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Abstract

This thesis is devoted to the theoretical modeling of skyrmionic structures and their interaction

with other agents. First, we consider how defects in the material can affect the skyrmion

trajectories. From an atomic defect, we propose a particle model to take into account extended

(in space) defects, such as grain dislocations. This model allows us to obtain analytical expressions

for the critical points of the skyrmion trajectories and for the threshold current velocity above

which these critical points cease to exist. We found that a line defect (e.g. grain dislocation)

can guide the skyrmions along the defect and speed them up. It is also found that a periodic

arrangement of such defects creates a periodic pinning array for skyrmions. In this way we derive

a scenario in which these types of potentials appear, giving some physical basis to previously

used ad hoc potentials.

Then, we consider the interaction of a ferromagnetic disk with a coaxial superconducting disk.

The interaction is mediated via the stray fields created by the magnetization structures and the

currents, through a two-way coupling. For the ferromagnetic, we use the micromagnetic model

and for the superconductor, we use the London model. This allows us to obtain the magnetization

and current distributions simultaneously. To characterize the system as a function of the applied

field, we first consider a hysteresis loop of applied field. We have characterized the transitions

between different magnetic states. In particular, we find an additional skyrmion-to-2π transition

caused by the presence of a superconductor. The results are complemented with geodesic nudged

elastic band method calculations, which allow us to study the magnetic states’ stability. We also

study the system’s behavior as a function of the separation distance between plates finding their

interaction forces.

To sum up, in this thesis we propose different models that could enable novel skyrmionic

devices to be developed. We discuss some possible applications such as skyrmionic racetracks,

skyrmion-based atomic magnetic traps, ternary logic, and skyrmionic metamaterials.
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MRAM Magnetic Random Access Memory.

PV Pearl Vortex.

RAM Random Access Memory.

SC Superconductor.

SHE Spin Hall Effect.

STT Spin Transfer Torque.

TMR Tunnel Magneto-Resistance.

ZFC Zero-Field-Cooled.
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Symbols

Symbol Description Unit

H Hamiltonian J

A Magnetic vector potential T m

J Volumic current density A m−2

K Sheet-current density A m−1

f Normalized force (Thiele), f = F/(γM2
s tfRsk)

Aex Exchange interaction constant J m−1

DDM Dzyaloshinskii-Moriya constant J m−2

F0,DM Force amplitude a local DM defect does over a skyrmion m A s−1

Ha Applied magnetic field A m−1

Jex Exchange integral Jm2 A−2

Kan Anisotropy constant J m−3

Ms Saturation magnetization A m−1

Nsk Skyrmion number

Rsk Skyrmion radius m

Λ Superconducting screening length m

Φ0 Magnetic flux quantum Wb

α Gilbert damping constant

m Normalized magnetization by Ms

χan Adimensional anisotropy constant, χ = 2Kan/(µ0M
2
s )

δ Local variation factor of the DM constant

γ Gyromagnetic constant m A−1 s−1

λL London penetration depth m

B Adiabatic-SHE-torque tensor A2 m−1
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Symbol Description Unit

D Dissipative tensor A2 m−1

G Gyrotropic tensor A3 m−2

B Normalized dissipative tensor constant, B = B/M2
sRsk

D Normalized dissipative tensor constant, D = D/M2
s tf

E Normalized energy, E = E
µ0M2

s l3ex

G Normalized gyrotropic tensor constant, G = G/Ms3tf

µB Bohr magneton J T−1

µ Magnetic permeability J T−1

θsk Skyrmion Hall angle

Φ0 Normalized magnetic flux quantum, Φ0 = Φ0

µ0Msl2ex

ε Energy density J m−3

φHM Incident applied current angle in the HM

ξGL Superconducting coherence length m

ξ Adimensional DM constant, ξ = DDMlex/Aex

a Atomic lattice constant m

dDM Atomic Dzyaloshinskii-Moriya constant Jm2 A−2

e Electron charge (e > 0) C

h Normalized magnetic field by Ms

kB Boltzmann constant J K−1

kan Atomic anisotropy constant Jm2 A−2

lex Exchange length, lex =
√

2Aex/(µ0M2
s ) m

t0 Characteristic precession time, t0 = (γMs)−1 s

tf Thickness of the ferromagnet, tf m

ts Thickness of the superconductor, ts m

A Normalized magnetic vector potential, A = A
µ0Mslex

K Normalized sheet-current density, K = K
Ms
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Chapter 1

Introduction

In this thesis, we deal with the use of skyrmions as bits of information and how they affect and
are affected by other agents. We will study how defects can affect the transport of skyrmions
and we will consider ferromagnetic-superconducting hybrid systems in confined geometries. This
study is relevant in the field of skyrmionics as many applications demand precise control and
knowledge of skyrmion creation, its dynamics, and its annihilation.

1.1 Magnetism for data storage and handling

During the 20th century, the understanding of magnetic phenomena in different materials spurred
the technological development of magnetic recording media. It began in the 1950s with the
creation of the first magnetic hard disk drives (HDDs). Since then, the need to store massive
amounts of data in the smallest possible device has motivated the search for new mechanisms.
The current paradigm consists of encoding information in the orientation of the magnetization of
different magnetic grains, that can be read and switched individually.1,2 At present, the main
limitation of this method is the reduction of the grain’s size. We are reaching a scale at which grain
magnetization fluctuates randomly, which makes them unstable and prevents reliable information
storage. To address this problem, a series of alternative magnetic recording technologies have
been proposed by the scientific community,3,4 but their real-life application remains difficult due
to engineering challenges. Among these techniques, heat-assisted magnetorecording (HAMR)
has been found to be promising. This technique takes advantage of the fact that the material’s
coercivity decreases with temperature, allowing materials with higher uniaxial anisotropies to be
used. This gives rise to more stable grains that are heated when their magnetic state needs to be
switched.5

But not only the information storage is relevant, but also the speed at which it can be accessed
and processed. This is why random access memories (RAM) were developed, allowing faster
data access at the expense of volatilitya. On the one hand, there are the physical limitations of
Moore’s law, which states that the chip performance will be duplicated every two years, without
increasing the production cost. To keep up with Moore’s law, the number of transistors increased,
and so did their density. We have reached the point where transistors are limited by heating and
the Heisenberg uncertainty principle and it is unreliable to further scale transistors down.

aThe information stored is lost if current is not applied.
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2 Chapter 1. Introduction

On the other hand, the energy consumption of these technologies continues to skyrocket. With
societies concerned about climate change, it is pertinent to consider the impact of even the most
common applications. For example, it is estimated that each search performed on Google emits
0.2g of CO2.6 If the information technology (IT) sector were a country, it would be the third
largest energy consumer in the world.

All the previous innovations and others have been the key factors for reaching the so-called
information age. In the last decades, the storage and handling of information continuously
demand faster, denser, non-volatile, and low-power-consuming technologies. In this context,
spintronics, which uses both charge and spin degrees of freedom of the electrons, has provided
some novel concepts to improve on previous technologies.7,8 A breakthrough came with the
discovery of the giant magnetoresistance (GMR) effect by Albert Fert9 and Peter Grünberg.10

This effect refers to a significant change in the resistance of two ferromagnetic layers separated by
a metal spacer, depending on the relative magnetization orientation of the ferromagnets (FMs).
This resulted in a remarkable increase in the storage capacity of HDDs. This discovery was
awarded the Nobel Prize in 2007. Later, the tunneling magnetoresistance was discovered (TMR),
which led to an order of magnitude higher resistance variation as compared to GMR. This led to
magnetic tunnel junctions (in which the metal spacer is replaced with an insulator) and, with
them, a new concept of memory devices, magnetic random access memories (MRAMs),7 was
born. MRAMs exploit the possibility of changing the magnetization direction of one of the
ferromagnetic layers by means of an applied spin-polarized current. In Fig. 1.1, we show some
examples of different device proposals, based on the TMR [Fig. 1.1(a)] and an implementation of
the racetrack memory [Fig. 1.1(b)]. In parallel to MRAMs, an alternative idea to manipulate
the information bits was proposed: using domain wall (DW) racetrack memories.11 Here the
information is not localized but is mobile along a nanowire, with the information encoded in the
domains’ magnetization direction (up or down) separated by DWs.

Figure 1.1: (a) Scheme of the simplest MRAM design. Its design is based on the dependence of
the system’s magnetoresistance as a function of the relative orientation of the magnetization of
the free layer (light blue) with respect to the reference layer (dark blue). (b) Sketch of a magnetic
racetrack memory, based on a magnetic skyrmion. The presence or not of a skyrmion would be a 1
or a 0. The skyrmion is moved with spin currents. Figure (b) is adapted from Woo et al.12

In recent years, attention has shifted to materials with broken inversion symmetry, in which the
Dzyaloshinskii-Moriya (DM) interaction is present. This interaction allowed the stabilization
of chiral structures in the magnetization of the material. The DM interaction has been shown
to have an effect on the properties of the stabilized magnetic structures, such as their speed
or stability, which are beneficial for future technologies.13–15 Among these magnetic structures,
great interest has been shown in magnetic skyrmions. The peculiar skyrmion topology makes
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them more robust against transitions to more topologically trivial magnetic structures (e.g. the
uniform state), while their non-collinear spin texture makes them interact efficiently with spin
currents. These features, together with the fact that they can be very small (a few nanometers
in size), create great potential for their application as next-generation high-density information
storage and handling devices.

Since skyrmions are going to be the central structures used in this thesis, it is worthwhile to
make a brief introduction to them.

1.2 Magnetic skyrmions

Skyrmions were proposed by Tony Skyrme in the 1960s in the field of particle physics.16 These
particles are characterized by a quantized topological integer number that cannot be changed by a
continuous deformation of the field configuration. In this sense, one refers to them as topologically
protected particles. This theoretical model turned out to be useful in condensed matter systems
such as Bose-Einstein condensates,17 liquid crystals,18 and quantum Hall systems.19,20

Figure 1.2: (a) Magnetic force microscopy images acquired with a Co thickness of 0.2 nm,
finding isolated skyrmions at room temperature. Red and blue contrasts represent the out-of-plane
magnetization. (b) Lorentz transmission electron microscopy images of magnetic skyrmions at 250
K. The hexagonal skyrmion lattices are marked with the dotted hexagon. Figure (a) adapted from
Brandao et al.21 Figure (b) is adapted from Chakrabartty et al.22

More recently, the field in which skyrmions reached their maximum impact would be in heli-
magnetic systems, where skyrmions are whirling spin textures with particle-like behavior.15,23

Skyrmions were theoretically predicted in the 90s24 and experimentally found in 2009,25 with its
real-space topology confirmed in 2010.26 Nevertheless, their interest skyrocketed after they were
proposed for a new kind of racetrack memory by Albert Fert in 2013.27 Since then, skyrmions
have been envisioned as the building blocks for a new generation of magnetic memories and
spintronic devices thanks to their small sizes, efficiency in their movement, and stability.14, 15,28,29

This led to the field of skyrmionics, a subset of spintronics that makes use of skyrmions and other
skyrmionic structures with similar topological properties to realize novel devices.30,31 Among
these devices one finds: skyrmionic racetracks,27 logic gates,32 transistors,33 nano-oscillators,34

and implementations of reservoir computing models35 and probabilistic computing.36,37
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Theoretically, skyrmions have been found in a diverse range of sizes depending on the hosting
material, applied field, and temperature. From a few tens of nanometers at low temperatures27,38

to hundreds of nanometers at room temperature.39 Experimentally, an important highlight was
their finding at room temperature.12,21,22,40 In Fig. 1.2 we show some examples. Regarding
their stability, it has been found that their lifetimes were long enough to be used as information
carriers.41 More recently, it was found that isolated skyrmions could potentially be stable, even
for storage applications (lifetimes on the order of years), with small sizes on the order of 10 nm
in ultrathin ferromagnetic films.42

Magnetic skyrmions are mainly found in materials with the asymmetric DM exchange inter-
action.23,40,43–46 This interaction appears when there is a lack of inversion symmetry in the
crystallographic structure of the material and can be present at the interfaces of ultrathin films or
in bulk chiral ferromagnetic materials. The former is known as interfacial DM (iDM) interaction
and favors the stabilization of Néel skyrmions [Fig. 1.3(a)]. In these magnetic structures, the
magnetization rotates perpendicular to the DW plane, going from the core (pointing up) to the
ferromagnetic background (pointing down). The latter favors the stabilization of Bloch skyrmions
[Fig. 1.3(b)], whose magnetization rotates in the DW plane. In both cases, they are usually found
isolated [Fig. 1.2(a)] or in hexagonal [Fig. 1.2(b)] lattices. Additionally, it has been shown that
skyrmions can be stabilized without DM interaction in thin films with depressions or protrusions
in the material.47–54 Other skyrmionic structures have also been found such as antiskyrmions,
bimerons, biskyrmions, ferrimagnetic skyrmions, antiferromagnetic skyrmions, chiral bobbers,
and hopfions.30 Among them, in ferromagnetic ultrathin films with DM interaction, one can
also find the 2π and 3π states, which have a higher magnetization rotation as compared to the
skyrmion (π rotation).55

Most applications in skyrmionics are focused on the storage and transport of information, as well
as some logic devices. Typically, the information is encoded in bits, with the existence or not of
a skyrmion being a 1 or a 0, respectively. The main processes that are necessary to achieve such
devices are: controlled nucleation/annihilation (equivalent to writing/deleting data), efficient
and fast transport of information, and the ability to “operate” with the skyrmions to fulfill a
given task.56

From the theoretical point of view, these processes have been studied in depth at low temperatures
with two theoretical models: the micromagnetic model57,58 and the rigid model.59 The former
studies the magnetization dynamics at the sub-micrometer length scale. The latter assumes that
the magnetic structure is a rigid structure that behaves as a quasiparticle, and describes its
center-of-mass trajectory. The rigid model is much simpler than the micromagnetic model, but it
cannot simulate the deformation or creation/annihilation of the structures.

Specifically related to the subject of this work, the micromagnetic model has been used to
simulate the nucleation/annihilation of skyrmions.60–72 Both models have been used to study
the transport of skyrmions in order to optimize the skyrmion racetrack memory30,73–83 or
alternative devices.84–86 The interaction between skyrmions with external agents such as de-
fects in the material,87–101 granularity,102–112 voltage-controlled magnetic anisotropies,113–118

other skyrmions,109, 119 notches,120–124 oscillating magnetic fields,125, 126 magnetic field gradi-
ents,68, 127–129 temperature gradients,130–132 spin-waves,85,98, 133, 134 or superconductors (SCs)135–145

have been studied. Using these, some applications of skyrmions have been designed, such as logic
devices123, 124, 146 and transistors.33
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However, most potential skyrmionic devices must work at room temperature to be viable
alternatives to previous information storage and processing technologies. The number of works
in this area is less abundant147–153 but it is becoming a topic of interest. On the one hand, it is
crucial to study the lifetimes of the structures, even more so for storage and memory applications.
In 1963 Brown154 developed a fully theoretical model to describe the transition rates of single
magnetic grains. For more complex structures, such as skyrmions, a theoretical description of
the transition rates is not possible and we must rely on numerical simulations. These simulations
are mostly based on algorithms that allow finding the minimum energy path (MEP) between
two stable magnetic configurations, and then using harmonic transition state theory (HTST) to
predict the frequency rate of the transition.155–159 On the other hand, it is essential to control
the skyrmion dynamics. At non-zero temperatures, the skyrmion follows a Brownian-like motion,
hugely increasing the complexity of the analytical models and the computational power required
in numerical simulations. This phenomenon could potentially make racetrack devices unfeasible.
Nevertheless, promising applications that take advantage of this stochasticity have been proposed
to generate random numbers,152 to nucleate skyrmions,160 and for probabilistic36,37, 161 and
neuromorphic computing.162–164 See Refs. [165, 166] for more details.

Figure 1.3: Top-view of (a) Néel-type and (b) Bloch-type skyrmions with the magnetization
rotating from the up direction (red) at the skyrmion’s center to the down direction (blue) of the
external uniform magnetization at the skyrmion’s edge. The radial magnetization distribution of
(c) a Néel-type and (d) a Bloch-type skyrmion is sketched. The colors represent the z component
of the magnetization. In (d) the magnetization arrows are smaller as they rotate out-of-plane.

This thesis is structured as follows. In Ch. 2 we provide the relevant theoretical tools used.
We review magnetism in a FM and superconductivity in a SC. For the FM we introduce the
micromagnetic model and the rigid model. Regarding the SC we present the London model to
study the current distributions. We also introduce the geodesic nudged elastic band method
(GNEB) to calculate the energy barriers between different magnetic states in the FM.
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Once the theoretical tools have been presented we move forward to study the two main topics
of this dissertation. These are related to two essential processes relevant to skyrmionic devices:
transport and nucleation/annihilation of the magnetic structures. In Ch. 3 the transport of
skyrmions in an infinite FM with iDM interaction is studied. We develop a model, within the
rigid approximation, that enables us to compute the skyrmion trajectories under different types
of defects in the materials, such as local and extended defects. Starting from a microscopically
derived effective field produced by atomic impurities, we extend the model to take into account
extended defects. We show that Thiele’s equation can qualitatively predict the skyrmion behavior
as well as the conditions for each possible regime to appear (for example pinning or not). The
results found are compared with micromagnetic simulations and even though deformations on the
skyrmion are present, we demonstrate that the predictions are valid. This model enables to study
any skyrmion transport system without having to simulate the full micromagnetic dynamics,
allowing for faster prototyping.

In Ch. 4, we focus our attention on the nucleation/annihilation processes, considering the
interaction of a ferromagnetic disk with a coaxial superconducting disk. We present a model that
allows obtaining, in the static limit, both the magnetization and current distributions at the same
time. The mutual interaction between the ferromagnetic and superconducting elements is taken
into account. We do so by solving the Brown equation (within the micromagnetic model) for the
FM and the London equation for the SC.167, 168 To ease the discussions and phenomenology we
have restricted the model to axisymmetric systems and consider a mathematically one-dimensional
model. The interaction is analyzed as a function of the applied field and the distance between the
FM and SC elements. Some transitions between magnetic states are found that are, in principle,
not possible without a neighboring SC. To validate the results and transitions found, we use
the GNEB method. This method allows us to find that in our systems all the transitions are
mediated through the boundaries of the FM.

Finally, we present our conclusions in Ch. 5.



Chapter 2

Basic concepts

In this chapter, we review the basic concepts used in this thesis. We start by introducing
ferromagnetism and its description from different points of view. First, the micromagnetic
framework will be introduced. From it, the rigid model will be presented and an overview of the
skyrmion trajectories driven by different spin-current torques will be discussed. Then, the GNEB
method, which allows to evaluate the stability of magnetic structures, will be presented. We
shall finish by briefly introducing superconductivity, with a special focus on the London model.

Magnetic materials are materials that can generate (and react to) a magnetic field around
them. This field originates from magnetic moments associated with the atoms in the material.
In Maxwell’s equations, the source of magnetic fields can be linked to electric currents. In
fact, classically, magnetic moments can be understood as bounded circular current loops, such
as the electric current associated with the electron orbiting the nucleus (in a classical sense).
Nevertheless, it is known that the classical picture is not enough to explain magnetism in
materials. The origin of magnetic materials is mainly linked to the electron spin, an intrinsic
angular momentum.

But, even though all atoms can have magnetic moments, if their interaction is negligible their
direction is going to be random. Nevertheless, a net magnetization M can be induced either by
external means (e.g. applied external field) or by intrinsic properties of the material. The latter
gives rise to materials with spontaneous magnetization, the FMs. Some of these materials are
Co, Fe, and Ni, among others. To predict the spontaneous magnetization, additional interactions
from quantum origin between the magnetic moments are needed, which favor their alignment.

Another type of magnetic material that expels the magnetic field from their interior exists, the
diamagnet. Among these materials, we highlight the superconductors, whose origin is quantum
mechanical. Superconductivity is a thermodynamic state that, when cooled below a certain
critical temperature, exhibits two simultaneous phenomena: zero electrical resistivity and a
diamagnetic response. The reason for this transition is attributed to the formation of bosonic
quasiparticles, Cooper pairs, from electron pairs.

7
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2.1 Ferromagnetism

The magnetic moment is a fundamental magnitude in magnetism.57 From a classical point of
view, they can be associated with tiny electric current loops. For a circular planar loop of radius
R with a circulating current I, the magnetic field generated far away from it (as compared to R)
can be shown to be equivalent to a dipole field. Thus, the classical magnetic moment is defined
as,

S = I

∮
loop

r × dl = IπR2n̂, (2.1)

where n̂ points perpendicular to the current loop plane. In general, though, the dipolar magnetic
moment created by a volume current density J is

S = 1
2

∫
Vc

r × J(r) dVc, (2.2)

where Vc is the volume where the current density is present.

Figure 2.1: Magnetic moment S precessing
around the magnetic induction field B due to a
torque T.

If the magnetic moment is under an applied uni-
form magnetic induction field B, a torque appears
given by

T = S × B. (2.3)

Hence the magnetic moment precesses around the
magnetic field B as sketched in Fig. 2.1.

Historically, Maxwell’s equations have been used
to describe classical electromagnetism. In mate-
rials in which the spins are locally aligned, one
can define the macroscopic magnetization field
as M(r) = ∑

S(r)/V , where V is a large vol-
ume from the microscopic point of view, yet small
enough from the macroscopic point of view.169

However, as the technology progressed to smaller
scales, the quantum interactions could no longer

be neglected. In addition to the classical magnetic dipole, there is an intrinsic magnetic moment
of quantum origin associated with the electron spin.57 As such, Maxwell’s equations break down
when approaching the atomistic scale. Unfortunately, solving a system of coupled Schrödinger
equations for each atom of the material is not practical in many cases, as many interesting
phenomena can be found at the nanometric to micrometric scale.

To bridge the gap between classical electromagnetism and spin quantum mechanics, a semiclassical
theory was developed: Micromagnetism.
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2.2 Micromagnetism

Micromagnetism57,58 is the framework that studies magnetic systems at submicrometer length
scales. This length scale is large enough so that one can ignore the fine atomistic structure of
the material and use mean field theory approaches to derive effective fields that act over the
magnetic moments, yet small enough to resolve magnetic structures such as DWs, magnetic
vortices, or (more recently) skyrmions.170 This leads to an effective mesoscopic theory that makes
compatible the exchange energy (from quantum mechanical origin) with Maxwell’s equations.
These effective fields will be responsible for the magnetization distribution evolution inside the
FM and, in most cases, their origin is quantum-mechanical.

In this semiclassical model, one assumes that each atom has a single localized classic magnetic
moment S, which represents the average of the spins of all the nucleons and electrons that
constitute the atom. In a FM, the atoms tend to align due to the exchange interaction (from
quantum origin). If we have a large number of atoms, one may assume the spatial variation of S

to be smooth. Therefore, a continuum description of the magnetic moment can be done using a
continuous magnetization field distribution M(r). Another assumption is that the magnetization
modulus |M(r)| = Ms is constant throughout the sample, where Ms is the saturation magne-
tization. This saturation magnetization, in general, depends on the temperature.57,58 In fact,
ferromagnetism is suppressed near the Curie temperature. Therefore, micromagnetism assumes
that we work under isothermal conditions (constant Ms), far from the Curie temperature.

The consideration of a constant modulus allows to define the magnetization distribution as
M(r) = Msm(r), where m is a dimensionless unit vector determining the magnetization direction.

2.2.1 Brown equation

Within micromagnetism, given an effective field, Heff, one can find the stable magnetization
distributions of the FM by minimizing its Gibbs free energy.57 The particular Gibbs free energy
will depend on the geometry of the system and the considered interactions affecting the FM.

It is possible to find an equation that m(r) must satisfy so that the energy of the sample is an
extremal (maximum or minimum). This equation can be obtained by doing first-order variations
on m of the Gibbs free energy and is commonly referred to as the Brown equation. This vectorial
equation reads,57,58

m(r) × Heff(r) = 0, (2.4)

inside the FM. This vectorial equation has to be solved coupled with the boundary conditions
(BCs) of the system, ensuring they are fulfilled. These BCs are also found using variational
calculus.57,58

The Brown equation can be interpreted as that a stable solution (static in time) is the one with
zero torque [see Eq. (2.3)]. The magnetization at each point of the magnetic sample is aligned
to the effective field Heff for any stable magnetization distribution.

Solving the Brown equation allows to describe quasi-adiabatic hysteresis loops, in which the
system is allowed to completely relax before changing the applied field by a tiny amount. This
is because the relative energy minimum in a given applied field can be found by taking into
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account the magnetization distribution in the previous applied field, and hence the history of the
magnetic sample.

2.2.2 Landau-Lifshitz-Gilbert equation

Even though the Brown equation [Eq. (2.4)] is helpful to study many systems, it is not able to
resolve the time evolution of the magnetic moments. For these cases, the time evolution of the
system is given by the empirical Landau-Lifshitz-Gilbert (LLG) equation. The LLG equation is
a partial differential equation describing the precessional motion of the magnetization m around
an effective field Heff.171–173 The LLG equation (at each point of the FM) reads,

(1 + α2)dm

dt
= −γm × Heff − γα

Ms
m × (m × Heff) + T, (2.5)

where α is the dimensionless Gilbert damping constant, γ the gyromagnetic constant (γ =
2.21 × 105 m A−1 s−1), and T are the external torques that apply to the magnetization, such as
the torques exerted by spin-polarized currents. In the following sections, we will expand on the
effective fields and torques used in this thesis.

Figure 2.2: Magnetization m precessing
around the magnetic field Heff and dampened
due to the material. At a later time, the magne-
tization will have precessed (golden arrow) and
aligned a bit (green arrow) with the effective
field.

From this empirical equation, one can describe
the magnetization distribution’s time evolution.
Since we have assumed that m(r, t) has a constant
modulus, its evolution is restricted to rotations.
This can be seen from the terms on the right-hand
side of Eq. (2.5), which are torques acting on the
magnetization. The first term is the precession
torque and represents the Larmor precession but
on the micromagnetic scale [similar to Eq. (2.3)].
Taking into account only the first term, the mag-
netic moment will infinitely precess around Heff

(similarly as in Fig. 2.1). This is illustrated in
Fig. 2.2 with the golden arrow, which is tangen-
tial to the circular “orbit”. However, inside real
materials, there are energy losses when the mag-
netic moment precesses, damping the precessional
motion. This is the role of the second term in the
right-hand side of Eq. (2.5), where one finds the

Gilbert damping constant α. As the precession is damped, m tends to align, at each point, with
Heff, decreasing the energy in the process. This is illustrated in Fig. 2.2 with the green arrow.
Therefore the evolution of m at a later time would be to precess and align with Heff by some
amount. Apart from internal interaction, Heff also includes the external applied field. Other
external torques will be included in T. In this thesis, we will consider torques coming from
spin-polarized currents.

Therefore, to obtain the dynamics of the magnetization distribution one needs to compute Heff

and T at each point of the magnetization distribution and solve the LLG equation. Furthermore,
as was the case with the Brown equation, the BCs of the system are needed. The effective fields,
torques, and BCs depend on the system under consideration.



2.2. Micromagnetism 11

The focus of this work is on ultrathin skyrmion-hosting ferromagnetic systems. These systems
will consist of a FM with a heavy metal (HM) substrate or multilayers of the aforementioned
structure (see Fig. 2.3). We consider that the FM is in the XY plane.

Note that the damping term in Eq. (2.5), tends to align m to Heff, reducing the energy. As
such the LLG equation can be used to minimize the energy of the system to obtain the static
magnetization distributions of the FM. We can solve Brown’s equation by using a high numerical
damping constant α, so that we minimize the energy of the system faster.174 The additional
rotational precession helps to avoid some numerical instabilities and helps converge to physical
solutions, in many cases, quicker and more reliably than by directly using Eq. (2.4).

2.2.3 Effective Fields and energy density

In the micromagnetic model, the quantum-mechanical effects (interactions responsible for ferro-
magnetism, among others) can be incorporated by transforming each interaction Hamiltonian
into effective fields using the micromagnetic approximation.57,58, 175 To do so, we will start
from the discrete atomistic Hamiltonian of the interaction, H(S), where S are the atomistic
magnetic moments, or spina. Then, by doing the continuous limitb, the discrete Hamiltonian
will be transformed into a continuous volumic energy density ε(m). From the expression for the
magnetic energy density ε(m), the corresponding effective field of the interaction, Heff(m), can
be obtained (by taking the variational derivative) as follows,

ε = −1
2µ0Msm · Heff(m) → Heff = − 1

µ0Ms

δε(m)
δm

, (2.6)

In this thesis, the basic interactions that will be considered are the exchange, the uniaxial
magnetocrystalline anisotropy, and the (DM). Therefore, the Hamiltonian (H) reads,

H = Hex + Han + HDM, (2.7)

where Hex is the Hamiltonian of the exchange interaction, Han is the Hamiltonian of the uniaxial
anisotropy interaction, HDM is the Hamiltonian of the DM interaction.55, 175 The exchange
interaction favors neighboring spins to be parallel to each other. The uniaxial anisotropy favors
the alignment of the atomic spins with an axis. The DM interaction favors neighboring spins to
be perpendicular to each other.

Figure 2.3: Sketch of the geometry of the considered FM in this thesis. An ultrathin FM (light
blue) is placed on top of a HM (orange) substrate. The ultrathin film is in the XY plane.

aFor the sake of readability, we will indistinguishably use “atomistic magnetic moment” and “spin”.
bFor a detailed derivation of each interaction we suggest reading Refs. [57] and [175].
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It has been shown that for infinite ultrathin ferromagnetic systems (as in the sketch of Fig. 2.3)
the classical demagnetizing field, created by the atomic magnetic moments in the FM, can be
considered by just renormalizing the uniaxial anisotropy term.99, 176–178 The main reason is that
despite the long-range nature of the interaction, in ultrathin systems, the demagnetizing field
function shape is almost the same as the anisotropy field one, but opposing it. It has recently
been shown that, in some cases, this may still be valid for finite geometries.179 We have checked
that for the cases presented here, considering the demagnetizing field yields the same results as
considering it normalized in the anisotropy termc.

Exchange interaction

The exchange interaction originates from a quantum mechanical effect, discovered independently
by Werner Heisenberg180 and Paul Dirac181 in 1926. This interaction favors the alignment of
neighboring magnetic moments in the same direction.57, 182, 183 As a simplified picture, when
two fermions are identical, due to the Pauli exclusion principle, they cannot have the same wave
function: the fermions cannot be in the same place if they have the same spin state (↑↑ or ↓↓).
Consequently, the atomic magnetic moments that point in the same direction are further apart.
Since these fermions have the same charge (they repel each other), being spaced apart decreases
the electrostatic energy and the overall energy of the system is reduced.

The atomistic Hamiltonian of this interaction can be written as,57

Hex = −
∑
⟨i,j⟩

Jex,ijSi · Sj , (2.8)

where Jex,ij are the so-called exchange integrals and the sum is taken over all (i, j) pairs
of neighboring atomic magnetic moments S. In an homogeneous and isotropic FM, Jex,ij

are considered constant across the sample (Jex,ij = Jex). After doing the micromagnetic
approximation, the exchange volumic energy density is found to be,

εex = −Aexm · ∇2m, (2.9)

where Aex is the mesoscopic exchange interaction constant, related to Jex, |S|, and the crystal
structure of the FM.174 Usually, Aex is determined experimentally, although it can be computed
from first principle calculations.184 From the energy density, the effective field of the exchange
interaction, Hex

eff, can be obtained as57

Hex
eff = 2Aex

µ0Ms
∇2m. (2.10)

cSee Appendix C.1 for additional details.
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Uniaxial anisotropy

Depending on the crystal structure of a ferromagnetic material, it is energetically favorable to
align the magnetization along certain directions.57, 185 This energy contribution results from the
interaction between the crystal’s magnetic moments with the crystal’s electric field, so it depends
on the particular crystal structure. The favorable directions are usually referred to as easy axes.
These axes are undirected so that a local energy minimum is degenerated as long as the moments
are along the same axis, so that Han(Smin) = Han(−Smin). Depending on the lattice structure,
one or more easy axes may appear. In this thesis, we will only consider systems with uniaxial
anisotropy with the easy axis perpendicular to the ultrathin film (ẑ direction, see Fig. 2.3). The
atomistic Hamiltonian of this interaction can be written as,

Han = −
∑

i

kan,i(Si · ẑ)2, (2.11)

where kan,i is the local anisotropy parameter of the ith atomic spin. This parameter depends
on the crystal structure of the material. For the considered Hamiltonian, the atomic magnetic
moments tend to align along the Z-axis. In an homogeneous and isotropic FM, kan,i are considered
constant across the sample (kan,i = kan). Following the micromagnetic approach, the uniaxial
anisotropy volumic energy density is found to be,

εan = −Kanm
2
z, (2.12)

where Kan is the anisotropy constant, which depends on kan, |S|, and the crystal structure of the
FM.174 The effective field associated with the uniaxial anisotropy, Han

eff, reads

Han
eff = 2Kan

µ0Ms
mzẑ. (2.13)

At this point, we can use the fact that thin ferromagnetic films are considered in this thesis.
As said previously, the classical demagnetizing field can be renormalized inside the uniaxial
anisotropy.99, 176–178 In this way, one obtains an effective anisotropy Keff,an = Kan − 1

2
µ0M

2
s .

