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Summary

Recent developments in Machine Learning aim at automatizing available
methods, rendering them universal while requiring as little expert-knowledge
as possible. In this thesis, we will take a step back. We will focus on the data,
their specific needs and how to extract meaningful information out of them.
This will be done through the presentation of different works highlighting
various aspects to consider when developing Machine Learning techniques in
bioinformatics.
There cannot be any models without the appropriate considerations on the
data. Therefore, in the first part, we will put the models aside and focus
on data integration. In more detail, we will present an algorithm for the
normalization of gene-expression microarray data across different platforms.
Microarray data are widely available in public repositories and such methods
enable their subsequent downstream analysis.
In the next part, we will consider peptide sequence data and present a tool
for the extraction of patterns in such sets. The model, based on convolutional
neural networks, is open-source and can be used for peptide MHC-class II
binding prediction among other applications.
The last part will be dedicated to the analysis of clinical data. We will
present a retrospective cohort study on pancreatic cancer. For this study, a
tool for the prediction of clinically relevant outcomes has been developed.

From data integration to the development of application-oriented tools,
the three parts forming this thesis will be self-contained and will each address
different challenges in the realm of data-driven approaches in bioinformatics.
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Introduction

Machine Learning (ML) algorithms are data-driven approaches that have
found numerous applications in the field of bioinformatics (Baldi and Brunak,
1998; Bhaskar et al., 2006; Olson et al., 2017; Shastry and Sanjay, 2020). How
to deal and learn from an ever-growing amount of biomedical data remains
a constant challenge in this field. The main objective of such algorithms
is to find meaningful patterns and to make accurate predictions from the
knowledge extracted from the data. It is therefore application-oriented and
covers many domains in biology such as genomics, proteomics, systems biol-
ogy, evolution and text mining (Larrañaga et al., 2006).
We will start this introduction with a brief overview of some ML concepts
and techniques. Then we will dive into the subject of this thesis, starting
with a small discussion on automated ML to then highlight the needs that
specific data sets might require. This will be followed by a short discussion
on data repository and methods proposed in this thesis for particular types
of data, namely sequence and clinical data.

0.1 Machine Learning: basic concepts and

techniques

ML can be divided in 2 main categories:

• supervised learning: typically for classification/regression problems;
the possible outcomes are known and a model is trained with labelled
data.

• unsupervised learning: typically for clustering problems. The data are
unlabelled and the algorithm looks for hidden patterns.

For the purpose of this thesis, we will focus on supervised learning. A typical
pipeline for such algorithms is as follows:



• data preprocessing

• feature selection

• learning algorithm

• validation and evaluation

0.1.1 Data preprocessing

The data preprocessing contains any pre-steps such as gathering and orga-
nizing the data, cleaning them (handling missing values, removing redundant
features, detecting outliers,...) and possibly performing feature engineering
(note that some of these steps might also be referred to as data wrangling).
The latter consists of generating features from raw data that will be used
by the predictive model. For example, a categorical feature with values A,
B and C cannot necessarily be used as such by an algorithm. If there is an
order between the categories (for example A, B and C are grades), a possible
solution would be to assign the numbers 1, 2 and 3 to the categorical values.
A more general solution would be to divide the categorical feature into three
binary features and set A=(1,0,0), B=(0,1,0) and C=(0,0,1).

0.1.2 Feature selection

Feature selection is important to improve the performance of the model and
to extract information (Saeys et al., 2007; Haury et al., 2011). In some cases,
the main objective is to identify biomarkers and the model itself is only
relevant to select a good set of features. Feature selection methods are usually
divided in two main categories (Bhaskar et al., 2006): filter and wrapper
methods. Filter methods are independent of the learning algorithm while
wrapper methods select features based on the performance of the learning
algorithm.

0.1.3 Learning algorithm

The learning algorithm is trained on the prepared data set. In the case of
classification, it is optimized to predict the correct class based on the set
of features. There exist numerous methods; we will present here a quick
overview of 4 different types of algorithms.
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Logistic regression
Logistic regression (Larrañaga et al., 2006) is similar to linear regression,
with the difference that the logistic function (f(x) = 1/(1 + exp(−x))) is
applied to the predicted outcome. The algorithm will optimize the search for
parameters β0, · · · , βn such that the predictions best fit the training outcome.
For a sample x = (x1, · · · , xn), the predicted outcome y will be

y =
1

1 + exp(−(β0 +
∑n

i=1 βixi))

and has values between 0 and 1. It is usually interpreted as a probability.
The predictions are turned into a binary classification by choosing a thresh-
old c (typically c = 0.5) and dividing them into two classes: y < c and y > c.
In Boughorbel et al. (2017), the authors propose a method to find an optimal
cut-off c for classification.

Support vector machines
Support vector machines (Cortes and Vapnik, 1995) map the data into a high
dimensional space to find a hyperplane separating the classes. In practice,
to avoid computations in a high dimensional space, the kernel trick is used.
The idea is that the data are represented by their pairwise similarity in the
high dimensional transformed space rather than their exact positions. This
similarity is determined by the kernel function.
The algorithm makes use of support vectors, which are training samples, to
find the hyperplane with the largest margin, i.e. the largest distance from
the hyperplane. For a new instance x, the predicted class y (either positive
or negative) is determined by

y = sign

(
n∑

i=1

αiyiG(x, xi) + α0

)

where sign is the signature function (it is 1 for a positive value and -1 for
a negative value), G(a, b) is the kernel function, x1, · · · , xn are the training
samples with their corresponding classes y1, · · · , yn and α0, · · · , αn are pa-
rameters determined during the optimization. The support vectors are those
with non-vanishing α.

Neural network

15



Artificial neural networks are networks of neurons (Larrañaga et al., 2006).
The neurons are placed in layers that are connected to each other. The pro-
cess of reading these layers is called the feed-forward pass. In its simplest
case, called perceptron, there are two layers: the input and output layers.
The neurons of the input layer are the features of the input data x1, · · · , xn
and the output layer consists of one neuron (the output prediction y).

y = h

(
n∑

i=1

wixi + w0

)
where w0, · · · , wn are the weights connecting the neurons that are determined
during the optimization process and h(x) is the activation function (usually
scaling the outcome between 0 and 1 or -1 and 1).

Descision tree
Descision trees are rather intuitive. They consist of nodes with branches that
correspond to a statement. If the statement is true, one follows the branch
to the next node and so on until an end node is reached. The end nodes
represent the prediction. Trees have the advantage of allowing categorical
like continuous variables. Despite their simplicity, they can be very accurate
when used in ensemble methods. Random forests (Breiman, 2001; Yang et al.,
2009) are ensemble of trees and the average of the outcome of all single trees
is used for the prediction. In random forests, the trees are constructed in-
dependently using random methods. Another powerful family of algorithms
using ensemble of trees are gradient boosting methods (Freund and Schapire,
1999; Friedman, 2001; Natekin and Knoll, 2013; Chen and Guestrin, 2016).
As opposed to random forests, such methods construct trees based on pre-
viously constructed trees and each of them weight differently depending on
the optimization process.

0.1.4 Validation and evaluation

A common issue with learning algorithms is overfitting the training data.
This happens when the trained model gives excellent performances on the
training data but poor ones on new, never-seen, data; in other words, the
model doesn’t generalize. The learning algorithm should be able to learn
enough to fit training data but not too much so that it doesn’t only fit the
training data. Finding a good learning balance is a key issue in tuning an al-
gorithm; this is known as the bias-variance dilemma. If an algorithm doesn’t
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learn enough from the data and yet is still used to make prediction, it means
that it relies on possibly erroneous assumptions, i.e. it is highly biased and
might miss relevant information (underfitting). On the other hand, if the
algorithm learns too much from the training data, it will be highly sensitive
to minor fluctuations in the training data, i.e. it has a high variance (overfit-
ting). For this reason, it is very important to validate a learning algorithm.
There are several standard validation methods. We will briefly introduce the
two most standard ones: k-fold cross-validation and bootstrapping. In any
case, the important aspect is to perform the validation on a subset of data
that hasn’t been used for the training. It is therefore important for the fea-
ture selection step to be performed within the validation method. Indeed, if
the features are selected using the whole data set, the algorithm has knowl-
edge that these features are appropriate for all data, including the ones left
out for validation. This can lead to overfitting.

Cross-validation
Cross-validation is a resampling method without replacement (Kohavi, 1995).
The training data set is divided into k folds, one fold is left out for valida-
tion while the other (k-1) folds are used for the training. The procedure is
repeated until each fold has been left out for validation.

Bootstrapping
Bootstrapping is a resampling method with replacement (Kohavi, 1995). The
procedure consists of sampling with replacement a fixed amount of samples
(typically the total number of samples), use the sampled data set for training
and use the remaining samples for validation. This procedure is repeated a
fixed number of times. The score of the validation with the whole training
data is also considered. The final predictive score is a combination of the
average score on the samples left out for validation and the training score.
In more detail, if the number of samples is n, for b different samplings with
replacement of n samples, the score scboot will be

scboot = 0.368sctrain +
0.632

b

b∑
i=1

sci

where sctrain is the score of the whole training set, sci the score of the ith

validation set and 0.368 ≈ (1− 1
n
)n is the probability for a sample not to be

chosen for training (for large n).
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These validation methods can also be used to select parameters and, more
generally, any aspect of the final model -such as selecting the feature selection
method, the learning algorithm, the data transformation and their optimal
combination leading to the best validation results. This ”best model” selec-
tion bias can also lead to overfitting (Tsamardinos et al., 2018). It is therefore
important to also use, when possible, an external data set to perform an in-
dependent evaluation.

0.2 Automated Machine Learning

An important objective in the deployment of application-oriented ML mod-
els in bioinformatics is the development of fully automated workflows, which
can generalize on most data sets while requiring little to no technical knowl-
edge. This approach is known as Automated Machine Learning (AutoML)
and there exist already various implementations, for example the open-source
package auto-sklearn (Feurer et al., 2021), or services available in cloud plat-
forms (e.g. Microsoft Azure, AWS, Google Cloud Platform, IBM Watson
Studio). While AutoML has proven to work well in competitions (Feurer
et al., 2018), it cannot be applied in a fully automated way to all types of
data sets. Many biological data sets have few samples and a lot of dimen-
sions requiring some particular considerations. For example, if an AutoML
approach assesses thousands of models, it is possible for the best valida-
tion result to overfit the training data (Tsamardinos et al., 2018). To ad-
dress bioinformatics needs, a bio-oriented AutoML platform called JADBio
(https://jadbio.com/) has been created (Tsamardinos et al., 2020). While
these platforms can be of great help and save time and effort, they cannot
be automatically applied on any data sets. For example, the application of
JADBio to a speech classification problem (Simantiraki et al., 2017) required
expert knowledge for the transformation of the raw data into a structured set
that could be used as the input of the automated system. Similar concerns
arise when analysing sequence data; raw series of letters cannot be directly
interpreted by such systems.
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0.3 Objectives

The objectives of the present thesis on ML techniques in bioinformatics will
revolve around the data themselves. How to retrieve and prepare data sets
for subsequent analysis? How to engineer the features in order to apply ML
algorithms? How to design a method or adapt existing ones for the specifics
of a given data set?
Unlike AutoML techniques, the aim will not be to provide a self-contained
tool that could address all of these questions but to show concrete appli-
cations through different projects. These questions won’t find an eloquent
universal answer in this thesis; they will however be addressed in light of the
needs required by specific data sets.

0.4 Data repository

Data are the key to a good ML model. Public repositories, databases (Bate-
man, 2007; Wren and Bateman, 2008; Galperin et al., 2016) contain valuable
information that can be extracted through appropriate ML techniques. The
web page https://www.oxfordjournals.org/nar/database/c/ contains a
summary of the databases from the journal Nucleic Acids Research.
In the next two chapters, we will introduce two databases: the Gene Ex-
pression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) and the
Immune Epitope Database (IEDB, http://www.iedb.org/).
The GEO database contains a large amount of gene-expression microarray
data. These data are rich in gene-expression information, from which mean-
ingful patterns can be extracted. A challenging aspect is the integration
of the different sets deposited in GEO. To address this issue, we present
in Chapter 1 a novel algorithm called CuBlock (Junet et al., 2021) for the
normalization of gene-expression microarray data across different platforms.
CuBlock enables the integration of the data available in GEO (and other
gene-expression microarray data repositories) with the aim of subsequently
applying ML techniques to extract meaningful expression patterns. CuBlock
has been published in Bioinformatics (Junet et al., 2021); Chapter 1 is es-
sentially a restructured version of the published article.
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0.5 Sequence data

The IEDB repository contains experimental data on antibody and T-cell
epitopes. The analysis of biological sequences has an important impact in
immunoinformatics. The availability of such data is key to the development
of ML predictive techniques in the field of reverse vaccinology (Sette and
Rappuoli, 2010) and epitope-based vaccine design (Parvizpour et al., 2020).
In Chapter 2, we present a tool called CNN-PepPred for the discovery of
patterns in peptide sets. We focus on the application of this algorithm for
the in-silico prediction of MHC class II-restricted T-cell epitopes. The tool
is based on an ensemble of convolutional neural networks which architecture
was specifically designed for this type of data. CNN-PepPred is open-source,
under the Apache-2.0 license and is available in the repository https://

github.com/ComputBiol-IBB/CNN-PepPred.
Chapter 2’s content is a mixture between an application note which has been
accepted for publication in the journal Bioinformatics (Junet and Daura,
2021) and the User’s guide which also contains an extension of the tool to
allow training with transfer learning.

0.6 Clinical data

To this point, we will have been familiar with a specific solution to the prob-
lem of gathering and preparing gene-expression microarray data for down-
stream analysis and we will have seen how ML techniques can be adapted to
the specific needs of peptide sets. In the last part, Chapter 3, we will dive in
a different type of data, namely clinical data.
According to a roundtable on value & science-driven health care from the In-
stitute of Medecine (US) (https://www.ncbi.nlm.nih.gov/books/NBK54290/),
clinical data are any type of information which are determinants of health,
measures of health and health status or documentation of care delivery.
Clinical data are relevant for in-silico clinical trials (ISCT). The biotech
company Anaxomics (https://www.anaxomics.com/) uses so-called TPMS
(Therapeutic Performance Mapping System) technology (Jorba et al., 2020)
for ISCT. This technology generates a protein activation network represent-
ing the state of a patient using knowledge extracted from clinical information,
drug effectors and known relations between proteins.
In Chapter 3, we present the SICPAC study, a retrospective study in pan-
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creatic cancer. Using the clinical information (analytical measures, adverse
events, co-treatments) of a patient during multiple visits at the hospital, we
present a tool for the prediction of several outcomes during the following
visit. The different predicted outcomes are the concentration of leukocyte,
monocyte, hemoglobin, red blood cell, eosinophil and platelet.
Decision trees were selected as the core learning algorithm of this method due
to their interpretable nature and the easy inclusion of categorical variables
alongside continuous ones.
To gain molecular information, patients were simulated using the TPMS
technology with the available clinical information and the method was ap-
plied including the protein activation values.
The tool is available as a web-application: http://sicpac.anaxomics.com:
81. Care must be taken when using such tool. The data used for training
were specific to the context (patients from a unique hospital, under a fixed
treatment, treated by the same physician), the sample size was small (20
patients) and the results don’t justify a reliable predictive tool (as noted in
Chapter 3). The following persons contributed to the SICPAC study: Pedro
Matos-Filipe, J.M. Garca-Illarramendi, Esther Ramı́rez, Baldomero Oliva,
Judith Farrés, Xavier Daura, José Manuel Mas and Rafael Morales.

Through the work presented in the three chapters forming the main body
of this thesis, concrete, application-oriented problems are addressed with
data-driven approaches, contributing to the development of ML techniques
in bioinformatics.
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Chapter 1

CuBlock: A cross-platform
normalization method for
gene-expression microarrays

1.1 Abstract

Motivation: Cross-(multi)platform normalization of gene-expression mi-
croarray data remains an unresolved issue. Despite the existence of several
algorithms, they are either constrained by the need to normalize all samples
of all platforms together, compromising scalability and reuse, by adherence
to the platforms of a specific provider, or simply by poor performance. In
addition, many of the methods presented in the literature have not been
specifically tested against multi-platform data and/or other methods appli-
cable in this context. Thus, we set out to develop a normalization algorithm
appropriate for gene-expression studies based on multiple, potentially large
microarray sets collected along multiple platforms and at different times, ap-
plicable in systematic studies aimed at extracting knowledge from the wealth
of microarray data available in public repositories; for example, for the extrac-
tion of Real-World Data to complement data from Randomized Controlled
Trials. Our main focus or criterion for performance was on the capacity of
the algorithm to properly separate samples from different biological groups.
Results: We present CuBlock, an algorithm addressing this objective, to-
gether with a strategy to validate cross-platform normalization methods. To
validate the algorithm and benchmark it against existing methods, we used
two distinct data sets, one specifically generated for testing and standard-



ization purposes and one from an actual experimental study. Using these
data sets, we benchmarked CuBlock against ComBat (Johnson et al., 2007),
UPC (Piccolo et al., 2013), YuGene (Lê Cao et al., 2014), DBNorm (Meng
et al., 2017), Shambhala (Borisov et al., 2019) and a simple log2 transform
as reference. We note that many other popular normalization methods are
not applicable in this context. CuBlock was the only algorithm in this group
that could always and clearly differentiate the underlying biological groups
after mixing the data, from up to six different platforms in this study.
Availability: CuBlock can be downloaded from https://www.mathworks.

com/matlabcentral/fileexchange/77882-cublock

1.2 Introduction

Since the first whole-genome microarray study of gene expression was pub-
lished in 1997 (Schena et al., 1995; Lashkari et al., 1997), high-throughput
gene-expression microarrays have been a standard in many experimental de-
signs in biological and biomedical research. Although their use is being
replaced by next-generation sequencing techniques such as RNA-Seq (Na-
galakshmi et al., 2008), the large amounts of microarray data relevant to
an equally large variety of biological and biomedical problems and available
in public databases constitutes a valuable resource that will remain in use
for many years. The potentiality of resources such as the Gene Expres-
sion Omnibus (GEO) as sources of Real-World Data (RWD) —data derived
from a number of sources, outside the context of Randomized Controlled
Trials (RCTs), and associated with outcomes in an heterogeneous patient
population (Berger et al., 2017)– may in fact boost the use of the wealth of
available microarray data in the near future. The importance of RWD as a
complementary information source in drug-evaluation studies is based on the
observation that data from RCTs does not always match results from obser-
vational studies (Trotta, 2012), mostly owing to the limited number of RCT
patients, their over-monitoring and the limited follow-up time. Thus, certain
adverse drug reactions or lack-of-efficacy problems are hidden until RWD
studies are performed, and drug administrations have come to encourage the
extraction of information from sources complementary to RCTs to increase
evidence around treatments (Sherman et al., 2017; Food and Drug Admin-
istration, 2018). A problem of RWD is that it tends to be highly heteroge-
neous, thus requiring careful analysis and statistical treatment (Berger et al.,
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2017; Bartlett et al., 2019). Translated to the context of this study, microar-
ray data relevant to a particular problem will often originate from different
laboratories and experiments, possibly using different microarray platforms
(Bumgarner, 2013) and almost certainly obtained in different batches. In or-
der to make a sensible use of such an heterogeneously sourced data, a data-
normalization step is required before data analysis. Normalization can be
relatively straightforward when dealing with different batches of a same ex-
periment using the same biological samples, platform and operator, but gets
increasingly complex as different operators, platforms and sample sources
are introduced. This often leads to studies discarding part of the available
data, which could otherwise be used to increase the chances of discovery of
meaningful patterns or improve their statistics.

A main source for sample differences arising from systematic biases is
the mixing of data from different microarray platforms. Unfortunately, most
standard and widely used normalization methods are applicable to or have
been developed for the single-microarray-platform context (Rudy and Vala-
far, 2011), making them generally inappropriate for the cross-study analysis
of existing data sets. On the other hand, most existing cross-platform nor-
malization methods, such as ComBat (Johnson et al., 2007), XPN (Shabalin
et al., 2008) or DWD (Benito et al., 2004), require the data from different
platforms to be normalized together —XPN and DWD were in fact devel-
oped for pairwise cross-platform normalization. For large data sets, nor-
malizing platforms together can be restrictive. In addition to involving the
normalization of a large joined data set, the eventual addition of new mi-
croarray data requires global renormalization. This led to the more recent
development of sample-wise, cross-platform normalization methods such as
SCAN (Piccolo et al., 2012) and UPC (Piccolo et al., 2013), YuGene (Lê Cao
et al., 2014), DBNorm (Meng et al., 2017) —which can operate sample or
platform wise– and Shambhala (Borisov et al., 2019). SCAN performs a
sample-wise normalization assuming a double Gaussian mixture distribution.
It was, however, specifically designed for Affymetrix and two-channel Agi-
lent platforms, thereby restricting its general use. Developed by the same
authors, the Universal exPression Code (UPC) builds on SCAN to generate
standardized estimates of expression that have a consistent interpretation
across platforms, measuring how much the expression of the gene deviates
from model-estimated background levels within the sample. Although, the
derivation of UPCs is platform specific and, to our knowledge, it is currently
available only for Affymetrix and Agilent microarrays through the package
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SCAN/UPC, the program offers also a generic UPC function applicable to
any microarray platform, by making assumptions on the background and
background-plus-signal distributions. The other distribution-based normal-
ization method, DBNorm, scales the data distributions from the individual
microarrays to a common form, which does not need to be predetermined
(e.g. the distribution from a reference microarray). As a downside, it is
very slow. On the other end, YuGene uses a simple transform that assigns
a modified cumulative proportion value to each measurement, making the
normalization very fast. Finally, Shambhala uses a harmonization method
that transforms each profile so that it approaches the output of a chosen
golden-standard platform.

Some methods like UPC, Shambhala and MatchMixeR (Zhang et al.,
2020) have specifically included in their design the possibility to integrate
data from both microarray and RNA-seq sources. As a matter of fact, any
methods that can be applied at the gene level could be adapted for such
studies. It should be kept in mind, however, that this requires source-specific
preprocessing steps taking into account the fundamental differences between
these two types of data. In fact, the conceptual differences between microar-
ray and RNA-seq gene-expression measurements are so significant that they
may require distinct normalization procedures (Rapaport et al., 2013). In
this study, we will solely focus on the application of normalization methods
for the integration of gene-expression microarrays.

One should also note that the methods mentioned above were not neces-
sarily developed with a same purpose. For example, ComBat was developed
for the adjustment of batch effects and is often used in combination with
other methods in cross-platform normalization procedures; although it does
not normalize platforms separately, we introduced it in this study because of
its broad use. Thus, the SCAN/UPC package offers the possibility to apply
ComBat after SCAN normalization and summarization at gene-level —and
before transformation to UPCs if so chosen. Thus, methods like ComBat are
often called integration methods, in so that they integrate previously nor-
malized data. Nevertheless, ComBat has become, on its own, a popular first
choice for cross-platform normalization and a frequent benchmark standard
for other methods (Walsh et al., 2015; Irigoyen et al., 2018). Shambhala, on
the other hand, is classified as a harmonization method because it uses a
golden standard as reference, while YuGene is a transformation and XPN,
DBNorm and SCAN are referred to as normalization methods. In this study,
like in (Rudy and Valafar, 2011), we will refer to all these methods as cross-
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platform normalization methods so far as they are being used in the literature
to make data across different platforms comparable for the purpose of anal-
ysis.

Although the number of normalization methods proposed in the literature
is large, to our knowledge there are no other major cross-platform normaliza-
tion methods that can be applied to gene-expression microarrays in a plat-
form agnostic way and that have been tested and validated as such. To enable
systematic studies involving the download of microarray data from databases
(possibly at different times) and its normalization and storage for later re-
trieval, allowing a non-linear use of the data —for example, in successive
analyses incorporating different amounts of data as available or necessary, it
is essential that a downloaded microarray set need not be normalized more
than once. Here, we introduce a novel cross-platform normalization method
fulfilling all these conditions. The algorithm is called CuBlock, which stands
for Cubic approximation by Block. We validate its performance using various
metrics and compare it to six methods that can be used in a cross-platform
context, namely, the log2 transform of raw data, ComBat, YuGene, DBNorm,
Shambhala and UPC. Overall, CuBlock shows the best performance in this
group.

1.3 Methods

In this section we introduce the data sets used for the validation of CuBlock
and describe the data preprocessing approach and the methods used for
benchmarking and validation.

1.3.1 The data sets

We selected three data sets, including two for benchmark analysis which were
previously used in similar studies (Rudy and Valafar, 2011; Borisov et al.,
2019). The first data set (here called the single-platform data set) originates
from (Maire et al., 2013a,b; Maubant et al., 2015). It contains samples from
a unique platform and was used to show CuBlock’s consistent results in this
context. The second set (here called the reference data set) originates from
projects MAQC (MAQC-I) (MAQC Consortium, 2006) and SEQC/MAQC-
III (SEQC/MAQC-III Consortium, 2014), which made use of reference RNA
samples to assess repeatability of gene-expression microarray data within a
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specific site, reproducibility across multiple sites and comparability across
multiple platforms. The third set (here called the experimental data set)
originates from a study trying to assess profile differences of human sper-
matozoal transcripts from fertile and teratozoospermic males (Platts et al.,
2007). The use of these two data sets allows us to assess, independently,
effects from technical replicates (same biosample, analysed in different labs
with repetition) and biological replicates (different biosamples corresponding
to a same condition).

1.3.1.1 The single-platform data set

The data are available in GEO with accession number GSE65212 and contain
breast cancer samples including 5 biological groups, TNBC, Her2, LuminalA,
LuminalB and Healthy. The platform is the Affymetrix Human Genome
U133 Plus 2.0 Array (GPL14877) and the CEL files were read with the
CDF file GPL14877 HGU133Plus2 Hs ENTREZG.cdf. In order to focus on
patient samples, the cell lines contained in this data set were omitted.

1.3.1.2 The reference data set

The data of this set are accessible in GEO with accession numbers GSE5350
(MAQC-I) and GSE56457 (MAQC-III), respectively. The set contains mi-
croarray gene-expression data corresponding to four titration pools from two
distinct reference RNA samples: (A) Stratagene’s Universal Human Refer-
ence RNA pool; (B) Ambion’s Human Brain Reference RNA pool; (C ) pool
with an A:B ratio of 3:1; (D) pool with an A:B ratio of 1:3. These biosam-
ples had been analysed using different platforms and in different sites, as
described (MAQC Consortium, 2006; SEQC/MAQC-III Consortium, 2014).
Following the work from Rudy and Valafar (2011) and Borisov et al. (2019),
we selected data from six of the platforms (between parentheses, data-set
identifier in this study, GEO platform ID and project of origin):

• Affymetrix Human Genome U133 Plus 2.0 Array (AFX, GPL570, MAQC-
I): 3 experiments (sites) (AFX 1 to AFX 3), with 4 biosamples (A-D)
per experiment and 5 replicates per biosample (60 samples)

• Agilent-012391 Whole Human Genome Oligo Microarray G4112A (AG1,
GPL1708, MAQC-I): 3 experiments (AG1 1 to AG1 3), with 4 biosam-
ples (A-D) per experiment and 5 replicates per biosample (60 samples)
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• Illumina Sentrix Human-6 Expression BeadChip (ILM, GPL2507, MAQC-
I): 3 experiments (ILM 1 to ILM 3), with 4 biosamples (A-D) per ex-
periment and 5 replicates per biosample (59 valid samples)

• Illumina HumanHT-12 V4.0 Expression Beadchip (HT12, GPL10558,
MAQC-III): 2 experiments (ILM COH and ILM UTS), with 4 biosam-
ples (A-D) per experiment and 3 replicates per biosample (24 samples)

• GeneChip R© PrimeViewTM Human Gene Expression Array (PRV, GPL16043,
MAQC-III): 1 experiment (AFX USF PRV), with 4 biosamples (A-D)
and 4 replicates per biosample (16 samples)

• Affymetrix Human Gene 2.0 ST Array (HUG, GPL17930, MAQC-III):
1 experiment (AFX USF HUG), with 4 biosamples (A-D) and 4 repli-
cates per biosample (16 samples)

Note that in the MAQC-I study the following microarrays from AG1
were discarded as outliers after the Agilent’s Feature Extraction QC Re-
port: AG1 1 A1, AG1 2 A3, AG1 2 D2, AG1 3 B3. Since the data for these
microarrays is nevertheless deposited and we wanted our analysis to be as
independent as possible of platform-dependent data-preprocessing steps, we
considered also their inclusion. To this end, we evaluated the correlation
of the data between all AG1 samples and observed that the ”outliers” are
highly correlated to the non-outliers of the same experiment and of the other
two experiments (about 0.97 in both cases). A dimension reduction of the
raw data showed also no outliers. We therefore decided to include these four
microarrays in the data set.

1.3.1.3 The experimental data set

This data set contains spermatozoal RNA samples from normally fertile (N )
and heterogeneously teratozoospermic (T ) subjects and is accessible in GEO
with accession number GSE6969. The samples had been analysed on three
different platforms (between parentheses, data-set identifier in this study and
GEO platform ID):

• Affymetrix Human Genome U133 Plus 2.0 Array (AFF, GPL570): 13
independent biosamples of type N and 8 of type T
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• Illumina Sentrix Human-6 Expression BeadChip (ILL1, GPL2507): 5
independent biosamples of type N and 8 of type T. All ILL1 biosamples
are replicates of AFF biosamples.

