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Random walks under stochastic resetting from a renewal perspective

by Axel MASÓ-PUIGDELLOSAS

Stochastic models including resetting have attracted interest from the physics
community due to their simple formulation, their wide range of applicabil-
ity, and the properties emerging on the systems when restarted stochastically
(e.g. the formation of non-equilibrium steady states and the optimization
of the completion time of stochastic processes). In the articles composing
this thesis, we investigate in what manner renewal theory provides an ad-
vantageous scheme to study stochastic processes with resets. We predomi-
nantly focus on diffusive random walks and, in some cases, on other types of
stochastic motion, though most of the results can be straightforwardly gen-
eralized to other systems. We employ renewal equations to generalize some
features of diffusion under Markovian resetting and to introduce novel el-
ements to the previous models, such as an inactive period after resets and
finite velocity resetting. Using the knowledge from renewal theory, we pro-
pose two novel magnitudes to study stochastic processes under resets: the
conditioned backward and forward times. These are, respectively, the times
since the last and until the upcoming reset given that we know the current
state of the system (e.g. the position).

https://www.uab.cat/web/faculty-of-sciences-1345799658186.html
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Chapter 1

Introduction

There are countless systems in nature which suffer from sudden and often
random changes on its behaviour. It may be the case of the extinction of a lo-
cal population of animals due to a natural disaster, a drastic computer shut-
down or the cease/activation of some metabolic processes in our body when
we fall sleep. Resetting can be seen as a particular type of this wide class of
phenomena. It consists on interrupting a process to readily start it again from
its initial condition. There have been numerous attempts from the physical
and mathematical community to model these type of phenomena. In this
chapter we follow the path to which nowadays has become a field by itself:
stochastic processes with resetting. In the articles composing this thesis, the
focus is put on random walks under resets, so, in Section 1.1 of this introduc-
tion, relevant results from Continuous-Time Random Walk (CTRW) theory are
introduced. In Section 1.2 we present an historical excursion through differ-
ent perspectives on the problem of stochastic resetting, and the current state
of the field is summarized in Section 1.3. Finally, in Section 1.4 the objectives
of the further investigation are exposed. After introducing the context and
the purpose of the thesis, Chapter 2 is devoted to summarize the articles in-
cluded in Appendices. The conclusions and new perspectives on the field are
proposed in Chapter 3.

1.1 Brief introduction to CTRWs

The continuous version of a random walk was firstly introduced by Montroll
and Weiss in 1965 [1] as a generalisation of discrete random walks. There,
time is considered as a continuous random variable starting at t = 0. Af-
ter a stochastic time t = t1 the walker jumps to the next position, waiting
there until the second jump at t = t2, and so on and so forth. The times
between jumps (∆t1 = t1 − 0, ∆t2 = t2 − t1,..., ∆tn = tn − tn−1) are inde-
pendent, identically distributed (iid) random variables called waiting times,
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FIGURE 1.1: Illustrative trajectory of a CTRW from t = 0 to t = 10.
The stochastic jump times ti, the two first waiting times ∆ti and the
two first jump lengths ∆xi have been represented. The value of x is
the addition of the jump lengths up to the time t as expressed by Eq.
(1.1).

their distribution being ϕ(∆ti). The jump length ∆xn for each step n = 1, 2, ...
is an iid random variable too with distribution Φ(∆xn) (for a discrete lattice,
Φ(∆xn) = δ(∆xn), with δ(·) the Dirac delta). In such a case, defining N(t) as
the number of jumps until time t, the position of the walker can be expressed
as

x =
N(t)

∑
n=1

∆xn. (1.1)

See Figure 1.1 for a sample trajectory.
Since the temporal and spatial variables are statistically independent, they

can be treated separately to obtain the probability density function (PDF) of the
process P(x, t). This is, being qn(t) the probability of exactly n jumps hap-
pening until t and pn(x) the PDF of reaching x with n jumps, we have that

P(x, t) =
∞

∑
n=0

qn(t)pn(x), (1.2)

where the sum is over all the possible number of jumps.
Starting by pn(x), it accounts for all the paths the walker may take to go

from the initial position to x by jumping n times. Since the jump lengths are
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iid random variables, one has that

pn(x) =

{
δ(x − x0) for n = 0∫ ∞

−∞ dx1Φ(x1 − x0)...
∫ ∞
−∞ dxnΦ(xn − xn−1)δ(x − xn) for n ≥ 1,

(1.3)
where x0 is the initial position of the walker. The last integral ensures that
the walker is at position x after n jumps. Defining the Fourier transform of a
function f (x) as

f̃ (k) =
∫ ∞

−∞
dx e−ikx f (x), (1.4)

with i the imaginary unit number and the initial position x0 = 0 for simplic-
ity, by the convolution theorem for the Fourier transform one finds (from Eq.
(1.3))

p̃n(k) = Φ̃(k)n (1.5)

in the Fourier space.
Let us now compute qn(t) from Eq. (1.2) in terms of the waiting time

distribution ϕ(t). Before doing so, it is convenient to compute the probability
Qn(t) of the n-th jump being exactly at t. It can be written in terms of Qn−1(t)
as

Qn(t) =
∫ t

0
d∆t Qn−1(t − ∆t)ϕ(∆t). (1.6)

This is, the particle jumps for the (n − 1)-th time at t − ∆t and waits a time
∆t drawn from ϕ(∆t) before jumping once again. Defining the Laplace trans-
form of a function f (t) with t ≥ 0 as

Ls[ f (t)] = f̂ (s) =
∫ ∞

0
dt e−st f (t) (1.7)

and using the convolution theorem for the Laplace transform on Eq. (1.6),
one readily arrives to the recurrent relation

Q̂n(s) = Q̂n−1(s)ϕ̂(s) (1.8)

in the Laplace space. One can find the expression for n = 1 by seeing that the
first jump comes from the waiting time distribution, i.e. Q1(t) = ϕ(t). Under
this condition,

Q̂n(s) = ϕ̂(s)n. (1.9)
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For further convenience. At this point, one can define the rate func-
tion Q(t), being the total probability of the last event happening at time t,
through its Laplace transform:

Q̂(s) =
∞

∑
n=0

Q̂n(s) =
∞

∑
n=0

ϕ̂(s)n =
1

1 − ϕ̂(s)
. (1.10)

Now, we are interested in knowing the probability qn(t) of the walker
having performed exactly n jumps before t. This, in terms of the above, reads

qn(t) =
∫ ∞

0
d∆t Qn(t − ∆t)ϕ∗(∆t), (1.11)

where
ϕ∗(∆t) =

∫ ∞

∆t
d∆t′ ϕ(∆t′) (1.12)

is the survival probability of ϕ(∆t), i.e. the probability of not jumping in the
interval ∆t. Using the convolution theorem on Eq. (1.11) and introducing Eq.
(1.9), one gets

q̂n(s) = ϕ̂(s)nϕ̂∗(s). (1.13)

Due to the stochastic independence of the spatial and temporal variables
in Eq. (1.2), one can apply the Laplace transform on t and the Fourier trans-
form on x to have the propagator of the CTRW in the Fourier-Laplace space:

ˆ̃P(k, s) =
∞

∑
n=0

q̂n(s) p̃n(k). (1.14)

Finally, introducing both the results from Eq. (1.5) and Eq. (1.13) and sum-
ming over n, one gets the Montroll-Weiss equation, i.e.

ˆ̃P(k, s) =
ϕ̂∗(s)

1 − ϕ̂(s)Φ̃(k)
. (1.15)

Now, depending on the waiting time and the jump length distributions,
the propagator may take myriad forms with different properties and char-
acteristics. Consider only symmetric processes with Φ(x) = Φ(−x) (i.e. all
the odd moments of Φ(x) are null). The arising processes can then be gen-
erally classified in three types in terms of the behaviour of its mean-square
displacement (MSD) ⟨x2(t)⟩: sub-diffusive, diffusive and Lévy flights.

• If the first moment ⟨∆t⟩ϕ of ϕ(∆t) and the second moment ⟨∆x2⟩Φ of
Φ(∆x) are finite, then the process is diffusive, meaning that ⟨x2(t)⟩ ∼ t.
See an example in Figure 1.2. In such a case, in the small s (long t) and
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FIGURE 1.2: Sample trajectories for a diffusive CTRW (blue, D in
the plot), a sub-diffusive CTRW (red, SD in the plot) and a Lévy flight
(green, LF in the plot) for t = 104. With respect to the first and during
the same amount of time, the sub-diffusive trajectory remains closer
to the initial position, while the Lévy flight performs long jumps and
explores remote regions.

small k (large x) limit, Eq.(1.15) reduces to the Gaussian propagator in
the position and time space, i.e.

P(x, t) =
1√

4πDt
e−

x2
4Dt , (1.16)

with D = ⟨x2⟩Φ
2⟨t⟩ϕ

. See [2] for further details.

