
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

UNIVERSITAT AUTÒNOMA DE BARCELONA

PHD PROGRAMME IN ELECTRONIC AND
TELECOMMUNICATION ENGINEERING

Efficient Neural Network Inference
for Resource Constrained Devices

Author:
Juan BORREGO-CARAZO

Director:
Dr. Jordi CARRABINA,

Dr. David

CASTELLS-RUFAS

Tutor:
Dr. Jordi CARRABINA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Center for Hardware-Software Prototypes and Solutions

Microelectronics and Electronic Systems Department

iii

Declaration of Authorship
I, Juan BORREGO-CARAZO, declare that this thesis titled, “Efficient Neural
Network Inference for Resource Constrained Devices” and the work presented
in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own
work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Signed:

Date:

JUAN
BORREGO
CARAZO -
DNI
47236869K

Digitally signed
by JUAN
BORREGO
CARAZO - DNI
47236869K
Date: 2022.09.14
19:55:17 +02'00'

v

“Quien sabe lo que busca encuentra lo que quiere”

Yónatan Calderón

“Who are you, who are so wise in the ways of science?”

Sir Bedivere

“Do you know how frustrating it is to have to translate everything in my head before
I say it?

Do you even know how smart I am in Spanish?”

Gloria

“Oír, ver y callar, recías cosas son de obrar”

Refrán español

vii

UNIVERSITAT AUTÒNOMA DE BARCELONA

Abstract
Engineering School

Microelectronics and Electronic Systems Department

Doctor of Philosophy

Efficient Neural Network Inference for Resource Constrained Devices

by Juan BORREGO-CARAZO

viii

Last decade advances in deep learning have supposed a great leap in state-
of-the-art results with regard to tasks such as image classification, language
translation, and many others. However, with such success, there has been
a related increase in model complexity and size, which has incremented the
hardware requirements both for training and inference (both generally and
initially limited to GPUs). Moreover, the hardware capabilities (OPS perfor-
mance, memory, throughput, latency, energy) have supposed an initial limita-
tion to deploying applications in resource-constrained platforms and applica-
tions, such as mobile or embedded platforms.

There have been many initiatives to reduce training time, and energy costs,
and improve data efficiency during the development phase. Equally, there has
also been profound research to optimize deep learning models with a focus
on inference and deployment: decreasing model complexity, size, latency, and
memory consumption. In such direction, there are five optimization methods
that have stood out: pruning, quantization, neural architecture search, effi-
cient operations, and distillation.

In parallel, in order to enable inference deployment in specialized hardware
platforms, new frameworks have appeared (such as CMSIS-NN or uTensor for
MCUS, and TF Lite for mobile platforms). Those frameworks include several
features for the deployment of models, but most importantly, the crucial point
is if they support the specific model operations and optimizations, ensuring
the final application deployment.

All in all, from optimization procedures to conversion and deployment frame-
works, the procedure of developing efficient NN-based models and deploying
them to constrained hardware has certainly improved, albeit with still some
limitations. In such a sense, this thesis is framed by such improvements and
limitations: first, with the development and improvement of NN optimiza-
tion techniques, and second, with the use and development of software for
porting the optimized models. All with a special focus on three industrial and
practical cases which are the main drivers of the developments: automotive
human-machine interaction, ITM in mobile devices, and bronchoscopy guid-
ance.

In the first case, we show the deployment and optimization of RNNs in MCUs,
as well as the usage and improvement of Bayesian optimization and NAS
methods to deliver minimal but well-performing networks. Altogether we
deliver a framework for automatically converting and deploying networks in
Cortex-M-based MCUs. In the second environment, we employ quantization

ix

and efficient operations to bring an ITM network to mobile devices for effi-
cient inference, providing improvements in latency up to 100x with only 3%
accuracy loss. Finally, we develop an efficient bronchoscopy guidance net-
work with structured pruning and efficient operations, that provides a reduc-
tion of x4 of NN size and an improvement of ≈14% in accuracy for position
localization.

xi

Acknowledgements
I would like to especially thank my thesis directors Prof. Dr Jordi Carrabina
Bordoll and Dr. David Castells-Rufas for the opportunity, guidance, and ori-
entation. Also, for all the freedom and support in conducting research, that, in
the end, has spammed many topics, companies, and ventures, and has been
the seed for its final success and completion.

Special gratitude is devoted to Ernesto Biempica, who guided and help me
in the first and most important phase of this thesis at Kostal Eléctrica. He let
me grow and learn, not only about technical topics but also about business
relationships, goals, and philosophy.

Author thanks the staff of Samsung R&D UK for the research stage opportu-
nity, with special gratitude to the distinguished researcher, Dr. Mete Ozay, for
his support and guidance during my research stage. I also would like to thank
Paul Wisbey, Frederik Laboyrie, and Cristian Szabo for their support during
the project, as well as Albert Saa-Garriga, Karthikeyan Saravanan, and Daniel
Ansorregui for their support and orientation.

Special thanks also to Masoud Daneshtalab and Mohammad Loni, for the op-
portunity of conducting a research stage at Mälardalen University. Also to
all the people that I met: I had an excellent time in the middle of the weary
pandemic.

Thanks also to Prof. Dr. Débora Gil Resina and Dr. Carles Sánchez, researchers
at Centre de Visió per Computador at Universitat Autònoma de Barcelona.
Thanks for the opportunity in the last project of the thesis, and for teaching
me more about research and collaboration.

Gratitude to Jordi Naqui, Sergio Bravo, Marc Bernabé and other Kostal mem-
bers. They helped and supported me during the first steps of this project.

To the whole Microelectronic and Electronics Department, for the support and
research.

A la suerte y la casualidad, compañeras. No estaría aquí si no fuese por una
llamada del Prof. Dr. Jordi Carrabina mientras yo estaba en Villaciervos con
mi tío Fernando viendo antiguas casas de pastores allá por el 2018. Una lla-
mada que, en mayor o menor medida, cambió el curso de los años por venir.

Pero ante todo, y sobre todo, a mi famila, la que está, y la que ya no está. En
especial a Clara Pons Duran, Maria Cruz Carazo Revuelto, Manuel Borrego

xii

Carazo, Francisco Borrego Pastor, Felicidad Revuelto Renta, Fernando Carazo
Revuelto y Vicente Carazo Revuelto. A todos, gracias.

xiii

List of Publications
The following journal articles [1, 2] were published and are included in the
thesis as publications:

• J. Borrego-Carazo, D. Castells-Rufas, E. Biempica, and J. Carrabina, “Resource-
Constrained Machine Learning for ADAS: A Systematic Review,” IEEE
Access,vol. 8, pp. 40573–40598, 2020.

• D. Castells-Rufas, J. Borrego-Carazo, J. Carrabina, J. Naqui, and E. Biem-
pica,“Continuous touch gesture recognition based on RNNs for capaci-
tive proxim-ity sensors,” Personal and Ubiquitous Computing, Nov. 2020

• J. Borrego-Carazo, C. Sánchez, D. Castells-Rufas, J. Carrabina, D. Gil,
"BronchoPose: an analysis of data and model configuration for vision-
based bronchoscopy pose estimation", submitted to Computer Methods
and Programs in Biomedicine, 2022.

The following conference papers [3, 4, 5, 6] were published and are included
in the thesis as publications:

• J. Borrego-Carazo, D. Castells-Rufas, J. Carrabina, and E. Biempica, “Capacitive-
sensing module with dynamic gesture recognition for automotive appli-
cations,” in 2020 23rd International Symposium on Design and Diagnostics
of Electronic Circuits & Systems (DDECS), pp. 1–6, IEEE, 2020.

• J. Borrego-Carazo, D. Castells-Rufas, J. Carrabina, and E. Biempica, “Ex-
tending SpArSe: Automatic Gesture Recognition Architectures for Em-
bedded Devices,” in 2020 19th IEEE International Conference on Machine
Learning and Applications(ICMLA), pp. 7–12, IEEE, 2020.

• J. Borrego-Carazo, D. Castells-Rufas, E. Biempica, and J. Carrabina, “Un-
supervised Embedded Gesture Recognition based on multi-objective NAS
and capacitive sensing,” IFSA Publishing, Nov. 2020.

• J. Borrego-Carazo, M. Ozay, F. Laboyrie, and P. Wisbey. “A Mixed Quan-
tization Network for Computationally Efficient Mobile Inverse Tone Map-
ping.” British Machine Vision Association, 2021.

• J. Borrego-Carazo, C. Sánzhez, D. Castells-Rufas, J. Carrabina, D. Gil, "A
Benchmark for the evaluation of computational methods for broncho-
scopic navigation.", Computer Assisted Radiology and Surgery (CARS),
2022.

xiv

The following publication [6] have been published, with the author of the the-
sis as co-author:

• Gil, D., Hernàndez-Sabaté, A., Enconniere, J., Asmayawati, S., Folch, P.,
Borrego-Carazo, J., & Piera, M. À. (2021). E-Pilots: A System to Predict
Hard Landing During the Approach Phase of Commercial Flights. IEEE
Access, 10, 7489-7503.

xv

Contents

Declaration of Authorship iii

Abstract viii

Acknowledgements xi

List of Publications xiii

List of Figures xvii

List of Tables xxiii

1 Introduction 1
1.1 Brief historic background of neural networks in AI 2
1.2 Why efficient neural networks? 5
1.3 Neural Network Optimization 8
1.4 NN frameworks for resource-constrained hardware 12
1.5 About this thesis . 15

2 Applied Optimization Methods 19
2.1 Quantization . 19
2.2 Neural Architecture Search . 27
2.3 Pruning . 35
2.4 Efficient operations . 44

3 Deployment frameworks for Resource-Constrained Hardware Plat-
forms 53
3.1 Microcontroller Units (MCUs) . 56
3.2 Mobile Platforms . 60
3.3 Embedded GPU boards . 63
3.4 Other platforms . 64

4 Capacitive Sensing based Gesture Recognition on MCUs 67

xvi

4.1 Introduction . 68
4.2 1D Gesture Recognition . 73
4.3 SpArSe Extension . 93
4.4 2D Gesture Recognition . 102
4.5 Conclusions . 109

5 Inverse Tone Mapping on Smartphones 111
5.1 Introduction . 112
5.2 Background . 113
5.3 A Mixed Quantization Network for Mobile ITM 115
5.4 Experimental Analyses . 119
5.5 Conclusion . 133

6 Bronchoscopy Navigation 135
6.1 Introduction . 135
6.2 Methodology . 138
6.3 Experiments and results . 145
6.4 Conclusions . 150

7 Conclusions and Future Directions 153
7.1 Conclusions . 153
7.2 Future directions . 155

8 Bibliography 157

xvii

List of Figures

1.1 NN word trends from the 1940s until the end of 2010s. We can
see, more or less distinctively, the different phases: first, cyber-
netics, second, connections, and finally deep learning era. Note:
cybernetics has separated from NNs meaning. 3

1.2 (Top) Illustration of increasing complexity and size of models
pursuing a higher accuracy (acc.) over the years. FPO stands
for floating point operations. Image taken from [7] with permis-
sion from the authors. (Bottom) Illustration of the size and op-
erational complexity of different networks versus the attained
accuracy. Image taken from [8] with permission from the authors. 6

1.3 Proposal of organization of methods for accelerating or enabling
NN inference in resource-constrained devices. The three most
important branches are optimization, architecture design, and
hardware acceleration. 9

1.4 Two illustrations of the diverse components and steps of scien-
tific development: from research to commercialization. Picture
(A) broadly illustrates the 4 main areas of scientific develop-
ment and the organizations involved in them. Taken from [9]
with permission of the authors. The present thesis is placed be-
tween applied research and the application of knowledge. Pic-
ture (B) states the different Technology Readiness Levels (TLRs).
The current thesis spans from TLR 2, and as far as TRL 7. Pic-
ture of public domain from Wikipedia, Technology Readiness
Level. 14

2.1 Example of the different accuracies achieved with post-training
quantization depending on the type of quantization for Mo-
bilenet V1 and V2 (mvv1-mv2) and Resnet networks. Figure
adopted from [10] . 24

xviii

2.2 Difference in accuracy between quantized from scratch models
or models quantized from a floating point trained model. Fig-
ure adopted from [10]. 25

2.3 (Left) Illustrative simplification of the pruning procedure tar-
geting connections and neurons in a fully connected network.
(Right) Visual example of shape-wise pruning [11]. Image adopted
from [12]. 36

2.4 Graphic illustration of the three choices for scheduling pruning:
one-shot, iterative, and progressive. Adapted from [13]. 41

2.5 Example of efficient operations. (A) Residual connection [14].
(B) Depth-wise separable convolution [15]. (C) Depthwise sep-
arable convolution with inverted residual and linear bottleneck
(right) and without residual (left) [16]. (D) Shuffle blocks, with
(right) or without (left) spatial resolution reduction [17]. 47

2.6 Illustration of the internal operations for both LSTM (left) and
GRU (right). Illustration taken from [2] 49

2.7 Number of operations for both the LSTM and GRU RNN cells
as a function of the hidden state size, nh. 49

2.8 Latency vs Top-1 Accuracy for different models using batch size
1 on an NVIDIA Jetson TX1. Image taken from [8] with permis-
sion from the authors. 50

3.1 Number of Giga operations per second versus power consump-
tion of publicly available AI accelerators and processors. Figure
extracted from [18] with permission from the authors. 55

4.1 Examples of normalized capacitance reading to various events
over time. 70

4.2 Different proximity sensor principles. (A) Self-capacitance sens-
ing. (B) Mutual capacitance sensing. 74

4.3 Capacitive functional foil for touch sensing. Sensitized areas
are depicted as light blue rectangles. 76

4.4 Capacitive sensor readout system. 76
4.5 Example of the frame-based recognition approach for an input

stream of 30 samples in which a tap gesture occurs on sample
12. The input samples X are grouped in 5 frames of 6 samples
each. Frames 3 and 4 are classified as belonging to a Tap gesture
for sensor 1, while other frames are classified as non-gesture . . 80

xix

4.6 Dataset annotations for different gestures in different condi-
tions. (A) tap gesture with a neoprene glove. (B) normal tap on
button 2. (C) finger approach, which is not considered a valid
gesture. (D) swipe right gesture. 83

4.7 Detail of the RNN structure for any cell type. The input at each
step is a sample, x, with the corresponding features for each
sensor. The output of the class is for the whole sequence. (Left)
Example of RNN-based system with 1 layer. (Right) A system
with 3 layers. 84

4.8 (A) Plot of the training procedure for the best LSTM configura-
tion of the optimization procedure. Loss in blue and average
recall (AR) of the touch classes in green. Dashed lines corre-
spond to validation (Val.) set values and solid to training set
(Tr.) values. The minimum value of the validation loss delimits
the transition edge into the over-fitting region. (B) Time of all
the trials run during the optimization process. 90

4.9 (A) Evolution of the minimum achieved error during the opti-
mization process. After the first 2 h of running the optimization
process, the error reductions are harder to achieve. (B) Evolu-
tion of the size of the parameter during the optimization pro-
cess. The size of the model is often increased to achieve lower
error rates, but big error reductions are also achieved by the
change of other hyperparameters. 91

4.10 Confusion matrix for the best LSTM network design. 92
4.11 Confusion matrix for the best GRU network design. 93
4.12 Industrial design of the final product. From top to bottom (1)

microcontroller PCB, (2) capacitive sensor foil, and (3) mechan-
ical enclosure. 94

4.13 Example of CoST samples. First, from the left, grab the gesture.
Next, tickle gesture. Third from the left, scratch and, finally,
squeeze. Values of pressure are standardized by mean subtrac-
tion and standard deviation division. 97

4.14 (A) Pareto frontier for our implementation of Sparse and CIFAR
10 Binary. Notice the different possibilities to choose from re-
garding RAM, size, and performance. Each point corresponds
to a specific configuration of the search space. (B) Full search
procedure for CIFAR-10 Binary with the modified SpArSe. Color
degradation shows the progress of the search. 99

xx

4.15 Illustration of the capacitive foil. Each of the dots represents
an electrode, emitting each one a distinctive measurement of its
row/column on the surface. The foil is pasted underneath the
plastic cover and connected to the microcontroller through the
lower-left pins. 103

4.16 Examples of numbers drawn at the sensitive surface. From left
to right: a one, a five, a six, and a three. The black points
correspond to the electrode pairs through which the finger has
passed. In an image configuration they correspond to 1s while
the background is set to 0. 103

4.17 Best architectures resulting from the optimization procedures
for both the CNN and FC autoencoders. The elements in the
image represent the feature maps. In the convolution case, the
size of the feature map is indicated by the vertical and depth
numbers, while the horizontal number indicates the number of
feature maps. In the FC case, the number indicates the num-
ber of neurons in each step, and the images are flattened at the
beginning and reshaped at the end. 106

4.18 Optimization procedure for CAE. The y-axis represents the Model
size and the x-axis the error (per pixel classification). Both axes
are on a logarithmic scale. The color illustrates the evolution
procedure as each of the steps of the Bayesian optimization pro-
cedure. 107

4.19 Cluster visualization of the different gesture numbers through
t-SNE. 108

5.1 Mobile ITM from single LDR images using mixed quanti-
zation network (MQN). Employment of mixed quantization
methods and efficient blocks in MQN help reduce the compu-
tational complexity of HDR image reconstruction (shown at the
bottom row) from single LDR images (shown at the top row),
and enable its deployment to mobile platforms, achieving a la-
tency of ≈21ms with a Samsung Note 20 Exynos 990 MPSocC. . 113

xxi

5.2 Illustration of the base backbone and high precision head that
comprise the MQN. IRLB is used for fast inference and gated
attention mechanisms [19] for improvement of feature repre-
sentation learning accuracy. The dotted line indicates the sepa-
ration between the fully quantized architecture and the dynam-
ically quantized head. Input is added to the output of the head
to produce the overall output. 115

5.3 Depiction of (a) Channel Attention (CA) block, (b) Spatial At-
tention (SA) and Channel Spatial Attention (SCA) block. Conv
refers to a standard convolution, a soft sigmoid form denotes
the sigmoid activation, the rectilinear symbol denotes ReLU ac-
tivation and the ⊗ denotes element-wise product. 118

5.4 Illustration of feature maps learned at the Att. 4 layer of the
MQN depicted in Figure 5.2. The rows show in order results
obtained without using an attention mechanism, followed by
using SA, CSA, and CA. The first column shows the predicted
HDR image Ĥ and the rest shows the feature maps learned at
different channels of the Att. 4 layer. 123

5.5 Analyses of the quantized Q(f) and floating point F(f) features
f learned by the MQN at the ConvBnReLU3 layer at Figure 5.2
using a) three sample input images with b) predictions Ĥ. Visu-
alization of (c) the first channel f1 and (d) the second channel f2

of f, (e) the difference map Δ f2 = ‖Q(f2)− F(f2)‖1. We show
the probability mass function (PMF) of Q(f2) and F(f2) in (f). . 124

5.6 Visual analyses of the effect of training models with and with-
out using LFR on predictions Ĥ. It helps models gain structural
coherency and improve color details. 126

5.7 Training (left) and validation (right) loss plots for each loss com-
bination established in Table 5.3. 127

5.8 Visual comparison of results obtained using, from left to right;
input LDR images, HDRCNN [20], ExpandNet [21], SingleHDR
[22] and our proposed MQN. All images are produced with Bal-
anced TMO from the suite Photomatix [23], similarly to [22]. . . 128

5.9 Distribution of HDRVDP Q score values for three test datasets
and 5 best competing methods in each case. 130

xxii

5.10 Latency and accuracy trade-off comparison with the HDR Eye
dataset between competing methods and our proposed solu-
tion. Accuracy is measured by the HDR-VDP Q value score.
Latency is computed both in the mobile (CPU) and GPU plat-
forms. 131

5.11 Three examples of extreme cases of overexposure in HDR Real
dataset. Order from top to bottom is: input, HDRCNN [20],
ExpandNet [21], SingleHDR [22], our method and ground truth. 132

6.1 Details of the synthetic dataset for bronchoscopy tracking and
calibration. 6.1a, an example of synthetic frames from a trajec-
tory from patient P18’s lower left lobe. 6.1b, positions visited
by the trajectories corresponding to two different patients: P18
and P20. Both cases only show points pertaining to the lower
right and left lobe trajectories. 137

6.2 Architectures for bronchoscopy calibration and tracking. (a) is
the baseline network without temporal information manage-
ment, as in [24]. (b, c, d) include different mechanisms to man-
age temporal information across predictions. 140

6.3 Effect of data increase in an outer-patient (red) and in an intra-
patient setting (green). Average Position Error is represented
by a dashed line and Average Cosinus Error is represented by
a solid line. The X-axis represents the number of sequences per
lobe and patient available. 147

6.4 Results for the pruning experiment. Size represents the relative
size of the pruned networks with regard to the original one.
Note the improvement in rotation prediction of the networks
pruned to a 90%, 70%, 50%, and 30%. 148

6.5 Position trajectory comparison with the two state-of-the-art meth-
ods, OffsetNet (green), our method (orange), and the ground
truth (blue). 149

xxiii

List of Tables

3.1 Differences between the CMSIS-NN Legacy API quantization
and the new TF Lite compatible scheme. Extracted from the
CMSIS-NN Github page. 58

3.2 An overview of the popular deep learning frameworks for mo-
bile terminals. Inspired in [25]. * Previously contained inside
Caffe2. We have covered only the major frameworks. A more
broad list is included in [26]. 62

4.1 Range of the hyperparameters for optimization. 89
4.2 Initial network results. 89
4.3 Best network designs found by the optimization process. 91
4.4 Results for the original version of SpArSe and our implemen-

tation. Accuracy is in % and Size corresponds to the model
weight in KB taking into account only weights and not code.
The maximum RAM is also in KB and corresponds, in our case,
to the computation specified in Section III-A. Our results are
run in a single RTX 2070 Ti, while the original paper uses four
RTX 2080. GPUD corresponds to Graphic Processing Unit days. 99

4.5 Results for the CoST dataset with hold-one-subject-out testing,
as in [27] and [28]. * indicates that it has been estimated from
the network details in the original paper. ** In this case, authors
did not use leave-one-subject-out testing and hence only MS
and WM are directly comparable. 101

4.6 Results for the CoST dataset with hold-one-subject-out testing
for CNN and CNN+RNN search spaces. The first three rows
are for results with CNN and the last three with CNN+RNN.
Each row corresponds to the test result of different configura-
tion points in the Pareto front. 101

4.7 Results for the optimization procedure with SpArSeMod. MF
corresponds to maximum feature map size, MS to model size,
L to latency, and V-M to the V-Measure. 107

xxiv

5.1 Analyses of accuracy and latency measurements (on the SN20E990)
for different attention mechanisms. None indicates that no at-
tention mechanism is used and B indicates backbone. Blue and
red indicate the best and the second-best accuracy, respectively. 123

5.2 Results obtained using different quantization schemes. Latency
(L.) is measured on the deployment platform (SN20E990). . . . 123

5.3 Analyses of accuracy for different loss combinations.. Blue and
red indicate the best and the second-best accuracy, respectively. 125

5.4 Comparison with other state-of-the-art single image HDR re-
construction methods. Performance metrics and latency values
were reproduced with the same evaluation criteria and origi-
nal codes. Blue and red indicate the best and second-best ac-
curacy. P. indicates the number of parameters, L. M. indicates
latency for mobile CPU, M. RAM the maximum RAM mem-
ory consumed by the model, and O. the number of operations
in multiply-accumulate units. Performance values are given
in HDRVDP-Q score. *FHDR[29] uses recurrence: the present
value is computed taking into account two iterations. 127

5.5 Comparison with state-of-the-art single image HDR reconstruc-
tion methods for PSNR and SSIM performance metrics. Values
reproduced with the same evaluation criteria and original code.
Blue indicates the best and red indicates the second best accuracy.131

6.1 Comparison among bronchoscopic tracking studies with regards
to data and evaluation characteristics. Notably, none of the
methods share a dataset (currently there is no publicly available
dataset for this task) or publish their code. Moreover, metrics,
although aiming to measure the same quantities, are different
or lacking in some cases. Metrics shown are umbrella terms
for measuring the position error (PE), angle error (AE), and the
number of correctly tracked frames. Tracking type [30] refers to
the type of information provided by the tracking: global type
positions the bronchoscope in macro terms, e.g. 3rd bifurca-
tion, while local, give information with regards to position and
angle of the bronchoscope. 136

6.2 Results for the different loss combinations evaluated with the
different metrics. Values show mean and standard deviation. . . 146

6.3 Ablation results for the different architectures proposed in Sec-
tion 6.2.3 with regards to performance metrics L2 and CE. . . . 147

xxv

6.4 Ablation results for the different architectures proposed in Sec-
tion 6.2.3. Latency is computed with an NVIDIA Jetson AGX
Xavier embedded GPU board, using trtexec benchmark, and
TensorRT 8.4 as conversion and deployment environment. Sam-
ple input has dimensions (1, 10, 3, 256, 256), being (batch size,
sequence length, channels, height, width). 148

6.5 Comparison with the state-of-the-art method for bronchoscopy
tracking and calibration in terms of position error (L2), angle
error, and the number of parameters. 149

6.6 Comparison with the state-of-the-art method for bronchoscopy
tracking and calibration in terms of latency in two GPU boards:
GTX 1080 Ti and an embedded GPU board, NVIDIA Jetson
Xavier. Results for input with dimensions (1, 10, 3, 256, 256),
where each dimension corresponds to (batch size, length of se-
quence, channels, height, width). TensorRT 8.4 is used as a de-
ployment framework and trtexec as a benchmark utility. The la-
tency benchmark is performed with unpruned networks since
sparsity is only available for Ampere-based architecture boards. 149

xxvii

List of Abbreviations

AI Artificial Intelligence
HW Hardware
NN Neural Networks
DL Deep Learning
HMM Hidden Markov Models
LSTM Long Short-Term Memory
CNN Convolutional Neural Network
FC Fully Connected
GAN Generative Adversarial Network
NAS Neural Architecture Search
SOTA State of the Art
TF TensorFlow
MCU Microcontroller Unit
FPGA Field-Programmable Gate Array
GPU Graphic Processing Unit
GP-GPU General Purpose - Graphics Processing Unit
CPU Central Processing Unit
NPU Neural Processing Unit
TPU Tensor Processing Unit
2D Two Dimensional
3D Three Dimensional
NLP Natural Language Processing
RL Reinforcement Learning
BN Batch Normalization
HMI Human Machine Interaction
HDR High Dynamic Range
TM Tone Mapping
ITM Inverse Tone Mapping
LDR Low Dynamic Range
IRLB Inverted Residual Linear Bottlenecks

xxix

A Clara Pons Duran,

Felicidad Revuelto Renta,

y a todos los que estuvieron y ya no están:

Fernando Carazo Gil

Andrés Borrego Gallardo - Juana Pastor Cobo
Consuelo Duro Revuelto

1

Chapter 1

Introduction

Neural network (NN) development, usage, and commercialization have ex-
ploded in the last decade, even though they were created in the 40-50s and
further developed later. NNs have succeeded thanks to three main factors
[31]: data availability, training of algorithms, and suitable training hardware.
This conjunction has allowed for advancements and state-of-the-art results in
areas like computer vision and natural language processing, albeit at the cost
of higher computational loads and requirements [32]. Models with abundant
data available and powerful training hardware have grown in complexity and
size, restricting their application to certain conditions, and also increasing
their training cost and energy consumption [7, 33, 34].

Alleviating such conditions has multiple benefits: from reducing CO2 emis-
sions [35] to a more accessible and fairer AI development [7]. Research ef-
forts in such direction have focused on tasks such as how to implement data-
efficient training or the development of hardware accelerators, among many
lines of research. Betwixt them, an important research objective has been the
reduction of model complexity while maintaining performance, that is, mak-
ing NN models more efficient. In this latter sense, methods such as quanti-
zation, pruning, or Neural Architecture Search (NAS) are examples of tech-
niques that allow reaching smaller efficient models, enabling their deploy-
ment in platforms with restricted computational resources. There has been
a huge development of software (complementary to the existing NN devel-
opment frameworks) devoted to porting and adapting NN models to those
application-specific hardware platforms, such as mobile phones, or ultra-low
power micro-controllers. The conjunction of optimization methods and stan-
dardized deployment frameworks has allowed both to port NN models to
many applications that were previously restricted due to the limitation of the
computational resources. However, with regards to optimization methods

2 Chapter 1. Introduction

and deployment frameworks, there are still limitations and points of improve-
ment, like the further reduction of hardware requirements of some models, the
extension of techniques to new operations and applications, or an increased
standardization and support for deployment frameworks.

All in all, from optimization procedures to conversion and deployment frame-
works, the procedure of developing efficient NN-based models and deploying
them to constrained hardware has certainly improved, albeit with still some
limitations. In such a sense, this thesis is framed by such improvements and
limitations: first, with the development and improvement of NN optimization
techniques, and second, with the use and development of software for port-
ing the optimized models. All with a special focus on industrial and practical
cases which are the main drivers of the developments.

This first chapter provides context and a guided introduction to the main fo-
cus of the thesis: adaptation and/or development of NN models for deploy-
ment into resource-constrained platforms. First, in Section 1.1, a brief histori-
cal background is provided to be able to put the work in context, as well as to
understand the historical reason for such a topic. Second, in Section 1.2, the
research purpose of the topic is introduced, stating its importance and how
has been dealt with by the research community. Section 1.3, describes the con-
ceptual scope for the work and how the research field is organized. In section
1.4, the different resource-constrained platforms considered are introduced as
well as how their development and use have been linked to the development
of optimized NNs. Finally, in Section 1.5, the thesis topic is defined, further
specifying its amplitude, purpose, and appropriate nuances.

1.1 Brief historic background of neural networks

in AI

The objective of infusing sapience in inanimate objects has a long cultural tra-
dition in humankind [36, 37] and modern inventors and thinkers often have
followed such purpose in their undertakings and thoughts [38, 39, 40]. In
such pursuit, a source of inspiration has been the human brain itself: from
the first experimental studies about the brain organization and functioning,
[41, 42, 43], to its analysis with modern techniques like optogenetics [44, 45],
understanding how the brain enables thought and understanding has been
one of the major inspirations for AI. And such is the starting point for neural
network models and deep learning.

1.1. Brief historic background of neural networks in AI 3

FIGURE 1.1: NN word trends from the 1940s until the end of
2010s. We can see, more or less distinctively, the different phases:
first, cybernetics, second, connections, and finally deep learning

era. Note: cybernetics has separated from NNs meaning.

First phase, Cybernetics. The first recognized AI studies [31] were inspired
by the physiological and functional relationship among neurons in the brain,
as well as how to process logical propositions through them. McCulloh &
Pitts [46] established the first artificial "neurons" network model, a weighted
linear model, f (w, x), where w represent the connections and x the inputs or
stimulus. Such a model was shown to be able to represent computable func-
tions and construct boolean operatives through network connections, but con-
nections and their strength were manually set. Later, Hebb [47] developed a
method for the update and modification of such connections and their values,
setting the start for learning algorithms.

Immersed with other AI research streams, like logic and theorem solvers [48,
49] or programming languages [50], artificial neural network theory expanded.
Learning methods were improved with works such as Adaptive Linear Ele-
ments (ADALINE) [51, 52], or the Perceptron [53, 54, 55, 56], which was the
first model showing weight learning conditioned to input categorization [57].
Works such as [58] showed that an ensemble of elements connected between
them could represent an individual concept.

However, albeit an initial enthusiasm, the incapacity for solving scaling dif-
ficulties [59] and the limitations of first NNs [60], such as only being able to
represent linear systems, produced backslashes in funding and research that
hindered advances until the 80s.

Second phase, Connectionism. Although AI was immersed in a so-called
winter due to the failure of expert systems to deal with uncertainty and their

4 Chapter 1. Introduction

incapacity to learn from experience, during the late 80s and early 90s neu-
ral network models experienced new advances. Such improvements were
condensed in the research advance of parallel distributed processing [61, 62],
which fostered the concept of connectionism, where a large number of com-
putational units could develop intelligent reasoning when connected and in-
tertwined. Altogether with such development, other advances helped pro-
mote the field. The review and further research of the back-propagation algo-
rithm [63, 64, 65, 66], which had already been developed in the 60s [67, 68],
allowed training multi-layer NNs with internal representations, finally estab-
lishing them, mathematically, as universal function approximators [69]. Ad-
ditionally, NN hardware mapping and usage experienced a renewed boost
[70, 71, 72, 73, 74] up-heaving the importance of such relationship.

Regarding speech recognition, and after important advances in language mod-
eling with Hidden Markov Models (HMM) in the 80s, notable developments
were made to the field using NNs, where the identification of mathematical
obstacles [75, 76] and the development of the Long Short-Term Memory Net-
work (LSTM) [77] stand out.

During the late 90s and early 2000s, there was notable progress in neural
network research. Convolutional NNs (CNN) were developed based on the
neocognitron [78], a network based on the mammalian visual system. From
then on, neural network models continued to obtain increased performance,
and improvements were made in their modeling [79, 80]. However, and once
again, unrealistic claims, the incapacity to translate them to results, and the
surge of new models, such as kernel machines or ensemble methods, drew
funding back from neural network research until the mid-2000s.

Third phase, Deep Learning. At the time, NNs were thought to be especially
difficult to train, probably due to the high computational cost of training al-
gorithms for the available hardware and the subsequent lack of experimenta-
tion. Nevertheless, interest was drawn again upon NNs with the work [81]
that showed an efficient way to train a deep belief network using a greedy-
layer strategy. Advances followed with other architectures [82], and, espe-
cially, with a focus on the importance of depth [83, 84], which popularized the
term deep learning.

Interest in deep learning finally detonated with the work [85], which used
deep convolutional NNs and GPU training to win the ImageNet Large Scale
Visual Recognition Challenge by a notable margin and a drop in the error
rate of more than 10% compared to previous editions. Since then, deep NNs

1.2. Why efficient neural networks? 5

have begun to be used extensively in other tasks and fields, such as speech
recognition [86, 87, 88], natural language processing [89, 90, 91], recommender
systems [92, 93], or reinforcement learning [94, 95], establishing new state-of-
the-art solutions and applications.

Additionally, research has also flourished with new advances. Techniques
for improved training and generalization, such as dropout [96, 97, 98], ReLU
and variants [99, 97, 100, 101, 102], batch normalization [103, 104], or weight
decay [105, 106, 107], have been developed. New architectures and models
have been engineered improving state-of-the-art results: generative adversar-
ial networks (GANs) [108, 109, 110], transformers [111, 112, 113], new RNNs
and CNNs [114, 115, 116, 117], graph NNs [118, 119], as well as NAS, to find
even better performing architectures by exploring the configuration space. Ef-
forts have also been made towards improving the explainability and inter-
pretability of NNs and to understand the reason for their learning capacity
[120, 121]. Libraries and frameworks [122, 123, 124] have been standardized
and open-sourced, pushing the possibility to compare and build upon re-
search. Representation learning, unsupervised training, and other learning
strategies, such as one-shot learning, have driven the boundary of knowledge
with regard to how information is processed inside NNs and how much is
needed to create valuable representations.

All in all, we have briefly visited the history of NNs and their trends (in Fig-
ure 1.1 the word trends related to NNs can be visualized). As seen, there
have been and continue to be great developments related to NNs. Improve-
ments that have ground on specific developments in the first decade of the
XX century: data abundance, hardware improvement and generalization, and
the availability of training algorithms. In the next section, will question the
need to add efficiency as the main driver for NN development and see how
academics have dealt with it.

1.2 Why efficient neural networks?

With the advent of the World Wide Web and the spread of personal and portable
devices, the digitization of society has increased and the quantity of data gen-
erated has largely augmented, facilitating the creation of bigger datasets. The
datasets during the first phase were small (tens to hundreds of samples), with
enough data to prove that NNs could learn certain functions, while in the

6 Chapter 1. Introduction

FIGURE 1.2: (Top) Illustration of increasing complexity and size
of models pursuing a higher accuracy (acc.) over the years. FPO
stands for floating point operations. Image taken from [7] with
permission from the authors. (Bottom) Illustration of the size
and operational complexity of different networks versus the at-
tained accuracy. Image taken from [8] with permission from the

authors.

1.2. Why efficient neural networks? 7

second phase they had already augmented in size (thousands) and complex-
ity, such as in the case of MNIST [79]. Finally, in the third phase, datasets
increased in complexity, as with CIFAR-10 [125], and later, from 2010 and on-
wards, in size, reached sample numbers of hundreds of thousands and tens
of millions (ImageNet [126, 127], Youtube-8M [128], WMT [129], and many
others).

In parallel, computing power has increased, is cheapened, and is generalized.
Early NNs were developed to be implemented in the CPU, which hindered
training them. Even if a careful implementation can yield appropriate infer-
ence results in a CPU [130], current models are insufficient for training. On
the contrary, GPUs have supposed a breakthrough for training NNs. Tradi-
tionally developed for graphics rendering, their inherent parallelism capabil-
ity and higher memory bandwidth than CPUs, make them more suitable for
NN training, where there are large numbers of parameters, gradients, and ac-
tivations that can be updated independently if they are in the same layer.

Original GPUs were specialized hardware only devoted to the graphics do-
main. However, they increasingly added more subroutines for other tasks,
thus becoming more flexible, and soon they were adapted for scientific and
NN computation [131, 132] showing improvements over CPUs. After the
creation and expansion of GP-GPUs and associated languages, like NVIDIA
CUDA, its usage for training deep learning networks expanded and soon
was adopted by many researchers [133, 134]. Finally, after the creation of
deep learning frameworks (Tensorflow [135], Pytorch [123], MNext [124], and
others), which abstracted such hardware capabilities, GP-GPU usage for NN
training and inference exploded, boosting research and advances in deep learn-
ing.

This situation, altogether with the existence of suitable algorithms for training
NNs and data availability, has led to an increase in model size, complexity,
and accuracy, as illustrated by Figure 1.2, generating the current success en-
joyed by deep learning models. Regarding size, the first models had dozens of
neurons, mainly limited by hardware capabilities, but since the second phase,
models have more or less doubled their size every 2.4 years [32], attaining the
size of billions of parameters [136] and even hundreds of billions of param-
eters [137]. An increase has also occurred at the complexity level, where the
connections have grown from tens [51] to tens of thousands per neuron [138],
and new and more specialized operations types, such as attention [112], have
specialized information processing. Altogether both increases have brought

8 Chapter 1. Introduction

new accuracy SOTA in many tasks such as semantic segmentation, object de-
tection, machine translation, text generation, and others, pushing at the same
time the requirement for more hardware resources.

As seen, improvements in accuracy have been accompanied by an increase
in computational costs and data required. While models grew in complexity
and size, the time spent training increased substantially, and so the hardware
usage, thus augmenting the energy consumption and carbon-related emis-
sions [34]. Processing power and memory requirements also increased, let-
ting to platform separation for training (in the cloud) and inference (also in
constrained devices or edge environments). Moreover and until now, hard-
ware development has been able to match the requirements of new and costly
models, however, this tendency might not hold in the near future [139, 140],
impeding further increase in model size and complexity in a feasible and use-
ful manner. As an added problem, the increase in complexity has been accom-
panied by the need for increasing annotated data [32] to avoid overfitting,
resorting then to long processes of dataset production with all the costs asso-
ciated and the bias that labeling induces in the learning process. Additionally
and until recently, little attention has been given to methods and procedures to
reduce training times or training adaptation to new instances [141], hardening
the problem of transfer learning.

In summary, there are several reasons for promoting efficient NNs based on
two main grounds: operability and data. With regards to data, the goal is to
promote NN efficiency to reduce the dependency on the quantity of data, thus
avoiding massive labeling, but also in what is learned from data, promoting
easier task shift. Concerning the operability case, it is mandatory to reduce
complexity and hardware requirements in order to reduce the energy con-
sumption both in training and inference, but also to help port NN utilization
to tasks and situations that are resource constrained [142, 143]. The present
work is focused on the latter case: how to make NN more efficient so as to
port them to applications with resource-constrained devices.

1.3 Neural Network Optimization

Given such context, there have been continued research efforts to promote
efficiency in NNs. In the present work, we fundamentally based our devel-
opments on operability, specifically focusing on the model and how it can be

1.3. Neural Network Optimization 9

����������	��
		��������

����������
�	���	���������� ���������
		��������

�������

��	�
��	
���

�������
�����

���
���	
������
���	
���

����	�������
��
������	���

������
��

��	
����

��
!�
��
"�
����
#�!�

��
����	
�����$�%���	����

FIGURE 1.3: Proposal of organization of methods for accelerat-
ing or enabling NN inference in resource-constrained devices.
The three most important branches are optimization, architec-

ture design, and hardware acceleration.

adapted and made more efficient so it can be used in constrained environ-
ments. The focus has not been on data issues or efficiency through hardware-
specific implementations [144].

There have been multiple and varied research efforts that have tried to make
NN models more efficient so they can be deployed, developed for, and used
in constrained hardware environments, that is, platforms that previously did
not have the required computational resources for such models to be appro-
priately run on them. Among such different methods, six stand out as the
main procedures for model efficiency improvement: quantization, pruning,
distillation, neural architecture search, efficient operations, and ab initio model
development. Below, those methods are briefly introduced and organized ac-
cording to their functionalities.

Quantization is a general concept present in multiple scientific fields, such as
quantum physics [145] or signal analysis [146], and implies the discretization
of a continuous space into a discontinuous one in which elements are isolated
from one another. In the NNs case, quantization discretizes the numerical
space available for weights and activations by using a fixed point representa-
tion and often also by reducing the bit depth. It was one of the first methods
developed [147, 148, 149], but has gained strength and robustness in devel-
opment in the past decade [130, 150, 10]. Its main benefits are size reduction
and inference acceleration, although it might also provide minimal accuracy

10 Chapter 1. Introduction

improvements due to regularization. The reduction of the bit depth provides
a reduction of model and feature map size, thus reducing the memory (static
and dynamic) required to run it. By using fixed-point representations, it pro-
vides reduced latency when used altogether with hardware suited for such
formats, such as CPUs or NPUs. Although it is commonly used for inference,
it has also been applied to training [151, 152] and it recently regained inter-
est in reducing resource consumption and accelerating the training procedure
[153, 154].

Pruning intends the reduction the complexity of the network, in terms of size
or operations, by suppressing elements of it and at the same time minimizing
the impact on accuracy. Initially developed in the late ’80s [155], and early
’90s [156, 157], new research has emerged in the last ten years [158, 159], tran-
sitioning from its application in initial small networks to the bigger modern
networks 1. The principal point, however, is still the decision measure, that
is, the evaluation procedure that selects which weights or activations should
be deleted. With regards to such criteria, three different categories can be de-
termined [160]: magnitude-based [155, 158, 161, 162], which select weights
based on their local saliency, similarity-based [163, 164], which identifies re-
dundant values, and sensitivity-based [165, 166], focusing on the effect on the
loss. More categorizations can be posed [12], but with regards to hardware de-
ployment, there is a distinction that affects enormously their latency reduction
benefits and not only size: if they are applied to individuals (unstructured)
or groups (structured) [167]. While in the latter case latency reduction is an
immediate benefit, in the former the deployment framework must allow for
sparse computations [168, 169, 170].

Distillation focuses on transferring the knowledge of a bigger model or en-
semble of models, also known as Teacher, to a smaller model, known as Stu-
dent. Initially developed by [171], and further matured by [172], it has been
further extended to different architectures [173, 174] and tasks [175, 176]. Some
research has been devoted to its principles [177, 178, 179], however, the prin-
cipal ideas remain the same. The student is trained with both the class prob-
ability distribution (soft targets) produced by the teacher, softened through a
temperature parameter, and also the real class labels (hard targets). The tem-
perature parameter can soften or harden the labels and it controls the distri-
bution of information transferred to the student, thereby enabling information

1Network in [157] had 2600 parameters, while modern networks can have from millions
to billions, thus changing the feasibility of certain objectives and algorithms

1.3. Neural Network Optimization 11

on secondary classes or values.

Efficient operations aim to reduce the computational burden in terms of mem-
ory used and latency of operations while maintaining the informative capac-
ity, enabling their deployment and usage in more constrained platforms such
as mobiles [16, 180]. Such reduction is usually achieved through the com-
bination of simpler operations and the way they are combined, a procedure
known as operation factorization. Outstanding examples are the GRU cell [181]
compared to LSTM cell [77], or depthwise separable convolutions [15, 16] and
ShuffleNet units [180] compared to standard convolutions. Note that the de-
sign of such operations has been mostly manual. However, recently, NAS
methods have been used to automatically define efficient blocks taking into
account different constraints such as the number of FLOPS or the memory
used [182, 183]. Finally, another possibility, although less used, is to change
the mechanisms of operations, as in circular projections [184] or deformable
convolutions [185, 186].

Neural Architecture Search builds NNs in an automated manner given a
search space, a search algorithm, and an objective [187]. Although initially de-
veloped to improve performance, it has also been oriented to multiobjective
search [188]: by taking into account different objectives, like memory usage
and accuracy, efficient and well-performing NNs can be built. Hence, Pareto
optimal NNs can be developed and deployed in differently resourced plat-
forms, such as micro-controllers or mobile phones [35, 189]. The three most
important components of NAS algorithms are the search space, the search al-
gorithm, and the objective: the search space defines the available operations
and parameters for the network, and the search algorithm samples new net-
work proposals and values them according to the objective. Although it can
deliver well-performing results, even beyond manually building, it is costly
in terms of computation time [34, 190] and extremely dependent on the search
space.

Ab initio methods focus on building NNs which are efficient by design and
from inception. This means they do not apply a method a posteriori to make
the network more efficient. By definition, there can be a matching zone with
efficient operations, since those are also efficient from the beginning. How-
ever, the difference is in the degree of efficiency or latency achieved and how
models are built: while efficient operations are usually modular, ab initio mod-
els are usually built as a whole. Depending on the task, such methods are
prone to be used or not, image enhancement is a task where they often are

12 Chapter 1. Introduction

employed. Outstanding examples are look-up table (LUT) usage [191, 192],
bilateral space modeling [193, 194] and Laplacian Pyramids [195, 196], among
others [197].

After taking a glimpse at each optimization method2, it can be observed that,
although every method has its particular features, they can be divided into
two sets depending on whether the optimization is done given a predefined
network or it is defined from the beginning. Quantization, pruning, efficient
methods, and in a certain way distillation, are limited to the original network
they are applied to, and their procedures are thus bounded to a certain degree.
Meanwhile, NAS, to a certain extent, and ab initio development, can provide a
more flexible optimization given the intervention of the developer. Such dis-
tinction is the most important when proceeding with the deployment because
it will establish the limits of our final model in terms of performance, latency,
and accuracy. An illustration of the organization of such methods, altogether
with hardware acceleration, is presented in Figure 1.3.

All in all, these methods establish the base mechanisms to make a model more
efficient or to develop it more efficiently. Each method with its benefits and
drawbacks can be used to reduce the resource requirements of the network
and thus more easily deploy them in a resource-constrained platform. Al-
though it is not the main focus of this thesis, the deployment platform, as well
as related factors, such as the availability of frameworks for deployment or
adaptation, play an important role in the procedure of application develop-
ment and the usefulness of the mentioned optimization methods.

1.4 NN frameworks for resource-constrained hard-

ware

The success of NNs promoted the creation of open-source, well-maintained,
and developed deep learning frameworks, such as Caffe [198], Chainer [199],
MXNet [124], Tensorflow [135], PyTorch [123], and others. Altogether with
the previously introduced optimization methods, which focus on reducing
the computing requirements of NN models, the former success has also led
to the development of libraries and frameworks for porting them to resource-
constrained or specialized hardware, thus broadening the range of applica-
tions and environments where NNs can be deployed.

2Conditional computation is not included since, although it could optimize a system through
compositionality, it is not per se an efficiency development method.

1.4. NN frameworks for resource-constrained hardware 13

In the case of mobile phones, the first official library was Tensorflow Mobile
[200], which appeared in 2015 and had only support for CPU deployment. It
was substituted by Tensorflow Lite (TFLite) [201] in 2017, which incorporated
kernels for inference in hardware accelerators, and had support for NNAPI
[202], thus allowing for direct hardware usage through the Android system.
With the development of TFLite, and the adoption of optimization procedures
such as quantization, TF closed the DL pipeline: training, optimizing, and
deploying could be done using the same framework. Dismissing the first at-
tempts of hardware vendors, such as Qualcomm [203] or ARM3, to provide ac-
cess to hardware accelerators (like GPU, DSP, NPU), the NNAPI has allowed
for a more standardized connection to such systems directly from the deploy-
ment framework despite its drawbacks [204]. This access has even become
easier with the introduction of TFLite Delegates [205], which helps vendors
and developers standardize hardware accelerator access to a common high-
level API, as in the case of [206], which provides a universal GPU access. De-
spite the prominence of TFLite, other frameworks are also adding support for
model deployment on smartphones, like PyTorch with Pytorch Mobile [207],
even though with greater restrictions than TFLite concerning operations and
hardware access.