• Illumina Sentrix HumanRef-8 Expression BeadChip (ILL2, GPL2700):
4 independent biosamples of type N and 6 of type T

1.3.2 Data processing

To make the analysis as platform agnostic as possible, we took the image-
processed raw intensities for all non-control probes and disregarded any
platform-dependent background-signal correction such as that provided by
mismatch probes in Affymetrix platforms. CEL files for Affymetrix and
txt files for the other platforms were used. Probes with invalid intensities
(NaN) in data sets HT12 and HUG were ignored. For Affymetrix microar-
rays, the intensities of probes constituting a probe set were averaged. We
note that in the context of this study preprocessing of Affymetrix probe
sets by simple averaging performed just as well as more complex treatments
including background correction and RMA median polish (Irizarry et al.,
2003), which was not completely unexpected —for example, Hubbell et al.
(2002) found that simple averaging performed comparably to more robust ap-
proaches from the Affymetrix Micro Array Suite under low-noise conditions.
From this point onward, the Affymetrix probe-set-average intensities were
treated the same way as the raw probe intensities from the other platforms
(the number of Affymetrix probe sets per gene being on the same order as
the number of probes per gene in other platforms). Note that we could have
skipped the probe-set-averaging step and worked directly with all Affymetrix
probes. While we tried this, it increased significantly the computational cost
of the normalization procedure (due to the several-fold increase in number
of probes) at a marginal gain. At this point, probe-set average intensities
(Affymetrix) and raw probe intensities (other platforms) were log2 trans-
formed —we also tried applying quantile normalization in the preprocessing
without it improving significantly the results. CuBlock normalization was
then applied for each platform separately. Since probes vary among the dif-
ferent microarray platforms, the normalized data sets were then transformed
from the probe level to the protein level by mapping probes to UniProtKB
accession numbers (ACs) and keeping only those probes that map to an AC
present in all platforms. The mapping to proteins was performed by taking
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the gene identifiers from the GEO tables containing the microarray data.
Each selected AC was then assigned an intensity equal to the average of
the normalized intensities of associated probes in the given microarray. The
choice of UniProt ACs, rather than gene identifiers, was made to facilitate
streamlining with protein-level post-normalization analysis in studies where
microarray data is used to infer protein expression (i.e. probes matching CDS
regions). We note, however, that CuBlock delivers normalized data at the
probe level, meaning that the user is free to summarize the data at the gene
level if appropriate, and that potential information regarding, for example,
probes matching non-coding exon regions, will remain available.

To benchmark CuBlock against established normalization methods ap-
plicable in a generic cross-platform context, we compared it to a simple
log2 transform and to the methods ComBat (Johnson et al., 2007), YuGene
(Lê Cao et al., 2014), DBNorm (Meng et al., 2017), Shambhala (Borisov
et al., 2019) and UPC (Piccolo et al., 2013). YuGene, DBNorm and UPC
were applied following the same procedure used for CuBlock, i.e., normal-
ization of the log2 transform of the probe intensities and successive map-
ping to ACs. ComBat requires all microarrays to be normalized together,
which implies their merging before normalization. Therefore, in this case
the mapping to UniProtKB ACs and selection of ACs present in the differ-
ent platforms was performed after log2 transform and before ComBat nor-
malization. We note that DBNorm allows normalization per sample and
per platform. We performed both, but show only the results obtained with
sample-wise normalization since they are better. Comparison to Shambhala
was done only for the data sets AFX, AG1 and ILM from the reference
data set, since Shambhala-normalized data for these sets has been already
reported by the authors as supplementary data to Borisov et al. (2019). DB-
Norm was only used on the experimental data set, as the calculations turned
out to be forbiddingly slow. To perform the calculations we used the R
package sva for ComBat (https://bioconductor.org/packages/release/
bioc/html/sva.html) and the packages provided by YuGene (https://
cran.r-project.org/web/packages/YuGene/index.html) and DBNorm (https:
//github.com/mengqinxue/dbnorm) authors in the respective papers. Cal-
culations with these programs were performed with default settings. For
DBNorm, in order to reproduce the general case (e.g. this study), in which
a reference microarray cannot be straightforwardly selected, we used the op-
tion of normalization into a normal distribution. For UPC (https://www.
bioconductor.org/packages/release/bioc/html/SCAN.UPC.html), we used

31

https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://cran.r-project.org/web/packages/YuGene/index.html
https://cran.r-project.org/web/packages/YuGene/index.html
https://github.com/mengqinxue/dbnorm
https://github.com/mengqinxue/dbnorm
https://www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html
https://www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html


its generic function for expression set, which takes expresion×samples data,
with default parameters from the package.

1.3.3 Comparison and validation methods

To validate and compare the cross-platform normalization methods evaluated
in this study we used the methodology described below. The objective was
to increase the sensitivity, i.e. the identification of true biological differences,
while minimizing platform and various kinds of replica effects. All validation
methods were applied on a subset of 500 proteins that best distinguish two
given biological groups.

To select the 500 proteins we first performed a differential analysis on
the normalized data, for all platforms in the reference or experimental data
set. To this end, we performed Welch’s t-test to evaluate, for each protein,
the difference between the associated mean intensities in units of uncertainty
(the t-statistic) in two biological groups, A and B from the reference data set
(total of 16624 proteins) or N and T from the experimental data set (total of
16937 proteins). Note that we deliberately avoid considerations on whether
the data sets meet the requirements of the t-test, since we used the test
simply to identify the 500 proteins with largest separation of group means
per uncertainty unit, that is, with lowest associated p-values, irrespective
of the error in the p-value and, therefore, of its valid interpretation as a
probability. Although for such purpose we do not require the calculation of
FDR-adjusted p-values (q-values) (Storey, 2002), since they conserve p-value
ranking, we did obtain them and show corresponding ROC-like curves (the
cumulative distribution function of the q-values) in Figure 1.1. We decided
to select a fixed number of proteins, rather than proteins with a p- or q-value
below a given arbitrary threshold, to enable the comparison of methods using
data sets of equal and reasonably large dimensionality. We note, nevertheless,
that the 500-protein cut corresponds to an FDR well below 10−2 (Figure 1.1).
The differential analysis was performed with the MATLAB function mattest.
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Figure 1.1: ROC-like curves. The cumulative distribution function of the FDR-adjusted
p-values (also called q-values) plotted for the reference and the experimental data set after
normalization with CuBlock, log2, ComBat, YuGene, DBNorm and UPC. The dotted
horizontal line represents the 500-protein cut. Plot A corresponds to the reference data
set. Plot B corresponds to the experimental data set.

1.3.3.1 Silhouette plot

Silhouette plots are graphical displays of data partitions (Rousseeuw, 1987),
where clusters are represented by so-called silhouettes generated by compar-
ison of cluster tightness and separation. The method assigns a silhouette
value between -1 and 1 to each element of a cluster, indicating if the element
is well clustered (value close to 1), lies between two or more clusters (close to
0) or is likely misclassified (close to -1). The silhouette plot is then generated
by representing the values for all elements as bars, for the different cluster
partitions. We computed three silhouette plots for the reference data set:
one identifying clusters with platforms, one where the data was assigned to
groups A∪C and B∪D and one where the partitioning was represented by
sets A, B, C and D. For the experimental data set, silhouette plots based
on platform partitioning and T vs. N partitioning were computed. The
MATLAB function silhouette was used to compute the silhouette plots.

1.3.3.2 t-SNE dimension reduction

t-SNE (van der Maaten and Hinton, 2008) is a stochastic dimension-reduction
method aimed to preserve the local structure of data (keeping the low-
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dimensional representation of very similar data points close together) while
retaining essential traits of global structure. It analyses the neighbourhood
of the data points by calculating pairwise conditional probabilities repre-
senting their similarity. The method then tries to find a low-dimensional
representation that minimizes the difference between the high-dimensional
and low-dimensional conditional probabilities. The parameter controlling
the number of neighbours is called perplexity, and is typically given values
between 5 and 50. Due to its stochastic nature and the dependence on the
chosen perplexity parameter, the algorithm may converge to irrelevant solu-
tions. We thus performed 10 runs for each of a number of perplexity values
and selected the one producing the most consistent biological partitioning
according to the average silhouette values. For the reference data set we
used perplexity values from 5 to 50, in increments of 5, and selected the rep-
resentation giving the best clustering relative to sets A, B, C and D. For the
experimental data set, we used perplexity values 5, 10 and 15 and selected
the representation giving the best clustering relative to sets T and N. The
MATLAB function tsne was used to perform the t-SNE dimension reduction.

1.3.3.3 Dendrogram

We performed a hierarchical clustering analysis using the Euclidean distance
as metric and the arithmetic mean as linkage criterion, and represented the
resulting cluster hierarchy as a dendrogram. To assess the significance of
the clusters, we applied multiscale bootstrap resampling as provided in the
R package pvclust (Suzuki and Shimodaira, 2006). By default, this package
considers 10 relative bootstrap sample sizes (bootstrap sample size divided
by total sample size), from 0.5 to 1.4, with 1000 resamplings per sample size,
leading to a total of 10000 bootstrap resamples. The package provides two
statistics to estimate the significance of the obtained clusters: the bootstrap
probability (BP) or frequency (expressed as percentage) of observation of a
given cluster in the bootstrap resamples, and the approximately unbiased p-
value (AU), an unbiased version of BP. More details on multiscale bootstrap
resampling can be found in Shimodaira (2004). We plot the dendrograms
using the R package dendextend.
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1.3.3.4 SVM classification

The goal of this analysis was to assert whether relevant patterns can be found
using the data from only one platform. Support vector machines (SVM)
(Cortes and Vapnik, 1995) are binary classifiers applicable to problems that
are reducible to a binary outcome, such as the T and N phenotypes in our
experimental data set. We trained a linear support vector machine model for
each platform using the following approach. To reduce feature-vector dimen-
sionality, where dimensions are proteins (more specifically their microarray-
derived intensities), while retaining the capacity to asses how well the 500
proteins separate the T and N populations, the training was performed six
times, starting with dimension 5 and increasing it up to dimension 10. For
each of 1000 runs with a given dimensionality, we selected randomly from the
500 protein set as many proteins as dimensions, extracted the correspond-
ing data from sets T and N, trained a linear SVM model for each platform,
separately, and tested it on the other two platforms. This led to a total
of 6000 models per platform. For each platform, we calculated the mean
and standard deviation of different classification scores over the 6000 mod-
els, namely, Accuracy, Matthews Correlation Coefficient (MCC) (Boughor-
bel et al., 2017), Balanced Accuracy and Area Under the ROC Curve (AUC)
(Fawcett, 2006). The MATLAB function svm was used to train the SVM
models.

1.4 Algorithm

The CuBlock algorithm relies on the simple and widely used assumption that
most genes are neither over- nor under-expressed (Yang et al., 2002). Thus,
a transformation following the cubic polynomial x3 will leave most of the
genes around 0 and slowly differentiate the extremes, i.e. the under- and
over-expressed genes. The complementary idea in CuBlock is the use of a
block-wise transformation, which had been already implemented successfully
in XPN (Shabalin et al., 2008)). To this end, CuBlock partitions probes into
clusters and, for each sample and probe cluster (i.e. for each data block),
transforms the data by a procedure that involves its mapping to objective
values between -1 and 1 (with density increasing toward 0) and the fitting
of a cubic polynomial to the resulting distribution (see below). By using
data blocks, different profiles present (mixed) in the full data set are consid-
ered, and as many different cubic polynomials are fitted to them, underlying
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different shapes contained within the original distribution. A pseudo code
of the CuBlock algorithm is described in Figure 1.2. It calls two additional
algorithms with pseudo codes provided in Figures A.1 and A.2.

Figure 1.2: Pseudocode describing the CuBlock algorithm (see description in Section
1.4).

The input to CuBlock is a matrix X containing the log2 transform of the
gene-expression microarray intensities, where columns are samples and rows
are probes. As discussed in section 1.3.2 it is up to the user to decide any
level of preprocessing of the input log2-transformed intensities, for example,
probe-set summarization for Affymetrix microarrays.

CuBlock makes use of the k -means clustering algorithm (Lloyd, 1982) to
partition probes in the space defined by the samples —a probe data point is
a vector of probe intensities of dimension equal to the number of samples–
and is applied per platform, i.e. the k -means clustering is performed for all
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samples of a given platform. k -means is an iterative algorithm that tries to
partition the data into a predefined number k of non-overlapping clusters,
starting from a random initialization of their centroids. Because of the ran-
dom initialization, clusters from different runs may differ, and the core part
of the CuBlock algorithm is repeated several times for different solutions of
k -means. Thus, input parameters k and N in Figure 1.2 refer to the chosen
number of k -means clusters and repetitions, which in this work took values of
5 and 30, respectively. The number of clusters was chosen to be low enough
that the k -means algorithm will not, for some partitions, converge always to
the same solution and high enough that blocks with different distributions
will be obtained. The CuBlock algorithm finds first a probe-cluster parti-
tion in the space defined by the samples and then applies its normalization
scheme to data blocks defined as those (log2) probe-intensity values from a
sample that belong to a given cluster. Therefore, for k clusters and m sam-
ples we have a total of k ·m blocks. The advantage of the normalization by
block is that it decomposes the distribution of probe intensities of a sample
into its different block distributions, according to similarities between probes
found by the clustering algorithm in the space of all samples. These different
distributions will enable the emergence of different patterns present in the
data. Instead, if the blocks were selected at random or the whole sample
was used, the normalization method would estimate parameters based on a
unique distribution, masking these different patterns. Although we initially
determine the probe clusters using all samples, we then normalize sample by
sample to reduce the dependence of the normalization on the full sample col-
lection. The strategy of normalization by block is similar to that used by the
cross-platform normalization method XPN (Shabalin et al., 2008). However,
XPN defines probe clusters and sample clusters with two independent appli-
cation of k -means (one on the input matrix and the other on its transpose)
and blocks are then constituted by all possible combinations of one sample
cluster with one probe cluster.
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Figure 1.3: The different steps of the CuBlock algorithm for an example block. A:
histogram of the untransformed block. B: histogram of the z-transformed block. C: target
values (output values) of the sorted z-transformed block (input values) as obtained after
the GetTargetValues algorithm. D: values after evaluation of the fitted polynomial (output
value) on the sorted z-transformed block (input value); the cubic polynomial’s coefficients
are such that these values minimize the root mean square error with the target values
plotted in C. E: modified values (output value) as obtained after the ModPol algorithm; the
decreasing values in D are corrected in order to preserve data sorting upon normalization.
F: histogram of the normalized block.
The example block contains a few positive outliers that are identified by the fitted cubic
polynomial in the decreasing part; this part is corrected by equating the decreasing values
to the last increasing point and letting the final increasing part continue its growth from
this point.
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For each block, and each of the N repetitions of the k -means clustering,
CuBlock fits a cubic polynomial to a mapped set of points symmetrically
distributed between -1 and 1 with density increasing toward zero. This is
performed in four steps, as shown in Figure 1.2. First, the block data is lin-
early transformed to z-scores (zero mean and unit standard deviation). These
are then used as input values of a mapping function whose output values will
be used to fit the cubic polynomial, as described in the pseudocode shown in
Figure A.1. The mapping associates the sorted values present in the block
to an equal number of equidistant points between -1 and 1, and takes these
new points to an uneven power in order to have their distance decrease as
they approach zero from either side (Figure A.1.3). The exact uneven power
will determine how slow is the growth of the points around zero, and is se-
lected such that, on average, the values of the block that are within standard
deviation, i.e. the block values between -1 and 1, are mapped to a value
smaller than 0.1 (Figure A.1.4). The algorithm tries uneven powers between
3 and 21 and the first one that fulfills the criterion is selected. Next, the
algorithm finds the coefficients of a cubic polynomial that, when evaluated
on the sorted block data (input values), best fits the output values from the
mapping function (Figure A.1.3). We chose to fit a cubic polynomial instead
of a higher degree one to avoid overfitting. Polynomial coefficients were ob-
tained with the MATLAB function polyfit, with degree 3.
If the block data is not symmetric or contains many outliers, a cubic poly-
nomial will produce a poor fit. Thus, the polynomial will increase along
the symmetric part of the block and decrease as it reaches the outliers (Fig-
ure A.1.5). Despite leading to a poor fit, this feature can be used to identify
asymmetry issues and outliers. When this is the case and decreasing values
are identified after evaluating the polynomial on the block data, the decreas-
ing values are corrected in order to preserve data sorting upon normalization.
Roughly, the correction equates the decreasing values to the last increasing
value (after an increasing section) or to the last decreasing value (before an
increasing section). The precise corrections are described in Figure A.1.5,
and the cases where the cubic polynomial might decrease are considered in
Figure A.2.
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Figure 1.4: Illustration of possible target values (output value) with respect to the sorted
z-transformed block (input value) as described in the GetTargetValues algorithm. D is a
vector containing the target values and equals Lp where p is an uneven power and L is a
vector of equidistant points between −1 and 1 (the length of L is the number of points
in the block). [iStdDown : iStdUp] represents the set of indices corresponding to the
points in the sorted z-transformed block that are between −1 and 1, i.e. the points within
standard deviation; mean(D[iStdDown : iStdUp]) is the average of the output values
contained between the two horizontal lines in the plots. The target values are D = Lp

where p is the smallest uneven power such that mean(D[iStdDown : iStdUp]) is smaller
than 0.1.
A: target values for p = 3; mean(D[iStdDown : iStdUp]) = 0.095. B: target values for p =
5; mean(D[iStdDown : iStdUp]) = 0.033. D: target values for p = 7; mean(D[iStdDown :
iStdUp]) = 0.013.
In this example block, the chosen p is 3.
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Figure 1.5: Illustration of example modifications to correct for the decreasing values in
the evaluation of the fitted polynomial (output value) on the z-transformed sorted block
(input value) as described in the ModPol algorithm. A-B: example on one block with the
output values before (A) and after (B) the correction. C-D: example on another block
with the output values before (C) and after (D) the correction.
xDown1 and xDownL are the first and last decreasing values, respectively, and xUp1
and xUpL are the first and last increasing values, respectively. These values are used to
identify the decreasing part(s) which will be modified to be equal to the closest point in
the main increasing part.

The output of CuBlock is a matrix of normalized gene-expression values,
where columns are samples and rows are probes. As discussed in section
1.3.2 it is up to the user to decide at which level and using which database
codes for the mapping to that level, the probe values should be summarized.

Figure 1.6 shows the histograms of different samples before and after nor-
malization. While before normalization the samples follow clearly different
distributions, after normalization the distributions are much more homoge-
neous. We note that before normalization the distributions are clearly plat-
form dependent (compare A and C, which correspond to the same biosample
but different platforms, and B and C, which correspond to different biosam-
ples and the same platform). This effect is remarkably corrected after nor-
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malization.

Figure 1.6: Example histograms for samples from different platforms. A-C: histograms
before CuBlock normalization and after log2 transform. D-F: histograms after CuBlock
normalization. A, D: biosample A, platform AFX; B, E: biosample B, platform AG1; C,
F: biosample A, platform AG1.

1.5 Results and discussion

The algorithm described in the previous section was applied to the data
introduced in Section 1.3.1 after preprocessing (see Section 1.3.2), and the
results were compared to those obtained with other normalization methods
as explained in Section 1.3.3. In line with the objectives stated in the in-
troduction, the discussion of the results evolves around the ability of the
methods to highlight biological patterns in a multi-platform context.

1.5.1 Single-platform data set

Although CuBlock was not developed for single-platform normalization —this
being already well covered by other methods, it can be also used for this pur-
pose. Thus, the single-platform data set was used to demonstrate that results
from CuBlock are very consistent with those from RMA normalization.
The RMA normalization consists of a background correction step, a quan-
tile normalization and a sumarization of the probes constituting a probe set
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with log2 transformation. It was performed using the MATLAB functions
rmabackadj, quantilenorm and rmasummary with default settings. The pre-
processing step for CuBlock was the same as presented in the section 1.3.2.
Since only one platform is used, the analysis was performed using all probe
sets and no summarization at the gene or protein level was performed, as
opposed to the analysis with the other two sets.
Figure 1.7 shows the dendrogram analysis (performed as indicated in Section
1.3.3.3 but with 100 resamplings instead of 1000 due to the larger size of the
data set), where the color bars under the dendrograms indicate the biological
group, and the t-SNE dimension reduction plot (see Section 1.3.3.2) with the
biological groups identified also by color. It can be observed that the results
from CuBlock in the identification of the 5 biological groups (TNBC, Her2,
LuminalA, LuminalB and Healthy) is consistent with those from the RMA
normalization.

Figure 1.7: Single-platform normalization by CuBlock and RMA. A: dendrogram for
CuBlock normalized data. B: dendrogram for RMA normalized data. C: t-SNE for
CuBlock normalized data; perplexity (Prp) and mean silhouette index (SI) values (see
Section 1.3.3.2): Prp=15, SI=0.58. D: t-SNE for RMA normalized data; Prp=15, SI=0.63.
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1.5.2 Reference data set

Three analyses were performed with the reference data set. The first one
contains a benchmark analysis between CuBlock, log2, ComBat, YuGene
and UPC with the data from the six platforms. The second one contains
a benchmark analysis between CuBlock and Shambhala with the data from
three of the six platforms. Finally, the third one consists of an analysis of
the reference data set with the removal of two biological groups.

1.5.2.1 Six platforms

Figure 1.8 and Figures A.3-A.6 show the results obtained with the different
normalization methods using the dendrogram, silhouette and t-SNE analyses,
respectively. The three validation methods show that CuBlock and ComBat
separate very clearly the biological groups A, B, C and D (except for a couple
of A points in ComBat’s case). ComBat tends to produce tighter but less
cleanly separated clusters for these four groups, as illustrated by both the t-
SNE (Figure A.4C) and silhouette (Figure A.3C) plots. CuBlock is the only
method that clusters the biological groups A and C, and B and D together
in the dendrogram plot (Figure 1.8A), and this is also underlined in the
corresponding silhouette plot in Figure A.5A, showing high and homogeneous
silhouette values. On the contrary, log2, ComBat, YuGene and to a smaller
extent UPC tend to cluster C with D (Figure 1.8B-E). In fact, log2 and
YuGene have difficulties to separate these two groups at all, while UPC has
serious difficulties to separate the groups C and D from the parent groups (A
and B ; see also Figure A.4). Figures A.5 and A.6 show silhouette plots using
the groups A∪C and B∪D and the platforms as given clusters, respectively.
We note that even though CuBlock is shown to emphasize the biological
differences and Figure A.6A indicates weak platform clusters, both the t-
SNE (Figure A.4A) and dendrogram (Figure 1.10A) plots show that, within
each of the A, B, C, D clusters, the samples are subclustered by platform.
As can be seen in these Figures, ComBat mixes the data from the different
platforms best, while YuGene, UPC and log2 are, approximately in this order,
worst at mixing platform data.
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Figure 1.8: Dendrogram analysis of the reference data set (six platforms) after normal-
ization with CuBlock (A), log2 (B), ComBat (C), YuGene (D) and UPC (E). Color bars
under the dendrograms indicate the biological group and platform corresponding to each
leaf; the BP (green) and AU (red) values (see Section 1.3.3.3) for some selected clusters
are indicated at the origin of the branches.

In Figure 1.8 and throughout this study, the log2 transform plays the role
of control method. As a second potential control, we also used a common ap-
proach consisting in platform-specific normalization of the samples followed
by a centering transformation. Figure 1.9 shows the dendrogram plot of the
RMA method (background correction, quantile normalization, summariza-
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tion at the probe-set level for Affymetrix platforms and log2 transformation)
followed by Z-score transformation (subtracting the sample’s mean and di-
viding by its standard deviation). It can be observed that the results are
only slightly better than those from a log2 transformation, for which reason
we kept the latter as the simplest approach.

Figure 1.9: Dendrogram analysis of the reference data set after RMA normalization and
centering by Z-score.

1.5.2.2 Three platforms

To compare the results from CuBlock and Shambhala (the latter reported by
Borisov et al. (2019) for the same data set), we also performed the analysis
for the three-platform subset used by the authors of Shambhala, namely
AFX, ILM and AG1. They had concluded that Shambhala separates well
A∪C from B∪D but not A from C or B from D. Using our selection of
500 proteins that best distinguish A from B, when looking at the results for
Shambhala in Figure 1.10B,D we observe that, while A∪C forms a relatively
clear cluster, all the B∪D points from AG1 samples are clustered with A∪C,
making B∪D a well defined cluster only for AFX and ILM. As illustrated
by the t-SNE and dendrogram plots and by the negative silhouette values
in Figure 1.10F, Shambhala does also not distinguish A, B, C and D from
each other well. The results for CuBlock in Figure 1.10A,C,E show the same
features already discussed in Section 1.5.2.1 using the data for six platforms.

46



Figure 1.10: t-SNE dimension reduction, dendrogram and silhouette plots for the ref-
erence data set (three platforms) after normalization with CuBlock and Shambhala. A:
t-SNE for CuBlock normalized data; point color and shape indicate biological group and
platform, respectively (right-hand legend); perplexity (Prp) and mean silhouette index
(SI) values (see Section 1.3.3.1): Prp = 25, SI = 0.97. B: corresponding analysis for
Shambhala-normalized data; Prp = 5, SI = 0.28. C, D: dendrograms for CuBlock (C)
and Shambhala (D) normalized data; color bars below the dendrograms indicate the bi-
ological group and platform corresponding to each leaf; the BP (green) and AU (red)
values (see Section 1.3.3.3) for some selected clusters are indicated at the origin of the
branches. E: silhouette plot for CuBlock-normalized data, using the groups A, B, C and
D as given clusters; SI values: 0.70 (A), 0.69 (B), 0.58 (C ) and 0.60 (D). F: silhouette plot
for Shambhala-normalized data; SI values: 0.49 (A), 0.27 (B), 0.03 (C ) and -0.52 (D).
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1.5.2.3 Missing biological groups

CuBlock is a method that works with the actual distribution of the data,
without making any assumption on its shape. It is, in that sense, dependent
on the actual differences found in the input data at the platform level —which
are in turn highlighted by the block treatment enabling the uncovering of
the different distributions present in the data. To test this dependence,
we analysed again the reference data set using CuBlock and ComBat while
removing the groups B and D from the platforms HUG and AG1. In other
words, these two platforms were normalized only with A and C samples.
The biological difference between A and C is that 25% of C is made of
B RNA samples. The other four platforms were normalized with all four
biological groups. As it can be seen in Figure 1.11A,C, CuBlock results in
the clustering of the C samples of HUG and AG1 separately and closer to
the D cluster of the other platforms than to their C cluster. However, the A
cluster remains a well-defined cluster for all platforms. This suggests that,
in the two platforms with missing groups, CuBlock emphasizes the difference
between the available data, as predicted above. For HUG and AG1, this
means emphasizing the differences between A and C (the only groups it
sees), thus bringing C closer to the D cluster formed by the other platforms,
since, as C itself, D is also a mixture of A and B. ComBat does however do
similarly in this regard (Figure 1.11B,D), with the C samples of HUG and
AG1 being even more mixed with the D samples, and the A samples of the
two platforms getting closer (see t-SNE plot) to the C samples of the four
other platforms, some of them ending up clustered (see dendrogram) in this
group.

1.5.3 Experimental data set

1.5.3.1 Three platforms

Figure 1.12 and Figures A.7-A.9 show the results obtained for the human
sperm data set, after normalization with CuBlock, log2, ComBat, YuGene,
DBNorm and UPC. CuBlock is the only normalization method that signif-
icantly distinguishes the two biological groups, T and N. The dendrogram
plots in Figure 1.12 and t-SNE plots in Figure A.8 show that ComBat has
troubles to establish a clear boundary between the two groups, particularly
for the ILL2 platform, while the other methods tend to misclassify the ILL2
samples corresponding to the N group. Similarly to the results for the refer-
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Figure 1.11: t-SNE dimension reduction and dendrogram plots for the reference data
set, with exclusion of the B and D samples from platforms HUG and AG1, after nor-
malization with CuBlock and ComBat. Point color and shape indicate biological group
and platform, respectively (right-hand legend). A: t-SNE for CuBlock normalized data;
perplexity (Prp) and mean silhouette index (SI) values (see Section 1.3.3.2): Prp = 15, SI
= 0.80. B: corresponding analysis for ComBat-normalized data; Prp = 10, SI = 0.67. C,
D: Dendrograms for CuBlock (C) and ComBat (D) normalized data; color bars under the
dendrograms indicate the biological group and platform corresponding to each leaf.
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ence data set (Section 1.5.2.1), CuBlock tends to sort the samples by platform
within the clusters T and N (except for one T sample from ILL2). To investi-
gate whether patterns that are found using one platform can be extrapolated
to the other platforms, we performed a SVM classification test as described
in Section 1.3.3.4. The results are shown in Table 1.1. In all cases, CuBlock
outperforms the other methods. It is also worth noting that no matter which
platform is used for the training based on CuBlock, the results are always
very similar. To a lesser extent, this is also true for DBNorm. However, us-
ing log2, ComBat, YuGene and UPC, training with ILL2 gives worse results
than with the other platforms, probably due to the fact that this platform
constitutes a better defined cluster, as shown in the silhouette plots in Figure
A.9.

1.5.3.2 Correlation analysis

In Figure 1.12, it can be seen that ComBat clusters more strongly AFF and
ILL1 (which contains replicates of AFF) than CuBlock does. As a recall, the
experimental data set contains three platforms AFF, ILL1 and ILL2 and two
biological groups T and N. The samples from the platform ILL1 are repli-
cates of a subset of samples of AFF. To discuss the results on replicates, we
computed the average pairwise Kendall correlation between different groups
of samples from this data set, as reported in Table 1.2. The actual groups of
samples in this table are:

• 1st column: the replicate samples shared by AFF and ILL1.

