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Introduction

In my dissertation, I explain different empirical features of stock option prices through a

framework which considers departure from rational expectations. Rational expectations

assumes that agents in a model hold beliefs which are consistent with the “true” data

generating process. However, as has been discussed extensively in the literature, rational

expectations imposes unrealistic requirement on the information set of the agents in a

model. However, I consider a framework where agents in the model are not aware of

the pricing function that maps the equilibrium stock price with its fundamentals. In

particular, they form beliefs about future stock price based on its historical realizations

and their beliefs may be temporarily disconnected from movement in fundamentals. I

show that introduction of such beliefs in a standard asset pricing model can help reconcile

theory with the data.

The dissertation is composed of three chapters. In the first chapter, I derive a closed

form option price formula for a one period European call option. I show that given this

belief structure, investor’s subjective expectations about next period price growth are

priced in an option, creating a wedge between option implied-variance and conditional

variance. Time variation in the agent’s subjective expectations link this wedge to future

stock returns, making it a strong predictor of stock returns. Furthermore, the model

also generates different shapes of option implied volatility curve in line with the data.

The findings suggest that option-implied variance such as VIX are not capturing the true

uncertainty expected by agents but are biased in the direction of the investors expectations

of future capital gains on the underlying asset. Finally, I propose a trading strategy

that exploits the inefficiency of the VIX market and generates abnormal returns after

adjustment for risk.
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In the second chapter, I address the empirical behavior of the term structure of option-

implied volatility. Implied volatility (BS IV) calculated from market option prices using

Black and Scholes (1973) model appears to be related to price-strike ratio and time to

expiry of an option. In particular, the relationship between BS IV and price-strike ratio or

the BS IV curve is considerably flat for long duration options compared to short duration

options. Furthermore, the BS IV surface which characterize the joint relationship of

BS IV along direction of moneyness and maturity itself is stochastic with time. It is a

challenge for most option pricing models to replicate these empirical features of the BS IV

surface. In this chapter, I extend the framework developed in the first chapter to multi-

period options. It is assumed that investors use the same learning rule as in Chapter 1

to form expectations of future capital gains for different horizons. I derive a multi-period

option pricing formula in this setup. BS IV surfaces generated by the model replicates

the features observed in the data.

Finally, in the third chapter of this dissertation, I formally estimate the model devel-

oped in Chapter 2 on index options data. The model fit in terms of root mean square

pricing error (RMSE) is significantly better than BS model. The estimation exercise de-

livers a new time series of option implied volatility which is adjusted for subjective capital

gains expectations. VIX premium calculated using this option implied volatility strongly

predicts future index returns in the data. Furthermore, the estimation also delivers a new

series of investors subjective expectations of risk adjusted returns which I call the “option

implied expectations”. I find that the option implied expectations are strongly cor-

related with survey based expectations and price to dividends ratio. The option implied

expectations appears to be a more reliable indicator of investor sentiments that is free

from measurement error and can be obtained on a real time basis.
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Chapter 1

Expectations and the Option

Implied-Variance

1.1 Introduction

Investors beliefs about future stock market returns has been at the center of debate in

asset pricing research recently. It has been shown in many studies that investors beliefs

as documented in survey data reject rational expectations hypothesis. Introducing these

beliefs in option pricing models can be useful in explaining puzzles observed in the options

price data. In this paper, I show that a simple equilibrium asset pricing model in an

economic environment with homogeneous agents having time-separable preferences can

explain many salient features of index options prices if one allows for slight deviations

from rational expectations (henceforth, RE).1

There is a vast literature that builds on the seminal work of Black and Scholes (1973)

(henceforth, BS) to explain the behavior of options prices in the data. This literature has

contributed immensely to our understanding of options. However, still some facts stand

out which have proved to be a challenge for models with RE. The first such stylized fact

is that the expected volatility implied by Black and Scholes (1973) model (henceforth, BS

IV) in the data is inconsistent with the model used to derive it. It has been documented

since at least Rubinstein (1994) that BS IV of an option appears to be related to it’s price-

1Index in this thesis refers to S&P 500 index, unless specified otherwise.
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strike ratio which is inconsistent with the model’s assumption of a constant volatility. For

example, for the index options, BS IV is on an average increasing with price-strike ratio

and for the individual stock options, BS IV curve can either be increasing or decreasing.2

Predominant part of the literature has focused on explaining this feature in the data by

appealing to stochastic volatility and non-gaussian nature of the underlying asset’s returns

distribution (see for example, Heston (1993), Bakshi and Kapadia (2003), Du (2011),

Shaliastovich (2015)). However, Bollen and Whaley (2004) show that the properties of

BS IV curve in the data is inconsistent with most models of option pricing. 3

The next set of stylized facts relate to the stochastic properties of a variable, which I

call the VIX premium. The VIX premium is defined as the difference between (square of)

VIX and the conditional variance of the stock returns (henceforth, CV).4 5VIX premium

is interesting because the equilibrium asset pricing models with RE that employ Gaussian

shocks to state variables predict VIX premium equals zero. Bekaert, Engstrom, and

Ermolov (2020) point out that a non-zero VIX premium refutes the standard habit model

(Campbell and Cochrane (1999)) and the long run risk model (Bansal and Yaron (2004))

which do well in explaining asset pricing facts such as excess volatility of stock returns,

and high equity premium. In this paper, I discuss the following stylized facts about VIX

premium that have been documented in the literature: 2(a) VIX premium is substantially

positive on average;62(b) VIX premium is moderately correlated with the VIX index or

the conditional variance; 2(c) VIX premium can be negative, especially during market

turmoil;72(d)VIX premium is a reliable predictor of S&P 500 index returns for a short

horizon over and above the well-known predictors such as the price-dividend ratio.8 The

2For brevity, I call the relationship between BS IV and price strike ratio as “BS IV curve”.
3Bollen and Whaley (2004) show that the net buying pressure affects the shape of BS IV curve.
4The CBOE volatility index (VIX) is the value of a portfolio of 1 month S&P 500 index options (see,

Section 2 for details). It is published by the Chicago Board Option Exchange (CBOE).
5In some studies for example, Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2011), VIX

premium is called the variance risk premium. In this paper, I avoid such interpretation of VIX premium
and treat it purely as a data artifact.

6See, for example, Dew-Becker, Giglio, Le, and Rodriguez (2017) who notes that on an average
(squared) VIX has been trading significantly higher than realized variance.

7Cheng (2018) provides evidence for negative VIX futures premium and a fall in VIX futures premium
when ex ante measures of risk rise. Bekaert and Hoerova (2014) show that the VIX premium is negative
in the data even after taking into account the possibility for a measurement error in forecasting realized
variance.

8Bollerslev, Tauchen, and Zhou (2009) show that the difference between squared VIX index and
histrorical monthly realized variance can explain monthly S&P 500 index returns upto 1 year in future.
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empirical behavior of VIX premium is also puzzling because it is tough to find variables

that predict stock index returns for a short horizon.

Nevertheless, there is a growing literature that explores the properties of VIX premium

in equilibrium asset pricing models with non-Gaussian shocks while maintaining RE.

For example, Drechsler and Yaron (2011) (henceforth, DY) is a version of the long run

risk model that attempt to explain the behavior of VIX premium by relating it to the

variance risk premium (henceforth, VRP) which is the difference between risk neutralized

conditional variance and the physical conditional variance. These papers argue that VRP

captures equity risk premium and thereby predict stock market future returns. In this

paper I argue that VRP is not equivalent to VIX premium.9 I simulate the VIX index in

these models and show that these papers fall well short of replicating the empirical facts

2(a)-(d) related to VIX premium.

This paper focuses on a different departure from BS model: I assume agents form their

beliefs about stock prices according to their perceived model. Investors are rational; prices

are fully flexible and determined in equilibrium. Since investors’ beliefs are “close” to RE

we think of this as a slight departure from RE. One advantage of this paradigm is that

it explains stock returns volatility very well (see Adam, Marcet, and Nicolini (2016) and

Adam, Marcet, and Beutel (2017)). Under the Lucas Jr (1978) framework, we relax the

standard assumption that agents have perfect knowledge about the pricing function that

maps each sequence of fundamental shocks to a market outcome of the stock price.10 In

particular, agents optimally update their subjective expectations about next period stock

price growth using realized market outcomes. Adam, Marcet, and Beutel (2017) show

that such a model is consistent with the behavior of investors’ capital gains expectations,

as measured from survey data.

While the investors are only learning about the expected future capital gains on the

underlying stock, the model produces interesting implications for its option price. Im-

portantly, the model delivers a closed-form formula for a call option price that nests the

Further, Bollerslev, Marrone, Xu, and Zhou (2014) show that this predictability is robust and holds for
benchmark indices in many developed economies.

9It has been known that VIX is subject to approximation error when returns distribution is not
normal (See for example Carr and Wu (2008)). However, to my knowledge, the effect of relaxation of the
assumption of RE on the VIX has not been studied in the literature which is the focus of this paper.

10In other words, equilibrium stock price is not the present discounted value of all future dividends.

5



BS formula. In contrast to models under RE, the beliefs about the first moment of the

underlying’s returns distribution matter for the option price. In particular, for a given

conditional variance, optimistic (pessimistic) capital gains expectations leads to a positive

(negative) difference between the model call option price and the BS price. The the posi-

tive (negative) price difference between the model price and BS price is weakly increasing

(decreasing) with price-strike ratio leading to upward (downward) sloping BS IV curve.

The model’s ability to replicate time-series properties of VIX premium can be under-

stood by noting how the VIX index is calculated. Strictly speaking, VIX is a weighted

average of option prices. Rather than following the standard approach of deriving the

risk-neutral conditional variance, I study how VIX may deviate from conditional variance

when options are priced according to the framework developed in the paper. For this

purpose, I calculate VIX from the model generated option prices. It turns out that, in

the model under RE, (squared) VIX equals the conditional variance of stock returns. As

a slight deviation from RE is allowed, a wedge emerges between VIX and conditional

variance i.e. VIX premium is non-zero. In contrast to extant literature that interprets

VIX premium as a compensation for variance risk, in this model, the dynamics of VIX

premium are primarily driven by investor’s beliefs. VIX premium is positive (negative)

with optimistic (pessimistic) capital gains expectations. Given that in the data and in

the model, the stock prices follow an upward trend with rising cash flows, investors on

an average hold optimistic capital gains expectations which leads to average positive VIX

premium, this explains fact 2(a). In the model, while the level of the wedge (VIX pre-

mium) depends upon the level of conditional variance and subjective expectations, the

sign depends exclusively on subjective capital gains expectations, which explains moderate

correlation between VIX premium and the VIX index i.e. fact 2(b). Furthermore, since

the subjective expectations of investors are revised based on realized capital gains, during

market turmoil, investors are more likely to revise subjective expectations to pessimistic

which leads to a negative VIX premium in the model explaining fact 2(c). Fact 2(d) can

be rationalized in my model by the self-referential aspect of subjective expectations that

enables VIX premium to predict returns for a short horizon. In the model, subjective

expectations, thereby VIX premium, influence realized returns positively.

6



In this article, all the stylized facts mentioned above are explained by a single vari-

able, which is investors subjective capital gains expectations. One does not need to rely

on complicated preferences and complicated stochastic processes in a model to explain

behavior of option prices in the data. Importantly, quantitative simulations show that the

model can explain empirically consistent levels of above-mentioned facts with coefficient

of risk aversion close to 1.

One of the model’s key implications is that VIX premium is largely unrelated to

the conditional variance. In other words, VIX index is a systematically biased estimate

of conditional variance and VIX premium offers a profitable opportunity for traders to

exploit. The trading strategy that involves selling the VIX index to receive realized

variance after one month when VIX premium is positive and not trading when VIX

premium is negative generated an annualized Sharpe ratio of 2.228 for the sample period

of February 1990 to December 2019. The same strategy, which involves selling, over

the counter traded, variance swap rate instead of VIX index generated an annualized

Sharpe ratio of 2.145 from January 1996 to September 2013. The Sharpe ratios of these

strategies are striking when compared to investing S&P 500 total return index which

generated annualized Sharpe ratio of 0.59 for the sample period of February 1990 to

December 2019. Overall, this paper’s findings suggest that features of index options

discussed above are natural if option traders are not aware of the pricing function that

maps the fundamentals to underlying asset price.

In terms of contribution to literature, this chapter contributes to a sizable literature

on option pricing with learning. For example: Guidolin and Timmermann (2003), David

and Veronesi (2000), Shaliastovich (2015), Benzoni, Collin-Dufresne, and Goldstein (2011)

study Bayesian RE learning about parameters of the stochastic process of fundamentals

to explain option implied volatility curve. In these models agents are aware of the pricing

function that maps fundamentals to equilibrium price. In contrast, the learning modeled

here is different in the sense that agents are directly learning about future capital gains.

Furthermore, this chapter also studies VIX premium.

The remainder of the paper is structured as follows. Section 2 briefly discusses data

sources and documents key facts related to the S&P 500 index option prices and VIX

7



premium. In Section 3, I confront a few models, that explore properties of variance risk

premium, with facts related to VIX premium. Section 4 sets up the basic asset pricing

model, specifies the agents’ beliefs, and contains analytical results from the model. Section

5 contains the results of the quantitative analysis. Section 6 contains potential trading

strategies that are implied by the model. Finally, Section 7 concludes.

1.2 Definitions and Data

This section describes the stylized facts related to US options market data.

It has been well documented that BS IV is increasing with respect to price-strike

ratio for index call (put) options. Figure 1.1 plots the average BS IV curve for the cross

section of call options with time to expiry between 25 and 35 days during the period

from Jan-2004 to Dec-2017. As can be seen in the figure that average BS IV from call

options is increasing with price-strike ratio. From the put-call parity relationship, this

also implies that out of the money (“OTM”) put options have higher BS IV compared to

at the money (“ATM”) put options. The average annualized BS IV for in the money (

“ITM”) call options with price strike ratio of 1.06 is 24% compared to 13% for ATM call

options. Under the framework of BS, the curve should be a flat line i.e. same BS IV for

all price-strike ratios.

VIX premium is defined in as the difference between the (square) VIX Index and

conditional variance i.e. V Pt,t+1 = V IXt,t+1 − CVt,t+1. VIX index is a weighted average

of OTM options’ prices on S&P 500 with time to expiry of one month. VIX index is

calculated using the following formula:

(1.1)V IX2
t,t+1 ≡

[
2
∑
i

∆Xi

X2
i

(1 + r)P j
t,t+1(Xi)

]

where X0 is ATM strike price, P j
t,t+1(Xi) is the price of an out of the money option

at date t with strike price Xi and a calendar month to expiry ; j = C (call option) when

Xi ≥X0 and j = P (put option) when Xi ≤ X0. VIX is calculated in a “model-free”

way using market information. VIX is interesting because it has been shown that if the

underlying asset’s returns follows a log normal distribution, then under assumption of no-

8



Notes: The figure present the average implied volatility with respect to price-strike ratio of European
call options on S&P 500 futures between Jan-2004 to Dec-2017. STM is for short term maturity options
with moneyness between 25 and 35 calendar days.

Figure 1.1: Implied Volatility Curve

arbitrage, VIX equals conditional variance of returns under the risk neutral measure (see

for example Carr and Wu (2008)). 11It is important to note that while VIX is calculated

using only market information, any asset pricing statement about VIX relies on certain

assumptions. In this paper, I use monthly closing values of VIX obtained from CBOE

starting from January 1990 to December 2019.

Many techniques are available in the literature to estimate CV. However, famous

among practitioners and researchers is the realized variance which is calculated by sum-

ming the high frequency squared log returns on the underlying asset i.e.,

RVt,t+1 ≡
n∑

j=1

r2
t+ j

n

,

for n is arbitrary number of time intervals chosen between any two dates t and t +

1 where rt+ j
n

is the log return on the index for the time interval [t + j−1
n
, t + j

n
].12

Below I report statistics based on realized variance (RV-BTZ) as used in Bollerslev et

al. (henceforth, BTZ) which is calculated by summing squared five-minute returns on

11Carr2008 show that V IX2
t,T = EQ

t [
∫ T

t
σ2
zdz] if price of the underlying Pt follows an Ito process

dPt = rPtdt + σtPtdZ
Q
t under the risk neutral measure. EQ stands for expectations under the risk

neutral measure.
12As n → ∞, RVt,t+1 =

∫ t+1

t
σ2
udu.
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the index for the whole month with returns overnight or over a weekend treated as one

“five minute interval”. 13 Bekaert and Hoerova (2014) document that V Pt,t+1 using

BTZ approach outperforms all other models considered by them in future excess returns

predictability.

Additionally, I report statistics for the difference between VIX index and realized

volatility which is called VIX-V premium (“VVP”). Units of estimated V V Pt= V IXt,t+1−√
RVt,t−1) are easier to interpret than VIX premium. Figure 1.2 plots the VIX premium

and VIX-V premium from January 1990 to December 2019. In Panel A, the solid blue

line is the estimated VIX premium and similarly in Panel B the solid blue line is the

estimated VIX-V premium. The figure shows that both series are highly volatile and

frequently negative. The fact that VIX premium is frequently negative has been subject

of a debate in the literature. The papers that argue that VIX premium is compensation

for variance risk, claim that negative VIX premium is a result a of measurement errors or

due to errors made by investors in forecasting conditional variance. However, Bekaert and

Hoerova (2014) find that many leading variance forecasting models produce a negative

VIX premium.

Table 1.2 below report the summary statistics for VIX premium, realized VIX pre-

mium, V IX2 and realized variance. Average estimated VIX premium is 15.45 with stan-

dard deviation of 19.94. The realized VIX premium, V Pt realized = V IX2
t−1,t − RVt−1,t

has higher standard deviation than the estimated variance premium. Note that VIX pre-

mium is only weakly correlated with V IX2 or RV which is our fact 2(c). Similarly, Table

1.2 provides statistics for VIX-V premium, VIX-V premium realized, VIX and
√
RV.

Table 1.3 presents the evidence for the fact 2(d) which is a significant ability of the

VIX premium to predict returns for a short horizon. I estimate the following regression

equations:

(1.2)
∑
h

ert+h = α + βV P t + ϵt+h

where h takes values 1, 3 and 6 and ert+h = S&P500t+h

S&P500t
−Rf,t+h; Rf,t+h is the h months

treasury bill rate. The results are in line with the finding of BTZ with the maximum R2

of 6.503% for the 3 month holding returns.