Another hardware platform that has experienced a notable development re-
garding hardware and software connection is microcontrollers. First attempts
were purely driven by hardware vendors, such as NXP [208] or Texas Instru-
ments [209], and provided deployment environments for their platforms and
the connection to the training frameworks. However, such connections were
highly limited to high-end platforms and had severe constraints concerning
available operations. A first important step was made by processor core IP
vendor ARM, which provided a NN deployment suite, CMSIS-NN [210], for
their whole range of Cortex-M and A chips. Afterward, more frameworks ap-
peared for both converting and deploying NNs to microcontrollers, as in the
case of μTensor [211], NNOM [212], or Apache TVM [213], which lately has
extended its range to more platforms and procedures. Finally, as in the case of
mobile phones, training frameworks have also begun to include support for
deployment in MCUs, like TFLite Micro [214], albeit with limited operability.

Albeit with differences, the same process has been repeated for other plat-
forms, such as FPGAs with OpenVINO framework [215], or embedded boards,

3https://community.arm.com/developer/tools- software/graphics/b/blog/posts/smile-
to-the-camera-it-s- opencl

14 Chapter 1. Introduction

(A)

(B)

FIGURE 1.4: Two illustrations of the diverse components and
steps of scientific development: from research to commercializa-
tion. Picture (A) broadly illustrates the 4 main areas of scientific
development and the organizations involved in them. Taken
from [9] with permission of the authors. The present thesis is
placed between applied research and the application of knowl-
edge. Picture (B) states the different Technology Readiness Lev-
els (TLRs). The current thesis spans from TLR 2, and as far as
TRL 7. Picture of public domain from Wikipedia, Technology

Readiness Level.

with NVIDIA’s TensortRT [216]: from platform-specific and vendor linked
framework implementations, to generalist and broad frameworks for deploy-
ment, NNs have experienced a growth in the availability and generality of
deployment, albeit with still outstanding limitations.

All in all, the development of deployment frameworks and their linkage to
training frameworks is still a subject of needed research and effort. Many lim-
itations still exist in those frameworks in terms of support for operations, op-
timization procedures, and hardware accelerator access. We can consider that
the success of application deployment is tightly bonded to two factors: (1)
the link between general purpose and platform-oriented development frame-
works and (2) the support and suitability of the selected framework chain to
the specialized hardware platform instance.

1.5. About this thesis 15

1.5 About this thesis

As shown in previous sections, there is a need to produce more efficient NNs
solutions to widespread their application domain, especially in resource-constrained
environments, but also to optimize their computing requirements. Such need
has been partially covered by the initial development of optimization and
development procedures, namely quantization, pruning, distillation, NAS,
efficient operations, and ab initio development. They allow either reducing
the computing requirements of a model or developing a new functionally-
equivalent model with lower requirements. However, there are still improve-
ments needed in developing further these methods and making them avail-
able for industrial applications.

As previously seen, along with the optimization improvements, there has
been a surge in software for deploying NNs to resource-constrained or spe-
cialized hardware platforms. Hardware platforms, like mobile phones and
micro-controllers, have experienced a surge in deployment frameworks that,
albeit still with important limitations, allow them to deploy NNs and develop
new applications.

The conjunction of the research of optimization methods with the develop-
ment of deployment frameworks has allowed for the development of models
in industrial settings with limitations in resources (like connection or comput-
ing power). Such a fact has enabled not only the creation of new applications
but also the improvement in results or conditions of already existing applica-
tions.

In such a setting is placed the motivation for this thesis: the advancement of
optimization methods, their conjunction with deployment software, and the
application of both in industrial settings. In this thesis, we will implement
and improve examples of each optimization method, developing models for
different industrial application and their deployment in resource-constrained
hardware platforms with NN deployment software available. This thesis does
not focus on specialized hardware for NN accelerated inference, but rather on
how to adapt or develop NNs to run efficiently in hardware not specifically
designed for the latter purpose. Then, the objective of the present thesis is
stated as the following:

16 Chapter 1. Introduction

To develop, improve, implement, and apply certain cases of the optimization and de-
velopment methods (quantization, pruning, efficient operations, and NAS develop-
ment) in different application and industrial environments with the focus on resource-
constrained hardware that will execute the NN deployment software for efficient in-
ference (algorithmic and computational).

Therefore, there are 3 main components of the thesis: optimization methods,
deployment software for hardware platforms, and selected industrial appli-
cations. Concerning the optimization methods, the present thesis covers all
of them except distillation with more or less depth, in some cases directly
applying them, due to the industrial nature of this thesis, and in others ex-
tending and further improving them. In the case of hardware platforms we
have focused on three: mobile phones, micro-controllers, and embedded GPU
boards; thus limiting also to specific deployment frameworks for such plat-
forms, mainly TFLite for mobile phones, CMSIS-NN for micro-controllers,
and TensorRT for GPU boards. Finally, with regard to industrial applica-
tions, we have tackled four different problems: gesture recognition with ca-
pacitive sensors, inverse tone mapping (ITM), bronchoscopic virtual tracking,
and meningitis segmentation.

Specifically, the contributions at the research level have been:

• Analysis of the SoA regarding embedded machine learning in Advanced
Driver Assistance Systems [1].

• Implementation, analysis, and research of minimal RNNs for gesture
recognition in resource-constrained MCUs [3, 2].

• Implementation, research, and extension of Bayesian optimization based
NAS methods with conditional Gaussian Processes for searching mini-
mal NNs [4, 217, 218].

• Development of NN converter between DL training framework (PyTorch)
and deployment framework (CMSIS-NN) [219, 220]

• Analysis, research and development of an efficient NN for inverse tone
mapping in smartphones [6].

• Research and development of efficient convolutional and recurrent-based
NNs for improved and efficient video bronchoscopy tracking.

1.5. About this thesis 17

From a research perspective, this thesis is placed conceptually between ap-
plied research and its bridge to product development and the application of
knowledge, as illustrated in the central parts of Figure 1.4a. Under the TLR
scheme, illustrated in Figure 1.4b, this thesis is placed between TLR 2 and
TRL 7: we improve research methods proving their feasibility and also per-
form technology demonstration. All in all, the intention is to provide a better
link between research and application for the rising constrained artificial in-
telligence domain.

The rest of the thesis is organized as follows. Chapter 2 provides a general the-
oretical background for the optimization methods applied in the experiments,
and Chapter 3 details information about deployment frameworks and related
platforms used. The next chapters are devoted each to a different industrial
setting and cover the introduction, background, experiments, and contribu-
tions to each case. Chapter 4 covers gesture recognition on microcontroller
units. Chapter 5, Inverse Tone Mapping in Smartphones, and Chapter 6, two
medical applications on embedded GPUs. Finally, Chapter 7 states the main
conclusions of the thesis and further research directions.

19

Chapter 2

Applied Optimization Methods

The purpose of the present section is to provide the necessary technical back-
ground and context for framing the proposed developments and research. In
the form of theoretical descriptions or as a review of the recent advances on the
topics, the intention is to position the reader with the necessary background
and fundamental concepts among which the thesis is found.

There are four main sections, each devoted to an optimization method used
in the thesis projects: quantization, neural architecture search, pruning, and
efficient methods. In each of them, the literature available regarding the topic
is reviewed and briefly discussed, outlining the main characteristics and func-
tioning of the core of the topic. Each section has the same structure. First,
an introduction to the topic, followed by a brief description of the recent his-
toric evolution. Next, a concise fundamental review where the fundamental
concepts of the topic are treated, followed by a discussion on important char-
acteristics. Finally, we finish with the conclusions.

2.1 Quantization

2.1.1 Introduction

Neural networks are computing intensive in terms of operations, mainly mul-
tiplication, and size. Optimizing resources to reduce the size, time, and the
energy consumption is of outstanding importance in order to accommodate
NNs in commercial products which are economically viable. They are usually
trained and used with 32-bit float data types for both weights and acti-
vations. Thus, one way to reduce resource consumption is to use reduced
bit-depth integer data types and computations [130, 150, 10]. By converting

20 Chapter 2. Applied Optimization Methods

only weights, model size can be reduced. However, if activations and opera-
tions are also performed on smaller data types, latency improvements can be
achieved altogether with model size reduction, especially when using special-
ized deployment frameworks and appropriate instruction sets are available.

However, when performing inference in a reduced data type (typically 8-bit
integers) with a network that was trained on a bigger bit-depth data type,
losses in accuracy can happen. To remediate this solution, several options ex-
ist. First, by working with a quantization scheme that more closely matches
the original data distributions of each layer, some of the accuracy can be re-
stored (for example, a notable improvement can be obtained between the
power of 2-based symmetric quantization and a scale and offset-based scheme).
Moreover, if quantization is developed also during training, quantization-aware
training, these schemes can be closely matched to the evolution and values
of the higher bit-depth data type values of the network. Additionally, other
schemes and further data type reductions (below 8-bit integers) have been de-
veloped, obtaining further model size reductions but needing more complex
schemes to avoid the accuracy drop [221, 222]. Moreover, such works have
been added in deployment frameworks due to their complexity and also the
difficulty of translating operations into hardware instruction sets.

In general, quantization allows to reduce the model size and latency, but usu-
ally with a reduction in the accuracy. Its usage is widespread in common
development and deployment frameworks for some common data types such
as 16-bit floats or 8-bit, enabling its use and its benefits. However, for other
data types its direct application is difficult due to the lack of support in com-
mon deployment frameworks and hardware instruction sets. In the present
section, we are going to review the main types of quantization schemes, how
quantization is conducted, and how the accuracy drops associated with it can
be avoided to the maximum. All this, with special relation to the develop-
ments used in the thesis.

2.1.2 Brief History

In [147] researchers were already studying the effect of quantization in neural
networks, even the possibility of reducing such adverse effects by inducing
quantization in the backpropagation process.

Since the second wave of neural networks, there has been interest in reducing
the hardware and computing requirements of NNs. A way to pursue such an

2.1. Quantization 21

objective was to reduce the arithmetic precision of operations and values and
their representation, thus reducing computing time, size, and hardware area.
Works such as [151, 152, 223, 224] experimented with reducing the bit size, the
representation (either fixed or floating point), and the implementation on spe-
cialized hardware of back-propagation and inference with neural networks. It
was generally seen that reductions in precision and the use of fixed point rep-
resentation could be beneficial, especially at inference time. Recently, the topic
has regained interest with works such as [225, 153, 130], where it is shown that
fixed-point low precision, such as 16-bit or 10-bit, is already sufficient for train-
ing deep NNs with minimal degradation by paying attention to the rounding
and dynamic range schemes.

During the past years, quantization has gained a good pace both in research,
development, and adoption in major development frameworks, where int-8
has been widely implemented for inference. Additionally, extreme (1-4 bit)
quantization has also been researched, introducing such heavy quantization
even during training time [154].

2.1.3 Fundamental Review

There are different options when applying quantization to a NN with regards
to quantization scheme, bit-depth, and target structure. With regards to quan-
tization scheme, stand out symmetric quantization, affine quantization, and
affine fake quantization during training [10, 226, 150]. In the case of the bit-
depth, we have every possible bit-depth available under 32-bits, however, typ-
ical values are 8, and less used 2 and 4. Finally, one can target weights only or
operations and weights, being able to apply quantization layer or filter-wise.

Symmetric Quantization Having a 32-bit floating model with minimum and
maximum weight values in range (xmin, xmax), the model can be converted to a
quantized range (−N/2, N/2− 1) with a scale factor, s (where N corresponds
to the maximum value achievable with the bit depth, b, for example N = 256
when using b = 8 bits). The quantization operations are as follows

xq = xr · s−1 (2.1)

xQ = clamp(−N/2, N/2 − 1, xq) (2.2)

22 Chapter 2. Applied Optimization Methods

where xr is the original floating point number. As seen, in this case, we are
doing symmetric quantization around 0. If the floating numbers are unsigned
the scaled number can be clamped to xQ = clamp(0, N − 1, xq). In order to
dequantize we only need to apply the quantization scale inversely :

xr′ = xq · s (2.3)

Specifically the factor s can be chosen as the following when using symmetric
power of 2 quantization: s = 2b−1−log2(xm), where xm is the absolute maximum
between xmax and xmin.

The clamp function is defined as:

clamp(a, b, x) = a i f x < a (2.4)

x i f a < x < b (2.5)

b i f x > b (2.6)

Affine Quantization In the previous case, the center of symmetry is 0. How-
ever, in most cases, that is inefficient and induces losses because the data
might not be centered in it. Thus, the quantization scheme can be improved
by adding an offset value z that handles such displacement. Now, after scaling
it, the quantized value is displaced by z

xq = xr · s−1 + z (2.7)

xQ = clamp(0, N − 1, xq) (2.8)

where now the scale factor is s = 2b−1−log2(xmax−xmin) for power of two quanti-
zation. The offset z is then the integer value corresponding to the float value
xmin + (xmax − xmin)/2. Then the dequantization operation becomes

xr = (xQ − z) · s (2.9)

In this case, as noted in [10], the naive convolution leads to a reduced through-
put due to the use of larger accumulation buffers (16 or 32-bit). However, this

2.1. Quantization 23

can be partially solved through optimized convolution kernels, as detailed in
[227].

Simulated Quantization The usual procedure for quantization is to train in
float and then, once the network has been trained, then quantize it by either
examining the maximum values for weights or by making forward passes and
storing extreme values for weights and activations. The main issue is the drop
in the performance metric introduced by quantization schemes as detailed in
the present section. This is most commonly due to [150]: 1) different output
channels differ in the range of values (sometimes by more than 100x), mak-
ing it difficult to group them under the same quantization scheme, 2) outlier
weights which cannot be included during quantization.

A solution to cover these outliers and differences missed by post-training
quantization is to use simulated quantization during training [150, 10]. In this
configuration, weights are still stored in float, as well as the activations, and
the backpropagation step of gradients takes place as usual. However, during
the forward pass, quantization is applied and undone, faking its effect in each
of the operations: weights are quantized, as well as the inputs, and activations.
Outputs are finally dequantized to recover float values. Specifically:

xout = (clamp(0, N − 1, xr · s−1 + z)− z) · s (2.10)

where the quantization has been applied and undone (in this case in an asym-
metric manner). With regards to the maximum and minimum values, in the
case of weights, the extreme values are directly collected. In the case of ac-
tivations, as they depend on the input, a possible strategy is to collect them
continuously and apply a moving average to the seen extremal values. It is
also possible to add the simulated quantization to the backward pass [10], but
then, as the derivative is mostly zero for the quantized step, the quantizer has
to be modeled in a different manner, for example, through a straight through
estimator [154, 228].

Parameters and Granularity We have previously mentioned that, for exam-
ple, in a power of 2 based quantization, the scale parameter could be chosen
as s = 2b−1−log2(xm), where xm is the absolute maximum between xmax and
xmin. However, there are more ways. For example, TensorRT [216] selects the
scale and offset parameters as those that minimize the KL divergence between
the float distribution and the quantized one. The selection of the parameters

24 Chapter 2. Applied Optimization Methods

FIGURE 2.1: Example of the different accuracies achieved with
post-training quantization depending on the type of quantiza-
tion for Mobilenet V1 and V2 (mvv1-mv2) and Resnet networks.

Figure adopted from [10]

affects notably the accuracy drop between the float model and its quantized
version.

Additionally, we have referred to the maximum and minimum values. Those
values are collected once the model has been trained (for post-training quan-
tization) by running a set of samples (known as a calibration set) through the
model. Hence, these values can be taken for different elements of the net-
work. They can be obtained for a whole layer or, as another example, for a
single channel of a layer. This difference affects severely the subsequent per-
formance of the quantized network, as detailed in [10]: the more precise and
granular the quantization the better. However, that induces more computa-
tional complexity for the quantized kernels. Thus, usually, quantization is
limited to channel or layer and not ported at the weight level.

Moreover, the network can be quantized only at the weight level, achieving
only model size reduction, or both weights and activations, enabling latency
improvements by performing operations in the converted data type. How-
ever, in this latter case, accuracy drops take place. In Figure 2.1 accuracy is
plotted for different quantization configurations for MobileNet-V1, V-2, and
ResNet networks.

2.1. Quantization 25

FIGURE 2.2: Difference in accuracy between quantized from
scratch models or models quantized from a floating point trained

model. Figure adopted from [10].

2.1.4 Discussion

Low precision in DNNs has been explored widely, with important works such
as [153], which explores the accuracy results on the ImageNet dataset at dif-
ferent precisions (32-bit float, 16-bit float, 20-bit fixed point, and a fixed point-
mixed precision scheme, 10-bit for weights and 12-bit for activations). Train-
ing is also performed with lower precision arithmetic. Going back as far as
1991, for example, in [151], we can see that training with a fixed point for re-
ducing the drop in accuracy was already possible. In 2011, the latency reduc-
tion with 8-bit integer fixed point arithmetic and post-training quantization
was of 2x without accuracy loss. All these works showcase that quantization
was already available and ready before the current deep learning frenzy, then
the obvious question is, why some improvements have translated into indus-
trial applications and others not? One important reason is the suitability of the
data format for the inference hardware. For example, 16-bit floating type fits
perfectly GPUs and 8-bit integers generally fit well CPUs in MCUs, however,
other data types require the adaptation of instruction sets and the inclusion of
the quantization operations, hindering the implementation in these cases.

Such is the case of extreme quantizations, with data types of 4, or fewer bits.
They haven’t shown sufficient benefits compared to more standard quantiza-
tion types, as to overcome the hardware and implementation difficulties and
bring them to general hardware deployment platforms. Hence, they are still
restricted to the research and development environment [222].

More importantly, there are factors during quantization that are in fact being

26 Chapter 2. Applied Optimization Methods

incorporated in deployment and development suites. One of such topics is
the importance of how the parameters are selected since it can affect the re-
sults of the quantization process. For example, the distribution of quantized
weights are distributed is of utmost importance [229]. As detailed in [230],
CNN weights follow gaussian distributions when weight decay is applied.
Moreover, it has been shown that weights generally follow Gaussian Mixture
Models [231]. Hence, being able to define a non-uniform quantization distri-
bution would allow reducing the quantization error.

In the same sense, the granularity selected for quantization is of importance
[232] and has been incorporated into most suites. In general, the more spe-
cific the granularity the better, but with a trade-off with the difficulty of im-
plementing the operations. In Figure 2.1, quantization per channel delivers
better results than per layer.

An important factor that we have not explicitly tackled is the combination of
quantization and other compression modalities. A good example is a com-
bination with distillation where it can help reduce the accuracy drop of the
quantized model by having a floating point trained teacher [232, 233, 234]

Finally, another important topic, is the benefit of quantization-aware training
[235, 10] using simulated quantization to avoid accuracy drops. Moreover, as
depicted in Figure 2.2, how the quantization is applied during training is also
important, with much bigger benefits once the model has been trained with
floating point values.

2.1.5 Conclusions

In the present section, we have reviewed quantization for neural networks,
its characteristics, the different possibilities, and its adoption in major devel-
opment frameworks and hardware platforms. As main conclusion, we could
point out the benefits in model size and latency reduction for most models,
but with the caveat of a variable decrease in accuracy. However, such drop
can be reduced with different techniques such as for example, quantization-
aware training.

With regards to its final usage in applications, albeit there has been a lot of re-
search with different quantization schemes and data types, the most common
ones and suited for hardware platforms have become the only ones widely

2.2. Neural Architecture Search 27

available for usage (16-bit float, or 8-bit integer). However, some develop-
ment frameworks, such as PyTorch, have started easing the use of other data
types for quantization, promoting its research and use.

All in all, quantization supposes an excellent way to decrease the computing
requirements and accelerate inference while maintaining accuracy or playing
a trade-off with a drop on it.

Finally, we haven’t covered quantization extensively, but the most used meth-
ods and techniques that have been involved in this thesis. For those interested
in more details about the methods presented and other possibilities regarding
quantization, as well as the results provided by them, we suggest the follow-
ing reviews among others. [226] gives a concise summary of the most used
methods and how they function. [10] provides more detail for fake quantiza-
tion in a quantization-aware training context as well as extensive testing of the
different methods and the results obtained, [236] focuses on the quantization
process of a network and the results on extremely quantized networks, and,
finally, [237] focuses specifically on the efficient component on inference.

2.2 Neural Architecture Search

2.2.1 Introduction

Part of the success of deep learning in visual tasks comes from the man-
ual design of hierarchical feature extractors [85, 238, 14, 16], which automate
and condensate the feature engineering process. With time, the complexity
of such architectures has increased as the search for increased performance
has continued. Such a building process has become time-consuming and
error-prone. Thus, Neural Architecture Search (NAS), which consists of the
automatic building of neural network architectures, is a natural progression
step. Currently, NAS has already over-passed manually generated networks
in tasks such as image classification [190, 239] or semantic segmentation [190].
Deeply tied to AutoML [240, 241], it is also linked to hyperparameter opti-
mization [242, 243], and meta-learning [244].

The main core components of NAS are the search space, the search strategy,
and the performance evaluation strategy [187]. The search space defines the
configuration options available to build the network, the search strategy de-
fines the way new configurations are sampled or parameters of the architec-
ture changed, and finally, the performance evaluation strategy defines how

28 Chapter 2. Applied Optimization Methods

the performance of proposed architectures is estimated or predicted. The sim-
plest case with regard to evaluation is to fully train the networks and seek
to achieve the highest validation accuracy. However, this is extremely costly
in terms of resources, both energy and time. Thus, lately, new ways of pre-
dicting/anticipating the performance of architectures without the need for
training or, in general, ways to reduce the search time [187], have become
an important line of research.

Moreover, most first NAS frameworks only focus on the accuracy of the NN,
delivering complex or inefficient networks. Lately, this has been remedied
by taking into account other objectives such as memory consumption or la-
tency [188, 182], thus delivering NNs that are efficient or comply with certain
resource restrictions. Additionally, in order to push efficiency further, some
studies orient their NAS frameworks to hardware platforms, in a general ap-
proach [245, 35], or targeting more specific platforms, such as mobile [246],
MCUs [188] or FPGAs [247], among others.

Such advances have pushed NAS forward, but there still are many lines of
progress to advance the automatic building of NNs, such as reproducibility or
multi-task/multi-objective environments, which make NAS a current state-
of-the-art problem. In the current section, we review briefly the history of
NAS and its fundamental components. We also discuss its main problems
and their relation to the present thesis to finally conclude with the principal
points illustrated.

2.2.2 Brief History

Evolutionary algorithms were used in the 90s and first 2000s to evolve neural
architectures, as with the first notable work [248], and also to jointly find the
optimal weights [249, 250, 251]. A good review of such methods can be found
in [252]. However, it must be noted, that most current evolutionary meth-
ods only use evolutionary algorithms to develop the architecture but not to
find the optimal weights [187, 253, 254], where back-propagation is the most
common algorithm.

Bayesian optimization gained momentum in the 2010s, advancing state-of-
the-art NNs architectures [255] and finally setting a cornerstone with the first
NAS-built NN winning over human experts [256]. Finally, NAS became an
established research topic after [257] obtained competing results in the CIFAR-
10 and PennTreebank datasets by using reinforcement learning.

2.2. Neural Architecture Search 29

Since then, the field has advanced not only focused on achieving better per-
formance but also taking into account other important factors. In this sense
two directions stand out: first, reducing the search cost in terms of energy and
time, and second, including in the NAS objective other important factors of
the NN, such as memory consumption, latency, or energy.

2.2.3 Fundamental Review

Search space The search space defines the possibilities for building the fi-
nal network: what elements can be used, how are they can be defined (for
example, which values can be assigned), and how they can be connected.

In its more simple case, the search space is defined by a sequential architecture
and its components. The number of layers, what is the type of each layer,
and hyperparameters for every specific type of layer (number of neurons, ker-
nel size in convolutions, etc) conform to the typical components of the space.
Some of the first NAS research projects were based in such a search space
[256, 258]. It is important to note the conditionality of this type of search space
(for example, the fact that there are seven layers, impacts the fact that the
kernel size of the 8 layers is not needed), which has a big impact on the mod-
elization of the space and the search of new networks, as we will see in the
search strategy section.

Modern neural networks use tricks to improve convergence or performance
that involve multiple connections among layers, such as residual or dense con-
nections. The addition of such a feature to the search space, brings the second
different type of NAS search spaces branched architectures [259, 260, 239].
The main difference with respect to the previous is that each layer now has
another parameter: the input connections coming from other layers.

Taking inspiration from manually designed neural networks that are built by
repeatedly using a pattern with different parameters, as in the case, for ex-
ample, of the MobileNet family [15, 16], another type of search space was
defined: cell or block based search space. In this case, the search is per-
formed on the contents, parameters, connections inside the cell/block, the
types of different blocks (for example, [190] details two types of blocks: nor-
mal cell or reduction block, which reduces the dimensionality), and the way
and quantity to stack or scale them. This brings two main benefits: a priori re-
duction of the search space and better generalization in transfer learning due
to great reusability. This method has been largely and successfully in many

30 Chapter 2. Applied Optimization Methods

research projects [261, 262, 263]. However, the problem of how to organize the
newly found cell in the overall architecture is still present. Such configuration
is called the macro-architecture: how are cells (micro-architecture) combined to
form the overall network? Although first attempts used handmade rules [190]
or [263] imitated other architectures, the combination of both spaces is needed
[187], as they are intertwined forming a hierarchy of choices and configura-
tions [264].

In general, the more complex the configuration or search space, the more com-
plex is going to be the modeling of its relation to the performance of each
network.

Search Strategy The object that searches through the search space, mod-
els its relationship with the performance, and samples new architectures, is
the search strategy. There are four main search strategy types depending
on which underlying algorithm is used: bayesian optimization, evolution-
ary algorithms, reinforcement learning, and gradient-based methods. We will
briefly cover the first three.

Reinforcement Learning (RL) is suited to frame the NAS problem with its com-
ponents: state, agent, action, and policy. The natural choice is to assign the
generation of the architecture as the action of the agent, the search space to
the action space, and the performance of the network with unseen data to the
reward [257, 265, 266]. The policy, however, has not have a direct assignment
and there are different choices, such as, for example, using an RNN policy
trained with REINFORCE algorithm [267] to sample sequentially the architec-
ture [265]. Nevertheless, this is not the only option to frame the problem with,
and there exist many more, for example, by assigning the architecture as the
state and the actions are morphisms [268] applied to it [258].

Evolutionary algorithms (EA) are also well suited for NAS. The population
in this case consists of a set of models and mutations are modifications to a
model, for example changing a parameter to a layer, adding one layer, connec-
tions, and so on. When a sample is selected, the offspring set (mutated version
of the parent) is trained and evaluated on the validation set to be added to the
population. It is important to note that most modern methods [189, 253, 254]
use EA only for NAS and not for training the networks, which are trained
using gradient-based methods. Where most methods differ is in the way of

2.2. Neural Architecture Search 31

updating the population, generating offspring, and sampling parents. For ex-
ample, with regards to offspring generation, an option is to generate them ran-
domly, but inheritance, that is, maintaining learned weights, and morphisms
can also be used [189]. Another classic example is how to update the popu-
lation, where deleting the worst performing individual is an option [269], but
also removing the oldest one [239].

Bayesian Optimization (BO) uses a surrogate model to model the relationship
between the search space and the performance metric obtained by each con-
figuration, that is

p = f (x) (2.11)

where p would be the metric, f the surrogate model, and x the architecture
configuration vector. Thus, the surrogate model has to be fitted. Each trained
architecture and the corresponding metric conform to a sample, with all the
samples

S = {(x, f (x)), (x1, f (x1)), ...} (2.12)

one can fit the surrogate model to model the relationship such as the following
difference is minimal [270]

∑
x, f (x)∈S

(f̂ (x)− f (x)) (2.13)

where f̂ (x) is the predicted metric by the surrogate model.

Methods differ in the model used for the surrogate model. A possibility is to
use tree-based models, like the Tree-parzen estimator [271] or random forest
models [272]. These models are well suited for conditional spaces. Common
use has been to employ them to jointly search for architectures and hyperpa-
rameters [255, 273, 256]. Many advances have been produced in this direction,
with, for example, Monte Carlo Tree Search [274] or hill climbing algorithms
[260].

An alternative to tree-based models is to use Gaussian Processes (GPs) [275].
Apart from the surrogate model, in this case, an Acquisition Function is used
to sample the next points in the search space, trading-off different strategies
the predicted metric, and the uncertainty associated. The main difficulty with

32 Chapter 2. Applied Optimization Methods

GPs is that they are not well suited for modeling conditional spaces. For
this reason, a special kernel (the function that measures the distance between
points in the modeled space) has to be defined. An example is the Arc Kernel
developed by [276] and implemented in PyTorch in this thesis [277], or the one
presented in [278].

Finally, an alternative to the previous two models is to use a neural network as
a surrogate, like RNNs [279] or autoencoders [280], among other possibilities.

Performance Evaluation The natural and naive way to evaluate an architec-
ture is to train it and evaluate it on unseen validation data according to some
accuracy or performance measure. However, this can be extremely costly, in
terms of energy and time if every time a new architecture is found by the
search strategy it has to be trained from scratch (spending up to thousands of
GPU days [239, 269].

There are ways to reduce the time spent training and searching, among which
stand out: using lower-fidelities (or proxy metrics), curve extrapolation, weight
inheritance, and one-shot NAS, among others [187].

Lower-fidelities estimate the performance of the full metric by using a modi-
fied context, including training for fewer epochs [190], training on a subset of
data, on smaller images [281], among others. The main risk, in this case, is that
the difference between the full context and the lower fidelity is too big and the
ranking of evaluated networks changes [282]. This risk can be reduced using
incremental fidelities [283].

Curve extrapolation [284, 273, 285] (acquisition functions could be seen as a
form of curve extrapolation) pursues to estimate the evolution of learning
curves so as to disregard architectures that perform poorly before training
them fully.

Weight inheritance consists in using weights of previously trained networks
for the new sampled network, thus reducing the training time until conver-
gence and the number of total GPU days [286, 258]. The new networks can be
produced from the original network by means of morphisms or architectural
changes [287]. Another advantage of this process is that the network search
space is unbounded, allowing also for diminishing morphisms [189].

Finally, the one-shot architecture search trains only one network, and all the
other sampled networks are defined as a sub-graph of the original with the

2.2. Neural Architecture Search 33

corresponding weights shared [288, 245, 289]. Subnetworks can be then eval-
uated without training them, speeding up network evaluation and reducing
the GPU days employed. This also helps to produce a full Pareto frontier of
networks with regards to computing resources [35, 245]. The main difference
between one-shot NAS architectures is how they train the main architecture.
For example, ENAS [290] use an RNN controller to sample architectures from
the main architecture and trains the one-shot model taking into account ap-
proximated gradients. An important limitation of one-shot NAS is the restric-
tion to the original network and the subspaces that it defines.

2.2.4 Discussion

Most existing work on NAS has focused on image classification, however,
it has already been applied to other fields such as image restoration [291],
detection [292], image segmentation [293], and many other tasks. Initially
centered on only achieving improved accuracy, new methods have appeared
that focus on multi-objective NAS, taking into account other metrics, such
as memory consumption, model size, or latency [294, 295]. However, this
multi-objective frame requires the balancing of the different objectives to find
the Pareto frontier, pushing for the incorporation of multi-objectives in search
methods [296, 297].

Moreover, including the multi-objective setting, NAS methods have also started
focusing on hardware-related platforms, building methods focused specifi-
cally on a platform or on being efficient for hardware [298]. For example,
studies such as Sparse [188, 4], MCUNet [], or MicroNets [299], have targeted
MCUs, pursuing the development of NNs automatically deployable in MCUs
following a set of hardware constraints. Also stands out the case of mobile
platforms, with studies targeting specifically mobile platforms [246, 298, 300,
301].

Additionally, the reduction of search time and energy has also acquired re-
newed importance. Early NAS methods required vast amounts of energy
and computation time, proving inadequate given the improvements they pro-
vided. For example, [265] used 800 GPUs for between three and four weeks to
achieve their results. Since then, an effort has been applied to reduce time
search with more efficient search methods, low fidelity proxies, and other
schemes [290, 302, 303].

34 Chapter 2. Applied Optimization Methods

An important problem of NAS concerns the search space. State-of-the-art
NNs are usually manually engineered for performance through an expertise-
requiring process, and thus it is difficult to design an open or standardized
search space in which to find an outperforming NN. On the contrary, usu-
ally, such engineered architectures are often used as common blocks to design
search spaces, introducing restrictions to the type of architectures discovered.
The classic exploration vs. exploitation problem takes a renewed view in NAS,
where it plays an outstanding role. In such terms, trying to find search spaces
that are more general and transferable stands out in the works [304, 264].

Following a similar discussion, an important discussion is centered around
the usefulness or worthiness of NAS compared to random search (RS). For
example, [239] performs a comparison between RL, GA, and RS-based NAS.
Among the findings, stand out the fact that, in small datasets, like CIFAR10,
GA and RL outperform RS but only with a small margin of around 0.5% error
on the test set. Similar findings have been shown in [264], where margins were
even smaller and on a larger dataset: the validation error difference between
RS and GA on the ImageNet dataset was of around 0.7%. However, two main
a factor not taken into account is the time spent to obtain such results and the
fact that NAS is highly dependent on the search space configuration.

Additionally, there is a reproducibility problem [189, 305] when comparing
NAS methods, for example, with regard to the search method. The main
point is that results do not only depend on the search space and dataset but
too many hyperparameters or training strategies. Including a learning rate
cosine annealing schedule, using better data augmentation, or regularization,
among many other factors, can help improve results. Thus, it is necessary to
standardize training conditions, as well as the search space and data. A step
towards such purpose is found in [306, 307, 308], where the search space has
been standardized, and in [309], where the hyperparameters are also consid-
ered. The idea of a full AutoML suite, where everything is standardized so
conditions among runs are maintained, has already been proposed in [187].

Finally, another important concern about NAS is that it has little associated ex-
plainability: it does not assess why certain architectures are better than others
or why similar architectures have such a marked difference in performance.

2.3. Pruning 35

2.2.5 Conclusion

In the present section, we have reviewed NAS functioning, and its compo-
nents, and pointed toward several points that were of interest for the present
thesis.

Overall, NAS is an excellent technique to produce networks that are high per-
forming. Moreover, the latest advances in multi-objective NAS have helped
deliver in an automatic manner networks that target not only accuracy but
other constraints, such as memory or energy consumption, model size, or la-
tency. This has also fostered NAS for specific platforms like MCUs or mobile
ones, helping to bring ML to hardware-constrained environments.

However, there are still major lines of improvement for NAS, including ex-
plainability and reproducibility. Also, the improvement of search efficiency
and its worthiness regarding resources used are major breaking points. Ad-
ditionally, NAS for resource-constrained platforms can still be improved in
many terms, such as, for example, the integration with the software environ-
ments, and deployment frameworks (with all their restrictions regarding op-
erations).

We have not covered extensively the NAS topic, but rather introduced it and
highlighted the most important concepts with regard to this thesis. If the
reader is interested, detailed reviews exist for this topic, among which we rec-
ommend [187, 270] for the basic components and understanding of the status
and evolution of NAS, and [310] for a more in detail review of current chal-
lenges and solutions. For GA-based NAS-specific review, we suggest [311].

2.3 Pruning

2.3.1 Introduction

Pruning is a compression technique that focuses on the deletion of a certain
part of a network’s weights to reduce the model size, or additionally the la-
tency of the model while producing a minimum accuracy drop. That is, given
a network, f (x, Θ), where x is the input and Θ the weights of the network, a
pruning procedure would dismiss, according to a certain evaluation or scoring
metric, a subset of the weights and select the rest Θ′ as the final weights. The
proportion of the final weights with respect to the number of initial weights
is termed the sparsity, s, of the final model, s = 1 − ||Θ′ ||0

||Θ||0 , and the dismissed

36 Chapter 2. Applied Optimization Methods

FIGURE 2.3: (Left) Illustrative simplification of the pruning pro-
cedure targeting connections and neurons in a fully connected
network. (Right) Visual example of shape-wise pruning [11]. Im-

age adopted from [12].

parameters are usually assigned a 0 value or deleted. A simplified illustration
of pruning can be found in Figure 2.3

When applying pruning to a network there are four important factors to con-
sider which will affect the final result of the process:

• Valuation Metric: how are the weights ranked and valued?

• Structure: is pruning applied to single weights directly (unstructured) or
is it applied to entire filters (structured)?

• Distribution: how is sparsity distributed through the entire network?

• Scheduling: when is pruning applied?

It is important to consider that a pruning method does not only deliver a sole
sparse final model but a collection of models with different sparsity-quality
and which are generated during the pruning procedure.

Algorithm 1 Standard pruning procedure.

Require: Network with weights θ, Dataset D, number of pruning rounds, N,
the fraction of weights pruned per round p Output: Network with pruned
weights θ′ and sparsity level s
θ ← θ′
for n ← 1 toN do S ← compute_saliencies(θ′)
θ′ ← prune_p_weights(S, ||θ′||0p)
θ′ ← finetune(θ′)
end for

2.3.2 Brief History

Originally developed in the late 80s [312, 165], it gained attention with the
seminal works of Optimal Brain Damage (OBD) [157] and Optimal Brain Sur-
geon (OBS) [313]. Both works are examples of second-order derivative usage,

2.3. Pruning 37

by magnitude and change respectively, to select weights to delete. Also, both
set up the traditional algorithm for pruning, as explained in Algorithm 1.

During the 2000s few developments and improvements were made with re-
gard to pruning for neural networks. However, linked to the success of NNs
in the 2010s, pruning research recovered attention. Seminal works like [158],
which restated the procedure of Algorithm 1, opened the door for new ap-
proaches. Since then, new developments with regards to scheduling [314, 315,
316], scoring metrics [317], distribution, and fine-tuning [318] have pushed
forward pruning research.

However, a double change of paradigm was initiated by the works [161], fur-
ther extended in [319], and [320, 321]. In [161], the mindset moves from spar-
sifying a network to being able to find an internal subnetwork equally com-
peting with the bigger one, and in [321], from learning meaningful weights to
just focusing on the architecture, thus without the need of training for prun-
ing. These changes have set off a set of fresh research to better understand
pruning, instead of merely focusing on the benefits at the size or latency lev-
els.

2.3.3 Fundamental Review

Valuation metric The main component of the pruning procedure is the eval-
uation and ranking of weights (or filters) to prune them. Such evaluation can
be focused on the magnitude, redundancy, or sensitivity of the weights or fil-
ters w.r.t the loss [160].

Magnitude-based pruning

In general, magnitude-based pruning can be separated into three groups [160]:
data-dependent, data-independent, and optimization methods.

Data-independent methods consider only the characteristics of weights or fil-
ters. For example, it is widely accepted that the magnitude of the weight is
indicatively proportional to its importance [322]. Thus, the first naive prun-
ing procedure would be to prune all zero-valued weights or those below a
threshold. [158] is an example of how threshold pruning, altogether with it-
erative pruning, can help to reduce the size factor of a network. Importance
magnitude is usually computed through a p-norm,

38 Chapter 2. Applied Optimization Methods

||x||p =

(
N

∑
i

xp
i

) 1
p

(2.14)

where x would be a set of N weights. The same metrics are applicable if
pruning is going to be applied filter or layer-wise [323], by removing filters
with the least accumulated value of weights. Other examples of data inde-
pendent methods involve the minimization of co-variance between original
and pruned filters [324], deleting filters near the median value of other filters
[325] or the Average Percentage of Zeros (APoZ) [326], which forms a syner-
gic combination with ReLU activations. An important note, however, is that
direct thresholding can delete weights that later on can become important.
In such a sense, [327] proposes a system to keep track of which weights are
marked for deletion, without deleting them until a further step.

Data-dependent methods make use of data samples to estimate related mea-
sures in feature maps. Variance is a common measure [328], where filters are
valued with regards to the variance in the respective feature maps, as well as
entropy [329], which helps prune filters whose feature maps carry less infor-
mation.

Finally, optimization-based pruning methods base the procedure on finding
the minimum set of filters that best represent the original feature maps. This
can be done through feature map approximation through least squares, as in
[330, 331], or by computing the effect of deletion of filters and the difference
between original and new feature maps [332].

Sensitivity-based pruning

Instead of considering its value or its norm, sensitivity-based pruning ranks
the weights by their impact on other measures, usually the loss. Such impact
is generally measured by perturbing or deleting the weights and computing
the effect on the loss. Two main groups of sensitivity-based strategies can be
distinguished [160].

First, importance methods measure the effect of directly deleting parameters by
adding accompanying parameters to nodes or groups of nodes, or through
penalty components in the loss. [165] is an example where the importance of
a node is measured by the derivative of the loss with respect to its accompany-
ing parameter, in this case, named attentional strength. Works such as [159] or

2.3. Pruning 39

[333] extend importance methods to channels and filters, in this case through
penalty terms added to the loss, as in Lasso regression

L′ = L+ λ||W||2 (2.15)

where W are the weights, λ the regularization factor, and L the loss. Such
penalty term forces weights to reduce their value, setting importance differ-
ences among them. l-1 norm can also be used to drive weights to 0, being
named Ridge regularization.

Second, Taylor’s approximation methods measure the impact of weight dele-
tion through a Taylor expansion of the loss:

ΔL =
δLT

δW
+

1
2

ΔWT HΔW +O(||δW||3) (2.16)

where H is the Hessian matrix. Then, most methods distinguish w.r.t. which
order they approximate to, usually neglecting third or superior orders. [157]
consider only second-order terms since the network is supposed to be in a lo-
cal minimum and further suppose the Hessian to be diagonal, that is, weights
are uncorrelated. [313, 334, 335] consider such later assumption as incomplete,
and add an approximation to the full hessian. [336] extend Taylor expansion
methods to channels and filters but only taking into account first order param-
eters, and further extend their work to consider the squared loss change due
to parameter deletion [337].

Most of the previous methods do not take into account weight interaction, as-
suming no correlation. [338] consider the full Hessian matrix approximated
through a Fisher Information Matrix represented by a Kronecker Factored
Eigenbasis [339], thus taking into account correlations between weights. In
the same line, [340] uses a Collaborative Channel Pruning method to assess
the impact of a combination of channels through Taylor’s approximation of
the loss.

Finally, although most of the methods compute saliency or penalty through
the loss, there are other possibilities: BN penalty addition [159], applying
LASSO to scaling factors [333] or adding dropout hyperparameters [98] are
examples of some of them.

Redundancy-based pruning

40 Chapter 2. Applied Optimization Methods

Magnitude-based pruning can end up deleting weights that even if their value
is small can play a role, as in the case of networks with largely saturated
weights [341] or large minimum norms [325], and the same happens with a
penalty based scoring [327]. As an alternative, redundancy [163, 342, 158, 343,
344] can be another option to prune weights. Given a sufficiently large net-
work, is plausible that there are duplicated parameters or groups of weights
that perform similar solutions. Then, those that are redundant can be deleted
or grouped. Among the different typologies for identifying redundancies
stand out similarity measures [342, 345, 346], clustering [347, 348], distance
and geometric features [325] or statistical significance [328, 330].

Structure Pruning can target the network with different granularity and or-
der. It can be applied to individual weights or connections in a random man-
ner, that would unstructured pruning, or it can target bigger units such as filters
or entire layers, that is, structured pruning [167, 11, 349, 13].

The majority of research is targeted at unstructured pruning because it can
deliver the bigger sparsity with the minimum effect on accuracy. However,
the main downside of unstructured pruning is that without special hardware
operation kernels it cannot provide latency improvements. Only if the model
is compressed it can deliver size improvements. Both aspects are due to the
fact that sparsity is unordered and cannot be deleted. On the contrary, struc-
tured pruning, as it targets whole blocks in an ordered manner, can be used
for decreasing latency by deleting such blocks.

However, a notable example, of how, with adequate hardware kernels, un-
structured pruning can help increase efficiency is found in [350], where they
develop sparse kernels and include them in the XNNPACK library for fast
sparse CPU computation, delivering an improvement of 1.3-2.4x with respect
dense equivalents.

Distribution How pruning is distributed along the network affects both ac-
curacy and inference cost. That is, pruning all layers equally performs worse
than distributing the amount of pruning wisely [351, 323, 336]. As an exam-
ple, it is sufficient to consider a convolution layer: its application to a spatially
bigger input involves a greater computation cost than to a smaller one, and
thus pruning will have more effect in the first case [352].

In [350], examples of pruning distribution criteria can be found, where hard-
coded distribution policies are implemented for pruning. For example, albeit

2.3. Pruning 41

FIGURE 2.4: Graphic illustration of the three choices for schedul-
ing pruning: one-shot, iterative, and progressive. Adapted from

[13].

the final layer in a classification model contributes significantly to the number
of parameters, its pruning can affect severely the accuracy and so it is not
normally pruned. The same usually happens for the first layer.

Scheduling Another important factor with regard to the pruning procedure
is when to apply it and if the network is retrained or fine-tuned afterward.
Then, we have two main steps that distinguish pruning scheduling: pruning
and training. The traditional and common way to apply theses steps [157,
334, 158] is to iteratively train and prune. The pruning procedure would be
as follows. First, a network is trained until reasonable results are obtained.
Second, weights are valued according to the saliency metric and then a subset
of them is pruned. Third, the network is fine-tuned with new sparsity values.
Finally, repeat steps two and three N times. The whole procedure is illustrated
in Algorithm 1.

However, there are two more possibilities for pruning scheduling [353, 13]: (1)
one-shot, when the network is initially pruned up to a predefined sparsity and
then fine-tuned, (2) progressive, when the network is trained but at the same
time pruned progressively during training iterations until reaching objective
sparsity and, then fine-tuned again. However, it is commonly agreed that
both iterative and progressive pruning outperform one-shot pruning given
the same conditions [318]. An illustration of the different schedules for prun-
ing can be found in Figure 2.4.

42 Chapter 2. Applied Optimization Methods

Although usually only the final pruned model is used, there are pruning al-
gorithms that require the models from some previous pruning iterations. The
idea is that, while the network is learning the pruned weights might change,
thus, if one preserves the mask of pruned weights, one can avoid unnecessary
pruning [313, 338, 13]

2.3.4 Discussion

Lottery Ticket Hypothesis. An important discussion surrounds the value of
pruned weights, and whether they are useful for convergence by providing a
mask for the initial bigger network. The Lottery Ticket Hypothesis [161] states
that "a trained network contains a subnetwork, which can be trained to be at least as
accurate as the original network using no more than the number of epochs used for
training the original network", and establishes the usefulness of the mask pro-
vided by pruned weights at iteration K to initially select a subnetwork. To
clarify the procedure, it is as follows: pick a network f and train it until con-
vergence at iteration K, prune it and obtain the mask of the remaining weights,
m, then pick the original network at initialization and prune it with mask m,
delivering the subnetwork fm, which can be trained until the same k iterations
and obtain similar or better results with a portion of the original size. This
idea has attracted quite an interest due to the traditional belief that a pruned
network could not be retrained from scratch to attain similar performance to
its original network [353].

However, [315, 351] were unable to replicate the usefulness of pruned weight
initialization compared to random initialization, with the exception of large-
scale data with unstructured pruning. In a further study, [319], refine the
hypothesis to the use of the mask at another intermediate iteration k com-
ing from later stages of training. Subsequent research has revolved around
further questions and their answers, concluding, for example, that pruning
can be beneficial for transfer learning [354, 161] between different tasks and
even types of problems, like NLP or RL [355], or that pruning is optimizer
independent [356]. All in all, it can be concluded that iterative pruning and
reinitialization with late-stage training weights help to improve efficiency.

Pruning at Initialization. A new branch of pruning research, named Prun-
ing at Initialization (PaI) [353], stems from the works [320, 321, 357, 358] and
focus on pruning before training or training slightly to discover relationships
among weights and prune them. SNIP [320, 321] is one of the first works in
this direction, centering attention on the saliency of weights through random

2.3. Pruning 43

loss preservation. That is: how much does the loss change if weight is absent?
The idea is translated to training dynamics at the first steps of training by
[357] using a gradient signal preservation (GraSP). They include a perturbation
in a second-order Taylor approximation of the loss (equation 2.16) to obtain
the saliency of weights,

S() = 2TH +O(||||22) (2.17)

where S is the saliency, the perturbation vector, the gradient, and H the
Hessian.