• 2nd column: the samples from one group (T or N) of AFF with the
opposite group of ILL1, i.e. AFF/T vs ILL1/N and AFF/N vs ILL1/T.

• 3rd column: same as the 2nd column for AFF and ILL2.

• 4th column: same as the 2nd column for ILL1 and ILL2.

If one would only look at the first column, ComBat would clearly be the
superior method in correlating replicates, and CuBlock the worst. However,
looking at the second column we can see that the average correlation between
different samples from different biological groups (same two platforms) is also
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Figure 1.12: Dendrogram analysis of the experimental data set after normalization with
CuBlock (A), log2 (B), ComBat (C), YuGene (D), DBNorm (E) and UPC (F). Color bars
under the dendrograms indicate the biological group and platform corresponding to each
leaf; the BP (green) and AU (red) values (see Section 1.3.3.3) for some selected clusters
are indicated at the origin of the branches.
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SVM classification scores (see Section 1.3.3.4)

Training
platform

Accuracy MCC Balanced Accuracy AUC

CuBlock

AFF 0.88± 0.08 0.76± 0.17 0.86± 0.10 0.98± 0.03
ILL1 0.92± 0.06 0.85± 0.12 0.91± 0.07 0.99± 0.02
ILL2 0.86± 0.16 0.74± 0.32 0.86± 0.17 0.99± 0.04

log2

AFF 0.77± 0.07 0.52± 0.16 0.71± 0.08 0.70± 0.11
ILL1 0.80± 0.06 0.64± 0.11 0.81± 0.06 0.81± 0.04
ILL2 0.44± 0.16 −0.13± 0.35 0.46± 0.16 0.24± 0.31

ComBat

AFF 0.73± 0.11 0.53± 0.20 0.76± 0.10 0.90± 0.08
ILL1 0.76± 0.08 0.57± 0.15 0.77± 0.08 0.90± 0.06
ILL2 0.61± 0.30 0.22± 0.61 0.61± 0.30 0.63± 0.36

YuGene

AFF 0.81± 0.07 0.63± 0.15 0.77± 0.08 0.91± 0.06
ILL1 0.87± 0.08 0.74± 0.16 0.87± 0.09 0.96± 0.04
ILL2 0.55± 0.07 0.07± 0.17 0.53± 0.07 0.97± 0.11

DBNorm

AFF 0.81± 0.07 0.62± 0.16 0.77± 0.09 0.91± 0.07
ILL1 0.86± 0.06 0.76± 0.09 0.87± 0.05 0.95± 0.04
ILL2 0.79± 0.13 0.61± 0.24 0.77± 0.13 0.96± 0.11

UPC

AFF 0.74± 0.08 0.45± 0.22 0.68± 0.10 0.82± 0.08
ILL1 0.82± 0.06 0.68± 0.09 0.83± 0.05 0.90± 0.05
ILL2 0.57± 0.10 0.10± 0.24 0.54± 0.11 0.75± 0.34

Table 1.1: Mean and standard deviation over the 6000 models per platform and method.
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very high with ComBat. That is, the preservation of the ranking for the ca.
17000 proteins when the samples are replicates (coefficient of 0.56) and when
the samples belong to different individuals with different phenotypes (coeffi-
cient of 0.46) is very similar, suggesting that the relatively high correlation
observed in column 1 is mostly due to factors other than the samples being
replicates. This is further corroborated by columns 3 and 4, as one would
expect the correlation coefficients in columns 2 to 4 to decrease relative to
that in column 1.
The platform effect is highlighted by the fact that in the Log2 row the cor-
relation between unrelated samples evaluated with platforms of the same
manufacturer (Illumina, 4th column) is almost twice as big as the one be-
tween replicates (1st column) that have been analysed with platforms from
two different manufacturers.
We also note that, compared to Log2, the only method that increases the
correlation (in all cases) is ComBat, which is also the only method that
normalizes the platforms together. CuBlock, on the other hand, reduces
the correlation between unrelated samples to 0 and, although the replicates
show low correlation in column 1, it is the method with the highest increase
in correlation in column 1 (where the correlation between replicates of AFF
and ILL1 is assessed), relative to column 2 (where the correlation between
unrelated samples from the same two sets, AFF and ILL1, is assessed). The
greater tendency shown by CuBlock two decorrelate the samples (one could
argue that a certain level of correlation is expected between samples from
the same tissue type, due to the constitutive expression of many proteins) is
inherent to the cubic polynomial fitting procedure.
With this table, the results shown in Figure 1.11 can be better understood:
CuBlock clusters ILL1 with ILL2 more than with AFF because, as it can be
seen in all the other rows in the table, they are highly correlated, even if they
are composed of different samples. While CuBlock reduced this platform-
induced correlation much better than the other methods, column 4 still shows
a correlation higher than those in columns 2 and 3 and close to that in col-
umn 1. Moreover, while it is true that, for ComBat and DBNorm, AFF and
ILL1 seem to be more related, it is also true that when using DBNorm ILL2
is also related to ILL1 and when using ComBat the inclusion of ILL2 leads
to rather poor results in terms of separation of the biological groups.
We can thus distinguish methods that tend to correlate the different plat-
forms to enable the comparison of samples from methods that tend to decor-
relate the platforms to highlight existing patterns in the samples. The pur-
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Kendall correlation table
replicates distinct groups distinct groups distinct groups
AFF/ILL1 AFF/ILL1 AFF/ILL2 ILL1/ILL2

CuBlock 0.11± 0.04 −0.03± 0.04 0.00± 0.02 0.09± 0.05
Log2 0.21± 0.07 0.16± 0.05 0.12± 0.04 0.41± 0.11

ComBat 0.56± 0.08 0.46± 0.10 0.57± 0.08 0.53± 0.08
DBNorm 0.18± 0.06 0.14± 0.04 0.11± 0.03 0.38± 0.09
YuGene 0.17± 0.06 0.13± 0.04 0.11± 0.03 0.37± 0.09

UPC 0.21± 0.07 0.16± 0.04 0.12± 0.03 0.42± 0.11

Table 1.2: The table displays average Kendall rank correlation coefficients, with stan-
dard deviation, calculated on the 16’936 proteins common to the different platforms. For
two sets of samples A and B, the value given corresponds to the average of the Kendall
coefficients between each sample of A and each sample of B.

pose of CuBlock is to compare samples from different platforms in order to
find patterns (or conclude the absence of patterns), it is not designed to per-
fectly overlap cross-platform replicates. Moreover, as already shown, high
correlation does not imply meaningful correlation, i.e. methods that excel at
overlapping cross-platform replicates tend also to overlap non-replicates.

1.6 Conclusion

We have introduced an algorithm for cross-platform normalization of gene-
expression microarray data as well as a strategy to validate cross-platform
normalization methods, with a focus on the capacity of the algorithm to
properly separate samples from different biological groups after normaliza-
tion and across multiple platforms. Overall, CuBlock showed good results
on the two data sets used in this evaluation, a data set specifically generated
for testing and standardization purposes and a data set from an actual ex-
perimental study. CuBlock could always differentiate, clearly, the underlying
biological groups after mixing data from up to 6 different platforms. Never-
theless, we observed that within each biological group the algorithm tends to
subcluster samples by platform, indicating a remaining, yet comparatively
small, platform effect. The ComBat algorithm (Johnson et al., 2007) showed
also good performance on the reference data set, with better mixing of data
from different platforms than all the other methods tested. However, on the
experimental data set, where samples are from different individuals and the
difference between biological groups might become less obvious than in the
reference data set, ComBat did not perform as well. Platform mixing was
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still good but the distinction between the two biological groups was not clear.
To rationalize the differences in platform-mixing properties between CuBlock
and ComBat, we performed a rank correlation analysis and show that meth-
ods normalizing all platforms together, like ComBat, tend to correlate the
data from the different platforms, as opposed to methods normalizing plat-
forms separately, which tend to decorrelate them. While high correlation
among samples from different platforms might be desirable in some set-ups,
there is no guarantee that this correlation will be meaningful, as shown for
ComBat, which in our test induced correlation among platforms almost in-
dependently of the actual level of expected correlation between them. As
already mentioned, ComBat also requires the platforms to be normalized
together, making it a less convenient method for systematic application to
multiple data sets. On the other hand, DBNorm —used only with the exper-
imental data set, as it proved computationally much more time demanding
than the rest, YuGene and UPC performed only slightly better than log2.
For the set evaluated, Shambhala lagged clearly behind the other methods,
arguably including a simple log2 transformation. Finally, we also showed,
by training SVMs with single-platform data from the experimental set, that
when normalizing the data with CuBlock the patterns that are found using
one platform can be extrapolated to the other platforms significantly better
than when the normalization is done with any other of the methods.

Because no assumptions are made on the distributions underlying the
input data, CuBlock can be thought of as a transformation which result re-
mains close to the input. CuBlock fits cubic polynomials to data blocks that
are found by k -means clustering, thereby trying to best fit the different dis-
tributions found in the data corresponding to a sample (different blocks need
not have the same distribution) and it does so without assuming a shape for
these distributions. As a consequence, CuBlock emphasizes the differences
within the input data at the platform level, making it sample-composition de-
pendent despite the only step in the algorithm where the microarray samples
from a given platform are considered together is when applying the k -means
algorithm (afterwards, each sample is considered separately). This sample
dependence was highlighted in this study when analysing the reference data
set after removing biological groups in some platforms. Nevertheless, the
sample dependence is even more prominent for algorithms normalizing plat-
forms together, such as ComBat.

We note that, while in this study the results were presented at the protein
level, CuBlock is applied and returns the normalized data at the probe level,
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as an appropriate level for gene-expression microarrays. In fact, like most
other methods, it could technically be applied at any expression × samples
level. Studying the effect of the application of CuBlock and other cross-
platform normalization methods at different levels with appropriate (and
possibly study-specific) preprocessing steps could be an interesting develop-
ment which would ideally lead to an appropriate systematic integration of
RNA-seq with gene expression microarrays. This however goes beyond the
scope of this study.

In summary, we have shown that CuBlock can be applied to data from
multiple microarrays in a platform agnostic way and preserves the biological
grouping of the samples, demonstrating a good performance for different
types of samples. It is therefore a tool appropriate for gene-expression studies
based on multiple microarray sets collected along multiple platforms and at
different times, thus facilitating the extraction of knowledge from the wealth
of microarray data available in public repositories and enabling the use of
these repositories as sources of Real-World Data.
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Chapter 2

CNN-PepPred: An open-source
tool to create convolutional NN
models for the discovery of
patterns in peptide sets.
Application to peptide-MHC
class II binding prediction

2.1 Abstract

Summary: The ability to unveil binding patterns in peptide sets has impor-
tant applications in several biomedical areas, including the development of
vaccines. We present an open-source tool, CNN-PepPred, that uses convolu-
tional neural networks to discover such patterns, along with its application
to peptide-HLA class II binding prediction. The tool can be used locally on
different operating systems, with CPUs or GPUs, to train, evaluate, apply
and visualize models.
Availability and Implementation: CNN-PepPred is freely available as a
Python tool with a detailed User’s Guide at: https://github.com/ComputBiol-IBB/
CNN-PepPred

https://github.com/ComputBiol-IBB/CNN-PepPred
https://github.com/ComputBiol-IBB/CNN-PepPred


2.2 Introduction

The prediction of antigenic determinants —epitopes– of specific proteins or
full proteomes is a key aspect of immunoinformatics, with a wide-range of
applications from the study of autoimmunity to the development of cancer
immunotherapies and therapeutic as well as prophylactic vaccines. For MHC
epitopes in particular, experiments coupling natural-ligand elution to mass
spectrometry identification (Caron et al., 2015) have led in recent years to
an explosion in the amount of data available on MHC peptide recognition,
enabling data-driven approaches to in-silico epitope prediction (Wang et al.,
2010).
The state-of-the-art in the prediction of peptide-MHC class II binding is
arguably represented by the NetMHCII family of algorithms (Andreatta
et al., 2015). Their core is a neural-network-based algorithm called NNAlign
(Nielsen and Lund, 2009). NetMHCII features an allele-specific algorithm,
while NetMHCIIpan deploys a universal network for the prediction of bind-
ing to any MHC class II allele with know protein sequence (Jensen et al.,
2018). The functionality of both tools is constrained to the application of
pre-trained models. NNAlign (Nielsen and Andreatta, 2017), on the other
hand, offers the possibility of training new models. These tools, however,
are only available as on-line platforms or executables and there exists, to our
knowledge, no reference providing information on the implementation details
of the neural network behind them, in a manner that would make it repro-
ducible. Recently, these algorithms have taken a new research direction in
order to include multiple-allele data sets (MA) (Alvarez et al., 2019; Reynis-
son et al., 2020). Other groups have also developed their own methods to
include MA data (Chen et al., 2019; Racle et al., 2019), but are also only
available for application purposes in the form of a platform or an executable.
While all these tools are being successfully used in multiple applications and
are amenable to non-expert use, we believe that the lack of clear implementa-
tion details and open code for the core predictive algorithm hinder their use
by bioinformatics researchers who need a tool that can be fully integrated in
larger codes and possibly modified to fit particular needs in different areas
of peptide recognition.
It is indeed to satisfy our own needs in this field that we developed CNN-
PepPred, a new tool for the discovery of patterns in peptide sets. The tool
was developed to conveniently fit general purpose needs such as the training
of models, their application to new data, their evaluation by cross-validation
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and gaining visual insight on the training process. The software is accompa-
nied by a detailed User’s Guide and has been tested on Linux and Windows,
using CPUs and GPUs. In the following section, we provide a concise de-
scription of CNN-PepPred.

2.3 Description

CNN-PepPred is based on Convolutional Neural Networks (CNN) and writ-
ten in Python. Figure 2.1B illustrates the architecture of the CNN, imple-
mented with the open-source libraries Keras (github.com/fchollet/keras)
and TensorFlow (tensorflow.org). The peptides are first encoded using the
blosum62 similarity matrix (Henikoff and Henikoff, 1992). In the schema, this
corresponds to filling the input table with the blosum62 similarity between
the residue (row) and the amino acid type (column). In order to deal with
the different lengths in the peptide sets, the symbol ”-” representing the ab-
sence of further residues was introduced and added at the end of all peptides
in the training set so that their lengths match. The convolutional layer ap-
plies different filters (only one is illustrated in the schema) to all overlapping
l -mers in the peptide, where l is a user defined parameter, typically l = 9
in applications related to MHC class II. The ReLu activation layer sets all
negative outputs to zero. The MaxPool layer will select the highest outputs
and the dense layer will connect the results to generate the output, i.e. the
predicted binding score. The final model is an equally-weighted ensemble of
CNNs, resulting from different numbers of filters in the convolutional layer
times the number of initial configurations.
Both NNAlign and CNN-PepPred use a blosum encoding. The main differ-
ence between the two methods is that while NNAlign uses a two-step proce-
dure that identifies a core l -mer within a peptide and then applies a network
weight configuration to the core (and flanking regions) to generate the out-
put, CNN-PepPred uses convolution to slide through all possible overlapping
l -mers and subsequent layers to activate them and generate the output. In
other words, CNN-PepPred does not select a core binder but makes full use
of all overlapping l -mers within the peptide, and what we may considered
the core binder is the overlapping l -mer that is most activated during the
feed-forward pass.
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Figure 2.1: A. Main workflow of CNN-PepPred. Given a peptide set, the tool can be used
to train a model to fit known binding outcomes and visualize the binding motif and the
trained model configuration. The user can cross-validate the model and use a previously
trained model to evaluate new instances. B. Schematic representation of the convolutional
neural network architecture of CNN-PepPred.

The tool contains many functionalities that can be conveniently called by
filling a simple template. Users can train their own models, evaluate them
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through cross-validation, save them and apply them to new data (Figure
2.1A). It is also possible to visualize the binding motif of a trained model
with Logomaker (Tareen and Kinney, 2019). For more insight on the feed-
forward pass on a selected peptide set, the user can also print all layers and
corresponding outputs of the trained model. In the latest version to date
(Version 0.1.1), the tool allows training with transfer learning (see Section
2.4.5). In addition, advanced users may incorporate the CNNPepPred class,
providing all the functionality, to other Python developments.
When applied to HLA class II binding, using 51 alleles with data curated
by the IEDB (www.iedb.org, see Section 2.5.1 below for details), our tool
showed significant improvement over NNAlign-2.1 (Nielsen and Andreatta,
2017) in predictive performance. To ensure balanced binding/non-binding
sets, CNN-PepPred provides a function that generates random, naturally
existing peptides following the length distribution of the binding peptides.
The models trained with these sets are available and can be applied to new
data using the template. In order to test and benchmark the method, we
performed a 5 fold cross-validation with CNN-PepPred and NNAlign-2.1,
where the folds are minimizing the overlap between folds of nonamers con-
tained within their respective peptides and were the same for both meth-
ods. The results are summarized in Figure 2.2, which illustrates the box-
plot of the F1 and AUC scores for all alleles and per group of alleles (DR,
DP and DQ). The weighted (by the number of binders) average F1(AUC)
score for CNN-PepPred is 0.845(0.919) while it is 0.824(0.896) for NNAlign.
A Wilcoxon signed-rank test was performed to compare the scores, giv-
ing a p-value of 0.00082 for the F1 score and smaller than 10−5 for the
AUC. The data with cross-validation folds are available in the repository
https://github.com/ComputBiol-IBB/CNN-PepPred and a more detailed
description of the analysis is given in Section 2.5.1.2.
We used the T-cell epitope benchmark data set from Jensen et al. (2018)
as an independent evaluation set for the models trained with the data re-
trieved from IEDB. CNN-PepPred was found to perform better on aver-
age than NetMHCIIpan-3.2 (Jensen et al., 2018), although the results were
overall similar as shown in the below Section 2.5.3. Section 2.5.2 contains
also a cross-validation comparison with the data from NetMHCII-2.3 and
NetMHCIIpan-3.2, giving overall similar results. Note that the latter two
tools cannot be used themselves to train new models.
In the below Sections 2.5.1.2 and 2.5.2.2 we compare computation times for
CNN-PepPred, NNAlign and NetMHCIIpan, showing that, for the specific
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CPU and GPU used, CNN-PepPred compares well to NNAlign for training
and clearly outperforms NetMHCIIpan for prediction, NNAlign being the
faster prediction tool.
In the latest version of CNN-PepPred (Version 0.1.1), the tool offers the pos-
sibility to train using transfer learning (see Section 2.4.5). The application of
the cross-validation set up to models trained with transfer learning showed
an increase in predictive performances (see Section 2.5.1.4). With applica-
tion on the evaluation set, an increase in performances was also observed,
however to a lesser extent (see Section 2.5.3). This could be an indication
that training with transfer learning might overfit some redundancy present
in the full training set and could not generalize as well to different data if
the parameters are such that the training rate or number of training cycles
are too high.
The github repository contains two main Python scripts, one with the CN-
NPepPred class and one that uses this class following a template filled by
the user. The class was written so that it could be also used independently
from the template. The Appendix B contains a full description of the class,
its parameters, the template, the installation and some examples on how to
run it.
The core training algorithm of CNN-PepPred consists only of a few Keras
lines of code. It can therefore be also used independently from the tool,
as a starting point for further analysis and/or generalizations that could fit
other types of peptide sets. Thanks to the ease of use of libraries like Keras
and TensorFlow, the implementation does not require the developer to fully
implement specific feed-forward/back-propagation passes that would fit one
type of data. The CNN-PepPred code is provided under an open-source
license.
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Figure 2.2: A. Boxplot of cross-validation F1 score of CNN-PepPred (red) and NNAlign-
2.1 (blue) on all alleles and different subsets of them (DR, DP and DQ). The p-value
corresponds to a Wilcoxon signed-rank test between the scores of the two methods on all
alleles. The solid/dashed lines represent the median/mean values. B. Equivalent to B.
with the AUC score.

2.4 Method

2.4.1 Peptide’s encoding

The peptides are encoded using the blosum62 similarity matrix Henikoff and
Henikoff (1992).

,A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V,-

A,4,-1,-2,-2,0,-1,-1,0,-2,-1,-1,-1,-1,-2,-1,1,0,-3,-2,0,-4

R,-1,5,0,-2,-3,1,0,-2,0,-3,-2,2,-1,-3,-2,-1,-1,-3,-2,-3,-4

N,-2,0,6,1,-3,0,0,0,1,-3,-3,0,-2,-3,-2,1,0,-4,-2,-3,-4

D,-2,-2,1,6,-3,0,2,-1,-1,-3,-4,-1,-3,-3,-1,0,-1,-4,-3,-3,-4

C,0,-3,-3,-3,9,-3,-4,-3,-3,-1,-1,-3,-1,-2,-3,-1,-1,-2,-2,-1,-4

Q,-1,1,0,0,-3,5,2,-2,0,-3,-2,1,0,-3,-1,0,-1,-2,-1,-2,-4

E,-1,0,0,2,-4,2,5,-2,0,-3,-3,1,-2,-3,-1,0,-1,-3,-2,-2,-4

G,0,-2,0,-1,-3,-2,-2,6,-2,-4,-4,-2,-3,-3,-2,0,-2,-2,-3,-3,-4
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H,-2,0,1,-1,-3,0,0,-2,8,-3,-3,-1,-2,-1,-2,-1,-2,-2,2,-3,-4

I,-1,-3,-3,-3,-1,-3,-3,-4,-3,4,2,-3,1,0,-3,-2,-1,-3,-1,3,-4

L,-1,-2,-3,-4,-1,-2,-3,-4,-3,2,4,-2,2,0,-3,-2,-1,-2,-1,1,-4

K,-1,2,0,-1,-3,1,1,-2,-1,-3,-2,5,-1,-3,-1,0,-1,-3,-2,-2,-4

M,-1,-1,-2,-3,-1,0,-2,-3,-2,1,2,-1,5,0,-2,-1,-1,-1,-1,1,-4

F,-2,-3,-3,-3,-2,-3,-3,-3,-1,0,0,-3,0,6,-4,-2,-2,1,3,-1,-4

P,-1,-2,-2,-1,-3,-1,-1,-2,-2,-3,-3,-1,-2,-4,7,-1,-1,-4,-3,-2,-4

S,1,-1,1,0,-1,0,0,0,-1,-2,-2,0,-1,-2,-1,4,1,-3,-2,-2,-4

T,0,-1,0,-1,-1,-1,-1,-2,-2,-1,-1,-1,-1,-2,-1,1,5,-2,-2,0,-4

W,-3,-3,-4,-4,-2,-2,-3,-2,-2,-3,-2,-3,-1,1,-4,-3,-2,11,2,-3,-4

Y,-2,-2,-2,-3,-2,-1,-2,-3,2,-1,-1,-2,-1,3,-3,-2,-2,2,7,-1,-4

V,0,-3,-3,-3,-1,-2,-2,-3,-3,3,1,-2,1,-1,-2,-2,0,-3,-1,4,-4

-,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1

The symbol ”-” stands for the absence of amino acids. A similar type of
encoding is used in the models of the netMHCII family Jensen et al. (2018).
With the template, you can set your own similarity matrix keeping the above
format and amino acid order.
A peptide will then be encoded as an ”image” for the input of the convo-
lutional neural network. This image can be though of as a table where the
rows are the residues of the peptide and the columns are the 20 amino acids
+ the absence of amino acid. This table is then filled using the correspond-
ing similarity value. To account for the difference in peptides’ lengths, the
absence-of-amino-acid character ”-” will be added at the end of each peptide
until its length matches the maximal length in the training data set. More-
over, a fixed number of character ”-” will be added at the beginning and end
of the peptide; this step can be thought of as a sequence equivalent to an
image zero-padding. The exact number of additional characters ”-” at the
beginning and end of the sequence is determined by the parameters nbPrev
and nbAfter, respectively; they are both set to 2 by default. Therefore, the
number of rows, i.e. the length of the input peptide, will be the length of the
maximal peptide in the training data set + nbPrev + nbAfter.
For example, the peptide MSAIESVLHERRQFA, in a model where the max-
imal length is 20, will be encoded as:

,A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V,-

-,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1

-,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1

M,-1,-1,-2,-3,-1,0,-2,-3,-2,1,2,-1,5,0,-2,-1,-1,-1,-1,1,-4
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S,1,-1,1,0,-1,0,0,0,-1,-2,-2,0,-1,-2,-1,4,1,-3,-2,-2,-4

A,4,-1,-2,-2,0,-1,-1,0,-2,-1,-1,-1,-1,-2,-1,1,0,-3,-2,0,-4

I,-1,-3,-3,-3,-1,-3,-3,-4,-3,4,2,-3,1,0,-3,-2,-1,-3,-1,3,-4

E,-1,0,0,2,-4,2,5,-2,0,-3,-3,1,-2,-3,-1,0,-1,-3,-2,-2,-4

S,1,-1,1,0,-1,0,0,0,-1,-2,-2,0,-1,-2,-1,4,1,-3,-2,-2,-4

V,0,-3,-3,-3,-1,-2,-2,-3,-3,3,1,-2,1,-1,-2,-2,0,-3,-1,4,-4

L,-1,-2,-3,-4,-1,-2,-3,-4,-3,2,4,-2,2,0,-3,-2,-1,-2,-1,1,-4

H,-2,0,1,-1,-3,0,0,-2,8,-3,-3,-1,-2,-1,-2,-1,-2,-2,2,-3,-4

E,-1,0,0,2,-4,2,5,-2,0,-3,-3,1,-2,-3,-1,0,-1,-3,-2,-2,-4

R,-1,5,0,-2,-3,1,0,-2,0,-3,-2,2,-1,-3,-2,-1,-1,-3,-2,-3,-4

R,-1,5,0,-2,-3,1,0,-2,0,-3,-2,2,-1,-3,-2,-1,-1,-3,-2,-3,-4

Q,-1,1,0,0,-3,5,2,-2,0,-3,-2,1,0,-3,-1,0,-1,-2,-1,-2,-4

F,-2,-3,-3,-3,-2,-3,-3,-3,-1,0,0,-3,0,6,-4,-2,-2,1,3,-1,-4

A,4,-1,-2,-2,0,-1,-1,0,-2,-1,-1,-1,-1,-2,-1,1,0,-3,-2,0,-4

-,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1

-,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1

-,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1

-,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1

-,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1

-,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1

-,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1

2.4.2 The model’s architecture

The neural networks are implemented as Keras sequential models with the
following architecture:

1. Convolutional layer with ReLu activation.

2. Maxpooling layer.

3. Dense (or fully connected) layer with parameter-defined activation func-
tion.

The initial weights of both the first and third layers are randomly generated
from a normal distribution with zero mean and a standard deviation defined
by the parameter initializeStd (0.01 by default).
The filters of the convolutional layers are of size l × 21 where l (the length
of the binding core) is defined in the parameter file (9 by default) and 21
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are the 20 amino acids plus the absence of amino acid. The strides are of
size 1× 21, so that, in practice, the filters will only convolute along the first
dimension with stride 1. The model therefore optimizes the search for l -mer
core binders contained within a peptide.
The number of filters is defined in the parameter file. Multiple different
numbers can be chosen and rep neural networks will be trained for each
number of filters, where rep is the number of repetitions so that the final
model is trained from different initial configurations. By default, the final
model will be an equally weighted ensemble of 40 neural networks: 10 of them
with 5 filters, 10 with 10 filters, 10 with 20 filters and 10 with 30 filters.
The pooling size of the maxpooling layer is of size m × 1 with stride 1 × 1.
The parameter m can be set as nMaxPool in the parameter file (Appendix
B.2.2). By default m is defined as follows:

m := max({6, Lmax − l − Lfreq + nbPrev + nbAfter + 2})

where Lmax is the maximal peptide length in the training data set, Lfreq the
most frequent one and nbPrev and nbAfter are the number of characters ”-”
added at the beginning and end of each sequence (see Section 2.4.1). The
formula for m is defined to make sure that it will neither be too small (the
minimal value is 6) nor too big compared to Lmax which changes from data
set to data set; it will control the size of the maxpooling layer’s output to be
equal to Lfreq × F , where F is the number of filters. Indeed, the height of
the input image is h := Lmax + nbPrev + nbAfter; therefore, the size of the
convolutional layer’s output is (h− l + 1)×F and the size of the maxpooling
layer’s output is (h− l−m+2)×F = Lfreq×F . However, m has a minimum
value of 6 to avoid having a pool size too small, so the first dimension of the
maxpooling layer’s output might be smaller.
The weight optimization is done with a mini batch stochastic gradient descent
with parameters defined in the parameters file (Appendix B.2.2).

2.4.3 Visualization of the feed-forward pass

Calling the function feedForwardVisualization will generate images to visu-
alize the feed-forward pass of each net in the trained model on the sequences
given as input of the function. The results will be saved in a folder called
feed forward visualization in the saving pathway savePath of the class.
You can call this function through a class with a trained model. It can be
applied to a previously trained and saved model in the following way:
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(a) filter 1 (b) filter 2 (c) filter 3

(d) filter 4 (e) filter 5

Figure 2.3: The 5 filters of the convolutional layer.

from model_initializer import CNNPepPred

path_to_trained_model = ...

s = [’KPTHFTVLTKGAGK’, ’SEIQYKILTQKEDD’, ’TAVFLAAGVGMRL’]

myModel = CNNPepPred(trainedModelsFile=path_to_trained_model,

doApplyData=True,applyData=s)

yhat = myModel.feedForwardVisualization(myModel.applyData)

where path to trained model is either a .pkl saved class object or the path
of the saved model (like the input trainedModelsFile in the template, see
Appendix B.2.3).