• If the first moment of ϕ(∆t) diverges while the second moment of Φ(∆x)
is finite, the process is sub-diffusive, meaning that ⟨x2(t)⟩ ∼ tθ, θ < 1.
See an example in Figure 1.2.

• If the second moment of Φ(∆x) diverges, the process is a Lévy flight
and its MSD is infinite too. See an example in Figure 1.2.

Note that, independently of the waiting times and the jump lengths, this
CTRW model does not reach a stationary state. The propagator in Eq. (1.15)
may evolve fast or slow in time but, in all cases, the walker moves away
from the origin. For a more exhaustive dissemination on the topic we refer
the interested reader to Chapter 3 from [2].
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1.1.1 Diffusion equation

The above derivation for the propagator of the CTRW is based on the use
of renewal theory. Nonetheless, for some particular types of walkers, P(x, t)
can be found by other means, e.g. for diffusive motion it is the solution of a
partial differential equation

∂P(x, t)
∂t

= D
∂2P(x, t)

∂x2 , (1.17)

which is also corresponds to the Fokker-Planck equation for the propagator
of a Brownian particle. A detailed derivation of the equation and its proper-
ties can be found in [3]. In the right hand side, D is the diffusion constant.
Diffusion equations can be found for other types of motion (e.g. sub-diffusive
random walks -see Chapter 6 from [2]) and give a different perspective for
the understanding of random walks.

The solution of Eq. (1.17) for x ∈ R with initial condition P(x, 0) = δ(x)
is the Gaussian propagator

P(x, t) =
1√

4πDt
e−

x2
4Dt , (1.18)

which is the very same result obtained in Eq.(1.16) from a renewal perspec-
tive in the diffusive limit.

1.1.2 First passage time

The time spent to reach a particular position, i.e. the first passage time (FPT),
is another interesting property of random walks. It is a stochastic variable
itself, so it can be characterized by the first passage time distribution (FPTD)
and its first moment, i.e. the mean first passage time (MFPT). Along with the
propagator, the study of the first passage will be central in the course of the
thesis. For this reason it is briefly introduced in this section.

When the random walk is diffusive with propagator in Eq. (1.18), then
the FPTD reads

f (t; xt) =
|xt|√
4πDt3

e−
|xt |2
4Dt ∼ 1

t3/2 , (1.19)

where xt is the position of the target. Asymptotically, the FPTD decays as
a power-law with exponent 3/2, which is a well-known result related to the
Sparre Andersen theorem [2, 4]. Since the exponent is lesser than 2, the MFPT
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is infinite, i.e. the walker may get lost in the state space and never find the tar-
get. This divergence can be addressed, for instance, by confining the walker
to a finite region [5, 6] or adding a bias to the motion [7].

Similarly to the diffusive case, sub-diffusive random walks and Lévy flights
also have an infinite MFPT [8]. Actually, let us point out that it would be
more accurate to call it mean first arrival time (MFAT). This is because, while
for sub-diffusive and diffusive random walks the MFAT and the MFPT are
equivalent, they differ in the case of Lévy flights as a consequence of longer
jump lengths making the walker jump over the target. Nevertheless, MFPT
will be used in the following pages as a general rule to remain true to the
original term, while MFAT will be used when necessary only.

At this point, let us introduce a formula which will be of great importance
in the articles of the compendium. There, the survival probability instead of
the PDF will be often used to compute the MFPT. This is the probability of
not having reached the target at time t, i.e.

Sxt(t) =
∫ ∞

t
dt′ f (t′; xt). (1.20)

Now, from the Laplace transform of the survival probability one can readily
compute the MFPT to be

⟨t⟩xt =
∫ ∞

0
t f (t; xt)dt =������

[tSxt(t)]
∞
0 +

∫ ∞

0
Sxt(t)dt = Ŝxt(s = 0). (1.21)

In the second equality, integration by parts have been applied. The first term
cancels at both limits, while the second one is the Laplace transform of the
survival probability for s = 0.

1.2 Historical introduction to stochastic resetting

Numerous attempts on describing stochastic dynamics with resetting have
been made during the last decades from different perspectives. Here we
present the three main approaches to the problem in a chronological order.
The first resetting models were developed within the mathematical commu-
nity, in the context of population dynamics during the 1970s (Section 1.2.1).
In Section 1.2.2 we briefly introduce some investigations on the benefits of
resetting stochastic algorithms and, finally, in Section 1.2.3 we present the
recent developments made by the physics community.
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1.2.1 Early models. Population dynamics

Population dynamics have been extensively studied from a mathematical
point of view due to the simplicity of its models, but also because it leads
to results which can be readily compared with reality [9]. A first example of
these models is a birth-death process. It describes the evolution of an initial
population of n0 ≥ 0 individuals, each of which may reproduce themselves
with rate λ and die with rate µ. Thus, the overall population n evolves ac-
cording to the following transition rates, starting from n = n0:

Transition Rate Condition
n → n + 1 λn n ≥ 1
n → n − 1 µn n ≥ 0

For this class of models, the focus is often put on studying the extinction
properties of the dynamics, as for instance the mean time to extinction or the
probability of extinction. The time-dependent transition probabilities from a
population of n individuals to a population of m individuals are also studied
in some cases, as well as the existence of an equilibrium distribution [9].

The simplicity of the set-up permits the straight-forward introduction
of further features to the model. For instance, a population-independent
rate can be introduced to the n → n + 1 transition to model immigration
[10]. Also, catastrophes can be considered by introducing an additional, in-
dependent rate γ to model a sudden decrease in the population, such that
n → n − m, with m ≤ n. This could be either a natural disaster causing the
decease of many individuals or a mass emigration of the population from
a certain region [11, 12, 13, 14]. There, the population decrease in a catas-
trophe m is considered to be stochastic. This type of event is called to be a
partial catastrophe. The main objective in these works is usually to compute
the mean time to extinction or the extinction probability. Even for determin-
istic growth models, sudden catastrophes may provoke the extinction of the
population [15, 16, 17].

Partial catastrophes may lead to the extinction of a population, but still
can not be considered a resetting process. In [18], Kyriakidis and Abakuks
developed an immigration-birth model with total catastrophes, which always
reduce the population size to zero. After that, the number of individuals may
rise again due to immigration. The transition rates of this process are sum-
marized in the following table: where λ is the birth rate, α the immigration
rate and γ the catastrophe rate. The aim of the study was to determine an
optimal pest control protocol, minimizing the damage caused by the plague
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Transition Rate Condition
n → n + 1 λn + α n ≥ 0

n → 0 γ n ≥ 1

and the cost of the protocol. This process, with the catastrophes being the
complete annihilation of the plague, may be considered the first model of
stochastic dynamics with resets.

Following the article by Kyriakidis and Abakuks, numerous authors have
studied population models which may suffer total catastrophes and reborn
afterwards [19, 20, 21, 22, 23, 24, 25]. The main interest there is to obtain the
transient probabilities of the process and its stationary state. In [20, 23], the
dynamics are studied by solving the Chapman-Kolmogorov master equation
of the process, whilst in [19, 21, 22, 24, 25] a renewal equation perspective
is employed. This dichotomy between differential equation models and a
renewal formalism during the 2000s augurs what was to come during the
2010s within the physics community studying stochastic processes under re-
setting (see details in Section 1.3). The results by Economous and Fakinos in
[24] are particularly interesting. There, a general formalism based on renewal
equations is presented, which may be used to study a wide class of stochastic
models with total catastrophes, among others.

These models may appear unreal due to the improbable chance of the to-
tal extinction of a group of individuals. Nevertheless, they start to gain prac-
ticality when considering a queue model instead of population dynamics.
Parallel to the aforementioned articles, various works studied queue models
with total catastrophes [26, 27], which may be applicable to solve task pro-
cessing problems in electronic devices. There, catastrophes/resetting would
correspond to the freezing or sudden breakdown of the processor.

1.2.2 Computer science. Algorithm optimisation

The study of stochastic processes has been historically approached from a
mathematical perspective. Nevertheless, since the appearance of the first
electronic programmable computer in the early 40s and the subsequent de-
velopment of randomized algorithms, the concepts of probability and stochas-
ticity began to gain more practical relevance in computer sciences [28]. Ran-
domized algorithms are usually employed to solve problems with a large set
of solutions. In these kind of problems, randomness is beneficial with re-
spect to deterministic methods due to its capacity to optimally explore the
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full solution space. Problem-solving randomized algorithms can be gener-
ally divided in two different groups:

• Las Vegas algorithms give either the solution or its non-existence as
an outcome. Thus, their running time is a stochastic variable which
depends on the structure of the solution space and the strategy to be
employed.

• Contrarily, Monte Carlo algorithms give an approximated solution to
the problem and its running time remains more controllable.