13The data for RV-BTZ is obtained from Hao Zhou’s website

10



Panel A

Panel B

Figure 1.2: Estimated VIX premium and VIX-V premium
Notes: This figure plots estimated monthly VIX premium and VIX-V premium from Jan 1990 - Dec
2009. Data is obtained from Hao Zhou’s website.
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VP VP real-
ized

V IX2 RV

Mean 15.45 15.56 35.09 19.64
Median 12.64 12.90 24.48 10.44
Std.Dev 19.94 29.70 32.68 35.78
Min -218.56 -388.17 7.54 1.73

Skewness -3.62 -6.97 3.65 8.82
Kurtosis 57.10 98.11 22.59 111.11
AC(1) 0.28 0.28 0.81 0.64

Correlation Matrix
VP 1.00 0.73 0.14 -0.43
VP realized 1.00 -0.12 -0.51
V IX2 1.00 0.83
RV 1.00

Notes: The table present summary statistics for estimated VIX premium (VP), realized VIX premium
(VP realized), VIX2 and monthly realized variance (RV).VIX2 is calculated as squaring the monthly
closing values of the VIX index and dividing by 12. VIX premium is calculated as monthly closing
value ofVIX2-RV for the contemporaneous month. Realized VIX premium is calculated as the difference
between monthly closing value ofVIX2 and RV for the following month. The sample used is from Jan-1990
to Dec- 2019. AC(1) is first order auto-correlation. Data is obtained from Hao Zhou’s website.

Table 1.1: Summary Statistics

Data for S&P500 index and nominal yields on 1 month U.S. government bill is obtained

from St. Louis FED’s FRED database. Data for monthly consumption is obtained from

U.S. Bureau of Economic Analysis and dividends data is constructed using S&P dividend

point index and and data from Robert Shiller’s website.14

1.3 VIX premium versus Variance risk premium

Strictly speaking, VIX premium is a feature of index options data. The information set

and rationality of an option trader is not known to a researcher. Therefore, making a

definitive statement about the economic forces driving VIX premium is a challenging

exercise. However, there is an increasing literature that studies the properties of a related

concept called variance risk premium as a proxy for VIX premium in consumption based

asset pricing models without explicitly studying the models’ implications for option prices.

Variance risk premium is defined as the difference between conditional variance of stock

returns under the risk neutral probability measure and the objective measure. In other

words, variance risk premium is a premium paid to hedge against fluctuations in future

14http://www.econ.yale.edu/˜shiller/
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VVP VVP re-
alized

VIX
√
RV

Mean 5.88 5.91 19.1588 13.2761
Median 5.96 6.21 17.14 11.1905
Std. Dev 3.88 5.41 7.3637 7.7205

Min -18.91 -39.41 9.51 4.5547
Skewness -0.63 -2.47 1.7724 3.0818
Kurtosis 7.97 19.17 7.8372 19.954
AC(1) 0.35 0.32 0.842 0.7582

Correlation Matrix
VVP 1 0.6471 0.169 -0.341
VVP realized 0.6471 1 -0.0938 -0.4144
VIX 0.169 -0.0938 1 0.8689√
RV -0.341 -0.4144 0.8689 1

Notes: The table present summary statistics for estimated VIX-V premium (VVP), realized VIX-V
premium (VVP realized), the monthly closing value of VIX index and annualized realized volatility
(
√
12RV). VIX-V premium is calculated as monthly closing value ofVIX-

√
12RV for the contemporaneous

month. Realized VIX-V premium is calculated as the difference between monthly closing value ofVIX
and

√
12RV for the following month. The sample used is from Jan-1990 to Dec- 2019. AC(1) is first

order auto-correlation. Data is obtained from Hao Zhou’s website.

Table 1.2: Summary Statistics

Excess Stock Return Regressions.
Monthly Return Horizon 1 3 6 9 12
Constant 0.003 0.008 0.027 0.052 0.076

[1.213] [1.719] [3.967] [6.02] [7.185]
V Pt 0.027 0.088 0.103 0.090 0.091

[2.987] [5.07] [5.069] [2.637] [2.214]
Adj.R2(%) 2.171 6.503 3.821 1.678 1.115

Notes: The regression result of S&P500 cumulative excess returns for 1, 3, 6, 9 and 12 months on VIX
premium for the sample of Jan-1990 to Dec-2019. T-stats are reported in square brackets. Data is
obtained from Hao Zhou’s website.

Table 1.3: S&P 500 return predictability

variance of stock returns. While the concept of variance risk premium is intuitive, however

what is not clear is why an investor would need to hedge against fluctuations in variance

when she presumably only cares about his lifetime consumption path. Moreover, one

needs to make strong assumptions in a model to make variance of variance relevant for

agents utility.

On the other hand, it can be argued that treating VIX premium and variance risk

premium as equivalent is misleading. This is because models with Gaussian dynamics and

RE predict a zero variance risk premium as has been shown in DY. A separate possibility

is that VIX premium could be a premium to hedge against higher than 2nd moments of
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variance of returns. One might again question why would an investor care about higher

than second moment of the variance (second moment) of returns. Furthermore, it has

been shown in Carr and Wu (2008), that empirical estimates of higher moments of the

variance of stock index returns do not justify the magnitude of VIX premium in the data.

To further demonstrate this point, I reconsider the models in BTZ and DY which study

variance risk premium in consumption based equilibrium model. I confront both BTZ

and DY with facts 1-4 by calculating VIX premium in these models.

Bollerslev, Tauchen and Zhou (2009)

The model is an equilibrium model where a representative agent has Epstein-Zin-

Weil recursive preferences. The model considers a stochastic process of log consumption

growth, gt+1 = log(Ct+1/Ct) as the following:

(1.3)gt+1 = µg + σg,tzg,t+1,

(1.4)σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1,

(1.5)qt+1 = aq + ρqqt + ψq
√
qtzq,t+1,

where the parameters satisfy aσ > 0, aq > 0, |ρσ|< 1, |ρq|< 1, ψq > 0, and {zσ,t}

and {zq,t} are independent i.i.d. N(0, 1) processes jointly independently of {zg,t} which is

also i.i.d N(0, 1). The stochastic variance process σ2
g,t+1 represents time-varying economic

uncertainty in consumption growth, with the volatility-of-volatility process qt in effect

inducing an additional source of temporal variation in that same process. Variance risk

premium in BTZ is calculated as V RPBTZ
t,t+1 =EQ

t (σ
2
g,t+2)−Et(σ

2
g,t+2) where EQ

t (xt+1) =

Et[Mt+1xt+1](Et[Mt+1])
−1 with Mt+1 being the stochastic discount factor.

Drechsler and Yaron (2010)

This model is a version of the long run risk asset pricing model popularized by Bansal

and Yaron (2004). Drechsler and Yaron (2011), mainly, adds two features to the original

Bansal and Yaron (2004) model: slow moving long run component to the volatility and non

Gaussian shocks to long run risk variable and conditional variance. The utility function

is:

(1.6)Vt = [(1− δ)C
1−γ
θ

t + δ(Et[V
1−γ
t+1 ])

1
θ ]

θ
1−γ
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The state vector of the economy is given by Yt ∈ R5 which follows a VAR structure

given by:

(1.7)Yt+1 = µ+ FYt +Gtzt+1 + Jt+1

where

(1.8)

Yt+1 =



∆ct+1

xt+1

σ̃2
t+1

σ2
t+1

∆dt+1


, F

=



0 1 0 0 0

0 ρx 0 0 0

0 0 ρσ̃ 0 0

0 0 (1− ρσ̃) ρσ 0

0 ϕ 0 0 0


, µ is unconditional expectation of Yt, zt+1 ∼ N(0, I5), GtG

′
t is variance-covariance

matrix of the Gaussian shocks zt+1 and Jt+1 is the vector of compound-Poisson jump

shocks. ∆ct+1 is log consumption growth, xt+1 is the persistent component of consumption

and dividend growth, σ2
t+1 is the conditional variance, σ̃2

t+1 is a variable that drives the

long run mean of variance and ∆dt+1 is log dividend growth. The ith component of Jt+1

is given by Jt+1,i =
∑{N i

t+1}
J=1 ξji , where N i

t+1 is the Poisson counting process upon the

jth increment of N i
t+1 and ξji are i.i.d. The intensity process of N i

t+1 is given by the ith

component of vector λt. Further,

GtG
′
t = h+

∑
k

HkYt,k

λt = l0 + l1Yt,

where h ∈ Rn∗n, Hk ∈ Rn∗n, l0 ∈ Rnand l1 ∈ Rn∗n.

Variance risk premium in DY, V RPDY
t,t+1is defined as the sum of the level difference

i.e. varQt (rm,t+1)− vart(rm,t+1) and the drift difference varQt (rm,t+2)− varQt (rm,t+2). Here,
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varQt (rm,t+1) represent the conditional expectation of variance in period t + 1 of market

returns under the risk neutral measure Q and vart(rm,t+1) is the conditional variance

under the physical probability measure.

Note that BTZ and DY define variance risk premium differently, both of which are

inconsistent with definition of VIX premium. To calculate VIX premium in these models,

firstly, I calibrate the model to the parameter values as mentioned in the paper. Sub-

sequently, I generate simulated series of 10,000 observations for stock prices, stochastic

discount factors, conditional variance of stock returns and risk free rate. At each point of

observation, I calculate a cross-section of option prices at various strike prices by calcu-

lating the expectations Et[Mt+1(Max{P S
t+1 −Xi, 0})] for each strike price Xi, here, Mt+1

and P S
t+1 signifies the stochastic discount factor and stock price, respectively, generated

by the model at t + 1.15 Finally, VIX series in these models is calculated using formula

in (1.1) and the VIX premium, V Pt,t+1is calculated as V IX2
t,t+1 − vart(rm,t+1).

Upper panel of Table 1.4 reports the statistics related VVP, VIX and the conditional

variance. The model moments are calculated from a sample of 10,000 observations gen-

erated by the model. The data moments are reported in the first column of the table.

The second column reports the moments that are implied by BS model. Since the BS

model assumes a constant variance, the model predicts zero VVP and has no chance of

matching any moments related to VVP. On the other hand, while the BTZ model al-

lows for stochastic volatility and stochastic ’volatility of volatility’, it is still conditionally

log-normal. Hence, as shown in the third column of Table 1.4, in BTZ model the VVP

is close to zero. The small standard deviation of VVP in BTZ is most likely due to

computational errors. In general, BTZ model fails to match any of the facts 2(a)-2(d)

mentioned above. The fourth column of the table reports the statistics for DY model.

DY being non-Gaussian is able to generate a positive VVP of around 2.0% which falls

well short of 5.88% in the data. Additionally, DY is not able to generate a negative

VVP while in the data it is frequently negative. In DY, the VVP is extremely persistent

with one period auto-correlation of 0.85 while in the data, it has a low auto-correlation

of 0.35. DY struggles to match the persistence of VVP because the state variables that

15I use numerical integration to calculate the expectations of option’s payoffs.
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Data Black-Scholes BTZ DY
1990:01 to 2019:12 Mean Mean

E[V V P ] 5.88 0.00 0.53 2.02
σ(V V P ) 3.88 0.00 1.01 2.22

min(V V P ) -18.91 0.00 -1.88 -0.09
AC1(V V P ) 0.35 0.00 0.86 0.85
AC1(V IX) 0.84 0.00 0.93 0.88

AC1(
√
RV ) 0.76 0.00 0.93 0.90

Ê(V IX) 19.16 13.28 13.33 18.59

Ê(
√
RV ) 13.28 13.28 12.80 16.57

σ̂(V IX) 7.36 0.00 5.12 7.00

σ̂(
√
RV ) 7.72 0.00 4.35 4.80

correl(VIX,VVP) 0.17 0.00 0.88 0.97

correl(
√
RV,VVP) -0.34 0.00 0.81 0.94

correl(
√
RV,VIX) 0.87 1.00 0.99 0.99

Predictability
β(1) 0.027 0.00 0.08 0.03

Adj.R2(1) 2.171 0.00 0.20 0.68
β(2) 0.088 0.00 0.20 0.02

Adj.R2(3) 6.503 0.00 0.50 0.44
β(3) 0.103 0.00 0.32 0.01

Adj.R2(6) 3.821 0.00 0.78 0.09
Notes: In upper panel, report the moments of annualized VIX, VVP. Data moments are based on a
monthly sample from Jan-1990 to Dec-2019. Moments for BTZ and DY are calculated from model
generated series of 10,000 observations. VVP for BTZ and DY is calculated as VIX- conditional volatility.
Lower panel reports predictive regression of excess market returns on VIX premium for horizon of 1,3
and 6 months.

Table 1.4: VIX premium and VIX : BTZ and DY

drives it are highly persistent in the model. As far as the correlation between VVP and

VIX is concerned, DY model produces a correlation of 0.97 compared to 0.17 in the data.

The lower panel of Table 1.4 reports the results for OLS regression of ex-dividend stock

returns on VIX premium. In DY, the ability of VIX premium to predict returns is quite

low compared to data. The 3 month horizon R2 is only 0.44% versus 6.503% in the data.

Taken together, one can conclude that both BTZ and DY fails to match any of the above

mentioned stylized facts about VIX premium.
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1.4 Model

In this section, I first describe the basic asset pricing model with subjective beliefs. The

model is similar to Lucas Jr (1978) asset pricing model albeit agents hold subjective beliefs

about future stock price.

Environment : The environment assumed in this model is standard, of the type con-

sidered in Adam, Marcet, and Nicolini (2016) (henceforth, AMN). The economy has

t = 0, 1, 2, . . . periods and is populated by unit mass of infinitely-lived risk averse investor

types. Aggregate consumption and aggregate dividends follow a standard log normal

process with same expected growth rate a : Ct+1

Ct
= aεct+1 where ln εct+1 ∼ iiN(−s2c

2
, sc)

and Dt+1

Dt
= aεdt+1 where ln εdt+1 ∼ iiN(−sd2

2
, s2d) with (ln εct , ln εdt ) jointly normal with

co-variance ρc,d. It has been widely documented that consumption is less volatile than

dividends. To allow for this, it is assumed that agent also receives endowment of Yt

amount of perishable goods every period. In particular, Ct = Yt +Dt is the total supply

of the consumption goods in the economy.

Objective Function and Probability Space: The problem of an agent i ∈ [0, 1] is to

maximize his lifetime utility given by standard time separable CRRA utility function

EP
0

∞∑
t =0

(δ)t
(Ci

t)
1−γ

1− γ
,

subject to:

Ci
t + PtS

i
t +Bi

t + PC
t,t+1O

i
t = (Pt +Dt)S

i
t−1 + (1 + rt−1)B

i
t−1 + Yt +max{Pt −X, 0}Oi

t−1

(1.9)

S ≤ Si
t

≤ S̄

B ≤ Bi
t

≤ B̄

O ≤ Oi
t

≤ Ō

for all t ≥ 0 where rt−1 denotes the real interest rate on a risk-less bond issued in period

t-1 and maturing in period t, γ > 0 is the risk aversion coefficient of the agent, Ci
t is
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consumption demand in period t for individual i, Si
t is the holdings of stocks in period t

for individual i, Bi
t is the holdings of bonds in period t and Oi

t is the positions in a one-

period European call option contract for individual i. Importantly, agent’s consumption

demand is denoted by Ci
t , and the aggregate supply of consumption goods is denoted by

Ct. The initial endowments given by Si
−1 = 1, Bi

−1 = 0 and Oi
−1 = 0 are such that

stock are in fixed supply of 1 unit, risk-free bonds and options contracts are in zero-net

supply. Furthermore, there are bounds to holdings of stocks, bonds and option contracts

i.e. S ≤ 1 ≤ S̄, B ≤ 0 ≤ B̄ and O ≤ 0 ≤ Ō such that ponzi schemes are ruled out. I only

consider three assets namely; bonds, stock and stock options, which are not assumed to

span the consumption state space i.e. markets are incomplete.

The non-standard part in this setup is the underlying probability space P that assigns

probabilities to all external variables. Agents in the model are internally rational as

defined in Adam and Marcet (2011). Agents behave rationally given their perceived model

i.e. they are utility maximisers subject to a budget constraint. Markets are competitive;

dividend and income processes are exogenous. The underlying probability space is given

by (Ω,B,P) with B denoting the corresponding σ-algebra of Borel subsets of Ω and P

the agent’s subjective probability measure on (Ω,B). Important thing to note is that

the stock price histories are also part of the probability space which is a deviation from

standard practice in RE models where stock prices carry redundant information and can

be fully mapped to fundamentals. The internal rational agents are not aware of the

pricing function Pt(.) that link fundamentals to the stock price. Consequently, agents

consider the process for stock prices {Pt} along with the income and dividend process

{Yt, Dt} as exogenous to their decision problem. In other words, the underlying sample

state space Ω consists of realization for prices, dividends and income. Adam and Marcet

(2011) show that assuming the knowledge of such pricing function is very restrictive.

AMN show that slightly relaxing this assumption enables a standard model to explain

key asset pricing facts, especially high volatility of stock prices relative to fundamentals.

On the other hand, the price of options are excluded from the probability space, without

loss of generality, because options expire after one period and the eventual pay-off from

an option contract only depends on the strike price and the price of the underlying stock.
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Although, P contains beliefs of the agents for all dates, the conditional distribution of

the variables will be revised as agents record new information. The algorithm according

to which agents revise their beliefs is also part of P .

Agent of type i choose consumption, bond holdings, stock holdings and option po-

sitions in period t, denoted by (Ci
t , B

i
t, S

i
t , O

i
t) contingent on the observed history ωt =

{P t, Y t, Dt}, i.e. investors choose a function (Ci
t , B

i
t, S

i
t , O

i
t) : Ωt → R4 for all t ≥ 0 to

maximize expected utility subject to his budget constraint and the asset limits given by

(1.9) . Since the objective function is concave with a convex feasible set, the following

first order conditions characterizes the agent’s optimal plan

(1.10)(Ci
t)

−γPt = δEP
t

[
(Ci

t+1)
−γPt+1

]
+ δEP

t

[
(Ci

t+1)
−γDt+1

]
(1.11)(Ci

t)
−γ = δ(1 + rt)E

P
t

[
(Ci

t+1)
−γ
]

(1.12)PC
t,t+1 = δEP

t

[(
Ci

t+1

Ci
t

)−γ

max{Pt+1 −Xt, 0}

]
.

These conditions are standard except the conditional expectations are taken with

respect to the subjective probability measure P .