In Figure 2.3 we present an example of this visualization for the 5 filters
of the convolutional layer of one net. These filters are of size 9 × 21, where
the columns are the amino acids ARNDCQEGHILKMFPSTWYV- and 9 is
the length of the l -mers that the filters will highlight. Pixels with higher
values are in white.
The weights in the filters could be thought of as PSSM matrices highlighting
particular amino acids at given positions within a nonamer. For example,
the filter (e) in Figure 2.3 will activate nonamers containing the amino acids
S and T in position 4, A and S in position 6 and I in position 9 (and to some
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Figure 2.4: The encoded input image

extent F in position 1 and N in position 7).
The encoded image of the peptide sequence VLVKEIRSLGIDIDL is printed
below in Figure 2.4, with nbPrev and nbAfter equal to 2 and the maximal
length in the training data set being 37.
After the convolution of the filters on the peptide’s encoding image, the out-
put is printed in Figure 2.5, where each column represents the output after
the convolution of each filter F1, F2, F3, F4 and F5. The rows corresponds
to the application of each filter on an overlapping nonamer of the sequence -
-VLVKEIRSLGIDIDL- - - - - - - - - - - - - - - - - - - - - - - -. The overlap-
ping nonamers of the original peptide VLVKEIRSLGIDID are labelled l x
where x is the start position of the nonamer in this sequence. The overlap-
ping nonamers containing the characters ’-’ that were added before the first
residue of the original peptide are labelled p x, where x is an integer that
decreases when approaching the first nonamer fully composed of the original
peptide’s residues, i.e. without special characters added. Similarly, the over-
lapping nonamers containing the added characters after the last residue of
the peptide are labelled a x, where x increases when moving away from the
last nonamer fully composed of the original peptide’s resiudes.
The output of the maxpooling layer is printed in Figure 2.6, where the image
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Figure 2.5: The output of the convolutional layer.

Figure 2.6: Left: the output of the MaxPool layer. Right: the argument of each pixel in
the output.
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Figure 2.7: The weights of the dense layer.

on the left is the output of the maxpooling layer with each column corre-
sponding to a filter and the table on the right corresponds to the argument
of each pixel in the image. In other words, each cell of the table corresponds
to a pixel in the output image and the content of this cell is the overlapping
nonamer (labelled as described above) that was selected during the maxpool-
ing layer. The table will be saved as an html table.
Finally, the dense layer with the below weights (Figure 2.7) is applied to this
output to obtain the net’s prediction. Note that the biases of the net are not
represented in this visualization.
The feed-forward pass visualization will generate many images; it is therefore
recommended to first select a small subset of peptides of interest and only
then call the function with this subset.

2.4.4 The contribution score

Let l be the length of the core binder. We define here the contribution score
associated to each of the overlapping l -mers of a peptide sequence. This score
can be understood as the relative importance of an l -mer to the predicted
outcome of the corresponding peptide.
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For a fixed peptide, let s be any of its overlapping l -mers and we will give a
brief description of how the model is applied with respect to s.
The first layer of the model is a convolutional layer with F filters and the
corresponding output layer consists of one value for each overlapping l -mer
and each filter, i.e. each filter is applied to each overlapping l -mer to obtain
an output layer with size the number of overlapping l -mers times the number
of filters. Let x

(s)
i denote the output value after the application of the filter

i to the l -mer s for i = 1, ..., F . The activation function of this layer is the
ReLu activation, i.e. x

(s)
i will be mapped to 0 if it is negative and will remain

unchanged otherwise. For ease of notation, let x
(s)
i be the output value after

the ReLu activation.
The second layer is a maxpooling layer, therefore only the maximal values will
remain with possible repetitions, i.e. for filter i, the value of the application of
the model so far to s will be mi ·x(s)i where mi is a positive integer (including
zero).
The final layer is a dense layer with a parameter-defined activation function
σ. This layer will multiply all the values by the weights d

(s)
i of the layer and

sum them to obtain one remaining value. Keeping only the terms related to
s, we define

w(s) :=
∑
i

d
(s)
i ·mi · x(s)i

which corresponds to the application of the model restricted to s. In partic-
ular, the predicted outcome ŷ will be

ŷ = σ

(∑
s′

w(s′) + b

)

where b is the bias of the dense layer.
Therefore, the relative contribution of s, with respect to the other l -mers, to
the predicted outcome can be thought of as

φ(s) :=
w(s)∑
s′ w

(s′)

where we define φ(s) to be the contribution score of s. Note that this value
can be smaller than 0 and bigger than 1.
The final model is an ensemble of N convolutional neural networks. Let w

(s)
n

be the above defined value for the net n and let bn be its last layer’s bias,
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then the predicted outcome is

ŷ =
1

N

∑
n

σ

(∑
s′

w(s′)
n + bn

)

and we define the contribution score of s for an ensemble of nets to be

φ(s) :=

∑
nw

(s)
n∑

n

∑
s′ w

(s′)
n

.

Note that
∑

s′ φ
(s′) = 1 and, if σ is the linear activation, then φ(s) =

∑
n w

(s)
n

Nŷ−
∑

n bn
.

The predicted binding core, score, is then defined to be the overlapping l -mer
of the peptipe with the highest contribution score, i.e.

score ∈ argmaxs′(φ
(s′)).

2.4.5 Transfer learning

Transfer learning uses previously trained models to solve new similar prob-
lems. A guide on transfer learning with Keras is available at: https:

//keras.io/guides/transfer_learning/.
In the context of MHC-class II peptide binding prediction, if a model trained
for a given allele is available, transfer learning can be used to fit new data from
another similar allele. In CNN-PepPred, transfer learning is implemented in
two steps:

1. The convolution layer is extracted from the given previously trained
model and is used as the corresponding layer for the new model. The
weights of this layer are frozen, i.e. they will not be updated during the
optimization. A first round of optimization is performed, where only
the weights of the dense layer are updated.

2. The weights of the convolutional layer are unfrozen and a second round
of optimization is performed where all weights are updated.

In the parameter file (Appendix B.2.2), two different values can be given
for the optimization parameters (alpha, gamma, maxEpochs, miniBatchSize)
each corresponding to the two different rounds of optimization. The second
step can be skipped by setting the corresponding value of maxEpochs to 0.
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Transfer learning can be used from the template (Appendix B.2.3) by in-
putting training data (in trainingDataPath) and a trained model (in trained-
ModelsFile).
Transfer learning can lead to overfitting and some considerations must be
taken with the optimization parameters. It is recommended to reduce the
number of epochs maxEpochs (for example setting it to 15) and/or reduce
the learning rate alpha (for example to 0.001). The first step will correspond
to the same model as the pre-trained model with a dense layer fitted to the
new data. The second step will fine-tune this model to fit the new data. It
is therefore possible that the final model differs from the pre-trained one if
the learning is too large and it can also lead to overfitting if the data from
the two models are similar.
In Sections 2.5.1.4 and 2.5.3, cross-validation and evaluation results using
transfer learning with IEDB data (Section 2.5.1.1) are presented.

2.5 Discussion: application and benchmark-

ing

2.5.1 IEDB data

2.5.1.1 Data preparation

We extracted the data from the IEDB web page https://www.iedb.org/

mhcdetails_v3.php in the Assays tab with filters Epitope Structure Type:
Linear Epitopes, Host Organism: Homo sapiens (human) and assay-mhc allele-
mhc Blass: II. The outcome was taken from the column qualitative measure,
the sequences with value Positive and Positive-High were tagged as binders
(1), the ones with value Positive-Low and Positive-Intermediate were ignored
as they might be too weak binders and the rest of the sequences with value
Negative were tagged as non-binders (0). For each allele’s data set, if there
were more non-binders than binders, a subset of non-binders was selected at
random to balance the data set. If there were more binders than non-binders,
the set was balanced using the script generateRandomNonBinders.py (Ap-
pendix B.2.6). This script generates a given number of non-binders selected
from FASTA sequences in a given folder. The sequences used to randomly se-
lect non-binders were retrieved from https://www.uniprot.org/uniparc/.
To improve the computational speed, we only downloaded some batches of se-
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quences from UniParc, namely all the entries starting with UPI00XX where
XX = 00, 01, 02, ..., 10, 11. There were then more than 70 millions sequences.
In order to avoid repetitive sequences in an allele’s data set, which can bias
the training and testing of the model, for each of the unique overlapping
11-mers contained in one class (binding or non-binding) of the allele’s data,
only the shortest peptide containing the 11-mer was included. The length 11
was selected because it can remove most of the repetitive sequences without
being as restrictive as the length 9 (i.e. the length of the binding core).
Moreover, the cross-validation partition was set to avoid testing with pep-
tides containing too many nonamers also contained in the training data (see
next subsection).
Only alleles containing at least 100 positive peptides were included.

2.5.1.2 Cross-validation result

We performed a k-fold cross-validation with k= 5 on the allele specific data
retrieved as described in the previous subsection. The cross-validation par-
tition was generated using a simple approach in order to reduce the number
of l -mers present in both the training and testing data, where l is the length
of the core binder (l= 9 here).
First, a random cross-validation partition is generated. Then the l -mers
shared between the training and testing splits of the random cross-validation
partition (within each positive or negative class) are selected. Finally, the
peptides containing each of the previously selected l -mers are re-assigned to
the fold which occurs the most in the set of peptides sharing the same l -mer.
In this way, the number of l -mers shared between folds is greatly reduced
compared to a random assignment and all of the cross-validation partitions
have a similar number of peptides. Note that this procedure doesn’t guaran-
tee that the folds won’t share any l -mers. Such a procedure would likely be
computationally expensive and could lead to very imbalanced partitions.
This procedure was implemented as generateCVpartWithLeastLmerOverlap
and if cross-validation is selected in the template and no partition is given
with the training data, the model assigns a partition that is fixed before
training using this procedure. Moreover, this function will also count the
number of overlapping l -mers between each of the training and testing splits
and return the average count per split; it will be saved as an attribute called
averageLmersOverlappingCV.
The cross-validation results are reported in the table below with the fol-
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lowing scores: AUC (area under the curve), MCC (Matthews correlation
coefficient), ACC (accuracy), F1 (F1-score), where we used CNN-PepPred
with default parameters, namely an ensemble of 10 nets per number of filters
(5/10/20/30), totalling 40 nets.
We also include the results for the same cross-validation folds using the
NNAlign-2.1 method (see Section 2.5.2 for more details on NNAlign). We
trained NNAlign using 10 seeds with 5,10,20,30 hidden neurons and the op-
tion ’Impose amino acid preference at P1 during burn-in’ set to true, the
cross-validation partition was given as input and the rescaling of the out-
come was set to ”No rescale”, since the outcome was binary. Note that while
NNAlign was rather meant for regression on a quantitative outcome, our
model was also set to optimize the mean squared error (this can be set in the
parameters), so that it could have been used with the exact same parameters
on a quantitative outcome, just like NNAlign.
The best scores are highlighted in bold. For most alleles, CNN-PepPred
outperformed NNAlign-2.1.
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AUC MCC ACC F1 AUC MCC ACC F1
HLA_DPA1_01_03_DPB1_02_01 5177 2589 0.951 0.763 0.88 0.874 0.937 0.729 0.864 0.861
HLA_DPA1_01_03_DPB1_03_01 5025 2512 0.959 0.803 0.901 0.898 0.936 0.741 0.87 0.868
HLA_DPA1_01_03_DPB1_04_01 7984 3993 0.946 0.747 0.872 0.865 0.924 0.701 0.85 0.847
HLA_DPA1_01_03_DPB1_04_02 4643 2322 0.971 0.839 0.919 0.917 0.952 0.791 0.895 0.895
HLA_DPA1_01_03_DPB1_06_01 946 473 0.965 0.784 0.891 0.887 0.952 0.772 0.886 0.885

HLA_DPA1_01_03_DPB1_104_01 300 150 0.99 0.887 0.943 0.944 0.982 0.9 0.95 0.95
HLA_DPA1_02_01_DPB1_01_01 4292 2146 0.969 0.829 0.914 0.913 0.948 0.768 0.884 0.884
HLA_DPA1_02_01_DPB1_09_01 2692 1346 0.972 0.835 0.917 0.916 0.944 0.767 0.883 0.884
HLA_DPA1_02_01_DPB1_10_01 3628 1814 0.97 0.822 0.911 0.909 0.933 0.722 0.861 0.859
HLA_DPA1_02_01_DPB1_14_01 6035 3018 0.966 0.808 0.904 0.902 0.924 0.712 0.856 0.855
HLA_DPA1_02_01_DPB1_17_01 2170 1085 0.974 0.839 0.919 0.918 0.941 0.738 0.869 0.87

HLA_DPA1_02_01__DPB1_13_01 1968 984 0.975 0.845 0.922 0.919 0.969 0.826 0.913 0.913
HLA_DPA1_02_02_DPB1_05_01 7889 3945 0.96 0.799 0.899 0.898 0.922 0.708 0.854 0.854
HLA_DQA1_01_01_DQB1_05_01 208 104 0.94 0.741 0.87 0.867 0.94 0.77 0.885 0.887
HLA_DQA1_01_02_DQB1_05_01 410 206 0.764 0.362 0.68 0.668 0.774 0.42 0.71 0.705
HLA_DQA1_01_02_DQB1_06_02 1498 749 0.915 0.672 0.835 0.829 0.88 0.624 0.812 0.809
HLA_DQA1_02_01_DQB1_02_02 5772 2886 0.901 0.653 0.826 0.82 0.862 0.572 0.786 0.783
HLA_DQA1_02_01_DQB1_03_01 256 128 0.884 0.603 0.801 0.794 0.904 0.664 0.832 0.83
HLA_DQA1_03_01_DQB1_03_02 350 175 0.783 0.402 0.7 0.685 0.795 0.475 0.737 0.729
HLA_DQA1_03_02_DQB1_04_01 206 103 0.792 0.488 0.743 0.728 0.815 0.564 0.782 0.789
HLA_DQA1_05_01_DQB1_02_01 4051 2025 0.872 0.574 0.786 0.776 0.829 0.512 0.755 0.746
HLA_DQA1_05_01_DQB1_03_01 617 307 0.909 0.668 0.833 0.825 0.904 0.658 0.828 0.821
HLA_DQA1_05_05_DQB1_03_01 5882 2941 0.889 0.63 0.815 0.811 0.853 0.549 0.774 0.769

HLA_DRB1_01_01 12412 6208 0.824 0.492 0.744 0.73 0.795 0.445 0.722 0.711
HLA_DRB1_03_01 2178 1089 0.866 0.553 0.775 0.763 0.85 0.54 0.769 0.76
HLA_DRB1_04_01 5110 2557 0.846 0.544 0.77 0.755 0.834 0.533 0.765 0.752
HLA_DRB1_04_02 256 128 0.764 0.469 0.734 0.73 0.744 0.423 0.711 0.699
HLA_DRB1_04_04 3076 1538 0.801 0.447 0.723 0.716 0.754 0.376 0.687 0.675
HLA_DRB1_04_05 3972 1986 0.913 0.676 0.837 0.83 0.887 0.631 0.814 0.807
HLA_DRB1_07_01 4466 2233 0.916 0.684 0.841 0.835 0.907 0.675 0.837 0.834
HLA_DRB1_08_01 1118 559 0.96 0.827 0.913 0.911 0.957 0.806 0.903 0.904
HLA_DRB1_08_02 838 419 0.829 0.49 0.745 0.737 0.839 0.523 0.761 0.758
HLA_DRB1_09_01 1056 528 0.906 0.672 0.836 0.835 0.889 0.631 0.815 0.816
HLA_DRB1_10_01 2582 1291 0.969 0.833 0.917 0.916 0.963 0.825 0.912 0.913
HLA_DRB1_11_01 4180 2089 0.917 0.665 0.832 0.826 0.904 0.655 0.827 0.824
HLA_DRB1_11_03 422 211 0.956 0.853 0.927 0.926 0.95 0.801 0.9 0.901
HLA_DRB1_12_01 992 496 0.966 0.809 0.904 0.903 0.961 0.806 0.903 0.903
HLA_DRB1_13_01 1287 643 0.935 0.74 0.869 0.865 0.917 0.699 0.849 0.848
HLA_DRB1_13_02 1460 731 0.885 0.607 0.803 0.802 0.886 0.599 0.799 0.796
HLA_DRB1_13_03 1966 983 0.986 0.894 0.947 0.947 0.984 0.896 0.948 0.948
HLA_DRB1_14_01 681 340 0.988 0.918 0.959 0.959 0.971 0.88 0.94 0.94
HLA_DRB1_14_54 788 394 0.998 0.959 0.98 0.98 0.995 0.947 0.973 0.974
HLA_DRB1_15_01 4400 2201 0.887 0.615 0.806 0.796 0.876 0.607 0.803 0.798
HLA_DRB1_16_01 423 211 0.959 0.822 0.91 0.907 0.948 0.778 0.889 0.89
HLA_DRB3_01_01 1280 640 0.951 0.819 0.905 0.899 0.951 0.798 0.898 0.896
HLA_DRB3_02_02 1386 694 0.979 0.865 0.932 0.931 0.974 0.853 0.926 0.926
HLA_DRB3_03_01 210 105 0.963 0.803 0.9 0.896 0.956 0.784 0.89 0.895
HLA_DRB4_01_01 1316 658 0.914 0.654 0.827 0.822 0.897 0.628 0.814 0.812
HLA_DRB4_01_03 856 428 0.971 0.824 0.911 0.908 0.967 0.832 0.916 0.916
HLA_DRB5_01_01 3329 1664 0.913 0.676 0.837 0.833 0.911 0.678 0.839 0.837
HLA_DRB5_02_02 926 463 0.989 0.92 0.96 0.96 0.98 0.892 0.946 0.947

Average 0.921 0.716 0.857 0.853 0.907 0.691 0.845 0.843
Average weighted by #Binder 0.919 0.702 0.85 0.845 0.896 0.657 0.828 0.824

Allele #Peptide #Binder
CNN-PepPred NNAlign-2.1



The table below shows the average number of shared nonamers between
training/testing splits as given by the output averageLmersOverlappingCV
of the function generateCVpartWithLeastLmerOverlap.
We also compared the computation times of CNN-PedPred (with GPU) and
NNAlign for cross-validation. For CNN-PepPred, the total run time, includ-
ing cross-validation, training on the full training data set and logo plot, is
given in a separate column (called total) than the run time for cross-validation
alone (called cv).
It can be observed that CNN-PepPred is generally faster for the alleles with
a larger number of sequences and slower for the alleles with a smaller number
of sequences. It also seems that with GPU, alleles that were computed to-
wards the end (the order in the table corresponds to the chronological order
of computation) used more time than those computed at the beginning. This
is likely due to suboptimal implementation for consecutive runs, possibly in
connection with the low-level GPU used (NVIDIA GeForce GTX 1080 under
Windows OS). CPU runs were performed on the same computer, with an
AMD Ryzen 7 1700 8-core, under Windows Susbsystem for Linux (WSL),
since the NNAlign executable requires a Linux OS. We couldn’t perform the
GPU runs on WSL since the system does not support it. This benchmark is
only indicative, since WSL is known to decrease performance by about 30%
in average compared to native Linux and performance is anyway bound to
the specific CPU and GPU used.
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NNAlign-2.1

time[s]: total cv time[s]

HLA_DPA1_01_03_DPB1_02_01 5177 2589 5.6 806 619 1610

HLA_DPA1_01_03_DPB1_03_01 5025 2512 0.8 811 624 1548

HLA_DPA1_01_03_DPB1_04_01 7984 3993 6.4 1292 1015 2304

HLA_DPA1_01_03_DPB1_04_02 4643 2322 0.4 824 634 1553

HLA_DPA1_01_03_DPB1_06_01 946 473 1.6 365 282 344

HLA_DPA1_01_03_DPB1_104_01 300 150 0 317 239 186

HLA_DPA1_02_01_DPB1_01_01 4292 2146 0.8 895 690 1353

HLA_DPA1_02_01_DPB1_09_01 2692 1346 0 686 528 890

HLA_DPA1_02_01_DPB1_10_01 3628 1814 2 842 657 1146

HLA_DPA1_02_01_DPB1_14_01 6035 3018 0.8 1245 972 1888

HLA_DPA1_02_01_DPB1_17_01 2170 1085 0 694 540 757

HLA_DPA1_02_01__DPB1_13_01 1968 984 0 704 543 696

HLA_DPA1_02_02_DPB1_05_01 7889 3945 4.8 1528 1221 2213

HLA_DQA1_01_01_DQB1_05_01 208 104 0 196 138 159

HLA_DQA1_01_02_DQB1_05_01 410 206 0 240 170 222

HLA_DQA1_01_02_DQB1_06_02 1498 749 8.8 412 306 545

HLA_DQA1_02_01_DQB1_02_02 5772 2886 12.4 955 744 1512

HLA_DQA1_02_01_DQB1_03_01 256 128 0 289 214 181

HLA_DQA1_03_01_DQB1_03_02 350 175 0 344 251 219

HLA_DQA1_03_02_DQB1_04_01 206 103 0 335 253 156

HLA_DQA1_05_01_DQB1_02_01 4051 2025 13.6 863 665 1138

HLA_DQA1_05_01_DQB1_03_01 617 307 28.4 440 332 308

HLA_DQA1_05_05_DQB1_03_01 5882 2941 9 1076 844 1620

HLA_DRB1_01_01 12412 6208 138.8 1686 1316 3987

HLA_DRB1_03_01 2178 1089 7.2 449 330 893

HLA_DRB1_04_01 5110 2557 11.2 874 670 1762

HLA_DRB1_04_02 256 128 0.8 250 184 186

HLA_DRB1_04_04 3076 1538 3.6 675 493 1026

HLA_DRB1_04_05 3972 1986 5.2 825 626 1301

HLA_DRB1_07_01 4466 2233 9.4 921 715 1549

HLA_DRB1_08_01 1118 559 0 503 372 425

HLA_DRB1_08_02 838 419 6 477 358 367

HLA_DRB1_09_01 1056 528 8 527 404 440

HLA_DRB1_10_01 2582 1291 1.6 745 586 880

HLA_DRB1_11_01 4180 2089 10.8 1005 792 1470

HLA_DRB1_11_03 422 211 0.8 509 390 221

HLA_DRB1_12_01 992 496 1.2 655 493 399

HLA_DRB1_13_01 1287 643 2.4 727 581 527

HLA_DRB1_13_02 1460 731 4.8 736 580 558

HLA_DRB1_13_03 1966 983 0 811 648 688

HLA_DRB1_14_01 681 340 0 643 517 286

HLA_DRB1_14_54 788 394 0 669 536 317

HLA_DRB1_15_01 4400 2201 11.2 1208 952 1518

HLA_DRB1_16_01 423 211 0.4 680 531 233

HLA_DRB3_01_01 1280 640 2.8 811 650 484

HLA_DRB3_02_02 1386 694 0.4 852 683 517

HLA_DRB3_03_01 210 105 0.4 702 574 160

HLA_DRB4_01_01 1316 658 4 977 760 521

HLA_DRB4_01_03 856 428 0.8 905 745 353

HLA_DRB5_01_01 3329 1664 8.8 1264 1016 1145

HLA_DRB5_02_02 926 463 0 922 753 366

Average 2646.37 1323.29 6.59 748.37 583.06 884.84

Allele #Peptide #Binder
Average number of shared 

nonamers between training/testing splits

CNN-PepPred



2.5.1.3 Binding motive

The binding motives are obtained by generating 200000 random 15-mer pep-
tides and plotting, with the package logomaker Tareen and Kinney (2019),
the core binders of the top 2000 highest predictions.
Below are the binding motives of the alleles retrieved from the IEDB website.
In some cases, such as allele HLA DRB3 03 01 or some of the DQ alleles,
misalignments can be observed in the plots. For the prediction, all of the
overlapping nonamers contained in the peptide are used, and the binding core
is taken as the nonamer that contributes to the final prediction the most (as
described in Section 2.4.4). Therefore, the act of selecting a core is relevant
for the logo plot but not for the prediction itself. In this regard, logo plots
in CNN-PepPred involve a model reduction with loss of information. The
missing weights in the logo from other overlapping nonamers contributing
also to the binding score adds in this case to the common problems of low
number of sequences and sequence bias in some peptide sets, rendering some
of the logo plots, such as that for HLA DRB3 03 01 (105 binding peptides)
rather uninformative.
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2.5.1.4 Transfer learning results

We used the trained IEDB models to perform another round of training us-
ing transfer learning (see Section 2.4.5). The previously trained model of an
allele was assigned to the training data of another one based on the similarity
between their sequences. The same cross-validation set up was used to test
the models. The new training instances, which contain nonamers present
in the pre-trained model, were removed from the testing set but were kept
for training. For this reason, the number of peptides tested in this cross-
validation set up is lower than in Section 2.5.1.2. For both optimization
steps, the number of epochs was reduced to 15 (compared to 30 by default).
The cross-validation results are reported in the table below. The ”Allele”
column contains first the name of the allele from which the training data
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were taken, then the allele of the pre-trained model used for transfer learn-
ing. Both allele names are separated by ” TL ”. The models with transfer
learning systematically outperform the ones without. It is however possible
that those performances do not generalize to fully new data due to the level
of redundancy present in the IEDB data. In Section 2.5.3, we can observe
that, while the results on an independent evaluation set are slightly better
with transfer learning, the increase in performance on the evaluation set is
not proportional to the one in the cross-validation set up.
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#Peptide #Binder AUC MCC ACC F1 #Peptide #Binder AUC MCC ACC F1