For simplicity in this thesis, we will refer to the effective anisotropy as Kan. That is, for all the
presented results, the demagnetizing field is taken into account as an effective anisotropy.

Dzyaloshinskii-Moriya interaction

The DM interaction energetically favors neighboring spins to be oriented perpendicularly. This
can stabilize Néel or Bloch skyrmions (see Fig. 1.3). It is a type of indirect exchange interaction re-
sponsible for the stabilization of most of the skyrmionic states studied in the literature.40,43–46, 186

Two ingredients are necessary: spin-orbit coupling and broken inversion symmetry. Due to spin-
orbit coupling, two magnetic moments interact indirectly through a third one.187, 188 Such
interactions can be induced by two different mechanisms that restrict the systems in which it
is relevant: the interaction between magnetic moments in a bulk lattice with lack of inversion
symmetry189 or between the magnetic moments of a thin film and its HM substrate,190 where
the inversion symmetry is broken at the interface. The latter is known as interfacial DM (iDM)
interaction, and it is the one used in this thesis. An illustration of the iDM interaction is shown
in Fig. 2.4, where two atoms from the FM (light blue) interact through spin-orbit coupling with
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a third atom in the HM (orange), breaking inversion symmetry at the interface between the FM
and the HM.

To better understand this interaction it is helpful to take a look at the DM Hamiltonian between
two interacting spins,

HDM = −
∑
⟨i,j⟩

dDM,ij · (Si × Sj), (2.14)

where dDM,ij depends on the position of the three atoms, being always perpendicular to the plane
defined by them. The summation is taken over all neighboring spin pairs. For the case of iDM
see Fig. 2.4. Using Eq. (2.14) it becomes clear that the interaction energy is minimized when
(Si × Sj) is parallel to dDM,ij , when the directions of the two magnetic moments form an angle
of π/2. This can stabilize Néel or Bloch skyrmions (sketched in Fig. 1.3). In an homogeneous
and isotropic FM, dDM,ij is considered constant across the sample (dDM,ij = dDM).

In the micromagnetic approximation, the volumic energy density of the iDM interaction with an
interface pointing to +ẑ (see Fig. 2.4) reads

εDM = −DDMm · [(∇ · m)ẑ − ∇mz], (2.15)

where DDM is the iDM interaction parameter which depends on dij , |S|, and the crystal structure
of the material.89 The effective field in this case reads,

HDM
eff = 2DDM

µ0Ms
[(∇ · m) ẑ − ∇mz] . (2.16)

Figure 2.4: Sketch of the iDM interaction in a crystal. The interaction is produced at the interface
between a ferromagnetic metal (light blue) and a HM substrate (orange) with a strong spin-orbit
coupling, as described by the 3-site mechanism proposed by Fert and Levy.27

To get a more complete picture of the interplay between all these interactions (exchange, uniaxial
anisotropy, and iDM), consider the following discussion. The anisotropy favors the alignment of
the spins in the z-axis (easy axis), whilst the exchange favors neighboring magnetic moments
to point in the same direction (have the most uniform distribution possible). Therefore, if we
only had these two interactions, the most stable configuration would be to have all the magnetic
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moments pointing in the z-axis direction. If the magnetic moments have to flip along the sample,
then a DWs appears: a smooth (exchange) transition between magnetic moments pointing at
both directions along the easy axis (anisotropy). But if now one considers the iDM interaction
(see Fig. 2.4), which favors orienting neighboring magnetic moments perpendicularly, then the
trade-off between these three interactions could favor a smooth (exchange) magnetization canting
(iDM) which can yield Néel skyrmions metastable.

Zeeman interaction

To all the previous internal energetic interactions of the FM, we can consider also external
interactions. Among them, we consider an externally applied magnetic field, Ha. This interaction
is commonly referred to as the Zeeman interaction. This is the interaction energy between the
magnetic moments of the system with an applied external field. It favors the alignment between
Ha and m.

The atomistic Hamiltonian of this interaction reads,

HZ = −µ0

∑
i

Si · Ha,i, (2.17)

where Ha,i is the applied magnetic field at the ith atom position. In this case, the definition of
the volumic energy density reflects that the interaction is external. Now it reads,

εZ = −µ0Msm · Ha, (2.18)

where the 1/2 factor is dropped. The effective field resulting from the Zeeman interaction, HZ
eff,

can be directly obtained as

HZ
eff = Ha. (2.19)

As a summary of this subsection, the total energy density is

ε = −Aexm · ∇2m −Kanm
2
z − µ0MsHa · m +DDMm · [(∇m) ẑ − ∇mz] , (2.20)

where we have dropped the “effective” subscript for simplicity. Note that ε is a functional of m.

The complete effective field that should be used in the Brown equation [Eq. (2.4)] or LLG
equation [Eq. (2.5)] is given by

Heff = 2Aex

µ0Ms
∇2m + 2K

µ0Ms
mzẑ + Ha + 2D

µ0Ms
[(∇m) ẑ − ∇mz] . (2.21)
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Limitations of the micromagnetic model

In the micromagnetic model the magnetization distribution [M(r)] is described by a continuous
vector field with a constant magnitude Ms. This approximation is valid only if we are working
under isothermal conditions (and far from the Curie temperature) and the magnetization direction
changes on a length scale that is large compared to the distance of two atomic magnetic moments
(the distance between two atoms). By considering the Hamiltonian of the system, one can compute
that the minimum width of a DW in a system with uniaxial anisotropy is given by,58, 174, 191

lmin =
√

Aex

Kan + µ0M2
s /2

, (2.22)

where µ0M
2
s /2 is the maximum anisotropy due to the shape of the sample and Kan is the intrinsic

uniaxial anisotropy. In the case of materials with negligible anisotropy, such as Permalloy, the
magnetization change scale is given by the exchange length

lex =
√

2Aex

µ0M2
s

. (2.23)

Thus, the micromagnetic model cannot predict variations in the magnetization distribution
smaller than the corresponding minimum length (lmin or lex). This is specially relevant in
magnetization reversal processes, in which the magnetization direction of the film is reversed
by applying an external magnetic field or current.192 These processes end up with a point with
opposite magnetization directions, known as magnetization reversal points, at which Bloch points
occur.193, 194

Figure 2.5: Illustrations of some possible Bloch
point configurations with revolution axis vertical to
the FM: (a) hedgehog and (b) spiraling Bloch points.
(a) is reminiscent of a Néel skyrmion and (b) to a
Néel antiskyrmion.195 This Figure is adapted from
Thiavile et al.193

In Fig. 2.5 we illustrate a Bloch point in a
ferromagnetic thin disk where there is some
resemblance to a Néel skyrmion [Fig. 2.5(a)]
or an antiskyrmion,195 where the iDM is anti-
symmetric, [Fig. 2.5(b)]. It can be seen
that near Bloch points, the neighboring mag-
netic moments point in opposite directions.
This has two implications: (i) A continuous
rotation of the magnetization is not possi-
ble at the length scale resolution of micro-
magnetism, lmin; (ii) the magnetization at a
Bloch point vanishes. The former is not com-
patible with the continuum approximation,
whilst the latter is not compatible with the
assumption that the magnetization modulus
is constant across the sample. These types of
points are a singularity in the exchange en-
ergy as two neighboring magnetic moments

with opposite magnetization can be infinitely close to each other.

Despite the theoretical incompatibility, it has been shown that the numerical discretization of the
equations makes it possible to take into account Bloch points, even though the energy associated
with it is highly dependent on the discretization.193 As the distance between magnetic moments
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is not infinitely close to zero, one avoids the singularity in the exchange energy. As an example,
in Ref. [194], they take advantage of this fact to describe a hysteresis loop with magnetization
reversal (with some reasonable physical validity).

2.2.4 Boundary conditions

As we discussed in sections 2.2.1 and 2.2.2, in addition to the effective fields [Eq. (2.21)] the
BCs are needed to solve the Brown [Eq. (2.4)] or LLG [Eq. (2.5)] equations. These BCs will
depend on the system that is being solved. In this thesis two different BCs will be considered:
periodic and Von Neumann.

Periodic BC

When a system is periodic we can simulate only a unit cell by using periodic BCs. These BCs
are also used to simulate an infinite material by using a large enough unit cell. For example, this
BC has proven useful when simulating magnetic structures in infinite materials or infinitely long
racetracks. Its mathematical expression is,

m(r) = m(r + rL), (2.24)

where rL is the vector of the Bravais lattice of the periodic arrangement. In this work, these
BCs are used to solve the LLG equation for an infinite ultrathin film in Ch. 3. More details on
the micromagnetic simulations can be found in Ref. [196].

Von Neumann BC

If the system is finite, then a BC at the edges of the material is needed. This BC depends, in
general, on the interactions of the system and can be obtained by applying variational calculus
to minimize the energy density. In this thesis, where the exchange, iDM, anisotropy, and Zeeman
interactions are considered, the energy density is given by Eq. (2.20). In these systems, one can
find that the magnetization m at the edge must satisfy,55

dm

dn̂

∣∣∣∣
edge

= ξ

2(ẑ × n̂) × m

∣∣∣∣
edge

(2.25)

where n̂ is the vector normal to the edge, ξ = DDMlex/Aex, and ẑ is perpendicular to the ultrathin
FM film (see Fig. 2.3). This results in a tilting in the magnetization at the edges of the FM.

2.2.5 External Torques

Two kinds of torques appear in the LLG equation, Eq.(2.5). The first two terms on the right-
hand side depend on heff which, in turn, depends on m. They are torques produced on the
magnetization by the magnetization itself (and the applied magnetic field). These torques were
discussed in Sec. 2.2.2. However, the last term in Eq. (2.5) allows influencing the magnetization
with external torques. There are several ways in which one can generate a torque acting over the
magnetization by using spin-polarized currents.

We discuss two main types of torques in ultrathin films: the spin-transfer torque and the torque
produced by the spin currents induced due to the spin Hall effect in the HM substrate.
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Spin-transfer torque

Similar to electric currents produced by moving charges, spin currents are produced by moving
spins. The spin current carries angular momentum, which can be transferred to the magnetization,
a phenomenon known as spin-transfer torque (STT). When a spin current flows through a FM
it can interact with the magnetization. This interaction is local and can be very strong. Thus,
by controlling the regions where spin currents flow, precise control over the interaction can be
achieved, which is useful for spintronic devices. This torque was first derived from quantum
mechanics by J.C. Slonckzewski.197 That is why sometimes the LLG equation with these torques
is known as the Landau-Lifshitz-Gilbert-Slonckzewski equation.

STTs have been found to be present in all known magnetic materials, including transition metal
FMs, magnetic semiconductors, and oxide FMs.198 In fact, STTs are not limited to them.
They can also occur in ferrimagnets,199 in antiferromagnets,200,201 and even at the interfaces of
insulating magnetic materials.198

The importance of having a spin-polarized current resides in the following. If the current is not
spin-polarized (ordinary electric currents), then the average spin polarization is < Sp >= 0. If
the angular momentum of these spins is transferred to the magnetization the net interaction
over the magnetic moments of the material cancels out. However, if the current is spin-polarized
(< Sp ≯= 0), then a net angular momentum can be transferred to the magnetization and the
torque becomes relevant.

Figure 2.6: (a) A spin-polarized current enters a FM (blue region). The interaction between the
spin-polarized current, JFM, and the magnetization, m, causes a change in the spin direction of
the outgoing electron compared with the incident electron (orange arrow). The difference in spin
polarization causes adiabatic and non-adiabatic torques on the FM. The blue vertical arrow is the
magnetization of the ferromagnetic layer. (b) Magnetization m precessing around the magnetic
field heff, dampened due to the material and influenced by the adiabatic and non-adiabatic torques.
Figure (a) is adapted from Braatas et al.198

If these spin-polarized currents are applied perpendicular to the ferromagnetic plane, the
torques can be used to trigger the nucleation of skyrmions60,202 or drive skyrmions in nano-
oscillators.202,203 If the current is fed in-plane, then skyrmions can be driven alongside it (e.g.
in skyrmion racetrack memories77). This will be the most relevant one for the discussions in this
dissertation.
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If an in-plane current density JFM = JFMφ̂ (where φ̂ is in the XY plane) is fed directly to the
FM, two types of torques can be found. On the one hand, in the adiabatic approximation the
spins of the current align with the magnetization [see Fig. 2.6(a)], resulting in a reaction torque
over the magnetization given by204

TSTT, ad = −µBPJFM

e
m × [m × (φ̂ · ∇)m] = µBPJFM

e
m × (φ̂ · ∇)m, (2.26)

where e (> 0) is the electron charge, µB is the Bohr magneton, and P the spin-polarization factor
of the current. This torque is usually referred to as adiabatic or damping-like torque, due to its
resemblance to the damping torque in Fig. 2.6(b) (green arrow). On the other hand, when there
is some spatial mistracking of the spins of the conduction electrons and the local magnetization
(non-adiabatic approximation), an extra torque appears, given by205,206

TSTT, non-ad = −βµBPJFM

e
m × (φ̂ · ∇)m = −βm × TSTT, ad, (2.27)

where β is a dimensionless constant that takes into account the non-adiabaticity of the spin
transfer. Note that the latter torque is perpendicular to its adiabatic counterpart. This torque is
usually referred to as non-adiabatic or field-like torque, since the torque resembles the one that
generates the precession on the magnetic moment [golden arrow in Fig. 2.6(b)].

Spin Hall effect Torque

Even though feeding a spin-polarized current through the FM was predicted to be able to drive
magnetic textures in the FM and many early skyrmionic devices designs were based on skyrmion
driving by STT,27,72,81 it was found that it had its drawbacks. For skyrmions to be stable a
large iDM interaction is desired. Due to its interfacial nature, the thicker the FM, the weaker the
interaction will be. Thus, ultrathin ferromagnetic films (thickness ∼ 1 nm) were experimentally
desired. This led to the main drawback: such thin films are hardly conductors. As such, the
heating produced by the flowing currents could be detrimental to the driven structures.

If it is difficult to feed an electric current through the thin FM but a spin current is necessary,
what can be done? Fortunately, there is another possibility. The spin currents can be generated
at the HM substrates (see Fig. 2.3) through the spin Hall effect (SHE).39,207,208 The SHE
originates from the coupling of the charge and spin currents due to spin-orbit interaction.209,210

In practice, it consists in a spin accumulation at the lateral boundaries of a current-carrying
conductor, with each spin direction going to an opposite boundary [see Fig. 2.7]. The induced
spin current can transfer its carried angular momenta, producing a torque over the magnetization,
the SHE torque. Another relevant advantage over the traditional STT is the efficiency of the
induced torques.
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Figure 2.7: Schematics of the SHE and the torques it produces. An electron current, JHM, is
fed into the HM and is converted into a transverse spin current by spin-orbit scattering. The spin
current JS leads to a spin accumulation at the HM/FM interface that diffuses across the interface
into the FM and exerts torques. The spin current then interacts with the magnetic moment in
the FM, producing two torques over it. These torques are analogous to the ones in the STT case
shown in Fig. 2.6(b).

In ultrathin films, the HM substrate has ideally no restrictions on the thickness, as the iDM
interaction is not weakened. In multilayered systems, the HMs are still thick enough so that
major heating problems can be avoided. Hence an electric current JHM = JHMη̂ (where η̂ is
in the XY plane) can flow through the much thicker HM substrate. Due to the SHE in the
HM, an accumulation of spin-polarized electrons appears on the interface, being polarized in the
σ̂ = ẑ × η̂ direction. These spin-polarized electrons can then diffuse into the FM generating two
torques. The damping-like (adiabatic) torque is given by

TSHE, ad = −µBθHJHM

etf
m × (m × σ̂), (2.28)

where tf is the thickness of the FM and θH is the spin Hall angle factor. θH represents the ratio
between the electronic current density through the HM and the spin-polarized current density
diffusing through the FM. An additional field-like (non-adiabatic) torque can be found

TSHE, non-ad = −ν µBθHJHM

etf
m × σ̂ = −νm × TSHE, ad, (2.29)

where ν is a dimensionless parameter indicating the strength of TSHE, non-ad with respect to
TSHE, ad. These torques can be used to locally modify the magnetic moments, as depicted in Fig.
2.7(b). In practice, the SHE torques have allowed skyrmions to reach velocities on the order of
100 m/s experimentally,211 as was theoretically predicted.
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For the sake of completeness, and although we will not use them here, it is worth mentioning that
there are other torques that are relevant in the field of spintronics.198 Among them, we highlight
an additional interfacial torque, found in multilayered systems, that was recently proposed to
drive magnetic structures.212–214 It is found that at a skyrmion or other magnetic texture,
spin accumulation may be generated.212 This spin accumulation may diffuse in-between layers
producing a vertical spin current that affects the magnetization dynamics.

2.2.6 Rigid model

Magnetic skyrmions have been found to be very stable from both a theoretical and experimental
point of view. Theoretically, it has been shown that in an ideal case (infinite ferromagnetic
sample) the energy barrier for a skyrmion to be destroyed diverges in the micromagnetic
formalism. In reality, though, the barrier is large enough so that skyrmions are very stable, even
at room temperature.40,64, 164,215–222 It has been shown experimentally and theoretically by
micromagnetic simulations that, although deformable, skyrmions conserve their global shape
except in some extreme cases, where it could lead to skyrmion annihilation.42,211,223 In most
cases, to consider the skyrmion as a rigid magnetization distribution is reasonable.

This stability against annihilation and large deformations enables to study the skyrmion dynamics
as a point-like quasiparticle. This is the rigid approximation, in which we consider the magnetic
structure as a rigid structure (without internal degrees of freedom): we assume that during
its motion it will not be deformed. Within this approximation, the skyrmion dynamics are
characterized by the generalized coordinates rsk and Vsk (Vsk = ṙsk), the skyrmion geometric
center and its velocity, respectively [see Fig. 2.8(a)]. In the case of an ultrathin film, the motion
of the skyrmion is restricted to the XY plane.

Figure 2.8: (a) Illustration of the vectors rsk,Vsk, and F. The skyrmion is propelled at an angle
θsk with respect to the incident force F. The colors represent the z-component of the magnetization
which in the skyrmion goes from pointing in ẑ (red), to the ferromagnetic background pointing in
−ẑ (blue), going through zero out-of-plane magnetization (white). The skyrmion experiments a
force F that drives it at a velocity Vsk with an angle θsk with respect to it. (b) Illustration of an
axisymmetric Néel skyrmion as could be found in (a). The arrows represent the local magnetization
along the radius.
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The equation that describes the skyrmion dynamics, within this approximation, is the Thiele
equation. To derive this equation one assumes that m(r) = m0[r − rsk(t)], where m0 represents
the magnetization distribution centered at rsk = 0. Hence we are assuming that the whole
magnetization moves rigidly with rsk(t). Starting from the LLG equation [Eq. (2.5)] one can
derive the Thiele equation by following Ref. [59], which readsd,

(G −MsαD)Vsk + F = 0, (2.30)

where G and D are the gyrotropic and dissipative tensors, respectively. The components of these
tensors are given by,

Guv = M3
s

∫
V

m0 ·
(
∂m0

∂u
× ∂m0

∂v

)
dV, (2.31)

Duv = M2
s

∫
V

∂m0

∂u
· ∂m0

∂v
dV. (2.32)

where u, v are either x or y. G and D depend on the magnetization distribution of the skyrmion.
If one considers ideal, radially symmetric Néel skyrmions [see Fig. 2.8(b)] of radius Rsk whose
magnetization is given by

mρ(ρ) = 2ρRsk

R2
sk + ρ2

, (2.33)

mz(ρ) = R2
sk − ρ2

R2
sk + ρ2

, (2.34)

where the core points to +ẑ while the ferromagnetic background points to −ẑ when the radial

coordinate ρ ≫ Rsk, the tensors read G =
(

0 G
−G 0

)
and D =

(
D 0
0 D

)
, where G,D > 0.

F is the "force" term. It is called force in the literature without really being a force to do an
analogy with Newtonian dynamics. F contains the effects on the skyrmion dynamics caused by
the external torques in the LLG equation and all the external agents that the skyrmion may
encounter, such as defects in the materials,87–90,90–101 applied magnetic field gradients,68, 127–129

temperature gradients,130–132 the material edges,120–124 or other magnetic structures,109, 119

among others.75,77,224–227 Therefore, F depends on the external agents considered.

Before presenting the external torques that we will consider (STTs and SHE torques), the Thiele
equation can already give some interesting general properties of the rigid skyrmion dynamics.
Eq. (2.30) is a first-order ordinary differential equation, whose solution gives the trajectory of
the skyrmion rsk(t). In Thiele’s equation, the accelerations are instantaneous and only velocities
are relevant, as rigid skyrmions are assumed to have no inertia. For example, if one considers a
spin current flowing in the FM, the torque generated would drive the skyrmion through the F

term in Eq. (2.30). When the current is switched off, due to the lack of inertia, the skyrmion
instantly stops. Some generalizations have been done to the Thiele equation that lead to inertia
in skyrmion dynamics, either from skyrmion deformation or others.228–232

dSee Appendix A.1 for an example of the derivation.
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In addition to the lack of inertia, there is another interesting property of rigid skyrmion dynamics:
the “forces” it receives are Magnus-like torques. The skyrmion motion is not completely parallel
to the “force” that is driving it. The angle between the skyrmion motion and the driving torque
is known as the skyrmion Hall angle, θsk.30,75,77,94,233,234 For example, in the case of an applied
spin current, it would be the angle between the incident current and Vsk. This can be seen in
general for an arbitrary F. From Eq. (2.30) one finds that

Vsk = −(G −MsαD)−1F, (2.35)

where the skyrmion velocity is the force-term F rescaled and rotated by the matrix (G−MsαD)−1.
Since the skyrmion is considered to be rigid (it is not deformed in time), the matrices are constant
in time and so is the rotation. The angle of rotation is θsk. This is illustrated in Fig. 2.8(a),
where a skyrmion receiving a force in the X-axis is propelled at an angle θsk, thus having velocity
components in both axes.

It is convenient to normalize the Thiele equation [Eq. (2.30)] and use non-dimensional variables
to describe the system. To do so we normalize the length to the exchange length lex and the
times to t0 = (γMs)−1. Regarding the tensors [Eqs. (2.31) and (2.32)] we use the dimensionless
variables G = G/(M3

s tf ) and D = D/(M2
s tf ). For an ideal radially symmetric Néel skyrmion

[Eqs. (2.33) and (2.34)], these variables are found to be G = D = 4π. Another important
magnitude that is usually used to characterize the skyrmionic structure in thin films is the
skyrmion number, Nsk. For a axisymmetric magnetic skyrmion Nsk = G/4π. One can readily
see that for an ideal skyrmion [Eqs. (2.33) and (2.34)], Nsk = 1 (−1 if the skyrmion polarity
is reversed). The importance of this number is that it can be viewed as the number of times
the magnetization distribution winds around the unit sphere. Hence in the case of an ideal
skyrmion, the whole magnetization distribution completely wraps the sphere once. In this sense,
the skyrmions are said to be topologically protected if Nsk is an integer.13,234–236 This means
that the energy barrier to destroy them should be expected to be rather largee. In fact, a Bloch
point must be formed to destroy it, which in micromagnetism leads to an infinite energy barrier.
In contrast, when the ferromagnetic sample is finite the skyrmion may see the edges of the
material producing two effects: the magnetization would be tilted [Von-Neumann BCs given by
Eq. (2.25)] and the skyrmion number will, in general, not be an integer. The latter, if following
the topological stability arguments, can be attributed to the fact that an additional transition
path for the skyrmion annihilation appears: it can unwind through the boundaries of the sample.
This tilting mechanism has been found to be prevalent under strong confinement (i.e. skyrmion
size on the order of the FM size).41, 148

As with the LLG equation [Eq. (2.5)], to solve the Thiele equation [Eq. (2.30)] we need to know
the torques that act over the skyrmion. To characterize these torques we decided to separate
them into driving torques, produced by a spin-polarized current (STT and SHE torque), and
torques produced by external agents, such as defects in the material.87

eNote that, strictly speaking, this mathematical topological protection does not imply an infinite energy barrier
in physical systems.
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Driving torques

Following the methodology used to derive the Thiele equation59 [Eq. (2.30)] from the LLG
equation [Eq. (2.5)], one can derivef the terms corresponding to the STTs [Eqs. (2.26) and
(2.27)] or SHE torques [Eqs. (2.28) and (2.29)]. An example of a system with both fed currents
is shown in Fig. 2.9. The corresponding force term for each torque is given by,77

FSTT = −(G −MsβD)VFM, (2.36)

FSHE = Ms(B −MsνY)σHM, (2.37)

where the elements of the B and Y tensors are

Buv = M2
s

tf

∫
V

(
∂m0

∂u
× m0

)
v

dV, (2.38)

Uuv = Ms

tf

∫
V

∂m0,v

∂u
dV, (2.39)

with m0 representing the centered magnetization distribution, and u and v being either x or y
(for our case). V is the ferromagnetic sample volume (where there is magnetization distribution).
These matrices can be further simplified in the case of a radially symmetric Néel skyrmion (as

done previously). In fact one obtains that B =
(

0 −B
B 0

)
and U =

(
U 0
0 U

)
.

The velocity, VFM, is

VFM = −µBP

eMs
JFM, (2.40)

and σHM is

σHM = −µBθH

eMs
(ẑ × JHM) = (ẑ × VHM) , (2.41)

where we have defined the driving velocity, VHM = −µBθH

eMs
JHM, for comparison with the STT

case [Eq. (2.40)]. One can see that the SHE torque is perpendicular to the fed current [Eq.
(2.37)]. Note that the VFM,HM variables have units of velocity. As such, given the normalization
of lengths by lex and time by (γMs)−1 they can be normalized as vFM,HM = VFM,HM/(γMslex).

f See Appendix A.1 for an example of the derivation.
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Figure 2.9: Sketch of a possible configuration for the currents. JFM and JHM are the current
densities flowing through the FM (light blue region) and the HM (orange region), respectively.
These current densities are associated with a spin current that interacts with the skyrmion (red-
white-blue circular structure) stabilized in the FM.

As a final remark, when using the rigid approximation it can be shown that an adequate rescaling
and rotation of the driving torques effectively produces the same dynamics on the skyrmion (see
Appendix A.2 for a discussion).

External torques

Taking into account the effects of external agents such as defects in the material is not straight-
forward. The external force terms can be computed as (see Appendix A.1),

(Fext)u = −γM3
s

∫
V

Hext · ∂m0

∂u
dV, (2.42)

where u is x or y, V is the FM sample volume, and hext is the normalized field generated by
the external element. However, a key question arises: what is the hext generated by an external
element such as a material edge, a defect in the material, or another skyrmion? As the number
of possible external agents is gargantuan, we restrict ourselves to studying the case of material
defects generated from a local variation of iDM. In Ch. 3 we shall develop a model to study
these types of point defects and generalize it to take into account extended defects in space (e.g.
dislocations in the material).
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2.2.7 Structure stability

A key problem of fundamental and applied interest is the stability of magnetic textures. For
example, skyrmions (being a metastable state) have a finite energy barrier over which thermal
fluctuations can lead to their creation/annihilation. In fact, understanding the possible paths to
annihilation and the rate at which they occur is crucial to design feasible skyrmionic devices.

In material systems, most approaches combine elastic band methods237–239 with statistics to
determine the transition rates. Elastic band methods, determine the likely paths and saddle
points along which a transition occurs, also obtaining the energy barrier for the transition. They
are referred to as elastic band methods because the main idea is to use a “band” between two
local minimum states and minimize the energy perpendicular to it, allowing it to “stretch” along
the phase space. These elastic band methods are combined with a linearization near the minimum
and saddle points, to determine the excitation spectrum of the initial state (minimum energy)
and the saddle point. The theory that allows to combine both approaches to obtain the transition
rates (and hence the lifetime) of the structure is called transition state theory.240

Figure 2.10: (a) Sketch of an atomic magnetic moment embedded in a unit sphere. s can be
described by the polar and azimuthal angles, θ and φ respectively. (b) Three neighboring atomic
moments can be taken into account as the direct product of the unit spheres.

One drawback of elastic band methods is that the constraints on the system (for example |S|
constant across the sample) are difficult to take into account, slowing convergence to a solution
or even preventing it altogether.156 In magnetic systems, though, one can consider the unitary
magnetic moment direction ŝ = S/|S|. This constraint can be taken into account by projecting
the magnetic moment to the unit sphere. This is sketched in Fig. 2.10(a), where ŝ can be
described by the polar (θ) and azimuthal (φ) angles. When N moments are taken into account,
this allows taking the direct product of the moments instead of considering the 3N dimensional
Euclidean space with N constraints, as depicted in Fig. 2.10(b) for N = 3. In magnetic systems,
it was shown that the GNEB method could be used to obtain the MEPs and energy barriers
faster and more robustly than using conventional elastic band methods.156 A MEP is found
when the saddle point is a maximum along the transition path and minimum with respect to the
other directions in the phase space. See Fig. 2.11 for an example of the energy landscape in the
θ-φ phase-space of a single atomic magnetic moment.
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In the literature, combining the GNEB method with HTST has allowed studying the thermal
stability of skyrmions.148, 158,241,242 The MEPs and energy barriers (∆E) obtained with the
GNEB method for a transition between states can be used to compute the transition rate kHTST.
The HTST predicts an Arrhenius law for the lifetime,155

k−1
HTST = τHTST = τ0 exp

(∆E
kBT

)
, (2.43)

where τHTST is the mean lifetime, kB is the Boltzmann constant, and T the temperature. The
pre-exponential factor τ0 is the attempt frequency which takes into account the reaction velocity
and the entropic effects. To accurately assess small skyrmion (< 10 nm) lifetimes it has been
shown that the pre-exponential factor may dominate over the exponential, changing by up to
two orders of magnitude with the applied field, due to entropic effects in the skyrmion collapse
mechanism.148 Hence, both ∆E and τ0 have to be numerically determined to accurately assess
the magnetic structure’s lifetime.

GNEB

To perform GNEB or HTST calculations, the energy of the system must be known. In the
atomistic spin model, the magnetic moments are localized at atom positions and their magnitude
(|S|) is assumed to be constant. The commonly used Hamiltonian is the Extended Heisenberg
Hamiltonian (EHH),

H = −
∑

i

∑
⟨i,j⟩

Jex,ijSi · Sj −
∑

i

∑
⟨i,j⟩

dDM,ij · (Si × Sj)

−
∑

i

kan,i(ûk · Sj)2 − µ0

∑
i

Si · Ha − µ0

∑
i

∑
j ̸=i

Si · H
(i)
d,j , (2.44)

where Si is the spin at site i, ûk defines the uniaxial anisotropy easy-axis, and ⟨i, j⟩ means that
the summation is done over the first neighbors of site i. The last term on the right-hand side is
the magnetostatic energy. The other terms were previously discussed in Sec. 2.2.2.

Given the Hamiltonian, we want to see how to transition from an initial state A to a final state
B (e.g. from the uniform state to the skyrmion state). The GNEB method can be used to find
such transitions, giving an energetically favorable path, the MEP of the transition. This method
can be thought of as having an initial rough estimate of the transition path and then, using the
Hamiltonian, one can move through the phase space until a first-order saddle point is reached.
These kinds of saddle points are minimum in all degrees of freedom except along the transition
path, defining thus an MEP of the system. Unfortunately, it may be possible that there is more
than one MEP for a given transition. As such, the selection of an initial rough estimate can
determine the MEP found as it usually gives the closest (in the phase-space) first-order saddle
point. This means that the transition found may not be the most favorable one. But, all in
all, it is still helpful to give good estimates of the transition paths and the magnetic structure’s
lifetime in most cases. Note that a displacement along the transition path is a discrete analog
of a reparametrization of the continuous path itself, so only transverse displacements of the
path should be included.243 Other approaches have been proposed to avoid some of the GNEB
method shortcomings. See Appendix B.2 for more information on them.
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In practice, the GNEB method can be described by the following algorithm:156

1. The initial (A) and final (B) stable states (energy minima) are connected by a discrete
chain of states, called images. This path is an initial guess (e.g. a uniform rotation of the
spins) of the transition path and, hopefully, is close to the real one. The initial path is
depicted by the black line in Fig. 2.11. Each image (dots in the figure) is one realization
of a possible spin configuration along the connecting path. The configuration space is
embedded into a unit sphere to ensure the magnetic moment magnitude is conserved [see
Fig. 2.10(a)].