Another research branch of PaI is not focused on the loss or training, but rather
on the topology of the network, and solely based on it, the pruning can take
effect. [359] focus on sub masks learned by the LTH but without retraining
the subnetwork, arguing that it already has knowledge. [358] further extend
this idea by keeping scores for weights but without training them, obtaining
good results on ImageNet. Theoretically, the idea is finally developed by [360],
which defines the strong LTH: inside an over parametrized network, there is a
subnetwork with notable performance and without training.

Inference speedup. Due to the lack of sparse kernels in hardware platforms,
unstructured pruning only serves for size reduction and through the usage of
compression tools like GZip [226]. There are, however, specialized kernels,
but with limited application, for sparse matrix-vector multiplication [361, 362,
11, 13]. Examples are [350, 363], who developed sparse convolutional ker-
nels with a decrease in latency of 1.3-2.4x, around a 2x factor reduction in the
number of parameters, and a 3x reduction in FLOPS with respect the previous
generation while maintaining top-1 accuracy.

On the other hand, structured pruning, if appropriately managed, e.g. by
choosing appropriate partition blocks and adequate kernels, can conduct both
latency and storage improvements [364]. Thus, the latter is preferred for effi-
cient inference in the case no suitable implementation is available.

2.3.5 Conclusion

In general, it has been proven that pruning strategies work: pruning mod-
els are able to consistently outperform random pruning [352, 331, 351, 346]
and compress models showing minimum drops, or even increasing, in ac-
curacy. Moreover, for a fixed number of parameters, pruned models tend

44 Chapter 2. Applied Optimization Methods

to outperform models trained from scratch with no sparsity induction pro-
cess. However, there are two main downside points as stated by Blalock et alli
[352]. First, pruning does not deliver as many benefits as changing to a better-
performing architecture. And second, there are not sufficiently standardized
benchmarks and conditions in the pruning community as to allow fair com-
parison among methods and distinguish improvements and better working
methodologies [352, 160].

Notably, if one’s purpose is to decrease latency, although there are sparse ker-
nels available [350, 363, 361, 362], their support is limited and hence is better
to apply unstructured pruning at the filter or layer level.

It has also been seen that there has been a change of paradigm in pruning:
from traditional deletion and training based to sub-network and architecture-
based pruning. This new direction has opened a new line of research that still
has questions and difficulties to focus on, e.g., they still under-perform simple
traditional pruning [351, 353].

Finally, pruning is a prominent and current research topic, and we have tried
to cover the main aspects of its w.r.t our focus, not being able to include all in-
formation about it, for example, combinations with other optimization meth-
ods like distillation [365, 366] or its relation to energy efficiency [367]. To
the reader interested in deepening the knowledge about pruning, and also
its use for developing efficient models, there are plenty of resources available.
Among them the following reviews are suggested: [160] focuses on metric
scoring, [226] has a brief review with a focus on model deployment, [352]
questions comparability in pruning, [353] focuses on the change of paradigm
made by the Lottery Ticket Hypothesis and its comparison to previous schemes,
and [12] review both pruning and quantization.

2.4 Efficient operations

2.4.1 Introduction

The early and subsequent success of CNNs for classification came at the cost of
higher computational complexity. Soon these networks and operations were
applied to other tasks such as semantic segmentation or super-resolution. The
higher spatial resolution required for this further increased the computational
complexity. The need to reduce it and bring these networks to platforms with

2.4. Efficient operations 45

fewer resources, entailed and initiated a field of research specially devoted to
making neural network operations more efficient.

A possible name for the field would be deep learning efficient operations re-
search. Its focus is the analysis and development of deep learning operations
so as to reduce their computational cost while ensuring the least accuracy or
performance drop. Although important works have been devoted to CNNs,
other architectures have also been the subject of the previous pursuance, as in
the case of RNNs or attention mechanisms.

An important difference with respect to other optimization methods is that
the benefits are applied before training and there is no need for subsequent
procedures during and after training. Notably, the first efficient operations
designed were handcrafted and manually designed. Lately, however, there
have been recent works improving the state-of-the-art by combining NAS and
efficient operations, to search for best-performing operations automatically.

Overall, efficient operations are an important optimization method, delivering
the performance benefits from the start, and being specifically useful if the
target platform is already defined. In this section, we review some of the most
important works on the matter, describe their methodology, and discuss their
advantages compared to other types of optimizations.

2.4.2 Fundamental Review

The first notable example of improving an architecture by making use of more
efficient operations is the substitution of FC layers with convolutional layers
in visual tasks. Fully connected layers break spatial relationships since they
operate as vectors, and being a dense operation leads to an explosion in the
number of parameters. Meanwhile, convolutional layers, by reusing spatial
filters of low dimension are able to both conserve spatial information and re-
duce the number of parameters employed. Additionally, the use of pooling
layers helped reduce further spatial dimensions, decreasing the number of
operations performed.

Explicitly, for an image of size [C, H, W], a fully connected layer with N neu-
rons has a total of C · H · W · N + N parameters, while a convolutional layer
with F filters of dimension [k, k] would imply (C · k · k + 1) · F. Typically, for
images k << H W and F < N, which illustrates the decrease in the number of
parameters. LeNet [79] was one of the first architectures to introduce convo-
lutional and pooling layers, and since then and until transformers, most of the

46 Chapter 2. Applied Optimization Methods

state of the art networks for visual tasks (AlexNet [85], ResNet [14], Inception
[368], among many others) have continued to use convolutional layers.

Depth-wise Separable convolutions constitute an improvement in efficiency
for regular convolutions. They operate in two steps:

1. Perform a depth-wise 1x1 convolution with Fo output channels

2. Perform a kxk convolution without changing the number of channels, Fo

Then, if the dimension of the input is [Fi, H, W], the resulting computational
cost is (1 · 1 · Fi · Fo · H ·W) + (k · k · Fo · H ·W) = H ·W · Fo · (k2 + Fi), which is
lower than the cost of a traditional convolution H ·W · Fo · k2 · Fi. More details
can be found at [16]. It has proven, as in the case of Xception [369] or ResNeXt
[370], to be a way to increase convergence and keep a good trade-off between
accuracy and the number parameters.

The idea is further extended in MixNets by applying differently sized convo-
lution kernels [371].

Residual mechanisms were introduced in [14], and although they did not in-
troduce explicit efficiency improvements in inference, they helped build larger
networks by mitigating the vanishing and exploding gradient problems. Fur-
thermore, they have served as a base for posterior improvements in efficiency,
such as the next operations. An illustration is found in Figure 2.5.

Inverted residuals and linear bottlenecks Both improvements were proposed
in [16]. Inverted residuals consist in, contrary to traditional residual connec-
tions [14] which perform a wide → narrow → wide, performing a narrow →
wide → narrow sequence regarding the number of channels. By applying a
point-wise, a depth-wise convolution with higher spatial filters, and finally
another pointwise operation the number of parameters can be reduced. The
total computational cost for an inverted block is then H ·W · t · d′(k2 + d′+ d′′),
where t is the expansion rate from narrow to wide number of channels, and d′

and d′′ are the number of channels respectively.

As the number of parameters and operations is reduced, the explanatory ca-
pacity of the network is also reduced. Thus, in order to avoid the damage
that non-linear activations like ReLU cause to the information contained in an
option to add the residual information without a non-linearity, thus the name
linear bottleneck (bottleneck indicates the fact that the residual is connecting
filters with low numbers of channels).

2.4. Efficient operations 47

(A)
(B)

(C) (D)

FIGURE 2.5: Example of efficient operations. (A) Residual con-
nection [14]. (B) Depth-wise separable convolution [15]. (C)
Depthwise separable convolution with inverted residual and lin-
ear bottleneck (right) and without residual (left) [16]. (D) Shuffle
blocks, with (right) or without (left) spatial resolution reduction

[17].

Shuffle blocks are composed of pointwise and depthwise separable convo-
lutions but with the addition of group convolutions and channel shuffles [17,
180]. Since pointwise convolutions can suppose an expensive addition to the
number of operations, and on small networks with a limited number of chan-
nels they can damage accuracy. To avoid such complexity, in [180], they apply
point-wise convolutions to groups of channels. Next, to avoid information be-
ing shared across channels they apply a shuffle layer, which cross ports input
channel information to other groups. With both mechanisms, they are able to
maintain accuracy and deliver a notable speedup (achieving equal accuracy
on ImageNet as AlexNet, they provide a speedup of x13). In Figure 2.5 (D), a
detail of ShuffleNet blocks with and without spatial reduction is illustrated.

48 Chapter 2. Applied Optimization Methods

NAS built operations. Since many modern deep neural networks are built by
stacking the same (or similar) base blocks to configure the main feature extrac-
tor, there have been efforts to search automatically for the architecture of effi-
cient blocks. In works like MNASNet [246], the authors define a search space
for all the possible unit operations (convolution, depthwise convolution, ad-
dition, concatenation, and many others) and search for an efficient base block.
They built the overall network by stacking these base blocks together. More-
over, they can drive the overall qualities of the base block through the different
objectives that the network has to attain, such as accuracy, latency, or others.
Other examples of works would be FBNet [298], ProxylessNAS [245], or PC-
Darts [372], among many others (usually included inside cell based NAS).

Attention mechanisms [373, 374] have constituted an important attempt to
improve the learning capacity of CNNs. Among the studies devoted to atten-
tion, there have been some that have tried to maintain a trade-off between the
overhead added to the network and the increase in performance. Examples
of such types of work are Squeeze and Excitation (SE) modules [375], which,
for example, only adds a 0.26% of GFLOPS relative increase when added to
ResNet-50, or Channel Block Attention Modules (CBAM) [376], among many
others like Bottleneck Attention Modules (BAM) [377] or ULSAM modules
[378]. Overall, they provide an efficient manner to improve the capacity of
networks with little inference overhead.

RNNs have also experienced an evolution to more efficient architectures at
the operation level. In order to improve the learning capacity of vanilla RNNs
and vanishing gradients, LSTM [379] was developed. However, LSTM in-
cluded operations which could be reduced to avoid the extra computational
complexity: it maintained two states, the input activation vector Ct and the
hidden state, ht, and performed a set of operations on each vector to add the
information to the input information, totaling 4n2

h + 56nh + 12 number of pa-
rameters, where nh is the hidden state dimension. An illustration of the net-
work can be found in Figure 2.6 and the number of operations is detailed in
Figure 2.7.

Such operational and size complexity was reduced with the development of
the GRU cell [181]: it reduces the number of stored states to one and reduces
the number of operations. The number of parameters is reduced to 3n2

h +

45nh + 12. The number of operations is detailed in Figure 2.7 and in Figure 2.6
an illustration of the network can be found. More details for the operation
comparison between LSTM and GRU can be found at [2].

2.4. Efficient operations 49

ht
LSTM

ftit

ct-1ct-1

otct̃

ht-1

Wy

yt

○

tanh

Wi Wc Wf Wo

xt

Z-1

t
σ

○

t
tanh

ftff
σ

t
σ

f
○

+ Z-1

ct

(A)

GRU

zt rt

ht

ht-1

xt

Z-1

Wc

tanhnh

ct̃○

Wz Wr

r
σ σ

+

Wy

yt

○

1-

○

(B)

FIGURE 2.6: Illustration of the internal operations for both LSTM
(left) and GRU (right). Illustration taken from [2]

.

(A)
(B)

FIGURE 2.7: Number of operations for both the LSTM and GRU
RNN cells as a function of the hidden state size, nh.

Apart from this great advancement, there has been profuse research on how
to optimize RNNs cells at the operation level [380, 381], but also at exploring
the size limits at which RNNs can be used [382], for example in the case of
embedded platforms [383, 384].

50 Chapter 2. Applied Optimization Methods

FIGURE 2.8: Latency vs Top-1 Accuracy for different models us-
ing batch size 1 on an NVIDIA Jetson TX1. Image taken from [8]

with permission from the authors.

2.4.3 Discussion

Efficient operations suppose an excellent way to increase efficiency in neural
networks. However, as there is no free lunch, the evaluation of the efficient
operation is based on the trade-off between latency (or other measures) and
accuracy. Often, such equilibrium is difficult to maintain and an improve-
ment in both criteria is not achieved. Such situation can be seen in Figure 2.8
in some particular cases. For example, in the case of the MobileNet family,
from V1 to V2 there is a substantial decrease in latency but also an increase
in accuracy. The same happens with the ResNet-50 and the addition of SE
modules, which improve accuracy but decrease latency. Thus, improving an
architecture solely by adding efficient operations is difficult if a Pareto im-
provement is targeted. Improvements at the architecture level, such as those
defined by the EfficientNet family [182] or DenseNets [385], suppose bigger
improvements.

Nevertheless, despite this difficult trade-off, efficient operations suppose an
excellent means for developing NNs specifically for some platforms. As the

2.4. Efficient operations 51

performance of operations is especially linked to the deployment framework
and also the platform used, depending on which operations we focus the re-
sults will be suitable or not. A clear example is MobileNet blocks previously
mentioned, which help develop networks that can work better on CPU-based
inference, as in mobile phones or other platforms. An example can be found
in [6], where IRLB blocks are used for deploying a network to a mobile CPU.

2.4.4 Conclusions

In the present section, we have reviewed some efficient operations that helped
make NNs more efficient and deploy them to specific hardware. However,
as discussed, maintaining a good trade-off between accuracy and latency (or
other system measures) is difficult. Moreover, important improvements are
often achieved not by substituting blocks for more efficient ones ad hoc but
by redesigning the overall architecture either for the accuracy or targeting a
specific platform. All in all, efficient ops help improve NNs but the important
consideration is the platform and the deployment criteria.

As a side note. There are many other efficient operations not covered here
such as GhostNet [386] or SqueezeNets [387]. We have not been able to include
all advances in efficient operations and we have restricted to those that have
had an impact on the thesis. We have also not included Transformers [112]
because they have fallen out of the scope of the present thesis. However, they
supposed an increase in performance for both vision and NLP tasks and also a
reduction in training convergence with regards to the number of FLOPS [226].
Efficient transformers are discussed in [388].

53

Chapter 3

Deployment frameworks for
Resource-Constrained Hardware
Platforms

In the previous chapter, we have illustrated and summarized some of the
techniques available for reducing the computing requirements of a model.
Specifically, we have focused on quantization, pruning, NAS, and efficient
operations. With such techniques or procedures, we are able to reduce the
computing requirements of models so as to ease or adapt them to a resource-
constrained platform.

However, that does not directly mean that we can run it on the desired plat-
form. First of all, there has to be a deployment and inference framework that
allows us to run such an optimized model by using the specific hardware re-
sources of the platform. Secondly, the framework has to support the specific
operations of the model (for example, if the model uses depthwise convo-
lutions, the framework has to be able to use them). And finally, the frame-
work has to be able to exploit or handle the optimizations that the model has
been subjected to (a classic case is the lack of sparse operators for convolu-
tions which reduces unstructured pruning to just a size reduction). Without a
proper deployment and inference framework that is able to handle our model
and its optimizations, all the developments stated in the previous chapter are
worth less than wet paper (at the application level). Such is the importance of
the deployment framework.

As they are intimately related to hardware, deployment frameworks are usu-
ally specialized for a specific platform and their dedicated computing instruc-
tions. Moreover, the specialization usually goes beyond broadly classified
hardware (MPSoC CPUs, GPUs, MCUs, FPGA, etc.) and reaches detailed HW

54
Chapter 3. Deployment frameworks for Resource-Constrained Hardware

Platforms

types, company-specific developments, or specific families of devices (e.g.
different ARM architectures). Such is the case, for example, of CMSIS-NN
[210] which is specialized for Cortex-M MCUs, OpenVINO, specialized to In-
tel hardware (CPUs, GPUs, FPGAs, and others), or the STM32Cube.AI [389],
which is focused on deploying ANN on a fixed range of STM devices.

It is important to distinguish clearly the role of deployment frameworks inside
the development pipeline. After training a model and optimizing it, one does
end up with a file with the weights and activation functions that encode the
network topology. Next, one wants to deploy it to the desired hardware plat-
form or accelerator [18], but cannot do so because the way the model is stored
is not readable and usable in such a platform. That is the role of the deploy-
ment framework, to enable the deployment of the model in a hardware plat-
form or accelerator and the usage of specific hardware resources by the model.
Such a process involves a change in the format weights are stored. However,
it can also involve optimizations, such as quantization, since many platforms
operate on limited data types. With regard to these optimizations, depending
on the relationship between the development and the deployment framework,
they can be performed in one or another. In Figure 3.1, different hardware ac-
celerators are plotted with respect to the number of operations they can handle
and the energy consumed. They are also separated with regard to their native
data types and their nature as hardware platforms (chip, board, or whole sys-
tem). Such complexity and differences should put into account the difficulty
to adapt and bring a neural network to specialized hardware. Importantly to
note is that usually, the deployment framework is thought only for inference
and not for training, as well as the platforms it is intended to.

Also important to note is that, albeit as of today it might appear that there
are many deployment frameworks devoted to many hardware platforms and
allowing many different optimizations and operations, it has been due to an
explosion in development in the past five years. Back in 2017, there were al-
most no public deployment frameworks to bring NNs to hardware devices,
and those that were available had a limited matrix support1. One had to rely
upon under-supported specific libraries or use a general computation library
and build the support for operations. Around that time, however, an increase
in the development of deployment frameworks for most platforms started. As
most development frameworks had several years of development and were

1We refer to matrix support as the NN operations that the deployment framework can
handle. As examples, one can check the CMSIS-NN matrix support or the Tensor RT matrix
support.

Chapter 3. Deployment frameworks for Resource-Constrained Hardware
Platforms

55

FIGURE 3.1: Number of Giga operations per second versus
power consumption of publicly available AI accelerators and
processors. Figure extracted from [18] with permission from the

authors.

mature and stable enough, the desire to extend NNs to as many applications
and circumstances as possible demanded the development of the necessary
software. To pick two outstanding examples, among the many possible ex-
amples, one could state the case of Tensorflow Lite [201], which was released
in 2017 and has brought ML models to platforms such as smartphones, or
OpenVINO, which allows the acceleration of NNs in Intel hardware, includ-
ing FPGAs, and was released in May 2018.

All in all, when this thesis began there was limited support with regard to
deployment frameworks. And in that situation is where we frame part of the
developments and contributions. In the first developments, I had to develop
my own inference libraries for GRU or LSTM for a RISC-V CMU or had to im-
plement my own conversion framework, as in the case of Torch2CMSIS [219]
(enables format conversion and quantization of PyTorch developed NNs to
Legacy CMSIS API). Later on, with the next projects, the increasing availabil-
ity of deployment frameworks turned the problem to know if the model and
optimizations were supported and what could be performed. In both cases,
however, the importance of the deployment framework is major since it marks
the successful deployment of the NN or its total lack of applicability.

In the present section, we are going to cover the deployment and inference
frameworks with a focus and orientation toward devices instead of other clas-
sifications. More specifically, we aim to cover only deployment frameworks

56
Chapter 3. Deployment frameworks for Resource-Constrained Hardware

Platforms

related to hardware platforms used in the industrial applications of the present
thesis. That is, we are going to cover mainly frameworks for MCUs (Sec-
tion 3.1), smartphones (Section 3.2), and embedded GPU boards (Section 3.3),
although we will also briefly cover other devices such as FPGAs boards (Sec-
tion 3.4). Then, with each framework, we are going to review which opera-
tions they cover, the optimizations that they are able to handle, and in general,
the benefits and limitations that each framework has, providing orientation
for the successful joint development and deployment of NNs.

3.1 Microcontroller Units (MCUs)

Deploying effectively a NN to a resource-constrained MCU can be a daunting
task [229]. MCUs usually use general-purpose processing cores (single-core
in most cases) which lack many high-end CPUs (from the operating system
and virtual memory management to thread-level parallelism or vectorized in-
structions), and operate on lower frequencies (8- to 200 MHz, compared to 1
to 2 GHz from GPUs), and might not have Floating Point Unit (FPU), adding
overhead to inference with floating point numbers. All these reasons can con-
vert a fully functioning application in a non-constrained environment to not
feasible projects in an MCU-based environment. For such reason, optimiza-
tions described in Chapter 2 can help deploy those applications. However,
there is still one final caveat. The set of instructions2 [390, 229], programming
language, libraries available, et cetera are totally totally different from a NN
development environment, hindering even more or directly forbidding the
deployment.

To solve both problems and bridge the development of NNs and their de-
ployment in resource-constrained MCUs, deployment frameworks have been
developed. They convert the network to suitable formats, allow for running
NN operations in the MCU processor and with an instruction set, and allow
for certain optimizations to be used.

In the next paragraphs, we review some of the most current and common
deployment frameworks for MCUs, their main characteristics, and notable
points.

2The ISA (Instruction Set Architecture) is of utmost importance for running NNs in MCUs.
Most of them don’t have SIMD instructions, most registers are strictly 32-bit, and not all arith-
metic and logic instructions are covered. Moreover, most MCUs are based on the ARM Cortex
architecture, which is proprietary and thus not freely extendable, whereas the open-source
RISC-V ISA support for NNs is still scarce. [229]

3.1. Microcontroller Units (MCUs) 57

CMSIS-NN [391] is a deployment framework developed by ARM for Cortex-
M MCUs. Specifically, more than a deployment framework is a set of efficient
neural network kernels optimized for running with maximized performance
and minimal memory footprint.

The library is separated in two sets of kernel functions NNFunctions and NNSup-
portFunctions. The first provides the interface to fundamental neural network
functions such as convolutions, poolings, or activations, while the second pro-
vides utilities needed for those functions such as data type conversions or
activation look-up tables. The kernels are built with support for two data
types, 8-bit or 16-bit, though their optimizations are focused especially on 16-
bit Multiply-and-Accumulate (MAC) instructions.

The first versions, denoted as CMSIS-NN Legacy API, were based on symmet-
ric power of 2 and layer based quantization, with no offsets or layer fusion. In
later developments, CMSIS-NN matched TFLite Micro data making a break-
ing change to the core development, but improving however quantization:
now per channel, with offsets, and layer fusion. In Table 3.1 a summary of the
differences can be found.

One of the main caveats of CMSIS-NN is that is a deployment library without
a standardized conversion utility. Hence, to deploy the model built in the
development environment (PyTorch, Tensorflow, ...) one has to follow several
steps to adapt the neural network to CMSIS-NN. First, ensure manually that
all layers are compatible and supported. Second, check that the data layout
of the development environment matches the one in CMSIS-NN, and if not,
weights have to be reordered prior to conversion. Third, compute the Q.Q3

scheme of all the layers and the associated statistics. Fourth, compute the
layer shifts. Finally, one can write the inference code with CMSIS-NN. It is
due to this reason that Torch2CMSIS was developed as part of this thesis: to
automatically go through all these steps and ease deployment of NNs with
CMSIS. However, with the current TF Lite compatible API, all those steps are
covered by TF Lite prior to obtaining the inference code.

Tensorflow Lite for Microcontrollers (TFLite Micro) is an extension of the
TF Lite library (Tensorflow’s library for optimized models and deployment to
mobile) targeted to MCUs. It has a broad matrix support, which consists of a
subset of Tensorflow operations, compared to other deployment frameworks.

3Bits assigned to the integer part, first Q, and to the decimal part, second Q, in a fixed point
numeric scheme

58
Chapter 3. Deployment frameworks for Resource-Constrained Hardware

Platforms

Operation Legacy APIs TFL micro compliant APIs
Core loop No input or filter offset Input and/or filter offset

Re-quantization Shift and saturate in one instruction. 5 cycles Greater than 200 cycles for one output element
Quantization Per layer quantization Per-channel quantization
Output offset No Per-layer output offset

Fused Activation No Yes

TABLE 3.1: Differences between the CMSIS-NN Legacy API
quantization and the new TF Lite compatible scheme. Extracted

from the CMSIS-NN Github page.

It is built as a generic tool, targeting any 32-bit MCU, making it an extremely
portable framework with an appropriately sized memory footprint (the core
runtime fits in 16 KB, while uTensor fits on 2 KB). However, this generality
makes the lack of connections to specific hardware vendor environments a
difficult step for deployment. Moreover, when there are no automatic tools
for generating and deploying the inference code.

Interestingly, it supports floating point binary32 format and 8-bit fixed point
integer computations. As previously stated, and reflected in Table 3.1, it sup-
ports per-channel quantization, it has input, filter, and output offsets, and it
includes layer fusion. It does not support 16-bit integers. Similar to the new
CMCIS-NN API, it can make use of the specialized kernels for 8-bit integer
quantization to have accelerated inference. The principal caveat of the whole
framework, however, is that the network topology is interpreted at runtime
instead of being statically compiled, adding a huge drawback for optimiza-
tions and increasing memory footprint at runtime.

Overall, it is a really flexible and open framework that has a broader cover-
age of operations and optimizations than other frameworks, as well as well-
established support.

uTensor is a C++ opensource machine learning deployment framework cov-
ering Tensorflow as development platforms and models, and Arm MCUs as a
hardware platform. It consists of a runtime library for inference, with which
the user can build the inferencing code, and a translation tool to convert the
model to an MCU-compatible version. It has additional libraries like uTensor_cgen,
which automatically builds inference code from a .pb () Tensorflow Lite file to
.cpp and .hpp files.

As of the writing of this thesis, uTensor is well maintained and has current
support. However, one of the main downsides is the small matrix support,

3.1. Microcontroller Units (MCUs) 59

which might be limited for complex networks but more than sufficient for ef-
ficient and small classification networks. As a positive point, it supports per-
channel and per-tensor symmetric quantization schemes based on the Tensor-
flow Lite quantization specification.

MicroTVM is an extension of the high-performance compiler for neural net-
works Apache TVM [392] which targets bare metal MCUs as deployment
platforms. Although it is currently only tested on Arm targets, it supports
deployment to other architectures, such as RISC-V. Still under development,
examples are found supporting networks based on Tensorflow Lite and for
classification but the matrix support is unclear, as well as its support for other
frameworks. However, it still is a promising possible alternative to CMSIS-
NN for low-level MCU acceleration, delivering in some cases performances
far superior to it.

Other frameworks. With the raise of TinyML [393], the number of available
frameworks for deploying NNs in MCUs has flourished. As it is not our in-
tention to give an exhaustive list and description of all of them, we mention
here some of them as well as their main characteristics and where to find more
information.

STM32Cube.AI is an example of a company-based (STMicroelectronics) de-
ployment framework. It targets the family of 32-bit MCUs from the same
company, and it supports most of the major development frameworks, either
directly (Keras and Tensorflow) or through ONNX [394]. It comes with great
matrix support and seamless integration with other STM development tools,
easing the deployment process. It supports 8-bit integer and 32-bit float data
types and operations. However, the fact that is limited to STM platforms and
that the base code isn’t extendable are major drawbacks.

emlearn [395] is a deployment framework for machine learning systems trained
with Sciki-Learn or Keras targeting any device with a C99 compiler available.

MicroAi [229] is a deployment framework supporting any 32-bit MCU inde-
pendently of the vendor and for Keras developed models. They support,
aside from 8-bit integer and 32 float data types, 16-bit integer data, and op-
erations. They use fixed-point quantization Qm.n, instead of offset and scale-
based quantization. Despite its publication, there seems to be no currently
available code for the framework.

60
Chapter 3. Deployment frameworks for Resource-Constrained Hardware

Platforms

Other inteteresting frameworks include Gravity [396], FANN-on-MCU [397], or
Micro-LM [398].

3.2 Mobile Platforms

Although smartphones have recently grown spectacularly in hardware ca-
pabilities, most DL frameworks cannot be used directly for inference in the
mobile platform for different reasons (third-party library dependency, lack of
software-hardware link, among many others [25]). Such a situation, and the
need to have hardware-specific optimizations, have determined the need for
specific mobile-devoted deployment frameworks. In parallel, the growth in
mobile phone usage and the increase in available data that has come with it
has also motivated the development of such frameworks to ease the develop-
ment of applications and systems.

Most frameworks are written in C++ [26] to enable high performance and
access to current mobile hardware accelerators and processors (mainly CPU,
GPU, and DSP). Most of them are also developed by major technology compa-
nies such as Google (TF Lite), Tencent (NCNN), or Xiaomi (MACE) (although
there are some exceptions with universities or start-ups), and are also ma-
jorly open-source to promote community contributions and user accessibil-
ity. They mostly have a low memory footprint, being significantly lower for
frameworks only targeting mobile inference [26]. An important point to com-
ment is that many of these deployment frameworks have profited from the
development of hardware accelerators thanks to important acceleration APIs
such as XNNPACK, ARM Compute Library, QNNPACK, OneAPI, GEMM-
LOWP [227], Intel OneDNN[399], among many others.

In the next paragraphs, the characteristics of the most common mobile de-
ployment frameworks are described.

Tensorflow Lite (TF Lite) . One of the first deployment frameworks for mo-
bile platforms was the TF Mobile platform, released in 2015, which allowed
deploying DL models to Android smartphones but with any hardware ac-
celeration (CPU inference only). Later on, in 2017, it was re-implemented as
Tensorflow Lite, which now included support for many hardware accelerators
through the android NNAPI. As hardware and mobile vendors have continu-
ously added more support for NNAPI, this has led to a good improvement of
TFLite, which has culminated with the introduction of TF Lite Delegates.

3.2. Mobile Platforms 61

TF Lite delegates are a software abstraction layer that enables hardware ac-
celeration on mobile platforms by using on-device accelerators such as GPU
[206] or DSP (such as the Qualcomm Hexagon) without the need to write ex-
plicit code for each accelerator. They represent a major advantage since they
help DL developers abstract from hardware-specific code and allow hardware
vendors to write their own delegates for their hardware.

Overall, TFLite is a lightweight and fast framework that allows the deploy-
ment of Tensorflow models to mainly Android but also iOS platforms. It has
a good set of development tools, which ease the deployment of models in An-
droid platforms, such as the integration with Android studio. Built around
the TFLite Library, it includes the TF Lite Task library, with out-of-the-box in-
tegration with many DL tasks, and the TF Lite Support Library, which helps
with other functionalities, such as data pre- and post-processing. It has the
support of many optimizations provided by Tensorflow, such as quantization
or pruning (albeit with limitations for sparse kernels [226]). Moreover, it has
APIs for many programming languages and support for many hardware ar-
chitectures. However, at some point, if the developer wants to carry out spe-
cific tasks, deep knowledge of Android is required to go back and forth from
the Java Native Interface (JNI).

PyTorch Mobile is the framework developed by Facebook Inc, after Caffe2,
and connected to the PyTorch development framework, which eases the con-
nection between both settings: development and production. It supports An-
droid and iOs platforms. It has beta support for GPU and DSP through third-
party libraries (Vulkan and Google NNAPI, respectively). It has optimized
inference with floats through the XNNPACK [363] library (floating point op-
timized operators for ARM, WebAssembly, and x86 platforms) and with inte-
gers 8 quantization trough QNNPACK. Notably, its connection with the de-
velopment library makes it really easy to export a model through the just in
time (JIT) and related tools that can be consumed in the deployment frame-
work. Contrarily, the access to some efficient procedures or functionalities in
the Android environment is not so seamless and requires interaction with C++
code through the JNI, hindering the building of the whole application.

MACE ((Mobile AI Compute Engine) is the deployment and inference frame-
work developed by the company Xiaomi for mobile heterogeneous comput-
ing platforms. It supports hardware acceleration on GPUs and DSPs (through
the Qualcomm Hexagon SDK). Written in C++, it allows to consumption of

62
Chapter 3. Deployment frameworks for Resource-Constrained Hardware

Platforms

Name Company Android IOS CPU GPU DSP Time Open source Training
TensorFlow lite Google � � � � 2017 �

PyTorch Mobile* Facebook � � � � � 2017 � �
core ML2 Apple � � � 2018
NCNN Tencent � � � 2017 �

Feather cnn Tencent � � � � �
SNPE Qualcomm � � � � �
MACE Xiaomi � � � � � 2018 �

Paddle model Baidu � � � � � 2017 �

TABLE 3.2: An overview of the popular deep learning frame-
works for mobile terminals. Inspired in [25]. * Previously con-
tained inside Caffe2. We have covered only the major frame-

works. A more broad list is included in [26].

Tensorflow, Keras, or ONNX models directly. It has a good matrix support
and it allows quantization in CPUs and DSPs. It also includes benchmarking
and debugging tools, easing the continuous development of models and their
checks.

Core ML is the deployment framework developed by Apple for their mobile
OS, iOS. It allows hardware acceleration only on GPUs and the Apple Neural
Engine and it is not open source hindering its extension and usage. Apart from
the inference run-time library, it provides a set of tools (Core ML Tools) for
adapting models from common training frameworks, although it allows also
building and training models with the Create ML application. To help deploy
models and develop specific applications it has a set of libraries supporting
common tasks in different DL fields, such as Computer Vision (Vision library)
or NLP.

NCNN is Tencent’s deployment framework for many platforms, including
mobile ones, Android and iOS. Purely written in C++ does not rely on third-
party libraries for acceleration, although it only supports GPU as hardware
accelerators. It can consume models from major development frameworks
and it allows for quantization in integer-8 and half float precision. It does not
have a well-documented API.

DL deployment is a currently ongoing research and development topic. We
have not intended to cover all the frameworks but to provide insight into
some of the major frameworks available and the current situation. Impor-
tant frameworks not covered are the Qualcomm framework Snapdragon Neu-
ral Processing Engine (SNPE), the Alibaba’s Mobile Neural Network (MNN)
[400], PaddleLite from the PaddlePaddle development framework, or Ten-
cent’s FeatherCNN, among others. In Table 3.2, an overview of the most

3.3. Embedded GPU boards 63

popular mobile deployment frameworks for DL is given. To access a more
extended review on the topic, we suggest the reader the following surveys or
reviews ([401, 25, 402, 26]). An important note to mention is that, although
DL frameworks for mobile platforms allow for easier deployment and inte-
gration, development frameworks can also be, in some cases and given the
hardware capabilities of smartphones, in the production platform, as detailed
in [26].

3.3 Embedded GPU boards

GPUs, since the explosion of deep learning, have been the preferred solution
for training. Moreover, for computing-intensive tasks, such as image super-
resolution, and other image tasks, they have also been the preferred inference
platform.

There are different GPU vendors, and although the market of X86-compatible
embedded boards has different players, such as Intel GPUs, in the case of deep
learning, the predominant player is NVIDIA. Due to the specialized libraries
for deep learning, like CUDA or cuDNN, and its usage by major development
frameworks it is the de facto choice both for training and inference.

There are some applications that for privacy or connection reasons need to
perform the task in the device without sending the information, and, in paral-
lel, the task is too heavy to be deployed to the CPU. In such cases, embedded
GPU boards or modules, like the Jetson product family, provide good perfor-
mance in restricted environments.

Albeit not common, there are other alternatives for inference coming from
Intel (OpenVINO [215]) and AMD (mROC [403]), but they are not targeted for
embedded GPU boards.

NVIDIA TensorRT is NVIDIA inference framework targeting general GPUs
and the main deployment framework for embedded GPU boards. It is written
in C++ but has also an API for Python. It has a broad matrix support and it
has extensions and tools for consuming many development frameworks (like
Torch-TRT or Tensorflow-TRT). It has support for inference with 32-bit float-
ing point data, half float, and integer 8 quantization enabling easy access to
quantized model inference. Moreover, it allows running sparse kernels on the
Ampere family of GPUS with Apex. Moreover, it allows fine-grained control
of inference (serial or streamed), data movements, and pre/post-processing

64
Chapter 3. Deployment frameworks for Resource-Constrained Hardware

Platforms

in GPUs, due to its linkage to CUDA and other GPU-specific libraries. Fi-
nally, it also has support to work with dynamic shapes, high-performance
frameworks, like Deep Learning Accelerator (DLA), working with condition-
als, and a set of tools for profiling and benchmarking (like NVIDIA Nsight
Systems or trtexec). The only main drawback of the framework is that being
built with C++ and specialized GPU libraries, makes the debugging a rather
not accessible task.

3.4 Other platforms

There are many other platforms that require deployment frameworks to access
their hardware capabilities. We do not intend to cover all of them. Thus,
we will provide hints to resources and name just a few of the most common
platforms, and associate deployment frameworks for completion reasons.

Field Programmable Arrays (FPGAs) offer high computational power, low
consumption, and flexibility. However, it comes at a cost: difficulty to pro-
gram, which starts with the need for specialized hardware languages (Ver-
ilog/VHDL) and continues with the need for specific tools provided by sup-
pliers to design the solution.

To solve such complex problems, FPGA providers have provided deployment
frameworks that can consume a model with a standard interface, relying upon
the optimization of the core FPGA library. Examples of such deployment
frameworks are OpenVINO by Intel [215], LeFLow [404], VITIS AI from Xil-
inx, among many others.

Application Specific Integrated Circuits (ASICs). With the exponential growth
of AI usage in many applications and systems, the need to optimize hardware
utilization for deep learning operations has also grown. ASICs, which are inte-
grated circuits customized for a particular use, provide good performance and
energy used at the cost of reduced flexibility. However, since deep learning is
mostly based on a set of specific operations (matrix multiplication, nonlinear-
ities, etc) they stand out as an appropriate choice.

Currently, they have many names depending on the hardware provider (Ten-
sor Processing Unit (TPU), Neural Processing Unit (NPU), Visual Processing

3.4. Other platforms 65

Unit (VPU)) but all of them are virtual components (IPs) oriented to their inte-
gration in Application Specific Integrated Circuits (ASIC) and specialized for
deep learning or some subset of tasks of it.

Regarding deployment frameworks, some ASICs can directly consume de-
velopment frameworks as deployment frameworks, as in the case of Google
TPUs, which can be used from Tensorflow. Others, such as Myriad X VPU
from Intel, require a specific deployment framework in this case OpenVINO.
Usually, the use of a deployment framework depends on the hardware com-
pany that produces the ASIC, which can link their deployment tools to ex-
isting frameworks, as in the case of Cerebras or Graphcore [405]. A good
summary of the available ASICs for deep learning can be found in Medium -
Hardware for Deep Learning. Part 4 ASIC by Grigory Sapunov.

67

Chapter 4

Capacitive Sensing based Gesture
Recognition on MCUs

In the present chapter, we present the first application environment and project:
gesture recognition with capacitive sensors deployed to low-cost MCUs.

Gesture recognition with capacitive sensors is a well-studied, researched, and
industrialized topic. From hard-coded heuristic algorithms [406] to comput-
ing non-intensive machine learning algorithms [407], solutions, albeit limited
in gesture richness, had already been incorporated into low resource comput-
ing environments. Nevertheless, the success of NNs with tasks such as image
classification or gesture recognition itself has drawn attention to algorithms of
the like due to the new possibilities offered. The main constraint has been the
perception that they were too computing intensive for their usage in resource-
constrained devices. Hence, a research stream oriented towards diminishing
the resource requirements of such models or studying their deployment in
resource-constrained devices was initiated. Both at the optimization level and
the deployment framework, advances have been made from an almost non-
explored situation. In late 2018, there were almost no deployment or con-
version frameworks for NNs toward MCUs and the tiny ML [393] trend had
just started. Although optimization methods had already been studied (quan-
tization, pruning, etc) advances were still to be made, and the focus on the
hardware platform was a novel research direction. In such an environment
begins the first step of the thesis.

In this chapter, we study the implementation, optimization, and deployment
of tiny RNNs in MCUs devoted to gesture recognition in capacitive sensors:
from developing small enough RNNs so as they fit in a low-end MCU [2, 3],
or improving NAS algorithms [4, 218] for adapting such networks to specific

68 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

hardware requirements, to automatizing the quantization and conversion of
such networks to Cortex based MCUs [5, 219].

The chapter is organized as follows. First, in Section 4.1, the topic of gesture
recognition with capacitive sensing and NNs on low-cost microcontrollers is
introduced. Next, in Section 4.2, we detail the first experiment with regards
to 1d gesture recognition with tiny RNNs. Section 4.3, describes the second
experiment, which is devoted to the extension and research of a NAS algo-
rithm. Section 4.4 illustrates the development of an unsupervised automatic
approach for developing RNNs and CNNs for gesture recognition on low-cost
MCUs. Finally, Section 4.5 draws the conclusions and possible next steps.

4.1 Introduction

Gesture recognition has advanced progressively in the last two decades thanks
to both the improvements in state-of-the-art models and the appearance and
enhancement of new sensing methods [408]. New technologies, such as KinectTM,
together with the decrease in the price of classical sensing methods, for exam-
ple, depth cameras, helped to create a vast amount of data, which allowed the
development of new solutions.

These improvements have spread the usage of gesture or action recognition
in a wide range of applications: from security to entertainment. However,
the sensing method and the implementation strategy vary depending on the
requirements of the application. Camera-based information retrieval tends to
capture contextual data that may or may not be necessary. On the other hand
and as an alternative, capacitive-based methods tend to be cheaper and do not
suffer from invasiveness issues but require complex information retrieval.

In the automotive environment, neither invasiveness nor contextual informa-
tion is desired for gesture recognition. Invasive sensors might affect the cor-
rect driving task and a sensing method that captures contextual information
might detect unwanted events. Capacitive sensors suppose an alternative so-
lution for those two problems. Although their first applications were devoted
to fluid or particle detection [409, 410], their low cost and short-range proper-
ties have spread their usage to many other areas, including automotive appli-
cations [411, 412], where they have received a great industrial interest during
last decades. When compared with mechanical buttons, the lack of moving
parts reduce wear and tear [413], contributing to much better durability and
reliability properties. Moreover, its design flexibility allows it to include them

4.1. Introduction 69

in a wide range of products and shapes while enabling cost reduction and
budget tightening. Their sensing mechanism is based on the measurement of
the value of a variable capacitor affected by the presence or proximity of the
object to detect, known as the target. The more the target decreases its distance
to the sensor, the better the system is able to detect it. As its name (proximity)
implies, this allows to use them as distance detectors (such as in [414]) and
non-contact and contact gesture recognition (such as in [406]).

In any case, the distance between the target object is indirectly computed by
reading the capacitance value. For low-cost sensors, the tolerances of the
building processes, the differences on PCB manufacturing and the different
placement of mechanical elements require that every design is calibrated to
make sure that the reading outputs are adjusted to an expected output range.
Moreover, the diverse capacitive characteristics when approaching different
parts of the body (fingers, hand, etc.) and their potion pattern can make it
challenging for classic digital signal processing (DSP) event detection algo-
rithms. Figure 4.1 shows some example readings of an individual proximity
sensor.

Additionally, capacitive sensors are being progressively introduced in much
human-machine interaction (HMI) systems of consumer devices like smart-
phones, smart watches, wearable devices and fabrics, and many others. As
users are more used to touch interfaces, finger or hand gesture control systems
are increasingly demanded by premium line car-makers and truck-makers
like BMW [415] and MAN [416]. However, the disparities in the mechanical
integration of the sensors on different product models increase the difficulty
to use a single gesture recognition system for all of them. A common solution
is to recalibrate the algorithm parameters for each new product design, but
this process requires some investment. Hence, a global gesture recognition
system that could embrace such variability could be of prominent benefit to
the manufacturer.

RNNs for Gesture Recognition in MCUs Such pursuit has been tradition-
ally approached by gesture classification methods in a two-step process: pro-
cessing and classification. In the first, data is transformed appropriately to a
feature vector at every instant. In the second, this vector is used to classify the
gesture by means of a model such as Support Vector Machine, Random Forest,
or Hidden Markov Model that take into account temporal evolution. The re-
cent success of NNs, and more specifically, CNNs [85] or RNNs, in tasks such

70 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

gloved touch

0 1 2 3 4

short touchnormal touch

short spike

approach

without touch

FIGURE 4.1: Examples of normalized capacitance reading to var-
ious events over time.

as image classification, has spread its use in the gesture recognition pipelines.

The signals captured by capacitive sensors are complex in terms of spatial and
temporal relations [417], thus, RNNs, which are seamlessly suited for tempo-
rally structured data, seems a good alternative to implementing such flexible
gesture recognition systems. However, despite their expected good perfor-
mance, they are perceived, as CNNs, too computing-intensive to be embedded
in low-cost microcontrollers. This situation is changing with the last advances
in optimization and quantization of NNs for resource-limited devices [150].

NAS for Gesture Recognition in MCUs In order to make neural networks
more efficient and also to be able to embed them into resource-constrained
devices several strategies have been developed by researchers, e.g. prun-
ing [158, 157], quantization [150], efficient operations [15], and approximate
computing [418]. Along with these improvements, new software tools to
port networks to resource-constrained environments have been developed
[201, 419, 216, 420, 211].

However, all these previous optimization procedures are focused on modi-
fying an already trained structure and avoiding huge drops in performance;

4.1. Introduction 71

the model architecture is not modified. NAS is a different approach: it fo-
cuses on finding the best performing architectures by modifying the network
itself, usually by means of an evolutionary or genetic algorithm [250]. Lately,
NAS algorithms have focused their attention on developing architectures that
are both well-performing but constrained in resource consumption and usage
[189].

Although delivering state-of-the-art performance and efficiency, these meth-
ods still require high computational resources. From these three problems,
hyper-parameter optimization, NAS, and making neural networks (NNs) resource-
efficient, stemmed off a series of efforts centered in providing NAS solutions
for resource-constrained environments [188, 421, 35, 422, 423]. Nonetheless,
most of these efforts centered their attention on CNNs and do not include
RNNs. And if they include them [290], the focus is not centered on mini-
mizing the memory and size footprint of the architectures found. This lack,
altogether with the explosion of new technologies and environments enabling
or demanding gesture recognition (virtual reality, smart cars, depth image
sensors, wearables, among others), establishes an excellent opportunity for
automatizing the building of gesture recognition networks for embedded en-
vironments.

Unsupervised 2D Gesture Recognition As we have seen NNs have achieved
outstanding performance in tasks such as image classification or speech trans-
lation, as well as in our case, gesture recognition with capacitive sensors.
There have been also been methods developed to reduce their computational
requirements for them to be embedded, specifically, in resource-constrained
MCUs. However, in most cases, efforts have been directed towards super-
vised learning. In such cases, labeling is required, which can induce, among
other factors, bias in the model and undermine its real-world use [424]. To
partially solve this issue, unsupervised methods, such as autoencoders [425,
426, 427] or clustering [428, 429], focus only on the information provided by
the data to perform the task and avoid annotation and labeling, both error-
prone activities which could induce noise and bias. Nevertheless, the bias or
noise are not completely removed since the data itself could still be biased
and noisy. In the end, unsupervised methods do not only liberate from the
task and effects of labeling but also allow for more freedom in the learning
of patterns, by not being constrained to a specific purpose task. Hence, they
enable the possibility of pattern discovery and identification outside the con-
straints of the specific task purpose.

72 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

Additionally, and as a parallel matter, we have only explored 1D interaction
in capacitive sensing. Due to its short-range nature, exploring 3D interactions
is challenging unless increasing notably the size of the sensor. 2D interactions,
however, come naturally with capacitive sensors, and, indeed, have been the
de facto technology for most HMI applications, like smartphone or machine
screens [430, 431] that include a touch sensor (often capacitive to get multi-
touch functionality) on top of a display. As stated previously, a global gesture
recognition system that could embrace the variability of capacitive sensors
could be of prominent benefit to the manufacturer. Moreover, in the case of
capacitive sensing with 2D interactions, there has been room for improvement
of both the error rates [432] and the methods chosen for detecting the increas-
ing complex gestures [433]. This fact, altogether with the restrictions on com-
puting resources of HMI in automotive environments, presents a challenge
where the optimization of NNs and their deployment in resource-constrained
devices stand out as a prominent opportunity for advancement.

4.1.1 Contributions

The contributions of the present chapter are divided into a three-step exper-
imental process. In them we progressively investigate the development and
improvement of RNN and CNN models, and especially their optimization, to
prepare them for their usage in a low-cost microcontroller platform devoted
to gesture recognition systems with a capacitive sensor.

First, we research the usage of RNNs for a capacitive proximity sensor appli-
cation in the automotive domain (following the work in [434]). Our proposal
is to use uncalibrated raw data to detect touch gestures for the control of car
infotainment and comfort systems using low-cost microcontrollers. Our objec-
tive in this section is then two-fold. First, the proposal of an RNN is suitable
for microcontroller embedding which is able to capture complex spatial and
temporal gestures, such as sliding or approximation. And, second, its opti-
mization to obtain maximum performance using Bayesian Optimization.

