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Abstract  

A long history of human presence has shaped Mediterranean mountain landscapes. 

However, due to socio-economic changes, the exodus of rural people in the middle of 

the 20th century has induced major changes in land use, land cover, and the dynamics 

of its ecosystems. Grazing and the use of wood as a source of fuel have historically 

been the primary factors shaping forest lands. Nowadays, herds of domestic 

herbivores turned into feral livestock have also influenced ecosystem services in the 

Mediterranean. These feral herds are getting regulated by resource availability rather 

than by hunting. 

In environmental restoration plans, herbivore control campaigns are carried out to 

seek a stable plant structure in harmony with the new uses. However, these actions 

are complex and costly, as well as controversial. The extent of ecosystem response to 

herbivore control measures is not well known in heterogeneous environments 

transformed by centuries of human activity and highly dependent on environmental 

variables. 

This doctoral thesis evaluates the functional response of the Mediterranean mountain 

ecosystems to the control of herbivores at different scales. In addition, given the lack 

of long-term information, and the complexity and effort of assessing changes at the 

ecosystem level, remote sensing tools are proposed to support managers in making 

decisions in regulating herbivore populations. 

Chapter 1 examines the effect of excluding the activity of the feral goats (Capra 

aegagrus hircus) in five independent sites in the mountains of Mallorca on the soil's 

physical, chemical, and biological characteristics. Specifically, vegetation cover and 
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soil properties in ungulate-exclusion plots were compared with adjacent plots where 

ungulates were present. Microbial activity increased significantly when exclusion 

occurred. However, all other physical and chemical measurements of the soils did not 

vary significantly. This may be caused by soil resilience against the effect of 

herbivores or by the high heterogeneity of soil at a very local scale. A multi-level 

meta-analysis confirms the notion that ungulate effects are context-dependent, and 

soil heterogeneity makes it difficult to identify clear patterns. The study results 

suggest that environmental context persistently drives ground response more than 

browsing itself, even at very small scales (< 10m). 

Management actions are sometimes taken to manage the uncontrolled growth of 

herbivore populations reducing environmental disturbances caused by herbivores. 

However, it is often not possible to evaluate the effects of herbivore control on the 

ecosystem due to the lack of information both before and after management. 

Furthermore, the cost and complexity of inaccessible sampling areas such as those in 

the Mediterranean mountains make regular monitoring more difficult. In Chapter 2, 

this problem is addressed using a remote sensing approach. Twenty-one years of time 

series of monthly NDVI (proxy of photosynthetic activity) data was obtained from 

satellite images to evaluate the effects of the eradication of the black rat (Rattus rattus) 

on the productivity of the Mediterranean vegetation in the islet of Sa Dragonera and 

a near control area in Mallorca. At the time of eradication, the rat population density 

was one of the highest reported in an insular context. The black rat feeds mainly on 

seeds, shoots and leaves of woody vegetation. Therefore it is hypothesised that 

primary production would have increased over a nine-year period after the rodenticide 

campaign. This study revealed changes in vegetation dynamics throughout the study 

period. However, a comparison of the historical changes that occurred on the islet to 
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those that occurred within a control zone (i.e., no rats), suggests that the magnitude 

and trend of changes in vegetation dynamics cannot be explicitly attributed to the 

presence of the rats. The lack of detection of an effect could be attributed to the 

resilience of Mediterranean shrub communities to browsing conducted by rats. 

Changes in herbivory intensity could modify specific plants with little contribution to 

NDVI values, and environmental factors are likely to overshadow their detection. The 

results suggest that the current passive restoration scheme imposed after eradication 

is insufficient to observe effective improvement in vegetation vigour and plant 

recruitment capacity. 

A higher spatial resolution is increasingly required in conservation management 

programs worldwide to study plant-herbivores interaction. To this end, chapter 3 

presents a novel remote sensing approach that uses images obtained with a low-cost 

Unmanaged Aerial System (UAS). The study was carried out in a fenced enclosure 

with a captive of Iberian ibex (Capra pyrenaica) population in the Ports de Tortosa-

Beceit Natural Park in Tarragona. The Microhistological analysis of the faecal 

cuticles was used to assess the dietary preferences of ibexes. Subsequently, the most 

common plant species individuals were georeferenced to locate them precisely on the 

multispectral images obtained with the UAS. The spectral signatures of these plant 

individuals were used to train machine learning algorithms and accurately predict 

resources at the landscape scale. As a result, it was possible to map the resources of 

herbivores classified according to dietary preferences with an error of 11.8%. This 

methodology can help successfully monitor the availability of resources for 

herbivores in the patchy Mediterranean vegetation in a faster, more accurate, and 

cheaper way than traditional field surveys. 
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In addition to representing a significant scientific contribution towards a better 

understanding of the functional response of Mediterranean mountain ecosystems to 

herbivore control, the results of this thesis represent a contribution to the management 

of herbivore pressure in these ecosystems. The different approaches used show that 

remote sensing techniques combined with field data allow for large-scale analysis that 

helps decision-making on an ecosystem-wide level as well as at the local scale. 

Keywords: Ecosystem services; Feral goat, Foodscapes, Iberian ibex, Remote 

sensing, Vegetation assessment 
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1. General introduction 

The conservation of natural ecosystems is essential to safeguard the ecosystem 

services they provide. In the last century, many areas worldwide have been under 

some form of protection to preserve natural biodiversity and cultural history. 

However, numerous studies have made it clear that nature conservation is not an 

altruistic option in recent decades but rather a human necessity. Ecosystem services 

are direct and indirect contributions of ecological structures and natural processes to 

human wellbeing (De Groot, 1992). Ecosystem services are grouped into broader 

groups called functional groups. For the terrestrial ecosystems, the productive, 

environmental, and social functions are the main services (Table 1.1). 

Table 1. 1. Ecosystem goods and services in the major functional groups of terrestrial 

ecosystems according to Rodà et al., 2003. 

Productive function Environmental function Social function 

Supply renewable natural 

goods such as food, 

medicines, wood, and 

non-wood products such 

as pastures, cork, game, 

or mushrooms 

Biodiversity maintenance, 

climate regulation, 

biogeochemical cycles 

regulation, soil, and water 

conservation (e.g., 

erosion prevention), 

carbon storage 

Recreational, educational, 

and leisure uses. 

Traditional cultural 

values, economic 

activities such as tourism 

and hiking. 

 

Natural systems provide many ecosystem services in areas of the planet inhabited 

since ancient times, such as the Mediterranean basin. Still, after thousands of years of 

adaptation, their preservation requires the regulation of human action. Landscapes in 

the Mediterranean basin are highly heterogeneous due to the variable climate and the 

long story of human activities (Blondel et al., 2010). The Mediterranean climate is 

characterised by contrasting warm dry summers, and mild and wet winters, which 
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determine a high spatio-temporal environmental variability favouring a complex 

mosaic of landscapes (Peñuelas et al., 2004). Human activities have contributed 

significantly to shaping the landscape for more than 50,000 years (Rick et al., 2020). 

Humans have traditionally burned and cut down trees for grazing (Vernet and 

Thiebault, 1987). As a result, the Mediterranean is represented by a mosaic of 

landscapes where human activities and environmental conditions are closely 

interlinked (Plieninger et al., 2015). 

Shifts in livestock management and landscape use in a global warming scenario 

Pieces of evidence supporting global warming are increasing daily (IPCC, 2018). The 

Mediterranean basin is considered a ‘climate change hot spot’ since the temperature 

increase is greater than the global average, with approximately an increase of 1.3ºC 

compared to 0.85ºC worldwide in 2005-2006 (Guiot and Cramer, 2016). Furthermore, 

in recent decades there has been a reduction in summer rainfall and an increase in 

autumn rains which are often characterised by torrential rains (Capolongo et al., 2008; 

Pastor et al., 2015). The changes in the Mediterranean climate as temperatures rise 

and seasons become drier affect ecosystem functioning and the biological cycles of 

species. For example, satellite monitoring of phenological cycles of Mediterranean 

vegetation has revealed an increase in the growing period (i.e., vegetative activity) 

correlated to the occurrence of early springs and longer autumns (Peñuelas et al., 

2017; Vitasse et al., 2011). This increase in the growing period is affecting the ability 

of ecosystems for carbon sequestration, atmospheric CO2 reduction, biogeochemical 

cycling, and thus ecosystem functioning. Furthermore, the increasingly warm and dry 

environment intensifies the risk of ecosystems and human lives to wildfires 

(Giannakopoulos et al., 2009; Peñuelas et al., 2004; Turco et al., 2017).  
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Since the mid-twentieth century, socioeconomic changes have resulted in the rural 

exodus, which in turn has resulted in changes in the land use of the Mediterranean 

basin. This fact, combined with global warming, contributes to the so-called ‘Global 

change’ that is profoundly alters forest ecosystem services worldwide (Choe and 

Thorne, 2017; Lamarque et al., 2014). This process is particularly evident in the 

Mediterranean basin due to the dramatic decline of traditional activities such as 

extensive livestock activity (De Rancourt et al., 2006) and the extraction of wood fuels 

(Lasanta-Martínez et al., 2005; Poyatos et al., 2003). The most obvious consequence 

is the forest encroachment and the loss of open landscapes due to natural regeneration 

and the colonisation of bushes and trees in abandoned areas (Figure 1. 1).  
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Figure 1. 1. Forest encroachment process due to the cessation of rural activities for 

65 years in a Mediterranean mountain area Esporles, Serra de Tramuntana, Mallorca 

Island, Spain. The upper aerial scene was taken in 1956, while the lower satellite scene 

was in 2021. The abandoned agricultural areas on the right side have been replaced 

by an Aleppo pine (Pinus halepensis) forest. The orography is better appreciated in 

the old scene due to the lower holm oak forest (Quercus ilex) density. Oak has a finer-

grained green colour than pines.  

 

The prevailing criteria for addressing ecosystem degradation have been based on 

changes in the structure and function of vegetation (Barbero et al., 1990). This biased 
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vision about the benefit of forests (Pausas and Bond, 2019) has favoured the 

uncontrolled development of forests in the Mediterranean mountain areas. Some risks, 

among others, are the loss of productive land, the increased risk of wildfires, and the 

reduction of open habitats considered important reservoirs of biodiversity (Santos et 

al., 2008). Furthermore, the increased availability of vegetation biomass combined 

with the reduced activity of humans has led to growing numbers of wild herbivores 

(Madhusudan, 2004; Pereira and Navarro, 2015). 

Herbivory in the Mediterranean mountains 

Herbivores, but in particular rodents, lagomorphs and ungulates, are considered 

ecosystem engineers due to their ability to modify the environment to suit their needs 

and change the availability of resources for other species in the process (Hester et al., 

2010; Jones et al., 1997, Figure 1.2). For centuries domestic ungulates have been 

raised at high densities in the downland areas of Mediterranean mountains, whereas 

wild ungulates have occupied the uplands, usually at low densities (Pereira and 

Navarro, 2015). This traditional animal husbandry and grazing management have 

promoted these ecosystems' biodiversity and productivity without apparent damage. 

In fact, the ability of Mediterranean vegetation to cope with millennials of human 

activity and wildfire occurrence might have contributed to developing its high 

resilience (Blondel, 2006). However, since the 60s, tables have turned, and today, 

livestock farming has become negligible, whereas wild ungulate populations have 

increased in range and number in practically all temperate ecosystems (Apollonio et 

al., 2010; Parente, 2011).  
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Figure 1. 2. Examples of the impact of browsing on the morphology of different plants 

in the Finca La Victoria, a mountainous area of the Island of Mallorca, Spain. The 

upper image (A) shows the short term effect of feral goat (Capra hircus) browsing (to 

the right of the fence) on the Mediterranean vegetation. The lower images show 

intensely browsed trees such as wild olive (Olea europaea, B), and Aleppo pine 

(Pinus halepensis together with well-developed grass Ampelodesmos mauritanica, a 

species very tolerant to herbivory, C). 

 

Various factors have contributed to this burgeoning ungulate populations in the 

Mediterranean basin, such as socio-economic changes, lack of predators, habitat re-

naturalization, and the reintroductions for recreational hunting purposes (Acevedo et 

al., 2011; Milner et al., 2014). These wild ungulate populations can have beneficial 

natural effects, such as restoring food webs or maintaining open habitats. However, 

when populations are overabundant, ungulates can cause deleterious effects on the 

ecosystems due to trampling and browsing, causing environmental damage and 
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putting emblematic plant species at risk (Augustine and McNaughton, 1998; 

Fernández-Olalla et al., 2016). 

This conservation issue is particularly relevant in Mediterranean islands, where both 

relict and introduced plant species coexist and the herbivore population often occur at 

high densities (Terborgh et al., 2001). These insular ecosystems, often hilly and 

mountainous, have complex orography that plays an important role as a refuge for 

plant species adapted to insular environments. Conservation plans often begin with 

the control of herbivory exerted by herbivores introduced centuries or millennia ago, 

such as ungulates or rodents, which, at high densities, can severely affect primary 

production and transform the habitat. Some examples in the Balear archipelago are 

the eradication of rats in the Sa Dragonera islet (Mayol et al., 2012) and the reduction 

in the feral goat population on the Es Vedrà islet (Capó et al., 2022). Following 

herbivory control campaigns, recovery of native ecosystems may be quick if 

communities are sufficiently resilient or may require longer timescales; results vary 

according to the context (Beltran et al., 2014; Schweizer et al., 2016). Animal 

population control campaigns are highly controversial, and long-term monitoring 

studies are needed to assess the efficacy of these campaigns. However, there is often 

an information gap in ecosystem monitoring both, before and after control campaigns, 

with just a few studies having a sufficient temporal extension evaluating the response 

of the ecosystem (Beltran et al., 2014; Carmel and Kadmon, 1999; Jones and Schmitz, 

2009; Schweizer et al., 2016).  

Herbivores and the ecosystem services associated with the soil 

Shifts in animal husbandry and landscape use have significantly changed soil 

ecosystem services. The vegetation that herbivores browse is directly connected to the 
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soil through the rhizosphere and the bidirectional plant-soil feedbacks that occur in 

them (van der Putten et al., 2016). Large herbivores disturb the soil directly 

compacting the soil by trampling (Alegre and Lara, 1991), increasing site regeneration 

and soil heterogeneity; and indirectly by driving plants to increase root biomass to 

compensate for browsed biomass. Therefore herbivores produce changes in 

biological, physical, and chemical soil properties (e.g., Augustine et al., 2003; Hunter 

and Price, 1992). There are extensive studies assessing the effect of herbivory on soil 

features; however, the results are varied and highly dependent on the context in which 

they occur (Andriuzzi and Wall, 2018; Forbes et al., 2019). These varied responses of 

soil features to herbivory may be due to the combined effect of the abiotic context of 

the parent soil and the landscape in which it sits and the high heterogeneity of the soil 

features from global to local scale. 

Establishing well-controlled analysis protocols that consider the environmental 

context could help analyse the variation in the effect of ungulates on Mediterranean 

mountainous vegetation. 

Remote sensing for monitoring the effects of herbivores 

A remote sensing approach can tackle the heterogeneous response of the ecosystem 

functioning to herbivory action. Changes in the ecosystem occur heterogeneously, and 

herbivores are an essential source of heterogeneity by trampling on some areas, 

defecating in others, and consuming vegetation in patches (Cid and Brizuela, 1998). 

This fact could peter out consistent effects of herbivory when the traditional 

ecological herbivore exclusion studies are conducted, supporting the old but long-

standing idea that climate and soils are the only essential factors shaping large-scale 

patterns in nature (Pausas and Bond, 2019). Increasing the sampling effort of 
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traditional ecological surveys is costly and time-consuming, and this does not 

guarantee to avoid the high heterogeneity of the environmental factors (Andriuzzi and 

Wall, 2018). Satellite sensors play a crucial role in providing land cover information 

at different spatial and temporal resolutions and provide an important source of 

continuous geospatial data for monitoring vegetation health. This remote sensing 

approach allows for identifying areas of recovery following natural- or human-

induced disturbance (Sader and Jin, n.d.; Verbesselt et al., 2010).  

Vegetation indices are valuable in studying the structure and functioning of terrestrial 

vegetation (Peñuelas and Filella, 1998). One of the most well-known vegetation 

indexes is the Normalized Difference Vegetation Index (NDVI) which can be used 

for these purposes (Pettorelli et al., 2005). NDVI is a proxy for photosynthetic activity 

(Sellers, 1985), vegetation productivity, aboveground biomass (Reed et al., 1994), and 

vegetation dynamics (Myneni et al., 2019; Running, 1990), and has been shown to 

reliably capture the ecological responses to environmental change, including human- 

and animal-induced land degradation (Pettorelli et al., 2005). Other indices commonly 

used for this purpose are the Enhanced Vegetation Index (EVI) and the Photochemical 

Reflectance Index (PRI). The EVI index is often used as an alternative to NDVI to 

deal with signal saturation caused by high biomass covers and the influence of bare 

soil (Huete et al., 2002). On the other hand, the PRI index is used to monitor changes 

in the efficiency of the use of solar radiation and associated physiological parameters 

at the leaf, canopy and ecosystem levels (Peñuelas et al., 2011). 

Identification of the effect of herbivores on the ecosystem using traditional ecological 

field surveys can be clouded by climatic dynamics and environmental heterogeneity. 

In contrast, satellite observation provides longer time-series measurements at a scale 

where the causes of change, whether natural or human-induced, can be detected and 
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differentiated (Barbosa et al., 2019; Washington-Allen et al., 2006). Some of the key 

sensors used to assess herbivore-plant interactions are, among others, Advanced Very 

High-Resolution Radiometer (AVHRR, Notaro, et al., 2019), Moderate Resolution 

Imaging Spectroradiometer (MODIS, Jarque-Bascuñana, et al., 2021; Notaro et al., 

2019) and Sentinel-2 (Awuah and Aplin, 2021; Qin et al., 2021). Landsat satellites 

stand out because they constitute the longest continuous satellite moderate-resolution 

(30 m) record of the global land surface (NASA, 2013). Specifically, the recorded 

period ranges from 1972 to the present day on a monthly basis. AVHRR and MODIS 

have a high temporal resolution, sufficient to capture subtle changes in vegetation 

development but an insufficient spatial resolution to capture plant-specific 

phenological changes (Shen et al., 2015). Sentinel-2 has been active since 2013 and 

provides records with a temporal resolution of 5 to 10 days which is advantageous for 

vegetation analysis. The most relevant characteristics of the main sensors evaluating 

terrestrial ecosystems are summarised in Table 1.2.  

Table 1. 2. Main features of major sensors used to assess terrestrial ecosystems. 

Useful imagery can be obtained by combining the spectral bands of different spectral 

ranges (VIS = visible; NIR= Near-Infrared; SWIR = Short Wave Infrared; TIR = 

Thermal Infrared). To provide higher spatial resolution for multispectral images, some 

sensors include a panchromatic band (PAN) 

Sensor Running Period  Nº Spectral bands/ Spectral 

range 

Spatial 

Resolution  

Temporal 

resolution 

Landsat TM 1982 to present 6 / (PAN, VIS, NIR, SWIR, 

TIR) 

30 m 16 days 

Landsat ETM+ 1999 to present 8 / (PAN, VIS, NIR, SWIR, 

TIR) 

30 m 16 days 

Landsat OLI 2013 to present 9 / (PAN, VIS, NIR, SWIR) 15-30 m 16 days 

SPOT (1-5) 1986 to present 5 / (PAN, VIS, NIR, SWIR) 2.5-20 m 1-3 days 

MODIS  2000 to present 36 / (VIS, NIR, SWIR, TIR) 250-1000 m 16 days 

AVHRR 1980 to present 6 / (VIS, NIR, SWIR, TIR) 1000 m 1-2 days 

IKONOS 1999 to present 5 / (PAN, VIS, NIR, TIR) 1-4 m 3-5 days 

ASTER 2000 to present 14 / (VIS, NIR, SWIR, TIR 15- 90 m 1-2 days 

HYPERION 2003 to 2017 220 / (VNIR-SWIR) 30 m 16 days 

Sentinel-2 2015 to present 12 / (VIS, NIR, SWIR) 10- 60 m 5 days 
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One fact that has helped popularise the study of land cover with satellite images is 

computational advances. A large amount of data extracted from satellite images can 

be automatically harmonised in time-series datasets of vegetation indices (Chen et al., 

2004; Verbesselt et al., 2006), as well as robust algorithms for structural change 

analysis (Verbesselt et al., 2015; Zeileis et al., 2001). The analyses of structural 

changes of the NDVI time series are especially useful for the evaluation and 

characterisation of changes in the dynamics of the Mediterranean vegetation since it 

identifies abnormal changes in the time series, considering the seasonal component 

and the general trend. Temperature and precipitation are the main environmental 

factors driving vegetation trends and changes in the Mediterranean basin. Knowing 

the environmental context of a study area makes it possible to assess the effect of an 

exogenous intervention in the system, such as herbivore control campaigns. 

UAVs and herbivory monitoring 

Mapping vegetation at the species scale is essential for monitoring bottom-up 

(Espunyes et al., 2019) and top-down ecosystem regulation processes (Oates et al., 

2019; Peters et al., 2019; Searle et al., 2007) by ungulate populations. Satellites 

provide long- and short-term information on vegetation dynamics from global 

(Bernardino et al., 2020) to local scales (Chen et al., 2014; Geng et al., 2019); 

however, satellite imagery shows specific weaknesses for monitoring herbivore-plant 

interactions in heterogeneous and dynamic areas such as the Mediterranean 

mountains. Furthermore, if plant species are rare or do not contribute significantly to 

the values of global indexes of greens (e.g., NDVI or EVI), then the impact of 

herbivores would not be detected by satellite sensors. Unmanned Aerial Vehicles 
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(UAV) technology shows promise for monitoring vegetation in heterogeneous 

landscapes at a species or functional group level. This could be a viable alternative 

not only to the satellite approach, since the spatial resolution and time intervals of the 

studies do not depend on satellite orbits, but also to the time-consuming traditional 

field surveys. Although UAV-based surveys are still costly and beyond the budgeting 

capabilities of some organisations, businesses and government-funded agencies, they 

are an up-and-coming surveying tool for monitoring and managing wildlife. Finding 

accurate and cost-effective ways to map complex vegetation structure landscapes is a 

challenging and exciting research area that is still in its infancy. 
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2. Objectives 

The general objective of this thesis is to assess the impact of wild herbivores on the 

ecosystem functions of the Mediterranean mountain ecosystems. In the context of 

climate change and land-use change in the Mediterranean mountains, it is necessary 

to evaluate the new role of wild herbivores that increase their populations and act 

without the control that humans had exerted on them for thousands of years. The 

depopulation of the Mediterranean mountains leads administrations to tackle 

ambitious environmental management plans, which often begin with the control of 

herbivores. However, this type of intervention needs a solid understanding of how the 

system works to obtain the expected results. The studies carried out in this thesis seek 

advanced solutions to assess the response capacity of Mediterranean mountain 

ecosystems to wild herbivory, considering environmental heterogeneity and the high 

resilience of these ecosystems to herbivory. In addition, novel ecosystem assessment 

methodologies are shown that address the limitations of traditional sampling and the 

lack of long-term information.  