2. The configuration space is written as a direct product of all the magnetic moments projected
onto spheres (θ, φ) [see Fig. 2.10(b)].

3. From the energy model [Eq. (2.44)], the energy gradient is evaluated and a force over each
image k (dots in Fig. 2.11) can be obtained, F

mag
k = −∇Hk, where the energy gradient

is taken over each atomic spin. For clarity, this can be rewritten as −∂ŝi
Hk = Heff,ki,

where Heff,ki is the effective field acting over the i-th spin in image k. Only the component
perpendicular to the current approximation to the transition path will be considered.

4. To ensure a somewhat uniform distribution of images along the path and not lose “resolution”
in highly curved regions (i.e near the saddle point), an additional force is considered over
each (k) image: a spring-like force between adjacent images, F

spring
k .156 This force is

considered along the transition path.

5. A quasi-Newtonian relaxation method can be used,156 solving the dynamics of each spin
for each image given the total force obtained FGNEB

k = −(∇Hk)n̂ + F
spring
k , where n̂ is a

unit vector perpendicular to the current approximation of the transition path. This allows
obtaining a new set of images with lower energy and (hopefully) closer to an MEP of the
system.

6. With the new set of images, we repeat steps 3 to 5 until convergenceg.

gOn convergence, the hessian of the system can be evaluated to ensure it indeed is an MEP.156 To obtain a
first-order saddle point, only one eigenvalue must be positive. Then, an additional interpolation method along the
path can be used to obtain a better estimation of the saddle point. See Appendix of Ref. [156] for additional
details.
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Figure 2.11: An illustration of a GNEB calculation
of an MEP for a single spin system. The positions
of the images are shown with filled circles. The ini-
tial path was chosen to lie along the short geodesic
path (linear path in the θ-φ phase-space) between
the energy minima (indicated in blue). It turned
out to lie near a maximum (indicated in red). The
converged path is shown in pink. One intermediate
configuration of the path is also shown in light pink.
The saddle point is marked with a dark blue cross.
Eight images were used in the illustration (dots along
the path). The Hamiltonian of the spin system is
given in Appendix B.1.

To illustrate the results that can be obtained
with the GNEB algorithm a simple exam-
ple will be studied, where two minima and
several maxima are considered. Consider a
single atomistic spin that has two configura-
tions that are local energy minima (blue re-
gions in Fig. 2.11). We want to compute the
transition path between those states, given a
complex energy landscape with several max-
ima (red regions in Fig. 2.11). The energy
surface used in this example can be found
in Appendix B.1. Following the GNEB algo-
rithm, we start by initializing a rough esti-
mate of the transition path along the short-
est geodesic path connecting both minima:
a linear interpolation in the θ-φ phase-space.
The initial geodesic path is depicted in black,
with the dots being the 8 images considered,
for this example, along the path. This path
is obviously not an optimal one since it lies
close to an energy maximum (red and orange
regions). The images are then iteratively
brought closer to the MEP (pink dots) with
the GNEB method, by minimizing the en-
ergy perpendicular to the current transition
path (step 5).

In this thesis, the GNEB method, within
micromagnetism, is used in Ch. 4. The same
approach is used, but the effective field Heff

comes from the micromagnetic Hamiltonian
[Eq. (2.20)] instead of the EHH [Eq (2.44)]. Thus we use Eq. (2.21) for the effective fields when
minimizing the energy, in step 5 of the algorithm.

HTST

Once the saddle point of the MEP is found using the GNEB method, one can use HTST to find
the transition rates kHTST between two local energy minima. From the saddle point, given a
system with N spins (2N configuration space), one can define a 2N − 1 dividing surface that
divides the phase space into two parts, one for each minimum. The transition rate kHTST is given
by the flux of states through that dividing surface. By using the Boltzmann distribution function
for occupied states and doing harmonic expansions near the minimum and saddle point, one
obtains that the transition rate follows an Arrhenius law [Eq. (2.43)] and the pre-exponential
factor, τ−1

0 , can be obtained.155

Note that the transition rates will not be computed as the micromagnetic approach’s ability to
predict some of the creation/annihilation mechanisms, such as Bloch point formation, is a bit
controversial. Therefore, we will only use the GNEB predictions to check whether our results are
coherent and assume that the transitions follow an Arrhenius law [Eq. (2.43)], dominated by the
exponential factor as is the case when the annihilation is mediated through the material edges.148
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2.3 Superconductivity

In diamagnets, the magnetization and the magnetic field have opposite directions. These materials
expel magnetic field lines. In the case of a perfect diamagnet, the magnetic induction field
B = 0 inside it. One material usually considered as a perfect diamagnet is an ideal SC. Strictly
speaking, in a SC B can enter the material over a superficial region of thickness λL, the London
penetration depth. This state is known as the Meissner state.244

Superconductivity is a thermodynamic state found in some materials that, when cooled below a
certain critical temperature Tc, exhibit two properties simultaneously: zero electrical resistivity
and they present diamagnetic behavior, excluding and expelling (Meissner effect) the magnetic
induction field from their interior.

SCs can be classified in many ways. A common classification, motivated by the historical
progression, is depending on their critical temperature. The first discovered superconducting
materials were metals such as mercury, lead or niobium, whose critical temperature is below 10 K.
Other subsequent alloys reached higher temperatures, but not higher than 30 K. Due to the low
critical temperatures, these materials are known as low-temperature SCs. A huge breakthrough
was made in 1986 when J.G. Bednorz and K.A. Müller245 found superconductivity in cuprate
oxides. The main relevance was that the critical temperatures in these compounds were much
higher. For example, YBaCuO-123 has a Tc = 93 K246 and BiSrCaCuO-1112 a Tc = 105 K.247

These temperatures are above the boiling temperature of liquid nitrogen (77 K), allowing them
to be cooled easier than previous SCs. These are known as high-temperature SCs.

Figure 2.12: Sketch of a superconducting vortex that has penetrated a SC sample (green region)
under an applied magnetic induction field, B. The Cooper pair density, ns, decays over distances
on the order of ξGL, defining the vortex core (red cylinder). The vortex core allows magnetic flux
(H) to penetrate the sample over a distance λL. Around the vortex one finds circulating currents
denoted by the gray region.

Several theories have attempted to explain superconductivity. Microscopically, the superconduct-
ing state can be explained by the Bardeen, Cooper, and Schrieffer (BCS) theory,248 through the
appearance of Cooper pairs. These bosonic quasiparticles consist of electron pairs coupled via
phonon interactions. The presence of Cooper pairs becomes energetically favorable below Tc.
Another important advance was the Ginzburg-Landau theory.249 This theory uses a complex
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phase parameter ψ, related to the Cooper pair density (ns = ψψ∗), that explains the phenomena
taking place near the thermodynamic second order phase transitions (near Tc). It was found
that ψ varies over distances on the order of ξGL, the coherence length. In 1957, Abrikosov
found a particular solution of the Ginzburg-Landau equations250 which showed that a SC with
κGL ≡ λL/ξGL > 1/

√
2, allowed magnetic flux to penetrate the SC in the form of vortices. These

vortices, composed of a current circulating around a non-superconducting core, are distributed in
a triangular lattice inside the SC. In Fig. 2.12 we show an illustration of a vortex in a SC. The
order parameter decays over distances on the order of ξGL whilst the magnetic field decays over
distances on the order of λL. These findings by Abrikosov provide another type of classification
of SCs by their magnetic properties in type-I (κGL < 1/

√
2) and type-II (κGL > 1/

√
2) SCs. In

type-I SCs, when a magnetic field is applied below a certain critical temperature Tc and below a
critical field Hc, shielding currents appear in the surface of the SC. Usually, these currents extend
over a region of thickness λL, to make B = 0 inside the SC. In this shell of flowing currents, B

decreases towards the interior of the SC, partially penetrating the sample. The Meissner state
is explained by the London theory.251 According to this theory, the fields and currents decay,
from the SC surface towards its interior, over distances of the order of λL. A perfect diamagnet
(complete field expulsion) is found when λL = 0, with the currents diverging in the SC surface.
For fields above Hc, the superconducting Cooper pairs start to break down and superconductivity
is lost.

In contrast, type-II SCs exhibit richer phenomenology. For an applied field smaller than a
critical field Hc,1 one finds the Meissner state. For fields above Hc,1 but below the second
critical field Hc,2, partial flux penetration occurs inside the SC, forming the mixed state. In the
mixed state, usually, each vortex carries a single flux quantum (Φ0 = 2πℏ/2e). For higher fields,
superconductivity is suppressed. In the mixed state, the vortices can be moved by Lorentz forces
produced by transport currents (Jt) flowing in the SC, for example. This movement dissipates
energy and thus resistive losses appear. This can be explained as the motion of the vortex implies
a local magnetic flux variation, which in turn produces an induced electrical field E. As there are
transport currents flowing in the SC, ohmic losses (Jt · E) appear. However, the vortex motion
can be prevented with material impurities and defects which may pin them. Actually, defects are
artificially introduced at will to produce this pinning effect, reducing the ohmic losses252 or even
allowing higher transport currents before superconductivity is suppressed.

In Ch. 4, the London model will be used to describe a SC. As such, a special focus on this model
is given below.

2.3.1 London model

The London model is based on the assumptions of free moving particles with charge e∗, mass
m∗, volume density ns, and zero trapped flux far from the SC surface (flux penetrates in a shell
of the order of λL). The London equation relates the magnetic induction field B and the volume
current density Js inside the SC as,

B = −µ0∇ × (λ2
LJs), (2.45)

with

µ0λ
2
L = m∗

ns(e∗)2
. (2.46)
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Note that in an anisotropic and inhomogeneous superconducting material, λL is a position-
dependent tensor. For the case considered in this thesis, the material will be considered isotropic
and homogeneous so that λL is a constant. Since the discovery of the Cooper pairs, it is known
that e∗ = 2e and m∗ = 2me, with e (>0) being the electron charge and me its mass. This theory
predicts that the fields decay within the SC.

It should be noted that assuming a uniform ns is equivalent to considering ξGL ≪ λL, and
therefore not taking into account the spatial variations of the order parameter.

Superconducting slab

To illustrate some of the general trends derived from the London equation, we first consider the
simple case of a homogeneous and isotropic SC of width W in the X direction and infinite in
the YZ plane (see Fig. 2.13 for a sketch). Due to the symmetry, this problem is mathematically
one-dimensional.

Figure 2.13: Sketch of a semi-infinite slab in the Meissner state under an applied field Ha. (a)
The magnetic induction field (blue lines) exponentially decays, penetrating the SC a depth on the
order of λL. (b) The superconducting currents (red lines) shield the applied field.

Consider an applied uniform magnetic field Ha = Haẑ. The London equation can be solved and
the field distribution inside the SC can be found to be

Hz(x) = Ha cosh (x/λL)
cosh (W/2λL) , (2.47)

and Ha outside it. From Ampere’s law, the volume current density is found to be

Js,y(x) = − Ha sinh (x/λL)
λL cosh (W/2λL) . (2.48)
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When W ≫ λL, the magnetic field and current density approximately decay exponentially inside
the SC, sketched in Figs. 2.13(a) and 2.13(b) respectively. The maximum value of the current is
found to be,

J0,y = Ha

λL cosh (W/2λL) , (2.49)

located at the surface of the SC. The induced volume current density flows in the opposite
direction at each end of the SC [Eq. (2.48)].

Fluxoid inclusion

The slab geometry considered above is a simply connected one. When the superconducting
sample presents non-superconducting regions (i.e. holes or the vortex core), for any surface S
whose contour δS runs along the interior of the SC, the flux threading it is

Φ =
∫

S
B · n̂dS + µ0λL

∮
δS

Js · dl = Nf Φ0, (2.50)

This flux is always an integer multiple, Nf , of the fluxoid quantum Φ0. In particular, when
a sample that presents a non-superconducting region is cooled below Tc at zero applied field,
Nf = 0. This is known as a Zero-Field-Cooled (ZFC) SC. In contrast, when the superconducting
transition is done under some external applied field, a multiple of fluxoids can thread the
non-superconducting region, leading to Nf ̸= 0. This is known as a Field-Cooled (FC) SC.

In this way, the London model can be expanded to take into account superconducting vortices.253

They are approximated as the loss of superconductivity (normal metal) at a region inside the
SC, where flux penetrates. In that case, a vortex in position rv can be added into the London
equation [Eq. (2.45)] as follows,

B + µ0λ
2
L∇ × Js = Nf Φ0δ2(r − rv). (2.51)

This directly handles the flux quantization as the vortex can have a multiple of the flux quanta
Φ0. Usually, if there are no holes in the SC, each vortex carries a single flux quantum. This
equation portrays each vortex as a filament of flux at a point rv, thus the field and supercurrents
diverge at the vortex center.
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Ultrathin

In this dissertation, ultrathin geometry is considered. This geometry is found when the thickness
(ts) is much smaller than the size of the SC. In this case, the currents can be considered to flow
homogeneously across its thickness, so that one can define the sheet-current density Ks = Jsts.
Furthermore, in this geometry, the vortices appear in the form of Pearl vortices254 (PV). Hence
Eq. (2.45) reads,

B + µ0Λ
2 ∇ × Ks = Nf Φ0δ2(r − rv), (2.52)

with Λ = 2λ2
L/ts being the screening length. This equation can be rewritten as a function of the

magnetic vector potential A,255

Ks + 2
µ0Λ∇ × A = AΦ, (2.53)

where AΦ is the magnetic vector potential associated with the flux that penetrated the sample.
This term is due to the gradient of the phase of the complex superconducting order parameter Ψ.
It must be noted that this term acts as the corresponding boundary conditions necessary in Eq.
(2.45).

To exemplify the current profiles obtained in thin films, we show in Fig. 2.14(a) some of the
obtained sheet-current profiles for a thin superconducting infinitely long strip of width 2W . The
z component of the total magnetic field is shown in Fig. 2.14(b). As Λ → 0, the currents are
more abrupt near the edge whilst the field penetrates less inside the sample.

Figure 2.14: The current (a) and field (b) profiles of a thin superconducting strip of width 2W ,
with Λ/W = 0, 0.05, 0.2 and 0.8 under a perpendicular applied field Ha. As Λ → 0, the currents
are more abrupt near the edge whilst the field penetrates less inside the sample. The vertical
dashed lines indicate the edges of the material. Figure adapted from Chen et al.256



Chapter 3

Skyrmion-Defect interaction

The object of this thesis is the study of skyrmions. All the concepts introduced in Ch. 2 are
going to be used henceforward. In particular, in this chapter, we will study the skyrmion-defect
interaction when driven under spin-polarized currents. In skyrmion-hosting magnetic materials,
defects or impurities may influence both stability (statics) and motion (dynamics) of skyrmions.
As such, the study of the skyrmion-defect interaction and its effects is paramount to bringing to
reality feasible skyrmionic devices.

One of the most prominent potential applications of skyrmions is the use of skyrmionic
racetrack memories257 to store and transport information based on the basic one-skyrmion
one-bit principle15,27,28,60, 118 or in multi-lane racetracks to code information on the lane the
skyrmion is on.86 Racetracks are designed to drive skyrmions along them via different mecha-
nisms.85, 128, 129, 131, 133, 134 One of the most promising is the use of the spin-orbit torque produced
by a spin-polarized current fed into the system.77 In racetrack systems, the edges of the fer-
romagnetic material create a confining potential that helps suppress the skyrmion Hall angle,
below a threshold current density. Above that threshold, the skyrmion would escape through the
boundaries. In skyrmionic racetrack memories, it is very important to characterize the dynamics
of the skyrmions to ensure proper functionality. Among the different agents that influence
skyrmion motion, one is the presence of defects (or granularity), which are hardly avoidable in
real materials. It is known that defects in the material (e.g. local variations of some magnetic
parameters) have a drastic effect on the behavior of skyrmions:87 modifying their trajectories or,
in the most extreme cases, pinning or even destroying them. As such, it is key to understand the
influence of defects on a skyrmion.

We start this chapter by giving a brief summary of the state-of-the-art related to the skyrmion-
defect interaction.Then, a theoretical model within Thiele’s rigid approximation (see Sec. 2.2.6)
will be presented. Starting from the force exerted by a local defect, it will allow us to consider
the interaction of the skyrmion with defects extended in space. The model provides an ordinary
differential equation for evaluating the skyrmion trajectories. From it, the threshold driving
current under which the skyrmion may undergo pinning and its pinning position can be computed
as a function of the system parameters.

Different arrangements of these extended defects will be studied, making a special focus on the
case when the defects are extended along a line (line defects). First, we will start by studying
the interaction of a skyrmion with a single (finite and infinite) line defect and characterize its
dynamics. Then, different arrangements of these line defects will be considered, such as a cross
or a periodic grid. The validity of the presented approach will be contrasted by solving the
dynamics using the LLG equation, where the skyrmion is allowed to deform. Some possible
applications for the presented arrangements of defects will be discussed.

35
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3.1 A brief topical review

Several studies have focused on characterizing the skyrmion-defect interaction, both theoretically
and experimentally (see Refs. [87] and [258] for a review). To better explain some of the
theoretical works made on this topic, a distinction depending on the scale is made. At the most
fundamental level, one works at the atomistic scale, where magnetic interactions are studied
by means of first principles. At the opposite end of the scale, one works at the mesoscopic
scale where the relevant parameters are the averages of the fundamental interactions, using the
micromagnetic model (the LLG equation [Eq. (2.5)] or the Thiele equation [Eq. (2.30)]).

At the atomistic scale

From a classical point of view, magnetic materials can be considered as a collection of atoms
on a regular lattice. Each atom is represented by a localized magnetic moment whose modulus
corresponds to the effective spin of the atom. This translates into the EHH, given by Eq. (2.44).

Within the atomistic scale, one finds two ways of considering atomic defects. At the most
fundamental level, defects can be simulated by directly modifying the atomic structure of the
material by, for example, replacing90 or adding92,96 a few atoms. In these works, density
functional theory is used to evaluate the energy landscape in the presence of a defect. It is
found that depending on the atomic modification the defect can attract or repel skyrmions.
Another option, not requiring first-principles calculations, is to consider a local modification of
the magnetic interaction constants (J, dDM, kan)89,97 or directly modifying some of the magnetic
moments of the lattice.97,259 In Ref. [97] it is found that the pinning position depends on both
the origin of the defect (exchange, DM, or anisotropy modification) and the skyrmion size, with
the skyrmion shape changing near the defect. Ref. [89] also studied the effective field acting over
a skyrmion that a local or an elongated defect produced by variations in the exchange, DM, and
anisotropy constants. This study and their results for the effective field are used in this chapter
as a starting point for the local defect force acting over a skyrmion.

Lastly, when considering a modification in the magnetic moments themselves it was found that a
defect produced by a non-magnetic impurity can increase the activation energies of the creation
and annihilation of skyrmions and pin them.259 These effects grow with the defect size. But,
when the defect is due to some missing atoms in the material, such as a hole, the skyrmion
stability can be compromised.97

At the “micromagnetic” scale

The previous approaches are useful when considering small sample sizes. When the sizes studied
are larger (tens of nanometers to microns), they become computationally prohibitive. In these
cases, the micromagnetic model is employed (see Sec. 2.2). The works at these scales are usually
based on the use of the LLG equation [Eq. (2.5)]. Here we separate the works into two main
branches: geometrically induced defects (e.g. holes, depressions, or protrusions of the material)
and modifications of the interaction constants.

In the case of geometrically induced defects produced by holes in the material, several works
come to attention. It was found that holes in the material226 or semicircular,121 rectangular,123

or triangular124 notches were able to pin skyrmions. The notches are specially relevant in
racetrack applications, such as skyrmionic logic devices, where constraining the skyrmion motion
is beneficial to synchronize the operations done on them.114, 146, 161,260,261
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Another interesting approach is to change the shape of the material itself using depressions or
protrusions in the material. For example, it has been shown that it is possible to induce effective
exchange, DM, anisotropy and magnetostatic interactions in curvilinear geometries.47–54 These
induced effective magnetic constants allow to nucleate skyrmions47 or pin them at curved regions
of a racetrack.48

As for the second approach, the modification of the interaction constants has been done in
several ways. One way is to consider that, in a certain region, some constant is changed
following a mathematical function that varies with the distance to the defects, such as Gaussian
functions91,262 or exponential decays.263 Another approach is to simulate the system by solving
the LLG equation, considering that a magnetic constant is modified in a region.60,93,99, 196,264

The latter is commonly used when considering the granularity of the material, usually varying the
uniaxial anisotropy constant.78, 104, 105,216,219,265,266 We separate the works into two categories
depending on the region size. On the one hand, if the region is small (as compared to the
skyrmion), the defects are considered local (point-like) anisotropy defects. In this limit, it was
found that the granularity could be the origin for the threshold current density for skyrmion
movement activation.78 On the other hand, for larger regions, one finds the disorder is con-
sidered to be due to granular anisotropy. That is, each grain has a local uniaxial anisotropy
that is given by a Gaussian distribution centered on the anisotropy value of the pristine sam-
ple.104, 105,216,219,265,266 In non-confined scenarios, it was found that disorder strongly affects the
direction of skyrmion propagation, modifying the skyrmion Hall angle (θsk), and thus explaining
its current-dependence.104, 105

At the “Thiele” scale

A coarser level of approximation is considering the skyrmionic structures as rigid particles within
the rigid model (see Sec. 2.2.6). At this level, the most common approach is to use analytical
expressions for the external force and/or potential that the defect creates on the skyrmion. These
can be fitted from studying the skyrmion energy as a function of the distance to the defect226,263

or from empirical observations.

Granularity in materials has also been modeled within the rigid model (see Ref. [87] for a
review). Each grain is considered as an effective potential acting over the skyrmion. These
effective potentials are usually phenomenological (from empirical observations). In these works,
the general trend found is that, in non-confined materials, the disorder strongly affects the
skyrmion Hall angle, θsk.109–112,224,226 This has been found for defects due to vacancies in the
material226 harmonic traps,109, 110,224 and Gaussian-like traps.267–271 In materials with periodic
disorder,224,268 the underlying symmetry of the substrate makes θsk to not change continuously
as a function of the driving force but rather forming a series of discrete steps, saturating to the
defect-free value for large driving spin currents. For non-periodic disorder,109–112,226 θsk also
depends on the applied current density, but continuously.109, 110,226 In these systems, it has also
been found that when skyrmions are pinned in randomly placed pinning traps, an incoming
skyrmion can unpin them and avalanches can be found.112 The skyrmion dynamics have also been
studied when driven with AC-drives.267,269,270 Furthermore, temperature has also been added
to these models, by adding an effective force following a white-noise distribution, converting the
Thiele equation into a Langevin equation.111
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The work presented in this chapter belongs to this scale. Starting from an atomistic point
defect,89 the Thiele equation [Eq. (2.30)] will be used to develop a model that gives analytical
insight into the skyrmion dynamics for point-like and extended defects. This model allows us to
find the critical points of the skyrmion trajectories (i.e. pinning positions and saddle points) and
the threshold current densities above which these critical points disappear. Thus, theoretically
predicting the different driving regimes possible in the system for other scenarios than point
defects, such as a material dislocation, we are motivating the artificial engineering of such defects.

3.2 Point Defect interaction

To study the effect of defects in the material over a skyrmion we will study a simple scenario.
Consider an infinite ultrathin FM (without borders) with a current density, JHM, flowing into
the HM substrate (see Fig. 3.1). The skyrmion is driven by the SHE torque at a velocity Vsk

(see Sec. 2.2.6).

Figure 3.1: Sketch of the studied system. JHM represents the current density flowing into the
HM (light orange region). The skyrmion (red-white-blue structure) moves with a velocity Vsk in a
FM background (light blue region).

The simplest defect is a variation in some of the magnetic parameters at the atomistic scale.
In this section, we will consider defects produced by a single-atom variation of some magnetic
parameter. In the work by Navau et al. [89] a closed expression for the forces arising from
different kinds of magnetic parameter variation was obtained. Modification of the exchange,
anisotropy, and DM constants were taken into account. They concluded that the force a skyrmion
receives depends on the nature of the atomistic defect. The forces were computed considering a
non-deformed Néel skyrmion with magnetization profile given by Eqs. (2.33) and (2.34).

Assuming a squared atomic lattice, they obtained that the forces of different magnetic parameter
variations were given by,

Fex = 0, (3.1)

FDM = −8DDM(δ − 1)a2γtf
µ0R2

sk

ρ/Rsk

[1 + (ρ/Rsk)2]3 ρ̂ = −F0,DM
ρ/Rsk

[1 + (ρ/Rsk)2]3 ρ̂, (3.2)

Fan = 4Kan(κ− 1)a2γtf
µ0Rsk

ρ/Rsk[1 − (ρ/Rsk)2]
[1 + (ρ/Rsk)2]3 ρ̂ = F0,an

ρ/Rsk[1 − (ρ/Rsk)2]
[1 + (ρ/Rsk)2]3 ρ̂, (3.3)
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where tf is the thickness of the FM, Rsk is the skyrmion radius, a the lattice constant, δ (κ)
the factor that the DM (anisotropy) value has been modified at the defect position with respect
to its non-modified sample value DDM (Kan). The defect has been considered at the origin of
coordinates and ρ is the radial distance to the skyrmion. A negative force over the skyrmion
means that it points towards the defect. A local variation of the exchange parameter results in
no net force over the rigid skyrmion [Eq. (3.1)].
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Figure 3.2: Forces over a skyrmion as derived in Ref.
[89], considering δ = 2 and κ = 2. A negative force points
towards the defect. A local modification of the exchange
interaction results in zero net force.

In Fig. 3.2, the forces [Eqs. (3.2) and
(3.3)] are plotted for comparison. The
main takeaway is that the behavior of
the skyrmion near the (point) defect
depends strongly on the atomistic ori-
gin of the defect itself. If the defect is
due to a local variation of the DM in-
teraction, the force is always attractive
(negative) and has a single maximum.
In contrast, a defect produced by a local
variation of the anisotropy may be at-
tractive (negative) or repulsive (positive)
depending on the distance to the defect.
Both forces decay to zero for large dis-
tances to the defect. Notice that in both
cases, the force grows linearly at small
distances (ρ/Rsk ≲ 0.5). For the sake
of simplicity, a thorough study will only
be done with DM defects.

3.2.1 Defects within the rigid model

The rigid model allows to characterize the dynamics of the skyrmions under the presence of a
driving spin current and defects on the material. In some cases, even analytical expressions can
be obtained for the threshold current density above which the skyrmion escapes through the
borders and the critical points below that current.

From the LLG equation [Eq. (2.5)], after considering the skyrmion as a rigid structure that
translates over space, one may write Thiele’s equation in the present context as,

(G −MsαD)Vsk + Fdrv + Fext = 0. (3.4)

Without loss of generality, we will only consider the adiabatic torque TSHE, ad [Eq. (2.28)], as
discussed in Sec. 2.2.6.

This torque, under the rigid approximation, will drive the skyrmion with Fdrv given by,

Fdrv = FSHE = MsB σH, (3.5)

where the elements of the B tensor are given by Eq. (2.38).
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For radially symmetric ideal Néel skyrmions on a ferromagnetic background pointing to −ẑ
[Eqs. (2.33) and (2.34)] the matrices can be further simplified. In fact one obtains that
Gxy = −Gyx = G, Dxx = Dyy = D, and Bxy = −Byx = −B. All the other elements are zero. In
the present definition G,D, and B are positive.

Once a local defect is considered, a Fext term will appear in the Thiele equation. If the defect is
due to a local variation of the DM parameter, one obtains that the force it produces is

Fext = −F0,DM
ρ/Rsk

[1 + (ρ/Rsk)2]3 ρ̂, (3.6)

where ρ̂ is a vector that points radially outwards from defect. Hence the force will be attractive
(repulsive) if F0,DM > 0 (< 0). Thiele’s equation for the studied system then reads

(G −MsαD)Vsk +Ms(B + νMsY)σH − F0,DM
ρ/Rsk

[1 + (ρ/Rsk)2]3 ρ̂ = 0, (3.7)

with the previous definitions.

Figure 3.3: Illustration of the local defect
system. The red dot represents the center-of-
mass of the incoming skyrmion and ρ is the
distance to the defect (green dot). The blue
arrows are the driving velocity (vHM) and the
drift velocity of the skyrmion (vsk).

Before proceeding to solve Eq. (3.7), it is con-
venient to normalize the equation, using the
skyrmion radius Rsk for the length and τ =
(γMs)−1 for the time. We also use the follow-
ing definitions G = G/(M3

s tf ), D = D/(M2
s tf ),

B = B/(M2
sRsk), vHM = VHM τ/Rsk, and

f = F/(γM2
s tfRsk). From now on all the mag-

nitudes in this chapter will be normalized unless
stated, including x,y, and ρ. An illustration of
the system is shown in Fig. 3.3.

Note that within the rigid approximation, the val-
ues of G, D, and B are critical to determine the
skyrmion motion. The most common values used
are the ones found for an ideal infinite skyrmion
[Eqs. (2.33) and (2.34)] G = D = B = 4π. In-
stead of using directly these ideal values, we do
a previous step to take into account the initial
shape of the driven skyrmion (without defects).
A skyrmion is simulated using the LLG equation

with a moderate spin current and the skyrmion Hall angle is used to fit the matrix parameters. The
magnetic parameters used in the simulation are: saturation magnetization Ms = 580 kA m−1, ex-
change constant Aex = 15 pJ m−1, DM constant DDM = 3 mJ m−2, uniaxial effective anisotropy
constant Kan = 0.425 MJ m−3, and Gilbert damping constant α = 0.1. We obtain that G = 3π,
D = 5π, and B = 2π fit much better the skyrmion motion. with a normalized driving current,
vHM in the range of 0.001 to 0.1. The magnetic parameters and the values for these constants
will be used throughout this chapter.
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Simulation results

Consider a local defect at the origin of coordinates as illustrated in Fig. 3.3. It is expected that
if the defect is attractive, a pinning position appears below a threshold driving current velocity
vth. To simplify the discussion of this academic example, we will consider that vHM = (vHM, 0)
as any other current angle would be just a rotation of the whole system. In order to characterize
the skyrmion dynamics it is convenient to study the critical points present in the system of
equations obtained from the normalized Thiele equation,


(α2D2 + G2) ẋ = αDBvHM − (αDx+ Gy) f0,DM

1
(1 + x2 + y2)3

,

(α2D2 + G2) ẏ = −GBvHM − (αDy − Gx) f0,DM
1

(1 + x2 + y2)3
,

(3.8)

where f0,DM = 8DDM(δ − 1)a2/(µ0M
2
sR

3
sk) and we have used that vsk = (ẋ, ẏ), ρ =

√
x2 + y2 is

the distance to the defect, and x, y are the skyrmion center-of-mass coordinates (see Fig. 3.3).
Now, with some algebra, one can obtain the critical points (ẋ = ẏ = 0) of the system by solving
the system of equations,


0 = αDBvHM − (αDx+ Gy) f0,DM

1
(1 + x2 + y2)3

,

0 = −GBvHM − (αDy − Gx) f0,DM
1

(1 + x2 + y2)3
.

(3.9)

The points (x, y) which are solutions to this system of equations, are critical points of the
trajectories. Depending on the derivatives at those points, one might find a minimum, a
maximum, or a saddle point. When the local defect is attractive and the solution exists, these
critical points can be classified into a spiral attractor point (minimum) and a saddle point. For
the skyrmion pinning points to exist it is necessary that two conditions must be met: the defect
must be attractive (if not pinning is impossible) and the driving current must be below a certain
threshold. For the case under study, one can find the driving velocity threshold to be,

vth, pt = 25
√

5f0,DM

216B
≃ 0.041f0,DM, (3.10)

where B = 2π was used. Note that it only depends on the driving torque and the defect strength,
not on α.