1.4.1 Rational Expectations

This sub-section reviews standard results under rational expectations. The stock price

under rational expectations PRE
t , is derived by solving equation (1.10)

(1.13)PRE
t =

δa1−γρε
1− δa1−γρε

Dt

where

ρε = Et

[
(εct+1)

−γεdt+1

]
= eγ(1+γ)

s2c
2 e−γρc,dscsd

Equation (1.13) show that price to dividends (henceforth, PD) ratio is constant. Conse-

quently, the returns volatility should be approximately equal to the volatility of dividend

growth which, as documented in many papers, is at odds with the data. 16

16The proof of (1.13) is fairly straightforward, interested readers may refer to AMN for the proof.
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Call option price under RE PC,RE
t,t+1 is given by the following:17

(1.14)PC,RE
t,t+1 = Pt∆N (d1,t)−

X

1 + rt
N (d2,t)

where ∆ = 1− Et

[(
Ci

t+1

Ci
t

)−γ
Dt+1

Pt

]
= δa1−γρε, d1,t=

ln Pt−ln Xt+rt+ln ∆+ sd2

2

sd
, d2,t=d1,t −

sd and N(x) = 1√
2π

∫ x

−∞ e−
z2

2 dz.

The formula in (1.14) is identical to the one period B-S formula. The price of a call

option PC,RE
t,t+1 is increasing in Pt, sd and rt and non-increasing in Xt. Under RE, option

implied volatility equals the conditional volatility under the objective measure sd which

is a constant. The model implies V Pt = 0 for all t, hence, this model under RE cannot

explain any of the stylized facts 2(a)-2(d). It is important to note that options price

PC,RE
t,t+1 is independent of agent’s expected return which is interesting because the option

price is derived by directly solving the first order condition under the objective probability

measure. The standard practice in the reduced form literature is to a-priori transform the

probability measure to a risk neutral measure for deriving the option price which makes

the option price independent of expected returns on the underlying and preferences of

the investors. The above result in equation (1.14) shows that the two approaches are

equivalent under RE.18

1.4.2 Beliefs

In this sub-section, I specify the exact structure of beliefs that agent of type i hold and

characterize the agent’s optimal plan under learning. I assume that agents of all types

share the same beliefs and preferences which is not common knowledge i.e. the agent i

is not aware that she is a representative agent. Furthermore, I assume that agents are

aware of the true stochastic processes of Dt and Yt. The latter assumption is made to

highlight how subjective beliefs exclusively about stock prices can influence asset prices

in equilibrium. As discussed above and comprehensively argued in Adam and Marcet

(2011), in this setting it is highly unlikely that a representative agent can determine the

unique relationship between fundamentals and price.

17A proof in a similar setup is available in Rubinstein (1976)
18This is true because under RE the options can be perfectly hedged. Black and Scholes (1973) is the

first paper to note this famous result.
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Under the belief structure P the agent also takes into account the realized price out-

come Pt while making choices for consumption, hence, it may not be strictly straightfor-

ward to assume that his pricing kernel is determined by the aggregate consumption as

in the Lucas Jr (1978) tree model. Despite the fact that Si
t = 1, Bi

t = 0, Oi
t = 0 and

Ci
t = Ct in equilibrium, we may have EP

t

[(
Ci

t+1

)−γ
]
̸= EP

t

[
(Ct+1)

−γ] . To rule out the

possibility where agent’s expected capital gains on his stock portfolio effect his discount

factor, I assume the following as in AMN.

Assumption 1: I assume Yt for all t ≥ 0 is large enough such that given bounds to

asset holding, and that EP
t

[(
Pt+1

Dt

)]
< M̄ for some M < ∞ the condition (1.15) holds

even ex ante in an identical agent environment.

(1.15)EP
t

[(
Ci

t+1

Ci
t

)−γ
]
≊ EP

t

[(
Ct+1

Ct

)−γ
]

(1.15) will be true with very high P-probability when agent in the model is assumed

to know the true stochastic process of Yt and Dt. Stochastic discount factor for an agent(
Ci

t+1

Ci
t

)−γ

will be little influenced by his trading decisions when Yt is sufficiently high.

If condition (1.15) holds, one can price assets using
(

Ct+1

Ct

)−γ

as the discount factor also

under the framework of learning. Firstly, the risk free rate rt is derived by standard Euler

equation

(1.16)1 = δ(1 + rt)E
P
t

[(
Ct+1

Ct

)−γ
]
.

Additionally, agent subjective expectation of risk-adjusted stock price growth is de-

fined as

(1.17)βt ≡ EP
t

[(
Ct+1

Ct

)−γ
Pt+1

Pt

]

and the subjective expectation of risk-adjusted dividend growth

(1.18)βD
t ≡ EP

t

[(
Ct+1

Ct

)−γ
Dt+1

Dt

]
.

after substituting (1.17) and (1.18) in the first order condition for stock price 1.10, the

expression for stock price Pt under subjective beliefs can be written as follows:

(1.19)Pt =
δβD

t

1− δβt

Dt
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provided that βt is bounded above by less than δ. Under the assumptions that agent

know the true stochastic process of Dt, β
D
t+1 is constant. However, when agent are learning

about βt+1, which is risk adjusted stock price growth, realized stock prices can fluctuate

much more than dividends. As can be seen in (1.19), a slight change in expectations

about next period price growth can lead to a large fluctuation in prices, especially, when

βt fluctuates around δ.
19

Add derivation of variance?

Constant-Gain Learning: Now, I specify the exact structure of P . An internally

rational agent in this model follow a constant gain learning algorithm to update his

expectation of log of risk adjusted capital gains. Agent believes that there is a persistent

component in risk adjusted capital gains, which is independent and additional to what

above specified dividend process would imply. This type of learning is motivated by the

fact that PD ratio in the data is highly persistent while innovations to dividend growth

is largely unpredictable. In particular, agent beliefs are specified as following:

(1.20)ln

(
δ

(
Ct

Ct−1

)−γ
Pt

Pt−1

)
= ln bt + ln ϵt

ln bt = ln bt−1 + ln ξt

where ln bt|ωt ∼ N(ln mt,σ
2
0), ln εt ∼ iiN(−σ2

ε

2
, σ2

ε) and ln ξt ∼ iiN(
−σ2

ξ

2
, σ2

ξ ) and

Et−1[(εt, ξt)] = 0.

Further, I assume that agent’s prior beliefs are centered at the RE value i.e ln b0 ∼

N(a1−γρε, σ
2
0). Since prior is specified normally distributed, agents can optimally filter

the persistent component of risk adjusted price growth using a Kalman filter. Agents’

posterior beliefs at any time t are given by ln bt ∼ N(ln mt, σ
2
0) where ln mt evolves

recursively according to the following equation:

(1.21)ln mt = ln mt−1 −
σ2
ξ

2
+ g

(
ln

(
δ

(
Ct

Ct−1

)−γ
Pt

Pt−1

)
+
σ2
ε + σ2

ξ

2
− ln mt−1

)
,

where the constant Kalman gain parameter is given by g = (σ2
0)/(σ

2
0+σ

2
ε) with steady

state variance σ2
0, given by

σ2
0 =

−σ0
ξ +

√
(σ2

ξ )
2 + 4σ2

ξσ
2
ε

2
19βt+1 is bounded above in the quantitative simulations to ensure the price is positive for all possibilities

in B. I use the projection facility as used in AMN to bound the beliefs.
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These beliefs constitute only a small deviation from RE beliefs whenever the gain

parameter g is sufficiently small. Using equation (1.20) and given the distribution of(
Ct

Ct−1

)
as specified above, the posterior distribution of the log price ratio

(1.22)ln

(
Pt+1

Pt

)
∼ N

(
µp,t, σ

2
p,t

)
where µp,t = ln mt + rt −

(σ2
ε+σ2

ξ−γ2s2c)
2

and σ2
p,t = σ2

ε + σ2
0 + σ2

ξ − γ2s2c − 2σrt,ct

σrt,ct = covt

[
ln
(

Pt+1

Pt

)
, ln

((
Ct+1

Ct

)−γ
)]

Notice that the conditional variance σ2
p,t is stochastic and is influenced by agent ex-

pectations.

1.4.3 Valuation of Options

In this section, I provide analytical results that show how the learning mechanism assumed

above can help rationalize the stylized facts related to option markets as documented in

Section 2. The model is a discrete-time model and all the analysis here is based upon

one-period options. Firstly, I provide a closed form formula for a call option price, PC,CG
t,t+1

in the proposition 1 below which is derived by solving equation (1.12)

Proposition 1. Under constant gains learning, price of 1 period European Call option is

given by the following:

(1.23)PC,CG
t,t+1 = Pte

(
ln mt+

σ2
0
2

)
N
(

˜d1,t

)
− Xt

1 + r
N
(

˜d2,t

)
where ˜d1,t=

ln Pt−ln Xt+ln mt+r+
σ2
p,t
2

σp,t
and ˜d2,t=d̃1 − σp,t

Proof. See Appendix A.2

Notice that the formula for a call option in equation (1.23) (henceforth called the CG

formula) is similar to formula in equation (1.14) (henceforth called the RE formula). This

is due to the fact that underlying state variables in both cases are log normally distributed.

The option price is a function of risk-adjusted price growth which is exp{ln mt +
σ2
0

2
}

under learning and ∆ in RE. In RE equilibrium, ∆ can be expressed as a funcation

of only fundamentals i.e. Dt and Ct and given i.i.d. shocks to fundamentals ∆ is a
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constant. Whereas under learning ln mt +
σ2
0

2
fluctuates as investors revise their beliefs

after observing realized returns. Additionally, the conditional volatility paramter in the

CG formula σp,t in general is much higher than sd in the RE formula. However, as variance

of idiosyncratic shocks to bt, σ
2
ξt

approaches 0, the price of a call under constant gains

learning converges to price under RE.

In the ensuing analysis, I explain the various option pricing stylized facts through

studying the difference between the CG formula and the RE formula for a given conditional

variance of stock returns. 20 21Proposition 2 below shows that higher expectations will

have a first-order effect on a call-option price i.e. higher (lower) expectations ceteris

paribus will lead to higher (lower) call option price.

Proposition 2. Expectation of returns, ln mt has a positive effect on price of call options,

which is given by the following:

(1.24 )
∂PC,CG

t,t+1

∂lnmt

= PtN( ˜d1,t)e

(
σ2
0
2
+ln mt

)

> 0

Proof. See Appendix A.3

This result is in contrast to RE models where expected returns on the underlying do

not influence the price of an option (See equation (1.14)). Under RE, options can be

perfectly hedged which makes the cost of hedging i.e. the risk free rate rt rather than the

expected returns, important for pricing of options.

Proposition 2 also offers insight into the shape of BS IV curve implied by the model.

This can be seen through the following example: suppose learning model is the true

model determining market option prices and conditional variance of returns is given by

some value σ̂p,t. Furthermore, investors are optimistic i.e. exp{ln mt + σ2
0/2} is greater

than ∆. Given the above, if we use σ̂p,t as unknown volatility parameter in the BS

formula, then the BS formula price PC,RE(σ̂p,t, Xi, Pt, ...) will be less than the market

20In this setup, RE formula is equivalent to BS formula.
21We ignore here that conditional variance of stock returns in RE equilibrium and in CG equilibrium

is different. The reason being that the stylized facts documented above are with respect to reduced form
models which assume a stock price process that describes empirical data rather than deriving that process
from a general equilibrium model. It can be argued that reduced form option pricing models are not
truly rational if the stock price stochastic process assumed in the model reject the RE hypothesis.
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price of option PC,CG( ˆσp,t,Xi, Pt, ...).Therefore, BS IV, which is the value σBS−IV
t that

equates PC,RE(σBS−IV
t , ...) to the market option price, has to be greater than σ̂p,t irrespec-

tive of moneyness. Now, the price difference Γ( ˆσp,t,Xi, Pt, ...) ≡ PC,CG( ˆσp,t,Xi, Pt, ...) −

PC,RE(σ̂p,t, Xi, Pt, ...) increases weakly as moneyness increases. In the limit as Xi →0,

the probability P (Pt+1 > Xi) → 1 and Γ( ˆσp,t,Xi, Pt, ...) → Pt

(
e

(
σ2
0
2
+ln mt

)
−∆

)
. To

compensate for the increasing price difference Γ( ˆσp,t,Xi, Pt, ...), BS IV increases with mon-

eyness. The convex shape of BS IV curve has to do with the concave shape of the cdf of a

standard normal variable. In the limit as Xi → 0, BS IV → ∞. Finally, it is important to

note that BS IV is unrelated to conditional variance sd2 in the RE model when learning

model is the true model.

Figure 1.3 plots the BS IV curve when exp{σ2
0

2
+ ln mt} > (<)∆. As can be seen in

the left (right) panel of the figure that when investors are optimistic (pessimistic), BS

IV curve is upward (downward) sloping and convex (concave). The model being able

to produce different shapes of BS IV curve is an advantage over the extant literature

which has focused primarily on explaining the upward sloping smile. While BS IV curve

calculated from the index call options is typically upward sloping, BS IV curves calculated

from options on individual stocks have varied shapes which are not explainable by the

extant models as documented by Bollen and Whaley (2004). Notice that in this model,

the curvature is endogenously generated as result of agents holding subjective beliefs

rather than by introducing exogenous non-gaussian dynamics to the stochastic process of

underlying asset’s returns. 22

Stylized facts 1 to 4 described in Section 1 pertains to the properties of VIX premium.

In the model, VIX premium is defined as the difference between VIX and conditional

volatility i.e. V P = V IX2
t,t+1 − σ2

p,t. In contrast to the extant literature which interpret

(squared) VIX as a model-free risk neutral expectation of future variance of underlying’s

returns i.e V IX2
t,t+1 = EQ

t [σ
2
p,t+1], under internal rationality, VIX as such does not have

any asset pricing interpretation if we deviate from rational expectations. Hence, I study

the model predictions about VIX and VIX premium more thoroughly in the quantitative

22For example, Du (2011) in asset pricing models showed that the B-S IV smile can be generated if
agents in the model expect a big crash in cash flows or consumption in the future.
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Notes: The figure shows the implied volatility (B-S IV) calculated by inverting Black and Scholes (1973)
option pricing formula, from option prices generated for moneyness [0.9,1.1] using the constant gains
formula in (1.23)with conditional volatility =0.1, price =100 and r =0. The solid line in the figure is
the B-S IV and the dashed line is the conditional volatility. The figure on the left (right) panel assumes(

σ2
0

2 + ln mt

)
− log∆= 0.005(-0,005).

Figure 1.3: Expectations and B-S implied volatility

sections. Nevertheless, in the CG model VIX premium can be understood by observing the

properties of BS IV under the model. This is illustrated in Figure 1.3 where a optimism

(pessimism) leads to a positive (negative) wedge between BS IV and conditional volatility

at all moneyness. In the model under RE, V IX = BS-IV = sd, hence, the capital

gains expectations that drive a wedge between BS IV and the conditional volatility is

the same channel driving the VIX premium. VIX premium is on an average positive

because investors for a majority of time are optimistic in a growing economy. The positive

returns expectations have been noted in many surveys of investor expectations ( See for

example Greenwood and Shleifer (2014)). The following proposition shows that subjective

expectations create a wedge between conditional volatility and BS IV.

Proposition 3. Under the environment of Constant Gain Learning , the effect of higher

expectations, ln mt will lead to higher implied volatility in B-S Model which is given by

the following

(1.25 )dσBS
t

dln mt

=
N( ˜d1,t)e

(
σ2
0
2
+ln mt

)

N ′( ˜d1,t)

> 0

Proof. See Appendix A.4
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It has been documented in some studies (for example Cheng (2018)) that VIX pre-

mium is negative when ex ante measure of risk rises. This can be rationalized through

the difference equation (1.21) that characterizes the evolution of ln mt. Investors over

predicting returns or when surprised by fall in prices may turn pessimistic leading to a

negative VIX premium. This is an advantage over existing theories (see for example BTZ

and DY) which predict only a positive VIX premium at all times. Since, the factor driving

VIX premium is subjective capital gains expectations, it should be a effective predictor of

stock returns because investor expectations, as documented in many places, are to some

extent self-fulfilling (see for example Greenwood and Shleifer (2014)). The fact that VIX

premium can predict returns for an extended horizon upto few quarters can also be ratio-

nalized in our model, since, capital gains expectations ln mt adjust very slowly to errors

with a very small kalman gain parameter g. Importantly, the CG model implies that

the directional behavior of VIX premium is largely independent of conditional volatility,

however, the levels of VIX premium is largely determined by conditional variance. As a

result, VIX premium exhibit considerably lower persistence than the conditional variance.

1.5 Quantitative Analysis

1.5.1 Cash flows and Equity Returns

In this section, I first report the estimation of the structural asset pricing model outlined

in Section 4. The estimation is done using Methods of Simulated Moments (MSM). The

approach is very similar to AMN albeit with monthly data. The goal of this estimation,

firstly, is to demonstrate that the basic asset pricing model with subjective beliefs outlined

above is a good approximation of the reality. Secondly, the output of the model using the

estimated parameters will then be used to match key moments related to index option

prices. It is important to note that matching index returns is not the primary objective

of this paper since other studies (see for example AMN and Adam, Marcet, and Beutel

(2017)) have shown that model with similar set up can replicated wide array of asset

pricing moments. The objective of this paper is to match moments and patterns related

to index option prices, hence, I select only 8 key moments related to index returns.
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The parameters are estimated to match moments of the simulated data with the actual

data moments. The data sample is from January 1990 to December 2019 with 360 monthly

observations. The model is simulated for 10,000 times, with each simulation generating

output of the same sample length as the actual data sample.

The parameters are summarized in the vector

θ ≡ (γ, sd, g, δ)

where γ is degree of risk aversion, sd refers to the standard deviation of dividend

growth, g is the constant gain parameter and δ is the discount factor. The dividend

growth rate, a is calibrated at the rate estimated in the data.

θ is estimated to match 8 sample moments as mentioned in Table 1.5.

ŜN ≡ (Ê[PD], Ê(rs), Ê[dg], ˆStd[rs], ˆStd[d], Ê[rb], ˆStd[PD], Ê[PDt, PDt−1])

where ŜN ∈ R8 denotes the vector of the sample moments for data sample of length N.

Additionally, S̃(θ) denotes the moments implied by the model for some parameter value

θ. The MSM parameter estimate θ̂N is defined as

(1.26)θ̂N ≡ argmin
θ
[ŜN − S̃(θ)]′

∑
[ŜN − S̃(θ)]

where
∑

is an identity matrix. θ̂N is given by the parameters that provide the best

possible fit of the moments estimated using model simulated data S̃(θ) with sample mo-

ments of data ŜN .

Table 1.5 below report the results of the method of simulated moments. The first

column in the upper panel of the table reports the moments calculated using the data

sample and the second column in the upper panel of the table reports the moments

estimated using model simulations. As can be seen in the table 1.5 the model does

a reasonable job of matching the selected moments of asset prices. In particular, the

model does a good job in replicating the volatility of stock returns ˆStd[rs], volatility

of dividends ˆStd[d]and high persistence of the PD ratio Ê[PDt, PDt−1]. The model is

also able to reasonably match average PD ratio Ê[PD] and average stock returns Ê(rs).