Second, we implement and modify SpArSe [188], a NAS oriented to micro-
controller deployment, while extending it to RNNs and combinations with
CNNs. We also introduce latency as a new objective for time-critical appli-
cations. Thus, we can automatically develop networks that can be targeted
to gesture recognition and which are especially suited for embedded devices
and time-constrained tasks. We apply our implementation in a popular ges-
ture classification dataset, the Corpus of Social Touch (CoST [435]), and obtain

4.2. 1D Gesture Recognition 73

better results both in terms of accuracy, model size, working memory, and, for
the first time, latency when compared to manually developed architectures. In
addition, we modify the search procedure by introducing a low-cost fidelity
by running fewer epochs at the beginning and increasing them as the program
advances. Hence, this forces the search algorithm to be more exploratory at
the beginning and employ more time with Pareto solutions by the end of the
procedure, shortening the total time needed for finding optimal solutions. The
code is available in https://github.com/BCJuan/SpArSeMod. An important
additional outcome is the implementation of an special kernel [436] in a well-
known open source Gaussian Process library, GPyTorch [437].

Third, we explore and develop an unsupervised solution for 2D gesture cog-
nition with a bi-axial planar capacitive sensor. We present an auto-encoder
neural network that, in junction with K-Means (KM) and optimized through
NAS, can perform unsupervised classification in a low-resource microcon-
troller for recognizing gestures. Although there have been similar works with
other models [438] or with other topics [439], to the best of our knowledge,
this is the first work that presents a fully embedded and unsupervised solu-
tion for gesture recognition using neural networks and capacitive sensing. An
important outcome is a creation and open-sourcing of a library for automatic
quantization of PyTorch networks and their conversion to CMSIS-NN frame-
work, Torch2CMSIS [219].

4.2 1D Gesture Recognition

4.2.1 Sensing Mechanism and context

Proximity Sensing through capacitance measurement

The capacitance of a parallel plate capacitor is based on Equation 4.1, where
A is the area of the plates, ε0 is the dielectric constant for free space, εr is the
relative dielectric constant of the material separating the plates, and d is the
distance between the plates.

C =
ε0 · εr · A

d
(4.1)

Capacitive touch sensors are often based on the mechanical deformation that

74 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

(A)
(B)

FIGURE 4.2: Different proximity sensor principles. (A) Self-
capacitance sensing. (B) Mutual capacitance sensing.

the target produces on some of the capacitor plates. This reduces d and conse-
quently increases C. On the other hand, proximity sensors work on two pos-
sible different approaches (as detailed in [440] and depicted in Figure 4.2): the
self-capacitance approach and the mutual capacitance approach. Grosse does
a finer analysis in [431] by describing a taxonomy of the possible configura-
tions.

In any case, for most proximity sensor designs, it is assumed that the sens-
ing surface is not deformed. In the self-capacitance approach, the sensor has
only one electrode, and the target acts as the other electrode of the capacitor.
Figure 4.2a illustrates the operation. The measured capacitance is the one cre-
ated between the electrode and the ground of the sensor system. The value of
the obtained capacitance depends on the distance to the target (the closer, the
higher), but also on the area of the plates and its relative dielectric constant
εr. Animal tissues εr can vary significantly depending on the type of tissues
but it is above 50 (see [441]) which is higher than air (that has a value slightly
higher than 1).

Mutual capacitance proximity sensors are often implemented as planar capac-
itors, due to their easy implementation on printed circuit board (PCB) tech-
nologies. In this case, there are two lateral plates, as illustrated in Figure 4.2b.
The electric field is bent between the two plates. When the target object ap-
proaches the sensor electrodes, it reduces the electric field between them.

Self-capacitance sensing has typically higher distance sensitivity [442] and it
is preferred for low-cost devices since it uses fewer electrodes and fewer pins

4.2. 1D Gesture Recognition 75

from the microcontroller to implement the readout circuit. On the other hand,
mutual capacitance sensing can achieve higher granularity in close proximity
to target positions, which makes it adequate for 2D touch panels. Mutual ca-
pacitance sensors also reduce the influence of parasitic capacitances and allow
the presence of water, which are both problematic in self-capacitance sensing.

Mutual capacitance sensing is used in several works (like [443]). In the au-
tomotive domain, BMW research also presents in [444] a mutual capacitance
sensor with some similarities to the one presented here. Nevertheless, in this
work, we use a self-capacitance approach to reduce the system cost.

The capacitance variation is usually measured by analyzing some aspect of
the temporal response to a signal injected into the system. A good review
of different methods is done in [445]. Due to the inverse proportionally with
distance d, proximity sensors require a good resolution of the C readings to
estimate its value and perform gesture recognition. The process typically in-
volves what is known as capacitance-to-digital conversion.

Some methods, to do this conversion (such as [446]), is based on the use of
operational amplifiers (OpAmps) and require a number of external electronic
components. But, in low-cost solutions, they are avoided if possible. Another
option is the use of the switching capacitor principle [447, 448], by which a
capacitor is equivalent to a resistor with a resistance value related to the un-
known capacitance. Some microcontroller manufacturers add that kind of cir-
cuit to microcontroller lines targeting capacitive sensing application domains.

However, for a low-cost implementation, a solution based on general-purpose
microcontrollers is preferred. The charge transfer principle [449, 450] is es-
pecially adequate for its implementation in low-cost microcontrollers. Mod-
ern microcontrollers include a number of general-purpose input-output ports
(GPIOs). Although most GPIOs are digital, some of them are also connected
to analog-to-digital converters through analog multiplexors. Thus, some pins
can drive VCC or GND (when working as digital output pins), provide a high
impedance (or floating) value (when working as digital inputs) and work as
analog inputs. In other words, the same simple microcontroller pins can be
used to charge, discharge, and measure the decay time of the sensing capaci-
tor [451]. The challenge, for these types of measurement techniques, is to have
a good value resolution and quick response time.

76 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

FIGURE 4.3: Capacitive functional foil for touch sensing. Sensi-
tized areas are depicted as light blue rectangles.

CM

CA OE1

O1

OE2

O2

ADC

I1

Microcontroller

FIGURE 4.4: Capacitive sensor readout system.

Sensor

The proposed sensor is a multi-touch sensor to be integrated into a car dash-
board. The intended sensitive distance is limited to less than 5 cm to reduce
the unintended activation of the functions it controls, so the self-capacitance
design is selected due to its relatively high range and lower cost.

The sensors are included in a capacitive foil embedded into a plastic module
specially designed for touch recognition. Both the capacitive foil and the plas-
tic case have special regions where touch events are expected. The structure

4.2. 1D Gesture Recognition 77

of the capacitive functional foil is shown in Figure 4.3, and basically consists
of rectangular electrodes connected by a wire bus to an external connector.

The sensor foil is connected to a microcontroller that analyzes the sensed sig-
nals and determines the appropriate actions to perform. Capacitance mea-
surement is performed by a charge transfer-based approach which is detailed
in the patent [452].

The readout system is depicted in Figure 4.4. To perform the measurement,
two capacitors are used: the measuring capacitor, CM, which value is un-
known, and the integration capacitor, CA, which has a greater capacitance
than the expected CM. Two pins (1) and (2) of the microcontroller are used
to control the measurement sequence. VCC and GND can be forced by set-
ting the output value of the pin to 1 or 0 and activating the output enable
signal (OE) of the pin. On the other hand, if OE is not active, the pin is in
high-impedance mode acting as an analog input.

First, CA is discharged by setting both pins to GND. Then, a sequence of CM
charging and charge transfer to CA is done for a number of times. CM charg-
ing is done by setting pin 2 to high impedance and pin 1 to VCC. The charge
of CM is transferred to CA when pin 1 is in high impedance and pin 2 is con-
nected to GND.

After a number of N charge-transfer cycles, the analog value of pin 2 is read
through a 10bit ADC and used to compute the capacitance reading. The volt-
age value is determined by Equation 4.3

VA(0) = 0 (4.2)

VA(N) =
N

∑
i=1

CM

CM + CA
(VCC − VA(i − 1)) (4.3)

We use a fixed number of cycles N. The value for N is determined experimen-
tally depending on the application, as it is a trade-off between latency and
prediction accuracy. The overall process is performed for all seven sensors
in a time multiplexed fashion. The final acquired data stream consists of 10
channels (9 electrodes plus the shield) of 10-bit signals at a 356 Hz sampling
rate.

An alternative method proposed in [453] avoids using the ADC. Instead, they
propose to keep repeating the integration cycle until the voltage of CM is

78 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

higher than the threshold voltage of digital 1 (VIH). Although this method
could reduce the cost by eliminating the need for ADCs, it is less deterministic
and can be slower due to the variable number of integration cycles required.

4.2.2 Gesture definition and data acquisition

The designed sensor is built having functional flexibility in mind so that it can
be used for button arrays or level controllers. In the first case, the expected
interaction is based on taping while in the second case finger swipes would be
used.

So, our interactive system is designed to recognize two different types of ges-
tures: taps and swipes. Since we have nine sensitive areas, we have the same
number of possible tap gesture events plus right and left swipe gestures.

Regarding the functionality of the system, a tap gesture on a specific electrode
of the sensor unit is typically used to activate or deactivate a specific option
or function of the product. On the other hand, a swipe gesture would be used
to relative increase or decrease some value. For all gestures, we expect that a
finger has physical contact with the surface.

Other activations of the sensor that do not involve a meaningful previously
described event are ignored. This includes approaches without touch, inter-
button touches, and multi-button touches.

The duration of the events is undetermined. Tap events have a lower duration
bound, but can be very long. Swipe gestures duration has a lower bound lim-
ited by the speed of finger movement and an upper bound by the combination
of the sensitivity and sampling frequency of the system.

The input data stream X can be modeled as a sequence of n samples from 10
sensors (see Equation 4.4). Although the readings of the ADC give integer
values, the process detailed in Equation 4.3 results in floating point values.

X = {x1, ..., xn}|xi ∈ R10 (4.4)

Event-based gesture recognition can be formalized as a function that maps the
acquired data stream X into a sequence of m recognized gestures (as shown in
Equation 4.5).

F : X → {G1, ..., Gm} (4.5)

4.2. 1D Gesture Recognition 79

Each gesture Gi event can be defined as a set of features that uniquely identify
them. Those features are the gesture class, the starting time, and the gesture
duration (Equation 4.6).

Gi = {t0, Δt, c} (4.6)

In our case, the possible considered gesture classes c, also known as gesture
vocabulary, consist of tap gestures for each of the 9 sensors and swiping to left
and right directions (also known as slides). In Equation 4.7, Ti denotes a touch
gesture in sensor i. Sl denotes a finger gesture moving from right to left, and
Sr denotes a finger gesture moving from left to right.

c ∈ {T0, ..., T8, Sl, Sr} (4.7)

Since our system is based on a 1D sensor, the gesture vocabulary is simpler
than similar works working on 2D sensors (like [454]), which also include
more complex gestures like circle movements, rotations, etc.

Offline gesture recognition systems can analyze the whole X stream to seg-
ment and classify the potential existing gesture events. However, for interac-
tive HMI systems, online recognition systems must recognize gesture events
in less than a maximum response time Lmax (or recognition latency).

One solution is to work with a frame-based approach. A frame consists of a
subset of the past observed input samples that can be used for gesture segmen-
tation (also known as gesture spotting) and recognition. Frame size should be
shorter than Lmax; otherwise, it is impossible to produce the output at the re-
quired time. But this introduces a new problem: the gesture duration could
be longer than the required maximum latency (d > Lmax). In this situation, a
recognizer could either forecast the gesture or do a piece-wise recognition of
the whole gesture.

Sliding windows with some overlapping are typically used in frame-based
digital signal processing. In our case, we use a frame-based approach with no
overlapping and a frame size of 6 samples. Thus, a frame qi consist of a group
of 6 consecutive samples of the sensor data stream X (see Equation 4.8).

qi = {x6i, x6i+1, ..., x6i+5} (4.8)

80 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

c=T1x5x111 x222 x333 x4 55 x6 x30c=cc T1 x30

q1 q2 q5

t0=12

66 x7

Δt=14

q3 q4

t=1

X:

G

g

G

g

T1

g

T1

g

G

g

FIGURE 4.5: Example of the frame-based recognition approach
for an input stream of 30 samples in which a tap gesture occurs
on sample 12. The input samples X are grouped in 5 frames of
6 samples each. Frames 3 and 4 are classified as belonging to
a Tap gesture for sensor 1, while other frames are classified as

non-gesture

As we use a frame-based approach instead of an event-based approach, the
new frame recognition function g only has to map each frame to any of the
formerly defined gesture classes and an additional class G that denotes non-
gesture.

g : qi → c|c ∈ {T0, ..., T8, S1, Sr, G} (4.9)

Figure 4.5 illustrates an example of how the frame-based approach would
work for a short stream of data containing a single gesture event.

According to [455] and [456], the reaction time of an attentive individual to
prime stimuli goes from 100 to 600 ms. For interactive gesture recognition
systems in [457], Yin uses a maximum of 1-s reaction time, and Song a 100
ms [458]. In our case, as the sampling rate of the data stream is 356 Hz, the
minimum latency of the system introduced with our frame-based approach
will be at least 16 ms.

Data acquisition and annotation

To the best of our knowledge, there are no public datasets to test our system,
so we collected our own dataset. The purpose is to be able to include as much
variety of events as possible with the minimum human cost. A person was
instructed to do a collection of gestures over the sensing surface. He did it
with bare hands, wearing 2 mm neoprene gloves and 3 mm wool gloves to
simulate the variety of possible different scenarios found in the real world.

4.2. 1D Gesture Recognition 81

All events were recorded separately. The dataset consists of 5224 recordings.
Each recording contains the signal raw integer values of the voltage sensed by
the ADC. Then, an annotation of events was generated. Instead of the classes
foreseen in Equation 4.7, the annotation collects information more detail as
described in Equation 4.10.

Anni = {t0, Δt, isT0, ..., isT8, dmin, Mattarget, Sc} (4.10)

where isTi is a boolean value that determines if the finger has touched the
sensor electrode i during the gesture. dmin is the minimum distance of the
target to the sensor surface. It is zero if any isTi is true. Mattarget is the material
of the target, possible options are bare hand, neoprene glove, wool glove, or
wet hand. Finally, the slide class identifier is used to annotate swipe events
Sc ∈ {Sl, Sr, ∅}.

Although we are only interested in the two types of events, taps, and swipes,
this annotation allows doing further analysis in the future.

For instance, a multi-button touch would show more than one touch and no
swipe. While a swipe gesture would contain multiple touches and swipe in-
formation.

An inter-button touch would have a minimum distance of zero, that is, touch-
ing the surface, but no touches to any button. Different events are represented
and in Figures 4.6a-4.6d, the curves from voltage measuring are represented
for different events.

Instead of manually labeling the dataset, we opted for a semi-supervised ap-
proach. First, we determined the isTi, dmin, and Mattarget for the all the record-
ings except slide recordings. This information is already available in the dataset
recording campaign information. Then, for single touch events, a binary seg-
mentation algorithm [459] based on the saddle point of the first derivative of
the sensor data is applied. This allows determining t0 and Δt. For multi-touch,
inter-touch, and approach events, a similar method is applied to determine t0

and Δt.

For slide gestures, isTi was not available from the dataset test plan so it was
first determined from an individual binary segmentation of each channel. Then,
starting and ending buttons are determined to later compute the slide direc-
tion Sc and timing information t0 and Δt.

82 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

In order to obtain the training, validation, and test sets, the samples have been
separated in a stratified manner according to the 11 positive classes with the
following proportions: 60% for training, 20% for validation, and 20% for the
test.

For this partitioning, each event has been considered separately: the same
proportion has been extracted from each fine-grain event. Thus, the training
set consists of 3155 recordings, the validation set of 1035, and the test set of
1034 recordings.

As a single person was used to build the dataset, it contains some bias on the
characteristics of the events. This affects especially the swipe events, which
seem to have different moving patterns depending on their direction. To solve
this problem, more recordings should be done with different people, and data
augmentation techniques could be performed as well. These limitations will
be addressed in future work.

4.2.3 Implementation

Recurrent Neural Network Models

The models considered for use are three versions of RNN: vanilla [460], LSTM
[77], and GRU [461]. However, independently of the cell type, their data input
and output structures are the same. The input for each cell is a sample point
with its corresponding features. The output of the network is the class of the
segment related to the sequence of samples. In this way, the process works as
looking at a segment but in a dynamic manner. That is, the model classifies
segments. After the sequence has been classified, the internal state of the RNN
cell is reused for the next segment. The structure of the network is detailed in
Figure 4.7.

Regarding the three different RNN cells, vanilla is the simplest RNN network
[460]. The number of parameters of a vanilla cell (network with only one
layer) is n · (n + m + 1) while the number of operations is 2n · (n + m), where
n is the number of inputs and m the number of neurons.

LSTM cells are an improvement of vanilla cells created with the purpose of
solving the exploding/vanishing gradient problem. They were introduced by
Hochreiter in 1997 [77]. They have two hidden states, which serve as input
for the next cell, and also different internal operations for efficient and ad-
vanced memory management. The number of parameters of an LSTM cell is 4

4.2. 1D Gesture Recognition 83

0
2
4
6
8
0

100

200

300

(A)

0
2
4
6
8
0

100

200

300

(B)

0
2
4
6
8
0

100

200

300

(C)

0
2
4
6
8
0

100

200

300

(D)

FIGURE 4.6: Dataset annotations for different gestures in differ-
ent conditions. (A) tap gesture with a neoprene glove. (B) nor-
mal tap on button 2. (C) finger approach, which is not considered

a valid gesture. (D) swipe right gesture.

times the corresponding for the equivalent Vanilla cell, that is 4n · (n + m + 1).
Regarding the number of operations, they are increasing by approximately 8
times n · (8n + 8m + 3) ≈ 8n · (n + m).

Finally, the GRU cell was developed in 2014 by Cho et al. [461] aiming to

84 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

RNN

ht

xt

Z-1

ht-1
RNN

h0t

xt

Z-1

h0t-1

RNN

h1t

Z-1

h1t-1

RNN

h2t

Z-1

h2t-1

yt

FC

yt

hhh
FC

FIGURE 4.7: Detail of the RNN structure for any cell type. The
input at each step is a sample, x, with the corresponding features
for each sensor. The output of the class is for the whole sequence.
(Left) Example of RNN-based system with 1 layer. (Right) A sys-

tem with 3 layers.

solve also the vanishing gradient problem. In contrast to an LSTM cell, it only
uses one hidden state between cells and has fewer internal gates. Hence, they
have a lower number of parameters, 3n · (n + m + 1) and also lower number
of operations, 3n · (2n + 2m + 1) ≈ 6n · (n + m). GRU has proven to yield
similar results than the LSTM cell while being lighter.

Optimization

In this section, the different procedures to obtain the best-performing network
are defined. The objective is to obtain the network with the highest accuracy
at the minimum cost both in terms of resources and computing time.

This is a multidimensional multi-objective optimization problem. In this kind
of problem, we have to simultaneously find the best values (either maximize
or minimize) for several cost functions at the same time. Those functions can
be interdependent and contradictory.

In our case, we define our cost function set to optimize as Equation 4.11

4.2. 1D Gesture Recognition 85

K(p) = (kNetPer f (p), KMem(p), ktime(p)) (4.11)

where p is a design space point, which in our case is a vector composed by the
concatenation of the design architecture parameters vector, the hyperparame-
ters of the network and its parameters.

For the different cost functions, we consider the accuracy of the network kNetPer f ,
the required memory to store the network parameters kMem, and the execution
time of the network ktime. As we will try to minimize the cost, we will express
all the cost functions in such a way that they give a lower value for better
design space points. We will also add some constraint functions that valid
design space points must fulfill.

We use the recall metric to evaluate the ability of the network to correctly
detect each class of the events in the acquired stream. However, since the op-
timization process needs a function to minimize, we define the cost associated
with the network as

kNetPer f (p) = 1 − RecallAvg (4.12)

where the average is computed over all the valid gesture classes.

Platform Cost Functions We are aiming for implementation in a low-cost
32-bit microcontroller with floating point support. The goal of the implemen-
tation is to avoid tightening to a specific architecture. We want to be able to
change from microcontroller families. The price of different models of a mi-
crocontroller family is usually determined by the amount of RAM. We put as
requirements a maximum 32 MHz clock frequency and 128 kB RAM mem-
ory. We estimate that a fraction of the RAM will be devoted to the program to
execute and its runtime memory requirements, but a large part of them will
be required to store the network parameters of the design SParams(p). Since
we use single precision floating variables, the memory requirements will be
derived from

kMem(p) = 4 · SParams(p) (4.13)

We decide that the maximum RAM memory budget for the network parame-
ters is 80KB, so we add the following equation to the model constraints.

86 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

KMem < 80KB (4.14)

We also need to take into consideration the number of operations required to
complete the network computation for every sample to estimate the required
computing time. Floating-point operations take a different number of pro-
cessor cycles, depending on the processor floating-point unit implementation
and the C-Runtime implementations. We use some constant values for the dif-
ferent types of operations, and we associate a cost in cycles for each of them.
We do not stick to a certain family of microcontrollers to be able to easily esti-
mate the performance of the system on different processor architectures. The
computing time is then defined by the number of operations and their cost,
ending in an effective latency time. Thus, we add the following deadline as a
constraint to the system

ktime(p) < 2.8ms (4.15)

Optimization The optimization problem consists of analyzing a design space
point and evaluating it with a number of metrics. In our case, RAM usage, ex-
ecution time, and average recall.

If we want to try to make the networks deeper and less wide, we can see
that we could probably use up to 3 layers. Or even more, it depends on the
dimension of the hidden state of each layer. The problem is that at each layer
we add a new n dimension to the search space, as each layer’s hidden state
can have a different width.

The training of a network is already an optimization of a multidimensional
space with as many dimensions as the number of parameters.

Instead of using an expensive search algorithm for finding the best parame-
ters for every different network architecture, such as grid search, or an algo-
rithm that explores the space poorly, such as random search [462], we choose
Bayesian Optimization (BO) [463, 464, 465]. This method offers the best trade-
off between space exploration and time consumption.

BO is a machine learning-based optimization procedure specially designed for
global optimization of black-box1 functions without obtainable derivatives.
The objective is to solve the problem of finding an optimal point popt that
minimizes the cost function

4.2. 1D Gesture Recognition 87

popt = argminp∈DSK(p) (4.16)

where DS refers to the design space.

The core idea of BO is that the cost of evaluating the objective function K
is too high in terms of time, opportunity, or economic costs, and it is mod-
eled by a surrogate continuous function g based on Bayesian statistics. The g
function allows us to quickly predict the values of new design points without
estimating the real K. Having a fast function predictor allows to the creation
of another acquisition function q to obtain new points of the design space that
are expected to minimize the cost function K. After the real function, K is
evaluated for the new point, the statistical model of g is updated.

The surrogate function g is usually a Gaussian Process (GP) or a Tree Parzen
Estimator (TPE) [271]. One advantage of TPE is that allows hierarchical and
categorical variables directly without having to modify the surrogate function.
Another difference between the two models is the part of the Bayesian statis-
tics model they try to fit. While GPs fits the posterior probability, TPE fits the
prior and likelihood functions.

In our case, we use the software Hyperopt [466] to perform the BO process,
based on TPE for modeling the objective and acquisition functions. A lim-
itation of Hyperopt is that it does not support multi-objective optimization,
but single-objective optimization. Since network accuracy is our priority, we
adapt the previous formalization to a single-cost function

K(p) =

⎧⎪⎪⎨
⎪⎪⎩

∞, i f kMem(p) > 80KB

∞, i f ktime(p) > 2.8ms

kNetPer f (p), otherwise

⎫⎪⎪⎬
⎪⎪⎭ (4.17)

The combinations that are not meeting the size and performance criteria are
directly discarded assigning an infinite cost.

We force three different optimization processes, one for each network type:
Vanilla, LSTM, GRU. The network architecture parameters and the training
hyperparameters are part of the multidimensional design space.

Hyperparameters and tricks When a new design space point is selected, we
quickly evaluate the constraint functions to discard network architectures that
do not meet the memory size and FLOPs requirements. The selected space

88 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

point does not only sample values from the network architecture parameters
but from the hyperparameters used for training.

The network architecture training is an optimization process in itself. The
training process requires specifying of some hyperparameters. Since different
hyperparameters will lead to different NN parameters, they are considered
part of the design space to explore.

A difficulty to train RNNs is how to address the time of the sequences dur-
ing training. A common technique is truncated backpropagation trough time
(TBPTT) [467]. One of its important parameters is the number of time steps
used. Large values will allow capturing longer temporal events, but if they are
too large the vanishing gradient problem arises, so we test different values.

Learning rate (LR) is probably the most important hyperparameter since it
controls the amount of learning that a neuron is receiving when backpropaga-
tion occurs. A common technique is to use variable LR. We use an exponen-
tial Learning rate scheduler defined by Equation 4.18. Where LR0 is the initial
learning rate, DR is the learning rate decay factor (i.e., decay rate), Lstep is a
value that is incremented after each learning step, and Dstep (decay step) is a
factor to modulate the intensity of the decay at each learning step.

LR = LR0 · DR
Lstep
Dstep (4.18)

Some hyperparameters are fixed, and others are included in the optimization
process. In some parameter dimensions, we limit the possible values to a
discrete set, while in others we provide a continuous range with a uniform
or log-uniform distribution to sample from. The hyperparameters with their
ranges as defined in Table 4.1.

We use different batch sizes, and we limit the maximum training epochs to
10. As all the training variables are included in the optimization process, it
is expected that networks that either overfit or underfit are ruled out during
the process. However, to help avoid overfitting, dropout is also included after
each cell.

Since detecting touch and slide segments are more important than detecting
undesired events, we weigh the importance of those classes by a factor. We
allow weight factors from 3 to 8.

4.2. 1D Gesture Recognition 89

Parameter Range
TBPTT time steps From 5 to 100 in 5 steps increments

LR0 From 0.001 to 0.1 in log-uniform distribution
Dstep From 30 to 100 in 10 steps
DR From 0.7 to 0.99 in log-uniform distribution

Batch size 2n (with n from 1 to 8)
Epochs From 1 to 10

Class weights From 3 to 8
Dropout 0.0 to 0.9 in 0.05 steps

TABLE 4.1: Range of the hyperparameters for optimization.

Vanilla LSTM GRU
LRNN 1 1 1

nh 16 16 16
Parameters 636 1932 1500

Memory (KB) 2.4 7.5 5.8
FLOPS 443 k 1.3 M 1.0 M

Time (ms) 0.2 0.6 0.4
Touch gestures average recall 64.26% 91.59% 80.78%
Slide gestures average recall 0% 28.50% 3.00%

Recallavg 69.38% 83.54% 75.00%

TABLE 4.2: Initial network results.

With this process, the optimal performing network regarding its hyperparam-
eters and architecture components is found.

4.2.4 Results

We start the optimization process from 3 design points manually selected to
compare the ability of the different RNN cells to capture the time dynamics of
sequences.

We select a single-layer network with a hidden state of 16 neurons. The re-
sults are shown in Table 4.2. As expected, the LSTM and GRU networks have
better performance than Vanilla. However, all the networks are far from an in-
dustrially acceptable performance, which we consider should be above 95%.
Nevertheless, the amount of available memory and computing time in the
final execution platform allows searching for other more complex implemen-
tations to find better-performing networks.

We run 100 iterations of the optimization process for every type of network
on a computer with two Intel Xeon silver 4210 CPU processors running at 2.2
GHz with a total count of 20 cores and 40 hardware threads and 96 GB of

90 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

Val. Loss

Tr. Loss

Tr. AR

Val. AR

80%

85%

90%

95%

100%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 3 5 7 9 11 13 15

ARLoss

Epochs

s

Overfitting
Region

(A) (B)

FIGURE 4.8: (A) Plot of the training procedure for the best LSTM
configuration of the optimization procedure. Loss in blue and
average recall (AR) of the touch classes in green. Dashed lines
correspond to validation (Val.) set values and solid to training
set (Tr.) values. The minimum value of the validation loss de-
limits the transition edge into the over-fitting region. (B) Time of

all the trials run during the optimization process.

RAM. We design the networks with Tensorflow 1.13 and run the optimization
process using HyperOpt. During the training process, we control the average
recall and loss in both the training and validation sets. We consider the model
with the last best validation loss to avoid selecting an over-fitted model. A
graphical illustration of the evolution of the loss and recall during training is
illustrated in Figure 4.8a.

The total execution time of the optimization is more than 10, 13, and 12 h for
Vanilla, LSTM, and GRU designs respectively. Figure 4.8b shows the execution
time for each trial. Discarded network architectures are quickly evaluated
while other design points take a variable amount of time depending on the
size of the architecture and the training hyperparameters. The first iteration
takes more time as the BO algorithm needs to sample several points before the
Bayesian model can be built.

The goal of the optimization is to find networks with better performance,
which is equivalent to minimal kNetPer f cost. Obviously, not all the opti-
mization trials obtain a smaller value for kNetPer f . Figure 4.9a shows the
Pareto front of the trade-off between optimization time and the achieved cost.
Although all training processes last for more than 10 h, the best results are
found faster for LSTM than other networks. For the LSTM, the minimum is
found in trial 23, while for Vanilla and GRU they are found in trial 67. In
any case, the optimization process follows a classical pattern in the economics
of diminishing returns, i.e., the benefits of additional training are decreasing

4.2. 1D Gesture Recognition 91

(A) (B)

FIGURE 4.9: (A) Evolution of the minimum achieved error dur-
ing the optimization process. After the first 2 h of running the
optimization process, the error reductions are harder to achieve.
(B) Evolution of the size of the parameter during the optimiza-
tion process. The size of the model is often increased to achieve
lower error rates, but big error reductions are also achieved by

the change of other hyperparameters.

Vanilla LSTM GRU
LRNN 1 1 1

nh 34 46 12
Parameters 1950 11052 984

Memory (KB) 7.6 43.2 3.8
Touch gestures average recall 95.68% 98.08% 98.69%
Slide gestures average recall 34.94% 91.37% 83.27%

Recallavg 84.64% 96.86% 95.89%

TABLE 4.3: Best network designs found by the optimization pro-
cess.

with time.

The best-obtained networks are described in Table 4.3. The best-achieved per-
formance is given by an LSTM network but with just a slightly improved one
with respect to the best GRU network. Compared with the initial results in
Table 4.2, the improvement from optimization can be noted especially in the
cases of LSTM and GRU. In the case of vanilla, the only class that has im-
proved is touch. Both sliding gestures (left and right) almost have had no
increase in classification accuracy. In LSTM and GRU, however, the improve-
ment is mainly located in slide classes.

Both, the LSTM and the GRU are above the 95% minimum acceptable aver-
age recall that was part of our requirements. However, the complexity of the
networks is very different. Fig.4.9b depicts how the parameter size has been
evolving during the optimization process for different network designs. Some

92 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

FIGURE 4.10: Confusion matrix for the best LSTM network de-
sign.

of the gains in performance are achieved by increasing the parameter size, es-
pecially in the LSTM network. But in other networks like Vanilla and GRU,
important gains are achieved by changing the values of some hyperparame-
ters such as the batch size and the learning rate.

It must be noted that both the architecture and training parameters are jointly
optimized. This explains the apparently contradictory observation that in
some steps decreasing the size results in less error, and in others, an increase
in the number of parameters produces an increase in the error. The obtained
Vanilla does not meet our minimum requirements and has a much lower per-
formance than GRU and LSTM. In the case of both LSTM and GRU, we can
observe a similar performance but with a different number of parameters. In
the case of the LSTM, the model weighs more than twice that of the GRU
model. In the case of the maximum RAM required for the model, the LSTM
requires more than three times the memory of the GRU cell. The confusion
matrices for both networks can be shown in Figure 4.10 and 4.11.

It is difficult to compare with other related systems found in the literature be-
cause of the difference in the technology of the sensors, their dimensions, or
their supported gesture vocabulary. However, to give an idea of the achieved
performance, we will compare it with the accuracy of the swipe gesture recog-
nition which is common in various systems.

MonoTouch [468] (which is a special surface device) achieves an 85–93% ac-
curacy for swipes. Flex Sensors [469] achieves a comparable 74–87% accuracy,

4.3. SpArSe Extension 93

FIGURE 4.11: Confusion matrix for the best GRU network de-
sign.

but in this case, the comparison is harder because it is based on a sequence of
finger poses. TouchRing [470] (which is not based on the touch panel, but a
smart ring) achieves a 78% accuracy on the swipes. Knuckletouch [454], which
follows a more similar approach to our work, achieves a 88–89% accuracy for
swipes. In our case, we achieve an 87–95% accuracy, which is comparable to
or better than the former works.

In any case, both networks have been validated in a final industrial product
with positive results. Although the GRU network has lower performance, its
very low memory consumption allows using a lower-cost microcontroller to
achieve additional savings.

Figure 4.12 depicts the parts of the final industrial product prototype based
on the presented techniques. A low-cost standard microcontroller running
the RNN-based gesture recognizer is mounted on a PCB which is connected
to the sensor foil. The device is placed under the mechanical enclosure of the
car dashboard.

4.3 SpArSe Extension

In the second section of this chapter, the topic of NAS, which was illustrated
in Section 2.2, is researched in conjunction with the other two corpus topics:
gesture recognition and MCUs.

94 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

FIGURE 4.12: Industrial design of the final product. From top to
bottom (1) microcontroller PCB, (2) capacitive sensor foil, and (3)

mechanical enclosure.

The first objective is to implement, modify, and improve SpArSe [188]: an
automatic CNN builder for image classification. The second objective is to
extend it to account for latency as a new objective and incorporate recurrent
cells as part of its search space. The last objective is to test the framework in a
gesture recognition problem, Corpus of Social Touch [435] (CoST).

We also succinctly use pruning and quantization, which were described in
Sections 2.3 and 2.1, respectively, as means of further decreasing the require-
ments of the developed models.

4.3.1 Experimental Design

SpArSe Modification and Implementation

SpArSe is built upon two major components: the search space, Ω, and the
search strategy. Each point in the search space, Ωi, is a specification of the
neural network in terms of architecture and training parameters. The search
strategy consists of a multi-objective Bayesian optimization procedure, im-
proved with morphisms to reduce training time. Each of the configuration
points sampled during the search, Ωi, is evaluated with regards to a perfor-
mance constituted as a three objective target: accuracy, Model Size (MS), and

4.3. SpArSe Extension 95

Working Memory (WM). Each of the three metrics is defined as

Error(Ωi) = 1 − AccuracyVal(Ωi) (4.19)

ModelSize(Ωi) = ∑
i
||wi||0 (4.20)

WorkingMemory(Ωi) = max
l

(||xl||0 + ||wl||0 + ||yl||0) (4.21)

where l indicates layer l, w the weight matrix, x the input, and y the output of
layer l. In the original paper, WorkingMemory (WM) only includes input and
output or input and weight.

The search space, which is detailed in the original work, consists of sequen-
tial convolutional layers organized in blocks, altogether with the possibility
of branching through fully connected (FC) layers, and finally, the last output
layer. This search space comprises a wide range of choices encountered when
building a network of such characteristics: number of layers, type, and num-
ber of filters for each layer, as well as other training and pruning parameters.

An important note is that, as the search space is composed of conditional vari-
ables, an implementation of the Arc Kernel [276] is used, and is especially
suited for conditional spaces. By decomposing the space using and using a
cylindrical embedding, it is able to assess the conditionality among variables.
The embedding g, gi : Xi −→ R2, where Xi is the original dimension i space,
can be used with any distance and covariance method:

gi(x) =

⎧⎪⎨
⎪⎩

[0, 0]T i f δi(x = False

wi

[
sin
(

πρi
xi

ui − li

)
, cos

(
πρi

xi

ui − li

)]
otherwise

where wi ∈ R+ and ρ ∈ [0, 1] are the radius and angle factor of the cylin-
drical space, ui − li establishes the length scale of the dimension i, and δi is
a delta function establishing the existence of coupling among dimensions x.
The implementation, developed by the author, can be found in the GPyTorch
documentation for the Arc Kernel.

1) Search Space Changes: In our implementation, the changes applied to the
search space are the deletion of branching through FC layers and the simpli-
fication of the pruning strategy. The main reason to avoid branching is the
increase in weight and complexity. As explored in other studies in greater

96 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

detail [161], the increased complexity could help to discover new structures
inside the network. Regarding pruning, the original paper uses structured
and unstructured pruning, whereas we have used only unstructured pruning.

2) Search Procedure Changes: The search procedure in the original implemen-
tation consists of three stages: in the first, new networks are sampled ran-
domly or morphed from a previous one. In the second stage, the morphs
are restricted to pruning. In the third stage, the reference configurations are
restricted to optimal Pareto Points. The architecture sampling procedure is
performed through Thompson Sampling (TS).

In general, we conserve the three-stage procedure, but with changes with re-
gards to the AcqF and the network training procedure. In the first stage,
we follow a low fidelity scheme, as detailed in [187], consisting of training
for only one epoch and sample models following a random procedure. In
this case, there are no morphisms, since we want to explore the space and
obtain architectural performance information. In the second stage, we con-
tinue without morphisms but the sampling procedure is led by a GPs with
Monte Carlo-based Expected Improvement (EI) as AcqF. Thus, we rely on
the AF for the proposal of new points, while in the original paper this was
relegated to morphisms or TS. The reason is the evidence of greedy explo-
ration by TS [471, 472], while EI, among others, balances better the explo-
ration/exploitation trade-off. In the second stage, we also increase the epochs
through which the models are trained. In the final stage, we base new sam-
pling points only on morphisms directed through the AcqF. The training epochs
are extended to a normal training procedure.

In addition, we have changed the method by which the maximum working
memory is calculated, as detailed in Equation 4.21. In the present implemen-
tation, the maximum feature map size or WM is the maximum sum of param-
eters of input, output, and weight along the network. An increase in WM is,
therefore, expected. In the case of an RNN cell, the present approach has been
to perform the WM computation for a cell as the unit of measure: we include
in the computation the input, the output, and all the weights and states of
the cell. We base this choice on the fact that in most implementations RNN
cells are built as a whole function and hence all these components consume
memory resources.

4.3. SpArSe Extension 97

FIGURE 4.13: Example of CoST samples. First, from the left, grab
the gesture. Next, tickle gesture. Third from the left, scratch and,
finally, squeeze. Values of pressure are standardized by mean

subtraction and standard deviation division.

Search Space Extension and CoST Dataset

Next, we extend SpArSe to gesture recognition, specifically, to sequence clas-
sification. The gestures that will be classified consist, as detailed next, of mul-
tivariate sequences. As the gestures must be classified within a certain time
span to ensure an adequate user experience [473], latency is also included as
another objective. To specify the latency of the network, the number of float-
ing operations (FLOP) used to predict a sample input is needed. Then, we
let the user specify the frequency or speed of its platform to finally obtain a
latency measure by comparing both measures.

Latency(Ωi) =
FLOPS

Plat f ormFrequency
(4.22)

To be able to capture temporal dependencies, RNNs are also incorporated into
the search space.

In order to test out the RNN and latency inclusion, and the overall suitability
for gesture classification, the next task is to trial our implementation and ex-
tension of SpArSe with a suitable dataset: the Corpus of Social Touch (CoST).
It consists of sequences coming from an arm-placed device with 64 pressure
sensors arranged in an 8x8 grid. The sensor is placed in the user’s arm to
detect the impulses for different types of actions. Each of the values of sen-
sors ranges from 0 to 1023 and the sampling frequency is 135 Hz. Each se-
quence is arranged as a tensor of dimensions Tx8x8, where T is the length of
the sequence. The lengths of the sequences vary from 10 to 1747 samples. The

98 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

dataset was recorded with the participation of 31 subjects and comprises 14
classes: grab, hit, massage, pat, pinch, poke, press, rub, scratch, slap, stroke,
squeeze, tap, and, tickle. In Figure 4.13, samples for different classes from the
dataset averaged over the 64 channels, are presented.

In the present study, the CoST dataset has been divided into two different
manners. For the NAS procedure, the dataset has been split randomly be-
tween 20 subjects for training, 5 for validation, and 6 for testing. After finding
the best performing network, we apply leave-one-subject-out testing to obtain
the test results. Such division is in accordance of previous studies [27, 28, 474].

As stated in the previous section, the lengths of the sequences are quite large.
This induces problems both for RNN and CNN-based architectures. For CNN’s,
saving and using whole sequences would be a problem for embedded de-
ployment since we would be storing a really large array. For RNNS, there is
a dichotomy in the inference phase: if the RNN cell prediction is faster than
the sampling rate there is no problem with real-time prediction. However,
if it is slower you are forced to store all the data in RAM, which can be im-
possible for most microcontroller capabilities (a sequence of, for example, 500
samples, equals 125 KB, in 32-bit float numbers). Hence, we devise two strate-
gies: first, partition the sequences and predict the sub-sequences, as done in
previous studies [27, 475], and second, pick samples from inside the sequence
(fixing the beginning and the end). With the first method, the sequence is
not processed as a whole but rather separately, while in the second, although
intermediate information is lost, the whole sequence is perceived. This is im-
portant since for some sequences the gesture is recorded at the end [474]. Both
the number of chops and the in-sampling number are included in the search
procedure. In the case of CNN’s, the sequences are arranged in the original
8x8 grid, obtaining an [T, 8, 8] tensor, where T is the sequence length. To
adapt the CNN to different T sizes the model is padded to the length cho-
sen for the sequence, as detailed previously. The only preprocessing applied
to the dataset is standardization by mean subtraction and standard deviation
division for each channel.

4.3.2 Results

The network builder and trainer have been developed using PyTorch, as well
as the pruning and quantization procedures. Regarding quantization, post-
training static quantization is applied to CNNs and dynamic quantization to
RNNs, both cases with 8-bit types. The search algorithm is mainly built with

4.3. SpArSe Extension 99

(A) (B)

FIGURE 4.14: (A) Pareto frontier for our implementation of
Sparse and CIFAR 10 Binary. Notice the different possibilities
to choose from regarding RAM, size, and performance. Each
point corresponds to a specific configuration of the search space.
(B) Full search procedure for CIFAR-10 Binary with the modified

SpArSe. Color degradation shows the progress of the search.

Framework CIFAR-10 Binary MNIST
Accuracy (%) MS (KB) WM (KB) GPUD Accuracy (%) MS (KB) WM (KB) GPUD

SpArSe [188] 73.66 1.13 3.95 25 97.03 1.38 15 1
Ours 71.15 6.78 11.77 1 98.16 3.88 7.80 3

TABLE 4.4: Results for the original version of SpArSe and our
implementation. Accuracy is in % and Size corresponds to the
model weight in KB taking into account only weights and not
code. The maximum RAM is also in KB and corresponds, in our
case, to the computation specified in Section III-A. Our results
are run in a single RTX 2070 Ti, while the original paper uses
four RTX 2080. GPUD corresponds to Graphic Processing Unit

days.

Ax [476]. Each of the models and search procedures has been carried out with
a single RTX 2070 Ti.

SpArSe Implementation Results

We have compared the original implementation with our implementation af-
ter modifications. The comparison has been made with the MNIST [79] and
CIFAR 10 Binary [477] image classification datasets, with the same preprocess-
ing and splits as in the original paper.

In Table 4.4, results for the modified version can be compared with the original
implementation. In both cases, MNIST and CIFAR10 Binary, the size of the
model are bigger than in the original implementation. In the case of WM, it
is bigger for the original SpArSe in CIFAR10 Binary while it is lower in the
MNIST case. Regarding the accuracy, we obtain a 2 percentage point worse
result in the case of CIFAR10 Binary, but in the MNIST case, we obtain a result

100 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

better by a 1 percentage point. In general and at first sight, our models seem
to weigh more and have similar performance. However, the authors consider
the results inconclusive with regards to which approach is better. The reason
is the stochastic nature of the search strategy and the oscillations that can be
found in the results after multiple runs. For this matter, a broad comparison
would be needed in order to achieve a fairer comparison.

Nevertheless, that does not imply that the increase in MS could not be due
to the architecture change. From the argument previously mentioned in Sec-
tion 4.3.1, it could be followed that reduced search space and the impossibil-
ity of the pruning strategy to prune further compared to the original search
space, would difficult the task of finding better and smaller networks. That
is, the bigger the search space the greater the probability of finding a well-
performing network with a smaller size and feature maps.

Finally, a point that was not noted in the original paper is the utility of the
Pareto frontier as the final result. With the frontier, we are able to choose
among a range of different combinations suiting our direct hardware con-
straints. For example, and as illustrated in Figure 4.14a, we could choose a
heavier network in the CIFAR10 Binary, with 74.79% accuracy, 47.12 KB in
size, and 46.54 KB in WM. Or, if we were constrained for those resources, we
could choose an example of the other extreme with 60.8% accuracy, 0.13 KB
in size, and 1.536 KB in RAM. Hence, as stated in the previous paragraph, it
would be necessary to determine a fairer comparison between methods, by,
for example, comparing the Pareto frontier.

An important point is also the search reduction time. In the CIFAR-10 Binary
case, the original implementation lasts 25 days searching for the final config-
uration, while in our case the search only lasts one day. In the MNIST case,
our search endures 3 days compared to 1 day of the original implementation.
However, we have only used 1 RTX 2070 and the original implementation
employs 4 RTX 2080 Ti, clearly distorting the comparison.

CoST

In the case of the CoST dataset, we have first compared the results between
splitting or in-sampling the data for a pure LSTM or GRU model, as estab-
lished in Section 4.3.1. Results are illustrated in Table 4.5. As seen, cutting
the signal delivers better results than sampling points from it, probably due

4.3. SpArSe Extension 101

Model Model Type Accuracy (%) MS (KB) WM (KB) Latency (ms)

Albawi et al. [39] CNN 63.71 3556.28* 2105.34∗ -
Ta et al. [41] Random Forest 60.8 - - -

Hughes et al. [42] 3DCNN + RNN 52.86∗∗ 71.34 175.95 -
Ours RNN Cut 65.12 15.77 13.86 199.62
Ours RNN Insample 58.38 32.20 31.89 155.43
Ours 2DCNN 63.54 77.21 45.36 134.36
Ours 2DCNN + RNN 61.64 74.77 51.66 267.12

TABLE 4.5: Results for the CoST dataset with hold-one-subject-
out testing, as in [27] and [28]. * indicates that it has been esti-
mated from the network details in the original paper. ** In this
case, authors did not use leave-one-subject-out testing and hence

only MS and WM are directly comparable.

Model Type Accuracy (%) MS (KB) WM (KB) Latency (ms)

CNN 63.54 77.21 45.36 134.36
61.44 27.74 42.64 100.60
52.93 13.58 18.54 10.49

CNN + RNN 62.07 112.52 72.34 221.14
61.64 74.77 51.66 267.12
57.69 28.22 34.04 56.70

TABLE 4.6: Results for the CoST dataset with hold-one-subject-
out testing for CNN and CNN+RNN search spaces. The first
three rows are for results with CNN and the last three with
CNN+RNN. Each row corresponds to the test result of different

configuration points in the Pareto front.

to the loss of signal information when sampling. Next, we tested the frame-
work with CNN and CNN plus RNN-based search spaces and compared all
of them to previous implementations. In general, the RNN with signal cut-
ting provides state-of-the-art results for all metrics except latency, which is
provided by a CNN.

As stated before, the results presented correspond to certain configurations of
the Pareto front. Other results, although totally useful, are usually neglected.
For this reason, a selection of other points of the Pareto front corresponding
to CNN and CNN+RNN cases can be found in Table 4.6. As can be seen,
although results regarding accuracy could be similar, there is a range of possi-
bilities to choose among regarding different sizes and latency values. All in all,
our implementation solutions have proven to be directly usable in resource-
constrained environments while obtaining the maximum performance for the
defined search space.

102 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

4.4 2D Gesture Recognition

In the fourth section of this chapter, we explore the application and research of
an unsupervised method for 2D gesture recognition with a capacitive matrix:
NNs as information encoder, plus a K-Means algorithm for clustering the en-
coded vectors. Moreover, we employ the software developed in the previous
section (Section 4.3) to find suitable CNN and RNN networks in an automatic
manner. Finally, we develop an automatic quantizer and conversor [219] for
porting our models from PyTorch to code in CMSIS-NN directly usable in
Cortex-M or A MCUs.

4.4.1 Sensing method and data

Capacitive Sensing Platform

As depicted in Figure 4.15, the sensing platform consists of a surface touch
module with three elements: the plastic cover, the capacitive foil, and the em-
bedded board. The touch interface is the upper part of the plastic cover, which
is immediately after the capacitive foil and glued to it. The embedded board
is in the lower part and connected to the capacitive foil. The sensing compo-
nent, which is the capacitive foil, consists of a central sensitive surface and 24
electrodes that run through it: 9 horizontally and 13 vertically, plus a global
shield electrode.