The vector field corresponding to the defect force [Eq. (3.6)] is presented in Fig. 3.4(a). Due
to the skyrmion Hall angle, the skyrmion drifts at an angle with respect to that force (see Sec.
2.2.6). To illustrate this, when only a defect is present, the force-term [vHM = 0 in Eq. (3.8)]
is shown in Fig. 3.4(b). If the driving velocity is also taken into account (vHM ̸= 0), critical
points may appear such as depicted in Fig. 3.4(c). Another way of representing the same
information is to do a phase portrait (Figs. 3.4(d) and (e)). In a phase portrait, each set of initial
skyrmion positions is represented by a different curve, with the arrows indicating the skyrmion
flow direction and the background color the modulus of the velocity. To do these phase portraits
we numerically solve the system of Eqs. (3.8), with f0,DM = 0.0015 and an applied current
velocity vHM. When vHM ≤ vth, pt and f0,DM < 0, a spiral sink (red dot) and a saddle point (red
cross) appear [see Fig. 3.4(d)]. Depending on the initial position of the incoming skyrmion it
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may be pinned at the spiral sink or not. As the driving velocity increases the skyrmion trapping
region becomes narrower until it disappears for vHM > vth,pt [see Fig. 3.4(e)]. This behavior
agrees with the results found in Ref. [272] where a parabolic pinning potential was assumed. The
critical points depicted in Fig. 3.4 are obtained by numerically solving the system of Eqs. (3.9).

Figure 3.4: Vector field corresponding to (a) the attractive local defect force [Eq. (3.6)], (b) the
velocity it produces over the skyrmion, and (c) the addition of driving current. The skyrmion
tends to circle around the defect in a counter-clockwise motion or spirals into the defect. Phase
portrait of Thiele’s equation considering f0,DM = 0.0015 and driving velocities vHM (d) below
and (e) above the threshold value [Eq. (3.10)]. The background color indicates the speed of the
skyrmion. The green dot corresponds to the defect position. The red dot (cross) indicates the
attractor (saddle) point. The red arrows indicate the direction of (left) the driving current density
vHM and (right) the direction of the skyrmion velocity in the absence of defects. In this particular
example the driving velocity angle is φHM = 0 and its modulus is (c,d) vHM = 0.75vth, pt and (e)
vHM = 1.5vth, pt, for (c,d) and (e) respectively.

When the defect size is comparable to or larger than the skyrmion size, the previous formalism
needs to be further developed to consider extended defects. This problem will be tackled in the
following section.

3.3 Extended defect interaction

A frequent type of defect in FM thin films are elongated defects such as dislocations or grain
boundaries, among others. The elongated nature of such defects cannot be taken into consideration
with the previous model for local defects. In the literature, little work has been devoted to the
description of line defects, specially finite ones (segments). In this section, the point-defect model
will be expanded to consider different types of extended defects. First, we will consider elongated
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defects, both finite (segment) and infinite (line). Then different arrangements of these defects will
be studied and some possible applications will be discussed. These results will be compared to
their micromagnetic simulation counterparts to check for the validity of the rigid approximation.

When considering extended defects, the key idea is to consider the force density created by the
defects. Indeed, one can consider each local defect as a surface with an atomic defect density
σ = 1/a2. Each surface differential dS generates a differential force that can be integrated over
the defect surface Sd to obtain the total force exerted over the skyrmion

fext =
∫

Sd

σfDM(rsk − r0)dS, (3.11)

where rsk is the skyrmion center-of-mass position, r0 is the defect position, and

fDM = −f0,DM
ρ

(1 + ρ2)3
ρ̂. (3.12)

3.3.1 Segment and line defects

A particular case of such defects would be to consider an arrangement of local defects aligned
forming a defect segment of width ∆ and length ld (see Fig. 3.5). The consideration of width
for the elongated defects is for generality. This will allow us to be able to compare the rigid
model results to micromagnetic simulations, where the defect has an inherent width given by the
numerical space discretization. If the defect segment width is small (∆ ≪ Rsk), one obtains that
the force can be expressed as

fsgm = ∆
∫

ld

σfDM(rsk − r0)dl, (3.13)

where ld indicates the segment over which the defects are located.

Figure 3.5: Sketch of the system with a seg-
ment defect of width ∆ and length ld. The red
dot represents the center-of-mass of the incoming
skyrmion and the green segment the defect. The
blue arrows are the driving velocity (vHM) and
the drift velocity of the skyrmion (vsk).

Consider a defect segment located at x ∈
[−ld/2, ld/2] with a current applied at an angle
φHM with respect to the x-axis (see Fig. 3.5).
In this case, the rotational symmetry of the lo-
cal defect is lost. As such, the behavior of the
system depends not only on the intensity of the
applied current but also on the angle. When the
defect is repulsive the trajectory of the skyrmion
is modified but as in the case with single de-
fects, no pinning can occur for a single-segment
defect.

In order to proceed, it can be done similarly
as was done with the local defect. First, we
derive the force exerted over the skyrmion and
then use the Thiele equation to obtain relevant
information on the skyrmion dynamics.
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The force exerted by a finite segment defect can be obtained from Eqs. (3.13) and Eq. (3.12),

fsgm = − f0,DM∆
∫ ld/2

−ld/2

(x− xd)x̂ + yŷ

[1 + (x− xd)2 + y2]3 dxd

= − f0,DM∆
8

[( 2
[1 + (x− xd)2 + y2)]2

)
x̂

− y

(1 + y2)2

(x− xd)[3(x− xd)2 + 5(1 + y2)]
[1 + (x− xd)2 + y2]2 +

3 arctan
(

x−xd√
1+y2

)
(1 + y2)1/2

 ŷ


x+

x−

, (3.14)

where xd should be evaluated at x± = ±ld/2. Thus, Thiele’s equation reads (recall that all the
magnitudes, including tensors, are dimensionless),

(G − αD)vd + BvHM + fsgm = 0. (3.15)

Unfortunately, the expression of the force in the case of a segment defect is too complicated to
obtain closed-form formulas for the critical points and the upper threshold of current velocity,
above which these points do not exist. However, some information may be obtained from Eq.
(3.15) regardless. In Fig. 3.6(a) we show the force field that the segment defect produces on an
incoming skyrmion. That force produces a drift velocity on the skyrmion shown in Fig. 3.6(b).
As it can be seen, for an attractive (f0,DM > 0) defect segment, the skyrmion is attracted towards
it in a counter-clockwise spiraling motion. In Figs. 3.6(c-e) we show the phase portraits obtained
by solving the skyrmion dynamics [Eq. (3.15)]. It is observed that if the defect is attractive and
the skyrmion is driven with a velocity vHM = 0.0049, a spiral sink and a saddle point appear, as
indicated with the red dots and crosses in Fig. 3.6.

Given that the skyrmion is bound to be somewhat deformed by the defect, the rigid approximation
may no longer hold. In order to confirm the results obtained using the rigid model, micromagnetic
simulations by solving the LLG equation were performeda. These simulations were done ad hoc
to check the found results from the Thiele equation. The normalized driving velocity used for
these simulations is vHM = 0.0049. The defect has been simulated considering a local increase of
the DM constant by a factor of δ = 1.5, which results in a force given by Eq. (3.14) where

f0,DM∆ = 8DDM(δ − 1)
µ0M2

sR
2
sk

∆ ≃ 0.264, (3.16)

with ∆ = 4.2 nm, and Rsk ≃ 22 nm (according to micromagnetic simulations far from the defect).
The calculated micromagnetic trajectories for the skyrmion center and different driving current
angles φHM, are shown in Figs. 3.6(c-e) with purple lines.

aThe development and details on the calculations of the LLG equation with defects are presented in another
thesis done in parallel to this one. Thus, they are not included here.
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Figure 3.6: Vector field corresponding to (a) the force made by an attractive finite defect segment
and (b) the velocity it produces over the skyrmion. The defect length is ld = 6. The skyrmion
can be pinned by a defect with a counter-clockwise spiraling motion. Phase portrait of Thiele’s
equation for the finite defect segment considering vHM = 0.0049 for different values of the driving
current angle (c) φHM = 0, (d) φHM = π/4, and (e) φHM = π/2. For these plots f0,DM∆ = 0.38
and vHM = 0.0049. The rest of the parameters are the same as in Fig. 3.4. The solid purple
lines correspond to trajectories of a skyrmion’s center obtained by solving the LLG equation with
vHM = 0.0049 and δ = 1.5, for several initial positions. The rest of the parameters in the LLG
equation are indicated in the text. The meaning of symbols, bars, colors, and arrows is the same
as in Fig. 3.4.

To obtain the results plotted in Figs. 3.6(c-e), the force f0,DM∆ = 0.38 was fitted so as to match
the pinning points. It can be seen that the force predicted by the atomistic model is slightly
smaller. Nevertheless, we observe good agreement with the predictions of the rigid model. The
discrepancies are attributed to the skyrmion deformations when interacting with the defect,
which are not taken into account in the rigid model nor in the atomistic force. Nonetheless, the
deformations are not drastic and the rigid model seems valid for the predictions in this parameter
range as demonstrated by Figs. 3.6(c-e). Since the discrepancy in f0,DM∆ can be explained, we
will use the value that better fits the micromagnetic simulations, f0,DM∆ = 0.38, for the rest of
the chapter.

In fact, as long as the driving velocity vHM is below the threshold and the defect is attractive,
a spiral sink and a saddle point will appear as found in Figs. 3.6(c-e). The threshold velocity
for the critical points to exist is found to be proportional to the minimum value between the
maximum force along each axis (X or Y ). It reads

vth,sgm = − 1
B

min
{

max
[

fsgm · x̂

cosφHM

]
,max

[
fsgm · ŷ

sinφHM

]}
, (3.17)

where φHM is the angle of the applied current (see Fig. 3.5). Note that the threshold velocity
and critical points now depend on both the defect length ld (through fsgm) and the angle of the
applied current φHM [see Figs. 3.6(c-e)].
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Figure 3.7: (a) Position of the spiral sink (red dots) and the saddle points (red crosses) for
different driving current angles φHM. The defect segment is indicated by the horizontal green line.
(b) Threshold velocity as a function of the defect size ld [Eq. (3.17)] for φHM = π/4 (blue squares)
and φHM = 3π/8 (black triangles). The vertical line indicates the defect length shown in (a). The
colored arrows in (a) correspond to the angles shown in (b). The parameters used are the same as
in Fig. 3.6.

For a more comprehensive study on the threshold velocity (vth,sgm), we have numerically solved
Eq. (3.15) when ẋ = ẏ = 0. In Fig. 3.7(a) the positions of the critical points are shown as
a function of the driving current angle, φHM, for an attractive (f0,DM > 0) defect segment of
length ld = 6 and a velocity, vHM = 0.0049, below the threshold driving current. It can be seen
that both the spiral sink (inner red dots) and saddle points (outer red crosses) circle around the
defect with the angle of the applied driving current. As the threshold driving current velocity
depends on both the incident angle and defect length [see Eq. (3.17)], we computed it as a
function of the defect length for two different driving angles: φHM = π/4, 3π/8. The results are
shown in Fig. 3.7(b). It can be seen that for long defects (ld ≳ 6) the threshold driving current
saturates on a value depending on the driving current angle. As the defect gets shorter the
threshold driving current density becomes smaller. In the limit where (ld,∆) = a we recover the
local defect case [see Fig. 3.7(b)]. This can also be obtained by taking Eq. (3.14) in the limit
(ld,∆) → a, recovering the point defect [Eq. (3.6)]. If one ought to obtain the driving current
threshold for another driving current angle, it can be obtained by numerically solving Eq. (3.17).

In general, the critical points and threshold velocity were found to depend on the length of the
defect ld and the angle of the driving velocity φHM and its velocity |vHM|. An interesting limit,
where analytical treatment of the equations is possible, is when ld ≫ Rsk. This corresponds to a
defect line that is much longer than the skyrmion radius. Recall that in Eq. (3.13) we already
considered the defect width ∆ to be small (∆ ≪ Rsk). In this limit, the defect segment becomes
a line that spans across one dimension. This kind of defect was numerically studied by solving
the LLG equation in our group.196 It was found that skyrmions can be guided along the defect
line if the driving velocity is below a threshold. This behavior is found when the defect line is
attractive (guided at the right of the defect) or repulsive (guided at the left of the defect).196
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The guiding regime found with line defect can be predicted and studied analytically with the
presented model. The force exerted by a line defect can be obtained by taking Eq. (3.14) in the
limit ld → ∞,

fline = −3πf0,DM∆
8

x

[1 + x2]5/2
x̂, (3.18)

where we have set the line defect along the y axis, as was done in Ref. [196]. Note that there is
no net force along the defect line. Thiele’s system of equations is found to be,


(α2D2 + G2) ẋ = αDBvh,x + GBvh,y − 3παDf0,DM∆

8
x

(1 + x2)5/2
, (3.19)

(α2D2 + G2) ẏ = −GBvh,x + αDBvh,y + 3πGf0,DM∆
8

x

(1 + x2)5/2
. (3.20)

In this case, no critical point can be found except when the driving current angle φHM = 0 or π,
because it is not possible to cancel both components of the skyrmion drift velocity otherwise.
This can be seen more clearly is we set ẋ = ẏ = 0,

{
αDBvh,x + GBvh,y = −αDfline,

−GBvh,x + αDBvh,y = Gfline,
(3.21)

since if vh,y ̸= 0, one of the equations can not be satisfied. This becomes apparent if we set
vh,x = 0,


vh,y = −αD

GB
fline,

vh,y = G
αDB

fline,

(3.22)

where there is a sign change that cannot be fulfilled simultaneously. Therefore, the velocity
cannot be canceled in both axis and no critical points exist. However, an interesting result arising
from this fact is that the skyrmion drift velocity perpendicular to the line defect can cancel out
with the force [Eq. (3.18)], whilst the parallel component can not. This results in the guiding
regime (ẋ = 0) which was already predicted numerically with micromagnetic simulations by our
group in Ref. [196]. Note that, when φHM = 0, π, any small perturbation would prevent the
pinning found. As such, we will not consider this case, since it will not be found experimentally
or in LLG simulations, as even the numerical error would break such feeble pinning.
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From the system of Eqs. (3.22), the threshold velocity for such behavior can be found. To do so,
the easiest way is to use the complex Thiele formulation, as presented in Appendix A.2. The
threshold velocity is found to be,

vth,line = 6π
25

√
5B

αD
αD cosφHM + G sinφHM

f0,DM∆, (3.23)

which corresponds to the saturation value found for the longer defect lines in Fig. 3.7(b).

When the skyrmion is being guided (ẋ = 0), one can find that the skyrmion velocity along the
defect line is

ẏ = B
αD

vHM sinφHM. (3.24)

This indicates that in the guiding regime, the skyrmion velocity: (i) does not depend on the force
of the defect (as long as the driving velocity is below the threshold, vth,line); (ii) is maximum
when φHM = π/2; and (iii) is inversely proportional to α, indicating a larger speed-up for smaller
α. The latter was also found273 when the guiding occurs near the edge of the material. Note that,
even though the skyrmion velocity does not depend on the defect force, the threshold velocity
does.

To illustrate our findings and have information on the transient skyrmion dynamics before being
guided, we have solved Eqs. (3.19) and (3.20). The phase portraits are shown in Fig. 3.8. When
the skyrmion is driven below the threshold velocity with an attractive defect [Figs. 3.8(a) and
(b)], the guiding regime is found for different values of the driving current (a) φHM = π/4, (b)
φHM = π/2. As can be seen, the guiding is found at the right of the defect line, as found in Ref.
[196], and the velocity in the driving regime is maximum when φHM = π/2 as we previously
found in Eq. (3.24). When the defect is repulsive (fline < 0), the guiding is found to be along
the left side of the defect [see Figs. 3.8(d) and (e)]. If the driving current is above the threshold
[Eq. (3.23)], the skyrmion crosses the defect line for both attractive [Fig. 3.8(c)] and repulsive
[Fig. 3.8(f)] defects. In general, the phase portraits in the attractive and repulsive cases are
somewhat similar considering that: (i) the velocity component perpendicular to the defect is
mirrored with respect to the defect line; (ii) the velocity component parallel to the defect remains
unchanged; and (iii) the guiding line is the furthest from the defect (not the closest as for an
attractive defect).

To validate these results we have solved the LLG equation [Eq. (2.5)] as in Fig. 3.6. In general,
the Thiele trajectories are similar to the ones obtained by simulating the LLG equation. It can
be seen that our model’s predictions are more accurate for a repulsive defect in the guiding
regime. We attribute this effect to the fact that since the skyrmion does not reach the defect, the
skyrmion is less modified by it (recall that a change in the skyrmion size is not captured by the
Thiele model). In the case of an attractive defect, it is known that the skyrmion grows larger and
is more deformed, in some cases being elliptical.196 Thus the Thiele approximation is at its best
for repulsive defects. The guiding regime is also found when solving the LLG equation, as can be
seen in Fig. 3.8 and we reported in Ref. [196]. It must be noted that the α−1 dependence has
also been found with micromagnetic simulations,196 even though the magnitude of the speedup
factor is slightly smaller. We attribute the small discrepancies to the skyrmion deformations
close to the defect lines. When the driving current is above the threshold (vHM > vth,line) in both
cases the skyrmion overcomes the defect as predicted.
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Figure 3.8: Phase portrait of Thiele’s equation for an infinite attractive (a-c) or repulsive (d-f)
defect line considering vHM = 0.0025 for different driving current angles (a, d) φHM = π/4, (b,e)
φHM = π/2. For currents vHM = 0.0225 ≃ 6.6vth,line and φHM = π/2, the skyrmion goes through
the defect line for both attractive (c) and repulsive (f) line defects. The red solid (dashed) line is
the guiding (saddle) nullcline. The meaning of symbols, bars, lines, colors, and arrows is the same
as in Fig. 3.4. For these plots, the parameters are the same as in Fig. 3.6.

The prospect of using artificial defect lines to guide the skyrmions whilst accelerating them is
interesting on its own. The lack of control over the skyrmion Hall angle has been a potential
bottleneck for many racetrack implementations, e.g. by pushing skyrmions towards the racetrack’s
edges and annihilating them. As was found, the skyrmion velocity along the defect can be
enhanced by orders of magnitude due to its α−1 dependence [Eq. (3.24)]. This behavior is also
obtained with the micromagnetic simulations (see Fig. 3.8). But the skyrmion deformation
due to the defects can further enhance the skyrmion transport part of skyrmionic devices. For
example in Ref. [196], it was found that using skyrmionic rails made of an attractive defect
line (skyrmion guided on its right) followed by a close repulsive defect line (skyrmion guided
on its left) can both increase the speed-up factor of the guided skyrmion whilst compressing
it. This compression is possible as the rail width can be as small as the skyrmion radius far
from the defect. This could potentially result in an enhancement in both the velocity as well as
the information density while avoiding the undesirable skyrmion Hall angle. Other approaches
have been based on guiding the skyrmion along regions with some modified material magnetic
parameters both theoretically86, 118,274,275 and, more recently, experimentally.276

An interesting consideration is that it is not realistic to consider an infinite defect line in real
materials. As such, the skyrmion is bound to reach an end at some point. The behavior found
can be readily explained by what has been seen in this section: far from the end, the skyrmion is
guided along the defect line and speedup, but as we approach the end we recover the results
found for the finite segment defect, where pinning may occur if the defect is attractive [see Fig.
3.6(c-e)].
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3.3.2 More complex defects

A natural extension of the line defect is to consider their superposition in different arrangements.
An interesting consideration would be what happens at the crossing between two defects. To study
that behavior and build upon the previously known phenomena we will consider a semi-infinite
defect line y ∈ (−∞, 0] that merges at the end of it with a defect segment along the x axis (see
green lines in Fig. 3.9). We will refer to this kind of defect as an L-shaped defect.

Figure 3.9: Vector field corresponding to (a) the force made by an attractive L-shaped defect
and (b) the velocity it produces over the skyrmion. The horizontal segment length is ld = 3. (c,d)
Phase portrait of Thiele’s equation for an attractive L-shaped defect considering vHM = 0.025 for
different driving current angles (c) φHM = π/4 and (d) φHM = π/2. The meaning of the symbols,
bars, colors, and arrows is the same as in Fig. 3.4. For these plots, the parameters are the same as
in Fig. 3.6.

Unfortunately, due to the complex dynamics, obtaining the critical points and threshold driving
currents has to be done numerically. Nevertheless, the critical points can be found as done
previously, considering the external force coming from all the segments that compose the defect.

The vector fields of the defect force and the skyrmion drift velocity associated with an attractive
L-shaped defect are shown in Figs. 3.9 (a) and (b), respectively. It can be seen that the skyrmion
tends to circle around the defect counterclockwise [Fig. 3.9(b)]. When considering a driving
current, depending on its value, this could result in the presence of spiral sinks. The phase
portraits of the skyrmion drift velocity obtained for attractive defects with different incident
driving current angles (φHM ̸= 0) are shown in Figs. 3.9(c-d). Near the horizontal segment defect
we see that saddle points and spiral sinks (sources) appear for attractive (repulsive) defects [see
Figs. 3.9(c-d)]. The position of these critical points depends on the driving current angle, the
horizontal defect length, and their strength.
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Figure 3.10: Vector field corresponding to (a) the force made by an attractive cross defect and (b)
the drift velocity it produces to the skyrmion. Phase portrait of Thiele’s equation for an attractive
(c,d) or repulsive (e,f) defect cross, considering vHM = 0.0025 with different driving current angles
(c,e) φHM = 0 and (d,f) φHM = π/4. The meaning of symbols, bars, colors, and arrows is the same
as in Fig. 3.9. For these plots, the parameters are the same as in Fig. 3.6.

These arrangements could potentially guide skyrmions along the defect line and pin them near
their end. Furthermore, it seems that the skyrmion tends to follow the horizontal defect. So a
question arises: Is it possible to steer skyrmions in a controlled and reproducible manner?

To that end, we consider a crossing of two perpendicular line defects. Far from the crossing,
both defects are expected to guide the skyrmion along them as was found in Fig. 3.8. Due to
the findings with the L-shaped defects, it is expected that some critical points appear near the
crossing of both line defects.

To quantitatively study them in detail, we consider a cross-shaped defect. As with the L-shaped
defect, the Thiele equation does not shed any relevant information unless numerically solved.
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The vector fields of the defect force and the skyrmion drift velocity associated with an attractive
defect are shown in Figs. 3.10 (a) and (b), respectively. Since the system has π/2 rotational
symmetry we will only consider driving current angles φHM ∈ [0, π/2). When the defect is
attractive a spiral sink is found near the crossing. If the driving current goes along one of the
defects, three saddle points are found: one along the driving current direction and two in the
perpendicular one [Fig. 3.10(c)]. For other driving current angles, a spiral source is found [Fig.
3.10(d)]. In contrast, a cross made of repulsive defects has a spiral sink near the crossing, and if
φHM ̸= 0 a spiral sink is found [see Figs. 3.10(e-f)]. Note that only two saddle points are found
near the crossing if φHM ̸= 0.

With the present results in mind, one can envisage the periodic arrangement of such pinning
positions by using a periodic arrangement of such cross defects, forming a grid. It should be
expected that the skyrmion would be trapped in a controlled manner. The periodicity would
allow having a periodic arrangement of skyrmions in a rectangular lattice.

Periodic infinite lines (Grid)

Consider a set of line defects arranged as a periodic rectangular grid [see Fig. 3.11], each line
separated a distance δx and δy in the x and y axis, respectively. For simplicity, we will consider
that all line defects have the same f0,DM. Using the expression for the force obtained for a line
defect [Eq. (3.18)] we obtain that the total force of the grid at a position r = (x, y) is given by,

f
g
grid = −3πf0,DM∆

8

[ ∞∑
m=−∞

x−mδx

[1 + (x−mδx)2]5/2
x̂ +

∞∑
n=−∞

y − nδy

[1 + (y − nδy)2]5/2
ŷ

]
. (3.25)

Figure 3.11: Illustration of the grid defect
system. The defect lines that form the periodic
grid are shown in green. The defect lines are
separated a distance δx (δy) in the X (Y ) axis.
The blue arrow is the driving velocity (vHM)
applied at an angle φHM.

These series converge, but no analytical closed-
form expression was found. As such it proves dif-
ficult to obtain any insight directly from Thiele’s
equation and only its numerical solution is pos-
sible. To avoid this shortcoming, we propose an
alternative model that has proven helpful for these
types of periodicity. The trade-off for obtaining
a closed expression for the force will be the need
of using two fitting parameters.

Let’s consider that a local defect produces a Gaus-
sian potential over the skyrmion of the form
U(ρ) = −U0 exp (−ρ2/2λ2

g), where U0 is a param-
eter that controls the intensity of the defect and
λg is the radial scope of the defect. We consider
that a U0 > 0 results in an attractive defect (same
convention as in Ref. [89]).

In a previous work, we used these types of Gaus-
sian potentials to study all the previous defect
arrangements. The results we obtained in Ref.
[277] are similar to the ones obtained using Eq.
(3.2). Thus, the model is robust to the election
of the defect force expression, as long as it grows

linearly at close range and decays smoothly to zero as the distance with the defect grows.
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The force created by a Gaussian potential [Fext = −∇U(ρ)], after normalization, reads

fg
loc = −U0Rsk

λ2
0

ρe
− ρ2

2λ2
0 = −fg

0 ρe
− ρ2

2λ2
0 ρ̂, (3.26)

where λ0 = λg/Rsk is the normalized scope of the defect, and the g-superscript indicates the
Gaussian shape while the loc subscript its point-like nature. A fg

0 > 0 (< 0) results in an
attractive (repulsive) force. This is the same convention that was used previously in this chapter.

This force has a similar behavior as Eq. (3.2): close to the defect, we have a linear increase of the
force, followed by a decay to zero for larger distances. A comparison of both functions is shown
in Fig. 3.12(a). The force coming from a local variation of the DM interaction is obtained from
Eq. (3.2) using δ = 2 and normalized to f0,DM. The force maximum is found at xm = 1/

√
5. To

compare with the Gaussian-like force we set λ0 = 1/
√

5 so that both force maximum positions
match. Both forces are normalized so that the forces peak at 1. From Fig. 3.12(a) it is clear that
for smaller distances the approximation is at its best whilst the exponential decay is stronger
than the polynomial one found in Eq. (3.2). Nonetheless, the general trend is captured.
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Figure 3.12: Comparison of the proposed Gaussian defect (solid black line) with the force arising
from an atomistic variation of the DM parameter89 (dashed red line) for (a) a local defect and (b)
a line defect. The parameters used are λ0 = 1/

√
5 and δ = 2. A negative force points towards the

defect. In (a) the forces are scaled so their maximum is 1. The same scaling is kept in (b).

Consider the atomic defect density given by σ = 1/∆2. For a vertical defect line [Fig. 3.8], we
can use Eq. (3.13) to obtain the force coming from Gaussian defects,

f
g
line = −fg

0

∆ λ0

√
πxe

−
(

x2

λ2
0

)
x̂. (3.27)
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In Fig. 3.12(b) we show the comparison between the Gaussian line defect force [Eq. (3.27)]
and the derived expression from an atomistic variation of the DM parameter [Eq. (3.18)]. Even
though the Gaussian force parameters λ0 and fg

0 could be fitted to better match the atomistic
line defect force, we present the comparison with the chosen values from the local defect [Fig.
3.12(b)]. The Gaussian defect force maximum is 1.33 times smaller and it decays faster than
the atomistic defect. Nonetheless, the behavior found using the rigid model with this force has
been found to match micromagnetic simulations with some minor deviations due to skyrmion
deformation.277

As such, three relevant facts arise: (i) the rigid model is able to predict the skyrmion dynamics
quite well; (ii) the results obtained are not very sensible to the exact force one decides to use;
(iii) this force can be used as an approximation to the atomistic defect force [Eq. (3.18)]. The
results obtained for point-like, segments, and line defects can be found in Ref. [277] to see that
the results obtained for the local and line defects are qualitatively the same.

Revising the grid defect and rewriting Eq. (3.25) using the Gaussian defect force [Eq. (3.27)],
one obtains

f
g
grid = −

√
2πλ0f0

∆

[ ∞∑
m=−∞

(x−mδx) exp
(

−(x−mδx)2

2λ2
0

)
x̂

+
∞∑

n=−∞
(y − nδy) exp

(
−(y − nδy)2

2λ2
0

)
ŷ

]
. (3.28)

This expression can be expressed in terms of the elliptic theta functions. Note that

∂

∂x

(
exp

(
−(x−mδx)2

2λ2
0
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= 1
λ2

0

(x−mδx) exp
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)
.

The infinite sum of that function converges to

∞∑
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exp
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)
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πλ0
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, e−2
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πλ0
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)2
)
, (3.29)

where ϑ3 is the Jacobi theta function.278 Hence Eq. (3.28) can be expressed as,
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As an specially interesting limit, if πλ0 ≳ δx, δy, the force can be approximated by

f
g
grid ≃ −8π2λ4

0f0

∆

 1
δ2

x

e
−
(

2π2λ2
0

δ2
x

)
sin (2πx/δx)x̂ + 1

δ2
y

e
−
(

2π2λ2
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 . (3.31)
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This limit corresponds to the case when the skyrmion size is of the order of the grid-lines
separations (δx, δy). Note that, in this limit, the dependencies on the position (x and y)
are only through the sin() functions. The force and the skyrmion drift velocity produced
by the grid defect are shown in Fig. 3.13(a) and (b), respectively. In the literature, this
kind of periodic functions have been used to describe periodic or ratchet substrate-induced
potentials.109, 110,224,267–270,279–281 In those works, the force is taken ad hoc. Our derivation
from the point-like defect allows us to give some physical meaning to the mechanism behind
a way for such forces to emerge. The advantage of this approximation is that it can be used
with the Thiele equation and obtain close-form expressions for the critical points and the upper
threshold current for them to exist.

We use this derived grid force, f
g
grid, in Thiele’s equation [Eq. (3.7)] to characterize the system

analytically. The threshold velocity can be found to be proportional to the minimum of the force
along the X and Y axis. The threshold reads,

vth,grid = 8fg
0

π2λ4
0

B∆ min
[

1
δ2

x cosφHM
exp

(
−2π

2λ2
0

δ2
x

)
,

1
δ2

y sinφHM
exp

(
−2π

2λ2
0

δ2
y

)]
, (3.32)

where the threshold velocity depends on the driving current angle, φHM.

As long as the driving current is below the threshold [Eq. (3.32)] the skyrmion will be pinned at
an attractor of the system, wherever it is initially nucleated [see Fig. 3.13]. This phenomenon
holds true for both attractive and repulsive defect lines. For attractive defects (fg

0 > 0) the
attractors are close to the intersections with a repulsor near the center of each cell, as can be seen
in Figs. 3.13(c) and (d). In contrast, for repulsive defects (fg

0 < 0) their location is somewhat
reversed as can be seen in Figs. 3.13(f) and (g): the attractors are near the center of the unit
cells whilst a repulsor can be found at the crossings. The position of the critical points depends
on the driving current vHM and its incident angle φHM.

Such periodic pinning array can create skyrmion lattices of arbitrary quadrilateral arrangements
that can be used for several applications. For example, it is known that a magnetic field can trap
diamagnetic atoms, potentially allowing to cool them below the optical limit.282 Recently it has
been shown that the stray field of a skyrmion lattice283 or of two magnetic skyrmions284 can be
used to trap ultracold atoms. In this way, the presented grid could give additional control on the
trapping potential for the atoms, as the skyrmion arrangement and position can be artificially
controlled. Another possibility is to pixelate the skyrmion motion in the two axes where there
are defects.285

But this system is not only interesting when pinning occurs. Even when the driving current is
above the threshold and pinning is no longer possible for neither attractive nor repulsive line
defects [see Figs. 3.13(e) and (f), respectively] it still might be useful. Even though the skyrmions
will not be pinned, the skyrmion trajectories are modified by the underlying grid defect. The
behavior found has been widely studied in the literature in which the periodicity of the grid sets
an effective skyrmion Hall angle and commensurability can be studied.224,268,280,281 In this way,
the geometric arrangement of the defects can be used to have the particular movement control
needed for a specific application.
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Figure 3.13: Vector fields of (a) the force f
g
grid [Eq. (3.31)] produced by a grid defect and (b) the

drift velocity it produces. Phase portrait of Thiele’s equation for an attractive (c-e) or repulsive
(f-h) defect lines considering a driving current vHM = 0.0049 < vth,grid with different incident
angles: (c, f) φHM = 0 and (d,g) φHM = π/4. For currents vHM = 0.0098 > vth,grid, the skyrmion
goes through the defect line for both attractive (e) and repulsive (h) defects. The solid purple
lines in (c) and (e) correspond to trajectories of a skyrmion center obtained by solving the LLG
equation for several initial positions. For simplicity, these are shown in two cases, (c) and (e), as a
similar agreement is also found for the rest. The meaning of symbols, bars, colors, and arrows is
the same as in Fig. 3.4 (for simplicity we have only plotted the critical points in one cell as the
system is periodic). For these particular examples fg

0 /∆ = 0.05, λ0 = 1, δx = δy = 2.8, and the
micromagnetic simulated defects correspond to δ = 1.2 (purple lines). The rest of the parameters
are the same as in Fig. 3.6.
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To validate that the rigid model combined with the Gaussian defect force [Eq. (3.31)] is able
to predict the general behavior of the skyrmion under a periodic arrangement of defect lines,
its predictions are compared to micromagnetic simulations. For these simulations, the defect
is a local increase of the DM parameter with δ = 1.2, which results in attractive line defects
that form the periodic grid. The results are shown with purple lines in Figs. 3.13 (c) and
(e). A good agreement is found between the predictions with the presented Gaussian force and
the micromagnetic simulations, validating our approximation. The fitted force parameters are
fg

0 /∆ = 0.05 with λ0 = 1.