However, as has been noted in other papers using similar models (see for example AMN),

the model fails to match the risk free rate Ê[rb]. Nevertheless, the model still generates

average equity risk premium of 0.14% per month compared to the average data estimate
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U.S. Data
1990:1-
2014:12

Subj. Belief
Model

Moment Moment

E[PD] 628.29 543.96
E(rs) 0.46 0.38
E[dg] 0.2 0.2
Std[rs] 3.61 2.55
Std[d] 0.78 0.8
E[rb] 0 0.24
Std[PD] 181.68 155.44
E[PDt, PDt−1] 1 0.97

ĝ 0.00125
â 1.002

ŝd 0.008
γ̂ 1

δ̂ 0.9996
Notes: The table reports U.S. asset pricing moments (second column) using the data sources described in
Section 2, the moments of the estimated models (columns three). The reported moments are as follows:
E[PD], Std(PD) and Corr[PDt, PDt−1] denote the mean, standard deviation and auto-correlation of the
quarterly price dividend ratio, respectively; E[rs ] and Std[rs ] denote the mean and standard deviation
of the real quarterly stock return, expressed in percentage points, respectively; E[rb] is the mean risk
free interest rate, expressed in percentage points, dg is the dividend growth and Std[d ] is the standard
deviation of dividends. The estimated parameters are the updating gain g, from (1.21), the time discount
factor δ, the coefficient of relative risk aversion γ and the standard deviation of the distribution of
dividends sd.

Table 1.5: Estimation Outcome

0.38% per month.23 As far as the parameters are concerned, the estimate of coefficient

of risk aversion γ̂ at only 1 is well within the range of risk aversion parameter used in

the literature to match asset pricing moments. The constant gain parameter estimate

ĝ is 0.00125 which means that agents adjust their expectations by only 0.125% in the

direction of the expectations error. This estimate is in line with estimate of AMN who

estimate a gain of 0.7% using quarterly data in a similar model. It is important to note

that at g = 0, the model is back to rational expectations. Therefore, from value of ĝ, one

can conclude that a very small deviation from rational expectations can bring this model

quite close to data.

Further, using the parameter estimates in Table 1.5, I simulate the S&P 500 series

through the model using the actual dividend data of S&P 500. In Figure 1.4 the solid

23McGrattan and Prescott (2005) show that changes in dividend taxes can explain a large proportion
of equity premium which is outside the scope of this paper.
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Notes: The figure show the simulation of the S&P500 produced by the learning model and corresponding
actual value of S&P500 index adjusted for inflation. Monthly observations from Jan 1990 to December
2019.

Figure 1.4: Simulated S&P 500

green line is a simulated path of S&P 500 from the model while the dashed orange line

shows the actual series of S&P500 index adjusted for inflation from Jan-1990 to Dec-2019.

The model is able to fit the S&P 500 series fairly well for the sample in consideration. In

Figure 1.5, I plot the sample distribution of simulated returns and compare it to actual

sample distribution of S&P 500 real returns. Notice, that the model distribution is much

closer to the actual distribution. The model is able to produce higher kurtosis of 6.29 and

negative skewness of -0.7021 compared to kurtosis of 6.8 and skewness of -0.9877 in the

data. In all, taking into account the results of MSM and the fit of the model to the actual

data, the simple model can be considered a good approximation of the actual data. In the

next subsection, I report results for the index option prices using the model simulations.

1.5.2 Volatility Dynamics and VIX premium

Table 1.6 provides the empirical moments and the corresponding statistics related to VIX

premium for the estimated model. In particular, I provide the model-based 5%, 50% and

95% percentile for the statistics of interest generated from 10,000 simulations, each based

on sample length corresponding to its data counterpart. For the purpose of generating
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Notes: The figure shows the realized /actual distribution (shaded line) of S&P500 real returns, the
simulated distribution (light blue solid line) of S&P500 real returns and the normal distribution (dark
orange solid line)

Figure 1.5: Distribution of real returns.

option prices using (1.23), the model-based expected volatility input is estimated by

running the Glosten, Jagannathan, and Runkle (1993) GARCH (1,1) procedure on model

simulations of S&P 500 returns.24

Table 1.6 upper panel reports moments of VIX Index, realized volatility and VIX

premium.25 The first column in the upper panel reports moments that are calculated from

the data sample of January 1990 to December 2019. The second column in the upper panel

reports moments that are implied by B-S formula. The third and fourth column reports

moments estimated using output from BTZ and DY. The last three columns report the

percentiles of moments using the model simulations. Firstly, Table 1.6 shows that the

model successfully generates a large average VVP. The model generates an mean VVP

of 3.38% which is lower than empirical average of 5.88%. The model also respects the

moments related to VIX. The average annualized VIX in the model is 18.08% compared

to 19.16% in the data. Moderate persistence of VIX premium is very hard to replicate

24The real risk free rate is kept constant at 0.0005 % per month to isolate the impact of expectations
on option prices. I convert the model simulated samples of next period real capital gains expectations
to nominal terms by adding inflation expectations generated from a AR(1) process with mean 0.3% and
standard deviation of 0.0015. This process is close to empirical distribution of non seasonally adjusted
monthly consumer price inflation in the US.

25The model based model-based VIX is calculated according to formula in 1.1. Put prices are calculated
using the put-call parity relationship.
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Data Black-Scholes BTZ DY CG Model
1990:01 to 2014:06 5% Mean 95%

E[V V P ] 5.88 0.00 0.53 2.02 2.92 3.38 3.85
σ(V V P ) 3.88 0.00 1.01 2.22 3.01 3.35 3.69

min(V V P ) -18.91 0.00 -1.88 -0.09 -7.18 -4.82 -2.45
AC1(V V P ) 0.35 0.00 0.86 0.85 0.41 0.50 0.59
AC1(V IX) 0.84 0.00 0.93 0.88 0.77 0.83 0.87

AC1(
√
RV ) 0.76 0.00 0.93 0.90 0.83 0.88 0.91

Ê(V IX) 19.16 13.28 13.33 18.59 17.14 18.08 19.04

Ê(
√
RV ) 13.28 13.28 12.80 16.57 13.83 14.7 15.58

σ̂(V IX) 7.36 0.00 5.12 7.00 6.61 9.11 11.14

σ̂(
√
RV ) 7.72 0.00 4.35 4.80 6.85 9.92 12.4

correl(VIX,VVP) 0.17 0.00 0.88 0.97 -0.23 -0.06 0.16

correl(
√
RV,VVP) -0.34 0.00 0.81 0.94 -0.50 -0.40 -0.29

correl(
√
RV,VIX) 0.87 1.00 0.99 0.99 0.89 0.94 0.96

Predictability
β(1) 0.027 0.00 0.08 0.03 0.02 0.07 0.12

Adj.R2(1) 2.171 0.00 0.20 0.68 0.46 5.05 10.79
β(2) 0.088 0.00 0.20 0.02 0.01 0.14 0.25

Adj.R2(3) 6.503 0.00 0.50 0.44 0.09 2.81 6.88
β(3) 0.103 0.00 0.32 0.01 -0.05 0.17 0.36

Adj.R2(6) 3.821 0.00 0.78 0.09 0.02 1.55 4.56
Notes: Upper panel report the moments of annualized VIX and VVP. VVP in the CG model is VIX-
conditional volatility estimated using Glosten, Jagannathan, and Runkle (1993) GARCH (1,1) procedure.
Data moments are based on a monthly sample from Jan-1990 to Dec-2019. CG Model moments are
mean, 5th and 95th percentiles based on 10,000 simulations of the model. Moments for BTZ and DY are
calculated from model generated series of 10,000 observations. Lower panel reports predictive regression
of excess market returns on VIX premium for horizon of 1, 3 and 6 months.

Table 1.6: VIX premium and VIX

in existing RE models, the one-period auto-correlation of VIX premium in the CG model

0.50 which is a bit higher than 0.35 in the data but still the persistence in the CG model

is quite low compared to DY and BTZ.

Using the VIX premium generated in the model, I run predictive regressions of cumu-

lative stock returns up to 6 months in future on VIX premium as given in (1.2). In Table

1.6 lower panel, I report the results for the predictability regression for 1, 3, and 6 months

horizon. The model average R2 of 2.81% for three month ahead predictability is lower

than the data estimate of 6.5%. However, the data estimates lie with in the confidence

bands of the model.
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Notes: The figure shows the Black-Scholes curvature (line with asterisks) using implied volatility cal-
culated from option prices data for 30 days European Call Option data and the Black-Scholes implied
volatility backed out option prices generated through CG (blue line) model using a constant monthly
volatility of 3.8% and model simulated mt. Monthly date used from Jan-2004 to Dec-2013.

Figure 1.6: Implied Volatility: Data vs. CG Model

1.5.3 Implied volatility curvature

The Figure 1.6 plots the average BS IV curve. The blue line is the average BS IV curve

generated using model simulations and orange line with asterisks represents the average

BS IV curve calculated from the options data. For calculating the data BS IV curve, I

calculate implied volatility using B-S formula from closing prices of selected 30-day call

options and calculate the average BS IV curve based on monthly data from Jan 2004 to

Dec 2013. To calculate the model BS IV curve, I generate call option prices from CG

formula using the same price of underlying, strike price, and risk-free nominal rate as

for the options selected in the data. The monthly volatility is assumed constant at 3.5%

which is the standard deviation of monthly returns for the period of Jan 1990-Dec 2019

and capital gains expectations are estimated by simulating the model. Subsequently,

I calculate BS IV implied by option prices generated using CG formula. The model

captures well near the money BS IV but it generates higher BS IV for deep in the money

call options.
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1.6 Trading Strategies

To further test the predictions of the model, in this subsection, I consider trading strategies

that are implied by the CG model. In the above sections, I show that, in the model, VIX

premium is essentially a function of investors capital gains expectations i.e. optimism

(pessimism) results in positive (negative) VIX premium. In the model, agents expected

variance as given in 1.22 is also derived from his optimal learning algorithm. The model

implies that investors follow a martingale model for forecasting conditional (realized)

variance and are as such not paying any variance premium. In other words, (squared)

VIX index is not a fair price for future variance. Taking cue from the model, one can

exploit this inefficiency in the VIX market by following a long-short (L/S) trading strategy

which entails trading in 1 month VIX index, selling (buying) squared VIX index when

VIX premium>0 (VIX premium≤0).26 27 The payoff of the LS strategy is the following:

(1.27)Payoff
L/S
t+22 =


RVt,t+22 − V IX2

t if V Pt ≤ 0

V IX2
t, −RVt,t+22 otherwise.

,

where V IX2
t is the monthly value of squared VIX index at date t and RVt,t+22 is

the sum of squared log returns on the following 22 trading days. Another strategy that

is implied by the model is where a trader opts for a cash position when V Pt ≤ 0 and

short V IX2
t when V Pt > 0. This strategy is called the cash-short (C/S) strategy has the

following payoff

(1.28)Payoff
C/S
t+22 =


0 if V Pt ≤ 0

V IX2
t −RVt,t+22 otherwise.

.

Lastly, I also consider the strategy where a trader assumes that estimated V Pt is

always positive and hence shorts the VIX index every month which has the following

payoff

26VIX premium for this strategy is calculated as V Pt = V IX2
t −RVt−22,twhere V IX2

t is square of VIX

index divided by 12 to get the monthly value and RVt−22,t =
∑t

h=t−22 r
2
h is the sum of squared daily log

returns on the index for the last 22 trading days.
27It is well know that VIX index itself, as such, cannot be traded, however, 1 month variance swaps are

traded and the one months variance swap rate tracks VIX quite closely. Since VIX index is interpreted as
the synthetic one-month variance swap rate. These strategies can be implemented in the variance swap
market at very low costs.
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1990:02-2019:12
L/S VIX C/S VIX S/S VIX S&P500TR

Mean return 0.3013 0.3009 0.3006 0.007
Standard deviation 0.6557 0.4678 0.656 0.0411

Annualized Sharpe Ratio 1.592 2.228 1.587 0.590

2004:01-2019:12
L/S VIX C/S VIX S/S VIX S&P500TR

Mean return 0.2718 0.2514 0.231 0.0063
Standard deviation 0.8049 0.5277 0.8176 0.0388

Annualized Sharpe Ratio 1.170 1.650 0.979 0.562

2008:04-2019:12
L/S VIX C/S VIX S/S VIX S&P500TR

Mean return 0.2819 0.2447 0.2075 0.0077
Standard deviation 0.9042 0.5715 0.9242 0.0427

Annualized Sharpe Ratio 1.080 1.483 0.778 0.625
Notes: The Table report summary statistics for monthly returns on S&P500 total return index

(S&P500TR), as well as returns on trading strategies that involve long (L), short (S) on the VIX in-

dex or in cash(C). L/S VIX strategy involves going long (short) on VIX index for a month when VIX

premium (VP) ≤ 0(> 0) at the start of the month and receiving (paying) monthly realized variance,

RV − V IX2/12 at the end of the month. C/S VIX strategy involves going cash (short) on VIX index

for a month when VIX premium (VP) ≤ 0(> 0) at the start of the month. C/S VIX strategy receives

V IX2/12−RV at the end of the month when trader is Short VIX and receives 0 when in cash. Short VIX

strategy involves going short the VIX index at start of every month and receiving payoff of V IX2/12−RV

at the end of each month. The upper panel report summary statistics for returns from Feb-1990 to Dec-

2019, the middle panel report summary statistics for returns from Jan-2004 to Dec-2019 and the lower

panel report summary statistics for returns from Apr-2008 to Dec-2019.

Table 1.7: Trading strategies

(1.29)Payoff
S/S
t+22 = V IX2

t −RVt,t+22

.

The table 1.7 presents the mean, variance and annualized Sharpe ratio of the strategies

for various sample periods. As can be seen in the table C/S strategy outperforms all

other trading strategies by a wide margin with a Sharpe ratio of 2.228 for the full sample

of February 1990 to December 2019. Furthermore, L/S trading strategy outperforms

the pure short S/S strategy for all sample periods. Overall, all the trading strategies

involving trading in VIX index outperforms the returns on S&P500 total return index in

all sample periods. Additional, the table 1.8 presents the mean, variance and annualized

Sharpe ratio for the same strategies when trading is done in variance swap rate instead

of VIX index. Variance swaps are traded over the counter and the variance swap rate

pays RVt,t+22 after one month. See for example, Dew-Becker, Giglio, Le, and Rodriguez
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1996:01-2013:09
L/S VSWP C/S VSWP Short VSWP S&P500TR

Mean return 0.2827 0.2696 0.2564 0.0053
Standard deviation 0.6797 0.4354 0.6901 0.0458

AnnualizedSharpe Ratio 1.441 2.145 1.287 0.401

2004:01-2013:09
L/S VSWP C/S VSWP Short VSWP S&P500TR

Mean return 0.3199 0.2761 0.2323 0.0041
Standard deviation 0.814 0.446 0.8434 0.0423

AnnualizedSharpe Ratio 1.361 2.144 0.954 0.336

2008:04-2013:09
L/S VSWP C/S VSWP Short VSWP S&P500TR

Mean return 0.3977 0.2955 0.1934 0.0055
Standard deviation 1.0162 0.4962 1.0748 0.0521

AnnualizedSharpe Ratio 1.356 2.063 0.623 0.366
Notes: The Table report summary statistics for monthly returns on S&P500 total return index

(S&P500TR), as well as returns on trading strategies that involve long (L), short (S) on the Variance swap

rate (VSWP) or in cash(C). L/S VSWP strategy involves going long (short) on VSWP for a month when

VIX premium (VP) ≤ 0(> 0) at the start of the month and receiving (paying) monthly realized variance,

RV − V SWP at the end of the month. C/S VIX strategy involves going cash (short) on VSWP for a

month when VIX premium (VP) ≤ 0(> 0) at the start of the month. C/S VSWP receives V SWP −RV

at the end of the month when trader is Short VSWP and receives 0 when in cash. Short VSWP strategy

involves going short the VSWP index at start of every month and receiving payoff of V SWP −RV at the

end of each month. The upper panel report summary statistics for returns from Jan-1996 to Sep-2013,

the middle panel report summary statistics for returns from Jan-2004 to Sep-2013 and the lower panel

report summary statistics for returns from Apr-2008 to Sep-2013. The data for VSWP is obtained from

Stefano Giglio website.

Table 1.8: Trading strategies

(2017) for a discussion on the depth of the over the counter variance swap market. The

end of month variance swap rate and the squared VIX index has correlation of 99.3% in

the sample period of January 1996 to September 2013. 28 The results in the table 1.8 are

largely in line with results presented in the table 1.7.

1.7 Discussion

Naturally, question arises why the above mentioned trading strategies are this profitable?

It appears unlikely that traders would leave these opportunities unexploited. If variance

swap market is indeed efficient then this may imply that the risk hedged by VIX is some

unknown type of risk for which investors are willing to pay extremely high premium.

28The data for end of month variance swap rate is obtained from Stefan Giglio website.
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Alternatively, risk-return trade off is perhaps not a linear relationship as has been studied

in the CAPM based approach.

On the other hand, the analysis in this paper suggest that the variance swap market

and the stock options market are inefficient. It is the investors subjective beliefs, which

are not necessarily consistent with fundamentals, that drives a large part of VIX premium.

Therefore, such an opportunity exists because trading VIX is costly or highly complex.

1.8 Conclusions

I show that by making only a slight deviation from rational expectations, a very simple

asset pricing model can explain salient features of index option price data. In this model,

investors subjective capital gains expectations on the underlying stock are relevant for

the pricing of options. A closed-form expression for European call-option price is derived

under this setup. The model is able to generate curvature in “Black and Scholes” option

implied volatility. Optimistic (pessimistic) subjective capital gains expectations lead to

upward (downward) sloping curve of Black and Scholes option implied volatility and

price-strike ratio.

The model suggests that the difference between the squared VIX index and conditional

variance or the VIX premium contains information on investors capital gains expectations;

hence, it can predict index returns for a short horizon. Further, the model also suggests

that option implied volatility measures such as VIX are biased estimates of conditional

volatility in the direction of investors subjective expectations. Overall, the model shows

that relaxing the strict assumption of rational expectations can be very informative in

explaining many features of financial derivatives data. For future research, it will be useful

to test whether one can uncover return expectations for different assets by analyzing the

options data.
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Appendix A

A.1

Proof. [Proposition 1]Using 1.12 the price, PC
t,t+1, of a one period option contracted in

period t and set to expire in period t+1 is given by the following:

PC
t,t+1 = δEPi

t

[(
Ct+1

Ct

)−γ

max(Pt+1 −X, 0)

]

= δEPi
t

[(
Ct+1

Ct

)−γ

(Pt+1 −X)|Pt+1 > X

]
.