The performance of randomized algorithms have been usually enhanced
by employing different techniques. For instance, by employing Guided Ran-
dom Search Techniques (see Chapter 5 from [29]) or building dynamic schemes
that can learn from the already visited set of solutions. In [30] a method to op-
timize Las Vegas algorithms by restarting it at stochastic times is developed.
Their method starts by running the random algorithm for a number of steps
t1. If the solution is not found at this point, the algorithm is restarted from the
beginning with an independent seed, and it runs again for a number of steps
t2, and so on. It turns out that if t1 = t2 = ... = t∗, where t∗ is a carefully
chosen reset time, then the mean running time of any Las Vegas algorithm
is minimized. This is, restarting may be beneficial to optimize a stochastic
search. The very same result was found by Alt et al. [31] from a different per-
spective. They found that Las Vegas algorithms with heavy-tailed running
time distributions could be turned into algorithms with short-tailed running
time distributions by sequentially restarting them.

The capacity of restarts to reduce the running time of an algorithm may be
surprising at first sight. Nevertheless, randomized algorithms may occasion-
ally get lost in the solution space, searching far away from the actual solution
to the problem. In these scenarios, a fresh restart of the process can bring the
algorithm closer to the solution, avoiding long and fruitless searches (see Fig-
ure 1.3).

The results from [30] and [31] provide a universal restart strategy to en-
hance the performance of randomized algorithms, assuming previous knowl-
edge about the running time distribution. This enables to find some general,
theoretical results, but the method is not practical when dealing with most of
the problems, which are often confronted with no previous knowledge about
the running time distribution. This issue was approached some years later
with the so called dynamic restart strategies (see [32], [33] and references
therein). They consist on restarting the algorithm depending on whether it
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1
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FIGURE 1.3: Schematic example of an exploration of the solution
space (blue region). From the initial condition (black dot), in the first
(1) attempt the algorithm explores a region far from the solution (red
dot). By restarting, the algorithm is able to avoid being stuck in the
dead end. After a second (2) attempt, the solution to the problem is
found in the third (3) attempt.

may be beneficial or not, given the knowledge accumulated during its cur-
rent execution. It is worth mentioning that restarting has been proven to en-
hance the performance of other processes in Computer Science. For instance,
it can minimize the time required to retrieve a page in the world wide web
[34] or improve the performance of clause learning to solve Boolean satisfia-
bility problems (SAT) [35].

1.2.3 Recent models. Physics perspective

Resetting models firstly captured the attention of physicists in 1999 [36],
when Manrubia and Zanette studied resetting on a stochastic multiplicative
process, i.e. the variable n evolves according to the following rules:

Transition Probability
n → µn 1 − p
n → n0 p

where µ and n0 may (or may not) be stochastic variables. This process
resembles the ones studied many years before by mathematicians as seen in
Section 1.2.1. Nevertheless, in their article, Manrubia and Zanette are inter-
ested in this process for the capacity to generate power-law stationary distri-
butions for n.

The physics community, however, remained unaware of the potential of
stochastic resetting until some years later, when Evans and Majumdar [37]
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FIGURE 1.4: On the left, the plot shows the position of the diffusion
process with resets described by Eq. (1.22), starting at x0 = 0 and for
particular values of r and D. Resets happen at t = 2.1, 6.9, 13.1. Be-
tween them, the motion can be described by the usual diffusion equa-
tion (see Eq. (1.17)). On the right, the trajectory of a two-dimensional
random walk with resets is shown. The walker resets its position twice
(dashed black lines), performing three different trajectories starting at
the origin (sequentially: red, blue and green traces) during the simu-
lation time.

developed an easy-to-operate model of diffusion with Markovian resetting.
To do so, they built the Fokker-Planck equation for the dynamics of a Brow-
nian particle initially located at point x0 under a resetting Poisson process of
its location to the initial position with a rate r. The propagator ρ(x, t|x0) of
the particle follows

∂ρ(x, t|x0)

∂t
= D

∂2ρ(x, t|x0)

∂x2 − rρ(x, t|x0) + rδ(x − x0). (1.22)

This corresponds to the usual Fokker-Planck equation for diffusion (see Eq.
(1.17)) with two additional elements. The second term in the right hand side
annihilates particles from any position at rate r, while the third reintroduces
them to x0 at the same rate. With this, they found a non-equilibrium steady
state (NESS) to be

ρs(x) =
√

r
4D

e−
√

r
D |x−x0| (1.23)

and also an optimal, finite MFPT. This model is remarkable due to its ca-
pacity of capturing the two features of resetting previously observed by the
mathematical and computer science communities separately. This is, the ex-
istence of a NESS and the ability of resetting to optimize the accomplishment
of certain processes (see Figure 1.3 above) as the mean first passage time.

The simple manner these results were presented in [37] gave rise to many
open questions (see Figure 1.4 for two examples of stochastic processes under
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resets). For instance, does the existence of a NESS and an optimal MFPT hold
for non-Markovian resetting? Does it hold for stochastic dynamics different
than diffusion? What happens if the resetting is inherent to the motion (e.g.
triggering when reaching a boundary) instead of an external element? Do the
main features significantly change? Are there other magnitudes which could
contribute to understand the details of stochastic processes under resets?

Some of these questions have been addressed during the last few years,
yielding a considerable amount of works devoted to stochastic resetting. The
existence of a non-equilibrium steady state (NESS) has been found to be
non-exclusive of diffusion with Markovian resetting. For instance, a NESS
is reached in various CTRW models [38, 39, 40, 41, 42] or variations of dif-
fusion processes such as multi-dimensional diffusion [43], reaction-diffusion
dynamics [44] and diffusion in potential landscapes [45] or bounded domains
[46]. Also, non-Markovian resetting has been shown to be able to generate
NESSs [42, 47, 48].

The optimization ability of resetting has been deeply studied from a phys-
ical perspective as well. In [49] the authors broadened the analyses of the
optimal first passage time of a diffusing particle made in [37] by introduc-
ing a space dependent reset rate and randomizing the resetting position, as
well as the position of the target. Other works have shown that different pro-
cesses can be optimized when restarted, as for instance [50, 51, 52]. A general
framework to study the mean completion time of a process with resets has
been proposed in [50] from a Michaelis-Menten reaction scheme and in [53]
by using renewal equations. Interestingly, in the latter they find that the op-
timal resetting strategy is a sharp reset (i.e. deterministic reset), which was
also found in [30] for randomized algorithms with restart, as mentioned in
the previous section.

These features have attracted a lot of attention from the scientific com-
munity and different techniques have been employed to describe stochastic
processes with resets, most of which have been recently reviewed in [54]. In
the following, the current state of the field is presented to frame the objectives
of the thesis.

1.3 State of the art

In the recent literature, there are two main frameworks to model stochas-
tic processes under resets: via the Fokker-Planck equation of the system or
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from a renewal perspective. The first lets an intuitive, straightforward intro-
duction of resetting to any process with a Fokker-Planck equation which is
already known. The latter allows to build a much more detailed and versatile
model.

Since the beginning, both frameworks have been equally used, depend-
ing on the purpose of the investigation. On one hand, in [37], resetting was
smartly introduced to the Fokker-Planck equation for diffusion and its trans-
port and first passage properties were derived. On the other hand, two
years later, in [38], renewal equations were used to model a monotonous
continuous-time random walk with drifts. The latter is beneficial, in the con-
text of this thesis, because it allows for a much more detailed modelling of
the process. By using renewal equations, one can control each of the elements
conforming the model. An appropriate example to illustrate this point can
be found in [51], where resetting is subordinated to motion, in the sense that
the relocation of the walker is limited to when it is not moving. This de-
gree of detail in the modelling of stochastic processes with resets can only be
achieved by using renewal equations.

The advantage of modelling resetting using renewal equations lies in the
fact that one can describe the entire process by considering the dynamics
until the first reset only. After that, everything starts again. Thus, all the
information about the process is contained in the initial excursion, which is
repeatedly concatenated along time (see Figure 1.4 above). This has been
employed by scientists to model many types of stochastic processes with re-
sets, some of which have been already mentioned in Section 1.2.3. In [39, 55]
renewal equations are used to study the existence of a NESS for stochastic
dynamics under resets and in [40] the Sisyphus random walk is modelled
with them. A renewal framework also allows to consider time-dependent
reset rates [47], power-law reset times [48], or different types of stochastic
processes such as run-and-tumble random walks [56] and ballistic motion
[57].