3.4 Chapter summary and conclusions

In this chapter, we have modeled the skyrmion-defect interaction with extended defects, composed
of an arrangement of local defects, using the rigid model. We have developed analytic expressions
to calculate the critical points of the skyrmion trajectories, as well as the threshold current
velocities above which skyrmions overcome the defect (i.e. no pinning is found).

We have shown that for a defect line (e.g. material dislocations), the skyrmion can be guided
along the defect. We found that such guiding has two main advantages: (i) the skyrmion Hall
angle is compensated as it is guided along the line defect; (ii) the skyrmion velocity along the
defect is sped-up by a factor α−1, achieving up to an order of magnitude (for realistic α values)
higher velocities than in the defect-free case. This has enabled us to envisage novel platforms for
skyrmion transport such as the skyrmion rails.196 These rails consist of a pair of line defects,
that if arranged adequately, can guide and speed up the skyrmion whilst compressing it. In this
way, the amount of skyrmionic information that can be transported could be boosted.

We have also presented an approximation for the atomistic defect potential that allows having
analytic closed-form expressions for the skyrmion trajectories in more complicated periodic
arrangements. These defects are regarded as Gaussian potentials. We focus on a periodic defect
grid composed of line defects. It is found that a periodic arrangement of skyrmions is possible,
even under small applied current densities. We give expressions for the critical points as well as
the threshold current velocity at which the skyrmion overcomes the defects. This could enable a
periodic arrangement of skyrmions in a rectangular lattice (not the regular or hexagonal skyrmion
lattice) that could be envisaged to devise a periodic pinning potential to trap diamagnetic atoms.
We believe that the small scale of the skyrmions as well as their “strong” and localized magnetic
field, could make for atomic traps with higher quality factors.

We also want to stress that, in the literature, periodic arrangements of pinning potentials have
been studied ad hoc. In those studies, the skyrmion Hall angle is found to change in a step-wise
manner and commensurability can be studied. Here we are able to derive a way in which such
defects could occur in a more realistic scenario.

Another advantage is that it is easily extendable to consider other types of defects, such as local
variations of the uniaxial anisotropy parameter, or other types of two-dimensional extended
defects (e.g squared and circular regions).

We conclude that the presented model is a powerful analytic tool for studying the skyrmion
dynamics in the presence of extended defects. We believe that avoiding costly micromagnetic
simulations can speed up the development of new skyrmionic devices. The analytic insights it
brings may help and guide further theoretical modeling of skyrmion-defect interaction, as well as
enable faster device prototyping.



58 Chapter 3. Skyrmion-Defect interaction



Chapter 4

Skyrmion-Superconductor interaction

Up to this point, in this dissertation, Néel skyrmions stabilized in ultrathin infinite ferromagnetic
films have been considered from different approximations (rigid model or the LLG equation)
and their motion was studied. The study of these topological structures in the FM has already
proven fruitful for many possible applications in real devices.286 But topological structures are
not only present in FMs, they can also be found in SCs. The combination of two states of matter
with opposite responses to the magnetic field, superconductivity and ferromagnetism, leads to
the so-called FM-SC hybrid (FSH) systems. In these hybrid systems, a strong mutual interaction
between subsystems has been found to be able to dramatically change the properties of the
constituent materials. The different physical phenomena that may arise from FSH systems offer
vast opportunities for science and technology.

In this chapter, some examples of possible applications of FSH will be introduced. Afterward,
we will present a new model to take into account the mutual interaction between the FSH
subelements via stray field. This model will allow us to characterize the interaction between
a skyrmion-hosting FM and a SC. The interplay between the stray fields generated by the
topological defect in the FM (skyrmion, 2π, etc.) and/or in the SC (superconducting vortices),
allows for new potentially interesting behavior and applications. First, quasistatic hysteresis
loops of applied field, considering a SC in the Meissner state, will be simulated and it will be
shown that, when the SC is ZFC, the FM can transition to a new skyrmionic-like state (the
2π state). Secondly, we will characterize their mutual interaction as a function of the distance
between the sub-elements, using the force between them as a figure of merit. For this part, we
will consider a SC where a superconducting vortex may be present.

The system discussed in this section is formed by a ferromagnetic and a superconducting coaxial
disks. Lastly, the model will be expanded to consider ring geometries.

4.1 A brief topical review

The study of FSHs has been a focus of interest for the past decades.287–289 There are several
branches of research in which FSHs are a fundamental part of them. The interactions may be
separated into the two fundamental mechanisms that may drive them: the proximity effect and/or
the stray field. When the FM and SC are in contact, the proximity effect (also called exchange
interaction) is present. This effect may cause that either the superconducting wave function
extends to the FM and the Cooper pairs diffuse into it (partially suppressing the magnetic
order in the FM) or that the magnetization penetrates the SC, suppressing superconductivity
locally.287 But even if the FSH elements are not in direct contact with each other, the stray
field, generated by the magnetization in the FM or by the currents in the SC, is also able to
enable new nontrivial physical phenomena.

59
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The study of these heterostructures has not only been interesting from a purely theoretical
point of view but also many practical applications have been found. Some of these applications
are: magnetic levitation, manipulation of superconducting properties (vortex dynamics, critical
currents, etc.), spin injection and spin valves, Josephson devices, spintronics, and achieving
topological superconductivity for topological quantum computing, among others.135–137,290–297

One interesting remark is that these applications and physical phenomenology have a wide
range of scales, from the microscopic scale to the macroscopic scales. Depending on the scale
of the application and the constituent elements, one may use different approximations to ease
the study. In general, the larger the system the less relevant the microscopic details are and
some approximations can be done. For example, at large scales, one might use the critical-state
model for the currents in a hard (strong vortex pinning) type-II SC with many vortices298 or use
magnetic permeabilities or susceptibilities to characterize the FM or SC elements.299 As the
scale gets smaller, closer to the sizes of superconducting vortices or the magnetization structures
in the FM, these approximations no longer hold and the microscopic details need to be taken
into account.

Since there is a wide range of potential applications for such devices we think that a brief
explanation of some of them might prove useful for the reader. For the sake of simplicity,
we will classify them according to the most relevant interaction that gives rise to the studied
phenomenology: the proximity effect and the stray field. In general, the proximity effect will
only be relevant at microscopic scales whilst the stray field may be relevant across all sizes.

Interaction via proximity effect

In homogeneous systems with coexisting superconductivity and ferromagnetism, the supercon-
ducting order oscillates in space due to the presence of the exchange field coming from the
FM.300,301 This oscillation leads to a series of interesting phenomena:

• The critical-current density in the SC oscillates as a function of the thickness of the FM
(tf ) and temperature.

• The critical temperature in the SC oscillates as a function of tf .

• In SC/FM/SC Josephson junctions when varying tf one can change the phase of the
superconducting currents across the Josephson junction with a phase from 0 to π. Normal
Josephson junctions have null phase. If tf is tuned properly, the sign of the Josephson
current can be changed.291 Recently, it was shown that in the presence of two skyrmions
in the FM, the Josephson effect depends strongly on their relative helicity, allowing for a
helicity-transition effect for the supercurrent.292

Another interesting property of SC is the possibility to host Majorana bound states. Majorana
fermions are their own antiparticle.293 These particles have been proposed for more robust
quantum computing technologies in which the information is ‘topologically’ protected, making it
more resilient to noise. In solid-state physics, they can be found in p-wave SCs.302 In order to
obtain p-wave SCs it was shown that one can use a combination of SC and semiconductor in
nanowires.303 In the last decade, these Majorana bound states were found in SCs in contact
with a FM with a topological texture such as skyrmions.136,294,295
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Another extensive area of research in which such heterostructures have proven useful is spintronics.
The emerging field of superconducting spintronics leverages the use of FSH to transport spin
currents more efficiently. One way to do so is to use the spin-polarized triplet Cooper pairs to
transport spin. Compared with spin-polarized quasiparticle currents, equilibrium spin-polarized
triplet supercurrents are dissipationless and phase coherent.296 For a recent state-of-the-art
review see Ref. [304].

The FM-SC interaction through proximity effect may also imprint vortices in the SC. It has been
found that if one considers a skyrmion-hosting FM, vortices can be spontaneously created in
the SC due to the proximity effect.135, 136 Furthermore, the skyrmions in the FM and vortices
in the SC can form bound pairs137 whose dynamics and stability may be different from their
independent constituent parts, making it potentially interesting for spintronics.

Interaction via stray field

The stray field generated by the magnetization distribution in the FM or the superconducting
currents in the SC affect each other at all scales. Many approaches have been used to try and
harness the effects generated by the stray field when a FM and SC are present. Among them,
here we highlight the use of FSH to: engineer new magnetic metamaterials, levitate diamagnetic
elements, manipulate some superconducting property, or use emergent physical states for new
applications.

Historically since the discovery of superconducting materials, they have been envisioned as the
epitome material for power applications (e.g. avoiding energy losses when transporting currents).
In real systems though, superconductivity may break due to many factors. For example, above
a certain critical value of temperature (Tc) or current density (Jc) superconductivity starts
to break down. The superconductivity community has always tried to lessen these challenges
by increasing Tc (giving birth to high-temperature SCs) or increasing Jc. It has been found
that the stray field from a neighboring FM material can change Jc and its response with the
applied field.305 One effect that appears in FSH systems with ferromagnetic parts in the form
of ordered structures such as periodic arrays of magnetic dots, antidots, or even inclusions, is
that some peaks or plateaus appear in the applied-field dependence of the critical current and
the magnetization curve.306 Recently it was also found that when inclusions of ferromagnetic
nano-rods are present in a SC, the competition between their non-homogeneous stray fields can
enable new functionalities such as the pinning of vortices in the SC or 3D magnetic domains in
the nano-rods.305

Metamaterials are artificial media made from ensembles of multiple unit constituents, usually
arranged in repeating (or quasi-repeating) patterns, at scales smaller than the wavelength of the
field they address. They differ from conventional materials in that their properties are obtained
from the structure of their constituent units rather than from the constituent atoms.307,308

Because of this property, metamaterials can be engineered to interact and shape fields beyond
what is possible with conventional materials.

Magnetic metamaterials have been used to shape magnetic fields.309–311 In the case of static
magnetic fields, the combination of ferromagnetic and diamagnetic materials (such as SCs) is
particularly appealing. Their opposite magnetic response makes it possible to obtain effective
magnetic permeabilities not found in nature.312,313 Typically, in those works, neither the FM
nor the SC has any internal structure. These elements are considered to a linear, isotropic,
and homogeneous permeability, and are not usually simulated by solving the magnetization
distribution in the FM or the consideration of vortices in the SC.
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Another application that has proven fruitful is magnetic levitation. Levitation is the process by
which an object or body is suspended by a force against gravity remaining in a stable position
without contact. In magnetic levitation systems, it is difficult to have stability without a feedback
loop. In 1842 Earnshaw mathematically proved that stable and static levitation is impossible
for a body placed in a repulsive or attractive static force which decays with the inverse square
of the distance, which unfortunately is the case for the magnetostatic force.314 Nevertheless,
there are some systems in which the Earnshaw theorem can be circumvented using diamagnetic
materials.315 This is because diamagnets repel the magnetic field.

Although the levitation of any diamagnetic body is possible (a frog was shown to levitate in Ref.
[316]), it is the use of SCs that have proven to be much more useful as their magnetic response
is much larger than other diamagnetic materials. Their applications range from large scale, in
transportation systems leading to the Maglev train,290,317,318 to the atomistic scale, where a
diamagnetic atom can be cooled, below what is possible with optical techniques, for quantum
magnetomechanics.282,319,320

Most of the previously mentioned applications have a considerable distance between elements
so that the internal structure of the FM and SC elements can be neglected, simplifying the
theoretical treatment. When the distance between elements is smaller, this simplification is no
longer valid and new phenomenology appears.

In those cases, the ferromagnetic and superconducting elements are usually separated by an
insulating barrier so that the wave function of one material can no longer diffuse into the other.
Nonetheless, it has been found that superconducting vortices may also be created due to the stray
field generated by magnetization structures in the FM321–323 and, more recently, topological
structures such as skyrmions,138–140, 143 the latter being experimentally demonstrated.145 The
opposite is also possible. It has been shown that, under certain conditions, the magnetic
field produced by a Pearl Vortex (PV) in the SC can stabilize skyrmions in a FM with iDM
interaction69 and without it.141 In Ref. [142] it was experimentally shown that the field from a
SC can indeed stabilize skyrmions in FM multilayers with DM interaction.

The presence of structures in the FM (e.g. skyrmions) and the SC (superconducting vortices)
has been shown to interact strongly. In some cases, the structures can form bound pairs whose
dynamics may be different from those of the isolated elements. Among some of the potential
applications one may:

• Use the skyrmion stray field to trap or repel superconducting vortices.138 If pinning occurs,
this in turn may increase the critical-current density that can be passed through the SC
and decrease losses due to dissipation during vortex motion.

• The skyrmion Hall angle may be compensated with the Lorentz force of the superconducting
vortex.139 In skyrmion racetrack devices the precise control of skyrmion motion is desirable.

In the works with an insulating barrier presented before, the mutual interaction between FM
and SC elements via stray field is usually modeled via a one-way coupling. If the focus of the
study is the FM, then the SC is treated as a set of frozen currents that produce a stray field
that does not change due to the magnetization distribution.137, 139, 141, 143 If the focus is on the
SC, the same treatment is done on the FM element and the magnetization is not affected by the
currents in the SC.135, 144
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Here we develop a model that successfully captures the mutual interaction between the elements
with a two-way coupling. For the first time (to the best of our knowledge), we find the static
magnetization and superconducting current distributions simultaneously in confined geometries.
This enables us to more accurately characterize the skyrmion-superconductor interaction as a
function of the applied field or the distance between the elements. In this chapter, the FM will
be considered within the micromagnetic model (LLG) and the SC within the London model.

4.2 FSH system modeling: Disk geometries

Consider a superconducting planar and axially symmetric ultrathin disk, with radius Rs and
thickness ts ≪ Rs, centered at the origin of coordinates on the z = 0 plane. Coaxially on top of
it, a ferromagnetic planar and axially symmetric ultrathin disk, with radius Rf and thickness
tf ≪ Rf , is located with its center at dẑ. Consider that this FM is coupled with heavy metal
samples that provide iDM interaction, allowing the stabilization of Néel skyrmionic structures
such as: skyrmions, 2π states (target skyrmions), or other skyrmionic structures.55 We show
a sketch of the considered system in Fig. 4.1(a) and some examples of the different possible
magnetization states are sketched in Fig. 4.1(b).

We model the ultrathin SC with the London model (see Sec. 2.3.1), which is characterized by the
screening length Λ324,325 and the sheet-current density, K(ρ) (ρ is the radial coordinate). Because
of the system’s symmetry, the sheet-current density has only angular component K(ρ) = Kϕ(ρ)ϕ̂.

The London model assumes that the generated superconducting current does not modify the
modulus of the superconducting order parameter. Therefore, the criterion for applicability of the
London approach is that the generated current density should be smaller than a critical sheet-
current density Kc. The value for the critical current is known to be Kc ∝ 2Φ0/µ0ΛξGL,135,253

where Φ0 is the quantum fluxoid and ξGL is the superconducting coherence length (see Sec. 2.3).

Figure 4.1: (a) Sketch of the studied hybrid systems: A superconducting element (gray) coaxial to
a ferromagnetic element (light blue) with iDM interaction due to two different attached heavy metal
layers (light orange). Ferromagnetic and superconducting elements are separated by a distance d.
Both plates are considered ultrathin. (b) Sketch of some possible stable skyrmionic structures in a
ferromagnetic disk.55 The colors represent the z-component of the magnetization and the arrows
the local magnetization along the radius.
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Regarding the FM, it is modeled within the micromagnetic model (Sec. 2.2). The magnetiza-
tion is considered to be uniform in magnitude all over the sample and not varying across its
thickness. Due to symmetry considerations m is cylindrically symmetric (m = m(ρ)), where
m = (sin θ cosφ, sin θ sinφ, cos θ) is a dimensionless unit vector that determines the local magne-
tization direction via the polar (θ) and azimuthal (φ) angles. In the systems under study we will
consider that the magnetization distribution of the FM is determined by: the local exchange
field (Hex), the iDM field (HDM), the uniaxial out-of-plane anisotropy field (Han), the stray field
coming from the currents in the SC (Hk), and an applied field (Ha). For the sake of simplicity, we
will consider a uniform applied field, Ha = Haẑ, that complies with our symmetry considerations.

The demagnetizing field is considered to be renormalized in the uniaxial anisotropy99, 176, 196 (see
Sec. 2.2.3). To ensure the validity of this approximation for our finite samples, the demagnetizing
field of the structures was computed in some cases. We find that its z-component is approximately
proportional to mz, justifying the renormalizationa. This has been studied in more detail in Ref.
[179].

4.2.1 Mutual interaction

The mutual interaction between FM and SC elements via stray field is usually modeled with a
one-way coupling as was previously pointed out.

In contrast, our model allows us to find the equilibrium magnetization distribution m(ρ) in
the FM and the current distribution K(ρ) in the SC, simultaneously without ‘freezing’ any of
them. The hybrid system is simulated considering a two-way coupling between the plates. The
magnetization distribution m(ρ) and superconducting currents K(ρ) are found by solving the
London equation with a superconducting vortex (see Sec. 2.3.1) and the static Brown equation
inside the FM (see Sec. 2.2.1),


Λ
2 K + A = AΦ, for z = 0 and ρ < Rs, (4.1a)

m × Heff = 0, for z = d and ρ < Rf , (4.1b)

where A is the total magnetic vector potential in the SC, AΦ is the magnetic vector potential
due to trapped flux in the SC (see Sec. 2.3.1), and Heff the total effective field inside the FM.
The total magnetic vector potential A and the total effective field Heff have different terms
depending on the different interactions that may be present.

Before proceeding, it is convenient to normalize the equations. To do so, we define the normalized
effective field, heff = Heff/Ms, the normalized sheet-current density, K = K/Ms, and the
normalized magnetic vector potential, A = A/µ0Mslex. The lengths (including Λ, d, Rf , and Rs)
are normalized to lex, without introducing new symbols for better readability.

The normalized London and Brown system of equations that we solve read


Λ
2 K + A = AΦ, for z = 0 and ρ < Rs, (4.2a)

m × heff = 0, for z = d and ρ < Rf . (4.2b)
aSee Appendix C.1 for some examples and details.
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In this dissertation we consider that,

A = Ak + Am + Aa, (4.3)
heff = hex + hDM + han + hk + ha, (4.4)

where Ak is the magnetic vector potential due to the sheet-current density (K), Am due to the
magnetization in the FM (m), and Aa the magnetic vector potential of the applied external field
(ha). Except for the stray field generated by the currents (hk), the other effective fields have
already been discussed during the previous chapters of this thesis (see Sec. 2.2.3).

Notice that inside A [Eq. (4.3)] and heff [Eq. (4.4)] a term coming from the other plate, Am

and hk respectively, coupling the Brown and London models. Starting from the Brown-London
Eqs. (4.2) and considering cylindrically symmetric geometries [Fig. 4.1(a)], one can simplify the
system to a 1D problem in cylindrical coordinates. In this way, the different terms in Eqs. (4.2)
are rewritten in a more convenient way below.

The magnetic vector potential created by the currents produced by a trapped flux in the SC is
given by (see Sec. 2.3.1),

AΦ(ρ) = NfΦ0

2πρ ϕ̂, (4.5)

where Nf is the integer number of fluxoids trapped in the SC and Φ0 = Φ0

µ0Msl2ex
. The magnetic

vector potential created by the currents at any point can be computed from the Biot-Savart Law,
resulting in

Ak(ρ, z) = ϕ̂
1

4π

∫ Rs

0
Kϕ(ρ′)Q(ρ, ρ′, z)ρ′dρ′, (4.6)

where
Q(ρ, ρ′, z) =

∫ 2π

0

cosϕ′√
ρ2 + z2 + ρ′2 − 2ρρ′ cosϕ′ dϕ′. (4.7)

This kernel function can be rewritten in terms of elliptic functions. Either way it has to be
numerically evaluated. The magnetic field generated by these currents inside the FM is,

hk(ρ, d) = (∇ × Ak)
∣∣∣∣∣
(ρ,d)

. (4.8)
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The magnetic vector potential created by a radially symmetric magnetization distribution, in the
ferromagnetic disk, can be evaluated from the Biot-Savart Law. In the SC it reads

Am(ρ, 0) = tf
4π

[
Rf mz(Rf )Q(ρ,Rf ,−d)

+
∫ Rf

0
mρ(ρ′) ∂Q(ρ, ρ′, z)

∂z

∣∣∣∣
z=−d

ρ′ dρ′

−
∫ Rf

0

∂mz(ρ′)
∂ρ′ Q(ρ, ρ′,−d) ρ′ dρ′

]
ϕ̂, (4.9)

whilst the applied magnetic vector potential of a uniform applied field (ha = haẑ) is

Aa = (1/2)ha × r = (1/2)ρhaϕ̂. (4.10)

The other fields are (see Sec. 2.2.3):

hex = ∇2m (4.11)
hDM = ξ [(∇ · m)ẑ − ∇mz] (4.12)
han = χmzẑ, (4.13)

where ξ = DDMlex/Aex and χ = 2Kan/(µ0M
2
s ) are the normalized iDM and anisotropy constants,

respectively.

Boundary conditions

In order to solve the system of Eqs.(4.2) one must impose the correct boundary conditions (see
Sec. 2.2.4). The magnetic vector potential formulation of the London equation does not need
boundary conditions to be correctly solved and obtain a unique solution.255 Therefore the only
relevant boundary conditions are those of the FM (Sec. 2.2.4). At the edge of the sample the
boundary condition is dθ

dρ

∣∣∣
ρ=edge

= ξ/2.55

In the case of a ferromagnetic ultrathin disk of radius Rf , the boundary conditions used are:


m = ±ẑ, for ρ → 0,

dθ
dρ

∣∣∣∣
ρ=Rf

= ξ

2 , for ρ = Rf ,

(4.14)

where the innermost magnetic moment is fixed due to symmetry considerations. Since the
structure is axisymmetric the central magnetic moment can only have out-of-plane magnetization,
as any other component would result in a non-axisymmetric structure that would violate the
symmetry of the system. This cannot happen if every interaction in the system conserves the
symmetry, as we have shown in Ref. [326]b.

bNote that solving these equations in a quadrilateral mesh could result in spurious stable solutions that break
the symmetry of the system. Such unphysical solutions can be avoided with both meshes we proposed in Ref. [326]
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For the numerical simulations that follow we will consider the central magnetic moment to point
in +ẑ. This limits our solution space to magnetic states with positive polarity. The model, as
is, cannot simulate the switching to magnetic states with opposite polarity. In some extreme
conditions a Bloch point could numerically be generated [see Fig. 2.5], as the energy barrier
to flip the central magnetic moment is infinite due to the model considerations. This would
occur, for example, when the FM is in the skyrmion state and a large negative field is applied.
One would expect the sample to saturate to the uniform state pointing in the-ẑ direction,327

something our model does not contemplate.

To avoid this, we propose another way to find the magnetization distribution. Instead of fixing
the innermost magnetization moment and thus the magnetic structures’ polarity artificially, we
use a compatibility condition on the derivative of the central magnetic moment. Note that due
to the axisymmetry of the magnetic structure, as one gets closer to the center the magnetization
has to smooth out. This is the same reason why usually the central magnetic moment is fixed
to be out-of-plane. It is necessary that at the center of the sample dθ

dρ

∣∣∣
ρ→0

= 0. This allows to
model the switching of the core magnetic moment when the derivative at the center becomes
abrupt, as one would expect to happen in reality. Furthermore it naturally would be compatible
with the inclusion of thermal effects along the line. The proposed boundary conditions are:



dθ

dρ

∣∣∣∣
ρ→0

= 0, for ρ → 0,

dθ
dρ

∣∣∣∣
ρ=Rf

= ξ

2 , for ρ = Rf .

(4.15)

Characterization of the magnetization structures

Our model simulates the coupled FSH system and finds the static solutions for the magnetization
distribution [m(ρ)] in the FM and current distribution (Kϕ) in the SC for a set of internal (Λ, ξ,
and χ) and external (distance between plates d and uniform applied field ha) parameters.

To characterize the currents in the SC, due to their reversible (linear) nature within the London
model, their distribution will be used. In the case of the FM, even though the magnetization
distribution [m(ρ)] may change, the overall topology of the solution itself might not change.
As such, we will differentiate between the magnetization distribution, which will change as a
function of the applied and/or the stray fields, and the magnetization state, which refers to the
topology of the magnetization distribution. Some possible stable states that are found are the
(quasi)uniform state, the skyrmion state, and the 2π state55 [Fig. 4.1(b)]. The (quasi)uniform
state is the uniform state with tilted magnetization at the edges due to the iDM interaction [see
Eq. 4.14]. For simplicity, we will refer to this state as the uniform state.

To characterize the magnetization states in the FM, two magnitudes will be used: the averaged
z-component of the magnetization, ⟨mz⟩ (⟨mz⟩ = 1

πR2
f

∫
mzρdρdφ), and the skyrmion number,

Nsk). Recall (Sec. 2.2.6) that the skyrmion number gives information on the topology of
the structure, representing the number of times the magnetic moments wind around a unit
sphere.234,328 In the ideal case (infinite sample) the skyrmion number will be an integer and it
will be a conserved quantity. As such the structure is said to be topologically protected. Ideally
one has that the skyrmion number for the uniform state is Nsk = 0, for the skyrmion state is
Nsk = 1, and for the 2π state is again Nsk = 0. Therefore, the combination of Nsk and ⟨mz⟩
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allows to distinguish between the different magnetization structures. For finite samples though,
the skyrmion number is neither an integer nor must be conserved and special care should be taken
into account. Consequently, the topological stability of the structures is reduced, the energy to
flip the central magnetic moment is finite, contrasting with the infinite ideal magnetic structure
[e.g Eqs. (2.33) and (2.34) for an ideal infinite skyrmion]. This will be further discussed in the
results below.

From the energy density of each interaction, ε, one can compute the total energy contribution it
has as,

E =
∫

V
εdV, (4.16)

where the integration is taken over the volume, V , where the interaction is present. For
convenience, we define the normalized energy of the interaction as,

E = E

µ0M2
s l

3
ex

. (4.17)

For the system considered in this chapter [sketched in Fig. 4.1(a)], the normalized total energy of
the system will be computed. Note that, since we study FM and SC ultrathin films, ε is constant
across their thickness (tf or ts, respectively). The total energy can be expressed as,135, 138

Etot = Em + Ek + Eint, (4.18)

where the first term is the magnetic energy in the FM,

Em = −2πtf
∫ Rf

0

(
m · ∇2m + χm2

z + ξm · [(∇m) ẑ − ∇mz] + m · ha

)
ρdρ. (4.19)

The second term is the energy of the SC due to the superconducting currents,

Ek = 1
2µ0Λ

∫ Rs

0
K2

ϕdSs + 1
2

∫ Rs

0
KϕAϕdSs. (4.20)

The last term is the interaction energy of the superconducting currents and the magnetization
distribution,

Eint = −2πtf
∫ Rf

0
m · hk ρ dρ. (4.21)

One important remark is that the presence of the SC does not only change the last term in
Eq. (4.18), but also changes the magnetization itself. As such it contributes to changing all the
terms of the magnetostatic energy of the FM (if compared to the case without a SC present).
Therefore, even though the terms have been separated for convenience, they cannot be decoupled
completely and the total energy should be taken into consideration.
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However, when quasiadiabatic hysteresis loops are considered, Ek is more sensitive to the applied
field than Em. This is due to the linear response of the SC, which will keep feeding the necessary
currents needed to shield the applied field. As a result, Ek will scale quadratically with the
applied field. In contrast, the magnetization at most can saturate the sample leading to a linear
Em scaling with the applied field (for the saturation fields we may neglect the other energy terms).
As the focus of this dissertation is on the magnetization distributions (i.e. skyrmions), only Em

will be shown. This eases the discussions and readability of the results.

Stability study of the magnetization structures

In order to study the feasibility and applicability of any phenomena found, the stability of
the simulation results must be assessed. Since within the London approximation167,251,329 any
change in the current distribution (Kϕ) is reversible, there is no energy barrier associated to that
change. As such, the stability study will focus on the magnetization states. Nonetheless, the
calculated superconducting currents will briefly be presented for completeness.

To assess the stability it is critical to evaluate in some way the transition mechanism between
different stable states and the energy barrier associated to it. Our model finds the stable states
in a static scenario and therefore we cannot obtain the magnetization distribution along the
transitions. However, close to the transition, we may estimate the energy barriers by finding the
minimum energy path (MEP) between two stable magnetic structures. To follow a MEP in our
system means to rotate magnetic moments in a way as to minimize the energy with respect to all
degrees of freedom perpendicular to the transition path. In order to estimate the different MEPs
we use the Geodesic Nudged Elastic Band (GNEB) method156 and compare the two possible
transitions mediated by the magnetization boundaries (see Sec. 2.2.7).

As a brief reminder, the GNEB method is a quasi-static method by which we set an initial
transition path (discrete set of magnetic moment configurations interpolating between two stable
states) that is iteratively optimized by zeroing the transverse component of the gradient force
at each point along the path. This ensures the convergence to a first-order saddle point in the
phase space, giving the MEP of the transition.
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4.2.2 Discretization and algorithm

To numerically solve the system of Eqs. (4.2), for the the axisymmetric 1D case are discretized
following the radial mesh presented in Ref. [326]. A disk sample with outer radius R, will be
divided into N + 1 cells of size ∆ρ = R/N . In that way, the radial position of the i-th cell is
given by their central position ρi = (i+ 1/2)∆ρ with i = 0, 1, 2, . . . , N . We will use the same ∆ρ
for the FM and the SC.

One important remark is that when discretizing, the kernel function Q [Eq. (4.7)] will become a
matrix, whose diagonal terms strictly diverge when z = 0. To avoid this discretization problem,
these diagonal terms are evaluated from the condition that an infinite disk ideally shields two
coils separated by the superconducting disk.255 A different study, yielding the same limit, can
be done by studying the logarithmic divergence when ρ ≃ ρ′ and doing a numerical cut-off such
that instead of evaluating the fields at the center of the cells, we evaluate one of them at the
division between them. In this way we consider that, when ρ ≃ ρ′, ρ− ρ′ ≃ ∆ρ/2. Using this in
the logarithmic divergence, one obtains that the matrix terms are:

Qij = Q(ρ, ρ′, z), i ̸= j or z ̸= 0,
Qii = 1

2π

(
log 16πρ

∆ρ − 2
)
, z = 0 .

(4.22)

After discretizing the system of Eqs. (4.2), the London and Brown equations become a system of
linear equations that will be solved with different methods for numerical purposes. The London’s
system of linear equations

Λ
2 Ki,ϕ + Ai,ϕ = Ai,Φ , for i = 0, 1, 2, . . . , N (4.23)

is solved by using an iterative Gauss-Seidel scheme.330 For the Brown Eq. (4.2b), a relaxation
method based on the LLG equation [Eq. (2.5)] is used. This method consists in solving the
pseudo-dynamics of an initially set magnetization distribution (ideally, close to the stable solution)
with a numerically high damping constant α such that the system loses energy and relaxes to
the static solution.