To use the setup build in section 1.4, we can split the above equation and write it as

following,

PC
t,t+1 = δPtE

Pi
t

[(
Ct+1

Ct

)−γ (
Pt+1

Pt

)
|ln

[
δ

(
Ct+1

Ct

)−γ
Pt+1

Pt

]
> ln

[
δ

(
Ct+1

Ct

)−γ
X

Pt

]]

− δPtE
Pi
t

[(
Ct+1

Ct

)−γ (
X

Pt

)
|ln
[
Pt+1

Pt

]
> ln

[
X

Pt

]]
. (1.30)

Defining Kt+1 = ln

[(
Ct+1

Ct

)−γ
X
Pt

]
, and using (1.20) implies,

δPtE
Pi
t

[(
Ct+1

Ct

)−γ (
Pt+1

Pt

)
|ln

[
δ

(
Ct+1

Ct

)−γ
Pt+1

Pt

]
> ln

[
δ

(
Ct+1

Ct

)−γ
X

Pt

]]

= Pt

∫ ∞

−∞

∫ ∞

Kt+1

(
eln bt+1+ln ϵt+1

)
dFt (ln bt+1 + ln ϵt+1) dFt(Kt+1) (1.31)

To solve the above expression, we can use the property of the normal distribution, where

if x ∼ N(µx, σ
2
x) then

∫ ∞

a

exf(x)dx = (eµx+
1
2
σ2
x)N(

−a+ µx

σx
+ σx)
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for a ∈ (−∞,∞). As a result (1.31) can be simplified to

δPtE
Pi
t

[(
Ct+1

Ct

)−γ (
Pt+1

Pt

)
|ln

[
δ

(
Ct+1

Ct

)−γ
Pt+1

Pt

]
> ln

[
δ

(
Ct+1

Ct

)−γ
X

Pt

]]

= Pte

(
ln mt+

σ2
0
2

) ∫ ∞

−∞
N

−Kt+1 + ln mt +
σ2
0

2
+

(σ2
0+σ2

ϵ+σ2
ξ)

2(
σ2
0 + σ2

ϵ + σ2
ξ

)
/2

 dFt(Kt+1)

.Since, Kt+1 is a random variable, to get an analytical expression we need to integrate

the above expression for values of Kt+1. However, if in the above expression we replace

for yt+1 = ln bt+1 + ln ϵt+1 −Kt+1, then after simple algebra , it can be shown that

δPtE
Pi
t

[(
Ct+1

Ct

)−γ (
Pt+1

Pt

)
|ln

[
δ

(
Ct+1

Ct

)−γ
Pt+1

Pt

]
> ln

[
δ

(
Ct+1

Ct

)−γ
X

Pt

]]

= Pte

(
ln mt+

σ2
0
2

)
N

(
ln Pt − ln Xt + ln mt + r +

σ2
p,t

2

σ2
p,t

)
(1.32)

.For the second term on the right hand side in the equation (1.30), we can use the property

of the conditional normal distribution, since ln

(
δ
(

Ct+1

Ct

)−γ
)

and ln
(

Pt+1

Pt

)
have joint

normal distribution as assumed in (1.20). For any joint normally distributed random

variables x and y,∫ ∞

−∞

∫ ∞

a

eyf(y, x)dxdy =

∫ ∞

a

∫ ∞

−∞
eyf(y|x)f(x)dydx

= (eµy+
1
2
σ2
y)N(

−a+ µx

σx
+ κσy)

for a ∈ (−∞,∞). Using this result and after straight forward algebra it follows that

Expectations and the term structure of Option implied volatility

(1.33)δPtE
Pi
t

[(
Ct+1

Ct

)−γ (
X

Pt

)
|ln
[
Pt+1

Pt

]
> ln

[
X

Pt

]]
=

Xt

1 + r
N

(
ln Pt − ln Xt + ln mt + r − σ2

p,t

2

σp

)
Finally, substituting (1.32) and (1.33) in (1.30), the analytical expression in Proposition

1 is as follows

PC,CG
t,t+1 = Pte

(
ln mt+

σ2
0
2

)
N

(
ln Pt − ln Xt + ln mt + r +

σ2
p,t

2

σp,t

)

− Xt

1 + r
N

(
ln Pt − ln Xt + ln mt + r − σ2

p,t

2

σp,t

)
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A.2

Proof. [Proposition 2]Taking partial derivative of the option price, PC,CG
t,t+1 with respect to

ln mt, we have the following:

(1.34)
∂PC,CG

t,t+1

∂lnmt

= PtN( ˜d1,t)e

(
σ2
0
2
+ln mt

)
+ Pte

(
σ2
0
2
+ln mt

)
N ′( ˜d1,t)

1

σp,t
− Xt

1 + r
N ′
(

˜d2,t

) 1

σp,t

where ˜d1,t=
ln Pt−ln Xt+ln mt+r+

σ2
p,t
2

σp
and ˜d2,t= ˜d1,t−σp,t. Given the relation between ˜d1,tand

˜d2,t, we substitute the value of N ′
(

˜d2,t

)
using the following:

N ′
(

˜d2,t

)
=
∂N( ˜d2,t)

∂ ˜d2,t

=
1√
2π
e−

( ˜d2,t)
2

2

=
1√
2π
e−

( ˜d1,t−σp,t)
2

2

=
1√
2π
e−

( ˜d1,t)
2

2 e
2 ˜d1σp,t−σ2

p,t
2

This can be further solved as the following:

(1.35)N ′
(

˜d2,t

)
= N ′

(
˜d1,t

)
.
(1 + r)Pte

(
ln mt+

σ2
0
2

)
Xt

Replacing N ′
(

˜d2,t

)
in (1.35), we get Proposition 2,

∂PC,CG
t,t+1

∂lnmt

= PtN( ˜d1,t)e

(
σ2
0
2
+ln mt

)

> 0

A.3

Proof. [Proposition 3]Under the assumption that CG model is the true model given some

conditional volatility σp,t, price of the underlying stock Pt, the strike price Xt, subjective

expectations mt and risk free rate rt. We can find a B-S implied volatility σBS
t that solves

the equation

(1.36)0 = PC,BS
t,t+1 − PC,CG

t,t+1
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.

Subsequently, using implicit function theorem we can derive the relationship between σBS
t

and lnmt as the following:

dσBS
t

dlnmt

=

∂PC
t,t+1

∂lnmt

∂PC
t,t+1

∂σBS
t

=
PtN( ˜d1,t)e

(
σ2
0
2
+ln mt

)
N ′(d1,t)

> 0
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Chapter 2

Expectations and the term structure

of Option implied volatility

2.1 Introduction

A typical test of an option pricing model is whether the model can replicate the empirical

facts regarding the option implied volatility. One of the well known type of option implied

volatility (IV, henceforth) is the unknown parameter of volatility that equates the BS

model price with the market option price. Essentially, the idea is to determine whether

the option prices generated by a model produce the same pattern of BS IV as observed

in the data. There are a few important stylized facts regarding BS IV of index options

that have been extensively studied in the literature. Firstly, at each point in time and for

options with the same underlying asset, BS IV varies with respect to the ratio of price of

the underlying and the strike price ( henceforth, moneyness), sometimes called the BS IV

curve. Secondly, the slope of the BS IV curve changes with maturity and is typically more

flat as maturity of an option increases. Thirdly, BS IV surface which characterize the joint

relationship of BS IV along direction of moneyness and maturity itself is stochastic with

time. These empirical features of BS IV are in violation of the BS model which assumes

a constant instantaneous volatility with respect to moneyness and time to maturity of an

option.

In the literature, most reduced form models of option pricing only partially explain the
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stochastic behavior of volatility surface. For example, single factor stochastic volatility

model such as Heston (1993) or simple jump process model can explain any fixed slope of

BS IV curve but cannot replicate a fluctuating BS IV curve with a fixed set of estimated

parameters.Bakshi, Cao, and Chen (1997) considers a general class of option pricing mod-

els and show that all models are inconsistent in the sense that the estimated parameters

differ by maturity of options as well as are highly unstable with time. Furthermore, the

stochastic process of underlying index implied by these models cannot replicate the index

data. Two factor stochastic volatility model as proposed by Christoffersen, Heston, and

Jacobs (2009) offers some flexibility in matching the stochastic BS IV surface. But the

estimated structural parameters as provided in the paper are very unstable and fluctuate

significantly when estimated to different year samples. Aı̈t-Sahalia, Li, and Li (2021a)

find that various models can explain different features of the BS IV curve and its term

structure but they do not propose a single model that can explain all the stylized facts

mentioned above.

Another approach is to explicitly model BS IV rather than looking for an option

pricing model that produces the empirical features of BS IV, for example, see Cont and

Da Fonseca (2002). In this paper, IV is strictly considered as a derivative of option prices.

In other words, the objective is to study how an option can be correctly valued rather

than model the IV itself. This is because the information that IV captures depends on

the true model that generates the market option price data. While it may appear that

IV is a function of time, moneyness and the underlying volatility but the underlying state

variable that actually determines IV could be totally unrelated to underlying volatility

expected by market participant.

I extend the discrete time general equilibrium model studied in Chapter 1 by including

multi-period options. An internally rational representative agent is learning about log of

future risk adjusted price growth from realized price growth. In particular, the agent

revises his next period subjective capital gains expectations based on his last period

forecast error. The persistent component of the learning rule follows a random walk

model implying that expectations in the further future periods are closely related to

expectations for the next period. In this setup, I derive a closed form expression for
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multi-period option price. I simulate option prices from the model using reasonable values

of parameters and show that model can replicate many features of BS IV surface. The

result further demonstrates that a small departure from rational expectations should be

a norm rather than exception in asset pricing models.

The remainder of the paper is structured as follows. Section 2 describes the data and

stylized facts. Section 3 describes the asset pricing model and the beliefs system of the

agents. Section 4 contains analytical results from the model and simulations of the model.

Finally, Section 5 concludes.

2.2 Data

In this section, I documents some key facts about the term structure of the option implied

volatility. The daily data on call options on S&P 500 index futures for the period from

Jan 2004 through Dec 2017 is obtained from Chicago Board Options Exchange. The

data includes bid-price, ask-price quotes at 1545 for all outstanding call options and its

underlying on each trading day during the sample period. It also includes strike price,

date of expiry, BS implied volatility for all respective call options. Options contracts with

fewer than 15 days or greater than 365 days to expiry or with open interest less than 50

or trading volume less than 10 or closing mid price less 0.1 are omitted from the sample.

After cleaning, the data contains total of 346,867 contracts.

Table 2.1 below summarizes the data set. S/X also called moneyness is the price of

underlying divided by the strike price of the option contract and DTM stands for days to

maturity. In panel A, we can see that there are more out of the money
(
S
X
< 1
)
contracts

outstanding than in the money
(
S
X
> 1
)
contracts. Columns in Panel C highlights pres-

ence of option implied volatility curve at all maturities with steepest curvature present in

the short term options. Notice that the curve becomes flatter as the maturity increase.

Figure 1 plots the sample average of BS IV curve by maturity where the yellow dashed

line with plus marker is for call option contracts with short term maturity (STM) between

15 and 45 days, the green line with solid square is for contracts with short to medium

term maturity (SMTM) between 45 and 90 days, the blue line with solid triangles is for
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Table 1 S&P 500 Index Call Option Data, 2004-2017

15<DTM<45 45<=DTM<90 90<=DTM<180 180<=DTM¡366

Panel A. Number of call option contracts
0.935<S/X<0.975 76,379 45,874 13,824 8,382
0.975<=S/X<0.995 51,197 21,130 6,863 4,719
0.995<=S/X<1.005 22,296 11,027 3,993 3,284
1.005<=S/X¡1.025 24,329 11,389 4,668 3,852

1.025<=S/X 17,798 8,446 4,151 3,266
Panel B. Average call price

0.935<S/X<0.975 3.16 7.90 21.27 48.59
0.975<=S/X<0.995 11.02 23.72 42.93 74.16
0.995<=S/X<1.005 23.83 38.19 56.37 88.27
1.005<=S/X<1.025 40.16 52.40 69.62 99.47

1.025<=S/X 80.31 91.71 110.49 133.85
Panel C. Average implied volatility from call options

0.935<S/X<0.975 11.84 11.93 13.95 16.20
0.975<=S/X<0.995 11.45 13.43 15.59 17.63
0.995<=S/X<1.005 12.78 14.85 16.41 17.71
1.005<=S/X<1.025 14.59 16.30 17.48 18.70

1.025<=S/X 19.55 19.28 19.38 20.06

Table 2.1: Summary Statistics: S&P 500 Index Call Option Data, 2004-2017

contracts with medium term maturity (MTM) between 90 to 180 days and the purple

line with solid circles is for contracts with long term maturity (LTM). The flatness of the

curve with maturity is clearly evident in the figure. Black and Scholes (1973) model will

imply that there should be no curve at any maturity. In other words the implied volatility

should be equal to a unique expected volatility for all moneyness and maturity.

Figure 2.2 plots the BS IV curve for STM options and LTM options under three

types of volatility regimes. High (Low) volatility regime include trading days with in

the sample where closing value of VIX index is >30(<15), and moderate volatility regime

include remaining trading days in the sample. It can be seen that the during high volatility

regime the BS IV curve for the LTM options lies below the STM options whereas in the

other two regimes BI curve for LTM options mostly lie above the curve for STM options

except deep in the money options. It appears that when VIX is extremely high, STM

options are expensive relative to LTM options.

Table 2.2 contains the correlation between the VIX index and the slope of BS IV

curve. The slope is calculated as ratio of ITM/ATM implied volatility. It can be seen in

the table VIX index is negative correlated with the slope of BS IV curve for LTM options,

MTM and SMTM options. Further, Figure 2.3 shows the daily evolution of slope ratio
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Figure 2.1: BS IV by maturity of option,
Notes: Sample average of BS IV curve by maturity where yellow dashed line with plus marker
plots call option contracts with short term maturity (STM) between 15 and 45 days, green line
with solid square plots contracts with short to medium term maturity (SMTM) between 45
and 90 days, blue line with solid triangles plots contracts with medium term maturity (MTM)
between 90 to 180 days and purple line with solid circles plots contracts with long term maturity
(LTM). Sample includes all trading days between Jan-2004 through Dec2017.

by maturity of options along and closing value of VIX index/100. The blue dashed dot,

green double dashed, mustard triple dashed and orange solid are smoothed series of slope

ratio for STM, SMTM, MTM and LTM options, respectively. The purple dotted line is

the smoothed series of VIX index/100. It appears from the graph that high VIX index is

associated with convergence of slope ratio of all maturities.1

To summarize, the two main facts about BS IV that I study in this paper are as

follows:

Stylized fact1: The slope of BS IV curve varies with maturity and becomes flatter as

maturity increases.

Stylized fact 2: The slope of BS IV curve for all maturities changes with time and

during market turmoil, BS IV curves for all maturities flatten.

1Smoothing is done using LOESS procedure.
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Figure 2.2: BS IV curve by volatility regimes
Notes: Average BS IV curve for STM options and LTM options under three types of volatility
regimes. High (Low) volatility regime include trading days with in the sample where closing
value of VIX index is >30(<15), and moderate volatility regime include remaining working days
of the sample. Sample includes all trading days between Jan-2004- Dec2017.

VIX.Close LTM MTM SMTM STM
VIX.Close -0.62 -0.38 -0.64 -0.06

LTM 0.38 0.72 -0.001
MTM 0.42 -0.03
SMTM 0.03
STM

Table 2.2: Correlation
Notes: The correlation between the VIX index and the slope measure of BS IV curve. The
slope is calculated as ratio of ITM/ATM implied volatility.

2.3 Model

The framework considered in this chapter is the same as the one studied in Chapter 1.

Section 3 Chapter 1 describes the environment in detail. The stochastic processes of the

fundamentals are given by the following

(2.1)logCt+1 − logCt = loga+ logεct+1

(2.2)logDt+1 − logDt = loga+ logεdt+1

for all t > 0 and where Ct denotes aggregate consumption, Dt denotes aggregate

dividends, logεct+1 ∼ i.i.N(− s2c
2
, s2c) and logε

d
t+1 ∼ i.i.N(− s2d

2
, s2d).

48



Figure 2.3: Slope and VIX
Notes: Daily chart of slope ratio by maturity of options along and closing value of VIX
index/100. The blue, green, mustard and orange lines are smoothed series of slope ratio for
STM, SMTM, MTM and LTM options, respectively. The dotted purple line plots the slope
ratio of VIX index/100. Sample includes each trading day between Jan-2004 through Dec2017.

Objective Function and Probability Space: A representative agent2 maximize lifetime

utility which is given by standard time separable CRRA utility function by choosing

{Ct ≥ 0, Bt, St, O
1
t , ..., O

N
t }∞t=0:

(2.3)EP
0

∞∑
t =0

(δ)t
(Ct)

1−γ

1− γ

subject to:

(2.4)

Ct + PtSt +Bt +
N∑

n =1

P call
t,n Ot,n = (Pt +Dt)St−1 + (1 + rt−1,1)Bt−1

+ Yt +
N∑

n=1

max{Pt −Xn, 0}Ot−n,n

S ≤ St

≤ S̄

B ≤ Bt

≤ B̄

2As assumed in Chapter 1, the representative agent holds subjective beliefs and is not aware that she
is a representative agent.
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O ≤ Ot,n

≤ Ō

for all t ≥ 0 where rt−1,1 denotes the real interest rate on a one-period risk-less bonds

issued in period t-1 and maturing in period t, Pt is the price of a stock in period t, P call
t,n is

the price of a European call option in period t which matures in period t+n, γ > 0 is the

risk aversion coefficient of the agent, δ is the time discount factor, Ct is the consumption

demand in period t , St is the holdings of stocks in period t, Bt is the holdings of bonds in

period t and Ot,n is positions in European call options in period which expires in period

t + n where n ∈ {1, 2, ..., N} for some positive integer N . The initial endowments given

by S−1 = 1, B−1 = 0 and O−1,n = 0 for all n are such that stock are in fixed supply of 1

unit, risk-free bonds and options contracts are in zero-net supply. Furthermore, there are

bounds to holdings of stocks, bonds and option contracts i.e. S ≤ 1 ≤ S̄, B ≤ 0 ≤ B̄ and

O ≤ 0 ≤ Ō such that ponzi schemes are ruled out. The only difference from the setup

in Chapter 1 is that investors can also trade in multi-period options. As is typical in the

literature, I abstain from discussion about secondary market trading in options. Since

these are European call options, they can only be exercised at the date of expiry.3

The probability measure P is the subjective probability measure of the representative

investor. It contains beliefs about all state variables that are exogenous to his decision

making which includes consumption, dividends and stock prices. This is the key departure

from the RE paradigm, that is, investor also hold subjective beliefs about the stochastic

process of stock price which are potentially independent of beliefs about fundamentals.