In chapter 1, the objective is to compare the extent to which feral ungulate 

populations affect the ecosystem functioning through a herbivore exclusion 

experiment in Mallorca island mountains. The starting hypothesis was that feral 

ungulates affect the soil's physical, chemical, and biological characteristics, 

subsequently to changes exerted over vegetation structure. To address the contextual 

variation of the effects of herbivory on the ecosystem services, we carry out a multi-

level meta-analysis across five different study sites.  



Objectives 

 

31 

The objective of chapter 2 is to evaluate the effect of eradicating the black rat (Rattus 

rattus) on the primary production of the islet of Sa Dragonera in Mallorca, Spain. The 

public administration carried out a rat eradication campaign in February 2011 in 

response to the very high-density population of rats, which was thought to lead to 

intense herbivory pressure on local vegetation and change the ecosystem functions of 

the island. Specifically, the objective is to fill the information gap on the state of the 

insular ecosystem both before and after the eradication campaign using a satellite 

imagery approach and, in this way, determine if vegetation productivity recovered 

followed the rate of eradication. In particular, we expect to detect an increase (abrupt 

and/or gradual) in the greenness of the main vegetation due to the natural vegetation 

recovery following rodent eradication after controlling for climatic conditions. 

Wild ungulates play a fundamental role in transforming the vegetation structure due 

to their feeding behaviour and preferences. In chapter 3, the objective is to assess 

the food landscape (vegetation availability) for a mixed-feeding ungulate, the Iberian 

ibex (Capra pyrenaica), in a heterogeneous Mediterranean scrubland using a novel 

remote sensing approach. Specifically, the main objective is to determine the 

feasibility of classifying Mediterranean plant species using sensors onboard low-cost 

Unmanned Aerial Vehicles (UAVs), focusing on the plants that the Iberian ibex feeds 

on. The methodology lays the foundations to study diet quality and resource 

availability for herbivores in remote and inaccessible areas such as the Mediterranean 

mountains, where traditional sampling methods involve hard legwork. 
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3. Chapter 1 

Ungulates alter plant cover without consistent effect on soil 

ecosystem functioning 

Miguel Ibañez-Alvarez, Elena Baraza, Emmanuel Serrano, Antonia Romero-Munar, Carles Cardona, 

Jordi Bartolome, Jennifer Adams Krumins. 
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Abstract 

Shifts in animal husbandry and landscape use have significantly changed ungulate 

grazing effects on ecosystem functioning. These changes are now the subject of 

extensive research with respect to plant and soil communities, but the results of these 

studies are highly varied and context-dependent. This study aims to address contextual 

variation by holding all sampling methods and analytical approaches constant and 

analyse the effect of the feral goat (Capra hircus) population of Mallorca Island, 

Spain, on soil physical, chemical and biological characteristics across five controlled 

sites. Specifically, vegetation cover and soil properties in fenced plots excluded from 

ungulates were compared with adjacent grazed plots in five independent mountain 

areas of Mallorca. Soil microbial activity measured as Community-Level 

Physiological Profiles (CLPP) using EcoPlate™ increased when ungulates were 

excluded. However, all other physical and chemical measures of the soils did not vary 

significantly when we considered ungulate exclusion across all plots, and this may be 

caused by a soil community that is simply robust to the effects of the herbivores. Or, 

it may be due to the high heterogeneity that was detected among pair plot comparisons 

within each of the five sites. Indeed, we find more variability within a site than among 

our independent sites leading us to hypothesise that grazing does influence 

biogeochemical cycles, but it does it by increasing the variability of the system in 

general. Our well-controlled multilevel meta-analysis confirms the notion that 

ungulate effects are highly context-dependent, and soil heterogeneity makes resolving 

clear patterns very challenging. Apparently, context persistently drives the soil 

response more than the grazing itself, and this is seen even at very small scales. 

Keywords: Soil heterogeneity; Ecosystem services; Microbial activity; Grazing 

exclusion; Ungulate overabundance 
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1. Introduction 

In recent decades, human land use has changed, and this includes animal husbandry 

and grazing practices. The changes in grazing practice are causing profound 

transformation of plant productivity and community composition at landscape level 

scales (Capó et al., 2021, Peco et al., 2006, Sebastià et al., 2008, Sjödin et al., 2007). 

Therefore, populations of ungulates, especially domestic livestock but also wild 

species, have been extensively studied to determine their effects on the composition 

and functioning of plant (Jia et al., 2018) and soil communities (for recent meta-

analysis and synthesis see: Andriuzzi and Wall, 2018; Forbes et al., 2019). However, 

all of this extensive research seems to reveal more questions than answers. 

Specifically, we know that herbivory directly affects plant growth and plant 

community dynamics. Therefore, we would expect to find subsequent effects below 

ground in the soils. This is because soils are directly connected to the plant community 

via the rhizosphere and bidirectional plant and soil feedbacks that occur therein (van 

der Putten et al., 2016). As such, they provide important ecosystem services like 

decomposition and nutrient cycling that sustains soil productivity and future plant 

growth (Coleman et al., 2004, Crowther et al., 2019, Roger-Estrade et al., 2010) or 

even plant resistance to abiotic disturbances and stress (Brussaard et al., 2007). 

However, a clear connection between ungulate effects above-ground on the plant 

community and that of the soils below-ground has not been realised. This disconnect 

may be because soils are highly heterogeneous, and their functioning is subject to 

multiple and varied environmental drivers (Wall et al., 2012). Therefore, we question 

the role of environmental heterogeneity to moderate when, or under what conditions 

ungulates can affect soil functioning. 
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The influence of diverse animal grazers on the landscape and the soils has been highly 

mixed and context-dependent. The presence of livestock has been shown to 

significantly degrade soil in some cases (Gizicki et al., 2018), but it can have positive 

consequences in other cases (Pulido et al., 2018). Grazing by ungulates in high 

densities is responsible for a reduction in the organic carbon in the soil by reducing 

the amounts of necromass that is returned to the soil. However, other studies report 

significant increases in organic matter due to return via faeces (Peco et al., 2006, 

Pulido et al., 2018). The variability in organic matter return to the soil may be caused 

by differences in ungulate feeding activity associated with plant quality and ungulate 

efficiency (sensu Krumins et al., 2015). Logically, shifts in carbon allocation to the 

soil will directly influence the functioning of microbial communities there. However, 

the responses of microbes to ungulate grazing, as in other responses, can be quite 

mixed. Microbial biomass can be reduced by high pressure from herbivores and the 

destruction of structures such as mycelia or bacterial biofilms (Damacena De Souza 

et al., 2006), although in other studies it has been observed that it can increase at high 

grazing intensities (Mohr et al., 2005) or differing conditions (Stark et al., 2002). 

Effects on the microbial community will cascade to ecosystem services like 

decomposition. Yet again, this is context-dependent. For instance, when moose were 

excluded from a plot, decomposition was not affected (Ellis and Leroux, 2017, 

Kolstad et al., 2018). However, in a different environmental context, decomposition 

was reduced when moose and hares were excluded (Kielland et al., 1997). 

All of these varied responses to herbivory may be a product of the abiotic context of 

the parent soil and the landscape in which it sits. The return of organic carbon to the 

soil may be directly impacted when grazed soils have greater bulk density. This can 

be associated with excessive trampling (Alegre and Lara, 1991) and to the reduction 
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in some areas of the amount of organic matter which is capable of creating clay 

aggregates that would maintain more porous soils. The pH can also be affected by 

modifying the microbial and root activity (Jeddi and Chaieb, 2010), although this 

effect varies according to the environmental conditions and the type of soil (Bardgett 

et al., 2001, Noe and Abril, 2013). As is likely the case with respect to this work, 

trampling and therefore its effects on bulk density may be high when water is limiting 

and soil organic matter is otherwise low (Reichert et al., 2018). 

We do know that ungulates are responsible for regulating biogeochemical cycles, the 

most notable being the acceleration in the nitrogen and carbon cycle (Fleurance et al., 

2011, Patra et al., 2005). It has been shown that ungulates are able to inhibit ecosystem 

functions like nitrification or ammonification due to the reduced return of nitrogen to 

the soil and/or the compaction of the soil which consequent decrease in soil moisture 

(Pan et al., 2018, Xu et al., 2008). Simultaneously, grazing may lead to increased 

nitrogen losses by leaching or volatilization by removing the vegetation cover and 

making the soil more susceptible to erosion (Núñez et al., 2010). This can be 

overcome when the presence of ungulates increases nitrogen mineralization due to the 

contributions of organic nitrogen with faeces and urine (Frank and Groffman, 1998, 

Furusawa et al., 2016), but this effect will be spatially dispersed as the animals move 

through the landscape and will be moderated by local environmental conditions. For 

instance, xeric soils can be more oxygenated, moderating microbially mediated 

enzyme activities and nitrogen transformations (Ghiloufi et al., 2018), likely 

interacting with other physical effects of ungulates to the soil. 

As a means to address this conundrum in soil ecology, we exploit an existing ungulate 

exclusion experiment in which anti-herbivory plots were established from 5 to 20 

years ago. The objective of this study is to analyse the differences in physical, 
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chemical and biological characteristics of the soil between areas without ungulates, 

feral goats (Capra hircus) and free-ranging flocks of sheep (Ovis aries), compared to 

areas under continuous ungulate grazing in five distinct mountainous localities with 

Mediterranean vegetation in Mallorca, Spain. Specifically, we wanted to know if the 

variability in grazing upon the soil was greater within each site or among the five 

individual sites. One strength of this study is that we measured response to the same 

ungulate across well-known (Table 3.1) and climatically and geographically similar 

sites while maintaining experimenter identity constant. Given that each site is 

independent, we expected to see differences among them. However, we wanted to 

know if the differences all followed the same trend. Our results are relevant locally 

and globally. This information will help in the analysis of the impacts derived from 

the variation of ungulate populations that many rural areas suffer. However, they are 

also globally relevant because they help to inform what environmental conditions 

determine the impact of the ungulates on the soil more broadly. 

Table 3. 1. Study site characteristics in Majorca Mountains: type of habitat, soil 

texture classification, mean elevation, annual mean temperature, Net Primary 

Production (NPP). The Time of exclusion indicates the approximate years of 

ungulates exclusion establishment until the data collection, and Design indicates the 

number of fenced areas with respect to the number of plots inside each fenced area. 

Site Habitat 

Textur

al Soil 

Class 

Elevati

on (m 

asl) 

Tº a 

NPP 

kgC/m2/

yr b 

Time 

of 

exclusi

on 

Design 

Binifaldó Forest Clay 626 13.3°C 1.398 >15 
1/2 

Sobremunt Forest Loam 663 13.9°C 1.303 >20 
1/3 

Son 

Moragues 
Forest Loam 522 13.8°C 1.401 >15 

3/1 

La Victoria Scrubland  
Silty 

clay 
97 17.2°C 1.232 5 

1/3 

Na 

Burguesa 
Scrubland 

Silt 

loam 
479 15.5°C 1.298 >20 

3/1 
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a Climatological data are from Climatologies at High Resolution for the Earth Land Surface Areas, project CHELSA 

(Karger et al., 2017). 

b Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid (MOD17A3HGF v006) (Running and Zhao, 

2019). 

2. Materials and methods 

2.1. Study sites 

We address the role of ungulate grazers on soil factors across five independent sites 

in the mountainous region on the Island of Mallorca, Spain (Figure 3. 1). Steep slopes 

predominate the sites, and the soil is generally shallow with limestone outcropping 

(See Table 3. 1). The climate is Mediterranean and ranges from humid to semiarid 

subtypes along the topographical gradients. The study sites were named according to 

the toponym where they are located (Figure 3. 1). 

 

Figure 3. 1. The first slot indicates the geographical location of the study sites. The 

rest of the slots show photographic details of the habitats for the fenced study sites. A 

(Na Burguesa) and E (La Victoria) represent scrubland. The forest areas are related to 

the letters B (Sobremunt), C (Son Moragues) and D (Binifaldó). 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/climatology
https://www.sciencedirect.com/science/article/pii/S0167880921005004?via%3Dihub#bib38
https://www.sciencedirect.com/science/article/pii/S0167880921005004?via%3Dihub#bib59
https://www.sciencedirect.com/science/article/pii/S0167880921005004?via%3Dihub#bib59
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All five study sites are located in natural areas with pre-established herbivore 

exclusion plots. There are two types of habitats between the study sites, holm oak 

forest and Mediterranean scrubland. Holm oak forest was formed by Quercus ilex as 

the only tree species at Son Moragues, with some pines (Pinus halepensis) at 

Binifaldo or some Strawberry trees (Arbutus unedo) and pines at Sobreamunt. In the 

scrubland areas, La Victoria is dominated by the large tussock grass Ampelodesmos 

mauritanica meanwhile at Na Burguesa predominate the perennial grass 

Brachypodium retusum with Cistus sp. scrubs. Within each of the five areas there is 

at least one fenced ungulate exclosure. Each site allows for two treatments, ungulate 

herbivore presence (Ungulate) or exclusion (Ungulate-free). Each area has a different 

size and age of exclusions (Table 3.1), depending on the history of the site, some are 

designed as a large exclusion that include several study plots within, while in other 

sites there were multiple small exclusions, including only one plot within each. 

Outside of the exclosures, in all sites, feral goats (Capra aegagrus hircus) graze 

freely, and in Son Moragues and Binifaldo, domestic sheep herds occasionally graze 

with the goats. To assess herbivory effects at each site, we established 

Ungulate/Ungulate-free paired sampling plots for a binary comparison (Table 3.1). 

2.2. Sampling protocol 

In each study site, we established three 10 × 10 m plots for each treatment, except in 

Binifaldó, where only two plots per treatment could be established (28 plots in total). 

Each of these plots within the ungulate excluded zone was compared with a plot in 

the open zone that was as close as possible (but always>1 m from the fence). We 

conducted a vegetation survey in all plots using the point intercept technique (Elzinga 

et al., 1998), in which we measured vegetation and plant species (excluding trees 

higher than 1.5 m) at 25 m intervals. We measure the percent vegetation cover as the 
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relative number of points that are vegetated or bare ground. Due to the complexity of 

the vegetation structure, sometimes multiple individuals of different species occurred 

at the same point intersection. Therefore, we measure vegetation complexity as the 

relative number of points that support multiple different species (vertically through 

the point). We exclude trees higher than 1.5 m because they are not likely relevant to 

ungulate herbivory in this system. 

Within each plot, we randomly established three 0.01 m2 sampling frames (84 samples 

in total) to collect the litter layer and two bulk soil samples. In the laboratory, the litter 

was oven dried (24 h at 105 °C) and weighed, and the bulk soil samples were stored 

at 4 °C before further analysis. We used 200 gr of dry, 2 mm sieved soil for chemical 

analysis. All analyses were performed by Eurofins Laboratories Ltd., Lleida, Spain 

for the following parameters: pH, electrical conductivity, C (elemental carbon), 

organic matter content, N (elemental nitrogen) and five soil textural classes (fine sand, 

coarse sand, fine silt, coarse silt and clay). The C:N ratio was also calculated. 

We used the excavation method described in (Blake and Hartge, 1986) to measure the 

bulk soil density due to the stony nature of the sites (Capó-Bauçà et al., 2019). This 

procedure included digging a 10 cm3 hole by using the same square frame and a 

gardening shovel. The volume of the excavation was determined by lining the hole 

with plastic film and filling it completely with a measured volume of water. Coarse 

fragments (diameter > 2 mm) were sieved out and bulk density was calculated as the 

mass of dry, coarse fragment-free soil per volume of the excavated soil, where volume 

was also calculated on a coarse fragment-free basis. We were not able to assess soil 

bulk density at Sobremunt since the soil nature is too rocky and there is insufficient 

depth to extract samples. 

2.3. Soil microbial community profiling 
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We measured the functional diversity of the microbial community in soil with the 

community-level physiological profiles method (CLPP) (Garland and Mills, 1991) 

using Biolog EcoPlates™ (Biolog Inc., Hayward, California, USA). EcoPlates 

contain 31 distinct carbon sources in triplicate as well a colour dye that turns purple 

if a given carbon source is metabolised by the microbial community present in the 

well. Following the colour development over time allows one to estimate the rate of 

carbon source utilisation in addition to which carbon sources were used. 

To prepare a microbial inoculum from each soil, we diluted 5gr. sub-samples of fine 

soil in saline (45 ml, 0.9% NaCl) then centrifuged for 10 min at 2,400rmp. The 

microbial suspension was left to stand for 30 min at 4 °C then the sub-samples were 

again diluted 1:100 in saline before inoculation into the EcoPlates at the rate of 

with100 μL of sample in each well. We incubated the EcoPlates in the dark at a 

constant 25 °C and measured optical density (OD) at 590 nm with a plate reader every 

12 h for up to 96 h plus an additional reading at 160 h. We scored a carbon source as 

positive when two out of three wells reached an OD of at least 0.2 after subtraction of 

the median blank from all wells. We modelled the colour development in each well 

that we scored as positive with a modified Gompertz equation (Zwietering et al., 

1990). 

We used the R script and nlsLM function of the package “minpack.lm” 1.2–1 version 

(Elzhov et al., 2016) to fit the Gompertz function (Roger et al., 2016). The function is 

a sigmoidal curve describing microbial community growth and is determined by 3 

parameters, lag phase (l), maximum uptake rate (r) and maximum population growth 

(k) (Kahm et al., 2010). Functional diversity was calculated considering each carbon 

source as a community trait, and the maximum uptake rate (r) of the carbon source 

was taken as trait value. We weighed all carbon sources by their uptake rate and 
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calculated the diversity of the community according to the Shannon Index using the 

diversity function in the vegan package (Oksanen et al., 2019). 

The average well colour development (AWCD) parameter represents the metabolic 

capacity of the soil microorganisms grown in the EcoPlates. AWCD was derived from 

the mean difference among OD values of the wells following (Garland and Mills, 

1991) formula: AWCD = ∑ (Ci-R)/31 where Ci is the optical density of the substrate 

i, R is the optical density of the control wells and 31 is the number of different carbon 

sources of each well (in triplicate). An AWCD value is generated for each reading 

increment, and we then select the time increment in which maximum AWCD value 

occurs to assess soil metabolic capacity. 

2.4. Organic matter decomposition 

We assessed ungulate effects on soil biological activity by calculating the organic 

matter degradation rate on standard plant material following the Tea Bag Index (TBI) 

method of (Keuskamp et al., 2013). The tea bags were labelled with a waterproof 

marker, oven dried at 70ºC for 48 h and weighed (+/- 0.01 g). Subsequently, three 

replicates of each tea type were buried in each plot in 8-cm deep separate holes of 

recorded location (a total of 84 sample units). Sample burial was carried out between 

March 26th to March 29th, 2018, and they were retrieved 90 days later. Post recovery, 

bags were cleaned of roots and debris, dried and weighed. According to the weight 

loss, we calculated the TBI parameters: S (stabilisation factor) and k (decomposition 

rate constant). Green tea has a very labile fraction that has a rapid initial 

decomposition rate. After 90 days we were able to determine how much of the labile 

fraction of the material is decomposed (k) and how much is stabilised (S). Rooibos 

tea decomposes much more slowly. After 90 days, it is still in the first phase of 

decomposition. Thereby, the weight loss of rooibos tea is a proxy of the initial 
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decomposition rate (k). TBI parameters were calculated using the spreadsheet 

template provided by TBI research team in the website 

http://www.teatime4science.org. 

2.5. Statistical analysis 

Data from the vegetation transects were analysed using mixed regression models 

considering the treatment (Herbivory Yes or No) as a fixed factor and plot nested in 

site as a random intercept term. The data fulfilled the assumptions of normality and 

homoscedasticity. The mixed effect models were conducted in the nlme package 3.1–

152 (Pinheiro et al., 2021) in R (R Core Team, 2020). 

We detected very high heterogeneity in soil characteristic data including many outliers 

and significant differences among plots within the same study area. Furthermore, 

when the sample size is small or the intensity of an effect is low (as was the case in 

our study), an alternative to control for Type II statistical error is the meta-analysis 

(Arnquist and Wooster 1995). Following the criteria established by Gómez-Aparicio 

et al. (2004), the effect of ungulate exclusion (ungulate versus ungulate-free) on soil 

physicochemical and biological characteristics was analysed using a meta-analysis. 

We performed a three level meta-analysis to address variation across paired plots 

while also accounting for the dependency of the ungulate exclusion effects within 

study sites. Each paired plot was considered as an individual study and weighed 

according to its robustness to assess the overall effect of herbivory exclusion on soil 

properties. 

In order to structure the multilevel meta-analysis workflow, we compute the effect 

size and variance for each set of paired plots within each individual study in the 

context of response ratios described in (Hedges et al., 1999). Summary statistics 

(mean (µ), standard deviation (sd) and sample size (n)) for each response variable 
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were reported to determine the weighted effect size for each plot. The effect size of 

ungulate exclusion on the response variables was calculated as ln(µ ungulate-free /µ 

ungulate), hereafter referred to as the log response ratio, ln(RR) (Hedges et al., 1999). 

The ln(RR) quantifies the proportional change that results from herbivore exclusion 

and is appropriate given that the absolute value in the response variables varied widely 

among and within sites (Goldberg et al., 1999, Hedges et al., 1999). Negative values 

of ln(RR) indicate that the exclusion of ungulates decreases the response variable, so 

ungulates presence increases it. The overall ln(RR) was back-transformed and 

converted to a percentage of change for ease of interpretation. 

The response ratios were weighted with the inverse sample variance to ensure a 

greater contribution of the most robust studies (Rosenberg et al., 2000), therefore, we 

estimate the variances associated with the response ratio (Hedges et al., 1999) as:  

𝑉ln (𝑅𝑅) =
𝑆𝐷𝑢𝑛𝑔𝑟𝑎𝑧𝑒𝑑

2

𝑛𝑢𝑛𝑔𝑟𝑎𝑧𝑒𝑑(𝑋𝑢𝑛𝑔𝑟𝑎𝑧𝑒𝑑)2
+  

𝑆𝐷𝑔𝑟𝑎𝑧𝑒𝑑
2

𝑛𝑔𝑟𝑎𝑧𝑒𝑑(𝑋𝑔𝑟𝑎𝑧𝑒𝑑)2
 

We assessed the consistency of the ln(RR) across studies for each response variable 

by fitting a three-level meta-analytic model. For this purpose, we use the rma.mv 

function of the metafor (Viechtbauer, 2010) package in R, by running the syntax: 

rma·mv (data, yi, V, random = ~1|site/plot) 

Data is the dataset containing the summary statistics of each variable; yi is the effect 

size Ungulate-free, and V is the sampling variance. Random argument specifies the 

random-effect structure of the model. In three level meta-analysis, the heterogeneity 

is distributed between the sampling variance (𝐼𝐿𝑒𝑣𝑒𝑙 1
2 ), the variance within plots 

(𝐼𝐿𝑒𝑣𝑒𝑙 2
2 ) and between site (𝐼𝐿𝑒𝑣𝑒𝑙 3

2 ). We used the var.comp function in the dmetar 

package (Harrer et al., 2019) in R to calculate the multilevel variance I2. The 
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heterogeneity variation between plots and/or sites can be regarded as substantial if 

less than 75% of the total amount of variance is attributed to sampling variance 

(𝐼𝐿𝑒𝑣𝑒𝑙 1
2 ) (Hunter et al., 1991). When that occurred, we performed a test of moderators 

by introducing in the model the covariates: elevation, Net Primary Production (NPP), 

temperature, soil textural classes (summarized with the first component of a Principal 

Component Analysis with the five texture components) and the categorical covariate 

of habitat, which may explain the observed heterogeneity. We derived the mean effect 

of each moderator with the 95%CI and the results of the omnibus test under the test 

of moderators (Table SM 3. 1, supplementary material). If the p-value associated with 

the test of moderators QM is larger than the significant level of 0.05 we concluded that 

the overall effect is not moderated by the covariates included (Viechtbauer, 2010). 