HLA_DPA1_01_03_DPB1_02_01_TL_DPA1_01_03_DPB1_03_01 5025 2458 0.98 0.853 0.926 0.922 5177 2589 0.951 0.763 0.88 0.874

HLA_DPA1_01_03_DPB1_03_01_TL_DPA1_01_03_DPB1_02_01 4876 2372 0.982 0.867 0.933 0.931 5025 2512 0.959 0.803 0.901 0.898

HLA_DPA1_01_03_DPB1_04_01_TL_DPA1_01_03_DPB1_02_01 6764 3111 0.967 0.802 0.902 0.889 7984 3993 0.946 0.747 0.872 0.865

HLA_DPA1_01_03_DPB1_04_02_TL_DPA1_01_03_DPB1_02_01 3889 1578 0.986 0.881 0.943 0.929 4643 2322 0.971 0.839 0.919 0.917

HLA_DPA1_01_03_DPB1_06_01_TL_DPA1_01_03_DPB1_02_01 905 432 0.996 0.94 0.97 0.969 946 473 0.965 0.784 0.891 0.887

HLA_DPA1_01_03_DPB1_104_01_TL_DPA1_01_03_DPB1_02_01 288 138 0.998 0.952 0.976 0.975 300 150 0.99 0.887 0.943 0.944

HLA_DPA1_02_01_DPB1_01_01_TL_DPA1_01_03_DPB1_02_01 3806 1928 0.988 0.903 0.951 0.952 4292 2146 0.969 0.829 0.914 0.913

HLA_DPA1_02_01_DPB1_09_01_TL_DPA1_01_03_DPB1_02_01 2604 1261 0.991 0.922 0.961 0.96 2692 1346 0.972 0.835 0.917 0.916

HLA_DPA1_02_01_DPB1_10_01_TL_DPA1_01_03_DPB1_02_01 3527 1714 0.989 0.9 0.95 0.948 3628 1814 0.97 0.822 0.911 0.909

HLA_DPA1_02_01_DPB1_13_01_TL_DPA1_01_03_DPB1_02_01 1907 925 0.994 0.938 0.969 0.968 6035 3018 0.966 0.808 0.904 0.902

HLA_DPA1_02_01_DPB1_14_01_TL_DPA1_01_03_DPB1_02_01 5859 2846 0.982 0.865 0.932 0.93 2170 1085 0.974 0.839 0.919 0.918

HLA_DPA1_02_01_DPB1_17_01_TL_DPA1_01_03_DPB1_02_01 2094 1010 0.994 0.928 0.964 0.963 1968 984 0.975 0.845 0.922 0.919

HLA_DPA1_02_02_DPB1_05_01_TL_DPA1_01_03_DPB1_02_01 7629 3689 0.976 0.845 0.923 0.92 7889 3945 0.96 0.799 0.899 0.898

HLA_DQA1_01_01_DQB1_05_01_TL_DQA1_01_02_DQB1_06_02 112 72 0.999 0.924 0.964 0.972 208 104 0.94 0.741 0.87 0.867

HLA_DQA1_01_02_DQB1_05_01_TL_DQA1_01_02_DQB1_06_02 406 202 0.978 0.833 0.916 0.915 410 206 0.764 0.362 0.68 0.668

HLA_DQA1_01_02_DQB1_06_02_TL_DQA1_02_01_DQB1_02_02 1324 601 0.975 0.844 0.923 0.915 1498 749 0.915 0.672 0.835 0.829

HLA_DQA1_02_01_DQB1_02_02_TL_DQA1_01_02_DQB1_06_02 5576 2720 0.951 0.768 0.884 0.879 5772 2886 0.901 0.653 0.826 0.82

HLA_DQA1_02_01_DQB1_03_01_TL_DQA1_01_02_DQB1_06_02 256 128 0.986 0.875 0.938 0.938 256 128 0.884 0.603 0.801 0.794

HLA_DQA1_03_01_DQB1_03_02_TL_DQA1_01_02_DQB1_06_02 232 148 0.98 0.869 0.94 0.953 350 175 0.783 0.402 0.7 0.685

HLA_DQA1_03_02_DQB1_04_01_TL_DQA1_01_02_DQB1_06_02 189 102 0.962 0.831 0.915 0.92 206 103 0.792 0.488 0.743 0.728

HLA_DQA1_05_01_DQB1_02_01_TL_DQA1_01_02_DQB1_06_02 3661 1848 0.951 0.755 0.877 0.879 4051 2025 0.872 0.574 0.786 0.776

HLA_DQA1_05_01_DQB1_03_01_TL_DQA1_01_02_DQB1_06_02 336 105 0.975 0.815 0.92 0.873 617 307 0.909 0.668 0.833 0.825

HLA_DQA1_05_05_DQB1_03_01_TL_DQA1_01_02_DQB1_06_02 5656 2724 0.941 0.751 0.876 0.87 5882 2941 0.889 0.63 0.815 0.811

HLA_DRB1_01_01_TL_DRB1_15_01 10674 4935 0.877 0.586 0.794 0.765 12412 6208 0.824 0.492 0.744 0.73

HLA_DRB1_03_01_TL_DRB1_13_01 1887 956 0.961 0.792 0.895 0.893 2178 1089 0.866 0.553 0.775 0.763

HLA_DRB1_04_01_TL_DRB1_04_05 4231 2032 0.907 0.656 0.828 0.812 5110 2557 0.846 0.544 0.77 0.755

HLA_DRB1_04_02_TL_DRB1_04_04 67 54 0.94 0.676 0.896 0.935 256 128 0.764 0.469 0.734 0.73

HLA_DRB1_04_04_TL_DRB1_04_01 2234 1079 0.927 0.7 0.85 0.843 3076 1538 0.801 0.447 0.723 0.716

HLA_DRB1_04_05_TL_DRB1_04_01 3192 1524 0.966 0.809 0.905 0.898 3972 1986 0.913 0.676 0.837 0.83

HLA_DRB1_07_01_TL_DRB1_09_01 3665 1777 0.961 0.804 0.902 0.898 4466 2233 0.916 0.684 0.841 0.835

HLA_DRB1_08_01_TL_DRB1_13_03 1072 514 0.989 0.912 0.956 0.954 1118 559 0.96 0.827 0.913 0.911

HLA_DRB1_08_02_TL_DRB1_08_01 831 412 0.97 0.841 0.921 0.921 838 419 0.829 0.49 0.745 0.737

HLA_DRB1_09_01_TL_DRB1_07_01 306 113 0.966 0.823 0.915 0.89 1056 528 0.906 0.672 0.836 0.835

HLA_DRB1_10_01_TL_DRB1_01_01 2182 943 0.994 0.923 0.962 0.956 2582 1291 0.969 0.833 0.917 0.916

HLA_DRB1_11_01_TL_DRB1_13_03 4012 1945 0.945 0.736 0.868 0.861 4180 2089 0.917 0.665 0.832 0.826

HLA_DRB1_11_03_TL_DRB1_11_01 307 131 0.998 0.953 0.977 0.973 422 211 0.956 0.853 0.927 0.926

HLA_DRB1_12_01_TL_DRB1_13_01 950 470 0.991 0.907 0.954 0.953 992 496 0.966 0.809 0.904 0.903

HLA_DRB1_13_01_TL_DRB1_13_02 1145 558 0.982 0.876 0.938 0.936 1287 643 0.935 0.74 0.869 0.865

HLA_DRB1_13_02_TL_DRB1_13_01 1310 635 0.973 0.843 0.921 0.919 1460 731 0.885 0.607 0.803 0.802

HLA_DRB1_13_03_TL_DRB1_11_01 1823 844 0.995 0.942 0.971 0.969 1966 983 0.986 0.894 0.947 0.947

HLA_DRB1_14_01_TL_DRB1_13_03 668 327 0.997 0.958 0.979 0.979 681 340 0.988 0.918 0.959 0.959

HLA_DRB1_14_54_TL_DRB1_13_03 754 360 1 0.987 0.993 0.993 788 394 0.998 0.959 0.98 0.98

HLA_DRB1_15_01_TL_DRB1_01_01 2981 1350 0.96 0.79 0.896 0.885 4400 2201 0.887 0.615 0.806 0.796

HLA_DRB1_16_01_TL_DRB1_15_01 341 168 0.997 0.965 0.982 0.982 423 211 0.959 0.822 0.91 0.907

HLA_DRB3_01_01_TL_DRB3_02_02 915 521 0.966 0.836 0.916 0.922 1280 640 0.951 0.819 0.905 0.899

HLA_DRB3_02_02_TL_DRB3_01_01 941 587 0.996 0.941 0.972 0.978 1386 694 0.979 0.865 0.932 0.931

HLA_DRB3_03_01_TL_DRB3_01_01 188 83 0.996 0.968 0.984 0.982 210 105 0.963 0.803 0.9 0.896

HLA_DRB4_01_01_TL_DRB1_10_01 1226 595 0.98 0.879 0.94 0.938 1316 658 0.914 0.654 0.827 0.822

HLA_DRB4_01_03_TL_DRB4_01_01 678 251 0.998 0.949 0.976 0.968 856 428 0.971 0.824 0.911 0.908

HLA_DRB5_01_01_TL_DRB1_01_01 2222 927 0.966 0.834 0.919 0.904 3329 1664 0.913 0.676 0.837 0.833

HLA_DRB5_02_02_TL_DRB5_01_01 845 382 0.995 0.941 0.97 0.968 926 463 0.989 0.92 0.96 0.96

Average 0.975 0.857 0.93 0.926 0.921 0.716 0.857 0.853

Average weighted by #Binder 0.962 0.812 0.906 0.9 0.919 0.702 0.85 0.845

Allele
CNN-PepPred (transfer learning) CNN-PepPred



Transfer learning will also affect the logo plots. For example, as it can be
seen in the figure below, using the pre-trained model of HLA DRB3 01 01
has helped aligning the binding motif of the allele HLA DRB3 03 01.

On the other hand, transfer learning with alleles that do not share strong
fixed positions can reduce the alignment. For example, the pre-trained model
of HLA DQA1 01 02 DQB1 06 02 do not help aligning the binding motif of
the allele HLA DQA1 05 01 DQB1 03 01:

However, if instead the pre-trained model of the allele HLA DRB1 01 01 is
used, the shared patterns in position 1 and 6 help aligning the binding motif
of the allele HLA DQA1 05 01 DQB1 03 01:

2.5.2 NetMHCII data

In this appendix, we benchmark the convolutional neural network approach
with the state-of-the-art methods from the netMHCII family Jensen et al.
(2018). The netMHCII family consists of two main methods: an allele-
specific one (netMHCII) and a pan-specific one (netMHCIIpan). They are
both based on the same core algorithm NNAlign (Nielsen and Lund (2009),
Nielsen and Andreatta (2017)) which consists of a two-step optimization
procedure that simultaneously estimates the core (nonamer) binder and the
network weight configuration for the binding prediction. The pan-specific
method is trained with all of the peptides of all of the alleles and can make
predictions for all alleles with known alpha and beta chains. The pan-specific
version is therefore more adequate for alleles with few training data. How-
ever, for alleles with enough training data, the authors report Jensen et al.
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(2018) that the allele specific method outperforms the pan specific one.
More modern versions of netMHCII include the possibility of training with
multi-allele (MA) peptides Reynisson et al. (2020). While this is an interest-
ing recent research direction (Alvarez et al. (2019),Racle et al. (2019),Chen
et al. (2019)), our aim in developing CNN-PepPred has been to proveide an
open-source efficient core algorithm that can be easily integrated in more
complex pipelines and modified to fit specific purposes, including the incor-
poration of MA data.
The convolutional neural network approach is similar to the strategy of
netMHCII, since both use similar blosum encoding and rely on an ensem-
ble of neural networks. The main difference is that NNAlign is a two steps
procedure that first identifies a core nonamer and applied it (with flanking
region) to a network weight configuration. Our model uses convolution to
slide through the possible nonamers contained within a peptide, therefore
using the peptide in its full length. This strategy is also convenient to imple-
ment since it only requires building a sequential convolution neural network
using user friendly libraries such as Keras.
NetMHCII methods are web based and meant to be used to predict binding
with pre-trained models. While executables are available upon request, the
core algorithm training the models (NNAlign) is not open-source and full
development details have not been, to our knowledge, provided in any pub-
lication. As CNN-PepPred, NNAlign can be also used as an executable to
train models with specific data sets.

2.5.2.1 Cross-validation result

The data and the 5 fold cross-validation partition for this set-up were taken
from the paper presenting netMHCIIpan-3.2, which is the latest version of
the model not including multiple-allele data. The results of netMHCIIpan-
3.2 and netMHCII-2.3 were taken from the supplementary file, Suppl Table
3, of Jensen et al. (2018). The authors only reported the AUC score but
we also included the Pearson correlation (PC) and root mean squared error
(RMSE) scores of our model for further information. The best AUC score
for each allele is highlighted in bold.
We used CNN-PepPred with default parameters, namely, an ensemble of 10
nets per number of filters (5/10/20/30), totaling 40 nets. The threshold
used to binarize the quantitative outcome was set to the log50k transform of
500nM as in Jensen et al. (2018), namely 1− log(500)/ log(50000) ≈ 0.426.

85



As it can be seen in the table, if we also include the alleles with few train-
ing data (for which allele-specific methods are clearly not fitted), netMHCI-
Ipan outperforms (on average) the two allele specific methods. However,
considering different sets of alleles with different minimum numbers of bind-
ing training peptides, our model outperforms (on average) the models from
the netMHCII family. In any cases, the performances are overall simi-
lar.
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NetMHCII-2.3 NetMHCIIPan-3.2
PC AUC RMSE AUC AUC

DRB1_0101 10412 6376 0.69 0.837 0.195 0.829 0.832
DRB1_0103 42 4 -0.231 0.204 0.208 0.25 0.678
DRB1_0301 5352 1457 0.646 0.836 0.181 0.816 0.816
DRB1_0401 6317 3022 0.613 0.811 0.198 0.798 0.809
DRB1_0402 53 19 0.419 0.669 0.249 0.633 0.701
DRB1_0403 59 14 0.511 0.703 0.152 0.644 0.841
DRB1_0404 3657 1852 0.636 0.803 0.189 0.787 0.812
DRB1_0405 3962 1653 0.669 0.841 0.171 0.839 0.827
DRB1_0701 6325 3456 0.748 0.884 0.171 0.877 0.875
DRB1_0801 937 390 0.658 0.836 0.165 0.834 0.844
DRB1_0802 4465 2036 0.673 0.838 0.184 0.834 0.834
DRB1_0901 4318 2164 0.657 0.833 0.175 0.832 0.833
DRB1_1001 2066 1521 0.754 0.915 0.157 0.912 0.923
DRB1_1101 6045 2667 0.734 0.866 0.174 0.867 0.864
DRB1_1201 2384 759 0.771 0.894 0.141 0.891 0.868
DRB1_1301 1034 520 0.673 0.851 0.22 0.828 0.857
DRB1_1302 4477 2249 0.774 0.89 0.176 0.889 0.885
DRB1_1501 4850 2107 0.679 0.839 0.187 0.833 0.834
DRB1_1602 1699 989 0.778 0.886 0.151 0.879 0.883
DRB3_0101 4633 1415 0.813 0.912 0.149 0.898 0.888
DRB3_0202 3334 1055 0.808 0.889 0.171 0.887 0.869
DRB3_0301 884 510 0.646 0.826 0.192 0.824 0.84
DRB4_0101 3961 1540 0.706 0.851 0.171 0.837 0.822
DRB4_0103 846 525 0.67 0.849 0.197 0.839 0.841
DRB5_0101 5125 2430 0.714 0.855 0.191 0.849 0.849

H_2_IAb 1794 431 0.703 0.885 0.163 0.884 0.894
H_2_IAd 774 321 0.611 0.813 0.202 0.819 0.819
H_2_IAk 115 4 0.332 0.619 0.137 0.628 0.635
H_2_IAs 190 48 0.534 0.815 0.195 0.761 0.825
H_2_IAu 56 22 0.603 0.898 0.262 0.83 0.765
H_2_IEd 245 28 0.4 0.706 0.18 0.73 0.754
H_2_IEk 68 40 0.633 0.754 0.216 0.836 0.853

HLA_DPA10103_DPB10201 787 141 0.72 0.903 0.146 0.91 0.917
HLA_DPA10103_DPB10301 1563 575 0.796 0.914 0.166 0.914 0.902
HLA_DPA10103_DPB10401 2725 786 0.882 0.939 0.14 0.935 0.935
HLA_DPA10103_DPB10402 45 9 0.194 0.596 0.18 0.497 0.71
HLA_DPA10103_DPB10601 584 282 0.958 0.995 0.116 0.996 0.995
HLA_DPA10201_DPB10101 2447 859 0.833 0.897 0.149 0.903 0.903
HLA_DPA10201_DPB10501 2470 713 0.806 0.913 0.154 0.914 0.911
HLA_DPA10201_DPB11401 2302 849 0.851 0.942 0.151 0.937 0.93
HLA_DPA10301_DPB10402 2641 921 0.834 0.903 0.157 0.906 0.904
HLA_DQA10101_DQB10501 2946 815 0.813 0.917 0.138 0.917 0.9
HLA_DQA10102_DQB10501 833 458 0.662 0.865 0.194 0.867 0.839
HLA_DQA10102_DQB10502 800 158 0.675 0.851 0.159 0.85 0.835
HLA_DQA10102_DQB10602 2747 1256 0.814 0.902 0.148 0.905 0.89
HLA_DQA10103_DQB10603 462 90 0.503 0.803 0.199 0.816 0.861
HLA_DQA10104_DQB10503 883 105 0.635 0.837 0.143 0.844 0.805
HLA_DQA10201_DQB10202 944 119 0.644 0.86 0.131 0.851 0.814
HLA_DQA10201_DQB10301 827 374 0.696 0.876 0.187 0.864 0.849
HLA_DQA10201_DQB10303 761 265 0.721 0.886 0.152 0.887 0.894
HLA_DQA10201_DQB10402 768 241 0.638 0.854 0.181 0.858 0.86
HLA_DQA10301_DQB10301 207 66 0.591 0.774 0.195 0.761 0.839
HLA_DQA10301_DQB10302 3111 568 0.702 0.846 0.126 0.849 0.81
HLA_DQA10303_DQB10402 567 117 0.632 0.844 0.168 0.836 0.82
HLA_DQA10401_DQB10402 2890 928 0.794 0.903 0.116 0.894 0.883
HLA_DQA10501_DQB10201 2897 874 0.78 0.889 0.131 0.889 0.876
HLA_DQA10501_DQB10301 3585 1812 0.812 0.926 0.143 0.922 0.915
HLA_DQA10501_DQB10302 847 203 0.6 0.82 0.139 0.831 0.822
HLA_DQA10501_DQB10303 564 179 0.68 0.869 0.138 0.884 0.876
HLA_DQA10501_DQB10402 749 337 0.718 0.877 0.157 0.857 0.868
HLA_DQA10601_DQB10402 565 133 0.622 0.854 0.18 0.845 0.848

Average 0.666 0.839 0.17 0.833 0.847
Average weighted by #Binder 0.722 0.865 0.172 0.86 0.858

Average over alleles with >=100binders 0.723 0.872 0.164 0.869 0.864
Average over alleles with >=500binders 0.745 0.876 0.165 0.871 0.867

Average over alleles with >=1000binders 0.719 0.863 0.174 0.856 0.854

Allele #Peptide #Binder
CNN-PepPred



2.5.2.2 Run time comparison

To evaluate computational time, we used different numbers of sequences
of the proteome of Burkholderia pseudomallei (https://www.uniprot.org/
proteomes/UP000000605) to the trained model of HLA-DRB1*07:01 (with
the data set from NetMHCIIpan3.2). Each sequence was cut into all of its
overlapping 15-mers and a prediction was made for all of them. In the ta-
ble below, the time is reported in seconds for different number of sequences.
The full proteome contains 5717 sequences corresponding to 1908278 15-mers.
Note that the number of 15-mers corresponds to the non-unique amount (no
check performed for sequence identity). The last row of the table corre-
sponds to the application of the model against the human proteome with
ca. 75000 proteins (https://www.uniprot.org/proteomes/UP000005640);
it was added to have an idea of how long the GPU version would take
on really big data sets (more than 20 millions non-unique 15-mers). We
tested our model using the GPU and CPU versions and we downloaded the
latest version of netMHCIIpan4.0 from its webserver (https://services.
healthtech.dtu.dk/service.php?NetMHCIIpan-4.0) and ran it for allele
DRB1*07:01, with length 15 and the print unique binding core option. We
used NNAlign with the same parameters as in Section 2.5.1.2(except for out-
put rescaling which was set to the default, since the training outcome is
quantitative).
Results can be found in the table below. For the application of a trained
model on new instances, the fastest model is NNAlign followed by CNN-
PepPred with GPU.
We can also notice that the time grows more or less linearly with increasing
number of sequences, which makes sense as our model analyses new sequences
in batches of 50000 (by default). The application in batches also means that
there will never be a memory issue whatever the number of peptides to anal-
yse. For the GPU computation we used NVIDIA GeForce GTX 1080 under
Windows OS. The CPU runs were performed for CNN-PepPred, NNAlign
and netMHCIIpan under Windows Subsystem for Linux (WSL) in the same
computer (equipped with an AMD Ryzen 7 1700 8-core), since the executa-
bles of the latter two require a Linux OS. We couldn’t perform the GPU
computations on WSL since the system does not support it.
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CNN-PepPred

(cpu)

CNN-PepPred

(gpu)
NetMHCIIpan4.0 NNAlign2.1

100 33130 41 27 239 6

500 157401 153 71 1121 12

1000 333632 323 127 2369 24

2000 666696 630 237 4738 44

3000 1006260 953 355 7118 68

4000 1336574 1256 470 9412 89

5000 1663243 1530 581 11754 108

5717 1908278 1774 664 13466 127

75069 24752058 4184 738

time[s]

#seq
#15-mers

(non-unique)
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2.5.3 Evaluation set

For the evaluation of the models trained with the data retrieved from IEDB
as described in Section 2.5.1.1, we used the T-cell epitope benchmark from
Jensen et al.(Jensen et al. (2018)). This data set contains, for different alleles,
several pairs of epitope and epitope-source protein sequences. The epitope
source is split into all of its overlapping l -mers, where l is the length of
the epitope. The actual epitope is labelled as binding while the overlapping
non-epitope l -mers in the epitope source are labelled as non-binding. The
trained model is then applied to all l -mers and the evaluation is performed
using two metrics: the AUC and the F-rank. The F-rank corresponds to the
ratio between the number of peptides from the source with predicted binding
score higher than that of the epitope and the total number of peptides in the
source. Therefore, a value of 0 means that no peptides are predicted as
stronger binders than the epitope and a value of 1 means that all peptides
are predicted as stronger binders than the epitope. Both scores are computed
for each pair separately and averaged per allele. As noted by the authors, this
evaluation will tend to underestimate the performances since some negatively
labelled peptides might still be presented by the human MHC molecule.
We selected the epitopes for alleles that are present in our data set (listed
in Appendix B.2.5). We then removed a few epitopes that were already
present in our training data set. The table below contains the scores of this
evaluation. The results for CNN-PepPred are overall similar to the ones of
NetMHCIIpan3.2, with a slight advantage on average for CNN-PepPred: the
average F-rank/AUC is 0.174/0.825 for CNN-PepPred and 0.193/0.806 for
NetMHCIIpan3.2 (with the values as reported by the authors in suppl. table
5 of the paper’s supplementary file).
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#Epitope average F-rank average AUC #Epitope average F-rank average AUC

HLA_DPA1_01_03_DPB1_02_01 1 0.005 0.995 1 0.02 0.98

HLA_DQA1_01_02_DQB1_06_02 2 0.085 0.915 2 0.051 0.948

HLA_DRB1_01_01 235 0.194 0.806 240 0.181 0.818

HLA_DRB1_03_01 96 0.147 0.853 101 0.14 0.86

HLA_DRB1_04_01 220 0.157 0.842 232 0.195 0.804

HLA_DRB1_04_02 3 0.22 0.78 3 0.206 0.793

HLA_DRB1_04_04 142 0.266 0.734 146 0.19 0.81

HLA_DRB1_04_05 3 0.01 0.99 3 0.03 0.964

HLA_DRB1_07_01 196 0.159 0.841 197 0.179 0.821

HLA_DRB1_08_01 19 0.199 0.801 22 0.24 0.76

HLA_DRB1_09_01 40 0.277 0.721 40 0.326 0.672

HLA_DRB1_10_01 9 0.496 0.503 10 0.328 0.672

HLA_DRB1_11_01 192 0.106 0.894 196 0.14 0.859

HLA_DRB1_12_01 2 0.139 0.86 2 0.086 0.914

HLA_DRB1_13_01 12 0.087 0.913 12 0.245 0.754

HLA_DRB1_13_02 3 0.293 0.706 3 0.547 0.45

HLA_DRB1_14_01 20 0.234 0.766 20 0.206 0.795

HLA_DRB1_15_01 113 0.18 0.82 122 0.184 0.815

HLA_DRB3_01_01 4 0.034 0.966 4 0.068 0.932

HLA_DRB3_02_02 7 0.144 0.856 7 0.149 0.85

HLA_DRB4_01_01 3 0.279 0.72 3 0.372 0.628

HLA_DRB5_01_01 119 0.123 0.877 120 0.17 0.83

Average 0.174 0.825 0.193 0.806

Allele
CNN-PepPred NetMHCIIpan3.2
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This evaluation set up was also performed on the models trained with
transfer learning (see Sections 2.4.5 and 2.5.1.4). As discussed in Section
2.5.1.4, while the results are on average slightly better with transfer learn-
ing, the increment in predictive performance on the evaluation set does not
match the one in the cross-validation set up. This might be due to the
redundancy present in the IEDB data. The previously trained models are
already adapted to this type of data and using transfer learning helps find-
ing patterns, however it doesn’t seem to generalize as well with independent
data. Therefore, some caution must be observed when using transfer learn-
ing to train and the parameters should be set to reduce the learning during
optimization (lower learning rate and/or number of epochs).
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average F-rank average AUC average F-rank average AUC

HLA_DPA1_01_03_DPB1_02_01 1 0.005 0.995 0.004 0.996

HLA_DQA1_01_02_DQB1_06_02 2 0.085 0.915 0.196 0.803

HLA_DRB1_01_01 235 0.194 0.806 0.194 0.806

HLA_DRB1_03_01 96 0.147 0.853 0.151 0.849

HLA_DRB1_04_01 220 0.157 0.842 0.149 0.851

HLA_DRB1_04_02 3 0.22 0.78 0.294 0.705

HLA_DRB1_04_04 142 0.266 0.734 0.28 0.719

HLA_DRB1_04_05 3 0.01 0.99 0.009 0.991

HLA_DRB1_07_01 196 0.159 0.841 0.165 0.835

HLA_DRB1_08_01 19 0.199 0.801 0.203 0.797

HLA_DRB1_09_01 40 0.277 0.721 0.257 0.742

HLA_DRB1_10_01 9 0.496 0.503 0.45 0.55

HLA_DRB1_11_01 192 0.106 0.894 0.111 0.889

HLA_DRB1_12_01 2 0.139 0.86 0.028 0.972

HLA_DRB1_13_01 12 0.087 0.913 0.084 0.916

HLA_DRB1_13_02 3 0.293 0.706 0.221 0.779

HLA_DRB1_14_01 20 0.234 0.766 0.246 0.753

HLA_DRB1_15_01 113 0.18 0.82 0.168 0.832

HLA_DRB3_01_01 4 0.034 0.966 0.032 0.968

HLA_DRB3_02_02 7 0.144 0.856 0.129 0.87

HLA_DRB4_01_01 3 0.279 0.72 0.227 0.773

HLA_DRB5_01_01 119 0.123 0.877 0.15 0.85

Average 0.174 0.825 0.17 0.829

Allele #Epitope
CNN-PepPred CNN-PepPred (transfer learning)
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Chapter 3

SICPAC study: Computational
simulation of pancreatic cancer
patients as clinical decision
support system based on
machine learning techniques
and systems biology

3.1 Abstract

Pancreatic cancer is one of the most aggressive cancer types, with a 5-year
survival rate lower than 5%. Despite having approved regimens, it is still
necessary to determine the molecular features leading to a low prognosis. In
recent years, computational approaches based on systems biology that gen-
erate patient models based on multiple data sources have been developed.
These approaches have proven to accurately reproduce results from clinical
trials, making them suitable for discovery of new biomarkers.
Clinical variables from 20 patients that had previously undergone palliative
first-line chemotherapy with Gemcitabine/Nab-paclitaxel were retrieved dur-
ing multiple hospital visits and corresponding molecular information was sim-
ulated through TPMS technology. TPMS is a system biology approach which
simulates patients by generating a protein activation network based on clini-
cal information, drug effectors and known relations between proteins. More-



over, the clinical variables along with the protein activations from TPMS
models were used for the training of multivariate regression tree models to
predict the next visit’s outcome value of a patient. Six clinically relevant
outcomes were selected: the concentration of eosinophil, platelet, red blood
cell, leukocyte, monocyte and hemoglobin.
Although the correlations between predicted and expected outcome values
in a validation set up remain too low to build a trustworthy clinical pre-
dictive tool, the use of regression trees with clinical data alongside TPMS
simulated data revealed to be an accurate systems biology approach to pre-
dict increase and decrease trends of the six studied clinical outcomes, espe-
cially considering the low number of patients involved in the study. Fur-
thermore, promising results were obtained, such as the identification of the
time period between visits and of several clinical and molecular variables as
a potential source of variation for the studied outcomes. Such methodol-
ogy could be further applied to other cancer types using appropriate clin-
ical data. To assist in decision making and render this approach avail-
able to interested researchers, a friendly graphic user interface applying
the described models has been deployed in the following web-application:
http://sicpac.anaxomics.com:81.

3.2 Introduction

Cancer is a clinical term that englobes several diseases with well-differentiated
histologic characteristics, heterogeneous clinical performances and failed clin-
ical response in many cases. Among all the cancer types, pancreatic cancer
is one of the most aggressive ones, with a poor five-year survival rate, lower
than 5% (Siegel et al., 2018). A lack in early detection methods along with
a tendency for early metastasis contribute to this poor survival rate (Maitra
and Hruban, 2008; Garrido-Laguna and Hidalgo, 2015). Minor improvements
have been obtained with FOLFIRINOX (folinic acid, 5-fluorouracil [5 FU],
irinotecan, and oxaliplatin) and paclitaxel/nab-paclitaxel plus gemcitabine
chemotherapy (Conroy et al., 2011; Hoff et al., 2013). Despite these ad-
vancements, surgical resection remains as the main treatment procedure for
pancreatic cancer patients (Deplanque and Demartines, 2017).
A patient’s cancer treatment can be stopped due to efficacy or security issues.
Efficacy of a treatment can be monitored with measurements on solid tumors
such as TAC, PET, or any other resonance-based imaging techniques. Blood
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biomarkers can also be used to assess the malignant impact of the tumor on
the affected organ. Patient’s general status and tolerability can be screened
with markers of the liver, kidney and immune system obtained in blood tests.
Patients are evaluated using performance scales such as the Karnofsky and
ECOG Performance Status scales to get a complete evaluation considering
quality of life-related terms and their ability to perform daily routine tasks.
Cancer patients, especially those with advanced-stage cancer diseases, usu-
ally display a non-recurrent clinical behavior. On one side, after some time,
oncologic treatments become less efficient due to resistance. On the other
side, oncologic treatment might induce toxic effects, causing its interrup-
tion, variations in dose quantity and their frequency of administration, and
changes on the treatment, despite being effective. Alternative treatments
that reduce the toxicity induced by the main treatment and comorbidities
due to tumors can also be given to cancer patients in parallel.
Every aspect described above makes the continuous evaluation of patients’
status necessary for the oncologist, as well as taking decisions about the
patients’ treatments. Integration of this set of patient and treatment infor-
mation is not easy. As a solution, a tool based on computational simulations
of the patients of interest using mathematics models might be of utility. This
tool would be used to explore the effects of the treatment in the following
cycle, thus helping the oncologist in the decision-making process.
Computational tools to create patient models from several data sources have
gained popularity to determine new biomarkers in various diseases (Gulshan
et al., 2016; Kamnitsas et al., 2017; Segú-Vergés et al., 2021). In silico sim-
ulation of metabolic pathways, tissues, organs and use of animal models in
clinical research has already been put in place extensively in cancer (Schultz
et al., 2016; Obrzut et al., 2017; Gal et al., 2020). Computational techniques
have been able to replace clinical trials in some drug development processes
using systems biology (Lucas et al., 2016; Giménez et al., 2019; Villalba et al.,
2020). Systems biology is a multidisciplinary domain that integrates infor-
mation from molecular biology and several computational and mathematical
methods. It has been used to model mechanism of action of drugs, predict
novel biomarkers and identify indications. The main goal of systems biology
in this area is to obtain computational models of patients that can be used
to test different therapeutic strategies. Partial or complete simulation of pa-
tients needs to be done to generate these alternative strategies in an in-silico
way.
In the last years, several predictive tools that model disease progression, drug
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interaction and patient simulation based on systems biology have been de-
veloped (Kolpakov et al., 2019; Subbalakshmi et al., 2021). One example
of these models is the Therapeutic Performance Mapping System (TPMS)
(Jorba et al., 2020). This kind of model gathers all the information on the
human found in accessible databases containing different information types
(physiological, metabolic, clinical studies, etc.). All this information is used
as constraints in the in-silico models, which makes the modelling of specific
processes possible, such as metabolism, mechanism of action of drugs and
variations at the protein expression level caused by patients’ clinical con-
ditions, including main pathological conditions such as cancer and minor
adverse effects. This approach has been employed to study several patholo-
gies and their drug development (Moncunill et al., 2020; Segú-Vergés et al.,
2021), including several cancer types (Morales et al., 2017; Giménez et al.,
2018).
The main objective of this study is to perform computational simulations
to predict the level of eosinophils, red blood cells, hemoglobin, leukocytes,
monocytes, and platelets in metastatic pancreatic cancer patients and evalu-
ate them as clinical decision support system. Model generation is done using
supervised machine learning techniques on real patients’ data that under-
went first-line palliative chemotherapy under the regime Gemcitabine/Nab-
Paclitaxel, enrolled in the SICPAC study (code MOR-GEM-2018-01). Other
goals of the study were the identification of characteristics of patients, treat-
ments and time intervals between cycles that might influence the measure-
ment of the blood cells of interest. Moreover, the implementation of systems
biology will shed light on proteins and pathways that might have a key role
in the variation of the variables measured in this study.

