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Abstract

In the last decades, galaxy surveys have triggered unprecedented progress in our under-
standing of the Universe. Better astronomical cameras or more powerful computers have
enabled the collection of more and better data. Astronomical images need to be processed to
turn into photometric catalogues and ultimately into photometric redshifts. Current galaxy
surveys have observed the order of millions of galaxies while upcoming surveys like Euclid
or LSST will increase these numbers to billions. These data will require fast and precise
methods to extract the photometry and the photometric redshift.

In this thesis, we have used data from the Physics of the Accelerating Universe Survey
(PAUS) to develop an end-to-end deep-learning algorithm to extract the photometry and pre-
dict the photometric redshift from astronomical images. We have built the pipeline in three
steps, gradually increasing the complexity of the data-reduction operation. In this step-wise
approach, we have optimised each photometry process independently, learning about the
data, the network requirements, and its underlying mechanisms.

The first project predicts the background noise in the presence of nuisance artefacts and
strongly-varying backgrounds. On average, our deep-learning background measurements im-
prove the photometry by 7% and up to 20% at the bright end. The background measurements
also reduce the photometric redshift outlier rate by 35% for the best 20% galaxies.

The second project measures the probability distribution of the photometry in single-
exposure images. On average, the deep-learning photometry increases the signal-to-noise
of the flux measurements by a factor of two compared to an existing aperture photometry
algorithm. This algorithm also incorporates other advantages such as robustness towards
distorting artefacts, e.g. cosmic rays or scattered light, the ability of deblending, and less
sensitivity to uncertainties in the galaxy profile parameters used to infer the photometry.
This enables reducing the number of photometry outlier observations from 10% to 2%, com-
pared to aperture photometry.

The thesis also presents a novel methodology to enable better broad-band photometric
redshifts using data only available for a fraction of the observations. The method consists
of a multi-task neural network that predicts the photometric redshift and the PAUS narrow-
band photometry. The photometry estimation is an auxiliary quantity that correlates with
the redshift. This forces the network to learn a general solution capable of predicting the
photometry and the redshift simultaneously. As the auxiliary data are not used as input to
the network, we can evaluate the redshift of any galaxy without such data available. In the
COSMOS field, we find that the method predicts photometric redshifts that are 14% more
precise down to magnitude iAB < 23 while reducing the outlier rate by 40% with respect
to the broad-band photometric redshifts. Furthermore, for simulated data, training on a
sample with iAB < 23 the method reduces the photo-z scatter by 15% for all galaxies with



24 < iAB < 25.

Finally, the last step expands the single-band photometry measurements to multi-band
photometry. Using information from the full galaxy spectral energy distribution, this net-
work predicts the photometry in each of the bands and the photometric redshift. This method
duplicates the signal-to-noise ratio of the galaxy photometry with respect to the Lumos pho-
tometry. Furthermore, colour histograms indicate that multi-band photometry contains less
noise that the Lumos and the MEMBA ones since the colour-histograms width is reduced by
5 and 3, respectively. The photometric redshifts are trained on simulations and adapted to
the data using transfer learning. These photo-zs improves BCNz2 template-based photo-z
measurements, particularly at the faint end with 25% more precise photo-z. However, we
have still not reached the Deepz precision. This project is still work in progress and in the
near future we aim to study and improve the photo-z precision at the bright end.
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Pròleg

En les darreres dècades, millores tecnològiques com la potència de càlcul dels ordinadors i
dels fotodetectors, han provocat un progrés sense precedents en el coneixement de l’Univers.
Les exploracions sistemàtiques de l’Univers ens han permès obtenir catàlegs fotomètrics de
galàxies, que són necessaris per poder calcular la distància a la qual es troben les galàxies
(redfshift) i poder aix́ı fer mapes de l’Univers. En l’actualitat, s’han observat de l’ordre de
milions de galàxies, però en properes exploracions, com per exemple les que faran Euclid o
LSST, n’observarem de l’ordre de bilions. Totes aquestes dades requeriran mètodes ràpids i
acurats per a calcular la fotometria i el redfshift de les galàxies.

Aquesta tesi se centra en el desenvolupament d’un algoritme d’aprenentatge profund per
mesurar simultàniament la fotometria i el redfshift d’una galàxia. L’algoritme s’implementa
directament sobre imatges astronòmiques i va d’extrem a extrem, incrementant gradualment
la complexitat del procés d’extracció de dades. D’aquesta manera, hem optimitzat cada pas
de la reducció d’imatges de manera independent, fet que ens ha permès aprendre els requer-
iments i mecanismes de les xarxes neuronals emprades. Per desenvolupar el mètode, hem
utilitzat dades de l’experiment Physics of the Accelerating Universe Survey (PAUS).

La primera part de la tesi s’enfoca en la predicció del soroll de fons de les imatges util-
itzant xarxes neuronal convolucionals. De mitjana, l’algoritme millora la fotometria de les
galàxies entre un 7 i un 20%. A més a més, les nostres mesures de soroll redueixen un 35%
els photo-z at́ıpics presents en la mostra.

La segona part de la tesi, extenem el treball previ i desenvolupem una xarxa neuronal que
mesura la distribució de probabilitat de la fotometria en cada banda fotomètrica de manera
independent. De mitjana, la nostra fotometria duplica el senyal-soroll de les mesures de flux
realitzades amb un codi existent de fotometria d’obertura. El nostre algoritme d’aprenentatge
profund també incorpora altres beneficis com robustesa en presència d’elements distorsionats,
per exemple raigs còsmics, i menys sensitivitat a inexactituds en els paràmetres que defineixen
les galàxies. Això permet reduir el nombre de galàxies amb fotometria at́ıpica d’un 10% a un
2%, en comparació amb la fotometria d’obertura.

La tesi també explora com millorar les mesures del redfshift de les galàxies fotografiades
amb filtres fotomètrics de banda ampla (baixa resolució de longitud d’ona) utilitzant observa-
cions en bandes estretes. El mètode consisteix en una xarxa neuronal multitasca que prediu
el redfshift i la fotometria en banda estreta d’una galàxia a partir de la seva fotometria en
banda ampla. La fotometria està correlacionada amb el redfshift, aix́ı la xarxa neuronal pot
emprar el coneixement adquirit en la predicció d’una de les quantitats per millorar l’altra. La
fotometria en banda estreta no són dades d’entrada a la xarxa neuronal. D’aquesta manera,
un cop entrenada la xarxa pot predir el redfshift de qualsevol galàxia a partir de la seva fo-
tometria en banda ampla sense requerir fotometria en banda estreta. Al camp ”COSMOS´´,
el nostre mètode prediu photo-z amb un 14% més de precisió fins a magnituds iAB < 23 i



redueix el nombre de photo-z at́ıpics un 40%. A més a més, hem pogut provar en simulacions
que la xarxa neuronal multitasca també redueix un 15% la dispersió en el photo-z de galàxies
amb magnitud 24 < iAB < 25.

L’últim caṕıtol mesura fotometria multibanda i el photo-z de les galàxies a partir de les
imatges. Aquesta xarxa utilitza la informació disponible en totes les imatges obtingudes
d’una galàxia per fer prediccions en cadascuna de les bandes. La fotometria multibanda
duplica el senyal-soroll de la fotmetria banda per banda. Les prediccions del redshift són
encara treball en procès i tenen encara marge de millora. Estem treballant en entendre una
tendència sistemàtica en el photo-z de galàxies brillants.
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Introduction

Astronomers have been observing the Universe for centuries. Back in Ancient Greece,
very well-known names as Anaxagoras or Ptolemy studied astronomical phenomena such
as eclipses, the brightness of celestial objects or their rotational movement by observing the
nearby sky. In 1929, galaxy surveys became a standard tool in astronomy, which entailed a
change of model in astronomical studies from the analysis of single observations to a statis-
tical one (Okamura, 2020).

Galaxy redshift surveys are a powerful tool to study the Universe. These map a region
of the sky and locate the position and redshift of the objects inside. In the last decades,
there has been a breakthrough in the amount and quality of galaxy survey’s data, leading
to unprecedented progress in our understanding of the Universe. As an example, the Palo-
mar Observatory Sky Survey (POSS-I, Minkowski & Abell, 1963) which imaged 2/3 of the
observable sky from Palomar Mountain to iAB < 21 in photographic plates back in 1950. In
contrast, current modern surveys are observing hundred a million galaxies (The Dark Energy
Survey Collaboration, 2005; de Jong et al., 2013) to fainter magnitudes iAB ∼ 24.

Furthermore, in the next decades, the number of observed galaxies, the sky coverage,
and the observation’s depth will be extended by the next generation of ground and space
telescopes. Euclid (Laureijs et al., 2011) will observe 15 000 deg2, yielding photometry and
photometric redshifts for about 10 billion sources. Also, LSST (Ivezić et al., 2019a) will im-
age 20 billion galaxies to iAB < 24. These data will require fast and precise methods to turn
astronomical images into photometry and ultimately into photometric redshift catalogues.

Galaxy surveys can be broadly classified as spectroscopic or photometric surveys. The
former splits the light in narrow wavelength bins, enabling to determine very precise redshifts.
However, it is time-consuming and the efficiency of obtaining redshifts is low. In contrast,
photometric surveys image the sky using a few pass-band photometric filters at different
wavelengths. This enables observing many objects simultaneously but at expense of a lower
wavelength resolution, leading to less precise redshift measurements. While spectroscopic
data are powerful for galaxy evolution studies, e.g. star formation and mergers (Robotham
et al., 2014) and the environmental dependence of galaxy evolution (Alpaslan et al., 2015),
large photometric data-sets are very suitable for large scale structure and gravitational lens-
ing analysis (Kuijken et al., 2015; Elvin-Poole et al., 2018a).

Obtaining precise photometric redshift is crucial for most cosmological studies. This has
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prompted important efforts to improve the redshift estimation methods, leading to a wealth
of techniques optimised for different science applications and types of data (e.g. Feldmann
et al. 2006; Brammer et al. 2008; Eriksen et al. 2019). These techniques typically use the
photometry measured from the astronomical images. Therefore, the data reduction process
converting astronomical images into photometry catalogues is a key step in the determination
of accurate photometric redshifts.

This thesis uses data from the Physics of the Accelerating Universe survey (PAUS, Mart́ı
et al., 2014), which is a unique imaging redshift survey taking data with a camera equipped
with 40 narrow-band filters (Padilla et al., 2019a). Such a large number of photometric filters
provides PAUS with a wavelength resolution in between broad-band photometry and spec-
troscopy, which enables reducing the photometric redshift uncertainty by a factor of around
15 with respect to typical broad-band imaging surveys (Eriksen et al., 2019; Eriksen et al.,
2020; Soo et al., 2021).

Deep learning techniques have been undergoing an unprecedented revolution over the last
few years. This has been prompted by an increasing amount of available data and computing
power, together with a better theoretical understanding of the techniques. The development
of Graphical Processing Units (GPUs) has been crucial for speeding up the computation of
modern deep-learning algorithms, enabling the growth of a new deep-learning field devoted
to the development of techniques applied to images. These techniques have also reached
astronomy, where implementing deep learning tools to the increasing amount of astronomical
images is a new promising venue (e.g. Pasquet et al., 2019; Zhang & Bloom, 2019; Arcelin
et al., 2021).

In this thesis, we have developed an end-to-end deep learning pipeline to go from PAUS
science images to photometry and the photometric redshift. Chapters 1, 2, and 3 are an
introduction with useful information for understanding the thesis. The former (§ 1) presents
the basic concepts for the understanding of neural networks and introduces the architectures
and training methodologies used across the thesis. The second introductory chapter (§ 2)
presents the PAU Survey, its camera and science goals. Finally, the last part of the introduc-
tion (§ 3) explains the general astronomical data reduction steps to reduce raw astronomical
images to photometry and photometric redshift catalogues. The same chapter also introduces
the PAUS data management pipeline. This consists of a de-trending code that converts raw
images into reduced science images (§ 3.4.1) and a second part that estimates the photometry
from such reduced images (§ 3.4.2).

Our deep-learning pipeline has been developed in multiple independent steps, each of
them addressing a data reduction operation. Studying each step independently gives a better
understanding of the data and the network’s requirements, e.g. which information is relevant
to improve the photometry and how to provide the network with such information. First. in
Chapter 4, we have predicted the sky-background noise using CNNs, which is our first step
in obtaining reliable photometry and photo-z. We introduce BKGnet, an algorithm to make
accurate background noise predictions at the source location in the presence of nuisance arte-
facts and strongly varying background light. This is a published work in Cabayol-Garcia et al.
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(2020), titled“The PAU Survey: Background light estimation with deep learning techniques”.

Chapter 5 introduces Lumos, a CNN that predicts the probability distribution of the al-
ready background-light subtracted photometry. Lumos uses the experience from BKGnet to
tackle a more complex data reduction operation. This work is published as “The PAU survey:
Estimating galaxy photometry with deep learning” (Cabayol et al., 2021).

Some of the techniques used to extend Lumos to measure multi-band photometry were first
tested in Chapter 6, which introduces a multi-task learning network to enable better broad-
band photometric redshifts using PAUS data. This network predicts the photo-z and the
PAUS narrow-band photometry simultaneously from the broad-band photometry, combining
both tasks in the loss function. The method only uses PAUS data during the training phase
to evaluate the accuracy of the network narrow-band photometry predictions. Therefore,
we can estimate the photo-z of any galaxy with broad-band photometry, without requiring
narrow-band observations. This work is currently undergoing Euclid internal review for pub-
lication in “The PAU Survey & Euclid: Improving broad-band photometric redshifts with
multi-task learning” (Cabayol et al. in prep.).

Chapter 7 presents the last part of the photometric pipeline. This extends Lumos to pre-
dict the multi-band photometry and photo-z of any galaxy from its image observations. First,
the network extracts a set of co-added features from all observations of a galaxy in a narrow
band. Then, the features from all bands are used to predict the flux in each narrow band
filter, in such a way that the network uses all the spectral energy distribution information
encoded in the galaxy images to predict the photometry in a single band. This network uses
the knowledge of Chapter 6 to implement a multi-task learning training that simultaneously
predict the photometry photo-z. Both tasks share a set of network layers that capture data
traits relevant for the two predictions. The photo-z prediction also inputs the co-added fea-
tures from all narrow-bands as input, in such a way that it uses the information available
in all the images of a galaxy. This last chapter builds on all the previous work presented,
expanding the photometry pipeline to go end-to-end and using the multi-task learning tech-
niques tested in Chapter 6. This work is in preparation as ”The PAU Survey: Multi-band
photometry and photo-z from narrow-band images with deep learning“ (Cabayol et al. in
prep.).
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Concepts
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Chapter 1

Deep learning background

1.1 Gentle introduction to machine learning

Artificial intelligence (AI) is a field focused on constructing complex machines that can pro-
cess intellectual tasks normally performed by humans. The term ”artificial intelligence“ was
coined back in 1956 at a conference at Dartmouth College (McCarthy et al., 2006). By that
time, AI generated great expectations and money was invested in the field.

The first very simple Artificial Neural Network (ANN) was created in 1958 by Frank
Rosenblatt and was named ’Perceptron’. Currently, ANNs concatenate several layers that
are constructed by putting together collections of perceptrons. Each of these layers is typi-
cally responsible for learning a specific hidden pattern of the data.

The development of the perceptron created enthusiasm amongst the academic community,
however, the computer power was limiting its extension to deeper (with more layers) ANNs
and a single perceptron could only handle trivial versions of the problems they were supposed
to solve. This led to disappointment and the interest and investment in the field dropped off.
As a consequence, in 1973, the UK Parliament severely criticised the progress on AI, which
triggered a cut in AI investment and the coming years (1974 to 1980) the research on AI was
marginal (”AI winter“).

In the eighties, the interest in AI returned. In 1980, Yann LeCun developed an early
version of a convolutional neural network (CNN, LeCun et al., 1989) that could recognise
handwritten digits. This was successfully implemented in postal and banking services. Nev-
ertheless and despite the current popularity of CNNs, by that time computer power was also
limiting CNN’s performance and this type of network architecture was left aside.

The strong limitations of ANN performance triggered that other types of AI had their
heyday in the eighties. Expert systems were first introduced by Edward Feigenbaum in 1965.
These rely on two components: a knowledge base that provides a set of rules to carry out
a task and an inference engine that implements logical algorithms to the knowledge base to
infer new rules. MYCIN (Buchanan & Shortliffe, 1984) is a classic expert system implementa-
tion developed to diagnose and recommend medical treatment, supporting clinicians in the
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early diagnosis of meningitis. MYCIN’s knowledge relies on approximately 500 antecedent-
consequent rules that enabled to recognise of ∼ 100 causes of bacterial infections. To make a
decision, MYCIN starts with information such as e.g. the age, sex, and medical history of the
patient, scaling to more specific questions when required. Another example of a successful
expert system implementation is DeepBlue (Campbell et al., 2002). It is a chess computer
that defeated the world chess champion, Kasparov, in 1998. DeepBlue consists of an early
version of a supercomputer that estimates approximately 150 million possible chess move-
ments per second and a decision tree calculating the best move. There were several successful
expert system implementations however, managing the knowledge base and writing accurate
expert system rules was difficult.

In the nineties, the hype in expert systems declined, which has two possible interpre-
tations. The first one is that although expert systems provide deep, focused knowledge of
a particular problem, this knowledge cannot be generalised to any other task,e.g. MYCIN
cannot be implemented or easily adapted to the diagnosis of encephalitis. Therefore, these
algorithms could not expand to a more general AI technology fast enough to keep the hype
and AI moved on. Another possible interpretation is that expert systems were absorbed by
other tools that used their technology as part of other offerings, leaving the standalone expert
system out of the spotlight. Nevertheless, nowadays there is still some research on standalone
expert systems, e.g. Ahmed & Mahmoud (2020).

In 2008 Fei-Fei Li set up ImageNet (Deng et al., 2009), which is a database of annotated
images that provides a common image data-set to train and benchmark models. ImageNet
quickly scaled to 11 million images in 2010 and currently contains more than 14 million exam-
ples. The setting of ImageNet was an AI’s milestone that has eased the research in computer
vision tasks. In 2012, AlexNet (Krizhevsky et al., 2012) beat any previous result in image
recognition tasks using the ImageNet database. AlexNet is a CNN with eight layers; five
convolutional layers followed by three fully-connected layers. The main result in Krizhevsky
et al. (2012) was that the depth of the model (number of layers) was triggering the great
network’s performance. This is the origin of deep learning (DL), where the adjective ”deep“
refers to ANNs with a large number of layers. AlexNet was designed by Alex Krizhevsky
under the supervision of Geoffrey Hinton, one of the pioneers of deep learning.

Nowadays, AI has become part of our daily existence. The explosion of smartphones and
similar devices collecting huge amounts of data together with the development of applications
using AI, e.g. voice and search assistants, triggered important companies like Google and
Facebook to invest a lot of money in AI research. This revolution was boosted by several
factors:

� Big data: Over the last years, the amount of available data has quickly increased thanks
to devices like smartphones and computers. These gadgets daily generate huge amounts
of data collected by services like e.g. Google, Facebook, YouTube, and Instagram.
While traditional shallow ANNs do not benefit from having more data, deep ANNs can
boost their performance by using very large data sets.

� Processing Power: Graphical Processing Units (GPUs) have emerged as technologies
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to speed up computation, especially for deep learning algorithms requiring the com-
putation of multiple parallel processes. GPUs were initially developed for accelerating
graphics processing, however, these have become a crucial part of modern deep learn-
ing networks. GPUs are central to the increase in computer power (Oh & Jung, 2004).
These were already used for the development of Alexnet.

Complex models trained with large data sets demand more computational power. While
high-end GPUs can be very expensive, cloud services offer a cheaper alternative to
increase computational power that many more people can access.

� Open-source software: Recently, several neural networks have been developed an pro-
vided as open-source software enabling a wider and standardised application of machine
learning tools. Important examples are Keras (Chollet et al., 2015), Tensorflow (Abadi
et al., 2015), and PyTorch (Paszke et al., 2017), where the last two have been developed
by Google and Facebook, respectively.

1.2 Implementation of deep learning algorithms

Machine Learning (ML) is a branch of AI that learns how to solve a specific problem from
data. In classical software, routines to perform a specific task are hand-coded with a specific
set of instructions to perform such a task. Instead, machine learning algorithms iteratively
learn from the data how to perform the task in a process called training.

To create algorithms that learn similarly to humans, ANN architectures are inspired by
the structure of the human brain. As mentioned in § 1.1, the ANN computational unit is
the perceptron, which is the analogue of a neuron, and ANNs are made of combinations of
perceptrons named layers. The first layer of the network is the input layer and the last, the
output layer. The layers in between are the so-called hidden layers (see Fig. 1.1).

Supervised ANNs model a problem by optimising a set of trainable parameters (the per-
ceptrons and also technically named weights) to fit the data. This is done using a training
sample, which is a data-set of input examples with a known solution. Given the training
sample, the ANN optimises its trainable parameters to minimise the difference between the
outcome prediction and the expected output. We can differentiate three stages in the ANN’s
training phase: forward propagation, backpropagation and weight optimisation.

The training starts with the forward propagation. At this stage, the input data (xin
i )

propagates through all the network layers and the output layer provides a prediction for each
of the input samples. This prediction can be of different types depending on the problem the
network is addressing. If the network is a classifier, it predicts the class the input example
belongs. In contrast, if the network is addressing a regression problem, the prediction is a
value for the regression that can also be attached to other quantities such as the uncertainty
or the covariance. In the case of a linear ANN, the forward propagation in one layer reads as

~x′ = φ(w · ~x+~b) , (1.1)
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Forward propagation

Back propagation

Input layer Hidden layer Output layer

Input Output

Figure 1.1: ANN composed of an input, a hidden and an output layer. Each circle represents
a perceptron and has an associated weight wi. The black lines are the connection between
the perceptrons in one layer and those from the following one. This particular example has
two variables as input at outputs a single prediction.

where ~x′ is the signal after doing the forward propagation in the layer, ~x is the input vector
to the layer, w is the weight matrix, and ~b is the bias term. After each layer, there is an
activation function (φ) which is a non-linear function that maps the output of a layer to
the input of the following one (see Fig. 1.1). This is required to produce non-linearities in
the model. There are several common activation functions, e.g. the Sigmoid function or the
hyperbolic tangent. Recently, the ReLU function (Nair & Hinton, 2010), which is

φ(~x) = max(0, ~x) , (1.2)

has become the default activation function for many neural networks. The ReLU usually
achieves better convergence performance and it is computationally more efficient than previ-
ous commonly used functions.

The main limitation of the ReLU function happens when many ReLU neurons only output
zero values, which is known as the dying ReLU problem. As the slope in the negative range
is zero, the dead neurons remain stuck providing zero values. Some variations of the ReLU
function, e.g. the LeakyReLU (Xu et al., 2015) and the SELU (Klambauer et al., 2017),
emerged in attempts to further optimisation of the dying ReLU problem.

After the forward propagation, the prediction is compared with the known true value
(label) using a loss function that evaluates how well the algorithm models the data. There
are many different loss functions and their choice depends on the task we are optimising.
Typically classification problems use a cross-entropy loss function (Good, 1952), although
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there are also other options like e.g. the Kullback-Leibler divergence (Kullback & Leibler,
1951). On the other hand, regression networks predicting continuous values use e.g. the mean
squared error or the mean absolute error. In § 1.2.2 we will describe more complicated loss
functions that are used to predict the probability distribution of a continuous target quantity,
e.g. Eq. 1.5, which is used to optimise Gaussian mixture density networks (§ 1.2.2).

The ultimate goal of a supervised machine learning algorithm is to efficiently minimise
the loss function. Backpropagation (Kelley, 1960) is an optimisation method that consists
in computing the contribution (gradients) of the ANN’s weights w to the loss function L
after each forward pass using the chain rule. After back-propagation, the optimiser uses
the estimated gradients to update the parameters in a way that minimises the loss function
(weight optimisation). This whole procedure takes place repeatedly and it is commonly
implemented with a gradient descent algorithm. This algorithm reduces the loss function
after each iteration while adapting the parameters to the data until finding the loss function
global minimum. The gradients provide the direction with the steepest ascent in the loss
function space. Therefore the optimisation must be done opposite to the gradient (this is
why it is called gradient descent), i.e.

~w ← ~w − α · ~∇L(~w) (1.3)

where α is the so-called learning rate, which controls the variation of the model parameters.
The gradients are smaller as the network approaches the minimum in the loss function space,
where these are exactly zero.

Gradient descent computes the gradients using the full sample, which can be computa-
tionally expensive. Stochastic Gradient Descent is a variation of gradient descent that uses
randomly shuffled and sampled data of a size smaller than the whole training sample (e.g.
100, 128, or 256 data examples) to estimate the gradients. Each of these groups of data is
named batch. Gradients from batches are typically noisier than those estimated from the
whole sample, thus the network takes longer to converge. Nevertheless, stochastic gradient
descent is still computationally less expensive than typical gradient descent, which makes the
former the commonly preferred algorithm to optimise neural networks.

Nowadays, there are many types of ANN, each of them used for different purposes.
The simplest one is the multi-layer perceptron (MLP), also named linear network or fully-
connected network. It consists of a concatenation of layers where all the perceptrons in one
layer are connected to those in the following one. Figure 1.1 is an example of a three layers
fully-connected neural network. It contains two input neurons that are fully connected to
the six neurons in the hidden layer, which in turn are all connected to the output neuron.
Besides MLP, in this thesis we have used CNNs and mixture density networks, which are
explained in § 1.2.1 and § 1.2.2, respectively.

1.2.1 Convolutional Neural Networks

Convolutional neural networks have proven successful for a lot of image related applications,
e.g. image classification (Sultana et al., 2019), image semantic segmentation (Liu et al., 2018),
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Figure 1.2: Example of convolution. The
leftmost matrix corresponds to the in-
put image. The middle yellow matrix is
the convolutional kernel and the rightmost
one is the output image.
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Figure 1.3: Example of the max-pooling
operation. The left matrix is the input
image and the right one is after the pool-
ing.
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Figure 1.4: Example of a CNN composed of a convolutional layer, a pooling layer, a ReLU
activation function. The batch normalisation comes after the activation layer.
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and object detection (Zhao et al., 2018). CNNs are a type of ANN composed of convolutional
layers. In contrast to a fully-connected ANN, where the input propagates linearly through
the network (Eq. 1.1), the operation of a convolutional layer essentially consists in sliding the
input image with convolutional kernels.

Convolutional kernels are (typically) 4-dimensional matrices of trainable parameters.
When the kernel passes on a grid of pixels (of the same size as the kernel), each pixel is
multiplied by the corresponding value in the kernel and the contribution of all pixels in the
grid is added to a single number. The convolution over the complete image creates a new
representation of the input data.

The left panel of Fig. 1.2 shows an example of convolution operation. The leftmost matrix
represents the input image and the sun-seed yellow centred matrix is the convolutional ker-
nel. The coloured grid on the input image is multiplied by the kernel and summed together,
resulting in the bluish matrix value on the rightmost matrix. This procedure is repeated for
each 4×4 group of pixels. Note that the convolution reduces the input image dimension from
4x4 to 3x3, as a 2x2 kernel can only slide 3 times in each direction over a 4x4 matrix. To
avoid the dimensional reduction one can apply padding, which consists in adding extra rows
and columns to the input image, enabling one more slide. The added values are commonly
filled either with zeros or copying the pixels from the edge of the image.

Multiple convolutional kernels can be applied within a convolutional layer. Every kernel
will create a new data feature map focusing on different data traits. Concatenating convolu-
tional layers enables shallow layers, i.e. layers close to the input layer, to learn low-level fea-
tures (e.g. edges and lines) while deeper layers learn more complicated features (e.g. shapes).
As the number of convolutional layers and kernels per layer increases, so does the number of
trainable parameters and the amount of data (and memory) that the network needs to handle.

Convolutional layers enable CNNs to use the local spatial coherence of images (i.e. the
fact that spatially close pixels together have a meaning) to reduce the number of operations
required to process an image. Furthermore, CNNs also learn from the order of their inputs.
Considering every pixel in one image an input feature, the CNN sees where each of these
pixels is located and uses this information to make predictions.

CNNs also use the spatial coherence of images to effectively reduce the dimension of the
input features using the so-called pooling layers (Gholamalinezhad & Khosravi, 2020). Pool-
ing layers apply any differentiable operation (e.g. the maximum or the average) to reduce
a group of pixels in the feature map to a single value. Therefore, these layers down-sample
feature maps by creating a smaller representation of each feature map separately. The right
panel in Fig. 1.3 shows an example of 2x2 max-pooling, where each 2x2 pixel grid in the input
image is replaced by its maximum value.

Pooling layers also help summarise the presence of features in the input image. Two
images of the same object can present slightly different images as a result of e.g. rotation
or cropping. After the convolutional layer, these images will result in different feature maps.
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The pooling layer helps to regularise the differences between slightly different feature maps
by applying operations over groups of nearby correlated pixels.

The last type of layer we introduce here is the batch normalisation layer (Ioffe & Szegedy,
2015). This layer is particularly helpful when training deep neural networks with lots of hid-
den layers. It is commonly implemented after the activation function and consists in re-scaling
batch by batch the activated output of the previous layer, so that it has zero mean and unit
variance (standardise). During the back-propagation process, weights are updated layer by
layer. When doing so, we assume the weights in all the other layers are fixed. However, this
is not the case since back-propagation iteratively updates all layers in the network, hindering
the loss minimisation. Batch normalization helps coordinate the update of the different layers
in the model, fastening the convergence and making the learning more robust.

Figure 1.4 presents an example of CNN composed of a convolutional layer, a max-pooling
layer, the ReLU activation function layer, and batch normalisation. We can visualise that
convolving the input image with the convolutional kernel highlights certain parts of the input
image and smooths others. The pooling layer remarks even more on the features highlighted
in the convolutional layer.

1.2.2 Mixture density networks

So far, the presented networks predict a single value. However, assessing the uncertainty of
the predictions is often required for scientific applications. Mixture density networks (MDN,
Bishop, 1994) predict the probability distribution of the prediction y given the data D as
a weighted sum of k distributions that can be any sort of basis function, e.g. Gaussians
functions, in such a way that

p(y|D) =
k∑
i

αiNi(µi, σi) , (1.4)

where Ni(µi, σi) is the i-th Gaussian component with mean µ and standard deviation σ. The
α parameters are the so-called mixing coefficients, which give the relative contribution of each
Gaussian component to the total probability distribution.

MDNs combine a neural network with a mixture density model. The neural network,
which can be of any type (e.g. CNN, § 1.2.1), takes the input data D and converts it into a
set of values that are modelled by the mixture model. The mixture model shapes the data
using several distributions that can be written in a simple parametric form (e.g. a Gaussian,
as in Eq. 7.3). Figure 1.5 presents a Gaussian MDN. The blue rectangles represent a 3-layers
ANN that given two input values outputs the mean and standard deviation of N Gaussians
(yellow points), together with the mixing coefficients α (Eq. 7.3). These output parameters
build the probability distribution of the predicted quantity.

A Gaussian MDN is trained with a loss corresponding to the negative log-likelihood of a
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linear combination of Gaussian distributions, i.e.

LMDN = − log (p(y|D)) =
k∑
i=1

[
log(αi)−

(fi − µi)2

σ2
i

− 2 log (σi)

]
. (1.5)

This corresponds to maximising the likelihood function L(D|~θ), where ~θ are the ~µ, ~σ, and ~α
parameters modelling the Gaussians in Eq.7.3.

1.2.3 Multi-task learning

Deep learning algorithms consist of training a single or an ensemble of models to accurately
perform a single task (e.g. predicting the redshift). Multi-task learning (MTL) is a training
methodology that aims to improve the performance on a single task by training the model
on multiple related tasks simultaneously (Caruana, 1997). A pedagogical example is a net-
work used to classify images of cats and dogs. If the same network is simultaneously trained
to classify the shape of the ears, e.g. spiky or rounded, the network will learn correlations
between the animal type and the ear shape, e.g. dogs mostly have rounded ears, in such a
way that the ear shape predictions will help in the cat-dog classification.

There are two main types of MTL network architectures: soft- and hard-parameter shar-
ing (Zhang & Yang, 2021). Hard-parameter sharing architectures are the most common type
of MTL and that used in this thesis. This MTL implementation shares a set of hidden lay-
ers among tasks, while each task also implements task-specific layers after the shared ones.
Figure 1.6 shows an example of three task hard-parameter sharing MTL, which is built of
three shared layers (blue layers) and a single task-specific layer per task (tomato-red layers).
Sharing hidden layers forces the network to learn representations that generalise for all tasks.
Although the example (Fig. 1.6) only has a single task-specific layer per task, this is com-
monly extended to several. On the other hand, in soft-parameter sharing architectures, each
task has its model and there are no shared layers. The distance between the parameters of
the different models is regularised to keep them similar.

MTL has already been successfully applied to fields such as e.g. video processing where
Song et al. (2020) implements MTL to simultaneously predict the edge and the disparity
maps in stereo video processing1. Other example implementations include Moeskops et al.
(2017), where an MTL network is trained to simultaneously segment tissues in brain images,
the pectoral muscle in breast images, and the coronary arteries.

1.3 Deep learning in astronomy

Astronomy is experiencing an explosive growth of data as a result of past, current and up-
coming surveys (Mickaelian, 2016; Zhang & Zhao, 2015). For example, the Palomar Digital

1Stereo video is the practice of producing the illusion of 3D images in moving form. Disparity maps display
the apparent pixel difference between a pair of stereo images, i.e. images of the same taken from different
perspectives and edge maps indicate the position of the edges in the image.
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model constructing the output’s probabil-
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Figure 1.6: Multi-task learning scheme.
This particular example corresponds to
a hard parameter sharing architecture,
where all tasks share a set of common lay-
ers (blue layers). The red layers represent
the task-specific layers.

Sky Survey (DPOSS, Djorgovski et al., 1998) and the Two Micron All-Sky Survey (2MASS,
Skrutskie et al., 2006) generated 3 TB and 10 TB of data respectively. This already increased
to 40 TB for the Sloan Digital Sky Survey (SDSS, Ahumada et al., 2020) and it is expected to
rise to 40 PB and 200 PB for The Panoramic Survey Telescope and Rapid Response System
(PanSTARRS, Magnier et al., 2020) and the Rubin Observatory Legacy Survey of Space and
Time (LSST, Ivezić et al., 2019a). The improvement of technology has enabled the construc-
tion of larger and more powerful telescopes and cameras contributing to the rapid increment
of astronomical data.

Furthermore, astronomical data embraces different data types and complexities, includ-
ing images, spectra, simulations, and time series. For example, SDSS observed the spectra of
millions of galaxies and multi-colour images of one-third of the sky, the Dark Energy Survey
(DES, The Dark Energy Survey Collaboration, 2005) imaged 5000 deg2 of the southern sky
(∼300 million galaxies) in five optical filters, and the Kilo-Degree Survey (KiDS, de Jong
et al., 2013), imaged two areas of 750 deg2 in four optical filters and five near-infrared bands.
Furthermore, other surveys such as e.g Gaia (Gaia Collaboration, 2018) also produce multi-
temporal data. Gaia is accurately mapping the Milky Way measuring the motion of each
star around the centre of the galaxy.

The increasing amount of astronomical data to analyse has fostered the implementation
of data-driven tools to address astronomical data analysis. Furthermore, future surveys like
LSST, the Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al., 2016),
and Euclid (Laureijs et al., 2011) will increase the number of observed astronomical objects
by more than an order of magnitude, enhancing the need of fast, automated tools to process
all the data. While training deep learning models can be time-consuming, evaluating them
on data is a fast operation.
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There are many different examples of deep learning implementations in astronomy. Tra-
ditionally, these worked at a catalogue level, but recently with the development of very pow-
erful CNN, there has been an increasing interest in implementations at the image level. This
opens a new research path full of possibilities such as e.g. automated classification. Training
a deep learning model to classify astronomical objects from the images enables an automated
real-time object classification (Narayan et al., 2018), also allowing a rapid follow-up of rare
phenomena.

In this thesis, we have developed a deep learning end-to-end pipeline to measure the
photometry and the photometric redshift of galaxies directly from the images. This enables
a fast evaluation of both quantities, reducing the number of processing steps and exploiting
the information available in the images.

1.3.1 Object classification

One of the most studied deep learning applications in astronomy is object classification, e.g.
star-galaxy and galaxy morphology classification. Most traditional star-galaxy classifiers use
summary information from catalogues. In Ball et al. (2006), SDSS colours (i.e. u− g, g − r,
r− i, and i− z) are used to provide a classification for all 143 million photometric objects in
the SDSS-DR3. Also, in Cabayol et al. (2019) objects from the COSMOS field are classified
based on 40 narrow-band colours using a 1D CNN. Baqui et al. (2021) tests six different
machine learning algorithms (e.g. K-nearest neighbours and decision trees) to distinguish
stars and galaxies using 56 narrow-band filters and 4 ugri broad-band filters. Approaches
addressing the classification at the image level use both the photometry encoded in the image
and the morphology of the source to predict the object type. One example is Kim & Brun-
ner (2016), where a CNN is trained on SDSS images in five photometric bands ugriz to r < 23.

Traditionally, galaxy classification has only relied on galaxy morphology. The common
galaxy classification scheme was proposed by Hubble in 1936 and splits the galaxies into four
broad types based on their morphology: elliptical, spiral, barred-spiral, and irregular, each
of these classes containing several sub-classes (Hubble, 1922; Hubble, 1926; Hubble, 1927;
Hubble & Tolman, 1935). For most of the 20th century, galaxy classification was tackled by
visual inspection of a group of astronomers, (e.g. de Vaucouleurs et al., 1991). With modern
surveys data, visual inspection of the entire catalogue is infeasible due to the large number
of observed galaxies. Moreover, to quantify the error in the classification, galaxies require
multiple independent classifications. Galaxy Zoo was created to solve this problem. It is a
crowd-sourcing project to classify more than 60 million SDSS galaxies based on online citizen
visual inspection (Lintott et al., 2008).

CNN offer an alternative to visual inspection (Khalifa et al., 2017; Domı́nguez Sánchez
et al., 2018). Working directly on galaxy images, these networks can provide a morphologi-
cal classification for millions of objects using all the information available in the image (e.g.
morphology, photometry, and environment). The classification of bright galaxies (Zhu et al.,
2019; Goddard & Shamir, 2020) is addressed with annotated data sets like Galaxy Zoo 2 (Wil-
lett et al., 2013) or catalogues with reliable known galaxy morphologies e.g. the Principal
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Galaxy Catalogue (Paturel et al., 2003) or the Value-Added Galaxy Catalogue (Choi et al.,
2010). Furthermore, CNNs also offer a solution for galaxy classification of deep data sets,
where the faintest galaxies are hardly distinguished from the background and visual morpho-
logical inspection is not a possibility. This could potentially be addressed using galaxy image
simulations to train the CNN, although there are not many examples in the literature yet.

1.3.2 Photometric redshift estimation

Machine learning has also been extensively applied to photometric redshift (photo-z) estima-
tion and present an alternative to template based spectral energy distribution (SED) fitting
methods (e.g. LePhare, Arnouts & Ilbert 2011; BPz, Beńıtez 2011; ZEBRA, Feldmann et al.
2006; EAZY, Brammer et al. 2008). A vast variety of machine learning algorithms has been
used to tackle photo-z estimation like tree-based methods (e.g. Carliles et al. 2010; Gerdes
et al. 2010; Carrasco Kind & Brunner 2013), support vector machines (SVM, e.g. Wadadekar
2005; Wang et al. 2008) and fully-connected ANN (e.g. Collister & Lahav 2004; Bonnett
2015a), the majority of them using photometric features to make redshift predictions.

Recently, efforts have also focused on determining photometric redshifts directly from
astronomical images using CNN. D’Isanto & Polsterer (2018) compares the performance of
traditional redshift estimation methods using photometric features with a deep CNN predict-
ing photo-z from astronomical images. The paper presents a redshift precision comparable to
the state of the art results on bright galaxies. Furthermore, Pasquet et al. (2019) determines
the photometric redshifts of bright galaxies in the Main Galaxy Sample of the Sloan Digital
Sky Survey at z < 0.4 with a CNN on the ugriz images. In this thesis, we present a novel
deep learning method to predict multi-band photometry and photo-z from images (§7).

1.3.3 Other applications

A decade ago, almost all the machine learning implementation examples would have related
to object classification and photo-z estimation. Nowadays, the hype on machine learning
has also reached astronomy, and machine learning implementations have been widespread in
several other science cases.

Examples include galaxy deblending, which will become a crucial step in the data re-
duction for upcoming surveys like e.g. LSST. Traditionally, deblenders mostly relied on
analytical modelling of the blended galaxies, which requires very accurate galaxy models.
Recently, more robust deep learning deblending algorithms have also been developed (Bou-
caud et al., 2020; Arcelin et al., 2021). Neural networks have also been developed to correct
shear measurements from nuisance effects (Tewes et al., 2019; Matilla et al., 2020), including
e.g. instrument optics, blending, and unknown galaxy morphologies. Furthermore, Gupta
et al. (2018) uses CNNs to derive cosmological constraints from weak lensing maps.
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Chapter 2

The PAU Survey

In this chapter, we introduce galaxy surveys (§ 2.1), focusing on imaging surveys (§ 2.1.1) to
introduce the PAU Survey (§ 2.2).

2.1 Galaxy surveys

A large fraction of the data collected from the universe arrives as electromagnetic radiation,
e.g. low energy radio photons (Wilson, 2011; Lacy et al., 2020), very energetic gamma rays
(Di Sciascio, 2019; Mazin, 2019), or optical astronomy (The Dark Energy Survey Collabora-
tion, 2005; Mart́ı et al., 2014; Benitez et al., 2014). Galaxy surveys are surveys of a portion of
the sky that provide fundamental data basis of galaxies and their distribution in the Universe.

There are two widely used techniques to observe the Universe: spectroscopy and pho-
tometry. Spectrographs split the light in wavelength such that it is possible to measure the
amount of light in small wavelength intervals. Spectroscopy measures the spectral energy
distribution (SED), i.e. the amount of energy per second, unit area, and unit wavelength of
any astronomical source using a spectrograph, which enables the estimation of very precise
galaxy redshifts. In contrast, imaging surveys consist of imaging the sky using optical and
near infra-red (NIR) photometric filters, which enables increasing the number of observed
galaxies by ∼ 2 orders of magnitude.

Ideally, galaxy surveys should cover wide sky areas with a fine angular and wavelength
resolution. Unfortunately, astronomical observations are limited and a high wavelength res-
olution is commonly at expense of a fine angular resolution over a wide sky area (and vice
versa). While spectroscopic surveys (e.g. Ahumada et al., 2020; Scodeggio et al., 2018; Driver
et al., 2011) can provide very high-resolution spectra, they demand long exposure times.
Moreover, spectroscopic surveys also require targeting the observations, which potentially
causes target-selection effects due to e.g the surface brightness detection limit of the imaging
data used to derive the targets. In contrast, imaging photometric surveys (e.g. de Jong et al.,
2013; Ivezić et al., 2019a) present an alternative method that enables covering larger areas of
the sky with better angular resolution but worsening significantly the wavelength resolution.
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Advances in observational technology (i.e. telescopes and detectors) have enabled galaxy
surveys to increase the collected data from very few galaxies to billions of them. Optical
imaging sky surveys started in the pre-photography era with naked-eye observations. The
first astronomical catalogue was set up by Messier in 1774 (Messier, 1774) and contained 110
astronomical objects. Other examples of pre-photography catalogues are e.g. the still-used
New General Catalogue (Dreyer, 1888) and the Index Catalogue (Dreyer, 1895) by John
Dreyer .