With respect to the CLPP, we also used a multivariate approach to summarise the 

data. We first calculated normalized Biolog absorbance of each substrate after 96h of 

incubation by dividing the mean value of absorbance of the three wells per substrate 

by the AWCD value of each plate. With these values we conducted a PCA with 

'prcomp' function in base R, comparing the carbon source utilization patterns of soil 

microbial communities with respect to the presence or absence of ungulates (Capó-

Bauçà et al., 2019).  

3. Results 

3.1. Vegetation response to ungulate exclusion 

The exclusion of ungulate herbivores generates significant changes in vegetation 

cover. In the absence of ungulates, vegetation cover and complexity (% coverage with 

several layers of vegetation) increased significantly (Table 3.2). Likewise, the percent 

cover of bare soil decreased with the absence of ungulates (Table 3.2). 
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Table 3. 2. Ungulate exclusion effects on the percentage of bare soil, total vegetation 

cover and percentage of cover with multiple different species (complexity) as 

analysed by a mixed general lineal model GLMM. 

Plant Cover 

Herbivory 

(mean±SE) 

Herbivore-

free 

(mean±SE) 

GLMM 

Bare soil 46.12±10.11 26.63±9.58 F(13)=16.14; P=0.0015 

Cover 45.52±11.07 62.58±19.95 F(13)=10.73; P=0.0060 

Complexity 17.75±6.29 32.80±8.92 F(13)=5.22; P=0.0398 

 

3.2. Soil response to ungulate exclusion 

For 11 of the 12 variables examined, the CI of the mean effect size overlapped zero 

(Table 3.3, Figure 3.2). Soil microbes were more active in ungulates excluded plots, 

since the activity of microbial communities measured by CLPP with EcoPlates, 

changed significantly (Table 3.3) with higher activity (AWCD) in the absence of 

ungulates (Figure. 3.2; Table 3.3). All physicochemical parameters measured (BD, 

Electric conductivity, elemental carbon, soil organic matter, elemental nitrogen, C/N 

ratio and pH), microbial functional diversity (H) and OM decomposition measured by 

TBI did not significantly change with ungulates exclusion (Table 3.3). For these soil 

characteristics, effect size varied from negative to positive across paired plot 

comparisons inside the same studied area (Figure 3.2, Figure SM 3.1). Forest 

diagrams representing the estimate of the variance between studies show no consistent 

effect inside the same area (Figure 3.2, Figure SM 3.2). 
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Table 3. 3. Statistical results of the overall effects of ungulate exclusion over the 

response variables analysed by multi-level meta-analytic models. In the first column, 

a global increase on the studied variable was indicated by ↑ whereas a decrease was 

indicated by ↓. The p-value of the fitted model is outlined in bold when the effect is 

statistically significant. LnRR (95% CI) indicates the effect size of the ungulate 

exclusion and is also shown as a percentage of response (inverse transformation of the 

logarithm) to facilitate interpretation. Nº indicates the number of pair plot 

comparisons. The test of heterogeneity Q-test shows significant variation between all 

effect sizes when p-value < 0.005. The variance is distributed across the sampling 

variance (𝐼𝐿𝑒𝑣𝑒𝑙 12), variance within plots (𝐼𝐿𝑒𝑣𝑒𝑙 22), and between site/plot 

(𝐼𝐿𝑒𝑣𝑒𝑙 32) 

 

Variable p- value 
LnRR (95% CI) 

% Response 
Nº  

Q-test  

(p-value) 

𝑰𝑳𝒆𝒗𝒆𝒍 𝟏
𝟐  

𝑰𝑳𝒆𝒗𝒆𝒍 𝟐
𝟐  

 

𝑰𝑳𝒆𝒗𝒆𝒍 𝟑
𝟐  

Bulk density↓ 0.093 
-0.11(-0.23,0.02) 

-10.0 
11 < 0.001 

14.47 

85.52 

0 

Litter↑ 0.213 
0.22(-0.14,0.58) 

24.6 
14 < 0.001 

7.16 

92.84 

0 

Electrical conductivity↑ 0.194 
0.11(-0.07,0.29)  

12.1 
14 < 0.001 

52.97 

47.03 

0 

Elemental Carbon↑  0.278 
0.12(-0.111,0.35)  

13.0 
14 < 0.001 

39.17 

60.83 

0 

Organic Matter↑ 0.304 
0.13(-0.14,0.40)  

14.3 
14 < 0.001 

15.62 

69.17 

15.21 

Elemental Nitrogen↑ 0.152 
0.16(-0.07,0.38)  

16.9 
14 < 0.001 

31.57 

54.88 

13.55 

pH↑ 0.580 
0.01(-0.02,0.03)  

0.5 
14 < 0.001 

100 

0 

0 

C/N↓ 0.349 
0.03(-0.09,0.03)  

-2.7 
14 < 0.001 

31.61 

68.39 

0 

AWCD ↑ 0.008 
0.25(0.08,0.43)  

28.9 
14 < 0.001 

10.03 

89.97 

0 

Shannon (H’) ↑ 0.099 
0.13(-0.03,0.28)  

13.4 
14 0.042 

10.13 

89.87 

0 

Stabilization factor (S) ↑ 0.820 
0.01(-0.08,0.10)  

1.0 
13 < 0.001 

34.42 

65.58 

0 

Decomposed rate (k) ↑ 0.892 
0.02(-0.25,0.28) 

1.6 
8 0.657 

10.84 

84.81 

4.35 
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Figure 3. 2. Forest plot of the effect of the herbivory on four key response variables 

(Bulk density, AWCD, organic matter and soil organic nitrogen content). In each plot, 

the names on the left identify the individual plots in each of the five study areas. The 

boxes represent the ln(RR) of the individual studies, and the horizontal lines their 95% 

confidence intervals. The size of the boxes expresses the weight (see methods) of each 

study in the total effect, which is represented by a diamond. Response rates less than 

zero (vertical dotted line) indicate a negative effect of ungulate exclusion, while 

values greater than zero indicate a positive effect. If the diamond does not cross the 

zero line, the overall effect is significant. For a full list of comparisons see Table 3.3 

or Table MS 3.1. 

 

In fact, for all the variables, less than 75% of the total amount of variance is attributed 

to sampling variance (𝐼𝐿𝑒𝑣𝑒𝑙 1
2 ), and the % of variance within plots (𝐼𝐿𝑒𝑣𝑒𝑙 2

2 ) is the 

highest in all cases. (Table 3.3). However, this could not be explained by geographic 

factors or even environmental characteristics because meta‐regressions showed no 

significant influence of elevation, NPP, temperature, soil textural classes on the effect 

sizes within each site (Table MS 3.1). Only the habitat covariate had a marginal 
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significant effect on the effect size of elemental nitrogen and stabilization factor (S) 

variables (Table MS 3.1).  

With respect to the carbon source utilisation patterns of soil microbial communities, 

the PCA of the absorbance of all the available substrates in the EcoPlates™ read at 

96 h shows no clear variation between ungulate and ungulate-free treatments (Figure 

SM 3. 2). 

4. Discussion 

Apparently, local environmental heterogeneity may be a more critical driver of soil 

ecosystem properties than the effects of ungulate herbivory and subsequent shifts in 

plant community composition and productivity. These are the findings in a 

mountainous Mediterranean ecosystem (Mallorca, Spain), but they also inform the 

broader literature that often finds context dependent and idiosyncratic responses of 

soils to herbivory (Andriuzzi and Wall, 2018, Forbes et al., 2019, Vermeire et al., 

2021). In this experiment, we compared the effects of ungulate exclusions on the 

above ground vegetation but also on the physical, chemical and bacteriological 

characteristics of soils. As expected, excluding the ungulates, significantly affected 

understory vegetation (cover and complexity). However, this was not realised 

belowground where there were very few meaningful changes to the soil structure, 

chemistry and biology. We suspect that our results are due to two possible 

explanations. First, the abiotic and microbiological properties of the soil but not 

aboveground vegetation were robust to the effects of grazing. This would be in 

agreement with previous works such as that of Greenwood et al. (1997) where they 

conclude that soil physical properties appear to be relatively insensitive to stocking 

rate in the long term. In fact, as Vermeire et al. (2021) suggested, we can expect 
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relatively small changes in microbial communities due to natural disturbance when 

soil microbial communities have evolved with disturbance. In our case, 

microorganisms in the Mediterranean basin have adapted to soils with little 

availability of water (Yuste et al., 2014) making them resistant to change. And second, 

we assume that the environmental heterogeneity of the different plots clouds our 

ability to see consistent effects of ungulate grazing exclusion. In fact, herbivores may 

even increase this heterogeneity by trampling some areas, defecating in other and 

consuming vegetation in patches (Eldridge et al., 2019, Zhang et al., 2020). Moreover, 

it is likely both, as these two hypotheses are not mutually exclusive. 

Here, we attempt to tackle heterogeneity and variability of environmental factors 

across different experimental sites with a three-level meta-analysis in which each of 

the comparisons among plots was treated as a study dealing with the dependency of 

the effect sizes within sites. Across our sites, ungulate exclusion had no effect on 

belowground soil processes and ecosystem functioning such as: decomposition, 

mineralisation, C/N ratio or nutrient stock. Therefore, we have assumed that other 

factors controlling the biochemical activity of soil are likely more impactful than 

ungulate grazers. In reality however, our meta- analysis reveals no consistent driver 

of soil characteristics in this system but high heterogeneity between plots. Many of 

the environmental parameters of the soil were highly variable and did not obviously 

respond to the impacts of ungulates in spite of changes to the vegetation. For instance, 

the comparison of one pair of plots can result in an important increase of soil organic 

matter, nitrogen and pH when ungulates are excluded while other pair plot 

comparisons showed the contrary effect (Figure 3.2, Figure SM 3.1). 

Our results here, and those of Ellis and Leroux (2017), found that decomposition rate 

k of standardised litter was not affected by ungulate exclusion. However, this is in 



Chapter 1 

 

52 

contrast to Kielland et al. (1997) who found a decrease in decomposition rate of 

standardised litter (cellulose) inside herbivore exclusion fences in the Alaskan Taiga. 

But also, Cárdenas et al. (2012) demonstrated that herbivory accelerates the 

decomposition of organic matter in a neotropical cloud forest. Similarly, we found 

higher nitrogen concentrations in eight of the twelve ungulate exclusion comparisons 

(Figure 3.2d). That is, in our study, ungulates reduced soil nitrogen content. This was 

expected since ungulates have a preference for plants rich in N, and it is documented 

that their increase is related to a decrease in soil N (Pastor and Naiman, 1992). Similar 

responses have been observed with Cervus elaphus (Bardgett et al., 2001, Donkor et 

al., 2002, Gass and Binkley, 2011, Kumbasli et al., 2010). However, the relationship 

of both N and C concentration to ungulate exclusion is mixed but often neutral among 

our sampling sites with effect size very close to 0 in most of the cases (Figure SM 

3.1). No change in the soil C/N ratio is frequently reported in herbivore exclusion 

studies (Gass and Binkley, 2011, Harrison and Bardgett, 2004, Stark et al., 2010, 

Wardle et al., 2001). 

Although there were few consistent effects of excluding ungulates upon soil 

properties, the capacity of the microbial communities to metabolise diverse carbon 

sources increased. The AWCD of the EcoPlates was significantly higher in soils that 

were excluded from the ungulates. This did not coincide with an increase on soil 

bacterial functional diversity, but it did coincide with a general decrease in the bulk 

density of the soil. This result follows the findings of other works with domestic goats 

by Holdaway (2014), with feral goat and deer by Kardol et al. (2014) and with moose 

by Gass and Binkley (2011) reporting that ungulate trampling produces soil 

compaction and may limit microbial activity. 
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In summary, when all of our five study sites were analysed, we find significant effects 

of ungulate grazing on vegetation cover but few significant effects on soil properties. 

Indeed, our lack of statistical significance is due to within plot variability that is 

greater than the variability between treatments or among sites. We propose the 

hypothesis that grazing does influence biogeochemical cycles, but it does it by 

increasing variability of the system in general. This is a testable hypothesis, and we 

propose that a study of ecosystem stability as opposed to static measures of ecosystem 

functions may be a more useful metric to study the effects of herbivory and its 

changing patterns with respect to the landscape. For instance, repeated measures of 

soil respiration, with respect to variable grazing intensity, would reveal the stability 

of soil functioning under herbivores. Regardless, increased sampling will always be 

needed, and even a cross-study meta-analysis has revealed similar clouded results 

with respect to soil (Andriuzzi and Wall, 2018). Apparently, the spatial variation in 

the soil biotic and abiotic conditions was so great that our sampling effort was 

insufficient. This is supported by the high heterogeneity of results among comparison 

plots inside the same site (Figure 3.2) indicating that most of the variation is at an 

even smaller spatial scale than site (that is, between plots). A primary goal of this 

project was to control for methodological differences such that we could resolve the 

role of ecosystem context (Forbes et al., 2019). In practice, we achieved 

methodological control. However, apparently variability of an ecosystem is more 

important than the direct effects of ungulate grazers on the soil. 

5. Conclusions 

The last century has seen a profound transition in ungulate land use and herd 

management globally. The outcome of this is major shifts in plant community 
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dynamics and the distribution of grassland and forested ecosystems. The implications 

of this span conservation, ecosystem stability and carbon sequestration. The results of 

our three-level meta-analysis studying 14 ungulate exclosure experiments reveals that 

although plant communities are directly affected by ungulate activity, apparently, the 

effects are not consistently realised belowground in the soil. Therefore, we assume 

that, soil environmental heterogeneity dilutes grazing effects, and this is realised even 

at very small scales (<10 m). Variability in the soil response to ungulates was greater 

within each of our experimental plots than among the five sites. This finding is 

important because soil community processes drive plant community dynamics and 

ultimately, ecosystem functioning (van der Putten et al., 2016). Our research findings 

inform a deeper understanding of the role of ungulates in terrestrial ecosystems. 

However, the spatial and temporal scale at which ungulates affect soil may be difficult 

to capture in experiments and a challenge for herders and land managers. On the other 

hand, the impact of ungulate on soil integrity might be different in more homogenous 

biomes with a lower micro-landscape complexity and more homogeneous vegetation 

cover. 
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Abstract  

Invasive rodents have a detrimental impact on terrestrial ecosystem functioning, this 

is often exacerbated on small islands. Rat eradication campaigns are often used to deal 

with this environmental perturbation given their classification as invasive species. 

Studies assessing the effects of rodent control at ecosystem scale are scarce and thus 

little is known about the subsequent functional response of vegetation subsequent to 

rat control. In this work, we use remote sensing to assess the effects of black rat 

(Rattus rattus) eradication on Mediterranean vegetation productivity in the Sa 

Dragonera Islet, Mallorca (Spain). Rats feed on seeds, sprouts, and leaves of woody 

vegetation and hence we expect primary production to increase nine years after the 

rodenticide campaign. The Break Detection approach for additive season and trend 

(BFAST method) was adopted to examine changes in vegetation density before and 

after the eradication campaign in Sa Dragonera Islet (Balearic Islands), using a 

temporal series of monthly NDVI data extracted from Landsat imagery. The same 

temporal trends were examined for a control zone where no rat eradication took place, 

in order to control for weather-driven changes. The results of this study revealed 

changes across the 21-year monthly NDVI time series. However, the dates, 

magnitude, and trend of these changes could not be explicitly attributed to the action 

of rats, when compared to the historical changes on the islet and the changes found to 

co-occur within the control zone. These finding could, perhaps, be explained by the 

high resilience of Mediterranean shrubs to browsing including that of rat invasion. 

However, the results from the study appear to show that rat damage on specific plant 

species, with little contribution to global NDVI values, would be overshadowed by 

the effects of broader environmental factors in this remote sensing approach. The 
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results suggest that the current passive restoration scheme imposed following 

eradication is not sufficient for effective ecosystem restoration. 

Keywords: BFAST method; invasive species; Landsat Time Series; rodent 

eradication 

1. Introduction 

Invasive alien species (IAS) are those that have reached new geographic areas by way 

of human introduction, and are populations which can survive, reproduce and spread 

over the natural environment leading to major impacts on the environment or society 

[1]. IAS can cause serious disturbance to other indigenous species and the ecosystems 

they invade, often altering ecosystem structure and function, trophic relationships 

(e.g., plant-animal interactions), and reducing the biodiversity of the invaded 

ecosystems [2–5]. 

Island communities which have evolved in isolation are typically the most vulnerable 

to IAS [6]. One of the most harmful invasive species are rodents belonging to the 

genus Rattus, in particular, the black rat (Rattus rattus), brown rat (R. norvegicus) and 

Pacific rat (R. exulans) [7–9]. The impact of rats is often density-dependent [10–12] 

and regulated by primary production [13–15], thus, in many biomes rat populations 

fluctuate seasonally [16]. Records of black rat density are highly variable ranging 

from 36.4 rats ha−1 in New Zealand islands [15], to 50 rats ha−1 in some Mediterranean 

islands [17]. In the Mediterranean basin the black rat is the most invasive species due 

to its broad tolerance to dry climates [18,19]. These species have already invaded 80% 

of the world’s islands [12,20–22] and they cause a cascade of damage to ecosystems, 

resulting in the decline and extinction of native birds, mammals, reptiles, invertebrates 

and plants of many archipelago ecosystems [7,8,18]. The black rat tends to consume 
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more plants than animals [23], showing a preference for seeds, sprouts, and leaves of 

adult plants [24,25], and thus directly affecting photosynthetic and reproductive parts. 

As a result, black rats affect the composition and structure of plant communities, plant 

recruitment, and the viability of the plant population on the islets and islands they 

infest. This has been recorded in some islands of New Zealand [26,27], and in islands 

and small islets of Spanish archipelagos (Canarias and Balearic Islands) where the 

presence of black rat has altered the structure of the vegetation; depressing or limiting 

some plant species and favouring others [19]. 

In islands where rats are removed at an early stage of their invasion, vegetation 

recovers quickly [28,29]. However, in places with prolonged history of rat 

colonisation, recovery is much slower due to critical changes in vegetation structure 

[30,31]. Rodent eradication is a common measure [8] for recovering invaded areas 

[32] with accompanying environmental monitoring necessary to evaluate the 

effectiveness of rat eradication campaigns in terms of ecosystem restoration [33]. 

However, ecosystem recovery is often affected by other confounding factors (e.g., 

climatic events) [34,35], or is limited to specific plant or animal species [36,37]. 

Conversely, the lack of environmental information prior to rat invasion [38] can 

hamper the evaluation of ecosystem restoration programs [39]. In fact, ecosystem 

monitoring post rodent eradication is uncommon [13,40]. Remote sensing therefore 

has a clear role to play in assessing ecosystem restoration post rodent eradication [41] 

given its spatial and temporal extents. 

Satellite sensors are capable of providing land cover information at different spatial, 

spectral, and temporal resolutions, allowing the monitoring of vegetation extent and 

health, and through this indicate areas of recovery post natural or human-induced 

disturbance [42,43]. A range of spectral vegetation indices, such as the Normalized 
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Difference Vegetation Index (NDVI), can be used for these purposes [44]. NDVI is a 

proxy for photosynthetic activity [45], vegetation productivity, aboveground biomass 

[46], and vegetation dynamics [47,48], and has been shown to reliably capture 

ecological response to environmental change including human and animal-driven land 

degradation [44]. In most terrestrial biomes, long-term NDVI time series follow a 

non-linear pattern that comprises alternating cycles of greening (increasing NDVI) or 

browning (decreasing NDVI). The dating and quantification of frequency and 

magnitude of these NDVI cycles is generally used as a proxy for ecosystem dynamics 

[44,48,49]. NDVI time series are particularly useful in periods longer than 10 years 

[50], as this makes it feasible to analyse the seasonal and trend components over time. 

The nature of the change in NDVI time series can be interpreted according to the 

affected component. For example, modifications of the seasonal oscillation could 

indicate phenological changes, while changes in the trend, including the magnitude, 

may point to a disturbance event [43], precipitation variability [51–53] or drought 

event [53,54]. 

In this work, we evaluate the impact of a rodent eradication campaign in a 

Mediterranean scrubland located in the Baleares Archipelago (western Mediterranean 

basin, Spain) using twenty-one years of monthly NDVI data for the Sa Dragonera and 

for a nearby control zone on the island of Mallorca. Changes in vegetation 

productivity, before and after the eradication campaign, across the two zones was 

examined using the breaks for additive seasonal and trend analysis (BFAST, [43,55]). 

BFAST is especially useful here to address the lack of information regarding the 

magnitude of change on primary production after deratization management, because 

unlike other methods, BFAST does not restrict the data to a specific season since it 

considers a seasonal fit over the entire time series. Additionally, its change detection 
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approach based on signal-to-noise ratio does not require setting a change threshold. 

BFAST has the sensitivity to differentiate the normal phenological cycle from 

abnormal changes and has been used to monitor the recovery of vegetation [56,57] 

after a broad range of environmental catastrophes including wildfires, insect outbreaks 

[58] and floods [59]. Due to the devastating effect that black rat infestations can have 

on small islet ecosystems reported worldwide [19] and the ability of BFAST to detect 

changes at the local scale [55,60,61], we hypothesized that primary productivity on 

Sa Dragonera Islet would differ before and after the rodenticide campaign; due to 

vegetation regeneration following black rat eradication. In particular, we expect to 

detect an increase (abrupt and/or gradual) in the greenness of the main vegetation due 

to the natural vegetation recovery following rodent eradication after controlling for 

climatic conditions. 

2. Materials and methods 

2.1. Study Area 

The focal geographic area of the study is in the Baleares Archipelago (western 

Mediterranean basin, Spain). It comprises Sa Dragonera Islet, referred to hereafter as 

treatment zone. In addition, a control zone was included, some 800m away on 

Mallorca Island, due to its similarity in orography, lithology and vegetation type. 