Nevertheless, beliefs about future option prices are redundant analogous to treatment in

RE models.

In particular, the representative investor in the model is internally rational as defined

in Adam and Marcet (2011). Agent is not aware of the pricing function Pt(.) that maps

fundamentals to equilibrium stock price. Agent behave rationally given their perceived

model i.e she is a utility maximiser subject to a budget constraint. Markets are competi-

tive; dividend and income processes are exogenous. The underlying sample state space Ω

3Secondary market trading could be potentially important but since new option contracts can be
created at any point in time, there is no clear distinction between primary and secondary markets for
derivatives unlike for stocks.
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consists of realization for prices, dividends and income.

Agent chooses consumption, bond holdings, stock holdings and option positions in

period t, denoted by (Ct, Bt, St, Ot,1, ..., Ot,n) contingent on the observed history ωt =

{P t, Y t, Dt}, to maximize (2.3) subject to his budget constraint and the asset limits given

by (2.4). Since the objective function is concave with a convex feasible set, the following

first order conditions characterizes the agent’s optimal plan

(2.5)(Ci
t)

−γPt = δEP
t

[
(Ci

t+1)
−γPt+1

]
+ δEP

t

[
(Ci

t+1)
−γDt+1

]
(2.6)(Ci

t)
−γ = δ(1 + rt,1)E

P
t

[
(Ci

t+1)
−γ
]

(2.7)P call
t,n = δEP

t

[(
Ci

t+n

Ci
t

)−γ

max{Pt+n −Xn, 0}

]
.

These conditions are standard except the conditional expectations are taken with

respect to the subjective probability measure P .

2.3.1 Rational Expectations

This subsection reviews the results of this model under rational expectations. The stock

price under rational expectations PRE
t , is derived by solving the forward difference equa-

tion (2.5) and is given by

(2.8)PRE
t =

δa1−γρε
1− δa1−γρε

Dt

where

ρε = E
[
(εct+1)

−γεdt+1

]
= e−γ(1−γ)

s2c
2 e−γρc,dscsd

and E denotes the statistical expectations under the objective probability measure. Equa-

tion (2.8) show that price to dividends (henceforth, PD) ratio is constant. Consequently,

the ex-dividend stock returns volatility std
(

PRE
t+1−PRE

t

PRE
t

)
is approximately equal to the
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volatility of dividend growth which, as documented in many papers, is at odds with the

real word data. 4

The one-period risk free rate rt,1is standard i.e. 1−inverse of the expectations of 1

period stochastic discount factor

(
δ
Et[(Ct+1)−γ]

C−γ
t

)−1

. Note that in this environment where

shocks to consumption growth are distributed i.i.N , the yield curve is flat i.e. 1 + rt,n =(
δn

Et[(Ct+n)−γ]
C−γ

t

)−1/n

=

(
δ
Et[(Ct+1)−γ]

C−γ
t

)−1

= δ−1aγe
s2cγ(1−γ)

2 .

Proposition 4. Call option price under RE PCall−RE
t,n is given by the following

(2.9)PCall−RE
t,n = Pt∆

nN (d1,t)−
X

(1 + rt,n)n
N (d2,t)

where ∆n = E

(
δn
(

Ct+n

Ct

)−γ
Dt+n

Dt

)
=
(
δa(1−γ)ρε

)n
, d1,t=

ln Pt−ln Xt+nlog∆+nrt+n sd2

2√
nsd

and d2,t=d1,t −
√
nsd and N(x) = 1√

2π

∫ x

−∞ e−
z2

2 dz.

Proof. Appendix A 1.

The formula in (2.9) is identical to the BS formula. The price of a call option PCall−,RE
t,n

is increasing in Pt, ∆ sd, n and rt and non-increasing in Xt. Under RE, option implied

volatility equals the one period volatility of the dividends sd scaled by
√
n.

2.3.2 Beliefs

In this section, I discuss the exact structure of beliefs that the representative agent holds

and its implication on equilibrium asset prices in the model. As in Chapter 1, the true

stochastic processes governing {Dt}∞t=0 and {Ct}∞t=0 is part of the information set of the

representative agent. Consequently, these beliefs imply same equilibrium risk free rate

and the yield curve as in RE. The risk free rate is given by standard Euler equation in

(2.10).

(2.10)1 = δ(1 + rt)E
P
t

[(
Ct+1

Ct

)−γ
]
.

Additionally, agent’s subjective expectation of risk-adjusted stock price growth is de-

fined as

4The proof of (2.8) is fairly straightforward, interested readers may refer to Adam, Marcet, and Nicolini
(2016)for the proof.
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(2.11)βt ≡ EP
t

[(
Ct+1

Ct

)−γ
Pt+1

Pt

]
and the subjective expectation of risk-adjusted dividend growth

(2.12)βD
t ≡ EP

t

[(
Ct+1

Ct

)−γ
Dt+1

Dt

]
.

after substituting (2.11) and (2.12) in the first order condition for stock price (2.5),

the expression for stock price Pt under subjective beliefs can be written as follows:

(2.13)Pt =
δβD

t

1− δβt

Dt

provided that βt is bounded above by less than δ. Given the dividend growth is

distributed i.i.N , βD
t is constant. However, when agent are learning βt, i.e. risk adjusted

stock price growth, equilibrium stock prices can fluctuate much more than dividends.

As can be seen in (2.13), a small change in βt can lead to a large fluctuation in prices,

especially, when βt fluctuates around δ.

Constant-Gain Learning: Now, I specify the exact structure of P . Internally rational

representative agent follow a constant gain learning algorithm to update his expectation

of risk adjusted capital gains. she believes that the process for log of risk ajdusted capital

gains is composed of a persistent component and noise. In particular, agent beliefs are

specified as following:

(2.14)log

(
δ

(
Ct

Ct−1

)−γ
Pt

Pt−1

)
= log bt + log εt

log bt = log bt−1 + log ξt

where log bt|ωt ∼ N(ln mt,σ
2
0), log εt ∼ iiN(−σ2

ε

2
, σ2

ε) and log ξt ∼ iiN(
−σ2

ξ

2
, σ2

ξ ) and

Et−1[(log εt, ln ξt)] = 0.

Further, I assume that agent’s prior beliefs are centered at the RE value i.e log b0 ∼

N(log δ + (1 − γ)log a + γ(1 − γ) s
2
c

2
− 2γρc,dsdsc, σ

2
0). Since prior is specified normally

distributed, agents can optimally filter the persistent component of risk adjusted price

growth using a Kalman filter. Agent’s posterior beliefs at any time t are given by log bt ∼

N(log mt, σ
2
0) where log mt evolves recursively according to the following equation:

(2.15)log mt = log mt−1 −
σ2
ξ

2
+ g

(
log

(
δ

(
Ct

Ct−1

)−γ
Pt

Pt−1

)
+
σ2
ε + σ2

ξ

2
− log mt−1

)
,
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where the constant Kalman gain parameter is given by g = (σ2
0)/(σ

2
0+σ

2
ε) with steady

state variance σ2
0, given by

σ2
0 =

−σ0
ξ +

√
(σ2

ξ )
2 + 4σ2

ξσ
2
ε

2

These beliefs constitute only a small deviation from RE beliefs whenever the gain

parameter g is sufficiently small. Using (2.17) and given the distribution of
(

Ct+1

Ct

)
as

specified above, the posterior distribution of the log price ratio is given by the following

(2.16)log

(
Pt+1

Pt

)
|t ∼ N (µp,t,1, σp,t,1)

where µP
p,t,1 = ln mt+log(1+rt)−

(σ2
ε+σ2

ξ−γ2s2c)
2

and (σP
p,t,1)

2 = σ2
ε+σ

2
0+σ

2
ξ+γ

2s2c−2σ1
bt,ct

σ1bt,ct = covt

[
logbt+1 + logεt+1, log

((
Ct+1

Ct

)−γ
)]

Notice that the conditional variance (σP
p,t,1)

2 is stochastic and is influenced by agent

expectations . Since, we are interested in multi-period options in this paper, I assume

that agents extrapolate the one period learning rule to form beliefs about log risk adjusted

price growth in the future periods. In particular,

(2.17)log

(
δn
(
Ct+n

Ct

)−γ
Pt+n

Pt

)
=

n∑
i=1

[log bt+i + log εt+i]

log bt+n = log bt +
n∑

i=1

log ξt+i

. One could argue that this assumption is strong, that is, the long term beliefs should be

anchored by long term average returns. However, given that the capital gains expectations

are quite persistent as documented in survey data, these beliefs could be a reasonable

description of near term beliefs for example up to 1 year. 5Further, since the variance of

beliefs increase at a rate faster than n, investors will have a very low confidence in their

expectations for the distant future, it perhaps could be useful to model distant beliefs

differently. However, this is outside the scope of this paper. Nevertheless for the facts

that I analyze in this paper, the beliefs modeled in equation (2.17) are sufficient.6 From

(2.17) we get that

5Adam, Marcet and Beutel (2018) show that a simple auto regressive model can accurately describe
the investors expectations as documented in survey data.

6In a world of geometric Brownian motion and rational expectations, the expected variance of returns
increases at the rate of time.
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EP
t

[
log

(
δn
(
Ct+n

Ct

)−γ
Pt+n

Pt

)]
= nlog mt − n

σ2
ε

2
− n(n+ 1)

σ2
ξ

4

,

V arPt

[
log

(
δn
(
Ct+n

Ct

)−γ
Pt+n

Pt

)]
= n2σ2

0 + nσ2
ε + n(n+ 1)(2n+ 1)

σ2
ξ

6

and

(2.18)ln

(
Pt+n

Pt

)
|t ∼ N (µp,t,n, σp,t,n)

where µP
p,t,n = nµP

p,t,1− n2

2
σ2
ξ+ and (σP

p,t,n)
2 = n(σP

p,t,1)
2+n(n−1)σ2

0+n(n−1)(2n+5)
σ2
ξ

6
.7

Note that the stochastic variance of log price growth increases at a rate faster than

n because the uncertainty around posterior beliefs parameterized σ2
0 and σ2

ξ increases at

the rate faster than n.

Valuation of Options : In this section, I provide analytical results that show how

the learning mechanism assumed above can help rationalize the stylized facts related to

option markets as documented in section 2. Firstly, I provide a closed form formula for a

European call option price, PCall
t,n in the proposition 2 below which is derived by solving

equation (2.7)

Proposition 5. Under constant gains learning, price of n period European Call option is

given by the following:

(2.19)PCall
t,n = Pt∆

n
CGN

(
˜dn1,t

)
− Xt

(1 + rt,n)n
N
(

˜dn2,t

)

where ∆n
CG = en(logmt+

n
2
σ2
0+

(n+1)(2n−5)
12

σ2
ξ ), ˜dn1,t=

ln Pt−ln Xt+nlog(∆CG)+nlog(1+rt,n)+
(σP

p,t,n)2

2

σP
p,t,n

and

˜dn2,t=d̃
n
1 − σP

p,t,n

Proof. See Appendix A.2

Note that the formula for price of n period European call option PCall
t,n under learning

nests the RE formula in (2.9). PCall
t,n differs from PCall−RE

t,t+n due to two important factors.

Firstly, the volatility parameter σP
p,t,n in the CG formula is a function of agent beliefs and

7Here I make an assumption that covt

[
logbt+1 + logεt+1, ln

((
Ct+1

Ct

)−γ
)]

=

covt

[
logbt+n + logεt+n, log

((
Ct+n

Ct+n−1

)−γ
)]

.
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Panel A

Panel B

Notes: Panel A shows the implied volatility (BS IV) curve for European call options with
maturity 1 ,3, 6 and 12. BS IV is calculated using Black and Scholes (1973) option pricing
formula, with option prices generated at moneyness [0.9,1.15] using the constant gains formula
in (2.19) using the following parametrization:
P = 1000, rt,n = 0.005,mt = −0.001, d = 4, σP

p,t,1 = 0.05, σ2
ξ = 0.0002 and σ2

0 = 0.0002.
Panel B show BS vega for European call options with maturity 1 ,3, 6 and 12. at moneyness
[0.9,1.15] using the following parametrization P = 1000, rt,n = 0.005, d = 4, σp,t,1 = 0.05.

Figure 2.4: Model BS IV curve and BS Vega

uncertainty around those beliefs while in the RE formula it is just n times the periodic

volatility of dividends sd. Secondly, due to risk adjusted expectations of capital gains

which is ∆n
CG ≡EP

t

[
δn
(

Ct+n

Ct

)−γ
Pt+n

Pt

]
under subjective probability measure P and ∆n

under rational expectations. Importantly, higher uncertainty around belief captured by

parameters σ2
0, σ

2
εand σ2

ξ leads to higher subjective expected future variance and sec-

ondly, it also increases subjective expectation of future risk adjusted price growth due to

adjustment for convexity.

In the literature, mainly two channels have been studied as potential explanations
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for the appearance of BS IV curve in the data. One being the leverage effect which is

the apparent negative correlation between stock returns and its variance and secondly,

positive probability of jumps or discontinuity in stock returns. These two factors con-

tribute to fatter tails and negative skewness in distribution of returns compared to log

normal assumption of BS model. Consequently, put and call options that are written on

strike prices on the left tail of the price distribution could be expensive relative to BS

model price which in turn would imply an upward sloping BS IV curve as observed in the

data. 8 However, it is unclear in these models why the curve should become flatter as

the maturity increases which is our Stylized Fact 1. These models do not imply that the

distribution of returns approaches normal as horizon increases. Bakshi et al. (1997) find

that implied parameters of the underlying returns distribution estimated from market

options prices for most classes of reduced form option pricing model differ significantly

by maturity which makes these models inconsistent. In other words, these models imply

that investor assume different stochastic dynamics for the same underlying instrument at

same point in time when valuing options with different maturity. This inconsistency is

over and above the fact that the estimated parameters cannot explain observed underly-

ing’s return dynamics. To sum up, matching both the cross-section and term structure

of option prices with unique parametrization is extremely challenging for most RE option

pricing models.

Here we have a subtle but important difference from the above mentioned approaches.

Firstly, the expected variance under the subjective probability measure P (henceforth, P

expected future variance) given in (2.18), in general, is not equal to statistical expectations

of future variance ( henceforth, S expected future variance) . S expected future variance

can potentially be estimated from the time series of equilibrium stock returns in the model.

Secondly, the BS IV is derived from equilibrium option prices which are also influenced

by the difference between ∆CG and ∆. This is another source of wedge between BS IV

and S expected future variance. The emphasis here is on the subjective beliefs rather

than the tails of the statistical distribution of returns.

Analysis of how the P expected future variance and S expected future variance differ

8For put options this implies OTM options are expensive and for call options ITM options are expensive
relative to BS price.
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is left for future research. Here, I take a simplified approach by treating P expected future

variance ≈ S expected future variance and focus only on the influence of ∆CG−∆ on the

option price and consequently the BS IV curve. To calculate BS IV, I first calculate the CG

model price ˆPC
CG,t,n for a European call option using equation (2.19) with a maturity n with

particular value of parameters say, P̂,X̂, ˆrt,n,d̂, m̂t,σ̂ξ,σ̂ε and
ˆσP
p,t,n. Then the BS IV ˆIVBS,t,n

implied by that particular option price is the volatility parameter that makes BS model

price calculated using equation (2.9) equal CG price i.e. ΦBS(P̂,X̂, ˆrt,n,d̂, n, ˆIVBS,t,n) =

ˆPC
CG,t,n where ΦBS() is the expression on the right side in equation (2.9).

It is common practice in the literature to study the BS IV curve with reference to

at the money implied volatility, disregarding, how at the money implied volatility differ

from the S expected future volatility. I follow the same approach but it is also important

to note that at the money BS IV in the learning model, in general, is different from

P expected future variance because ∆CG − ∆ ̸= 0 and not due to so called “change of

probability measure”.

Panel A in Figure 2.4 presents the BS IV curves for maturities of 1, 3, 6 and 12 periods

implied by this model using parameter values of P = 1000, rt,n = 0.005,mt = −0.001, d =

4, σP
p,t,1 = 0.05, σ2

ξ = 0.0002 and σ2
0 = 0.0002. It can be seen that the BS IV curve becomes

flatter as maturity increases replicating our stylized fact 1.

The reason for the appearance of BS IV curve in this model is more mathematical than

intuitive. To understand the shape of curve, we need to consider prices of a European

call option calculated using the BS formula and CG formula with same volatility ˜σP
p,t,n.

If, ∆n
CG − ∆n = 0 , then BS model price and CG model price at ˜σP

p,t,n are identical

therefore BS IV calculated from CG option price = ˜σP
p,t,n and when ∆n

CG − ∆n > (<

)0 =⇒ BS-IV > (<)σP
p,t,n . The magnitude by which BS IV differ from ˜σP

p,t,n depends on

the magnitude of price difference between BS model price and CG model price at ˜σP
p,t,n

and the BS vega. The BS vega which is the sensitivity of option price to a unit change

in volatility according to BS formula follows Gaussian type shape i.e. it approaches 0 as

moneyness increases. 9 This is because BS vega is a function of the probability of price

9The BS Vega, Vt = ∂PCall

∂σ = Pte
−∆

√
nN ′(d1,t) where σ is the volatility of the underlying asset

returns and N ′(d1,t) =
1√
2π

e−(d1,t)
2/2 .
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Figure 2.5: Model BS IV curve
Notes: The implied volatility (BS IV) curve for European call options with maturity 1, 3, 6
and 12. BS IV is calculated using Black and Scholes (1973) option pricing formula, with option
prices generated at moneyness [0.9,1.15] using the constant gains formula in (2.19) using the
following parametrization: P = 1000, rt,n = 0.005,mt = −0.005, d = 4, σP

p,t,1 = 0.1, σ2
ξ = 0.0002

and σ2
0 = 0.0002.

of underlying at maturity Pt+n is greater than X and as option is deeper in the money

this probability approaches 1 independent of the level of volatility. When vega is low then

for a given ∆n
CG − ∆n , increase in BS IV needed to bring BS model price equal to CG

price is much higher compared to when vega is high. But the difference between CG price

and BS price is weakly increasing as moneyness increase. Therefore, BS IV that brings

the BS price equal to CG price increases as moneyness increases. The curve becomes

flatter as the maturity increases because vega increases at the rate faster than
√
n but

the difference between CG price and BS price increases at a rate slower than
√
n .