Photography and monitoring systems transformed sky surveys enabling a systematic cov-
erage of large areas of the sky. In the first half of the 20th century, several sky surveys
provided astronomical catalogues containing ∼ thousands of objects, mostly stars. Some ex-
amples are the Smithsonian Astrophysical Observatory Catalog1, which contained positions,
proper motions, and magnitudes for over 250 000 stars and the Henry Draper Catalogue2,
containing the spectral type of ∼ 360 000 stars. Photography also enabled the monitoring
of the Magellanic Clouds with the discovery of the crucial period-luminosity relations for
Cepheids (Leavitt & Pickering, 1912) in 1912, later used for the Hubble discovery of the
Universe expansion.

In the second half of the century, the development of Schmidt telescopes led to the POSS-I
survey, a major milestone for galaxy surveys (Minkowski & Abell, 1963). POSS-I mapped
about two-thirds of the observable sky from the Palomar Mountain providing catalogues such
as the Morphological Catalog of Galaxies3, of ∼ 30 000 galaxies. Furthermore, the first spec-
troscopic surveys were designed in the early eighties and provided the first evidence of the
large scale structure in the nearby universe. The first Center for Astrophysics redshift sur-
vey (CfA, Geller & Huchra, 1983) was the first spectroscopic survey, which observed ∼ 2300
galaxy spectra down to mAB ∼14.5.

The development of charged-coupled devices (CCD) brought unprecedented progress to
astronomy with fully-digital sky surveys. CCDs are silicon chips made up of an array of light-
sensitive diodes (pixels) settled in rows and columns that become charged when light hits
them (Lesser, 2015). SDSS (Gunn et al., 1998; York et al., 2000) was the first CCD survey,
which eventually covered 14 500 deg2 and collected 116 TB of data (Alam et al., 2015). SDSS
was fundamental in transforming astronomy and enabled a wide range of science applications.
Technology advances also affected spectroscopic surveys with the development of multi-fibre
spectrographs, opening to massive redshift surveys, e.g. 2dF (Colless et al., 2001a) and SDSS
(Ahumada et al., 2020), which together provided more than a million galaxy redshifts.

2.1.1 Imaging surveys

The wavelength resolution of imaging surveys depends on the set of photometric filters (i.e.
the photometric system). The photometric system is characterised by the number, width,

1https://heasarc.gsfc.nasa.gov/W3Browse/star-catalog/sao.html
2http://server6.sky-map.org/group?id=23
3https://heasarc.gsfc.nasa.gov/W3Browse/galaxy-catalog/mcg.html
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Figure 2.1: Top left: SDSS galaxy spectra. Top right: The SLOAN SDSS griz broad-band
transmission curves. Bottom: The PAUS narrow-band transmission curves.

and wavelength coverage of the photometric filters. This includes broad-band systems with
few photometric filters of width ∼ 1000Å (e.g. Honscheid & DePoy, 2008; Doi et al., 2010)
and narrow-band systems (Molino et al., 2013; Padilla et al., 2016), which are made of a
larger number of narrower photometric filters with ∼100Å width.

While broad-band photometric systems provide low spectral resolution, they enable ob-
serving large sky areas with great angular resolution. On the other hand, photometric systems
with narrow-band filters increase the wavelength resolution but typically cover smaller sky
areas since the survey needs to pass more times through the same sky region to cover the same
wavelength range. Furthermore, narrow-band filters detect fewer photons than their broader
counterparts for the same exposure time. This either yields in a signal-to-noise reduction, an
increment of the exposure times required to observe a sufficient signal, or a trade-off between
the two.

Figure 2.1 shows an example of galaxy spectra (upper-left) measured by SDSS. The right
panel of the same figure presents the SDSS griz filter transmission curves (right) (Fukugita
et al., 1996; Doi et al., 2010), while the bottom plot shows the PAUS narrow-band trans-
mission curves (Casas et al., 2012). These plots evidence that broad-band imaging suffers
a significant loss of wavelength resolution while narrow-band wavelength resolution is in-
between broad-band imaging surveys and spectroscopy. Table 2.2.4 shows a few examples of
spectroscopic and photometric surveys and their characteristics.
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Astronomical images

The images captured by the CCD camera are named raw images. These are the primary
source of data but are highly degraded by noise effects such as the turbulence of the atmo-
sphere, charge inductions in the CCD electronics, and the telescope movement (Morganson
et al., 2018). Other sources of noise such as e.g cosmic rays, very bright stars, and very
massive galaxies can also affect the quality of the images.

Images are observed in a field of view, which defines the area of the sky that can be
covered by the astronomical image. In ground-based telescopes, the atmosphere also affects
the image by smearing out the light in a process named seeing (Trujillo et al., 2001). The
seeing reduces the resolution of an astronomical image, lowering its mean surface brightness
and increasing the observed radii. This is made evident in the image of a point-like source
that should be captured by a single pixel, e.g. a distant star, spreading over a group of pixels.

The diffraction of the lens aperture and the fact that images are taken with discrete
pixels (pixelisation) also contribute to the image spreading. The point spread function (PSF)
quantifies the combination of all these effects (seeing, pixelisation, and telescope optics). The
observed image is the galaxy image convolved with the PSF, which keeps the brightness of
an object while spreading it on a larger group of pixels. Mathematically, the value of a pixel
Ĩx,y placed at x and y convolved with the PSF is

Ĩx,y =
a∑

i=−a

b∑
j=−b

Ki,j × Ix+i,y+j, (2.1)

where I is the galaxy image without PSF effects and KKK is the PSF kernel, which is assumed
to have dimensions (2a+ 1, 2b+ 1). The PSF can be defined by any mathematical function,
e.g. a Gaussian. In astronomy, the PSF is most commonly modelled by the Moffat function,
which is less sharp than a Gaussian (Eq. 3.15)

2.2 The PAU Survey

Large maps of galaxy tracers are a key ingredient for many cosmological studies. The Physics
of the Accelerating Universe Survey (PAUS) is a 40 narrow-band imaging survey observing
at the William Herschel Telescope, in La Palma (Spain). As of June 2022, PAUS has imaged
40 deg2 of the sky. The observed astronomical fields are the COSMOS field (2 deg2) and a
fraction of CHFTLS wide fields W1 (10 deg2), W2 (10 deg2) and W3 (20 deg2). Moreover,
PAUS is also targeting the CHFTLS-W4 field, for which it still has very few observations.

2.2.1 History

Back in 1998, two independent teams of astronomers found that the Universe’s expansion
was speeding up (Riess et al., 1998; Perlmutter et al., 1999). This discovery had strong im-
plications for the understanding of the Universe. Dark energy was postulated as the most
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Figure 2.2: Left: PAUCam vessel and electronics installed at the primer focus of the WHT.
Right: The eighteen Hamamatsu CCDs used for narrow and broad band imaging.

significant component of the cosmos and that responsible for the accelerated expansion, but
its nature was unclear. In the following years, the scientific community focused on under-
standing the nature of dark energy and lots of efforts and funding were invested in its research.
In 2005, the DES started as a cosmological survey using different probes to investigate the
potential time-evolution of dark energy. This is a ground-based cosmological survey with a
five broad-band photometric filters camera (DECam, Honscheid & DePoy, 2008) mounted
on the Victor M. Blanco Telescope, at the Cerro Tololo Inter-American Observatory (CTIO)
in Chile. DES is a large collaboration formed by institutions from all around the world,
including both The Institut d’Altes Energies (IFAE) and the Institut de Ciències de l’Espai
(ICE). While ICE had already been active in astronomical surveys, e.g. SLOAN (Margon,
1999), IFAE was at that time mainly involved in particle physics, especially in the ALEPH
experiment (Wu, 1986). When ALEPH finished, IFAE wanted to diversify and joined the
DES cosmology experiment. Initially, IFAE’s main contribution was the readout electronics
of the DECam.

In 2005, the Spanish government announced the Consolider Program, which was intended
to foster research projects lead by Spanish institutions while stimulating the formation of re-
search networks in the Spanish scientific community. The Consolider program was providing
funds for five-year research projects, boosting new research lines. IFAE and ICE together
with other Spanish institutions including the Universidad Autónoma de Madrid (UAM) and
the Instituto de F́ısica Teórica (IFT), presented a joint proposal that consisted in building
an astronomical camera from scratch. Some of these institutions knew each other from DES,
while others had been collaborating in the ALHAMBRA survey (Moles et al., 2008). The
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project was named The Physics of the Accelerating Universe (PAU4) and was selected by the
Consolider Program in 2007. The survey name was later extended to PAUS.

ALHAMBRA (Moles et al., 2008) was a foregoing Spanish galaxy survey that consisted of
20 contiguous, equal width, medium-band photometric filters covering from 3500Å to 9700Å,
plus the standard broad bands JHK near-infrared broad bands. A significant fraction of the
PAUS collaboration had already participated in ALHAMBRA. This brought up the idea of
extending PAUS as a natural continuation of ALHAMBRA, performing a large survey by
constructing a camera with 40 narrow-band photometric filters.

2.2.2 PAUCam characteristics and construction

Before constructing the PAUS camera (from hereafter PAUCam), PAUS needed to locate a
telescope where it could be installed. A potential was constructing a new telescope in Teruel,
Spain. The location was initially characterised to study the viability of mounting PAUCam
there. However, building the telescope, the camera, and the observatory was out of the scope
of the Consolider program. In 2008, the Isaac Newton Group (ING) opened a call for vis-
itor instruments for the William Herschel Telescope (WHT). PAU presented a proposal for
mounting PAUCam at the WHT, which was accepted, achieving the first milestone for the
PAUS project.

The construction of PAUCam started in 2010 and took five years. A major challenge was
the WHT weight requirement. Instruments installed at the WHT prime focus cannot weigh
> 270kg. This weight must include e.g. the vacuum pumps, the cryogenic system, the filters,
the motors required to exchange the filter trays, and the electronic systems (including all the
cable connections), which imposes a stringent limitation on the camera design. Astronomical
cameras are typically built with aluminium, but this material would have exceeded the WHT
weight limit.

Carbon fibre is a lighter alternative to aluminium, however, there were no previous cam-
eras built with carbon fibre in cryogenics. This material is a mixture of carbon and epoxy,
and type of epoxy must to be non-outgassing and therefore approved in a special list that
NASA or ESA provides. After several tests at IFAE labs, it was decided to manufacture the
camera vessel and many parts of the filter exchange system with carbon fibre. The PAUCam
team had to work closely with the carbon fibre company to ensure they were using the right
type of epoxy. Figure 2.2 shows the PAUCam carbon fibre vessel with all the electronics
installed at the prime focus of the WHT (left).

Reducing the PAUCam weight also enables a faster camera installation, which is valuable
since it is not the only instrument observing at the WHT. For this reason, PAUCam is also
equipped with a dual cooling system to enable the cooling of the focal plane within hours.
During regular operations, two cryo-tigers maintain the temperature of the narrow-band fil-

4In Catalan, PAU means peace.
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ter trays, the CCDs, and the amplifiers. However, after the installation of the camera, the
cryo-tigers would take ∼12 hours to cool the system to the operational temperature. Thus,
the PAUCam is also equipped with a liquid nitrogen cooling system to ensure it is operational
on the same day of the installation.

The PAUCam fully covers the telescope FoV with eighteen fully-depleted Hamamatsu
CCDs of 2k × 4k pixels with a pixel size of 15µm (Fig.2.2). A mosaic image is a sky expo-
sure of the full 18-detector PAUCam mosaic (see the left panel on Fig. 3.2). The CCDs are
divided into eight central CCDs used for narrow-band imaging and ten external CCDs for
guiding calibration, and broad-band imaging. The CCD characterisation was done at IFAE
labs by illuminating the CCDs with a Neon lamp multiple times to register the response to
multiple wavelengths.

The camera has two optical elements: the entrance window and the photometric filters.
The former permits the entrance of light while keeping the camera vessel in vacuum. The
filters are divided into two differentiated sets:

i The broad-band filter set : This set is composed of six broad-band filters ugrizY calibrated
at the ICE-CSIC/IEEC/IFAE labs and with the same filter transmissions as the DECam
photometric filters (Honscheid & DePoy, 2008).

ii The narrow-band filter set : It consists of 40 narrow-band filters spanning a wavelength
range from 4550Å to 8450Å, which were calibrated at CIEMAT (Casas et al., 2016).
The narrow-band filters have transmission curves with a FWHM of 1300Å and 1000Å of
separation between consecutive bands. PAUCam distributes the 40 narrow-band filters
in five independent filter trays. Each filter tray is equipped with eight narrow-band filters
covering the eight central CCDs, which permits imaging with eight narrow-band filters
simultaneously.

The broad- and narrow-band photometric filters are located between the last corrector lens
and PAUCam’s focal plane, at a minimum distance between the lenses and the filters. This
is important since PAUCam is equipped with many small filters that have a structure in the
filter trey. Consequently, larger distances between the tray and the focal plane increase the
shade that the tray produces on the focal plane. The filter trays are in a vacuum environment
and cooled to 250K.

The PAUCam camera has two prime control systems: the PAUCam Slow Control System
(SC) and the PAUCam Control System (CCS). The SC is in charge of the telescope motion
control, monitoring the sensors (e.g. temperature and pressure), and first safety reaction. It
also controls the filters’ jukebox movements, the shutter, the temperature monitoring, the
vacuum sensor, and pump monitoring, and the slow control of the power supplies. On the
other hand, the CCS controls all the PAUCam subsystems necessary to capture images. These
subsystems include the Slow Control interface (SCi), in charge of sending commands to the
SC; the Data Acquisition interface (DAQi), which is used to read out the PAUCam CCDs; the
Online Quality analysis; the Guider, the Telescope Control System interface (TCSi), Storage,
and Alarms.
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2.2.3 PAUCam commissioning

In 2015 the camera was ready for commissioning and the commissioning team went to La
Palma for two weeks. One of the main concerns was the grounding, which is unstable as La
Palma resides in a volcanic region. All the electronics must be placed correctly, otherwise,
insufficient grounding leads to a high readout noise. For this reason, they performed multiple
grounding tests at IFAE labs before sending the camera. The very first image had a very
high read-out noise of 70 electrons, which was reduced to 9-10 electrons after adjusting the
grounding scheme. The readout noise has since remained stable.

The PAUCam commissioning team brought the camera to the telescope two weeks before
the first night of observations. During those days, the team was working on the readout sys-
tem and the software to build images in FITS files. They managed to take sky images already
on the first night, however the the monitoring displays and the automatic scripting was not
ready and they had to use command lines to e.g. execute the image, move the telescope,
and save the FITS files. The observing system software managing and coordinating all the
systems (e.g. the reading system, the filter trays, the mechanics, the telescope, temperature,
and sensors) was developed while taking data.

During the first observation shifts, some issues in the operation of the camera were de-
tected. The filter trays were stack from time to time, which required to move the camera in
different position (e.g. telescope declination and rotator) and try to increase the torque of
the motors until the tray was unstuck. Furthermore, a software error forced the observers to
reboot the camera about twice a night. Most importantly, the image quality was degraded
due to a significant amount of scattered-light (see §4.2). In PAUCam, scattered light was
caused by the filters being installed slightly tilted to be perpendicular to incoming light. This
caused a gap between the filters and the filter trays (Romanishin, 2014). Scattered-light was
reducing the number of observed galaxies per image and their signal-to-noise.

In order to fix these shortcomings, the camera was shipped back to Barcelona. PAUCam
was opened in 2015 to redesign the filter trays. Initially, these were inclined following the op-
tical path and light was entering through since the filters did not have coating on their sides.
In the camera intervention, the filters were modified to be completely parallel to the focal
plane and CCDs. Furthermore, the borders of the filters were slightly increased to minimise
light entering through their sides. The camera intervention drastically reduced scattered light
by a factor of 4. The camera has worked smoothly until nowadays.

2.2.4 Science goals

Thanks to the narrow-band filter set, PAUS provides a low-resolution spectra (λ/∆λ ∼ 50)
for few million redshifts on the full sample (without selection effects) down to iAB < 22.5.
This high wavelength resolution reduces the photo-z uncertainty by ∼15 times, which in turn
reduces the error on other derived physical quantities such as e.g. the luminosity function.
Given the uniqueness of the sample, PAUS has great potential for
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� Studying intrinsic alignments at z ∼ 0.75 due to increasing the galaxy density with
sub-percent photo-z almost two orders of magnitude. This has been studied both on
simulations (Stothert et al., 2018) and CFHT-W3 data (Johnston et al., 2021a).

� Galaxy evolution studies. Renard et al. (2021) performs Ly-α intensity mapping cross-
correlating the spectroscopic Ly-α forest data with the background of narrow-band
images from PAUS, while Renard et al. (2022) precisely measures the D4000 spectral
break.

� Providing redshift calibration samples for large imaging surveys like DES, KiDS, LSST,
and Euclid. Alarcon et al. (2021) uses a combination of 26 narrow-, intermediate-, and
broad bands together with PAUS narrow bands to enable an unprecedented precision
photo-z catalogue in the COSMOS field. Furthermore, § 6 introduces a deep learning
methodology based on multi-task learning to improve broad-band photo-z in the wide
fields using narrow-band photometry (Cabayol et. al in prep.).

� Improving and modelling of target selection for spectroscopic surveys as e.g. DESI
(DESI Collaboration et al., 2016) or WEAVE (Dalton et al., 2014).
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Chapter 3

Image processing, photometry and
photometric redshifts

Reducing images to galaxy catalogues is a detailed and precise process that can be split in
three main categories: image detrending (§ 3.1), photometry (§ 3.2), and further-processing
(§ 3.3).

3.1 From raw to science images

Raw astronomical images contain several noise effects that need to be corrected before any
science measurement. Converting raw images into science images requires several actions
such as the bias subtraction (3.1.1), flat-fielding (3.1.2), dark-current correction (3.1.3), and
artefact detection (3.1.4).

3.1.1 Bias subtraction

CCD detectors have an intrinsic additive electronic offset (bias current) that ensures all pixels
collect a non-zero count. This noise is independent of the exposure time and is corrected by
subtracting bias frames from the astronomical image. Bias frames are images taken with no
light (shutter closed) and zero exposure time taken under the same camera conditions (e.g.
the temperature and the gain) as the astronomical images to be corrected. Since the bias
current fluctuates due to the read-out noise, the master-bias frame used for the correction
combines between five and ten bias frames (Gilliland, 1992).

3.1.2 Flat fielding

The optical and CCD setup have spatially varying sensitivity across the CCD. This causes a
multiplicative bias with different potential origins, such as dust and scratches in the optics
and pixel sensitivity variations.

Flat frames aim to correct these effects and are obtained by imaging a uniform and
isotropic source of light illuminating the dome screen (Massey & Jacoby, 1992; Zhou et al.,
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2007). The pixels’ sensitivity also depend on the wavelength thus flat fields are taken for
all photometric filters independently. Furthermore, as in the case of the bias frames, several
flat fields are observed and combined into a single master flat frame. The flat-field corrected
image (I ′) is

I ′(x, y) = I(x, y) / F (x, y) , (3.1)

where I(x, y) is the bias-corrected image, x and y refer to the pixel coordinates, and F (x, y)
is the master flat frame.

The quality of flat frames is compromised by the presence of scattered-light residuals
(§4.2.2). This effect cannot be corrected either with bias frames, since scattered light appears
in the presence of light, or with flat frames, as scattered light is an additive effect. Flat fields
have two main frequency components: a high pass pixel due to pixel sensitivity variations
and a low-pass band caused by vignetting. The scattered-light frequency is in-between these
two, enabling the correction of scattered-light residuals in the flat fields.

3.1.3 Dark current

Dark currents are additional charges in the CCD detectors caused by thermal fluctuations
(Widenhorn et al., 2010). Since dark-current fluctuations quickly decay with temperature,
these are avoided by cooling the CCD with (typically) liquid nitrogen (Bogget et al., 2014).
Survey cameras like DECam (Honscheid & DePoy, 2008) and PAUCam (Padilla et al., 2016)
implement this technology to reduce dark currents.

3.1.4 Cosmic rays and other spurious artefacts

Cosmic rays and saturated trails are other sources of CCD artefacts. The left panel of Fig. 3.1
shows an image affected by cosmic rays, which are thin-bright lines in the upper left corner
of the cutout. The right panel contains saturated trails caused by close stars. These trails
are bright horizontal and vertical lines crossing the stars.

Cosmic rays are high-energy particles origined outside the solar system that rain down
on Earth. Their origin is still not fully known, although some hypotheses suggest that it is
related to supernovae (Blasi, 2013). When a cosmic ray hits the CCD, this releases a cascade
of electrons that causes a bright trace in the image. Sometimes, the decay of atoms used in
the construction of the CCD can also trigger the same type of bright stripes.

Cosmic rays are typically very easy to recognize as they are very sharp and bright and
appear randomly in the image. Nevertheless, removing them without harming other sources
is difficult. There are already several algorithms to correct for cosmic-ray traces, which apply
both traditional statistical methods and machine-learning techniques (Desai et al., 2016a;
Pych, 2004; Zhang & Bloom, 2019).

Saturated trails are caused by an excess of photons illuminating a pixel region of the
CCD. The amount of electrons that a pixel can store is limited. Therefore, if a pixel is
illuminated with a very bright light source (or for too long exposure time), it gathers the
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Figure 3.1: Left: Astronomical images with two cosmic rays in the upper right corner. Right:
Bright star with two saturated trails crossing from side to side and from top to bottom.
Image credit: Serrano et al. (in prep).

maximum number of electrons it can accumulate (i.e. the pixel saturates). As a consequence,
during the image read-out, the extra electrons fill in the pixel row that contains the satu-
rated pixel. This appears in the image as columns of very bright pixels containing the extra
electrons from the saturated pixel. There are several techniques to remove these trails. For
example, Desai et al. (2016b) implements an interpolation approach that uses the local PSF
to remove artefacts, while Paillassa et al. (2020) uses a CNN to identify the contaminants.
Dark currents are additional charges in the CCD detectors caused by thermal fluctuations
(Widenhorn et al., 2010). Since dark-current fluctuations quickly decay with temperature,
these are avoided by cooling the CCD with (typically) liquid nitrogen (Bogget et al., 2014).
Survey cameras like DECam (Honscheid & DePoy, 2008) and PAUCam (Padilla et al., 2016)
implement this technology to reduce dark currents.

3.2 Photometry

The amount of light passing through a photometric filter (Fig. 2.1) is the flux and the tech-
nique of measuring fluxes is photometry. We can broadly divide photometry into four funda-
mental steps:

Object detection: Detecting astronomical sources can be challenging, mostly due to the low
signal-to-noise of astronomical images. Moreover, images of celestial objects do not
have defined boundaries, and several sources can overlap in the same image region.
There are multiple approaches to performing object detection. Some example imple-
mentations are smoothing the background to detect pixel fluctuations above a fixed
threshold (Damiani et al., 1997), using principal component analysis to distinguish be-
tween objects and background noise (Andreon et al., 2000), and implement Bayesian
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techniques to detect objects based on prior knowledge (Guglielmetti et al., 2009).

Forced photometry is an alternative to detection photometry. It cross-matches astro-
nomical images with external deeper catalogues to locate the target sources position
(Ni et al., 2019). It is a strong alternative for surveys with low signal-to-noise images
where sources are hard to detect. However, forced photometry is not very common
since it requires re-observing a field with already existing deeper observations. This is
the approach used in PAUS (Serrano et al. in prep.).

Centroiding: This consists in determining the centre of the target object in the image. The
most straightforward measurement is drawing the 1D galaxy profile in the x and y
dimensions and fitting them to a Gaussian. The centre of the object is estimated from
the centre of the Gaussian best fitting the profile. This procedure is not optimal for
low SNR objects, where objects are noisy and unresolved. In such cases, one potential
solution is forced photometry, where both the detection and the centroiding are obtained
from deeper, higher signal-to-noise images.

Background estimation: The night sky has an intrinsic brightness that produces a non-zero
signal even if the telescope is not pointing to any source. Every pixel in the CCD
captures light from the night sky, including those receiving light from target sources.
Moreover, pixels also contain electronic noise.

Measuring the flux from the sources requires the estimation and subtraction of the sky
background and electronic-noise contributions. There are several methods to estimate
the sky background. One very widely implemented technique is placing an annulus
centred at the target source and measuring the mean sky background (B̄) as the average
number of electrons in the pixels within this annulus, i.e.

B̄ =
1

M

∑
Rin<r<rout

x(r) , (3.2)

where M is the total number of pixels within the annulus. The standard deviation of
the pixels within the background annulus is an estimator for the background error per
pixel σb/pix, which relates to the the error in the mean background (σ̄b) as

σ̄2
b =

σ2
b/pix

M
. (3.3)

The characteristics of the astronomical images, e.g. strongly-varying background noise
or high read-out noise, might benefit from implementing different background estima-
tion approaches. SExtractor (Bertin & Arnouts, 1996) is a very widely used algorithm
that implements aperture photometry. It meshes the background and reconstructs
a ’background map’ with a background estimation at each particular mesh location.
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DAOPHOT (Stetson, 1987) is an algorithm for crowded-field stellar photometry that mea-
sures the background with a least-squares fit to the data in the region around the source
assuming Gaussian star profiles and BKGnet (§4 and Cabayol-Garcia et al. 2020), which
is a CNN optimised to predict the background noise on images with strongly-varying
backgrounds.

Flux estimation: The last step is to measure the light emitted by the source. Aperture
photometry estimates the flux summing all the pixel contributions within a circular
or elliptical aperture centred around the target object (Mighell, 1999). As previously
mentioned, the flux within the aperture (ftot) contains light from both the target source
and the sky background. It also contains electronic noise, which is also captured in
the background annulus (B̄, Eq. 3.2). Therefore, the total flux of the source (fsrc) is
estimated by

fsrc = ftot − B̄N , (3.4)

where N is the number of pixels within the aperture.

The uncertainty in fsrc (σsrc) is

σsrc =

√
fsrc

texp

+

(
N + k

N2

M

)
σ2

b/pix (3.5)

and contains contributions from source shot noise (first term in the RHS of Eq. 3.5), the
uncertainty in the background noise estimation (second term), and the error due to the
background subtraction (third term). In Eq. 3.5, the factor k depends on the operation
to estimate the background, e.g. k = 1 and k = π

2
for backgrounds estimated as the mean

and median of the pixels within the annulus1, respectively and texp is the exposure time.

The signal-to-noise of the flux measurement depends on the aperture size. Large aper-
tures measure a larger fraction of source light, but these also capture more noise. There
are different approaches to executing aperture photometry. As an example, the DES
first-year analysis implements fixed-size apertures (Drlica-Wagner et al., 2018), i.e. the
radius of the aperture is the same regardless of the size of the target object. In con-
trast, PAUS estimates the aperture size comprising a fixed fraction of galaxy light (e.g.
typically 62.5%, see § 3.4.2).

3.2.1 Photometry calibration

Photometry produces flux measurements that still need to be corrected for effects such as
e.g. extinction.2 The photometric calibration is the process that converts the fluxes from
instrumental counts to physical calibrated measurements of the energy from an astronomical

1http://wise2.ipac.caltech.edu/staff/fmasci/ApPhotUncert.pdf.
2Extinction is the dimming of light due to the collision of photons with the atmosphere and interstellar

medium. Photons are scattered/absorbed by dust particles of similar size as the wavelength, which has a
higher impact on the bluer part of the spectrum.
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object before entering the atmosphere. The calibration step is crucial to improve the quality
of the photometry. It compensates for the atmospheric extinction and other optical effects
affecting light before hitting the CCD.

There are several example implementations of photometric calibration. As an example,
the Dark Energy Survey first-year analysis (Abbott et al., 2018b) used the Southern SDSS
u′g′r′i′z′ (Smith et al., 2005) and the SDSS Stripe 82 ugriz standard stars converted into
DES griz system to calibrate the photometry (Tucker et al., 2007), since the SDSS and DES
filter responses are similar (Doi et al., 2010; Honscheid & DePoy, 2008). Similarly, the Kilo-
Degree Survey DR2 (KiDS, de Jong et al., 2015) estimates every night individual zero-points
per CCD using the SDSS DR8 stars from the SA field as a reference. A relative calibration
amongst CCD images is estimated by comparing the photometry of independent observations
of the same source. Applying a minimisation algorithm, zero-point differences due to varying
atmospheric extinction are derived from overlapping sources across exposures. Then, the
photometric offsets are applied to the CCD with respect to the zero-point calculated for that
night derived from the nightly SA observations.

3.3 Further-processing: co-adding flux measurements and de-

rived properties

In this section, we introduce three further steps in obtaining photometric catalogues: co-
addition (§ 3.3.1), photometric redshift estimation (§ 3.3.3), and object classification (§3.3.2).

3.3.1 Co-addition

Imaging surveys take several observations of the same source with the same photometric
filter. The galaxy photometry can further optimise combining the information from all its
exposures in a process named co-addition. The co-addition can be implemented either at
the image level as part of the data pre-processing (Zackay & Ofek, 2017a,b) or at a flux-
measurement level. Image co-addition increases the depth of the observations and removes
artefacts such as cosmic rays. However, it is a non-trivial process that requires aligning the
images and homogenising the PSF of the single-epoch observations.

DES implements image co-addition (Darnell et al., 2009). Their method remaps the flux
values in the individual overlapping CCDs into a uniform pixel grid. The grid is constructed
of artificial tiles of 1 deg on each side. For every tile, SWarp (Bertin et al., 2002) produces
a co-added image. To homogenise the PSF, PSFex (Bertin, 2011) models the PSF of single
epoch images.

Co-adding the measured fluxes does not require aligning the single epoch images or PSF
smoothing (Serrano et al. in prep), thus it is simpler to implement. This co-addition method
increases the SNR with respect to measurements from single observation images and enables
the detection of transient artefacts. However, unlike co-added images, it does not enable
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deeper galaxy detection. Nevertheless, this is not problematic for surveys implementing
forced photometry, e.g. PAUS, as they do not require source detection (§ 3.4.2).

3.3.2 Object classification

Accurate classification of astronomical objects, and particularly of foreground stars and back-
ground galaxies, is required to examine the nature of the universe. This is crucial for science
applications such as intrinsic alignment studies (Troxel & Ishak, 2015), which demand very
pure galaxy samples, i.e. samples without stars or quasars. Most conventional techniques dif-
ferentiate extended sources (galaxies) from point-like ones (stars) using cuts in a magnitude-
radius space (MacGillivray et al., 1976; Heydon-Dumbleton et al., 1989; Yee, 1991). This
is sufficient for bright sources, but contamination from unresolved galaxies and noisy stars
affects the purity of the samples at fainter magnitudes.

Machine learning classifiers are a powerful alternative in the astronomical object clas-
sification problem (§ 1.3.1 and Machado et al. 2016). There are several implementations
to the star/galaxy classification problem. Examples include deep convolutional neural net-
works classifying images (Kim & Brunner, 2016) and boosted decision trees using catalogue
image-derived morphology quantities (Sevilla-Noarbe & Etayo-Sotos, 2015). Also, a purely
photometry based machine learning algorithm that uses the 40 flux measurements in the
optical narrow bands has been developed using PAUS data (Cabayol et al., 2019).

3.3.3 Photometric redshift estimation

Redshift is the relative difference in wavelength between the observed (λobs) and emitted
(λem) photon wavelengths

z ≡ λobs − λem

λem

. (3.6)

There are three main sources of galaxy redshift: strong gravitational fields (gravitational
redshift), the Doppler effect due to the relative velocity (v) of objects moving apart

1 + z =

√
1 + v/z

1− v/z
, (3.7)

and the expansion of the universe (cosmological redshift)

1 + z =
1

a(t)
. (3.8)

The scale factor a(t) relates the physical distance with the comoving distance (Gray &
Dunning-Davies, 2008).

Measuring precise photo-z is fundamental for most cosmological applications. In the last
decades, there has been a huge effort to improve photo-z estimations, which has resulted
in a wealth of different techniques (Zheng & Zhang, 2012b; Salvato et al., 2019a). These
techniques aim to infer the redshift (z) or the probability distribution P (z|f) given a vector
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of features (f), typically the galaxy photometry. Broadly, there are two techniques to infer
photometric redshifts: template fitting and data-driven (machine learning) methods. The
former technique introduces rest-frame template models (t) describing the galaxy spectral
energy distribution (SED). Continuum and emission line SED templates are, in general,
linearly combined with mixing coefficients (α) to shape a synthetic model T (z)

T (z) =
n∑
j

αjtj(z) . (3.9)

These models are redshifted and convolved with the transmission curves from the photo-
metric filters to provide a set of synthetic flux measurements at different redshifts (fmodel).
To estimate the redshifts, the synthetic fluxes are fitted to the observed galaxy fluxes (fobs)

χ2(z, A) =
N∑
b=1

(f bobs − Af bmodel)
2

σbobs

, (3.10)

and summed over the band (b). A is a free factor in the modelling for the total flux and σobs is
the uncertainty on the observed fluxes. Implementation examples include HYPERZ (Bolzonella
et al., 2000), ImpZ (Babbedge et al., 2004), and BCNz2 (Eriksen et al., 2019).

Photo-z estimation methods suffer from colour-redshift degeneracies that allow for multi-
ple peaked photo-z probability distributions. Bayesian template-fitting methods use Bayesian
priors to constrain the photometric redshifts with additional information. These methods
compute a priori a set of model SEDs that encode the prior knowledge of the galaxies in
the sample. Afterwards, the method determines the model with the lowest χ2 to estimate
the probability that the galaxy is observed at a given redshift and true SED template (t):
P (f |z, t)

P (z|f) =
∑

t

P (z, t|f) =
∑

t

P (f |z, t)P (z, t) , (3.11)

where P (z, t) is the prior probability to have a galaxy with redshift z and template t. BPZ

(Beńıtez, 2011) and ZEBRA (Feldmann et al., 2006) codes are examples of Bayesian template-
fitting methods.

Machine learning methods attempt to learn the mapping between photometric space and
redshift using a galaxy sample with known redshifts. Machine learning photo-z have been
studied with several algorithms: decision trees and random forests (Carrasco Kind & Brun-
ner, 2014b; Merloni et al., 2012); SVM (Zheng & Zhang, 2012a; Han et al., 2015); Gaussian
processes: (Almosallam et al., 2015; Soo et al., 2021); and fully-connected neural networks:
(Collister & Lahav, 2004; Cavuoti et al., 2015; Eriksen et al., 2020).

More recent studies have also implemented CNNs to predict photo-zs from astronomical
images. As an example, Pasquet et al. (2019) implements a deep CNN on images from
the SDSS Main Galaxy Sample, which contains 500 000 ugriz images with spectroscopic
redshift zs < 0.4. This method predicts the best photo-z obtained so far on this galaxy
sample. Another example is D’Isanto & Polsterer (2018), which also implements a CNN
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that combined with an MDN predicts the p(z) for galaxies and quasars from SDSS DR9
ugriz images. Recently, Dey et al. (2021a) has implemented a capsule network to obtain
photo-z also for the SDSS Main Galaxy Sample. To the best of our knowledge, photo-z
from astronomical images has only been implemented on broad-band images, which have a
significantly higher signal-to-noise than their narrow-band counterparts. Furthermore, most
of the studies have been implemented in bright galaxies typically with low redshift.

3.4 PAUS data management

The data management of PAUS coordinates the transferring, archiving, calibration, data
reduction, and distributing of the data products. The PAUCam generates about 350 GB
of data every night, which requires storage, massive parallel processing, and a fast network
connection. The Port d’Informació Cient́ıfica (PIC) is the data center that provides the
infrastructure to manage PAUS data (Tonello et al., 2019). While observing, the images
transfer from the telescope’s local archive to PIC, which takes about 3 hours. Once the data
have been transferred, these are registered and the observation’s metadata are stored in the
PAU data management database (PAUdm).

PAUS data are permanently stored in magnetic tapes. These are cheaper than tradi-
tional spinning disks, occupy a small physical space, and are excellent for long term storage.
However, random access to magnetic tapes is slow, e.g. accessing a file can take around one
minute, as the volumes need to be searched and mounted. Data requiring fast access are
pre-staged in a disk buffer. Databases provide easy access to large volumes of reduced data,
in such a way that the data are sortable and easily searchable using queries on the data. The
PAUS database (PAUdb) is managed using Postgress.

Once the data are transferred, the Nightly pipeline performs the basic data reduction and
astrometry corrections (§3.4.1). The reduced science images produced in the Nightly pipeline
are also stored in the archive-database system to proceed with the photometry measurements
with MEMBA (§ 3.4.2).

3.4.1 From raw to science images: the Nightly pipeline

The left panel of Fig. 3.2 shows an example of a raw mosaic image with eight central and
ten peripherical CCD observations. The right panel presents a single CCD science image of
an uncommonly large extended source. The Nightly pipeline produces the astrometrically
and photometrically calibrated science images from the raw images (§3.1). First, the pipeline
generates the master flat and master bias images. The master flat (§3.1.2) is produced from
the median average of five dome-flat exposures. Implementing the median operation reduces
the impact of cosmic-ray hits and other spurious artefacts. On the other hand, the master
bias (§3.1.1) is constructed by combining ten bias frames.

The next steps are the overscan and the gain corrections. The image readout process
adds a base signal in all pixels, resulting in a bias value that varies amongst amplifiers. The
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Figure 3.2: Left: A raw sky exposure of the full 18-detector PAUCam mosaic. All instru-
mental signatures are still present (e.g. saturated pixels, cross-talk, and scattered-light). The
background has not been flattened with the master flat and the read-out regions from the
72 amplifiers can be easily identified. Right: Science corrected image of the extended source
M101. This image has already been corrected from all the instrumental effecs.

overscan section is a CCD region that only includes bias, readout noise, and dark current,
thus it can be used to estimate the overscan bias in each amplifier. The overscan value is
computed row by row as the median of the pixel values in the overscan region and subtracted
from the raw image. Then, the gain is estimated from the photon transfer curve analysis
(Astier et al., 2019) and converts the science image from the readout digital units to electrons.

Cross-talk signals are trails of brighter pixels generated by current inductions amongst
the four PAUS amplifiers (Freyhammer et al., 2001). This commonly happens when one of
the amplifiers is reading a very bright (many times saturated) pixel that induces a charge on
the other three amplifiers due to the closeness of the cables during the readout process. The
configuration of the readout system causes that the three cross-talk signals appear mirrored
with respect to the borders of the corresponding readout region. This enables predicting
the position of the cross-talk signal from the location of a saturated pixel. Furthermore, the
brightness of such pixel determines the amount of induced cross-talk signal. The induction
ratio between amplifier i and j is

rij(k) = median[fj − bi], (3.12)

where k corresponds to an exposure image, fj is the average signal at the mirrored position
of saturated pixels in the j-th read-out region and bi is the median background noise in the
target read-out region. The ratios in each of the individual exposures are combined into a
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single ratio

rij =

∑
k rij(k)Nsat(k)∑

kNsat(k)
, (3.13)

where Nsat(k) is the number of saturated pixels in image k and i,j are two independent am-
plifiers. The Nightly pipeline uses the ratios in Eq. 3.13 to correct the cross-talk signals.

Scattered light was mostly corrected during the camera intervention in 2015. However,
half of the images in the COSMOS field were taken before the intervention (§ 3.4.4). Further-
more, although drastically diminished, scattered-light is still present in PAUCam images after
the intervention (§ 4.2). Therefore, scattered light requires additional correction methods to
minimise its effect in scientific measurements.

PAUS has studied and implemented several methods to correct for scattered light. Sky-
flats (§ 4.2.2) model the background averaging the background pixel values over a set of
images, which includes effects from the dome-flat and scattered-light residuals. The appli-
cation of sky-flat corrections is simple, but it requires having multiple images taken under
similar conditions, which is not always possible. In this thesis, we propose a deep learning
alternative to correct for scattered-light effects (§ 4 and Cabayol-Garcia et al. 2020).

The Nightly pipeline also performs World Coordinate System (WCS) and the astrometry
calibration. The PAUCam’s raw mosaic images include a base WCS (Calabretta & Greisen,
2002) specified in the header. However, the initial WCS solution estimated only from the
mechanical layouts of the PAUCam is insufficiently accurate to calibrate the single-exposure
images. PAUS uses SCAMP (Bertin, 2006) to compute a more accurate WCS solution from
the measurements of stars in the focal covering the same sky-area (Gaia Collaboration, 2018).

The astrometry calibration is also implemented with SCAMP. Taking as input the pre-
calibrated images provided in the WCS calibration, SCAMP is applied to single epoch mosaic
images to provide an updated WCS calibration that includes the distortion and offset correc-
tions. Such calibration is more precise than the initial WCS calibration and accurate enough
to apply forced photometry (Serrano et al. in prep.).

Finally, PSFex models the PSF model across the focal plane. The PSF model can provide
the PSF-FWHM at any position of the image, but the MEMBA forced-aperture measurements
only use the mean PSF per image (§ 3.4.2). The detection of cosmic rays is implemented
with L.A.Cosmic (van Dokkum, 2001), a Laplacian filtering algorithm that benefits from the
cosmic rays not being blurred by the PSF.

3.4.2 Measuring photometry: the MEMBA pipeline

MEMBA is the PAUS pipeline to measure the photometry from the single epoch reduced images
(§ 3.4.1). Since PAUS narrow-band images have very low signal-to-noise, MEMBA implements
forced photometry (§3.2) using the PhotUtils library (Bradley et al., 2020). This requires a
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catalogue complete down to the PAUS magnitude limit to prevent target selection effects.

In the COSMOS field, PAUS uses a merged catalogue from Laigle et al. (2016) and the
Zurich Structure & Morphology Catalog3. For the CFHTLS fields (W1, W3, and W4) the
reference catalogue is Heymans et al. (2012), which combines photometric redshifts with PSF-
matched photometry (Hildebrandt et al., 2012a), shear measurements with Lensfit (Miller
et al., 2013), and weak lensing estimates with THELI (Erben et al., 2013). Finally, for the
G09 KiDS field, the reference catalogue is provided by the KiDS DR4 (Kuijken et al., 2019).

The reference catalogue provides the location, shape, and scale of the object that MEMBA

uses to target and estimate the photometric aperture. These apertures contain a fixed flux
fraction for all sources, e.g. 62.5%. Therefore, the aperture size is calculated for each galaxy
image independently since PSF varies from image to image and modifies the size of the target
objects.

Assuming a Sérsic profile I(~r) with Sérsic index n and half-light radius r0

I(~r) = I0 exp [− (~r/r0)(1/n)] , (3.14)

and a radial Moffat PSF (Ψ)

Ψ(~r;α, β) = 2

(
β − 1

α2

)[
1−

(
~r

α

)2
]
, (3.15)

where ~r is the radial distance to the center of the profile, α is a scale factor, and β determines
the overall shape of the PSF. The total aperture flux up to an aperture ratio A is calculated
as

F (A) = 2π

∫ A

0

dr rI(r)⊗Ψ(~r;α, β) , (3.16)

where ⊗ is a convolution operation between the galaxy and the PSF profile.