Importantly, both zones are an extension of the UNESCO designated World Heritage 

Site of the Serra de Tramuntana Mountain Range. The treatment zone is a 276 ha islet 

extending 350 meters above sea level, with the north-west exposure terminating in a 

cliff face. 

The climate at both sites is Mediterranean, with annual average temperatures above 

16 degrees and little annual rainfall (<400 mm); but with high inter-annual variability. 
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According to the Spanish Meteorological Agency (AEMET) [62], drought periods 

typically last 5 months; yet these events are partially mitigated by maritime influence. 

Limestone is the predominant bedrock and overlying soils are poorly developed or 

skeletal. The main vegetation consists of a mosaic of scrub communities. There are 

tree patches, and the herbaceous taxa are scarce (other than non-palatable plants such 

as Urginea maritima and Crithmum maritimum) due to the poor climatic and edaphic 

conditions. Sclerophyllous woody species of Mediterranean optimum predominate, 

such as Pinus halepensis, Pistacia lentiscus, Olea europaea, Anthyllis cytisoides, 

Chamaerops humilis, Cistus monspeliensis, Cneorum tricoccon, Ephedra fragilis, 

Euphorbia dendroides, Phillyrea angustifolia [63,64]. Most of these species can resprout 

following disturbance, exhibiting some resilience to fires or/and browsing, which are 

typical characteristics of sclerophyllous flora of the Mediterranean basin [65–67]. 

The islet is currently uninhabited; however, human activity has shaped its landscape 

as well as that of Mallorca Island over the last five millennia, fostering deforestation 

and soil erosion processes [63,68]. Natural resources, such as woodcutting, crop 

growing, and domestic animal breeding, were common until the 1975 [69,70]. Feral 

goats (Capra hircus) were eradicated in the 1980s, European wild rabbits 

(Oryctolagus cuniculus), and house mouse (Mus musculus) were also present in the 

treatment zone, yet black rats have been by far the most common invasive mammal 

in the islet reaching up to 50 individuals ha−1 [71]. This density of rats equals the 

maximum reported in Mediterranean islands [17,72] and is higher than that 

historically recorded in the islands of New Zealand (36.4 rats ha−1) [15]. 

Sa Dragonera is the main islet of an archipelago which was awarded the status of 

Natural Park in 1995 and forms part of the Natura 2000 Special Protection Area and 

Site of Community Importance (SPA and SCI, EU Birds and Habitats Directive) [73]. 
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The majority of the islet is considered a reserve area devoted to the conservation of 

natural values in the absence of active management measures [74]. Field observations 

revealed severe damage by rodents on vegetation cover, for example, in 2010 partial 

or total damage on branches of juvenile individuals of Ficus carica, Ceratonia siliqua 

and Olea europaea var. sylvestris were reported (Figure 4.1). Likewise, the 

endangered populations of Balearic shearwater (Puffinus mauretanicus) were 

impacted by rat predation [71]. Hence, conservationists have performed several 

ground-based rodent eradication attempts between 2001 and 2008 using rodenticide 

baits in the most accessible areas, but with little long-term success as rat populations 

have recovered to high densities. In February 2011 the local government organized an 

eradication campaign using Brodifacoum rodenticide. Brodifacoum baits were 

aerially distributed twice over the entire islet at rates of 14 kg ha−1 [71]. Since this 

eradication effort, the treatment zone has been rodent free [75,76], despite the high 

risk of reinvasion due to the proximity of the coast of Mallorca [77]. Four years after 

Brodifacoum baiting, unsystematic and occasional field observations have reported 

the increase of vegetation cover [78], however evidence of this recovery remains 

lacking. 

The Sierra Tramuntana in Mallorca is also a landscape shaped by human activity, 

which suddenly ceased from the 1960s in the rural mountain areas, becoming focused 

on rapid development of the tourism sector in the urbanised areas. The abandonment 

of the rural sector led to the cessation of domestic animal grazing but also to the 

proliferation of the feral goat which continues today [79,80]. 
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Figure 4. 1. Damage caused by the black rat (Rattus rattus) in 2010 in Sa Dragonera 

Islet. (Top left) Wild olive tree (Olea europaea var. sylvestris) with damaged bark. 

(Top right) Damage in a perennial herb (Urginea maritima). (Bottom right) Damage 

in a pinecone (Pinus halepensis). Author of the photos: Martí Mayol (Director of the 

Sa Dragonera Natural Park at the time of the deratization campaign). 

 

2.2. NDVI time series construction 

To identify whether the rodenticide eradication campaign affected primary production 

in the treatment zone, we compare its NDVI time series with that in the control zone. 

NDVI time series are here based on Landsat surface reflectance (SR) data for a period 

ranging from 1999 to 2020. February 2011 was set as the base date for detecting 

changes due to rat eradication. Therefore, the study period was divided into: (i) a 

historical period of 12 years where vegetation was impacted by rats (1999–2010) and 

(ii) a recovery period of 9 years post rat eradication (2012–2020). 

2.2.1. Satellite images 
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This study used the Landsat satellite archive due to the temporal continuity across the 

analysis time period. Landsat imagery Collection 1 provided by USGS (United States 

Geological Survey) was accessed via the web site https://earthexplorer.usgs.gov/ on 

14 November, 2020. Landsat Collection 1 images are calibrated and aligned across all 

Landsat satellites. 333 Landsat SR images were obtained for the period January 1999 

to December 2019 from Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI sensors. 

SR images are a Landsat level-2 product that provide the bottom of atmosphere 

surface spectral reflectance as it would be measured at ground level (i.e., with 

atmospheric correction applied). The availability of a high number of images favours 

the temporal consistency of the radiometric data across time series, since gaps 

produced due to the presence of clouds or due to SLC off-Data error, inherent to 

Landsat 7 [81] acquisitions post May 2003, can be replaced with optimal values 

recorded by another sensor at a close date (Figure 4.2). 

Once Landsat SR images were downloaded, R script was coded to search for the red 

and NIR spectral bands of each satellite observation, combining them according to the 

NDVI formula [82] using the "Raster" package [83] in the R statistical software [84]. 

Thus, NDVI layers were produced for all observations. All layers were stacked 

creating a multi-variable raster dataset called RasterStack object. 
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Figure 4. 2. Temporal distribution of Landsat Collection 1 Surface Reflectance (SR) 

imagery. More images were used (when available) where clouds obstructed data 

collection or where SLC off-data error in Landsat 7 was detected over study zones. 

 

2.2.2. Plot selection procedure 

Time series are created by averaging NDVI values from selected sampling plots. The 

plots were located using a pair of UTM coordinates indicating the centre and extended 

to the spatial resolution of a Landsat image (i.e., 900 m2). To select sampling plots 

where vegetation shows similar temporal dynamics of NDVI, a sampling procedure 

was used to choose plots meeting the following features: I) same vegetation cover, 

(scrubland, because it is the principal vegetation cover of the islet), based on Sentinel-

2 Global Land Cover (S2GLC, [85]); II) similar NDVI values avoiding scattered scrub 

areas and cliffs. For this purpose, a NDVI composition map was created where each 

pixel represented the 5-year average NDVI prior to the rodenticide event (i.e., from 

2006 to 2011). This map was classified into the major categories (i.e., coniferous 

forest, scrubland, scattered thicket and bare soil) using the Jenks natural breaks 

classification method to maximise the variation between classes and to best group 

similar values [86]. With the help of a high resolution orthophoto (15 cm spatial 
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resolution aerial orthophotography from the PNOA (National Plan for Aerial 

Orthophotography) available in http://www.scne.es/#ORTOPNOA) on 17 October, 

2020, we photo-interpreted and established that the values of the target vegetation 

cover in the NDVI composition map ranges from 0.45 to 0.62. To address NDVI 

differences due to slope, altitude and orientation issues [87], sampling plots were 

selected if they were between 50 to 300 meters asl, had a slope less than 30 degrees, 

and had an east or south facing-orientation. This selection was carried out using a 5 × 

5-meter resolution Digital Elevation Model (DEM) raster layer in ArcGIS 10.7. A 

workflow of the sampling procedure is shown in Figure 4.3. A total of fifty-four 

sampling plots, 29 in the treatment zone and 25 in the control zone, met these criteria 

(Figure 4.4). 

 

http://www.scne.es/#ORTOPNOA
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Figure 4. 3. Workflow of spatial criteria to select fifty-four 30 × 30m2 plots (29 in the 

treatment zone and 25 in the control zone represented by pink dots in Figure 4) to 

compare NDVI time series. 
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Figure 4. 4. Map showing locations of selected sampling plots (pink dots) to create 

the NDVI time series for both treatments. On the left are the sampling plots of 

Dragonera Islet (the treatment zone), and on the right those of Mallorca Island (the 

control zone). High-resolution aerial orthophotos (15 × 15cm) show two examples of 

the 30 × 30m sampling plots of both treatments. Spatial reference map in the bottom 

right corner. 

 

2.2.3. Monthly Landsat NDVI time series construction 

For each sampling plot, NDVI values were extracted from a multilayer raster object 

(Section 2.2.1) using the “raster” 3.4–10 package [83] in the R statistical software 

[84]. The cleaning, gap-filling and smoothing procedure summarised below was 

followed: 

a) NDVI values outside the range of the target vegetation index range, below 0.2 or 

over 1, were removed. The NDVI values were then selected according to maximum-

value composite (MVC) criterion. 
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b) a gap-filling with linear interpolation between neighbouring values [88] was 

performed, to fill NDVI gaps (31 observations in the treatment zone and 32 in 

Mallorca Island, the control zone). 

c) the Savitzky–Golay [89] smoothing algorithm was applied to smooth out the noise 

in both time series. It is appropriate to apply it on seasonal data [90] since it follows 

within-season variations and therefore captures subtle dynamics during seasons [91]. 

By applying the steps described here, clean and consistent time series were 

constructed for each treatment to feed the BFAST algorithms (Figure 4.5), since a 

temporal consistency of observations is critical for understanding ecosystems 

dynamics [92]. 

 

Figure 4. 5. Monthly NDVI time series showing the average NDVI of the sampling 

plots for each zone. The coloured lines (Red = Sa Dragonera; Blue = Mallorca Island, 

i.e., control zone) represent the trend throughout the study period, with a LOESS 

smoothing and standard deviation shown with the corresponding colours. The black 

lines represent the real data for each treatment (Solid = Sa Dragonera; Dotted= control 

zone), in which the seasonal variation can be observed. The dashed vertical line dates 

the rodent eradication campaign (February 2011). 

 

2.3. Historical time series analysis 

To detect and characterise changes in the ecosystem dynamics, the BFAST protocol 

described in [43] was applied to the monthly NDVI time series. BFAST interactively 
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decomposes time series into trend, seasonal, and remainder components [43,55]. The 

iteration begins using a Seasonal-Trend decomposition (STL) method. STL first 

detrends the time series by subtracting the trend from the observed values resulting in 

a new time series that exposes seasonality. The detrended time series is then used to 

compute the average seasonality. The amount of NDVI beyond the combination of 

the seasonal and trend components is considered random noise or the remainder 

component (Figure 4.6). Subsequently, BFAST function detects breakpoints by 

applying ordinary least squares residuals-based moving sum (OLS-MOSUM). This 

tests the null hypothesis that the linear trend of the NDVI values remain constant over 

the observations against the alternative of significant changes (p < 0.05). The optimal 

number of breakpoints is determined by minimising the Bayesian Information 

Criterion (BIC) and the position of the breakpoints (dates and its confidence intervals) 

are chosen by globally minimising the residual sum of squares. BFAST iterates along 

these steps until the number and position of the breakpoints remains constant. The 

basis and the process carried out by BFAST is described in detail in [43] and is 

available in the BFAST package for R (https://cran.r-

project.org/web/packages/bfast/index.html) on 9 September, 2021. All BFAST 

analyses were performed using R statistical software [84]. 

https://cran.r-project.org/web/packages/bfast/index.html
https://cran.r-project.org/web/packages/bfast/index.html
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Figure 4. 6. The STL decomposition of the monthly NDVI time series of Sa 

Dragonera and control zone (Mallorca Island) into the seasonal, trend, and remainder 

components. In each plot, NDVI units are plotted against time. The seasonal 

component is estimated by taking the mean of all seasonal sub-series (e.g., for a 

monthly time series the first sub-series contains the January values). The sum of the 

seasonal, trend, and remainder components equals the data series. The solid bars on 

the right-hand side of the plots act as a reference to show the same data range and aid 

comparison. 

 

BFAST transforms the NDVI time series into a piecewise model, whose maximum 

number of linear regressions depends on the parameter h. The h parameter sets the 

minimal segment size between potentially detected breaks in the trend model given as 

a fraction relative to the sample size. The sample size of each of our time series 

consists of 252 observations (i.e., 21 years at a monthly frequency). We established 

the value of h = 1/7 in order to set significant trend periods following the 

recommendations of [59]. For our dataset, this implies that a maximum of seven linear 

regressions with 252/7 = 36 minimum observations each (i.e., a minimum of three 

years). The difference between the NDVI value at the end of a preceding linear model 

and the intercept of the following linear model defines the magnitude of the abrupt 

change and the slope of each linear model defines the gradual change between 

breakpoints. 
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For better understanding of the vegetation dynamics and to avoid misinterpretation of 

the effect of rat removal, we compared the BFAST outcomes between zones and with 

historical environmental records. Because changes in hydrological regimes are 

considered the main drivers of vegetation dynamic changes [52,54], and closely 

related to shifts in NDVI time series in water limited ecosystems [93,94], we 

compared the BFAST results with the hydrological drought index (HDI). This is 

reported by the General Directorate of Water Resources (DGRH) of the government 

of the Balearic Islands [95] in the Hydrological Demand Unit (HDU) of Sierra 

Tramuntana Sur. This corresponds to our study area. In the report they categorise HDI 

in 4 groups which describe the state of water resources. These categories, from highest 

to lowest hydric abundance are: normality, pre-alert, alert and emergency. The years 

1999, 2001, 2004, 2007 and 2011 are key dates to consider due to the area entering 

alert or emergency states. Similar to the majority of zones in Mallorca, as a result of 

the high rainfall in 2009 and 2010, our study area was at optimal HDI levels, although 

from 2015 onwards a rapid decline was observed, leading to the alert situation in late 

2015. 

The BFAST outputs are compared between zones. This, on the one hand, gives us an 

idea of whether the process of selection of plots was efficient at the time of selecting 

areas whose vegetation follows the same dynamics. On the other hand, the comparison 

of the dates when the breaking points occur tries to find the singularity of the effect 

of the eradication campaign. In addition, the magnitude of the breakpoints is used as 

a proxy for the vegetation resistance facing a disturbance event; and the slope of the 

linear regressions as a proxy of the recovery rate (greening when positive rate or 

browning when negative rate) [96]. 
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A more detailed explanation of the R code workflow can be seen in the Supplementary 

Material chapter 2 section. 

3. Results 

3.1. Historical time series results 

BFAST decomposed the original NDVI data (Yt) into seasonal (St), trend (Tt) and 

remainder (et) components (Figure 4.7). The algorithm identified four breakpoints at 

both the treatment and control zones in the NDVI trend component (Figure 4.7A,B, 

respectively), two of them following the eradication campaign. The seasonal 

component showed no abrupt changes, and the seasonal amplitude was approximately 

0.05 NDVI. 
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Figure 4. 7. Decomposed NDVI data (Yt) into seasonal (St), trend (Tt) and remainder 

(et) components for NDVI time series between 1999 and 2020 for both treatment zone 

(A), and control zone (B), using the breaks for additive seasonal and trend (BFAST) 

method. The dotted vertical line shows when the rodent eradication campaign took 

place (February 2011). The dashed lines in Tt represent the timing of each significant 

NDVI change (p < 0.05) in the trend component, together with its 95% confidence 

intervals (horizontal red bars). Ordinal numbers are used to name the breakpoints. 

Vertical axis units are absolute NDVI values. The slope coefficient (𝛽) and p-value is 

shown for each fitted trend segment. Coloured slots represent Hydrological Drought 

Index (HDI) between March 1999 and December 2019 [95] which describes the water 

resources state from more to less abundant for: normality (green), pre-alert (yellow), 

alert (orange), and emergency (red). 

 

Table 4.1 summarizes the date of abrupt changes, their magnitude and direction, and 

the regression parameters of the piecewise model, which provides information about 

the NDVI on the break date (intercept) and on the recovery rate (slope). The timing 
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of occurrence and the direction of all four abrupt changes were similar for both 

treatment and control zones, since their breakpoint dates (95% CI) overlapped. All 

identified breakpoints occurred immediately after environmental disturbances (i.e., 

anomalies in water resources in this study). In the first and second abrupt changes an 

increase in NDVI was observed associated with normal hydric states (HDI) arising 

after recurrent states of alert or emergency. Conversely, the third and fourth abrupt 

change occurred along with an emergency or alert state just after the observed NDVI 

values moved between normality and pre-alert states of water resources. The 

magnitudes observed at the four breakpoints were always higher for treatment zone 

than for the control zone (Table 4.1). 

Likewise, the recovery rates (Slope in Table 4.1) were of a similar level in all four 

modelled linear regressions, highlighting that these rates are not higher in the 

modelled segments of the treatment zone after the rat eradication campaign date. 

Table 4. 1. Timing and NDVI magnitudes of breaks in the trend component of Sa 

Dragonera (treatment zone) and Mallorca (control zone) time series. The left and right 

limits of the breakpoint dates indicate a 95% confidence interval of date estimation. 1 

= Timing indicated by year and month. Data format: Year (Month). 2: Difference 

between the NDVI value at the end of a linear model and the intercept of the next one. 

3: Linear regression parameters of segments after the breakpoints date, where the 

intercept represents the starting NDVI, and the slope represents the greening (+) or 

browning (-) ratio of the vegetation. The parameters of the starting segment are 

omitted in this table. 

Zone 
Breakp

oint 

Breakpoints Dates 
Change  

magnitude 

(absolute 

NDVI Units)  

Linear regression 

parameters of 

trend component 

2.5% CI 

limit 

Breakpoint 

timing 

97.5% CI 

limit  
Intercepts Slopes 

Treatment 

1st 2001(11) 2001(12) 2002(03) 0.109 0.442 0.008 

2nd 2007(12) 2008(04) 2008(05) 0.074 0.569 −0.022 

3rd 2013(01) 2013(02) 2013(04) 0.057 0.523 0.021 

4th 2016(01) 2016(02) 2016(06) −0.063 0.521 0.007 

Control 

1st 2001(11) 2001(12) 2002(03) 0.091 0.453 0.005 

2nd 2007(11) 2008(11) 2008(12 0.031 0.519 −0.014 

3rd 2012(12) 2013(01) 2013(09) 0.059 0.519 0.004 

 



Chapter 2 

 

87 

Together, the BFAST approaches consistently describe the dynamics of the vegetation 

and show similar shift dates of NDVI between zones, as well as the direction of the 

changes, and trends of the piecewise models. These results indicate that the variability 

of rainfall and water reserves were the main factors controlling the vegetation 

dynamics following the rat eradication campaign as observed in its previous data and 

in the control zone data. Furthermore, in terms of the magnitude of the changes and 

the recovery rates observed, there was no relationship between the elimination of rats 

and the processes of resistance or recovery of the studied vegetation of the islet 

4. Discussion 

The presented results indicate that the 2011 rodent eradication campaign in Sa 

Dragonera Islet (treatment zone) had a negligible effect on the primary production 

dynamics detected at the Landsat resolution scale. The observed changes in NDVI 

before and after the eradication campaign appear to be driven by water-related 

environmental events, which could be deemed characteristic of a Mediterranean 

system [43,53,55,97]. Positive changes detected are followed by segments with a 

negative or almost zero recovery rate. These patterns coincide with the transition of 

HDI from alert or pre-alert prolonged states to states of normality. These vegetation 

dynamics arise in regions with prolonged periods of water limitation interrupted by 

wet episodes [54] that may trigger a fast germination of short-lived plants and 

subsequent increase in NDVI followed by a gradual decrease [50]. Other papers such 

as [59] have used the visual comparison of the rain patterns with dates of abrupt 

changes of NDVI to evaluate the BFAST algorithm facing known flood events. In this 

study, we do not validate the dates of the abrupt changes observed due to hydrological 

factors, since we do not have enough temporal precision in the dates that categorise 



Chapter 2 

 

88 

the HDI. However, the abrupt and gradual change patterns in the NDVI time series of 

both treatments is used to reject the hypothesis that deratization drove changes in 

NDVI. 

The comparison between the timing of eradication campaign with the timing of the 

first break following, indicated that BFAST was unable to detect abrupt changes in 

vegetation response caused by rat elimination. The gradual NDVI increase shown in 

the fourth segment in the treatment time series (Figure 4.7A) could reflect the recovery 

of the ecosystem. However, the BFAST algorithm indicated a non-significant linear 

relationship, which may have been a relic of noise rather than the signal [59], resulting 

in the detection of this abrupt change. It is not believed that this represents the 

response of the vegetation to the demise of rats. The choice of h parameter influences 

the decomposition of the time series, affecting the change detection process, which is 

based on signal-to-noise ratio. It is possible that the low h parameters caused the linear 

models to fit the noise rather than the signal, resulting in the detection of this abrupt 

change but being non-significant verifies our interpretation. We considered the 

optimal value of h = 1/7 following the recommendations of [59]. Values of h lower 

than 1/8 generated additional changes with non-significant linear fits (for example, it 

identified negative abrupt breaks in 2011), and values greater than 1/6 generated 

longer segments, which limited the level of detection detail (here it removed changes 

detected at the end of 2001). No seasonal changes were detected, however Seasonal-

Trend decomposition (STL) showed that a seasonal component was present in the 

time series, therefore it was convenient to remove seasonal effects before analysing 

the long-term trends. 

The BFAST method dates and quantifies the changes in vegetation from global to 

local scale, which can be geolocated pixel by pixel at the satellite spatial resolution 
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[43,55]. Often studies using BFAST validate results by prior knowledge of the study 

area or by subsequent field visits. Our study, however, has been carried out in an 

entirely remote manner where the NDVI refer to averaged pixels from the sample 

plots selected under strict spatial criteria, rather than to geolocated pixels. Thus, 

changes detected characterise the dynamics on the targeted area over time. Averaged 

pixels allow comparison of the time series of the study area with that of a control zone, 

where sampling plots that follow similar dynamics could be selected. By doing this 

the study overcomes the lack of information available about the previous state of the 

rodenticide campaign. 

The presented results do, however, demonstrate that using BFAST is a suitable 

approach to detect abrupt and gradual changes in NDVI, for example due to the effects 

of rodenticide campaigns which are known to lead to recovery of vegetation 

productivity. Within the treatment zone the BFAST model dates and quantifies the 

NDVI abnormal behaviour, considering seasonal variations In this study, we cannot 

conclusively attribute NDVI recovery, detectable on a 30m spatial scale across the 

treatment zone, to the eradication campaign, particularly as meteorological drivers in 

such settings are evident as the dominant influence. 