The advantages of this method are two-fold: it can speed up convergence to the solution while
avoiding possible numerical instabilities due to certain symmetries in the effective fields of the
system (i.e. ending up stuck near saddle points, obtaining non-physical solutions).326

Both systems of equations need to be solved simultaneously since they are coupled. For a given
set of external parameters (i.e. distance between plates and applied field ha), we iteratively solve
them until convergence. More precisely, the algorithm can be found in Algorithm 1.
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Algorithm 1 Hybrid system relaxation
1: Choose internal parameters (Λ, Φ, ξ, and χ)
2: Choose numerical damping parameter α ≳ 0.1 and tolerance ϵ
3: Choose external parameters (distance between plates d and applied field ha)
4: Set to zero stray field from current distribution hk = 0
5: Initialize FM with ansatz solution m(ρ) (ideally close to the desired one)
6: Solve Brown equation [Eq. (4.2b)] with LLG-based relaxation method (see Sec. 2.2.2)
7: while Energy variation ≥ ϵ do

8: Compute Am [Eq. (4.9)]
9: Solve London equation [Eq. (4.2a)] with Gauss-Seidel

10: Compute hk [Eq. (4.8)]
11: Solve Brown equation [Eq. (4.2b)] with LLG-based relaxation method.
12: Compute energy variation of the current iteration
13: end while

This approach allows to characterize their mutual interaction for a given distance between
elements and uniform applied field (ha). If one wants to obtain the mutual interaction as a
function of any external parameter it can be done simply by looping over the external parameter
values in Algorithm 1. If one wants the presence of trapped flux in the SC it can be done with
the Φ parameter, which is an integer multiple of Φ0 [Eq. (4.5)], for the cases considered.

Once the stable magnetization and current distributions are found, the GNEB method can be
used to study the stability of the structures. As discussed before, the phase space needed to be
explored to find the transition mechanism is too large to feasibly obtain any solution in reasonable
computation times. Therefore even though the field from the superconducting currents may
affect the magnetization transitions, we will consider them as an external source of field that
does not change along the magnetization state transition. In other words, for the stability study,
the superconducting currents are assumed to produce a similar stray field in the FM for every
possible stable magnetization distribution. This approximation will only be used for the stability
study of the found structures. The GNEB algorithm is introduced in Sec. 2.2.7. The algorithm
to compute the transition is introduced in Algorithm 2.

Algorithm 2 Magnetization state stability with GNEB method
1: Set internal parameters (Λ, Φ, ξ, and χ)
2: Set force tolerance ϵ over spins or magnetic moments of each iteration156

3: Set external parameters (distance between plates d and applied field ha)
4: Obtain initial magnetization distribution before the transition [mA(ρ)] with Algorithm 1
5: Obtain final magnetization state after the transition [mB(ρ)] with Algorithm 1
6: Obtain currents by solving London’s equation [Eq. (4.2a)]. Assume constant Am given by

initial magnetization state and applied field. Currents will remain constant
7: Compute stray field from current distribution hk

8: GNEB algorithm [see Sec. 2.2.7] to obtain the initial to final state transition.
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4.3 Numerical results

A huge plethora of Néel skyrmion-hosting materials can be found in the literature.23,40,46, 118, 145,331–334

In general, different phenomenology might occur depending on the magnetic constants, the ratio
between radii Rs/Rf , and the screening length Λ. As the interaction is mediated by the stray
fields, the shape and strength of the superconducting currents vary depending on the geometry
and Λ in the SC, whilst the magnetization distribution response will be given by the magnetic
constants. To simplify the study we will use the parameters found experimentally in Ref. [334]:
Aex = 15 pJ/m, DDM = 2.8 mJ/m2, Kan = 70 KJ/m3, Ms = 0.65 MA/m. For the SC we have
used the London penetration depth λL = 16 nm of aluminum.335

To study the system presented in Fig. 4.1(a), we first will evaluate a quasiadiabatic hysteresis
loop of applied field, with a fixed distance between plates, d, and a ZFC SC. Then, a study of
the response to the distance between plates will be done, without applied field (ha = 0) and
a ZFC SC. Note that in both of these studies the SC considered is ZFC. Therefore, when the
SC is cooled down and transitions to the superconducting state, no magnetic flux gets trapped
[AΦ = 0 in Eq. (4.2a)].

Once this is done, the previous studies will be repeated with a FC SC. Some studies hint that in
FSH systems, some pinning phenomena may appear between the skyrmionic structures in the
FM and the SC.137, 139 The London currents will be modified since now AΦ ̸= 0 in Eq. (4.2a)
as flux has been trapped when transitioning to the superconducting state. The flux penetrates
in the form of PVs,324,325 which carry an integer multiple, Nf , of flux quantum, Φ0. If only a
single vortex penetrates, it will be found at the center of the SC disk. Note that the flux is a
conserved quantity given by Eq. (4.5).

In each of these studies, the procedure will be the same. First, the stable magnetization
distributions in the FM for a given distance between plates d and uniform applied field ha will be
found. To find the different possible stable states Alg. 1 will be initialized with different ansatzes
close to the target magnetization distributions [sketched in Fig. 4.1(b)]. To see the effect of the
SC on the FM, the system without any SC in the vicinity is also simulated and compared.

4.3.1 On the response to a uniform applied field

In this section, we will focus our attention on the magnetic field response of the FSH. Due to
the large number of possible parameters, we study a specific case in which a set of interesting
results appear when the elements are relatively close to each other. In particular, we consider
the following non-normalized values: tf = 1 nm, Rf = 70 nm, ts ≃ 21 nm, Rs = 3Rf = 210
nm, Λ = 24 nm, and the distance between elements d = 20 nm (see Fig. 4.1 for a sketch). This
distance is set so that experimentally one could fit a sufficiently thick insulator (4-5 nm) between
the FM multilayer and the SC disk such that the proximity effects are avoided. The FM and the
SC will be discretized with a fixed ∆ρ = Rs/200lex ≃ 0.14 from now on, unless otherwise stated.
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Possible magnetic states for a given applied field

The possible states found for both the single FM and the FSH system are shown in Fig. 4.2. The
magnetization state of the FM is characterized by the averaged z-component of the magnetization
when a linearc ZFC SC is present [Fig. 4.2(a)] or not [Fig. 4.2(d)]. Depending on the applied
field, up to three different stable states are found. The red, green, and blue lines correspond to
the uniform, skyrmion, and 2π state, respectively. These structures are sketched beside their
corresponding curve. Note that these are all the stable states found in this system and not all of
them may be accessible during, for example, a hysteresis loop.
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Figure 4.2: (Left) Normalized averaged z-component of the normalized magnetization, (center)
skyrmion number, and (right) normalized ferromagnetic energy, of all the stable magnetic states
for different applied fields, in the presence [(a-c)] or absence [(d-f)] of a SC. The stable states
found are the uniform (red), skyrmion (green), and 2π (blue) states. A sketch of the magnetization
distribution is shown in the magnetization (left) panels.

When the SC is present, it can be seen that for large positive applied magnetic fields (ha ≳ 2.5),
the ferromagnetic sample saturates to the uniform state [sketched in Fig. 4.1(b)] where the whole
magnetization distribution mostly points in the ẑ direction except near the edges, as should be
expected. On the opposite side of the field range, for large negative applied fields (ha ≲ 1.5) the
skyrmion state is found to be stable with ⟨mz⟩ ≃ −1. This is an artifact of the model. As the
central magnetic moment of the FM is forced to point in the +ẑ direction, it cannot be flipped
and therefore the sample is not allowed to saturate completely into the uniform state pointing
in −ẑ. For intermediate fields, there is a range of fields where several structures are found to
be stable. When there is no SC, it can be seen that the range of fields at which the 2π state is
stable is severely diminished. This can be explained by the fact that the SC shields the applied
field. As the 2π state winds up the most, it competes the most with the z-component of the
applied field. Therefore, if a part of the field is shielded, the structure can be stabilized for a
wider range of applied fields. The shape of the field on the FM when a SC is present is sketched
in Fig. 4.3(a). The shielding currents in the SC can notably modify the field acting over the FM.

cRecall that the SC is linear within the London model.
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(a) (b)

(c)

Figure 4.3: (Left) Sketch of the distorted applied field lines (black) due to the presence of a
SC element (dark gray). A FM (brown) is placed on top of the SC as in Fig. 4.1 and will be
perturbed due to the external field lines. (Right) Sketch of the magnetization distribution of
the FM in the skyrmion state as a function of the applied field when a SC is present or not [(c)
and (b) respectively]. As can be seen when a SC is present the outermost moments are tilted
inwards as compared to when there is no SC. The colored arrows represent the z-component of the
magnetization (red-green-blue from mz = 1 to −1). The field lines are depicted in light gray.

To further characterize the stable structures, we also evaluate the skyrmion number with and
without SC [Figs. 4.2(b) and 4.2(e), respectively]. For finite samples, the skyrmion number
is neither an integer nor must be conserved. This can be seen in our results [Figs. 4.2(b) and
4.2(e)] where the skyrmion number of the uniform state varies from almost Nsk ≃ 0 (at large
applied fields) to up to Nsk = 0.7 (near its destabilizing field). In contrast for the 2π state, when
stable, it ranges from Nsk ∈ (0, 0.15). If one compares the behavior of the skyrmion number as a
function of the applied field with [Fig. 4.2(b)] and without [Fig. 4.2(e)] SC, it can be seen that it
is different, with the largest difference for the skyrmion state. We attribute this behavior to the
radial component of the field (which points inwards) generated by the superconducting currents,
which bends the magnetization inwards near the edges, where it is largest [see Fig. 4.3(b-c)].
This makes it so that when near the destabilizing point, the magnetization tends to wind up
more (tilted inwards) instead of unwinding. This effect is largest when the magnetic state is less
stable. Further discussion will be done when studying the quasistatic hysteresis loops.

In order to ensure that the previous model findings are not due to the model forcing the innermost
magnetic moment to point to +ẑ, the calculations with and without the SC will be repeated but
allowing the system to flip the central magnetic moment. To do so we use the boundary conditions
presented in Eqs. (4.15). A relevant remark is that within the continuum approximation, the
energy barriers to flip the core of the magnetization state will depend on the discretization
used (∆ρ). As the continuum model considers that within an lex the magnetization can be
regarded as uniform, we decided to set ∆ρ = 0.5 to simulate the system. A drawback is that this
boundary condition is valid as long as ∆ρ → 0, as was discussed when the boundary condition
was presented. As such, the model may predict unstable states by breaking the symmetry due to
the discretized nature of the simulated system.

For this second model, the system is allowed to transit to six states. The new states correspond
to the previously found stable states but with negative polarity (e.g. a “negative skyrmion”).
This is true for both when a SC is [Fig. 4.4(b)] or not [Fig. 4.4(d)] present in the system. If
compared to fixing the magnetization value at the core [Figs. 4.4(a) and (c)], the most notable
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change is that the skyrmion is no longer stable for any applied negative field ha but it transits
to the negative uniform state. When a SC is present this happens at ha ≃ −2.5 whilst when
there is no SC, this transition appears before at ha ≃ −0.32. Another interesting result appears
when comparing the behavior of the 2π state. The field range where the 2π state is stable is
reduced significantly. As the core magnetization size is reduced with a positive applied field, the
transition to the negative skyrmion state is no longer prohibited.
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Figure 4.4: Normalized averaged z-component of the normalized magnetization of all the stable
magnetic states, for different applied fields, in the presence (a,b) or absence (c,d) of a SC. The
stable states are fixing the central magnetic moment mz = ẑ or the central derivative to zero, for
the left (a,c) and right (b,d) plots respectively. For the left plots, the stable states found are the
uniform (red), skyrmion (green), and 2π (blue) states with both polarities. The negative polarities
are denoted with lighter colors. In (e) some magnetization distributions are plotted after fixing the
central moment (lighter colors) or fixing the central derivative (darker colors). The skyrmion state
(green dots) and the 2π state (blue triangles) are found at ha = −2.5 and ha = 0.975, respectively.
These fields correspond to the destabilizing field of the structures when fixing the derivative. The
dashed lines are plotted for clarity.

This leads to the downside of the model: since ρ = 0 is not a part of the discretization, by fixing
the derivative as the BC [Eqs. (4.15)] it is possible to find magnetic structures whose innermost
magnetic moment (ρ = ∆ρ/2) does not point in ±ẑ. To illustrate these phenomena we show in
Fig. 4.4(e) some extreme cases found for the skyrmion and the 2π states. We compare them to
the findings fixing the inner magnetic moment [same as in Fig. 4.2(a)]. The applied field chosen
is the one found to be the last stable applied field for the structures when considering fixing the
derivative and the selected cases are when a SC is present. Similar behavior is found when the
SC is not present. It can be seen that the results of both models resemble each other. It is clear
that near the destabilizing fields, not fixing the central derivative may break the symmetry of
the system, resulting in unphysical results [Fig. 4.4(e)]. That is why we have chosen to study
the system by fixing the central magnetic moment as is usually done in the literature. For us,
the results of the second model only give a range of validity for the findings of the first model
and confirm that the findings are not due to the model itself.
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Figure 4.5: Normalized current distribution for two different
applied fields when the superconducting currents are not affected
by the FM (black) or are affected by a uniform (red), skyrmion
(green), or 2π (blue) states. For ρ ≲ Rf the currents vary
significantly. The inset shows a zoom of the marked region of
the main plot (ρ ≲ 1.25Rf ).

Regarding the SC, the supercon-
ducting currents may also be af-
fected by the magnetization dis-
tribution. It should be expected
that the currents’ change due to
the magnetization in the FM de-
pends on the intensity of the FM’s
stray field at the SC. For all the
cases studied, the magnetic field
generated by the magnetization is
smaller, as long as ha > 0.05. Re-
call that we are quite far away from
the field sources as we are dealing
with a “realistic” system.The de-
tails of the current distribution may
be of crucial importance close to
the destabilizing fields. To capture
this, we show the current distri-
butions for two applied fields (Fig.
4.5). For ρ ≲ Rf , there is a slight
variation in the current distribution
for all the magnetic states. This
variation is on the order of the
strength stray field generated by

the magnetic structures (≃ ±0.05). More interestingly, depending on the magnetization distri-
bution the current distribution also changes in shape accordingly as the stray field is different.
This change in the current distribution is more relevant as the interaction between elements
is stronger. Thus, it is possible that the effects of the mutual interaction could be critical to
accurately characterize the energy landscape and, specially, the stability of such hybrid systems.

Stability analysis of the solutions

Once we have found the possible stable solutions as a function of the applied field, it is desirable
to know the dynamics and stability of the magnetization states. As discussed above, our model
solves the Brown Eq. (4.2b) for the FM (static limit). Hence, it cannot retrieve the dynamics of
the transitions. However if one were to quasiadiabatically follow the curves found in Fig. 4.2
(slow and smooth variation of the applied field) the transitions, for low temperatures, should
be expected close to the critical fields that make the structures unstable. To study the possible
transitions in the system we will use the GNEB method (Sec. 2.2.7). At this point, we must
remark that considering both the magnetization and the currents have too many degrees of
freedom. Therefore, the computational time to find the MEP becomes unfeasible, even using the
GNEB. Thus, to find an estimate for these transitions we consider the superconducting currents
as fixed restricting our study to the magnetization states. The GNEB method is usually done
at the atomistic level. We have adapted the GNEB method to work within the micromagnetic
model by using the micromagnetic effective fields [Eq. 4.4] instead of the atomistic ones.
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Figure 4.6: MEP calculated using GNEB showing the energy for the transitions occurring near
the destabilization field of uniform (a) and skyrmion (b) states, in the presence of a SC. The dots
indicate the images computed along the converged path. The arrows indicate the most probable
transition found. (c) Normalized energy barrier as a function of the applied field studying the
uniform and skyrmion destabilization. The destabilizing fields at which the structures become
unstable are highlighted in red.

In Figs. 4.6(a) and 4.6(b) we show the MEP between all stable magnetic states found using the
GNEB algorithm near the destabilizing field from the uniform and skyrmion state, respectively,
when a SC is present. The destabilizing field found for the uniform state is ha ≃ 0.07 and for
the skyrmion state is ha ≃ 0.24 [see Figs. 4.2(a-c)]. Note that only within this field range, the
three magnetic states coexist. Using the GNEB method we compute the MEP and obtain the
transition path from each of the stable states to the rest. For simplicity only the MEP is plotted,
without the details on the transition mechanism. The horizontal axis is the normalized length
of the geodesic path along the reaction coordinate (l) that connects the MEP between those
two states. Since the transition from the uniform state to the 2π state was found to go through
an intermediate skyrmion state, we arbitrarily normalized the path length such that starting
from the uniform state to the skyrmion state is l = 1 and to the 2π state is l = 2. To remark
that there are two different transitions from the uniform state we explicitly plot the uniform
to skyrmion transition to the left of the plot and from the uniform or skyrmion state to the 2π
state on the right of the plot.

In confined thin-film FMs there are two main transition mechanisms: collapse and escape
through the boundary.156,336 Typically, the energy barrier of the boundary-mediated skyrmion
annihilation is lower than that of the destruction by direct collapse.41, 148,337 Our model can only
predict the annihilation through the boundaries in the continuum limit.
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(a)

(b)

(c)

�0 Rf 

Figure 4.7: Sketch of the different magnetiza-
tion distributions as a function of ρ for the (a)
uniform , (b) skyrmion , and (c) 2π states. The
colors represent the z-component of the magne-
tization.

It is found that, when the field is approaching
the destabilizing field (ha ≃ 0.07), the energy
minimum corresponding to the uniform state is
becoming shallower up to disappearance. This
is expected as the structure is not found to be
stable for smaller applied fields. At that moment,
it is clear from Fig. 4.6(a) that the most probable
state, the one with the lowest energy barrier, is
the skyrmion state. Actually, in that case, the
transition to the 2π state must go through an
intermediate skyrmion state due to the symmetry
of the system (Fig. 4.7). As we can only transition
through the boundaries, when the magnetization
is winded up one gets the skyrmion state. To
obtain the 2π state one must further wind the
magnetization structure. Thus, when the uniform
state becomes unstable, the system would evolve
to the skyrmion state.

Once in the skyrmion state and increasing the applied field, this state can also be destabilized
for ha ≃ 0.24 [see Figs. 4.2(a-c)]. For this case, in Fig. 4.6(b) we show the GNEB results for
the MEP for the different possible transitions among all stable magnetic states. In this case,
again, when approaching the destabilizing field (ha ≃ 0.24), the minimum corresponding to the
skyrmion state tends to disappear and, when this happens, it is clear that the most probable
transition is to the 2π state [Fig. 4.6(b)]. In this case, the energy barrier for this transition
is smaller than the energy barrier for the skyrmion-to-uniform one. Note that in this model
we fixed the central magnetization direction to ẑ and hence the skyrmion remains stable for
arbitrarily large negative fields. Nonetheless, the results presented in Fig. 4.4 and the comment
below hold for this discussion. Below ha ≲ −2.5, an additional transition to the uniform state
pointing to −ẑ would be found. As such, by restricting ourselves to the field range of Fig. 4.6,
we can avoid complicating more the discussion. The findings and energy barriers for the stable
solutions with negative polarity are symmetric to the ones obtained for positive polarity.

To more clearly show the energy barriers of all the transitions, we have plotted them in Fig.
4.6(c), for the applied field range ha ∈ [0.07, 0.24]. It can be seen that, depending on the applied
field, the energy barrier is lowest for the uniform to skyrmion transition (ha ∈ [0.06, 0.13]) or the
skyrmion to 2π transition (ha ∈ (0.13, 0.24]). The most remarkable result is that the transition
from the skyrmion to the uniform state is always the highest among all of them. Therefore, the
probability of this transition will be smaller than the rest. This probability can be estimated
from the Arrhenius Law41,337 (see Sec. 2.2.7).

For comparison, the same GNEB study was repeated for the case when there is no SC present
in the system. In Fig. 4.8(a) the energy along the reaction coordinate of the MEP is shown in
the range of applied fields at which the uniform, the skyrmion, and the 2π states were found
to be stable [see Figs. 4.2(d-f)]. We found that even though the 2π state might be stable, the
transition to that state is less probable than its alternative near the skyrmion annihilation field.
The energy barrier to transition to the 2π state is always bigger than the energy barrier of
another transition, as is explicitly plotted in Fig. 4.8(b). The uniform-to-skyrmion transition
is found to be the most prominent as it has the lowest energy barrier for small applied fields
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(ha ≲ 0.065), while for higher applied fields it is the skyrmion-to-uniform transition that will be
the most probable. Therefore, without the SC, the 2π state would not be reached. Note that
our model does not take into account temperature. The transition to the 2π state might be
thermally activated in some cases, but it will always be less probable than in the case where a
SC is present [Figs. 4.6(a) and 4.8(a)].

Hence, the addition of a SC element significantly changes the energy landscape and possible
transitions of the FM: an additional transition to the 2π state appears.
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Figure 4.8: (a) MEP calculated using GNEB showing the activation energy for the transitions,
when there is no SC present, occurring at applied fields where the three states are stable (0.025 <
ha < 0.1). The dots indicate the images computed along the converged path. The arrows indicate
the most probable transition found for that applied field. (b) Energy barrier as a function of the
applied field studying the uniform and skyrmion destabilization. The destabilizing fields at which
the studied structures become unstable are highlighted in red.

There are several considerations at this point. First, due to the symmetry of our system, since
there can not be a transition through the angular component of the magnetization, the transition
from the uniform to the 2π state the magnetization must occur through an intermediate skyrmion
state. Second, the energy barriers found using our implementation of the GNEB algorithm
are evaluated within the micromagnetic approach. Hence, the effective field used to optimize
the MEP is in the continuum approximation. As such, it does not take into account Bloch
point formation. However, in previous works41, 148 it was found that, for finite samples (i. e.
racetracks), the transition takes place through the boundaries of the FM and is not mediated by
the formation/annihilation of a Bloch point in most cases. This justifies that our calculations give
a good estimate of the stability and provides valid information on the most probable transition.
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Quasistatic hysteresis loops

Up to this point, we have found the possible stable magnetic states as a function of the applied
field (Fig. 4.2). Afterwards, the stability of the different magnetization distributions found
to be stable near the transition fields was presented (Figs. 4.6 and 4.8). It is found that the
inclusion of a SC element favors the transition from the skyrmion to the 2π state which may
not be found without the SC (in the low-temperature limit). As such, it hints at the possibility
that a quasiadiabatic hysteresis loop with and without the SC may be different, allowing an
additional transition not possible without the SC.

In order to assess this statement, we have done quasiadiabatic hysteresis loops by solving the
Brown equation starting from a uniform state and following the loop as a function of the applied
field when there is a SC element present in the system. To prepare the system, we prepare each
element isolated from each other (i.e. infinite distance between them). The SC is ZFC and the
FM is saturated to the uniform state with a large positive field so that the uniform state remains
stable even when the SC is close to it. Then, the elements are slowly brought together up to
the distance d. After this we decrease the field quasiadiabatically, in steps of ha = 0.005, and
simulate two hysteresis loops:

(a) An outer loop in the range ha = ±2.5. We expect that starting from the uniform state, a
transition to the skyrmion state will be found near zero applied field [Fig. 4.6(a)]. This
state will be stable for the negative field range and is expected to transition to the 2π state
at slightly positive applied fields at the returning part of the loop [Fig. 4.6(b)]. Then we
keep increasing the applied field until the FM sample saturated to the uniform state [Fig.
4.2 (a-c)].

(b) An inner loop in the range of ha = ±1. Starting from the uniform state the behavior is
expected to be similar to the previous one, except that the field is reversed before the
saturation to the uniform state. As such it is expected that the FM stays in the 2π state
and transitions to the skyrmion state for negative applied fields [Fig. 4.2(a-c)].

The simulations are presented in Fig. 4.9. For the outer loop [Fig. 4.9(a)], it is found that after
reducing the applied field to slightly positive fields (ha ≃ 0.07), the uniform state destabilizes
and a transition to the skyrmion state is found, as predicted with the GNEB algorithm [Fig.
4.6(a)]. Once in the skyrmion state, the model can only compute its destabilization for positive
fields as the central magnetic moment is fixed by the model and cannot be flipped. As such
when decreasing the field to ha = −2.5 and increasing it back to ha = 1, the skyrmion state
remains stable and no transition is found. As the field is further increased, a transition is found
at ha ≃ 0.24, where the skyrmion state transits to the 2π state as was previously predicted [Fig.
4.6(b)]. In the 2π state, we continue increasing the field until the FM sample transits again to
the uniform state, at ha ≃ 1.88. For the inner loop [Fig. 4.9(b)] the hysteresis loop is similar
except that prior to the transition to the uniform state (ha ≃ 1.88), we decrease the field while
still remaining in the 2π state. The 2π state remains stable as we decrease the field until it
destabilizes and transitions to the only remaining stable state, the skyrmion, at ha ≃ −0.35 [Fig.
4.2(a)]. Therefore two different loops depending on the field range can be found.
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Figure 4.9: Averaged z-component of the normalized magnetization during the hysteresis loop.
(a) Outer hysteresis loop with field ranging from ±2.5. (b) Inner hysteresis loop with field ranging
from ±1. The vertical lines are in gradient colors to indicate transitions between magnetization
states: red for the uniform, green for the skyrmion, and blue for the 2π state.
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Figure 4.10: Averaged z-component of the normal-
ized magnetization during the hysteresis loop without
a SC. Hysteresis loop with field ranging from ±2.5.
The vertical lines are in gradient colors to indicate
transitions between magnetization states: red for the
uniform and green for the skyrmion.

If there is no SC, the hysteresis loop changes
as the transition to the 2π state is not found
(Fig. 4.10). In this case, starting from the
uniform state we decrease the field until the
state becomes unstable and the FM transits
to the skyrmion state at ha ≃ 0.02. There are
no further transitions as we keep decreasing
the field, similarly to when a SC was present.
As the field is increased again, a transition
to the uniform state is found at ha ≃ 0.1.
Both transition applied fields match those at
which the state became unstable in the static
limit [Fig. 4.2(d)].

We attribute the disappearance of the
skyrmion-to-2π transition to the fact that the
energy barrier near the destabilizing fields to
transition from any state to the 2π state is
never the smallest one, as predicted with the
GNEB algorithm (Fig. 4.8). As such, in the
low-temperature limit, the transition to the

2π state is forbidden. But even if one considers temperature, the transition to the 2π state would
not be the most favored transition as there is always another transition with a smaller energy
barrier [Fig. 4.8(b)]. This clearly contrasts with the case with a SC, where for certain applied
fields, the transition to the 2π state is favored over the other possible transitions [Fig. 4.6(c)].

Our explanation for this behavior is that the shielding currents in the SC partially shield the
applied field whilst adding a radial field. The radial component of the field tends to tilt the
magnetization structure inwards at the edge, favoring the wind-up of the structure [Fig. 4.3(c)].
This is shown in Fig. 4.11(a), where as the applied field increases, the magnetization distribution
winds up more. In contrast, when there is no SC present [Fig. 4.11(b)], the magnetization
distribution unwinds and the skyrmion transits to the uniform state at ha ≃ 0.01.
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Figure 4.11: Magnetization distributions, starting in the skyrmion state, for different applied
fields (a) with a SC present in the system and (b) without it. The applied fields shown are ha = 0
(purple), ha = 0.06 (blue), ha = 0.12 (green), and ha = 0.2 (orange). These were chosen near the
skyrmion-to-uniform transition when there is no SC. When a SC is present, the magnetization
tends to wind up more. Without a SC, the magnetization unwinds and transitions to the uniform
state.

4.3.2 On the response with plates’ separation

Once the response of the system to the applied field at a fixed distance is known, it still remains
to study its behavior as a function of the separation between the FM and the SC. The magnetic
state and the SC will be prepared isolated and then we will get them closer together. It is known
that the stray field of the skyrmionic structure is not the same above or below it.144 Therefore,
to fully characterize the interaction we will consider that the FM can be below or on top of the
SC. The resulting systems are sketched in Fig. 4.12, where each of these cases is separated by
the horizontal dashed line. The coordinate system is considered to be centered at the SC. First,
a study with the SC in the Meissner state will be done. Then, we will consider the possibility of
having trapped flux inside the SC, in the form of a Pearl vortex (PV).

The magnetic structure in the FM will be characterized as in the previous section (Sec. 4.3.1).
As was shown, the transitions are mediated through the boundaries of the sample. To simplify
the discussion, the stability analysis will not be presented as a wide range of phenomena is found.

The interaction force can be obtained as follows. The necessary work to approach (or separate)
the elements of the system is given by the variation in the total energy of the system, Etot [Eq.
(4.18)]. It follows then that the interaction force will be given by,

F = −∇Etot, (4.24)

which in our case, as we consider an axisymmetric system, has only z-component. Note that the
force in Eq. (4.24) is normalized.
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Figure 4.12: Sketch of the FSH. The behav-
ior of the system depends on whether the FM
(brown) is on top of the SC (gray) or below it,
separated by the black dashed line.

Numerically, the system preparation is done at
a distance d = 100Rf and the elements are then
brought together. As we want to follow the mag-
netic history of the FM sample, the distance varia-
tion at each step, ∆d has to be small. We decided
to study the range of distances d ∈ [0.15Rf , 3Rf ].
In this region we set ∆d = 0.01Rf , being small
enough to characterize the quasiadiabatic limit,
and thus enabling to study the FM states as a
function of the distance as well as the interac-
tion force between the elements. Furthermore,
as the uniform state is not stable at ha = 0, we
will consider a field range of small applied fields
ha ∈ (0, 0.1).

First, consider the system without applied field (ha = 0). It is known that a SC in the Meissner
state, responds diamagnetically to magnetic fields. As such, the stray field of the FM will be
shielded by the SC, creating an “image” of the magnetic structure. Actually, this is true in the
case of an infinite (Rs → ∞) SC with Λ = 0. Yet, since Rs − Rf ≫ Λ, we may consider this
approximation to give us some intuition on the interaction between them. As the FM interacts
with something resembling an image of itself, a repulsive interaction is found. The results are
shown in Fig. 4.13(a). It can be seen that the response is stronger when the FM is on top of the
SC. This is attributed to the asymmetry in the magnetization’s stray field, as found in Ref. [144],
and the inherent bias induced by the radial component of the SC’s stray field (see Fig. 4.14).
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Figure 4.13: Force between the FM and SC elements (a) with no applied field, ha = 0, and (b)
with ha = 0.1. A positive (negative) force is repulsive (attractive). The magnetization states are
the uniform (red), the skyrmion (green), and the 2π (blue). The darker (lighter) colors symbolize
that the FM is above (below) the SC [see Fig. 4.12 for a sketch]. The vertical dotted line represents
the closest distance between the elements considered. In (a) we show an inset of the red region.
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For the studied skyrmion-hosting multilayers, the uniform state is not stable at zero applied
field. This was previously found in the hysteresis loops (see Fig. 4.2). Hence, it is interesting
to see what happens when a uniform applied field ha is present. In that case, the FM reacts
to the shielding currents induced by the applied field and the stray field of the magnetization
distribution. Depending on the applied field, the induced currents due to the magnetization
distribution may be negligible.

Figure 4.14: Field lines produced by the shielding currents in a SC (light gray) when the FM
(brown) is (a) on top or (b) below it. The FM is in the uniform state [see Fig. 4.1(b)]. When the
FM is on top of the SC, the edge magnetization is tilted inwards (compared to when there is no
SC) due to the fields’ radial component, opposing the iDM-imposed chirality. In contrast, when the
FM is below the SC, the stray field helps the iDM interaction to tilt the magnetization, favoring
the destabilization of the uniform state. The z-component of the magnetization is color coded as in
Fig. 4.7.

For a small applied field ha = 0.1, where the uniform state is stable, we found that the interaction
can be either attractive or repulsive. This can be seen in Fig. 4.13(b), where the uniform (red)
and 2π (blue) structures have been found to be always repulsive, for the case considered, both if
the FM is above or below the SC. If the FM is in the skyrmion state and above the SC (light
green line), the interaction is always attractive. To explain this, consider the following. As the
applied field is set to be ha = 0.1 ẑd, the currents generate an opposing magnetic field (see black
arrows in Fig. 4.14 for the total magnetic induction field). In a simplified picture, the currents
can be seen as a dipole pointing to −ẑ and since the magnetization of the skyrmion state is
mostly negative (⟨mz⟩ < 0, as seen in Fig. 4.2), the net force is attractive.