MEMBA estimates the background-light contribution with an aperture-photometry annulus
(§3.2) defined by an inner and outer radius of 30 and 45 pixels, respectively. As sources nearby
the target galaxy can also affect the annulus measurements, MEMBA applies a σ-clipping to the
annulus pixels. This also corrects for other potential spurious artefacts, such as cosmic rays.

The background-subtracted galaxy flux and its uncertainty are measured and estimated
with Eq. 3.4 and Eq. 3.5, respectively. In § 5, we present an alternative deep learning-based
method (BKGnet) to estimate the probability distribution of the background-subtracted pho-
tometry. This method provides higher signal-to-noise and has proven more robust towards
optical effects as scattered-light (Cabayol et al., 2021).

3Zurich COSMOS catalogue https://irsa.ipac.caltech.edu/data/COSMOS/gator_docs/cosmos_

morph_zurich_colDescriptions.html
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PAUS takes, on average, between three and five observations of each source in every
narrow-band filter. These exposure images are calibrated and combined. The PAUS calibra-
tion process fits stellar templates to SDSS broad-band data. These are then used to create
synthetic narrow-band observations that are compared to PAUS observations of the same
stars. Then, the zero-point (ZP ) is the ratio between the PAUS stellar observations and the
narrow-band synthetic data. The zero-points from every star in the image are statistically
combined to a single zero-point per image and its associated uncertainty (σZP ).

The single-exposure flux measurement (f) is calibrated as

fcalib = ZP · f, (3.17)

with an associated uncertainty

σcalib =
√
σ2
fσ

2
ZP + σ2

fZP
2 + σ2

ZPf
2. (3.18)

The calibrated flux measurements are then co-added with an inverse variance weighting

fcoadd =

∑
i fcalibi/σ2

calibi∑
i 1/σ

2
calibi

, (3.19)

where i runs over observations of the same source. Assuming the measurement errors are
independent, the associated uncertainty is estimated as

σcoadd =
1∑

i 1/σ
2
calibi

. (3.20)

During the whole data reduction process, the Nightly and the MEMBA pipelines identify
potential issues in the data reduction. While the Nightly flags problems at the pixel level,
e.g. vignetted areas, saturated pixels, and cross-talk; MEMBA identifies potential problems at
the catalogue level. Some examples are scattered light flagging, i.e. when the observation is
in a region strongly affected by scattered light, galaxy observations too close to the edge of
the image (edge detection), and sources in regions with strong optical distortion. The MEMBA

co-added photometry is calculated excluding flagged observations.

3.4.3 PAUS photometric redshifts

The galaxy photometry in 40 narrow bands for the full sample (without selection effects)
makes PAUS photometric sample unique data to obtain very precise photometric redshifts
(§2.2.1 and §2.2.4). These have been estimated with template-based and machine-learning
(§3.3.3) customed algorithms, as public implementations were not providing precise enough
photo-zs.

Defining

∆z := (zp − zt) / (1 + zt) , (3.21)
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where zp and zt correspond to the photometric redshift and the true redshift, respectively,
the photo-z scatter can be characterised by

σ68 :=
1

2
[Q84(∆z)−Q16(∆z)] , (3.22)

with quantiles set to 84.1 and 15.9 percentage values. The σ68 definition is equivalent to the
standard deviation (1-σ error) for a normal distribution, but it is less affected by outliers. In
PAUS, outliers have a strict definition

|zp − zt| / (1 + zt) > 0.02 , (3.23)

which is ∼ ×10 more stringent that typical broad-band photo-z outlier definitions.

On simulations, Mart́ı et al. (2014) forecast a PAUS photo-z error of σ68 ≈ 0.0035 for
a selected 50% of the data to iAB < 22.5. This precision was obtained with BPZ (Beńıtez,
2011), however, this algorithm was far from reaching the required precision on PAUCam data.

So far PAUS has implemented three photo-z methods using different approaches that
reach this photo-z precision, which are presented in the left panel of Fig. 3.3.

BCNz2: This algorithm is introduced in Eriksen et al. (2019). It is a template-based photo-
metric redshift code that fits PAUS data to redshift dependent models constructed as a
linear combination of SED templates (Eq. 3.9). The models include the emission lines
as fixed amplitude ratios and added as two additional SEDs (see §4.5 in Eriksen et al.
2019).

BCNz2 uses a combination of the PAUS 40 narrow bands and external broad bands. In
the COSMOS field, these broad bands are the u∗ band from the Canada-France Hawaii
Telescope (CHFT/MegaCam) and B, V , r, i+, z++ bands from Subaru, all available in
Laigle et al. (2016). Because of potential problems with the photometry, the code in-
cludes a per galaxy scaling between the broad and narrow band fluxes. This calibration
is introduced as an additional parameter to minimize the χ2-fit. Moreover, a zero-point
re-calibration per band is implemented by comparing the observed photometry with
the model at the spectroscopic redshift. This zero-point determination runs iteratively
20 times. This algorithm achieves σ68/(1 + z) ≈ 0.0037 for 50% of the galaxies with
iAB < 22.5

Delight: Public code4 (Leistedt & Hogg, 2017), adapted and tested on PAUS data in Soo
et al. (2021), is a hybrid template-based and machine learning photometric redshift al-
gorithm. Delight constructs a set of flux-redshift models from the training data guided
by a template SED library and implements a Gaussian process to find the distribution
over the possible functions that is consistent with the observed data. Similar to BCNz2,
in the COSMOS field Delight also uses the 40 PAUS narrow bands and the uBV riz
broad bands. Delight achieves the photometric redshift precision of σ68 < 0.0081 for
the full COSMOS sample and reaches the forecast photo-z precision of σ68 < 0.0035 for
60% of the objects with iAB < 22.5.

4https://github.com/ixkael/Delight
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Deepz: Deep learning algorithm which first uses auto-encoder (Liou et al., 2014) to denoise
the input photometry and extract relevant features. These features, together with the
input photometry, are the input of a neural network that predicts the photometric
redshift probability distribution (Eriksen et al., 2020). One important highlight of
this model is that it uses galaxy simulations for training, which enables increasing the
training sample, and later applies transfer learning to adapt the model to the data
(Zhuang et al., 2019; Tan et al., 2018). In the transfer learning implementation, Deepz
also takes advantage of single observations per galaxy and narrow band, which increases
the training sample and reduces the impact of photometric outliers. Deepz reduces the
photo-z scatter of BCNz and Delight by 50% for all the galaxy sample without quality
cuts. Similarly, it also improves the photo-z precision for the best 50% of the sample
and reduces the strict outlier fraction (Eq. 3.23) from 17% to 10%.

PAUS+26 external bands: This is a follow up work to BCNz2. Instead of selecting only
the best fit linear combination of the SEDs, it integrates over the space of all SED
amplitudes. It has been implemented in the COSMOS field using the 40 PAUS narrow
bands and 26 external broad, intermediate and narrow bands (Alarcon et al., 2021).
For these 66 bands, it achieves photometric redshifts with σ68 ∼ 0.003 and σ68 ∼ 0.009)
for galaxies at magnitude iAB ∼ 18 and iAB ∼ 23, respectively.
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Figure 3.3: Left: PAUS photometric redshift precision with several photo-z codes. Right:
Signal-to-Noise (SNR) of PAUS observations in the COSMOS field for the single aperture
photometry measurements (blue) and the co-added photometry (red).

3.4.4 PAUS data in COSMOS

In this thesis, we have mostly used PAUS science images in the COSMOS field (§3.4.1). These
data comprise 9749 images, 243 images in each narrow band. These data were taken in the
semesters 2015B, 2016A, 2016B, and 2017B, with low efficiency due to bad weather. The
camera was shipped back to Barcelona in 2016 (§2.2.3), where it was intervened to mitigate
the effect of scattered light, which modified the noise patterns in the different CCDs. In the
COSMOS field, half of the images (4928) were taken before the camera intervention and the
other half (4821), after. The default exposure times are 70, 80, 90, 110 and 130 seconds from
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the bluest to the reddest filter tray.

The photometry catalogue contains ∼12,5 million measured galaxy fluxes, ∼ 5 observa-
tions per galaxy and narrow-band filter. These correspond to 64 476 observed galaxies to
iAB<23 in the 40 narrow-band filters. The right panel on Fig. 3.3 shows the signal-to-noise
obtained with MEMBA in the COSMOS field for unflagged objects to iAB<22.5. The blue line
corresponds to single-exposure measurements, while in red line represents co-added observa-
tions.
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Part II

Galaxy photometry and photo-zs with
deep learning
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Chapter 4

Background light prediction

4.1 Motivation

The positions, fluxes, and other properties of galaxies and stars can be determined by
analysing images of the sky (§ 3). Modern imaging surveys can cover large areas of sky
efficiently, resulting in measurements for large numbers of galaxies to faint magnitudes (e.g.
DES DR1, Abbott et al., 2018b). Accurate photometry is crucial to ensure the analyses of
future weak lensing surveys like LSST and Euclid are not dominated by systematic errors.
Also, imaging surveys require accurate flux measurements to select samples of galaxies and
infer their physical properties.

The determination of the sky background is a key step towards reliable photometry mea-
surements (see § 3.2). The main source of background light is the intrinsic sky brightness,
which varies due to a range of effects such as illumination by the moon, airglow, and light
pollution. PAUS images are affected by scattered light, which is the result of light deflections
from the instrument’s optical path appearing at a different region of the detector (§2.2.2
and Romanishin 2014). Scattered light hinders accurate background-light predictions as it
introduces spatial background-noise variations in the images.

Different approaches have been used to estimate the sky background, e.g. DAOPHOT (Stet-
son, 1987) and SExtractor (Bertin & Arnouts, 1996). DAOPHOT measures the background as
the mode of the uniformly scattered pixels at a certain FWHM of the given target source. On
the other hand, SExtractor meshes the background and reconstructs a ’background map’
with the background estimated at each particular mesh location. Other methods aim to
be more robust in the presence of nearby sources. Examples include Teeninga et al. (2015),
which estimates the background at a location without nearby sources and Popowicz & Smolka
(2015), based on the removal of small objects and the interpolation of missing pixels.

Over the last few years, deep learning algorithms have resulted in revolutionary advances
in machine learning and computer vision (§ 1.1 and Voulodimos et al. 2018). Theoretical
breakthroughs in training deep ANNs (Werbos, 1982) and CNN (LeCun et al., 1989; Lecun
et al., 1998; Zeiler & Fergus, 2013), together with powerful and efficient parallel computing
provided by GPUs (Krizhevsky et al., 2012), have led to groundbreaking improvements across
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a variety of applications. The number of deep learning projects in cosmology is quickly in-
creasing (§ 1.3). This includes e.g. astronomical object classification (Carrasco-Davis et al.,
2018; Cabayol et al., 2019), gravitational wave detection (George & Huerta, 2018), and di-
rectly constraining cosmological parameters from mass maps (Fluri et al., 2018; Herbel et al.,
2018a).

Extracting the source photometry requires a significant amount of data engineering and
parameter tweaking (§ 3). This can be particularly challenging for noisy sources. Deep
learning has already been successfully implemented in different steps in source photometry
extraction. Examples include source detection (Vafaei Sadr et al., 2019), cosmic-ray detec-
tion (Zhang & Bloom, 2019), and PSF modelling (Herbel et al., 2018b). Moreover, deep
learning has also been used to directly estimate photometric redshifts from images (D’Isanto
& Polsterer, 2018; Pasquet et al., 2019). Many of these algorithms implicitly require the
network to understand galaxy photometry and thus, estimate the background light. There-
fore, understanding how these networks learn the image processing steps can optimise the
performance of more complicated deep learning algorithms such as galaxy classification and
photo-z estimation from astronomical images.

Our goal is to develop and test a deep learning background-subtraction method using data
from PAUS (§ 2). PAUS imaged the COSMOS field as a calibration area given the availability
of spectroscopic redshifts. The PAUS photo-z catalogue for the full COSMOS sample with
iAB < 22.5 (left panel in Fig. 3.3) contains outliers when compared to the spectroscopic red-
shifts. Some of these outliers arise from noisy photometry, but others are due to the strongly
varying background-noise pattern produced by scattered light. The excess of scattered light
can alter the pixel values, potentially biasing the photometry of the galaxy.

In this chapter, we present BKGnet, a convolutional deep neural network capable of learn-
ing the underlying behaviour of scattered light and other distorting effects present in the
PAUCam images (§ 3.4.1). BKGnet predicts the background light and its uncertainty at the
location of the target source. Although BKGnet has been developed to improve PAUS pho-
tometry, it can potentially be implemented in other future imaging surveys such as LSST
and Euclid. The code is available at https://github.com/PAU-survey/bkgnet.

The structure of this chapter is as follows. Section 4.2 presents the PAUCam images used
to develop and evaluate BKGnet and characterises the scattered-light affecting the images.
Section 4.3 introduces BKGnet and defines the training and testing process. In § 4.4 and § 4.5,
we evaluate the background-light predictions with BKGnet on simulated and real PAUCam
images, respectively. Finally, § 4.6 validates the network on target galaxies.

4.2 Modelling scattered-light

PAUCam images contain scattered light, which affects the edge regions of several CCDs.
Scattered light increases the amount of background noise in the affected regions, distorting
the expected statistics of the pixel values used to estimate the photometry. Moreover, the
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high background light also lowers the signal-to-noise of the photometry.

In 2016 the PAU camera was modified to mitigate the effect of scattered light (§ 2.2.3).
Although this reduced the amount of scattered light, residuals remain. In the latest COSMOS
data reduction, around 8% of exposures taken before the camera intervention are flagged as
affected by scattered light, thus excluded from the sample (§ 3.4.2). After the intervention,
this number was reduced to 5% of the exposures, in such a way that, on average, 7% of data
in the COSMOS field are lost due to scattered light. In this section, we present the PAUCam
scattered-light model we use throughout the paper.

4.2.1 The PAUS observations

In this chapter, we use PAUS data in the COSMOS field. The details on these data are
in § 3.4.4. For details on the survey, the survey camera and the data reduction pipeline,
see § 2. We use images that have already been corrected for instrumental effects with the
Nightly pipeline (Serrano et al,. in prep., § 3.4.1). The background-light measurements
from MEMBA require a (fairly) flat background for an accurate estimate (in app. 4.A we study
the effect of a variable annulus). This assumption breaks down when either the annulus or
source extraction regions are affected by scattered light. In addition, other artefacts, as e.g.
undetected sources, cosmic rays, and cross-talk can potentially bias the background-noise
estimation. Throughout this study we compare the background-light measurements from
BKGnet with the measurements from the default MEMBA configuration.

4.2.2 Scattered-light templates

Figure 4.1 shows four PAUCam images in the narrow-band filter ”NB685“ before the camera
intervention (first and second images on the left) and after the camera intervention (third
and fourth images). These images present scattered light as a spatially varying amount of
light near the edges of the CCD. The scattered-light pattern changes from before the camera
intervention (two images on the left) to after (two images on the right). Furthermore, scat-
tered light is also narrow-band dependent, meaning that each filter has its background-noise
distinctive pattern.

One way to quantify and model scattered light is to estimate the amount of additional
background that each pixel contains with respect to the median image background noise.
Averaging the background intensity ratio from images taken with the same narrow-band
filter, we obtain a model for the scattered-light intensity across the CCD. To do so, the first
step is selecting the narrow-band images we are going to use. Then, for each of these images
(Ij), we compute the median background level (µBKG) excluding the pixels from the edge of
the CCD, as these are potentially affected by scattered light. After, we need to divide each
image by its median background noise µBKG to obtain a background ratio per pixel

rj = Ij/µBKG . (4.1)

If the background were flat and followed Poisson statistics, the ratio in all pixels should fluc-
tuate around unity. In contrast, pixels affected by scattered light will have a background
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Figure 4.1: Images taken with the PAUCam, corresponding to the NB685 filter. Left: The
first two images correspond to PAUCam images before the camera intervention. Notice that
both exhibit the same scattered-light pattern. Right: The two images on the right correspond
to PAUCam images after the intervention. Again, both present the same scattered-light
pattern, but different to the first two images on the left. This shows the changes in scattered-
light patterns with the intervention.

ratio above unity. Therefore, we can understand this ratio as approximately the percentage
of scattered light that affects the pixel.

To obtain a single pixel map per CCD, we combine the individual pixel ratios from several
images using the median to get a scattered-light template (RSL) from all the selected images

RSL(x, y) = medianj[rj] . (4.2)

Before combining the images, the sources need to be masked to ensure these are not affecting
the statistics. The scattered-light template is many times referred as sky-flat.

The top panel in Figure 4.2 shows some examples of RSL for the narrow-band filter
”NB685“. The plot draws the pixel values r of the background-ratio image, fixing the central
row of the CCD and moving along the x-axis. Before the camera intervention (black dashed
line), the plot shows a strong tendency of increasing the background at the edges of the
CCD, which already starts 500 pixels away from the edge. In contrast, after the intervention
(orange solid line), scattered light significantly reduces and appears < 100 pixels from the
edge.

In the bottom panel in Fig. 4.2, we have combined the pixel ratios from all images available
per narrow band (splitting in before/after the intervention) in a single scattered-light tem-
plate (RSL). The plot shows the mean value of each template per narrow band, which gives
information about the amount of scattered light captured by the CCD. The effect of the in-
tervention is evident since all the narrow-band filters reduce the mean of their scattered-light
template.
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Figure 4.2: Top: Normalised background light content in each pixel as a function of the pixel
position in the image for different images before (black dashed line) and after (orange solid
line) the camera intervention. Each pixel value is divided by the mean background in the
image. Regions without scattered-light should fluctuate around unity. Regions affected by
scattered-light should be above unity. Bottom: Mean value of the normalised background
curves considering all the images taken in that band, for the 40 narrow photometric bands.

48



4.2.3 Scattered-light templates as scattered-light correcting method

The scattered-light templates RSL can be used to correct scattered light on PAUCam images
if the modelling is sufficiently accurate. Assuming that all images taken with a narrow-band
filter follow the same scattered-light pattern scaled by the image sky-background level, a way
of correcting scattered-light is

Ĩ(x, y) = I(x, y)− (RSL(x, y)− 1)µBKG , (4.3)

where we subtract from a science image I(x, y) the scattered-light template scaled by the
mean background of such image. Note that regions without scattered light should not be
affected by the correction since we subtract RSL(x, y)− 1.

This correction has been implemented in Fig. 4.3. The left panel shows a science im-
age taken with ”NB685“. In the middle panel, we see the same image once corrected with
the scattered-light template. The scattered-light template used for the correction is in the
rightmost panel. Visually, the scattered-light pattern in the original image (left) disappears
after applying the correction (middle). However, external conditions, e.g. humidity, clouds,
temperature, and moon) introduce fluctuations in the scattered-light pattern that are not
properly modelled in the scattered-light template, leading to light residuals after the correc-
tion. A scattered-light template per night and narrow-band filter would be required to have
a more accurate correction. Unfortunately, the number of images observed nightly with one
PAUCam filter is insufficient to obtain accurate scattered-light modelling. Moreover, bright
stars also contribute to scattered light and these cannot be corrected with the scattered-light
templates.

Similarly to Fig 4.2, Fig. 4.4 shows the pixel values across the centre row of an image
taken with ”NB685“ before (orange) and after (black) correcting the image with Eq. 4.3. The
scattered-light template used for the correction combines all the available images in ”NB685“,
without selecting images based on the observing conditions. The image without correction
(solid orange line) displays two large scattered-light peaks at both edges of the image. These
peaks are mostly corrected by the scattered-light template, however, scattered-light residuals
are still present on both sides of the CCD after the correction.

4.3 BKGnet: A Deep Learning based method to predict the

background

In this section we start by describing the BKGnet architecture (§ 4.3.1), the training and test
samples (§ 4.3.2) and the training procedure (§ 4.3.3).

4.3.1 Neural network architecture

BKGnet1 (Fig. 4.5) combines a CNN (§ 1.2.1) and a fully-connected neural network. The for-
mer contains five blocks of convolutional, pooling, and batch normalization layers, which

1https://gitlab.pic.es/pau/bkgnet
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are represented as red, yellow and blue layers in Fig. 4.5, respectively. The input images are
120×120 pixel cutouts centred at the target galaxy, which compromises having enough pixels
whilst keeping the computing requirements (memory, training time) within reasonable limits.

The CNN extracts features from the input image, which are the input of the linear neural
network. However, the network also requires other information not present in the images,
e.g. the position of the galaxy in the CCD image, the narrow band filter, and a before/after
intervention flag specifying when the galaxy was observed. These parameters are additionally
provided to the linear network together with the target galaxy magnitude from a reference
detection catalogue. The galaxy magnitude potentially contains information about the num-
ber of pixels affected by the galaxy.

The narrow-band filter and the intervention flag are discrete variables with forty possible
values for the band parameter (1-40) and two for the intervention flag (0/1). The combina-
tion of these two effectively corresponds to 80 different scattered-light patterns (§4.2). An
embedding layer encodes each of the eighty possible scattered-light patterns into ten trainable
parameters that learn to characterise the pattern.

4.3.2 Data: training and test samples

BKGnet is trained with cutouts centred at empty positions, i.e. regions where there are no
target sources, where we can estimate the ground-truth backgrounds noise (training labels)
beforehand. In order to identify and select empty regions, we cross-correlate the sky coordi-
nates of the cutout location with the sky coordinates of the sources in the COSMOS catalogue
(Laigle et al., 2016). The training sample labels are computed as the mean background inside
an eight-pixel radius circular aperture centred at the cutout. The label measurements have
an associated uncertainty (σlabel) that directly depends on the size of the region to define the
label. Assuming that the background is purely Poissonian, then

σ2
label =

Nab̄

texp

, (4.4)

where texp is the exposure time, b̄ is the mean of the pixels inside the aperture, i.e. the
background label, and Na is the number of pixels within the circular aperture. The aperture
radius is chosen to eight pixels to balance the uncertainty on the ground truth measurement
and a precise label at the exact galaxy location.

BKGnet will evaluate the background of cutouts with galaxies at the centre. To resemble
the training examples and the test cutouts, we simulate galaxies at the centre of the empty
training cutouts. These simulated galaxies follow a Sérsic profile characterised by the Sérsic
index (n) and the half-light radius (r50), i.e. the radius that contains 50% of the light in-
tensity (I50). These parameters are drawn from the distribution of PAUS observed galaxies.
As the simulated galaxies can potentially differ from the PAUS target galaxies, we also mask
the central 16× 16 pixels in both the training and test samples. Despite masking the central
cutout region, including the simulated galaxy in the training examples is still beneficial since
large and bright galaxies can potentially extend outside the masked area. This is evidenced
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Figure 4.5: BKGnet scheme: The first set of layers corresponds to a Convolutional Neural
Network to which one inputs the images. The CNN output, together with extra information
are input to a linear neural network. The numbers on each of the convolutional layers
represent the layer’s dimension. The first number corresponds to the number of channels.
The second and third numbers are the dimension of the cutout in that layer.

by testing very bright sources, where BKGnet fails without simulated centred galaxies in the
training examples. As the label is estimated in an 8 pixels radius aperture, 16 × 16 pixels
is the minimum area for which the network does not see the pixels used to estimate the
ground-truth background.

The network is trained with the normalised cutouts, which speeds up the training conver-
gence and helps in the network’s regularisation. There are several methods to normalise the
samples. We standardise image by image, subtracting the mean and dividing by the standard
deviation. This is a widely used normalisation and the one performing better on our dataset.

We use all the PAUCam images in the COSMOS field to train and validate the network.
There are 4928 PAUCam images before the intervention and 4821, after (§ 3.4.4). We sample
40 cutouts per science image, which provides 400,000 training cutouts split into 90% for
training and the remaining 10% for validation.

4.3.3 Training process and loss function

To associate an uncertainty to each prediction, we have implemented a MDN (Bishop, 1994)
with a single Gaussian component (§1.2.2). This assumes that the distribution p

(
~y|f ~w(~x)

)
is Gaussian, where ~y are the background labels, ~x are the input images and f ~w(~x) are the
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network background predictions. The loss function is defined as

L = − log
(
p(f ~w(~x))

)
=

(
f ~w(~x) − y

)2

σ2
bkgnet

+ 2 log (σbkgnet) , (4.5)

where the second term on the right hand side prevents the network from predicting large
uncertainties that minimise the mean-squared error term. Equation 1.5 shows the general
loss function expression for a MDN with N Gaussian components .

The background-noise and its uncertainty (σbkgnet) are the mean and the standard de-
viation predicted by the network. The background labels y have an associated uncertainty
(σlabel), therefore the network provides the uncertainty associated to the quantity fw(x)− y,
and the error on the prediction should be corrected by

σpred =
√
σ2

bkgnet − σ2
label , (4.6)

where σ2
label is defined in Eq. (4.4).

BKGnet is trained in 60 epochs with a batch size of 100 cutouts using the ADAM optimiser
(Kingma & Ba, 2014) and a learning rate of 10−5. The training takes about 2 hours using an
NVIDIA TITAN V GPU.

4.4 Testing BKGnet on simulations

In this section, we test the performance of BKGnet on simulated data. Section 4.4.1 introduces
the simulated images used for testing, while § 4.4.2 presents the BKGnet predictions on such
images. Throughout the rest of the paper we compare the BKGnet predictions to those
obtained with aperture photometry, which are estimated using the annulus method (§ 3.2)
with the default MEMBA implementation (§ 3.4.2). The aperture background measurements are
estimated from images with and without scattered-light corrections with templates (§ 4.2.3).

4.4.1 Simulated PAUCam background images

We use scattered-light templates (RSL, § 4.2.2) to generate simulated PAUS background-noise
images accurately mimicking the scattered-light pattern in each of the PAUS photometric
filters. The simulated image Isim(x, y) can be expressed as

Isim(x, y) = A · texp ·RSL(x, y) + P (texp ·RSL(x, y))

texp

, (4.7)

where we multiply the scattered-light template by the exposure time (texp) to convert the
simulated image to electrons. Then, we introduce Poisson noise P (·) and scale the template
with a factor A to simulate a wide range of background levels. Finally, the simulated images
is converted back to e/s.
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Figure 4.6: Image cutouts simulated with Eq. 4.7. Left : a cutout with a flat Poissonian
background. Right : A cutout with a background with a gradient caused by scattered-light.

Figure 4.6 presents two examples of simulated cutouts generated with Eq. 4.7. On the
left, the image presents a flat Poissonian background. In contrast, the cutout on the right
shows a clear scattered-light background gradient. Both cutouts show a central 8 × 8 pixel
masked region, blocking the light from the galaxy.

4.4.2 BKGnet predictions on simulations

We characterise the performance of BKGnet background predictions training and testing on
simulated cutouts from ”NB685“ (§ 4.4.1) . Before the intervention, some of the CCDs contain
a lot of scattered light, which is not adequate to test the network predictions. On the other
hand, after the intervention, some of the CCDs barely contain scattered light and we could
not test BKGnet predictions in scattered-light affected areas. We have chosen ”NB685“ as
it is significantly affected by scattered light, both before and after the camera intervention,
without being completely dominated by this effect.

Figure 4.7 compares BKGnet background predictions with the aperture photometry annu-
lus approach (3.4.2). We have tested BKGnet with and without the CCD coordinates infor-
mation to see the impact of this parameter and have a better understanding of the BKGnet

underlying mechanism. The BKGnet performance improves significantly with the coordinate
information (solid black line). This indicates that although the presence scattered light is en-
coded in the image, the CCD position includes additional essential information that BKGnet
potentially uses to create something similar to the scattered-light templates (§ 4.2).

We use

σ68[(bpred − b0)/b0] (4.8)

to quantify the precision in the background-light predictions, where bpred is the BKGnet back-
ground prediction and b0 is the ground-truth background noise. BKGnet achieves a σ68 =
0.0038 with information coming only with the cutouts. Including the coordinate information,
this improves to σ68 = 0.0022, which corresponds to 70% more precise measurements. The
aperture photometry estimates show tails on both sides of the distribution, and yields σ68 =
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Figure 4.7: Relative error distributions for the BKGnet without (blue dotted) and with (solid
black) coordinate information compared to the annulus predictions (dashed orange). b0 is
the background label and bpred is the background prediction, with either annulus or BKGnet.

0.0033, which means BKGnet reduces the scatter by 42%.

For Fig. 4.8, we have predicted the background with BKGnet (second panel), aperture
photometry (third panel) and a kNN algorithm (fourth panel) across the full CCD, center-
ing the simulated cutout in each of the pixels consecutively. The leftmost panel in Fig. 4.8
shows the true spatial background map. The following panels present the relative error on
the background-light prediction. For the annulus method (third panel), the precision is lower
at the edges of the CCD, which indicates that scattered light causes the tails in Fig. 4.7. In
contrast, BKGnet (second panel) shows a flat accuracy across the CCD, proving that it can
detect and account for the presence of scattered light in its background-light predictions.

We have also implemented a k-nearest neighbors (kNN) (Cover & Hart, 2006), a sup-
port vector regression (SVR) (Drucker et al., 1996), a random forest (RF) (Breiman, 2001),
and a neural network (NN) using their scikit-learn implementations (Pedregosa et al.,
2011). Unlike CNNs, these algorithms are not suitable for images. The input provided is
the narrow-band photometric filter, the coordinates of the cutout in the CCD, and the me-
dian background-light value of the cutout pixels. With this information, the algorithm could
potentially correct the median background noise based on the narrow-band filter and the
CCD position. The background predictions with the kNN (Fig. 4.8) are 3% biased in the
flat-background regions (not affected by scattered-light), which does not happen neither with
the annulus or BKGnet. The kNN also presents problems in scattered-light regions, where it
provides background measurements ∼6 times less precise than in flat regions (for BKGnet this
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Figure 4.8: Left : CCD reconstruction with the ground-truth background noise labels used
to train the network. . Second: Accuracy on the background prediction with BKGnet in the
different image positions. We can see there are no spatial patterns. Third : Accuracy on the
background prediction with the annulus in the different image positions. We can see there
are no spatial patterns. Right : Accuracy on the background prediction with a kNN in the
different image positions.

factor is only 1.2). The NN provides better predictions than the kNN, although it increases
σ68 by a factor of 2.5 with respect to BKGnet. It also shows patterns on the edges with ∼4
times lower precision than in flat background regions. Finally, the RF and the SVR algo-
rithms provide ∼6 and ∼4 times higher scatter than the BKGnet predictions, respectively,
rendering these methods too imprecise.

4.5 BKGnet on PAUCam images

We have seen that BKGnet is able to accurately predict strongly scattered-light backgrounds
on simple simulated cutouts including only background noise (§ 4.4.2). However, PAUCam
images contain other distorting effects as e.g. cosmic rays, electronic cross-talk, read-out
noise, and dark current (§ 3.1) that can potentially affect the background-noise pattern. Fur-
thermore, pixel-to-pixel correlations are potentially introduced during the data reduction
process, which are not intriduced in the simulated cutouts (§ 4.4.1). In this section we test
BKGnet on PAUCam images to examine the impact of these real-life effects.

To evaluate the BKGnet performance, we use PAUCam cutouts centred at regions without
galaxies, so that we can determine the ground-truth label in the same way as in the ear-
lier simulated cutouts (§4.4.1). We use all the images available in COSMOS, splitting the
data into images obtained before and after the camera intervention (§ 2.2.3), to balance the
number of training cutouts from before and after the camera intervention. To avoid outliers
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Figure 4.9: Precision in the background predictions with BKGnet and aperture photometry
for the 40 PAUS narrow bands. Left : Before the intervention. Right : After the camera
intervention.

in the training set, e.g. a cutout with a bright star covering most of the pixels or a bright
object too close to the centre, all cutouts with a pixel containing more than 100 000 counts
are excluded from the training sample. We also exclude 80 images (40 taken before and
40 after the camera intervention) used to evaluate the BKGnet performance. The test set is
generated by systematically sampling cutouts consecutively in intervals of 60 pixels (instead
of randomly selecting CCD positions). This ensures that we test all CCD regions, including
regions affected by scattered light.

Figure 4.9 compares the precision in the BKGnet background predictions (black solid line),
aperture photometry with an annulus (orange dotted line), and the annulus when the image
has been previously corrected with the scattered-light template (blue dotted line, § 4.2.3).
The left panel in Fig. 4.9 presents the predictions before the camera intervention. In several
narrow bands (e.g. ”NB455“), the annulus measurements do not benefit from the correc-
tion with the scattered-light template. In contrast, with BKGnet the background prediction
precision improves the annulus background estimates(both with and without scattered-light
template correction) in all narrow bands (black solid line). On average, BKGnet reduces σ68

by 37% compared to the scattered-light template and up to 50% if we only consider the first
filter try (i.e. the eight bluer narrow bands). This indicates that the scattered-light correction
with sky-flats is unstable before the camera intervention, requiring more flexible modellings.

On the other hand, after the camera intervention (right panel in Fig. 4.9) the annulus
measurements benefit from the scattered-light template correction in all the narrow bands.
This is expected since scattered light is more stable after the camera intervention (top panel
in Fig. 4.2). Nevertheless, BKGnet improves the annulus+skyflat performance achieving an
18% more precise background measurements.

We cannot directly compare the left and right panels in Fig. 4.9 since the intervention
changed the level of background noise captured by the CCDs. For instance, in the first filter
tray, the background light is between 3 and 5 times higher before than after the intervention.

Table 4.1 presents the precision in the background-light measurement with the annulus
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BEFORE AFTER
filtered sources filtered sources

Annulus 0.011 0.011 0.014 0.014
+ sky-flat 0.011 0.011 0.011 0.013
BKGnet 0.008 0.008 0.011 0.011

Table 4.1: Average σ68 of the relative error in the background prediction across all the narrow
bands for BKGnet trained before and after the camera intervention. We list the results for
the data sets without filtering out cutouts affected by sources (‘sources’), and if we remove
these (’filtered’).

method, the annulus method after correcting scattered light with sky-flats, and BKGnet. By
default, cutouts with pixels above 100 000 counts are excluded from the training and test
sample (column ’filtered’ in the table). We have tested the impact of very bright objects in
the cutouts by training and testing on a sample that has not been previously filtered from
bright sources (column ’sources’ in the table). The annulus and BKGnet precision are affected
by bright sources neither before nor after the camera intervention. However, the correction
with sky-flats worsens when the cutouts contain very bright sources, which indicates that
the scattered-light template modelling is not sufficiently flexible towards bright-distorting
effects. This only happens after the camera intervention, which suggests that, before the
camera intervention, scattered light is the main source of bias and very bright sources are
a second-order effect. BKGnet learns the underlying behaviour of scattered-light similarly to
the scattered-light templates. However, the network also sees the cutout, enabling a more
flexible correction in the presence of other artefacts (e.g. sources and cosmic rays).

BKGnet also provides an estimate for the uncertainty in its background measurements
(σnet). To validate such uncertainties, we use the distribution

G = (bpred − b0)/σpred, (4.9)

where bpred is the background measurement and b0 is the background label. If the uncertain-
ties are consistent with the measurements, the distribution of G must be a Gaussian with
zero mean and unit variance. Figure 4.10 shows the theoretical N(0, 1) (black solid line) and
the G distribution for BKGnet (blue distribution) and the annulus (orange distribution) back-
ground measurements. While BKGnet predictions fit the theoretical N(0, 1) indicating that
uncertainties are robust and consistent, the background measurements uncertainties with the
annulus are underestimated by 47%.

4.6 BKGnet validation

The results presented in § 4.5 show that BKGnet yields to better background estimates com-
pared to the annulus-based methods (see Fig. 4.9 and Tab. 4.1), while providing consistent
background uncertainties σpred (Fig. 4.10). So far, these results validate cutouts without tar-
get galaxies. In this section we evaluate the performance of BKGnet background estimates on
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Figure 4.10: The distribution of (bnet− b0)/σ, where bnet is the background prediction and b0

the true background and σ is the uncertainty in the prediction. We expect the distribution to
be a Gaussian centered at zero with unit variance. We show the distribution for the annulus
(orange) and BKGnet (blue) predictions.

PAUCam cutouts centred at target galaxy positions.

4.6.1 Generating the PAUS catalogue with BKGnet predictions

We have estimated the galaxy photometry of PAUS galaxies in the COSMOS field using
aperture photometry flux measurements (see § 3.2) and subtracting the background noise
estimated with BKGnet (Eq. 3.4). This catalogue is compared to that using MEMBA (§ 3.4.2),
which uses the same aperture flux measurements and the background light estimated with
an annulus. The catalogues contain ∼ 12 million flux measurements, approximately half of
them done on images taken before the intervention and the other half on images taken after
the intervention.

The flux uncertainty with the annulus background-light measurements is the estimated
with Eq. 3.5. 2. In contrast, when the background predictions are from BKGnet, the flux
uncertainty is

σsrc = fsrc +N(bpred +RN2) +N2σ2
pred , (4.10)

where RN is the read-out noise, fsrc is the flux aperture, and N is the number of pixels in
the flux aperture.

There are three main contributions to the flux uncertainty: the uncertainty in the background-
subtracted galaxy flux, the uncertainty in the background light, and the uncertainty intro-

2http://wise2.ipac.caltech.edu/staff/fmasci/ApPhotUncert.pdf
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duced by the background subtraction (§ 3.2). Galaxy fluxes measured with BKGnet back-
ground estimates assume that the uncertainty in the background-subtracted galaxy flux and
in the background light are captured by shot noise. The background-light uncertainty has
an additional contribution from the read-out noise. The last term in Eq. 4.10 accounts for
the error in the background-noise subtraction, which is the quantity directly predicted by the
network σpred.

In contrast, using the annulus background-light estimates, the background-light uncer-
tainty is given by the mean-variance per pixel of the pixels within the annulus, which already
accounts for other error contributions such as the read-out noise. The flux uncertainty contri-
bution due to the background subtraction is determined by the subtraction of a background
noise measured at a distance to the exact target galaxy position. This is explained in detail
in § 3.2.

4.6.2 Validating the catalogues

A direct comparison between the BKGnet and the MEMBA photometry catalogues shows a 2%
difference between their photometric fluxes. Also, the flux uncertainties are 4% lower with
the aperture photometry from MEMBA. Scattered light only affects objects near the edges of
the images. Therefore, for most of the galaxies in PAUS data, the background should be
(approximately) flat so that we do not expect large differences between the BKGnet and the
MEMBA catalogues.

To determine which catalogue provides more accurate photometry, we use the fact that
PAUCam takes multiple observations of the same object in all narrow-band filters. Then, we
can compare the flux measurement from different exposures of the same object, which should
be compatible within errors after subtracting the background noise. This formulates as

D ≡ e1 − e2√
σ2

1 + σ2
2

, (4.11)

where ei are different exposures of the same object and σi, ther associated uncertainties. The
distribution of D should be a Gaussian with unit variance if the photometry is robust and
the errors are properly accounted for. We call this the duplicates test.

Figure 4.11 shows the width of the duplicates distribution (Eq. 4.11) as a function of
wavelength for the photometry with BKGnet background noise measurements (black line) and
MEMBA annulus measurements (orange line). The solid lines correspond to catalogues con-
taining all observations. In contrast, dashed lines present the same results excluding objects
flagged as problematic due to strongly varying backgrounds (scattered-light, § 3.4.2). Drop-
ping flagged objects does not significantly change the measurements for BKGnet, but we note
a clear improvement for the MEMBA measurements. The improvement is particularly promi-
nent for the NB755 filter (at 7500Å), which is affected by telluric absorption of O2 in the
atmosphere. Interestingly BKGnet learns how to deal with these objects, indicating robust-
ness towards various sources of bias, not only scattered-light. Considering all narrow bands,
we find 〈σ68[D]〉 = 1.00 for BKGnet, which is what we would expect for correct photometry.
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Figure 4.11: BKGnet validation with the duplicates distribution test. The plot shows the
width of the distribution defined in Eq. 4.11 as a function of wavelength for the photometry
with with BKGnet background measurements (black line) and the current MEMBA catalogue
with annulus background predictions (orange line). The dashed line corresponds to the results
excluding all objects flagged as affected by a strongly varying background in MEMBA. The solid
line includes all objects.

On the other hand, the current MEMBA catalogue yields 〈σ68[D]〉 = 1.10, i.e. it underestimates
the uncertainties.

Fig. 4.12 explores the robustness of the flux uncertainties with brightness showing σ68[D]
as a function of the Subaru iAUTO magnitude. The MEMBA measurements (orange dashed
line) present a strong trend with magnitude, with 20% overestimated errors at the bright-
est end. To explore the origin of the trend, the blue dotted line considers the background
predictions from BKGnet with errors from the annulus method and presents a similar trend
with magnitude. This indicates that the annulus background uncertainties are triggering the
trend with magnitude. Furthermore, BKGnet background predictions with the annulus uncer-
tainties (blue dotted line) show better results than annulus background predictions with its
own uncertainties (orange dashed line), indicating that the background measurements from
BKGnet are more accurate than those estimated with an annulus.

To further validate the BKGnet catalogue we run BCNz2 (Eriksen et al., 2019) using the
fluxes determined using BKGnet background-light measurements. All objects flagged as prob-
lematic (e.g. scattered-light, vignetting, and cosmic rays) are excluded from the analysis in
order to use exactly the same objects as in Eriksen et al. (2019). Nevertheless, as shown in
Figs. 4.11 and 4.12, many of these objects would not need to be excluded from the data
sample when their background noise is estimated with BKGnet. The photo-zs are compared
to secure spectroscopic estimates from zCOSMOS DR3 (Lilly et al., 2007) with iAB < 22.5.
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Figure 4.12: BKGnet validation with the duplicates distribution test. We plot the width of the
distribution defined in Eq. 4.11 as a function of iAUTO in the Subaru i-band for the catalogue
generated with BKGnet (black solid line), the current MEMBA catalogue (aperture photometry
with an annulus, orange dashed line) and a mixed catalogue with the predictions from BKGnet

and the uncertainties from the annulus method (blue dotted line).

We split the sample based on a quality parameter defined as:

Qz ≡ χ2

Nf − 3

( z99
quant − z1

quant

ODDS(∆z = 0.01)

)
, (4.12)

where χ2/(nf − 1) is the reduced chi-squared from the template fit and the zquant are the
percentiles of (zphoto − zspec)/(1 + zspec). The ODDS is defined as

ODDS ≡
∫ zb+∆z

zb−∆z

dz p(z), (4.13)

where zb is the mode of the p(z) and ∆z defines a fixed redshift interval around the peak.
PAUS has a strict outlier definition

|zphoto − zspec| / (1 + zspec) > 0.02 , (4.14)

while in broad-band photometry, a common outlier definition is |zphoto−zspec| > 0.15 (1+zspec),
e.g. Ilbert et al. (2006); Bilicki et al. (2018).

