with defects, all tools have been ex-

145



Chapter 9 Conclusions & Outlook

tended to AiiDA Work�ows adapted to the Siesta package. This scheme allows
not only to handle a large number of calculations, but also o�ers integration with
a searchable database, and interoperability with other work�ows implemented
by the electronic structure community, as well as possible combinations with
di�erent DFT codes in a standardized way. I believe the tools developed in my
thesis will ease the future screening of defects properties in materials research.
The technical documentation of these computational tools will be submitted
soon for publication.
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A LUA & Scripts

A.1 Introduction

Development of new methods, testing algorithms and improving the e�ciency of
computational tools usually require multiple modi�cations of code lines. A faster
development can be fostered by a direct access to code variables and functions
through external scripts that can be embbeded into the main code. There is an
ongoing trend in many areas of computational science to move away from rigid
and monolithic codes and favor a more �exible approach, in which the internal
functionality of a program is somehow exposed to the outside world. If this is
done in a proper and well-documented way, it can enhance the interoperability
of codes with di�erent functionalities, play to the relative strengths of each,
and/or implement new functionalities by combining the available basic blocks.
Here I review the implementation of this strategy in Siesta, which is based
on handling control to the Lua interpreter at speci�c relevant points in the
program �ow (e.g., at the beginning of a geometry step, at the end of an SCF
step, etc.). Although the presented library is implemented in Siesta, however,
it is independent of it and could be easily interfaced with any other simulation
code.

A.1.1 Lua

Lua is a powerful open-source, fast, lightweight, and embeddable programming
language, which started as an in-house project in 1993 by Roberto Ierusalimschy,
Luiz Henrique de Figueiredo, and Waldemar Celes.

Lua can run on many systems and many devices where most other scripting
languages would not be able to run [Ier06]. Moreover is an easy-to-learn and fast
scripting language, It is very lightweight (its memory footprint is less than 300
kB), and provides very simple ways to interface to the data structures and routines
of a host program. A Lua script, interpreted by the Lua interpreter embedded
in the program, can then control the �ow of execution and the data. Di�erent
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user-level scripts can implement new functionalities, without recompilation of
the host code.

One of particular feature which is interested to us is that, the Lua scripts
implement handlers appropriate to the point they want to hook into, and can
request access to speci�c data structures. Hence we could implement algorithms
without recompiling our original code. For example, a script intended to im-
plement a better scf mixing algorithm would be executed after every scf step,
inspecting the convergence data, and changing mixing parameters or schemes,
as appropriate. As another example, convergence checks over mesh-cuto�s and
k-point sampling can be performed automatically. The code in the library can
be re-used, or taken as starting point for other implementations by users. These
user-level scripts can in turn be shared, opening the way to the development
of new functionality with faster turnaround that the traditional approach that
needs a careful integration into the program’s code base Lua [Gar+20a].

A.2 Fortran Lua Hook (FLOOK) Library

A.2.1 Concepts & Implementations

Here we going to review the development of an internal scripting framework
based on the Lua language, which enables new functionality without code
recompilation.

The fortran-Lua-hook library allows abstraction of input �les to be pure
Lua �les to enable con�guration of internal variables through an embedded
Lua interpreter. Any valid Lua script can be executed from within any fortran
application at points where the application creates Lua channels. Its main usage
is the ability to change run-time variables at run-time in order to optimize, or
even change, the execution path of the parent program.

Assuming we have a program which has 3 distinct places where interaction
might occur �gure :

1 program main
2 call initialize ()
3 call calculate ()
4 call finalize ()
5 end program

At each intermediate point one wishes to communicate with a scripting lan-
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Figure A.1: FLOOK Library Scheme can create main points in the Fortran program to
communicate with particular variables.

guage. FLOOK enable to communicate between fortran and Lua. To do so we
will use �ook lib in out main program ... TODO: Write Details of how it works!!!...

1 ! Our calculating program
2 program main
3 use flook
4 ! Global variables in the scope that
5 ! we will communicate with
6 real :: matrix (3,3), vector (3)
7 real :: control
8 type(luaState) :: lua
9 ! Initialize the @lua environment