The recovery of an island ecosystem invaded by rats must necessarily begin with their 

eradication. However, the time and rate of recovery depends on multiple factors such 

as the frequency, severity and duration of the impacts. There are some studies that 

have reported the recovery of the vegetation cover in deratized islands through field 

work, but in an extension and magnitude appreciable by the Landsat sensors. For 

example, eight years after the deratization of a small island in the Indian Ocean, they 

reported, through field work, an increase in vegetation cover (from 30% to 70%) 

validated through aerial images. However, it was due only to the regeneration of the 
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herbaceous stratus [29]. In a study to assess rodent eradication in the Montebello 

archipelago, Western Australia, vegetation density was monitored for 26 years with 

Landsat images [34], and the authors reported a trend of vegetation recovery on the 

islands just two years after rat eradication. Interestingly, and converse to the findings 

of our study, they observed that the positive relationship typically exhibited between 

precipitation and vegetation cover was nullified in the rat-infested islands [34]. 

That said, in the case of Sa Dragonera Islet, some signs of recovery have been 

described such as the presence of new plant species, the greater presence of other 

plants that were previously rare, or the greater abundance of arthropods [78]. 

The original hypothesis suggests the greening of vegetation, especially considering 

that plants can keep sprouts (and hence NDVI increment) after rat browsing demise. 

However, our results reflect the lack of change to primary production. 

It appears likely that the lack of rat herbivory pressure that could lead to higher plant 

recruitment and increase in existing plant biomass, did not translate into an abrupt 

change in the NDVI time series; and that the NDVI values recorded in the 

Mediterranean ecosystem, before and after the eradication campaign, are principally 

driven by water-related environmental events. The remote sensing record would 

therefore offer no signs of long-term recovery. 

The vegetation of Sa Dragonera Islet and Mallorca Island exhibit a long history of 

permanent pressures by natural and domestic animals plus recurrent natural and 

human-induced fires [79,80]. The herbivorous mammals such as Myotragus 

balearicus lived in Baleares archipelago till its extinction shortly before the 

introduction of goats 4000 years ago [98]. Feral goats are currently common in 

Mallorca Island and they were also in Sa Dragonera Islet until its eradication in 1975 

[69,70]. Thus, it could be suggested that the prolonged coexistence of the dominant 
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plant taxa with herbivores in Baleares archipelago, might explain the resistance of 

vegetation dynamics to herbivory by rats in Dragonera Islet. 

Ecosystem recovery is complex and involves cascading processes, and, when it has 

been severely impacted, recovery could take thousands of years [99,100]. Thus, the 

absence of remotely detectable NDVI recovery in the treatment zone may be due to 

the action of disturbance within an environment with inherently stressful conditions 

(e.g., xeric environment). The presence of black rats could go back several centuries 

[17] and contribute to disturbance through extremely high population densities. That, 

combined with historical anthropogenic activity make the islet ecosystem particularly 

susceptible to land degradation [101]. Therefore, due to an intense and prolonged 

disturbance the ecosystem compositions could have drastically changed, resulting in 

a limited recovery following removal of an early driver of degradation in the location 

[17,30,102,103]. 

Alternatively, the null response of the vegetation could be due to the fact that the 

pressure exerted by rats on the plants is not sufficiently high to impact the primary 

productivity of the island and therefore the recorded NDVI. It could be argued that 

the ecosystem tolerates the rat herbivore in an already naturally stressed environment 

[67,104], with most of the dominant plants in the landscape also being sprouting 

species adapted to browsing and associated disturbance [65–67,104]. To assume or 

discard this option, it would be necessary to have more detailed information on the 

situation prior to the arrival of the rats on the islet. Likewise, more detailed data on 

the influence of rats on the richness of plant species, growth rates and periods, seed 

production, and the consequent population recruitment on the islet would prove vital 

to deeper functional understanding. 
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Although records of the ecological past of the islet are sparsely available and limited, 

the evolution of the ecosystem following elimination of the rats can be monitored in 

this manner to determine long term trends. The effects of rats on the structure of 

vegetation are sufficiently reported in the literature, however monitoring eradication 

outcomes is sporadic and limited [32,35,40], and pre-management data is usually 

lacking [38]. Hence, this satellite-driven approach represents a consistent 

methodology that is critical to understanding the ongoing and evolving dynamics of 

island ecosystems following rat eradication. 

5. Conclusion 

This study is the first of its kind to examine the effectiveness of remote sensing and 

BFAST timeseries analysis in island ecosystems post black rat eradication. Given the 

general lack of reports assessing the effect of rat eradication on island ecosystems, a 

satellite approach to assess changes in vegetation productivity over time is proposed. 

Addressing this generalised information gap, the BFAST model is found to be an 

appropriate tool to monitor NDVI time series due to its sensitivity to reflect the long-

term and short-term changes in vegetation growth at local scales accurately. To 

interpret the changes found, a 21-year time series of NDVI data extracted from 

satellite images was analysed and compared with hydrological data, which was found 

to be the likely driver of NDVI changes in water limited environments as is the case 

for our study area. These climatological influences are deemed to mask the detectable 

effects of rat eradication in remotely sensed NDVI data. 

The BFAST results reveal that the primary production in the treatment area is sensitive 

to water cycles but not immediately to cessation of rat activity. In the short term there 

was no abrupt increase in vegetation primary productivity as a response to the 
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cessation of rat browsing with this significant ecological event being overshadowed 

by the state of water emergency that occurred close to the time of the eradication 

campaign. Nor were changes observed in the long term, since facing the 

aforementioned environmental stress events, the recovery rates in the treatment zone 

did not overcome those found in the control zone, rather, they continued to show 

similar trends. Changes may have only occurred at a small spatial scale, as evidenced 

by the reported field observations of the anecdotal studies in the area. Thus, given the 

spatial resolution of the core satellite data these changes had little impact on the 

averaged NDVI produced over the islet. Unlike other studies, changes were not 

widespread over the island's surface, so it is not possible to detect them at the scale at 

which Landsat sensors record. We suggest that the non-response of NDVI to rat 

eradication on Dragonera Islet is due to a high resistance of vegetation to rat predation 

achieved during a long period of colonisation in an already naturally stressed 

environment. 
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Abstract 

The assessment of landscape condition for large herbivores, also known as 

foodscapes, is fast gaining interest in conservation and landscape management 

programs worldwide. Although traditional approaches for assessment of landscape 

condition are now being replaced by satellite imagery, several technical issues, such 

as the selection of the optimum sensor, still need to be addressed before full 

standardisation of remote sensing methods to capture the availability of vegetal 

resources. In this work we present a low-cost method, based on the use of a modified 

blue/green/near-infrared (BG-NIR) camera housed on a small-Unmanned Aircraft 

System (sUAS), to create foodscapes for a generalist Mediterranean ungulate: the 

Iberian Ibex (Capra pyrenaica). The work was performed in an enclosure covered by 

natural Mediterranean vegetation in the Tortosa i Beceit National Game Reserve, 

Northeast Spain. Faecal cuticle micro-histological analyses was used to assess the 

dietary preferences of ibexes and then individuals of the most common plant species 

(n = 19) were georeferenced to use as test samples. Because of the seasonal pattern in 

vegetation activity, based on the NDVI (Smooth term Month = 21.5, p-value < 0.01, 

R2 = 43%, from a GAM), images were recorded in winter and spring to represent 

contrasting vegetation phenology using two flight heights above ground level (30 and 

60 m). Additionally, images were processed at multiple resolutions (1.4, 1.5, 3.5 

pixels/cm). Boosted Trees, a form of stochastic gradient boosting, was used to classify 

plant taxa, using t spectral reflectance data, to create a foodscape of the study area. 

The number of target species, the sampling season, the height of flight and the image 

resolution were analysed to determine the accuracy of mapping the foodscape. The 

highest classification error (70.66%) was present when classifying all plant species at 

3.0 pixels/cm resolution from acquisitions at 30 m height. The lowest error (18.7%), 
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however, was present when predicting plants preferred by ibexes (e.g., Cistus albidus, 

Erica multiflora, Fagaceae and Graminoids), at 3.5 pixels/cm resolution acquired at 

60 m height. This methodology can help to successfully monitor food availability and 

seasonality and to identify individual species. Better results are expected by 

incorporating more complex cameras into the analysis but with the requirement of 

higher budget costs that may reduce accessibility and up-take of remotely based 

methodologies. 

Key words: Capra pyrenaica, Food resources monitoring, Remote sensing, sUAS, 

Vegetation assessment 

1. Introduction 

The spatiotemporal assessment of food resources for large herbivores, also called 

foodscapes is fast gaining interest within landscape and wildlife management, and 

associated research agendas worldwide. Knowing the distribution and availability of 

specific plants (i.e., used by ungulates see Espunyes et al., (2019a)), has become 

essential not only to understand population dynamics of herbivores but also those of 

their predators (Oates et al., 2019; Peters et al., 2019; Searle et al., 2007). Mapping 

vegetation is also essential for ecologists (Moore et al., 2010) and wildlife 

conservation agents (Schweiger et al., 2015a). Likewise, plant biodiversity 

conservation strongly depends on the interaction between plants and large herbivores, 

among others, (Boulanger et al., 2018; Stout et al., 2018) and the modelling of these 

interactions is fast gaining interest (Weisberg et al., 2010) ; particularly by exploring 

plant communities at different spatial and temporal scales (Golodets et al., 2011; 

Schweiger et al., 2015a). Assessment of foodscapes is also of major concern for forest 

managers, as both wild and domestic ungulates influence forest regeneration, tree 
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growth and forest development (Bergqvist et al., 2018; Rooney et al., 2015; López-

Sánches et al. 2017; Valle Júnior et al., 2019). Vegetation modulates both habitat and 

diet selection in large herbivores, which in turn affects the sign (mutualist vs. 

antagonist) and strength of plant-herbivore interactions (Gill 1992; Perea et al. 2013) 

and their associated ecosystem services and disservices (Velamazán et al. 2019). In 

addition ungulate species serve societal needs as game animals or subsistence foods, 

and can also affect agricultural crops which add importance to the understanding of 

nutritional resources and habitat use of large herbivores (Rowland et al., 2018; Duparc 

et al., 2019). 

Traditionally, vegetation cover mapping has been done using field-based or in situ 

measurements (Karl et al., 2011). Although field studies are still required for 

calibration, and validation of other indirect approaches (e.g., based on remote 

sensing), they are time-consuming and often unfeasible when covering large areas. 

This is complicated further when studying complex landscapes across different 

seasons and years (Manousidis et al., 2016; Moore et al., 2010; Petersen et al., 2014; 

Royo et al., 2017). Remote sensing is thus becoming the main alternative to overcome 

the limitations of, and complement the advantages of, field-based study (Kerr and 

Ostrovsky, 2003; Pettorelli, 2013a; Sankey et al., 2019; Skidmore et al., 2010). In fact, 

satellite derived-measurements are becoming popular for mapping vegetation cover, 

structure, composition, and condition in wide geographic areas and over long time 

periods (Harris et al., 2014, Wachendorf et al., 2017). However, several technical 

issues need to be addressed before remote sensing approaches can be fully established 

to create foodscapes. In homogeneous landscapes, for example, remote sensing 

methods are useful for mapping specific food resources (e.g., lichens in tundra used 

by reindeer, see Falldorf et al., 2014), or linking the greenness of mixed-grass 
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communities to diet quality of alpine ungulates (Schweiger et al., 2015b; Villamuelas 

et al., 2016). Few efforts, however, have been made to create foodscapes in complex, 

bushy and encroached landscapes such as those common in the Mediterranean region. 

To date, the most ambitious contributions in this area of science have achieved the 

assessment of the nutritional quality of specific tree species commonly used by 

African ungulates (Skidmore and Ferwerda, 2008), and by Australian marsupials 

(Youngentob et al., 2012). Implementation and evaluation of the use of remote sensing 

to assess the availability of specific woody species used by ungulates in complex 

landscapes are still scarce but necessary.  

One alternative, to gain definition in such heterogeneous environments, is the use of 

hyperspectral sensors set in unmanned aircraft systems (UAS, see Beeri et al., 2007; 

Schweiger et al., 2015b; Skidmore et al., 2010; Youngentob et al., 2012), or in 

combination with lidar (Insua et al., 2019; Lone et al., 2014; Pullanagari et al., 2018). 

Lamentably, these approaches are still expensive and remain outside of the budget 

capabilities of most organisations and companies, as well as government-funded 

bodies. Additionally, they show complexities that require additional expertise which 

inhibits the broader uptake and use by non-expert researchers and land managers alike. 

Thus, timely research in this field of remote sensing is required to support decision 

making, oriented towards the most appropriate, timely and low-cost methods available 

while also offering suitably high levels of accuracy (Wachendorf et al., 2017). 

Furthermore, although there are studies focused on estimating primary production and 

nutrient content, few of them integrate quality assessment and dietary species 

identification (food availability), and almost no studies focus simultaneously on 

heterogeneous environments and wide-ranging feeders. 
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In any case, several methodological issues have to be solved to create foodscapes 

based on remote sensing. For example, when using UAS mounted sensors, it is 

important to define the altitude above ground level (AGL) to ensure coverage of the 

study area while also balancing against the pixel size and subsequent spatial resolution 

requirements of the study (Tømmervik et al., 2014). Additionally, the spectral range 

and resolution requirements must be met by the sensor to ensure that detailed spectral 

responses for each pixel can be obtained. This is particularly relevant to accurately 

distinguish plant species and monitor their spectral responses and variations across 

different seasons (Hesketh and Sánchez-Azofeifa, 2012). 

For these reasons, this study aims to address both challenges; heterogeneous 

environmental assessment and mixed feeder diet classification, using a simple and 

low cost 3 spectral band camera (modified to detect Blue, Green, and Near-Infrared 

(BG-NIR)) mounted on a small-Unmanned Aircraft System (sUAS). The study seeks 

to create a foodscape assessment for a mixed feeder ungulate, the Iberian Ibex (Capra 

pyrenaica), in a heterogeneous Mediterranean scrubland. Many sUAS are low-cost 

machines capable of carrying a wide range of sensors and imaging equipment to work 

in complex and heterogeneous scenarios (Anderson and Gaston, 2013), and similar 

sensors have successfully been employed in other vegetation studies (e.g., Pekkonen 

and Laakso, 2012; Gillan et al., 2019; Lu and He, 2017; Strong et al., 2017).  

The Iberian Ibex is a mixed feeder with a diet including herbaceous and woody species 

(Alados and Escos, 1987; Martinez et al. 1985; Martinez and Martinez, 1987; 

Granados et al. 2001). This mountain ungulate shows great dietary plasticity but is 

influenced by plant phenology (Del et al., 1994; Martinez, 2014) and landscape 

characteristics (Martínez and Martínez, 1987; Moco et al. 2014; Perea et al. 2015).  
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In this paper, the primary aim is to determine the feasibility of remotely classifying 

Mediterranean plant species, in two periods of contrasting phenology, growing in a 

high diversity and physiognomically heterogeneous plant community, with special 

focus on the plants grazed or browsed by the Iberian Ibex diet. We do so by using a 

novel methodology and low budget equipment and seek to set a basis for further 

remote studies aimed at diet quality in complex environments. 

2. Materials and methods 

2.1. Study area 

The study was undertaken in the National Game Reserve ‘‘Ports de Tortosa i Beseit’’ 

(NGRPTB) in Catalonia, northeast Spain (40º46’08’’ N, 0º20’04’’ E, 450 m. a.s.l., 

Figure 4.1). The average temperature in winter is from 0.4ºC to10ºC and in summer 

from 11ºC to 25ºC. Precipitation is concentrated in spring and autumn, with a mean 

rainfall of 133.7mm and 116.6 mm respectively. Summer is characterised by drought 

conditions, with an average precipitation of 29.97mm (Meteocat, 2019). 
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Figure 5. 1. The study area is placed in the National Game Reserve “Ports de Tortosa 

i Beseit” (NGRPTB) in Catalonia, northeast Spain (40°46′08″ N, 0°20′04″ E, 

450m.a.s.l.)marked in the upper inset. The yellow line marks the Iberian Ibex 

enclosure. The white area indicates the flight area. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

 

The study area is characterised by a Mediterranean sclerophyllous woody landscape, 

dominated by Quercus ilex and a dense scrubland integrated by more than 30 woody 

plants codominated by Pistacia lentiscus, Erica multiflora, Quercus coccifera, 

Rosmarinus officinalis, Genista scorpius, and Ulex parviflorus. Natural and planted 

Pine stands and isolated individuals (Pinus nigra and Pinus pinaster) were also 

present across the study area. More specifically, the investigation was conducted in a 

fenced scientific enclosure of 17 ha (see Figure 5.1), which maintained an introduced 

herd of 18 Iberian Ibexes. The enclosure facilitated the control of Ibex population 

numbers and represented all relevant vegetation communities and plant species typical 

of this Mediterranean landscape. 

2.2. Field data collection 
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Field data were collected in both June 2018 and March 2019. The June period was 

selected to evaluate plants with new and well developed shoots and leaves, and the 

March period represented an inactive period (late winter) with plants harbuoring old 

shoots and leaves. It is hypothesised that spectral variations will be apparent across 

all species on the two dates. In particular, higher NDVI values are expected in winter 

than in spring because the higher photosynthetically active radiation of evergreen 

Mediterranean plants (Garbulsky et al., 2013). 

Inside the study enclosure, two sites were selected randomly, and 11 plots of 15x15m 

were randomly distributed to obtain a representative vegetation sample from within 

the enclosure. Up to 20 individuals, of the most representative plant species in the area 

were sampled; and the height, shape, diameter of the vegetative crown and 

phenological stage were recorded and specifically sampled (for subsequent 

discernment in aerial imagery, Figure 5.2). The location of sampled individuals was 

recorded using a differential-GPS (Leica GS07) for image matching and all species 

coded for analysis (see Table 5.1). A total of 19 plant species (from 12 family groups) 

were identified and sampled in the study sites within the enclosure. The number of 

individuals sampled ranged between 6 and 20 dependent upon species and vegetation 

state (see Table 5.1 and Figure 5.2). In addition, plant fragments were collected for 

further cuticle micro-histological analysis with up to 10 plants of each diet species 

sampled. 
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Figure 5. 2. Field sampling in the Iberian Ibex enclosure in the NGRPTB. Up to 20 

individuals of the most representative species of the area were marked with a dGPS. 

In sets present the species most consumed by Iberian ibex in the enclosure. 

 

Finally, 10 fresh Ibex faecal samples were collected from around the enclosure. Fresh 

faecal samples were placed in individual plastic bags, labelled and then transported 

via a cool-box to the laboratory. Once at the laboratory, samples were stored in a 

freezer, at -20°C, until further processing.  

Table 5. 1. Species and number of individuals (n) sampled in NGRPTB Iberian ibex 

enclosure. species are grouped by families and given a code to simplify the 

interpretation of the consequent analysis. Plant life-forms agree with Raunkier´s 

classification (1934). 

Family Specie CODE n Physiognomy 

Amacardiaceae Pistacia lentiscus PL 20 
Evergreen microphanerophyte with 

compound broad-leaves  

Buxaceae Buxus sempervirens BS 6 
Evergreen microphanerophyte with 

simple broad-leaves 

Cistaceae Cistus albidus CA 8 

Evergreen nanophanerophyte with 

simple broad-leaves covered by dense 

white tomentous 
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Helianthemum 

marifolium 
H 8 

Evergreen loosely branched 

chamaephyte with tiny (< 10x10 mm) 

simple and hairy broad-leaves 

Cupressaceae Juniperus oxycedrus JO 20 
Evergreen microphanerophyte with 

simple needle-leaves.  

Ericaceae Erica multiflora EM 20 
Evergreen nanophanerophyte with tiny 

(< 10 mm length) simple linear-leaves  

Fageceae 

Quercus coccifera QC 20 
Evergreen microphanerophyte with 

simple broad-leaves 

Quercus ilex QI 20 
Evergreen mesophanerophyte with 

simple broad-leaves 

Labiatae 

Rosmarinus officinalis RO 20 
Evergreen nanophanerophyte with 

simple linear-leaves 

Thymus vulgaris TV 20 
Evergreen chamaephyte with tiny (< 5 

mm length) simple linear-leaves 

Leguminosae 
Genista scorpius GS 8 Evergreen thorny and promptly leafless 

nanophanerophyte Ulex parviflorus UP 11 

Oleaceae Phillyrea angustifolia PA 7 
Evergreen microphanerophyte with 

simple lanceolate broad-leaves 

Pinaceae 
Pinus nigra PN 10 Evergreen mesophanerophyte with 

simple needle-leaves Pinus pinaster PP 10 

Palmae Chamaerops humilis CH 8 
Evergreen nanophanerophyte with 

compound fan-like leaves 

Graminoids 

Brachypodium 

phoenicoides 
BP 10 

Evergreen tussock-like 

hemicryptophyte Brachypodium retusum BR 10 

Graminoids G 10 

 

2.3. Image acquisition and processing 

A DJI Inspire 1 sUAS (DJI, Europe) was used to capture high resolution aerial 

imagery of both study sites. The sUAS captured imagery in consistent weather 

conditions (temperature circa 25oC, wind speed < 7ms—1, clear skies), and flights 

were conducted at solar noon. On two consecutive days in June 2018, two separate 

flights were undertaken at each site; with a target altitude of 30 m AGL followed by 

60 m AGL. On 25th of March 2019, one flight was undertaken at both sites; with a 

target altitude of 30m. All flights followed a cross-hatched flight plan to ensure 

maximum overlap (> 80%), at a 5m line spacing. A low-cost payload sensor was used 
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to collect imagery. More specifically, the payload sensor was a BG-NIR modified 

version of the DJI X3 RGB sensor (12 megapixels, DJI, Europe). The modified sensor 

was adjusted using a custom filter to pass infrared light from the “red edge” at 680-

800 nm, where plants actively reflect wavelengths, and to block wavelengths over 800 

nm. The filter ensured that the blue and green channels only received visible light 

whilst allowing the detection of NIR light at 680-800 nm (LDP LLC, Carlstadt, NJ, 

USA). 

In addition, a total of 34 Ground Control Points (GCP) were located within the study 

site to georeference the image in the later processing phase. A Leica GS07 dGPS was 

used to record their coordinates. The sUAS was flown manually, and image capture 

ranged between 83-162 images for 60 m AGL flights, and 450-563 images for 30m 

AGL flights in June, and between 190-1068 images in March (see table 5. 2). All 

images were recorded in JPEG file format and georeferenced to EXIF GPS 

coordinates and altitude levels obtained from the DJI Inspire 1 sUAS. 

Table 5. 2. Image processing information for each flight executed in NGRPTB ibex 

enclosure. The table includes final resolution (ppcm, pixel per centimetre) of the 

image, surface recorded by the image, number of ground control points (GCP), 

calibration error (mean RMS error), and number of recorded images and number of 

images used to create the model. 