3.3 Materials and methods

SICPAC study data
Data to be analysed by systems biology and Machine Learning techniques
to perform computational simulations on pancreatic cancer patients was ob-
tained via an observational study with authorization prior to recruitment
with a retrospective monitoring. The study, SICPAC, was carried out in Hos-
pital General La Mancha Centro, Alcázar de San Juan, Ciudad Real, Spain
(code MOR-GEM-2018-01) under the supervision of Doctor Rafael Morales
and fulfilled all the requirements needed: approval of research of drugs by
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the Comité de Ética de la Investigación and presentation of the study to the
Agencia Española de Medicamentos y Productos Sanitarios (AEMPS).

Study population
Data from 20 patients diagnosed with locally advanced or metastatic ade-
nomatous pancreatic cancer from 2015 to 2018 were recruited. These patients
had previously undergone palliative first-line chemotherapy with Gemcitabine/Nab-
paclitaxel and were over 18 years old at the time of recruitment. Clinical
information of at least 3 visits (1 treatment cycle) of each patient was also
required.

Data retrieval
Data collected from the Case Report Form (CRF) of the SICPAC study
contains different features measured for each patient. They can be mainly
grouped by demographic data, previous personal records, symptoms of dis-
ease, pharmacologic treatment, physical exploration, additional explorations,
and tumor biology. A list of the CRF variables is given in Appendix C.1.

Simulation of patients by Systems Biology
Data collected from the SICPAC study were employed to model each of the
20 patients recruited using System Biology approaches. In this study the
TPMS method (Jorba et al., 2020; Gutiérrez-Casares et al., 2021) was used,
which is based on a map of all known human proteins with links to metabolic
pathways, signalling pathways and annotation of proteins pairs with identi-
fied physical interaction, as seen in Figure 3.1. The role of most human
proteins in human physiology is unknown. Some proteins, however, have a
strong relation with a certain phenotype, such as the Na/K pump, which is
highly related to diarrhea. The Biological Effectors Database (BED) (Jorba
et al., 2020) is a database containing 305 different phenotypes, which are
grouped by the biological motives that induce them, i.e., diabetes can be
caused by beta cell destruction, problems in insulin production, etc. Each
motive is described by a protein set having a strong relation to it, proved
in the literature. Furthermore, several databases that describe proteins tar-
geted by drugs were used (Wishart et al., 2017).
The models built by TPMS must include all the patients’ clinical states. Ev-
ery effect caused by the administration of drugs, either through the target
proteins or through off-targets causing adverse effects, must be considered
in these models. In TPMS, this would be represented as the activation and
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inhibition of the target proteins of the drugs along with the protein expres-
sion state of the proteins closely related to the disease, known as protein
effectors. Models built in TPMS consider all the information on the human
condition at several levels in order to run the simulations. This data has
been collected and compiled using information from several sources, such as
demographic information on patients (height, weight, age, etc.) amount of
drug administered and the protein-protein interactions defined from various
databases like KEGG (Kanehisa, 2000, 2019; Kanehisa et al., 2020), REAC-
TOME (Jassal et al., 2019) and BioGRID (Oughtred et al., 2020). Extra
information is obtained from the CRF records, where additional drug treat-
ments (co-treatments) and adverse effects were described.
Patients analysed in this study suffered from pancreatic cancer. In the
TPMS models, a main treatment with Gemcitabine/Nab-Paclitaxel along
with cotreatments were defined for all patients, based on the CRF data.
Target proteins were identified for each different drug using information from
DrugBank (Wishart et al., 2017) and added into the TPMS models. Several
phenotypic traits defined as adverse effects were also identified and incor-
porated into the TPMS models with their protein effectors extracted from
BED. A different TPMS model was built per patient and visit. For each visit,
over 250 solutions were calculated in each of these models. These solutions
have a high accuracy and are closely related to the clinical information of
each patient and visit described in the CRF. Thus, starting from the data
collected in the CRF and using the TPMS models we obtain a set of proteins
and biologic pathways that are activated.
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Figure 3.1: Outline of a human protein network. On the left, proteins are represented
by the blue nodes and linked between them by their signalling, interaction, or metabolic
relations (edges). A network of high complexity can be seen only by selecting a few
proteins as shown. On the right, Drug A activates its target protein, and the activation or
inhibition signals distribute across the network until they reach the protein effectors that
cause indication (green) or adverse effects (red).

Analysis of SICPAC study using Machine Learning techniques
Time series analysis was performed using features identified on the CRF as
well as those obtained with TPMS as the main Machine Learning method.
Multivariate models based on regression trees were generated to predict
the next visit’s values of the 6 clinical outcomes selected (concentration of
eosinophils, platelets, red blood cells, leukocytes, monocytes and hemoglobin).
All the consecutive patients’ visits noted in the CRF were used to train the
models, where two visits are considered as successive if the time period be-
tween them is less than 50 days. The model consists of an ensemble of up
to 5 regression trees selecting up to 3 variables (4 including the time period
between visits) from up to 3 consecutive visits. For each of the 6 clinical out-
comes, a model was trained, and its performance was evaluated in a Leave
One Patient Out (LOPO) cross-validation set up. In this set up, all the vis-
its’ data from all but one patient were used in the training and all the visits
from the left-out patient were used for validation. This training-validation
splitting process was repeated for all patients and the validation metric used
was the Spearman correlation between the experimental values from the CRF
and the predicted values. To avoid overfitting, the selection of the variables
was performed within the LOPO set up. Categorical variables are labelled as
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1 and 0, depending on whether the patient was under the category effects or
not, respectively. In addition, continuous variables (including the outcomes)
were normalized by subtracting from their values the median of all their val-
ues up to the last available visit (for each patient separately). The number
of days between consecutive visits was also used as a predictive variable and
was normalized as such. A representation of the variables’ nomenclature is
shown in Table 3.1.

Nomenclature of the variables

Visit 3 Visit 2 Visit 1
Upcoming
visit

Nausea 3 Nausea 2 Nausea 1

Time 3 Time 2 Time 1

Table 3.1: Variables are created by indicating the clinical term followed by the visit
number (Nausea n in this table). Nausea n corresponds to the variable Nausea, n visits
before the upcoming visit and similarly for all other variables except for Time. Time n
corresponds to the number of days between the nth visit and the (n−1)th visit before the
upcoming visit. This is illustrated in the table by positioning the Time variable between
two columns.

Following the nomenclature of Table 3.1, the normalized visit values for a
continuous variable V ar after n visits are:

V ar 1−median{V ar 1, . . . , V ar n}
V ar 2−median{V ar 1, . . . , V ar n}
V ar 3−median{V ar 1, . . . , V ar n}

In this study, count values of eosinophils, red blood cells, leukocytes, mono-
cytes and platelets together with concentration values of hemoglobin to be
obtained in future visits were predicted based on the values of features iden-
tified on the CRF in earlier visits. Spearman’s correlation with the LOPO
set up and a prediction score followed by the same cross-validation method
were calculated to evaluate the ability to predict new concentration values in
any upcoming clinical visit as well as detecting concentration trends in the
patients. This was done using regression trees, a Machine Learning method
that has been previously used for predicting either categories or continu-
ous values based on training data. Regression trees have been proven to be
effective methods to handle structured data sets. In this study, variables
extracted from the TPMS models were added to the clinical data, yielding
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a high dimensional training dataset. Variables used in TPMS models are
mainly proteins, so a remarkable difference would be expected using these
variables with the clinical data. In consequence, two separate analyses, one
with CRF data and the other with CRF and TPMS variables, were performed
using regression trees.

Creation of a webserver to facilitate the usage of ML models
Given their complexity and the skill needed to run and analyse the regres-
sion trees presented in this work, a graphic user-friendly interface was built
and deployed as a webapp, accessible at http://sicpac.anaxomics.com:81,
as means of facilitating its usage at a scientific and clinical setting. The
tool was built in a python-based environment using the Django back-end
(https://www.djangoproject.com/). Considering that all the regression
trees were built on MATLAB, we used the MATLAB Compiler SDK toolbox
as interface between Python and the original programming language.

3.4 Results

3.4.1 Population study

A total of 274 clinical visits were gathered for the 20 patients recruited in
this study, where 138 variables (consisting of analytical measures, presence of
AES and intake of co-treatments, see Appendix C.1) were recorded per visit
for every patient. All patients were over 18 years old, with a mean value of
64.4 years for the whole population (range between 47 and 82, with the 40%
and 60% being women and men, respectively). In Table 3.2, the principal
variables of the study (concentration values of eosinophils, red blood cells,
hemoglobin, leukocytes, monocytes, and platelets) along with their mean,
median and standard deviation are shown. Moreover, an average of 2.95
adverse effects and an average intake of 5.7 complementary treatments were
found per visit.
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Outcomes values
All Female Male

Mean Std Median Mean Std Median Mean Std Median
Leukocyte [103/µL] 6.61 3.97 5.8 7.26 4.72 5.95 5.73 2.35 5.7
Monocyte [103/µL] 0.64 0.5 0.5 0.72 0.57 0.5 0.54 0.37 0.5
Hemoglobin [g/dL] 11.37 1.43 11.2 11.07 1.39 11 11.77 1.4 11.65

Red blood cell [106/µL] 3.85 1.98 3.76 3.79 2.58 3.62 3.94 0.43 3.92
Eosinophil [103/µL] 0.2 0.31 0.1 0.24 0.38 0.1 0.15 0.17 0.1

Platelet [103/µL] 227.75 142.46 185 234.39 155.25 174 218.63 122.82 192
Number AES per visit 2.95 2.18 2 3.04 2.19 3 2.83 2.17 2

Number co-treatment per visit 5.68 4.88 5 5.69 5.07 4 5.65 4.64 5

Table 3.2: Values of eosinophils, red blood cells, hemoglobin, leukocytes, monocytes, and
platelets, together with the number of adverse effects and complementary treatments per
visit. Mean, median and standard deviation values are computed for the male, female,
and the whole population.

3.4.2 Study of correlation between CRF and variables
from Systems Biology

Regression trees were built from both variables described in the CRF and
variables generated by the TPMS to predict each of the 6 principal outcomes
analysed in this study. Table 3.3 contains the Spearman correlation between
the desired and predicted values in the LOPO set up for the models trained
with the CRF variables (coulmn CRF) and the models trained with the CRF
and TPMS variables (column CRF+TPMS). Spearman correlation values in
Table 3.3 show that the variables obtained from the TPMS models did not
have a great impact in predicting the concentration values of the 6 variables
since the correlation values obtained with the variables from the CRF alone
or in combination with those from TPMS did not vary greatly. For each of the
6 outcomes, Figure 3.2 shows the desired values vs the predicted values of the
model trained with the CRF variables (in the LOPO set up). It is interesting
to note that different results were obtained from analysing patients’ data at
the same time or separately. Known as the Simpson’s Paradox (Hernán et al.,
2011), weaker correlation values were calculated by averaging the correlation
values obtained for each patient separately for the 6 variables (3.4). As shown
in the table, this was seen for both sets of variables, CRF and CRF + TPMS.
This implies that any prediction done for a specific patient should account for
this correction, thus making these models not eligible for predicting expected
concentration values in the following visits.
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Spearman correlation

CRF CRF+TPMS
Leukocyte 0.71 0.71
Monocyte 0.64 0.60

Hemoglobin 0.76 0.77
Red blood cell 0.76 0.78

Eosinophil 0.72 0.71
Platelet 0.68 0.67

Table 3.3: LOPO set up’s Spearman correlation between the concentration values of
the 6 main variables when the models were trained with the CRF variables alone and in
combination with the TPMS ones.

Figure 3.2: Plot of desired vs predicted values in the LOPO set up with the CRF
variables. Each plot corresponds to one of the 6 outcomes. The x-axis contains the
desired values while the y-axis contains the predicted values of the model trained with the
CRF variables in the LOPO set up. The red line corresponds to the identity, i.e., where
the points would ideally lie.
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Spearman correlation

CRF CRF+TPMS
Leukocyte 0.37 0.36
Monocyte 0.47 0.44

Hemoglobin 0.45 0.51
Red blood cell 0.45 0.52

Eosinophil 0.39 0.30
Platelet 0.40 0.35

Table 3.4: LOPO set up’s Spearman correlation values, considering the Simpson’s Para-
dox, i.e. the correlation is computed per patient and the average among patient is given
in the table.

3.4.3 Prediction score of increasing or decreasing trends
compared to the previous visit

As seen in Figure 3.2 in the scatter plots, a correlation between experimental
and predicted concentration values could be found. Consequently, prediction
scores, expressed as balanced accuracies, were calculated to measure the abil-
ity to predict increase vs decrease of the outcomes compared to the previous
visit’s values, based on the visits annotated in the CRF. Note that the visits
for which there is no increase or decrease compared to the previous visits
were ignored in the computation of this score. The prediction scores reflect
the ability of the model, in the same LOPO set up previously described, to
classify an increase vs a decrease of an outcome’s value compared to its value
during the last known visit. As seen in Table 3.5, except for the hemoglobin
concentration and the red blood cell count, the increases or decreases of the
outcomes in the following visits can be predicted with a balanced accuracy
of around 0.77.

3.4.4 Variables selected in the models

The variables selected in the models can be considered as the factors that had
the greatest influence on the increase or decrease with respect to the median
value of a patient’s outcome. These factors are shown in Table 3.6, with both
the variables from the CRF and CRF + TPMS models. The variables shown
in this table highlight which clinical features affect the most the increase or
decrease with respect to the median of the concentration, where variables
obtained from TPMS models give a deeper insight on the molecular pro-
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Increase/decrease prediction score
Prediction score (balanced accuracy)
CRF CRF+TPMS

Leukocyte 0.770 0.757
Monocyte 0.774 0.768

Hemoglobin 0.609 0.685
Red blood cell 0.608 0.666

Eosinophil 0.843 0.865
Platelet 0.773 0.755

Table 3.5: Prediction scores (balanced accuracy) to measure the tendency of the 6 main
outcomes to increase or decrease compared to the previous visit’s outcome values. Both
models, with variables from the CRF and with variables from the CRF and TPMS, are
included.

cesses that underlie those trends. Regression trees built to get these results
are available in Appendix C.3, with the CRF (Appendix C.3.1) and CRF +
TPMS models (Appendix C.3.2). Appendix C.2 contains an explanation on
how to read the regression trees. Results for each 6 principal variables of the
study are described below. Information on genes was retrieved from UniProt
(https://www.uniprot.org/).

Leukocytes
In regression tree models only built using CRF data, increase and decrease of
leukocyte concentration with respect to the patient’s median value was ob-
served mainly due to the following factors. Diagnosis of neutropenia, which
is defined by the low concentration of neutrophils in blood, in the last clinical
visit recorded in the CRF is found to be linked. Moreover, administration of
fentanyl, an opioid analgesic, and naloxone, an opioid receptor antagonist,
in the last two visits noted in the CRF was also related. Finally, diagnosis
of neuropathy in the penultimate visit was also found to influence leukocyte
concentration. Adding the information extracted from Systems Biology, re-
gression trees also predicted the effect of diagnosis of neutropenia, along with
the overexpression and underexpression of the proteins shown in Table 3.7.

Monocytes
In the models using only CRF data, as observed in the corresponding plots
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Selected variables
CRF CRF+TPMS

Leukocyte

DB00813 (Fentanyl),
DB01183 (Naloxone),
NEUROPATHY,
NEUTROPENIA,
Time

NEUTROPENIA,
P11021 (HSPA5),
P32246 (CCR1),
Q13464 (ROCK1),
Q5VWK5 (IL23R),
Q9UHD2 (TBK1),
Time

Monocyte
Creatinine, Metasta-
sis, NEUTROPENIA,
Sodium, Time

NEUTROPENIA,
O75881 (CYP7B1),
Time

Hemoglobin Hemoglobin, Time
Q6ZNA4 (RNF111),
Q99466 (NOTCH4),
Q9Y210 (TRPC6)

Red blood
cell

Red blood cell
O75460 (ERN1),
Q9NZJ5 (EIF2AK3)

Eosinophil
NEUTROPENIA,
Time

NEUTROPENIA,
Time

Platelet

ARTHRITIS, DIAR-
RHEA, Lymphocyte,
MUCOSITIS, NEU-
TROPENIA, Time

Q07864 (POLE),
Q15054 (POLD3),
Q9HCU8 (POLD4),
Q9NR33 (POLE4),
Q9NRF9 (POLE3),
Time

Table 3.6: List of variables obtained from the regression models to predict the increasing
or decreasing trends with respect to the median value of the patient’s outcome, from the
CRF and CRF + TPMS models.
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Gene name
Gene
ID

UniProt
ID

Time instance
Cellular func-
tion

Rho-associated
protein kinase 1

ROCK1 Q13464
Last two clinical
visits (ROCK 2,
ROCK 1)

Regulation of
smooth muscle
contraction, actin
cytoskeleton
organization,
stress fiber and
focal adhesion,
motility, etc.

Endoplasmic
reticulum chaper-
one BiP

HSPA5 P11021
Penultimate visit
(HSPA5 2)

Correct folding
and degradation
of misfolded
proteins

Serine/threonine-
protein kinase

TBK1 Q9UHD2
Last visit
(TBK 1)

Cell death pro-
gramming

Interleukin-23 re-
ceptor

IL23R Q5VWK5
Penultimate visit
(IL23R 2)

Stimulation of
immune cells
through Jak-Stat
signaling cascade

C-C chemokine
receptor type 1

CCR1 P32246
Penultimate visit
(CCR1 2)

Stem cell prolifer-
ation

Table 3.7: Genes identified for the prediction of Leukocyte concentration.
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from Appendix C.3.1, diagnosis of neutropenia in patients was also consid-
ered as having a significant effect. Time periods between any upcoming
visit and the last visit, and between the penultimate and the last visit af-
fected the concentration of monocytes in patients. In addition, concentration
differences of creatinine and sodium in the penultimate and last visit were
labelled as relevant. Creatinine concentration variation might indicate re-
nal failure since it might cause creatinine accumulation in blood. Lastly,
detection of metastasis in the penultimate visit was also found to be rele-
vant for monocyte concentration. Merging the information given by Systems
Biology methods, diagnosis of neutropenia and time periods between visits
were still relevant in the regression trees. Moreover, over and underexpres-
sion of cytochrome P450 7B1 (Gene ID: CYP7B1, UniProt ID: O75881) was
found to have a relevant effect. This protein is involved in the metabolism
of endogenous oxysterols and steroid hormones, including neurosteroids. It
also regulates B-cell migration in germinal centers of lymphoid organs, thus
guiding effective maturation of plasma B-cells and overall antigen-specific
humoral immune response.

Hemoglobin
Use of clinical data from the CRF revealed that the factors that affect the
most hemoglobin concentration in any upcoming visit are hemoglobin con-
centration variation in the last visit as well as the time period between the
last and the upcoming visit, as seen in the corresponding plots from Ap-
pendix C.3.1. Using CRF data and information given by TPMS models, no
other variable recorded in the CRF than hemoglobin itself was labelled as
significant in the regression trees, while finding expression variation signifi-
cant for the following proteins in Table 3.8.

Red blood cells
No relevant factors that might have an influence on red blood cells in fu-
ture visits were found, as observed in the corresponding plots from Ap-
pendix C.3.1. Adding the data extracted from Systems Biology methods,
two proteins were found to influence red blood cell concentration in visits
to come. The serine/threonine-protein kinase/endoribonuclease IRE1 (Gene
ID: ERN1, UniProt ID: O76460) is a protein found in the endoplasmic reticu-
lum that acts as a key sensor for the endoplasmic reticulum unfolded protein
response (UPR) (Yoshida et al., 2001; Iwawaki et al., 2001; Liu et al., 2003,
2017). A high expression of this protein in pancreatic cells has been reported

110



Gene name
Gene
ID

UniProt
ID

Time instance
Cellular func-
tion

Short transient
receptor potential
channel 6

TRPC6 Q9Y210
Last visit
(TRPC6 1)

Form a receptor-
activated non-
selective calcium
permeant cation
channel

E3 ubiquitin-
protein ligase
Arkadia

RNF111 Q6ZNA4
Last visit
(RNF111 1)

Acts as an en-
hancer of the
transcriptional
responses of the
SMAD2/SMAD3
effectors

Neurogenic locus
notch homolog
protein 4

NOTCH4 Q99466
Last visit
(NOTCH4 1)

Functions as
a receptor for
membrane-bound
ligands Jagged1,
Jagged2 and
Delta1 to reg-
ulate cell-fate
determination

Table 3.8: Genes identified for the prediction of Hemoglobin concentration.
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(Tirasophon et al., 1998). In addition, expression variation obtained in the
last visit of eukaryotic translation initiation factor 2-alpha kinase 3 (Gene ID
EIF2AK3, UniProt ID: Q9NZJ5) was found to be also relevant. This protein
is a key activator of the integrated stress response needed for adaptation to
several stresses, like UPR and low amino acid availability (Sood et al., 2000).
Both proteins found are closely linked to oxidative stress and high expression
in pancreas. Therefore, concentration differences of red blood cells might be
due to pancreatic cancer rather than treatment effects in the patients studied.

Eosinophils
As for the eosinophils, two factors were found to be related to their concen-
tration variations based on the information collected at the CRF: diagnosis
of neutropenia in the last two clinical visits and time periods between the
last and upcoming visit and between the first and second clinical visit. No
extra information was found adding data form the TPMS models.

Platelets
Several factors that might affect platelet concentration extracted from only
CRF data were determined. All time periods possible were found to be rele-
vant (last to upcoming visit, penultimate to last visit and ante-penultimate to
penultimate visit). Diagnosis of neutropenia in the last and penultimate visit
recorded was also labelled as important by the regression trees. Moreover,
detection of mucositis, an inflammation of the mucous membranes across the
internal intestine tract, was also significant. Merging data obtained from
TPMS models into the CRF data, several additional factors were found to
be important in platelet concentration prediction. Time period between the
last recorded and future visit together with the time period between the
ante-penultimate and penultimate visit recorded were categorized as relevant.
Furthermore, several proteins were found to influence platelet concentration
based on their expression variation. These proteins are listed in Table 3.9.

3.4.5 Clinical tool for aiding in clinical decision-making

The web-application allows users to predict levels of leukocytes, monocytes,
eosinophiles, red blood cells, hemoglobin and platelets given the clinical vari-
ables displayed by the patient in recent visits to the clinician’s office, thus
providing physiological insight into patient’s response to the clinical strategy
in study. Figure 3.3 provides a general overview of this tool. After logging in,
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Gene name
Gene
ID

UniProt
ID

Time instance
Cellular func-
tion

DNA polymerase
delta subunit 3

POLD3 Q15054

Last visit
(POLD3 1),
Ante-penultimate
visit (POLD3 3)

Genome repli-
cation and
polymerase-
delta stabilization
and stimulation
by PCNA

DNA polymerase
epsilon subunit 3

POLE3 Q9NRF9

Last visit
(POLE3 1)
Ante-penultimate
visit (POLE3 3)

DNA repair and
replication

DNA polymerase
epsilon catalytic
subunit 3

POLE Q07864

Last visit
(POLE 1) Ante-
penultimate visit
(POLE 3)

DNA replication
and DNA synthe-
sis during DNA
repair

DNA polymerase
delta subunit 4

POLD4 Q9HCU8

Last visit
(POLD4 1)
Ante-penultimate
visit (POLD4 3)

DNA replication
and repair. In-
creases rate of
DNA synthesis
and decreases
fidelity

DNA polymerase
epsilon subunit 4

POLE4 Q9NR33

Last visit
(POLE4 1)
Ante-penultimate
visit (POLE4 3)

DNA chromoso-
mal replication
and repair

Table 3.9: Genes identified for the prediction of Platelet concentration.
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the user can start a new analysis. This procedure is done through the pro-
vided input form (Figure 3.3D). Here, the user must describe the clinical case
by providing dates of the visits; administered medication (if the patient was
being prescribed Fentanyl or Naloxone in the different visits); symptomology
(if the patient was experiencing neuropathy, neutropenia, metastasis, arthri-
tis, diarrhea, or mucositis); and the values of different circulating biomark-
ers (levels of creatinine, sodium, lymphocytes, red blood cells, hemoglobin,
leukocytes, monocytes, eosinophils and platelets). Submitting the form will
run the regression tree models and redirect the user to the results page (step
3 on Figure 3.3). Here lies a summary table (Figure 3.3E) containing the
predicted value of the next visit for the six different outcomes: leukocyte,
monocyte, eosinophile, red blood cell, hemoglobin and platelet levels. Ad-
ditionally, an extra column (25-percentile range) provides information on
where the predicted values lie relative to the values in the training data set.
Namely, if the inserted case lies in the top or bottom 25 percent of the corre-
sponding values in the training data. Finally, the results can be downloaded
by clicking on the Download Results button (Figure 3.3F). By this process,
a zip file containing the output table and the patient-specific trees used for
the prediction of the next visit’s outcomes will be provided.

3.5 Conclusion

In this study, the use of mathematics models via TPMS has turned out to
be effective to support clinical decisions based on data regularly collected
in record in the CRF. Despite the low number of samples, some remarkable
results have been obtained.
One of the main conclusions that can be drawn from this study is the difficulty
in predicting future count of eosinophils, red blood cells, leukocytes, mono-
cytes and platelets and concentration of hemoglobin using data extracted
from previous clinical visits. This might be due to the limited number of
samples available (only 20 patients were recruited and monitored in this
study). However, having a larger number of samples or a longer monitoring
of the patients might improve the models, thus making the prediction possi-
ble.
Despite this, an analysis of the increasing and decreasing trends of the count
of eosinophils, red blood cells, leukocytes, monocytes and platelets and con-
centration of hemoglobin was performed using regression trees. These Ma-
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Figure 3.3: Overall scheme of the SICPAC user interface and working mechanics. The
letters A to G point towards the various parts with which the user may interact with
the webserver: (A) the main menu, (B) the login and logout buttons, (C) contextual
button that launches a new analysis or login, (D) the input form in which the user can
describe the previous clinical condition of the patient, (E) a summary table containing the
predictions of the levels of leukocytes, monocytes, eosinophiles, red blood cells, hemoglobin
and platelets, (F and G) a button to allow the download of a zip file containing schematic
representations of the regression trees that were created and the overall results in a excel
spreadsheet. The numbers 1 to 3 refer to the major pages through which the user will be
carried: (1) Landing page, (2) Input form, and (3) Results page.
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chine Learning models cannot be applied to other cancer patients at first
since only pancreatic cancer patients which had undergone palliative first-
line chemotherapy with Gemcitabine/Nab-paclitaxel were used in this study,
but considering the type of data used, relevant results could be obtained us-
ing these models on other cancer patients.
Several factors were found to influence the studied clinical outcomes. One
of the factors that affect significantly the clinical results is the time period
between visits. This suggests that the time period between two consecutive
visits might influence the clinical features analysed here, potentially driving
the oncologist to incorrect conclusions. Cancer patients usually go through a
high number of clinical visits in short time periods. This could cause a lack
of stability in patients’ response to the drugs administered and might have
a high significance for eosinophils and hemoglobin, where only diagnosis of
neutropenia and time periods between visits are found to have an influence.
Apart from time periods between visits, various proteins were identified and
labelled as significantly linked to increasing and decreasing trends. Most of
the proteins found in this study were related to cell proliferation processes,
like cytoskeleton organization and cell death programming, and DNA repli-
cation. Such information could give the clinician a deeper insight on the
molecular processes that underlie disease progression in the patients anal-
ysed.
Finally, a user-friendly graphic interface was built and presented as a web-
site, as an implementation of the prediction tools built in this study. The
use of the regression trees is therefore accessible to any researcher interested.
Results are displayed in a very intuitive way, as shown in Figure 3.3. In
addition, results can be exported into Excel files, which could be further
processed in downstream analyses.
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Discussion and outlook

Among all the considerations to take when organizing a pipeline for the anal-
ysis of biomedical data, the first one should be about the data themselves.
We saw an example of how relevant it is to properly prepare a data set in
Chapter 1. We presented a novel algorithm, CuBlock, for the normalization
of gene-expression microarray data originating from different experiments
and available on public repositories. We showed that after normalization,
biological patterns could be found across the different experiments, there-
fore enabling the integration of multiple data sets for subsequent analysis. If
one such method is not applied, the main effect to observe across the data
would be the difference between batches. Considering the steadily increas-
ing amount of sequencing data deposited in public repositories, it would be
interesting to test whether an approach like CuBlock could be also relevant
for the integration of RNA-seq data.
With all the available databases, the first chapter constitutes a practical
example of some considerations to have when starting the analysis of re-
trieved data sets. Of course, there are many others such as the cleaning of
data, dealing with outliers or missing data and engineering relevant features.
To extract meaningful information from the data, appropriate care must be
taken.
In order to build and test an open-source tool for the binding prediction
of MHC-class II peptides in Chapter 2, the data set retrieved from IEDB
was thus carefully constructed. Indeed, these data come from similar exper-
imental designs and contain some level of redundancy. For this reason, we
identified all the unique 11-mers within a given peptide set and only selected
the shortest peptide containing each 11-mer. Moreover, the experimental re-
sults mostly report positive binders. Consequently, few non-binders could be
found in comparison. To balance the sets, a random selection was performed.
The negative instances were randomly selected among known human proteins
so that the length distribution of the positive set was respected.