In this model ∆n
CG fluctuates with time with change in equilibrium price , thereby

allowing the model to reproduce different BS IV surface which is the stylized fact 2.

Finally, the vertical difference between BS IV curves is also a function of difference between

∆n
CGand ∆n, if investor are less optimistic and the uncertainty around beliefs is not large

than all the BS IV curves will be flatter, close to each other as it happened during the great

financial crisis in 2008 which is shown in Figure 2.3. Figure 2.5 plots the BS IV curve with

model parameters P = 1000, rt,n = 0.005,mt = −0.005, d = 4, σP
p,t,1 = 0.10, σ2

ξ = 0.0002

and σ2
0 = 0.0002. It can be seen that all IV curves are flat lines and are stacked close to

each other because mt= -0.005 . If higher volatility is associated with lower expectations
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of future capital gains then the negative relationship between the slope of smile and

implied volatility can also be explained by this model.

2.4 Conclusion

The discrete time general equilibrium model studied in Chapter 1 is extended by including

multi-period options. An internally rational representative agent is learning about log of

future risk adjusted price growth from realized price growth. The persistent component of

the learning rule follows a random walk model implying that expectations about capital

gains at distant horizons are closely related to expectations for the next period. In this

setup, a closed form expression for multi-period option price is derived. I simulate option

prices from the model using reasonable values of parameters and show that model can

replicate many feature of BS IV surface. The model correctly predicts that BS IV curve

gets flatter as maturity increases. The model is also able to generate BS IV surface

that fluctuates with changing subjective capital gains expectations. The result further

demonstrates that a small departure from rational expectations should be a norm rather

than exception in asset pricing models.

Appendix A

A 1

Rational Expectations

Proof. [Proposition 1] The price PCall
t,n of a European call option in period t set to expire

in period t+n satisfy the following equation:

PCall−RE
t,n = δnEt

[(
Ct+n

Ct

)−γ

max(Pt+n −X, 0)

]

= δnEt

[(
Ct+n

Ct

)−γ

(Pt+n −X)|Pt+n > X

]

To simplify notation, I define a variable gt+n ≡ log

(
δn
(

Ct+n

Ct

)−γ
)
. Since

(
Ct+n

Ct

)
follows
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a lognormal distribution, Et(gt+n) = −nlog δ − nγlog a− nγ s2c
2
and vart(gt+n) = nγ2s2c .

Additionaly, I define pt+n ≡ log
(

Pt+n

Pt

)
. Given expression for PRE

t in equation (2.8), we

get that log
(

Pt+n

Pt

)
= log

(
Dt+n

Dt

)
. Therefore,Et(pt+n) = nlog a−n s2d

2
and vart(pt+n) = ns2d.

Furthermore covt(gt+n, pt+n) = −nγρc,dscsd. Consequently,

PCall−RE
t,n = PtEt

[
egt+nept+n|pt+n > ln

[
X

Pt

]]
− XEt

[
egt+n|pt+n > ln

[
X

Pt

]]
. (2.20)

The expression,

PtEt

[
egt+nept+n|pt+n > ln

[
X

Pt

]]
= Pt

∫ ∞

−∞

∫ ∞

kt

egt+nept+nf(gt+n, pt+n)dgt+ndpt+n

. To solve the above expression, we can make use of the result i.e. if x ∼ N(µx, σ
2
x) and

y ∼ N(µy, σ
2
y) are joint normally distributed with correlation coeffient κ, then∫ ∞

−∞

∫ ∞

a

exeyf(x, y)dxdy = (eµx+µy+
1
2
(σ2

x+σ2
y+2κσxσy))N(

−a+ µx

σx
+ κσy + σx)

for a ∈ (−∞,∞) . Therefore,

PtEt

[
egt+nept+n |pt+n > ln

[
X
Pt

]]
= PtEt

(
δ
(

Ct+n

Ct

)−γ
Pt+n

Pt

)
N

(
−lnX+lnPt+Et[pt+n]+covt(gt+n,pt+n)+vart(pt+n)√

nvart(pt+n)

)
=

PtEt

(
δn
(

Ct+n

Ct

)−γ
Pt+n

Pt

)
N

(
−lnX+lnPt+Et[pt+n]+Et[gt+n]+

vart(gt+n)

2
+

vart(pt+n)

2
+covt(gt+n,pt+n)−Et[gt+n]−

vart(gt+n)

2
+

vart(pt+n)

2√
nvart(pt+n)

)
.

Notice that log(1+rt+n) = −Et[gt+n]−vart(gt+n)
2

and log Et

(
δn
(

Ct+n

Ct

)−γ
Pt+n

Pt

)
= Et[pt+n]+

Et[gt+n] +
vart(gt+n)

2
+ vart(pt+n)

2
+ covt(gt+n, pt+n). Furthermore, since the price-dividend

ratio is constant under RE therefore Et

(
δn
(

Ct+n

Ct

)−γ
Pt+n

Pt

)
= Et

(
δn
(

Ct+n

Ct

)−γ
Dt+n

Dt

)
=

Et

(∏n
i=1 δ

(
Ct+i

Ct+i−1

)−γ
Dt+i

Dt+i−1

)
. This can be compactly written as ∆n where ∆ = Et

(
δ
(

Ct+1

Ct

)−γ
Dt+1

Dt

)
=

δa(1−γ)ρε because shocks to consumption growth and dividend growth are i.i.d. By sub-

sitution for the above expressions we get that,

PtEt

[
egt+nept+n|pt+n > ln

[
X

Pt

]]
= Pt∆

nN

(
−lnX + lnPt + nln ∆+ nln(1 + rt+n)√

nsd
+

√
nsd

2

)
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. To solve the other expression we can make use of another result i.e if x ∼ N(µx, σ
2
x) and

y ∼ N(µy, σ
2
y) are joint normally distributed with correlation coeffient κ,∫ ∞

−∞

∫ ∞

a

eyf(x, y)dxdy = (eµy+
1
2
σ2
y)N(

−a+ µx

σx
+ κσy)

.Consequently,

XEt

[
egt+n|pt+n > ln

[
X

Pt

]]
= X(1

+ rt+n)
−nN

(
−lnX + lnPt + nln ∆+ nln(1 + rt+n)√

nsd
−

√
nsd

2

)
. Therefore under rational expectations we get exactly the Black-Scholes formula i.e.

(2.21)PCall−RE
t,n = Pt∆

nN(dt+n) +X(1 + rt+n)
−nN(dt+n −

√
nsd)

where dt+n = −lnX+lnPt+nln∆+nln(1+rt+n)√
nsd

+
√
nsd
2

.

A.2

Proof. The expression for price PCall
t,n of European call at date t with maturity at t + n

under constant gains learning is derived from the following first order condition:

PCall
t,n = δnEP

t

[(
Ct+n

Ct

)−γ

(Pt+n −X)|Pt+n

> X

]

, where P is the subjective probability measure. Further, we can write

PCall
t,n = PtE

P
t

[
δn
(
Ct+n

Ct

)−γ (
Pt+n

Pt

)
− δn

(
Ct+n

Ct

)−γ
X

Pt

|ln
[
Pt+n

Pt

]
> ln

[
X

Pt

]]
(2.22)

In the above expression I replace zt+n ≡ gt+n + pt+n.

PCall
t,n = Pt

∫ ∞

−∞

∫ ∞

ln X
Pt

ezt+nf(zt+n, pt+n)dpt+ndzt+n

−X

∫ ∞

−∞

∫ ∞

ln X
Pt

eln gt+nf(gt+n, pt+n)dpt+ndgt+n

Given the learning algorithm described in 2.17 zt+n is equal to n ln bt+1 +
∑n

j=1 ln εt+j +∑n
k=1

∑k
j=1 ln ξt+j. Further the log E

P
t [e

zt+n ] = n(ln mt +
n
2
σ2
0 +

(n+1)(2n−5)
12

σ2
ξ ).Therefore
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PCall
t,,n = Pte

EP
t [zt+n]+

1
2
varPt [zt+n]N

(
−log X + log Pt + µp,t,n + Covt(pt+n, zt+n)

σp,t,n

)
−Xte

EP
t [gt+n]+

1
2
varPt [gt+n]N

(
−ln X + log Pt + µp,t,n + Covt(pt+n, gt+n)

σp,t,n

)
(2.23)

.Notice that µp,t,n+Covt(pt+n, zt+n) = µp,t,n+
σ2
p,t,n

2
+EP

t [gt+n]+
1
2
varPt [gt+n]+Covt(pt+n, pt+n+

gt+n)−
σ2
p,t,n

2
−EP

t [gt+n]− 1
2
varPt [gt+n] = log EP

t [e
zt+n ]+

σ2
p,t,n

2
+nlog(1+rt+n). Consequently,

PCall
t,n = Pte

n(logmt+
n
2
σ2
0+

(n+1)(2n−5)
12

σ2
ξ )N

(
−ln X+ln Pt+n(logmt+

n
2
σ2
0+

(n+1)(2n−5)
12

σ2
ξ )+nlog(1+rt,n)

σpt+n
+ σp,t,n

2

)
−Xt(1 + rt,n)

−nN

(
−ln X+ln Pt+n(logmt+

n
2
σ2
0+

(n+1)(2n−5)
12

σ2
ξ )+nlog(1+rt,n)

σp,t,n
− σp,t,n

2

)
.
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Chapter 3

Option Implied Expectations: An

alternative to survey expectations of

stock return

3.1 Introduction

Expectations of future stock returns as documented in various surveys of investors and

investment professionals has attracted great attention from researchers recently. It has

been shown in many studies (see for example: Adam, Marcet, and Beutel (2017), Adam,

Matveev, and Nagel (2021), Greenwood and Shleifer (2014)) that survey data on expec-

tations of stock returns strongly rejects the rational expectations (RE) hypothesis which

underpins much of the asset pricing literature. In particular, it has been documented that

investors expectations of stock returns are pro-cyclical as reported in surveys as against

a counter-cyclical temporal pattern of realized returns. On the other hand, proponents of

rational expectations argue that survey data is extremely noisy and respondents of sur-

veys perhaps report risk adjusted expectations (see for example, (Cochrane, 2011, 2017))

rather than only stock price growth. That said, the quality of survey data remains to be

a contentious issue preventing the researchers from settling the debate on either side.

In this chapter, building on the analysis of the previous two chapters, I estimate risk

adjusted return expectations from market option prices which I call the option implied ex-
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pectations (henceforth, IE). IE supports the conclusion that expectations of stock returns

of the market participants reject the RE hypothesis. Another way to look at IE is that it

represents the magnitude of departure from RE. This is because one of the core results in

option pricing under RE is that option prices are independent of expected returns on the

underlying. Therefore, any deviation of IE from zero is a departure from RE. In fact, IE

different from zero rejects the core equation in most asset pricing models i.e conditional

expectations of risk adjusted returns equals zero.

Additionally, estimated IE has some useful properties. Firstly, IE is substantially

positive most of the times only turning negative during crisis periods i.e. it is pro-cyclical

in line with survey expectations. Secondly, IE is strongly negatively correlated with

implied volatility (IV) estimated using the learning model and other types of conditional

volatility such as the VIX index. Thereby, it confirms the leverage effect. Furthermore,

IE is strongly positive correlated with survey based expectations. Additionally, in a

regression of IE on monthly price-dividend (PD) ratio, the coefficient on PD ratio is

significantly positive. Taken together, IE offers an alternative to survey measures of

expectations with an advantage that the data is available on a real-time basis as well as

free from measurement errors.

The estimation procedure involves estimating the structural parameters of the multi-

period call option pricing model derived in Chapter 2. In particular, IE, IV and two

parameters related to uncertainty of beliefs are selected that minimize the daily sum of

squared pricing error of the model. Importantly, the option pricing model with learning

has an in-sample average RMSE lower by almost 60 percent compared to Black and

Scholes (1973) model when estimated on data of all traded call options with maturity

from 14 days to 365 days. The IV estimated is considerably lower on average than BS IV

and the VIX index which is a departure from estimates from alternative models where

IV estimates are relatively close to each other. Furthermore, VIX premium calculated

as monthly average of VIX(squared)-IV(squared) positively predict stock market excess

returns upto a horizon of 12 months. The VIX premium estimated here outperform

the variance risk premium that is proposed by Bollerslev, Tauchen, and Zhou (2009) in

predictability regressions. I also find that IV negatively predict future stock excess returns
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in a regression when the VIX premium is also used as a regressor suggesting that standard

risk-return regressions such as GARCH (for example, Glosten, Jagannathan, and Runkle

(1993) ) suffer from the omitted variable bias.

To my knowledge, this is the first study estimating expected returns from market

data on option prices. Other studies in the literature try to estimate the risk neutral

distribution of the expected stock returns but in those studies IE is equal to zero by

construction (see for example, Jackwerth and Rubinstein (1996)).

The remainder of the paper is structured as follows. Section 2 describes the data

and stylized facts. Section 3 describes the estimation procedure and model estimation.

Section 4 contains discussion on VIX premium and evidence of the predictability of stock

market excess returns on VIX premium. Section 5, discussed IE and the survey data.

Finally, Section 6 concludes.

3.2 Data

3.2.1 Call options

To estimate the model parameters I use daily data on call options on the S&P 500 index

futures for the period from Jan 2004 through Dec 2017 which is obtained from the Chicago

Board Options Exchange. The data set includes bid-price, ask-price quotes at 1545 for

all outstanding call options and its underlying on each trading day during the sample

period. The data set also includes strike price and date of expiry. Options contracts with

fewer than 14 days or greater than 365 days to expiry or with open interest less than 50

or trading volume less than 10 or closing mid price less 0.5 are omitted from the sample.

To get the present value of the S&P 500 index futures price, I adjust the futures price by

corresponding constant maturity zero coupon treasury yield obtained from Liu and Wu

(2021).Table 3.1 contains the summary statistics of this data set. Call options with days

to expiry >180 days and <366 days are classified as Long term maturity (LTM), options

with days to expiry >90 days and <180 days are classified as medium term maturity

(MTM), options with days to expiry >45 days and <90 days are classified as medium

term maturity (MTM) and options with days to expiry >14 and <45 are classified as
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LTM MTM SMTM STM

Average Price 82.40 48.45 27.26 19.39
Average BS IV 0.18 0.16 0.14 0.13
n 21,616 32,650 96,300 189,969

Notes: STM is short term maturity, SMTM is short to medium term maturity, MTM is medium term
maturity and LTM is long term maturity. Sample period is Jan 2004 to Dec 2017

Table 3.1: Summary Statistics: S&P 500 Index Call Option Data

short term maturity (STM). As expected most number of options are STM with total

of 189, 969 options. The implied volatility (henceforth, BS IV) calculated using Black

and Scholes (1973) formula is highest for the LTM options on average and decreases with

maturity.

3.2.2 Survey Expectations

I use data from various surveys which ask for point estimates of expected returns on the

stock market. The first data set is from the DUKE CFO Global Business Outlook, the

survey is conducted quarterly by Duke University’s Fuqua School of Business and CFO

Magazine. The survey include responses for various economic and business conditions

including expected return on the S&P500 index for 1 year ahead and 10 year ahead. Each

survey participant is asked to provide his/her minimum estimate, maximum estimate and

expectations of the S&P 500 returns. I use the average of minimum estimate, expectations

and maximum estimate of 1 year ahead returns from this survey. This range of estimates

provided by participants are potentially useful in understanding the expected returns

distribution of each participant. In this paper, I use the three responses to study which

responses better reflect option implied returns expectations.

The second data-set is from the Livingston survey, conducted by the Federal Reserve

Bank of Philadelphia. The respondents include economists from industry, government,

banking and academia. The survey is sent to the participants at the end of April and

October every year and is published in June and December. Respondents are asked to

forecast level of the S&P 500 index for the zero month (June or December), 6 months

ahead, 1 year and 10 year ahead. Expectations of returns are calculated by dividing the

expected S&P 500 index reported in the survey by the value of the index at the end of

month in which survey was sent. For this paper, I only consider responses upto 1 year
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Period Frequency Forecast Mean SD Max Min
Horizon

CFO -Low 03/03 to 10/17 Quarterly 1y -2.2 1.9 0.8 -8.6
CFO- Expected 5.3 1.3 7.7 2.2
CFO - High 10.4 1.5 13.7 7.1
Livingston 03/03 to 06/17 half-yearly 2m 1.1 3.6 6.8 -10.3

8m 6.2 9.9 52.8 -0.7
1y 2m 8.5 4.6 23.2 3.2

UBS (NX) 03/03 to 10/17 Quarterly 1y 0.1 0.0 0.1 0.0
Notes: The table shows summary statistics for the survey data used in this paper. The last four colums

on the right contains mean, standard deviation (SD), mimimum (Min) and maximum (Max) of the time

series of mean responses in the survey

Table 3.2: Survey Data

from this survey.

Finally, I also use a data-set constructed by Nagel and Xu (2022) that uses additional

surveys data to extend the UBS/Gallup survey forward and backward in time. Table 3.2

contains mean, standard deviation (SD), minimum (Min) and maximum (Max) of the

time series of the mean responses of various surveys considered here.

3.3 Structural Parameters Estimation

In this section, I discuss the estimation procedure and results from the estimation of the

model. The formula for a call option PCall
t,n with maturity of n periods at current level of

underlying price Pt, n period risk free interest rate rt,n, with subjective expectations of

risk adjusted one period price growth mt, two parameters reflecting uncertainty of beliefs

σ2
0, σ

2
ξ and subjective expectations of future variance σ

2P
p,t,n is the following:

(3.1)
PCall
t,n ≡ Φ(Pt, X, rt,n,mt, σ

P
p,t,n, σ0, σξ, n)

= Pt∆
n
CGN

(
˜dn1,t

)
− Xt

(1 + rt,n)n
N
(

˜dn2,t

)

where ∆n
CG = en(logmt+

n
2
σ2
0+

(n+1)(2n−5)
12

σ2
ξ ), ˜dn1,t=

ln Pt−ln Xt+nlog(∆CG)+nlog(1+rt,n)+
(σP

p,t,n)2

2

σP
p,t,n

and

˜dn2,t=d̃
n
1 − σP

p,t,n.
1

For a pricing a call option from (3.1) we have Xand n which are specified in the

option contract while Pt, rt,n can be taken from published market data. However, there

1This proof of this formula is available in Appendix A.2 Chapter 2.
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are four unobservable structural parameters namely {mt, σ
P
p,t,n, σ0, σξ} that need to be

estimated. I use the standard approach in the literature that minimizes the sum of

squared pricing errors. In particular, I take all traded call options for each day. Suppose

the number of qualifying option contracts available on day t is Nt where Nt > 4. For

each i = 1, 2, .....Nt, we have its maturity ni, strike price Xi and observed call option

market price PCall−market
t,ni

(ni, Xi). Let PCall
t,ni

(Pt, Xi, rt,ni
, ni, θ) be the model price for the

same option i calculated using (3.1) with Pt and rt,ni
at date t taken from market data

and for some parameter vector θt ≡ {mt, σ
P
p,t,n, σ0, σξ}. Lets define a pricing error ϵi,t as

difference between PCall−market
t,ni

(ni, Xi) and P
Call
t,ni

(Pt, Xi, rt,ni
, ni, θ) for some θ i.e.