Month Flight 

(m) 

Resolution  

(ppcm) 

Surface 

(ha) 

GCP Mean RMS 

error (m) 

N of 

images 

Calibrated 

images 

June 30 1.44 2.8457 18 0.04-0.28 1013 868 

June 60 3.51 5.8915 16 0.23-0.08 245 245 

March 30 1.52 5.1267 21 0.03-0.07 2188 2152 

 

The Pix4D Mapper® software was used to process all images. Initially, Structure-

from-Motion (SfM) was used to generate a Digital Surface Model of the study sites 

(Westoby et al., 2012), and then an orthomosaic generated by orthorectification of the 
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aerial imagery (Pix4D, 2018). This method removes perspective distortions from the 

images using the Digital Surface Model. 

To ensure consistency across all orthomosaics, the image resolution and pixel size 

were matched to the coarsest resolution across all final images using ArcGIS (v10.1). 

A nearest neighbour sampling method was used to resample discrete pixel data to 

larger pixel sizes, in order to test the possible influence on the image classification. 

The range of image pixel sizes was 3.5 cm – 30 cm, with the smallest pixel size 

representing the highest resolution consistently achievable during the sUAS flights. 

Finally, using dGPS locations of the plants sampled in the field, a buffer was generated 

(25% of the smallest measured diameter of each specific plant) and used to extract the 

pixel values relative to each plant individually sampled. Pixel sampling of each plant 

was conducted in this way to avoid plant edges and soil reflectance where possible 

which may have caused disruptive pixel mixing. The resultant data provided BG-NIR 

pixel data for each plant sampled in the field which was used to perform subsequent 

analysis. 

2.4. NDVI mapping 

NDVI is a good indicator to reflect plant growth, quality, and phenology in 

Mediterranean ecosystems (Ogaya et al., 2015). NDVI represents the Normalised 

Difference Vegetation Index which is determined by calculating the difference in 

reflectance between the NIR band and a chosen visible band which is then divided by 

the sum of these two bands (Pettorelli, 2013b). This index can be calculated for any 

individual pixel and typically uses the red band as the visible component due to the 

high level of absorption of this band during photosynthesis. The NIR band is used as 

it is highly reflected by healthy plants, allowing a strong contrast with the red visible 

band. The blue band can be similarly used to the red band but is typically restricted to 
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low altitude data acquisitions due to the negative effect of Rayleigh scattering that can 

interfere with satellite measurements as light passes through the atmosphere. It is more 

commonly referred to as Blue-NDVI (BNDVI) and has been used successfully in 

other vegetation assessment studies (Beeri et al., 2007; Lu and He, 2017). NDVI 

sensitivity to phenological stages of the plants was assessed as they manifested 

relevant seasonal phenological changes. Initially, satellite data were obtained to 

determine the mean NDVI values correspondent to the 2014-18 period for the entire 

study area, and to establish seasonal trends (MOD13Q1 NDVI data extracted from the 

MODIS repository, Moderate Resolution Imaging Spectroradiometer, provided by 

NASA). Secondly, the Blue-NDVI was calculated from the acquired images for all 

the plants recorded within the study area. The highest resolution images were used for 

these comparisons: June low flight 3.5cm pixel and March low flight 3.5 cm pixel. 

Single-band raster images were analysed and vegetation indices calculated from the 

sUAS captured imagery. These data were used to identify differences in vegetation 

index values and pixel values across sampled species and previously determined 

family groups. 

2.5. Diet composition 

Faecal cuticle micro-histological analysis was used to confirm that previous studies 

completed on the Iberian Ibex diet are suitable for this study area. A micro-

histological analysis was therefore performed on the field sampled data. This 

technique facilitated the identification of plant epidermal fragments in the 10 samples 

collected in December 2019. Samples were prepared following treatment described 

by Bartolomé et al. (1995), with minor modifications. Approximately 10 g from the 

milled sample were placed in test tubes with 5 ml of 65% concentrated HNO3. The 

test tubes were then boiled in a water bath at 80º C for 2 min. After digestion in HNO3, 
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the samples were diluted with 200 ml of water. This suspension was then passed 

through 1.00 mm and 0.125 mm filters. The 0.125–1.00 mm fraction was spread on 

glass microscope slides in a 50% aqueous glycerine solution and cover-slips were 

fixed with DPX micro-histological varnish. Three slides were prepared from each 

sample. The slides were examined under a microscope at 100-400x magnifications, 

conducting lengthwise traverses. Plant fragments were recorded and counted until 200 

fragments of leaf epidermis were identified from each sample. 

2.6. Classification Analysis and Statistics 

A machine learning algorithm approach was used to classify and map plant species 

across the two study sites. Machine learning algorithms are effective at operating on 

large volume and multivariate datasets. They can have high accuracy, and they have 

been successfully used when regression models are not suitable (Li et al., 2019; Marrs 

and Ni-Meister, 2019; Van Ewijk et al., 2014). In particular, the Breiman’s Random 

Forests Model (RFM, Breiman, 2001) has been shown to be effective in other species 

distribution studies (see Carvalho et al., 2018; Zhang et al., 2019). Digital values of 

the three recorded bands (Blue, Green, NIR) were used as predictor variables. The 

effect of pixel size (1.44, 1.52 and 3.5, flight height, the month of sampling, and the 

response variable (e.g., all species vs diet species only) was assessed.  

Initially, all the species sampled in the area were included in the RFM classification. 

Seventy percent of the sampled individuals were used as training data, whilst the 

remaining 30% of sampled individuals were used as test data. The inclusion of the 

training data subset allowed independent assessment of the error in the classification 

method, using Out Of Bag (OOB) and Prediction Test Error (PTE). A confusion 

matrix was created, and the predictions evaluated against the independent ground-
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truthing data. The final error matrix was then used to select the most suitable image 

acquisition approach and processing method.  

Following the assessment of all species, a further analysis was conducted to 

discriminate between those sampled species recognised as Ibex diet species according 

to our micro-histological results. This step was conducted in two ways. Initially, 

species were grouped according to diet and a secondary “other” species group was 

included; and secondly, only species recognised as Ibex diet species were included 

within the model, and the “other” species group was omitted from the analysis. As a 

further investigation, and to understand the source of the error and the relevance of 

potential methodological issues, a linear model was generated that predicted the 

percentage of error according to the pool of species included in the classification and 

the study season when images were captured. 

Finally, a Principal Components Analysis (PCA) was undertaken to further explore 

the relationship between individual species, species pools and the three bands 

recorded by the sensor (BG-NIR). In addition, PCA score values were assessed across 

dietary species and used to discern differences in mean scores through an ANOVA 

post-hoc analysis. 

2.7. Foodscape mapping 

To complete the study, a foodscape of the distribution of the main Iberian ibex 

resources in the study area was created. The original digital values of the already 

georeferenced pixels making up the orthomosaic were replaced by the predicted 

categories based on the RFM with the lowest test error. The procedure was done using 

the “rasterFromXYZ” function of the ”Raster” package, version 3.07 (Hijmans, 

2019). 
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3. Results 

3.1. NDVI  

The traditional red band NDVI obtained from MODIS for the study area for the 2014-

2018 period presents a clear seasonal pattern. In fact, 43% of the observed NDVI 

variability was explained by the effect of months (Smooth term Month = 21.5, p-value 

< 0.01, R2 = 43%, from a GAM). A peak in primary production was shown in winter 

(March) and a minimum in summer (June) (Figure 5.3A). March and June presented 

statistically significant differences between their NDVI values. The spatial resolution 

of the MODIS analysis provided a preliminary indicator of general NDVI trends in 

response to phenology which was then examined more specifically using the finer 

spatial resolution BG_NIR sensor. 
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Figure 5. 3. A) Monthly variation of mean NDVI values recorded in the Iberian Ibex 

enclosure, in the NGRPTB. Mean NDVI values corresponding to the 2014–18 period. 

Clear seasonal pattern evident with peak primary production in winter and minimum 

in summer. The asterisk indicates statistically significant differences between march 

and June NDVI (red bars). B) Variation of mean Blue-NDVI in the plants recorded in 

the Ibex enclosure in March and June calculated from the images obtained by a BG-

NIR camera. All species have statistical differences (t-test) except for those marked 

with asterisks. Brachypodium retusum (BR), Helianthemum marifolium (H), and 

Pinus pinaster (PP). All plant species abbreviations are depicted in Table 5. 2. (For 

interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article). 

 

In the absence of the red band, the BNDVI was used for the aerial data collection via 

the sUAS when analysing the NDVI values obtained for each recorded plant. Similar 

trends were obtained, across the two months studied using the sUAS mounted sensor, 

as found in the MODIS data. The differences between the values in both recorded 
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months are shown in Figure 5.3. Almost all species, 16 out of the 19 studied, have 

statistically significant differences in NDVI value between June and March (t-student 

test with p-value < 0.05), except Brachypodium retusum (BR, p-value=0.1658), 

Helianthemum marifolium (H, p-value=0.9869) and Pinus pinaster (PP, p-

value=0.1182). 

3.2. Faecal cuticle micro-histological analysis  

Faecal cuticle micro-histological analyses clearly show that diet composition of 

Ibexes within the enclosure agrees with that in the base work (Martinez, 1994). Diet 

of Ibexes was mainly based on non-legume wood species (ONLW), Erica multifora 

(EM), graminoids (G, such as Brachypodium phoenicoides, B. retusum), Labiatae-

Asteraceae plants (L-A, e.g., Rosmarinus officinalis), and Fagaceae (e.g., Quercus 

ilex). No plant represented more than 14% of use (Figure. 5.4), indicating the 

generalist feeding behaviour of the species (Granados et al., 2001). As a result, species 

were classified into five broad family groups with the species consistent in the diet 

across all the year. The five groups were: Quercus spp. as the family Fagaceae (Group 

F), Rosmarinus officinalis and Thymus vulgaris as the family Labiatae (Group L), 

Erica multiflora (Group E), Cistus albidus (Group C), Brachypodium phoenicoides, 

B. retusum, and other grass-like plants as Graminoids (Group G). The remaining 

species were then placed into the category ‘Others’ that were excluded from the 

statistical analysis.  
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Figure 5. 4. Diet composition assessed by a faecal micro-histological analysis of 10 

faecal samples collected in the Ibex enclosure in December 2019. Bars represent the 

mean of the proportion of each plant species in our faecal samples. ONLW(Other 

Non-LegumeWood species), EM (Erica multiflora), G (Brachypodium phoenicoides, 

B. retusum and other graminoids), ONLF (Other Non-Legume Forb species), L-A 

(Labiatae-Asteraceae), QI (Quercus ilex), CA (Cistus albidus), TV (Thymus vulgaris), 

PL (Pistacia lentiscus), HH (Hedera helix), CM (Crataegusmonogyna), RU (Rubus 

ulmifolius), RO (Rosmarinus officinalis), GS (Genista scorpius), Sasp (Smilax 

aspera), L (Laminaceae), Dsp (Dorycnium sp.), A (Asteraceae), BS (Buxus 

sempervirens), I–O (Iridaceae- Orchidaceae), PA (Phillyrea angustifolia), Psp (Pinus 

sp.), Csp (Carex sp), Ssp (Satureja sp.), Rsp (Rosa sp.). 

 

3.3. Image capture and processing 

The results showed that the orthomosaic images were created and georeferenced with 

an error of between 3 cm and 28 cm (see table 5.2), and the resultant single-band raster 

images used to calculate vegetation indices.  

3.4. Random Forest Modelling 

The RFM was applied to all sUAS imagery collected in both July 2018 and March 

2019 and assessed for classification error. The results from the RFM model indicate 

a consistent improvement in model performance using small pixel size (e.g., error 

reduction of 42.02% in predictions based on June flights at high height and 3.5 pixel 

per centimetre, see Table 5. 3). In all RFM groups, the 3.5 ppcm outperformed all 

other pixel size models. Moreover, it was found that as pixel size increased (up to 30 

ppcm) model performance progressively deteriorated (Table 5.3). In addition, when 

the model was reapplied with spatially resampled data, the model performance 

deteriorated with an OOB error increase of 37.7% (60m flight, June 2018 3.5–30 

ppcm). 
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Table 5. 3. Plant species classification from random forest models using digital values 

of the three bands recorded by a BG-NIR camera (NIR, Blue and Green). Data 

collected using a sUAS flying in July (2018) and March (2019) in the Iberian Ibex 

(Capra pyrenaica) enclosure in the NGRPTB. Images were recorded at two heights 

(30 and 60 m) and different resolutions (3.5, 5, 10 and 30 cm pixel size). OOB error 

is the classification error according to the random forest algorithm. Test error is the 

error obtained when comparing algorithm prediction results with test data not included 

in the model development. We performed two kinds of classification: for the most 

abundant plants in the enclosure (n=19, All species), and for plants preferred by Ibexes 

(Diet). In the Diet group, plants have been grouped in 4 types namely: Cistus albidus, 

Erica multiflora, Fagaceae (Quercus coccifera and Q. ilex) and Graminoids (e.g., 

Brachypodium phoenicoides, B. retusum and other graminoids). 

Response variables Flight Month Resolution (cm) OBBerror (%) Test error (%) 

All species 

low March 30 70.89 70.66 

high June 30 66.49 70.28 

low March 10 69.14 68.56 

low June 10 55.50 56.07 

low June 5 53.24 52.73 

low March 5 50.89 50.43 

high June 10 50.03 49.19 

low March 3.5 48.38 48.57 

high June 5 43.54 43.77 

low June 3.5 35.39 35.64 

low June 30 68.99 29.78 

high June 3.5 28.77 25.26 

Diet 

low March 3.5 27.94 28.26 

low June 3.5 23.51 23.87 

high June 3.5 18.38 18.70 

 

Conversely, when flight height (60m and 30m) was compared (for similar pixel 

resolution), the RF model performance increased when the sUAS imagery was 

captured at a higher flight height. Although, comparatively speaking, the effect of this 
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was not as substantial as the effect of pixel size on model performance (60 m flight vs 

30 m flight; 3.5 ppcm; 6.6% increase in OOB error). 

Further differences in model performance were observed when comparisons were 

made between survey seasons (June vs March). The model performance was better in 

June 2018 than in March 2019. The June 30 m flight outperformed the March 30m 

flight, with a 13% reduction in OOB error rates (see Table 5.3). 

Finally, the best performance by the RF model was observed when the response 

variable was changed to focus on specific Ibex diet species. Simplification of the 

analysis to include only a ‘diet species’ group showed that the RF model’s OOB error 

rate dropped to only 18.4%, meaning a correct prediction of plants in 81.6% of 

instances. This pattern of error reduction was apparent in all flights using the diet 

response variables. 

The above analysis is supported by the linear modelling undertaken. The analysis 

showed that both pools of species (e.g., all species and diet) and month (season) were 

significant variables. Interestingly, and in support once again, the species pool was 

shown to be the variable that most affects the error (p-value = 0.001 for the pool, and 

p-value = 0.03 for month). However, it is worth noting that the error calculated for the 

March 2019 surveys is higher in all pool scenarios than for June 2018. 

3.5. Principal Component Analysis  

Principal Component Analysis (PCA) was performed on the image data that provided 

the best classification results (June 2018, high flight, 3.5 ppcm). PCA was used to 

understand the behaviour of bands and vegetation indices, and to identify the different 

band responses for each species and their natural groupings. Evaluating the responses 

of the three recorded bands for all the recorded species provided the following results. 
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The PCA axis 1 and 2 accounted for 97.9% of the variation in the dataset for the three 

spectral bands (Blue, Green, and Near Infrared). Axis 1 accounted for 82% of this 

variation with an associated elevated eigenvalue of 2.46. Axis 2 explained a further 

15.9% (eigenvalue = 0.48) of the variation (Figure SM 5. 1, supplementary material). 

In addition, the score values of each species were calculated (Figure 5.5) and 

demonstrated that axis 1 scores showed the greatest potential to represent the variation 

of the spectral responses to the three bands. ANOVA test and corresponding post-hoc 

analyses showed statistically significant differences between the reflectance values of 

all plant species. However, it is worth noting that, this could be a false discovery rate 

due to effect size; as there were many sampled individuals (246) and therefore many 

pixels (up to 66264, in the data set of 3.5 ppcm, high flight, and June). To further 

understand the variability within species the above analysis was repeated accounting 

for solely the dietary species.  
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Figure 5. 5. Mean scores from the first PCA dimension performed with NIR, Green 

and Blue band recordings on 19 plant species sampled in the NGRPTB vegetation 

study. All plant species abbreviations are depicted in Table 5.2. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

Evaluating the spectral response of each individual to the three recorded bands 

provided the following results. The PCA axis 1 and 2 accounted for the same 

proportion (97.9%) of the variation observed in the spectral responses across all 

individuals. Axis 1 accounted for 82% of the variation (eigenvalue = 2.50), and axis 

2 explained a further 15% (eigenvalue = 0.44) of the variation (Figure SM 5. 2, 

supplementary material). In addition, the score values of each plant group were 

calculated to illustrate the differences. Post-hoc analysis revealed significant 

differences between all dietary groups except for the pair Labiatae and Erica 

multiflora (p-value = 0.0628, Figure 5.6).  
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Figure 5. 6. Mean scores from the first PCA dimension performed with NIR, Green 

and Blue band recordings on 5 plant categories consumed by Iberian ibexes in the 

NGRPTB. ‘C’: Cistus albidus; ‘G’: Brachypodium phoenicoides, B. retusum, and 

other grass-like plants as Graminoids. ‘L’: Rosmarinus officinalis and Thymus 

vulgaris as the family Labiatae; ‘E’: Erica multiflora; ‘F’: Quercus spp. as the family 

Fagaceae. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

3.6. Foodscape mapping 

The foodscape map in Figure. 5.7 predicts that 13.04% of the study area is covered by 

Fagaceae plants (Group F), 4.08% by graminoids (Group G), 2.23% by Labiateae 

(e.g., Rosmarinus and Thymus, Group L), 1.77% by Erica multiflora (Group E) and 

0.02% by Cistus albidus (Group C). Most of the area (78.06%), however, included 

other plants not found in the Ibex diet, bare soil and rocks. 
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Figure 5. 7. Food scape map overlayed with the infrared false-colour orthomosaic of 

the study area. Predicted categories are based on RFMlwith an OOB error of 18.4%. 

A pie chart illustrates the proportion of the 6 dietary categories: ‘F’: Quercus spp. as 

the family Fagaceae; ‘L’: Rosmarinus officinalis and Thymus vulgaris as the family 

Labiatae; ‘E’: Erica multiflora; ‘C’: Cistus albidus; ‘G’: Brachypodium phoenicoides, 

B. retusum, and other grass-like plants as Graminoids. ‘Others’ category includes 

plants without dietary interest, bare soil and rock. 

4. Discussion 

This study has successfully explored the application of a modified BG-NIR sensor, 

mounted on a low cost sUAS, to create foodscapes for a mixed feeder in a 

Mediterranean scrubland, rich in woody species with very different physiognomies. 
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Analysis has shown successful discrimination of species within a species rich and 

physiognomically heterogeneous Mediterranean scrubland. Plant prediction was 

correct in 81.6% of instances (prediction error 18.4%) when using a training data set 

of 173 individuals (73 in the test dataset) representing all the most abundant species 

at the two closely located sites. Plant prediction improved further to 88.2% when 

focussing on the Ibex diet species alone (prediction error 11.8%) using a training data 

set of 97 individuals (and a test dataset of 41). Such errors are similar or, in some case, 

lower than those obtained by using hyperspectral methodologies in complex 

ecosystems (e.g., Clark et al., 2005; Ferreira et al. 2016; including Mediterranean ones 

(e.g., Manevski et al., 2012). 

Our classification results, along with those of the PCA analysis, show a wide range of 

spectral responses across the species investigated, but also a useable level of 

homogeneity within species groups; when considering both ‘all species’ and only 

those ‘within the Ibex diet’. These results indicate that successful classification is 

possible. The success of using only 3 spectral bands to identify significantly different 

spectral responses across species and similarities within species groups, coupled with 

the high level accuracy of classification, outlines the feasibility and potential for such 

a low-cost application to develop foodscapes and facilitate their long-term 

management. 

The success in discriminating Ibex diet species remotely provides a strong foundation 

from which to discuss the technical issues in the classification process. Initially, the 

results indicate that small pixel size provides better classification results; as previously 

reported in other studies (Hsieh et al., 2001; Hu et al., 2019), which discuss the 

relevance of pixel size in classification performance and the effect of variations in 

plant size and ground coverage. However, for the same pixel size, higher flights have 
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shown to perform better than lower flights, which is similar to other methodological 

studies (e.g., Mesas-Carrascosa et al., 2015). The study by Mesas-Carrascosa et al. 

(2015) indicated that there was greater discrimination between species at higher 

flights. In addition, higher altitudes typically have less perspective distortion as the 

ratio of the topographic change to flying altitude is smaller; therefore accuracy of the 

orthophoto can be higher; as is reflected in the work of Nesbit and Hugenholtz, (2019). 

Therefore when choosing the ideal flight parameters (as pixel size is determined by 

both sensor type and flight height) a balance between both must be found; taking into 

account the area to evaluate, the flight platform employed, and the financial and time 

costs.  

This study has also shown that season is a relevant factor when working with plant 

species in temperate regions since they manifest different physiological status and 

even morphologies throughout the year (see also Sperlich et al., 2014; Vogt and Gul, 

1994). Our results show that the most suitable season to perform the classification 

study at this site is June (vs March), when most of the Mediterranean woody taxa end 

their growth and flowering. Thus, plants have a large part of their vegetative structure 

(not woody) renewed, with its characteristic morphology. At a tissue and chemical 

level, the Mediterranean woody plants are fully constituted to be able to withstand the 

water deficit and the severe heat stroke of the summer that starts in June (Fernandez-

Marín et al., 2017). All these characteristics, along with net inter-species differences 

in water content (related to drought adaptations), determine the optical properties of 

the plants (Manevski et al., 2012). Due to its influence on the classification results the 

importance of prior knowledge of the phenological pattern of the area and the present 

plant species could be crucial to applying this methodology over a wider area and for 

it to not be restricted by site specific conditions. 
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In our study, the classification results improved when focusing on the target diet 

species (Prediction error reduced to 11.8%). The result showed that the pool of 

training species influenced classification success with an accuracy reported of 88.2%. 

This clearly indicates that an informed knowledge of the target diet species for the 

study area is of great value to maximise classification accuracy. Our results show that 

the classification accuracy can be improved by over 6%. Moreover, the importance of 

the micro-histological analysis or other related diet studies is evident in this process. 

However, caution is needed here, given the associated reduction in both test and 

training data samples. The micro-histological analysis has served as an effective tool, 

focusing and reducing the pool of input species identified as diet species and 

subsequently improving the relevance and overall classification performance. 

Reducing the number of diet species classes by combining similar species, for 

example, logically grouping Pinus pinaster and P. nigra as Pines, and Brachypodium 

phoenicoides and B. restusum as Graminoids offered further improvement in 

classification accuracy but was limited to an increase of 0.5-2%, with no significant 

improvement given the reduced specificity of the classification. 