Appropriate data processing is not only important to extract meaningful
information but also to properly validate a model. Based on previous knowl-
edge about MHC-class II peptides, the method was adapted to highlight
binding nonamers contained within a peptide (the tool also accepts other
length than 9) and therefore the partition for the cross-validation was gen-
erated such that a minimal amount of nonamers are shared across folds.
Moreover, for an unbiased independent evaluation, the instances from the
training data that were also contained in the evaluation sets were removed.
While some of the considerations for data processing described above are
rather general and apply in most situations, some others are specific to the
data sets and can therefore not be part of a fully automated workflow.
Specific considerations are not only relevant for data preparation but also
for the development of a method. CNN-PepPred was designed for applica-
tion on peptide sets and makes use of a simple type of convolutional neural
network architecture. This architecture is particularly adapted to the differ-
ence in length among peptides and to highlight sub-strings of a given length
within a peptide while ignoring non-relevant information. CNN-PepPred was
also designed as an open-source tool with a detailed User’s guide so that it
can be used and modified by the community. The possibility of modifying
CNN-PepPred is relevant since it was intended to be an allele-specific core
prediction method with the option of generalization in other contexts. For
example, in the latest version of CNN-PepPred (Version 0.1.1), the train-
ing was extended to give the possibility to train on new data sets including
the knowledge extracted from previously trained models which is known as
training with transfer learning. It would be interesting to investigate how to
further extend CNN-PepPred to include training on multiple-allele data sets
following the new research direction in this field.
The data set from the SICPAC study in Chapter 3 required a different kind
of attention. As clinical data, there was missing information, there were few
samples, mixing categorical variables with continuous ones and the model had
to be -to some level- easily and directly interpretable. For this reasons, deci-
sion trees were chosen as the core of the method. To improve performance,
a model was made from an ensemble of trees and, to render it interpretable
and avoid overfitting, a low number of variables was used per individual tree.
Care also had to be taken when interpreting the results; considering all pa-
tients together, a correlation between true and predicted outcome of around
0.7 could be observed while only an average correlation of around 0.4 could
be reached when considering the patients separately. It is therefore impor-
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tant to understand the nuance of a data set for the design and interpretation
of a model. For further developments of the strategy presented in this study,
it would be relevant to test it on a larger amount of data and to see whether
it can generalize to other cancer types.

During this thesis, we have addressed, in an application-oriented way, a
number of objectives all revolving around careful attention to the data. A
particular focus was given to the preparation of data sets, the features to use
as predictors and the methods chosen. ML algorithms were consequently ap-
plied and validated to highlight patterns contained within the data analysed.
This thesis does not aim at giving a recipe to find the best pipeline for the
analysis of biomedical data, instead we followed specific processes towards a
solution to given problems. Through each of the different works in the main
body, various non-exhaustive considerations arising from particular data sets
were highlighted and we considered ways of approaching such challenges with
ML techniques in bioinformatics. Interesting developments for application-
oriented ML strategies will likely arise from AutoML approaches. Finding
a way to automatize decision making while considering the specificities of a
given data set will be critic to this development. It will additionally help in
finding a consensus among methods. Instead of developing new tools with
new or modified methods which are potentially flawed and require exten-
sive validation, the focus will rather be on the automation of the decision
making process while using standard and well described methods at its core.
Combining knowledge from the analysis of specific data sets with automated
processes might play an important role in the future of ML techniques in
bioinformatics.
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Conclusion

In this thesis, we presented three independent studies each highlighting dif-
ferent aspects to consider in a pipeline for the analysis of biomedical data.
Firstly, we could conclude the importance of a normalization method for
the integration of gene-expression microarray data originating from different
platforms. The novel algorithm developed was efficient at highlighting bio-
logical patterns contained in data from various sources. It should be noted
that some batch effect remained.
Secondly, we were able to accurately predict the binding of MHC-class II pep-
tides and extract knowledge from the trained models. The tool was made
available for the community with an open-source license and a detailed User’s
guide.
Thirdly, promising results where obtained in the application of a comprehen-
sible time series analysis in the context of a retrospective study in pancreatic
cancer. Having as objective the prediction of a patient’s outcome at a future
hospital visit, the approach should be used with care to assist decision mak-
ing since the results didn’t justify using the models as stand-alone tools.
Lastly, we discussed the relevance of a data centric approach, underlying the
specific care required by some data sets.
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(2017). Functional, structural and contextual analysis of a variant of uncertain clinical significance in BRCA1:

C.5434c->g (p.pro1812ala). Journal of Cancer Genetics and Biomarkers, 1(2), 1–14.

Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., and Snyder, M. (2008). The Tran-

scriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science, 320(5881), 1344–1349.

Natekin, A. and Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7.

Nielsen, M. and Andreatta, M. (2017). NNAlign: a platform to construct and evaluate artificial neural network

models of receptor-ligand interactions. Nucleic Acids Res., 45(W1), W344–W349.

Nielsen, M. and Lund, O. (2009). NN-align. An artificial neural network-based alignment algorithm for MHC

class II peptide binding prediction. BMC Bioinformatics, 10, 296.

Obrzut, B., Kusy, M., Semczuk, A., Obrzut, M., and Kluska, J. (2017). Prediction of 5–year overall survival in

cervical cancer patients treated with radical hysterectomy using computational intelligence methods. BMC

Cancer , 17(1).

Olson, R. S., Cava, W. L., Mustahsan, Z., Varik, A., and Moore, J. H. (2017). Data-driven advice for applying

machine learning to bioinformatics problems. In Biocomputing 2018 . WORLD SCIENTIFIC.

Oughtred, R., Rust, J., Chang, C., Breitkreutz, B.-J., Stark, C., Willems, A., Boucher, L., Leung, G., Kolas,

N., Zhang, F., Dolma, S., Coulombe-Huntington, J., Chatr-aryamontri, A., Dolinski, K., and Tyers, M.

(2020). TheBioGRIDdatabase: A comprehensive biomedical resource of curated protein, genetic, and chemical

interactions. Protein Science, 30(1), 187–200.

Parvizpour, S., Pourseif, M. M., Razmara, J., Rafi, M. A., and Omidi, Y. (2020). Epitope-based vaccine design:

a comprehensive overview of bioinformatics approaches. Drug Discovery Today, 25(6), 1034–1042.

Piccolo, S. R., Sun, Y., Campbell, J. D., Lenburg, M. E., Bild, A. H., and Johnson, W. E. (2012). A single-sample

microarray normalization method to facilitate personalized-medicine workflows. Genomics, 100(6), 337–344.

Piccolo, S. R., Withers, M. R., Francis, O. E., Bild, A. H., and Johnson, W. E. (2013). Multiplatform single-

sample estimates of transcriptional activation. Proc Natl Acad Sci USA, 110(44), 17778–17783.

Platts, A. E., Dix, D. J., Chemes, H. E., Thompson, K. E., Goodrich, R., Rockett, J. C., Rawe, V. Y., Quintana,

S., Diamond, M. P., Strader, L. F., and Krawetz, S. A. (2007). Success and failure in human spermatogenesis

as revealed by teratozoospermic RNAs. Hum Mol Genet, 16(7), 763–773.

Racle, J., Michaux, J., Rockinger, G. A., Arnaud, M., Bobisse, S., Chong, C., Guillaume, P., Coukos, G., Harari,

A., Jandus, C., Bassani-Sternberg, M., and Gfeller, D. (2019). Robust prediction of HLA class II epitopes by

deep motif deconvolution of immunopeptidomes. Nat. Biotechnol., 37(11), 1283–1286.

Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D., and Betel, D.

(2013). Comprehensive evaluation of differential gene expression analysis methods for rna-seq data. Genome

Biology, 14(1), 3158.

Reynisson, B., Alvarez, B., Paul, S., Peters, B., and Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0:

improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS

MHC eluted ligand data. Nucleic Acids Res., 48(W1), W449–W454.

127



Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J

Comput Appl Math, 20, 53–65.

Rudy, J. and Valafar, F. (2011). Empirical comparison of cross-platform normalization methods for gene expres-

sion data. BMC Bioinformatics, 12(1), 467.
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Appendix A: Supplementary
information for Chapter 1

Figure A.1: Pseudocode describing the GetTargetValues algorithm called in the CuBlock
algorithm (Figure 1 in the main text). An example illustration is given in Figure 1.4.



Figure A.2: Pseudocode describing the ModPol algorithm called in the CuBlock algo-
rithm (Figure 1.2). An example illustration is given in Figure 1.5.
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Figure A.3: Silhouette plots of the reference data set (six platforms) after normalization
with CuBlock (A), log2 (B), ComBat (C), YuGene (D) and UPC (E), using the groups A,
B, C and D as given clusters. Mean silhouette index (SI) values: A: 0.66 (A), 0.62 (B),
0.51 (C) and 0.50 (D); B: 0.51 (A), 0.49 (B), 0.38 (C) and 0.44 (D); C: 0.72 (A), 0.78
(B), 0.79 (C) and 0.83 (D); D: 0.61 (A), 0.63 (B), 0.35 (C) and 0.39 (D). E: 0.56 (A),
0.44 (B), -0.19 (C) and -0.13 (D).
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Figure A.4: t-SNE dimension reduction of the reference data set after normalization
with CuBlock, log2, ComBat, YuGene and UPC. A: t-SNE for CuBlock normalized data;
point color and shape indicate biological group and platform, respectively (right-hand
legend); perplexity (Prp) and mean silhouette index (SI) values (see Section 1.3.3.1): Prp
= 25, SI = 0.97. B: t-SNE for log2-normalized data; Prp = 20, SI = 0.74. C: t-SNE for
ComBat-normalized data; Prp = 45, SI = 0.96. D: t-SNE for YuGene-normalized data;
Prp = 78, SI = 0.68. E: t-SNE for UPC-normalized data; Prp = 78, SI = 0.20.
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Figure A.5: Silhouette plots of the reference data set after normalization with CuBlock,
log2, ComBat, YuGene and UPC. The given clusters are the groups A∪C and B∪D. A:
silhouette plot for CuBlock-normalized data; mean silhouette index (SI) values per group:
0.83 (A∪C ) and 0.84 (B∪D). B: silhouette plot for log2-normalized data; SI values: 0.64
(A∪C ) and 0.61 (B∪D). C: silhouette plot for ComBat-normalized data; SI values: 0.77
(A∪C ) and 0.75 (B∪D). D: silhouette plot for YuGene-normalized data; SI values: 0.53
(A∪C ) and 0.59 (B∪D). E: silhouette plot for UPC-normalized data; SI values: 0.53
(A∪C ) and 0.31 (B∪D).
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Figure A.6: Silhouette plots of the reference data set after normalization with CuBlock,
log2, ComBat, YuGene and UPC. The given clusters are the platforms. A: silhouette
plot for CuBlock-normalized data; mean silhouette index (SI) values per platform: -0.12
(AFX), -0.09 (HUG), 0.00 (AG1), 0.16 (ILM), -0.10 (PRV) and 0.08 (HT12). B: silhouette
plot for log2-normalized data; SI values: 0.22 (AFX), 0.19 (HUG), 0.17 (AG1), 0.08 (ILM),
0.08 (PRV) and 0.11 (HT12). C: silhouette plot for ComBat-normalized data; SI values:
-0.08 (AFX), -0.09 (HUG), -0.02 (AG1), -0.01 (ILM), -0.15 (PRV) and -0.11 (HT12). D:
silhouette plot for YuGene-normalized data; SI values: -0.10 (AFX), 0.09 (HUG), 0.01
(AG1), 0.35 (ILM), -0.03 (PRV) and -0.04 (HT12). E: silhouette plot for UPC-normalized
data; SI values: -0.04 (AFX), -0.18 (HUG), 0.09 (AG1), 0.37 (ILM), 0.02 (PRV) and 0.05
(HT12).
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Figure A.7: Silhouette plots of the experimental data set after normalization with
CuBlock (A), log2 (B), ComBat (C), YuGene (D), DBNorm (E) and UPC (F) using
the groups T and N as given clusters. Mean silhouette index (SI) values: A: 0.72 (T ),
0.57 (N); B: 0.75 (T ), 0.23 (N); C: 0.48 (T ), 0.45 (N); D: 0.67 (T ), 0.51 (N); E: 0.65 (T ),
0.51 (N); F: 0.81 (T ), 0.28 (N).
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Figure A.8: t-SNE dimension reduction of the experimental data set after normalization
with CuBlock, log2, ComBat, YuGene, DBNorm and UPC. A: t-SNE for CuBlock nor-
malized data; point color and shape indicate biological group and platform, respectively
(right-hand legend); perplexity (Prp) and mean silhouette index (SI) values (see Section
1.3.3.1): Prp = 10, SI = 0.93. B: t-SNE for log2-normalized data; Prp = 15, SI = 0.61.
C: t-SNE for ComBat-normalized data; Prp = 10, SI = 0.62. D: t-SNE for YuGene-
normalized data; Prp = 15, SI = 0.75. E: t-SNE for DBNorm-normalized data; Prp = 15,
SI = 0.75. F: t-SNE for DBNorm-normalized data; Prp = 10, SI = 0.75.
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Figure A.9: Silhouette plots of the experimental data set after normalization with
CuBlock, log2, ComBat, YuGene, DBNorm and UPC. The given clusters are the plat-
forms. A: silhouette plot for CuBlock-normalized data; mean silhouette index (SI) values
per platform: -0.12 (AFF), -0.03 (ILL1) and 0.18 (ILL2). B: silhouette plot for log2-
normalized data; SI values: 0.19 (AFF), -0.48 (ILL1) and 0.83 (ILL2). C: silhouette plot
for ComBat-normalized data; SI values: -0.34 (AFF), -0.38 (ILL1) and 0.34 (ILL2). D:
silhouette plot for YuGene-normalized data; SI values: 0.03 (AFF), -0.20 (ILL1) and 0.37
(ILL2). E: silhouette plot for DBNorm-normalized data; SI values: 0.05 (AFF), -0.21
(ILL1) and 0.40 (ILL2). F: silhouette plot for UPC-normalized data; SI values: -0.09
(AFF), -0.36 (ILL1) and 0.76 (ILL2).
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Appendix B: Supplementary
information for Chapter 2

B.1 Installation

B.1.1 Installation with conda

In the folder CNN-PepPred, you will find environment files to create a python
environment with all the required packages to run the model. There are two
environment files, model environment gpu.yml and model environment cpu.yml,
the first one will create an environment to work with GPUs and the second
one with CPUs. GPU computations will usually be faster than CPU ones.
The environment contains the following packages:

• python version 3.6.10

• numpy version 1.19.1

• tensorflow-gpu or tensorflow (for CPU environment) version 2.0.0

• keras-gpu or keras (for CPU environment) version 2.3.1

• pandas version 1.1.3

• pathlib

• biopython version 1.78

• logomaker

• scikit-learn version 0.23.2

• seaborn version 0.11.0



• pillow version 8.0.0

To create the environment, set the working directory to be the folder CNN-
PepPred and type the following in your Anaconda terminal:

conda env create -f model_environment_gpu.yml

for the GPU environment and

conda env create -f model_environment_cpu.yml

for the CPU environment. This might take a few minutes.
Once the installation is finished, activate the environment using the command

conda activate CNNPepPred_Env_GPU

for GPU and

conda activate CNNPepPred_Env_CPU

for CPU.
At the end of the session, you can deactivate the environment using the
command

conda deactivate

To remove the environment, use the command

conda remove --name CNNPepPred_Env_GPU --all

conda remove --name CNNPepPred_Env_CPU --all

B.1.2 Installation with pip

It is recommended to use the conda installation since the 3.6 version of python
is required and creating an environment in Anaconda is more convenient and
more uniform through different operating systems. However if you wish to do
the installation using pip, make sure that you are using python 3.6 and create
an environment and install the required packages following the instructions
below.
Set the main folder CNN-PepPred as working directory and create a python
environment called CNNPepPred Env GPU or CNNPepPred Env CPU us-
ing the lines

python -m venv CNNPepPred_Env_GPU

python -m venv CNNPepPred_Env_CPU

142



Activate the environment on Linux or MacOS with

source CNNPepPred_Env_GPU/bin/activate

source CNNPepPred_Env_CPU/bin/activate

and on Windows with

.\CNNPepPred_Env_GPU\Scripts\activate

.\CNNPepPred_Env_CPU\Scripts\activate

To install the required packages, as listed in the previous subsection use, for
the GPU environment

pip install -r requirements_GPU.txt

and for the CPU environment

pip install -r requirements_CPU.txt

To deactive the environment, run

deactivate

B.1.3 Test

To test the installation, call the main function with the template test template.txt
in the Test folder. It will apply a pre-trained model to the sequences test seq.fasta.
The template contains pathways to the pre-trained model and to the data;
you will need to modify these pathways in the template to be adapted to the
operating system of your computer and replace [your working path] by the
pathway of the folder CNN-PepPred. The result file HLA DRB1 08 01 predictedOutcome.txt
will be saved in the same folder. Check that they match the results in the
file HLA DRB1 08 01 predictedOutcome to obtain.txt.
To apply the main script, activate the previously installed environment and
set the working directory to be the folder CNN-PepPred. If you are working
from the python console, execute the lines

import sys

model_from_template = open("model_from_template.py").read()

sys.argv = [’model_from_template.py’,’test_template.txt’]

exec(model_from_template)

Alternatively, you can run
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import model_from_template

modelCNN = model_from_template.main(’test_template.txt’)

Or, if you are working from Spyder, you can execute the line

runfile(’model_from_template.py’,args=’test_template.txt’)

B.2 Description

The main folder CNN-PepPred contains two python scripts, model initializer.py
and model from template.py. The first contains the class CNNPepPred, where
all the functions for training and applying allele-specific models are defined,
the second launches the analysis following a user-filled template.

B.2.1 The class CNNPepPred

The class CNNPepPred is in the python script model initializer.py and con-
tains the following methods.

init

Description
Initialize the class. The input arguments can be read from the template.

Usage

CNNPepPred(allele=’no_allele_name’,savePath=Path(os.getcwd()),

doTraining=False,trainingData=None,trainingOutcome=None,

doLogoSeq=False,doCV=False,cvPart=None,kFold=5,doApplyData=

False,trainedModelsFile=None,applyData=None,applyDataName=

None,epitopesLength=15,parametersFile=’parameters.txt’)

Arguments

allele

The name of the allele.

savePath

The pathway where to save the results.

doTraining
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Whether or not to do the training.

trainingData

The training sequences, in a list.

trainingOutcome

The training outcome corresponding to the training sequences.

doLogoSeq

Whether or not to plot (logo plot) the core binding pattern of the trained
model.

doCV

Whether or not to perform a cross-validation.

kFold

The number of fold for the cross-validation.

doApplyData

Whether or not to apply the trained model to new sequences.

trainedModelsFile

The file containing the trained model. This option is only valid if no training
is selected. The file is a pickle saved file from a previous training using this
class.

applyData

The new sequences for the application of the trained model.

applyDataName

The name of the new sequences.

epitopesLength

The length of the epitopes on which the trained model will be applied. Each
new sequence will be cut into all overlapping epitopesLength-mers and a
prediction will be made for each of them.

parametersFile

The name with extension of the file containing the parameters of the model.
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getParameters

Description
Get the parameters of the model as given by the parameter file of the tem-
plate. The parameters will be saved as attributes. For more information
about the parameters, see Appendix B.2.2.

Usage

CNNPepPred.getParameters()

aa2int

Description
Transform a sequence of amino acids to integers according to:

A R N D C Q E G H I L K M F P S T W Y V -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

where ”-” stands for the absence of amino acids. Any non-amino acid char-
acters will be considered as ”-”.

Usage

CNNPepPred.aa2int(s)

Arguments

s

The amino-acid residue sequences in a list.

Value
Returns sInt, a list with the sequences as integers.

int2aa

Description
Transform a sequence of integers to amino acids according to the table in the
description of aa2int .

Usage

146



CNNPepPred.int2aa(sInt)

Arguments

sInt

The integer sequences in a list of numpy arrays. If all sequences have the
same length, it can be a numpy array of shape (N,L) where N is the number
of sequences and L their length.

Value
Returns s, a list with the sequences as amino acid characters.

seqLength

Description
Compute the maximal length maxL in a set of sequences, the length seqL of
each of them and the parameter nMaxPool determining the pooling size of
the maxpooling layer in the model.
For more information on nMaxPool, see Section 2.4.2.

Usage

CNNPepPred.seqLength(s,saveOutput=False)

Arguments

s

The sequences, which can be either a list of amino-acid residue sequences or
a list of integer sequences.

saveOutput

Whether or not to save the outputs as attributes.

Value
Returns seqL, a numpy array with the length of the sequences, maxL, the
maximal length and nMaxPool, the pooling size of the maxpooling layer.

addEmptyPositions

Description
Add the integer value 20, standing for the absence of amino acid, to the
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given sequences as needed so that they all have the same length, equal to
the maximal length in the training set. In addition, it will add this value
nbPrev times at the beginning of the sequences and nbAfter times at the end.
The nbPrev and nbAfter parameters are set in the parameter file (Appendix
B.2.2).
If the maximal length (the attribute maxL of the class) from a previously
trained model is smaller than the maximal length in the training set (this
can happen if the training is performed with transfer learning, see Section
2.4.5), the instances with length larger than maxL are removed from the
training data.

Usage

CNNPepPred.addEmptyPositions(sInt)

Arguments

sInt

The integer sequences in a list.

Value
Returns sIntNew, a list of the integer sequences with the added absence-of-
amino-acid values.

getImages

Description
Transform the sequences into images according to the given similarity matrix.
For a given sequence, the height of the image corresponds to the residues of
the sequence, the width corresponds to the 21 amino acids+absence of amino
acids. The image is then filled with the similarity value between a residue of
the sequence and an amino acid.
For more information on the peptide’s encoding, see Section 2.4.1.

Usage

CNNPepPred.getImages(sInt)

Arguments

sInt
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The integer sequences in a numpy array as given by the output of addEmp-
tyPositions . All sequences must have the same length.

Value
Returns IM, a 4D numpy array with the images corresponding to the se-
quences. The first dimension corresponds to the number of sequences, the
second to the height, the third to the width and the fourth to the channel
(which is always 1 with this encoding).

trainCNN

Description
Train an ensemble convolutional neural network model. The base model con-
sists of a Conv2D layer with ReLu activation, a MaxPooling2D layer and a
Dense (or fully connected) layer. The parameters are defined in the param-
eter file (Appendix B.2.2).
For more information on the model’s architecture, see Section 2.4.2.
If the class contains an attribute trainedModels, then these previously trained
models will be used for transfer learning (see Section 2.4.5).

Usage

CNNPepPred.trainCNN(IM,out,saveModel=False)

Arguments

IM

The training images, as given by the output of getImages .

out

The training outcome.

saveModels

Whether or not to save the trained model as an attribute and in the saving
pathway savePath of the class. If saveModels is true, the computation time
of the training will be an attribute of the class called timeTrain. A folder
called model [allele] (where [allele] is the allele name of the class) will be
created, it will contain the parameter file of the model and a folder called
nets where the trained nets will be saved.
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Value
Returns models, a list containing all the Keras trained models.

applyCNN

Description
Apply the trained model.

Usage

CNNPepPred.applyCNN(models,IM,saveOutcome=False)

Arguments

models

The ensemble model as given by the output of trainCNN .

IM

The images on which the trained model will be applied.

saveOutcome

Whether or not to save the predicted outcome as an attribute.

Value
Returns yhat, a numpy array with the predicted outcome of each sample.

crossValCNN

Description
Perform the training in a cross-validation set up. The computation time of
the cross-validation will be an attribute of the class called timeCV.
If the training is performed with transfer learning (see Section 2.4.5), the
peptides containing shared l -mers (where l is the parameter determining the
length of the core binder, 9 by default) with the pre-trained model used for
transfer learning are removed from the test set but are kept for training.

Usage

CNNPepPred.crossValCNN(IM,out)

Arguments
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IM

The training images for the cross-validation.

out

The training outcome.

Value
Returns yhatCV, a numpy array containing the cross-validated predicted out-
come of each sample and modelCV, a list containing the trained Keras models
(as returned by trainCNN for each fold.

feedForwardAndGetScore

Description
Apply the trained model of the class to new sequences and get the score
for each of the overlapping l -mers of a sequence, where l is the parameter
determining the length of the core binder (9 by default).
To control the memory usage, the application of the sequences will be by
batches of maxNbSamples2apply, which is a parameter (see Appendix B.2.2)
with default value 50000.
For more information on the contribution score, see Section 2.4.4.

Usage

CNNPepPred.feedForwardAndGetScore(seq,saveOutcome=False)

Arguments

seq

The sequences on which the trained model will be applied as given by the
output of addEmptyPositions .

saveOutcome

Whether or not to save the predicted outcome as an attribute. If saveOut-
come is true, the computation time to apply the model on the data will be
an attribute of the class called timeApply.

Value
Returns contributionScore, a numpy array with the constribution score of
all the overlapping l -mers of each sequence and yhat, a numpy array with
the predicted outcome of each sequence.
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generateRandomSeq

Description
Generate integer random sequences. The number of random sequences to
generate is set in the parameter file (Appendix B.2.2).

Usage

CNNPepPred.generateRandomSeq(followLengthDistr=False)

Arguments

followLengthDistr

If False, all the random sequences will have the same length lengthRandSeq
as given in the parameter file (Appendix B.2.2). If True, the length dis-
tribution of the random sequences will follow the length distribution of the
training data saved as an attribute called seqL with the function seqLength

Value
Returns sR, a list with the randomly generated integer sequences.

plotLogoSeq

Description
Generate a logo plot (using the package logomaker) of the highest scoring
core binders. The plot will be saved in the pathway savePath of the class.
The number of best scoring sequences used in the logo plot is set in the pa-
rameter file (Appendix B.2.2).

Usage

CNNPepPred.plotLogoSeq(contributionScore,yhatR)

Arguments

contributionScore

The contribution score of each overlapping l -mer in all of the sequences to
which the trained model has been applied, as given by the output of feedFor-
wardAndGetScore.

yhatR
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The predicted score of each sequence.

Value
Returns h, the plot handle of the logo plot; sBchar, a list with the amino-
acid sequences used to generate the plot and pim, the information matrix
corresponding to the logo plot.

computationTime

Description
Save the computation time as an attribute called timeTotal.

Usage

CNNPepPred.computationTime(time_elapsed)

Arguments

time_elapsed

The elapsed time to save.

getCVresults

Description
Get the cross-validation results. The scores are: PC (Pearson correlation),
AUC (area under the curve), RMSE (root mean square error), MCC (Matthews
correlation coefficient), ACC (accuracy), BACC (balanced accuracy), F1 (F1-
score). The result will be saved as a txt file ’cross validation results.txt in
the path savePath.

Usage

CNNPepPred.getCVresults()

printApplyOutcome

Description
Print the predicted outcome of the analysed sequences as a txt file [al-
lele] predictedOutcome.txt where [allele] is the allele name. The file will be
saved in the path savePath. Note that only unique core binders will be

153



printed; if there are different peptides with the same core, the one with the
highest predicted outcome will be printed.

Usage

CNNPepPred.printApplyOutcome(saveTable = False)

Arguments

saveTable

Whether or not to save the output table as an attribute.

Value
Returns table, a pandas data frame with the predicted outcome of the se-
quences on which a trained model was applied. The table only contains
unique core binders.

seq2Lmer

Description
Cut sequences into all overlapping epitopesLength-mers, where epitopesLength
is as given in the template (Appendix B.2.3).

Usage

CNNPepPred.seq2Lmer(seq,nameSeq=None,takeUniqueLmer=True,

saveLmer=False)

Arguments

seq

The integer amino-acid sequences in a list of numpy arrays.

nameSeq

The name of the sequences.

takeUniqueLmer

Whether or not to select only the unique overlapping epitopesLength-mers.

saveLmer
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Whether or not to save the output sequences as an attribute.

Value
Returns sLmer, a list with all overlapping epitopesLength-mers as integers;
nameSeqLmer, the name of the sequences each element of sLmer belongs to
and indLmer, the indices of the sequences each element of sLmer belongs to.

getCoreBinder

Description
Get the core binders of the sequences.

Usage

CNNPepPred.getCoreBinder(seq,contributionScore,applyDataName=

None,saveCoreBinders=False)

Arguments

seq

The amino-acid sequences in a list. The sequences must all have the same
length, i.e. use int2aa on the output of addEmptyPositions .

contributionScore

The contribution score of each overlapping l -mer in all of the sequences to
which the trained model has been applied, as given by the output of feedFor-
wardAndGetScore.

applyDataName

The name of the sequences.

saveCoreBinders

Whether or not to save the core binders as an attribute.

Value
Returns sCore, a numpy array with the core binder of each sequence (as
amino acids).
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save object

Description
Save with pickle the object class. It will be saved in the path savePath with
the file name given as argument or by default [allele] ModelCNN.pkl, where
[allele] is the allele name.
In order to avoid loading problems if the object is loaded from another OS,
the attribute savePath is deleted upon saving.
If the class contains a list of trained Keras neural networks, it will be deleted
as these nets are saved separately with the saving option of trainCNN .

Usage

CNNPepPred.save_object(name=None)

Arguments

name

Name of the file.

load object

Description
Load another object class. This is meant to load previously trained models.
As the attribute savePath is deleted upon saving (see save object), this func-
tion will reset it to be the parent directory of the argument filename.