Table 4.2 lists the outlier rate and the photometric redshift precision obtained with BCNz2

on the MEMBA and BKGnet catalogues. To quantify the redshift precision we use σ68 (Eq.3.22).
The photometric redshift precision does not improve significantly between the two catalogues,
but we find a reduction in the outlier rate. If we consider the complete sample (100%) this
improvement is small. A potential reason is that, in the full sample, outliers are dominated
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Outlier percentage 103σ68

Percentage BKGnet MEMBA BKGnet MEMBA

20 3.5 5.4 2.0 2.1
50 3.8 5.1 3.6 3.7
80 10.4 11.3 5.8 6.0
100 16.7 17.5 8.4 8.6

Table 4.2: Photo-z outlier rate and accuracy obtained with BCNz2 for the BKGnet and the
MEMBA catalogues. The percentages correspond to the samples selected by the photo-z quality
parameters Qz.

by photo-z outliers rather than outliers on the photometry itself. However, if we cut using
the Qz parameter to get the best 20% and 50% of the sample, we notice that the outlier rate
reduces significantly. These outliers should be dominated by photometric outliers. For the
best 50% of the sample, we reduce the number of outliers by 25%. Furthermore, for the best
20% of objects, this improvement increases to 35%. This shows once more that BKGnet is a
statistically accurate method that is also robust.

4.7 Conclusions

Imaging surveys need accurate background subtraction methods to obtain precise source pho-
tometry (§ 3.2). We have developed a deep learning method to predict the background light
in astronomical images with strongly varying background noise (§ 4.3). The algorithm has
been developed to predict the background on images taken with PAUCam. The edges of
PAUCam images are affected by scattered-light (§ 4.2.2), especially in the bluer bands. In
2016, the camera was modified to reduce the amount of scattered light. While the amount
of scattered-light decreased drastically, PAUcam images still contain a significant amount of
scattered-light (§ 2.2.2 and Fig. 4.2).

Scattered light follows the same spatial pattern within the CCD and scales approximately
linear with the background level (§ 4.2.2). We have constructed scattered-light templates
and background ratio maps by combining images taken with the same narrow band and nor-
malised by their background level. These scattered-light templates can be used to correct
for scattered-light (§ 4.2.3). Nevertheless, background fluctuations due to external conditions
(e.g. moon, seeing, airmass) can trigger nightly differences in scattered-light patterns. To
accurately correct scattered-light with scattered-light templates, we would need to generate
a scattered-light template per narrow band and night. Nevertheless, fluctuations during the
night or a small number of available images in a narrow band can lead to inaccurate scattered-
light corrections.

BKGnet is a deep learning-based algorithm that predicts the background and its associated
uncertainty behind target sources accounting for scattered light and other distorting effects.
BKGnet consists of a CNN followed by a linear neural network (§ 4.3.1). In the training set,
we use empty cutouts, i.e. without a target galaxy, that enable the estimation of the ground-
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truth background light (§ 4.3.3). We need to simulate target galaxies in the training sample
before masking the central region, otherwise, the network fails when applied to bright and
large sources.

On empty regions with known ground-truth background, BKGnet improves over the an-
nulus prediction once images have been corrected with the scattered-light template by 37%
before the camera intervention and 17% after. The scattered-light template correction fails in
many of the bands, especially on the bluer filter tray, which is affected the most by scattered-
light (§ 4.4.2). The background-light uncertainties provided by BKGnet are also consistent
(§ 4.5) while with the annulus method, these are underestimated by 47%. To test the net-
work on PAUCam data, we have generated the PAUS photometry catalogue in the COSMOS
field using BKGnet background-light measurements. The performance is evaluated by compar-
ing the flux measurements of independent observations of the same object in the same band.
The results show that BKGnet provides more robust uncertainties than aperture photometry,
fixing a strong systematic trend with i-band magnitude (§ 4.6). The flux measurements are
also more robust towards scattered-light and other sources of bias e.g. regions with high
atmospheric absorption (Fig. 4.11). The BKGnet catalogue also reduces the BCNz2 photo-zs
outlier rate by a 25% and 35% respectively for the best 50% and 20% photo-z samples, while
the accuracy is not affected.

With BKGnet we have optimised the background subtraction task, one of the image pro-
cessing steps in photometric surveys that can improve the redshift estimation and classifi-
cation of galaxies. Deep learning algorithms estimating the photo-zs directly from images
intrinsically require estimating the object’s photometry. Therefore, the understanding from
BKGnet will also help to optimise such deep learning algorithms. Although the network has
been tested with PAUCam images, the concept should also apply to future imaging surveys
as Euclid and LSST.
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4.A Variable annulus

Currently, the MEMBA pipeline estimates the background with an annulus of inner and outer
radii fixed at 30 and 45 pixels from the source, respectively (§ 3.4.2). However, the target
galaxy photometry can be optimised by adjusting the annulus radii galaxy-wise.

The annulus approach measures the background noise at a certain distance from the tar-
get source. This is not problematic for flat backgrounds, but if the background noise varies
across the image, e.g. in the presence of scattered light, the target galaxy could be in a flat
region while an annulus located far from the target source has scattered-light contributions.
In this situation, the annulus would capture an amount of extra background that we define
as ∆B. On the other hand, an annulus set too close to the target source can capture light
contributions from the source itself, especially if this is bright and large. We define the extra
light contribution to the annulus from the target galaxy as ∆F.

The relative error in the background prediction due to scattered-light and target-source
contributions is

Γ ≡ |∆F + ∆B|
σb

, (4.15)

where σb is the error on the background subtraction. The annulus location minimising Γ is
that providing the most optimal backgroud measurement. This location depends on the size
and brightness of the target object, which is also affected by the PSF.

Figure 4.13 shows the histogram of minimum Γ measurements for galaxies at the center
(orange) and at the borders (black) of the images. We evaluate Γ on a set of PAUCam galaxy
image simulations (§ 4.4.1) for annulus radii from one to forty pixels from the target source,
always keeping the annulus area such that rout − rin = 15 pixels.

Both histograms (centre and border target galaxy locations) show a large fraction of
galaxies for which the annulus can accurately predict the background light (low gamma val-
ues). Galaxies at the centre of the image are in flat background regions where the annulus
method provides accurate background-light measurements. Furthermore, many galaxies lo-
cated at the border of the image are not affected by scattered light, also presenting accurate
background-light measurements. For galaxies in scattered light regions, the annulus should
locate very close to the target galaxy to minimise the effect of the varying background. This
is only possible for target galaxies with r50 ∼ 1 or 2 pixels.

The Γ distribution for galaxies at the border of the image presents a tail of measurements
where the annulus estimation cannot be an optimal position. These are cases where the
annulus captures background variations if this is set too far from the target source. However,
the annulus also captures light from the target source if these two are too close. In other
words, if the background variation is strong, the annulus will tend to get closer to the target
source in order to minimize ∆B. However, this is not possible for bright and large galaxies,
since getting closer to the target increases ∆F.
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Chapter 5

Single band photometry

5.1 Motivation

Wide-field galaxy surveys are a powerful tool for cosmology. Galaxy redshifts are the most
fundamental property of any cosmological or galaxy evolution study. Spectroscopic surveys,
e.g. SDSS, measure very high precision redshifts, however these are only possible for on the
order of a million objects (e.g. BOSS, Dawson et al., 2013). In contrast, imaging surveys are
≈ 2 orders of magnitude ahead in terms of number of objects. However, these are observed
with a lower spectral resolution, which makes the redshift measurements less precise. Current
and past imaging surveys, e.g. The KiDS, The Hyper Supreme-Cam Subaru (HSC, Aihara
et al., 2018), and DES have detected hundreds of millions of galaxies and oncoming surveys
like Euclid and LSST will increase this number to billions. Consequently, fast and precise
methods to analyse and extract galaxy properties (e.g. flux, size, and shape) are needed.

There are many different algorithms to estimate galaxy photometry. One widely used
example is SExtractor (Bertin & Arnouts, 1996), which applies aperture photometry (Ni
et al., 2019) inspired by the Kron first moments algorithm (Kron, 1980). This technique
measures the flux of the targeted galaxies by placing an aperture around the source and mea-
suring the light captured inside such aperture. Another technique is model fitting (Heasley,
1999), which consists of fitting the galaxy image to a theoretical model and extracting its
photometry. This includes the GaaP (Kuijken, 2008) algorithm, which estimates the total
flux by fitting the pixelated galaxy images to polar shapelets splitting the galaxy image into
components with explicit rotational symmetries (Refregier, 2003; Massey & Refregier, 2005).

There are many other examples as e.g. ProFound (Robotham et al., 2018), T-PHOT (Mer-
lin et al., 2015) and Tractor (Lang et al., 2016), and each of them is adjusted to outperform
the others on a particular data set. For instance, a photometry algorithm can be optimised
to work very well on images with many blended galaxies (Boucaud et al., 2020) while another
can be intended to improve the photometry of very noisy galaxies. Therefore, depending on
the type of data and the science goals, different methodologies are applied to improve the
photometry estimation.

Although all these algorithms have proven to work well, they also have their shortcom-
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ings. Aperture photometry works very well on clean images, but it is not robust towards
distorting effects such as e.g. blended galaxies, variable background light, and cosmic rays.
On the other hand, model fitting is sensitive to model parametrisation. In contrast, machine
learning techniques learn a model adapted to the data. Deep learning has proven to be very
powerful in image recognition and computer vision (e.g. Girshick, 2015; Zhao et al., 2019),
which makes it a robust tool to work on images with artefacts and variant effects. Also,
the evaluation of a trained machine learning algorithm is very fast, which is relevant when
dealing with very large amounts of data. For instance, Haigh et al. (2021) compares several
source-extraction codes and concludes that currently there is no tool sufficiently fast and
accurate to be well suited to large-scale automated segmentation.

Deep learning has already been applied to different steps of astronomical imaging pho-
tometry, e.g. photometry of blended galaxies (Boucaud et al., 2020), PSF simulation (Herbel
et al., 2018c), cosmic ray rejection (Zhang & Bloom, 2019) or source detection (Hausen &
Robertson, 2020). The power of deep learning techniques on object detection or image recog-
nition tasks makes these steps of the data reduction, among others, very suitable candidates
to apply machine learning. While addressing them with classical methods can be difficult
and computationally expensive, deep learning is an effective tool to tackle the problem.

In this chapter, we present Lumos1, a deep learning based algorithm to extract the pho-
tometry from astronomical images. It consists of a CNN (§ 1.2.1) that works on input galaxy
images and a MDN (§ 1.2.2) that outputs the probability distribution of galaxy fluxes. Lumos
builds on BKGnet and estimates the probability distribution of the background-subtracted
galaxy flux, which requires the implicit estimation and subtraction of the background noise.
Lumos is also developed and tested using PAUS images (§ 2) although it can be adapted to
any imaging survey, like e.g. Euclid or LSST.

The structure of this chapter is as follows. Section 5.2 presents the simulations we use
for training. Then, § 5.3 introduces different flux estimation alternatives that we have com-
pared to Lumos performance. In §5.4, we introduce Lumos, its architecture and the training
procedure. Section 5.5 presents Lumos results on simulations, including validation of the
flux probability distributions, a comparison with alternative flux estimation methods, and
deblending tests. Finally, §5.6 shows Lumos results on the PAUS data, including single expo-
sure photometry, co-added fluxes, and photometric redshifts obtained with Lumos photometry.
Conclusions and discussion can be found in §5.7.

5.2 Data

In this section, we present PAUS data (§ 5.2.1) and Teahupoo simulations (§ 5.2.2), the
simulated galaxy images used throughout the paper.

1The code is available at https://github.com/PAU-survey/lumos under a GPL-3 license.
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Figure 5.1: From left to right, Teahupoo galaxy images with i-band magnitudes 18.5, 20.3
and 22.3, in PAUS ”NB685”. These are simulated with a exposure time of 90 seconds, the
baseline PAUS exposure time in the ”NB685” filter.

5.2.1 PAUS data

In this chapter, we again use the PAUS data taken in the COSMOS field (§ 3.4.4), which
comprises a total of 9749 images, 243 images in each narrow band. The complete photometry
catalogue comprises 64 476 galaxies to iAB < 23 in 40 narrow-band filters, which corresponds
to around 12,5 million galaxy observations (∼5 observations per galaxy and narrow-band
filter). While observing COSMOS, the PAU camera was modified to mitigate the effect of
scattered light (§2.2.2), which changed the noise patterns of PAUS images (§ 4.2). Half of the
images in COSMOS were taken before the camera modification and the other half, after.

PAUS data reduction process consists of two pipelines: the Nightly (§ 3.4.1), which
performs an instrumental de-trending processing, e.g. electronic and illumination biases,
and MEMBA (§ 3.4.2), which applies forced aperture photometry to targets selected from an
external detection catalogue. The deep learning network developed in this paper presents
an alternative to MEMBA. It aims to be more robust in the presence of distorting effects as
blending or scattered light. It also intends to reduce the error propagation caused by errors
in the detection catalogue profile parameters (e.g. the half-light radius and the Sérsic index).

5.2.2 Teahupoo simulations

We have constructed the Teahupoo2 simulations, a set of PAUS-like galaxy image simu-
lations. Three examples of Teahupoo galaxies with i-band magnitudes iAB = 18.5, 20.3
and 22.3 are shown in Fig. 5.1. Note that already at iAB ≈ 20 it is hard to distinguish the
galaxy from the background noise and with iAB > 22, the galaxy signal is visually masked by
background fluctuations.

Teahupoo light profiles are modelled with a single Sérsic profile (Eq.3.14). We jointly
sample the half-light radius, the Sérsic index (ns), and the ellipticity from their distributions
in the COSMOS field (Fig. 5.2), which are provided by Ilbert et al. (2009). This ensures
that the correlation between the shape and the size of galaxies is represented in the training

2Named after the favourite sandwich of the author.
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Figure 5.2: Distributions of the half-light radius (r50) (top left), Sérsic index (ns) (top right),
the PSF-FWHM (bottom left), and the Iauto magnitude of PAUS galaxies in the COSMOS
field (bottom right).

sample. Elliptical galaxies are simulated by elongating the half-light radius according to the
b/a distribution.

Teahupoo image simulations are 60×60 pixels and are generated with Astropy (Astropy
Collaboration et al., 2013; Price-Whelan et al., 2018). Astropy methods evaluate the galaxy
profiles at the centre of each pixel instead of integrating along a pixel. This is problematic
for small and steep galaxies (i.e. with high ns), where the flux changes significantly along
the pixel. To correct for this effect, galaxies are initially drawn in a 600x600 grid with a
later size reduction. Furthermore, drawing on a larger grid allows shifting the galaxy at a
sub-pixel level from the centre. Including sub-pixels shifts in Teahupoo galaxy images has
also proven important to reduce the number of photometry outliers on real PAUCam galaxies.

Teahupoo images use background cutouts from PAUCam images. These cutouts can
contain artefacts such as e.g. other galaxies, cosmic rays, and crosstalk. This has proven very
important for our network, as it learns how to make predictions when they are present (see
e.g. §5.5.3 and §5.6.1). The background light noise patterns across the CCD are narrow-band
dependent and changed when the PAUCam camera was modified (see §4.2 for more details).
For this reason, the background cutouts are taken from a PAUCam image observed with the
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same narrow-band filter we are simulating. We also track if the image was observed before or
after the camera intervention. The galaxy signal is also wavelength-dependent. Consequently,
we independently sample the galaxy flux from forty flux distributions, one per narrow-band
filter.

The simulated galaxy is convolved with the PSF as detected in the source image of the
background cutout (Bertin, 2011). The distribution of PSFs in the COSMOS field is also
displayed in Fig. 5.2 (bottom left panel). Using the same PSF for the galaxy and the back-
ground noise is crucial. Otherwise, the network could artificially learn that the galaxy has a
different PSF than the background and use this to estimate the clean flux, which would not
work on PAUCam data. Before combining the background cutout and the galaxy, we simu-
late photon shot noise on the galaxy. Note that other sources of additive noise, e.g. readout
and electronic noise, are not required as the background cutout already includes them (§ 3.1).
This is another benefit of using PAUCam background cutouts, as simulating realistic noise
is often hard and could easily lead to differences between simulations and data.

As simulations use PAUS flux measurements and PAUCam background cutouts, outlier
measurements in any of these two, e.g. background images with spurious effects and outlier
flux measurements, might end up represented in the Teahupoo images. To reduce the num-
ber of affected Teahupoo galaxies, we clip the PAUS flux distribution at 0 and 1000 e−/s.
This ensures that neither negative fluxes nor artificially bright examples are represented in
the image simulations. Furthermore, we have also proceeded with a visual inspection of the
PAUCam images to filter out very poor observations. However this does not deal with local
effects in regions of the CCD, e.g. saturated pixels, and therefore a few outliers will still leak
into the Teahupoo catalogue.

The methodology used to generate Teahupoo images is very similar to that of the Balrog
simulations (Suchyta et al., 2016; Eckert et al., 2020). The main similarity between Balrog

and Teahupoo is that both methodologies add the simulated galaxy to real survey images.
In contrast, Balrog uses Galsim (Rowe et al., 2015) to draw the simulated galaxies, while
Teahupoo galaxies are built with Astropy. Also, Teahupoo galaxies are constructed in
a super-resolution grid, which increases the resolution of small objects and allows to include
sub-pixel shifts from the centre of the stamp.

5.2.3 Comparison between PAUCam and Teahupoo galaxies

Supervised machine learning algorithms require a training sample, i.e. a set of data with a
known solution that is used to find the non-linear mapping from the input to the output of
the network (§ 1.2). Having a good and large training sample is a crucial part of the training,
and ideally, we would train Lumos on a sample of PAUCam images with known photometry.
However, in absence of that, we are using Teahupoo images for training. These simulations
need to be representative of the testing data, and differences between PAUS and Teahupoo
galaxies can lead to a degradation of the predictions.

To test the similarity between PAUCam and Teahupoo galaxies, we have generated a
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Figure 5.3: Comparison between single pixel row light profile for pairs of PAUCam galaxies
(solid black line) and Teahupoo simulated galaxies (dashed light blue). Teahupoo galaxies
are constructed to exactly mimic its real PAUCam pair. The plot shows the pixel value along
the central row of pixels (crossing the source) divided by the mean image background noise.
Therefore, the central peak at x = 30 corresponds to the galaxy light contribution. From left
to right, the galaxy magnitudes are iAB = 18.6, 19.4 and 21.0.

controlled sample of Teahupoo-PAUCam galaxy pairs. Given a PAUS galaxy, its simulated
pair is constructed with a Sérsic modelling using the same profile parameters (r50, ns) and the
same amount of light. The simulated background stamp is selected from a sourceless region
in the same image as its real PAUCam pair.

Figure 5.3 shows three Teahupoo -PAUCam galaxy pairs with i-band magnitudes of
18.6, 19.4 and 21.0, respectively. The plot shows the pixel values normalised with the mean
background (excluding the source) along the central row of the cutout. Therefore, pixels
without galaxy light contribution should fluctuate around unity, while pixels with higher val-
ues show the galaxy light profile. In general, PAUS and Teahupoo galaxies fit well up to
background light and shot noise fluctuations. The first plot on the left-hand side is a clear
example of this. In the centre galaxy, the two galaxies also match reasonably well. However,
it also exhibits a slight shift between the galaxy peaks, possibly due to an astrometry inaccu-
racy. The right plot shows that the comparison on fainter sources is much harder, as fainter
galaxies are can barely distinguished from background-noise fluctuations (see also Fig. 5.1).

Several effects could bring variations between Teahupoo and PAUCam galaxies. For
instance, inaccuracies in any step of the data reduction process (e.g. the photometric cali-
bration, the astrometry, and the PSF measurement) are not represented in the simulations.
Currently, the PSF is assumed constant across the PAUS image. This could potentially yield
discrepancies between simulations and data. Additionally, if a single Sérsic function is not
sufficient to model a PAU galaxy, that would also imply a difference between the two images.
These discrepancies will propagate into larger errors in the flux estimation. However, inaccu-
racies in the calibration, the modelling, and the PSF would also affect the measurement with
other flux estimation methods (e.g. aperture photometry or model fitting). Furthermore,
Lumos uses both the galaxy image and the image of the modelled profile, which allows it to
provide flux uncertainties that take into account discrepancies between the galaxy and the
model. It also enables detecting inaccuracies in e.g. the astrometry and the PSF, which are
also accounted for in the uncertainty measurement (see last paragraph in §5.6.1).
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5.3 Flux estimation methods

In this section, we introduce other flux estimation methodologies that we will use to com-
pare to Lumos performance. Particularly, we consider a profile fitting methodology (§5.3.1),
aperture photometry (§5.3.2), and a linear weighted sum of the galaxy pixels (§5.3.3).

5.3.1 Profile fitting

In a profile fitting approach, the background subtracted galaxy image is fitted to a theoretical
galaxy model to infer the profile amplitude. Assuming that the galaxy can be modelled as
I(r) = IeR(r), where Ie is the profile amplitude and R(ri) corresponds to a Sérsic light profile
at pixel i, we can fit the image to the theoretical profile with

χ2 =
∑
i

(fi − I(ri))
2

σ2
F,i

, (5.1)

where i sums over pixels, f is the background subtracted flux (f ≡ F − B, with F and B
being the total flux and the background noise) and I(ri) is the galaxy theoretical model in
pixel i. Assuming Poisson errors, the previous equation becomes

χ2(Ie) =
∑
i

(fi − IeR(ri))
2

IeR(ri) +B
, (5.2)

where B is the mean background per pixel. The total flux is measured as the Ie minimising
Eq. 5.2. Note that the parameter Ie appears twice in the equation, which makes the closed
form not feasible. Instead, we have minimised Eq. 5.2 with a Nealder-Mead algorithm from
SciPy (Jones et al., 2001).

5.3.2 Aperture photometry

Aperture photometry (§ 3.2, Mighell 1999) is widely used in a large number of surveys e.g.
DES (Drlica-Wagner et al., 2018) or Pan-STARRS (Magnier et al., 2020), and also in PAUS
(§ 3.4.2 and Serrano et al. in prep.). This approach measures all the pixel contributions inside
an aperture of radius R with subtraction of the background light (Eq. 3.4).

In PAUS, the apertures are elliptical, and their areas target a fixed amount of galaxy
light (§ 3.4.2), in our case 62.5% of the flux. Therefore, obtaining the total flux requires
scaling the measurement by 1/0.625. For a target percentage of light, R is estimated using
a simulated galaxy profile (Sérsic index, size, ellipticity) convolved with the image PSF. The
background light is measured as the mean of the pixel values within an annulus of Rin = 30
pixels, Rout = 45 pixels centered at the targeted galaxy.

5.3.3 Weighted pixel sum

In aperture photometry, all pixels within the aperture contribute equally to the total flux,
i.e. pixels at the galaxy border and at the centre of the galaxy contribute the same. This is
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not optimal in terms of total signal-to-noise, especially for small and faint galaxies where all
the signal is distributed among very few pixels. Weighting differently each pixel contribution
could increase the SNR of the measurements.

There are different choices of weights, some providing a higher signal-to-noise than others.
Indeed aperture photometry is just a concrete case of pixel weighting, where pixels within
the aperture have a unity weight and those outside do not contribute.

The weighting we are interested in is that giving the most optimal unbiased linear solution.
This means the unbiased estimator providing the maximum signal-to-noise (SNR), which can
be written as

SNR =

∑
iwimi√∑

iw
2
i (mi + bi)

, (5.3)

where bi, mi and wi are the background mean value, the signal mean value and the optimal
weight in pixel i, respectively. Maximising the signal-to-noise (Eq. 5.3) as a function of the
pixel weights wi leads to

wx =

∑
i mi∑

im
2
i /(mi + bi)

1

1 + bx/mx

, (5.4)

where wx is the optimal weight of pixel x (see Appendix 5.A for a more detailed derivation).
This is the linear estimator providing the most precise unbiased flux measurements. However,
obtaining the optimal weights in Eq. 5.4 requires a perfect knowledge of the galaxy light
profile and consequently, uncertainties in the pixel signal and background noise degrade the
precision of the flux measurements. Nonetheless, this methodology puts a limit on how
well linear methods can measure galaxy fluxes, which can be used to benchmark the Lumos

performance.

5.4 Lumos: Measuring fluxes with a CNN

In this section, we describe Lumos, our deep learning algorithm to measure the photometry
of astronomical objects. We will discuss the network’s input data (§5.4.1), its architecture
(§5.4.2) and the training procedure (§5.4.3 and §5.4.4).

5.4.1 Input data

The Lumos input consists of two types of data, the most important input including two images
of 60 × 60 pixels. The first one is made of an image cutout centered at the target galaxy
and covering 16x16 arcsec of the night sky (given that PAUCam pixel scale is 0.263, § 2.2.2).
Although most PAUS galaxies have a half-light radius between 1 and 3 pixels, which would
not require such a large cutout, we already showed that the network needs larger stamps to
accurately model the background noise fluctuations and scattered-light patterns (§ 4). The
second image contains the convolved galaxy profile drawn using the parameters from an ex-
ternal detection catalogue. We have tested other possibilities like, e.g. using the true galaxy
profile, the PSF profile or both separately, obtaining the best results with the convolved
galaxy profile. Note that in the training phase the input galaxy cutouts are Teahupoo
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image simulations (see §5.2.2), while in the testing phase these of PAUCam galaxy cutouts .

While the network can directly estimate the photometry using only images, we have found
that additional information improves the results. This information is the second type of input
and it currently includes:

1. The i-band magnitude of the target galaxy obtained from the external catalogue. This
is not strictly needed as the network works without this information. However it helps
providing better photometry uncertainties and so far Lumos requires other information
(galaxy profile, coordinates) from an external catalogue anyway.

2. The CCD coordinates. PAUCam images contain scattered-light with a band-dependent
spatial pattern across the CCD. This makes the CCD position and the band relevant
information for the network (Figs. 4.2 and 4.1).

3. The narrow band filter identification. The galaxy flux distribution is different for
each narrow band filter. Furthermore, the scattered-light pattern also depends on
the narrow-band filter. Therefore, the band provides valuable extra knowledge of the
expected flux and background noise pattern.

4. A camera intervention flag. The camera was modified while observing the COSMOS
field (see § 3.4.4). Therefore, the network also benefits from knowing if an image was
taken before or after the camera intervention. As we did in BKGnet, this information is
combined with that of the narrowband filter and given as an 80× 10 trainable matrix
(see § 5.4.2 for more details). In practice, the network effectively works for all intents
and purposes as having 80 different narrowband filters instead of 40.

How these inputs are combined and given to the network is described in the next subsection.

5.4.2 Lumos architecture

The Lumos architecture (see Fig. 5.4) has two differentiated parts, a CNN (§ 1.2.1) and a MDN
(§ 1.2.2). The CNN works directly on the input images, and it builds with five blocks of con-
volution, pooling, and batch normalisation layers. These layers are represented in Fig. 5.4
as orange, blue, and purple stacked blocks, respectively. The CNN’s output is transformed
into a 1D array including the galaxy image information and then combined with external
information regarding its i-band magnitude, its position in the CCD, the narrow-band filter
it was observed with, and the camera intervention flag (see §5.4.1). For the band information,
the network uses an 80× 10 matrix, where each combination of band × camera intervention
flag (before/after) is represented by 10 features to be trained.

The CNN’s output array combined with the galaxy information is the input of the MDN.
The MDN in Lumos consists in four fully-connected layers with parameters 5000:1000:100:15
(§ 1.2). It outputs five mixing coefficients (α) together with five pairs of (µ, σ) parametrising
the Gaussian components. This kind of network architecture has already been implemented
to predict PAUS photo-z probability distributions in Eriksen et al. (2020).
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dimension of the following. The CNN’s output is linearised (green stick), combined with
external information (coordinates, NB filter and i-band magnitude) and input to a MDN.
The MDN outputs a probability distribution of the total flux as a linear combination of five
Gaussians.

The choice of loss function is a crucial step in the construction of a neural network (§ 1.2).
Lumos combines two loss functions, the first as in Eq. 1.5, which is the most common loss
function for Gaussian MDN, and a modified version of it in Eq. 5.6, which is motivated by
the fact that physical galaxies have positive flux values. This alternative loss also corresponds
to the Gaussian negative log-likelihood, but integrated from 0 to∞, which changes the PDF
normalisation, i.e.

log (G(x)) = log

(
2

π

)
+ log

(
exp

(−1
2
(x− µ)2

σ2

))
+

log

(
σErf

(
µ√
2σ

)
+ σ

)
, (5.5)

which leads to the following loss function

LMDN =
k∑

i=1

log (αi)−
(fi − f̄)2

σ2
i

− 2 log (σi)−

log

(
Erf

(
f̄√
2σi

)
+ 1

)
, (5.6)

where again f̄ is the true flux and σi is the flux uncertainty. Therefore, the truncation of the
Gaussian distribution effectively corresponds to an additional term in the loss function. Lumos
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combines both loss functions and uses Eq. 1.5 on objects with iAB < 20.5 and Eq. 5.6 for the
rest of the sample. Choosing a single loos function for all magnitudes also works, however
combining the two improves the photometry for the faintest and the brightest galaxies.

5.4.3 Unsupervised transfer learning

Transfer learning (Tan et al., 2018; Zhuang et al., 2019) is a deep learning technique that
aims to adapt a model trained to make predictions on a particular task to work on a similar
but different problem. One example is a classifier trained to distinguish between cats and
dogs adapted to discriminate between horses and zebras. Instead of training from scratch,
the zebra-horse classifier starts with the optimised weights from the cat-dog classifier, in such
a way that the network has already learnt to extract shared features, e.g. detecting edges and
shapes. Such mutual features are commonly extracted in the shallower layers of the network,
while deeper layers pick up more subtle data traits. For this reason, many times transfer
learning only requires training deeper layers of the network, while the shallower ones are kept
from the initial network.

The same idea can be applied to adapt models trained on simulations to perform well on
data (Tercan et al., 2018; Eriksen et al., 2020). To train a supervised network, one needs
data with a known solution (labelled data). Many times, there are not enough labelled data
to train a network from scratch. A possible solution in such cases is to train the network on
simulations and use a small labelled dataset to adapt the model to the data. This requires
two consecutive trainings, one initial on simulations and an additional one on data with the
network parameters from the training on simulations as a starting point. Domı́nguez Sánchez
et al. (2019) uses transfer learning to adapt a morphology classifier trained on SDSS images
to work on DES images.

Lumos is trained on Teahupoo image simulations (see §5.2.2 for more details), and we
cannot apply supervised transfer learning as there are no data with known photometry. In-
stead, we will use the compatibility of independent observations of the same galaxy in the
same narrow-band filter to implement what we call unsupervised transfer learning.

We have collected a set of PAUCam observed galaxy pairs, with two independent images
of the same galaxy observed with the same narrow-band filter. Lumos should predict com-
patible flux PDFs for the two observations of the same object, learning to ignore differences
in e.g. the background noise and the PSF. Therefore, after training Lumos on Teahupoo
image simulations, we retrain it on the set of PAUCam galaxy pairs, forcing compatibility
between the two flux measurements. With this procedure, we make sure that Lumos has seen
PAUCam data before evaluating the network on the test sample.

The unsupervised transfer learning loss function compares the probability distribution of
two observations. Before comparing the PDFs, these need to be calibrated with the image
zero-point (see §3.4.1 for more details). The PDFs are parametrised with five Gaussian
distributions (as provided by Lumos, see §5.4.2), in such a way that each Gaussian component
in the first observation compares to all the components in the second observation. The
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negative log-likelihood of the difference between the two predicted PDFs takes the form of

LUTL =
∑
i

∑
j
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1

2
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−
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)]
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2
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2
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j

, (5.7)

where fi (fj) is the i-th (j-th) Gaussian component of the first (second) exposure, and simi-
larly for σ.

5.4.4 Training procedure

Lumos is trained with 500 000 simulated images constructed combining simulated galaxies
and PAUCam cutouts (see §5.2.2). The sample is split into 90% for training and 10% for
validation. We also generate 10 000 independent simulated galaxies for testing. Lumos is
trained for 100 epochs with an initial learning rate of 10−4, which is reduced by a factor of 10
every 40 epochs. We use Adam (Kingma & Ba, 2014) as optimisation algorithm. The training
takes about 20 hours with an NVIDIA TITAN V GPU.

The network is trained with a relatively large batch size of 500 galaxies. As simulations are
constructed from PAUS flux measurements and PAUCam background cutouts, Teahupoo
image simulations might contain some outliers. We have filtered the training sample to re-
duce outliers (see the last paragraph in §5.2.2), however, a few poor training examples can
still be part of Teahupoo images. The large batch size reduces their effect on the overall
loss function and, consequently, on the network’s training.

After the supervised training, we apply the unsupervised transfer learning (§ 5.4.3). This
part is trained with 20 000 galaxy pairs. A danger of applying unsupervised transfer learning
is that nothing prevents the network from biasing the flux predictions, since Eq. 5.7 does
not directly constrain the flux prediction but the pairwise consistency. For this reason, we
have also included a supervised training with 20 000 simulations. The loss function ends up
combining Eqs 1.5, 5.6 and 5.7 and therefore becomes

L = LMDN + LUTL . (5.8)

These two losses are weighted equally in the loss function. Nevertheless, this is not strictly
necessary and one could consider weighting them differently.
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Lumos has already been trained on reliable simulations, therefore its parameters should
be close to optimal before the unsupervised transfer learning. Consequently, the transfer
learning only varies the parameters in the last linear layer instead of training all the network
parameters. This reduces the training time and reduces the risk of overfitting. The unsuper-
vised transfer learning phase is trained for 100 epochs, with an initial learning rate of 10−5,
which is reduced by a factor of 10 every 50 iterations.

5.5 Lumos flux measurements on simulations

In this section we test Lumos on Teahupoo galaxies. We first validate the flux probability
distributions (§5.5.1), followed by a comparison with other flux estimation methods (§5.5.2).
Finally we test how well Lumos performs on blended galaxies (§5.5.3).

5.5.1 Flux probability distributions

Most photometry algorithms only provide a flux measurement and its uncertainty. In con-
trast, Lumos provides the flux probability distributions as a linear combination of five Gaus-
sians (see § 1.2.2 and §5.4.2). Figure 5.5 shows the predicted flux PDFs for two PAUCam
galaxies (solid lines) and two Teahupoo galaxies mimicking them (dashed lines). The flux
probability distributions on data and the simulations are very similar, providing additional
confidence on the reliability of Teahupoo galaxies. The similarity between PAUS and
Teahupoo galaxies is also tested in §5.2.3.

The predicted flux PDFs are not Gaussian, e.g. the faintest galaxy in Fig. 5.5 displays
secondary peaks on the left and right of the main one. This type of PDF is common in
Lumos predictions, where fainter galaxies exhibit more non-gaussianities than brighter ones.
In general, Lumos PDFs are more Gaussian at redder bands, where galaxies are also brighter.
At the blue end, many PAUS galaxies have fluxes very close to 0 for which Lumos commonly
provides very non-Gaussian PDFs (see §5.6.3 for further discussion).

Probability Integral Transform (PIT) on simulations

The Probability Integral Transform (PIT, Dawid, 1984; Gneiting et al., 2005; Bordoloi et al.,
2010) tests the quality of the probability distribution. It is defined by

PIT ≡
∫ f∗

−∞
df φ(f) (5.9)

where f ∗ is the true flux value and φ(f) is the predicted probability distribution. When φ(f)
faithfully represents the true value, the PIT distribution is the uniform distribution U[0,1].

In Fig. 5.6, we have estimated the PIT value for 10 000 Teahupoo galaxies with known
flux. The plot shows two distributions, one including (solid blue line) and another not includ-
ing (dashed red line) the CCD coordinates of galaxies. When the training does not include
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Figure 5.5: Flux probability distributions provided by Lumos for two PAUCam galaxies
(Gal1, Gal2, solid lines) and their Teahupoo imitations (dashed lines).

the coordinates, the PIT distribution displays two peaks of outliers at the first and last bin of
the histogram. These outliers correspond to galaxies with strongly varying background light
that require accurate knowledge of the background noise patterns in the different narrowband
filters.

In contrast, when the training includes the CCD coordinates, the PIT test displays a
flat U [0, 1], showing that Lumos provides robust flux probability distributions and that CCD
coordinates are essential information for cutouts in scattered-light regions. This is consistent
with the results in Fig. 4.7, where the CCD coordinates proved essential to predict accurate
backgrounds (solid black line).

Single flux and flux uncertainty measurements

Although the flux PDF provides more information than single-value measurements, many
applications require a single-flux measurement and its associated uncertainty. Flux point-like
estimates can be computed with different statistical estimators, e.g. the mean, the median,
and the peak. For (almost) Gaussian PDFs, these estimators lead to very similar flux mea-
surements. However, when the PDFs move away from gaussianity, these estimators can
provide significant differences among them. As an example, in Lumos multiple peaked dis-
tributions tend to provide higher flux measurements with the median than with the peak.
This is because this kind of PDFs commonly represents faint objects with the main peak very
close to zero. Then, the secondary peaks and the tails shift the PDF towards higher fluxes
(e.g. Fig. 5.17 ).
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Figure 5.6: PIT distribution of the Lumos flux PDFs on a set of 10 000 Teahupoo galaxies.
We have tested Lumos PDFs with (solid blue line) and without (red dashed line) including the
CCD coordinates. If the CCD coordinates are not included, Lumos provides outliers (peaks
at 0 and 1) corresponding to scattered-light affected objects.

For the flux uncertainty, the most straightforward estimator is the standard deviation.
However, another possibility is σ68 (Eq. 3.22). For Gaussian distributions, these two esti-
mators coincide. However, in the case of non-Gaussian PDFs, σ68 is more robust towards
distributions with tails but provides higher uncertainties in the presence of multiple peaks
(see §5.6.3 for further discussion).

Even though the median and σ68 are more robust with noisy PDFs, they require the
explicit PDF construction from the predicted Gaussian parametrisation. This is time con-
suming, and we already have more than 10 million galaxy exposures in the small COSMOS
field. A fast alternative is to analytically determine the mean and the variance from the
Gaussian component parameters. The mean flux (f) is estimated as

f =
∑
i

αi · µi , (5.10)

where αi and µi are the mixing coefficient and the expected value of the i-th Gaussian
component, respectively. The associated variance (σ2

f ) is then given by

σ2
f =

∑
i

[
αi

(
σ2
i + (µi −

∑
j

αjµj)
2

)]
, (5.11)

where σ2
i is the variance of the i-th Gaussian component.
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5.5.2 Comparison with different flux estimation methods

While Lumos has proven to provide reliable flux probability distributions, other methodologies
as model fitting or aperture photometry are also able to provide accurate flux estimates (e.g.
Lang et al., 2016; Drlica-Wagner et al., 2018; Kuijken, 2008). In this section, we will use
simulations to compare the performance of Lumos with a profile fitting method (§ 5.3.1),
aperture photometry (§ 5.3.2) and a linear weighted sum of pixels (§ 5.3.3). To quantify the
quality of the flux measurements, we will use

Bias : Median [(f − f0)/f0] , (5.12)

Dispersion: σ68 [(f − f0)/f0] , (5.13)

where f0 is the ground truth flux.

Figure 5.7 compares the bias (left panel) and the dispersion (right panel) in the flux pre-
dictions as a function of the iauto magnitude for the four methods. The model-fitting method
(purple dashed-dotted line) displays a systematic increment of the bias with magnitude, with
a 20% bias at the faint end. PAUS galaxies are already hard to distinguish from background
fluctuations for magnitudes iAB > 20 (see Fig. 5.2), which could severely complicate the fit-
ting at fainter magnitudes.

The second method is the pixel-weighted sum. It is unbiased for objects with i < 21,
but fainter objects are 10% biased. While the optimal weights (Eq. 5.4) ensure unbiased flux
estimates, these also require perfect knowledge of the galaxy profile and the background light.
On our simulations (§ 5.2.2), the galaxy light distribution is known, however the background
light is not. Therefore, at the faint end, where the galaxy signal is comparable to the back-
ground fluctuations, the weights (Eq. 5.4) seem to be very sensitive to inaccuracies in the
background noise modelling. In contrast, aperture photometry and Lumos provide unbiased
estimates to a 5% level up to magnitude 22.

In terms of dispersion, Lumos is the most precise method with σ68 ≈ 0.36. This implies a
28% improvement with respect to the linear pixel weighting method, which is the second-best
method with σ68 ≈ 0.47. As expected, the optima-weighted sum is the most precise unbiased
linear method, but it degrades at fainter magnitudes. Lumos overcomes the linear-optimal
weighting with a non-linear mapping and provides good flux estimates at all magnitudes.

The previous results combine measurements from all narrow-band filters. Considering
flux measurements in each narrow-band filter independently, bluer bands with lower signal-
to-noise have a higher dispersion. Furthermore, the flux measurements are unbiased to a 3%
level in all narrow-band filters, and these also show unbiased for all galaxy sizes (r50 and
PSFs.

5.5.3 Deblending with Lumos

Blending is the superposition of galaxies with other astrophysical objects along the line of
sight. It affects the photometric and shape measurements contributing to systematics in weak

82



16 17 18 19 20 21 22
Iauto

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Bi
as

16 17 18 19 20 21 22
Iauto

0.2

0.4

0.6

0.8

1.0

1.2

68
[(f

f 0
)/

f 0
]

Aperture photometry
Lumos
Optimal weighted sum
 Model fitting

Figure 5.7: Comparison of the bias (left panel) and the dispersion (right panel) among the flux
measurements with Lumos, aperture photometry, model fitting and optimal pixel weighting.
These results include galaxy image simulations in the 40 PAUS narrowband filters. The I-
band magnitude corresponds to the AUTO magnitude as measured by the HST-ACS on the
COSMOS field.

lensing studies (Arcelin et al., 2021). Deblending will be a challenge for future ground-based
photometric surveys such as LSST and Euclid (Laureijs et al., 2011) and it has recently been
approached with deep learning techniques (Boucaud et al., 2020).

In this section, we test if Lumos can extract the galaxy photometry of blended the target
galaxies. Even though Lumos is not explicitly trained to predict the photometry in the pres-
ence of other galaxies, the simulated galaxy images contain background cutouts from PAU-
Cam images centred at random CCD positions (§5.2.2). Consequently, the training sample
contains examples of blended galaxies. Machine learning algorithms are flexible enough to
learn how to extract the photometry of blended sources by only including examples in the
training sample, without explicitly constructing the algorithm for this task.

We have generated 3600 60× 60 pixel realisations of the same target Teahupoo galaxy,
located at the central pixel of the stamp. Each of these realisations also contains the same
PAUS galaxy centred on a different pixel at a time. The PAUS galaxy moves across the
image cutout in steps of one pixel, in such a way that it ends up covering all the pixels in
the stamp. Therefore, the realisation where the PAUS galaxy is located at the central pixel
corresponds to a total blending with the Teahupoo galaxy.

Figure 5.8 shows the accuracy in the flux measurement as a function of distance to the
overlapping source. The target galaxy is fainter than the overlapping one, with iAB = 22
and iAB = 20, respectively. With aperture photometry (dashed red line), the flux is consid-
erably biased for all distances R. For R < 15, the bias measurement is caused by light from
the overlapping source accounted inside the aperture. At larger R values, the background
noise prediction is also affected by the overlapping source. In the PAUS aperture photometry
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pipeline, the background is estimated within a 15-pixel wide annulus, located at 30 pixels
from the target source. When the overlapping source is very bright, as it happens in this
example, it can affect the background prediction and the flux prediction at the same time,
which degrades the performance even more.