Regarding the obtained error, it is also relevant to consider the size (and biotype) of 

the plants. This seems to be case of Helianthemum marifolium, a representative taxon 

of typical prostrated chamaephytic communities on Mediterranean bedrocks. These 

small prostrated plants, with diameters around the calibration error (circa 20 cm) and 

loose branching on bare soils, appeared to yield higher errors in classification 

compared to those of bigger and thicker plants. These finding are similar to other 

recent, and related, studies in rangeland ecosystems where small shrub/subshrub 

species with low abundance, were found to have reduced classification success 

(Sankey et al., 2019) 
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However, with the relative successes of our study, when focussing on target diet 

species, areas for improvement are largely focused on the sensor rather than on the 

methodology adopted. Improvements are most likely to be achieved by increasing the 

sensitivity of spectral responses to plant species variation, and taking advantage of the 

increased spectral resolution of more expensive cameras. Although the low-cost 

aspect of this study is a unique selling point, upgrading to a more expensive 

hyperspectral camera could offer greater flexibility, and potentially accuracy, during 

the classification process (Manevski et al., 2012; Sankey et al., 2019). Known as 

hyperspectral sensors, these cameras can offer a greater quantity of spectral bands but 

also bands of finer spectral resolution and have been used advantageously in several 

other works (Beeri et al., 2007; Lone et al., 2014). However, with this consideration, 

one of the relevant achievements of this work should not be compromised. This being 

the creation of an accessible and affordable tool for land managers and researchers to 

be applied in heterogeneous landscapes and on animals with species-specific diet 

accounting for the general ecosystem characteristics, including plant species 

composition. 

5. Conclusion 

This feasibility study outlines the possibility of describing food location for a mixed 

herbivore in a heterogeneous environment. A modified BG-NIR camera, mounted on 

a low cost sUAS, has been shown to be successful in classifying plant species and 

describing the foodscapes of ungulates such as Ibex. The benefits of this study, the 

methodology presented, and the potential for further development apply to studies of 

wild and domestic herbivore distribution and welfare, predator distribution, 
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vegetation changes, and habitat biodiversity internationally (Boulanger et al., 2018; 

Moore et al., 2010; Oates et al., 2019; Peters et al., 2019; Searle et al., 2007) 

Further studies with hyperspectral cameras are necessary to assess the improvements 

hypothesised, and the potential enhancement of efficiency and accuracy offered by an 

increased quantity and refined nature of spectral information. Additionally, it would 

be interesting to increase the number of sampling months to fully study plant 

availability throughout the year. Further research should be done to evaluate diet 

quality by improving and refining the affordable, accessible and non-time consuming 

methods that would be beneficial to land managers. Although previous studies have 

not determined that feeding quality can be separated according to individual species, 

we should improve our understanding of how feeders adapt their feeding habits 

throughout the year. The classification results obtained in this study provide a strong 

foundation on which to develop such diet quality studies. 
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6. General discussion 

Over thousands of years, the grazing and animal husbandry in Mediterranean 

mountains have contributed significantly to the formation of its natural and cultural 

landscapes. However, the so-called global change drives changes toward closed 

habitats through a process of forest encroachment in these landscapes after 

agricultural abandonment of the productive areas (Espunyes, 2019). At the same time, 

during the last decades, the populations of wild and feral ungulates graze and browse 

freely, increasing their populations conditioned by dietary preferences and the 

availability of resources (Espunyes et al., 2019; Manousidis et al., 2016). In this thesis, 

novel analyses of ecosystem service changes in Mediterranean mountain ecosystems 

are conducted to address the role of wild herbivores in these changes in the long term, 

managing the complexity of spatial heterogeneity. 

The first and second chapters are studies set in the Mallorca Island mountains, which 

represent those cultural Mediterranean landscapes well. The mountains of Mallorca 

provide a mosaic of habitats, showing the heterogeneity of local topographies, soil 

types and microclimates related to altitude, rainfall and slope exposure. 

Results from Chapter 1 suggest that environmental heterogeneity and 

microtopography may be more critical drivers of soil ecosystem properties than the 

effects of ungulate herbivory. Contrary to the significant effect of herbivores on the 

plant community analysed in this experimental system, it seems that soils change 

variability depends on the context in which herbivory occurs due to the high 

environmental heterogeneity even at local scales (Andriuzzi and Wall, 2018; Forbes 

et al., 2019; Vermeire et al., 2021). Chapter 1 addresses this heterogeneity across the 
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paired plots while accounting for the dependence of ungulate exclusion effects within 

study sites via a well-controlled multilevel meta-analysis (Hedges et al., 1999). This 

analysis found great variability on a very small scale (< 10m), supporting the idea that 

the soil heterogeneity makes resolving clear patterns very challenging (Eldridge et al., 

2019; Zhang et al., 2020). Although the lack of significance of the effect of herbivory 

on the physicochemical and biological characteristics of the soil, trends were 

observed, so ungulates could be contributing to increasing the variability found in the 

soil characteristics. To test this hypothesis, it is recommended to conduct studies of 

the soil’s ecosystem against the effect of ungulates, taking dynamic measures of the 

soil's characteristics rather than static, thus addressing the high spatial heterogeneity. 

The findings of this research contribute to a deeper understanding of the role of 

ungulates in terrestrial ecosystems.  

The study of soil characteristics shows that small-scale effects can mask large-scale 

effects when conditions are highly heterogeneous. However, chapter 1 showed clear 

effects on the vegetation, which shows a degree of heterogeneity in response to 

pressure by ungulates less than that of the soil. This allowed us to propose large-scale 

studies on the effect of herbivores on vegetation using technology that allows large-

scale studies. This thesis shows strategies to assess herbivore-plant interaction 

overcoming the issues of, on the one hand, the spatial heterogeneity and, on the other 

hand, the statics measures by using remote sensing tools and geographic information 

systems (GIS, Chapters 2 & 3). 

In chapter 2, a remote sampling was carried out by a satellite-based survey. The 

sampling procedure described in this work considers environmental variables that 

contribute to the heterogeneity of the Mediterranean landscapes (e.g., altitude, slope, 

exposure, or land cover). It shows a reliable procedure for finding vegetated areas of 
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similar greening or browning dynamics (i.e., long-term increase or decrease in 

vegetation) and comparing treatments across time. The Landsat record goes back 

decades, allowing us to examine the state of the ecosystem dynamics anywhere on the 

planet. Here it has been applied to evaluate the effect of eradicating the highest density 

of black rat population ever reported on a Mediterranean island (Mayol et al., 2012) 

and thus overcome the usual lack of information on the state of the ecosystem both 

before and after a herbivore eradication campaign. The unsupervised time series 

processing tool BFAST was able to identify abrupt and gradual changes in vegetation 

dynamics. Different vegetation dynamics occurring within Landsat grid cells (i.e., a 

grid of 30 m on each side) might restrict the ability to detect an emerging shift in the 

ecosystem (Pettorelli et al., 2014). The dates, magnitude, and trend of these changes 

could not be explicitly attributed to rat herbivory compared to the historical changes 

on the islet and the changes found to co-occur within the control zone. Unlike other 

studies assessing rodent eradications (Le Corre et al., 2015; Lohr et al., 2014), the 

effects of the 2011 rat eradication on the Sa Dragonera Islet’s primary production 

dynamics were insignificant at the Landsat resolution scale. Since the vegetation in 

the study area has a long history of permanent pressure from natural and domestic 

animals, as well as recurrent natural and man-made fires (Alcover and Alcover, 2008; 

Seguí et al., 2005), it is suggested that the prolonged coexistence of dominant plant 

taxa with herbivores in the Balearic archipelago could explain the resistance of 

vegetation dynamics to herbivory. The effects of herbivory on vegetation structure are 

well reported in the literature; however, monitoring herbivore removal outcomes is 

limited (Bastille-Rousseau et al., 2017; Jones, 2010; Jones et al., 2016), and pre-

management data is generally lacking (Towns et al., 1990). Thus, this satellite-based 

approach represents a dynamic and spatially consistent methodology, which is critical 
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for understanding ecosystems' ongoing and evolving dynamics after herbivore 

removal, distinguishing them from phenology-driven changes and water-related 

events, which are considered the major change factors of the Mediterranean system. 

However, satellite images do not allow the monitoring of different plant species. Since 

herbivores show a preference for specific species based on their nutritional value, 

identifying and mapping the distribution of the plant species is fundamental for 

managing large herbivores (Espunyes et al., 2019). In landscapes as heterogeneous as 

those of the Mediterranean mountains, mapping vegetation at a higher spatial 

resolution with Unmanned Aerial Vehicles (UAV) systems is a timely field of 

research. However, this technology is not affordable for most environmental 

management administrations. It deals with several technical issues to be addressed to 

establish it as a feasible method to map plant resources for herbivores. Chapter 3 

addresses both challenges, heterogeneous environmental assessment and mixed 

feeder diet classification, using a simple, low-cost three spectral band camera. The 

study creates a foodscape (food availability map) assessment in a heterogeneous 

Mediterranean scrubland for the Iberian Ibex. One of the study outcomes is the 

description of a reproducible UAV-based survey effective plan, considering the 

Machine Learning algorithm Random Forest. The field observations are extended 

over the entire study area with an error of 18.4% in their prediction. Moreover, the 

prediction improves up to 11.2% error by focusing on the most important species in 

the Ibex diet. Such errors are similar or, in some cases, lower than those obtained by 

using more expensive hyperspectral methodologies in complex ecosystems (e.g., 

Clark et al., 2005; Ferreira et al., 2016), including the Mediterranean (e.g., Manevski 

et al., 2012). Therefore, this study shows the importance of diet studies to improve 

resource availability estimations. The study also shows the importance of finding the 
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right balance between the sensor used, the flight height and the pixel size, which are 

major parameters to take into account when designing a UAV-based survey. A priori, 

a smaller pixel size achieved by low flights obtains greater species discrimination 

accuracy, as reported in other studies. (Hsieh et al., 2001; Hu et al., 2019). However, 

in this study, the generalisation of the pixel obtained in higher flight performs better 

than the same pixel size obtained at low altitude, which is similar to other 

methodological studies (e.g., Mesas-Carrascosa et al., 2015). That could be due to a 

more minor perspective distortion as the ratio of the topographic change to flying 

altitude is also smaller; hence, the accuracy of the recorded data can be higher; as is 

reflected in the work of (Nesbit and Hugenholtz, 2019). The methodology presented 

in chapter 3 has direct applicability to studies of the distribution and welfare of wild 

and domestic herbivores. This UAV-based survey is less time-consuming than 

traditional ones, mainly in mountainous forest areas, which are often difficult to 

access. Conducting this remote sensing procedure across seasons could yield useful 

information on changes in vegetation and habitat. Therefore, it might represent a 

strong foundation for predicting the feeding behaviour of wild ungulates in the 

Mediterranean mountains.  

This thesis shows analytical methods to assess the role of herbivory in Mediterranean 

mountain forests, which also happens to be one of the most rapidly shifting 

ecosystems in the face of climate change. Herbivory is a key player in Mediterranean 

ecosystems that environmental managers can manage to keep these landscapes' 

functional diversity and heterogeneity. However, this heterogeneity occurs at very 

small scales, as shown in the experimental system analysed in chapter 1, making it 

difficult to assess the effectiveness of herbivore management in the context of global 

change where when effects occur on a small scale in highly heterogeneous systems 



General discussion 

 

154 

such as mountain soil. Traditionally, ecosystem management has lacked an evaluation 

system that makes it possible to determine its long-term effectiveness beyond 

suggestions or anecdotal observations. In chapters 2 and 3, remote sensing-based 

sampling looks at the data, showing a low-cost and accurate alternative to traditional 

field sampling. These novel surveys allow measurements at different scales to inform 

the effectiveness and impact of herbivore management on vegetation. 

The different approaches shown in this thesis demonstrate the high complexity of 

Mediterranean mountain systems and their high resilience against disturbances. The 

results of these works allow the implementation of three novel study techniques at 

different scales that will solve important questions about herbivores' management in 

these complex systems. 
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7. Conclusions 

1. Soil characteristics are heterogeneous at very low spatial scales in 

Mediterranean mountains, which explains the not consistent effects of 

herbivores. 

2. The meta-analysis allows the detection of large-scale effects under 

heterogeneous conditions. 

3. The analysis of the vegetation dynamics through long time series of greenness 

indicators obtained from satellite observations is a suitable tool to assess the 

long-term impact of herbivores on vegetation. 

4. Modified BG-NIR cameras onboard low-cost UAVs are appropriated for 

classifying vegetation in heterogeneous landscapes. The classification process 

upgrades when focusing on the dietary resources for ungulates such as the 

Iberian ibex.  

5. Vegetation surveys based on remote sensing allow the collection of accurate 

sampling data in a dynamic and low-cost manner, making them critical tools 

for assessing vegetation in highly heterogeneous and difficult-to-access areas.
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Supplementary material chapter 1 

Table MS 3. 1. Effect of the continuous covariates (elevation, NPP, temperature, and soil texture), and the categorical covariate habitat on the effect 

size ln(RR) of ungulate exclusion on soil characteristics, soil microbial activities (measured as AWCD) and functional diversity (measured as a H 

considering observances of by Biolog EcoPlates™) and organic material Stabilization factor (S) and Decomposed rate (k) (measured with the “Tea 

Bag index” method). The p-value associated with the test of moderators QM indicates statistical significance at α = 0.95 NPP Net Primary 

Productivity, texture corresponds to the first PC of a PCA made with all percentages of the soil texture classes. 

Variable 

Elevation(m) NPP Temperature Texture Habitat 

Estimate 

(95% CI) 

QM 

p-value 

Estimate 

(95% CI) 

QM 

p-value 

Estimate 

(95% CI) 

QM 

p-value 

Estimate 

(95% CI) 

QM 

p-value 

Forest Shrubland 
QM 

p-value 
Estimate 

(95% CI) 

Estimate 

(95% CI) 

Bulk  

Density 

0.000  

(-0.001 

0.001) 

0.016 

0.901 

0.054 

(-1.628 

1.737) 

0.004 

0.950 

-0.000 

(-0.008 

0.007) 

0.015 

0.902 

-0.009 

(-0.101 

0.082) 

0.041 

0.839 

-0.098 

(-0.280 0.084) 

-0.106 

(-0.264 

0.052) 

2.855 

0.240 

Litter 

-0.000 

(-0.000 

0.000) 

0.809 

0.368 

-0.187  

(-0.462 

0.084) 

1.850 

0.174 

0.001 

(-0.000 

0.002) 

1.427 

0.232 

0.006 

(-0.008 

0.019) 

0.607 

0.436 

-0.007 

(-0.032 0.019) 

0.018 

(-0.008 

0.044) 

2.090 

0.352 

Electrical  

Conductivity 

-0.000 

(-0.001 

0.001) 

0.105 

0.746 

0.368 

(-2.933 

2.196) 

0.079 

0.779 

0.003 

(-0.008 

0.015) 

0.346 

0.557 

0.012 

(-0.106 

0.130) 

0.041 

0.839 

0.081 

(-0.076 0.239) 

0.238 

(-0.018 

0.493) 

4.347  

0.114 

Elemental  

Carbon 

0.000 

(-0.000 

0.000) 

0.001 

0.977 

0.172 

(-1.074 

1.419) 

0.074 

0.786 

0.000 

(-0.006 

0.005) 

0.012 

0.913 

-0.023 

(-0.039 

0.084) 

0.530 

0.467 

0.013 

(-0.092 0.118) 

0.001 

(-0.148 

0.151) 

0.061 

0.970 
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Organic  

Matter 

0.000 

(-0.001 

0.001) 

0.010 

0.922 

1.465 

(-2.449 

5.379) 

0.538 

0.463 

-0.003 

(-0.022 

0.016) 

0.103 

0.749 

-0.119 

(-0.295 

0.058) 

1.737 

0.187 

0.207 

(-0.142 0.556) 

0.036 

(-0.361 

0.434) 

1.382 

0.501 

Elemental  

Nitrogen 

-0.000 

(-0.002 

0.002) 

0.201 

0.654 

-0.835 

(-6.872 

5.201) 

0.074 

0.786 

-0.011 

(-0.014 

0.036) 

0.713 

0.398 

0.016 

(-0.253 

0.246) 

0.019 

0.890 

0.025 

(-0.301 0.351) 

0.550 

(0.126  

0.974) 

6.483 

0.039 

C/N 

-0.000 

(-0.000 

0.000) 

1.146 

0.284 

-0.109 

(-0.159 

0.941) 

0.041 

0.839 

0.002 

(-0.003 

0.006) 

0.609 

0.435 

0.046 

(-0.002 

0.094) 

3.548 

0.060 

-0.043 

(-0.132 0.047) 

0.026 

(-0.112 

0.086) 

0.941 

0.625 

AWCD 

0.000 

(-0.001 

0.001) 

0.223 

0.637 

0.431  

(-0.519 

1.382) 

0.792 

0.374 

-0.002 

(-0.010 

0.014) 

0.107 

0.743 

-0.015 

(-0.140 

0.110) 

0.057 

0.812 

0.079 

(-0.147 0.306) 

0.155 

(-0.097 

0.407) 

1.919 

0.383 

Shannon (H) 

0.000 

(-0.000 

0.000) 

0.001 

0.973 

1.014 

-2.185 

4.213) 

0.386 

0.534 

-0.002 

(-0.016 

0.013) 

0.043 

0.836 

-0.107 

(-0.271 

0.056) 

1.654 

0.198 

0.201 

(-0.082 0.483) 

0.099 

(-0.221 

0.420) 

2.300 

0.317 

Stabilization  

factor (S) 

-0.000 

(-0.000 

0.001) 

0.499 

0.480 

-0.017 

(-2.790 

2.756) 

0.000 

0.991 

-0.003 

(-0.015 

0.008) 

0.345 

0.557 

-0.078 

(-0.196 

0.040) 

1.661 

0.197 

0.297 

(0.091 0.074) 

-0.011 

(-0.201 

0.179) 

9.959 

0.007 

Decomposed  

rate (k) 

-0.000 

(-0.001 

0.001) 

0.063 

0.802 

0.420 

(-3.283 

4.124) 

0.050 

0.824 

0.001 

(0.016 

0.018) 

0.007 

0.934 

-0.065 

(-0.226 

0.095) 

0.637 

0.425 

0.143 

(-0.172 0.457) 

0.077 

(-0.296 

0.451) 

0.958 

0.619 
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Figure SM 3. 1. Forest plot of the effect of the herbivory on additional response variables (Litter, Electrical Conductivity, Organic Carbon, pH, C/N, 

H’, S, k). In each plot, the names on the left identify the individual plots in each of the five study areas The boxes represent the Ln(RR) of the 

individual studies, and the horizontal lines are their 95% confidence intervals. The size of the boxes expresses the weight (see methods) of each study 

in the total effect, which is represented by a diamond. Response rates less than zero (vertical dotted line) indicate a negative exclusion effect, while 

values greater than zero indicate a positive effect. If the diamond does not cross the zero line, the overall effect is significant. 
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Figure SM 3. 2. Principal Component Analyses (PCA) of the absorbance of the 31 substrates 

analysed by Biolog EcoPlates™ after 96 h of incubation. Clusters represent the excluded (Blue) 

and grazing (Yellow) points. 
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Supplementary material chapter 2 

R CODE: SATELLITE-BASED MONITORING OF PRIMARY PRODUCTION IN A 

MEDITERRANEAN ISLET POST BLACK RAT ERADICATION 

• 01 NDVI time series construction 

o Load spectral bands and NDVI raster layers creation 

▪ TM and ETM+ imagery 

▪ OLI imagery 

o Extract NDVI values 

• 02 Gap-filling 

o Preparing dataset for gap-filling: 

o Complete the time series where dates are missing 

o gap-filling with linear interpolation between neighbouring values 

• 03 Savitzky-Golay smoothing 

• 04 Historical time series analysis 

o Preparing Time-Series objects 

o Seasonal Decomposition of Time Series by Loess 

o BFAST 

• 05 Hydrological Drought Index (HDI) data 

 

Load libraries 

suppressPackageStartupMessages(library(sp)) 
suppressPackageStartupMessages(library(raster)) 
suppressPackageStartupMessages(library(tidyverse)) 

01 NDVI time series construction 

323 Landsat SR images were obtained from January 1999 to December 2019 from 
the Landsat 5 TM, Landsat 7 ETM + and Landsat 8 OLI sensors. The images were 
provided by the USGS (United States Geological Survey) and are accessed through 
the website https://earthexplorer.usgs.gov/. 