The vast possibilities of the renewal perspective finds its splendour when
modelling the first completion time of stochastic processes [53, 58, 59]. Since
they allow for a general formulation, one can ask the question about the con-
ditions under which resetting renders an optimal completion time. In such a
case, the process can be modelled as follows. Consider the completion time
without the presence of resetting to be a random variable T and the reset time
to be another random variable R. If the process is completed before the re-
set happens (T < R), then the objective is accomplished in the first attempt.
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FIGURE 1.5: Panel A. In this example the process completes after
three resets at time TT. In the first attempt, resetting prevents the
process to take a long time to complete since R ≪ T. The process must
restart again (R < T in the second attempt to), before completing in
the third attempt when T < R. Overall, the process is optimal because
the time it would have taken to complete without resetting (first blue
bar) is longer than the time considering resets (first two red bars and
last blue bar). Panel B. Scheme for computing the total completion
time TT of a process with resets. If the reset time is shorter than the
time required by the process to complete T ≥ R, it restarts and the
reset time is added to the total time. Otherwise T < R, the process is
completed.
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Otherwise, if R ≤ T, the process restarts before finishing and it starts anew
(see Figure 1.5). Therefore, the problem becomes to know how many times
this competition must be repeated so that the first possibility happens. It is
worth mentioning that this formulation allowed Pal and Reuveni to demon-
strate that deterministic restart is optimal among all the possible strategies
[53], answering an important question in the field.

Renewal equations and renewal theory appear as a magnificent frame-
work to study stochastic processes under resets. Its versatility allows to con-
sider very particular processes and, at the same time, general features of the
dynamics. Thus, in light of the above, the starting point of the present thesis
is to investigate the general properties of stochastic processes and, in partic-
ular, random walks under resets from a renewal perspective. Let us state the
hypothesis to be tested in the course of the thesis.

1.4 Objectives

In the basis of what have been exposed in the sections above, let us present
the main purposes of the thesis. The two ideas to be explained here gather the
objectives that have been pursued in the four articles summarized in Chapter
2. The first objective refers to the connection between resetting and renewal
theory. By the nature of the first, the latter appears as a suitable framework
to study its properties. Therefore:

O1. Employ renewal theory as a natural scheme to model the resetting of
stochastic processes and, in particular, random walks.

Renewal equations allow to build very detailed stochastic models. In the
context of resetting, this feature is shown in [51], for instance, where the re-
sets are subordinated to the motion of the walker. An objective derived from
the previous is, thus:

O1’. Employ renewal equations to introduce new elements to the resetting
model.

The vast majority of stochastic resetting models developed before the be-
ginning of this thesis considered the resetting as an external agent taking the
walker to the initial position instantaneously. This is far from what one can
observe in real systems, where resetting often has a cost (temporal, energetic-
wise...) and its characteristics may also depend on the state of the system. If
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resetting models the return of an animal to the nest, for instance, the far the
animal moves away, the longer it will take to return. Also, the homecom-
ing will be more expansive energy-wise. As another example, in the restart
of a stochastic algorithm, the process is neither instantaneous and it has a
temporal cost to be considered in the running time of the method. Thus, con-
sidering these effects of resetting is important to characterize certain type of
processes.

The second objective is related to the capacity of resetting to generate a
NESS and also render optimal first passage times for random walks. This is:

O2. Study the properties of resetting acting on stochastic processes and,
in particular, on random walks (e.g. existence and shape of the stationary
state, optimal first passage time,...). The properties may vary in terms of
the particularities of the process and the resetting mechanism.

At the beginning of this thesis, the vast majority of works on the topic con-
sidered Markovian resetting, i.e. with exponentially distributed reset times.
They show that a NESS is reached in such cases. This raises the question of
when and under which condition this property holds. One may consider,
for instance, resets at times drawn from non-exponential distributions or in-
clude more complex elements to the model, as done in the compendium of
articles summarized in the following chapter. Similarly, the capacity or reset-
ting to render optimal first passage times is another property of interest for
the community that deserves to be studied from a more general perspective.
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Chapter 2

Results

In this chapter the most important results from the four articles in the com-
pendium are summarized. The crucial points are introduced as a guide to
follow the manuscripts, as well as to connect the results between them, giv-
ing a wider picture of its overall contribution to the field of stochastic reset-
ting. The full texts of the published works are included in the appendices of
the thesis.

The four articles summarized in this chapter are a sequence of models,
each of which introducing novel elements to the previous. On this basis, the
chapter is organized in four sections, corresponding to the four articles, re-
spectively. In Section 2.1, the results from [60] (Appendix A) are presented,
where a general model of stochastic motion with resets is introduced. Then,
in Section 2.2 an inactive period after each reset is introduced to the model.
This is studied in [61] (Appendix B). Section 2.3 corresponds to the results
from [62] (Appendix C), where a non-instantaneous resetting mechanism is
introduced and its effects to the overall dynamics are analysed. All these
models are built on the basis of renewal equations and are focused on study-
ing both the spatial dynamics of the motion and its first arrival (or passage) to
a certain position. In [63] (Appendix D), two novel magnitudes to describe
stochastic motion with resetting are considered, being the conditioned for-
ward and the backward times. The results therein are summarized in Section
2.4.

A note on notation. The results here presented proceed from articles elab-
orated at different moments. Hence, the notation used in each of them was
chosen in terms of the particularities of the work. In this chapter, the no-
tation will be unified to ease the reading and to facilitate a unified compre-
hension of the results. Thus, it may slightly differ from the notation used in
the articles included in the appendix.
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2.1 First model

The main objective of the first work (see Appendix A or reference [60]) is to
develop a general framework to study stochastic motion under resets. For
this purpose, we employ renewal equations to find the general propagator
ρ(x, t) for a random walk under resetting in terms of the propagator P(x, t)
for the resetting-free random walk and the reset time PDF φR(t). In particular,
one finds that

ρ̂(x, s) =
Ls[φ∗

R(t)P(x, t)]
1 − φ̂R(s)

, (2.1)

in the Laplace space for the time variable (see Eq. (2.2) in the article). From
this, the MSD can be readily computed to be

⟨x̂2(s)⟩ = Ls[φ∗
R(t)⟨x̂2(t)⟩m]

1 − φ̂R(s)
. (2.2)

Similarly, one can find the general survival probability of the walker not
reaching a particular position x to be

σ̂x(s) =
Ls[φ∗

R(t)Qx(t)]
1 −Ls[φR(t)Qx(t)]

, (2.3)

also in the Laplace space for the time variable (see Eq. (2.10) in the article).
Here, Qx(t) is the survival probability of the dynamics without resetting.
And the mean first arrival time can be obtained using Eq. (1.21):

⟨t⟩x =

∫ ∞
0 φ∗

R(t)Qx(t)dt
1 −

∫ ∞
0 φR(t)Qx(t)dt

. (2.4)

The generality of this formulation permits the analysis of many differ-
ent systems. For instance, one can recover the results from [37] by choos-
ing a Gaussian PDF for diffusive motion and exponentially distributed reset
times. But it also allows us to generalize these results for other dynamics and
resetting mechanisms (see Section III in the article) or studying the effects of
resetting on more intricate processes (see Section IV in the article).

The most relevant results for the scope of this thesis are those in Section
III of the aforementioned article. There, the existence of a NESS and a finite,
optimal MFPT are analysed for different types of stochastic motion and re-
setting mechanisms. More specifically, sub-diffusive motion, diffusion and
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Levy flights are considered, and the reset time PDF is chosen to be a Mittag-
Leffler distribution, i.e.

φR(t) =
tγR−1

τ
γR
R

EγR,γR

[
−

(
t

τR

)γR
]

. (2.5)

The choice of this distribution may at first glance seem arbitrary but it
allows us to recover exponential PDFs for γR = 1, i.e.

φR(t) =
1

τR
e−

t
τR , (2.6)

and also study power-law reset time PDFs such that φR(t) ∼ t−1−γR for
γR < 1. In the following, the results on the transport properties and the
first passage of the overall process are summarized.

2.1.1 Transport properties

In the article we focus on isotropic random walks (⟨x(t)⟩m = 0) with ⟨x2(t)⟩m ∼
tp, where the subindex m means motion. This is, we consider all the processes
without a preferential direction, from sub-diffusion p < 1 to diffusion p = 1,
super-diffusion 1 < p < 2 or Lévy flights p = ∞. With this, from Eq. (2.2)
and Eq. (2.5) we find that the global MSD behaves as

⟨x2(t)⟩ ∼
{

tp, for 0 < γR < 1
t0, for γR = 1

(2.7)

Thus, all types of motion reach a stationary value for exponential resetting
(γR = 1), which generalizes the results in [37] and other works. Other-
wise, when the resetting time is distributed according to a power-law Mittag-
Leffler PDF (γR < 1), the MSD of the outcoming process scales as the MSD
of the underlying dynamics. In this case the resetting only modifies the MSD
by a multiplicative factor.