The sensing mechanism is based on the transference of charge between two ca-
pacitors: integration and measurement condensers, as detailed in Section 4.2
or in the work [2].

The final result of a measurement is a set of voltages sensed at the measure-
ment capacitor, one for each electrode. Each voltage is then converted through
a 10-bit ADC to obtain a final raw value for each electrode at a predefined
sampling rate (in the present case, 500 Hz).

Collection and Preparation

The user enters the gestures by touching the sensing surface and, without
withdrawing the finger, draws the gesture on it. We detect the touch by the
method described in [478], and then we begin to collect the raw values of
the electrodes as described in the previous section. By examining which elec-
trodes, horizontally and vertically, have the highest value we can determine in
which spatial coordinates the finger is placed. When the user withdraws the

4.4. 2D Gesture Recognition 103

FIGURE 4.15: Illustration of the capacitive foil. Each of the dots
represents an electrode, emitting each one a distinctive measure-
ment of its row/column on the surface. The foil is pasted un-
derneath the plastic cover and connected to the microcontroller

through the lower-left pins.

FIGURE 4.16: Examples of numbers drawn at the sensitive sur-
face. From left to right: a one, a five, a six, and a three. The black
points correspond to the electrode pairs through which the fin-
ger has passed. In an image configuration they correspond to 1s

while the background is set to 0.

finger, we stop collecting data. It has to be noted, that the gestures described
do not contain segmentation and thus we do not assess that problem. That is,
we consider a gesture all the signals from a touch to a withdrawal, and force
users to perform the whole gesture in such a manner.

By integrating all the coordinates through which the finger has passed we
construct a greyscale image of 9×13 pixels of the figure drawn. That is, we
mark the points through which the user has passed with a 1, while the rest
of the untouched points remain as background with a value of 0. Hence, the
orientation of the strokes is deleted and only the final form of the gesture
drawn is recorded. That is we produce a static version of the gesture. To

104 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

ease the deployment in a microcontroller and due to deployment framework
limitations, we end up squaring the image to 13x13 by padding it. An example
of such a method can be seen in Fig 4.16, where different numbers drawn on
the sensitive surface can be visualized as the points through which the finger
has passed.

To collect the dataset, numbers from 1 to 9 were drawn a total of 100 times per
number on the sensing surface. The dataset is divided in a stratified manner
in training, validation, and test, with 720, 90, and 90 samples respectively.

4.4.2 Models and NAS framework

Models

We consider two auto-encoder (AE) model types, that is, networks that are
trained to replicate the input. The first a Convolutional Auto-encoder (CAE),
and the second is a Dense Auto-encoder (DAE), made only of fully connected
layers.

In general, the architecture consists of two differentiated parts: the first, the
encoder, is in charge of extracting the information and compressing it into
a central vector, and the second, reconstructing the input. In the CAE case,
compression is performed by a succession of convolutional or pooling layers
followed by ReLU activations, while the input reconstruction is performed by
deconvolution layers and final upsampling. In the DAE case, all the layers are
fully connected followed by ReLU activations, except for the final layer which
reconstructs the input by reordering the output of the network. In both cases,
there is a central fully connected layer that produces the latent feature vector.
An important note is that to reconstruct the input, as it is made of 0s and 1s,
we have used a Binary Cross-entropy Loss for training the AEs.

To provide unsupervised classification, a KM algorithm is in charge of group-
ing the compressed feature vectors into clusters. The choice of KM is central
since it needs the number of clusters to be specified. In our case, this is pre-
cisely the number of classes.

Training and Model Optimization

To train the whole unsupervised method we divide the training into three
separate steps. First, we train the AE to replicate the input. The loss used is an
L2 norm-based reconstruction loss. The networks are trained for a maximum

4.4. 2D Gesture Recognition 105

of 50 epochs and the model with the best validation loss is used as the final
model; the number of epochs is chosen based upon observation of previous
training. Second, once it has stopped training, we forward the entire training
dataset through it and collect the latent feature vector for each input. The
latent vector corresponds to the central chosen vector, which can be seen in
Figure 4.17. In the CAE case, it has 12 elements, while in the DAE it has 117.
Hence, the feature extraction through the autoencoder acts as a form of data
compression algorithm with an effective compression ratio close to 10.

Third, we train the KM algorithm with all the collected feature vectors. That
is, we have a feature vector per image and each of those vectors correspond to
the central vector obtained by forwarding the corresponding image through
the trained autoencoder. For example, in the CAE case, we have 720 vectors of
size 12. As we are classifying 9 different numbers (from digit 1 to 9, excluding
0), we establish 9 clusters for the K-Means algorithms. K-Means algorithm
is initialized following the k-means++ strategy [479] of similarly distanced
cluster centers and the distance used is the L-2 norm2. Finally, to obtain test
or validation results, we forward the test or validation sets through the AE,
obtain the feature vectors, and predict to which cluster they belong.

Regarding the performance measure, we have selected a clustering supervised
measure, V-Measure [480], for checking the actual classification capabilities
of the framework. Choosing an actual unsupervised clustering metric, such
as Silhouette Score would not provide direct insight into the accuracy of the
predictions. The training, however, remains fully unsupervised.

As detailed as the first step, we have to build and train the network. How-
ever, building and tuning neural networks to be well-performing but also to
comply with hardware requirements is a difficult task. Hence, we employ an
extended implementation of a NAS framework [188] oriented towards opti-
mizing accuracy, model size, maximum feature map (working memory), and
latency. The details of the NAS and its extension are defined in Section 4.3.1.

The framework works, in each architecture case, CAE or DAE, with a config-
uration space composed of both training hyperparameters and architectural
parameters, including post-training linear static quantization and L1-Norm-
based pruning. Once the search space has been defined, the framework se-
quentially searches for solutions that minimize the previously mentioned and
defined objectives (Equations 4.19-4.22).

Once we have the best model found and trained by our NAS framework, we

106 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

FIGURE 4.17: Best architectures resulting from the optimization
procedures for both the CNN and FC autoencoders. The ele-
ments in the image represent the feature maps. In the convolu-
tion case, the size of the feature map is indicated by the vertical
and depth numbers, while the horizontal number indicates the
number of feature maps. In the FC case, the number indicates
the number of neurons in each step, and the images are flattened

at the beginning and reshaped at the end.

can proceed with the next steps of training the KM model and obtaining test
results.

4.4.3 Results

The models established, CAE and DAE, are both developed in PyTorch and
the NAS procedure is developed under Ax [476] and BoTorch [481]. To pro-
duce the embedded code and transform the models, we use Torch2CMSIS

4.4. 2D Gesture Recognition 107

FIGURE 4.18: Optimization procedure for CAE. The y-axis rep-
resents the Model size and the x-axis the error (per pixel classifi-
cation). Both axes are on a logarithmic scale. The color illustrates
the evolution procedure as each of the steps of the Bayesian op-

timization procedure.

Model MF (kB) MS (kB) L (ms) V-M (%)

CNN 2.69 6.13 5.53 87.18
FC 18.32 39.67 4.08 58.63

TABLE 4.7: Results for the optimization procedure with SpArSe-
Mod. MF corresponds to maximum feature map size, MS to

model size, L to latency, and V-M to the V-Measure.

[219], my library for model conversion and quantization between PyTorch and
the CMSIS-NN suite.

First, we illustrate the optimization procedure for the CAE with SpArseMod
in Figure 4.18. As seen, while the optimization procedure advances there is a
decrease in the model size. Also, one can observe the trade-off between the
model size and the error: while we continue to obtain smaller architectures
the error worsens, obtaining in some cases a compromise.

The final result is an election of the best points of the search: the Pareto fron-
tier. With the best-chosen model, we train and test the K-Means unsupervised
clustering and classification. We present the optimization results for the AEs,

108 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

FIGURE 4.19: Cluster visualization of the different gesture num-
bers through t-SNE.

which correspond to the results for model size, maximum feature map, and
latency, and are detailed in Table 4.7, as well as the test results for the K-Means
unsupervised classification. As seen, the CAE outperforms the DAE in almost
all metrics, except for latency where DAE is a little bit faster. The results for the
model size and maximum feature map sizes are low enough to be able to em-
bed the model in a low-resource microcontroller. After the optimization result
and after training the KM model with the feature maps obtained, we obtain
the test results for the unsupervised classification. In this case, the CAE model
performs much better than the DAE, achieving a good result regarding the V-
Measure. This indicates the feasibility of this method to provide unsupervised
classification.

As the final step of our development, we further embed the best model with

4.5. Conclusions 109

CMSIS-NN in an NXP-S32K142 microcontroller to perform inference. To per-
form inference and obtain test results in the embedded implementation, we
only need the encoder part of the CAE model and the centroids of KM. We pro-
ceed in the following manner: first and for each input, we obtain the feature
vector by forwarding the input through the encoder, and second, we measure
the distance to all the centroids and choose the nearest one to assign a class. It
is important to note that, in CMSIS-NN legacy API, the quantization used is
the power of two based and in the case of PyTorch is linear, enforcing thus a
loss of precision. This changes the accuracy of the model but not the size since
in both cases we use 8-bit integers. We obtain a V-Measure of 84.08%, hence
resulting in a loss of around 3.104% in the V-measure, but also validating our
embedded deployment.

Finally, to have a visual representation of the clusters, we embed with t-SNE
[482] all the encoded features from the training set and also the centroids. As
can be seen in Figure 4.19, the clusters are well separated identifying each one
as a group of gestures corresponding to a specific number.

4.5 Conclusions

As this chapter has been organized separately in three projects, the conclu-
sions drawn are separated as well.

First, we have shown that tiny RNNs can be used in embedded systems to
process the data from low-cost capacitive sensors to recognize simple gestures
such as touches and slides in various scenarios including the use of gloves and
bare hands.

The use of execution platform constraints in the Bayesian Optimization pro-
cess has been shown to be effective to reduce the optimization time. Thus, the
multidimensional design space can be quickly analyzed until a valid design is
found that meets the minimum requirements. Although further optimization
is possible, the investment would be justified if it is either able to increase the
accuracy of the system or reduce the platform requirements so that cheaper
hardware platforms can be used providing additional savings.

Second, we have modified and extended the procedure and architecture intro-
duced in [188], obtaining similar results regarding accuracy and size perfor-
mance, but reducing significantly the search time. These results act as a valida-
tion of the general NAS procedure since the modifications were only based on

110 Chapter 4. Capacitive Sensing based Gesture Recognition on MCUs

the addition of lower fidelities and modification of sampling methodologies.
By adapting the search space, including combinations of CNNs and RNNs, we
have been able to develop state-of-the-art methods for a Gesture Recognition
task. Further improvements could include an unconstrained or more flexible
search space and a tolerance-stopping method.

As contributions stand out the implementation and opensourcing of the NAS
system [218], as well as the implementation [436] of the Arc Kernel [276] for
the library GPyTorch [437].

Finally, we have shown a full pipeline of work for unsupervised classification
of gestures. We have employed a CAE plus KM as a model, and a multi-
objective NAS to find a proper embeddable model. Finally, we have been able
to embed that model into an embedded platform with CMSIS-NN, obtaining
good performance results, and thus validating our approach. There are two
next important steps to be able to improve the gesture recognition system.
First, to change the quantization to linear instead of the power of two based
to reduce the drop in performance and also to improve. Second, to improve
the clustering by adding a Kullback-Leibler divergence component in the loss,
hence separating more the feature vectors corresponding to different numbers
[483].

As contribution stands out the development and open-sourcing of a library
for automatic conversion and quantization of PyTorch models to CMSIS-NN
format [219].

111

Chapter 5

Inverse Tone Mapping on
Smartphones

In this chapter, we present the second application, inverse tone mapping (ITM),
and its development for a specific hardware platform: mobile phones. ITM
consists in extending, transforming, and adapting the contents of a standard
dynamic range (SDR) image to a high dynamic range (HDR) environment.
Such a process is complicated and computationally demanding due to the
need for the hallucination of saturated values in the original SDR image.

SoA NN methods devoted to ITM have solved the problem by pursuing im-
provements in quality, yielding computing-intensive models only actionable
in GPU or with long processing times; efficiency in inference or the possibil-
ity for deployment in resource-constrained environments have been mostly
neglected. The current study presents a development for making NN-based
ITM more efficient and bringing its deployment to mobile phones. To pursue
such an objective we make use of different quantization schemes (Section 2.1),
efficient operations (Section 2.4), and attention functions, proving how these
mechanisms help make NNs more efficient and move them closer to resource-
constrained devices.

The chapter is organized as follows. Section 5.1 introduces the topic of ITM
and its context for NN and resource-constrained devices. Section 5.2 explores
and presents studies and works of relevance. Next, Section 5.3, presents the
proposed solution and all its components. Section 5.4 defines the experimen-
tal conditions, datasets and results obtained. Finally, Section 5.5 finishes the
section by offering concluding remarks and observations, as well as providing
future lines of work.

112 Chapter 5. Inverse Tone Mapping on Smartphones

5.1 Introduction

HDR imaging enables capturing, storing, and displaying images and videos
that cover the whole range of illuminance values present in natural scenes
[484]. In contrast, low dynamic range (LDR) imaging technologies only work
with a reduced range of values limited by their channel bit depth, thus pro-
ducing results of inferior perceived quality [485, 486].

In the last two decades, HDR imaging methods have been applied in different
fields and sectors, such as digital games [487, 488] and photography [489, 490],
among others. Due to the lack of appropriate HDR displays, HDR content was
converted to LDR. This operation, called tone mapping (TM) [491, 492, 493],
pursues reproduction of images by reducing the tonal values within the im-
ages, which leads to loss of details and inevitable appearance changes in the
reproduced images [485, 494]. Recently, there has been a substantial increase
in production and commercialization of HDR displays. Sustained by new
standards, such as HDR10, the number of HDR TVs shipped worldwide has
leaped by more than a 10x factor between the years 2016-2019 [487]. In con-
trast, most content to be reproduced is still LDR, thus not attaining the repro-
duction capabilities of HDR displays.

This situation shows the need for the conversion of LDR images into HDR
content. As mentioned previously, this process is named ITM and involves
the recreation of the missing information, and expansion and adaptation of
the available information to a higher bit depth. Handcrafted ITM algorithms
[495, 496, 497, 498, 499] focused on range expansion to accommodate the LDR
content to the new bit depth, as well as the application of tone operators to lin-
earize the content and adjust the missing information. However, such meth-
ods did not provide sufficiently appealing results that could match originally
produced HDR content [500].

Deep neural networks (DNNs) have been applied to ITM tasks [501, 20, 502]
providing state-of-the-art results and products in industrial applications [503].
Nevertheless, current deep-learning-based ITM methods incur high computa-
tional costs, both in terms of memory and latency, due to the use of costly
operations [504, 21], large models [22, 505] or feedback loops [29, 502], among
other factors. Such burdens impede their deployment and usage in resource-
constrained environments, such as edge devices and mobile phones.

To address this issue, we propose a novel Mixed Quantization Network (MQN)
for computationally efficient mobile ITM by integrating different quantization

5.2. Background 113

FIGURE 5.1: Mobile ITM from single LDR images using mixed
quantization network (MQN). Employment of mixed quantiza-
tion methods and efficient blocks in MQN help reduce the com-
putational complexity of HDR image reconstruction (shown at
the bottom row) from single LDR images (shown at the top row),
and enable its deployment to mobile platforms, achieving a la-
tency of ≈21ms with a Samsung Note 20 Exynos 990 MPSocC.

schemes applied to models, deploying efficient convolutions into models, and
training models using input data. The proposed MQN enables attaining simi-
lar accuracy compared to state-of-the-art methods on a reference ITM dataset
and can be deployed to a mobile platform to perform more computationally
efficient inference. Further, it can be utilized by different hardware platforms,
such as CPU or GPU, due to the flexibility of its components and structure.
More precisely, our models can perform 10x to 100x times faster inference
than competing methods (sample results are given in Figure 5.1). The present
work, as far as the author is aware, is the first one devoted to constructing
computationally efficient DNN-based ITM methods for mobile ITM tasks.

5.2 Background

Next, related work and concepts with regard to ITM, NN-based ITM methods,
and NN efficient methods are reviewed.

Vanilla ITM Methods. Vanilla ITM methods have been implemented using
tone operators [495], expansion algorithms [495, 506, 499], such as gamma
curve expansion and over-exposed region enhancement [496], among other
techniques [485, 498]. A great benefit, in general, of such methods, is their low
computing power requirement. However, they struggle in the generation of
high-quality image content on over- and under-exposed image regions [504].

114 Chapter 5. Inverse Tone Mapping on Smartphones

DNN-based ITM methods. Recently, DNNs have been employed on ITM
tasks. Although most of these methods blatantly differ regarding network
architectures and model training components, they can be categorized into
three main groups.

The methods in the first group [507, 22, 29, 21, 508, 509, 510, 20, 511, 512, 513,
514, 515, 516], which recreate a HdR image from a single SDR one, suffer
from the problem of not accurately processing over- and under-exposed re-
gions, but provide more compact systems. Methods in the second group use a
group of bracketed over- and under-exposed images as input to directly learn
to generate HDR output [517, 518, 519, 520, 521, 522, 523, 517, 524], as simi-
larly utilized in photographic HDR generation. Methods belonging to these
two groups differ mainly according to their network components, such as non-
local blocks [520] and attention mechanisms [518]. Methods in the third group
train models to generate a set of over- and under-exposed images from an
LDR input, and then merge them to obtain an HDR image [502, 505, 525, 504].
Their main distinction from the other groups lies in the methods used to gen-
erate different exposures, such as deconvolution [504], sequential generation
[505, 525], or recurrency [502].

Single Image HDR Reconstruction. In this work, we focus on single image
HDR reconstruction. The task is substantially more challenging than multi-
input HDR imaging. Among the first works on this task, [20] proposes using
a U-Net type DNN to learn only representations of the over-exposed regions,
while the rest of the image is only linearized through a default function. [21]
use a three-branch network with different dilation ratios and sizes. Recently,
[22] achieved the state-of-the-art by developing a model that reverses and un-
ravels the camera pipeline to reproduce the final HDR, using a different DNN
for each step, thus resulting in a computationally heavy system.

Computationally Efficient ITM Methods. Most DNN-based methods use
heuristics that make them unsuitable for deployment in resource-constrained
platforms. A common trick to enhance the training that burdens inference is
using feedback loops [29, 502, 525], which are commonly used to generate dif-
ferently exposed bracketed images. Another case is when different DNNs are
stacked sequentially and/or in parallel [505, 22, 521]. There are also studies
that make use of custom network blocks, such as non-local blocks [520] or 3D
convolutions [504], which would hinder their deployment to mobile platforms
[526].

5.3. A Mixed Quantization Network for Mobile ITM 115

 Full 8-bit integer
quantization

Ou
tpu

t H
DR

MQNet
Backbone Head

Weights: int8
Activations: int8

Weights: int8
Activations: float32

Dynamic range
quantization

Inp
ut

LD
R

Co
nv

Bn
Re

LU
 1

IR
LB

 E
xp

an
d 1

Co
nv

Bn
Re

LU
 2

Up
Sa

mp
le

5

Co
nv

Bn
Re

LU
 3

Co
nv

 1

Re
LU

 1

IR
LB

 1
IR

LB
 2

IR
LB

 4,
 x2

IR
LB

 3

IR
LB

 5
IR

LB
 6,

 x4
IR

LB
 7,

 x2
IR

LB
 8

At
t.

4
Up

Sa
mp

le
4

Co
nv

Bn
Re

LU
 2

Co
nv

Bn
Re

LU
 1

IR
LB

 E
xp

an
d 1

IR
LB

 1
IR

LB
 2

IR
LB

 3
IR

LB
 4,

 x2
IR

LB
 5

IR
LB

 6,
 x4

IR
LB

 7,
 x2

IR
LB

 8

At
t.

2

At
t.

3
Up

Sa
mp

le
3

IR
LB

 14

Ins
tan

ce
N

1

Co
nv

 2

Re
LU

 2
Ins

tan
ce

N
2

Co
nv

 3

IR
LB

 11

IR
LB

 12
Up

Sa
mp

le
2

IR
LB

 13

IR
LB

 9
At

t.
1

IR
LB

 10
Up

Sa
mp

le
1

FIGURE 5.2: Illustration of the base backbone and high precision
head that comprise the MQN. IRLB is used for fast inference and
gated attention mechanisms [19] for improvement of feature rep-
resentation learning accuracy. The dotted line indicates the sep-
aration between the fully quantized architecture and the dynam-
ically quantized head. Input is added to the output of the head

to produce the overall output.

5.3 A Mixed Quantization Network for Mobile ITM

The purpose of this work is to develop a learning-based ITM system with
fast inference, especially devoted to the deployment of platforms with lim-
ited computational power. To this end, we propose a Mixed Quantization
Network (MQN) by designing its architecture and components with state-of-
the-art fast inference techniques such as quantization and efficient convolu-
tions. To be able to accelerate inference while maintaining the required high
precision output needed for ITM, we implement a mixed quantization (MQ)
scheme as depicted in Figure 5.2. Moreover, we train models to learn multi-
scale feature representations of HDR content over the input using a backbone
network. The proposed MQN has two components: (1) a feature learning
backbone network, endowed with full integer post-training quantization, and
(2) a smaller network equipped with a head utilizing dynamic quantization to
obtain a target precision for ITM.

116 Chapter 5. Inverse Tone Mapping on Smartphones

5.3.1 Backbone and High Precision Head of MQN

Backbone

In order to learn multi-scale feature representations, we implement the back-
bone using a U-Net architecture with skip connections, which is also utilized
in other single image ITM methods [22, 20, 504] due to its strong accuracy to
speed trade-off compared to single-scale (resolution) networks [21]. As the
encoder of the backbone, we use a MobileNetV2 (MBV2) [16] to obtain fast
inference. We select a width factor α = 0.35 and apply skip connections at
the activations of layers (1, 3, 6, 13) and output of batch normalization at layer
16. We extensively use IRLB blocks [15], which have a reduced computation
cost1 compared to vanilla convolutions, and can be used in different hardware
platforms (GPU [258, 527], TPU [527], CPU [15, 16], NPU [528, 529]) with im-
provements in latency. To implement the decoder of the backbone, we favor
upsampling in contrast to transposed convolutions, since the former is faster
and does not produce artifacts [22].

To construct the decoder, after each upsampling we concatenate the upsam-
pled feature maps and selected intermediate outputs of the encoder with skip
connections. Following the concatenation, we add several IRLB blocks oper-
ating on the same resolution. Instead of IRLB blocks, the last two blocks of
the decoder are composed of pointwise convolutions followed by batch nor-
malization and ReLU activations. We design the whole network to have a re-
duced number of filters and convolutions compared to other U-Net structures
(U-Net [530] has 7.76M parameters, U-Net++ [531] has 9.04M parameters and
our model has about 1M parameters), thus reducing latency and memory con-
sumption.

Attention mechanisms

We employ a gated attention mechanism (depicted by Att. in Figure 5.2) after
IRLB blocks to improve performance. In the analyses, we explore three meth-
ods to implement attention: spatial attention (SA), channel spatial attention
(CSA), and channel block attention (CA).

First, at the end of the first IRLB block in the decoder, we add Spatial Attention
(SA) [376] gated blocks. We define SA blocks by

1The computational cost reduction from a vanilla convolution to a depthwise separable is
of 1

N + 1
D2

k
, where N is the number of output channels and Dk is the size of the convolution

kernel.

5.3. A Mixed Quantization Network for Mobile ITM 117

O f = ((σ1 ◦ C1)(I f))� I f (5.1)

where Of and I f are the input and output respectively with f channels. C1 de-
notes a convolution with a filter and kernel of size 1, σ1 is a sigmoid activation,
and ◦ indicates function composition.

Second, we add channel information through a depthwise convolution in par-
allel to the SA mechanism, which defines the channel spatial attention (CSA)
mechanism at a given layer by

Of = ((σ ◦ Df)(I f))� (((σ ◦ C1)(I f))� I f) (5.2)

where Df is a depthwise convolution with f filters.

Finally, although with a higher computational cost due to pooling mecha-
nisms, we also test channel attention (CA) blocks [19]. This operation, inspired
by both residual layers and gated attention is defined by

O f = ((σ1 ◦ Cf ◦ σ2 ◦ Cf ′ ◦ GP)(I f))� I f (5.3)

where Cf denotes convolution with f filters and kernels of size 1, where f ′ =
f · r and r is the reduction ratio of the attention mechanism. Finally, σ2 is the
ReLU function and GP denotes global pooling.

In the analyses (Section 5.4.3), CA provides higher accuracy compared to SA
and CSA. All such attention mechanisms can be seen as reduced one-head
attention models without dense connections, thus being faster but also less
powerful than those employed in, for example, transformer networks [112].
All three attention mechanisms are depicted in Figure 5.3.

High Precision Head

The head is in charge of recovering both the required detail and style of the
input LDR image in the output HDR image. For this reason, the head is
composed of three layers (convolution, instance normalization (IN) [532] and
ReLU) and a residual connection with the original input of the model. Then,
the head produces the final HDR prediction by Ĥ = σ(I + φ(O)), where φ de-
notes a hyperbolic tangent activation function, I is the input LDR image and
O is the output HDR image of the system. We use φ to learn the nonlinear

118 Chapter 5. Inverse Tone Mapping on Smartphones

(A)

(B)

(C)

FIGURE 5.3: Depiction of (a) Channel Attention (CA) block,
(b) Spatial Attention (SA) and Channel Spatial Attention (SCA)
block. Conv refers to a standard convolution, a soft sigmoid form
denotes the sigmoid activation, the rectilinear symbol denotes

ReLU activation and the ⊗ denotes element-wise product.

transformation between pixel values of the LDR and HDR images, and the
purpose of using σ is to map to relative illuminance values, i.e. [0, 1] interval
[21]. The entire MQN architecture is illustrated in Figure 5.2.

5.3.2 Mixed Quantization and Fusion

Full 8-bit integer quantization [150] cannot be used directly in ITM, since a
higher precision output (HDR image) is required. Hence, direct ITM methods
[507, 22, 29, 21, 508, 509, 510, 20] cannot use full 8-bit quantization and benefit
from size and latency reduction on devices supporting only integer-valued
operations. To address this problem, we define a mixed quantization scheme.
The backbone of MQN is quantized to full 8-bit integer quantization of both
weights and activations, to obtain the most acceleration at inference time, thus
opening the door to deployment in integer-only hardware accelerators, such
as NPUs, but without restricting the application in other platforms, such as
FPGAs [533] or GPUs [534]. Meanwhile, the remaining part of the network,
the head, which produces output with the equivalent resolution to that of the
input, is quantized by dynamic range post-training quantization [150]. That is,
8-bit integer quantization is applied to the weights and 32-bit float activations
are used in order to obtain the required high precision output for the mobile
ITM tasks.

5.4. Experimental Analyses 119

5.3.3 Loss functions

We train MQN models using the following loss functions of ground-truth and
predicted HDR images H and Ĥ:

• �1 loss function L1(H, Ĥ) = ||Ĥ − H||1, where ‖ · ‖1 is the �1 norm.

• �2 loss function L2(H, Ĥ) = ||Ĥ − H||2, where ‖ · ‖2 is the �2 norm.

• Cosine loss function LCS(H, Ĥ) = 1 − 1
K ∑K

k=1
〈ĥk,hk〉

||ĥk||2||hk||2 , where 〈·, ·〉 de-

notes the inner product, and ĥk ∈ R3 and hk ∈ R3 is the k-th pixel vector
of the image Ĥ and H.

• As part of the problem is content generation, we include a perceptual
loss in the form of a variant of the feature reconstruction (FR) loss func-
tion as in [535] to force the network to match the feature traits of the orig-
inal HDR images. In this case, we use a VGG16 to produce the necessary
feature maps to compute the FR loss by LFR(Ĥ, H) = ∑3

i=1
1
K ∑K

k=0 |Fi(hk)−
Fi(ĥk)|, where Fi denotes the output feature map obtained from the ith

pooling block of the VGG16 and | · | is the absolute value function.

Thus, the overall loss function used for training the MQN model is defined by

LMQN (Ĥ, H) = λ1L1(Ĥ, H) + λ2L2(Ĥ, H) + λ3LCS(Ĥ, H) + λ4LFR(Ĥ, H),
(5.4)

where λi > 0, i = 1, 2, 3, 4 are parameters used to balance range of loss func-
tions.

5.4 Experimental Analyses

First, the experimental setup and evaluation methodologies are described, and
implementation details such as further information on datasets, training, and
evaluation procedures are given. Next, results from the architecture alterna-
tives defined in Section 5.3 are presented. Finally, the proposed model is com-
pared with state-of-the-art methods with extensive analyses regarding the ac-
curacy, latency, and other measures.

5.4.1 Datasets

We build our training data from a collection of HDR image datasets [536, 537,
538, 539], consisting of 3768 HDR images, split into a training set of 3580 im-
ages and a validation set of 188 images. Most of these datasets do not contain

120 Chapter 5. Inverse Tone Mapping on Smartphones

unprocessed LDR images which can be used as input. We opt then for creating
the LDR images through TM [21], that is, we apply a tone mapping operator
(TMO) [492, 491, 493] to the original HDR images to produce LDR images. For
testing and comparing with state-of-the-art methods, we use publicly avail-
able datasets, HDR-Eye [540], HDR-Real [22], and RAISE-1K [541]. These
datasets contain LDR and HDR images, enabling a fair evaluation between
methods.

Training Datasets

We employ 4 different datasets for training: Ward, Funt, PFSTools, and HDR-
Plus. Most of them only contain high bit-depth images, and thus input LDR
images have to be recreated using TM operations. Specifically, the four tone
mapping operators (TMOs) used are: Drago [492], Mantiuk [491], Reinhard
[493] and Exposure obtained from the OpenCV library [542]. For data aug-
mentation, we use a batch of ground-truth HDR images. For each image, a
TMO is chosen randomly and the TMO is applied to the image with random
parameters.

Ward and PFSTools The Ward dataset [537] is a collection of 33 HDR images
originally intended to compare different HDR formats (OpenEXR, Radiance
RGBE, and XYZE, 24-bit and 32-bit LogLuv TIFF, and others). The PFSTools
[538] is a collection of 8 HDR images of both outside and interior scenes.

Funt The Funt collection [536] is a set of 105 HDR images built by bracketing
9 differently exposed LDR images. The LDR images have a difference of 1
exposure value (EV) between them, a rate of capture of 5 seconds, and the f-
stop is not fixed. The final HDR images are created from raw LDR bursts by
alignment and filtering.

HDRPlus HDR+ [539] is a content enhancement pipeline dataset consisting
on 3640 bursts (made up of 28461 images in total) resulting from the Google
HDR+ system. The dataset also contains an intermediate DNG burst merge
image and the 8-bit image resulting from the pipeline. We use the merged
burst image in DNG format as our HDR output and do not use the 8-bit im-
ages defined as a result of the pipeline or the raw input images.

5.4. Experimental Analyses 121

Test Datasets

For testing our method, we choose three datasets that, contrary to our training
data, have LDR-HDR paired images, thus enabling a fair evaluation.

HDR Eye HDR Eye [540] consists of 46 LDR-HDR pairs taken with the Sony
DSC-RX100 II, Sony NEX-5N, and Sony 6000 cameras. The HDR images are
generated by combining LDR images with exposures (-2.7, -2, -1.3, -0,7, 0, 0,7,
1,3, 2, 2.7). Evaluation is performed using images with size 256x256 as sug-
gested in [525].

HDR Real HDR Real [22] is a photographic dataset specially designed for
extreme HDR contexts. It consists of 1838 LDR-HDR pairs taken by amateur
photographers, employing 42 different cameras, using different exposures,
and covering the whole range of lighting conditions: from near pitch-black
to extremely saturated images. We perform evaluation using 256x256 images,
following [525]. Instead of preprocessing the datasets as employed in [22], we
employ the dataset directly without preprocessing.

RAISE 1K The RAISE-1K [541] consists of a subset of 1000 RAW-TIFF im-
age pairs selected from the original RAISE dataset. Originally intended for
digital forensics, it contains high-resolution images captured in diverse sce-
narios: indoor, outdoor, man-made, and natural. Following [22], we consider
using unprocessed RAW images (with 12- or 14-bit depth) as ground truth
HDR images, and the TIFF images as 8-bit LDR input images. We convert
the RAW images to .hdr format and the TIFF images to JPEG. For evaluation
we downsize images to a quarter of their original size respecting proportion
ratios, resulting in images that are approximately 720p.

5.4.2 Experimental Setup

Accuracy measures

We measure the accuracy of methods using Peak Signal Noise Ratio (PSNR),
Structural Similarity (SSIM) and HDR-VDP-2 [543].

For the evaluation of methods using Peak Signal Noise Ration (PSNR) and
Structural Similarity (SSIM), we use tone-mapped images and predictions. In-
spired by [22], and unlike our training procedure where we use OpenCV tone
mapping operators, we tone map images using four tone mapping operators

122 Chapter 5. Inverse Tone Mapping on Smartphones

from the Photomatix suite [23] for evaluation: (1) detailed, (2) balanced, (3)
realistic and (4) photographic.

Regarding HDR-VDP metric evaluation, we use version 2.2.2 for evaluation.
Our predictions take values from [0, 1] (relative luminance). We rescale them
to a display range of 1000 cd/m2 and align the 0.01 and 0.99 percentiles of
both prediction and ground truth. For a fair comparison, we use the same
parameters as utilized in [505, 525] to obtain the pixel-per-degree parameter,
which are 24-inch display, 0.5 distance and 1080p display resolution.

With regards to latency measurements, we test models on both a desktop
GPU, NVIDIA GTX 1080 Ti, and a mobile platform, Samsung Note 20 Exynos
990. The latency calculations are performed on the desktop platform taking
into account the process between the reading of the LDR image and the out-
put of the final HDR image, that is to say, the reading and writing computa-
tional costs are not considered. So, for those methods, such as [20] or ours,
that use the input mixed with the output to create the final HDR image, the
combination procedure is also included in the latency computation. In the
mobile platform, latency is tested through the native benchmark application
for the arch64 architecture offered by Tensorflow [544], always running on a
CPU with 4 threads, using images of size 256x256, and results averaged over
300 runs.

Training parameters

The entire training takes approximately 5 days on a computer with an Intel
Core i7-6850K and an Nvidia GTX 1080 Ti. We use the Adam optimizer with
an initial learning rate of 5 × 10−5, a decreasing learning schedule with a de-
cay factor of 0.99 applied at every 4 epochs, and a batch size of 4. In the
analyses, the best results are obtained using λ1 = 1, λ2 = 1, λ3 = 0.1 and
λ4 = 0.05 for integrating loss functions.

5.4.3 Ablation Studies

In this section, we study ablations with regard to various attention mech-
anisms, quantization schemes, loss functions, and deployment of MQN to
hardware platforms for efficient mobile ITM.

5.4. Experimental Analyses 123

FIGURE 5.4: Illustration of feature maps learned at the Att. 4
layer of the MQN depicted in Figure 5.2. The rows show in or-
der results obtained without using an attention mechanism, fol-
lowed by using SA, CSA, and CA. The first column shows the
predicted HDR image Ĥ and the rest shows the feature maps

learned at different channels of the Att. 4 layer.

TABLE 5.1: Analyses of accuracy and latency measurements (on
the SN20E990) for different attention mechanisms. None indi-
cates that no attention mechanism is used and B indicates back-
bone. Blue and red indicate the best and the second-best accu-

racy, respectively.

Attention Latency B (ms) PSNR-TM SSIM-TM

None 11.55 ± 0.27 20.76 ± 3.21 0.8440 ± 0.0741
SA 11.68 ± 0.49 21.12 ± 3.03 0.8333 ± 0.0800
CSA 12.17 ± 0.25 20.75 ± 3.06 0.8559 ± 0.0597
CAB 12.40 ± 0.32 21.25 ± 3.11 0.8782 ± 0.0520

TABLE 5.2: Results obtained using different quantization
schemes. Latency (L.) is measured on the deployment platform

(SN20E990).

Backbone Head L. Backbone (ms) L. Head (ms) PSNR-T SSIM-T

Quant. Dynamic 11.52 ± 0.82 9.63 ± 0.12 21.25 ± 3.11 0.8782 ± 0.05
Quant. Float32 11.52 ± 0.82 20.95 ± 0.99 21.34 ± 3.08 0.8793 ± 0.05
Float32 Float32 21.13 ± 0.42 20.95 ± 0.99 21.58 ± 3.14 0.8727 ± 0.05
Int 16 - 857.67 ± 18.2 - 17.23 ± 3.87 0.7612 ± 0.1016

Attention Mechanisms

We explore different attention mechanisms specified in Section 5.3.1. Results
given in Table 5.1 show that accuracy increases when moving from SA to CAB,
which provides the best accuracy with an increase of 3% on SSIM, albeit with

124 Chapter 5. Inverse Tone Mapping on Smartphones

a) I. b) Ĥ. c) f1. d) f2. e) Δ f2. f) PMFs.

FIGURE 5.5: Analyses of the quantized Q(f) and floating point
F(f) features f learned by the MQN at the ConvBnReLU3 layer at
Figure 5.2 using a) three sample input images with b) predictions
Ĥ. Visualization of (c) the first channel f1 and (d) the second
channel f2 of f, (e) the difference map Δ f2 = ‖Q(f2)− F(f2)‖1.
We show the probability mass function (PMF) of Q(f2) and F(f2)

in (f).

an increase in latency of ≈ 1 ms. We examine the features learned using dif-
ferent attention mechanisms in Figure 5.4. We observe that better feature rep-
resentations of edges and surfaces are learned when models are trained using
CSA and CA. For instance, in both cases, the lamp is well captured with large
feature activation values, enabling the dimming effect in the prediction.

Quantization Schemes

Next, we study the behavior of features f learned at the interface between the
backbone and the head (i.e., at the ConvBnReLU 3 layer depicted in Figure
5.2), as well as how quantization affects the interface and the head. In Ta-
ble 5.2, we analyze how the performance and latency of models change for
different quantization methods. The results show that the proposed quantiza-
tion scheme enables us to obtain similar PSNR/SSIM accuracy whilst showing
improvements in latency.

In order to analyze the effect of quantization on statistical properties of fea-
tures, we compute histograms approximating probability mass functions (PMFs)
of features and their quantized versions. The results given in Figure 5.5.e show
that distributions of quantized features Q(f) and features with floating point
values F(f) have similar distributions. This result suggests that the quantiza-
tion scheme preserves statistical information on features.

5.4. Experimental Analyses 125

TABLE 5.3: Analyses of accuracy for different loss combinations..
Blue and red indicate the best and the second-best accuracy, re-

spectively.

Loss PSNR-TM SSIM-TM

(i) L1 20.00 ± 3.10 0.8295 ± 0.0646
(ii) L1, L2 19.96 ± 3.05 0.8281 ± 0.0656
(iii) L1, L2, LCS 20.22 ± 3.02 0.8268 ± 0.0625
(iv) L1, L2, LCS, LFR 21.25 ± 3.11 0.8782 ± 0.0520
(v) L1, LFR 21.19 ± 2.85 0.8261 ± 0.0832
(vi) L2, LFR 21.53 ± 2.92 0.8343 ± 0.0675
(vii) L1, L2, LFR 21.54 ± 2.85 0.8538 ± 0.0597

We also study what has been learned in the interface as well as the effect of the
network on a computer graphics image. In Figure 5.5 (c and d), we present two
feature maps f1 and f2 corresponding to two channels of f. The maps show
that two very different representations are learned in these channels: in (c)
light sources are identified, striking their relevancy for the ITM task, while in
(d) general edge structures are learned. Moreover, we can see in the first row,
as well as in Figure 5.1, that the network can be applied to computer graphics
images without having special artifacts or distortions, opening the door for
employment of MQN in computer graphics.

An alternative solution to the MQ scheme, already available in some network
optimization suits [545], is quantizing network parameters to 8-bit integers
and activations to 16-bit integers. We compare both schemes and present the
results in Table 5.2 (first and last, rows) using the same network with the ex-
ception of the IN blocks which have been substituted by Batch Normalization
blocks due to incompatibilities in the inference framework. The results show
that there is a substantial loss in accuracy when the int-16 scheme is used. In
the case of latency, we observe a substantial increase in latency, probably due
to an issue of a lack of suitability of such quantization schemes with the de-
ployment platform or the lack of suitable implementations in the deployment
suite. All in all, aside from latency measurements, analyses of the accuracy
of models show the benefits of our MQN in contrast to the aforementioned
scheme which has 8-bit integer parameters and 16-bit integer activations.

Loss functions

We analyze the effect of using different loss functions defined in Section 5.3.3
in Table 5.3. The results show that employing LFR with LCS and L2 increases

126 Chapter 5. Inverse Tone Mapping on Smartphones

Input wo/ Perceptual Loss w/ Perceptual Loss Ground Truth

FIGURE 5.6: Visual analyses of the effect of training models with
and without using LFR on predictions Ĥ. It helps models gain

structural coherency and improve color details.

accuracy substantially. Meanwhile, LCS and L2 seem to provide a slightly
negative effect on their own.

Moreover, we analyze qualitatively the effect of perceptual loss in the network
results, as illustrated in Figure 5.6. As the results show, training models using
perceptual loss helps learn feature representations of color coherency as well
as color details, further enhancing the quality of the image. Examples are the
structural coherency in the color-checker (row 1) or the sky color coherency
(row 4).

To provide additional information about the training process, in Figure 5.7 we
show the training and validation loss evolution of all combinations of losses
found in Table 5.3.

Deployment Platforms

In the experimental analyses, we used CPUs as our main deployment hard-
ware platform. However, as our objective has been to develop a well-performing

5.4. Experimental Analyses 127

0 100 200 300 400 500 600

Epochs

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

T
ra

in
in

g
L

og
1

0
L

o
ss

L1

L1 + L2

L1 + L2 + CSIM

L1 + L2 + CSIM + FR

L1 + FR

L2 + FR

L1 + L2 + FR

0 100 200 300 400 500 600

Epochs

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

V
a

li
d

a
ti

o
n

L
og

1
0

L
o

ss

L1

L1 + L2

L1 + L2 + CSIM

L1 + L2 + CSIM + FR

L1 + FR

L2 + FR

L1 + L2 + FR

FIGURE 5.7: Training (left) and validation (right) loss plots for
each loss combination established in Table 5.3.

TABLE 5.4: Comparison with other state-of-the-art single image
HDR reconstruction methods. Performance metrics and latency
values were reproduced with the same evaluation criteria and
original codes. Blue and red indicate the best and second-best
accuracy. P. indicates the number of parameters, L. M. indicates
latency for mobile CPU, M. RAM the maximum RAM mem-
ory consumed by the model, and O. the number of operations
in multiply-accumulate units. Performance values are given
in HDRVDP-Q score. *FHDR[29] uses recurrence: the present

value is computed taking into account two iterations.

Model P. (M) L. GPU (ms) L. M. (ms) O. (GMAC) M. RAM (MB) HDR-Eye Raise-1K HDR-Real
HDRCNN [20] 29.44 247 - 30.35 - 51.16 ± 4.43 51.89 ± 2.77 45.56 ± 8.18
SingleHDR [22] 29.01 976 - 112.75 - 53.05 ± 5.08 51.69 ± 2.56 48.72 ± 4.03

FHDR [29] 0.571 54 4970 ± 434 72.34* 832.40 51.41 ± 6.72 53.13 ± 1.71 45.82 ± 8.67
HDRUnet [546] 1.651 17 808 ± 22 23.42 353.46 50.32 ± 4.07 51.42 ± 3.35 44.60 ± 7.30
ExpandNet [21] 0.45 21 474 ± 7 13.66 262.77 50.52 ± 3.94 51.83 ± 1.68 44.86 ± 8.21
DeepHDR [547] 51.545 17 238 ± 4 18.94 251.17 51.11 ± 4.45 51.66 ± 2.79 45.81 ± 8.34
TwoStage [513] 1.088 32 3338 ± 456 54.91 397.41 49.68 ± 3.7 52.95 ± 2.36 43.46 ± 7.55

Ours (best) 0.928 11 21 ± 1 0.5 9.45 51.59 ± 4.61 51.81 ± 1.56 45.15 ± 8.15

but efficient model employing mixed quantization, attention, and efficient op-
erations, our model can also be extended to other hardware platforms. For
this reason, we also deploy our model to the GPU (Arm MaliTM-G77 MP11)
of SN20E990, elucidating the flexibility of our model with regards to the de-
ployment of MQN models on platforms with different hardware configura-
tions. We obtained a latency of 10.5 ms for our backbone and 9.3 ms for our
high precision head, improving our results even further and showcasing the
hardware flexibility for the implementation of our MQN.

128 Chapter 5. Inverse Tone Mapping on Smartphones

FIGURE 5.8: Visual comparison of results obtained using, from
left to right; input LDR images, HDRCNN [20], ExpandNet [21],
SingleHDR [22] and our proposed MQN. All images are pro-
duced with Balanced TMO from the suite Photomatix [23], simi-

larly to [22].

5.4. Experimental Analyses 129

5.4.4 Comparison with State-of-the-art Methods

In Table 5.4, we compare the accuracy, latency, and size of models trained
using MQN and state-of-the-art methods. We selected competing methods
according to two criteria: (1) We considered methods that promised a reason-
able accuracy-latency trade-off [546, 547] due to their simplicity, to evaluate
the efficiency gain introduced with our method. (2) To estimate the cost of
adding efficiency as a factor in network design, we compared MQN to state-
of-the-art or baseline methods [22, 20] that did not take accuracy-efficiency
trade-off into account. The results show that MQN models provide accuracy
(HDRVDP-Q score) on par with the larger state-of-the-art models and with a
notable reduction in latency and RAM consumption.

In terms of latency, our MQN provides the fastest model, both in experiments
conducted on GPU and mobile deployment platforms. Comparison of the la-
tency of the models on the GPU platform is not fair, since our MQN model
uses 8-bit integer quantization and employs depthwise convolutions which
are not suited for GPU platforms [16]. To obtain a fair comparison on the
mobile deployment platform, we adapt the four methods HDRUNet [546],
ExpandNet [21], DeepHDR [547] and TwoStage [513] that perform the fastest
inference on the GPU. The results show that the difference between the la-
tency of our MQN models and these four models increases further on the mo-
bile platform. More precisely, our MQN model is running in real-time (21ms)
while others run from a quarter of a second (DeepHDR with 238ms) to more
than 3 seconds (TwoStage with 3338ms). The same trend is observed with
memory consumption (maximum RAM MB) where our model stands as the
most efficient with a reduction of a factor of x26 or more. The main factor for
such differences is the employment of our MQ scheme with computationally
efficient components, such as IRLB blocks. These facts, along with learning
representations of HDR content over the input, enable us to obtain a faster
model with similar accuracy. However, other models use methods that hin-
der efficient deployment, such as by utilising images with same resolution
[21, 513], inefficient network composition [22], convolution operations and
special blocks [546, 547].

In Figure 5.8, we compare the ITM models visually. In the analyses, our MQN
model performs well with good quality in under-exposed regions. For in-
stance, our MQN model recovers details better than others as seen in the de-
tail of the image in row one. In the case of over-exposed regions, our model
can recover details better than HDRCNN [20] and similarly to ExpandNet [21]

130 Chapter 5. Inverse Tone Mapping on Smartphones

FIGURE 5.9: Distribution of HDRVDP Q score values for three
test datasets and 5 best competing methods in each case.

as seen in the lamp, tree, and tent details. Although SingleHDR [22] performs
slightly better on over-exposed regions, the SingleHDR model has 29 M pa-
rameters and takes almost a second to perform inference on a desktop GPU,
while our model is 29x times smaller and almost 100x faster.

Extended State-of-the-art Comparison

Histogram of HDRVDP-Q values In Figure 5.9, we plot the distribution of
the Q value scores obtained from HDRVDP for HDRCNN [20], SingleHDR
[22], ExpandNet [21], and our method for all three test sets: HDR-Eye, HDR-
Real and Raise 1K. As the results show, our method performs similarly or bet-
ter than HDRCNN and ExpandNet, and slightly worse than SingleHDR, even
though our method is purposed for fast inference and not for performance
quality, as other competing methods are.

5.4. Experimental Analyses 131

TABLE 5.5: Comparison with state-of-the-art single image HDR
reconstruction methods for PSNR and SSIM performance met-
rics. Values reproduced with the same evaluation criteria and
original code. Blue indicates the best and red indicates the sec-

ond best accuracy.