When the FM and SC elements are closer, the “averaged” picture may no longer hold. This
may explain the unexpected different behavior when the SC is above (close-range repulsion
and long-range attraction) compared to when it is below (always attractive). We attribute
this phenomenon to the bias introduced by the radial component of the field, which is reversed
above/below the SC, as can be seen in Fig. 4.15. This bias is also shown in the sketch in Fig.
4.14. It is clear from Fig. 4.15 that when the FM is below the SC (dashed lines) a positive radial
component of the magnetization is favored, which is dominant in this case. In contrast, when
the FM is on top of the SC (solid lines) a negative radial component is preferred. For the cases
studied, this yields a repulsive interaction.

dThis field is larger than the stray field produced by the magnetization which is ≃ 0.05 for the closest distances.
Hence we might neglect it.
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Figure 4.15: Radial component of the skyrmion
magnetization (black) and the SC’s stray field (red),
when ha = 0.1 and d = 0.3Rf . The solid (dashed)
lines represent the case of a FM on top (below) of
a SC. The radial component of the field induces a
bias that not only changes the skyrmion shape, but
also can induce repulsion between the FM and SC
elements, as seen in Fig. 4.13.

Additionally, it is found that the uniform
state destabilizes when approaching the SC
from below, a fact that is not found when ap-
proaching it from above. It is to be expected
that the uniform state will be destabilized
since it is not stable, in the system presented,
for small applied fields [see Fig. 4.13(a)]. We
attribute this last effect to the radial compo-
nent of the shielding currents. As sketched
in Fig. 4.14(a), when the FM is above the
SC, the radial component of the field favors
the spins to whirl inwards, opposing the chi-
rality imposed by the iDM interaction. In
contrast, when the FM is below the SC the
radial component of the field favors the iDM
interaction, tilting the spins outwards, as
sketched in Fig. 4.14(b). This reversal in the
behavior, is what allows the uniform state to
remain stable in proximity to the SC even
though the z-component of the field alone is
not enough to stabilize it, as can be seen in

Fig. 4.13(a). It is found that the most likely transition, in this case, was to the skyrmion state
(green colors in Fig. 4.13). This bias is produced by the stray field of the superconducting
currents in the SC, which is also related to the discussion presented together with Fig. 4.7 when
we studied the quasiadiabatic hysteresis loop.

Aside from the simplified view presented, the behavior of the system is highly dependent on the
magnetization distribution itself. Even in the simplified picture with the dipole moments (Fig.
4.14), the interaction with the skyrmion and 2π states depends on the number of spins in each
direction as well as on the distance to the SC. Moreover, since the magnetization distribution
depends on the distance, we have a nonlinear interaction that is too intricate to make some
general statements about the behavior of the system. In spite of this, we can make qualitative
assessments of the physics found as a function of the distance between the FM and SC elements.

Figure 4.16: Sketch of the SC (light gray) current
profile of a +PV (-PV) are shown in red (blue). The
symbols and colors are the same as in Fig. 4.12.

Let’s consider trapped flux in the SC, a PV.
The PV can have positive (+PV) or nega-
tive (-PV) polarity. The current profiles are
sketched in Fig. 4.16. There are two ways
to find such a state: a type-II SC or a FC
SC with a tiny hole. The former is described
by the Ginzburg-Landau equations,249 with
each vortex entering through the boundaries
and going to the center of the sample. In the
latter, the hole would act as the suppression
of superconductivity at lengths close to the
coherence length, ξGL. Both of them can be
described equally in the London picture (see
Sec. 2.3.1).
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Figure 4.17: Force between the FM and SC elements without applied field when a PV with (a)
positive or (b) negative polarity. A positive (negative) force is repulsive (attractive). In (a) and (b)
we show an inset of the red region. Note that there is an additional change in the force sign, better
seen in the insets. The magnetization states are the skyrmion (green) and the 2π (blue) states.
The darker (lighter) colors symbolize that the FM is above (below) the SC. The vertical dotted
line represents the closest distance between the elements considered.

In order to simplify the intricate picture presented, the interaction is going to be considered
without any applied field. The system is prepared as previously, starting with the FM and SC
elements separated from each other and then slowly brought together. Moreover, we focus here
on the force between the FM and SC elements and any transition found. Note that at zero
applied field, the only stable magnetic structures are the skyrmion and 2π states.

First, let’s consider a FM above the SC. For a skyrmion close to a SC with a +PV, it is found
that the force is repulsive at long distances, whilst attractive closer [see dark green lines in Fig.
4.17(a)]. In contrast, if a -PV is present, the interaction is found to be always attractive for
the distance range studied [see dark green lines in Fig. 4.17(b)]. In the case of the 2π state
close to a +PV [darker blue lines in Fig. 4.17(a)], it is found that: at large distances, the
interaction is attractive, at medium distances the interaction is repulsive, and at small distances,
the interaction is again attractive. In contrast, for a -PV [darker blue lines in Fig. 4.17(b)], at
large and medium distances the interaction is repulsive whilst at close distances it is attractive.

These results are similar when the FM is below the SC [lighter colors in Fig. 4.17(a)], except for
the distances at which the interaction is attractive/repulsive and their strength. Moreover, it is
found that for the 2π state in proximity with a +PV, the force is always attractive. Lastly, when
the FM is in the skyrmion state and on top of a SC with a -PV [see dark green line Fig. 4.17(b)],
the skyrmion state destabilizes at a distance d ≃ 0.8Rf , where it is found that the only possible
transition is to the 2π state (the uniform state is not stable).

In Fig. 4.18 we present summarized sketches of these results for the sake of readability. In Fig.
4.18(a) we show the interaction force when the FM is in the skyrmion state and the SC has a
PV. Similarly, in Fig. 4.18(b) we show the interaction for the 2π case.
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Most of these phenomena can be explained by simplifying the system to its barebones. It is known
that in proximity to a PV, the stray field it generates above (below) it can be approximated by a
magnetic monopole on the opposite side at a position dm = −Λ (dm = Λ).338 As the SC is quite
larger than the FM (Rs = 3Rf ) to consider this tray field acting on the FM is justifiable. This
simplified picture allows us to consider the force between the elements as the force the monopole
does over the magnetization distribution. The system considered is depicted in Fig. 4.19(a). To
further simplify the system, consider that the DW of the magnetic structure is narrow so that we
have domains that can only point in the ±ẑ direction. This is sketched in Figs. 4.19(b-c) with
the dashed lines. This assumption neglects the contribution of the DWs to the overall force.

Figure 4.18: Summary sketches of the interaction of (a) a skyrmion and (b) a 2π state with a PV,
at zero applied field and different separation distances. The FM (brown) can be on top or below
the SC (gray). In (a) the interaction for close (left) and large distances (right) are depicted. In (b),
the central column corresponds to medium distances, appearing when there is an intermediate sign
change in the force. The black arrows illustrate the resulting interaction force.

Now we can formulate a toy model to explain the origin of the forces. Since the magnetization
distribution is simplified to be step functions with only z-component (m = mzẑ), only the
z-component of the SC-induced stray field is relevant. The stray field of a PV with flux Φ0 is
given by the monopole field,

hz,PV(ρ, z) = Φ0

2π
z + dm

(ρ2 + (z + dm)2)3/2
, (4.25)

where the monopole has a charge of 2Φ0. Remember that we defined Φ0 = Φ0/(µ0Msl
2
ex). Note

that the magnetic field is reversed when considering a -PV. The interaction force over the
magnetization distribution is given by,

Fz(z) = −∂zEtot, (4.26)
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where the total normalized energy of the system is given by Eq. (4.18). Since in the toy model
the magnetization distribution and the currents do not change, only the interaction term Eint

[Eq. (4.21)] is non-zero. Hence the force reads,

Fz(z) = −∂zEint = −
∫

S

∂hz,PV(ρ, z)
∂z

mz(ρ)dS, (4.27)

where S is the surface where there is magnetization. Considering the axisymmetry and the
step-like function considered in our toy model, the force over each domain is,

Fz(z) = −2π
∫ Rfin

Rini

∂hz,PV(ρ, z)
∂z

(±1)ρdρ = ∓Φ0
ρ2

(ρ2 + (z + dm)2)3/2

∣∣∣∣∣
Rfin

Rini

, (4.28)

where Rini and Rfin delimit the magnetic domain region and the (±1) is due to the magnetization.
The total force is just the sum of the force over each domain. Let’s consider first the case of
a FM, in the skyrmion state [see Fig. 4.19(b)], on top of a SC with a +PV. We consider a
skyrmion with radius Rsk. After considering both domains [mz = 1 in ρ ∈ (0, Rsk) and mz = −1
in ρ ∈ (Rsk, Rf )], the force is found to be,

Fz(z)
Φ0

= 2R2
sk

(R2
sk + (z + dm)2)3/2

−
R2

f

(R2
f + (z + dm)2)3/2

. (4.29)

It is helpful to rewrite it as,

Fz(z̃)
Φ0

= 1
Rf

[
2R̃2

sk

(R̃2
sk + (z̃ + d̃m)2)3/2

− 1
(1 + (z̃ + d̃m)2)3/2

]
, (4.30)

where R̃sk = Rsk/Rf , z̃ = z/Rf , and d̃m = dm/Rf . The force now has only one free parameter
R̃sk.

Our toy model allows us to qualitatively predict the overall behavior of the system. Consider, for
example, the case of a skyrmion above a +PV. Depending on Rsk, the force may be attractive
close to the SC and repulsive at larger distances [see Fig. 4.18(a) for a summary]. This is shown
in Fig. 4.20(a). Given the skyrmion state [see Fig. 4.19(b)], the tails are usually more relevant
than the core. Therefore at larger distances, where the structure can be seen as the average of the
magnetization, we have a repulsive force since the skyrmion “dipole” opposes the PV “monopole”.
At closer distances, the particular magnetization distribution becomes relevant, specially the
core due to its proximity to the PV position (center of the elements). As such the force done to
the core is larger than the one done to the tails of the magnetization and, thus, the net force is
attractive. Note that when Rsk = 0 or 1 the uniform state can be found. It can be seen that the
uniform with positive (black) and negative (pink) polarities have the opposite response. If the
uniform state and the PV “point” in the same direction, the interaction is attractive.
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Figure 4.19: (a) Sketch of the toy model when a PV is present in the SC. The stray field of the
PV currents can be approximated by that of a magnetic monopole338 [red (+PV) and blue (-PV)
semicircles], depicted with the arrows. The behavior of the system depends on whether the FM is
on top of the SC or below it, separated in the sketch by the black dashed line. In the toy model,
the magnetization only points in the ±ẑ direction. The z-component of the magnetization for the
(b) skyrmion and (c) 2π states are represented, with the toy model’s simplification shown with
dashed lines.

This toy model fails to explain the fact that the skyrmion state in the presence of a -PV is
attractive at all distances. This is because the model does not consider the magnetization
distribution to change during the interaction with the SC. Therefore, the complete calculations
are needed to fully characterize the interaction.

Regarding the skyrmion destabilization found when the FM is on top of the SC with a -PV [dark
green line in Fig. 4.17(b)], the argument is similar than the one for the uniform destabilization
(or lack of it) when the SC is in the Meissner state. Consider a FM on top of a -PV, whose stray
field can be approximated by that of a monopole [see Fig. 4.19(a)]. In Fig. 4.20(b), we show
an example of a possible skyrmion magnetization distribution. Note that when the skyrmion
winds up once (mz = −1), the radial component of the magnetization becomes negative. The
z-component of the stray field favors the magnetization in the −ẑ direction, so the core of the
skyrmion will tend to be smaller (blue lines). The radial component of the field will also tend
to align the magnetic moments in the −ρ̂ direction (blue arrows), favoring the wind-up of the
structure alongside the z-component of the field. In contrast, when the FM is below the SC, the
radial component of the PV’s stray field wants the magnetic moments to align in the ρ̂ direction
(pink arrows), unwinding the structure. This difference introduces a bias on the FM. If the FM
is on top of the SC, it is easier to wind up the magnetization and reach the 2π state. In contrast,
if the FM is below the SC, the components of the PV’s stray field are competing against each
other. Explaining the transition found in Fig. 4.17(b).

Now, consider that the FM is in the 2π state, defined by an inner radius R1 and a second radius
R2 [see Fig. 4.19(c)]. In this case, the same arguments done for the skyrmion case apply, but
since there is an additional domain, it is possible to have one more sign change (or none) in the
force. Mostly, the same arguments used for the skyrmion case still apply. For more details see
Appendix C.2.
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Figure 4.20: (a) Force between the FM, in the skyrmion state, and SC elements without applied
field when a +PV is present. A positive (negative) force is repulsive (attractive). Note that
for Rsk = 0, 1 (black and pink lines) the uniform state (mz(ρ) = ±1) is found. (b) Example of
a possible magnetization distribution of the FM in the skyrmion state. When close to a -PV,
depending on whether the FM is on top (blue) or below (pink), the radial component of the PV’s
stray field induces a bias over the magnetization. If the FM is below the SC (pink) the radial and
z-component of the stray field compete with each other. For a sketch of the PV’s stray field see
Fig. 4.19(a).

This plethora of phenomena is found without considering the applied field, which further changes
the behavior of the system as seen in Fig. 4.13, without considering a PV and applied field
simultaneously. In fact, the behavior slightly changes as a function of applied field. This is due to
that the interaction among elements strongly depends on the magnetization distribution which is
continuously adapting to the SC-induced stray field and the applied field. Even such a simple
system has a huge and complex behavior. We limit ourselves to the above understanding of the
behavior whilst giving tools for a deeper study if it is deemed necessary. One of the main reasons
it is so complex is that there are many interactions competing with each other. In Appendix
C.3, the presented and some additional results are shown in different tables.

4.4 Generalizing the model: Ring geometries

The presented model can be generalized straightforwardly to consider ring geometries, such as
the one in Fig. 4.21. Consider a FM (SC) ring of radius Rf (Rs) a central axisymmetric hole of
radius Rf,i (Rs,i). Despite the difference in the topology, the formulation for the ring system is
almost identical to the disk case (Fig. 4.1). In fact, the different topological solutions depending
on the geometry will be given by the boundary conditions used to solve the Brown equation [Eq.
(4.2b)].

Recall that the BCs for a FM disk were given by [Eq. (4.14)], where the innermost magnetic
moment is fixed due to symmetry and the outermost moments have their derivative fixed due to
the iDM interaction.55
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In contrast, in the ring case, we have an additional edged due to the central hole. Therefore, the
magnetic moments at the edge of the hole will also have its BC imposed by the iDM interaction.
Hence the BCs in this case read,

dθ
dρ

∣∣∣∣
ρ=Rf,i, Rf

= ξ

2 , (4.31)

where it can clearly be seen that there is no need to fix the central magnetic moment as it is given
by the boundary condition at the inner edge. Here the change in the topology when comparing
disks and rings becomes apparent. Now the innermost magnetic moment has no longer to be
out-of-plane (mz = ±ẑ), the energy barrier to flip the magnetization is expected to be smaller.
Intuitively, in a disk, we have to flip all the surrounding magnetic moments in order to flip the
central one, whilst in the ring case, the magnetic moments can be flipped from the inner and
outer edges, reducing the energy barrier to change the magnetization state, and thus the stability
of the states. Moreover, the so-called topological protection is lost, as a continuous deformation
in the field can now flip the magnetization. No singularities in the magnetization occur during
the magnetization reversal.

Figure 4.21: (a) Sketch of a hybrid system formed by a FM (brown) and a SC (light gray) rings
with inner radius Rf,i and Rs,i, respectively. A superconducting element (gray) is coaxial to a
ferromagnetic element (light blue) with iDM interaction due to two different attached heavy metal
layers (light orange). The depiction of ring-shaped heavy-metal layers is for illustration purposes.
(b) Illustration of the magnetic field lines (in black) in the presence of a ring-shaped SC when an
external uniform field is applied.

Regarding the SC ring, it may be interesting for magnetic levitation applications320 or to
have flux focusing in type-I SC. If the hole in the SC is very small (as compared to Λ) and
the superconducting transition is made with applied field (FC SC), then the superconducting
currents would be similar to the ones produced by a PV. In fact, the initial flux that traverses
the SC, when the transition to the superconducting state is made, is trapped in the SC hole.
This allows additional control over the magnetic field generated by the SC, as we can somewhat
control the shape of the induction field (B) that the FM would feel. One could thus control the
positions at which the generated field is mostly in the Z-axis (on top of the hole) or has a radial
component (on top of the SC). This is sketched in Fig. 4.21(b).
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4.5 Chapter summary and conclusions

In this chapter, we have presented a new model to study FM-SC hybrid systems. Our model
allows computing the static mutual interaction between both elements, mediated through stray
fields, using a two-way coupling. This allows for more realistic simulations as compared to
previous models in which a one-way coupling was considered. Moreover, these are, to the best of
our knowledge, the first study in which both the SC and FM elements are finite.

To inspect the interaction under confinement in disk geometries, we have performed a two-step
study. First, we have studied the system’s response to a quasiadiabatic applied field hysteresis
loop while considering a ZFC SC at a fixed distance, d, between the FM and SC elements. We
have seen that the presence of a SC allows for an additional transition to the 2π state, which
is unfavorable without the SC. Using the GNEB method, this possible transition was found to
occur across the boundaries of the ferromagnetic system.

Once the response to the applied field is studied, we focus on the interaction as a function of the
distance. To do so, we prepared the FM/SC states far from each other (isolated) and then we
slowly bring them together, considering a constant applied field. A large plethora of phenomena
is found, as many interactions compete with each other. We focus our attention on some specific
cases to assess the interaction, considering skyrmionic structures in the FM and the possibility
of a PV in the SC. We have studied the force between the FM and SC disks as well as the
magnetization states as a function of the elements’ separation. Additionally, we provide a toy
model that gives some insight into some of the phenomena found.

The presence of three differentiated magnetization states, stable over a large applied field range
and accessible at will, could be used for the design of ternary-logic systems. These could allow new
computation schemes, as well as increasing the density of stored information, not by increasing
the density of dots, but the allowed number of states per dot.

Furthermore, the magnetization states and the possible transitions between states can be tuned by
using a SC close to the FM, using the distance and/or applied field to tune the hysteretic behavior
of the system. This allows having different magnetic states while controlling the magnetization
state and any transition if desired. In this way, the presented FSH could be used as building
blocks for novel magnetic metamaterials. It is known that the use of FM’s and SC’s can be
useful to achieve effective permeabilities not possible in nature. The proposed system advantages
would be twofold: (i) Considering structure in the FM would give a particular anisotropic and
non-linear response to the applied field, which can be further tuned by controlling the transitions
and the current state in the FM; (ii) The scale at which the elements are considered (hundreds
of nanometers), would potentially enable shaping the magnetic fields at the micrometric scale,
allowing applications in which a finer control of the magnetic field is needed.



Chapter 5

Conclusions and future perspectives

The understanding of magnetism and magnetic materials has enabled the development of a
wide range of technologies that are present in our daily life; magnetism is nowadays found
at the basis of electric generators, credit cards, medical techniques (e.g. magnetic resonance
imaging and hyperthermia), and in computers for storage and handling of data, among many
other applications. The huge amount of data that can be stored and processed has enabled the
so-called information era and global digitalization. Both of them continuously demand faster,
denser, non-volatile, and low-power-consuming technologies. In this context, we have found the
main topic of this thesis: the theoretical study of a kind of spintronic devices, the skyrmionic
devices. In these devices, magnetic skyrmions are used as the building blocks. Their small size
(few tens of nanometers), high stability (found at room temperature, with lifetimes up to years),
and movement efficiency (smaller current densities needed as compared to DW motion) make
them potential candidates for next-generation information storage (and handling) technologies.
Hopefully, enabling devices with better performance and smaller energy consumption for a greener
future.

The boom in the field of skyrmions is relatively recent since it skyrocketed after the theoretical
proposal of the skyrmionic racetrack memory in 2013. In this regard, several advances have
been made, but there are still many obstacles to be overcome before they can become a reality.
For example, a key aspect in skyrmion racetrack memories is the transport of the information
(the skyrmions) along the racetrack. It is known that defects may strongly affect the skyrmion
dynamics, both as a perturbation of the magnetic structure, as well as affecting the overall center-
of-mass trajectory of the skyrmion. To study the skyrmion-defect interaction, micromagnetism
has become a valuable asset, allowing us to study systems of considerable size in reasonable times.
Nevertheless, a complete simulation of the dynamics of the magnetization might be impractical
for device prototyping. At that point, the rigid model is introduced, where the magnetization is
considered to be rigid and its motion is described by its center-of-mass: the Thiele equation.

Due to the ubiquity of defects in real materials and their unavoidable appearance and randomness,
it becomes relevant to develop tools to study the skyrmion behavior in their presence. In Ch.
3, we have developed a model (within the rigid approximation) to consider extended defects.
Starting from the force expression of an atomic perturbation of a magnetic parameter, we
expand it to consider extended defects. The relevance of the model is that it allows, mostly
analytically, to determine the different possible motion regimes (pinning or not, guiding along
a line defect, etc.) and the conditions under which they are possible as a function of the
system’s parameters. This effectively allows for faster prototyping, as one can restrict the relevant
materials/parameters at which the desired phenomena might occur. These results, from the
rigid model, are validated with more detailed micromagnetic simulations, yet more intricate,
numerically costly, and non-analytical.

93
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The precise control of skyrmions is of uttermost importance in most skyrmionic devices proposed
up to this day. The knowledge of how defects affect the skyrmion trajectories could allow
us to tailor them to our needs. In this way, we can envisage a future in which artificially
created defects can be beneficial and not only a hindrance for skyrmionic devices. A couple of
interesting applications would be the guiding and speeding up of skyrmions along defects or
the creation of periodic skyrmion traps for diamagnetic atoms, with potential applications in
quantum magnetomechanics.

Nevertheless, skyrmionic applications are not only restricted to skyrmion racetrack memories.
Considering materials with opposed magnetic response, in Ch. 4 we present a model that
successfully takes into account the mutual interaction of the FM and SC elements, in disk
geometries. We simultaneously solve the Brown equation in the FM and the London equation
in the SC. This model gives us both magnetization and current distributions. To the best of
our knowledge, this is the first time that the interaction of a skyrmion-hosting FM and a SC is
studied in confined geometries.

Despite the fast-paced research in the field of magnetic skyrmions, challenging, unexplored
physics still lies ahead. For example, the presence of three (or more) different magnetization
states, stable over a large range of applied fields and accessible at will could be used to increase
the density of stored information or enable ternary (or more) logic. A specially interesting (from
my point of view) research direction that could follow from the presented work is in the field of
static magnetic metamaterials.

In this context, skyrmionic metamaterials would be formed by a quasirepetition of skyrmion-
hosting FMs and SCs. The main idea is to evaluate the properties of a material at a larger scale
than that of its constituent elements. At a scale larger than the constituent elements’ size, one
can find an equivalent magnetization or an effective permeability. It is common to consider the
FM and SC as a constant permeability, µ, being µ → ∞ for the FM and µ = 0 for the SC. But,
what would be the effective permeability if one considers structure inside the FM, the SC, or
in both of them? The typical sizes of the considered elements would be on the nanometric to
micrometric scale, an order of magnitude below regular magnetic metamaterials. Moreover, the
non-trivial magnetic structure in the FM would give a non-linear and anisotropic response to the
external field that could help to better tune the effective permeability.

The field of skyrmionics is still in its infancy. At this stage, the theory and models are still
cornerstones to explain and predict phenomena. This thesis contributes to the skyrmionic field
in both ways: explaining interactions as a means of predicting relevant behaviors, thus helping
in the development of novel devices.



Appendix A

Thiele equation

In this Appendix, we discuss the derivation of the Thiele equation from the micromagnetic LLG
equation. Once obtained, we show that a formulation in the complex plane is helpful to see that,
in the rigid approximation, the trajectories of a skyrmion driven by different torques can be
obtained by an appropriate rescaling and rotation of the torque itself. This allows studying the
dynamics of the skyrmion by considering a single torque, as any other solution can be obtained
by a simple rotation and rescaling.

A.1 From LLG to Thiele

Starting from the LLG equation,

(1 + α2)dM

dt
= −γM × Heff − γα

Ms
M × (M × Heff) + T, (A.1)

or in written its other form,

dM

dt
= −γM × Heff + α

Ms
M × dM

dt
+ T, (A.2)

where γ = 2.21 · 105 m A−1 s−1, α is the dimensionless Gilbert damping constant, and T are all
the torques over the magnetization, outside the interactions considered in the effective field Heff.
To go from Eq. (A.2) to the Thiele equation, one assumes the rigid approximation. This can be
expressed as, M(r) = M0(r − rsk), which can be rewritten in a more helpful way as,

dM

dt
= −(ṙsk · ∇)M = −ṙsk,j

∂Mi

∂xj
, (A.3)

where the dot is the time derivative and on the rightmost part of the equation we use the Einstein
notation (repeated subindices are summed). The derivatives are taken over xj = x, y, z.

To simplify the treatment, we will present the equation when T = 0. Once done, we will present
the results obtained for the different driving torques presented in the thesis.

The first step is to do M× Eq. (A.2). This reads,

M × dM

dt
= −γM × (M × Heff) + α

Ms
M ×

(
M × dM

dt

)
= −γ[(M · Heff) · M −M2

s Heff] + α

Ms

[(
M · dM

dt

)
M −M2

s

dM

dt

]
. (A.4)
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Note that,

M · dM

dt
= dM2

dt
= dM2

s

dt
= 0,

since Ms is assumed to be constant. Therefore, Eq. (A.4) reads,

M × dM

dt
= −γ(M · Heff) · M + γM2

s Heff − αMs
dM

dt
. (A.5)

Now we multiply it by dM
dxi

,

dM

dxi
·
(

M × dM

dt

)
= −γ dM

dxi
· (M · Heff) · M + γM2

s

dM

dxi
· Heff − αMs

dM

dxi
· dM

dt
, (A.6)

and using the rigid property [Eq. (A.3)],

dM

dxi
·
[
M ×

(
−ṙsk,j

∂Mi

∂xj

)]
= −γ dM

dxi
· (M · Heff) · M

+γM2
s

dM

dxi
· Heff − αMs

dM

dxi
·
(

−ṙsk,j
∂Mi

∂xj

)
. (A.7)

The left-hand side can be found to be,

−dM

dxi
·
[
M ×

(
ṙsk,j

∂Mi

∂xj

)]
= ṙsk,j M ·

(
∂M

∂xi
× ∂M

∂xj

)
. (A.8)

On the right-hand side, the first term is zero as M · dM
dt = 0. The last term can also be rewritten

as,

αMs
dM

dxi
·
(

ṙsk,j
∂Mi

∂xj

)
= αMsṙsk,j

(
∂M

∂xi
· ∂M

∂xj

)
. (A.9)

Hence Eq. (A.7) can be rewritten as,

ṙsk,j M ·
(
∂M

∂xi
× ∂M

∂xj

)
= γM2

s

dM

dxi
· Heff + αMsṙsk,j

(
∂M

∂xi
· ∂M

∂xj

)
. (A.10)

As the last step, one needs to integrate over the sample volume V . For the sake of readability,
we will do so term by term. Therefore, the left-hand side of Eq. (A.10) becomes,

ṙsk,j

∫
V

M ·
(
∂M

∂xi
× ∂M

∂xj

)
dV = ṙsk,jGij , (A.11)
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obtaining the gyrotropic tensor, G, from Eq. (2.30). The last term in the right-hand side of Eq.
(A.10) reads,

αMsṙsk,j

∫
V

(
∂M

∂xi
· ∂M

∂xj

)
dV = αMsṙsk,j Dij , (A.12)

obtaining the dissipative tensor, D, from Eq. (2.30). Lastly, the remaining term can be computed
to be,

γM2
s

∫
V

dM

dxi
· HeffdV = γM2

s

∫
V

dM

dxi
· Hext, effdV = −γM2

s Fi, (A.13)

where only the effective field from external agents, Hext,eff, does not cancel out when doing
the integral over the whole sample volume.59 In this last term, the forces (within the rigid
approximation) coming from external agents can be obtained if its Heff is known (or modeled in
some way). Putting everything together one obtains the Thiele equation,

(G − αMsD)ṙsk + γM2
s F = 0. (A.14)

If one now introduces the torques and follows the same derivation, it can be seen that any torque
T will drive the skyrmion as,

∫
V

∂M

∂xi
(M × T)dV. (A.15)

In the case of an STT driven skyrmion with adiabatic and non-adiabatic torques given by,

Tad = −µBPJFM

e
m × [m × (φ̂ · ∇)m] = µBPJFM

e
m × (φ̂ · ∇)m, (A.16)

Tnon-ad = −βµBPJFM

e
m × (φ̂ · ∇)m = −βm × Tad, (A.17)

respectively. This leads to an additional term in the Thiele equation given by,

(G − βMsD)VFM, (A.18)

with VFM = −µBPJFM/(eMs). If the skyrmion instead is driven by the SHE torques,

Tdamp = −µBθHJHM

etf
m × (m × σ̂), (A.19)

Tfield = −ν µBθHJHM

etf
m × σ̂ = −νm × Tdamp, (A.20)

being the damping-like and field-like torques, respectively. Here we considered a FM with
thickness tf . In this case, the additional term in the Thiele equation reads,
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−Ms(N + νMsY)σHM, (A.21)

where σHM = −µBθH

eMs
ẑ × JHM = ẑ × VHM. The tensors N and Y are found to be,

Nij = 1
tf

∫
V

(
∂M0

∂xi
× M0

)
j
dV, (A.22)

Yij = 1
tf

∫
V

∂M0,j

∂xi
dV, (A.23)

The complete Thiele equation with all these torques is,

(G − αMsD)ṙsk − (G − βMsD)VFM +Ms(N + νMsY)σHM + γM2
s F = 0. (A.24)

A.2 Complex Thiele equation

In ultrathin films, the skyrmion motion is restricted to the sample plane. As such, it becomes
apparent that a complex formulation is possible. It is convenient to normalize the Thiele equation
[Eq. (A.24)] and use non-dimensional variables to describe the system. To do so we will follow
the normalization of the LLG equation [Eq. (2.5)], by normalizing the length to the exchange
length lex =

√
2Aex/(µ0M2

s ) and the times to t0 = (γMs)−1. Regarding the tensors G,D,N
and Y we will use the dimensionless variables G = G/(M3

s tf ), D = D/(M2
s tf ), N = D/(M2

s lex)
and Y = D/(M3

s lex). As for the force, we can use f = F/(M2
s tf lex). Furthermore, as the

velocities v and the “forces” f lie on the XY plane, we can redefine them in the complex plane as:
ω(sk,FM,HM) ≡ v(sk,FM,HM),x + iv(sk,FM,HM),y and ξ ≡ ξx + iξy. Therefore Eq. (A.24) is converted
to

ωsk = 1
αD + iG

ξ + βD + iG
αD + iG

ωFM + −N + iνY
αD + iG

ωHM. (A.25)

This equation can be interpreted as for each position a skyrmion (a point in the complex plane),
ωFM, ωHM and ξFM are rescaled and rotated according to their accompanying complex constant.
Once rescaled and rotated, the complex skyrmion velocity can be written as,

ωsk = ω
′
FM + ω

′
HM + ξ

′
, (A.26)

indicating that wherever the origin and directions of the driving current densities, JFM and JHM,
all the driving torques can be put in a single term ω

′ = ω
′
FM + ω

′
HM, which is unambiguously

defined. Therefore, one can consider a single driving torque without loss of generality as that
skyrmion trajectory could be fulfilled with other driving mechanisms appropriately rescaled and
rotated.



Appendix B

Stability of magnetic structures

In this Appendix, we discuss some details on the stability study of the magnetization states. The
values for the energy surface example depicted in Fig. 2.11 are given. Then, some alternatives to
the GNEB method are introduced, which have been proposed to avoid some of its shortcomings.

B.1 GNEB table

The energy surface depicted in Fig. 2.11 is a sum of Gaussian functions of the Geodesic distance,

ε(m) =
∑

j

aje

(
−
l2j (m)
2σ2

j

)
, (B.1)

where lj(m) is the geodesic distance between the endpoint of vector mj and the center of the jth
Gaussian, mj . The geodesic distance can be computed using the haversine formula,339 given by

lj(m) = 2 arcsin
√

1 − m · mj

2 . (B.2)

The values to define the Gaussian centers, mj [given in spherical coordinates with the polar (θ)
and azimuthal (φ) angles], their amplitude, aj , and their width σj , were chosen so as to form
multiple minima, maxima and a single easy-to-spot saddle point on the energy surface. The
concrete values for this simulation are presented in Table B.1.