On the other hand, Lumos (blue solid line) extracts better the photometry of blended
galaxies. The relative bias of the measurement in Fig. 5.8 fluctuates around 2-10% for differ-
ent distances R. Unlike aperture photometry, Lumos can distinguish between the two galaxies
and consider the overlapping one a source of noise.

In Fig. 5.9, we explore the Lumos deblending capability as a function of the magnitude
and distance to the overlapping galaxy. For the top plot, we have simulated 20 image cutouts
with an iAB ≈ 21 galaxy at the centre (the same for the twenty realisations). In each of the
cutouts, we have included a second source always located at five pixels from the centre, but
which varies brightness among realisations. We have also applied a σ-clipping of the annulus
to make a more robust background measurement. As indicated in the previous test, Lumos
shows more robust towards overlapping nearby sources, even when these are bright. In all
cases, aperture photometry provides biased measurements due to the proximity of the source.

For the bottom plot, we have proceeded similarly. We have generated ten realisations of
the same galaxy with magnitude iAB ≈ 21 and in each of the cutouts, we have included a
second source with iAB ≈ 22, but located at a different distance from the target source. The
plot exhibits the photometry accuracy as a function of the distance between the target and
the overlapping source. Again, the plot shows much better accuracy for Lumos than aperture
photometry.

5.6 Lumos photometry on PAUS data

In this section, we present the Lumos photometry extracted from PAUCam images in the
COSMOS field. First, we show single observation measurements (§5.6.1) and compare them
to SDSS measurements (§5.6.2). We then discuss the co-added flux measurements (§5.6.3)
and show the photometric redshift results with Lumos photometry (§5.6.4).

5.6.1 Single exposure measurements

PAUS has taken around 10 000 images in the COSMOS field (§3.4.4), which contain ten mil-
lion galaxy observations. In this section we only show the results on the spectroscopic sample
with iAB < 22.5, which are ≈ 3 million exposures from 15 000 galaxies. For the targeting, we
use the Ilbert et al. (2008) catalogue, which is also the MEMBA detection catalogue (§ 3.4.2).
Given a PAUCam image, Lumos matches it with the detection catalogue and creates the
cutouts around the sources. The external catalogue also provides a value for the half-light
radius, the ellipticity, and the Sérsic index, which are used to generate the modelled galaxy
profiles (see §5.4.1).
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Figure 5.10: Flux and flux uncertainty ratios between Lumos and MEMBA photometry in equally
populated magnitude bins. The shaded areas correspond to the 16th and 84th quantiles.

Flux and flux error measurements

In this section, we use flux and flux error point estimates calculated as the mean and the vari-
ance of the Lumos flux PDFs (§ 5.5.1 and Eqs. 3.4&3.5). For MEMBA, we use flux measurements
from aperture photometry with the background subtraction from BKGnet, which has proven
more accurate than that estimated with an annulus. Figure 5.10 shows the flux (dashed blue
line) and flux error (solid red line) ratios between Lumos and MEMBA photometry in all narrow-
band filters. The shaded areas correspond to the 16th and 84th quantiles. For the full sample,
the flux ratio between the two photometries is 0.99. In magnitude bins, this ratio oscillates
between 0.95 and 1.02, with Lumos measuring ≈ 4% less flux in the brightest (iAB < 18) and in
the faintest (iAB > 22) bins. At the faintest end, the spread in the flux ratio increases, which
is natural since these galaxies are noisier. Studying each narrow-band filter independently, all
the ratios but those from the three bluest bands (”NB455“, ”NB465“ and ”NB475“) oscillate
between 0.95 and 1.03. The three bluest bands display a ≈ 0.9 ratio between MEMBA and
Lumos. We attribute this difference to very faint galaxies with negative flux measurements
in MEMBA, which are not allowed in Lumos. MEMBA has proven accurate enough to obtain very
precise photo-zs, therefore measuring similar fluxes with MEMBA and Lumos is a good first test.

Altogether, Lumos also provides 40% lower flux uncertainties than MEMBA displaying a
lower error for 85% of the photometry measurements. The ratio between Lumos and MEMBA

flux uncertainties (Fig 5.10) is not constant with magnitude. Lumos shows 60% lower errors
for objects with iAB > 22. This number monotonically decreases to e.g. 30% at iAB = 21 and
10% at iAB = 20.5, while some of the brightest objects display lower errors with MEMBA. At
the brightest end, the uncertainty ratio between Lumos and MEMBA has a large scatter. This is
attributed to some bright galaxies with significantly large uncertainty in the Lumos measure-
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ment. While aperture photometry provides a purely statistical error, in Lumos, any additional
source of error is also accounted for in the uncertainty estimate. For example, Lumos can cap-
ture inaccuracies in the profile parameters used to infer the photometry (e.g. ns and r50), as
it sees both the galaxy image and the modelled galaxy. Therefore, the network can capture
discrepancies or potential sources of inaccuracies and account for them in the photometry
uncertainty. Following this line of study, inaccuracies in the profile parameters would most
likely have a larger impact on the photometry of large, bright, and resolved galaxies, where
e.g. slightly underestimating r50 could easily lead to a quite biased flux measurement. This
could also explain the large spread in the uncertainty ratio at the brightest end.

Colour histograms

Assuming that galaxies have an underlying distribution of colours, the width of the colour
histograms estimates the uncertainty in the photometry measurements. Photometry uncer-
tainties broaden the intrinsic width of the colour histogram. Consequently, the photometry
providing narrower colour histograms is that with the lowest uncertainties. Using colour
histograms to compare photometries was used in Wright et al. (2016), where they presented
and implemented LAMBDAR to improve the Galaxy and Mass Assembly (GAMA, Driver et al.,
2011) photometry .

Figure 5.11 shows the ”NB785“-”NB795“ colour distribution (more colour histograms can
be found in Appendix 5.D). By eye it can be already noted that Lumos provides a narrower
colour distribution than MEMBA. We have estimated the width of such colour histograms with
σ68 and σ95

3. Concretely, MEMBA provides σ68 = 0.26, while Lumos results in σ68 = 0.19, which
corresponds to a 30% lower effective width. Considering σ95, Lumos reduces the width a fac-
tor of ≈3, from 0.74 to 0.41. This indicates that Lumos reduced the number of photometry
outliers, which are not affecting σ68 but enlarge σ95. Such photometric outliers are located
asymmetrically on the tails of the distribution, which triggers the skewness of the histograms
and therefore a shift in the median of the MEMBA histogram with respect to that of Lumos.
This can be noted in the NB785-NB795 colour histogram, but also in other colour histograms
in Fig. 5.22.

The other narrow bands also show narrower colour histograms with Lumos (Appendix
5.D, Fig. 5.11). Furthermore, the relative difference in σ95 is systematically higher than with
σ68. This is likely related with exposures with noisy photometry and outliers, which lay in
the tails of the colour histograms (see Appendix 5.D for more details).

Validation of the flux uncertainties

To test Lumos flux uncertainties and ensure that these are not artificially low, we have made
use of PAUS taking multiple observations of the same galaxy in the same narrow-band filter.

3σ95 is equivalent to σ68 but considering the 2.5 and 97.5 quantiles, i.e. the width accounts for 95% of the
data.
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Figure 5.11: MEMBA (red dashed line) and Lumos (solid black line) colour histogram for nar-
rowband colour (NB785-NB795). Note that the photometry with lower uncertainties is that
displaying a narrower colour histogram, which in this case is the Lumos photometry

.

This is the same technique as used in the analysis of BKGnet uncertainties (§,4.5). Two obser-
vations of the same galaxy in the same narrow band must have compatible flux measurements.
Therefore, the distribution

D ≡ (f1 − f2)√
(σ2

1 + σ2
2)

(5.14)

must be a Gaussian with zero mean and unit variance, where f1, f2 are the flux estimates of
two independent observations of the same object and σ1, σ2 are their associated uncertainties.

Figure 5.12 shows the width of the D distribution in equally populated magnitude bins.
To be less affected by outliers, we have estimated the width of D with σ68 and both Lumos

and MEMBA display a quite constant unity σ68[D] across the tested magnitude range (solid
black and red dashed lines, respectively). In the case of MEMBA, the background estimation
with aperture photometry was providing 20% underestimated errors at the bright end. This
trend was fixed using BKGnet (see Fig. 4.12).

Figure 5.13 shows the distribution of the quantity defined in Eq. 5.14 with Lumos (solid
black) and MEMBA (dashed red) photometries. As expected, both of them fit a Gaussian with
zero mean and unit variance, however, the MEMBA photometry displays a tail of outliers not
present in the Lumos distribution. This can be connected to Lumos providing not purely sta-
tistical uncertainties. While inaccuracies in the profile parameters or contaminating effects at
the image level are not considered in MEMBA flux errors, Lumos is flexible enough to provide an
error estimate that already takes into account these effects. As an example, if the parent cat-
alogue provides a 10% underestimated r50 for a particular galaxy, with aperture photometry
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equally populated magnitude bins. Robust uncertainties must provide a unity width (marked
by the thick grey dotted line).

the aperture size, and consequently the flux measurement will be also underestimated. How-
ever, the flux uncertainty will only account for the statistical variation in the pixels within
the aperture, and the error in the galaxy profile will not be considered. In contrast, Lumos is
provided with the galaxy and the galaxy modelled image and therefore, differences between
these two are captured and accounted for in the flux uncertainty.

Figure 5.14 compares the median signal-to-noise per narrow band in MEMBA and Lumos

photometries for galaxies with iAB < 22.5. The shaded areas correspond to the 16th and
84th quantiles of the signal-to-noise distribution. For the complete photometry catalogue,
Lumos provides, on average, a 54% higher signal-to-noise. Furthermore, it gives a higher
median signal-to-noise at all wavelengths, although the increment with respect to MEMBA is
higher in bluer bands. For galaxies with iAB > 22, the signal-to-noise is 2.5 times higher in
Lumos. The ratio increases to 3 taking into account only the bluest narrow band (”NB455“)
and decreases to a factor of 2 for the reddest one (”NB845“). This is natural considering that
Lumos gives the greatest improvement in terms of SNR for faint objects. Altogether, ≈ 85%
of the observations have higher SNR with Lumos photometry.

Observation’s flagging

The MEMBA pipeline already provides an outlier flag for its measurements (§ 3.4.2). This is
a discrete value that flags objects with problematic image reductions, e.g. saturated pix-
els, crosstalk, cosmetics, distortion, and undesirable artifacts near the target source such as
scattered-light, cosmic rays and blending. Lumos uses the reduced PAUCam images (§ 3.4.1),
which are affected by all these effects. However, as we already showed in § 4.5 and earlier in
this paper (§5.5.3), Lumos deals with recurrent problems as scattered-light or blending. Fig-
ure 5.15 shows examples of scattered-light (left panel) and cosmic ray (right panel) affected
observations. For the former, MEMBA provides a flux of -43.87 e−/s, while Lumos measures
23.01 e−/s. In the cosmic ray example, MEMBA provides a calibrated flux of -211.21 e−/s,
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Figure 5.15: Observations affected by scattered-light (left panel) and cosmic rays (right
panel). While MEMBA provides outlier flux measurements for both observations, Lumos es-
timates a flux close to that measured in other exposures of the same object.

while with Lumos this is 110.76 e−/s. Other observations of the same galaxy in the same NB
filter provide a mean flux 100.75 e−/s, which suggests that the Lumos measurement is closer
to the correct flux.

Currently, with aperture photometry, 10% of the observations are flagged. Within these
flagged objects, 72% are observations affected by scattered light, 18% have image distortion
effects, and the rest are other minority effects such as crosstalk, cosmic rays, and cosmet-
ics. Lumos predictions are only affected in the presence of image distortions, cosmetics, and
saturated pixels, which reduces the number of flagged observations from 10% to 2%. This
reduction highlights that Lumos is more robust towards outliers in the photometry. This is
particularly interesting since the network is not explicitly trained to deal with artefacts like
cosmic rays and crosstalk signals. However, by using PAUCam background cutouts, we in-
clude examples of such effects in the training sample from which Lumos learns to make robust
predictions. As a result, Lumos increases the size of the galaxy sample that is considered
reliable.

5.6.2 Comparison with SDSS spectroscopy

We have compared the Lumos flux measurements with synthetic PAUS photometry to have
another validation of the flux estimates. The synthetic PAUS photometry convolves SDSS
galaxy spectra with the PAUCam filter throughput. Unfortunately, the synthetic PAUS data
corresponds to a bright sample with a magnitude limit iAB < 20.5, which only provides
validation of bright sources. Comparing PAUS with PAUS synthetic data requires having
spectra and PAUS photometry of the same galaxies and matching them by sky position (we
have paired galaxies within 0.5 arcsec). It also requires scaling the synthetic PAUS fluxes with
a multiplicative zero point (zp). The zero point is obtained by minimising the χ2 between
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Figure 5.16: Comparison between PAUS flux measurements and SDSS measurements con-
volved with PAUCam filters (PAUS synthetic fluxes). The solid black line corresponds to
Lumos measurements and the red dashed line to MEMBA.

PAUS observations and PAUS synthetic fluxes, i.e.

χ2 =
∑
i

(fSDSS,i − zp · fSDSSPAUS,i)
2

σ2
SDSS,i + zp2 · σ2

SDSSPAUS,i

, (5.15)

where SDSS is the observed SDSS photometry, SDSSPAUS is the SDSS-PAUS synthetic flux
and the sum (i) is over the gri bands. This minimisation provides a median of 1.64 with a
σ68 = 1.01.

Figure 5.16 shows that both MEMBA and Lumos agree well with SDSS-PAUS convolved flux
measurements. MEMBA displays a lower spread than Lumos, with σ68 = 0.22 and 0.24, respec-
tively. Nonetheless, Lumos shows a 5% bias while in MEMBA this goes to 10%. Furthermore,
the number of observations at more than 5σ from the mean of the distribution reduces by 2
with Lumos, going from 3% to 1.5%.

5.6.3 Coadded flux measurements

The co-added flux measurements are constructed combining individual observations of the
same galaxy in the same narrow band (§ 3.3.1). Co-adding exposures increases the signal-to-
noise of the galaxy photometry and it is very helpful to reject wrong observations. Before
co-adding individual observations, a zero-point calibration per image is required, which in
our case is done relative to SDSS (§3.2.1). PAUS implements flux measurements co-addition
(fcoadd) as a weighted sum of the individual observations

fcoadd =

∑
i fi/σ

2
i∑

i 1/σ
2
i

, (5.16)
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where the weights are the inverse variance of the observations and fi and σ2
i are the flux

measurement and its variance of the ith observation, respectively.

Lumos calibrates the Gaussian components individually with the photometric zero-point
in such a way that when the these are combined, they already provide a calibrated PDF
for the flux observation. With Lumos, combining point like estimates with Eq. 5.16 is still
possible. Nevertheless, it can also generate co-added measurements combining the probabil-
ity distribution of the individual galaxy observations. Figure 5.17 shows an example of the
co-added flux PDF of a faint galaxy. The dashed coloured lines correspond to the individual
observations while the black line is the co-added PDF. This example also shows the benefit
of creating co-adds at a PDF level. Combining point-like values would only provide a flux
measurement close to the co-added PDF peak. In contrast, combining the PDFs keeps the
contributions from the secondary peaks and the tails and therefore, it contains more valuable
information about the measurement than a single point-like estimate.

Furthermore, having the PDF enables the calculation of the flux and flux uncertainty
using different statistical estimators, e.g. the median or the peak. From the co-added flux
PDF, we estimate the mean, median, the peak, the variance, σ68 and σ95. From the two
latest quantities, we construct a measurement of the PDFs gaussianity,

η ≡ σ95/σ68 − 1 , (5.17)

which can be helpful to decide which are the best flux and flux error estimators. While for
a sharp and peaked PDF (η ' 1), the peak or the median would provide similar flux esti-
mates, in non-gaussian PDFs as e.g. the galaxy in Fig. 5.17 these two estimators would give
significantly different measurements. The PDF gaussianity also affects the flux uncertainty
estimators. Broadly, galaxies with η > 1 have σ68 < σstd, while this is the opposite for
galaxies with η < 1. The galaxy in Fig. 5.17 (η = 0.56) is an example f multiple peaked PDF
where σ68 > σstd.

We have tested applying different flux and flux uncertainty estimators based on the η
parameter. However, at the end of the day we have found that the peak of the flux PDF is
the best estimator regardless of the PDF gaussianity and that using σ68, σstd or σ95/2 does
not lead to a significant difference.

5.6.4 Photometric redshift estimates

Accurate photo-z estimates are crucial for many science applications. Improving the photom-
etry signal-to-noise is expected to improve the photo-z estimates. In this section, we have
tested the Lumos photometry by predicting the PAUS photo-z (§3.4.3) with BCNz2 (Eriksen
et al., 2019) and Deepz (Eriksen et al., 2020). Testing the photo-zs has also been particularly
helpful to find and fix some issues in the Lumos photometry missed with other validation tests.
For example, several galaxies were exhibiting oscillating photometry. This kind of object was
detected as a photo-z outlier, and we could trace that galaxy images with sub-pixel shifts
with respect to the centre of the stamp triggered the oscillating pattern.
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Figure 5.17: The co-added flux probability distribution (black solid line) constructed from
its individual observations (colored dashed lines). The upper box displays the σstd, σ68 and
σ95 of the co-added PDF.

Fig. 5.18 shows the photo-z dispersion with BCNz2 or Deepz using Lumos photometry to
iAB < 22.5. We have also included the photo-z result with the MEMBA forced aperture photom-
etry as a comparison. With BCNz2, Lumos photometry reduces the photo-z scatter by 5-15%
for galaxies with iAB > 20.5. However, the right panel also shows a small degradation at the
faintest galaxies with BCNz2 on Lumos photometry (dashed blue line). This degradation is
related with the galaxy redshift rather than to its brightness. At high redshift, photo-zs with
Lumos photometry are statistically better, however there are some high redshfit outliers that
increase σ68. Rejecting galaxies with spectroscopic redshift (zs) zs > 0.8, the faintest galaxies
(iAB > 22) have a 14% lower photo-z dispersion with Lumos than with MEMBA photometry.

Photo-zs with Deepz are not showing this degradation at high redshift. For galaxies with
iAB > 20.5, the Deepz photo-zs are between 10% and 20% more precise with Lumos photom-
etry. Furthermore, at iAB > 22 and without any redshift cut, photo-zs are 15% better. This
suggests that the minor degradation with BCNz2 at high redshift is caused by the photo-z code.

With both photo-z codes, the performance is degrading at the brightest end with the Lu-

mos photometry. This could potentially be triggered by differences between the Teahupoo
image simulations and the data. Bright galaxies with higher SNR are more resolved. There-
fore, discrepancies between the training simulations and the data are more evident and these
could have a stronger effect on the network’s performance. Nevertheless, this effect only
affects a small fraction of the brightest galaxies in the sample, which moreover are not those
we are most interested in.

Lumos photometry reduces the outlier rate with both BCNz2 and Deepz. With BCNz2, the
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Figure 5.18: Left: Photo-z precision with BCNz2 and Deepz using Lumos or MEMBA photometry.
Right : Relative difference between photo-zs with Lumos or MEMBA photometry.

outlier rate is reduced by 5% in the complete catalogue. With Deepz, the improvement is
greater, with 20% less outliers. This number increases to 23% for objects with iAB > 22.

To the best of our knowledge, there is not any photo-z code that could deal with flux
PDFs, and both BCNz2 and Deepz require point estimates for the flux and its uncertainty.
Here, these quantities are the peak and σ68 of the co-added flux PDF. We have also tested
other estimators, e.g. the median, the standard deviation, or choosing different estimators
based on the η parameters (Eq. 5.17). However, the peak and σ68 are those providing the
best photo-z estimates.

The photo-z improvement obtained with Lumos photometry is lower than expected con-
sidering the increment in the signal-to-noise. In Appendix 5.C, we have used PAUS simulated
mocks to test BCNz2 performance with signal-to-noise and its behaviour with artificially in-
jected issues in the sample photometry. The results suggest that the photo-z improvement
should be ≈90% greater than what we see in data if the sample had perfect photometry.
However, errors in the zero-point calibration and outliers in the flux measurements rapidly
degrade the photo-z performance, suggesting that currently, these are potential limiting fac-
tors of the photo-z performance.

5.7 Conclusions and discussion

Accurate galaxy photometry is a key ingredient for imaging surveys to obtain precise photo-
metric redshifts. We have developed Lumos, a deep learning method to estimate the galaxy
flux for astronomical images (§ 5.4.2). Lumos is the evolution of BKGnet (§ 4.3), a deep learn-
ing method that predicts the background light of astronomical images with strongly varying
noise patterns (§ 4.2). In contrast, Lumos predicts the background subtracted galaxy flux,
which requires an intrinsic background noise measurement. The algorithm has been devel-
oped for PAUCam images.
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Lumos is trained on Teahupoo galaxies, image simulations specially built for this work
(§ 5.2.2). Teahupoo galaxy images use PAUCam image cutouts for the background noise.
Astronomical images contain distorting effects, e.g. scattered light and crosstalk, triggering
inaccuracies in the photometry. Including PAUCam cutouts in the simulations ensures that
Lumos has training examples to learn how to deal with such effects. Without explicitly de-
veloping Lumos to provide photometry in the presence of distorting artefacts, the network
provides reliable flux measurements on PAUCam observations affected by scattered light,
cosmic rays, and other contaminating effects that require flagging with aperture photometry
(§ 3.4.2).

Furthermore, we have tested the Lumos deblending capability on simulations (§5.5.3). Lu-
mos can extract the target-galaxy photometry much better than aperture photometry without
explicitly including blended galaxies in the training sample (Fig 5.8). While aperture pho-
tometry provides a catastrophic flux measurement for blended sources, Lumos can provide
a flux with 2-10% accuracy, depending on the distance in pixels to the overlapping source.
This is particularly interesting since Lumos is not developed to deblend galaxies. However,
this came without additional cost by using deep learning and real PAUCam background noise
patterns.

Lumos consists on a CNN followed by a MDN (Fig. 5.4). While most photometry algo-
rithms provide a flux value and the associated uncertainty, Lumos outputs the flux probability
distribution as a linear combination of five Gaussian distributions. Even if many science ap-
plications require photometry point estimates, having the PDF enables the generation of a
co-added flux PDF (§5.6.3). The co-added flux PDF keeps valuable information about the in-
dividual flux exposure distributions that would be missed by combining point-like estimates.
While using the full PDF would require a reworking of the pipelines using the photometry as
an input, this can also be part of an end-to-end photometry machine learning pipeline that
goes from images to photo-z estimates. The network could benefit from all the information
available in the full PDF to provide more precise photo-z estimates.

On PAUS observations, Lumos provides fluxes that differ less than 1% from the baseline
aperture photometry measurements (§5.6). Concerning uncertainties, our photometry errors
are 40% lower than with aperture photometry. This translates into between 1.5 and 3 times
higher signal-to-noise in Lumos than in MEMBA, with the largest improvement at the faint
end (Fig. 5.14). We have run the BCNz2 and Deepz codes with Lumos photometry (§ 5.6.4),
resulting in a reduction of the photo-z scatter with both (Fig 5.18). The photo-z improve-
ment using Lumos photometry is greater with Deepz rather than with BCNz2. Deepz with
Lumos photometry reduces the scatter by 10% on the full catalogue and 13% for galaxies with
iAB > 22. Furthermore, it also reduces the outlier rate (Eq. 3.23) by ≈ 20%. Nevertheless,
Appendix 5.C shows that the photo-z improvement is limited by the photometric calibration
and outliers in the sample. These outliers can have different natures as e.g. the Lumos pho-
tometry itself and problems in the reduced PAUCam images.

Lumos obtains the largest improvement at fainter galaxies, showing less degradation than
aperture photometry. Future imaging surveys like Euclid or LSST will observe much deeper
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galaxies with very low signal-to-noise, where Lumos could be a helpful tool to improve the
photometry. Furthermore, Lumos is robust for blended sources, which could be also benefi-
cial for future deeper surveys where the number of blended galaxies will significantly increase.

Although we have only tested the method on PAUCam images so far, we believe the
methodology should readily apply to other imaging surveys. This would require training
Lumos with simulated galaxies mimicking the targeted survey. Nevertheless, one potential
difficulty of the method applied to deeper surveys is the modelled galaxy profile input. While
there exist previous deeper observations of PAUS galaxies, deeper surveys like LSST will
observe galaxies for which there is no previous knowledge. Not using the modelled profile in
the training barely affects the overall predicted flux measurements, however, this degrades
the signal-to-noise by 15%.

Lumos supersedes BKGnet and provides background-subtracted flux measurements, which
requires a measurement of the background light contribution. Consequently, Lumos deals
with potential correlations between the galaxy flux and the background light that are not
easy to address analytically. Moreover, in this work, we have combined two independent
networks, Lumos and Deepz, which provides the greatest photo-z obtained. This motivates
an end-to-end pipeline that supersedes Lumos, providing multi-band galaxy photometry and
the photometric redshift (§ 7).
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5.A Flux estimation methods: derivations

This appendix derives the linear combination of pixel values giving and unbiased and optimal
flux measurement (Eq. 5.4). The SNR of the measurement when combining pixels with mean
m and weight w is

SNR =

∑
iwimi√∑

iw
2
i (mi + bi)

, (5.18)

where bi is the background mean value. The optimal SNR is found by requiring stationary
derivatives for all weights independently, which results in

wx = λ
mx

(mx + bx)
(5.19)

where λ is a constant. The flux measurement being unbiased means∑
i

mi =
∑
i

wimi. (5.20)

Using this requirement, the pixel weights (Eq. 5.19) becomes

wx =

∑
imi∑

im
2
i /(mi + bi)

1

1 + bx/mx

(5.21)

Notice that, given a pixel x, its weight wx depends on the true flux (mx) and background
(bx) on that concrete pixel.

5.B Forecasting the effect of errors on profile parameters

The algorithms described in §5.3 require information about the galaxy profile, making the
flux measurement accuracy sensitive to errors on the profile parameters. In this section, we
use Teahupoo galaxies to we quantify the effect that errors in the input profile parameters
have on the flux measurements using a Fisher forecast formalism (Fisher, 1922).

A photometry algorithm (Φ) that measures the flux (f̃)

f̃ = Φ(I, f, r50, ns, PSF, e, b) (5.22)

is foremost dependent on the galaxy image (I), but also parameters such as the total flux
(f), the half-light radius (r50), the Sérsic index (ns), the PSF FWHM, the ellipticity (e), and
the background light (b). For instance, the aperture algorithm uses these quantities to scale
the apertures and the profile-fitting method uses them to construct the galaxy model. We
can estimate the propagation of these errors to the flux with a Fisher matrix formalism. The
Fisher matrix is

FMµν =
∂f̃

∂µ

(
σ−2

f̃

) ∂f̃
∂ν

, (5.23)
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Figure 5.19: The correlation matrix for the parameters f, r50, ns, PSF, e and bkg for: Top
left: The model fitting method, Top right: Forced aperture photometry, Bottom left: Optimal
weighted pixel sum and Bottom right: Lumos.

where the indices µ and ν are the galaxy parameters the total flux depend on (see Eq. 5.22).

The covariance matrix of the flux measurements is the inverse of the Fisher matrix. Fig-
ure 5.19 shows the correlation matrices of the parameters f , r50, ns, PSF , e, and b for the
four flux estimation methods described in §5.3. The correlation matrix differs for different
galaxy types (e.g. different morphology and brightness). We have constructed a common
galaxy with r50, ns, and PSF assigned to the mean of their distribution in the COSMOS
field galaxies. The model-fitting method (top left panel) and the optimal weighting (bottom
left panel) are those showing more correlation between the flux and the profile parameters.
In contrast, the forced-aperture photometry and Lumos show a lower correlation, i.e. these
methods are more robust since the effect of errors in the galaxy parameters is also lower.

All methods but Lumos show a high correlation with the background estimation. The
background light is not an input parameter for Lumos, since it is intrinsically measured inside
the method. This makes Lumos insensitive to external errors on this parameter.

For the next test, we have assumed a 10% prior error in each of the input parameters,
such that

FMcomb = FM + FMpriors . (5.24)
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r50 ns PSF e b
Model-fitting 4 4 4 5 1
Forced photometry 21 59 19 1 1
Opt. weighted sum 8 11 4 13 1
Lumos 28 80 14 83 -

Table 5.1: Percentage of error in r50, ns, PSF, ellipticity (e) and background noise (b) that
propagates to a 10% error in the total flux. Note that when studying one of the parameters,
the rest remain fixed. Also note that high errors indicate that the method is more robust,
since it requires a large error in the parameter to propagate to a 10% flux error.

FMpriors is a diagonal matrix including the inverse prior variance of each parameter. The
variance on the flux parameter is then

σ2
f =

(
FM−1

comb

)
ff

(5.25)

where the matrix subscripts ff denote selecting the row/column corresponding to the flux
parameter.

Table 5.1 shows the percentage of error in the parameters that propagates to a 10% error
in the flux measurements. While studying a particular parameter, we always assume that
the rest are fixed. As the sensitivity to the parameters can vary amongst galaxy types, the
results in Tab. 5.1 are an average of a hundred independent random galaxies. Lumos is the
most robust method as it requires higher errors on the galaxy parameters to propagate to a
10% flux error. As expected from Fig. 5.19, the PSF is the parameter Lumos is more sensitive
to, followed by the half-light radius. However, it is still less sensitive than the other method-
ologies in both cases.

Lumos uses the galaxy and the modelled galaxy images, which enables the comparison
and detection of problematic profiles instead of blindly relying on the input parameters.
Furthermore, errors in such parameters are more subtle and difficult to detect when these are
encoded in a modelled profile rather than directly inputted into the method.

5.C Photometric redshifts with BCNz2 on PAUS galaxy mocks

In this section, we run BCNz2 on the PAUS galaxy mock to study the photo-z improvement
that we should expect on data.

We have generated PAUS photometry with the same pipeline as the Flagship simulations
(Castander et al. in prep.) containing 500K objects over 25 deg2 with a redshift limit of
2.25. Initially, galaxies are generated with rest-frame luminosity using abundance matching
between the halo mass function and SDSS galaxies. Next, the galaxy redshift is estimated
using evolutionary population synthesis models. Then, mock galaxies are matched to the
COSMOS galaxies from Ilbert et al. (2008) and extinction and a SED are assigned to each
of them. The SED templates also take into account the emission lines. Hα is computed form
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the ultra-violet following Kennicutt (1998). The other line fluxes are computed following ob-
served relations. Finally, the SED is convolved with the filter transmission curves to produce
the fluxes.

For this test, we use PAUS narrow bands, the CFHT u-band, and the Subaru BV riz broad
bands. We randomly select 10 000 noiseless galaxies and include Gaussian uncertainties to
mimic the Lumos signal-to-noise (Fig. 5.20). For the broad bands, we generate uncertainties
to match the signal-to-noise in Eriksen et al. (2019).

Figure 5.21 shows that, on average, the photo-zs on the PAUS-mock (black solid line)
have 90% less scatter than on data (blue solid line). This is a large number considering that
the signal-to-noise on both samples is similar. Consequently, the photo-zs appear limited by
other factors than the photometry signal-to-noise.

The purple solid line shows the effect of the photometric calibration. For each flux mea-
surement, we generate five individual observations scattering from a Gaussian centred at the
co-added flux. Then, we assign a zero-point and a zero-point uncertainty from the distribution
of zero-points in the PAUS COSMOS data to each observation. The individual observations
are co-added to a single flux error using the scattered zero-points.

The median zero-point uncertainty in the PAUS data in COSMOS is ≈ 4%. Including
this effect in the photo-zs (purple solid line in Fig. 5.21) degrades the photo-z precision by
40% with respect to perfect photometry (black solid line), particularly at the fainter end.
Nevertheless, the calibration cannot fully explain the difference between the photo-z preci-
sion expected on simulations and that obtained on the data, since the photo-z precision is
still significantly better on the PAUS mock compared to the results on data.

The coloured dotted lines in Fig. 5.21 shows the photo-z dispersion with additional effects
in the photometry that could potentially lead to a photo-z degradation. All the dotted lines
also incorporate the calibration effect simulated in the previous paragraph. In the green dot-
ted, we have included an additional 20% error in 20% of the photometric zero points. This
additional error is not accounted for in the final photometric error, thus it could potentially
make an outlier from a correct photometry measurement. This error on the zero-points es-
pecially affects brighter galaxies and reduces the photo-z precision to σ68 = 0.0050.

In the orange dotted line, we have artificially injected 1.5% of outliers in the PAUS mock
fluxes. These outliers directly affect the co-added flux measurement and therefore, a 1.5% of
affected fluxes corresponds to a higher percentage of affected galaxies. Particularly, 45% of
the galaxies in the PAUS mock have at least one affected NB flux measurement and ≈ 10%
have more than one. Nevertheless, mind that not all the galaxies with affected photometries
end up providing worse redshift estimates. Indeed, these outliers barely affect the bright end,
where galaxies have high signal-to-noise and the photo-z algorithm deals well with an outlier
in one of the bands. Contrary, at the faint end, outliers increase the photo-z scatter by ≈2.
We have also tested the effect of other percentages of outliers finding that 1% was too few to
explain the degradation of data and 2% was too much. With 1.5% of outliers, the photo-z
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Figure 5.20: The SNR of the PAUS galaxy simulations used to run BCNz2. The solid red
line corresponds to a PAUS mock with a SNR similar to that provided by Lumos. As a
comparison, the dashed black line corresponds to the observed SNR on PAUS data with
Lumos photometry.

precision degrades by 80%, providing a σ68 = 0.0074. The dashed red line combines the two
previous effects and gives a photo-z precision close to that obtained on data.

5.D Colour histograms in the complete narrow band set

Colour histograms can be used to compare different photometries. Assuming an underly-
ing galactic colour distribution, photometry uncertainties broaden such distribution. Con-
sequently, the best photometry on a sample of galaxies is that providing narrower colour
distributions. In Fig. 5.22 (§5.6.1), we showed the NB785-NB795 histogram, which displayed
a narrower distribution for Lumos than MEMBA. Here, we show the colour histograms results
for the rest of the narrow bands. Figure 5.22 shows the colour histogram of nine different
narrow bands with the Lumos photometry (black solid line) and the MEMBA photometry (red
dashed line).

Furthermore, Fig. 5.23 shows the relative difference in the effective width of the colour
histograms with the photometries from Lumos and MEMBA. As in § 5.6.1, the effective widths
are estimated with σ68 and σ95. Lumos provides narrower colour histograms in all the narrow-
band filters. The relative difference in σ68 oscillates between 30% and 40% in all narrow
bands but the bluest, where it is ≈15%. With σ95, the relative effective width is lower at the
first eight bluer bands (≈30%) and increases to ≈70% for the rest of the bands. The relative
difference in σ95 is systematically larger than with σ68, which is likely related with very noisy
measurements. Photometry measurements in the tails of the colour histograms will not affect
the σ68 measurement, however these will be accounted in σ95. Consequently, Fig. 5.23 would
be showing that the number of outlier observations is lower in Lumos than in MEMBA.
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Figure 5.21: Photo-z dispersion as a function of i-band magnitude using BCNz2 for a galaxy
mock with Lumos SNR (black solid line) and PAUS data with Lumos photometry (blue solid
line). The purple line includes the photometric calibration on the PAUS mocks. Dotted lines
include outliers and calibration errors in the PAUS mock photometry. The red dashed line
combines the effect of the two dotted lines.

5.E Photometry and photo-z correlations with galaxy param-

eters

Figure 5.7 only shows the bias and the precision of the photometry obtained with Lumos (blue
solid line) as a function of magnitude on simulations. In this appendix, we are extending the
exploration of the photometry (§5.E.1) and the photo-z (§5.E.2) predictions as a function of
other galaxy parameters as e.g. the galaxy size or ellipticity.

5.E.1 Lumos photometry correlation with galaxy parameters

Figure 5.24 shows the bias and the precision of the Lumos photometry as a function of the
galaxy size (r50), the galaxy shape (Sérsic index, n), the galaxy ellipticity (b/a) and the PSF,
all binned in ten equally populated bins. The photometry does not show a significant bias
with any of the galaxy parameters. Note that the galaxy bias increment for higher PSF values
is expected since this parameter directly correlates with the quality of the data. The largest
galaxies in the dataset tend to have slightly underestimated flux predictions (≈ 1-2%). This
could be a consequence of the fixed stamp size, which could lead to a small leak of light.

The photometry precision is better for larger galaxies. Furthermore, the precision is higher
for larger Sérsic indices, which is expected since larger Sérsic indices correspond to bigger
and brighter galaxies. We do not see any correlation between the photometry precision and
the galaxy ellipticity.
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Figure 5.22: Colour histograms for nine different narrow band filters using Lumos (solid black
line) or MEMBA (dashed red line) photometries.
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Figure 5.23: Relative difference between the effective width of the colour histograms of the
PAUS photometry with Lumos and MEMBA. The effective width has been estimated with σ68

(blue line) and σ95 (red line).
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Figure 5.24: Left: Bias in the photometry measurements as a function of the galaxy size (r50),
galaxy shape (Sérsic index), ellipticity (b/a) and PSF. Right : Precision in the photometry as
a function of the same parameters.

0 1 2 3 4 5 6 7 8 9 10 11
r50

-0.01

-0.005

0.0

M
ed

ia
n[

z/
(1

+
zs

)]

BCNz2-Lumos
BCNz2-MEMBA
Deepz-Lumos
Deepz-MEMBA

0 1 2 3 4 5 6 7 8 9
n

0.0 0.3 0.6 0.9 1.2
zs

-0.02

-0.015

-0.01

-0.005

0.0

0.005

M
ed

ia
n[

z/
(1

+
zs

)]

0 1 2 3 4 5 6 7 8 9 10 11
r50

0.0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05

68
[

z/
(1

+
zs

)]

BCNz2-Lumos
BCNz2-MEMBA
Deepz-Lumos
Deepz-MEMBA

0 1 2 3 4 5 6 7 8 9
n

0.0 0.3 0.6 0.9 1.2
zs

0.0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05

68
[

z/
(1

+
zs

)]

Figure 5.25: Left : Bias in the photo-z measurements as a function of the galaxy size (r50),
galaxy shape (Sérsic index) and the spectroscopic redshift (zz). Right : Precision in the
photo-z as a function of the same parameters.
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5.E.2 Photo-z correlation with galaxy parameters

Figure 5.25 explores the photo-z performance with the BCNz2 template fitting and the Deepz

machine learning codes as a function of the galaxy size (r50), the galaxy shape (Sérsic index)
and the spectroscopic redshift. This is presented for both the Lumos and the MEMBA photome-
tries. In this case, these quantities are binned in 10 equally spaced bins, so that that we can
explore the photo-z performance on the edges of the training set distributions.

Overall, the photo-z bias (first and second columns) is not affected neither by the size
nor the shape of the galaxy with any of the codes or photometries. The photo-zs are also
unbiased as a function of spectroscopic redshift, only presenting a ≈1% bias at high redshifts
with the MEMBA photometry and the Deepz code (blue solid line). Using Deepz on the Lumos

photometry also presents a ≈0.5% bias, while such biases disappear with the BCNz2 algorithm
on both photometries. This suggests that it might be triggered by the photo-z method.

The photo-z precision (third and forth rows) shows a similar trend with the galaxy size
and shape using the MEMBA or Lumos photometries. Note that Lumos provides better photo-z
precision for small galaxies, while MEMBA gives better photo-zs for larger galaxies. This is
potentially related to discrepancies between the training image simulations and the data (see
§5.6.4). Such differences affect more large bright galaxies, as these are more resolved. A
similar effect can be noted as a function of Sérsic index.

The photo-z precision with spectroscopic redshift presents a similar trend for both pho-
tometries, exhibiting better photo-zs for zs>1 with both the BCNz2 and Deepz codes on the
Lumos photometry. At high redshfits, the improvement with the Lumos photometry and the
Deepz code is remarkable.
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Chapter 6

Improving broadband photometric
redshifts with multi-task learning

6.1 Motivation

Over the last few decades, multi-band wide imaging surveys have been driving discoveries,
demonstrating the power of large data sets to enable precision cosmology. Obtaining precise
photometric redshifts is crucial to exploit large galaxy imaging surveys (Salvato et al., 2019b)
and are a limiting factor in the accuracy of cosmology measurements using galaxies (Knox
et al., 2006). Current and upcoming imaging surveys like e.g. the Dark Energy Survey (DES,
The Dark Energy Survey Collaboration, 2005), the Kilo-Degree Survey (KiDS, de Jong et al.,
2013), Euclid (Laureijs et al., 2011), and the Rubin Observatory Legacy Survey of Space and
Time (LSST, Ivezić et al., 2019a) critically depend on robust redshift estimates to obtain
reliable science results (Blake & Bridle, 2005).

With larger imaging surveys (as the quality and number of photometric observations in-
crease), the photo-z performance requirements, both in terms of bias and precision, have
become increasingly stringent in response to a need to reduce the uncertainties in the sci-
ence measurements. As an example, the analysis of the first year of DES data (DES Y1)
had a photo-z precision requirement σzp−zs < 0.12 (Sánchez et al., 2014), with σzp−zs being
the standard deviation of the residuals between the photometric redshift zp and the spec-
troscopic redshift zs (as a proxy of the true redshift). In order to exploit the constraining
power of LSST, it is required that the mean fractional photo-z bias 〈∆z〉 < 0.003, with
∆z := (zp − zs)/(1 + zs), and the scaled photo-z scatter σ∆z < 0.02 (Schmidt et al., 2020),
which corresponds to around three times more precise photo-zs than DES Y1. Similarly, for
Euclid, the scaled photo-z bias is required to be below 0.002 and σ∆z < 0.05 (Laureijs et al.,
2011).

The increasingly stringent requirements on the photo-z measurements have triggered ex-
tensive investigation efforts dedicated to improving photo-z estimation methodology. There-
fore, there are many different photo-z codes, which can be classified into two main approaches:
the so-called template-fitting methods, (e.g. LePhare: Arnouts & Ilbert 2011, BPZ: Beńıtez
2011, and ZEBRA: Feldmann et al. 2006); and data-driven (machine learning) methods (e.g.
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ANNz: Collister & Lahav 2004, ANNz2: Sadeh et al. 2016, tpz: Carrasco Kind & Brunner 2013,
Skynet: Bonnett 2015b, and spiderZ: Jones & Singal 2017). These methods commonly only
use the measured photometry to produce photo-z estimates. Furthermore, there is a wealth of
techniques to improve the photo-z performance, like including galaxy morphology (Soo et al.,
2018), using Gaussian processes (Gomes et al., 2018; Leistedt & Hogg, 2017), implementing
”pseudo-labeling“ semi-supervised approaches to learn the underlying structure of the data
(Humphrey et al. in prep.), and directly predicting the photo-z from the astronomical images
(D’Isanto & Polsterer, 2018; Pasquet-Itam & Pasquet, 2018; Pasquet et al., 2019; Chong &
Yang, 2019).