The images were stored on an external disk and proceeded to load them. As the 
naming of the bands is different for OLI sensor than those for TM and ETM +, It is 
done separately 

Load spectral bands and NDVI raster layers creation 

 

file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23ndvi-time-series-construction
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23load-spectral-bands-and-ndvi-raster-layers-creation
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23tm-and-etm-imagery
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23oli-imagery
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23extract-ndvi-values
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23gap-filling
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23preparing-dataset-for-gap-filling
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23complete-the-time-series-where-dates-are-missing
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23gap-filling-with-linear-interpolation-between-neighbouring-values
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23savitzky-golay-smoothing
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23historical-time-series-analysis
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23preparing-time-series-objects
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23seasonal-decomposition-of-time-series-by-loess
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23bfast
file:///C:/Users/mglib/OneDrive%20-%20Universitat%20AutÃ²noma%20de%20Barcelona/Doctorado/multitemporal/Dragonera/R_proyectos/PrettyDoc/My-shared-code.html%23hydrological-drought-index-hdi-data
https://earthexplorer.usgs.gov/
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TM and ETM+ imagery 

timeStart<- proc.time() 
 
# Calling all the required TM & ETM+ bands to create the NDVI raste
r layers  
list_dirs<- list.dirs(path = "D:/landsat_data/Dragonera/TM_ETM/", r
ecursive = F)  
names(list_dirs)<- basename(list_dirs) 
 
# Red bands 
Red.list <- lapply(list_dirs, function(dir){ 
  stack(list.files(dir, pattern = glob2rx("*band3*.tif$"), full.nam
es = T, recursive = T)) 
}) 
 
# NIR bands 
 
NIR.list <- lapply(list_dirs, function(dir){ 
  stack(list.files(dir, pattern = glob2rx("*band4*.tif$"), full.nam
es = T, recursive = T)) 
}) 
 
 
e<- extent(439926, 446541, 4378735, 4384556)# Reducing the extent o
f Landsat scenes to the study area. For this, its size is defined b
y (xmin, xmax; ymin, ymax) 
 
 
 
for (i in 1:length(Red.list)) { 
 
  Red_crop <- crop(Red.list[[i]],e) 
 
  NIR_crop <- crop(NIR.list[[i]],e) 
 
  ndvi <- overlay(x = Red_crop, y = NIR_crop, fun = function(x,y) (
y-x)/(y+x)) 
 
 
   
  n<-names(list_dirs)[[i]] 
   
  acquisition_date<- substring(n,11,18) 
   
  sep<- "_" 
   
  sensor<- substring(n,1,4) 
   
  output_name_NDVI<- paste0('outputs_loops/',acquisition_date,sep,s
ensor,sep,'NDVI','.tif') 
   writeRaster(ndvi,output_name_NDVI,overwrite=TRUE) 
}  
proc.time() - timeStart 
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##    user  system elapsed  
##   83.25    3.47  150.32 

OLI imagery 

timeStart<- proc.time() 
 
# Calling all the required OLI bands to create the NDVI raster laye
rs  
list_dirs<- list.dirs(path = "D:/landsat_data/Dragonera/OLI/", recu
rsive = F)  
names(list_dirs)<- basename(list_dirs) 
 
 
# Red bands 
Red.list <- lapply(list_dirs, function(dir){ 
  stack(list.files(dir, pattern = glob2rx("*band4*.tif$"), full.nam
es = T, recursive = T)) 
}) 
 
# NIR bands 
 
NIR.list <- lapply(list_dirs, function(dir){ 
  stack(list.files(dir, pattern = glob2rx("*band5*.tif$"), full.nam
es = T, recursive = T)) 
}) 
 
 
e<- extent(439926, 446541, 4378735, 4384556)# Reducing the extent o
f Landsat scenes to the study area. For this, its size is defined b
y (xmin, xmax; ymin, ymax) 
 
 
for (i in 1:length(Red.list)) { 
 
  Red_crop <- crop(Red.list[[i]],e) 
 
  NIR_crop <- crop(NIR.list[[i]],e) 
 
  ndvi <- overlay(x = Red_crop, y = NIR_crop, fun = function(x,y) (
y-x)/(y+x)) 
 
 # The folders where the Landsat spectral bands are housed follow a 
naming convention from which it can extract the acquisition date an
d the sensor used. This information is used to name the generated N
DVI layers. 
 
   
  n<-names(list_dirs)[[i]] 
   
  acquisition_date<- substring(n,11,18) 
   
  sep<- "_" 
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  sensor<- substring(n,1,4) 
   
  output_name_NDVI<- paste0('outputs_loops/',acquisition_date,sep,s
ensor,sep,'NDVI','.tif') 
   writeRaster(ndvi,output_name_NDVI,overwrite=TRUE) 
}  
proc.time() - timeStart 

##    user  system elapsed  
##   36.80    1.62   82.08 

Extracting NDVI values 

Combine all the NDVI raster layers created in the previous step 

indices_list<- list.files(path = "outputs_loops/", pattern = "tif", 
full.names = TRUE)# creates a vector containing NDVI layer names 
indices<- stack(indices_list)# stack them in a Large RasterStack ob
ject 
 
#Plotting  some random NDVI layers 
plot(indices[[c(71:82)]], col=rev(terrain.colors(10)), zlim=c(0.2,0
.8), axes=FALSE) 

 

Figure 4.2. Temporal distribution of Landsat Collection 1 Surface Reflectance (SR) 
imagery. More images were used (when available) where clouds obstructed data 
collection or where SLC off-Data error in Landsat 7 was detected over study zones 

raster_data <- list.files(path = "outputs_loops/", all.files=T, ful
l.names=F) 
raster_data<- raster_data[-c(1:2)] 
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year<- substring(raster_data, 1,4) 
month<-substring(raster_data,5,6) 
sensor<-substring(raster_data,10,13) 
 
lista<- cbind(year,month,sensor) 
lista<- as.data.frame(lista) 
lista$month<-as.integer(lista$month) 
lista<- lista %>% dplyr::filter(year>1998, year<2020) 
 
library(extrafont)# applying Palatino Linotype required in Remote S
ensing Journal 
#loadfonts(device = "win") 
 
ggplot(data = lista) + 
  geom_bar(aes(x = month),stat = "count") + 
  ylab("Number of satellite images")+ 
  facet_wrap(~ year, ncol = 7)+ 
  scale_x_continuous(breaks=c(1,3,5,7,9,11))+ 
  theme(text = element_text(size = 12, family= "Palatino Linotype")
) 

 

The material and methods section of chapter 2 describes the workflow to locate the 
sampling plots. This process was done in ArcGIS. Here CSV document is read with the 
UTM coordinates of the sampling plots 

pointCoordinates<- read.csv(file = "plots_coordinates.csv", sep=";"
, dec = ".") 
pointCoordinates<- pointCoordinates 
coordinates(pointCoordinates)= ~ easting+ northing 

Extract NDVI values for sampling plot locations 

# Terra package is considerably faster than the Raster. For this re
ason, both the raster and vector objects are transformed to the for
mat recognisable by this package. 
library(terra) 
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r <- rast(indices) 
rasValue<- terra::extract(r, vect(pointCoordinates)) 
 
combinePointValue<- cbind(pointCoordinates,rasValue) 
datos<- as.data.frame(combinePointValue) 

NDVI dataset preparing and cleaning 

datos <- datos %>% select(-c(ID,easting,northing)) %>% #Removing un
necessary information in the NDVI database (coordinates and extra i
dentifier) 
    mutate(FID= as.factor(FID)) %>%   
    pivot_longer(cols = starts_with("X"),names_to = "Date", values_
to = "NDVI") %>% # Sets dates in rows rather than in columns. 
    separate(Date, c("Date", "Sensor"), sep = "_", remove = TRUE) %
>% # dates and the sensor in different columns. 
    separate(Date, c(NA, "Date"), sep = "X", remove = TRUE) %>% # j
ust cleaning 
    dplyr::filter(NDVI>0.2) %>% dplyr::filter(NDVI<1) %>%  arrange(
by= treatment) # Removing NDVI values outside the range of the targ
et vegetation index range, (1>NDVI>0.2) 
head(datos) 

## # A tibble: 6 x 5 
##   FID   treatment Date     Sensor  NDVI 
##   <fct> <chr>     <chr>    <chr>  <dbl> 
## 1 0     Control   19990104 LT05   0.510 
## 2 0     Control   19990120 LT05   0.478 
## 3 0     Control   19990205 LT05   0.485 
## 4 0     Control   19990221 LT05   0.474 
## 5 0     Control   19990325 LT05   0.412 
## 6 0     Control   19990410 LT05   0.401 

02 Gap-filling 

Due to the absence of satellite images in some months and the elimination of some 
records during data cleaning, the time series is incomplete. Our time series is 21 
years. Therefore there should be 21 x 12 = 252 NDVI records. 

Empty slots are first created in the time series. In a later step, they are filled by 
interpolating the adjacent data. 

Preparing dataset for gap-filling: 

datos$Date<- as.POSIXct(datos$Date, format= "%Y%m%d", tz = "UTC") # 
Convert Date field in Date-time format 
datos$Date<- trunc.POSIXt(datos$Date, "months")# Truncate the date 
field to manipulate it on a monthly basis 
datos<- separate(datos,Date, c("year","month"), sep = "-", remove = 
FALSE) 
 
datos<- datos %>%   
   group_by(FID,treatment,Date,month) %>%  
  summarise(NDVI= max(NDVI)) %>%  # The NDVI values were then selec
ted according to the maximum-value composite (MVC) criterion 
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    group_by(Date, treatment) %>%  
  summarise(NDVI= median(NDVI))# calculates median to avoid the eff
ect of outliers 

## `summarise()` has grouped output by 'FID', 'treatment', 'Date'. 
You can override using the `.groups` argument. 

## `summarise()` has grouped output by 'Date'. You can override usi
ng the `.groups` argument. 

Take a look at the percentage of gaps in each time series. Each series should be 21 
years X 12 months = 252 observations. 

gaps<- datos %>%  
  group_by(treatment) %>% 
  summarise(observ= n()) %>%  
  mutate(gaps= 100- (observ/(21*12)*100)) %>%  
  print() 

## # A tibble: 2 x 3 
##   treatment observe  gaps 
##   <chr>      <int> <dbl> 
## 1 Control      221  12.3 
## 2 Dragonera    220  12.7 

Completing the time series where dates are missing 

# Starting with the treatment zone 
 
indices_treatment<- datos %>% # Select treatment zone observations 
  dplyr::filter(treatment== "Dragonera") 
  
 
data.lengh<- length(indices_treatment$Date) 
time.min<- indices_treatment$Date[1] 
time.max<- indices_treatment$Date[data.lengh] 
all.Dates <- seq(time.min, time.max, by="month") 
all.Dates.frame<- data.frame(list(Date = all.Dates)) 
merge.data_D<- right_join(indices_treatment, all.Dates.frame) 

## Joining, by = "Date" 

merge.data_D<- merge.data_D %>%  arrange(merge.data_D) 
 
# Same for the control zone 
 
indices_control<- datos %>%  
  dplyr::filter(treatment== "Control") 
  
 
data.lengh<- length(indices_control$Date) 
time.min<- indices_control$Date[1] 
time.max<- indices_control$Date[data.lengh] 
all.Dates <- seq(time.min, time.max, by="month") 
all.Dates.frame<- data.frame(list(Date = all.Dates)) 
merge.data_C<- right_join(indices_control, all.Dates.frame) 
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## Joining, by = "Date" 

merge.data_C<- merge.data_C %>%  arrange(merge.data_C) 

library(signal)# package that applies a Savitzky-Golay smoothing fi
lter 
library(zoo) # package that orders observations 

Transform the Date field into a zoo-recognizable format 

control<- merge.data_C 
control$Date<- as.Date(control$Date) 
dragonera<- merge.data_D 
dragonera$Date<- as.Date(dragonera$Date) 

gap-filling with linear interpolation between neighbouring values 

zooValues_Control <- zoo(control[3],control$Date)# Order observatio
ns 
approxValues_control <- na.approx(zooValues_Control)# Replace NA by 
interpolation 
approxValues_control<-fortify.zoo(approxValues_control)# converts z
oo object into a data frame 
approxValues_control$Treatment<- "Control" # reintroduces the treat
ment field 
 
 
# Same for the treatment zone 
zooValues_dragonera <- zoo(dragonera[3],dragonera$Date) 
approxValues_dragonera <- na.approx(zooValues_dragonera) 
approxValues_dragonera<-fortify.zoo(approxValues_dragonera) 
approxValues_dragonera$Treatment<- "Dragonera" 

03 Savitzky-Golay smoothing 

# Control zone 
 
NDVI_Control<- approxValues_control[[2]] 
 
NDVI.ts2 = ts(NDVI_Control, start=1, end=252) 
NDVI_SG=sgolayfilt(NDVI.ts2, p=3, n=13, ts=1) 
 
NDVI_SG<- cbind(NDVI_SG) 
approxValues_control<- approxValues_control %>% dplyr:: select(c(1,
3)) 
approxValues_control<- cbind(approxValues_control,NDVI_SG) 
 
# Same for the treatment zone 
 
NDVI_Treatment<- approxValues_dragonera[[2]] 
 
NDVI.ts2 = ts(NDVI_Treatment, start=1, end=252) 
NDVI_SG=sgolayfilt(NDVI.ts2, p=2, n=13, ts=1) 
 
NDVI_SG<- cbind(NDVI_SG) 
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approxValues_dragonera<- approxValues_dragonera %>% dplyr:: select(
c(1,3)) 
approxValues_dragonera<- cbind(approxValues_dragonera,NDVI_SG) 

Finally, the databases of both treatments are combined 

final_dataset<- rbind(approxValues_control, approxValues_dragonera) 
names(final_dataset)[1]<- "Date" 
 
final_dataset<- final_dataset %>%   
  separate(Date, c("year", "month"), sep = "-", remove = FALSE) %>%  
    rename(NDVI= NDVI_SG) 
 
final_dataset$Date<- as.Date(final_dataset$Date) 
final_dataset$year<- as.Date(final_dataset$Date) 

Figure 4.5. The monthly NDVI time series show the average NDVI of the sampling 
plots for each zone. The coloured lines (Red = Treatment zone; Blue = Control zone) 
represent the trend throughout the study period, with a LOESS smoothing and 
standard deviation shown with the corresponding colours. The black lines represent 
the real data for each treatment (Solid = Sa Dragonera; Dotted= Control zone), in 
which the seasonal variation can be observed. The dashed vertical line dates the 
rodent eradication campaign (February 2011). 

ggplot(final_dataset, aes(x=year, y=NDVI)) +  geom_smooth(aes(color
= Treatment, fill= Treatment), method= "loess")+ 
  geom_line(aes(linetype = Treatment), size=1)+ 
  scale_linetype_manual(values=c("dotted", "solid"))+ 
  scale_color_manual(values=c("#0066CC","#990000"))+ 
  scale_fill_manual(values=c("#0066CC","#990000"))+ 
  labs(x=" ", y = "NDVI")+ 
  theme_classic()+ 
  theme(legend.position = "bottom", legend.title = element_blank(), 
axis.title.x=element_blank(), text = element_text(size = 14, family 
= "Palatino Linotype"))+ 
  geom_vline(aes(xintercept=final_dataset[["Date"]][147]),linetype=
"longdash", size=0.8) 

 

04 Historical time series analysis 
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Preparing Time-Series objects 

suppressPackageStartupMessages(library(strucchange)) 
suppressPackageStartupMessages(library(bfast)) 

db<- final_dataset %>% select(c(1,4,5)) # Select just necessary dat
a for the historical analysis of the time series 

create two Time Series objects (one for each treatment) 

# Treatment zone 
db_Treatment<- db %>% dplyr::filter(Treatment=="Dragonera") %>% sel
ect(-c(1,2)) # eliminates the first two columns since the time seri
es object has to be dimension-one. 
Treatment_TS<- ts(db_Treatment, frequency = 12, start = c(1999,1), 
end = c(2019,12))# Time-Series Object 
dim(Treatment_TS)<- NULL 
 
 
# Control zone 
db_Control<- db %>% dplyr::filter(Treatment=="Control") %>% select(
-c(1,2)) 
Control_TS<- ts(db_Control, frequency = 12, start = c(1999,1), end 
= c(2019,12)) 
dim(Control_TS)<- NULL 

Seasonal Decomposition of Time Series by Loess 

dragonera.stl <- stl(Treatment_TS,s.window="periodic") 
plot(dragonera.stl,main="STL Decomposition of S&P 500") 

 

P1<-autoplot(stl(Treatment_TS,s.window="periodic"))+ theme(text = e
lement_text(size = 20,family = "Palatino Linotype"))+ labs(title = 
"Sa Dragonera")+theme_bw() 
 
Control.stl <- stl(Control_TS,s.window="periodic") 
timeSeries:: plot(Control.stl) 
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summary(Control.stl) 

##  Call: 
##  stl(x = Control_TS, s.window = "periodic") 
##  
##  Time.series components: 
##     seasonal               trend             remainder           
##  Min.   :-0.05781040   Min.   :0.3557966   Min.   :-0.04329992   
##  1st Qu.:-0.03777987   1st Qu.:0.4601134   1st Qu.:-0.00975747   
##  Median :-0.00254524   Median :0.4840139   Median :-0.00184645   
##  Mean   : 0.00000000   Mean   :0.4846907   Mean   : 0.00000727   
##  3rd Qu.: 0.03648236   3rd Qu.:0.5205968   3rd Qu.: 0.00902292   
##  Max.   : 0.06497654   Max.   :0.5626864   Max.   : 0.09125563   
##  IQR: 
##      STL.seasonal STL.trend STL.remainder data    
##      0.07426      0.06048   0.01878       0.09566 
##    %  77.6         63.2      19.6         100.0   
##  
##  Weights: all == 1 
##  
##  Other components: List of 5 
##  $ win  : Named num [1:3] 2521 19 13 
##  $ deg  : Named int [1:3] 0 1 1 
##  $ jump : Named num [1:3] 253 2 2 
##  $ inner: int 2 
##  $ outer: int 0 

P2<-autoplot(stl(Control_TS,s.window="periodic"))+ theme(text = ele
ment_text(size = 20,family = "Palatino Linotype"))+ labs(title = "C
ontrol")+theme_bw() 

Figure 4.6. The STL decomposition of the monthly NDVI time series of Sa Dragonera 
and control zone (Mallorca Island) into seasonal, trend, and remainder components. 
In each plot NDVI units are plotted against time. The seasonal component is 
estimated by taking the mean of all seasonal sub-series (e.g. for a monthly time 
series the first sub-series contains the January values). The sum of the seasonal, 
trend, and remainder components equals the data series. The solid bars on the right-
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hand side of the plots act as a reference to show the same data range and aid 
comparison 

library(gridExtra) 
library(grid) 
 
p <- grid.arrange(P1 +theme(legend.position = "none",axis.title.x=e
lement_blank(), text = element_text(size = 12, family = "Palatino L
inotype")), P2 + theme(legend.position = "none",axis.title.x=elemen
t_blank(), text = element_text(size = 12, family = "Palatino Linoty
pe")), nrow = 1) 

 

BFAST 

Tuning BFAST for Treatment zone 

rdist <- 1/7 
dim(Treatment_TS)<-NULL 
fit_dragonera <- bfast(Treatment_TS, h=rdist,  
             season="harmonic", max.iter=10, breaks = 20)# Give an 
exaggeratedly high number of breaks (20), although the highest numb
er of breaks, according to the value of h, will be 7 
plot(fit_dragonera, main="Sa Dragonera", ANOVA=TRUE)  
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## NULL 

fit_dragonera 

##  
##   TREND BREAKPOINTS 
##   Confidence intervals for breakpoints 
##   of optimal 5-segment partition:  
##  
## Call: 
## confint.breakpointsfull(object = bp.Vt, het.err = FALSE) 
##  
## Breakpoints at observation number: 
##   2.5 % breakpoints 97.5 % 
## 1    35          36     39 
## 2   108         112    113 
## 3   169         170    172 
## 4   205         206    210 
##  
## Corresponding to break dates: 
##   2.5 %    breakpoints 97.5 %  
## 1 2001(11) 2001(12)    2002(3) 
## 2 2007(12) 2008(4)     2008(5) 
## 3 2013(1)  2013(2)     2013(4) 
## 4 2016(1)  2016(2)     2016(6) 
##  
##   SEASONAL BREAKPOINTS:  None 

fit_dragonera[5]#magnitudes 

## $Mags 
##           [,1]      [,2]        [,3] 
## [1,] 0.3336526 0.4425164  0.10886387 
## [2,] 0.4951428 0.5690493  0.07390651 
## [3,] 0.4665653 0.5234401  0.05687479 
## [4,] 0.5833825 0.5205444 -0.06283806 

Tuning BFAST for Control zone 
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rdist <- 1/7 
dim(Control_TS)<-NULL 
fit_Control <- bfast(Control_TS, h=rdist,  
             season="harmonic", max.iter=10, breaks = 20) 
plot(fit_Control, main="Control", ANOVA= TRUE)  

 

## NULL 

fit_Control 

##  
##   TREND BREAKPOINTS 
##   Confidence intervals for breakpoints 
##   of optimal 4-segment partition:  
##  
## Call: 
## confint.breakpointsfull(object = bp.Vt, het.err = FALSE) 
##  
## Breakpoints at observation number: 
##   2.5 % breakpoints 97.5 % 
## 1    35          36     39 
## 2   107         119    120 
## 3   168         169    177 
##  
## Corresponding to break dates: 
##   2.5 %    breakpoints 97.5 %   
## 1 2001(11) 2001(12)    2002(3)  
## 2 2007(11) 2008(11)    2008(12) 
## 3 2012(12) 2013(1)     2013(9)  
##  
##   SEASONAL BREAKPOINTS:  None 

fit_Control[5]#magnitudes 

## $Mags 
##           [,1]      [,2]       [,3] 
## [1,] 0.3617281 0.4529810 0.09125284 
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## [2,] 0.4879550 0.5194116 0.03145665 
## [3,] 0.4604973 0.5194034 0.05890604 

05 Hydrological Drought Index (HDI) data 

Comparing the BFAST results with the hydrological drought index (HDI). This is 
reported by the General Directorate of Water Resources (DGRH) of the government 
of the Balear Islands in the Hydrological Demand Unit (HDU) of Sierra Tramuntana 
Sur. https://www.caib.es/sites/aigua/es/index_de_sequia/ 

HDI <- read.table(file = "HDI_data.txt", header = TRUE, sep = "\t", 
stringsAsFactors = TRUE) 
HDI$Data<- as.POSIXct(HDI$Data, format= "%d/%m/%Y", tz = "UTC") 
head(HDI)# note that its value is always  = 1 and is used to create 
the graph bars 

##         Data     state value 
## 1 1999-01-01 pre-alert     1 
## 2 1999-02-01 pre-alert     1 
## 3 1999-03-01 pre-alert     1 
## 4 1999-04-01 pre-alert     1 
## 5 1999-05-01 pre-alert     1 
## 6 1999-06-01 pre-alert     1 

sort(table(HDI$state)) 

##  
## emergency     alert pre-alert normality  
##         7        16        87       142 

my_palet <- c('orange', 
            'red', 
            'green', 
            'yellow') 
 
 
ggplot(data = HDI)+ 
  geom_bar(mapping= aes(x= Data, fill= state))+ 
  scale_fill_manual(values = my_palet)+ 
  scale_colour_hue()+ 
  theme(legend.position = "none") 

 

https://www.caib.es/sites/aigua/es/index_de_sequia/
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Figure SM 5. 1. PCA calculated from the digital values of the images obtained in the 

National Game Reserve ‘‘Ports de Tortosa i Beseit’’ in Catalonia, northeast Spain 

(40º46’08’’ N, 0º20’04’’ E, 450 m. a. s. l.). Lines represent the recorded bands 

(variables) and points represent the sampled pixels coloured by species (individuals). 

Up to 20 individuals of these plant species were marked with a dGPS. Brachypodium 

phoenicoides (BP), Brachypodium retusum (BR), Buxus sempervirens (BS), Cistus 

albidus (CA), Chamaerops humilis (CH), Erica multiflora (EM), Graminoids (G), 

Genista scorpius (GS), Helianthemum marifolium (H), Juniperus oxycedrus (JO), 

Phillyrea angustifolia (PA), Pistacia lentiscus (PL), Pinus nigra (PN), Pinus pinaster 

(PP), Quercus coccifera (QC), Quercus ilex (QI), Rosmarinus officinalis (RO), 

Thymus vulgaris (TV), Ulex parviflorus (UP).  
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Figure SM 5. 2. PCA calculated from the digital values of the images obtained in 

NGRPTB. Lines represent the recorded bands (variables) and points represent groups 

of plant species consumed by a flock of ibexes (Capra pyrenaica) in the National 

Game Reserve ‘‘Ports de Tortosa i Beseit’’ in Catalonia, northeast Spain (40º46’08’’ 

N, 0º20’04’’ E, 450 m. a. s. l.). Plant groups are the following: Quercus spp. as the 

family Fagaceae (Group F), Rosmarinus officinalis and Thymus vulgaris as the family 

Labiatae (Group L), Erica multiflora (Group E), Cistus albidus (Group C), 

Brachypodium phoenicoides, B. retusum, and other grass-like plants as Graminoids 

(Group G). 
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