When a NESS is reached (γR = 1), the stationary PDF can be readily
found from Eq. (2.1). In the benchmark of the article, this corresponds to the
Markovian choice of the reset time PDF in Eq. (2.6). When the underlying
motion is sub-diffusive, the stationary PDF reads

ρss(x) =
1√

4Dτ
γ
R

e
− |x|√

Dτ
γ
R , (2.8)
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FIGURE 2.1: Stationary PDF of the overall process for sub-diffusive
motion (SD), diffusion (D) and Lévy flights (LF). The dots, squares
and triangles correspond to the numerical simulations, and the solid
curves to the analytical expressions from Eqs. (2.8) and (2.9). Further
details on the simulations can be found in the article.

where γ ≤ 1 is the sub-diffusive exponent, with γ = 1 corresponding to
diffusion (see Eq. (1.23) with r = 1/τR). Otherwise, for an underlying Lévy
motion, the stationary PDF can be found to be

ρss(x) = 2
∫ +∞

0

cos(kx)
1 + τRDkα

dk ∼ 1
|x|1+α

, as |x| → ∞ (2.9)

with α the Lévy exponent (α → 2 corresponding to the diffusive limit). In the
article, these two expressions are compared to numerical simulations of the
process showing a good agreement (see Figure 2.1).

2.1.2 First passage time

To study the first passage of the walker to a given position x we consider a
general form for the survival probability of the underlying process (i.e. for
the process without resetting) of the form

Qx(t) ∼ t−q, q > 0, (2.10)

for long t. This is, without resetting, the probability of not having reached
the target scales as Eq. (2.10). The choice includes the survival probability
for sub-diffusion when q = γ/2 with γ < 1 (see [7]), diffusion when q = 1/2
and Lévy flights when q = 1 − 1/α with 1 < α < 2 (see [64]). When this
process is restarted at times given by Eq. (2.5), the survival probability can
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FIGURE 2.2: The tail exponent β of the survival probability σx(t) ∼
tβ of the overall process is shown for sub-diffusive motion (panel A)
and Lévy flight (panel B), both restarted at times given by a Mittag-
Leffler PDF with decay exponent γR. The solid curves are the limit
between finite (flat pink region) and infinite (gradient) MFPT (MFAT
for Lévy flights) in both plots. In panel A, it corresponds to γR +
γ/2 = 1, while in panel B its equation reads γR − 1/α = 0. Further
details on the simulation may be found in the article.

be found to decay as

σx(t) ∼ t−q−γR , if q + γR ≤ 1. (2.11)

Now, whenever γR + q ≤ 1 the MFPT (MFAT for Lévy flights) diverges (see
Section 1.1.2). Otherwise, if q + γR > 1, the MFPT in Eq. (2.4) is finite. In
Figure 2.2 numerical simulations of the survival time are shown to be in good
agreement with this results.

Interestingly, the MFPT can be finite even when the reset time PDF decays
as a power law with infinite mean (pink region in Figure 2.2). For the sake
of simplicity, let us consider the particular case of diffusion, corresponding
to γ = 1 in panel A and α = 2 in panel B. In such a case, the MFPT is finite
when the reset time PDF decays as

φR(t) ∼ t−1−γR , with 1/2 < γR < 1.

This is, the overall MFPT may be finite even when the mean reset time di-
verges. Recall that the MFPT of diffusion without resetting also diverges and
its survival probability decays as

Qx(t) ∼ t−1/2,

corresponding to a PDF decaying as t−3/2. Thus, an infinite mean reset time
is capable of rendering a finite MFPT.
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2.1.3 Summary

From renewal equations, a simple and versatile model to study stochastic
processes with resets is formulated. It is employed to study sub- and super-
diffusive motion and different resetting time PDFs. In recent years, other au-
thors have applied the very same ideas to analyse different types of processes
[52, 65, 66].

The results from the article show that, on one hand, the scaling of the MSD
with time is unaltered when the resets come from a PDF with all diverging
moments (γR < 1 in Eq. (2.5)). On the other hand, the MSD reaches a sta-
tionary value when all the moments of the reset time PDF are finite (γR = 1
in Eq. (2.5)). This raises the question of whether there is a smooth transition
between the two cases or not. In [65] a Pareto-type distribution has been con-
sidered, which can have none, one, two, or any amount of finite moments in
terms of its tail exponent. There, the authors show that the transition between
non-altered scaling of the MSD and reaching a stationary value is soft and
progressive. In particular, this soft transition happens in the region where
the first moment of the reset time PDF is finite and the second diverges.

In [60] the decay exponent of the reset time PDF is shown to be particu-
larly relevant for the properties of the first passage time of diffusion. While
for γR < 1/2 the MFPT diverges, it is finite when γR > 1/2. The change in
the properties of diffusion with scale-free resetting at γR = 1/2 will be seen
to be non-exclusive of the MFPT in the articles to come.

2.2 Second model

In the second paper (see Appendix B or reference [61]), a novel element is in-
corporated to the model. It consists on a residence period after the resets dur-
ing which the walker remains immobile. The motivation behind this model
lies in that when a process is restarted, it usually requires a recovery period
before starting anew. One may think of the time a random walk needs to
travel to the reset position or the time an algorithm requires to start again.

Similarly to the previous model, we make use of renewal equations to get
the statistics of the overall process. Here, we build a two-state model (one for
the motion and one for the resting period), to get the general propagator

ρ̂(x, s) =
φ̂∗

S(s)φ̂R(s)δ(x) + Ls[φ∗
R(t)P(x, t)]

1 − φ̂R(s)φ̂S(s)
, (2.12)
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in the Laplace space for the time variable. In the equation, the Laplace trans-
form of φS(t) appears, which is the residence time PDF (i.e. the PDF of the
time that the walker remains immobile after a reset). Note that this result
reduces to the one in Eq. (2.1) when the residence period is chosen to be null,
i.e. φS(t) = δ(t), corresponding to φ̂S(s) = 1 and φ̂∗

S(s) = 0 in Eq. (2.12).
The survival probability of the motion with a target at a given position x

can be computed to give

σ̂x(s) =
Ls[φ∗

R(t)Qx(t)] + Ls[φ∗
R(t)Qx(t)]φ̂∗

S(s)
1 −Ls[φR(t)Qx(t)]φ̂S(s)

(2.13)

and, when existing, the MFPT reads

⟨t⟩x =
I1 + τs I2

1 − I2
, (2.14)

where
I1 =

∫ ∞

0
φ∗

R(t)Qx(t)dt, (2.15)

I2 =
∫ ∞

0
φR(t)Qx(t)dt (2.16)

and τs =
∫ ∞

0 tφS(t)dt is the mean residence time. Again, these results reduce
to the ones from the previous model when the residence time is null (φ̂S(s) =
1 in Eq. (2.13) and τs = 0 in Eq. (2.14)).

The new scenario is analysed similar to the model without residence pe-
riod. Both the reset time and the residence time PDFs are chosen to be of
the form in Eq. (2.5) for the reasons above mentioned. Then, the transport
properties are studied in Sections III and IV from [61], while the first arrival
properties are shown in Section V therein. In the following, the main results
in the article are summarized.

2.2.1 Transport properties

When considering the collective transport of the dynamics, the residence pe-
riod can be though as a dynamic trap at the reset position. Whenever a par-
ticle resets its position, it is forced to stay immobile during a certain time.
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Therefore, this new mechanism will reduce the transport capacity of the pre-
viously studied system. More specifically, if the MSD of the underlying mo-
tion scales as ⟨x2(t)⟩m ∼ tp, the MSD taking into account resets and the resi-
dence period scales as

⟨x2(t)⟩ ∼ ta (2.17)

with

a =





γS − 1, for γR = 1
p + γS − γR, for γR < 1, γS < γR

p, for γR < 1, γS ≥ γR,

depending on the relation between the parameters γS and γR, being the tail
exponents of the residence and the reset time PDFs respectively. Considering
the residence period gives rise to a rich variety of transport regimes. There
are three possible scenarios:

• When the reset time PDF is short-tailed (γR = 1), the motion may either
collapse (⟨x2(t)⟩ → 0 for γS < 1), which is the case of a long-tailed
residence time PDF, or tend to a stationary value (⟨x2(t)⟩ → t0 for γS =

1). In the latter, the PDF in the NESS can be found to be

ρss(x) =
τS

τR + τS
δ(x) +

τR

τR + τS

e
− |x|√

Dτ
γ
R

√
4Dτ

γ
R

(2.18)

for sub-diffusion (diffusion for γ = 1), and

ρss(x) =
τS

τR + τS
δ(x) +

τR

τR + τS

∫ +∞

0

cos(kx)
1 + τRDαkα

dk ∼ 1
|x|1+α

, (2.19)

as |x| → ∞, for Lévy flights (diffusion when α → 2). Notably, the shape
of both the PDFs is the same as for a null residence period (see Eq. (2.8)
and Eq. (2.9) and compare to the second term of the corresponding
PDFs with residence period), weighted by the portion of time spent in
the exploring state τR/(τR + τS). The rest of the time τS/(τR + τS) is
spent at the origin in the residence state, i.e. the PDF of the walker is
δ(x) (first term in Eq. (2.18) and Eq. (2.19)).