Broad-band photo-z performance is limited by the resolution and the wavelength cover-
age provided by the photometric filters. Narrow-band photometric surveys are in between
spectroscopy and broad-band photometry (Benitez et al., 2014; Mart́ı et al., 2014; Eriksen
et al., 2019). These are imaging surveys with a higher wavelength resolution than broad-band
surveys, but typically cover smaller sky areas due to the increased telescope time needed to
cover the same wavelength range. In this chapter, we aim to use multi-task learning (MTL,
Caruana, 1997) and narrow-band data to improve broad-band photo-z estimates. MTL is a
machine-learning methodology in which the model benefits from predicting multiple related
tasks together, e.g. a network that predicts the animal type (e.g. elephant, dog, dolphin,
or unicorn) and its weight. In this example, the network learns correlations between each
animal class and how heavy these are (e.g. an elephant is heavier than a dog), and such
correlations are used to improve the final predictions on both tasks.

In astronomy, often data that could be helpful to improve the photo-z performance ex-
ist, e.g. photometry in several bands. However, such data are not always available for the
complete wide field, preventing us from using it. With multi-task learning, we can benefit
from these data to improve the photo-z predictions without explicitly providing it as input.
Particularly, we have implemented an MTL neural network that predicts the photo-z and
the narrow-band photometry of a galaxy from its broad-band photometry. The narrow-band
data are used to provide ground-truth labels to train the auxiliary task of reconstructing the
narrow-band photometry (Liebel & Körner, 2018). Therefore, we only need it to train the
network, while we can evaluate the photo-z of any galaxy with only its broad-band photom-
etry. In this way, the data available in certain fields can be exploited to improve the photo-z
estimations in other fields.

We have tested the method with data from the Physics of the Accelerating Universe
Survey (PAUS), which is a narrow-band imaging survey using the PAUCam instrument (Ca-
stander et al., 2012; Padilla et al., 2016, 2019a), a camera with 40 narrow bands covering the
optical spectrum (Casas et al., 2016). The method could also be applied to other narrow-band
surveys like the Javalambre Physics of the Accelerating Universe (JPAS, Benitez et al., 2014).

This chapter is structured as follows. In § 6.2, we present the data used throughout the
chapter. Section 6.3 introduces multi-task learning and the method developed and tested in
this work. In § 6.4, we show the performance of the photo-z method in the COSMOS field,
including bias, scatter, outliers, and the photo-z distributions. The performance on a deeper
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galaxy sample is tested in § 6.5 using simulated galaxies. Finally, we use self-organising maps
(SOM) to explore the photo-z distribution of COSMOS galaxies in colour-space (§ 6.6) and
to have a better understanding of the underlying mechanism of our method (§ 6.7).

6.2 Data

In this section, we present the PAUS data used for the study (§ 6.2.1) and the photometric
redshift galaxy sample (§ 6.2.2). The broad-band data and the spectroscopic sample are
introduced in § 6.2.3 and § 6.2.4, respectively, while § 6.2.5 shows the galaxy simulations used
in the paper.

6.2.1 PAUS data

In this chapter, we use PAUS narrow-band data (§ 2) in the COSMOS field, which comprises
64 476 galaxies to iAB < 23 in 40 narrow-band filters. This corresponds to approximately
12,5 million galaxy observations (5 observations per galaxy and narrowband filter) (§ 3.4.4).
PAUS has developed two methods to extract the galaxy photometry: a forced aperture al-
gorithm (MEMBA, § 3.4.2) and a deep learning-based pipeline (Lumos, Cabayol-Garcia et al.,
2020; Cabayol et al., 2021, § 5). We have found that the methodology developed in this chap-
ter is the same with both photometric approaches.

With a template-fitting algorithm, PAUS reaches a photo-z precision σ68/(1 + z) =
0.0035(1 + z) for the best 50% of the sample (Eriksen et al., 2019). Similar precision is
obtained with Delight (Soo et al., 2021), a hybrid template-machine-learning photometric
redshift algorithm that uses Gaussian processes. The PAUS photo-z precision was improved
further with a deep learning algorithm that reduces the scatter by 50% compared to the
template-fitting method (Eriksen et al., 2020, § 3.4.3). The excellent PAUS photo-zs pre-
cision allows for studies like intrinsic alignments and clustering (Johnston et al., 2021a),
measuring galaxy properties (Tortorelli et al., 2021), and measuring the D4000 Å spectral
break (Renard et al. in prep., § 2.2.4).

6.2.2 Photometric redshift sample

Throughout the chapter, we also use the high-precision photometric redshifts from Alarcon
et al. (2021, PAUS+COSMOS hereafter). These photometric redshifts use a combination
of the 40 PAUS narrow bands and 26 broad and intermediate bands covering the UV, vis-
ible, and near-infrared spectrum (see § 2 in Alarcon et al., 2021, for more details). The
PAUS+COSMOS photo-zs reach a precision of σz/(1 + z) = 0.0036 and σz/(1 + z) = 0.0049
for galaxies at iAB < 21 and iAB < 23, respectively. These photo-zs are more precise and less
biased than those from Laigle et al. (2016) (COSMOS2015 hereafter), which use a combina-
tion of 30 broad-, intermediate-, and narrow-band filters.
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6.2.3 Broadband data

The broad-band data used in this chapter are from COSMOS2015, which includes the u-band
from the Canada-France Hawaii Telescope (CHFT/MegaCam) and the Subaru BV riz filters.
We carry out a spatial matching of COSMOS2015 and PAUS galaxies within 1′′. Then, we
apply a cut on magnitude iAB < 23 and on redshift z < 1.5, which results in a catalogue
with around 33 000 galaxies of which approximately 9000 have spectroscopic redshifts. The
redshift cut is prompted by the photo-z distribution in the PAUS+COSMOS catalogue, with
very few galaxies with z > 1.5.

6.2.4 Spectroscopic galaxy sample

To train the neural network, one needs a galaxy catalogue with known redshifts. We use
the zCOSMOS DR3 bright spectroscopic data (Lilly et al., 2007), which cover 1.7 deg2 of the
COSMOS field. The catalogue covers a magnitude range of 15 < iAB < 23 and a redshift
range of 0.1 < z < 1.2. We only keep redshifts with a confidence class (conf) of 3 < conf < 5,
which leads to a catalogue with ∼ 9400 galaxies. We extend the spectroscopic sample with a
compilation of 2693 redshifts from Alarcon et al. (2021). This compilation includes redshifts
from C3R2 DR1&DR2 (Masters et al., 2017, 2019), 2dF (Colless et al., 2001b), DEIMOS
(Hasinger et al., 2018), FMOS (Kashino et al., 2019), LRIS (Lee et al., 2018), MOSFIRE
(Kriek et al., 2015), MUSE (Urrutia et al., 2019), Magellan (Calabrò et al., 2018), and
VIS3COS (Paulino-Afonso et al., 2018), with a quality cut to keep only those objects with a
reliable measurement.

6.2.5 Galaxy mocks

In § 6.5 we also use the Flagship galaxy simulations described in Castander et al. (in prep.).
These are Euclid-like galaxies generated using abundance matching between the halo mass
function and the galaxy luminosity function taking into account the occupation of the haloes.
Evolutionary population synthesis models are used to estimate the evolution of the galaxy
colours with redshift. The simulated galaxies are compared to the COSMOS galaxies from
COSMOS2015. The spectral energy distribution (SED), including its extinction of the best
matching COSMOS galaxy, is assigned to each simulated galaxy. The SED library is the
same is in COSMOS2015, which includes SED templates from Polletta et al. (2007) and and
additional blue templates from Bruzual & Charlot (2003). Emission lines are then added
to the SED of each galaxy. The Hα flux is computed from the rest-frame ultra-violet flux
following Kennicutt (1998). The rest-frame fluxes do not contain absorption. The other
emission-line fluxes are computed using observed relations. Finally, the SED is convolved
with the filter transmission curves to produce the expected observed fluxes. This prescription
is followed to generate both broad- and narrow-band photometry.

6.3 Multi-task neural network to improve broad-band photo-z

In this section, we describe MTL (§ 6.3.1) and present the networks and training procedures
used throughout the paper (§ 6.3.2).
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6.3.1 Multi-task learning

Deep learning algorithms consist of training a single model or an ensemble of models to
accurately perform a single task, e.g. predicting the redshift. Multi-task learning is a training
methodology that aims to improve the performance on a single task by training the model on
multiple related tasks simultaneously (Caruana, 1997). One can think of MTL as a form of
inductive transfer, where the knowledge that the network acquires from one task introduces
an inductive bias to the model, making it prefer certain hypotheses over others. A simple
pedagogical example is a network to classify cats and dogs. If we include a secondary task
to classify the shape of the ears in e.g. spiky or rounded, the network will make correlations
between the ear shapes and the animal class, in such a way that the predicted ears shape
will also affect the cat-dog classification. This kind of network has already been successfully
applied in other fields, such as e.g. video processing (Song et al., 2020) or medical imaging
(Moeskops et al., 2017), where in the latter case a single network is trained to segment six
tissues in brain images, the pectoral muscle in breast images, and the coronary arteries.
There are also successful implementations in astrophysics. Examples include e.g. Parks et al.
(2018), which characterises the strong HI Lyα absorption in quaser spectra simultaneously
predicting the presence of strong HI absorption and the corresponding redshift zabs and the
HI column density. Also, Cunha & Humphrey (2022) describes SHEEP, a machine learning
pipeline for the classification of galaxies, QSO, and stars from photometric data that benefits
from predicting the photo-z and using its prediction as a new feature for model.

6.3.2 Model architecture and training procedures

Broadly, there are two types of MTL-network architectures called soft- and hard-parameter
sharing (Zhang & Yang, 2021). In the former, each task has its parameters, which are regu-
larised to be similar among tasks. For the latter, the hidden layers of the network are shared
between tasks, while keeping task-specific layers separate. Hard-parameter sharing is the
most common MTL architecture and it is the one used in this paper.

Figure 6.1 shows the two networks used in this paper. The top panel presents the baseline
network, a single-task network mapping the broad-band photometry to the photometric red-
shifts. It concatenates six fully-connected layers with parameters 5:300:500:1000:500:300:1500,
where the numbers correspond to the number of nodes in the layers. Therefore, the first con-
tains five nodes, corresponding to the five consecutive colours obtained with the uBV riz
broad-bands. The last layer consists of 1500 redshift bins of redshift width 0.001 covering
a redshift range 0 < z < 1.5. We have selected this redshift range since there are very few
higher redshift galaxies with PAUS photo-z and spectroscopic redshift. For every galaxy,
the network outputs the probability that the redshift belongs to each redshift bin in such a
way that it effectively predicts the redshift probability density function p(z). Each layer is
followed by a 2% dropout layer (Srivastava et al., 2014), a regularization method in which
several nodes are randomly ignored during the training phase. Dropout is represented with
the yellow-crossed circles in Fig. 6.1.

The bottom panel in Fig. 6.1 represents the MTL network introduced in this paper, which
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Figure 6.1: Top: Baseline network architecture. The input contains five colours that propa-
gate through six fully connected layers. Each layer is followed by a dropout layer, which is
represented by a yellow-crossed circle. Bottom: Multitask learning network. This builds on
the baseline network and adds an extra output layer for the additional task of predicting the
narrow-band photometry.

includes the additional task of predicting the PAUS narrow-band photometry using a hard
parameter-sharing architecture. The core architecture is the same as that of the baseline
network (upper panel) but this network contains an extra output layer for the additional
task of predicting the narrow-band photometry.

Both networks train the photometric redshift prediction with a cross-entropy loss function
(Good, 1952),

Lz :=
1500∑
c=1

[ pc(z) δ(zs) ] , (6.1)

which assumes the true-redshift probability distribution is a Delta function centred at the
spectroscopic redshift bin δ(zs). The ground-truth redshift labels are the spectroscopic red-
shifts as defined in § 6.2.4. The summation is over the redshift bins (1500 in our case) and
pc(z) is the probability assigned by the network to redshift bin c. The cross-entropy loss
is a standard loss function for classification problems. Initially, we also tested tackling the
photo-z prediction as a regression problem using a mixture density network (§ 1.2.2, D’Isanto
& Polsterer, 2018; Eriksen et al., 2020). Here this approach led to worse results and we
decided on the classifier. The MTL network enables including information from the galaxy
SED, while extending the training sample to galaxies without spectroscopic redshift but with
narrow-band photometry. Predicting the photo-z and the narrow-band photometry simul-
taneously, the two tasks share internal representations, thus the non-spectroscopic galaxies
indirectly affect the training of the photo-z prediction.
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The training of the narrow-band is addressed with a least absolute deviation loss function

LNB :=

∑
i

∣∣∣NBpred
i − NBobs

i

∣∣∣
N − 1

, (6.2)

where NBpred
i and NBobs

i are the predicted and observed narrow-band colours in the i-th filter,
respectively, and N is the number of narrow bands. We also tested other alternatives, e.g.
the mean-squared error, but this was hindering the network’s convergence and we decided on
the absolute-mean error.

Consequently, the training methodologies are:

1. zs: This is the usual training that maps the broad-band photometry to photo-z us-
ing spectroscopic redshifts as ground-truth redshifts and a cross-entropy loss function
(Eq. 6.1);

2. zs + NB: This methodology includes MTL. It maps the broad-band photometry to
photo-z and narrow-band photometry, therefore the loss function is the mean of the
combined cross-entropy loss (Eq. 6.1) and narrow-band reconstruction (Eq. 6.2) tasks
for all galaxies (N) for which the loss is computed

LNB+zs :=
1

N

N∑
j=1

Ljz + LjNB . (6.3)

We only use galaxies with spectroscopic redshift to train the photo-z predictions, while
all galaxies with narrow-band observations train the narrow-band reconstruction. In
general, one can also weight the two terms in the loss functions. Testing different values,
we found the photo-z scatter to have a minimum in a wide range of values around equal
weighting.

Furthermore, we considered two variants in the training procedure to explore the possi-
bility of using high-precision photometric redshifts (§ 6.2.2) to train the networks:

3. zs + zPAUS: This is a variation of the zs method. The training sample extends to
galaxies having a high-precision photo-z estimate in the PAUS+COSMOS catalogue.
For galaxies with spectroscopy, we use the spectroscopic redshift as ground-truth while
for the rest of the training sample, the PAUS+COSMOS photo-z is used to train the
network;

4. zs+NB+zPAUS: This is a variation of the zs +NB method, and it also extends the train-
ing sample with galaxies with a high-precision photo-z estimate in the PAUS+COSMOS
catalogue. In contrast to the zs + NB method, here all galaxies are used to train
the photo-z prediction and the narrow-band photometry reconstruction. The ground-
truth redshift labels are the spectroscopic redshifts if available and otherwise, the
PAUS+COSMOS photo-z.

The networks are implemented in PyTorch (Paszke et al., 2017), and all the training
procedures use an Adam optimizer (Kingma & Ba, 2014) for 100 epochs with an initial learning
rate of 10−3 that reduces by a factor of ten every 25 epochs.
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6.4 Photo-z performance in the COSMOS field

In this section, we show the photo-z performance of our method on galaxies with iAB < 23
and z < 1.5 in the COSMOS field. We will study the effect that MTL has on the dispersion
(§ 6.4.2) and the bias (§ 6.4.3) of the predicted photo-zs, while § 6.4.4 investigates the effect
of MTL on the redshift distributions N(z).

6.4.1 Photo-z performance metrics

To evaluate the accuracy and precision of the photo-z estimates, we define

∆z := (zp − zt) / (1 + zt) , (6.4)

where zp and zt are the photo-z and the ground-truth redshift, respectively. The bias and
the dispersion are defined as the median and σ68 of ∆z, respectively, where we define σ68 as

σ68 :=
1

2
[Q84(∆z)−Q16(∆z)] , (6.5)

and Q16(∆z), Q84(∆z) are the 16th and 84th percentiles of the ∆z distribution. We also
include the metric

σNMAD := 1.4826×median [ |∆z−median(∆z)| ] (6.6)

used in the Euclid photo-z challenge paper (Desprez et al., 2020).

To evaluate the performance on the full COSMOS catalogue, we define the ground-truth
redshift as the spectroscopic redshift if available and otherwise, as the PAUS+COSMOS
photo-z (§ 6.2.2).1. If it is not specified by the method our networks are trained with spec-
troscopic redshifts only. For the performance evaluation, however, the PAUS+COSMOS
photo-zs are also used but only to evaluate the photo-z of those galaxies from the full COS-
MOS catalogue that do not have a spectroscopic redshift estimate. The predicted photo-zs
are defined as the mode of the redshift probability distribution provided by the network
(§ 6.3.2).

In order to estimate the photo-zs of the complete COSMOS catalogue, the networks are
trained independently ten times with ∼11 000 spectroscopic galaxies in each iteration, which
roughly corresponds to 90% of the sample. Each network is used to evaluate the correspond-
ing 10% excluded galaxies in such a way that the ensemble of networks evaluates the full
COSMOS catalogue.

Including MTL extends the training sample to about 40 000 galaxies, which corresponds
approximately 3.5 times more galaxies than in the spectroscopic sample. In order to evaluate

1The PAUS+COSMOS photo-zs used to evaluate the precision of non-spectroscopic galaxies (§ 6.2.2)
also have an associated dispersion. This corresponds to approximately 4% lower photo-z scatter than that
obtained for very bright galaxies and around 1% lower at the faintest end.
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Figure 6.2: Photo-z dispersion in equally populated magnitude differential bins to iAB < 23.
Each line corresponds to a different training procedure (see § 6.3.2). While the black line
corresponds to a baseline training, the other coloured lines include MTL (red and green lines)
and data augmentation with photo-zs from the PAUS+COSMOS catalogue as ground-truth
redshifts (blue and green lines).

the full COSMOS sample, we trained the network seven independent times with 85% of the
spectroscopic galaxies and 85% of the non-spectroscopic sample. This corresponds to around
11 000 galaxies with spectroscopy and 25 000 without. We have ensured that the fraction of
galaxies with spectroscopic redshifts in each iteration is similar by sampling without replace-
ment the same number of spectroscopic galaxies in each iteration.

6.4.2 Photo-z dispersion

Table 6.1 presents the photo-z precision for the COSMOS spectroscopic sample, as well as the
full sample using the four different training procedures presented in § 6.3.2. These results are
presented in more detail in Fig. 6.2, which shows the photo-z dispersion in equally populated
magnitude bins with the same four methodologies. The solid black line corresponds to the
baseline network mapping broad-band photometry to photo-z (method zs in § 6.3.2). This
method is trained on the spectroscopic sample and provides a σ68 = 0.021 for the full sample,
while being unbiased (∆z < 0.01). These are quite precise and accurate redshifts compared
to other broad-band redshift estimates in the same field. In Hildebrandt et al. 2009, redshifts
in the D2 CHFT deep field (Coupon et al., 2009), which overlaps with COSMOS, were es-
timated with the template-fitting code BPz (Beńıtez, 2011) using the CFHT ugriz filter set.
Their photo-z precision is σ68 = 0.0498, while for the same galaxy sub-sample our network
provides σ68 = 0.0187. Here neither the methodology nor the input data are the same, but
these CFHT photo-z estimates are helpful to have a reference for our photo-z baseline net-
work performance.
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Both red lines in Fig. 6.2 use an MTL training (method zs +NB in § 6.3.2). The dashed
red line only exploits galaxies with spectroscopic redshifts to train the narrow-band recon-
struction and the photo-z prediction. Therefore, we note that this does not fully correspond
to the MTL methodology developed in this work, since the training sample does not extend to
PAUS galaxies without spectroscopy. This methodology results in a precision of σ68 = 0.020,
which is a 4% improvement with respect to the baseline methodology (black line, method zs

in § 6.3.2). The method has a larger effect at the bright end, while the photo-zs of fainter
galaxies in the data set (22 < iAB < 23) are barely improved.

In contrast, the solid red line uses all galaxies with PAUS photometry to train the narrow-
band reconstruction and only those with spectroscopy to train the photo-z prediction. This
extends the training sample of the shared layers from around 12 000 to 30 000 galaxies, which
results in a precision of σ68 = 0.0173, corresponding to a 9% improvement with respect to the
baseline methodology (solid black line). Contrary to the dashed red line, the improvement is
also significant at the faint-end, with 10% more precise photo-zs when MTL is included.

Making the distinction between these two training methodologies isolates the effect of the
MTL. While in the case represented by the dashed red line the improvement in the photo-
z prediction is due to including the PAUS narrow-band prediction as an auxiliary task, the
combination of the auxiliary task and the explicit data augmentation causes the improvement
evident in the solid red line. This implies that the improvement at the faint end is driven
by the data augmentation, as applying an MTL training with the spectroscopic sample only
barely improves the photo-z predictions of faint objects. Since PAUS galaxies have a low
SNR in the narrow-bands at the faint end, MTL without data augmentation is not enough
to improve the photo-z performance in this regime. In contrast, we obtain better photo-z
predictions only with MTL training at the bright end, where the SNR is significantly higher.

The blue dotted line in Fig. 6.2 also corresponds to a direct mapping of the broad-band
photometry to photo-zs. However, in contrast to the solid black line, this case is trained on
an extended sample including galaxies without spectroscopic redshifts (method zs + zPAUS)
in § 6.3.2), for which the PAUS+COSMOS photo-z measurement is used as a ground-truth
redshift label in the training. It shows a precision of σ68 = 0.0197, which corresponds to a
8% improvement with respect to the baseline training. Note that this method does not use
MTL, but its effect on the photo-z performance is similar to including it (the solid red line).
In § 6.6 we discuss the underlying mechanism that causes MTL with PAUS to improve the
photo-zs.

The best photo-z performance is achieved combining MTL and photo-z data augmenta-
tion with PAUS+COSMOS data (method zs+NB+zPAUS in § 6.3.2), which corresponds to
the dotted green line in Fig. 6.2. This method gives a 16% improvement with respect to the
baseline network, with a precision of σ68 = 0.0185.
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Precision (zs sample) Precision (COSMOS) Outliers
zs 1.70 (1.46) 2.14 (1.90) 1.2

zs +NB 1.54 (1.25) 1.97 (1.73) 0.8
zs + zPAUS 1.64 (1.43) 1.98 (1.76) 1.2

NB+zs + zPAUS 1.57 (1.30) 1.85 (1.60) 0.6

Table 6.1: Photo-z dispersion σ68 × 100 for the different network configurations. The sec-
ond column displays results restricted to the spectroscopic sample, while the third column
shows the results for the full COSMOS to iAB < 23. For the full COSMOS sample results,
the PAUS+COSMOS high-precision photo-zs are used as ground-truth redshifts when spec-
troscopy is not available. The numbers in parenthesis corresponds to the σNMAD. The fourth
column presents the percentage of photo-z outliers on the full sample.
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Figure 6.3: Left : Photo-z bias in equally spaced redshift bins. Right : Redshift distributions
for the COSMOS spectroscopic sample (red line) and the full (spectroscopic and photo-z)
COSMOS sample.

6.4.3 Photo-z bias and outlier rate

In this subsection, we show the bias for the photo-z predictions with the MTL networks and
the baseline broad-band network. The left panel in Fig. 6.3 shows the photo-z bias in equally
spaced redshift bins of width 0.1 in the redshift range 0.1 < zt < 1.5. We have excluded the
first redshift bin from the analysis since there are almost no galaxies with zt < 0.07, which
caused a bias at very low redshift2. Overall, for zt < 1.2 the four methods presented in § 6.3.2
are unbiased at the level of < 0.01. At higher redshifts (zt > 1.2), the four methods show
a ∼2% bias. The right panel of Fig. 6.3 suggests that this is likely to be caused by a lack
of training examples at such redshifts, with very few spectroscopic training examples with
zt > 1.3.

2There are training mechanisms to deal with unbalanced training samples like e.g. up-weighting the
contribution of unbalanced class objects in the training or oversampling synthetic data from the unbalanced
original ones (Yanminsun et al., 2011). However, the number of objects with z < 0.07 is too small to efficiently
apply these techniques and there are very few galaxies affected.
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In this chapter, we consider a galaxy to be an outlier if

|zp − zt| / (1 + zt) > 0.15 . (6.7)

In the spectroscopic sample, the baseline network yields 1.1% outliers, which reduces to 0.8%
with the MTL using PAUS photometry, the training sample extension with PAUS+COSMOS
photo-z, and the combination of both. The fraction of outliers in the full COSMOS sample
is 1.2 for the baseline network and for the training sample extension with PAUS+COSMOS
photo-zs (zs + zPAUS). The methodologies including MTL reduce the outlier fraction to 0.8%
(zs + NB) and 0.6% (zs + zPAUS + NB). While in the spectroscopic sample extending the
training sample and including MTL have a similar effect on the outlier fraction, in the full
COSMOS sample MTL has a stronger impact.

6.4.4 Redshift distributions, N(z)

Unbiased redshift distributions, N(z), are crucial for a variety of science applications, with
the most stringent requirements being in weak lensing (e.g. Hildebrandt et al., 2012b; Hoyle
et al., 2018). Broad-band photo-z commonly suffer from biases due to degeneracies between
colours and redshift, (e.g. Newman et al., 2015; Masters et al., 2017) and as shown in Fig. 6.3,
the baseline network exhibits a bias at high redshifts.

Figure 6.4 shows N(z) in tomographic redshift bins for 0 < zt < 1.5 spaced by 0.2. The
last tomographic bin is defined from 1.2 < zt < 1.5 so that the number of galaxies in the bin
is increased. The ground-truth redshift defining the tomographic bins (zt) is a combination of
the spectroscopic redshift (when it is available) and the PAUS+COSMOS photo-z elsewhere.
The vertical solid grey line indicates the ground-truth median redshift of the tomographic
bin, while the dashed coloured lines represent the median redshifts of the predicted photo-zs
assigned to the bins.

MTL with photo-z data augmentation (zs + zPAUS +NB) always provides equal or more
accurate N(z) than the baseline network (zs, black line). As expected from Fig. 6.3, the N(z)
values exhibiting the largest bias are those with zt > 1.2, particularly the bin at zt > 1.2.
In this bin, MTL together with the photo-z data augmentation (zs+NB+zPAUS, green line),
significantly shifts the median of the N(z) towards the PAUS+COSMOS result.

Commonly, redshift distributions require a bias correction to reach the accuracy require-
ments of cosmological measurements. Techniques such as clustering redshifts are applied to
correct such biases (Ménard et al., 2013; Schmidt et al., 2013; Gatti et al., 2018; van den
Busch et al., 2020; Hildebrandt et al., 2021). MTL reduces the bias of the N(z) already at
the photo-z prediction stage. Even if the MTL photo-zs still require some correction, the final
redshift distributions would benefit from initially having less biased redshift distributions (if
these redshift distributions are used to fit the clustering-z data points).
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Figure 6.4: The N(z) estimates of the full COSMOS sample divided into 7 tomographic bins
over the redshift range 0 < z < 1.5. Tomographic bins are defined using the spectroscopic
redshifts and the PAUS+COSMOS high-precision photo-zs for galaxies without spectroscopy.
The vertical solid grey lines indicate the median ground-truth redshift, while the other vertical
lines indicate the median redshifts of the N(z) estimates. Unseen lines are hidden by other
overlapping lines.
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Figure 6.5: Photo-z dispersion in equally sized magnitude bins for 30 000 Flagship test galax-
ies with magnitudes iAB < 25 for the methods presented in § 6.3.2. The training sample
contains around 15 000 spectroscopic galaxies, extended to 30 000 with PAUS-like galaxies
without spectroscopy, all of them to iAB < 23.

6.5 Photo-z performance on deeper galaxy simulations

So far, all the networks have been trained and evaluated on samples within the same magni-
tude range iAB < 23 (see § 6.4). However, if the MTL network developed in this paper aims
to improve the photo-z estimates of future deeper broad-band surveys such as e.g. Euclid
or LSST, the photo-z improvement it provides must hold for fainter galaxies. In the case of
Euclid, observations will reach a limiting magnitude of 24.5 for the VIS instrument (Cropper
et al., 2012; Amiaux et al., 2012) with 10 σ depth for extended sources, which corresponds
to a similar depth in the i-band filter. Rubin will observe to a single exposure depth of
rAB ∼ 24.5 and a co-added survey depth of rAB ∼ 27.5 (Ivezić et al., 2019b), where the depth
in the r band and the i band are also similar.

Currently, there are no PAUS measurements beyond iAB = 23, thus limiting the magni-
tude range of the MTL training sample. Although observing deeper with PAUS is technically
feasible, it would require considerably more observing time. Therefore, the MTL network
must provide reliable photo-z predictions for deep data samples, while it is trained on a
shallower data sample. Nevertheless, we note that this problem is not exclusive to our MTL
network, but it affects all photo-z machine learning algorithms. These are usually trained on
relatively shallow spectroscopic samples and used to predict the photo-zs for much deeper
data samples (Masters et al., 2017).

In this section, we explore how the MTL network performs for deep samples (iAB < 25),
while the training is limited to galaxies with iAB < 23 using Flagship galaxy mocks (see
§ 6.2.5). The broad-bands used for this test are the CFHT u band, the griz bands from DE-
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Cam (Honscheid & DePoy, 2008), and the Euclid-NISP near-infrared HE, JE and YE bands
(Mauri et al., 2020)3. These are not the same bands that were used in the tests of the COS-
MOS field (see § 6.2.3 and § 6.4), but these bands were chosen to demonstrate the potential
benefits for the Euclid photo-z estimation.

We trained the four methods presented in § 6.3.2 on a sample with 10 000 spectroscopic
galaxies, which are augmented to 30 000 with PAUS-like galaxies without spectroscopic red-
shifts and limited to iAB < 23. These numbers were chosen to approximately match the
number of spectroscopic and PAUS-like galaxies in the COSMOS field (see § 6.4). To simu-
late the performance of the approaches that extend the training sample with high-precision
photo-zs (methods zs + zPAUS and zs+NB+zPAUS in § 6.3.1), we added a scatter to the true
redshifts of the PAUS-like simulated galaxies, so that the precision resembles that of the
PAUS+COSMOS photo-zs.

Figure 6.5 shows the photo-z dispersion of 30 000 simulated test galaxies to magnitude
iAB < 25 in equally populated magnitude bins. The baseline network (black thick line)
achieves an overall precision of σ68 = 0.99, which increases to σ68 = 0.123 for galaxies with
iAB > 23. Training using photo-zs but without MTL (zs + zPAUS, dotted blue line) improves
the precision to σ68 = 0.090 and σ68 = 0.110 for galaxies with iAB > 23. With zs + NB, the
overall precision is σ68 = 0.089, which degrades to σ68 = 0.107 for galaxies with iAB > 23.
Finally, combining MTL and the photo-z data augmentation (zs+NB+zPAUS, solid green line)
provides the best photo-z performance with σ68 = 0.086 for the full sample, which increases
to σ68 = 0.107 for galaxies with iAB > 23.

For all training methods the relative improvement with respect to the baseline network
is larger at fainter magnitudes. As an example, the zs+NB+zPAUS method (green line) pro-
vides a 4% improvement with respect to the (zs) network (black-thick line) for galaxies with
iAB < 23. This improvement increases to 10% for galaxies with 23 < iAB < 25. This indicates
that by using narrow-band photometry as the auxiliary task, the network not only learns the
colour-redshift relation, but also the underlying colour distribution of the sample, which in
turn improves the redshift predictions for fainter galaxy samples, where the learning of the
colour distribution proves to be more valuable (further discussion in § 6.7).

6.6 Photo-z in colour-space

MTL using PAUS photometry improves the photo-z performance even if the training sample
does not include galaxies beyond the spectroscopic sample (see e.g. § 6.4). While the effect of
increasing the training sample in machine learning algorithms has been extensively studied,
we still need to understand why MTL with narrow-band photometry improves the photo-z
estimates. In this section, we use SOMs (see Appendix 6.A) to explore the COSMOS photo-z
performance in colour-space (§ 6.6.1). Furthermore, in § 6.6.2 and § 6.6.3 we study how MTL

3With the following 5σ limiting magnitudes: u: 25.25; g: 24.65; r: 24.15; i: 24.35; z: 23.95; YE: 24.0, JE:
24, HE: 24.
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with PAUS narrow bands breaks broad-band degeneracies potentially caused by emission
lines.

6.6.1 MTL photo-z in colour-space

A SOM (SOM, Kohonen, 1982) is an unsupervised machine learning algorithm trained to
produce a low-dimensional (typically two-dimensional) representation of a multi-dimensional
space. A 2-dimensional SOM contains (Nx, Ny) cells, each of them with an associated vec-
tor of attributes, in our case colour vectors. Initially, each cell is represented with random
colours, which during the training phase are optimised to represent the colour-space of the
training sample. The SOM training also groups together cells representing similar colours,
creating a colour-space map. Once trained, each galaxy is assigned to its closest cell in
colour-space. Moreover, since the SOM clusters galaxies with similar galaxy colours it also
clusters galaxies with similar redshifts (Masters et al., 2015; Buchs et al., 2019). Appendix
6.A contains a more detailed explanation of SOM algorithms. SOMs have already been used
in different astronomical applications, such as the correction for systematic effects in angular
galaxy clustering measurements (Johnston et al., 2021b) and for estimation and calibration of
photometric redshifts (Carrasco Kind & Brunner, 2014a; Wright et al., 2020a,b; Hildebrandt
et al., 2021).

To show the MTL performance in colour-space we trained a 60× 70 SOM on the uBV riz
photometry from the COSMOS2015 catalogue (see § 6.2.3), and subsequently assigned a SOM
cell to each galaxy in the catalogue. The choice of SOM dimension is based on previous works,
where 60× 70 cells was found to give a good balance between resolution in colour-space and
the number of galaxies per cell. Figure 6.6 shows the predicted photo-zs in colour-space, with
each column corresponding to a photo-z estimation method described in § 6.3.2. The first
row shows the photo-z distribution, where each cell is coloured with the median photo-z of
the galaxies it contains. The leftmost panel ((zs), panel A) displays the photo-zs with the
baseline network ((zs) method), and the second (B) and third (C) panels include MTL in
the training, i.e. zs+NB and NB+zs + zPAUS methods, respectively, bottom panel on Fig. 6.1.
The rightmost panel shows the ground-truth redshift distribution.

The three methods show a photo-z distribution in colour-space that is similar to that of
the ground-truth redshifts. However, some differences can be seen in the plots in the second
row (panels D, E, and F), which show the differences between the predicted and true-redshift
colour-maps (e.g. panel D = panel A - zt). The network trained with only broad-bands
(panel D) exhibits two regions with les accurate photo-zs. These regions are centred around
coordinates (5, 35) (yellowish spot) and (55, 25) (bluish spot), and the redshift accuracy im-
proves when MTL (panel E) or MTL+zPAUS (panel F) are included in the training.

These regions are seen clearer in the third row of Fig. 6.6, which shows the photo-z preci-
sion (σ68, Eq. 7.16). Comparing panels G and D, we note that the photo-z precision worsens
in the same regions where photo-zs are less accurate, but this improves with MTL (zs +NB,
panel H) and including the PAUS+COSMOS photo-zs (NB+zs +zPAUS, panel F). Finally, the
fourth row shows the dispersion of the redshift distribution, i.e. the width of the N(z), within
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Figure 6.6: SOM maps showing the photo-z performance in the COSMOS field. The first
row exhibits the median predicted photo-z in colour-space for the baseline network (first
panel), including MTL training (second panel), with MTL and data augmentation with
PAUS+COSMOS photo-zs (third panel) and the ground-truth redshift (fourth panel). The
second row shows the bias in the photo-z predictions for the three training methods of the first
row (three first panels). The third row follows the same scheme as the second but displays
the photo-z precision. Finally, the fourth row shows the photo-z cell dispersion also following
the same scheme. White cells correspond to empty cells, i.e. cells without any galaxy.
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Figure 6.7: Left: Precision of the PAUS+COSMOS photo-zs in colour-space in the spectro-
scopic sample. Right: Accuracy of photo-z within the SOM cells for the complete catalogue.

SOM cells. This quantity is also higher for the clusters pointed out in panels D and G. How-
ever, contrary to the previous panels, the zs +NB training (panel K), or the zs+NB+zPAUS

(panel L) do not narrow the redshift distributions.

The fact that the photo-z accuracy and precision improve with MTL, while the width of
the redshift distribution does not, suggests that galaxies from different populations, that is
with different redshifts, are assigned to these cells. Figure 6.7 supports this hypothesis by
showing that the PAUS+COSMOS photo-zs also exhibit a higher redshift dispersion (left
panel) in the SOM cells within the problematic regions, while the PAUS+COSMOS photo-
z accuracy is smooth across colour-space (right panel). Therefore, there are galaxies with
different redshifts clustered together in broad-band colour-space.

6.6.2 Broad-band degeneracies in colour-space

SOM cells containing different galaxy populations can be the result of colour-redshift degen-
eracies in the broad-band photometry. Such broad-band degeneracies also cause the poor
photo-z performance of the baseline network in the problematic colour-space regions. The
photo-z performance improves with the MTL training (plot E in Fig. 6.6), which suggests that
MTL with PAUS narrow-band photometry is able to break such broad-band colour-redshift
degeneracies.

The inaccurate photo-z cluster in Fig. 6.6 is adjacent to an empty colour-space region,
which shows up as a blank stripe separating two neighbouring galaxy populations. To under-
stand which galaxies populate cells next to empty regions, we trained a SOM on a simulated
galaxy sample (see § 6.2.5 for details on the mock) using the uBV riz broad-band photometry.
The top panel in Fig. 6.8 shows the median distance among the SOM vectors characterising
each cell and its directly neighbouring cells (within a 3×3 square). Compared with the bot-
tom panel in the same figure (where we have assigned each galaxy in the mock to a SOM
cell), one can visually see that regions showing larger distances in the upper plot coincide
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Figure 6.10: Emission line luminosity in colour space for Hα, Hβ, O[II] and O[III] as indicated
in the title.

with empty regions (blank stripes) in the bottom ones. Therefore cells neighbouring empty
colour-space regions represent noisier or outlier galaxies, whose colours differ from the rest of
the galaxy sample.

To directly see the effect of noise in the SOM, the bottom row in Fig. 6.8 shows the
colour-space redshift distribution for the noisy (left) and noiseless (right) colours of the same
galaxies. Comparing the two panels demonstrates that the blank region between galaxy pop-
ulations is broader in the noiseless case. When noise is included, cells on the edges of the
empty regions in the right panel are populated. This, together with such cells being located
further from the other cells in colour-space (top panel), indicates that cells neighbouring
empty spaces describe a colour-space region that is not representative of the majority of the
galaxy sample (e.g. very noisy galaxies or outliers), which can potentially cause broad-band
colour-redshift degeneracies.

6.6.3 Emission line confusions

The SOM in Fig. 6.7 shows a region in colour-space that contains different galaxy populations,
which indicates the presence of colour-redshift degeneracies. Figure 6.9 shows the photo-zs
of the galaxies assigned to three different cells within such colour-space region. For the three
cells (each of them represented with a different style marker), we plotted the predicted photo-
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z (zp) and the true one (zt) with the baseline network (zs, blue), the network including MTL
(zs + NB, red), and that including MTL and photo-z data augmentation (zs+NB+zPAUS,
orange).

The first cell (marked with stars) contains galaxies with zt ∼ 0.4. The baseline net-
work (blue star) predicts a lower photo-z value zp ∼ 0.3 for one galaxy, which is fixed with
MTL+photo-z data augmentation (orange star). The second cell (marked with crosses) con-
tains galaxies with zt ∼ 0.8, that the baseline network estimates to be zp ∼ 1.2. In contrast,
the zs +NB and the MTL+zPAUS training methods are able to improve the photo-z estimates
to values closer to the ground-truth. Lastly, the third cell (marked with dots) contains galax-
ies with redshifts zt ∼ 1.45. The baseline network predicts these photo-zs around zp ∼ 1.25,
and again the zs + NB and the MTL+zPAUS training approaches are able to improve the
photo-zs. Photo-z confusions from zt ∼ 0.8 to zt ∼ 1.2 and from zt ∼ 1.45 to zt ∼ 1.25 are
recurrent, showing up at several SOM cells within the low photo-z performance cluster.

Figure 6.10 explores the mean Hα, Hβ, Oii, and Oiii emission line luminosity in colour
space. The emission line luminosity is estimated as

Lel := 4π Fel D
2
L , (6.8)

where Fel is the emission line flux and DL is the luminosity distance, which is estimated as-
suming Planck 2020 cosmology (Planck Collaboration et al., 2020). Emission line fluxes are
taken from the photometry catalogue used for the PAUS+COSMOS photo-z (Alarcon et al.,
2021), which were estimated by fitting the galaxy photometry to a template that modelled
the emission line fluxes as a 10 Å wide Gaussian distribution.

Figure 6.10 shows strong emission lines at the low photo-z performance colour-space re-
gions, e.g. the regions centred at (5, 30) and (55, 25). These results, together with the
redshift confusions seen in Fig. 6.9, suggest that emission lines are likely to cause degenera-
cies in broad-band data.

Since a high ratio of Oiii to Hβ lines may indicate the presence of active galactic nuclei
(AGN), we first verified that our galaxies do not host a Seyfert nucleus. The distribution
of our sample on the “blue” emission-line diagnostic diagram (Lamareille, 2010) classify our
sources as star-forming galaxies. Looking at the correlation of star-formation rates (SFR)
and stellar masses, often called the main sequence (Whitaker et al., 2012), galaxies showing
a photo-z mismatch from zt ∼ 0.8 to zp ∼ 1.2 occupy the starburst region (i.e. galaxies with
enhanced star formation, Rodighiero et al., 2011). Furthermore, these two emission lines
overlap at wavelengths between the i- and z-broad-band filters, which makes the emission
line harder to detect.

Our findings suggest that some photometric features cause the photo-z mismatches. Emis-
sion lines have proven helpful to break colour-colour degeneracies and to improve the photo-z
estimation (Csörnyei et al., 2021). Despite this, in some regions of colour parameter space
emission line confusion is a potential cause for colour-redshift degeneracies.
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Figure 6.11: Distance in network’s 2D feature space for COSMOS galaxies assigned to the
same SOM cell. Feature space distances are normalised by the maximum of the distance
evaluated in the plot. Top left : Distances when the network is trained only using the broad
bands. Bottom left : Distances when the network training includes MTL with PAUS narrow-
band photometry. Top right : Difference between the two left panels.

6.7 Understanding the MTL underlying mechanism

In this section, we aim to understand the underlying mechanism of MTL that improves the
photo-z estimation. In § 6.7.1, we use a variation of our fiducial network to encode the galaxy
photometry in a 2-dimensional space similar to a SOM, while in § 6.7.2 we study the impact
of using other auxiliary tasks (other than predicting the narrow-band photometry) in the
MTL network.

6.7.1 Underlying data representation in colour-space with MTL

For this test, we modify the fiducial network architecture (see § 6.3.2 and Fig. 6.1). The net-
work architecture already encodes the information in a set of features, which then is used to
both predict the photo-z and the narrow band fluxes. In the modified network we reduce the
numbers of features to two numbers. Encoding the galaxy information in a 2D feature space
simplifies its visualisation and brings it closer to the SOM colour-space representation, which
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we have already studied.

The galaxy representations in the 2D feature space must encode all the information needed
to make the photo-z prediction. Furthermore, in the MTL network, those two numbers are
also used to reconstruct the narrow-band photometry, thus these must also encode the rele-
vant information for this task. Therefore, comparing the feature space representation of the
baseline network (decoding only to the photo-z) and the MTL network (also predicting the
narrow-band photometry) helps us to better understand why the MTL improves the photo-z
estimates.