Table B.1: Values of the parameters of the Gaussian function used for the energy landscape
[Eq.(B.1)] used to illustrate the GNEB algorithm in Fig. 2.11.

j aj σj θi φj

1 −2.5 0.20 0.60 1.2
2 −2 0.15 2.00 5.0
3 1.5 0.40 0.15 5.0
4 1.25 0.20 2.20 1.5
5 2 0.10 2.00 3.2
6 1 0.20 0.00 3.0
7 0.75 0.20 3.00 3.0
8 0.5 0.30 1.57 0.0

B.2 Beyond GNEB

Using the GNEB method to sample the configuration space to obtain the MEP and corresponding
saddle point has some drawbacks. Mainly, the fact that one has to create an initial path, either
introduces a significant amount of bias or the sampling of the configuration space is too weak.
For completeness, we present some recent alternatives even though they have not been used
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for this thesis. In the recent literature, some alternatives have been proposed to mitigate those
drawbacks in magnetic systems such as the Mode Following method.157

But both the Mode Following and the GNEB methods make use of HTST to compute the
transition rates. One problem one faces is that more than one mechanism may contribute to the
switching rate and they might not be independent. As such, it is difficult to assess a priori how
one has to compute the transition rates. An alternative method is therefore required. Forward
Flux Sampling, a path sampling method that was initially developed to simulate rare switching
events340 has been proposed. In particular, it was used to obtain magnetization switching rates
in magnetic microstructures.341,342

The key idea is that one first obtains the MEP using the GNEB or Mode Following method and
the pre-exponential factors are calculated using HTST.155, 156, 158 Once this is done, one takes the
energy landscape of the configuration space and divides it into different regions, e.g. different
energy levels (contours) or some order parameter, going from one energy minimum to the other.
The interfaces between regions are denoted with λi, as depicted in Fig. B.1. Then, an stochastic
simulation of the configuration space, usually using the Stochastic-LLG equation [Eq. (2.5) with
an additional noise term343,344], starts at a local minimum, λA, and many simulations are done
until the configuration traverses the closest energy level λ1 [see Fig. B.1(a)]. Then, starting from
the points that reached λ1 [red crosses in Fig. B.1(a)], the process is repeated until we reach the
final minimum configuration state, λB . This process of iteratively going from one region λ to the
next is depicted in Fig. B.1.

This allows to compute the flux over the diving surface (determined by the saddle point), between
reaction λA and product λB, as the product of the net flux over each of the energy levels that
comprise the configuration space. Thus, by following the stochastic motion of the system, one
can take into account rare events which may be critical to determine the transition rate and
explore the configuration space in an efficient manner. We recommend reading Ref. [159].

Figure B.1: Illustration of the Forward Flux Sampling method, where the order parameter
defining the interfaces λi between state A (metastable skyrmion) and state B (FM state). (a) First
simulation to compute the rate of crossing the first contour level λ1. (b) Trial runs at subsequent
interfaces. Adapted from Ref. [159].



Appendix C

Interaction with a close SC

In this Appendix, we present a brief discussion and demonstration of the renormalization of the
demagnetizing field inside the uniaxial anisotropy effective field. Then, the presented toy model
from the text is expanded to explain the 2π interaction force (with a SC) as a function of the
distance. Some discussions are also given. Then we give a summary of all the phenomena found
for the considered cases in the text in tabular form. An additional figure is provided that is not
studied in the text for completeness and to help in the readability of the tables.

C.1 On the renormalization of the demagnetizing field

In Ch. 4 a FSH system composed of a ferromagnetic and superconducting disk was studied. The
mutual interaction was considered by coupling the Brown equation (in the FM) and the London
equation (in the SC) [Eqs. (4.2b) and (4.2a)]. For the FM, we renormalized the demagnetizing
field, hd, of the ferromagnetic sample in the anisotropy, arguing that in the infinite case it acts
as a shape anisotropy and can be justified.

Even though it has been somewhat discussed in a previous work,179 it is not clear when this
approximation is valid in finite systems. As such, we reproduced the study done in Sec. 4.3.1
without renormalizing the demagnetizing field. For our renormalization to be a reasonable
approximation, it is needed that the z component of the demagnetizing field is similar to the z
component of the magnetization with its signed change, i.e. hd,z(ρ) ≃ −mz(ρ). The phenomena
found and the transition field are close to the ones found in Sec. 4.3.1, with some deviations due
to the nature of the approximation.

In Fig. C.1, we show different snapshots of all the stable states found in the system as a
function of the applied field. The magnetization is shown by the triangle symbols, whilst
the demagnetizing field is depicted by the solid lines. When a SC is present (darker colors),
depending on the field range, different states may be stable. For example, the uniform (red),
skyrmion (green) and 2π (blue) states are stable for the shown fields: ha = −0.25 [Fig. C.1(a)],
ha = 0 [Fig. C.1(b)], ha = 0.25 [Fig. C.1(c)], and ha = 0.75 [Fig. C.1(d)]. As can be seen, the
renormalization is reasonable, having the largest deviation at the edges of the material for the
uniform state at ha = 0.75 [Fig. C.1(d)]. The fact that the deviation is largest at the edge of the
ferromagnetic sample explains the fact that the destabilizing fields for each state might slightly
vary. Nevertheless, it is justifiable and avoids the computationally intensive demagnetizing field
calculation.
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Figure C.1: Simulations considering the demagnetizing field of the FM sample for different applied
fields: (a) ha = −0.25, (b) ha = 0, (c) ha = 0.25, and (d) ha = 0.75. The darker (lighter) colors
were computed with (without) SC. We find the uniform (red), skyrmion (green), and 2π (blue)
states to be stable. The demagnetizing field (solid lines) matches the magnetization distribution
(triangles) closely, with the largest discrepancy at the edge of the sample. The hysteresis loops
closely match the ones simulated with the results presented in Fig. 4.2.

C.2 On the toy model with the 2π state

In the main text, we have considered the case of a skyrmion state considering a simplified
magnetization distribution given by step functions, as depicted in Fig. 4.19(c). In this case, the
toy model presented considering a 2π state given by,


mz(ρ) = 1, for ρ ∈ [0, R1),
mz(ρ) = −1, for ρ ∈ (R1, R2),
mz(ρ) = 1, for ρ ∈ (R2, Rf ].

(C.1)
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The force can be obtained by using Eq. (4.28). It reads,

Fz(z)
Φ0

= 1
Rf

[
2R̃2

1

[R̃2
1 + (z̃ + d̃m)2]3/2

− 2R̃2
2

[R̃2
2 + (z̃ + d̃m)2]3/2

+ 1
[1 + (z̃ + d̃m)2]3/2

]
, (C.2)

where the tilde symbolizes the variables divided by Rf . The force in this case has two free
parameters: R̃1 and R̃2. Due to the additional domain, as compared to the skyrmion case [Fig.
4.20(a)], it may be possible to have from no sign changes in the force to up to two sign changes.
This is depicted in Figs. 4.20(b-c), where R1 = 0.1Rf , 0.2Rf , respectively. It was found that
if R2 ≤ 0.6, the force is: attractive close to the SC, repulsive at intermediate distances, and
attractive at larger distances. To explain this behavior, recall the arguments for the skyrmion
case. When far away, one sees the averaged magnetization. Due to the core and tails of the 2π
state pointing in the same direction, it is found that ⟨mz⟩ > 0. As such, the equivalent dipole is
parallel to the PV and the overall interaction is attractive. As we get closer, it may happen that
at intermediate ranges (close enough to see the distribution, but not enough to only care about
the core) the domain pointing opposite to the PV dominates and the resulting interaction is
repulsive. Lastly, close to the SC, the most relevant interaction is with the core and, as happened
with the skyrmion, the interaction is attractive. Note that the case with 2π state is more finicky,
as it may also happen that it behaves similarly to the skyrmion if ⟨mz⟩ < 0 (when R2 is larger)
or, if the negative domain span is small, that the interaction is always attractive. These two
facts explain that the interaction between a PV and a FM in the 2π state found in Fig. 4.20
present from no changes in the force [light blue line in Fig. 4.17(a)] to two changes [dark blue
line in Fig. 4.17(a)].
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Figure C.2: Force between the FM, in the 2π state, and SC elements without applied field when
a +PV is present. A positive (negative) force is repulsive (attractive). We show the force when
the inner magnetization disk R1 is (a) R1 = 0.1Rf or (b) R1 = 0.2Rf . The insets show the region
marked in red were force sign changes are found.

C.3 Summary of FM-SC hybrids response to plate separation

In this section, we give some of the possible results found for a small number of possible
configurations. The large plethora of results found is attributed to the several counteracting
interactions that, depending on the system configuration (ha, flux trapping in SC, magnetic
structure in the FM, and distance between the FM and SC plates), change the net behavior of
the system.
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The results presented in the main text, are presented in table format in Tables C.1- C.4. In
the tables, we prepare the system with an initial state with a magnetization state [uniform (U),
skyrmion (S), and 2π states] and current distribution [no vortex (∅), or a Pearl vortex (±PV)].
In some cases, transitions have been found. We show them and give the distance at which they
have been found. Finally, the sign of the interaction force [attractive (-) or repulsive (+)] is given.
These match the values shown in Figs. 4.13 and 4.17 in the main text.

For completeness, here we also show the results when both an applied field, ha = 0.1 and a ±PV
are present in the system in Fig. C.3. Here, some difference can be seen in the overall interaction
between the FM and SC elements as compared to when there was no applied field or PVs.

Table C.1: Summary behavior for different combinations of initial magnetization state [Uniform
(U), Skyrmion (S), and 2π] and currents in the SC [no trapped flux (∅), PV or -PV ] when the
FM and SC are approximated to each other. Here the FM is on top of the SC and ha = 0.1. The
separation distance considered is in the range d ∈ [0.15Rf , 2Rf ].

Initial state Initial current Transitions (d/Rf ) Interaction Force

U
∅ U (+)

+PV U→ S (0.2) U(-); S(-)
-PV U→ 2π (0.32) U(+); 2π(-, + far)

S
∅ S (+, - far)

+PV S (-)
-PV S→ 2π (0.79) S(-); 2π(-, + far)

2π
∅ 2π( +)

+PV 2π(-, + far)
-PV 2π(-, + far)

Table C.2: Summary behavior for different combinations of initial magnetization state [Uniform
(U), Skyrmion (S), and 2π] and currents in the SC [no trapped flux (∅), PV or -PV ] when the
FM and SC are approximated to each other. Here the FM is on top of the SC and ha = 0.0. The
separation distance considered is in the range d ∈ [0.15Rf , 2Rf ].

Initial state Initial current Transitions (d/Rf ) Interaction Force

S
∅ S(+);

+PV S (-, + far)
-PV S→ 2π (0.4) S(-); 2π

2π
∅ 2π( +)

+PV 2π(- close, +, - far)
-PV 2π →-S (0.28) 2π(-)
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Table C.3: Summary behavior for different combinations of initial magnetization state [Uniform
(U), Skyrmion (S), and 2π] and currents in the SC [no trapped flux (∅), PV or -PV ] when the
FM and SC are approximated to each other. Here the FM is below the SC and ha = 0.1. The
separation distance considered is in the range d ∈ [0.15Rf , 2Rf ].

Initial state Initial current Transitions (d/Rf ) Interaction Force

U
∅ U→S (-0.37) U (+); S(-)

+PV U(-)
-PV U→S (1.14) U(+); S(-)

S
∅ S(-)

+PV S(-, + far)
-PV S(-)

2π
∅ 2π(+)

+PV 2π(-)
-PV 2π(-, + far)

Table C.4: Summary behavior for different combinations of initial magnetization state [Uniform
(U), Skyrmion (S), and 2π] and currents in the SC [no trapped flux (∅), PV or -PV ] when the
FM and SC are approximated to each other. Here the FM is below the SC and ha = 0.0. The
separation distance considered is in the range d ∈ [0.15Rf , 2Rf ].

Initial state Initial current Transitions (d/Rf ) Interaction Force

S
∅ S(+);

+PV S (-, + far)
-PV S(-)

2π
∅ 2π(+)

+PV 2π(-)
-PV 2π(-, + far)
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Figure C.3: Force between the FM and SC elements with the applied field, ha = 0.1, when a
PV with (a) positive or (b) negative polarity is present. A positive (negative) force is repulsive
(attractive). In (a) and (b) we show an inset of the red region. The magnetization states are the
skyrmion (green) and the 2π (blue) states. The darker (lighter) colors symbolize that the FM is
above (below) the SC. The vertical dotted line represents the closest distance between the elements
considered.
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the XY plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Sketch of the iDM interaction in a crystal. The interaction is produced at the
interface between a ferromagnetic metal (light blue) and a HM substrate (orange)
with a strong spin-orbit coupling, as described by the 3-site mechanism proposed
by Fert and Levy.27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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2.5 Illustrations of some possible Bloch point configurations with revolution axis
vertical to the FM: (a) hedgehog and (b) spiraling Bloch points. (a) is reminiscent
of a Néel skyrmion and (b) to a Néel antiskyrmion.195 This Figure is adapted
from Thiavile et al.193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 (a) A spin-polarized current enters a FM (blue region). The interaction between
the spin-polarized current, JFM, and the magnetization, m, causes a change in
the spin direction of the outgoing electron compared with the incident electron
(orange arrow). The difference in spin polarization causes adiabatic and non-
adiabatic torques on the FM. The blue vertical arrow is the magnetization of
the ferromagnetic layer. (b) Magnetization m precessing around the magnetic
field heff, dampened due to the material and influenced by the adiabatic and
non-adiabatic torques. Figure (a) is adapted from Braatas et al.198 . . . . . . . . 18

2.7 Schematics of the SHE and the torques it produces. An electron current, JHM,
is fed into the HM and is converted into a transverse spin current by spin-orbit
scattering. The spin current JS leads to a spin accumulation at the HM/FM
interface that diffuses across the interface into the FM and exerts torques. The
spin current then interacts with the magnetic moment in the FM, producing two
torques over it. These torques are analogous to the ones in the STT case shown
in Fig. 2.6(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 (a) Illustration of the vectors rsk,Vsk, and F. The skyrmion is propelled at an angle
θsk with respect to the incident force F. The colors represent the z-component
of the magnetization which in the skyrmion goes from pointing in ẑ (red), to
the ferromagnetic background pointing in −ẑ (blue), going through zero out-of-
plane magnetization (white). The skyrmion experiments a force F that drives
it at a velocity Vsk with an angle θsk with respect to it. (b) Illustration of an
axisymmetric Néel skyrmion as could be found in (a). The arrows represent the
local magnetization along the radius. . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Sketch of a possible configuration for the currents. JFM and JHM are the current
densities flowing through the FM (light blue region) and the HM (orange region),
respectively. These current densities are associated with a spin current that
interacts with the skyrmion (red-white-blue circular structure) stabilized in the FM. 25

2.10 (a) Sketch of an atomic magnetic moment embedded in a unit sphere. s can be
described by the polar and azimuthal angles, θ and φ respectively. (b) Three
neighboring atomic moments can be taken into account as the direct product of
the unit spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.11 An illustration of a GNEB calculation of an MEP for a single spin system. The
positions of the images are shown with filled circles. The initial path was chosen to
lie along the short geodesic path (linear path in the θ-φ phase-space) between the
energy minima (indicated in blue). It turned out to lie near a maximum (indicated
in red). The converged path is shown in pink. One intermediate configuration
of the path is also shown in light pink. The saddle point is marked with a dark
blue cross. Eight images were used in the illustration (dots along the path). The
Hamiltonian of the spin system is given in Appendix B.1. . . . . . . . . . . . . . 29
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2.12 Sketch of a superconducting vortex that has penetrated a SC sample (green region)
under an applied magnetic induction field, B. The Cooper pair density, ns, decays
over distances on the order of ξGL, defining the vortex core (red cylinder). The
vortex core allows magnetic flux (H) to penetrate the sample over a distance λL.
Around the vortex one finds circulating currents denoted by the gray region. . . 30

2.13 Sketch of a semi-infinite slab in the Meissner state under an applied field Ha. (a)
The magnetic induction field (blue lines) exponentially decays, penetrating the SC
a depth on the order of λL. (b) The superconducting currents (red lines) shield
the applied field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.14 The current (a) and field (b) profiles of a thin superconducting strip of width
2W , with Λ/W = 0, 0.05, 0.2 and 0.8 under a perpendicular applied field Ha. As
Λ → 0, the currents are more abrupt near the edge whilst the field penetrates less
inside the sample. The vertical dashed lines indicate the edges of the material.
Figure adapted from Chen et al.256 . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Sketch of the studied system. JHM represents the current density flowing into the
HM (light orange region). The skyrmion (red-white-blue structure) moves with a
velocity Vsk in a FM background (light blue region). . . . . . . . . . . . . . . . . 38

3.2 Forces over a skyrmion as derived in Ref. [89], considering δ = 2 and κ = 2. A
negative force points towards the defect. A local modification of the exchange
interaction results in zero net force. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Illustration of the local defect system. The red dot represents the center-of-mass
of the incoming skyrmion and ρ is the distance to the defect (green dot). The blue
arrows are the driving velocity (vHM) and the drift velocity of the skyrmion (vsk). 40

3.4 Vector field corresponding to (a) the attractive local defect force [Eq. (3.6)],
(b) the velocity it produces over the skyrmion, and (c) the addition of driving
current. The skyrmion tends to circle around the defect in a counter-clockwise
motion or spirals into the defect. Phase portrait of Thiele’s equation considering
f0,DM = 0.0015 and driving velocities vHM (d) below and (e) above the threshold
value [Eq. (3.10)]. The background color indicates the speed of the skyrmion.
The green dot corresponds to the defect position. The red dot (cross) indicates
the attractor (saddle) point. The red arrows indicate the direction of (left) the
driving current density vHM and (right) the direction of the skyrmion velocity in
the absence of defects. In this particular example the driving velocity angle is
φHM = 0 and its modulus is (c,d) vHM = 0.75vth, pt and (e) vHM = 1.5vth, pt, for
(c,d) and (e) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Sketch of the system with a segment defect of width ∆ and length ld. The red dot
represents the center-of-mass of the incoming skyrmion and the green segment the
defect. The blue arrows are the driving velocity (vHM) and the drift velocity of
the skyrmion (vsk). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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3.6 Vector field corresponding to (a) the force made by an attractive finite defect
segment and (b) the velocity it produces over the skyrmion. The defect length
is ld = 6. The skyrmion can be pinned by a defect with a counter-clockwise
spiraling motion. Phase portrait of Thiele’s equation for the finite defect segment
considering vHM = 0.0049 for different values of the driving current angle (c)
φHM = 0, (d) φHM = π/4, and (e) φHM = π/2. For these plots f0,DM∆ = 0.38
and vHM = 0.0049. The rest of the parameters are the same as in Fig. 3.4. The
solid purple lines correspond to trajectories of a skyrmion’s center obtained by
solving the LLG equation with vHM = 0.0049 and δ = 1.5, for several initial
positions. The rest of the parameters in the LLG equation are indicated in the
text. The meaning of symbols, bars, colors, and arrows is the same as in Fig. 3.4. 45

3.7 (a) Position of the spiral sink (red dots) and the saddle points (red crosses) for
different driving current angles φHM. The defect segment is indicated by the
horizontal green line. (b) Threshold velocity as a function of the defect size ld
[Eq. (3.17)] for φHM = π/4 (blue squares) and φHM = 3π/8 (black triangles). The
vertical line indicates the defect length shown in (a). The colored arrows in (a)
correspond to the angles shown in (b). The parameters used are the same as in
Fig. 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Phase portrait of Thiele’s equation for an infinite attractive (a-c) or repulsive
(d-f) defect line considering vHM = 0.0025 for different driving current angles (a,
d) φHM = π/4, (b,e) φHM = π/2. For currents vHM = 0.0225 ≃ 6.6vth,line and
φHM = π/2, the skyrmion goes through the defect line for both attractive (c)
and repulsive (f) line defects. The red solid (dashed) line is the guiding (saddle)
nullcline. The meaning of symbols, bars, lines, colors, and arrows is the same as
in Fig. 3.4. For these plots, the parameters are the same as in Fig. 3.6. . . . . . 49

3.9 Vector field corresponding to (a) the force made by an attractive L-shaped defect
and (b) the velocity it produces over the skyrmion. The horizontal segment length
is ld = 3. (c,d) Phase portrait of Thiele’s equation for an attractive L-shaped
defect considering vHM = 0.025 for different driving current angles (c) φHM = π/4
and (d) φHM = π/2. The meaning of the symbols, bars, colors, and arrows is the
same as in Fig. 3.4. For these plots, the parameters are the same as in Fig. 3.6. 50

3.10 Vector field corresponding to (a) the force made by an attractive cross defect and (b)
the drift velocity it produces to the skyrmion. Phase portrait of Thiele’s equation
for an attractive (c,d) or repulsive (e,f) defect cross, considering vHM = 0.0025
with different driving current angles (c,e) φHM = 0 and (d,f) φHM = π/4. The
meaning of symbols, bars, colors, and arrows is the same as in Fig. 3.9. For these
plots, the parameters are the same as in Fig. 3.6. . . . . . . . . . . . . . . . . . . 51

3.11 Illustration of the grid defect system. The defect lines that form the periodic grid
are shown in green. The defect lines are separated a distance δx (δy) in the X (Y )
axis. The blue arrow is the driving velocity (vHM) applied at an angle φHM. . . . 52

3.12 Comparison of the proposed Gaussian defect (solid black line) with the force
arising from an atomistic variation of the DM parameter89 (dashed red line) for
(a) a local defect and (b) a line defect. The parameters used are λ0 = 1/

√
5 and

δ = 2. A negative force points towards the defect. In (a) the forces are scaled so
their maximum is 1. The same scaling is kept in (b). . . . . . . . . . . . . . . . . 53
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3.13 Vector fields of (a) the force f
g
grid [Eq. (3.31)] produced by a grid defect and (b) the

drift velocity it produces. Phase portrait of Thiele’s equation for an attractive (c-e)
or repulsive (f-h) defect lines considering a driving current vHM = 0.0049 < vth,grid

with different incident angles: (c, f) φHM = 0 and (d,g) φHM = π/4. For currents
vHM = 0.0098 > vth,grid, the skyrmion goes through the defect line for both
attractive (e) and repulsive (h) defects. The solid purple lines in (c) and (e)
correspond to trajectories of a skyrmion center obtained by solving the LLG
equation for several initial positions. For simplicity, these are shown in two cases,
(c) and (e), as a similar agreement is also found for the rest. The meaning of
symbols, bars, colors, and arrows is the same as in Fig. 3.4 (for simplicity we have
only plotted the critical points in one cell as the system is periodic). For these
particular examples fg

0 /∆ = 0.05, λ0 = 1, δx = δy = 2.8, and the micromagnetic
simulated defects correspond to δ = 1.2 (purple lines). The rest of the parameters
are the same as in Fig. 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 (a) Sketch of the studied hybrid systems: A superconducting element (gray) coaxial
to a ferromagnetic element (light blue) with iDM interaction due to two different
attached heavy metal layers (light orange). Ferromagnetic and superconducting
elements are separated by a distance d. Both plates are considered ultrathin. (b)
Sketch of some possible stable skyrmionic structures in a ferromagnetic disk.55

The colors represent the z-component of the magnetization and the arrows the
local magnetization along the radius. . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 (Left) Normalized averaged z-component of the normalized magnetization, (center)
skyrmion number, and (right) normalized ferromagnetic energy, of all the stable
magnetic states for different applied fields, in the presence [(a-c)] or absence [(d-f)]
of a SC. The stable states found are the uniform (red), skyrmion (green), and
2π (blue) states. A sketch of the magnetization distribution is shown in the
magnetization (left) panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 (Left) Sketch of the distorted applied field lines (black) due to the presence of
a SC element (dark gray). A FM (brown) is placed on top of the SC as in Fig.
4.1 and will be perturbed due to the external field lines. (Right) Sketch of the
magnetization distribution of the FM in the skyrmion state as a function of the
applied field when a SC is present or not [(c) and (b) respectively]. As can be
seen when a SC is present the outermost moments are tilted inwards as compared
to when there is no SC. The colored arrows represent the z-component of the
magnetization (red-green-blue from mz = 1 to −1). The field lines are depicted in
light gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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4.4 Normalized averaged z-component of the normalized magnetization of all the
stable magnetic states, for different applied fields, in the presence (a,b) or absence
(c,d) of a SC. The stable states are fixing the central magnetic moment mz = ẑ or
the central derivative to zero, for the left (a,c) and right (b,d) plots respectively.
For the left plots, the stable states found are the uniform (red), skyrmion (green),
and 2π (blue) states with both polarities. The negative polarities are denoted
with lighter colors. In (e) some magnetization distributions are plotted after
fixing the central moment (lighter colors) or fixing the central derivative (darker
colors). The skyrmion state (green dots) and the 2π state (blue triangles) are
found at ha = −2.5 and ha = 0.975, respectively. These fields correspond to the
destabilizing field of the structures when fixing the derivative. The dashed lines
are plotted for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Normalized current distribution for two different applied fields when the super-
conducting currents are not affected by the FM (black) or are affected by a
uniform (red), skyrmion (green), or 2π (blue) states. For ρ ≲ Rf the currents
vary significantly. The inset shows a zoom of the marked region of the main plot
(ρ ≲ 1.25Rf ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 MEP calculated using GNEB showing the energy for the transitions occurring near
the destabilization field of uniform (a) and skyrmion (b) states, in the presence of a
SC. The dots indicate the images computed along the converged path. The arrows
indicate the most probable transition found. (c) Normalized energy barrier as a
function of the applied field studying the uniform and skyrmion destabilization.
The destabilizing fields at which the structures become unstable are highlighted
in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Sketch of the different magnetization distributions as a function of ρ for the (a)
uniform , (b) skyrmion , and (c) 2π states. The colors represent the z-component
of the magnetization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 (a) MEP calculated using GNEB showing the activation energy for the transitions,
when there is no SC present, occurring at applied fields where the three states
are stable (0.025 < ha < 0.1). The dots indicate the images computed along
the converged path. The arrows indicate the most probable transition found for
that applied field. (b) Energy barrier as a function of the applied field studying
the uniform and skyrmion destabilization. The destabilizing fields at which the
studied structures become unstable are highlighted in red. . . . . . . . . . . . . 79

4.9 Averaged z-component of the normalized magnetization during the hysteresis
loop. (a) Outer hysteresis loop with field ranging from ±2.5. (b) Inner hysteresis
loop with field ranging from ±1. The vertical lines are in gradient colors to
indicate transitions between magnetization states: red for the uniform, green for
the skyrmion, and blue for the 2π state. . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 Averaged z-component of the normalized magnetization during the hysteresis loop
without a SC. Hysteresis loop with field ranging from ±2.5. The vertical lines are
in gradient colors to indicate transitions between magnetization states: red for
the uniform and green for the skyrmion. . . . . . . . . . . . . . . . . . . . . . . . 81
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4.11 Magnetization distributions, starting in the skyrmion state, for different applied
fields (a) with a SC present in the system and (b) without it. The applied fields
shown are ha = 0 (purple), ha = 0.06 (blue), ha = 0.12 (green), and ha = 0.2
(orange). These were chosen near the skyrmion-to-uniform transition when there is
no SC. When a SC is present, the magnetization tends to wind up more. Without
a SC, the magnetization unwinds and transitions to the uniform state. . . . . . . 82

4.12 Sketch of the FSH. The behavior of the system depends on whether the FM
(brown) is on top of the SC (gray) or below it, separated by the black dashed line. 83

4.13 Force between the FM and SC elements (a) with no applied field, ha = 0, and
(b) with ha = 0.1. A positive (negative) force is repulsive (attractive). The
magnetization states are the uniform (red), the skyrmion (green), and the 2π
(blue). The darker (lighter) colors symbolize that the FM is above (below) the SC
[see Fig. 4.12 for a sketch]. The vertical dotted line represents the closest distance
between the elements considered. In (a) we show an inset of the red region. . . . 83

4.14 Field lines produced by the shielding currents in a SC (light gray) when the
FM (brown) is (a) on top or (b) below it. The FM is in the uniform state [see
Fig. 4.1(b)]. When the FM is on top of the SC, the edge magnetization is tilted
inwards (compared to when there is no SC) due to the fields’ radial component,
opposing the iDM-imposed chirality. In contrast, when the FM is below the SC,
the stray field helps the iDM interaction to tilt the magnetization, favoring the
destabilization of the uniform state. The z-component of the magnetization is
color coded as in Fig. 4.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.15 Radial component of the skyrmion magnetization (black) and the SC’s stray field
(red), when ha = 0.1 and d = 0.3Rf . The solid (dashed) lines represent the case
of a FM on top (below) of a SC. The radial component of the field induces a bias
that not only changes the skyrmion shape, but also can induce repulsion between
the FM and SC elements, as seen in Fig. 4.13. . . . . . . . . . . . . . . . . . . . . 85

4.16 Sketch of the SC (light gray) current profile of a +PV (-PV) are shown in red
(blue). The symbols and colors are the same as in Fig. 4.12. . . . . . . . . . . . . 85

4.17 Force between the FM and SC elements without applied field when a PV with (a)
positive or (b) negative polarity. A positive (negative) force is repulsive (attractive).
In (a) and (b) we show an inset of the red region. Note that there is an additional
change in the force sign, better seen in the insets. The magnetization states are the
skyrmion (green) and the 2π (blue) states. The darker (lighter) colors symbolize
that the FM is above (below) the SC. The vertical dotted line represents the
closest distance between the elements considered. . . . . . . . . . . . . . . . . . . 86

4.18 Summary sketches of the interaction of (a) a skyrmion and (b) a 2π state with a
PV, at zero applied field and different separation distances. The FM (brown) can
be on top or below the SC (gray). In (a) the interaction for close (left) and large
distances (right) are depicted. In (b), the central column corresponds to medium
distances, appearing when there is an intermediate sign change in the force. The
black arrows illustrate the resulting interaction force. . . . . . . . . . . . . . . . . 87



4.19 (a) Sketch of the toy model when a PV is present in the SC. The stray field of the
PV currents can be approximated by that of a magnetic monopole338 [red (+PV)
and blue (-PV) semicircles], depicted with the arrows. The behavior of the system
depends on whether the FM is on top of the SC or below it, separated in the
sketch by the black dashed line. In the toy model, the magnetization only points
in the ±ẑ direction. The z-component of the magnetization for the (b) skyrmion
and (c) 2π states are represented, with the toy model’s simplification shown with
dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.20 (a) Force between the FM, in the skyrmion state, and SC elements without applied
field when a +PV is present. A positive (negative) force is repulsive (attractive).
Note that for Rsk = 0, 1 (black and pink lines) the uniform state (mz(ρ) = ±1)
is found. (b) Example of a possible magnetization distribution of the FM in the
skyrmion state. When close to a -PV, depending on whether the FM is on top
(blue) or below (pink), the radial component of the PV’s stray field induces a
bias over the magnetization. If the FM is below the SC (pink) the radial and
z-component of the stray field compete with each other. For a sketch of the PV’s
stray field see Fig. 4.19(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.21 (a) Sketch of a hybrid system formed by a FM (brown) and a SC (light gray) rings
with inner radius Rf,i and Rs,i, respectively. A superconducting element (gray) is
coaxial to a ferromagnetic element (light blue) with iDM interaction due to two
different attached heavy metal layers (light orange). The depiction of ring-shaped
heavy-metal layers is for illustration purposes. (b) Illustration of the magnetic
field lines (in black) in the presence of a ring-shaped SC when an external uniform
field is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.1 Illustration of the Forward Flux Sampling method, where the order parameter
defining the interfaces λi between state A (metastable skyrmion) and state B (FM
state). (a) First simulation to compute the rate of crossing the first contour level
λ1. (b) Trial runs at subsequent interfaces. Adapted from Ref. [159]. . . . . . . . 100

C.1 Simulations considering the demagnetizing field of the FM sample for different
applied fields: (a) ha = −0.25, (b) ha = 0, (c) ha = 0.25, and (d) ha = 0.75. The
darker (lighter) colors were computed with (without) SC. We find the uniform
(red), skyrmion (green), and 2π (blue) states to be stable. The demagnetizing
field (solid lines) matches the magnetization distribution (triangles) closely, with
the largest discrepancy at the edge of the sample. The hysteresis loops closely
match the ones simulated with the results presented in Fig. 4.2. . . . . . . . . . 102

C.2 Force between the FM, in the 2π state, and SC elements without applied field
when a +PV is present. A positive (negative) force is repulsive (attractive). We
show the force when the inner magnetization disk R1 is (a) R1 = 0.1Rf or (b)
R1 = 0.2Rf . The insets show the region marked in red were force sign changes
are found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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C.3 Force between the FM and SC elements with the applied field, ha = 0.1, when
a PV with (a) positive or (b) negative polarity is present. A positive (negative)
force is repulsive (attractive). In (a) and (b) we show an inset of the red region.
The magnetization states are the skyrmion (green) and the 2π (blue) states. The
darker (lighter) colors symbolize that the FM is above (below) the SC. The vertical
dotted line represents the closest distance between the elements considered. . . . 105
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