HDR Eye HDR Real Raise 1K
Model PSNR−T SSIM−T PSNR−T SSIM−T PSNR−T SSIM−T

HDRCNN [20] 18.82 ± 3.49 0.7754 ± 0.1044 16.53 ± 5.65 0.6378 ± 0.2303 17.25 ± 2.81 0.5950 ± 0.1213
FHDR [29] 20.30 ± 5.40 0.7794 ± 0.1897 16.47 ± 5.83 0.6436 ± 0.2305 17.68 ± 3.67 0.5653 ± 0.1315

ExpandNet [21] 19.85 ± 2.96 0.7854 ± 0.0954 16.24 ± 5.99 0.6175 ± 0.2564 16.58 ± 2.77 0.5264 ± 0.1306
SingleHDR [22] 21.70 ± 4.50 0.8259 ± 0.1244 21.16 ± 5.33 0.7409 ± 0.2150 15.12 ± 3.44 0.5688 ± 0.1253
DeepHDR [547] 19.38 ± 3.38 0.7723 ± 0.1131 16.49 ± 6.15 0.6252 ± 0.2591 17.22 ± 2.86 0.5861 ± 0.1243
TwoStage [513] 17.97 ± 4.16 0.7519 ± 0.1057 14.57 ± 4.52 0.5660 ± 0.2235 19.12 ± 2.81 0.6162 ± 0.1257
HDRUnet [546] 18.58 ± 4.11 0.7724 ± 0.1139 14.59 ± 4.73 0.5778 ± 0.2478 17.70 ± 3.07 0.5989 ± 0.1263

Ours Best 19.97 ± 4.21 0.7990 ± 0.1160 15.95 ± 5.76 0.6162 ± 0.2436 17.71 ± 2.73 0.5776 ± 0.1150

FIGURE 5.10: Latency and accuracy trade-off comparison with
the HDR Eye dataset between competing methods and our pro-
posed solution. Accuracy is measured by the HDR-VDP Q value
score. Latency is computed both in the mobile (CPU) and GPU

platforms.

Quantitative Evaluation on Tone Mapped Images We also evaluate our
method and compete for state-of-the-art methods using PSNR and SSIM. To
provide HDR images for these metrics, we tone map the images with the use
of the Photomatix suite and four tone mapping operators: Detailed, Balanced,
Realistic, and Photographic. Results are shown in Table 5.5. The results show
that our method performs better than ExpandNet and HDRCNN in HDR Eye
and Raise, and always after Single HDR. However, note that our method is
100x faster than SingleHDR both on mobile and GPU, and almost 10x faster
than ExpandNet on mobile.

132 Chapter 5. Inverse Tone Mapping on Smartphones

FIGURE 5.11: Three examples of extreme cases of overexposure
in HDR Real dataset. Order from top to bottom is: input, HDR-
CNN [20], ExpandNet [21], SingleHDR [22], our method and

ground truth.

Comparative Analysis of Latency and Accuracy Our method is intended
for fast inference, while all competing methods focus on accuracy. We com-
pare the latency and accuracy trade-off in Figure 5.10. We can see that our
model is almost 100x faster than SingleHDR while providing only 3% accu-
racy loss, and while being 10x faster than ExpandNet it achieves a 1 Q point

5.5. Conclusion 133

more on accuracy.

Analyses for Extreme Over-exposed Cases In Figure 5.11, we illustrate the
difficulty of ITM for some of the samples belonging to the HDR Real with three
extremely over-exposed inputs. As seen, all networks struggle to recreate the
ground truth, failing in most of the content.

5.5 Conclusion

In this work, we proposed a novel DNN-based method called Mixed Quan-
tization Network (MQN), for computationally efficient ITM. The proposed
MQN has produced competitive accuracy with better computational efficiency
compared to the state-of-the-art, being the first DNN-based single image ITM
method targeting computationally efficient mobile ITM.

We have proven how with the use of quantization (Section 2.1), specifically a
mixed quantization scheme, and efficient operations (Section 2.4), IRLB blocks,
we can reduce the computational requirements of models. Moreover, we also
have proven, by deploying our framework to CPU and GPU mobile platforms,
that such optimizations can move the models closer to efficient inference on
hardware platforms that a priori could not handle such models.

Nevertheless, although we have attained similar performance to SoA models
while being more efficient, there are still more steps to push efficient inference
further. Examples could be using distillation, structured pruning, or NAS in
order to improve latency and accuracy trade-off for mobile ITM.

135

Chapter 6

Bronchoscopy Navigation

6.1 Introduction

Early detection is fundamental for lung cancer mortality reduction [548, 549].
After a suspicious pulmonary lesion (PL) has been detected through a com-
puted tomography (CT) scan, a decisive diagnosis can only be achieved through
a biopsy. Recent advances in sensors and imaging have improved the sensi-
tivity yield of navigational bronchoscopy (NB) [550, 551], establishing it as a
solid alternative to percutaneous approaches, which have a higher degree of
medical complications [552, 553].

Among the different methods for NB, vision-based NB (VNB) stands out for
its low cost, accessible configuration, and reliability. In such a method, a vir-
tual model of the patient pulmonary system is built from CT scans [554, 555,
556] and the optimal path to the PL is defined. The physician should replicate
this path during the interventional bronchoscopy. Therefore, during naviga-
tion, VNB models require the registration of the virtual lung model with the
frames from the video bronchoscopy to provide effective guidance during the
biopsy. The registration can be achieved by, either tracking the position and
orientation of the bronchoscopy camera [557, 558, 559, 560], or by calibrating
its deviation from the pose (position and orientation) simulated in the virtual
lung model.

Traditionally, the problem of image-based tracking in VNB has been solved
through geometric and hand-crafted methods. Feature generation [557, 558,
580, 560] and similarity measures [571, 572, 569, 30] were commonly used for
such purpose, accounting, however, with tracking errors and large execution
times.

136 Chapter 6. Bronchoscopy Navigation

Method Year Image Size Tracking Type PE (mm) AE (º) CTF (%)
[561] 1998 100x100 Local/Global 2 5 -
[562] 2001 - Local - - 79
[563] 2002 - Local - - -
[564] 2002 410x410 Local - - 73.37
[565] 2004 454x487 Local 3 ± 2.26 2.18 ± 1.63 -
[566] 2004 - Local - - 77.79
[567] 2006 30x30 Local - - 76.4
[568] 2009 - Local - - -
[30] 2010 - Global - - 89

[559] 2011 362x370 Local - - 83.2
[569] 2011 30x30 Local - - 70.2
[570] 2012 362x370 Local 3.72 10.2 -
[571] 2014 256x263 Local 4.5 12.3 -
[572] 2015 487x487 Local 8.48 ± 6.29 - -
[573] 2016 - Global - - -
[574] 2017 50x50 Local 1.5 - -
[575] 2017 - Local 5-151 - -
[24] 2019 - Local 2.4 3.4 90.2

[576] 2019 307 × 313 Local 3.18 ± 2.34 - -
[577] 2020 256x256 Local 1.17 9.71 -
[578] 2020 440x440 Local 3.02 - 78.1
[579] 2021 Local 6.2 ± 2.9 - -

TABLE 6.1: Comparison among bronchoscopic tracking stud-
ies with regards to data and evaluation characteristics. Notably,
none of the methods share a dataset (currently there is no pub-
licly available dataset for this task) or publish their code. More-
over, metrics, although aiming to measure the same quantities,
are different or lacking in some cases. Metrics shown are um-
brella terms for measuring the position error (PE), angle error
(AE), and the number of correctly tracked frames. Tracking type
[30] refers to the type of information provided by the tracking:
global type positions the bronchoscope in macro terms, e.g. 3rd
bifurcation, while local, give information with regards to posi-

tion and angle of the bronchoscope.

Recently, supervised data-intensive learning methods, such as neural networks
(NNs) [581, 574, 577, 576], have been used for localization and tracking in
bronchoscopies, providing better results than previous methods. Moreover,
temporal learning techniques have recently been applied to other endoscopic
modalities [582] but have not been appropriately tested in bronchoscopy. Ad-
ditionally, depth information has lately been extensively used to improve track-
ing [583, 579, 576, 584], mixing it with generative neural networks [577, 576,
584, 579].

Despite these advances, there is a common obstacle among studies: results

6.1. Introduction 137

(A)

Position
X

−150
−140

−130
−120

−110
−100 Positio

n Y
−170 −160 −150 −140 −130 −120 −110 −100 −90

P
os
it
io
n
Z

160

180

200

220

240

260

280

(B)

FIGURE 6.1: Details of the synthetic dataset for bronchoscopy
tracking and calibration. 6.1a, an example of synthetic frames
from a trajectory from patient P18’s lower left lobe. 6.1b, posi-
tions visited by the trajectories corresponding to two different
patients: P18 and P20. Both cases only show points pertaining to

the lower right and left lobe trajectories.

are affected by a lack of fair comparability due to the absence of public bron-
choscopy datasets and the usage of appropriate metrics as a gold standard,
Additionally, learning methods depend on high data availability, often hin-
dering their application in data-scarce environments. Table 6.1 summarizes
such a situation from bronchoscopic literature: none of the selected studies
details public code or data as to allow for a fair comparison. With regards
to metrics, position and angle metrics differ or lack in most studies, making
further comparison difficult.

In such a situation, with great progress but also a lack of comparability, is
of outstanding importance to establish ground points for enabling advances.
In the case of a system for pose estimation in intervention guiding, it should
address 3 key points: 1) definition of the most appropriate metric and com-
parison protocol for the evaluation of the estimated pose; 2) determination of
the most accurate strategy for the processing of temporal information and 3)
the highest generalization level (single or across subject) of models.

Hence, the goal of this paper is to analyze the performance of different deep
learning approaches for image-based bronchoscopy tracking using a standard-
ized and fair comparison framework. In particular, we contribute to the fol-
lowing aspects:

138 Chapter 6. Bronchoscopy Navigation

• Synthetic Dataset. We present a bronchoscopy navigation synthetic dataset
based on real anatomies to enable fair comparison among methods with
a cross-subject setting analysis, as well as, address the data requirements
of learning methods.

• Evaluation Protocols. A study and comparison of rotation and position
losses and metrics (including a novel one) for bronchoscopy navigation,
which helps to establish better grounds for training and evaluation.

• Processing of Temporal Information. We investigate different solutions
for neural network temporal learning. Models such as recurrent NNs
(RNNs) [77, 585], pseudo-3D convolutions [586] or 3D convolutions [587],
could exploit temporal information in bronchoscopic videos, currently
not explored, and provide new results.

• Population Modelling. We analyze the different options with regards
to data usage for industrial applications: first, with a patient setting,
focused on the development of a general model, and second, with an
intra-patient setting, by providing a specialized model.

The following sections are organized as follows. Section 6.2.1 describes the
data generation and its characteristics. Section 6.2.2 presents the different
metrics and losses for evaluation. Then, Section 6.2.3, defines and describes
important concepts and composition of the proposed bronchoscopic system
and its elements, altogether with a description of the temporal learning archi-
tectures and proposed population modeling. Next, Section 6.3 presents the
experiments, their setup, and the main results obtained for the system while
exploring their significance. Finally, Section 6.4 concludes this chapter with
the main key points and important takeaways.

6.2 Methodology

6.2.1 Dataset Generation

Virtual lung models are built from an own database of computed tomography
scans 2 [588] using [556] to segment the airways. Virtual airways models are
simulated using their own platform developed in C++ and VTK, BronchoX.

From the virtual models, bronchoscope trajectories are simulated from the tra-
chea entrance up until the 4-6 level and cover the upper-right, lower-right,

2CVC CPAP Study Database

6.2. Methodology 139

upper-left, and lower-left lobes. Trajectories are generated from the central
navigation path through the luminal central line traversed using the arch-
length parameter. Different increments in this parameter allow the simulation
of varying velocities across the path.

For each central path, different variations, both, in position (between [−2 : 1 :
2] voxels in each axis) and camera orientation (in the range [−45 : 15 : 45] de-
grees of rotations around the navigation vector) are generated. The variation
in camera position implicitly also modifies the camera point of view, since it is
given by its position and a point in the central path at a distance Δd from the
current point. The rotation around this navigation vector introduces a varia-
tion in the orientation of the image plane. This way, we simulate a full change
in the camera central pose.

Finally, paths with neighboring variations are randomly combined along the
navigation arc-length parameter in order to simulate realistic trajectories. In
total, our dataset has 876 trajectories per patient and lobe, amounting to a total
of 842712 frames.

The dataset has as input values the synthetic frames from the camera view
during the trajectory and as ground truth source values the associated pose in-
side the VTK airway model coordinate system. The position is in voxel units,
and camera view angles are presented in Euler angles.

Figure 6.1a shows some dataset examples. Each row has different carinas and
each column represents variations in position and orientation from the central
navigation. Figure 6.1b shows examples of the lower left and right lobes for
two different patients. Dataset will be made publicly available.

Additionally, the data is processed before training to prepare the inputs and
ground truths. For every two pairs of images in a sequence, the difference in
position and rotation between them is computed. Both components, the dif-
ference in position Δp = (Δx, Δy, Δz) ∈ R3, and the difference in orientation
Δo = (Δα, Δβ, Δγ) ∈ R3, define the difference in pose, ΔP = (Δp, Δo) ∈ R6,
which constitutes the ground truth of the system. That is, we predict the dif-
ference in position and orientation between two images, thus allowing both
tracking and calibration. No standardization is applied to the ground truths,
while images are standardized through mean subtraction and standard devi-
ation division.

140 Chapter 6. Bronchoscopy Navigation

(A) Base network (B) Base network plus recurrence

(C) Base network plus convolutional recur-
rence (D) Base network plus 3d convolutions

FIGURE 6.2: Architectures for bronchoscopy calibration and
tracking. (a) is the baseline network without temporal informa-
tion management, as in [24]. (b, c, d) include different mecha-

nisms to manage temporal information across predictions.

6.2.2 Metrics

In order to train and validate a system for pose estimation, we need metrics
for assessing the error of the predicted rotation and position. As those are two
separate components, we can have different metrics for each of them.

The most common choice is either the mean squared error (MSE), when the
metric is a loss function, or its equivalent, euclidean norm (L2), when it is an

6.2. Methodology 141

evaluation metric. Although they naturally fit the euclidean space of posi-
tions, these functions do not necessarily suit the rotation space. An alternative
used in the literature is the direction error (DE) [589],

DE = cos−1(vE · vGT) (6.1)

where vE and vGT are, respectively, the estimated and ground truth direction
vectors. Such direction vectors are computed from the rotation matrix, R, and
a unitary direction vector, u, as:

vr = R · u =⎡
⎢⎣

cβcγ −cβsγ sβ

sαsβcγ + cαsγ −sαsβsγ + cαcγ −sαcβ

−cαsβcγ + sαsγ cαsβsγ + sαsγ cαcβ

⎤
⎥⎦
⎡
⎢⎣

ux

uy

uz

⎤
⎥⎦

where, ci and si are, respectively, the cosinus and sinus of angle i. A common
choice for u is the look-at vector of the virtual camera, usually given by the
x-axis, so that:

vr = R ·

⎡
⎢⎣

1
0
0

⎤
⎥⎦ =

⎡
⎢⎣

cβcγ

sαsβcγ + cαsγ

−cαsβcγ + sαsγ

⎤
⎥⎦

The main issue with such a function is that the choice of u affects the per-
ceived rotations. That is, by selecting a specific u, the system is oblivious to
the rotations through that direction.

To remedy the such problem, we present an alternative metric, the cosinus error
(CE):

CE =
1
3
((1 − cos(ΔαE − ΔαGT))+

(1 − cos(ΔβE − ΔβGT))+

(1 − cos(ΔγE − ΔγGT)))

where (αE, βE, γE), (αGT, βGT, γGT) are, respectively the estimated and ground
truth Euler angles.

142 Chapter 6. Bronchoscopy Navigation

Importantly, all metrics can be used both as loss for training, as well as metrics
for evaluation of performance.

6.2.3 Relative Pose Estimation

Given a sequence of L image pairs at time t, (It
1, It

2) ∈ D1 ×D2, for D1, D2 a
source and target domains, a pose estimation system can be formulated as a
function, fP , predicting the difference in pose between the image pairs:

fP : (It
1, It

2)
t=L
t=0 −→ (ΔPt)t=L

t=0 , It
i ∈ Di, ΔPt ∈ R6 (6.2)

where each domain Di = RCi×Hi×Wi represents RGB images (Ci = 3) of
size Hi × Wi, and the difference in pose for each time t is a vector ΔPt =

(Δpt, Δot) = (Δxt, Δyt, Δzt, Δαt, Δβt, Δγt) representing the difference in (x, y, z)
position coordinates and (α, β, γ) Euler angles.

In case It
1, It

2 are consecutive frames of the same path, fP is modeling a tracker,
and the change in a pose through the sequence would be given by accumulat-
ing the differences estimated across the video:

PL = P0 +
L

∑
t=0

ΔPt (6.3)

where P0 corresponds to the initial pose vector, and PL to the pose vector after
the accumulated changes of the L pose differences.

If It
1, It

2 correspond to frames of different paths, fP would be modeling a pose
calibration.

The network loss is given by the addition of the position and rotation metrics:

L = Lp + Lo (6.4)

where p refers to the position and o to orientation. The position loss Lp is
given by the MSE error, while for the orientation loss Lo we used the three
metrics (MSE, DE, and the proposed CE) described in the previous section.

In any case (tracking or calibration), if the input sequence has more than two
image pairs (L > 0), there are several ways of processing such temporal infor-
mation in order to improve the difference in pose estimation. All architectures
follow Equation 6.3 and their scheme can be found at Figure 6.2. The different

6.2. Methodology 143

architectures used are a base network working only between two images, and
3 different ways of incorporating temporal information across frames. Next,
configuration details for each architecture are presented, altogether with the
population modeling approach.

Base Network (Baseline)

The baseline network is a static estimation of pose differences from a single
image pair (L = 0 in Equation 6.2). Each image is passed through a convolu-
tion backbone, specifically an EfficientNet-B0 [183]. Then both feature maps
are concatenated and passed through a convolutional block and a ShuffleNet
block [17], to obtain a suitable performance/latency trade-off. Finally, the re-
sulting feature map is flattened and passed through a fully connected layer to
obtain the different pose predictions between the two images. An illustration
of the overall components of the base network can be found in Figure 6.2a.

Recurrence (Baseline + LSTM)

The previous network does not include temporal management. To be able to
include such information, the first modification to the base network consists
in the addition of a recurrent LSTM [379] (Long Short Term Memory) module
after the ShuffleNet block. Such convolutional plus recurrent network type
can well exploit temporal information, and thus it has been successfully ap-
plied to video tasks, such as object tracking [590], action recognition [591] or
video captioning [592].

For every pair of images in the sequence, we obtain a group of feature maps.
Each one is flattened and a vector, v, of dimension (L, F), is built, where L
is the number of image pairs and F is the size of the flattened feature maps.
Such vector, v, is the input for the LSTM block. At each step, l from the se-
quence of L image pairs, the output vector from the LSTM cell is forwarded to
a fully connected layer, which finally delivers the difference pose vector. An
illustration of the mentioned module is found in Figure 6.2b.

Convolutional recurrence (Baseline + ConvRNN)

In the previous architecture recurrence required flattening the feature maps
so they could be fed to the LSTM. Such flattening destroys visual relations
present in the feature maps, thus losing information. To avoid such loss, a
possibility is to use a convolutional LSTM [593], where vectorial operations

144 Chapter 6. Bronchoscopy Navigation

are substituted by convolution ones. In such a way, we are able to maintain
the visual structure during recurrence. Flattening, however, is still needed to
produce the pose prediction through a fully connected layer after Conv-LSTM.
In Figure 6.2c, an illustration of the overall structure is presented.

3D Convolution (Baseline + 3D)

An alternative to recurrence for managing temporal information is 3D convo-
lutions [594, 595]. Once all the feature representations from all image pairs in
the sequence are generated, a 4D tensor of size (L, C, H, W) can be built.

Such tensor is fed to a block of two (Conv3D, BatchNorm, ReLU) layers. Work-
ing at once with the feature maps coming from all image pairs allows learning
relations among them, producing improvements in angle and position estima-
tion. After the 3D convolution block, the result is flattened and fed to a fully
connected layer to predict the final difference pose prediction. In Figure 6.2d
an illustration of the overall network can be seen.

Approaches for Population

Once the data has been prepared as specified in Section 6.2.1, we define two
different approaches to prepare our training and validation scheme. The pur-
pose is to establish the attainable degree of generalization of the models de-
veloped in two different industrial settings.

First, is the population or cross-subject setting, in which a patient is selected
as validation and the rest of the patients are used for training. This case, in an
industrial environment, would correspond to building a general model with
different patients and expect enough generalization of the model to apply it
directly to an unseen patient.

And second, is the personalized setting, where validation is performed over
the same patients as training, but with different sequences. Such a proce-
dure implies that every time we include a patient, models should be retrained.
Hence, although the procedure would be more cumbersome, less generaliza-
tion effort is expected from models.

Pruning

The presented networks, although stemming from a highly efficient network,
EfficientNetV1-B0, have a fixed set of computing requirements. To reduce the
computational burden and allow for a better adaptation to resource-constrained

6.3. Experiments and results 145

environments, we apply L2 structured pruning [167]. Moreover, to avoid the
drop in performance, we apply pruning progressively during training: first,
we train the network until epoch, e, afterward and until epoch, e′, we prune
the network the same amount each epoch in an accumulated manner, thus
avoiding a sudden change in network training. With such a procedure, we
achieve decreasing network requirements while maintaining or even improv-
ing network accuracy.

6.3 Experiments and results

In the present section, we present the experimental details and results for the
experiments and configurations stated in Section 6.2.3.

Experimental setting . With regards to data and for conducting the follow-
ing experiments we have selected different groups for each experiment. More-
over, at each experiment, we have selected 15 trajectories per patient and lobe
for training, reserving a 3 for validation. Each sequence has been divided into
a set of pairs of images. In the case of temporal information experiments, we
have selected the same number of sequences, but sequences have been split
into chunks of 10 pairs of images.

Networks have been trained using two NVIDIA RTX 2080ti, using Adam opti-
mizer with a learning rate of 1e−4, and early stopping based on validation loss
evolution. Dropout has been added to the ShuffleNet blocks to avoid over-
fitting. In the case of temporal learning, networks have been trained using
truncated backpropagation through time (T-BPTT). A batch size of 2048 has
been used in all the experiments, with the exception of the architectures, with
a batch size of 512 to offer comparability among trials since the 3D architecture
did not fit into memory.

6.3.1 Results

Losses

Table 6.2 shows results (mean ± standard deviation) in the validation set for
the different loss combinations evaluated with the different metrics. The best
performers are highlighted in boldface. For all evaluation metrics, with the
exception of L2 loss for the L2 metric, the network trained with the proposed
rotation metric CE achieves the best results. Models trained with metrics

146 Chapter 6. Bronchoscopy Navigation

Position Error Rotation Error
Loss L2 L2 DE CE

LpMSE + LoMSE 0.549 ± 0.573 1.236 ± 6.762 0.724 ± 0.498 0.173 ± 0.194
LpMSE + LoDE 0.368 ± 0.191 2.441 ± 8.491 0.713 ± 0.533 0.434 ± 0.385
LpMSE + LoCE 0.264 ± 0.169 1.554 ± 8.572 0.542 ± 0.503 0.116 ± 0.181

TABLE 6.2: Results for the different loss combinations evaluated
with the different metrics. Values show mean and standard de-

viation.

adapted to the rotational domain improve also the results for the position
error, not only in average but also in variability. A reduction in the latter
indicates a more stable behavior of the predictions and, thus, higher general-
ization or transfer capability.

Patient Settings

We implement the two patient settings described in Section 6.2.3, outer and
intra settings, altogether with the loss configuration, LpMSE + LoCE. In Fig-
ure 6.3, we compare validation performance with regard to the position and
angle errors of both options. Clearly, the intra-patient setting obtains notably
better results, both for position and angle results, indicating the benefits of re-
training the model each time a new patient enters the pool, albeit its associated
costs.

Moreover, we also examine the effect of increasing the number of training
and validation sequences. As seen in Figure 6.3, increasing data helps reduce
the error in the intra-patient setting for both the position and angle terms.
However, in the case of the outer-patient setting, it only helps reduce the angle
error, while the position error is only reduced slightly. The improvements in
the intra-patient setting when increasing data show a positive association with
our synthetic dataset since its data production is cheap and unlimited with
regard to quantity.

Architectures

Table 6.3 shows results for the validation set and for the different architectures
presented in Section 6.2.3. For this case, sequences of 10 pairs of images are
used for training, while full sequences are used for validating the methods.
We employ LpMSE +LoCE as combined loss, as well as the intra patient setting.

6.3. Experiments and results 147

20 40 60 80 100 120
N Sequences

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
P
E

0.1

0.2

0.3

0.4

A
C
E

FIGURE 6.3: Effect of data increase in an outer-patient (red) and
in an intra-patient setting (green). Average Position Error is rep-
resented by a dashed line and Average Cosinus Error is repre-
sented by a solid line. The X-axis represents the number of se-

quences per lobe and patient available.

Config. L2 (voxels) CE
Baseline 0.395 ± 0.268 0.188 ± 0.237

Baseline + LSTM 0.371 ± 0.240 0.213 ± 0.250
Baseline + 3D 0.397 ± 0.252 0.167 ± 0.221

Baseline + ConvRNN 0.355 ± 0.252 0.195 ± 0.242

TABLE 6.3: Ablation results for the different architectures pro-
posed in Section 6.2.3 with regards to performance metrics L2

and CE.

As observed, recurrence improves position tracking. The results, in both cases,
favor the convolutional recurrent solution compared to the plain recurrent,
showcasing the benefit of maintaining the 2D visual structure inside the re-
current cell. It is interesting to note the slight worsening of rotation tracking,
being worse in the plain recurrent solution.

In the case of the 3D convolution fusion, it can be observed the improvement
in rotation tracking, albeit the lack of improvement in position tracking.

148 Chapter 6. Bronchoscopy Navigation

0.1250.1500.1750.2000.225
ACE

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

A
P
E

0.1

0.3

0.5

0.7

0.9

1.0

FIGURE 6.4: Results for the pruning experiment. Size represents
the relative size of the pruned networks with regard to the origi-
nal one. Note the improvement in rotation prediction of the net-

works pruned to a 90%, 70%, 50%, and 30%.

Config. Param. (M) GMAC Latency FP32 (ms) Latency FP16 (ms) Latency INT8 (ms)
Baseline 13.967 1.086 157.915 93.9702 70.2556

Baseline + LSTM 14.164 1.087 308.4 97.1851 66.7389
Baseline + 3D 13.983 1.223 163.881 91.6489 62.6699

Baseline + ConvRNN 14.142 1 .089 251.524 95.8629 65.7964

TABLE 6.4: Ablation results for the different architectures pro-
posed in Section 6.2.3. Latency is computed with an NVIDIA
Jetson AGX Xavier embedded GPU board, using trtexec bench-
mark, and TensorRT 8.4 as conversion and deployment environ-
ment. Sample input has dimensions (1, 10, 3, 256, 256), being

(batch size, sequence length, channels, height, width).

With regard to latency, we measure the latency in FP32, FP16, and INT8 for all
different architectures. Results are shown in Table 6.4. In FP32, and in both
cases, LSTM or ConvRNN. the addition of recurrence increases the number of
parameters, the number of operations, and latency, especially in the latter case,
probably due to the lack of specific implementations. In the case of 3D, there is
only a slight increase in latency for FP32. However, as we move to smaller data
types, such as FP16 or INT8 we notice two things, first, the notable decrease
in latency for both cases, and second, the reduction of the initial differences of
latency, obtaining homogeneous results for all different architectures.

6.3. Experiments and results 149

Network Param. (M) L2 (voxel) CE
OffsetNet [596] 43.6 0.419 ± 0.276 0.197 ± 0.228
BronchoTrack 9.8 0.361 ± 0.270 0.180 ± 0.235

TABLE 6.5: Comparison with the state-of-the-art method for
bronchoscopy tracking and calibration in terms of position error

(L2), angle error, and the number of parameters.

Position
X

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Positio
n Y−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5

P
os
it
io
n
Z

−30

−25

−20

−15

−10

−5

Position
X

−17.5−15.0−12.5−10.0−7.5
−5.0
−2.5

0.0
2.5

Positio
n Y−8 −6 −4 −2 0

P
os
it
io
n
Z

−50

−40

−30

−20

−10

Position
X

0
5
10

15

20

25

Positio
n Y−14 −12 −10 −8 −6 −4 −2 0

P
os
it
io
n
Z

−100

−80

−60

−40

−20

FIGURE 6.5: Position trajectory comparison with the two state-
of-the-art methods, OffsetNet (green), our method (orange), and

the ground truth (blue).

Network GPU Board FP32 Latency (ms) FP16 Latency (ms) INT8 Latency (ms)
OffsetNet [596] GTX 1080 Ti 28.8154 - 23.1551

BronchoTrack (baseline + ConvRNN) GTX 1080 Ti 40.7378 - 32.8537
OffsetNet [596] Jetson Xavier 186.705 69.3725 44.1123

BronchoTrack (baseline + ConvRNN) Jetson Xavier 251.524 95.8629 65.7964

TABLE 6.6: Comparison with the state-of-the-art method for
bronchoscopy tracking and calibration in terms of latency in
two GPU boards: GTX 1080 Ti and an embedded GPU board,
NVIDIA Jetson Xavier. Results for input with dimensions (1, 10,
3, 256, 256), where each dimension corresponds to (batch size,
length of sequence, channels, height, width). TensorRT 8.4 is
used as a deployment framework and trtexec as a benchmark
utility. The latency benchmark is performed with unpruned net-
works since sparsity is only available for Ampere-based archi-

tecture boards.

Pruning

In Figure 6.4 results for the pruning scheme defined in Section 6.2.3 are pre-
sented. We select as the loss combination, LpMSE + LoCE, the intra-patient
setting, and the convolutional recurrent solution. Taking into account the
base network, the latter is pruned up to different degrees, producing a set
of pruned networks. Specifically, we prune the base network to a (90%, 70%,
50%, 30%, and 10%) of its original size.

As seen in the figure, pruning up to 70% improves the rotation accuracy while
slightly improving the position results. Pruning up to 30% improves further

150 Chapter 6. Bronchoscopy Navigation

the rotation accuracy but slightly worsens position results. Finally, pruning up
to the 10% of its original size critically harms the accuracy of both the rotation
and position tracking. All in all, the improvements obtained through pruning
show how it can help remove redundancy and adapt the network to the data
complexity in case.

Comparison to State-of-the-art

Finally, we compare our model with the current state of the art for bron-
choscopy tracking, OffsetNet [581], implementing it as described in the origi-
nal publication. For such comparison, we build on our best results in previous
sections and choose as loss the combination LpMSE + LoCE, as the architecture
of the convolutional recurrent network while pruning it to a 70% of its origi-
nal size. We call this network BronchoTrack. Both networks are trained and
tested in an intra-patient setting, using sequences of 10 steps long for training,
and full sequences for testing.

In Table 6.5 we show results for the comparison in the test set. As shown our
network is better for both position and orientation tracking. Moreover, it has a
notably reduced computational burden in terms of parameters, it weighs more
than x4 less. However, with regards to latency results shown in Table 6.6,
our network is noticeably slower in FP32, while it has a reduced difference
in INT8. We explain these results due to the special operation included in
our network (ConvRNN, ShuffleNet blocks), which might not have special-
ized operations kernels in the deployment framework and for the embedded
board, making OffsetNet, which is simpler in terms of operations, much faster.

In Figure 6.5, we further compare both models by showing the accumulated
position tracking for example trajectories in the test set. As seen our model
is able to closely match the ground truth sequence while OffsetNet deviates
more and struggles to follow the ground truth path.

6.4 Conclusions

In the present study, we have presented several contributions to bronchoscopy
tracking and calibration. We have built a synthetic dataset to allow for a fair
comparison between methods and be able to train data-hungry models. Two
different patient settings for training learning methods have been analyzed,
concluding with the benefits of an intra-patient setting. We also have experi-
mented with the configuration of a neural network model with regard to the

6.4. Conclusions 151

loss function, temporal information management, and resource consumption
reduction. Finally, when compared to a state-of-the-art method, better results
have been obtained while consuming fewer resources in terms of memory. All
in all, there are still important next steps to take to improve current results.
Such steps could involve the study of transfer learning to real bronchoscopy
videos, for example with the use of generative adversarial networks, or the
adaptation to the specific conditions of a medical setting in terms of hardware
and resources.

153

Chapter 7

Conclusions and Future Directions

7.1 Conclusions

Last decade advances in deep learning have supposed a great leap in state-
of-the-art results with regard to tasks such as image classification, language
translation, and many others. However, with such success, there has been
a related increase in model complexity and size, which has incremented the
hardware requirements both for training and inference (both generally and
initially limited to GPUs). Moreover, the hardware capabilities (OPS perfor-
mance, memory, throughput, latency, energy) have supposed an initial limita-
tion to deploying applications in resource-constrained platforms and applica-
tions, such as mobile or embedded platforms.

There have been many initiatives to reduce training time, and energy costs,
and improve data efficiency during the development phase. Equally, there has
also been profound research to optimize deep learning models with a focus
on inference and deployment: decrease model complexity, size, latency, and
memory consumption. In such direction, there are five optimization methods
that have stood out: pruning, quantization, neural architecture search, effi-
cient operations, and distillation.

Such techniques can be grouped into two sets: first, those that set off from a
network and apply the optimization (pruning, quantization, and distillation),
and second, those that create a network (NAS and efficient operations). The
first group has benefits limited by the initial network and generally but not
always their improvements are traded for a decrease in accuracy. Meanwhile,
the second group can offer improvements with the possibility of improving
the accuracy by exploring automatically or manually the network configura-
tion space. Thus, as a conclusion, if a great change in latency, or any other

154 Chapter 7. Conclusions and Future Directions

performance-related metric, is desired without a limitation in improvements,
NAS and efficient operations should be targeted as optimizations.

Nevertheless, the first group of optimizations is usually the fastest to apply
since it does not require exploration or manual network building. Moreover,
NAS can be extremely expensive in computing time. Hence, in conclusion, it
can be stated that quantization, pruning, and distillation are generally cheaper
to apply than NAS, in the sense that requires either fewer human or hardware
hours to implement and obtain results.

In parallel, in order to enable inference deployment in specialized hardware
platforms, new frameworks have appeared. The number of frameworks has
grown greatly in the past years targeting many platforms. Examples are CMSIS-
NN, uTensor, TF Lite Micro, and others for MCUS, and TF Lite and Core ML
for mobile platforms, among many frameworks and platforms. Those frame-
works include several features for the deployment of models, but most impor-
tantly, the crucial point is if they support the specific model operations and
optimizations. This last point is critical since it can affect severely the deploy-
ment process. Thus, as conclusion, before training it is of utmost importance
to check the full pipeline to deployment, including running inference, ensur-
ing that deployment is feasible.

As stated in the introduction, this thesis has been based on the two previous
concepts, optimization methods, and deployment frameworks. Altogether
with an industrial research scope. I have worked from researching, improv-
ing, and implementing optimization methods, passing through developing
deploying tools, to prototyping research projects. Specifically, I have worked
in three different industrial and research environments, where I have researched,
developed, and applied different optimization methods in order to bring deep
learning models to the targeted deployment platforms while using or devel-
oping the corresponding deployment frameworks. In all of them, I reached to
provide scientific advances with respect to the state of the art.

In the first environment, on MCUs for low-cost automotive applications, I ex-
perimented with quantization, NAS, small RNNs, and unsupervised meth-
ods. I have shown that tiny small RNNs can be used for gesture recognition
on MCUs with simple gestures. Moreover, I have used NAS to find small, fast
but well-performing RNNs for gesture recognition by extending and adapt-
ing an already existing NAS framework [188] to include RNNs and latency

7.2. Future directions 155

in a multi-objective setting, proving its usefulness. Additionally, I have con-
tributed by open-sourcing an implementation of the arc-kernel [276, 436] nec-
essary for improved multi-objective search with Gaussian processes, and also
a converter, quantizer, and automatic deployer for deploying NNs from Py-
Torch to CMSIS-NN in MCUs [219].

In the second environment, ITM on mobile platforms, I have experimented
with quantization and efficient operations. I have used a mixed quantization
scheme to, altogether with efficient operations (IRLB) and attention mecha-
nisms, accelerate a network and reduce its computational requirements, so as
to deploy it to a mobile platform. Moreover, all optimizations applied enabled
the network to run in most of the hardware platforms (CPU and GPU) of the
device, proving their versatility and portability.

In the final environment, bronchoscopy navigation on embedded boards, I ex-
perimented with pruning and efficient operations. I have used efficient opera-
tions (ShuffleNet blocks) and an efficient network (EfficientNet-B0) to produce
a network that has a reduced model size and performs better than state-of-the-
art models. Moreover, pruning has helped us to reduce the model size further.

All in all, the present thesis, has shown how model optimization methods
help reduce computing requirements of NNs during inference, improving
their deployment in resource-constrained hardware platforms. These opti-
mizations can serve to improve latency, model size, or memory consumption
among many performance metrics. However, each of them has different char-
acteristics, effects, and resource consumption, making them suitable for dif-
ferent applications. Moreover, we have also shown the importance of deploy-
ment frameworks, where the support for specific operations and optimization
methods is of utmost relevance.

7.2 Future directions

There are still many research directions to improve inference for NNs and ease
their employment in resource-constrained platforms.

First of all, we have only tackled a subset of models, mostly CNNs and RNNs.
However, newer models, such as transformers, are even heavier, and there
is still much room to elucidate how optimizations can help to bring them to
resource-constrained devices. There is already active research on the topic
[597, 598, 599].

156 Chapter 7. Conclusions and Future Directions

In the same sense, we have explored three platforms: MCUs, mobile, and em-
bedded GPU boards. However, there are other platforms that are experiment-
ing with growth, albeit more limited, on the capability to deploy NN models,
such as FPGAs or ASICs. Research trying to ease deployment in FPGAs, for
example, could be useful due to their higher energy efficiency characteristics.
However, the adaptation of both NN operations and especially, optimization
methods, is not a straightforward task and is a topic under active current de-
velopment [600, 601].

The integration of deployment frameworks and optimizations is a work in
progress by companies and researchers. Examples are the integration of sparse
kernels in TensorRT or in XNNPACK. Currently, design has to specifically take
into account every step from the development of the network to the platform
and deployment framework to succeed in deployment. Advances in integrat-
ing model operations, optimizations, and deployment frameworks will relax
the constraints and help spread AI to currently inaccessible applications and
situations.

Finally, an also important research focus is the explainability of the improve-
ments provided by methods such as NAS, pruning, or efficient operations,
which would result in better comprehension of NNs and their improvement.
In parallel, the combination of all of them is another topic that could be further
explored.

157

Chapter 8

Bibliography

[1] J. Borrego-Carazo, D. Castells-Rufas, E. Biempica, and J. Carrabina,
“Resource-Constrained Machine Learning for ADAS: A Systematic Re-
view,” IEEE Access, vol. 8, pp. 40573–40598, 2020.

[2] D. Castells-Rufas, J. Borrego-Carazo, J. Carrabina, J. Naqui, and E. Biem-
pica, “Continuous touch gesture recognition based on RNNs for capac-
itive proximity sensors,” Personal and Ubiquitous Computing, Nov. 2020.

[3] J. Borrego-Carazo, D. Castells-Rufas, J. Carrabina, and E. Biempica,
“Capacitive-sensing module with dynamic gesture recognition for au-
tomotive applications,” in 2020 23rd International Symposium on Design
and Diagnostics of Electronic Circuits & Systems (DDECS), pp. 1–6, IEEE,
2020.

[4] J. Borrego-Carazo, D. Castells-Rufas, J. Carrabina, and E. Biempica, “Ex-
tending SpArSe: Automatic Gesture Recognition Architectures for Em-
bedded Devices,” in 2020 19th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 7–12, IEEE, 2020.

[5] J. Borrego-Carazo, D. Castells-Rufas, E. Biempica, and J. Carra-
bina, “Unsupervised Embedded Gesture Recognition based on multi-
objective NAS and capacitive sensing,” vol. 249, pp. 9–16, IFSA Publish-
ing, Nov. 2020.

[6] J. Borrego-Carazo, M. Ozay, F. Laboyrie, and P. Wisbey, “A Mixed Quan-
tization Network for Computationally Efficient Mobile Inverse Tone
Mapping,” British Machine Vision Association, Nov. 2021.

[7] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,” Commu-
nications of the ACM, vol. 63, pp. 54–63, Nov. 2020.

158 Chapter 8. Bibliography

[8] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark anal-
ysis of representative deep neural network architectures,” IEEE Access,
vol. 6, pp. 64270–64277, 2018.

[9] R. Snieder and K. Larner, The art of being a scientist: A guide for graduate
students and their mentors. Cambridge University Press, 2009.

[10] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv:1806.08342 [cs, stat], June 2018.
arXiv: 1806.08342.

[11] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured spar-
sity in deep neural networks,” Advances in neural information processing
systems, vol. 29, pp. 2074–2082, 2016.

[12] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quan-
tization for deep neural network acceleration: A survey,” Neurocomput-
ing, vol. 461, pp. 370–403, 2021.

[13] H. Wang, X. Hu, Q. Zhang, Y. Wang, L. Yu, and H. Hu, “Structured prun-
ing for efficient convolutional neural networks via incremental regular-
ization,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 4,
pp. 775–788, 2019.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Im-
age Recognition,” arXiv:1512.03385 [cs], Dec. 2015. arXiv: 1512.03385
version: 1.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, vol. abs/1704.04861, 2017. _eprint: 1704.04861.

[16] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 4510–
4520, 2018.

[17] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the Eu-
ropean conference on computer vision (ECCV), pp. 116–131, July 2018.

[18] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kep-
ner, “Survey and benchmarking of machine learning accelerators,” in

Chapter 8. Bibliography 159

2019 IEEE high performance extreme computing conference (HPEC), pp. 1–9,
IEEE, 2019.

[19] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image Super-
Resolution Using Very Deep Residual Channel Attention Networks,”
in Computer Vision – ECCV 2018 (V. Ferrari, M. Hebert, C. Sminchis-
escu, and Y. Weiss, eds.), Lecture Notes in Computer Science, (Cham),
pp. 294–310, Springer International Publishing, 2018.

[20] G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and J. Unger, “HDR
image reconstruction from a single exposure using deep CNNs,” ACM
transactions on graphics (TOG), vol. 36, no. 6, pp. 1–15, 2017.

[21] D. Marnerides, T. Bashford-Rogers, J. Hatchett, and K. Debattista, “Ex-
pandnet: A deep convolutional neural network for high dynamic range
expansion from low dynamic range content,” in Computer Graphics Fo-
rum, vol. 37, pp. 37–49, Wiley Online Library, 2018.

[22] Y.-L. Liu, W.-S. Lai, Y.-S. Chen, Y.-L. Kao, M.-H. Yang, Y.-Y. Chuang, and
J.-B. Huang, “Single-image HDR reconstruction by learning to reverse
the camera pipeline,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 1651–1660, 2020.

[23] H. L. , “Photo Editing Software for HDR & Real Estate Photography
\textbar Photomatix,” 2017.

[24] J. Sganga, D. Eng, C. Graetzel, and D. Camarillo, “Offsetnet: Deep learn-
ing for localization in the lung using rendered images,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA), pp. 5046–5052, IEEE,
2019.

[25] Y. Wang, J. Wang, W. Zhang, Y. Zhan, S. Guo, Q. Zheng, and X. Wang,
“A survey on deploying mobile deep learning applications: A systemic
and technical perspective,” Digital Communications and Networks, vol. 8,
no. 1, pp. 1–17, 2022. Publisher: Elsevier.

[26] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A First Look at Deep
Learning Apps on Smartphones,” Tech. Rep. arXiv:1812.05448, arXiv,
Jan. 2021. arXiv:1812.05448 [cs] type: article.

[27] S. Albawi, O. Bayat, S. Al-Azawi, and O. N. Ucan, “Social touch gesture
recognition using convolutional neural network,” Computational Intelli-
gence and Neuroscience, vol. 2018, 2018. Publisher: Hindawi.

160 Chapter 8. Bibliography

[28] M. M. Jung, X. L. Cang, M. Poel, and K. E. MacLean, “Touch chal-
lenge’15: Recognizing social touch gestures,” in Proceedings of the 2015
ACM on International Conference on Multimodal Interaction, pp. 387–390,
2015.

[29] Z. Khan, M. Khanna, and S. Raman, “Fhdr: Hdr image reconstruction
from a single ldr image using feedback network,” in 2019 IEEE Global
Conference on Signal and Information Processing (GlobalSIP), pp. 1–5, IEEE,
2019.

[30] R. Khare and W. E. Higgins, “Toward image-based global registration
for bronchoscopy guidance,” in Medical Imaging 2010: Visualization,
Image-Guided Procedures, and Modeling, vol. 7625, p. 762510, International
Society for Optics and Photonics, 2010.

[31] S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach,
Global Edition 4th,” Foundations, vol. 19, p. 23, 2021.

[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
Nov. 2016. Google-Books-ID: omivDQAAQBAJ.

[33] D. Amodei and D. Hernandez, “AI and Compute,” May 2018.

[34] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consider-
ations for deep learning in NLP,” arXiv preprint arXiv:1906.02243, 2019.

[35] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

[36] T. Hobbes and M. Missner, Thomas Hobbes: Leviathan (Longman Library of
Primary Sources in Philosophy). Routledge, 2016.

[37] M. Shelley, Frankenstein 1818. Neri Pozza Editore, 2018.

[38] J. Fuegi and J. Francis, “Lovelace & Babbage and the creation of the
1843’notes’,” IEEE Annals of the History of Computing, vol. 25, no. 4,
pp. 16–26, 2003.

[39] C. Babbage, “On the economy of machinery and manufactures,” 1832.

[40] A. M. Turing, “Computing machinery and intelligence,” in Parsing the
turing test, pp. 23–65, Springer, 2009.

Chapter 8. Bibliography 161

[41] P. Broca, “Remarks on the seat of the faculty of articulated language, fol-
lowing an observation of aphemia (loss of speech),” Bulletin de la Société
Anatomique, vol. 6, pp. 330–57, 1861.

[42] C. Golgi, “The neuron doctrine: theory and facts,” Nobel lecture,
vol. 1921, pp. 190–217, 1906.

[43] S. R. y Cajal, Die Retina der Wirbelthiere. Bergmann, 1894.

[44] F. Crick, “The impact of molecular biology on neuroscience,” Philosoph-
ical Transactions of the Royal Society of London. Series B: Biological Sciences,
vol. 354, no. 1392, pp. 2021–2025, 1999.

[45] B. V. Zemelman, G. A. Lee, M. Ng, and G. Miesenböck, “Selective pho-
tostimulation of genetically chARGed neurons,” Neuron, vol. 33, no. 1,
pp. 15–22, 2002.

[46] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas imma-
nent in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
pp. 115–133, Dec. 1943.

[47] D. Hebb, “The Organization of Behavior: A Neuropsychological The-
ory,” 1949.

[48] A. Newell and H. Simon, “The logic theory machine–A complex infor-
mation processing system,” IRE Transactions on information theory, vol. 2,
no. 3, pp. 61–79, 1956.

[49] H. L. Gelernter, “Realization of a geometry theorem proving machine.,”
in IFIP congress, pp. 273–281, 1959.

[50] J. McCarthy, Programs with common sense. RLE and MIT computation
center, 1960.

[51] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” tech. rep.,
Stanford Univ Ca Stanford Electronics Labs, 1960.

[52] B. Widrow, “Generalization and information storage in network of ada-
line ’neurons’,” undefined, 1962.

[53] F. Rosenbaltt, “The perceptron–a perciving and recognizing automa-
tion,” Cornell Aeronautical Laboratory, 1957.

[54] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65,
no. 6, pp. 386–408, 1958.

162 Chapter 8. Bibliography

[55] F. Rosenblatt, “On the convergence of reinforcement procedures in sim-
ple perceptrons,” Cornell Aeronautical Laboratory Report VG-1196-G-4,
Buffalo, NY, p. 72, 1960.

[56] F. Rosenblatt, “PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS
AND THE THEORY OF BRAIN MECHANISMS,” tech. rep., CORNELL
AERONAUTICAL LAB INC BUFFALO NY, Mar. 1961.

[57] H. D. Block, B. W. Knight, and F. Rosenblatt, “Analysis of a Four-
Layer Series-Coupled Perceptron. II,” Reviews of Modern Physics, vol. 34,
pp. 135–142, Jan. 1962.

[58] S. Winograd and J. Cowan, Reliable Computation in the Presence of Noise.
Cambridge, MA, USA: MIT Press, Dec. 1963.