Usage

CNNPepPred.load_object(filename)

Arguments

filename

Complete pathway to the object to load.

Value
Returns obj, the loaded object.

feedForwardVisualization

Description
Visualization of the feed-forward pass of the trained model on the set of se-
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quences s. It will create a folder in the path savePath called feed forward visualization
that will contain two folders: nets and sequences. The folder nets will con-
tain a folder for each net of the trained model with each of its corresponding
convolutional layer’s filters and dense layer’s weights represented as images.
The folder sequences will contain one folder for each of the input argument
sequences with an image of their encoding and a folder for each net con-
taining the convolutional layer’s output and the maxpooling layer’s output
represented as images.
For each input sequence, many images will be saved; it is therefore recom-
mended to only run this function on a small pre-selected set of sequences.
For more information on the visualization of the feed-forward pass, see Sec-
tion 2.4.3.

Usage

CNNPepPred.feedForwardVisualization(s,fontSize=4,dpi=300)

Arguments

s

The amino acid sequences in a list.

fontSize

The font size of the x and y tick labels. Default is 4.

dpi

The dpi of the images. Default is 300.

Value
Returns yhat, a numpy array with the predicted outcome of each sequence.

generateCVpartWithLeastLmerOverlap

Description
Generate a cross-validation partition for the training data such that the num-
ber of shared l -mers between folds is reduced, where l is the length of the
core binders as given in the parameter file (Appendix B.2.2).
For more information on the way the partition is generated, see Section
2.5.1.2.

Usage
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CNNPepPred.generateCVpartWithLeastLmerOverlap(kFold,saveCVPart=

False)

Arguments

kFold

The number of folds, as an integer.

saveCVPart

Whether or not to save the cross-validation partition as an attribute of the
class called cvPart. If true, the average number of shared l -mers between each
of the kFold train/test partitions (within each positive and negative class)
will also be saved as an attribute of the class called averageLmersOverlap-
pingCV.

Value
Returns cvPart, a numpy array with the cross-validation partition and
averageLmersOverlappingCV, the average number of shared l -mers between
each of the kFold train/test partitions (within each positive and negative
class).

B.2.2 The parameter file

When initializing the class, the parameters will be set from the file given with
full path in the template or, by default, the file in the working directory called
parameters.txt. This file consists of two columns (separated by a comma),
one with the name of the parameter and one with the value of the parameter.
Only the parameter values can be changed if needed. If a parameter value is
left empty, the default value will be set (if left empty, check that the comma
separating the columns is still there). The parameters are the following.

• bindingThr. Default: 0.5.
The binding threshold for the predicted values.

• similarityMat. Default: blosum62.txt
The similarity matrix to use for the sequence encoding. It must be
symmetric and be of the same format, with the same amino-acid order,
as the default file.

• l. Default: 9
The length of the core binder.
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• maxNbSamples2apply. Default: 50000
The maximum number of sequences on which a trained model can be
applied in one batch. This is only for the application of the model
through the function feedForwardAndGetScore. Increase if you have
enough memory and decrease if you don’t have enough memory.

• nbPrev. Default: 2
The number of empty positions (corresponding to the absence of amino
acids) to add at the beginning of a sequence.

• nbAfter. Default: 2
The number of empty positions (corresponding to the absence of amino
acids) to add at the end of a sequence.

• F. Default: 5/10/20/30
The number of filters of the convolutional layer. Different number of
filters can be given, separated by a slash ”/”. In that case the final
model will be an -equally weighted- ensemble of models with different
number of filters.

• rep. Default: 10
The number of models to train with different initial weights per num-
ber of filters. For each number of filters given in the parameter F, rep
number of models will be trained. The final model will be an equally
weighted ensemble of rep times the number of different number of fil-
ters, i.e. 40 = 10 · 4 with the default parameters.

• nMaxPool. Default: see Section 2.4.2.
The pooling size of the Maxpooling layer will be nMaxPool×1. The
default value is set by a formula given in the Section 2.4.2 and will be
such that the output layer has size Lfreq × F where Lfreq is the most
frequent sequence length in the training data set and F is the number
of filters.

• initializeStd. Default: 0.01
The standard deviation of the initial weights (randomly generated from
the normal distribution with zero mean). The same value will be used
for the convolutional and the dense layers.

• alpha. Default: 0.005
The learning rate of the stochastic gradient descent.
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If transfer learning is used for training, two different values can be given
(one for each optimization step of the training, see Section 2.4.5). The
two values must be separated by a slash ”/”, for example ”0.005/0.001”.
If only one value is given, it will be used for both optimization steps.

• gamma. Default: 0.9
The momentum of the stochastic gradient descent.
If transfer learning is used for training, two different values can be given
(one for each optimization step of the training, see Section 2.4.5). The
two values must be separated by a slash ”/”, for example ”0.9/0.5”. If
only one value is given, it will be used for both optimization steps.

• l2 fact. Default: 0.0001
The L2 regularization factor. The same value will be used for the
convolutional and the dense layers.

• maxEpochs. Default: 30
The number of epochs.
If transfer learning is used for training, two different values can be given
(one for each optimization step of the training, see Section 2.4.5). The
two values must be separated by a slash ”/”, for example ”20/10”. If
only one value is given, it will be used for both optimization steps. If
0 is given for the second value (i.e. ”20/0”), the second optimization
will be skipped.

• miniBatchSize. Default: 128
The size of the mini batch for the stochastic gradient descent.
If transfer learning is used for training, two different values can be given
(one for each optimization step of the training, see Section 2.4.5). The
two values must be separated by a slash ”/”, for example ”128/56”. If
only one value is given, it will be used for both optimization steps.

• useBias. Default: 1
Whether or not to use bias. The same value will be used for the con-
volutional and the dense layers.

• activationFctDenseLayer. Default: linear
The activation function of the last layer (the Dense layer). Possible
values are to choose among keras ’s activation functions.
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• lossFct. Default: mean squared error
The loss function. Be aware that if changed, some parameter tuning
might be needed. For example if for a classification problem you would
rather use the binary crossentropy loss function, you should change
the activation function of the Dense layer to be the sigmoid function.
Possible values are to choose among keras ’s loss functions.

• nbRandSeq. Default: 200000
The number of random sequences to be generated in the function gen-
erateRandomSeq (Appendix B.2.6).

• nbBest. Default: 2000
The number of best scoring sequences to select for the generation of
the logo plot with plotLogoSeq

• lengthRandSeq. Default: 15
The length of the random sequences generated in the function gener-
ateRandomSeq (Appendix B.2.6).

B.2.3 The template file

Fill the template file given in the main folder CNN-PepPred according to
the desired analysis. This template consists of two columns (separated by
a comma), one with the name of the template’s inputs and one with their
values. Only the input values can be changed if needed. If an input value is
left empty, the default value will be set (if left empty, check that the comma
separating the columns is still there). The inputs are the following.

• allele.
The name of the allele. This name can be thought of as a job name
for the run. If the training option is not selected and no trained model
is given as input, then allele corresponds to the name of a pre-trained
model (Appendix B.2.5).

• savePath. Default: os.getcwd()
The pathway where to save the results.

• doTraining. Default: 0
Whether or not to do the training.
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• trainingDataPath. Default: None
The file with the training data. It must be a .txt file, with at least
two columns (with headers) separated by a comma. The first column
contains the sequences and the second the outcome. For regression,
the outcome must be already normalized. A third column containing a
cross-validation partition can be added. If the cross-validation option
is selected and no partition is given here, it will be generated following
the function generateCVpartWithLeastLmerOverlap.
If training data are given and a previously trained model is given in
the template as trainedModelsFile, transfer learning will be used for
training (see Section 2.4.5).

• doLogoSeq. Default: 0
Whether or not to plot (logo plot) the core binding pattern of the
trained model.

• doCV. Default: 0
Whether or not to do the cross-validation.

• kFold. Default: 5
The number of folds for the cross-validation. If a partition is given in
the training data file, this input will be ignored and the kFold value
will be the number of partitions.

• doApplyData. Default: 0
Whether or not to apply the trained model to new sequences.

• trainedModelsFile. Default: None
Either the file containing the trained model (a .pkl file) or the pathway
of the folder containing the parameters file and the nets folder with the
trained nets (as saved with the function trainCNN . If the input is a
.pkl file, the parent folder must contain the nets folder. This option is
only valid if no training is selected.
If the apply or the logoseq option are selected with no training and
trainedModelsFile is left empty, then a pre-trained model will be se-
lected based on the allele. For available alleles, see Appendix B.2.5.
If a previously trained model is given and training data are given in
the template as trainingDataPath, transfer learning will be used for
training (see Section 2.4.5).
If a previously trained model is given as input, only the values of
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nbRandSeq, nbBest, lengthRandSeq and maxNbSamples2apply of the
parameter file parametersFile given in the template will be considered.
If transfer learning is used for training, the values of alpha, gamma,
maxEpochs, miniBatchSize, activationFctDenseLayer, lossFct, initial-
izeStd will also be considered. The remaining parameter’s values will
be taken from the parameter file of the previously trained model.

• applyDataPath. Default: None
The file containing the data on which the trained model will be applied.
It must be a FASTA file.

• epitopesLength. Default: 15
The length of the epitopes on which the trained model will be applied.
Each new sequence will be cut into all overlapping epitopesLength-mers
and a prediction will be made for each of them.

• parametersFile. Default: parameters.txt (in the working directory)
The full path for the file containing the parameters of the model. Parts
of this file are ignored if a trained model is given as input in trained-
ModelsFile.

• saveClassObject. Default: 0
Whether or not to save the class generated following the template in
savePath. If the class contains a list of trained Keras neural networks,
it will be deleted as these nets are saved separately with the saving
option of trainCNN .

B.2.4 The script model from template.py

The argument of the script model from template.py is the template file. By
default this file is called template.txt and is located in the working directory,
the name and pathway can be modified but need to be given with full path
as a system argument.
The script will first read the system argument to obtain the name of the
template and call the main function with this template as an argument.

tmplName = sys.argv

if len(tmplName)==1:

tmplName = ’template.txt’

else:
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tmplName = tmplName[1]

main(tmplName)

The main function will run the desired analysis following the template. First,
the start time is recorded and the template is read,

time_start = time.perf_counter()

file = Path(tmplName)

allele,savePath,doTraining,trainingData,trainingOutcome,

doLogoSeq,doCV,cvPart,kFold,doApplyData,trainedModelsFile,

applyData,applyDataName,epitopesLength,parametersFile,

saveClassObject = readTemplate(file)

then, the class CNNPepPred is initialized

modelCNN = CNNPepPred(allele,savePath,doTraining,trainingData,

trainingOutcome,doLogoSeq,doCV,cvPart,kFold,doApplyData,

trainedModelsFile,applyData,applyDataName,epitopesLength,

parametersFile)

and the desired analysis will be performed following the template. If the
training option is selected, the images IM encoding the sequences and train-
ing outcome out are first retrieved.

sInt = modelCNN.aa2int(modelCNN.trainingData)

modelCNN.seqLength(sInt,saveOutput=True)

sInt = modelCNN.addEmptyPositions(sInt)

IM = modelCNN.getImages(sInt)

out = modelCNN.trainingOutcome

Cross-validation with the training data is performed as follows:

modelCNN.crossValCNN(IM,out)

modelCNN.getCVresults()

The final model, to be saved in the object modelCNN, will be trained with
all of the training data.

modelCNN.trainCNN(IM,out,saveModel=True)

To obtain the logoplot with the binding core, the script generates random
sequences,

sR = modelCNN.generateRandomSeq()
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applies the model to obtain the predicted outcomes and contribution scores
of the random sequences’ overlapping modelCNN.l -mers

contributionScore,yhatR = modelCNN.feedForwardAndGetScore(sR)

and finally generates the logoplot.

modelCNN.plotLogoSeq(contributionScore,yhatR)

The sequences on which the trained model must be applied are first cut into
all the overlapping epitopesLength-mers.

sIntApply,sApplyName = modelCNN.seq2Lmer(modelCNN.aa2int(

modelCNN.applyData),L=None,nameSeq=modelCNN.applyDataName,

saveLmer = True)[0:2]

Then the amino-acid sequences are prepared in the required format for the
application of the trained model.

sIntApply = modelCNN.addEmptyPositions(sIntApply)

The trained model is then applied to obtain the predicted outcomes and the
contribution scores, which are used to find the binding cores, and the results
are printed in the saving pathway.

modelCNN.feedForwardAndGetScore(sIntApply,saveOutcome = True)

modelCNN.getCoreBinder(modelCNN.int2aa(sIntApply),modelCNN.

contributionScore,sApplyName,saveCoreBinders = True)

modelCNN.printApplyOutcome()

Finally the computation time is saved in the object and the object is saved
in the saving pathway if selected in the template.

time_elapsed = (time.perf_counter() - time_start)

modelCNN.computationTime(time_elapsed)

if saveClassObject:

modelCNN.save_object()

B.2.5 The pre-trained models

The user can use models available for some alleles which were trained with
IEDB data (Section 2.5.1.1). The models are in a folder called trainedIEDB-
models of the main directory CNN-PepPred. In this case, the template must
contain the name of the allele and the data to apply the model to; no training
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must be selected and the trained model file (trainedModelsFile) must be left
empty. An example template called template pretrained model example.txt
in the main directory has been pre-filled for the allele HLA DRB1 01 01.
The location where to save the results and the fasta file on which to ap-
ply the pre-trained model must be filled ([your path to save the results] and
[fasta file for prediction] in the example template).
Available alleles are:

HLA DPA1 01 03 DPB1 02 01, HLA DPA1 01 03 DPB1 03 01, HLA DPA1 01 03 DPB1 04 01,
HLA DPA1 01 03 DPB1 04 02, HLA DPA1 01 03 DPB1 06 01, HLA DPA1 01 03 DPB1 104 01,
HLA DPA1 02 01 DPB1 01 01, HLA DPA1 02 01 DPB1 09 01, HLA DPA1 02 01 DPB1 10 01,
HLA DPA1 02 01 DPB1 14 01, HLA DPA1 02 01 DPB1 17 01, HLA DPA1 02 01 DPB1 13 01,
HLA DPA1 02 02 DPB1 05 01, HLA DQA1 01 01 DQB1 05 01, HLA DQA1 01 02 DQB1 05 01,
HLA DQA1 01 02 DQB1 06 02, HLA DQA1 02 01 DQB1 02 02, HLA DQA1 02 01 DQB1 03 01,
HLA DQA1 03 01 DQB1 03 02, HLA DQA1 03 02 DQB1 04 01, HLA DQA1 05 01 DQB1 02 01,
HLA DQA1 05 01 DQB1 03 01, HLA DQA1 05 05 DQB1 03 01, HLA DRB1 01 01,
HLA DRB1 03 01, HLA DRB1 04 01, HLA DRB1 04 02,
HLA DRB1 04 04, HLA DRB1 04 05, HLA DRB1 07 01,
HLA DRB1 08 01, HLA DRB1 08 02, HLA DRB1 09 01,
HLA DRB1 10 01, HLA DRB1 11 01, HLA DRB1 11 03,
HLA DRB1 12 01, HLA DRB1 13 01, HLA DRB1 13 02,
HLA DRB1 13 03, HLA DRB1 14 01, HLA DRB1 14 54,
HLA DRB1 15 01, HLA DRB1 16 01, HLA DRB3 01 01,
HLA DRB3 02 02, HLA DRB3 03 01, HLA DRB4 01 01,
HLA DRB4 01 03, HLA DRB5 01 01, HLA DRB5 02 02.

B.2.6 Random generation of non-binders

The majority of experimental results only report binding peptides, so that
most sets are too imbalanced to properly train a model. Therefore, we pro-
vide a separate script for the generation of randomly selected peptides that
act as non-binders.
The script will simply select peptides at random from a user given folder
containing fasta files, respecting the length distribution of the binders in the
training set. These files should contain enough natural random sequences so
that there shouldn’t be any patterns that would relate them to one another
(e.g. a full proteome).
The script is in the main folder CNN-PepPred, it is called generateRandom-
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NonBinders.py and contain a unique function with the same name. There-
fore, to import it, use

from generateRandomNonBinders import generateRandomNonBinders

The function is

generateRandomNonBinders(fastaSeqLoc,seqL=None,seq=None,prop=1,

N=None,maxFiles=None)

with arguments:

fastaSeqLoc

The location of the folder containing the fasta files to select from.

seqL

A numpy array with the lengths of the binding peptides in the training set.

seq

A list of amino-acid sequences corresponding to the binding peptides in the
training set. If seqL is not given, it will be computed from this list. If seqL
is given, this argument is ignored.

prop

The proportion of peptides to select. The number of selected peptides will
be around prop·N where N is either the number of binding peptides or the
argument N.
prop is 1 by default.

N

The number of peptides to select. The final number will be prop·N. Note
that due to the nature of the algorithm, it is possible that the number of
peptides in the output differs slightly from this number.
If no sequences or length of sequences is given, N will be 2000 by default.

maxFiles

The maximum number of files to read in the given folder fastaSeqLoc.
We recommend dividing the sequences to select from into many files in
fastaSeqLoc and using the parameter maxFiles instead of having one big
file. In this way, the computational time will be lower since the algorithm
will only read few smaller files rather than a big one and there won’t be any
memory issues.
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The function will return seqNeg, a list of amino-acid sequences respecting
the number of sequences and their length distribution according to the given
input arguments.
The function can be called as follows, with myfolderwithsequences being
the pathway to the folder containing the sequences to select from.

seqNeg = generateRandomNonBinders(myfolderwithsequencesaSeqLoc,

seqL=bindersLength,prop=1.3,maxFiles=3)

In this case the output seqNeg will have around 1.3 times the number of ele-
ments in bindersLength, with lengths ditributed like in bindersLength and
selected from 3 randomly selected fasta files in the folder myfolderwithsequences
. On the other hand

seqNeg = generateRandomNonBinders(myfolderwithsequencesaSeqLoc,

seq=bindersSeq,N=2500,maxFiles=1)

will return around 2500 peptides respecting the length distribution of the
sequences in bindersSeq and randomly selected from 1 file in the folder
myfolderwithsequences.

B.3 Examples

Three different templates were prepared as examples in the main folder Mod-
elCNN. To use them, you will need to change the pathways in the tem-
plates adapting them to the operating system of your computer and replace
[your working path] by the pathway of the folder ModelCNN.
To run the template files, set your working directory to ModelCNN and type
in your console

import sys

model_from_template = open("model_from_template.py").read()

sys.argv = [’model_from_template.py’,’full_path_to_any_template

.txt’]

exec(model_from_template)

Or, alternatively,

import model_from_template

modelCNN = model_from_template.main(’full_path_to_any_template.

txt’)
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Figure B.1: Logo plot of the first template.

Template 1: Train+CV+logoPlot+Apply

The first template, template1 Train CV logoPlot Apply.txt, will perform cross-
validation and train a model using the example training data set of allele
HLA DRB1 08 01 in the folder Example. It will also generate the logo plot
representing the binding characteristics of the trained model and apply it to
new sequences uniprot-proteome UP000000605 100.fasta in the same folder.
The results will be saved in the folder Template1 results of the Example
folder.
Here are the cross-validation results obtained after runing this template (note
that there might be small differences between runs):

Allele,#Peptide,#Binder,PC,AUC,RMSE,MCC,ACC,BACC,F1

HLA_DRB1_08_01

,1118,559,0.783,0.962,0.312,0.834,0.917,0.917,0.917

The different scores are: PC (Pearson correlation), AUC (area under the
curve), RMSE (root mean square error), MCC (Matthews correlation coeffi-
cient), ACC (accuracy), BACC (balanced accuracy), F1 (F1-score).
Figure 1 contains the logo plot of the trained model:
Here is a list of some of the highest predicted binders:

Peptide_Source,Start,End,Peptide,Binding_Core,Predicted_Outcome

spQ63PT2SAHH_BURPS,168,182,EVALFKSIERHLEID,FKSIERHLE,1.454

spQ63Q03RPOB_BURPS,1069,1083,VKVYLAVKRRLQPGD,YLAVKRRLQ,1.392

spQ63UT2SYH_BURPS,346,360,REQAFIVAERLRDTG,FIVAERLRD,1.375

spQ63PT2SAHH_BURPS,103,117,GTPVFAFKGESLDEY,FAFKGESLD,1.371

spQ63NC4ACSA_BURPS,572,586,VVAFVVLKRSRPEGE,FVVLKRSRP,1.327

spQ63Y06SYR_BURPS,440,454,AVRFFLISRKADTEF,FFLISRKAD,1.303

spQ63WM0RS20_BURPS,28,42,FRTAIKAVRKAIDAG,IKAVRKAID,1.289

spQ63WM0RS20_BURPS,47,61,AAELFKAATKTIDTI,FKAATKTID,1.278
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spQ63TM2SYT_BURPS,575,589,EKISYKIREHTLEKV,YKIREHTLE,1.236

spQ63UY6RS6_BURPS,85,99,LRHLIVKMKKAETGP,LIVKMKKAE,1.232

The first column is the name of the sequence, as written in the FASTA file.
The second and third columns are respectively the start and end position of
the peptide in the sequence. The fourth column is the peptide and the fifth
column its binding core. The sixth column is the model’s predicted outcome.

Template 2: Train

The second template, template2 Train.txt, will train a model using the exam-
ple training data set of allele HLA DRB1 08 01 in the folder Example. The
results will be saved in the folder Template2 results of the Example folder.

Template 3: Apply with template 2 trained model

The third template, template3 Apply.txt, applies the pre-trained model of
HLA DRB1 08 01 to new sequences
uniprot-proteome UP000000605 100seq.fasta in the Example folder. The re-
sults will be saved in the folder Template3 results of the Example folder.
Here is a list of some of the highest predicted binders:

Peptide_Source,Start,End,Peptide,Binding_Core,Predicted_Outcome

spQ63PT2SAHH_BURPS,168,182,EVALFKSIERHLEID,FKSIERHLE,1.449

spQ63UT2SYH_BURPS,346,360,REQAFIVAERLRDTG,FIVAERLRD,1.391

spQ63Q03RPOB_BURPS,1069,1083,VKVYLAVKRRLQPGD,LAVKRRLQP,1.369

spQ63PT2SAHH_BURPS,103,117,GTPVFAFKGESLDEY,FAFKGESLD,1.351

spQ63Y06SYR_BURPS,440,454,AVRFFLISRKADTEF,FFLISRKAD,1.327

spQ63WM0RS20_BURPS,29,43,RTAIKAVRKAIDAGD,IKAVRKAID,1.309

spQ63NC4ACSA_BURPS,572,586,VVAFVVLKRSRPEGE,FVVLKRSRP,1.305

spQ63T53ALLC1_BURPS,34,48,DDFFAPKERMLNPEP,FAPKERMLN,1.301

spQ63WM0RS20_BURPS,47,61,AAELFKAATKTIDTI,FKAATKTID,1.272

spQ63TM2SYT_BURPS,575,589,EKISYKIREHTLEKV,YKIREHTLE,1.269
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Appendix C: Supplementary
information for Chapter 3

C.1 List of variables extracted from the CRF

Table C.1 contains the variables extracted from the Case Report From (CRF)
of the SICPAC study.

CRF variables
Patients’ clinical
data

Co-treatment AES

Time (number of
days between consec-
utive visits), Gender,
BILITO, Basophils,
Creatinine, Age, GOT,
GPT, Metastasis, Neu-
trophiles, Potassium,
ProtTot, Gender,
Sodium, Lympho-
cyte, Red blood cells,
Hemoglobin, Leuko-
cytes, Eosinophil,
Monocytes, Platelet

DB00016, DB00030, DB00085, DB00099,
DB00158, DB00178, DB00186, DB00193,
DB00207, DB00222, DB00230, DB00275,
DB00295, DB00316, DB00331, DB00335,
DB00338, DB00370, DB00391, DB00421,
DB00425, DB00448, DB00451, DB00502,
DB00563, DB00581, DB00584, DB00641,
DB00678, DB00695, DB00706, DB00788,
DB00813, DB00836, DB00863, DB00904,
DB00945, DB00966, DB00999, DB01050,
DB01076, DB01118, DB01183, DB01184,
DB01225, DB01233, DB01234, DB01261,
DB01306, DB01558, DB01591, DB01592,
DB04817, DB04861, DB04876, DB06204,
DB06723, DB06791, DB08810, DB09154,
DB09300, DB11057, DB11742, DB11921,
DB13157, DB13257, DB13679

ABDOMINAL DISTENSION, ALOPE-
CIA, ANEMIA, ANOREXIA, ANXIETY,
ARTHRITIS, ASCITES, ASTHENIA,
CACHEXIA, COLIC, CONFUSION, CON-
JUNCTIVITIS, CONSTIPATION, DIAR-
RHEA, DRUG HYPERSENSITIVITY,
DYSGEUSIA, EDEMA, EXFOLIA-
TIVE DERMATITIS, FEVER, FLAC-
CIDITY, HALLUCINATIONS, HEPATITIS,
INFECTION, INFILTRATION, JAUN-
DICE, LEUKOPENIA, METASTASES,
MUCOSITIS, NAUSEA, NEUROPATHY,
NEUTROPENIA, NOTOXICIDAD, ON-
ICOLISIS, ORAL CANDIDIASIS, PAIN,
PARESTHESIA, PLAQUETOPENIA,
PLEURA, PNEUMONIA, PRURITUS,
SEPSIS, SKIN RASH, SOMNOLENCE,
STEATORRHOEA, THROMBCYTOPE-
NIA, THROMBOCYTOPENIA, THROM-
BOSIS, UTI, VOMITING, WEIGHT LOSS

Table C.1: List of variables extracted from the CRF and used in the analysis. Variables
are grouped by their origin in this table for the sake of simplicity. The drugs used as
co-treatments are identified with their drug bank ids (DB prefix). The column AES
corresponds to the adverse events recorded in at least one visit.



C.2 How to read the regression trees

The analysis performed in this study uses regression trees to determine the
effect of all the variables measured, both numeric and categorical, on the
outcome (counts of monocytes, eosinophils, red blood cells, platelets and
leukocytes and concentration of hemoglobin). Decision trees allow us to se-
lect which variables have the greatest effect on the variable value and the
criteria followed to calculate this value.
In Figure C.1, an example of a regression tree for the prediction of the up-
coming visit’s eosinophil count is shown. At the bottom level of the tree the
final values of the variable analysed are displayed, while the rest of the nodes
represent a variable and a cut-off value. In future predictions, this cut-off
value will determine which way the prediction process will go through, de-
pending on the variable found in the tree. This route is done from top to
bottom, starting from the primary node at the top level of the tree. Tak-
ing Figure C.1, the first variable found is Neutropenia 2, which corresponds
to the diagnosis of neutropenia at the penultimate visit, i.e., 2 visits before
the objective upcoming visit. Being a categorical variable, it can only take
values 0 and 1. As seen in the tree, if the patient suffers from neutropenic
condition, prediction will continue on the right side, while the left side will be
used if the patient does not show any neutropenic condition. The same pro-
cedure is followed at every node level on the tree. When a numeric variable
is found in the tree, its cut-off value is used the same way as any categorical
values. All numerical variables are normalized by subtracting the median
of all variable values up to the last available visit of the patient. Note that
the outcome (in this example, the eosinophil count) is also normalized, i.e.,
the values at the bottom of the trees are normalized. To obtain the unnor-
malized value, one needs to add the variable’s median value which is patient
and visit dependent. In Figure C.1 several time periods between visits are
considered as significant to predict positive and negative trends with respect
to the median of the eosinophil counts. Taking the variable Time 1 (time
period between the actual and a future visit normalized by subtracting the
median of all time periods), we can see that different trend predictions can
be done. Values shown at the bottom level of the tree correspond to the
increasing or decreasing tendencies compared to the median of the patient’s
outcome values. A negative/positive value will indicate a decrease/increase
compared to the median value. Taking the same Time 1, if the normalized
time period is less than 2.5 days, a slightly decreasing trend with respect to
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the median on eosinophils count will be observed in this patient, based on
the small negative value found at the final node (value=-0.03).

Figure C.1: Example of a regression tree, obtained for eosinophils using data from the
CRF. The numerical values (as opposed to categorical 0/1 values) are normalized and
therefore this tree is valid for all patients provided the patients’ values are normalized
too. In order to obtain the patient specific tree at a specific visit, one needs to compute
the outcome and numerical variables’ median values for the patient using all the values
up to this specific visit and add these medians to the appropriate values displayed in the
tree. For example, if the patient’s median eosinophil count up to the last available visit
is c, then a predicted normalized value of -0.03 corresponds to an unnormalized value of
(-0.03)+c.

C.3 Trees from the models

This section contains the regression trees from the models for each of the 6
outcomes trained with the full training data. It is divided in two parts; the
first corresponds to the models trained only with the CRF variables while
the second corresponds to the models trained with the CRF and the TPMS
variables.
Note that the values of numerical (non-categorical) variables appearing in
the trees are normalized and that this normalization depends on the patient
and on the visit of this patient. As a recall, the normalization consists of
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subtracting the patient’s median value to the variables (where the median is
computed using all of the patient’s available visit values).
For each outcome, the final prediction is the equally weighted average of all
of the model’s single-tree predictions. It is possible for two or more trees
from the same outcome to be the exact same. This means that the model
has converged to the same solution multiple times. In such case, the repeated
tree will weight more in the final ensemble.
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C.3.1 CRF variables

Leukocytes

Monocytes
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Hemoglobin
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Red blood cells

Eosinophils
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Platelets
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C.3.2 CRF and TPMS variables

Leukocytes

Monocytes
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Hemoglobin
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Red blood cells

Eosinophils

Platelets
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