• When the reset time PDF is long-tailed (γR < 1) and the tail of the res-
idence time PDF is even longer (γS < γR), the transport regime of the
walker is modified. In Figure 2.3 all the cases are summarized in terms
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FIGURE 2.3: Summary of the transport regimes for an underlying
motion with ⟨x2(t)⟩m ∼ tp and reset and residence time distributions
given by Eq. (2.5) with γR and γS respectively.

of p and the difference between the tail exponents γR − γS. This differ-
ence is relevant because it measures the asymptotics of the time spent
by the walker in each of the two states. If it stays in the residence state
longer than in the exploring state (γR > γS), the transport capacity of
the system is diminished. For instance, an underlying super-diffusive
process may become diffusive or even sub-diffusive when the reset-
and-residence mechanism applies. Also, a sub-diffusive process may
end up reaching a stationary state and more notably, if the residence
period is long enough, the walkers may end up being trapped at the
reset position (transport failure in Figure 2.3).

• When the reset time PDF is long-tailed (γR < 1) and the tail of the
residence time PDF is shorter (γS ≥ γR), the transport regime of the
walker does not change. This is, when the time spent in the exploring
regime is asymptotically longer than in the residence regime, the first
prevails and the scenario is similar to the previous model (see Eq. (2.2)).

2.2.2 First passage time

The first passage properties of the walker under resets and the succeeding
residence period was also studied in [61] in terms of the underlying motion
and the characteristics of resetting. As in the previous model, we consider a
general decay for the survival probability of the walker, i.e.

Qx(t) ∼ t−q, q > 0
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γS = 1 γS < 1
γR + q > γS Finite MFPT σx(t) ∼ t−(1−γS)

γR + q ≤ γS σx(t) ∼ t−(1−γR−q) σx(t) ∼ t−(1−γR−q)

TABLE 2.1: Summary of the different cases for the asymptotic be-
haviour of the overall survival probability σx(t). When it decays more
rapidly than σx(t) ∼ t−1, the MFPT is finite (top-left case in the Ta-
ble).

for long t. Then, the overall survival probability behaves differently depend-
ing on the reset and the residence time PDFs with parameters γR and γS

respectively. In Table 2.1 all the casuistics in terms of the tail exponents are
summarized.

• When the residence time PDF is long-tailed (γS < 1), the MFPT always
diverges because the time the walker stays immobile after a reset is in-
finite (in average). However, the decay of the survival probability in
this case may be determined either by the residence exponent γS or the
motion exponent γR + q (see previous article) depending on which of
them is smaller. Then, when the residence time PDF is more important
than the exploration time (γS < γR + q), the first is the one determin-
ing the decay of the overall survival probability and σx(t) ∼ t−(1−γS).
Otherwise, when the residence time is asymptotically shorter than the
exploration time (γS ≥ γR + q), the latter governs the overall process
and σx(t) ∼ t−(1−γR−q).

• Otherwise, when the residence time is exponential (γR = 1), the be-
haviour of the MFAT in this scenario is equivalent to the one studied
in [60] (see Section 2.1.2). The difference lies in a finite additive fac-
tor accounting for the time the walker stays at the origin, which does
not affect the asymptotic behaviour. Thus, the MFAT is finite whenever
γR + q ≥ γR = 1 and diverges for γR + q < γS = 1. In the latter case,
the survival probability decays as σx(t) ∼ t−(1−γR−q).

As done for the previous model, the general exponent q have a particular
expression for every type of motion. The details on the sub-diffusive and
diffusive cases and the Levy flights can be found in the article from Appendix
B.
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2.2.3 Summary

Using renewal equations to describe stochastic processes under resets per-
mits an easy and straightforward introduction of novel elements to the model.
The residence period that has been included in this article may allow reset-
ting models to describe more diverse scenarios. The residence period barely
affects the dynamics of the process at short times. When it reaches a steady
state, the model with a residence period only differs from the previous in that
a portion of the particles accumulate at the origin. Nevertheless, at longer
times, the residence period may significantly affect the dynamics. Both the
existence of the MFPT and the transport regime depend on the asymptotic
relation between the residence and the reset time PDFs.

It is particularly interesting how the scaling of the MSD of the overall
process may be smoothly modified by the combination of resets and the pos-
terior residence period. Thus, a proper choice of the reset and the residence
time PDFs could be used to tune the transport regime of a given process.

2.3 Third model

In the previous article, a recovery time after is included after the resets and
before the stochastic process starts again. The model presented therein may
serve in certain scenarios, but it considers the reset time and the residence
period as independent random variables. This may be unreal in some cases.
Think of the simple example of a diffusive walker with instantaneous reset-
ting as studied in [37] and in the first article of this thesis. If we aim to con-
sider the non-instantaneous nature of resetting in this case, the time needed
by the walker to start again (i.e. the time it needs to return to the resetting
position) would depend on its position. If the reset comes when the walker is
near the resetting position, the reset will be faster than when far positions are
reached. Thus, the time before starting again is correlated with the stochastic
process and the reset time itself. In the third article of the thesis (see Ap-
pendix C or reference [62]) the transport and stationary properties of these
dynamics are studied.

In the paper, a two-state model is introduced, similar to the one in [61].
The first state is called to be an exploring state described by a propagator
P(x, t) and lasting at a stochastic time given by a reset time PDF φR(t). The
second state or returning state consists on a ballistic motion with velocity v
towards the origin. At the origin, the walker starts the exploring phase once
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again. A renewal equation formalism allows us to find the global propagator
of the process in the Laplace space for time to be

ρ̂(x, s) =
Π∗(x, s) + 1

v e
|x|
v s ∫ +∞

|x| dze−
|z|
v sΠ(z, s)

1 −
∫ +∞
−∞ dze−

|z|
v sΠ(z, s)

, (2.20)

where
Π(x, s) = Ls[φR(t)P(x, t)] (2.21)

and
Π∗(x, s) = Ls[φ

∗
R(t)P(x, t)]. (2.22)

Similarly, in the long t limit (small s), the MSD of the walker with resets
can be expressed in terms of the moments of the dynamics without resetting
⟨|x|n⟩P as

⟨x̂2(s)⟩ ≃ Ls[φ∗
R(t)⟨x2(t)⟩P] +

1
3vLs[φR(t)⟨|x|3(t)⟩P]

1 − φ̂R(s) + s
vLs[φ∗

R(t)⟨|x|(t)⟩P]
. (2.23)

In the infinite v limit, the expression for instantaneous resetting can be recov-
ered (see Eq. (2.2)). Note that the absolute odd moments of the dynamics
without resetting are important to describe the MSD with non-instantaneous
resetting.

2.3.1 Markovian resetting

When the reset time PDF is exponential as in Eq. (2.6), the PDF from Eq.
(2.20) reaches a stationary being

ρss(x) =
P̂(x, s = 1/τR) +

1
vτR

∫ +∞
|x| dzP̂(z, s = 1/τR)

τR + 1
vτR

⟨|x̂|(s = 1/τR)⟩P
, (2.24)

where the Laplace transform of P(x, t) appears and also its absolute first mo-
ment ⟨|x̂|(t)⟩P. This expression has been derived in the context of a random
walk with non-instantaneous returns, but it may also describe other stochas-
tic processes with non-instantaneous resets. It is interesting to consider the
stationary state when the free motion is diffusive. From Eq. (2.24), it reads

ρss(x) =
1√

4DτR
e−|x|/√DτR . (2.25)
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FIGURE 2.4: Stationary MSD for different fractional Brownian mo-
tion processes (see the article in Appendix C for further details) with
Markovian resetting in terms of the return velocity v. Depending on
the moments of the underlying motion, the MSD may increase, de-
crease or be independent with the returning velocity.

This is, the NESS is independent of the returning velocity and its PDF is the
same as for instantaneous resets (see Eq. (2.9) for γR = 1 or reference [37]).

As for the stationary MSD, a general expression can be found in terms of
the moments of the free motion:

⟨x2⟩ss =
⟨x̂2(s = 1/τR)⟩P + r

3v ⟨|x̂3|(s = 1/τR)⟩P

τR + 1
vτR

⟨|x̂|(s = 1/τR)⟩P
. (2.26)

Again, it reduces to the instantaneous resetting case when v → +∞. What is
interesting here is that the stationary MSD may increase or decrease with the
return velocity depending on the moments of the free motion. Let us define
the ratio

κ =
3

τR

⟨|x̂|(s = 1/τR)⟩P⟨x̂2(s = 1/τR)⟩P

⟨|x̂3|(s = 1/τR)⟩P
. (2.27)

Then, if κ > 1, the stationary MSD decreases with v, while when κ < 1 it
increases with the returning velocity. In the limiting case κ = 1 the stationary
MSD is independent of the returning velocity (e.g. when the free motion
is diffusive). In Figure 2.4 we show this feature for a fractional brownian
motion which allows us to switch between the different regimes for κ.
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2.3.2 Pareto resetting

In the previous articles we used Mittag-Leffler PDFs to study long tailed dis-
tributions. Nevertheless, this choice is limited to decays such that φR(t) ∼
1/t1+γR , with γR < 1, being the γR = 1 case an exponential PDF (see Section
2.1). In the current article scale-free resets are modeled by a Pareto PDF, i.e.