(3.2)ϵi,t(θ) ≡ PCall−market
t,ni

(ni, Xi)− PCall
t,ni

(Pt, Xi, rt,ni
, ni, θ)

The estimated structural parameters at date t,

(3.3)θ̂t = argmin
θ

Nt∑
i=1

ϵ2i,t(θ)

. The objective function is the sum of squared pricing errors (SSE). The estimation proce-

dure minimizes this objective function and may put more weight to matching highly priced

options which are ITM options and long maturity options and less weight to matching

OTM options and short maturity options. This approach is not free from its shortcomings

but has been the standard procedure followed in many studies ( see for example, Bakshi,

Cao, and Chen (1997)).

Table 3.3 contain summary statistics for the estimated parameters and average root

mean square error of the models (RMSE). First thing to note in the table is that mt has a

positive mean. These estimates of mt rejects the standard optimality condition in almost

all asset pricing models.2

An implication of this could be that financially constrained investors undertake de-

sirable exposure to the stock index through its options at a fraction of investment than

buying index itself. It is well known that options positions are akin to highly leveraged

bet on the underlying, hence, it appears that speculative investors with subjective beliefs

2This core asset pricing equation for an asset that does not pay dividends is EZ(Mt+1Pt+1

Pt
) = 1where

Z is any subjective or objective probability measure, Mt+1is the stochastic discount factor in period t+1

and Pt+s is the price of an asset in period t+ s. Adam and Marcet (2011) show that EZ(Mt+1Pt+1

Pt
) ̸= 1

is possible when investors are financial constrained and internally rational.
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parameters mean max min sd skew kurt n

mt 0.23 0.74 -5.83 0.32 -7.43 91.72 3326
RMSE 1.79 21.83 0.28 1.39 3.98 33.19 3326
RMSEBS 4.26 36.97 1.21 1.77 3.20 42.30 3326
σ0 0.00 0.04 0.00 0.00 3.02 34.94 3326
σξ 0.00 0.01 0.00 0.00 10.53 158.94 3326
IV-L 14.40 83.70 6.98 8.59 3.21 16.85 3326
IVBS 16.82 59.13 0.00 6.76 2.33 10.52 3326

Table 3.3: Implied Parameters

influence pricing in the index options market. Importantly, mt is the key parameter driv-

ing improvement in model’s pricing ability over the BS model. Root mean squared error

(RMSE) is substantially reduced from 4.26 for BS to 1.79 for the learning model. The

maximum monthly risk adjusted expected return is 0.74% and minimum is -5.4% which

is estimated near the depth of the Great Financial Crisis. The other parameters σ0 and

σξ are estimated to be extremely small and have insignificant pricing implications on the

whole. The average annualized implied volatility
¯̂

σP
p,t,1 (henceforth, IV-L) is 14.40 percent

which is much lower than average BS IV of 16.85 percent. This is interesting because,

typically, implied volatility estimated from most reduced form models is much closer to

each other (see for example Bakshi, Cao, and Chen (1997, Pg 2018)) 3

Figure 3.1 plots the evolution of monthly average of option implied expectations (IE)

and option implied volatility (IV-L) as estimated from this model. In Panel A, we see

that average IE is mostly positive during the sample period only becoming significantly

negative during the depths of the Great Financial Crisis and Euro-Zone Debt crisis. Fur-

thermore, it appears that IE and IV are negatively correlated i.e when investors are

optimistic the estimated IV is low. These estimates point to another type of leverage

effect which is negative correlation between risk adjusted expected returns and expected

volatility. It is worth noting that nothing in the estimation procedure target this negative

relationship between IE and IV. 4This can be seen in Table 3.4 where monthly average of

expectations mt is highly negative correlated with monthly average of all three types of

implied volatility the VIX, IV BS and IV-L. Notice that the estimated IV-L is lower but

3Daily BS implied volatility is estimated using the standard procedure of minimizing the SSE for all
call options on each day.

4The so called leverage effect is a negative contemporaneous correlation between returns and volatility.
This is an assumption in many asset pricing models and option pricing models, see for example, Bansal
and Yaron (2004) and Heston (1992).
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mt vol volBS VIX

mt 1.00 -0.79 -0.66 -0.76
vol -0.79 1.00 0.98 0.99

volBS -0.66 0.98 1.00 0.97
VIX -0.76 0.99 0.97 1.00

Table 3.4: Correlations

highly positively correlated with IV BS and the VIX.

3.4 VIX Premium and Forecasting Stock Market Re-

turns

In the last section we saw that average IV-L is lower than average VIX index. Recall that

IV-L is an estimate of subjective conditional volatility according to the learning model.

Therefore, the difference between VIX and IV-L is an estimate of VIX premium. As dis-

cussed in Chapter 1, VIX premium estimated using different methods has an interesting

property that it predict index returns for a short horizon ( see for example, Bekaert and

Hoerova (2014)). Therefore, one way to show that learning model is indeed a consis-

tent option pricing model is by testing whether VIX premium estimated using learning

model ( henceforth, VP-L) has comparable predictability of stock returns with respect

to alternative estimates of VIX premium. To test this, I run the standard monthly pre-

dictability regressions of future excess returns on S&P 500 on VP-L which is calculated

as the monthly average of difference between squared VIX and squared IV-L i.e.

(3.4)VP-Lt =
1

22

t∑
i=t−22

VIX2
i − IV-L2

i

where 22 stands for the number of working days in a calendar month. Correlation of

VP-L is 0.72 with VIX2 and 0.579 with IV-L2. An alternative estimate of VIX premium

considered is one proposed by Bollersev et al. (2009) called VP-BTZ calculated as the

difference between VIX2 and the historical realized volatility.5

Table 3.5 reports results of the predictability regressions where the left hand side

variable is the S&P 500 excess returns at monthly, quarterly, semi-annually and annual

5The data for VP-BTZ is downloaded from Hao Zhou website :
https://sites.google.com/site/haozhouspersonalhomepage/.
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horizon. All returns are annualized and excess returns are calculated by deducting cor-

responding zero-coupon treasury yield from gross returns. Panel A reports the result of

uni-variate regression on excess returns on VP-L and excess returns on VP-BTZ for the re-

spective horizons. Standard errors are estimates according to Newey-West (1986) method

with 3 lags to account for overlap in monthly data. In a uni-variate regression, both VP-L

and VP-BTZ does not have much predictability power at the monthly horizon where as

for the quarterly horizon VP-BTZ has highly significant coefficient and R2of 4.7% while

VP-L has very little predict predictability at the quarterly horizon. On the other hand,

at longer horizons VP-L outperforms VP-BTZ where both the coefficient estimate and

R2 is higher. However, note that R2 in these regressions are smaller than found in other

studies which may be due to different samples. Separately, in Table 3.6 we can see that

VIX and IV does appear to have some predictability in uni-variate regressions albeit only

at the very near term horizon of 1 month with R2 close to 5% but the coefficient which

is negative is not significant. This is in line with findings in the literature where it has

been hard to find conclusive evidence of relationship between conditional variance and

future returns contrary to a clear prediction in the theory of a positive relation between

conditional variance and future returns.

It is important to note that the in the learning model, the ability of VP-L to predict

future returns is primarily driven by subjective beliefs related parameters in the model.

In rational expectations, the model converges to BS and VIX premium in that case is the

difference between VIX and BS IV which does not much predictability of returns (results

not reported here).

Furthermore, remember that VP-L is correlated with IV-L and both appear to have

predictability power at different horizons. This implies that uni-variate regressions are

suspect and suffer from omitted variable bias. Panel B reports results of multivariate

regressions which includes IV-L and VP-L as predictors and future excess returns as the

left hand side variable. This is a better specification to test for risk-return relationship

and effect of subjective beliefs on returns. We can see here that the R2 at all horizons

is substantially higher with highest being 11% at the 6 month horizon. Importantly,

coefficient of VP-L is positive and IV-L is negative at all horizons. These estimates provide
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evidence that controlling for subjective beliefs the risk-return relationship is negative in

the short term contrary to prediction of RE asset pricing models where it is the conditional

variance that determines the equity premium even in the short term. Notice that however,

including VP-BTZ with IV-L does not change the results much. In results not shown

here, replacing VIX with IV-L produces similar results. Finally, In Panel C of the table, I

consider a specification where VP-BTZ is also included with VP-L and IV-L, notice that

the predictability of VP-BTZ goes away and we get similar results as in the specification

with only IV-L and VP-L. This brings into question the robustness of VP-BTZ as a

predictor of future stock returns. Overall these regression results provide compelling

evidence that VP-L is a robust predictor of future index returns.

3.5 Option Implied Expectations and Survey Data

In the last section, we saw that the option pricing model proposed here appears consis-

tent to the extent that it is able to explain challenging facts related to VIX premium.

Furthermore, in Chapter 1 and Chapter 2, we saw that model is also consistent with both

the cross-sectional and term structure properties of BS -IV curve. Therefore, IE can be

considered a realistic estimate of subjective expectations of market participants.

Having a market based measure of investors expectations can be very useful as it

circumvents the issues around measurement error which is a common concern with survey

based estimates. At the same time, it would be interesting to see, how IE is related with

survey based estimates of returns expectations. Although these estimates are not strictly

comparable, still, a priori, one would expect a positive relationship between the survey

based estimates and IE. 6

Table 3.7 reports correlation coefficients of IE with various available survey estimates.

All surveys report expectations of returns on S&P 500 index. However, it is important

to note that different surveys are available at different frequencies as mentioned in Table

3.2. To calculate sample correlations, I take the IE for the month survey expectations

6IE are risk adjusted expectations while survey based expectations are probably not as discussed in
Adam, Matveev, and Nagel (2021) and surveys ask for expectations at different horizon while IE is an
estimate of monthly expectations,
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are reported. For example: for Livingston survey, the base survey months are April and

October of each year and the correlation coefficient is calculated using IE for April and

October of each year. Secondly, the horizon of expectations is different for different surveys

and IE is an estimate of one month ahead expectations. Therefore one would expect IE

to be highly correlated with survey responses for horizon which are nearer rather than

further. With the Livingston survey, as expected, IE is strongly correlated with the near

horizon expectations with correlation coefficient of 0.58 than expectations for returns 8

months or 12 months in future confirming our conjecture. Interestingly, with the CFO

survey which reports 1 year ahead returns expectations, IE is highly correlated with low

estimate of expected returns with correlation of 0.70. This is, perhaps, due to the fact that

IE reflects risk adjusted returns rather than nominal returns. However, even with CFO

survey expected returns IE is strongly positively correlated with correlation coefficient

0.46. While the CFO survey high estimate of expected returns and IE have low sample

correlation. With the UBS-Gallup extended survey provided by Nagel and Xu (2022)

which report expectations at 1 year horizon, IE is again strongly positively correlated

with the correlation coefficient of 0.54. Additionally, from this evidence it appears that

when survey participants are not asked for separate responses for different horizon, there

responses reflect short term beliefs. Finally, IE is strongly positively correlated with PD

ratio with the correlation of 0.618 at the monthly frequency. This is consistent with

findings noted in many studies that investors expectations are pro-cyclical i.e. high PD

ratio is associated with high returns expectations.

Table 3.8 reports regression result of IE on lagged PD ratio. It can be seen that the

coefficient of PD ratio is strongly significant in a univariate regression, however the point

estimate drops from 0.882 to 0.704 when 1 month zero coupon treasury yield (1 m risk

free rate) is included in the regression. The coefficient of 1 m risk free rate is also positive

and statistically significant indicating that higher interest rates are associated with higher

IE also pointing to procyclical nature of IE. The standard error are corrected according

to Newey-West method with 3 lags to account for persistence in the variables.
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3.6 Conclusion

In this paper, I estimate a multi-period option price model derived in a setup where in-

vestors are internally rational and learning about log of risk adjusted price growth. The

model performance in matching option price data is considerably superior to Black and

Scholes (1973) model. The estimation exercise delivers a new time series of option im-

plied volatility which is adjusted for subjective capital gains expectations. VIX premium

calculated using this option implied volatility strongly predicts future index returns in

the data. The estimation exercise also delivers a new series of investors subjective ex-

pectations of risk adjusted returns which I call the “option implied expectations”.

Magnitude of option implied expectations (IE) suggest that the core equation in asset

pricing with respect to stock prices is not satisfied in the option markets. IE is consistent

with the evidence presented in various investors surveys i.e. expectations of returns of

market participant is pro-cyclical rejecting the rational expectation hypothesis. IE can

be very useful in future research as it provides real time assessment of investor sentiment.
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Panel A

Panel B

Notes: Panel A plots the monthly average of mt which is option implied expectations of log of risk
adjusted returns. Panel B plots the monthly average of option implied volatility estimated using the
learning option pricing formula. Data sample is from Jan 2004- Oct 2017.

Figure 3.1: Option Implied Expectations and Option Implied Volatility
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Horizon 1 3 6 12 1 3 6 12

Panel A: Monthly, quarterly, semi-annual and annual regression with VIX premium

VP-L −0.002 0.005 0.006∗∗ 0.005∗∗∗

(0.004) (0.004) (0.003) (0.001)

VP-BTZ 0.003 0.003∗∗∗ 0.002∗∗∗ 0.001
(0.003) (0.001) (0.001) (0.001)

Constant 0.066 −0.012 −0.035 −0.019 0.015 0.014 0.021 0.036
(0.057) (0.065) (0.085) (0.116) (0.056) (0.052) (0.064) (0.095)

N 162 160 157 151 162 160 157 151
Adj. R2 −0.005 0.013 0.047 0.052 0.018 0.047 0.040 0.001

Panel B: Monthly, quarterly, semi-annual and annual regression with VIX premium and IV-L

VP-L 0.015 0.015∗∗∗ 0.013∗∗∗ 0.008
(0.010) (0.006) (0.005) (0.005)

VP-BTZ 0.003∗ 0.003∗∗ 0.002∗∗ 0.001
(0.001) (0.001) (0.001) (0.0005)

IV-L −0.026∗ −0.016∗ −0.011 −0.005 −0.013∗ −0.004 −0.00002 0.001
(0.014) (0.009) (0.008) (0.009) (0.007) (0.007) (0.006) (0.006)

Constant 0.221∗∗∗ 0.086 0.035 0.015 0.206∗∗ 0.066 0.022 0.017
(0.072) (0.059) (0.049) (0.061) (0.086) (0.082) (0.060) (0.050)

N 162 160 157 151 162 160 157 151
Adj. R2 0.096 0.099 0.110 0.077 0.069 0.050 0.033 −0.002

Panel B: Monthly, quarterly, semi-annual and annual regression with VIX premium and IV-L

VP-L −0.003 0.003 0.005∗∗ 0.005∗∗∗ 0.013 0.013∗ 0.012∗∗ 0.008
(0.005) (0.004) (0.002) (0.001) (0.011) (0.007) (0.006) (0.005)

VP-BTZ 0.003 0.003∗∗∗ 0.002∗∗∗ 0.0003 0.001 0.001 0.001 −0.0002
(0.002) (0.0005) (0.0004) (0.0004) (0.002) (0.002) (0.001) (0.001)

IV-L −0.024∗ −0.014 −0.010 −0.006
(0.014) (0.010) (0.009) (0.009)

Constant 0.055 −0.022 −0.041 −0.020 0.207∗∗∗ 0.068 0.023 0.018
(0.069) (0.063) (0.071) (0.107) (0.079) (0.069) (0.049) (0.057)

N 162 160 157 151 162 160 157 151
Adj. R2 0.016 0.049 0.070 0.047 0.094 0.105 0.111 0.071
Notes: Sample period January 2003-October-2017. All regressions are based on monthly observations.

IV-L is the implied volatility estimated using the CGL option pricing formula and N is the sample size.

The standard errors reported in brackets are computed using Newey-West method using 2

lags.∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01

Table 3.5: S&P 500 returns regressions.78



Horizon 1 3 6 12 1 3 6 12

IV-L −0.014 −0.004 −0.001 0.001
(0.010) (0.011) (0.009) (0.008)

VIX −0.012 −0.003 0.001 0.002
(0.008) (0.010) (0.008) (0.007)

Constant 0.241∗∗ 0.105 0.053 0.027 0.276∗∗ 0.099 0.035 0.005
(0.112) (0.109) (0.080) (0.051) (0.124) (0.140) (0.100) (0.063)

Observations 162 160 157 151 162 160 157 151
Adjusted R2 0.056 0.006 −0.006 −0.004 0.050 0.0002 −0.006 0.002

Notes:Sample period January 2003-October-2017. All regressions are based on monthly observations.

The standard errors reported in brackets are computed using 2 Newey-West lags.
∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01

Table 3.6: Risk-returns regression

mt Livingston Livingston Livingston CFO CFO CFO UBS(NX)
2m 6m 12m low exp high

mt 1.00 0.58 0.08 -0.21 0.71 0.46 0.06 0.54
Livingston 2m 0.58 1.00 0.45 0.52 N.A N.A N.A N.A
Livingston 6m 0.08 0.45 1.00 0.58 N.A N.A N.A N.A
Livingston 12m -0.21 0.52 0.58 1.00 N.A N.A N.A N.A
CFO low 0.71 N.A N.A N.A 1.00 0.76 0.29 0.74
CFO exp 0.46 N.A N.A N.A 0.76 1.00 0.82 0.58
CFO high 0.06 N.A N.A N.A 0.29 0.82 1.00 0.16
UBS (NX) 0.54 N.A N.A N.A 0.74 0.58 0.16 1.00

Notes: Table reports correlation of with survey based expectations. N.A. is reported where the two time

series have no overlapping values. CFO is CFO survey, Livingston is for Livingston survey, UBS (NX) is

for extended UBS-Gallup survey provided in Nagel and Xu (2022) and mt is option implied expectations.

Table 3.7: Correlation: Option Implied Expectations and Survey data

Implied Expectations

PD ratio 0.882∗∗ 0.704∗

(0.357) (0.395)

1m risk free rate 0.031∗∗∗

(0.011)

Constant −3.207∗∗ −2.551∗

(1.413) (1.550)

Observations 162 162
Adjusted R2 0.262 0.286

Notes:∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01

Table 3.8: Implied Expectations and PD ratio
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