Figure 6.11 plots the mean mean-square distance in the 2D feature space among galaxies
within the same SOM cell. The top left panel corresponds to distances assigned with the
broad-band baseline network, while the bottom left panel corresponds to the MTL network.
Galaxies assigned to the same SOM cell also cluster in the network’s feature space, which
indicates that the feature space encodes the input photometry in a similar way as the SOM.

As the network’s feature space is not constrained, the network can encode the same galaxy
differently in several independent trainings. Consequently, the coordinates assigned to each
galaxy do not contain any valuable information by themselves and distances from different
feature-space maps cannot be directly compared (e.g. the feature map of the (zs) network
and that of the zs +NB). However, overlap in the feature-space coordinates that the network
assigns to population of galaxies indicate degeneracies.

To compare the top and bottom left panels in Fig. 6.11, the results have been normalised
to display distances between zero and unity. The top right panel in the figure shows the
difference between the two left panels. Note that in the region with degenerate broad-band
photometry (55, 30), the feature space distance assigned by the MTL network is larger than
in the broad-band only case. This suggests that MTL with PAUS narrow-bands assigns more
distant feature space coordinates to galaxies with degenerate broad-band photometry, which
effectively means that it is capable of learning a better representation breaking some degen-
eracies that the broad bands cannot break.

6.7.2 MTL with other galaxy parameters

So far in this paper, we explored how photo-z predictions benefit from MTL predicting PAUS
narrow-band fluxes as an auxiliary task. However, MTL is a more general technique that
could be exploited beyond narrow-band photometry reconstructions. While a conventional
neural network training searches for the function (φ) that best predicts the photo-z (z) given
the broad-band photometry (f), i.e. φ(z|f), with MTL the optimisation is extended to the
function that best predicts the photo-z together with other related parameters (xi),

φ(z, x1, ..., xN | θ) , (6.9)

where xi could be any galaxy parameter that correlates with the galaxy photo-z such as the
galaxy type.
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Figure 6.12: Photo-z precision in the COSMOS field including predicting the galaxy SED as
auxiliary task. The galaxy SED prediction is addressed as a classification, where the true
SED is a class between 1 and 47.

Template-fitting photo-z methods predict the joint probability distribution p(z, t|f) of
the redshift (z) and the galaxy type (t) and marginalise over the templates (Beńıtez, 2011).
In principle, this is closely related to what MTL does when it is required to predict both
quantities at the same time. The network looks for the function that better generalises the
prediction of both parameters (e.g. type and redshift), but makes independent predictions in
which it “marginalises” over the parameter it is not predicting.

Figure 6.12 shows the photo-z precision of data in the COSMOS field when the galaxy
type is included as an MTL auxiliary task. The SED template is encoded as a discrete
number between 1 and 47 as described in the COSMOS2015 catalogue. These correspond
to 31 unique SEDs and 16 SEDs with different extinction laws. Including the SED template
(dotted blue line) reduces the photo-z scatter with respect to the baseline network (solid
black line). However, MTL using PAUS narrow-bands (dashed-red line) still provides better
photo-z estimates. This result suggests that while the SED helps to produce a better repre-
sentation of the data in colour-space (see § 6.7.1), PAUS narrow-band photometry contains
information about the SED, as well as the emission lines or the extinction.

The dot-dashed green line in the same panel of Fig. 6.12 combines the SED and the
narrow-band data using both as auxiliary tasks. We find that this degrades the photo-z
performance with respect to using the SED or the narrow-band photometry solely. In theory,
using both the narrow-band photometry and the SED number should benefit the network.
However, the information available in these two tasks is highly correlated, which can hinder
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the predictions. Understanding this better is ongoing research and further study is deferred
to future work.

We also explored MTL predicting galaxy parameters such as the SFR, the galaxy mass,
and the E(B − V ) extinction parameter as auxiliary tasks (not shown). However, none of
these parameters improved the predicted photo-zs. Furthermore, including the NIR photom-
etry did not improve the photo-zs either.

6.7.3 Effect of narrow-band resolution

The improved photo-z from predicting the narrow-band photometry can potentially result
from a better internal description of the galaxy SED type. We test this hypothesis by eval-
uating the performance of the networks using MTL for different resolutions of the output
predicted photometry.

Figure 6.13 shows the photo-z precision of the MTL methods as a function of the number
of predicted narrow bands, i.e. output photometry resolution. Assuming the MTL networks
use the narrow band photometry to improve the internal representation of galaxies, increas-
ing the output photometry resolution effectively corresponds to turning on this mechanism.
To obtain lower resolution photometries, we take the mean of groups of consecutive narrow
bands (e.g. 2, 4, 10). Then, we train the zs+NB and zs + zPAUS+NB methods several times
to predict the photo-z and the photometry with a different number of bands in every training.

The horizontal flat lines in Fig. 6.13 indicate the photo-z precision for the the methods
without MTL; zs (dashed-dotted blue line) and zs + zPAUS (solid red line). The dotted blue
line and the dashed red line show the zs+NB and zs+zPAUS+NB performance for the different
output photometry resolutions, respectively. As the output photometry resolution increases,
the photometric redshift precision improves. This suggests that the MTL networks are using
the narrow-band photometry prediction to improve the internal representation of the SED,
and consequently the SED internal fitting, which has a direct impact in the photo-z pre-
diction. The narrow-band photometry contains important additional information about the
SED type and galaxy parameters, which are useful when predicting the redshift.

The zs+NB MTL produce for two bands predictions above the zs line, which is the re-
sult without MTL. In this limit adding the photometry loss degrade the photo-z results.
We trained this network several times to ensure the result was correct, obtaining the same
degrading in all cases.

6.8 Discussion and conclusions

Photometric redshifts (photo-zs) are crucial to exploit ongoing and future large galaxy broad-
band imaging surveys. While covering large sky areas, the broad-band spectral resolution lim-
its the redshift performance through colour-redshift degeneracies. The PAU Survey (PAUS)
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corresponds to the zs (dashed-dotted blue line) and zs + zPAUS (solid red line), where MTL is
not enabled.

is a narrow-band imaging survey that can provide very precise photo-z measurements for a
combination of wide and deep fields. In this paper we have introduced a new method to im-
prove broad-band photo-z estimates, exploiting PAUS narrow-band data with deep learning
techniques.

Multi-task learning is a machine-learning training methodology that aims to improve the
performance and generalisation power of a network by training it on several related tasks
simultaneously. This forces the model to share representations among related tasks, exploit-
ing their commonalities and enabling the network to generalise better on the original task.
We have implemented a multi-task learning network that predicts the photometric redshift
and infers the narrow-band photometry simultaneously from the broad-band photometry (see
§ 6.3). The photo-z network is therefore forced to share parameters that are also used to pre-
dict the narrow-band photometry, which improves the internal colour-space representation of
the data.

In the COSMOS field for galaxies to iAB < 23, our method reduces the photo-z scatter
by approximately 16% (see § 6.4.2) and the number of photo-z outliers by about 40% (see
§ 6.4.3). The method also reduces the photo-z bias amongst high-redshift galaxies, where
there is a lack of spectroscopic galaxies in the training sample, and improves the N(z) dis-
tributions at these redshifts. We have also tested the potential of the method for fainter
galaxies using Euclid-like galaxy simulations. For this, we have trained the network on a
magnitude-limited sample with iAB < 23 and evaluated it on a sample with iAB < 25. The
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MTL predicts up to 15% more precise photo-zs for galaxies with 24 < iAB < 25 than the
baseline network (see § 6.5).

We have used self-organising maps (SOMs) to study the photo-z performance in different
colour-space regions, detecting a region containing galaxies with degenerate photometry-
redshift mappings. This region has a larger photo-z variation within the SOM cells, suggest-
ing that more than one galaxy population is assigned to the same colour-space location (see
left panel in Fig. 6.7). This correlation results in a photo-z mismatch between two galaxy
populations, which affects broad-band photo-z estimates. Our MTL network breaks some
degeneracies using PAUS narrow-band data to learn the underlying colour-space distribution
of galaxies.

This chapter explores how to exploit data from narrow-band photometric surveys like
PAUS to improve the broad-band photo-z estimates using machine learning. The key point
of using MTL, instead of, e.g. just using the narrow-band photometry to obtain more precise
photo-zs, is that it only requires narrow-band photometry for the training galaxies, while
the photo-z of any galaxy can be evaluated with only the broad-band data. This enables
exploiting fields where we have narrow-band data to obtain better photo-zs in other fields
where these are not available. PAUS photometry in the COSMOS field is publicly available so
that current and future weak lensing surveys, like Euclid or the LSST, could readily benefit
from this methodology to improve their photo-z estimates. Moreover, MTL is a general
machine learning mechanism that enables fields with different types of photometry to be
exploited for improving photo-z predictions. While PAUS narrow-band photometry is a clear
candidate, other surveys like J-PAS (Benitez et al., 2014) or ALHAMBRA (Moles et al.,
2008) provide more fields with interesting data to exploit for the benefit of photo-z.

6.A Self-organising maps

A self-organising map (SOM, Kohonen, 1982) is an unsupervised machine learning algo-
rithm trained to produce a low-dimensional (typically two-dimensional) representation of a
multi-dimensional space. A two-dimensional SOM contains Nx×Ny cells with an associated
vector of attributes (~wk), where Nx(Ny) is the dimension of the SOM on the x(y)-axis, and k
corresponds to the kth SOM cell. Each of these vectors has the same length as the input data.

The SOM training phase is an iterative process during which the SOM cells compete
amongst themselves to represent the training data. Initially, the cell vectors (~wk) are ran-
domly sampled from a uniform distribution, and these are updated after each iteration step
(t). In every training iteration, each galaxy vector of measured attributes ~x (e.g., in our case
the galaxy colours), is compared to all the SOM cells’ vectors via a χ2 expression,

χ2
(
~wk(t), ~x

)
=
∑
i

[
xi − wki (t)

σi

]2

, (6.10)

where i sums over galaxy attributes and σi is the uncertainty associated with xi. The evalu-
ated galaxy is assigned to the cell with the lowest χ2, which updates its associated vector of
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Figure 6.14: Photo-z performance as a function of the ground-truth redshift precision
used for training the networks. The training redshifts are the spectroscopic redshifts, the
PAUS+COSMOS photo-zs, COSMOS30, and a set of CFHT photo-zs in COSMOS. Red
points correspond to training on the spectroscopic sample (around 6000 galaxies). In the
green and red points, the training sample is extended to COSMOS galaxies with photo-z
(around 15 000 galaxies). The blue lines show the expected photo-z performance as a function
of target redshift precision. The true redshifts, spectroscopic redshift in the COSMOS2015
catalogue (blue solid line), and simulated redshift in the PAUS mock (blue dashed line) are
scattered with precision in 0.001 bins. The top inset zooms the framed area in the main plot
(lower left corner)

attributes ~wk(t) according to the matched galaxy features

Furthermore, in the SOM training procedure, the vector of features from cells neighbouring
the best matching cell are also updated, clustering together galaxies with similar attributes.
This is implemented with a neighbouring function H(t, d), which depends on the distance (d)
between the best matching cell and the updated one. The neighbouring function is commonly
implemented as a Gaussian kernel with an iteration-dependent variance σ2

kernel(t). Therefore,
the vector of attributes for a particular cell k after iteration t+ 1 is

~wk(t+ 1) = ~wk(t) + α(t) H (t, |~w − ~x|)
(
~x− ~wk(t)

)
, (6.11)

where α(t) is the learning rate. After a few iterations over the training sample, the result is
a map of (Nx ×Ny) vectors in a two-dimensional space grouping together cells with similar
features while preserving the topology of the multi-dimensional space.

6.B Effect of training with photo-z as ground-truth targets

In this work, we have implemented and tested two training methodologies that rely on narrow-
band photo-z estimates as ground-truth targets (see methods zs + zPAUS and NB+zs + zPAUS
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in § 6.3.2). Even if such photo-zs are overall very accurate, its implementation in the training
could harm the photo-z performance since these are less precise than spectroscopic redshifts
and could potentially include outliers. In this section, we explore the effect that less precise
redshift labels (§ 6.B.1) and the presence of outliers (§ 6.B.2) have on the photo-z performance.

6.B.1 Effect of photo-z dispersion in the training redshifts

Figure 6.14 shows the photo-z precision of a set of 1000 spectroscopic galaxies for four in-
dependent broad-band networks (simply mapping colours to redshift), each of them trained
with different ground-truth redshifts. The redshifts used for training are the spectroscopic
redshifts (see § 6.2.4), the PAUS+COSMOS photo-zs (see § 6.2.2), the COSMOS30 photo-zs
(Laigle et al., 2016), which combine 30 photometric filters and estimates the photo-z with Le-

phare (Arnouts & Ilbert, 2011), and a set of CFHT photo-zs from Hildebrandt et al. (2012b)
combining six broad bands (ugriz) with photo-z estimated with BPz (Beńıtez, 2011). The
input data are, in all cases, the CFHT u band and the BV riz Subaru broad-band filters from
COSMOS2015.

The red points in Fig. 6.14 show the redshift dispersion using a training sample of galax-
ies with spectroscopic redshift. We always keep the same training sample (which contains
around 6000 galaxies) and change the labelled true redshifts in each independent training
(spectroscopic catalogue, PAUS data, COSMOS30, and the CFHT catalogue). Using spec-
troscopic redshifts as ground-truth redshifts results in a dispersion of σ68 = 0.016. Replacing
the spectroscopic redshift with the photo-z from PAUS+COSMOS, COSMOS30, or CFHT
yields σ68 = 0.017, σ68 = 0.018, and σ68 = 0.046, respectively. As the ground-truth redshifts
become less precise, the machine-learning photo-z performance degrades.

To obtain the green points (Fig. 6.14), we extended the training sample to all galaxies in
the COSMOS sample with a photo-z estimate, which results in approximately 15 000 galaxies
when the four catalogues are merged. Then, three independent networks are trained using
the PAUS+COSMOS, the COSMOS-30, and the CFHT photo-zs as true redshifts (the spec-
troscopic redshift is not used even if it is available). This provides a precision of σ68 = 0.016,
σ68 = 0.017, and σ68 = 0.045 for the PAUS+COSMOS, the COSMOS30, and the CFHT
photo-zs, respectively. The three networks improve the photo-z precision with respect to
training with spectroscopic redshifts only. Indeed, with the PAUS+COSMOS photo-z labels
we already reach the photo-z precision with spectroscopic labels.

Finally, the blue points in the figure correspond to the networks trained with the same
15 000 photo-z galaxies as in the green points, but combining spectroscopic redshifts (if avail-
able) and photo-zs as ground-truth training redshifts. Combining spectroscopic redshifts with
PAUS+COSMOS photo-zs yields σ68 = 0.015, which improves upon the precision obtained
with spectroscopic redshifts only.

The light blue lines in Fig. 6.14 show the expected performance as a function of the ground-
truth redshift precision. The solid line uses the COSMOS2015 uBV riz broad bands and the
dashed one uses simulated data from the PAUS mock described in § 6.5. In both cases, true
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Figure 6.15: Effect of outliers and systematic errors in the ground-truth redshift sample used
during training. The training sample consists of 5000 spectroscopic galaxies with photometry
from COSMOS2015. Each coloured line uses a different sample of redshifts as true redshifts,
i.e. spectroscopic redshifts (black), PAUS+COSMOS photo-zs (red), COSMOS30 photo-zs
(blue), and CFHT photo-zs (green). The ground-truth redshift of the selected fraction of
training galaxies is replaced by: left, a random redshift values sampled from U(0, 1.5); centre,
a 20% higher redshift; and right, redshifts modified with Eq. (6.12).

redshifts (spectroscopic or simulated) are scattered with the corresponding dispersion in the
abscissa.

Both networks (solid and dashed lines) are trained with 15 000 galaxies to have a direct
comparison with the previous results. We always use the scattered redshifts as ground-truth
targets, in such a way that the lines should be compared with the green points since these are
trained using only photometric redshifts. The results obtained with the PAUS+COSMOS
and COSMOS30 match the expectation curves, but there is a significant mismatch with the
CFHT photo-zs. This is potentially triggered by systematic errors or outliers in the CFHT
photo-z not represented in the blue curves (see Appendix 6.B.2 for more details).

6.B.2 Effect of photo-z outliers in the training redshifts

Figure 6.14 showed a mismatch between the expected (solid blue curve) and photo-z perfor-
mance training a network with the CFHT photo-zs as ground-truth redshifts (rightmost red
point). However, the expectation assumes that the CFHT photo-zs are not affected by other
effects such as systematic errors or catastrophic outliers.

Figure 6.15 shows the effect of outliers in the ground-truth targets of the training sam-
ple. The network is trained twenty independent times with 5000 COSMOS2015 spectro-
scopic galaxies including a fraction (monotonically increasing in each iteration) of labelled
photo-z outliers. This procedure is repeated for the spectroscopic redshifts (black line), the
PAUS+COSMOS photo-zs (red line), the COSMOS30 photo-zs (blue line), and the CFHT
photo-zs (green line).

In the left panel, the artificial outlier redshifts are swapped with a random value sampled
from a uniform distribution U(0, 1.5) to simulate catastrophic outliers. The predicted photo-z
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Figure 6.16: Training loss function for galaxies with wrong (blue) and corrected (red) target
redshift. The training sample consists of 5000 spectroscopic galaxies with photometry from
COSMOS2015. In the left panel, the modified target redshifts are randomly switched to a
value drawn from U(0, 1.5), while in the right panel the wrong redshift labels are generated
with Eq. (6.12).

precision degrades as the fraction of target redshift outliers increases. This also affects the
predicted p(z), which become noisier and broader (not shown). However, unexpectedly the
network can provide reasonable photo-z estimates with up to 80% of catastrophic outliers in
the training sample. Furthermore, the network is able to make reliable photo-z predictions of
galaxies that have been used in the training sample with wrong target redshift values. This
result holds when either spectroscopic redshifts or any of the photo-zs are used for training.

The middle panel shows the effect of a systematic multiplicative shift in the training
sample redshifts, where the selected targets are shifted to 20% higher redshifts. In this
scenario, the predicted photo-z precision degrades faster than when outliers are random (left
panel) but the network does never completely break. For an outlier fraction higher than 60%,
the precision settles at σ68 = 0.03, but the bias rapidly increases. Finally, the rightmost panel
presents the effect of a systematic shifting the redshift (zmod) so that Oiii is confused with
Hα in the training redshifts, i.e.

zmod = λOiii/λHα (1 + zt)− 1 , (6.12)

where zt is the galaxy redshift.

The training degrades and breaks much faster than in the two previous cases, where with
around 40% of wrong target redshifts the network is not able to provide reliable predictions.
As the fraction of affected target redshifts increases, the predicted p(z) become more doubly
peaked. Moreover, a plot of photo-z versus spec-z scatter displays two clear lines, one with
the correct mapping and another shifted upwards (not shown), which is triggered by the
training objects with the photo-z artificially shifted to confuse the emission lines. Again,
the effect of outliers is similar regardless of the redshifts used for training (spectroscopic or
different-precision photo-z).
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Contrary to expectations, the left panel of Fig. 6.15 indicates that the network can learn
the mapping between the galaxy photometry and redshifts with up to 80% of catastrophic
outliers in the training sample. Given that the training sample is composed of 5000 galax-
ies, this means that the network can effectively learn the colour-redshift relations from 1000
galaxies, learning to ignore the remaining 4000 spurious galaxies.

Figure 6.16 shows the cost function evolution of a network trained with wrong target
redshifts for half of the training while keeping the rest to the correct redshift values. The
cost function is split in two; one for those objects with correct redshift (red) and another for
those with wrong redshifts (blue). In the left panel, the modified target redshifts are switched
to a random value from a uniform distribution U(0, 1.5), as in the left panel of Fig. 6.15. The
cost function of galaxies with the correct target redshift decreases, which indicates that the
network is learning from them. In contrast, the cost function of incorrectly labelled galaxies
remains constant along the training, showing that the network is not learning anything from
them. Therefore, the network is effectively only learning from galaxies with correct target
redshifts. Randomly swapping redshifts to different values breaks any correlation between
the photometry and the redshifts. Hence, the network is only learning the colour-redshift
mapping from galaxies with the correct target redshift. Nevertheless, having a large fraction
of wrong labels adds noise to the training, broadening the predicted p(z).

The right panel of Fig. 6.16 shows the loss function for the correct and the wrongly labelled
training galaxies separately when the incorrect redshift labels are generated with Eq. (6.12).
This introduces a new colour-redshift relation that forces the network to learn both from
galaxies with wrong and correct target redshifts. This can also be noted in the p(z) behaviour,
which presents a double-peaked distribution (not shown). Hence, Figs. 6.15 and 6.16 indicate
that having catastrophic outliers in the training sample labels effectively adds noise to the
photo-z predictions. In contrast, a systematic bias in the training sample targets produces a
bias in such predictions.
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Chapter 7

Multi-band photometry and photometric
redshifts

7.1 Motivation

Imaging galaxy surveys require precise photometry and photometric redshifts measurements
(photo-zs) for a extensive set of science applications, e.g. weak gravitational lensing (Hoekstra
& Jain, 2008; Abbott et al., 2018a; Giblin et al., 2021), galaxy clustering (Elvin-Poole et al.,
2018b; Giocoli et al., 2021), and intrinsic alignments (Joachimi & Schneider, 2010; Johnston
et al., 2019; Samuroff et al., 2019). In recent years, the amount and quality of galaxy survey
data have drastically increased, requiring more precise and efficient methods for data analysis.
Many efforts have been devoted to this task, resulting in a vast number of optimised methods.

SExtractor (Bertin & Arnouts, 1996) is a very widely used algorithm to measure the
photometry, which implements aperture photometry (Mighell, 1999). Other examples in-
clude GaaP (Kuijken, 2008), a model-fitting algorithm that extracts the photometry fitting
the galaxy image to polar shapelets (Refregier, 2003; Massey & Refregier, 2005), Lumos,
(Cabayol et al., 2021), a deep learning network measuring the photometry probability distri-
bution, T-PHOT (Merlin et al., 2015), and Tractor (Lang et al., 2016).

There are two well-known techniques to estimate photo-zs: template-based spectral energy
distribution (SED) fitting and data-driven methods. Template-based methods fit a set of red-
shifted SED templates to the galaxy photometry using a χ2 minimisation, e.g. BPz (Beńıtez,
2011) and LEPHARE (Arnouts & Ilbert, 2011). In contrast, machine learning techniques use
a collection of known-redshift galaxies to train a model to map the galaxy photometry to
redshifts, e.g. (Collister & Lahav, 2004; Bonnett, 2015b). Both techniques have known lim-
itations, e.g. the quality of fitting templates and the depth of the training sample (Salvato
et al., 2019b).

In astronomy, deep learning has already been implemented to several problems, including
object classification (Kim & Brunner, 2016; Khalifa et al., 2017; Cabayol et al., 2019), weak
lensing (Tewes et al., 2019; Matilla et al., 2020), and the data reduction process (Zhang &
Bloom, 2019; Boucaud et al., 2020). Deep learning is also extensively applied to the photo-z
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estimation problem. Traditionally, photo-z algorithms have relied on multi-band photometry,
i.e. the measured flux from the galaxy exposure images in each band (Feldmann et al., 2006;
Eriksen et al., 2020). However, some deep learning approaches implement convolutional neu-
ral networks (CNNs) directly on the galaxy images (Pasquet-Itam & Pasquet, 2018; D’Isanto
& Polsterer, 2018; Pasquet et al., 2019). This opens a new field of study where neural net-
works can use all the information available in the images to improve the photo-z predictions.

In broad-band surveys, the number and width of the photometric filters limit the photo-z
performance. In contrast, narrow-band imaging surveys provide an alternative that enables
high precision photo-z estimates for a large sample of galaxies. The Physics of the Ac-
celerating Universe Survey (PAUS) is an imaging survey observing with a 40 narrow-band
photometric filters camera (PAUCam, Padilla et al., 2019b) covering the optical wavelength
range from 4500 Å to 8500 Å. Eriksen et al. (2019) presents BCNz, the first custom photo-z
algorithm for PAUS data. It is a template-fitting algorithm that reached a precision of σz =
0.0037(1+z) for the best selected 50% of the sample with iAB<22.5. Typically, the photo-z
precision with broad-band optical photometry is of the order of σz = 0.05(1+z) (Hildebrandt
et al., 2009). Similar results are obtained with a hybrid machine learning and template-fitting
method running a Gaussian process algorithm (Soo et al., 2021). Furthermore, a deep learn-
ing algorithm that implements transfer learning from simulations to PAUS data (Eriksen
et al., 2020) improves the photo-z precision by 50%.

In Cabayol et al. (2021), we developed Lumos, a deep learning based algorithm to predict
the flux probability distribution of single-exposure galaxy images. On PAUS observations in
the COSMOS field, Lumos increases the photometry signal-to-noise by a factor of 2 compared
to an aperture photometry algorithm and has proven more robust towards distorting effects
as e.g. blended galaxies, cosmic rays, and scattered-light (Cabayol et al., 2021). Lumos is
built on BKGnet (Cabayol-Garcia et al., 2020), which predicts the astronomical background
light in the presence of strong varying noise.

This chapter presents Aczio1, a deep neural network that culminates the work of Lumos
and Deepz (Chapters § 4 and 5, respectively) predicting both the galaxy multi-band pho-
tometry and the photometric redshift directly from their images, in contrast to using fluxes.
Recently, there have been multiple works on estimating the photo-z directly from the images
observations(D’Isanto & Polsterer, 2018; Pasquet et al., 2019; Dey et al., 2021b). However,
to the best of our knowledge, our method is the first to predict both the photometry and the
photo-z simultaneously from the galaxy images. This enables a fast and precise evaluation
of the photo-z, drastically reducing the data-reduction process while also having photometry
measurements. This is important since science applications as e.g. galaxy evolution studies
also require precise photometry measurements. Furthermore, measuring the photometry and
the photo-z simultaneously, we are implementing a multi-task learning network (Caruana,
1997), where the network can use the correlation between both quantities to improve their
measurements. In Cabayol et al. (in prep), we already tested the benefits of predicting the

1Name inspired in the Harry Potter charm ”Accio“, which summons an object towards the caster. It can
summon objects in direct line of sight of the caster, as well as things out of view.
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photometry and the photo-z simultaneously using broad-band data.

This chapter is structured as follows. In § 7.2 we present the PAUS data (§ 7.2.1) and
the simulations used for training (§ 7.2.3). Section 7.3 presents the method, including the
network’s architecture (§7.3.1 and §7.3.2) and the training procedure (§7.3.3). Then, § 7.4
shows the photometry obtained with Aczio on simulations (§ 7.4.1) and on the PAUS images
in COSMOS (§ 7.4.2). In § 7.5, we present the Aczio photo-zs in the COSMOS field. Finally
§7.6 concludes with a discussion on this work.

7.2 Data

In this section, we present the PAUS data (§ 7.2.1) and the Teahupoo image simulations
used throughout the chapter (§ 7.2.3).

7.2.1 PAUS data

This chapter also focuses on data from the COSMOS field (Lilly et al., 2009, ,§ 3.4.4). These
are the data used in the BKGnet and Lumos papers and also in all the photo-z studies
published so far (Eriksen et al., 2019; Eriksen et al., 2020; Soo et al., 2021; Alarcon et al.,
2021). The complete photometry catalogue in COSMOS contains 64 476 galaxies to iAB < 23
in 40 narrow-band filters. This corresponds to around 12,5 million galaxy observations, with
approximately five observations per galaxy and narrow-band filter. PAUS data reduction pro-
cess consists of two pipelines: the Nightly and the MEMBA pipelines (§ 3.4.1&§ 3.4.2). The
Nightly pipeline is the first data-reduction step. It first performs instrumental de-trending,
correcting the electronic and illumination biases. The MEMBA pipeline implements aper-
ture photometry to targets selected from a deeper detection catalogue. Then, it combines the
photometry of independent observations of the same galaxy in the same narrow-band filter
using an inverse-variance weighted sum.

7.2.2 Spectroscopic sample

We use the spectroscopic sample to train and evaluate the performance of Aczio. The spectro-
scopic redshifts are those compiled in (Alarcon et al., 2021, ,from hereafter PAUS+COSMOS)
which includes the zCOSMOS DR3 bright spectroscopic data (Lilly et al., 2009), redshifts
from C3R2 (DR1&DR2 Masters et al., 2017, 2019), 2dF (Colless et al., 2001b), DEIMOS
(Hasinger et al., 2018), FMOS (Kashino et al., 2019), LRIS (Lee et al., 2018), MOSFIRE
(Kriek et al., 2015), MUSE (Urrutia et al., 2019), Magellan (Calabrò et al., 2018), and
VIS3COS (Paulino-Afonso et al., 2018). Lilly et al. (2009) defines a confidence class (conf)
for the spectroscopic redshifts, where the. For the zCOSMOS sample, the most secure red-
shifts are those with 3 < conf < 5 (Lilly et al., 2009). The rest of the spectroscopic redshifts
are already selected to keep only objects with a very reliable measurement.
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Figure 7.1: Three Teahupoo observations images of the same galaxy bright galaxy (iAB <
19) in the same narrow-band filter.

7.2.3 PAUS image simulations

The Teahupoo simulations are a set of single-observation PAUS-like galaxy images specif-
ically built to train Lumos, a CNN to extract the photometry from single exposure images.
These image simulations combine a randomly selected 60× 60 PAUCam cutout and a single-
Sérsic modelled galaxy profile (Sérsic, 1968) simulated with Astropy (Price-Whelan et al.,
2018). In this paper, we extend the Teahupoo image simulations to combine bulge and disk
modellings. The bulge is defined by a Sérsic profile with Sérsic index ns > 1, i.e.

Ib(R) = Ie exp

{
−(2ns − 1/3)

[(
R

R50

)1/ns

− 1

]}
, (7.1)

where Ie and r50 are the the surface brightness and the half-light radius. In contrast, the disk
profile (Id(R)) corresponds to an exponential galaxy profile, i.e. the Sérsic profile (Eq. 7.1)
with n = 1. The two components are combined into the galaxy profile (I) as

I(R) = B/T · Ib(R) + (1−B/T ) · Id(R) , (7.2)

where B/T is the bulge fraction and determines the relative contribution of each profile type.
The Teahupoo galaxies are also rotated with the rotation angle θ and elongated with the
ellipticity parameter e = b/a, where a and b are the major and minor axis of the galaxy,
respectively.

The galaxy parameters (e.g. ns, θ, and e) are generated with the same pipeline as the
Flagship simulations (Castander et al in prep.). To simulate the galaxy brightness, we use
noiseless fluxes that include the milky-way extinction. While the image simulations are 60×60
pixels, we initially draw the galaxies in a 600× 600 grid, which is later reduced by a factor of
ten. The higher resolution grid increases the simulated galaxy resolution and enables galax-
ies with sub-pixels shifts from the centre of the simulated stamp. For Lumos, this proved
important to reduce the number of photometry outliers on PAUCam data.

In order to include background noise in our galaxy images, we stack the simulated galax-
ies on 60 × 60 PAUCam cutouts randomly selected from an observed PAUCam image. The
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background cutout must be from the same narrow-band filter as the simulated galaxy, since
the noise patterns and the background level varies amongst filters. These cutouts include all
sources of noise present in the real images, e.g. scattered light, transient effects, cross-talk
signals, and read-out noise. Covering all these effects in the training simulations was crucial
to make good photometry predictions on PAUCam data with Lumos. There, we showed that
the network was capable of deblending target galaxies by just randomly including examples
in the training sample. The galaxy is convolved with the same point spread function (PSF)
as detected in the original PAUCam image before stacking the simulated profile and the
background noise.

In this work, we also extend the Teahupoo simulations to include multiple observations
of the same galaxy in the same narrow-band filter. Figure 7.1 shows an example of three
simulated and calibrated observations of a bright galaxy (iAB < 19) in the PAUS narrow-band
”NB685“. In the simulations we have so far, observations of the same galaxy can potentially
contain other sources at the different locations. This a weakness of our simulations that will
soon address.

To simulate how the galaxy looks before the zero-point correction, we divide the noiseless
flux by the zero point measured in the background cutout image. This results in three single-
observation flux measurements of the same galaxy in the same narrow-band filter, from which
we generate three Teahupoo image simulations. The simulated images (galaxy+background
cutout) are then re-scaled with the same zero point as previously used to derive the single-
observation flux measurement. To account for the uncertainty in the zero-point measurement,
we include a 5% scatter to the zero points before calibrating the single-observation images,
which is a reasonable number based on the observations. Furthermore, we also include a 2%
of zero-point outliers to increase the robustness of the method.

7.3 Network architecture and training procedure

In this section, we introduce Aczio, a deep neural network to predict the multi-band pho-
tometry and the photo-z. Aczio has two different parts; a convolutional neural network
(CNN, LeCun et al., 1989; Lecun et al., 1998) to extract information from the galaxy images
(§ 7.3.1) and two mixture-density networks (MDN, Bishop, 1994) to predict the probability
distribution of the flux measurements and the photo-zs (§ 7.3.2). Section § 7.3.3 describe the
Aczio.

7.3.1 Feature extraction with a convolutional neural network

Convolutional neural networks (CNNs) have proven successful for multiple image-related ap-
plications, e.g. image classification (Sultana et al., 2019), image semantic segmentation (Liu
et al., 2018), and object detection (Zhao et al., 2018). Figure 7.2 shows the Aczio archi-
tecture. The blue framed area corresponds to the feature extractor. It is composed of a 2D
CNN (blue cube) followed by a multi-layer perceptron (MLP, blue circles) and a 1D CNN
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Figure 7.2: Aczio architecture. The blue shaded area corresponds to the ”feature extractor“
network. It is composed of a 2D-CNN (blue cube), a multi-layer perceptron (blue circles),
and a 1D-CNN with an adaptive pooling layer (blue square). The second part of the network
corresponds to a MTL-MDN network that predicts the photo-z and the photometry in one
band. These two tasks share a set of common layers (green circles) and then have two sets
of task-specific layers for the photo-z prediction (red circles) and the photometry (yellow
circles).
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with adaptive pooling (blue square). The 2D CNN is composed of five blocks of convolutional
and pooling layers. After each block, there is a ReLU activation function (Nair & Hinton,
2010). We provide the 2D CNN with N tensors of size (Nobs, 60, 60), where Nobs is the num-
ber of observations per galaxy and narrow-band filter. In the training phase, the number of
observations per galaxy and narrow band is fixed to three. The input images pass sequen-
tially through the 2D CNN, which extracts 512 features per image. The MLP reduces the
512 features to 20 so that the network keeps the most relevant features. These 20 features
encode the relevant image properties required for predicting the photometry and photo-z.
We assume that the network should, at least, encode the main profile properties, e.g. the
size, shape, rotation, ellipticity, and total flux, together with background-noise properties
as the mean, the presence of nearby sources, cosmic-rays, or the position and brightness of
scattered light. Reducing the number of features is also important to avoid running out of
GPU memory. The training sample contains 120 simulated observations per galaxy, which
extracting 512 features would correspond to 614 400 features per galaxy.

After the MLP, the features from different observations of the same galaxy and narrow-
band filter concatenate into a tensor of size (Nobs, 20). This tensor is the input of the 1D CNN
that combines the multiple-observation features into a single set of 20 co-added features. To
deal with the varying number of astronomical observations varies per galaxy and narrow-band
filter, we use an adaptive-pooling layer (Liu et al., 2016) after the 1D CNN. Adaptive-pooling
layers fix the output size given any input size. This allows us to fix the output size to 20
features while enabling variable Nobs in the input. Adaptive pooling is a dynamic way of
dealing with the variable number of input galaxy exposures. Other alternatives would be
reducing the number of input images to the lowest number of observations per galaxy and
band or zero-padding the input to have the same number of observations per galaxy.

Aczio extracts 20 numbers per galaxy and narrow band with the feature extractor. The
features from all bands are then concatenated into an 800 features tensor (Ψ). This tensor
contains the SED and morphology information available in all the observations of a galaxy,
which Aczio uses to make photometry and photo-z predictions.

7.3.2 Photometry and photo-z s with MDN

We use MDNs to estimate the photometry and the photo-z. MDNs predict the probability
distribution (p) of the prediction (y) given the data (D) as a weighted sum of k distributions
that can be any basis function. Gaussians functions are a widely implemented basis, i.e.

p(y|D) =
k∑
i

αiNi(µi, σi) , (7.3)

where Ni(µi, σi) is the i-th Gaussian component with mean µi and standard deviation σi, and
αi is the so-called mixing coefficient, which give the relative contribution of the i-th Gaussian
component to the probability distribution. MDNs enable assessing the uncertainty of the
predictions, often required for scientific applications.

145



We use the log-likelihood of the MDN probability distribution as loss function of both the
photometry and the photo-z predictions, i.e.

LMDN = −2 log (p(y|I)) =
k∑
i=1

[
log(αi)−

(µi − y)2

σ2
i

− 2 log (σi)

]
. (7.4)

where the ~µ and ~σ are the mean and standard deviation parametrising the Gaussians, k is
the number of Gaussian components in the mixture model, and ~α are the mixing coefficients.
The ground-truth photometry labels are the noiseless fluxes corrected for extinction. For the
photo-zs, we use the true redshift from the simulations.

The tensor of features Ψ (§ 7.3.1) is the input of the MDN (on a cream-yellow background
in Fig. 7.2). We also include the milky-way extinction E(B−V ) to the set of features, which
is a valuable parameter for both the photometry and the photo-z predictions. The MDNs
predict the photometry in one band and the photo-z of the galaxy. These two tasks share a
set of common layers (green circles). Then, the output of the shared layers is the input of two
different task-specific blocks, one for the photometry predictions (yellow circles) and another
for the photo-z estimation (purple circles). In the later case, we also concatenate the uBV riz
broad-band fluxes to the output of the task-common layers. The task-specific MDNs output
the corresponding probability distributions as a combination of five Gaussian distributions.
The choice of number of Gaussians is based on the Bayesian information criterion (BIC),
which evaluates the trade-off between model performance and complexity.

Simultaneously predicting the photometry and the photo-z, we are implementing a ma-
chine learning technique named multi-task learning (MTL, § 6.3.1, Caruana, 1997). This
consists in improving the algorithm’s performance on a task by simultaneously training the
model on multiple related tasks. MTL forces the model to share representations amongst the
photometry and the photo-z predictions, exploiting their commonalities to constrain better
the measurements. Our MTL networks use correlations between the photometry and the
photo-z to improve the model’s performance. In Chapter 6, we already tested MTL tech-
niques with the photometry and the photo-z implementing a MTL network to improve the
broad-band photo-z estimates by simultaneously predicting the narrow-band colour of the
galaxy (Cabayol et al. in prep.).

The MDN provides the photo-z and the galaxy photometry in one narrow band. Aczio

contains 40 equal MDNs, each of them predicting the photometry in one narrow-band filter
from the same tensor of input features Ψ (§ 7.3.1). We tested predicting the photometry in
the 40 narrow bands and the photo-z with a single MDN, combining the all predictions in
the same loss function. However, this did not provide the expected results and we leave this
optimisation for future work. Some of the difficulties of

7.3.3 Training procedure

First, we train a 2D CNN to predict single-band photometry from multiple exposures. This
is not Aczio, it is essentially the Lumos network but also combining individual observations of
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the same galaxy and narrow band. This network is composed of a feature extractor as that in
the blue shaded area in Fig. 7.2 and an MDN to predict single-band photometry. The output
of the feature extractor is the input of the MDN, which predicts the co-added photometry of
the three exposures of the galaxy. We use this network to pretrain the parameters of feature
extractor before training the network end-to-end from images to photometry and photo-z.
Once the 2D CNN is trained, we only keep the feature extractor trained parameters and
reject the MDN ones.

The training sample is a tensor with (Ngal, Nobs, 60, 60), where Ngal are 480 000 images
of galaxies in all narrow bands. Nobs are three independent observations of the same galaxy
and narrow band, which is the minimum of exposures PAUS observes per galaxy and narrow
band. The 60 × 60 is the size of the image simulations or PAUCam cutouts. We add an
additional 5% pixel noise to the input images that prevents overfitting making the training
more robust. Furthermore, we also include a 2% of outliers on the fly by scaling the images
with a wrong zero-point.

PAUS has no astronomical data sets with observed annotated photometry, therefore we
use image simulations (§ 7.2.3) to train Aczio. In order to facilitate and ensure a good tran-
sition to PAUCam data, we also implement a training technique named domain adaptation
(Csurka, 2017). This training method aims to align the latent space representations of two
different data domains. In our case, the latent space data are the galaxy features extracted
with the CNN, and we aim to align the PAUS simulations and data domains. Domain adap-
tation forces the model to learn domain-invariant features present in data and simulations,
thus improving the model’s robustness to discrepancies between the two. This technique has
already been implemented in astronomy to e.g. to increase the robustness of galaxy morphol-
ogy classifier against adversarial examples (Ćiprijanović et al., 2021) and to adapt models
trained on simulations to data (Ćiprijanović et al., 2020).

We implement domain adaptation with a Maximum Mean Discrepancy loss (MMD, Gret-
ton et al., 2012). This is a kernel distance-based method that minimises the distance between
the image features from simulations (xs) and from PAUCam data (xd) mapping them into a
higher-dimensional Hilbert space that preserves the statistical features of the original latent
spaces. The MMD loss is

LMMD = k(xs, xd) = exp

(
|xs − xd|

2σ2

)
, (7.5)

where the σ parameters determine the width of the kernel. We use σ = 1, although we have
studied the effect of varying the σ parameters and there are not major differences amongst
different σ values.

The loss we use for this first network is

L = 10 · LMMD + LMDN , (7.6)

where we weight the MMD loss by ten so both losses have the same order of magnitude. Be-
sides the 480 000 image simulations, we also use PAUCam cutouts to train the domain adap-

147



tation, corresponding to 12 000 PAUCam galaxies to iAB < 22.5 in the spectroscopic sample.
Each galaxy and narrow band has a varying number of observations, which is addressed with
the Adaptive-pooling layer (§ 7.3.1). The network is trained with an ADAM optimiser (Kingma
& Ba, 2014) for 500 epochs with an initial learning rate of 10−4 that decays a factor of ten
every 200 epochs.

Once the feature extractor is trained, its output tensor of features (Ψ) is detached from
the training. This means that the training of the MDN does not back-propagate into these
features and, therefore, the CNN parameters do not vary. The detached tensor Ψ is the
input of the 40 MDN predicting the photometry and the photo-z (§ 7.3.2). Detaching the
MDNs from the CNN implies that, once we have the features from each image, we do not
need the images anymore. Therefore, the size of the input data drastically reduces, so as
the training time. Furthermore, if we were not detaching the features, training 40 MDNs for
each narrow band independently would imply that the parameters would update based on a
single band in each iteration, which could severely bias the predictions in other narrow bands.