φR(t) =
γR/τR

(1 + t/τR)1+γR
. (2.28)

This allows us to study an unrestricted range of decay exponents. Note that
this definition is slightly different from the one in the article (see Eq. (2.29)
therein), where r = 1/τR is used instead of τR. The aim of this choice is to
keep consistency with the notation used in the previous articles. Regarding
the exponent, it can take any real positive value (γR > 0), including the 0 <

γR < 1 region already considered with the Mittag-Leffler PDF above. With
this, reset times with finite mean but diverging second moment (1 < γR < 2)
can be studied too, and similarly for higher moments of the reset time PDF.

In the following, only diffusion will be considered for simplicity. From
Eq. (2.20), one can see that a NESS is never attained when γ < 1. Recall
that in such a case, a NESS is neither attained for instantaneous resetting (see
Section 2.1). Contrarily, when γR > 1, the dynamics do reach a NESS with
stationary PDF

ρss(x) =
(γR − 1)/

√
4π

√
DτR + D

v
Γ(γR− 1

2 )
Γ(γR−1)

[
Γ
(

γR − 1
2

)
U
(

γR − 1
2

,
1
2

,
x2

4DτR

)

+
|x|

2vτR
Γ
(

γR +
1
2

)
U
(

γR +
1
2

,
3
2

,
x2

4DτR

)]
, (2.29)

where U(a, b, z) is the Tricomi confluent hypergeometric function. Asymptoti-
cally, it decays as

ρss(x) ∼ 1
|x|2γR−1 .

This is, as we increase γR, the even moments of the stationary PDF progres-
sively become finite (all the odd moments are null due to the symmetry of the
process). For instance, the MSD diverges when γR < 2, and it converges for
γR > 2. Similarly, the fourth moment diverges when γR < 3 and converges
otherwise, and so on and so forth.

The divergence of the MSD can be studied in more detail in terms of γR.
From Eq. (2.23), one can find that, in the long t limit,



2.3. Third model 33

⟨x2(t)⟩ ∼ ta (2.30)

with

a =





1, for 0 < γR ≤ 1
2 − γR, for 1 < γR ≤ 2

0, for 2 < γR

Therefore, diffusion with scale-free, non-instantaneous resetting may still
have a diffusive behaviour whenever the first moment of the reset time PDF
diverges (γR ≤ 1). This result is equivalent to the one found in [60] for instan-
taneous resetting. Nevertheless, if the tail decays more rapidly (1 < γR ≤ 2),
the transport regime becomes sub-diffusive and the exponent progressively
decrease as γR → 2. This is also equivalent to the instantaneous resetting
scenario [65]. Finally, when γR > 2, the MSD attains a stationary.

2.3.3 Return time PDF

A natural question to ask about walkers with non-instantaneous resetting is
how much time does it spend to return to the origin. Intuitively, it should
depend on the type of motion: the faster it moves away from the origin, the
longer it will take to return. Also, the longer the reset time is, the far the
walker will be able to reach; therefore, the return time will be longer. Thus,
the return time should depend on both the motion and the resetting.

In [62], an expression for the PDF of the returning time φr(t) is found in
terms of the free motion and the reset time PDFs:

φr(t) = 2v
∫ ∞

0
dt′P(vt, t′)φR(t′). (2.31)

And the n-th moment reads:

⟨tn
r ⟩ =

1
vn

∫ +∞

0
dtφR(t)⟨|x(t)|n⟩P. (2.32)

This is, there is a one-to-one correspondence between the n-th moment of the
return time PDF and the n-th moment of the motion PDF.

For diffusion with Markovian resetting, one can easily derive the return
time PDF to be

φr(t) =
v√
DτR

e
− v√

DτR
t
. (2.33)
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This is, the return time PDF is also exponential (as the reset time PDF) and
one can define a return rate to be

rr =
v√
DτR

, (2.34)

which depends on the reset time PDF via the reset rate r = 1/τR, on the
diffusion via its constant D and also on the return velocity v.

If instead of diffusion with Markovian resets we consider scale-free reset-
ting with a Pareto reset time PDF, the return time PDF becomes a bit more
intricate:

φr(t) =
vγR√
πDτR

Γ
(

γR +
1
2

)
U
(

γR +
1
2

,
1
2

;
v2

4DτR
t2
)
∼ 1

t2γR+1 (2.35)

The n-th moment of the PDF can be also computed from Eq. (2.32) (also from
Eq.(2.35)) to give

⟨tn
r ⟩ =

Γ(1 + n)Γ(1 + n
2 )Γ(γR − n

2 )√
πΓ(γR)

(√
4DτR

v

)n

, (2.36)

only for γR < n/2. Otherwise, it is infinite. Thus, depending on the tail
exponent of the Pareto PDF γR, the n-the moment may diverge or have a
finite value. If

γR >
n
2

, (2.37)

then the n-th moment of the return time PDF converges. In other words, all
the moments such that n < 2γR exist, while they diverge for n ≥ 2γR. In par-
ticular, regarding the mean of the return time, it exists whenever γR > 1/2;
again, for scale-free resetting, γR = 1/2 becomes relevant when describing
the statistical properties of the process.

2.3.4 Summary

Renewal equations permits an easy introduction of a finite velocity resetting
mechanism to diffusion. In the case that the reset time is Markovian, the
stationary distribution is independent of the return velocity and equal to the
stationary state found in [37] for instantaneous resetting. Contrarily, when
the reset time PDF is scale-free, a stationary state is only reached when the
first moment of the reset time exists (γR < 1). When considering the MSD
of the position of the walker, it scales linearly with time in such a case. For
1 < γR < 2 a sub-diffusive behaviour with exponent smoothly decreasing
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linearly with γR until γR ≥ 2, where a stationary MSD is reached. This result
is equivalent to the asymptotic behaviour of diffusion with instantaneous
resetting [65].

The return time PDF is also analysed in the article. The distribution is
exponential when the reset time PDF is exponential too, while for Pareto reset
time PDFs it takes the form of a Tricomi confluent hypergeometric function.
In the latter case, the mean return time is finite only when γR > 1/2. This
happens as well for the first passage time of diffusion with instantaneous
resets (see Section 2.1.2).

2.4 Conditioned backward and forward times

In the last work of the thesis (see Appendix D or reference [63]) we recover
the scenario from the first model: a random walk with instantaneous reset-
ting. More in particular, the random walk is considered to be diffusive for
the sake of simplicity, though the results displayed in the following may be
extrapolated to other types of stochastic processes.

The main objective of this paper is to take advantage of the intrinsic rela-
tion between renewal processes and resetting to bring novel tools to analyse
the processes under resets. In the three models presented above (and in the
vast majority of the stochastic resetting literature [54]), the MSD and the first
completion of the process are the main objects of study. Here, the conditioned
backward and forward times are introduced as additional elements to explore
the dynamics of the system.

Similar to the well-known backward and forward times from renewal the-
ory (see [67] and Chapter 7 in [68] for details), the conditioned backward B
and forward F times respectively correspond to the times since the last and
until the next reset given that the position of the walker x(t) is known at the
current time. This is, from a present observation of the process, one can esti-
mate when the time of the closest resets.

In terms of the propagator ρ(x, t) and Q(t) defined in Eq. (1.10) (i.e. the
probability of the last event happening at time t), the long time limit of the
conditioned backward time PDF can be written as:

f (B|x, t) ≃ Q(t)
ρ(x, t)

φ∗
R(B)P(x, B), (2.38)

where P(x, t) is, in this case, the Gaussian PDF of a diffusive process and
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φ∗
R(t) the survival probability of the reset time PDF. Similarly, the condi-

tioned forward time PDF reads, in the long time limit:

f (F|x, t) ≃
∫ t

0 dt′Q(t − t′)φR(t′ + F)P(x, t′)
ρ(x, t)

. (2.39)

Especially interesting is when the conditioned backward or forward time
PDFs reach a stationary. Then, we can define

f (B|x) ≡ lim
t→∞

f (B|x, t) (2.40)

and
f (F|x) ≡ lim

t→∞
f (F|x, t), (2.41)

respectively. In such a case, whenever the process is measured after a long
time, only the position of the walker (or state, in general) is needed to get
information about the last and the next reset. Note that, for instance, the time
dependence of the conditioned backward time comes from Q(t)/ρ(x, t) only.
Therefore, if this ratio reaches a stationary value (i.e. limt→∞ Q(t)/ρ(x, t) is
finite and non-zero), then a stationary conditioned backward time PDF exists.
Remarkably, these expressions are general for any stochastic process with
resets, though in the article we put the focus on diffusion. In the following,
the results for a diffusive random walker with exponential and Pareto reset
time PDFs are exposed.