[59] J. Lighthill, “Artificial intelligence: a general survey. Science Research
Council,” 1973.

[60] M. Marvin and A. P. Seymour, “Perceptrons,” 1969.

[61] J. L. McClelland, D. E. Rumelhart, and P. R. Group, Parallel distributed
processing, vol. 2. MIT press Cambridge, MA, 1986.

[62] J. L. McClelland, “Parallel distributed processing: Implications for
cognition and development,” tech. rep., CARNEGIE-MELLON UNIV
PITTSBURGH PA ARTIFICIAL INTELLIGENCE AND PSYCHOLOGY
. . . , 1988.

[63] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–
536, 1986.

[64] S. E. Dreyfus, “Artificial neural networks, back propagation, and the
Kelley-Bryson gradient procedure,” Journal of guidance, control, and dy-
namics, vol. 13, no. 5, pp. 926–928, 1990.

[65] P. Werbos, “Beyond regression:" new tools for prediction and analysis in
the behavioral sciences,” Ph. D. dissertation, Harvard University, 1974.

[66] D. B. Parker, “Learnins logic.,” Technical Report, 1985.

[67] H. J. Kelley, “Gradient theory of optimal flight paths,” Ars Journal,
vol. 30, no. 10, pp. 947–954, 1960.

Chapter 8. Bibliography 163

[68] A. E. Bryson, “A gradient method for optimizing multi-stage alloca-
tion processes,” in Proc. Harvard Univ. Symposium on digital computers
and their applications, vol. 72, p. 22, 1961.

[69] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[70] B. Boser, E. Sackinger, J. Bromley, Y. LeCun, R. Howard, and L. Jackel,
“An analog neural network processor and its application to high-speed
character recognition,” in IJCNN-91-Seattle International Joint Conference
on Neural Networks, vol. i, pp. 415–420 vol.1, July 1991.

[71] H. Graf and D. Henderson, “A reconfigurable CMOS neural network,”
in 1990 37th IEEE International Conference on Solid-State Circuits, pp. 144–
145, Feb. 1990.

[72] J. Carrabina, F. Lisa, V. Gaitan, L. Garrido, and E. Valderrama, “Hard-
ware implementation of a neural network for high energy physics appli-
cation,” in International Workshop on Artificial Neural Networks, pp. 426–
431, Springer, 1993.

[73] “ Capítulo XI: Chips Neuronales .”

[74] F. Lisa, J. Carrabina, C. Perez-Vicente, N. Avellana, and E. Valder-
rama, “Two-bit weights are enough to solve vehicle license number
recognition problem,” in IEEE international conference on neural networks,
pp. 1242–1246, IEEE, 1993.

[75] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[76] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen Netzen,”
Diploma, Technische Universität München, vol. 91, no. 1, 1991.

[77] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, pp. 1735–1780, Nov. 1997.

[78] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition,” in Com-
petition and cooperation in neural nets, pp. 267–285, Springer, 1982.

164 Chapter 8. Bibliography

[79] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. Publisher: Ieee.

[80] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic lan-
guage model,” in Advances in Neural Information Processing Systems,
pp. 932–938, 2001.

[81] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm
for Deep Belief Nets,” Neural Computation, vol. 18, pp. 1527–1554, July
2006.

[82] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in neural information pro-
cessing systems, pp. 153–160, 2007.

[83] Y. Bengio and Y. LeCun, “Scaling learning algorithms towards AI,”
Large-scale kernel machines, vol. 34, no. 5, pp. 1–41, 2007.

[84] O. Delalleau and Y. Bengio, “Shallow vs. deep sum-product networks,”
Advances in neural information processing systems, vol. 24, pp. 666–674,
2011.

[85] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[86] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, and A. Coates, “Deep speech: Scal-
ing up end-to-end speech recognition,” arXiv preprint arXiv:1412.5567,
2014.

[87] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,
“Convolutional Neural Networks for Speech Recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 22, pp. 1533–
1545, Oct. 2014.

[88] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 6645–6649, May 2013.
ISSN: 2379-190X.

Chapter 8. Bibliography 165

[89] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional neural network archi-
tectures for matching natural language sentences,” in Advances in neural
information processing systems, pp. 2042–2050, 2014.

[90] G. Mesnil, X. He, L. Deng, and Y. Bengio, “Investigation of recurrent-
neural-network architectures and learning methods for spoken lan-
guage understanding.,” in Interspeech, pp. 3771–3775, 2013.

[91] T. Mikolov and G. Zweig, “Context dependent recurrent neural network
language model,” in 2012 IEEE Spoken Language Technology Workshop
(SLT), pp. 234–239, Dec. 2012.

[92] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Recommender
systems survey,” Knowledge-Based Systems, vol. 46, pp. 109–132, July
2013.

[93] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative Deep Learning for
Recommender Systems,” in Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1235–
1244, New York, NY, USA: Association for Computing Machinery, Aug.
2015.

[94] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[95] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learn-
ing,” arXiv preprint arXiv:1509.02971, 2015.

[96] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958,
2014. Publisher: JMLR. org.

[97] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural net-
works for LVCSR using rectified linear units and dropout,” in 2013 IEEE
international conference on acoustics, speech and signal processing, pp. 8609–
8613, IEEE, 2013.

[98] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout sparsi-
fies deep neural networks,” in International Conference on Machine Learn-
ing, pp. 2498–2507, PMLR, 2017.

166 Chapter 8. Bibliography

[99] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Icml, 2010.

[100] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” arXiv preprint arXiv:1505.00853,
2015.

[101] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[102] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” Advances in neural information processing
systems, vol. 30, 2017.

[103] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International con-
ference on machine learning, pp. 448–456, PMLR, 2015.

[104] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch nor-
malization help optimization?,” Advances in neural information processing
systems, vol. 31, 2018.

[105] A. Krogh and J. Hertz, “A simple weight decay can improve generaliza-
tion,” Advances in neural information processing systems, vol. 4, 1991.

[106] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[107] L. N. Smith, “A disciplined approach to neural network hyper-
parameters: Part 1–learning rate, batch size, momentum, and weight
decay,” arXiv preprint arXiv:1803.09820, 2018.

[108] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,”
arXiv preprint arXiv:1701.00160, 2016.

[109] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
arXiv preprint arXiv:1511.06434, 2015.

[110] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in International conference on machine learning, pp. 214–
223, PMLR, 2017.

Chapter 8. Bibliography 167

[111] M. Jaderberg, K. Simonyan, and A. Zisserman, “Spatial transformer net-
works,” Advances in neural information processing systems, vol. 28, 2015.

[112] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
\. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, pp. 5998–6008, 2017.

[113] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, and M. Funtowicz, “Huggingface’s trans-
formers: State-of-the-art natural language processing,” arXiv preprint
arXiv:1910.03771, 2019.

[114] J. C.-W. Lin, Y. Shao, Y. Djenouri, and U. Yun, “ASRNN: a recurrent neu-
ral network with an attention model for sequence labeling,” Knowledge-
Based Systems, vol. 212, p. 106548, 2021. Publisher: Elsevier.

[115] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neu-
ral network for modelling sentences,” arXiv preprint arXiv:1404.2188,
2014.

[116] B. Graham, “Sparse 3D convolutional neural networks,” arXiv preprint
arXiv:1505.02890, 2015.

[117] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,
G. Wang, and J. Cai, “Recent advances in convolutional neural net-
works,” Pattern Recognition, vol. 77, pp. 354–377, 2018. Publisher: El-
sevier.

[118] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE transactions on neural networks,
vol. 20, no. 1, pp. 61–80, 2008. Publisher: IEEE.

[119] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[120] H. W. Lin, M. Tegmark, and D. Rolnick, “Why does deep and cheap
learning work so well?,” Journal of Statistical Physics, vol. 168, no. 6,
pp. 1223–1247, 2017. Publisher: Springer.

[121] T. Poggio, F. Anselmi, and L. Rosasco, “I-theory on depth vs width: hier-
archical function composition,” tech. rep., Center for Brains, Minds and
Machines (CBMM), 2015.

[122] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

168 Chapter 8. Bibliography

A. Harp, G. Irving, M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, M. Schuster, R. Monga, S. Moore, D. Murray,
C. Olah, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow, Large-scale machine learn-
ing on heterogeneous systems,” Nov. 2015.

[123] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, and L. Antiga, “Pytorch: An imper-
ative style, high-performance deep learning library,” Advances in neural
information processing systems, vol. 32, pp. 8026–8037, 2019.

[124] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, “Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems,” arXiv preprint arXiv:1512.01274,
Dec. 2015. arXiv: 1512.01274.

[125] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” 2009.

[126] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 248–255, June 2009. ISSN:
1063-6919.

[127] J. Deng, A. C. Berg, K. Li, and L. Fei-Fei, “What Does Classifying More
Than 10,000 Image Categories Tell Us?,” in Computer Vision – ECCV 2010
(K. Daniilidis, P. Maragos, and N. Paragios, eds.), Lecture Notes in Com-
puter Science, (Berlin, Heidelberg), pp. 71–84, Springer, 2010.

[128] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan,
and S. Vijayanarasimhan, “YouTube-8M: A Large-Scale Video Classifica-
tion Benchmark,” arXiv:1609.08675 [cs], Sept. 2016. arXiv: 1609.08675.

[129] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling,
C. Monz, P. Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia,
and A. Tamchyna, “Findings of the 2014 Workshop on Statistical Ma-
chine Translation,” in Proceedings of the Ninth Workshop on Statistical Ma-
chine Translation, (Baltimore, Maryland, USA), pp. 12–58, Association for
Computational Linguistics, June 2014.

[130] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on CPUs,” 2011.

Chapter 8. Bibliography 169

[131] D. Steinkraus, I. Buck, and P. Simard, “Using GPUs for machine learning
algorithms,” in Eighth International Conference on Document Analysis and
Recognition (ICDAR’05), pp. 1115–1120 Vol. 2, Aug. 2005. ISSN: 2379-
2140.

[132] K. Chellapilla, S. Puri, and P. Simard, “High Performance Convolutional
Neural Networks for Document Processing,” Suvisoft, Oct. 2006.

[133] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors,” in Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, (New York, NY,
USA), pp. 873–880, Association for Computing Machinery, June 2009.

[134] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep,
Big, Simple Neural Nets for Handwritten Digit Recognition,” Neural
Computation, vol. 22, pp. 3207–3220, Dec. 2010.

[135] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems,”
arXiv:1603.04467 [cs], Mar. 2016. arXiv: 1603.04467.

[136] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language Mod-
els Using Model Parallelism,” arXiv:1909.08053 [cs], Mar. 2020. arXiv:
1909.08053.

[137] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language Models are Few-Shot Learn-
ers,” arXiv:2005.14165 [cs], July 2020. arXiv: 2005.14165.

[138] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with COTS HPC systems,” in International Conference on

170 Chapter 8. Bibliography

Machine Learning, pp. 1337–1345, PMLR, May 2013.

[139] S. Kumar, “Fundamental Limits to Moore’s Law,” arXiv:1511.05956
[cond-mat], Nov. 2015. arXiv: 1511.05956.

[140] M. M. Waldrop, “The chips are down for Moore’s law,” Nature News,
vol. 530, p. 144, Feb. 2016.

[141] Y. Xian, B. Schiele, and Z. Akata, “Zero-Shot Learning - the Good, the
Bad and the Ugly,” pp. 4582–4591, 2017.

[142] Y. Deng, “Deep learning on mobile devices: a review,” in Mobile
Multimedia/Image Processing, Security, and Applications 2019, vol. 10993,
p. 109930A, International Society for Optics and Photonics, 2019.

[143] J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review.,”
Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[144] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of
Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE,
vol. 105, pp. 2295–2329, Dec. 2017.

[145] F. A. Berezin, “General concept of quantization,” Communications in
Mathematical Physics, vol. 40, no. 2, pp. 153–174, 1975.

[146] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE transactions on in-
formation theory, vol. 44, no. 6, pp. 2325–2383, 1998.

[147] G. Dundar and K. Rose, “The effects of quantization on multilayer neu-
ral networks,” IEEE Transactions on Neural Networks, vol. 6, pp. 1446–
1451, Nov. 1995.

[148] A. Krishnamurthy, S. Ahalt, D. Melton, and P. Chen, “Neural networks
for vector quantization of speech and images,” IEEE Journal on Selected
Areas in Communications, vol. 8, pp. 1449–1457, Oct. 1990.

[149] Y. Xie and M. A. Jabri, “Analysis of the effects of quantization in mul-
tilayer neural networks using a statistical model,” IEEE Transactions on
Neural Networks, vol. 3, no. 2, pp. 334–338, 1992.

[150] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2704–2713, 2018.

Chapter 8. Bibliography 171

[151] J. L. Holt and T. E. Baker, “Back propagation simulations using limited
precision calculations,” in IJCNN-91-Seattle International Joint Conference
on Neural Networks, vol. 2, pp. 121–126, IEEE, 1991.

[152] R. Presley and R. Haggard, “A fixed point implementation of the back-
propagation learning algorithm,” in Proceedings of SOUTHEASTCON
’94, pp. 136–138, Apr. 1994.

[153] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neu-
ral networks with low precision multiplications,” arXiv preprint
arXiv:1412.7024, 2014.

[154] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” The Journal of Machine Learning Research,
vol. 18, no. 1, pp. 6869–6898, 2017. Publisher: JMLR. org.

[155] Y. Chauvin, “A Back-Propagation Algorithm with Optimal Use of Hid-
den Units.,” in NIPS, vol. 1, pp. 519–526, 1988.

[156] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Back-
propagation, weight-elimination and time series prediction,” in Connec-
tionist models, pp. 105–116, Elsevier, 1991.

[157] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Ad-
vances in neural information processing systems, pp. 598–605, 1990.

[158] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman cod-
ing,” arXiv preprint arXiv:1510.00149, 2015.

[159] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient
convolutional networks through network slimming,” in Proceedings of
the IEEE international conference on computer vision, pp. 2736–2744, 2017.

[160] S. Vadera and S. Ameen, “Methods for Pruning Deep Neural Net-
works,” arXiv preprint arXiv:2011.00241, 2020.

[161] J. Frankle and M. Carbin, “The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks,” arXiv:1803.03635 [cs], Mar. 2019.
arXiv: 1803.03635.

[162] Z. Zhou, W. Zhou, H. Li, and R. Hong, “Online Filter Clustering and
Pruning for Efficient Convnets,” in 2018 25th IEEE International Confer-
ence on Image Processing (ICIP), pp. 11–15, Oct. 2018. ISSN: 2381-8549.

172 Chapter 8. Bibliography

[163] H. J. Sussmann, “Uniqueness of the weights for minimal feedforward
nets with a given input-output map,” Neural Networks, vol. 5, pp. 589–
593, July 1992.

[164] Z. Zhou, W. Zhou, R. Hong, and H. Li, “Online filter weakening and
pruning for efficient convnets,” in 2018 IEEE International Conference on
Multimedia and Expo (ICME), pp. 1–6, IEEE, 2018.

[165] M. C. Mozer and P. Smolensky, “Skeletonization: A technique for trim-
ming the fat from a network via relevance assessment,” in Advances in
neural information processing systems, pp. 107–115, 1989.

[166] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, “Accelerating Con-
volutional Networks via Global & Dynamic Filter Pruning.,” in IJCAI,
vol. 2, p. 8, 2018.

[167] S. Anwar, K. Hwang, and W. Sung, “Structured Pruning of Deep Con-
volutional Neural Networks,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 13, pp. 32:1–32:18, Feb. 2017.

[168] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey,
“Faster CNNs with Direct Sparse Convolutions and Guided Pruning,”
arXiv:1608.01409 [cs], July 2017. arXiv: 1608.01409.

[169] M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse Tensor Core: Algorithm
and Hardware Co-Design for Vector-wise Sparse Neural Networks on
Modern GPUs,” in Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’52, (New York, NY, USA),
pp. 359–371, Association for Computing Machinery, Oct. 2019.

[170] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An Efficient
Hardware Accelerator for Sparse Convolutional Neural Networks on
FPGAs,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 17–25, Apr. 2019.
ISSN: 2576-2621.

[171] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD ’06, (New York, NY, USA), pp. 535–
541, Association for Computing Machinery, Aug. 2006.

[172] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, Mar. 2015.

Chapter 8. Bibliography 173

[173] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jegou,
“Training data-efficient image transformers & distillation through atten-
tion,” in International Conference on Machine Learning, pp. 10347–10357,
PMLR, July 2021.

[174] S. Sun, Y. Cheng, Z. Gan, and J. Liu, “Patient Knowledge Distillation
for BERT Model Compression,” arXiv:1908.09355 [cs], Aug. 2019. arXiv:
1908.09355.

[175] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning efficient
object detection models with knowledge distillation,” in Proceedings of
the 31st International Conference on Neural Information Processing Systems,
vol. 30, pp. 742–751, 2017.

[176] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by Ran-
dom Network Distillation,” arXiv:1810.12894 [cs, stat], Oct. 2018. arXiv:
1810.12894.

[177] J. Yim, D. Joo, J. Bae, and J. Kim, “A Gift From Knowledge Distilla-
tion: Fast Optimization, Network Minimization and Transfer Learning,”
pp. 4133–4141, 2017.

[178] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational Knowledge Distilla-
tion,” pp. 3967–3976, 2019.

[179] R. Müller, S. Kornblith, and G. Hinton, “When Does Label Smoothing
Help?,” arXiv:1906.02629 [cs, stat], June 2020. arXiv: 1906.02629.

[180] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6848–
6856, 2018.

[181] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, Sept. 2014.

[182] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolu-
tional neural networks,” in International Conference on Machine Learning,
pp. 6105–6114, PMLR, Sept. 2019.

[183] M. Tan and Q. V. Le, “Efficientnetv2: Smaller models and faster train-
ing,” arXiv preprint arXiv:2104.00298, June 2021.

174 Chapter 8. Bibliography

[184] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F. Chang,
“An Exploration of Parameter Redundancy in Deep Networks With Cir-
culant Projections,” pp. 2857–2865, 2015.

[185] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in Proceedings of the IEEE international confer-
ence on computer vision, pp. 764–773, 2017.

[186] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable ConvNets V2: More
Deformable, Better Results,” pp. 9308–9316, 2019.

[187] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp. 1997–
2017, 2019.

[188] I. Fedorov, R. P. Adams, M. Mattina, and P. N. Whatmough, “SpArSe:
Sparse Architecture Search for CNNs on Resource-Constrained Micro-
controllers,” arXiv:1905.12107 [cs], May 2019. arXiv: 1905.12107.

[189] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective
neural architecture search via lamarckian evolution,” arXiv preprint
arXiv:1804.09081, 2018.

[190] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable
Architectures for Scalable Image Recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 8697–8710, 2018.

[191] T. Wang, Y. Li, J. Peng, Y. Ma, X. Wang, F. Song, and Y. Yan, “Real-
time Image Enhancer via Learnable Spatial-aware 3D Lookup Tables,”
arXiv:2108.08697 [cs, eess], Aug. 2021. arXiv: 2108.08697.

[192] H. Zeng, J. Cai, L. Li, Z. Cao, and L. Zhang, “Learning Image-adaptive
3D Lookup Tables for High Performance Photo Enhancement in Real-
time,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1–1, 2020.

[193] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand, “Deep
bilateral learning for real-time image enhancement,” ACM Transactions
on Graphics, vol. 36, pp. 118:1–118:12, July 2017.

[194] J. Liang, Y. Xu, Y. Quan, J. Wang, H. Ling, and H. Ji, “Deep Bilateral
Retinex for Low-Light Image Enhancement,” arXiv:2007.02018 [cs, eess],
July 2020. arXiv: 2007.02018.

Chapter 8. Bibliography 175

[195] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep Laplacian
Pyramid Networks for Fast and Accurate Super-Resolution,” pp. 624–
632, 2017.

[196] J. Liang, H. Zeng, and L. Zhang, “High-Resolution Photorealistic Image
Translation in Real-Time: A Laplacian Pyramid Translation Network,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9392–9400, 2021.

[197] Y. Song, H. Qian, and X. Du, “StarEnhancer: Learning Real-Time and
Style-Aware Image Enhancement,” arXiv:2107.12898 [cs], Aug. 2021.
arXiv: 2107.12898.

[198] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding. arXiv 2014,” arXiv preprint arXiv:1408.5093,
2019.

[199] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki,
K. Uenishi, B. Vogel, and H. Yamazaki Vincent, “Chainer: A deep learn-
ing framework for accelerating the research cycle,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2002–2011, 2019.

[200] “Introduction to TensorFlow Mobile | TensorFlow,” July 2018.

[201] “TensorFlow Lite | ML for Mobile and Edge Devices.”

[202] “Neural Networks API | Android NDK | Android Developers.”

[203] “Qualcomm Research brings server-class machine learning to everyday
devices—making them smarter [VIDEO],” Oct. 2015.

[204] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and
L. Van Gool, “AI Benchmark: Running Deep Neural Networks on An-
droid Smartphones,” in Computer Vision – ECCV 2018 Workshops (L. Leal-
Taixé and S. Roth, eds.), Lecture Notes in Computer Science, (Cham),
pp. 288–314, Springer International Publishing, 2019.

[205] “TensorFlow Lite Delegates.”

[206] J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi,
R. Sarokin, A. Kulik, and M. Grundmann, “On-device neural net in-
ference with mobile gpus,” arXiv preprint arXiv:1907.01989, July 2019.
arXiv:1907.01989 [cs, stat] type: article.

176 Chapter 8. Bibliography

[207] “PyTorch Mobile.”

[208] “eIQ Auto AI enablement.”

[209] “Edge AI | TI.com.”

[210] “CMSIS NN Software Library.”

[211] “uTensor - Test Release,” Apr. 2022. original-date: 2017-09-
21T17:04:59Z.

[212] J. Ma, “Neural Network on Microcontroller (NNoM),” Apr. 2022.
original-date: 2019-01-21T19:38:30Z.

[213] “Apache TVM.”

[214] “TensorFlow Lite for Microcontrollers.”

[215] “OpenVINO™ Documentation — OpenVINO™ documentation — Ver-
sion(latest).”

[216] “NVIDIA TensorRT,” Apr. 2016.

[217] “Arc Kernel for Conditional Spaces · Issue #1023 · cornellius-
gp/gpytorch.”

[218] BCJuan, “SparseMod,” Nov. 2021. original-date: 2020-04-20T15:14:03Z.

[219] BCJuan, “torch2cmsis,” Mar. 2022. original-date: 2020-09-02T05:57:06Z.

[220] “Add flop counter hook for rnn, gru and lstm by BCJuan · Pull Request
#38 · sovrasov/flops-counter.pytorch.”

[221] A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Jegou, and
A. Joulin, “Training with quantization noise for extreme model com-
pression,” arXiv preprint arXiv:2004.07320, 2020.

[222] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Im-
agenet classification using binary convolutional neural networks,” in
European conference on computer vision, pp. 525–542, Springer, 2016.

[223] J. Holi and J.-N. Hwang, “Finite precision error analysis of neural
network hardware implementations,” IEEE Transactions on Computers,
vol. 42, pp. 281–290, Mar. 1993.

[224] P. Y. Simard and H. P. Graf, “Backpropagation without multiplication,”
Advances in Neural Information Processing Systems, pp. 232–232, 1994.

Chapter 8. Bibliography 177

[225] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
Learning with Limited Numerical Precision,” in International Conference
on Machine Learning, pp. 1737–1746, PMLR, June 2015.

[226] G. Menghani, “Efficient Deep Learning: A Survey on Making Deep
Learning Models Smaller, Faster, and Better,” arXiv:2106.08962 [cs], June
2021. arXiv: 2106.08962.

[227] “gemmlowp: a small self-contained low-precision GEMM library,” Oct.
2021. original-date: 2015-07-06T21:15:00Z.

[228] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Ad-
vances in neural information processing systems, pp. 3123–3131, 2015.

[229] P.-E. Novac, G. B. Hacene, A. Pegatoquet, B. Miramond, and V. Gripon,
“Quantization and deployment of deep neural networks on microcon-
trollers,” Sensors, vol. 21, no. 9, p. 2984, 2021. Publisher: Multidisci-
plinary Digital Publishing Institute.

[230] Z. He and D. Fan, “Simultaneously optimizing weight and quantizer
of ternary neural network using truncated gaussian approximation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11438–11446, 2019.

[231] E. Lee and Y. Hwang, “Layer-Wise Network Compression Using Gaus-
sian Mixture Model,” Electronics, vol. 10, no. 1, p. 72, 2021. Publisher:
MDPI.

[232] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distilla-
tion and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[233] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda, “Hardware-software
codesign of accurate, multiplier-free deep neural networks,” in 2017
54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6,
IEEE, 2017.

[234] A. Mishra and D. Marr, “Apprentice: Using knowledge distillation
techniques to improve low-precision network accuracy,” arXiv preprint
arXiv:1711.05852, 2017.

[235] E. Park, S. Yoo, and P. Vajda, “Value-aware quantization for training and
inference of neural networks,” in Proceedings of the European Conference
on Computer Vision (ECCV), pp. 580–595, 2018.

178 Chapter 8. Bibliography

[236] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, and X.-s. Hua,
“Quantization networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7308–7316, 2019.

[237] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” arXiv preprint arXiv:2103.13630, 2021.

[238] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv:1409.1556 [cs], Apr. 2015.
arXiv: 1409.1556.

[239] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Aging evolution for
image classifier architecture search,” in AAAI conference on artificial intel-
ligence, vol. 3, 2019.

[240] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-art,”
Knowledge-Based Systems, vol. 212, p. 106622, Jan. 2021.

[241] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning:
methods, systems, challenges. Springer Nature, 2019.

[242] T. Yu and H. Zhu, “Hyper-parameter optimization: A review of algo-
rithms and applications,” arXiv preprint arXiv:2003.05689, 2020.

[243] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated
machine learning, pp. 3–33, Springer, Cham, 2019.

[244] J. Vanschoren, “Meta-learning: A survey,” arXiv preprint
arXiv:1810.03548, 2018.

[245] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018.

[246] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le, “MnasNet: Platform-Aware Neural Architecture Search for
Mobile,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2820–2828, 2019.

[247] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu,
“Accuracy vs. efficiency: Achieving both through fpga-implementation
aware neural architecture search,” in Proceedings of the 56th Annual De-
sign Automation Conference 2019, pp. 1–6, 2019.

Chapter 8. Bibliography 179

[248] G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing Neural Networks
Using Genetic Algorithms.,” in ICGA, vol. 89, pp. 379–384, 1989.

[249] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary algo-
rithm that constructs recurrent neural networks,” IEEE transactions on
Neural Networks, vol. 5, no. 1, pp. 54–65, 1994. Publisher: IEEE.

[250] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–
127, 2002. Publisher: MIT Press.

[251] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary intelligence, vol. 1, no. 1, pp. 47–62, 2008.
Publisher: Springer.

[252] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999. Publisher: IEEE.

[253] L. Xie and A. Yuille, “Genetic cnn,” in Proceedings of the IEEE international
conference on computer vision, pp. 1379–1388, 2017.

[254] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, and N. Duffy, “Evolving deep neu-
ral networks,” in Artificial intelligence in the age of neural networks and
brain computing, pp. 293–312, Elsevier, 2019.

[255] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision ar-
chitectures,” in International conference on machine learning, pp. 115–123,
PMLR, 2013.

[256] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter, “To-
wards automatically-tuned neural networks,” in Workshop on Automatic
Machine Learning, pp. 58–65, PMLR, 2016.

[257] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise
neural network architecture generation,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 2423–2432, 2018.

[258] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficient architecture
search by network transformation,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, 2018. Issue: 1.

180 Chapter 8. Bibliography

[259] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: one-
shot model architecture search through hypernetworks,” arXiv preprint
arXiv:1708.05344, 2017.

[260] T. Elsken, J.-H. Metzen, and F. Hutter, “Simple and efficient ar-
chitecture search for convolutional neural networks,” arXiv preprint
arXiv:1711.04528, 2017.

[261] Z. Zhong, Z. Yang, B. Deng, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Block-
qnn: Efficient block-wise neural network architecture generation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 43, no. 7,
pp. 2314–2328, 2020. Publisher: IEEE.

[262] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[263] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu, “Path-level network trans-
formation for efficient architecture search,” in International Conference on
Machine Learning, pp. 678–687, PMLR, 2018.

[264] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” arXiv
preprint arXiv:1711.00436, 2017.

[265] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[266] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural
network architectures using reinforcement learning,” arXiv preprint
arXiv:1611.02167, 2016.

[267] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992. Publisher: Springer.

[268] T. Chen, I. Goodfellow, and J. Shlens, “Net2Net: Accelerating Learn-
ing via Knowledge Transfer,” arXiv:1511.05641 [cs], Apr. 2016. arXiv:
1511.05641.

[269] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and
A. Kurakin, “Large-scale evolution of image classifiers,” in International
Conference on Machine Learning, pp. 2902–2911, PMLR, 2017.

[270] M. Wistuba, A. Rawat, and T. Pedapati, “A survey on neural architecture
search,” arXiv preprint arXiv:1905.01392, 2019.

Chapter 8. Bibliography 181

[271] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing sys-
tems, vol. 24, 2011.

[272] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in International con-
ference on learning and intelligent optimization, pp. 507–523, Springer, 2011.

[273] T. Domhan, J. T. Springenberg, and F. Hutter, “Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation
of learning curves,” in Twenty-fourth international joint conference on arti-
ficial intelligence, 2015.

[274] M. Wistuba, “Finding competitive network architectures within a day
using uct,” arXiv preprint arXiv:1712.07420, 2017.

[275] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learn-
ing, vol. 2. MIT press Cambridge, MA, 2006.

[276] K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, and M. A. Osborne,
“Raiders of the lost architecture: Kernels for Bayesian optimization in
conditional parameter spaces,” arXiv preprint arXiv:1409.4011, 2014.

[277] “gpytorch.kernels — GPyTorch 1.6.0 documentation.”

[278] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing,
“Neural architecture search with bayesian optimisation and optimal
transport,” Advances in neural information processing systems, vol. 31,
2018.

[279] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-
Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive neural architec-
ture search,” in Proceedings of the European conference on computer vision
(ECCV), pp. 19–34, 2018.

[280] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture opti-
mization,” Advances in neural information processing systems, vol. 31, 2018.

[281] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled vari-
ant of imagenet as an alternative to the cifar datasets,” arXiv preprint
arXiv:1707.08819, 2017.

[282] A. Zela, A. Klein, S. Falkner, and F. Hutter, “Towards automated deep
learning: Efficient joint neural architecture and hyperparameter search,”
arXiv preprint arXiv:1807.06906, 2018.

182 Chapter 8. Bibliography

[283] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hy-
perband: A novel bandit-based approach to hyperparameter optimiza-
tion,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 6765–
6816, 2017. Publisher: JMLR. org.

[284] K. Swersky, J. Snoek, and R. P. Adams, “Freeze-thaw Bayesian optimiza-
tion,” arXiv preprint arXiv:1406.3896, 2014.

[285] A. Rawal and R. Miikkulainen, “From nodes to networks: Evolving re-
current neural networks,” arXiv preprint arXiv:1803.04439, 2018.

[286] H. Jin, Q. Song, and X. Hu, “Auto-keras: Efficient neural architecture
search with network morphism,” arXiv preprint arXiv:1806.10282, vol. 5,
2018.

[287] T. Wei, C. Wang, Y. Rui, and C. W. Chen, “Network morphism,” in In-
ternational conference on machine learning, pp. 564–572, PMLR, 2016.

[288] S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic neural architecture
search,” arXiv preprint arXiv:1812.09926, 2018.

[289] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Under-
standing and simplifying one-shot architecture search,” in International
conference on machine learning, pp. 550–559, PMLR, 2018.

[290] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural ar-
chitecture search via parameters sharing,” in International conference on
machine learning, pp. 4095–4104, PMLR, 2018.

[291] Y. Gou, B. Li, Z. Liu, S. Yang, and X. Peng, “Clearer: Multi-scale neural
architecture search for image restoration,” Advances in Neural Informa-
tion Processing Systems, vol. 33, pp. 17129–17140, 2020.

[292] L. Yao, H. Xu, W. Zhang, X. Liang, and Z. Li, “Sm-nas: Structural-to-
modular neural architecture search for object detection,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 34, pp. 12661–12668,
2020.

[293] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-
Fei, “Auto-deeplab: Hierarchical neural architecture search for semantic
image segmentation,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 82–92, 2019.

[294] B. Chen, G. Ghiasi, H. Liu, T.-Y. Lin, D. Kalenichenko, H. Adam, and
Q. V. Le, “Mnasfpn: Learning latency-aware pyramid architecture for

Chapter 8. Bibliography 183

object detection on mobile devices,” in Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 13607–13616, 2020.

[295] Y. Hu, X. Wu, and R. He, “Tf-nas: Rethinking three search freedoms of
latency-constrained differentiable neural architecture search,” in Euro-
pean Conference on Computer Vision, pp. 123–139, Springer, 2020.

[296] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf, “Nsga-net: neural architecture search using multi-objective
genetic algorithm,” in Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pp. 419–427, 2019.

[297] C.-H. Hsu, S.-H. Chang, J.-H. Liang, H.-P. Chou, C.-H. Liu, S.-C. Chang,
J.-Y. Pan, Y.-T. Chen, W. Wei, and D.-C. Juan, “Monas: Multi-objective
neural architecture search using reinforcement learning,” arXiv preprint
arXiv:1806.10332, 2018.

[298] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “FBNet: Hardware-Aware Efficient ConvNet
Design via Differentiable Neural Architecture Search,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10734–10742, 2019.

[299] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,
V. Janapa Reddi, M. Mattina, and P. Whatmough, “Micronets: Neural
network architectures for deploying tinyml applications on commod-
ity microcontrollers,” Proceedings of Machine Learning and Systems, vol. 3,
pp. 517–532, 2021.

[300] X. Xia and W. Ding, “Hnas: Hierarchical neural architecture search on
mobile devices,” arXiv preprint arXiv:2005.07564, 2020.

[301] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu, T. Xu,
K. Chen, et al., “Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 12965–12974, 2020.

[302] L. Wang, S. Xie, T. Li, R. Fonseca, and Y. Tian, “Sample-efficient
neural architecture search by learning action space,” arXiv preprint
arXiv:1906.06832, 2019.

[303] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu,

184 Chapter 8. Bibliography

and D. Marculescu, “Single-path nas: Designing hardware-efficient con-
vnets in less than 4 hours,” in Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pp. 481–497, Springer, 2019.

[304] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-
Fei, “Auto-deeplab: Hierarchical neural architecture search for semantic
image segmentation,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 82–92, 2019.

[305] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” in Uncertainty in artificial intelligence, pp. 367–377,
PMLR, 2020.

[306] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“Nas-bench-101: Towards reproducible neural architecture search,” in
International Conference on Machine Learning, pp. 7105–7114, PMLR, 2019.

[307] X. Dong and Y. Yang, “Nas-bench-201: Extending the scope of re-
producible neural architecture search,” arXiv preprint arXiv:2001.00326,
2020.

[308] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter, “Nas-
bench-301 and the case for surrogate benchmarks for neural architecture
search,” arXiv preprint arXiv:2008.09777, 2020.

[309] A. Klein, E. Christiansen, K. Murphy, and F. Hutter, “Towards repro-
ducible neural architecture and hyperparameter search,” 2018.

[310] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang, “A
comprehensive survey of neural architecture search: Challenges and so-
lutions,” ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1–34, 2021.
Publisher: ACM New York, NY, USA.

[311] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey
on evolutionary neural architecture search,” IEEE transactions on neural
networks and learning systems, 2021. Publisher: IEEE.

[312] S. A. Janowsky, “Pruning versus clipping in neural networks,” Physical
Review A, vol. 39, no. 12, p. 6600, 1989.

[313] B. Hassibi and D. G. Stork, Second order derivatives for network pruning:
Optimal brain surgeon. Morgan Kaufmann, 1993.

Chapter 8. Bibliography 185

[314] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both Weights and
Connections for Efficient Neural Networks,” arXiv:1506.02626 [cs], Oct.
2015. arXiv: 1506.02626.

[315] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value
of network pruning,” arXiv preprint arXiv:1810.05270, 2018.

[316] T. Dettmers and L. Zettlemoyer, “Sparse networks from scratch: Faster
training without losing performance,” arXiv preprint arXiv:1907.04840,
2019.

[317] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 9194–9203, 2018.

[318] H. Wang, C. Qin, Y. Zhang, and Y. Fu, “Neural pruning via growing
regularization,” arXiv preprint arXiv:2012.09243, 2020.

[319] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, “Stabilizing the
Lottery Ticket Hypothesis,” arXiv:1903.01611 [cs, stat], July 2020. arXiv:
1903.01611.

[320] N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network pruning
based on connection sensitivity,” arXiv preprint arXiv:1810.02340, 2018.

[321] N. Lee, T. Ajanthan, S. Gould, and P. H. Torr, “A signal propagation
perspective for pruning neural networks at initialization,” arXiv preprint
arXiv:1906.06307, 2019.

[322] W. Lei, H. Chen, and Y. Wu, “Compressing deep convolutional net-
works using k-means based on weights distribution,” in Proceedings of
the 2nd International Conference on Intelligent Information Processing, pp. 1–
6, 2017.

[323] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning Fil-
ters for Efficient ConvNets,” arXiv:1608.08710 [cs], Mar. 2017. arXiv:
1608.08710.

[324] M. Lin, L. Cao, S. Li, Q. Ye, Y. Tian, J. Liu, Q. Tian, and R. Ji, “Filter sketch
for network pruning,” IEEE Transactions on Neural Networks and Learning
Systems, 2021.

[325] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geo-
metric median for deep convolutional neural networks acceleration,”

186 Chapter 8. Bibliography

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4340–4349, 2019.

[326] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv preprint arXiv:1607.03250, 2016.

[327] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” arXiv preprint arXiv:1608.04493, 2016.

[328] A. Polyak and L. Wolf, “Channel-level acceleration of deep face repre-
sentations,” IEEE Access, vol. 3, pp. 2163–2175, 2015.

[329] J.-H. Luo and J. Wu, “An entropy-based pruning method for cnn com-
pression,” arXiv preprint arXiv:1706.05791, 2017.

[330] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in Proceedings of the IEEE interna-
tional conference on computer vision, pp. 5058–5066, 2017.

[331] Y. He, X. Zhang, and J. Sun, “Channel Pruning for Accelerating Very
Deep Neural Networks,” pp. 1389–1397, 2017.

[332] X. Ding, G. Ding, Y. Guo, J. Han, and C. Yan, “Approximated oracle
filter pruning for destructive cnn width optimization,” in International
Conference on Machine Learning, pp. 1607–1616, PMLR, 2019.

[333] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep
neural networks,” in Proceedings of the European conference on computer
vision (ECCV), pp. 304–320, 2018.

[334] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon and
general network pruning,” in IEEE international conference on neural net-
works, pp. 293–299, IEEE, 1993.

[335] B. Hassibi, D. G. Stork, G. Wolff, and T. Watanabe, “Optimal Brain Sur-
geon: Extensions and performance comparison.,” 1994.

[336] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convo-
lutional neural networks for resource efficient inference,” arXiv preprint
arXiv:1611.06440, 2016.

[337] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance
estimation for neural network pruning,” in Proceedings of the IEEE/CVF

Chapter 8. Bibliography 187

Conference on Computer Vision and Pattern Recognition, pp. 11264–11272,
2019.

[338] C. Wang, R. Grosse, S. Fidler, and G. Zhang, “Eigendamage: Structured
pruning in the kronecker-factored eigenbasis,” in International Confer-
ence on Machine Learning, pp. 6566–6575, PMLR, 2019.

[339] R. Grosse and J. Martens, “A kronecker-factored approximate fisher ma-
trix for convolution layers,” in International Conference on Machine Learn-
ing, pp. 573–582, PMLR, 2016.

[340] H. Peng, J. Wu, S. Chen, and J. Huang, “Collaborative channel prun-
ing for deep networks,” in International Conference on Machine Learning,
pp. 5113–5122, PMLR, 2019.

[341] A. P. Engelbrecht, “A new pruning heuristic based on variance analysis
of sensitivity information,” IEEE transactions on Neural Networks, vol. 12,
no. 6, pp. 1386–1399, 2001.

[342] A. RoyChowdhury, P. Sharma, E. Learned-Miller, and A. Roy, “Reduc-
ing duplicate filters in deep neural networks,” in NIPS workshop on Deep
Learning: Bridging Theory and Practice, vol. 1, p. 1, 2017.

[343] Y. Li, S. Lin, B. Zhang, J. Liu, D. Doermann, Y. Wu, F. Huang, and R. Ji,
“Exploiting kernel sparsity and entropy for interpretable CNN com-
pression,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2800–2809, 2019.

[344] S. Son, S. Nah, and K. M. Lee, “Clustering convolutional kernels to com-
press deep neural networks,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 216–232, 2018.

[345] S. Srinivas and R. V. Babu, “Data-free parameter pruning for Deep Neu-
ral Networks,” arXiv:1507.06149 [cs], July 2015. arXiv: 1507.06149.

[346] Z. Mariet and S. Sra, “Diversity networks: Neural network compression
using determinantal point processes,” arXiv preprint arXiv:1511.05077,
2015.

[347] B. O. Ayinde, T. Inanc, and J. M. Zurada, “Redundant feature prun-
ing for accelerated inference in deep neural networks,” Neural Networks,
vol. 118, pp. 148–158, 2019.

188 Chapter 8. Bibliography

[348] Y. Zhang, C. Zhao, B. Ni, J. Zhang, and H. Deng, “Exploiting Chan-
nel Similarity for Accelerating Deep Convolutional Neural Networks,”
arXiv preprint arXiv:1908.02620, 2019.

[349] H. Wang, Q. Zhang, Y. Wang, and H. Hu, “Structured probabilistic
pruning for convolutional neural network acceleration,” arXiv preprint
arXiv:1709.06994, 2017.

[350] E. Elsen, M. Dukhan, T. Gale, and K. Simonyan, “Fast Sparse Con-
vNets,” arXiv:1911.09723 [cs], Nov. 2019. arXiv: 1911.09723.

[351] T. Gale, E. Elsen, and S. Hooker, “The State of Sparsity in Deep Neural
Networks,” arXiv:1902.09574 [cs, stat], Feb. 2019. arXiv: 1902.09574.

[352] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state of
neural network pruning?,” arXiv preprint arXiv:2003.03033, 2020.

[353] H. Wang, C. Qin, Y. Zhang, and Y. Fu, “Emerging paradigms of neural
network pruning,” arXiv preprint arXiv:2103.06460, 2021.

[354] N. Hubens, M. Mancas, M. Decombas, M. Preda, T. Zaharia, B. Gosselin,
and T. Dutoit, “An Experimental Study of the Impact of Pre-Training on
the Pruning of a Convolutional Neural Network,” in Proceedings of the
3rd International Conference on Applications of Intelligent Systems, pp. 1–6,
2020.

[355] H. Yu, S. Edunov, Y. Tian, and A. S. Morcos, “Playing the lottery with
rewards and multiple languages: lottery tickets in rl and nlp,” arXiv
preprint arXiv:1906.02768, 2019.

[356] A. S. Morcos, H. Yu, M. Paganini, and Y. Tian, “One ticket to win them
all: generalizing lottery ticket initializations across datasets and opti-
mizers,” arXiv preprint arXiv:1906.02773, 2019.

[357] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before train-
ing by preserving gradient flow,” arXiv preprint arXiv:2002.07376, 2020.

[358] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Raste-
gari, “What’s Hidden in a Randomly Weighted Neural Network?,” in
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11890–11899, June 2020. ISSN: 2575-7075.

[359] H. Zhou, J. Lan, R. Liu, and J. Yosinski, “Deconstructing lottery tickets:
Zeros, signs, and the supermask,” arXiv preprint arXiv:1905.01067, 2019.

Chapter 8. Bibliography 189

[360] E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir, “Proving
the lottery ticket hypothesis: Pruning is all you need,” in International
Conference on Machine Learning, pp. 6682–6691, PMLR, 2020.

[361] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient inference engine on compressed deep neural net-
work,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[362] S. Gray, A. Radford, and D. P. Kingma, “Gpu kernels for block-sparse
weights,” arXiv preprint arXiv:1711.09224, vol. 3, 2017.

[363] “XNNPACK,” Oct. 2021. original-date: 2019-09-13T23:48:37Z.

[364] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally, “Ex-
ploring the granularity of sparsity in convolutional neural networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, pp. 13–20, 2017.

[365] L. Theis, I. Korshunova, A. Tejani, and F. Huszár, “Faster gaze
prediction with dense networks and fisher pruning,” arXiv preprint
arXiv:1801.05787, 2018.

[366] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani, “N2n learning: Net-
work to network compression via policy gradient reinforcement learn-
ing,” arXiv preprint arXiv:1709.06030, 2017.

[367] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient Convolu-
tional Neural Networks Using Energy-Aware Pruning,” pp. 5687–5695,
2017.

[368] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 1–9, 2015.

[369] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1251–1258, 2017.

[370] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1492–1500, 2017.

190 Chapter 8. Bibliography

[371] M. Tan and Q. V. Le, “Mixconv: Mixed depthwise convolutional ker-
nels,” arXiv preprint arXiv:1907.09595, 2019.

[372] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong,
“Pc-darts: Partial channel connections for memory-efficient architecture
search,” arXiv preprint arXiv:1907.05737, 2019.

[373] S. Jetley, N. A. Lord, N. Lee, and P. H. S. Torr, “Learn To Pay Attention,”
Apr. 2018. Number: arXiv:1804.02391 arXiv:1804.02391 [cs].

[374] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2921–2929, 2016.

[375] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pp. 7132–7141, 2018.

[376] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block
attention module,” in Proceedings of the European conference on computer
vision (ECCV), pp. 3–19, 2018.

[377] J. Park, S. Woo, J.-Y. Lee, and I. S. Kweon, “A simple and light-weight at-
tention module for convolutional neural networks,” International journal
of computer vision, vol. 128, no. 4, pp. 783–798, 2020. Publisher: Springer.

[378] R. Saini, N. K. Jha, B. Das, S. Mittal, and C. K. Mohan, “Ulsam: Ultra-
lightweight subspace attention module for compact convolutional neu-
ral networks,” in Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pp. 1627–1636, 2020.

[379] S. Hochreiter and J. Schmidhuber, “LSTM can solve hard long time lag
problems,” Advances in neural information processing systems, pp. 473–479,
1997.

[380] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Re-
cent Advances in Recurrent Neural Networks,” Feb. 2018. Number:
arXiv:1801.01078 arXiv:1801.01078 [cs].

[381] L. Jing, C. Gulcehre, J. Peurifoy, Y. Shen, M. Tegmark, M. Soljacic, and
Y. Bengio, “Gated orthogonal recurrent units: On learning to forget,”
Neural computation, vol. 31, no. 4, pp. 765–783, 2019. Publisher: MIT
Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info
. . . .

Chapter 8. Bibliography 191

[382] C.-J. Zhang, H.-Y. Wang, J. Zeng, L.-M. Ma, and L. Guan, “Tiny-rainnet:
a deep convolutional neural network with bi-directional long short-term
memory model for short-term rainfall prediction,” Meteorological Appli-
cations, vol. 27, no. 5, p. e1956, 2020. Publisher: Wiley Online Library.

[383] I. Fedorov, M. Stamenovic, C. Jensen, L.-C. Yang, A. Mandell, Y. Gan,
M. Mattina, and P. N. Whatmough, “TinyLSTMs: Efficient Neural
Speech Enhancement for Hearing Aids,” arXiv:2005.11138 [cs, eess, stat],
May 2020. arXiv: 2005.11138.

[384] U. Thakker, J. Beu, D. Gope, C. Zhou, I. Fedorov, G. Dasika, and M. Mat-
tina, “Compressing RNNs for IoT devices by 15-38x using Kronecker
Products,” arXiv:1906.02876 [cs, stat], Jan. 2020. arXiv: 1906.02876.

[385] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “Densenet: Implementing efficient convnet descriptor pyra-
mids,” arXiv preprint arXiv:1404.1869, 2014.

[386] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet: More fea-
tures from cheap operations,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 1580–1589, 2020.

[387] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer pa-
rameters and< 0.5 MB model size,” arXiv preprint arXiv:1602.07360, 2016.

[388] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers: A
survey,” ACM Computing Surveys (CSUR), 2020. Publisher: ACM New
York, NY.