10 call lua_init(lua)
11 ! Register a couple of functions to pass information back and
12 ! forth between @lua.
13 call lua_register(lua , 'fortran_get ', script_set )
14 call lua_register(lua , 'fortran_set ', script_get )
15 ! Call pre -initialize script (this should define
16 ! all functions that are directly called in the program.
17 ! Needless to say you can create a single @lua function
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18 ! which will determine the path via a control parameter.
19 call lua_run(lua , 'tst_exp_flook.lua' )
20 call lua_run(lua , code = 'pre_init ()' )
21 call initialize ()
22 call lua_run(lua , code = 'post_init ()' )
23 call lua_run(lua , code = 'pre_calc ()' )
24 call calculate ()
25 call lua_run(lua , code = 'post_calc ()' )
26 call lua_run(lua , code = 'pre_finalize ()' )
27 call finalize ()
28 call lua_run(lua , code = 'post_finalize ()' )
29 ! Close @lua
30 call lua_close(lua)
31 contains
32 function script_set(state) result(nret)
33 use , intrinsic :: iso_c_binding , only: c_ptr , c_int
34 type(c_ptr), value :: state
35 ! Define the in/out
36 integer(c_int) :: nret
37 type(luaState) :: lua
38 type(luaTbl) :: tbl
39 call lua_init(lua ,state)
40 ! open global table in variable struct
41 tbl = lua_table(lua ,'struct ')
42 ! Set the variables to the struct table:
43 ! struct.control = `control `
44 call lua_set(tbl ,'control ',control)
45 ! struct.matrix = `matrix `
46 call lua_set(tbl ,'matrix ',matrix)
47 ! struct.vector = `vector `
48 call lua_set(tbl ,'vector ',vector)
49 call lua_close_tree(tbl)
50 ! this function returns nothing
51 nret = 0
52 end function script_set
53 function script_get(state) result(nret)
54 use , intrinsic :: iso_c_binding , only: c_ptr , c_int
55 ! Define the state
56 type(c_ptr), value :: state
57 ! Define the in/out
58 integer(c_int) :: nret
59 type(luaState) :: lua
60 type(luaTbl) :: tbl
61 call lua_init(lua ,state)
62 ! open global table in variable struct
63 tbl = lua_table(lua ,'struct ')
64 ! Get the variables from the struct table:
65 call lua_get(tbl ,'control ',control)
66 call lua_get(tbl ,'matrix ',matrix)
67 call lua_get(tbl ,'vector ',vector)
68 call lua_close_tree(tbl)
69 ! this function returns nothing
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70 nret = 0
71 end function script_get
72
73 subroutine initialize ()
74 control = 0.
75 matrix = 0.5
76 matrix (1,1) = 1.
77 matrix (2,2) = 2.
78 matrix (3,3) = 3.
79 vector = (/1. ,2. ,3./)
80 end subroutine initialize
81
82 subroutine calculate
83 integer :: i
84 do i = 1 , 3
85 vector(i) = sum(matrix(:,i) * vector) * control
86 matrix(i,:) = vector
87 end do
88 end subroutine calculate
89
90 subroutine finalize
91 matrix (1,1) = vector (1)
92 matrix (2,2) = vector (2)
93 matrix (3,3) = vector (3)
94 end subroutine finalize
95
96 end program main

Now with the script of Lua we could communicate with our fortran program:

1 --[[
2 LUA function called by fortran
3 --]]
4 print("LUA called from FORTRAN")
5 -- Define the handle for retaining data
6 struct = {}
7

8 function pre_init ()
9 -- Communicate data from fortran

10 fortran_get ()
11 struct:print("pre_init")
12 struct.control = 2.
13 -- Communicate data to fortran
14 fortran_set ()
15 end
16

17 function post_init ()
18 fortran_get ()
19 struct:print("post_init")
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20 struct.control = 1.
21 fortran_set ()
22 end
23

24 function pre_calc ()
25 fortran_get ()
26 struct:print("pre_calc")
27 struct.control = 2.
28 struct.vector [2] = 0.
29 fortran_set ()
30 end
31

32 function post_calc ()
33 fortran_get ()
34 struct:print("post_calc")
35 fortran_set ()
36 end
37

38 function pre_finalize ()
39 fortran_get ()
40 struct:print("pre_finalize")
41 struct.control = 3.
42 fortran_set ()
43 end
44

45 function post_finalize ()
46 fortran_get ()
47 struct:print("post_finalize")
48

49 fortran_set ()
50 print("Fully ran everything in the LUA file")
51 end
52

53 --[[
54 To ease the printing of the data structures
55 we add a few helper functions to print matrices in a stringent
56 way
57 --]]
58 function mat_print(name ,mat)
59 print("Printing matrix: "..name)
60 a = ""
61 is_matrix = false
62 for ia,xyz in pairs(mat) do
63 if type(xyz) == "table" then
64 is_matrix = true
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65 a = ""
66 for _,x in pairs(xyz) do a = a .. " " .. x end
67 print(a)
68 else
69 a = a .. " " .. xyz
70 end
71 end
72 if not is_matrix then print(a) end
73 end
74

75 struct.print = function(self ,msg)
76 if msg then print(msg) end
77 print("Control: "..self.control)
78 mat_print("matrix",self.matrix)
79 mat_print("vector",self.vector)
80 print("") -- new line
81 end

The integration of Lua functionality in Siesta has been made possible by the
development of an intermediate layer,FLOOK, (for “fortran-Lua-hook”), which
provides wrappers for access to Fortran data structures and subroutines.

A.3 Flook Siesta (FLOS) Library

After retrieving variables or arrays one have to do process or manipulate on
those data, so to do so, we developed a library which allows to easily use and
developed new schemes and functionality for Siesta, we called this Library
FLOS (FLOOK Siesta). The mentioned scenario open an important area of
usefulness of the approach. The prototyping in Lua, followed eventually by
a full implementation, of new ideas and algorithms. We have implemented a
number of custom molecular dynamics modes, geometry relaxation algorithms,
and advanced optimization schemes For Siesta Package, in a pure Lua library
FLOS [citation] �gure A.2.