Normalising the input is common practice in machine learning algorithms. The normal-
isation constrains the amplitude of the predictions, which otherwise enters strongly in the
loss function, hindering the training’s convergence. The normalisation can be directly im-
plemented to the input, the ground-truth labels, or to both. We are not normalising the
photo-z MDNs, but we have tested several options for the photometry predictions, where the
range of possible output fluxes is wider. Some of the normalisations tested are e.g. standar-
dising the input cutouts or normalising the cutouts dividing by the maximum pixel value,
and we obtain the best results when normalising only the training labels. We have studied
two training labels normalisation: dividing by the iAB magnitude and dividing by a fixed
100 value. Both perform similarly on simulations, but the former does not generalise well to
data. Therefore, the fiducial photometry Aczio training outputs the Gaussian distributions
p(f/100|D), which need to be re-scaled to physical fluxes. This indicates that the network
benefits from reducing the range of the predicted fluxes, but discrepancies between the i-band
magnitudes on simulations and data affect the photometry re-scaling on PAUCam data.

7.4 Multi-band photometry measurements

In this section, we validate the Aczio photometry predictions on simulated and PAUCam
images. In §7.4.1 we use simulations to evaluate the contribution of the morphology and the
SED to the photometry measurement. Then, we validate the flux measurements comparing
to MEMBA and Lumos photometry algorithms and PAUS synthetic SDSS observations (§7.4.2).
Section 7.4.3 evaluates the robustness of the errors, and ensure realistic signal-to-noise esti-
mates with the Aczio photometry (§7.4.4). In § 7.4.5, we use colour histograms to evaluate
the precision of the Aczio photometry and § 7.4.6 tests the propagation of errors at the image
level to the photometry measurements.
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Figure 7.3: Precision in the photometry obtained with: Dashed red : Single-band photometry,
Solid blue: Multi-band photometry. Dashed-dotted purple: Multi-band photometry with
uncorrelated morphologies. Every observation of the same galaxy is simulated with a different
morphology. Dotted green: Multi-band photometry with uncorrelated SEDs. The photometry
of the galaxy in the different narrow-band filters does not follow any SED.

7.4.1 Aczio photometry on simulated data

The PAUS force-aperture photometry algorithm MEMBA (§ 7.2.1) measures the flux for single-
exposure images and combines the individual flux measurements from several exposures into
a co-added flux estimate. Similarly, Lumos predicts the flux probability distributions from
single observations, which are combined into a co-added flux probability distribution. The
construction of this co-added flux probability distribution is a time-consuming process that
we side-step with Aczio, which directly measures the co-added flux probability distribution
per narrow-band (p(f)). This also enables a faster and more flexible combination of indi-
vidual exposures, in which the network can potentially down-weight noisier observations or
problematic observations and rely mostly on those with higher signal-to-noise (see § 7.4.6).

There are multiple ways of reducing the co-added flux probability distribution to a single
flux measurement (f) and its uncertainty, e.g. the mean, the median, and the peak of the
distribution (σf ). We use the same estimators as in Lumos, the mean flux

f =
∑
i

αi · µi , (7.7)

with an associated variance

σ2
f =

∑
i

[
αi

(
σ2
i + (µi −

∑
j

αjµj)
2

)]
. (7.8)
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Figure 7.3 compares the precision of the single-band flux measurements (Lumos) and Aczio

on simulations for the different PAUS narrow bands. The simulated test set contains 1000
galaxies with three observations per galaxy and narrow band (§ 7.2.3). The original Lumos
network measures single-band photometry from single-exposure images. For this test, we
modify the original Lumos network to directly predict the co-added single-band photometry
from multiple observations, as in Aczio. Therefore, the main difference between Lumos and
Aczio is that the former only uses the information encoded in the images it is predicting,
while Aczio can use the information in all the narrow-band images of the target galaxy to
estimate the photometry in one band (§ 7.3.1).

Comparing Aczio (blue solid line) and Lumos (dashed red line), the former improves the
Lumos photometry by a factor of ∼3 at bluer wavelengths. The difference between the two
methods reduces at the red end, although Aczio still provides about 40% more precise pho-
tometry. Bluer-band images have a significantly lower signal-to-noise than the redder ones.
Therefore, at the blue end the network benefits more from seeing other higher signal-to-noise
images that it can use to improve the flux estimates. The Aczio additional narrow-band
information provide extra knowledge to the network. For instance, the underlying SED dis-
tribution could help constraining the photometry in one band given the others.

The green dotted line in Fig. 7.3 study the contribution of the SED information to the
Aczio photometry measurements. There, we train Aczio with a set of simulated galaxies with
uncorrelated SED information. The photometry in each narrow band is randomly sampled
from the true distribution of fluxes, therefore fluxes of consecutive bands are not correlated.
Although Aczio is still capable of making photometry predictions, these are very inaccurate
and present lower precision than the Lumos ones (dashed-red line). This indicates that Aczio
relies on the underlying galaxy SED to infer the fluxes. The input features from uncorrelated
fluxes contain, at least, the information Lumos uses for its photometry predictions, i.e. the
information from the band it is predicting. However, the additional features we provide are
potentially adding noise, since the underlying SED fluxes do not correlate. Tests presented in
Appendix 7.A suggest that the presence of irrelevant features in the input hinders the predic-
tion of precise photometry. The region with λ ∼ 7500Å corresponds to a wavelength range
telluric absorption of O2 in the atmosphere, and was also problematic for the background-
noise predictions in BKGnet.

Aczio could also use the morphology correlation to facilitate the photometry measure-
ments. The networks need to internally estimate the galaxy size to measure the photom-
etry. While a single-band photometry network is forced to use the size measurement from
the narrow-band image it is predicting, Aczio can use the morphology inferred from higher
signal-to-noise observations. The dotted-dashed purple line in Fig. 7.3 studies the contribu-
tion of the morphology to the photometry measurements. For that, we train the network
on simulations with uncorrelated galaxy morphology, i.e. the simulated galaxies follow an
underlying SED, but the size and shape of the galaxies change amongst bands. The im-
provement with respect to single-band photometry (dashed red line) is still very significant,
however, the photometry scatter is ≈40% higher with respect to Aczio (solid blue line). This
indicates that the morphology from other narrow-band images also has an impact on the
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Figure 7.4: Left : Photometry of a PAUS galaxy with irmAB = 22.1 with MEMBA (dashed red
line) and Aczio (solid blue line). Right: PAUS galaxy with 40% of the observations with
a scattered light flagging. The MEMBA measurements (dashed red line) reject all problematic
observations, with Aczio (solid blue line) we use all the images available for the galaxy.

Aczio photometry, however, the underlying SED information has a stronger effect.

On the same set of simulations, the Aczio photometry (blue solid line in Fig. 7.3) results in
a relative bias bf < 3% in the photometry measurements in all narrow-bands independently,
where (bf )

bf = Median[(f − f0)/f0] , (7.9)

and f and f0 are the predicted and true fluxes, respectively.

7.4.2 Aczio fluxes on PAUCam images

In this section, we first compare the Aczio flux estimates with Eq.7.7, with the Lumos and
MEMBA catalogues in COSMOS. Then, we compare our multi-band photometry measurements
with synthetic PAUS photometry to further validate the flux estimates. We use ∼14 000
galaxies from the COSMOS spectroscopic sample (§ 7.2.3).

We first compare the Aczio individual flux measurements with the MEMBA and Lumos

catalogues using the flux ratio

r = fAczio/fx , (7.10)

where fx can be the flux of either MEMBA or Lumos. For the complete PAUS sample in
COSMOS, Aczio measures 17% higher fluxes than MEMBA and Lumos. The image training
simulations include milky-way extinction. We provide the network with the E(B−V ) values
so that it directly learns to predict the extinction corrected photometry. In contrast, the
MEMBA and Lumos photometries are not extinction corrected. To see the contribution of the
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Figure 7.5: Comparison between PAUS synthetic flux measurements from SDSS spectra and
the Aczio (solid red) and Lumos (dashed blue) predicted photometries.

extinction correction, we have trained and evaluated the Aczio photometry without correct-
ing for extinction. In this case, Aczio measures 10% higher fluxes than Lumos and MEMBA.
The ratio is constant in wavelength and increases to 1.15 at the faint end (iAB>22).

The left panel on Fig. 7.4 shows an example of PAUS galaxy with the co-added photometry
measured with MEMBA (dashed red line) and Aczio. For most of the bands, both measure-
ments are compatible within error. The MEMBA fluxes are more noisy and oscillate around
the Aczio fluxes, which show more stable. Also, the error bars in the Aczio photometry are
lower than the MEMBA ones. The panel on the right shows the photometry for a galaxy with
flagged outlier observations, which is discussed in § 7.4.6.

We also compare Aczio photometry with synthetic PAUS photometry to validate the flux
estimates. The synthetic photometry is constructed convolving SDSS galaxy spectra with
the PAUCam filters throughput and it corresponds to a bright sample with a magnitude
limit iAB < 20.5. We match PAUS observations with SDSS spectra by sky position, pairing
observations within 1”. Comparing PAUS photometry and SDSS spectra requires scaling the
synthetic PAUS fluxes with a multiplicative scaling amplitude (A) that takes into account
the observing conditions and the different data reduction pipelines. The scaling zero point is
obtained by minimising the χ2 between PAUS observations and PAUS synthetic fluxes, i.e.

χ2 =
∑

x

(
fSDSS,x − A · fSDSSPAUS,x

)2

σ2
SDSS,x + A2 · σ2

SDSSPAUS,x

, (7.11)

where SDSS labels the observed SDSS photometry, SDSSPAUS is the SDSS-PAUS synthetic
flux and the sum (x) is over the gri broad bands. This minimisation provides a median
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Figure 7.6: The C ′ distribution with Aczio photometry estimates for ∼14 000 PAUCam
galaxies in the COSMOS field (dashed red). These should distribute as a Gaussian N(0, 1),
plotted in black solid. The blue dotted line present the same results for Aczio trained without
domain adaptation.

multiplicative scaling amplitude of 1.64 with a σ68 = 1.01.

The Aczio photometry has a 2% relative error when compared to the synthetic photom-
etry. Also, the ratio between the two is 0.97, indicating 3% lower fluxes in our multi-band
photometry. Figure 7.5 shows the difference between the synthetic PAUS photometry and
that predicted by Aczio (solid red) and Lumos (dashed blue), relative to the photometry un-
certainties. If the two measurements were uncorrelated, the histograms should distribute as a
Gaussian with zero mean and unit variance. The Aczio distribution is more Gaussian, while
the Lumos is slightly skewed towards underestimated flux predictions. However, these two
measurements are not necessarily uncorrelated and the width of both histograms is around
σ68 = 0.75.

7.4.3 Flux uncertainties

To validate the uncertainties associated with the fluxes derived from the p(f) (Eq. 7.8), we
define

C ≡ (f − f0)/σf , (7.12)

where f is the network’s flux measurement, f0 is the true flux, and σf is uncertainty associated
to the flux measurement. As for the comparison with SDSS fluxes, if the flux uncertainties
are robust, C should distribute as a Normal distribution with zero mean and unit variance
N(0, 1). In this case, we are comparing Aczio flux measurements to the true-flux value, thus
the are no sources of correlated errors that affect the C distribution. We find σ68[C] ≈ 1.10
on the simulated test set. Splitting in equally populated magnitude bins, flux uncertainties
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are ∼ 10% overestimated for the 10% brightest and faintest galaxies, while the rest of the
sample has robust uncertainties within a 5% error.

To validate the uncertainties on PAUCam data, we select four observations of each galaxy
per narrow band and randomly split them in pairs. From each independent pairs of images,
we evaluate with Aczio two uncorrelated flux measurements (f1, f2) of the same galaxy and
narrow band with uncertainties (σ1, σ2). Then, we define the distribution of

C ′ = (f1 − f2)/
√
σ2

1 + σ2
2 , (7.13)

where both the fluxes and the uncertainties are calibrated to be compared. Similarly to
Eq. 7.12, for two uncorrelated photometry estimates C ′ should distribute as a Gaussian with
zero mean and unit variance. However, despite measuring the photometries from indepen-
dent pairs of observations, images overlapping in sky position use the same stars to derive
the scaling zero points. Therefore, the photometric calibration is a source of correlated errors.

Figure 7.6 shows the distribution of C ′ for the photometry with Aczio of∼ 14 000 PAUCam
galaxies (dashed red line). It provides an overall width of σ68[C ′] = 0.95. As on simulations,
the 10% brightest and faintest galaxies have ∼15% overestimated uncertainties while the rest
of the sample has robust uncertainties within a ∼5% error.

7.4.4 Signal-to-noise on PAUCam data

Figure 7.7 shows the signal-to-noise of ≈14 000 PAUCam galaxies in ten equally-populated
magnitude bins for the aperture-photometry method MEMBA (dashed red line), the deep neural
network Lumos, and Aczio. In all cases, we are showing the signal-to-noise of the co-added
fluxes.

Aczio provides higher signal-to-noise than MEMBA and Lumos in all magnitude bins. Com-
paring to MEMBA, Aczio increases the signal-to-noise by 25% at the bright end and by a factor
of three at the faintest end. Overall, Aczio provides around 2 higher signal-to-noise than
MEMBA. In the case of Lumos, the signal-to-noise increment is lower, although still very signifi-
cant. At the bright end, Aczio gives approximately 21% higher signal-to-noise, and this goes
up to two times better photometry at the faintest end. Overall, Aczio provides 1.7 times
higher signal-to-noise than Lumos.

7.4.5 Colour histograms

Assuming that galaxies have an underlying distribution of colours, noise in the observations
smooths such colour distribution. The observed colour histograms correspond to the under-
lying colour distribution convolved with the noise. Consequently, the best photometry on a
galaxy sample is that with the narrowest colour histograms, thus with lower scatter in the
fluxes. We already used colour histograms to evaluate the Lumos photometry and these were
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Figure 7.7: Signal-to-noise (SNR) of the photometry of ∼14 000 PAUCam galaxies with: black
solid : Aczio; dashed dotted blue: Lumos; and dashed red : MEMBA. The results are presented
in equally populated magnitude bins.
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Figure 7.8: Width (σ68) of the colour histograms from the MEMBA (dotted black line), Lumos
(dashed blue line), and Aczio (solid red line) photometries.
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also employed to evaluate the LAMBDAR photometry algorithm (Wright et al., 2016) on data
from the Galaxy and Mass Assembly (GAMA, Driver et al., 2011).

Figure 7.8 presents the width (σ68) of the colour histograms with MEMBA (dotted grey
line), Lumos (dashed blue line), and Aczio (solid red line). Lumos already reduces the colour
histograms width with respect to MEMBA. Aczio drastically improves both Lumos and MEMBA

photometries. At bluer wavelengths, where observations are fainter, Aczio narrows the colour
histograms by a factor of ≈4 with respect to MEMBA and ∼3 in the case of Lumos. This indi-
cates that the colours with the Aczio is much more precise than the single-band photometry
either with MEMBA or Lumos.

We have also estimated the width with σ95, which is equivalent to σ68 but with the 2.5 and
97.5 percent quantiles. Unlike σ68, which measures the core of the distribution, σ95, traces
the tails of the colour histograms. The ratio between σ95 and σ68

S = σ95[p(colour)]/σ68[p(colour)] (7.14)

indicates the length of the distribution’s tails, and thus it is an estimator of photometry
outliers. At blue wavelengths, S is ∼ 5 times lower with Aczio than with Lumos. Comparing
to MEMBA, this factor increases to ∼ 7. The difference reduces at redder wavelength images,
with ∼ 2 lower S values with Aczio than with Lumos and ∼ 4 times lower than MEMBA (not
shown). Overall, Aczio presents tighter colour histograms that the other two photometric
methods, and which also indicate a reduction in the number of photometric outliers.

7.4.6 Robustness of the method

In this sub-section, we study the robustness of Aczio in the presence of distorting effects such
as e.g. cosmic rays and scattered light. For that, we have select PAUCam galaxies with obser-
vations flagged as problematic and see the impact that these have on the Aczio co-added flux.

Scattered light is the result of light deflecting from the instrument optical path appearing
at a different region of the detector. The PAUCam images are affected by scattered light,
which is the cause numerous outlier observations. In BKGnet, we showed that scattered light
is not a random effect. It follows a noise pattern in all PAUS observations that can be pre-
dicted and corrected for. BKGnet predicts the scattered light contribution from the galaxy
image, the narrow band it has been taken with, and the galaxy coordinates. Aczio has all
these information and, furthermore, it has access to other observations of the same galaxy,
which are potentially not contaminated by scattered light.

The right panel on Fig. 7.4 shows the 40 PAUS co-added fluxes predicted with Aczio

and MEMBA. This particular galaxy has 40% of its exposures flagged as strongly affected by
scattered light. The MEMBA fluxes are estimated from the unflagged observations only, while
we keep all observations in the Aczio measurements. The MEMBA photometry presents a noisy
photometry, most likely due to the high number of observations rejected. Instead, the Aczio

flux measurements using all observations are not affected by scattered light and provide reli-
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able photometry.

We proceed similarly with other effects as cosmic rays with similar findings. Aczio does
not need to reject observations with cosmic rays and knows how to predict robust photometry
in its presence. We have also tested how errors in the image cosmetics propagate to the flux
measurement. While aperture photometry measures very negative (thus with a overestimated
noise subtraction), the Aczio co-added flux measurement is not affected.

7.5 Photo-z measurements

In this section, we validate the Aczio photo-z predictions on PAUS data. In § 7.5.1, we in-
troduce transfer learning, a technique to adapt the photo-zs trained on simulations to data.
Section 7.5.1 presents the main photo-z results in the COSMOS field, including the scatter
and the photo-z distributions. Then, § 7.5.2 evaluates the photo-z probability distributions
and § 7.5.3 studies the photo-z performance in colour space.

7.5.1 Photo-z s in COSMOS

In this sub-section, we study the performance of Aczio on PAUS data in the COSMOS field.
To evaluate the accuracy and precision of the photo-z estimates, we define

∆z := (z − zs) / (1 + zs) , (7.15)

where z and zs are the photo-z and the spectroscopic redshifts, respectively. The bias and
the dispersion are defined as the median and σ68 of ∆z, respectively, where we define σ68 as

σ68 :=
1

2
[Q84(∆z)−Q16(∆z)] , (7.16)

and Q16(∆z), Q84(∆z) are the 16th and 84th percentiles of the ∆z distribution.

Transfer learning

Transfer learning (TL, Pan & Yang, 2010) is a machine learning technique to adapt the
knowledge gained training one task to a different but related problem (Torrey & Shavlik,
Torrey & Shavlik; Pan & Yang, 2010). This technique can be also implemented to adapt a
model trained with some data, to perform well on different data set, e.g. astronomical obser-
vations from different surveys (Kim et al., 2021). Also, many times annotated training sets
are not sufficiently large to train the neural network from scratch. Then, one possibility is to
first train using large simulations and then implement transfer learning using the annotated
smaller data set (Eriksen et al., 2020).

There are no data set of observed annotated PAUS photometry thus we use simulated
PAUCam images to train the photometry and the photo-z predictions with Aczio (§ 7.2.3).
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Figure 7.9: Photo-z scatter plot with Aczio (blue), BCNz (red), and Deepz (green). Left:
Before implementing transfer learning. Right: After implementing transfer learning.

After that, we apply transfer learning to the Aczio photo-z prediction using the COSMOS
spectroscopic sample. For that, we use PAUCam cutouts as input, together with the COS-
MOS uBV riz photometry and the galactic extinction E(B−V ) from the dust map in Schlegel
et al. (1998). For the ground-truth redshifts, we use the spectroscopic redshifts in COS-
MOS2015 selecting only very secure redshift with a the quality parameter (§ 7.2.1. We can
only implement transfer learning to the photo-z predictions, since we do not have a smaller
set of annotated photometry. Therefore, all the network parameters affecting the photome-
try predictions are detached from the transfer learning training. Otherwise, the photometry
predictions could severely be affected.

On simulations, we obtain a photo-z precision of σ68 ≈ 0.017. Evaluating the photo-zs
on PAUS without transfer learning, we find σ68 ≈ 0.05, which is driven by a clear photo-
z systematic bias at zs < 0.4 (blue scatter points in the left panel of Fig. 7.9). Before
implementing transfer learning, we calibrate the COSMOS uBV riz broad-band photometry
implementing offsets (∆m), i.e.

m′ = m+ ∆m, (7.17)

where m′ are the calibrated broad-band magnitudes and m are the uBV riz magnitudes as in
the COSMOS2015 catalogue. We estimate the ∆m parameters minimising the photo-z scat-
ter on the PAUS sample in COSMOS as a function the offsets. For that, we implement the
Nealder-Mead minimisation algorithm (Jones et al., 2001) from SciPy (Jones et al., 2001).
With the broad-band calibration, we reach a σ68 ≈ 0.02, fixing the systematic bias at zs < 0.4
(green scatter points in the left panel of Fig. 7.9).

After calibrating the broad bands, we train the transfer learning on 12 000 spectroscopic
galaxies. We train it for 200 epochs with an initial learning rate of 103, decreasing a factor
of ten every 75 epochs. Transfer learning increases the photo-z precision to σ68 ≈ 0.013 (red
scatter points in the left panel of Fig. 7.9).

The right panel in Figure 7.9 shows the photo-z scatter for the template-fitting algorithm
BCNz, the deep neural network from derived photometry Deepz, and Aczio. All methods
provide unbiased photo-z predictions to the sub-percent level. Without any quality cut on
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Figure 7.10: Photo-z precision in equally populated magnitude bins with Aczio (solid red),
BCNz (dotted blue), and Deepz (dashed green).

COSMOS
COSMOS

(3<conf<5)
COSMOS
iAB > 20

BCNz 0.0138 0.0083 0.016
Deepz 0.0098 0.0068 0.010
Aczio 0.0136 0.0111 0.013

Table 7.1: Photo-z precision in the COSMOS field for the template-fitting code BCNz, the
deep neural network working on the derived photometry Deepz, and the deep convolutional
neural network working on images Aczio.

159



-0.2 0.0 0.2 0.4
0

5

10

15

p(
z)

0.0 0.2 0.4 0.6 0.2 0.4 0.6 0.8

0.4 0.6 0.8 1.0
z

0

5

10

15

p(
z)

0.6 0.8 1.0 1.2
z

0.8 1.0 1.2 1.4
z

MBPz
BCNz
Deepz

Figure 7.11: Redshift distributions for the COSMOS spectroscopic sample with 0 < z < 1.5
with Aczio, BCNz, and Deepz. The redshift bins have a width of ∆z = 0.2, except the last
one, which expands 1.2 < z < 1.5.

the spectroscopic sample, we obtain σ68 ≈ 0.0138 with BCNz, σ68 ≈ 0.00976 with Deepz, and
σ68 ≈ 0.0136 with Aczio. Lilly et al. (2009) defines a quality parameter (conf) based on the
confidence in the spectroscopic redshift measurement. Cutting on 3 < conf < 5, we obtain
σ68 ≈ 0.0083, σ68 ≈ 0.0068, and σ68 ≈ 0.0111 for BCNz, Deepz, and Aczio, respectively. All
these values are summarised in Tab. 7.1.

The analysis is extended in Fig. 7.10, which shows the photo-z precision in equally pop-
ulated magnitude bins to iAB < 22.5 for Aczio (solid red), BCNz (dotted blue), and Deepz

(dashed green). Although the overall precision with BCNz and Aczio is similar, we can see
that for iAB > 21.5, Aczio increases by 25% the BCNz photo-z precision and gets close to the
Deepz one. In contrast, at the bright, Aczio provides poor photo-z estimates compared to
the other two methods. One possible explanation is a discrepancy between the simulated and
the PAUCam images that affect more bright galaxies since these are more resolved. Fixing
this problem is still work in progress.

Figure 7.11 shows the redshift distribution (N(z)) in six equally spaced tomographic red-
shift covering of 0.2 redshift with covering the range 0 < zs < 1.5. The last bin is wider and
includes 1.2 < zs < 1.5, so that we ensure a sufficient number of galaxies in the bin. The
galaxies in each bin are selected with the spectroscopic redshift. All redshift bins except the
1.2 < zs < 1.5 present distributions centred in the corresponding redshift range. In the last
tomographic bin, we observe galaxies with underestimated photo-z with the three methods.
The photo-z in the redshift range 1 < zs < 1.2 has a better N(z) distribution with Aczio

than with the other algorithms, especially comparing to BCNz.
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Figure 7.12: Example of redshift probability distribution with true redshift at zs = 0.43 (black
vertical line). The dashed red lines correspond the five Gaussian components constructing
the redshift probability distribution of a single MDN. These are added into a single p(z) (solid
blue line). Both the red dashed lines and the blue one correspond to the output of one of
the 40 MDNs. The photo-z measurements from each of the 40 MDNs combine in the orange
solid line.

7.5.2 Photo-z probability distributions

Aczio provides both the flux and photo-z probability distributions as a combination of five
Gaussian distributions (§ 7.3.2). Figure 7.12 shows an randomly selected example of a photo-z
probability distribution predicted with Aczio. The vertical black dotted line is the spectro-
scopic redshift of the galaxy. The network contains 40 MDNs, each of which predicts the
photometry in one narrow band and the photo-z of the galaxy as a linear combination of
five Gaussian distributions. The dashed red distributions in Fig. 7.12 correspond to the five
Gaussian components constructing the p(z) of a single MDN. The Gaussian components are
already weighted by the mixing coefficients (§ 7.3.2). In this case, there are two components
contributing significantly to the p(z), while the other add up to the tails.

The relaxing sea-blue solid line corresponds to the addition of the five Gaussian compo-
nents of the mixture model weighted by the mixing coefficients. Then, the orange line is the
combination of the 40 p(z)s, one per MDN.

For the photometry, where there are no annotated data for a direct validation of the
predictions, we compared independent flux measurements of the same galaxy and narrow
band (§ 7.4.3). In this section, we characterize the calibration and the sharpness of predicted
photo-z probability distributions (p(z)) using the probability integral transform (PIT, Dawid,
1984; Gneiting et al., 2005; Bordoloi et al., 2010) and the continuous ranked probability score
(CRPS, Hersbach, 2000; Polsterer et al., 2021) metrics. To validate the p(z) measurements,
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Figure 7.13: Left: Histogram of the PIT values for a sample of 3000 COSMOS galaxies with
spectroscopic redshift. Right: Histogram of the CRPS values for the same sample of galaxies.

we use the COSMOS spectroscopic redshifts as true redshifts.

The PIT metric is defined by

PIT ≡
∫ zs

−∞
dz p(z) (7.18)

where zs is the spectroscopic redshift. When the p(z) faithfully represents the true redshifts,
the PIT distribution is the uniform distribution U[0,1]. Contrary, PIT histograms presenting
peaks at the edges, i.e. around zero and unity, indicate the presence of outlier measurements.
Also, PIT histograms more populated at the centers than on the edges denote over-dispersed
probability distributions. The left panel of Fig. 7.13 contains the PIT distribution for a ran-
dom subset of 3000 COSMOS galaxies. The PIT histogram is close to a U[0,1] with few
outliers at unity, corresponding to underestimated p(z)s.

The CRPS is defined as

CRPS(p(z), zs) ≡
∫ ∞
−∞

(CDF (p(z))−H(z − zs))
2 dz , (7.19)

where CDF (p(z)) is the photo-z cumulative distribution andH is the Heaviside step function.
Robust photo-z probability distributions should have cumulative distributions close to unity
when integrated up to the true redshift. Therefore, the integrated quantity in the CRPS score
should be small in the limit where z reaches zs. The lower the CRPS score is, the better our
p(z) capture the true redshift. The right panel on Fig. 7.13 shows the distribution of CRPS
values, which presents the expected shape with a mean value of 0.013.
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Figure 7.14: Colour-space distribution of the photo-zs measured with Aczio. The left-most
panel presents the photo-z. The panel in the centre shows the photo-z bias and the right-most
panel, the photo-z scatter.

7.5.3 Colour space

We study the colour-space distribution of Aczio photo-z measurements. For that, we use
a self-organising map (SOM, Kohonen, 1982), an unsupervised machine learning algorithm
trained to produce a low-dimensional (typically two-dimensional) representation of a multi-
dimensional space. A two-dimensional SOM contains Nx×Ny cells with an associated vector
of attributes (~wk), where Nx and (Ny) correspond to the dimension of the SOM on the x and
y-axis, respectively, and k corresponds to the kth SOM cell. The SOM training phase is an
iterative process during which the SOM cells compete amongst themselves to represent the
training data (see e.g. (Wright et al., 2020a; Myles et al., 2021)). Once the SOM is trained,
the cells are optimised to represent a particular type of galaxy. Cells representing similar
galaxies are also close-by in the SOM space.

We have trained a 50× 50 SOM using the uBV riz photometry from COSMOS2015. The
size of the SOM is a compromise between colour-space resolution and the occupation of the
cells. Also, we train the SOM with the broad bands because previous studies showed that
training the SOM with 40 noisy narrow bands requires a very large training sample, not
currently available.

Figure 7.14 shows the photo-z statistics in colour space. The first left-most panel corre-
sponds to the photo-z distribution in colour space, where we can see that population with
the same photo-z cluster. The centred panel shows the photo-z bias, where we do not appre-
ciate any colour-space region with biased photo-zs. In contrast, there are some locations in
colour-space with lower photo-z precision, but these also show lower precision with BCNz and
Deepz, indicating that the issue could potentially be in the broad-band photometry or in the
galaxy images.

7.6 Conclusions

Imaging surveys require accurate galaxy photometry and precise photometric redshifts for
most of the science analysis. In this work, we are developing Aczio, a deep convolutional
neural network to predict both the multi-band photometry and the galaxy redshift directly
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from its image observations. Aczio is built on Lumos (§ 5), a CNN that predicts single-band
photometry and Deepz, a deep linear network that map photometry to redshifts. Aczio

surpasses Lumos predicting the multi-band photometry using some of the techniques imple-
mented in Deepz.

We have developed Aczio with data from the PAUS survey. Since PAUS does not have
any set of annotated observed photometry, Aczio is trained on Teahupoo galaxies, image
simulations specially built for this work. While we already used Teahupoo galaxies in Lumos

(§ 5.2.2), we have extended these simulations to include bulge and a disk galaxy modelling
and multiple calibrated observations of the same galaxy and narrow band (§ 7.2.3). One of
the main characteristics of Teahupoo galaxies is that these use PAUCam image cutouts for
the background noise. This enables the network to learn from examples how to make reliable
predictions in the presence examples of distorting effects as e.g. blended galaxies and cosmic
rays (§ 7.4.6).

At bluer wavelengths, the multi-band photometry from Aczio reduces the Lumos single-
band photometry scatter by a factor of three. At redder bands with higher signal-to-noise,
the improvement is 40%. In contrast to Lumos, Aczio uses all image observations of a galaxy
in any narrow band to predict the photometry in each of the bands. This enables Aczio

to use the SED information available in the images to improve the photometry in all bands
(§ 7.4.1). Having multiple estimates of the morphology also contributes to the improvement
in the photometry estimates, although this has a lower impact compared to the SED.

On PAUS data, Aczio doubles and triples the signal-to-noise at the faint end of Lumos

and MEMBA, respectively (§ 7.4.4). We compare the Aczio photometry of pairs of independent
observations of the same galaxy and narrow band to test the robustness of the uncertainty
measurements, finding the signal-to-noise measurements are realistic (§ 7.4.3). Also, we vali-
date the Aczio photometry with SDSS convolved spectra finding a 2% relative error.

So far, we reach an overall photo-z precision better than BCNz in the COSMOS spectro-
scopic sample, although we have still not achieved the Deepz performance. At the faint end,
Aczio provides very precise photo-z estimates, but it shows issues predicting the photo-z of
bright galaxies (§ 7.5.1). We have tested the calibration and sharpness of the photo-z proba-
bility distributions using the PIT and the CRPS scores. The former indicates that the p(z)s
are well calibrated. We also obtain a CRPS value compatible to other photo-z studies.

This is still work in progress and in our near-future actions, we aim to e.g. testing
different input normalisations, implementing better data augmentation techniques, optimising
the Teahupoo image simulations, test the CRPS as loss function, and study the photo-z
performance dependence with brightness and redshift to understand the trend and beat down
the precision at the bright end.
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Figure 7.15: Photo-z precision for different number of uncorrelated random features in the
input. In the dashed-green and red-dotted line, we implement two distinct data augmentation
techniques in the training.

7.A Effect uninformative features in the input of a neural net-

work

Aczio estimates the photometry and the photo-z from 800 features extracted from all the
observed images of a galaxy (§ 7.3.2). These features contain all the SED and morphology in-
formation available in the images. The network uses the information from images taken with
different narrow-band filters to improve the photometry measurement in one band (§ 7.4.1).
However, it can potentially happen that some of these information (e.g. the features from a
distant narrow band) are much less relevant for the photometry prediction in a given narrow
band.

In this section, we study the effect of training a neural network when a fraction of the
input data features is uninformative. When this fraction is small, the network should be ca-
pable of capturing the relevant features and ignore the others. However, a dominant fraction
of irrelevant features could potentially hinder the training, adding too much noise for the
network to learn from the valuable data.

To estimate the photometry and the photo-z of a galaxy, from each narrow-band filter
the network extracts 20 features which potentially contain information about the galaxy pho-
tometry and morphology. Every galaxy is then defined by 800 features (40× 20) that encode
its SED and morphological information. Aczio uses these features to predict the photometry
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in each band and the photo-z of the galaxy (§ 7.3).

In § 7.4.1, we trained our network on galaxy simulations with uncorrelated SEDs (dotted
green line in Fig. 7.3), obtaining worse precision than single-band photometry. In the un-
correlated SED case, the input of the network contains the information required to make a
prediction at least as accurate as the single-band photometry estimate. However, the pho-
tometric information from a narrow band that the network is not predicting is completely
uninformative. These features could represent up to 97% of the input (780 out of 800 fea-
tures). A potential explanation for the worsening of the photometry performance is that the
uninformative features add too much noise to the training, hindering the predictions.

To test the effect of uninformative input features, we train a linear neural network to
predict the photo-z from the uBV riz galaxy colours in the COSMOS field. The broad-band
photometry is from Laigle et al. (2016) and the ground truth redshifts are the spectroscopic
redshifts from Ilbert et al. (2008). Starting from the 5 broad-band colours, we have repeated
the network’s training including additional random features to the input. The solid blue line
in Fig. 7.15 shows the photo-z performance as a function of number of random input features
in the fiducial case. The photo-z precision has a 20% degradation when adding 5 or 10 addi-
tional uncorrelated features. Moreover, this reduction quickly increases for larger numbers of
additional random input features. The point corresponding to 195 random features contains
the same fraction of uninformative input data as the uncorrelated SED photometry (dotted-
green line in Fig. 7.3 and shows a three-times lower photo-z precision than the fiducial case.
This indicates that irrelevant input features can degrade the performance even if the input
contains the information needed to meet a accuracy level.

In machine learning, data augmentation is a technique to increase the training sample by
modifying the already existing training samples. Data augmentation is widely spread and
has already been implemented in several astronomy projects, e.g. to improve the photo-z
performance (Hoyle et al., 2015; Eriksen et al., 2020) and implemented in the galaxy detec-
tion and classification (González et al., 2018). We have implemented two data augmentation
techniques in order to reduce the effect of the uncorrelated noisy features.

We have first added 50% of noise to the uncorrelated features on the fly while training.
This is implemented scattering the random features (θ) with

θ′ = θ + θ ·N(µ = 0, σ = 0.5), (7.20)

where N(µ, σ) corresponds to a Gaussian distribution with mean µ and standard deviation σ.
This data augmentation methodology has a modest impact on the photo-z precision (dashed
green line in Fig. 7.15). The network sees noisy realisations of the same underlying uncorre-
lated features, so it could still try to learn from those.

The second data augmentation technique consists in producing the uncorrelated noisy
features on the fly, in such a way that the network sees completely different noise features in
each training iteration thus it cannot learn anything from those. This technique has a very
strong impact on the photo-z precision (dotted red line in Fig. 7.15), unfortunately it cannot
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Figure 7.16: Photo-z precision as a function of the scatter added into the input features
(dashed red) and the redshift labels (solid blue). The β parameter is defined in Eq. 7.21.

be implemented on data, where we do not know which features are not of interest and we
could potentially reject helpful information coming from e.g. the morphology in other bands.

7.B Simulated broad-band photometry

The MDN predicting the photo-zs also uses the uBV riz broad band photometry on top
of the information from the narrow-band images. When training Aczio on simulations
(§ 7.2.3&§ 7.3.3), we can include different levels of noise to the broad-band photometry. We
have studied three cases: using the noiseless broad-band photometry, broad-band photome-
try with a fixed signal-to-noise of 35, and realistic errors. Testing on simulations, the former
provides much better photo-zs that the other two options, however also has a worse gener-
alisation when applied to data. The other two methods (fixed and realistic signal-to-noise)
present a similar performance both on the simulations and the data. At the end of the day, as
we also implement transfer learning to the photo-z predictions using the spectroscopic sample,
the choice of noise level between these last options at the first stage of the photo-z training
does not have any effect. For simplicity, we use a fixed signal-to-noise on the simulated broad
bands.
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7.C Scattering the ground-truth redshifts

Label smoothing is a machine-learning technique implemented on supervised neural net-
works that perturbs the ground-truth targets to make the model less certain of its predic-
tions (Müller et al., 2019). This helps regularising the model and prevents from overfitting.
Commonly, label smoothing prevents overfitting and is commonly used classification tasks
We implement label smoothing in the transfer learning training. For that, we scatter the
ground-truth spectroscopic redshift (zs) with a fixed error fraction β, so that

z′s = zs + zs · β ·N(0, 1) , (7.21)

where N(0, 1) is a Normal distribution with zero mean and unit variance. The blue solid line
in Fig. 7.16 shows the photo-z precision for different values of β, presenting a minimum for
β = 0.01.

We also study the effect of scattering the input features of the photo-z MDNs in the
transfer learning phase. We modify the input features following the same recipe as in Eq. 7.21.
The dashed red line in Fig. 7.16 shows the photo-z precision for different scatter fractions,
showing a minimum at β = 0.03.
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Chapter 8

Summary and conclusions

Astronomy is a science with thousands of years of history. Already in the second millennium
B.C, ancient Babylonian astronomers identified the planets in the solar system. Thousands
of years after that, in 1774, Messier catalogued extragalactic objects. Photographic plates
transformed the field enabling more astronomical observations. These were further extended
with the development of the charged coupled devices (CCDs, Chapter 2), which enabled
systematic observations of the sky using statistical tools (Chapter 3). In parallel, artificial
intelligence and deep learning have revolutionised the creation of algorithms, allowing us to
develop statistical tools hard to code by hand through training on large datasets (Chapter 1).

In this thesis, we have explored implementing deep learning techniques to the astronom-
ical data reduction. More specifically, we have focused on developing techniques to reduce
data from the PAUS narrow-band survey (Chapter 2). This entails deep-learning methods
to estimate the photometry and predict the photo-z directly from astronomical images. We
address the photometry and the photo-z estimation in three steps: background-light estima-
tion (Chapter 4), single-band flux measurements (Chapter 5), and multi-band photometry
and photo-zs predictions (Chapter 7).

In Chapter 4, we have optimised the background subtraction task with BKGnet, a CNN
that predicts the background and its associated uncertainty behind target sources. This
study focuses on the background-noise prediction in the presence of scattered light, which
follows a band-dependent pattern that can be predicted and corrected. We tested modelling
scattered light by combining background-ratio maps from several images taken with the same
narrow band. We tested modelling scattered-light maps can correct for scattered light, they
are not sufficiently accurate, since changes in the observing conditions cause fluctuations in
the scattered-light patterns that the correcting template does not capture.

BKGnet predicts more precise and accurate background-noise estimates than traditional
annulus-based methods (§ 3). In the presence of scattered light, it estimates more accu-
rate background estimates than the correction with scattered-light templates. On PAUCam
data, BKGnet provides more robust uncertainties than background-annulus estimates, fixing a
strong systematic trend with i-band magnitude. Furthermore, BKGnet also reduces the BCNz2
photo-zs outlier relative fraction by a 25% and 35% for a selected 50% and 20% photo-z sam-
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ples, respectively, while the accuracy is unaffected.

In Chapter 5, we introduce Lumos, a CNN built on BKGnet that predicts the background-
subtracted flux probability distribution. This requires an intrinsic background-noise subtrac-
tion that we address based on the BKGnet experience. To train Lumos, we have developed
Teahupoo, a set of PAUCam image simulations. Teahupoo images use PAUCam image cutouts
as background noise, which ensures that the training sample contains examples of distorting
effects such as scattered light, cosmic rays, and crosstalk. This has proven helpful for predict-
ing reliable flux measurements on PAUCam observations previously flagged as problematic.
Lumos measures three times higher signal-to-noise photometry than MEMBA for faint galaxies.
This leads to a reduction of the photo-z scatter with both BCNz and Deepz. For Deepz, using
the Lumos photometry reduces the photo-z scatter by 10% on the full catalogue with respect
to previous results with MEMBA photometry.

Chapter 6 introduces a method to exploit data from narrow-band photometric surveys
like PAUS to improve the broad-band photo-zs using multi-task learning. Similar to many
other cases, these additional data is only available for a small fraction of the wide-field sur-
vey area. Our suggested multi-task approach allows us to improve the broad-band photo-z
training using narrow-band data that is only available for a small fraction of the sky.

In the COSMOS field to iAB < 23, our method reduces the photo-z scatter by approxi-
mately 16% with respect to a neural network mapping galaxy colours to redshift. Further-
more, it also reduces the number of photo-z outliers by ≈ 40%. We studied the potential
of the method for the Euclid survey using the Flagship simulations, training the network on
30 000 simulated galaxies to iAB < 23 , while evaluating the redshift of galaxies to iAB < 25.
For galaxies with 24 < iAB < 25, the network predicts up to 15% more precise photo-z than
the traditional neural network. PAUS photometry in the COSMOS field is publicly available,
thus future weak-lensing surveys like Euclid and LSST could benefit from this methodology
to improve their photo-z estimates.

Finally, in Chapter 7 we have extended Lumos to both predict multi-band photometry and
the redshift from PAUS narrow-band images. This method allows us to use all the available
observed narrow-band images of a galaxy to predict the photometry of a single band. By
doing so, we reduce the photometry scatter by three compared to Lumos single-band photom-
etry. Most of the improvement comes from using SED information from all the narrow-band
images. We also find photo-z measurements better the BCNz template-fitting photo-z, and
comparable to Deepz on the faint end. The photo-z predictions are still work in progress and
expected to improve in the near future.

In this theses, we have presented techniques for the data reduction of astronomical images,
together with a method to both estimate the photometry and galaxy redshift directly from the
images. While this thesis has focused on the PAU Survey data, we envision these approaches
to be applicable for other current and future surveys, like Euclid and LSST. Traditionally,
data reduction techniques have been dominated by classical algorithms, often requiring a
significant amount of hand-tuning. Deep learning sidesteps this directly learning from data,
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but in our case puts requirements on accurate simulations. We consider the combined pre-
diction of photometry and redshift a new and interesting contribution. The Aczio network
compresses the information from PAUS images from the different wavelengths into one set of
features describing the galaxy. This work can be potentially extended to also predict more
quantities, like galaxy morphology, SED type, and equivalent width of emission lines. Also,
adapting the method to work directly from the raw telescope images could further reduce the
need of data pre-processing.
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