[389] “STM32Cube.AI: Convert Neural Networks into Optimized Code for
STM32,” Jan. 2019. Section: AI.

[390] A. Garofalo, G. Tagliavini, F. Conti, D. Rossi, and L. Benini, “XpulpNN:
Accelerating quantized neural networks on RISC-V processors through
ISA extensions,” in 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 186–191, IEEE, 2020.

[391] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neural Network
Kernels for Arm Cortex-M CPUs,” Jan. 2018.

[392] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, and L. Ceze, “${$tvm$}$: An Automated ${$end-
to-end$}$ Optimizing Compiler for Deep Learning,” in 13th USENIX

192 Chapter 8. Bibliography

Symposium on Operating Systems Design and Implementation (OSDI 18),
pp. 578–594, 2018.

[393] P. Warden and D. Situnayake, Tinyml: Machine learning with tensorflow
lite on arduino and ultra-low-power microcontrollers. O’Reilly Media, 2019.

[394] “Use ONNX,” May 2022. original-date: 2017-09-07T04:53:45Z.

[395] J. Nordby, “emlearn: Machine Learning inference engine for Microcon-
trollers and Embedded Devices,” Mar-2019, 2019.

[396] T. Givargis, “Gravity: An Artificial Neural Network Compiler for Em-
bedded Applications,” in 2021 26th Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), pp. 715–721, IEEE, 2021.

[397] X. Wang, M. Magno, L. Cavigelli, and L. Benini, “FANN-on-MCU: An
open-source toolkit for energy-efficient neural network inference at the
edge of the Internet of Things,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4403–4417, 2020. Publisher: IEEE.

[398] F. Sakr, F. Bellotti, R. Berta, and A. De Gloria, “Machine learning on
mainstream microcontrollers,” Sensors, vol. 20, no. 9, p. 2638, 2020. Pub-
lisher: Multidisciplinary Digital Publishing Institute.

[399] “oneDNN Documentation — oneDNN v2.4.0 documentation.”

[400] X. Jiang, H. Wang, Y. Chen, Z. Wu, L. Wang, B. Zou, Y. Yang, Z. Cui,
Y. Cai, and T. Yu, “Mnn: A universal and efficient inference engine,”
Proceedings of Machine Learning and Systems, vol. 2, pp. 1–13, 2020.

[401] Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang, “Deep
learning on mobile and embedded devices: State-of-the-art, challenges,
and future directions,” ACM Computing Surveys (CSUR), vol. 53, pp. 1–
37, Aug. 2020. Publisher: ACM New York, NY, USA.

[402] A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu,
L. Xu, and L. Van Gool, “AI Benchmark: All About Deep Learn-
ing on Smartphones in 2019,” arXiv:1910.06663 [cs], Oct. 2019. arXiv:
1910.06663.

[403] “ROCm™: Machine Learning.”

[404] D. H. Noronha, B. Salehpour, and S. J. E. Wilton, “LeFlow: Enabling
Flexible FPGA High-Level Synthesis of Tensorflow Deep Neural Net-
works,” p. 8, 2018.

Chapter 8. Bibliography 193

[405] Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting
the Graphcore IPU Architecture via Microbenchmarking,” Tech. Rep.
arXiv:1912.03413, arXiv, Dec. 2019. arXiv:1912.03413 [cs] type: article.

[406] R. Wimmer, P. Holleis, M. Kranz, and A. Schmidt, “Thracker-using ca-
pacitive sensing for gesture recognition,” in 26th IEEE International Con-
ference on Distributed Computing Systems Workshops (ICDCSW’06), pp. 64–
64, IEEE, 2006.

[407] G. Singh, A. Nelson, R. Robucci, C. Patel, and N. Banerjee, “Inviz: Low-
power personalized gesture recognition using wearable textile capaci-
tive sensor arrays,” in 2015 IEEE international conference on pervasive com-
puting and communications (PerCom), pp. 198–206, IEEE, 2015.

[408] S. Escalera, I. Guyon, and V. Athitsos, Gesture recognition. Springer, 2017.

[409] W. E. Rhodes, “Capacitive sensing device for detecting passage of parti-
cles,” Sept. 1969. Publisher: Google Patents.

[410] J. E. Shea, “Capacitive sensing device having a slidable probe,” Jan.
1971. Publisher: Google Patents.

[411] A. Braun, S. Frank, M. Majewski, and X. Wang, “CapSeat: capacitive
proximity sensing for automotive activity recognition,” in Proceedings of
the 7th International Conference on Automotive User Interfaces and Interac-
tive Vehicular Applications, pp. 225–232, 2015.

[412] S. Frank and A. Kuijper, “HUDConCap-automotive head-up display
controlled with capacitive proximity sensing,” in European Conference on
Ambient Intelligence, pp. 197–213, Springer, 2017.

[413] B. Osoinach, “Proximity capacitive sensor technology for touch sensing
applications,” Freescale White Paper, vol. 12, 2007.

[414] Y. Ye, J. Deng, S. Shen, Z. Hou, and Y. Liu, “A novel method for prox-
imity detection of moving targets using a large-scale planar capacitive
sensor system,” Sensors, vol. 16, no. 5, p. 699, 2016. Publisher: Multidis-
ciplinary Digital Publishing Institute.

[415] F. Althoff, R. Lindl, L. Walchshausl, and S. Hoch, “Robust multimodal
hand-and head gesture recognition for controlling automotive infotain-
ment systems,” VDI BERICHTE, vol. 1919, p. 187, 2005. Publisher: Cite-
seer.

194 Chapter 8. Bibliography

[416] M. Stecher, E. Baseler, L. Draxler, L. Fricke, B. Michel, A. Zimmermann,
and K. Bengler, “Tracking down the intuitiveness of gesture interaction
in the truck domain,” Procedia Manufacturing, vol. 3, pp. 3176–3183, 2015.
Publisher: Elsevier.

[417] H. V. Le, S. Mayer, and N. Henze, “Investigating the feasibility of finger
identification on capacitive touchscreens using deep learning,” in Pro-
ceedings of the 24th International Conference on Intelligent User Interfaces,
pp. 637–649, 2019.

[418] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “AxNN:
Energy-efficient neuromorphic systems using approximate computing,”
in 2014 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pp. 27–32, IEEE, 2014.

[419] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, and R. Levenstein, “Glow: Graph
lowering compiler techniques for neural networks,” arXiv preprint
arXiv:1805.00907, 2018.

[420] “Arm NN SDK – Arm®.”

[421] M. Loni, S. Sinaei, A. Zoljodi, M. Daneshtalab, and M. Sjödin, “Deep-
Maker: A multi-objective optimization framework for deep neural net-
works in embedded systems,” Microprocessors and Microsystems, vol. 73,
p. 102989, 2020. Publisher: Elsevier.

[422] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep learn-
ing model co-inference with device-edge synergy,” in Proceedings of the
2018 Workshop on Mobile Edge Communications, pp. 31–36, 2018.

[423] B. Lu, J. Yang, L. Y. Chen, and S. Ren, “Automating deep neural network
model selection for edge inference,” in 2019 IEEE First International Con-
ference on Cognitive Machine Intelligence (CogMI), pp. 184–193, IEEE, 2019.

[424] R. Binns, M. Veale, M. V. Kleek, and N. Shadbolt, “Like trainer, like bot?
Inheritance of bias in algorithmic content moderation,” in International
conference on social informatics, pp. 405–415, Springer, 2017.

[425] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Pro-
ceedings of the 25th international conference on Machine learning, pp. 1096–
1103, 2008.

Chapter 8. Bibliography 195

[426] P. Baldi, “Autoencoders, unsupervised learning, and deep architec-
tures,” in Proceedings of ICML workshop on unsupervised and transfer learn-
ing, pp. 37–49, JMLR Workshop and Conference Proceedings, 2012.

[427] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversar-
ial autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

[428] R. R. Sokal, “The principles and practice of numerical taxonomy,” Taxon,
pp. 190–199, 1963. Publisher: JSTOR.

[429] L. Rokach and O. Maimon, “Clustering methods,” in Data mining and
knowledge discovery handbook, pp. 321–352, Springer, 2005.

[430] L. Du, “An overview of mobile capacitive touch technologies trends,”
arXiv preprint arXiv:1612.08227, 2016.

[431] T. Grosse-Puppendahl, C. Holz, G. Cohn, R. Wimmer, O. Bechtold,
S. Hodges, M. S. Reynolds, and J. R. Smith, “Finding common ground:
A survey of capacitive sensing in human-computer interaction,” in Pro-
ceedings of the 2017 CHI conference on human factors in computing systems,
pp. 3293–3315, 2017.

[432] N. Henze, E. Rukzio, and S. Boll, “100,000,000 taps: analysis and im-
provement of touch performance in the large,” in Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile De-
vices and Services, pp. 133–142, 2011.

[433] D. Weir, S. Rogers, R. Murray-Smith, and M. Löchtefeld, “A user-specific
machine learning approach for improving touch accuracy on mobile de-
vices,” in Proceedings of the 25th annual ACM symposium on User interface
software and technology, pp. 465–476, 2012.

[434] T. Fischer, M. Etchart, and E. Biempica, “Frame-level proximity and
touch recognition using capacitive sensing and semi-supervised se-
quential modeling,” in 2018 IEEE 28th International Workshop on Machine
Learning for Signal Processing (MLSP), pp. 1–6, IEEE, 2018.

[435] M. M. Jung, R. Poppe, M. Poel, and D. K. Heylen, “Touching the void–
introducing CoST: corpus of social touch,” in Proceedings of the 16th In-
ternational Conference on Multimodal Interaction, pp. 120–127, 2014.

[436] “Kernel class for arc kernel by BCJuan · Pull Request #1027 · cornellius-
gp/gpytorch.”

196 Chapter 8. Bibliography

[437] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wil-
son, “GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference
with GPU Acceleration,” arXiv:1809.11165 [cs, stat], June 2021. arXiv:
1809.11165.

[438] A. Moschetti, L. Fiorini, D. Esposito, P. Dario, and F. Cavallo, “Toward
an unsupervised approach for daily gesture recognition in assisted liv-
ing applications,” IEEE sensors journal, vol. 17, no. 24, pp. 8395–8403,
2017. Publisher: IEEE.

[439] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based
data clustering,” in Iberoamerican congress on pattern recognition, pp. 117–
124, Springer, 2013.

[440] Z. Chen and R. C. Luo, “Design and implementation of capacitive prox-
imity sensor using microelectromechanical systems technology,” IEEE
Transactions on Industrial Electronics, vol. 45, no. 6, pp. 886–894, 1998.
Publisher: IEEE.

[441] D. Kurup, W. Joseph, G. Vermeeren, and L. Martens, “In-body path loss
model for homogeneous human tissues,” IEEE Transactions on Electro-
magnetic Compatibility, vol. 54, no. 3, pp. 556–564, 2011. Publisher: IEEE.

[442] S.-H. Lee, J.-S. An, S.-K. Hong, and O.-K. Kwon, “In-cell capacitive
touch panel structures and their readout circuits,” in 2016 23rd Inter-
national Workshop on Active-Matrix Flatpanel Displays and Devices (AM-
FPD), pp. 258–261, IEEE, 2016.

[443] T. Grosse-Puppendahl and A. Braun, “Honeyfish-a high resolution ges-
ture recognition system based on capacitive proximity sensing,” in Em-
bedded World Conference, vol. 12, p. 5, 2012.

[444] F. Miedl and T. Tille, “3-D surface-integrated touch-sensor system for
automotive HMI applications,” IEEE/ASME Transactions on Mechatron-
ics, vol. 21, no. 2, pp. 787–794, 2015. Publisher: IEEE.

[445] B. Liu, Z. Hoseini, K.-S. Lee, and Y.-M. Lee, “On-chip touch sensor read-
out circuit using passive sigma-delta modulator capacitance-to-digital
converter,” IEEE Sensors Journal, vol. 15, no. 7, pp. 3893–3902, 2015. Pub-
lisher: IEEE.

[446] S.-Y. Peng, M. S. Qureshi, P. E. Hasler, N. A. Hall, and F. L. Degertekin,
“High SNR capacitive sensing transducer,” in 2006 IEEE International
Symposium on Circuits and Systems, pp. 4–pp, IEEE, 2006.

Chapter 8. Bibliography 197

[447] K. Watanabe and W.-S. Chung, “A switched-capacitor interface for intel-
ligent capacitive transducers,” IEEE transactions on instrumentation and
measurement, no. 4, pp. 472–476, 1986. Publisher: IEEE.

[448] X. Zhang and P. K. Chan, “A low-power switched-capacitor capacitive
transducer with high resolution,” IEEE Transactions on Instrumentation
and Measurement, vol. 57, no. 7, pp. 1492–1499, 2008. Publisher: IEEE.

[449] H. Philipp, “Charge transfer sensing,” Sensor Review, 1999. Publisher:
MCB UP Ltd.

[450] J. E. Gaitán-Pitre, M. Gasulla, and R. Pallàs-Areny, “Direct interface for
capacitive sensors based on the charge transfer method,” in 2007 IEEE
Instrumentation & Measurement Technology Conference IMTC 2007, pp. 1–
5, IEEE, 2007.

[451] O. Lopez-Lapeña, E. Serrano-Finetti, and O. Casas, “Calibration-less di-
rect capacitor-to-microcontroller interface,” Electronics Letters, vol. 52,
no. 4, pp. 289–291, 2016. Publisher: IET.

[452] U. Borgmann and C. C. LEXOW, “Verfahren zum messen eines kapaz-
itätswertes,” Nov. 2015.

[453] J. E. Gaitán-Pitre, M. Gasulla, and R. Pallas-Areny, “Analysis of a direct
interface circuit for capacitive sensors,” IEEE Transactions on Instrumen-
tation and Measurement, vol. 58, no. 9, pp. 2931–2937, 2009. Publisher:
IEEE.

[454] R. Schweigert, J. Leusmann, S. Hagenmayer, M. Weiß, H. V. Le, S. Mayer,
and A. Bulling, “Knuckletouch: Enabling knuckle gestures on capac-
itive touchscreens using deep learning,” in Proceedings of Mensch Und
Computer 2019, pp. 387–397, 2019.

[455] A. R. Jensen, Clocking the mind: Mental chronometry and individual differ-
ences. Elsevier, 2006.

[456] D. E. Meyer, S. Yantis, A. M. Osman, and J. K. Smith, “Temporal prop-
erties of human information processing: Tests of discrete versus con-
tinuous models,” Cognitive Psychology, vol. 17, no. 4, pp. 445–518, 1985.
Publisher: Elsevier.

[457] Y. Yin and R. Davis, “Real-time continuous gesture recognition for nat-
ural human-computer interaction,” in 2014 IEEE Symposium on Visual

198 Chapter 8. Bibliography

Languages and Human-Centric Computing (VL/HCC), pp. 113–120, IEEE,
2014.

[458] Y. Song, D. Demirdjian, and R. Davis, “Continuous body and hand ges-
ture recognition for natural human-computer interaction,” ACM Trans-
actions on Interactive Intelligent Systems (TiiS), vol. 2, no. 1, pp. 1–28, 2012.
Publisher: ACM New York, NY, USA.

[459] P. Fryzlewicz, “Wild binary segmentation for multiple change-point de-
tection,” The Annals of Statistics, vol. 42, no. 6, pp. 2243–2281, 2014. Pub-
lisher: Institute of Mathematical Statistics.

[460] F. J. Pineda, “Generalization of back-propagation to recurrent neural
networks,” Physical review letters, vol. 59, no. 19, p. 2229, 1987. Publisher:
APS.

[461] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the prop-
erties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[462] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.,” Journal of machine learning research, vol. 13, no. 2, 2012.

[463] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on Bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

[464] P. I. Frazier, “A tutorial on Bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[465] P. I. Frazier, “Bayesian optimization,” in Recent advances in optimization
and modeling of contemporary problems, pp. 255–278, Informs, 2018.

[466] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,” in
Proceedings of the 12th Python in science conference, vol. 13, p. 20, Citeseer,
2013.

[467] R. J. Williams and J. Peng, “An efficient gradient-based algorithm for
on-line training of recurrent network trajectories,” Neural computation,
vol. 2, no. 4, pp. 490–501, 1990. Publisher: MIT Press One Rogers Street,
Cambridge, MA 02142-1209, USA journals-info

Chapter 8. Bibliography 199

[468] R. Takada, B. Shizuki, and J. Tanaka, “MonoTouch: Single capacitive
touch sensor that differentiates touch gestures,” in Proceedings of the 2016
CHI Conference Extended Abstracts on Human Factors in Computing Sys-
tems, pp. 2736–2743, 2016.

[469] W.-C. Chuang, W.-J. Hwang, T.-M. Tai, D.-R. Huang, and Y.-J. Jhang,
“Continuous finger gesture recognition based on flex sensors,” Sensors,
vol. 19, no. 18, p. 3986, 2019. Publisher: Multidisciplinary Digital Pub-
lishing Institute.

[470] H.-R. Tsai, M.-C. Hsiu, J.-C. Hsiao, L.-T. Huang, M. Chen, and Y.-P.
Hung, “TouchRing: subtle and always-available input using a multi-
touch ring,” in Proceedings of the 18th International Conference on Human-
Computer Interaction with Mobile Devices and Services Adjunct, pp. 891–
898, 2016.

[471] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Tak-
ing the human out of the loop: A review of Bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015. Publisher:
IEEE.

[472] B. Shahriari, Z. Wang, M. W. Hoffman, A. Bouchard-Côté, and N. de Fre-
itas, “An entropy search portfolio for Bayesian optimization,” arXiv
preprint arXiv:1406.4625, 2014.

[473] R. B. Miller, “Response time in man-computer conversational transac-
tions,” in Proceedings of the December 9-11, 1968, fall joint computer confer-
ence, part I, pp. 267–277, 1968.

[474] V.-C. Ta, W. Johal, M. Portaz, E. Castelli, and D. Vaufreydaz, “The Greno-
ble system for the social touch challenge at ICMI 2015,” in Proceedings
of the 2015 ACM on International Conference on Multimodal Interaction,
pp. 391–398, 2015.

[475] D. Hughes, A. Krauthammer, and N. Correll, “Recognizing social
touch gestures using recurrent and convolutional neural networks,” in
2017 IEEE International Conference on Robotics and Automation (ICRA),
pp. 2315–2321, IEEE, 2017.

[476] E. Bakshy, L. Dworkin, B. Karrer, K. Kashin, B. Letham, A. Murthy, and
S. Singh, “AE: A domain-agnostic platform for adaptive experimenta-
tion,” in Conference on Neural Information Processing Systems, pp. 1–8,
2018.

200 Chapter 8. Bibliography

[477] C. Jose, P. Goyal, P. Aggrwal, and M. Varma, “Local deep kernel learn-
ing for efficient non-linear svm prediction,” in International conference on
machine learning, pp. 486–494, PMLR, 2013.

[478] U. Borgmann, “Method for detecting contact on a capacitive sensor ele-
ment,” Sept. 2020. Publisher: Google Patents.

[479] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” tech. rep., Stanford, 2006.

[480] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” in Proceedings of the 2007
joint conference on empirical methods in natural language processing and com-
putational natural language learning (EMNLP-CoNLL), pp. 410–420, 2007.

[481] M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. G. Wil-
son, and E. Bakshy, “BoTorch: a framework for efficient Monte-Carlo
Bayesian optimization,” Advances in neural information processing sys-
tems, vol. 33, pp. 21524–21538, 2020.

[482] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.,” Jour-
nal of machine learning research, vol. 9, no. 11, 2008.

[483] V. Prokhorov, E. Shareghi, Y. Li, M. T. Pilehvar, and N. Collier, “On the
importance of the Kullback-Leibler divergence term in variational au-
toencoders for text generation,” arXiv preprint arXiv:1909.13668, 2019.

[484] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and
K. Myszkowski, High dynamic range imaging: acquisition, display, and
image-based lighting. Morgan Kaufmann, 2010.

[485] A. O. Akyüz, R. Fleming, B. E. Riecke, E. Reinhard, and H. H. Bülthoff,
“Do HDR displays support LDR content? A psychophysical evalua-
tion,” ACM Transactions on Graphics (TOG), vol. 26, no. 3, pp. 38–es, 2007.

[486] P. Hanhart, P. Korshunov, and T. Ebrahimi, “Subjective evaluation of
higher dynamic range video,” in Applications of Digital Image Processing
XXXVII, vol. 9217, p. 92170L, International Society for Optics and Pho-
tonics, 2014.

[487] S. , “HDR TV shipments worldwide by region 2016-2019,” 2020. Publi-
cation Title: Statista.

[488] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering.
CRC Press, Jan. 2019.

Chapter 8. Bibliography 201

[489] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance
maps from photographs,” in Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pp. 369–378, 1997.

[490] O. Gallo, A. Troccoli, J. Hu, K. Pulli, and J. Kautz, “Locally non-rigid
registration for mobile HDR photography,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 49–
56, 2015.

[491] R. Mantiuk, S. Daly, and L. Kerofsky, “Display adaptive tone mapping,”
ACM Transactions on Graphics (TOG), vol. 27, no. 3, pp. 1–10, 2008.

[492] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarith-
mic mapping for displaying high contrast scenes,” in Computer graphics
forum, vol. 22, pp. 419–426, Wiley Online Library, 2003.

[493] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone
reproduction for digital images,” in Proceedings of the 29th annual confer-
ence on Computer graphics and interactive techniques, pp. 267–276, 2002.

[494] G. Eilertsen, J. Unger, and R. K. Mantiuk, “Evaluation of tone mapping
operators for HDR video,” in High Dynamic Range Video, pp. 185–207,
Elsevier, 2016.

[495] F. Banterle, P. Ledda, K. Debattista, and A. Chalmers, “Inverse tone
mapping,” in Proc. of the 4th Int. Conf. on Computer Graphics and Inter-
active Techniques in Australasia and Southeast Asia, pp. 349–356, 2006.

[496] A. G. Rempel, M. Trentacoste, H. Seetzen, H. D. Young, W. Heidrich,
L. Whitehead, and G. Ward, “Ldr2hdr: on-the-fly reverse tone mapping
of legacy video and photographs,” ACM transactions on graphics (TOG),
vol. 26, no. 3, pp. 39–es, 2007.

[497] P.-H. Kuo, C.-S. Tang, and S.-Y. Chien, “Content-adaptive inverse tone
mapping,” in 2012 Visual Communications and Image Processing, pp. 1–6,
IEEE, 2012.

[498] Y. Huo, F. Yang, L. Dong, and V. Brost, “Physiological inverse tone
mapping based on retina response,” The Visual Computer, vol. 30, no. 5,
pp. 507–517, 2014.

[499] B. Masia, S. Agustin, R. W. Fleming, O. Sorkine, and D. Gutierrez, “Eval-
uation of reverse tone mapping through varying exposure conditions,”
ACM Transactions on Graphics (TOG), vol. 28, no. 5, pp. 1–8, 2009.

202 Chapter 8. Bibliography

[500] F. Banterle, P. Ledda, K. Debattista, M. Bloj, A. Artusi, and A. Chalmers,
“A psychophysical evaluation of inverse tone mapping techniques,” in
Computer Graphics Forum, vol. 28, pp. 13–25, Wiley Online Library, 2009.

[501] A. Serrano, F. Heide, D. Gutierrez, G. Wetzstein, and B. Masia, “Con-
volutional sparse coding for high dynamic range imaging,” in Computer
Graphics Forum, vol. 35, pp. 153–163, Wiley Online Library, 2016.

[502] J. H. Kim, S. Lee, S. Jo, and S.-J. Kang, “End-to-End Differentiable Learn-
ing to HDR Image Synthesis for Multi-exposure Images,” arXiv preprint
arXiv:2006.15833, 2020.

[503] M. C. , “Auto HDR Preview for PC Available Today,” Mar. 2021. Publi-
cation Title: DirectX Developer Blog.

[504] Y. Endo, Y. Kanamori, and J. Mitani, “Deep reverse tone mapping,”
ACM Transactions on Graphics (TOG), vol. 36, no. 6, pp. 1–10, 2017.

[505] S. Lee, G. H. An, and S.-J. Kang, “Deep chain hdri: Reconstructing a
high dynamic range image from a single low dynamic range image,”
IEEE Access, vol. 6, pp. 49913–49924, 2018.

[506] B. Masia, A. Serrano, and D. Gutierrez, “Dynamic range expansion
based on image statistics,” Multimedia Tools and Applications, vol. 76,
pp. 631–648, Jan. 2017.

[507] C. Zhou, H. Zhao, J. Han, C. Xu, C. Xu, T. Huang, and B. Shi, “UnMod-
Net: Learning to Unwrap a Modulo Image for High Dynamic Range
Imaging,” Advances in Neural Information Processing Systems, vol. 33,
2020.

[508] S. Ning, H. Xu, L. Song, R. Xie, and W. Zhang, “Learning an inverse tone
mapping network with a generative adversarial regularizer,” in 2018
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1383–1387, IEEE, 2018.

[509] X. Yang, K. Xu, Y. Song, Q. Zhang, X. Wei, and R. W. Lau, “Image cor-
rection via deep reciprocating HDR transformation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1798–
1807, 2018.

[510] J. Zhang and J.-F. Lalonde, “Learning high dynamic range from outdoor
panoramas,” in Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 4519–4528, 2017.

Chapter 8. Bibliography 203

[511] A. G. Vien and C. Lee, “Single-Shot High Dynamic Range Imaging via
Multiscale Convolutional Neural Network,” IEEE Access, 2021.

[512] N. Ye, Y. Huo, S. Liu, and H. Li, “Single Exposure High Dynamic Range
Image Reconstruction Based on Deep Dual-Branch Network,” IEEE Ac-
cess, vol. 9, pp. 9610–9624, 2021.

[513] S. M. A. Sharif, R. A. Naqvi, M. Biswas, and K. Sungjun, “A Two-stage
Deep Network for High Dynamic Range Image Reconstruction,” arXiv
preprint arXiv:2104.09386, 2021.

[514] E. Pérez-Pellitero, S. Catley-Chandar, A. Leonardis, and R. Timofte,
“NTIRE 2021 challenge on high dynamic range imaging: Dataset, meth-
ods and results,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 691–700, 2021.

[515] K. A. Akhil and C. V. Jiji, “Single image hdr synthesis using a densely
connected dilated convnet,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 2021.

[516] G. Chen, L. Zhang, M. Sun, Y. Gao, P. N. Michelini, and Y. Wu, “Single-
image hdr reconstruction with task-specific network based on channel
adaptive RDN,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 398–403, 2021.

[517] E. Pan and A. Vento, “MetaHDR: Model-Agnostic Meta-Learning for
HDR Image Reconstruction,” arXiv preprint arXiv:2103.12545, 2021.

[518] Q. Yan, D. Gong, Q. Shi, A. van den Hengel, C. Shen, I. Reid, and
Y. Zhang, “Attention-Guided Network for Ghost-Free High Dynamic
Range Imaging,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1751–1760, IEEE, 2019.

[519] Y. Niu, J. Wu, W. Liu, W. Guo, and R. W. Lau, “HDR-GAN: HDR im-
age reconstruction from multi-exposed ldr images with large motions,”
arXiv preprint arXiv:2007.01628, 2020.

[520] Q. Yan, L. Zhang, Y. Liu, Y. Zhu, J. Sun, Q. Shi, and Y. Zhang, “Deep
HDR Imaging via A Non-Local Network,” IEEE Transactions on Image
Processing, vol. 29, pp. 4308–4322, 2020.

[521] S. Wu, J. Xu, Y.-W. Tai, and C.-K. Tang, “Deep high dynamic range imag-
ing with large foreground motions,” in Proceedings of the European Con-
ference on Computer Vision (ECCV), pp. 117–132, 2018.

204 Chapter 8. Bibliography

[522] N. K. Kalantari and R. Ramamoorthi, “Deep high dynamic range imag-
ing of dynamic scenes.,” ACM Trans. Graph., vol. 36, no. 4, pp. 144–1,
2017.

[523] Z. Liu, W. Lin, X. Li, Q. Rao, T. Jiang, M. Han, H. Fan, J. Sun, and
S. Liu, “ADNet: Attention-guided Deformable Convolutional Network
for High Dynamic Range Imaging,” arXiv preprint arXiv:2105.10697,
2021.

[524] K. R. Prabhakar, G. Senthil, S. Agrawal, R. V. Babu, and R. K. S. S.
Gorthi, “Labeled From Unlabeled: Exploiting Unlabeled Data for Few-
Shot Deep HDR Deghosting,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4875–4885, June
2021.

[525] S. Lee, G. Hwan An, and S.-J. Kang, “Deep recursive hdri: Inverse tone
mapping using generative adversarial networks,” in Proceedings of the
European Conference on Computer Vision (ECCV), pp. 596–611, 2018.

[526] S. Sudhakaran, S. Escalera, and O. Lanz, “Gate-Shift Networks for Video
Action Recognition,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1102–1111, June 2020.

[527] T. Liu, “Depth-wise Separable Convolutions: Performance Investiga-
tions,” 2020.

[528] J. Lee, D. Kang, and S. Ha, “S3nas: Fast npu-aware neural architecture
search methodology,” arXiv preprint arXiv:2009.02009, 2020.

[529] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling al-
gorithm for preemptible neural processing units,” in 2020 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA),
pp. 220–233, IEEE, 2020.

[530] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in International Conference
on Medical image computing and computer-assisted intervention, pp. 234–
241, Springer, 2015.

[531] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++:
A nested u-net architecture for medical image segmentation,” in Deep
learning in medical image analysis and multimodal learning for clinical deci-
sion support, pp. 3–11, Springer, 2018.

Chapter 8. Bibliography 205

[532] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 1501–1510, 2017.

[533] C. Baskin, N. Liss, E. Zheltonozhskii, A. M. Bronstein, and A. Mendel-
son, “Streaming architecture for large-scale quantized neural networks
on an FPGA-based dataflow platform,” in 2018 IEEE International Paral-
lel and Distributed Processing Symposium Workshops (IPDPSW), pp. 162–
169, IEEE, 2018.

[534] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, “Ristretto: A Frame-
work for Empirical Study of Resource-Efficient Inference in Convo-
lutional Neural Networks,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, pp. 5784–5789, Nov. 2018.

[535] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” in European conference on computer vision,
pp. 694–711, Springer, 2016.

[536] B. Funt and L. Shi, “The effect of exposure on MaxRGB color constancy,”
in Human Vision and Electronic Imaging XV, vol. 7527, p. 75270Y, Interna-
tional Society for Optics and Photonics, 2010.

[537] G. Ward, “High dynamic range image encodings,” 2006.

[538] R. M. , “PFSTools. High Dynamic Range Images and Videos,” 2015.

[539] S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz,
J. Chen, and M. Levoy, “Burst photography for high dynamic range and
low-light imaging on mobile cameras,” ACM Transactions on Graphics,
vol. 35, pp. 192:1–192:12, Nov. 2016.

[540] H. Nemoto, P. Korshunov, P. Hanhart, and T. Ebrahimi, “Visual atten-
tion in LDR and HDR images,” in 9th International Workshop on Video
Processing and Quality Metrics for Consumer Electronics (VPQM), 2015.

[541] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato, “Raise: A
raw images dataset for digital image forensics,” in Proceedings of the 6th
ACM Multimedia Systems Conference, pp. 219–224, 2015.

[542] O. S. V. F. , “OpenCV,” 2021. Publication Title: OpenCV.

206 Chapter 8. Bibliography

[543] R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich, “HDR-VDP-2:
A calibrated visual metric for visibility and quality predictions in all lu-
minance conditions,” ACM Transactions on graphics (TOG), vol. 30, no. 4,
pp. 1–14, 2011.

[544] T. , “Performance measurement \textbar TensorFlow Lite,” 2021.

[545] “Post-training integer quantization with int16 activations,” 2021.

[546] X. Chen, Y. Liu, Z. Zhang, Y. Qiao, and C. Dong, “HDRUNet: Sin-
gle Image HDR Reconstruction with Denoising and Dequantization,”
arXiv:2105.13084, 2021.

[547] M. S. Santos, T. I. Ren, and N. K. Kalantari, “Single image HDR recon-
struction using a CNN with masked features and perceptual loss,” arXiv
preprint arXiv:2005.07335, 2020.

[548] U. Pastorino, M. Silva, S. Sestini, F. Sabia, M. Boeri, A. Cantarutti,
N. Sverzellati, G. Sozzi, G. Corrao, and A. Marchianò, “Prolonged lung
cancer screening reduced 10-year mortality in the MILD trial: new con-
firmation of lung cancer screening efficacy,” Annals of Oncology, vol. 30,
no. 7, pp. 1162–1169, 2019.

[549] H. J. de Koning, C. M. van der Aalst, P. A. de Jong, E. T. Scholten,
K. Nackaerts, M. A. Heuvelmans, J.-W. J. Lammers, C. Weenink,
U. Yousaf-Khan, and N. Horeweg, “Reduced lung-cancer mortality with
volume CT screening in a randomized trial,” New England Journal of
Medicine, vol. 382, no. 6, pp. 503–513, 2020.

[550] F. Asano, R. Eberhardt, and F. J. F. Herth, “Virtual bronchoscopic naviga-
tion for peripheral pulmonary lesions,” Respiration; International Review
of Thoracic Diseases, vol. 88, no. 5, pp. 430–440, 2014.

[551] T. Ishiwata, A. Gregor, T. Inage, and K. Yasufuku, “Advances in inter-
ventional diagnostic bronchoscopy for peripheral pulmonary lesions,”
Expert review of respiratory medicine, vol. 13, no. 9, pp. 885–897, 2019.

[552] Y. Han, H. J. Kim, K. A. Kong, S. J. Kim, S. H. Lee, Y. J. Ryu,
J. H. Lee, Y. Kim, S. S. Shim, and J. H. Chang, “Diagnosis of small
pulmonary lesions by transbronchial lung biopsy with radial endo-
bronchial ultrasound and virtual bronchoscopic navigation versus CT-
guided transthoracic needle biopsy: A systematic review and meta-
analysis,” PLOS ONE, vol. 13, p. e0191590, Jan. 2018.

Chapter 8. Bibliography 207

[553] M. K. Gould, J. Donington, W. R. Lynch, P. J. Mazzone, D. E. Midthun,
D. P. Naidich, and R. S. Wiener, “Evaluation of individuals with pul-
monary nodules: When is it lung cancer?: Diagnosis and management
of lung cancer: American College of Chest Physicians evidence-based
clinical practice guidelines,” Chest, vol. 143, no. 5, pp. e93S–e120S, 2013.

[554] K. Mori, D. Deguchi, T. Kitasaka, Y. Suenaga, Y. Hasegawa, K. Imaizumi,
and H. Takabatake, “Improvement of accuracy of marker-free broncho-
scope tracking using electromagnetic tracker based on bronchial branch
information,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 535–542, Springer, 2008.

[555] A. Skalski, M. Socha, M. Duplaga, K. Duda, and T. Zieliński, “3D
segmentation and visualisation of mediastinal structures adjacent to
tracheobronchial tree from CT data,” in Information Technologies in
Biomedicine, pp. 523–534, Springer, 2010.

[556] D. Gil, C. Sanchez, A. Borras, M. Diez-Ferrer, and A. Rosell, “Segmen-
tation of distal airways using structural analysis,” PLOS ONE, vol. 14,
p. e0226006, Dec. 2019.

[557] J.-C. Chien, J.-D. Lee, E. Su, and S.-H. Li, “A Bronchoscope Localization
Method Using an Augmented Reality Co-Display of Real Bronchoscopy
Images with a Virtual 3D Bronchial Tree Model,” Sensors, vol. 20, p. 6997,
Jan. 2020.

[558] P. D. Byrnes and W. E. Higgins, “Construction of a multimodal CT-video
chest model,” in Medical Imaging 2014: Image-Guided Procedures, Robotic
Interventions, and Modeling, vol. 9036, p. 903607, International Society for
Optics and Photonics, Mar. 2014.

[559] X. Luó, M. Feuerstein, T. Kitasaka, H. Natori, H. Takabatake,
Y. Hasegawa, and K. Mori, “On scale invariant features and sequen-
tial Monte Carlo sampling for bronchoscope tracking,” in Medical Imag-
ing 2011: Visualization, Image-Guided Procedures, and Modeling, vol. 7964,
p. 79640Q, International Society for Optics and Photonics, Mar. 2011.

[560] X. Luó, M. Feuerstein, D. Deguchi, T. Kitasaka, H. Takabatake, and
K. Mori, “Development and comparison of new hybrid motion track-
ing for bronchoscopic navigation,” Medical image analysis, vol. 16, no. 3,
pp. 577–596, 2012.

208 Chapter 8. Bibliography

[561] I. Bricault, G. Ferretti, and P. Cinquin, “Registration of real and CT-
derived virtual bronchoscopic images to assist transbronchial biopsy,”
IEEE transactions on medical imaging, vol. 17, no. 5, pp. 703–714, 1998.

[562] K. Mori, D. Deguchi, J.-i. Hasegawa, Y. Suenaga, J.-i. Toriwaki, H. Tak-
abatake, and H. Natori, “A method for tracking the camera motion of
real endoscope by epipolar geometry analysis and virtual endoscopy
system,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 1–8, Springer, 2001.

[563] J. P. Helferty and W. E. Higgins, “Combined endoscopic video tracking
and virtual 3D CT registration for surgical guidance,” in Proceedings.
International Conference on Image Processing, vol. 2, pp. II–II, IEEE, 2002.

[564] K. Mori, D. Deguchi, J. Sugiyama, Y. Suenaga, J.-i. Toriwaki, C. R. Mau-
rer Jr, H. Takabatake, and H. Natori, “Tracking of a bronchoscope us-
ing epipolar geometry analysis and intensity-based image registration
of real and virtual endoscopic images,” Medical Image Analysis, vol. 6,
no. 3, pp. 321–336, 2002.

[565] F. Deligianni, A. Chung, and G.-z. Yang, “Patient-specific bronchoscope
simulation with pq-space-based 2D/3D registration,” Computer Aided
Surgery, vol. 9, pp. 215–226, Jan. 2004.

[566] J. Nagao, K. Mori, T. Enjouji, D. Deguchi, T. Kitasaka, Y. Suenaga, J.-i.
Hasegawa, J.-i. Toriwaki, H. Takabatake, and H. Natori, “Fast and Accu-
rate Bronchoscope Tracking Using Image Registration and Motion Pre-
diction,” in Medical Image Computing and Computer-Assisted Intervention
MICCAI 2004 (C. Barillot, D. R. Haynor, and P. Hellier, eds.), Lecture
Notes in Computer Science, (Berlin, Heidelberg), pp. 551–558, Springer,
2004.

[567] R. Shinohara, K. Mori, D. Deguchi, T. Kitasaka, Y. Suenaga, H. Taka-
batake, M. Mori, and H. Natori, “Branch identification method for CT-
guided bronchoscopy based on eigenspace image matching between
real and virtual bronchoscopic images,” in Medical Imaging 2006: Phys-
iology, Function, and Structure from Medical Images, vol. 6143, p. 614314,
International Society for Optics and Photonics, Mar. 2006.

Chapter 8. Bibliography 209

[568] R. Khare, K.-C. Yu, and W. E. Higgins, “Improved navigation for image-
guided bronchoscopy,” in Medical Imaging 2009: Visualization, Image-
Guided Procedures, and Modeling, vol. 7261, p. 72612J, International So-
ciety for Optics and Photonics, Mar. 2009.

[569] X. Luo, T. Kitasaka, and K. Mori, “ManiSMC: A New Method Using
Manifold Modeling and Sequential Monte Carlo Sampler for Boosting
Navigated Bronchoscopy,” in Medical Image Computing and Computer-
Assisted Intervention MICCAI 2011 (G. Fichtinger, A. Martel, and T. Pe-
ters, eds.), Lecture Notes in Computer Science, (Berlin, Heidelberg),
pp. 248–255, Springer, 2011.

[570] X. Luó, M. Feuerstein, T. Kitasaka, and K. Mori, “Robust bronchoscope
motion tracking using sequential Monte Carlo methods in navigated
bronchoscopy: dynamic phantom and patient validation,” International
Journal of Computer Assisted Radiology and Surgery, vol. 7, pp. 371–387,
May 2012.

[571] X. Luo and K. Mori, “A discriminative structural similarity measure
and its application to video-volume registration for endoscope three-
dimensional motion tracking,” IEEE transactions on medical imaging,
vol. 33, no. 6, pp. 1248–1261, 2014.

[572] M. Shen, S. Giannarou, and G.-Z. Yang, “Robust camera localisation
with depth reconstruction for bronchoscopic navigation,” International
Journal of Computer Assisted Radiology and Surgery, vol. 10, pp. 801–813,
June 2015.

[573] A. Esteban-Lansaque, C. Sánchez, A. Borràs, M. Diez-Ferrer, A. Rosell,
and D. Gil, “Stable Anatomical Structure Tracking for Video-
Bronchoscopy Navigation,” in Clinical Image-Based Procedures. Trans-
lational Research in Medical Imaging (R. Shekhar, S. Wesarg, M. Á.
González Ballester, K. Drechsler, Y. Sato, M. Erdt, M. G. Linguraru, and
C. Oyarzun Laura, eds.), Lecture Notes in Computer Science, (Cham),
pp. 18–26, Springer International Publishing, 2016.

[574] M. Visentini-Scarzanella, T. Sugiura, T. Kaneko, and S. Koto, “Deep
monocular 3D reconstruction for assisted navigation in bronchoscopy,”
International Journal of Computer Assisted Radiology and Surgery, vol. 12,
pp. 1089–1099, July 2017.

210 Chapter 8. Bibliography

[575] M. Shen, S. Giannarou, P. L. Shah, and G.-Z. Yang,
“BRANCH:Bifurcation Recognition for Airway Navigation based on
struCtural cHaracteristics,” in Medical Image Computing and Computer-
Assisted Intervention MICCAI 2017 (M. Descoteaux, L. Maier-Hein,
A. Franz, P. Jannin, D. L. Collins, and S. Duchesne, eds.), Lecture Notes
in Computer Science, (Cham), pp. 182–189, Springer International
Publishing, 2017.

[576] M. Shen, Y. Gu, N. Liu, and G.-Z. Yang, “Context-Aware Depth and
Pose Estimation for Bronchoscopic Navigation,” IEEE Robotics and Au-
tomation Letters, vol. 4, pp. 732–739, Apr. 2019.

[577] C. Zhao, M. Shen, L. Sun, and G.-Z. Yang, “Generative Localization
With Uncertainty Estimation Through Video-CT Data for Bronchoscopic
Biopsy,” IEEE Robotics and Automation Letters, vol. 5, pp. 258–265, Jan.
2020.

[578] C. Wang, M. Oda, Y. Hayashi, B. Villard, T. Kitasaka, H. Takabatake,
M. Mori, H. Honma, H. Natori, and K. Mori, “A visual SLAM-based
bronchoscope tracking scheme for bronchoscopic navigation,” Inter-
national Journal of Computer Assisted Radiology and Surgery, vol. 15,
pp. 1619–1630, Oct. 2020.

[579] A. Banach, F. King, F. Masaki, H. Tsukada, and N. Hata, “Visually Nav-
igated Bronchoscopy using Three Cycle-Consistent Generative Adver-
sarial Network for Depth Estimation,” Medical Image Analysis, p. 102164,
2021.

[580] C. Sánchez, M. Diez-Ferrer, J. Bernal, F. J. Sánchez, A. Rosell, and D. Gil,
“Navigation Path Retrieval from Videobronchoscopy Using Bronchial
Branches,” in Clinical Image-Based Procedures. Translational Research in
Medical Imaging (C. Oyarzun Laura, R. Shekhar, S. Wesarg, M. Á.
González Ballester, K. Drechsler, Y. Sato, M. Erdt, and M. G. Linguraru,
eds.), Lecture Notes in Computer Science, (Cham), pp. 62–70, Springer
International Publishing, 2016.

[581] J. Sganga, D. Eng, C. Graetzel, and D. B. Camarillo, “Autonomous driv-
ing in the lung using deep learning for localization,” arXiv preprint
arXiv:1907.08136, 2019.

[582] M. Turan, Y. Almalioglu, H. Gilbert, A. E. Sari, U. Soylu, and M. Sitti,
“Endo-VMFuseNet: Deep Visual-Magnetic Sensor Fusion Approach for

Chapter 8. Bibliography 211

Uncalibrated, Unsynchronized and Asymmetric Endoscopic Capsule
Robot Localization Data,” arXiv:1709.06041 [cs], Sept. 2017.

[583] D. Recasens, J. Lamarca, J. M. Fácil, J. M. M. Montiel, and J. Civera,
“Endo-Depth-and-Motion: Localization and Reconstruction in Endo-
scopic Videos using Depth Networks and Photometric Constraints,”
arXiv preprint arXiv:2103.16525, 2021.

[584] X. Liu, J. Berg, F. King, and N. Hata, “Computer vision-guided bron-
choscopic navigation using dual CNN-generated depth images and ICP
registration,” in Medical Imaging 2020: Image-Guided Procedures, Robotic
Interventions, and Modeling, vol. 11315, p. 113152C, International Society
for Optics and Photonics, Mar. 2020.

[585] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Transactions on Signal Processing, vol. 45, pp. 2673–2681, Nov. 1997.

[586] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
Closer Look at Spatiotemporal Convolutions for Action Recognition,”
arXiv:1711.11248 [cs], Apr. 2018.

[587] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6299–6308, 2017.

[588] M. Diez-Ferrer, D. Gil, E. Carreño, S. Padrones, S. Aso, V. Vicens,
C. Noelia, R. L. Lisbona, C. Sanchez, and A. Borras, “Positive airway
pressure-enhanced CT to improve virtual bronchoscopic navigation,”
Chest, vol. 150, no. 4, p. 1003A, 2016.

[589] S. A. Merritt, R. Khare, R. Bascom, and W. E. Higgins, “Interactive
CT-Video Registration for the Continuous Guidance of Bronchoscopy,”
IEEE Transactions on Medical Imaging, vol. 32, pp. 1376–1396, Aug. 2013.

[590] G. Ning, Z. Zhang, C. Huang, X. Ren, H. Wang, C. Cai, and Z. He, “Spa-
tially supervised recurrent convolutional neural networks for visual ob-
ject tracking,” in 2017 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pp. 1–4, May 2017.

[591] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, “Action
Recognition in Video Sequences using Deep Bi-Directional LSTM With
CNN Features,” IEEE Access, vol. 6, pp. 1155–1166, 2018.

212 Chapter 8. Bibliography

[592] T. Jin, Y. Li, and Z. Zhang, “Recurrent convolutional video captioning
with global and local attention,” Neurocomputing, vol. 370, pp. 118–127,
Dec. 2019.

[593] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo,
“Convolutional LSTM Network: a machine learning approach for pre-
cipitation nowcasting,” in Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems - Volume 1, NIPS’15, (Cam-
bridge, MA, USA), pp. 802–810, MIT Press, Dec. 2015.

[594] S. Ji, C. Zhang, A. Xu, Y. Shi, and Y. Duan, “3D Convolutional Neural
Networks for Crop Classification with Multi-Temporal Remote Sensing
Images,” Remote Sensing, vol. 10, p. 75, Jan. 2018.

[595] S. Guo, Y. Lin, S. Li, Z. Chen, and H. Wan, “Deep Spatial–Temporal
3D Convolutional Neural Networks for Traffic Data Forecasting,” IEEE
Transactions on Intelligent Transportation Systems, vol. 20, pp. 3913–3926,
Oct. 2019.

[596] J. Sganga, D. Eng, C. Graetzel, and D. B. Camarillo, “Deep learning for
localization in the lung,” arXiv preprint arXiv:1903.10554, 2019.

[597] Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, “Post-training
quantization for vision transformer,” Advances in Neural Information Pro-
cessing Systems, vol. 34, pp. 28092–28103, 2021.

[598] F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush, “Block pruning for
faster transformers,” arXiv preprint arXiv:2109.04838, 2021.

[599] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained
transformers,” Advances in Neural Information Processing Systems, vol. 33,
pp. 5776–5788, 2020.

[600] W. You and C. Wu, “Rsnn: A software/hardware co-optimized frame-
work for sparse convolutional neural networks on fpgas,” IEEE Access,
vol. 9, pp. 949–960, 2020.

[601] S.-E. Chang, Y. Li, M. Sun, R. Shi, H. K.-H. So, X. Qian, Y. Wang, and
X. Lin, “Mix and match: A novel fpga-centric deep neural network
quantization framework,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 208–220, IEEE, 2021.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

	Títol de la tesi: Efficient Neural Network Inferencefor Resource Constrained Devices
	Nom autor/a: Juan BORREGO-CARAZO