First and foremost in Siesta with FLOOK enabled, We put 7 intermediate
point to communicate:

(1) Right after reading initial options (siesta.INITIALIZE)

(2) Right before SCF step starts, but at each MD step (siesta.INIT_MD)

(3) At the start of each SCF step (siesta.SCF_LOOP)
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Chapter A LUA & Scripts

Figure A.2: FLOS Lib contains di�erent schemes & functionality for siesta such as a
new optimizer, nudged elastic band, grid convergence test algorithm etc.

156



(4) After each SCF has �nished (siesta.FORCES)

(5) When moving the atoms, right after the FORCES step (siesta.MOVE)

(6) When SIESTA is complete (siesta.ANALYSIS)

(7) When SIESTA is In Analysis Mode, just before it exists (siesta.ANALYSIS_AFTER)

We call above intermediate points state in Lua script which one could com-
municate with Siesta via state de�nition. In each intermediate points states we
could send or receive data via special name we call them Siesta Lua dictionary.
All available dictionary are implemented in module called siesta_dicts in Siesta.
The Table (A.1) presented all variables which could access via Lua script.

Our Approach on implementation of FLOS library was based on object oriented
methodologies. Hence each functionally has it own class which could be access
easily or inherited by another class. FLOS library contains (4) Main Classes
which has its own particular functionality Figure (A.3):

• MD Class : This class retains information on a single MD step, such a
step may be represented by numerous quantities. Such as atomic coordi-
nates,velocities,forces and an energy associated with the current step. Of
course one may always add new information.

• NUM Class : This Class is Implementation of ND Arrays in Lua. This
module tries to be as similar to the Python numpy package as possible.

• Optima Class : This Class contains of di�erent classes which inherited by
it base class that is the basic class used for optimization routines. Here we
already implemented CG,FIRE LBFGS Method for Optimizing.

• Special Class : In this Class we developed di�erent �avor of Barrier energy
calculator such is NEB,DNEB,VC-NEB,... and Force Constant calculator.

Each Main Classes have couple of sub-classes which inherinted by Main/Other
classes.

Now using those intermediate points along with FLOS we could write di�erent
Lua script for particular applications. In Following chapters we show some
applications of FLOS mostly the implementation of NEB algorithms which use
Siesta as engine to calculate the NEB forces.
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Figure A.3: Flos Library contains four main Class: i) Molecular Dynamic (MD) class, ii)
Numerical (Num) Class, iii) Optimizer (Optima) Class and iv) Special Class
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Siesta FDF �ags Siesta Lua Dictionary (variables) Siesta FDF �ags Siesta Lua Dictionary (variables)
SystemLabel slabel DM.HistoryDepth DM_history_depth

Write.DenChar dumpcharge Write.MullikenPop mullipop
Write.HirshfeldPop hirshpop Write.VoronoiPop voropop
SCF.MinIterations min_nscf SCF.MaxIterations nscf

SCF.MixHamiltonian mixH SCF.MixCharge mix_charge
SCF.NumberPulay maxsav SCF.NumberBroyden broyden_maxit
SCF.MixingWeight wmix SCF.NumberKick nkick

SCF.KickMixingWeight wmixkick SCF.Mixer.Weight scf_mixs(1)%w
SCF.Mixer.Restart scf_mixs(1)%restart SCF.Mixer.Iterations scf_mixs(1)%n_itt

SCF.MonitorForces monitor_forces_in_scf electronicTemperature temp
SCF.Harris.Converge converge_Eharr SCF.Harris.Tolerance tolerance_Eharr

SCF.DM.Converge converge_DM SCF.DM.Tolerance dDtol
SCF.EDM.Converge converge_EDM SCF.EDM.Tolerance tolerance_EDM

SCF.H.Converge converge_H SCF.H.Tolerance dHtol
SCF.FreeE.Converge converge_FreeE SCF.FreeE.Tolerance tolerance_FreeE MD.MaxDispl

dxmax MD.MaxForceTol ftol
MD.MaxStressTol strtol MD.FinalTimeStep i�nal

MD.FC.Displ dx MD.FC.First ia1
MD.FC.Last ia2 MD.Temperature.Target tt

MD.Relax.CellOnly RelaxCellOnly MD.Relax.Cell varcel
MD.Steps.First inicoor MD.Steps.Last �ncoor

MD.DM.History.Depth DM_history_depth Write.HS saveHS
Write.DM writeDM Write.EndOfCycle.DM write_DM0C_4=3_> 5 _2~2;4
Write.H writeH Write.EndOfCycle.H write_H_at_end_of_cycle

Write.Forces writeF Use.DM UseSaveDM
Write.Hirshfeld hirshpop Write.Voronoi voropop

Table A.1: Available variables for siesta and it corresponding dictionary name.
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