2.4.1 Markovian resetting

When the resetting is Markovian, it is well-known that the propagator reaches
the NESS in Eq. (1.23). Also,

lim
t→∞

Q(t) =
1

⟨t⟩φR

=
1

τR
(2.42)

is time independent. Thus, from Eq. (2.38), the conditioned backward time
PDF does not depend on time neither and it behaves as

f (B|x) ∼ e−
B

τR − x2

4DB√
B

. (2.43)
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FIGURE 2.5: Stationary conditioned backward (panel A) and for-
ward (panel B) time distribution for diffusion and exponential reset-
ting with τR = 20 (circles) and under Pareto resetting with τR = 5
and two different values of the decay exponent: γR = 0.75 (squares)
and γR = 1.75 (triangles). The solid lines have been drawn from the
behaviours in Eq. (2.43) and Eq. (2.46) for the exponential and Pareto
cases of panel A, respectively. In panel B, Eq. (2.44) and Eq. (2.47)
have been plotted, respectively.

Similarly, the conditioned forward time PDF can be found to be

f (F|x) ≃ 1
τR

e−
F

τR . (2.44)

Note that, while in the article from Appendix D the exponential PDF is de-
fined in terms of the rate r, here we use the mean τR to parameterize it. They
are related through r = 1/τR.

Therefore, at long times, if the current position is known, the statistics
of the backward and the forward times can be readily obtained. The condi-
tioned forward time PDF, for instance, is exponential and independent on the
position of the walker, i.e. the probability of an upcoming reset is always the
same. This is due to the Markovianity of the resetting process. Otherwise,
the conditioned backward time PDF does depend on the current position of
the walker. In Figure 2.5 a good agreement with simulations of the process is
shown.

2.4.2 Pareto resetting with γR > 1

If, instead of resetting at times given by an exponential PDF, the reset time
PDF is a Pareto distribution of the form in Eq. (2.28), the dynamics of the
walker become different. In such a case, the long-time behaviour extremely
depends on the tail exponent γR and, in particular, on whether the first mo-
ment of the reset time PDF exists or not.
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Let us start by the case where the first moment of φR(t) exists, i.e. γR > 1.
In such a case, the dynamics reach a stationary state given by

ρs(x) =
γR − 1
4πDτR

Γ
(

γR − 1
2

)
U
(

γR − 1
2

,
1
2

,
x2

4DτR

)
. (2.45)

As for the exponential reset time PDF, limt→∞ Q(t) = 1/⟨t⟩φR , which is finite
for γR > 1. Therefore, in this case Eq. (2.38) tends to an asymptotic PDF
which behaves as

f (B|x) ∼ e−
x2

4DB√
B(1 + B/τR)γR

. (2.46)

And from Eq. (2.39), the conditioned forward time PDF also reaches a sta-
tionary form which depends on F via

f (F|x) ∼
U
(

γR + 1
2 , 1

2 , x2

4D(τR+F)

)

(1 + F/τR)
γR+

1
2

. (2.47)

Again, for long enough measurement times, information about the back-
ward and the forward times can be obtained from the current position only.
In this case the PDFs become more intricate, but statistical information (e.g.
mean, variance or higher moments) can still be obtained from these expres-
sions. The simulations for this scenario are also displayed in Figure 2.5.

2.4.3 Pareto resetting with 0 < γR < 1

When the first moment of the reset time PDF diverges (γR < 1) the scenario
becomes more intricate. A stationary state is not reached in this case and the
long time limit of the dynamics is not universal for all values of γR. This is,
when t ≫ T and also t ≫ x2/D,

ρ(x, t) ≃





Γ( 1
2−γR)

2πΓ(1−γR)
1√
Dt

if 0 < γR < 1
2

sin(πγR)Γ(2γR−1)
πΓ(γR)(Dt)1−γR

1
|x|2γR−1 , if 1

2 < γR < 1,

(2.48)

which behave differently for γR < 1/2 than for γR > 1/2. Once again, a
transition between two distinct behaviours is found at γR = 1/2, which can
be observed in numerical simulations too (see Figure 2.6)
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FIGURE 2.6: Panel A: Propagator of diffusion with Pareto resetting
(γR = 0.25) for the simulation of N = 105 trajectories at differ-
ent measurement times t. The multiplicative factor in the y-axis is
C1(t) = 2πΓ(1−γR)

Γ(1/2−γR)

√
Dt. As the time increases, the renormalized

propagator tends to be flat as found in Eq. (2.48). Panel B: Prop-
agator of diffusion with Pareto resetting (γR = 0.75) for the sim-
ulation of N = 105 trajectories at different measurement times t.
The multiplicative factor in the y-axis is C2(t) = πΓ(γR)(Dt)1−γR

sin(πγR)Γ(2γR−1) .
As time increases, the propagator approaches this scaling limit. In
both panel A and panel B, the diffusion constant is D = 0.5 and
T = 1 in the Pareto reset distribution. The dots, the triangles and the
squares correspond to the propagator obtained from the simulations.
The solid black curves correspond to the asymptotic behaviour found
in Eq. (2.48). Both panels have been plotted in Log-Lin axis.

In the long t limit,

Q(t) ≃ τ
−γR
R

Γ(1 − γR)Γ(γR)t1−γR
, t ≫ τR, (2.49)

and, with this, one can analyse the asymptotic behaviour of the conditioned
forward and the backward times in Eq. (2.38) and Eq. (2.39). Let us start by
the first. While the dependence on B is the same as in Eq. (2.46), the ratio
between Q(t) and the propagator when t ≫ x2/D is

Q(t)
ρ(x, t)

≃





2π
Γ(γR)Γ( 1

2−γR)

√
D

TγR t
1
2−γR

if 0 < γR < 1
2

Γ(γR)
Γ(2γR−1)

|x|2γR−1

D1−γR TγR
, if 1

2 < γR < 1,

(2.50)

which is time independent only for γR > 1/2. Consequently, a stationary
conditioned backward time PDF is reached only in this case (see Figure 2.5



40 Chapter 2. Results

101 2 3

B
10 10

10 4

f(
B
| x

, t
)

B
t=105

t=106

t=10710 3

10 101 2 3

F
10

10 3

10 4

f(
F|
x,
t)

B
t=105

t=106

t=107

FIGURE 2.7: Conditioned backward (A) and forward (B) time PDF
for diffusion and Pareto resetting with τR = 5 and γR = 0.25.
Three different measurement times have been plotted, showing that
f (B|x, t) and f (F|x, t) do not reach a stationary shape. Both the
panels A and B have been obtained averaging N = 106 different tra-
jectories with diffusion constant D = 0.1.

for numerical simulations of the process). Furthermore, the conditioned for-
ward time PDF can be found to decay as

f (F|x, t) ∼





tγR− 1
2

F
1
2+γR

, for 0 < γR < 1
2

τ
γR− 1

2
R

F
1
2+γR

, for 1
2 < γR < 1

(2.51)

with F. Similar to the backward time, there is a transition at γR = 1/2 such
that below this value, the conditioned forward time PDF does not reach a sta-
tionary shape, while it does when γR > 1/2. This has also been corroborated
via numerical simulations. In Figure 2.5 the case γR = 3/4 is shown to reach
a stationary distribution, while in Figure 2.7 the case γR = 1/4 is shown to
be time-dependent.

2.4.4 Summary

From the concepts of backward and forward time of renewal theory, one can
define the corresponding times under the condition that the current position
of the walker or, in general, the current state of the stochastic process are
known. Provided that the dynamics started a long time ago, it is sometimes
possible to obtain the PDF of the backward and the forward times condi-
tioned to the position of the walker at the present time. This may be of inter-
est for those cases where the time since the process started is unknown, but
the current state of the system can be easily measured.
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In this work we again find a transition in the properties of the system for
γR = 1/2. Firstly, the propagator of the walker with Pareto reset time PDF
with γR < 1/2 differs significantly from the propagator when γR > 1/2 (see
Figure 2.6). Secondly, this distinct behaviour provokes that the properties of
the conditioned forward and backward times also change at γR = 1/2.
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Chapter 3

Conclusions

In this thesis, the resetting of random walks has been studied from a renewal
perspective, developing three different models with increasing complexity
and proposing novel tools to gain knowledge about the walkers. The conclu-
sions of each work composing the thesis may be found in the corresponding
articles. Here, in order to conclude the thesis as a unity, we review the objec-
tives proposed in Section 1.4, giving an overview of our contribution to the
field of stochastic resetting.

Modelling stochastic resetting by means of renewal equations present
several advantages respecting to the use of the diffusion equation with re-
sets (see O1 in Section 1.4). In the model from the fourth article (see Ap-
pendix D), the temporal dynamics of resetting are treated independently of
the spatial dynamics of the walker. This dissociation is important because the
temporal dynamics of resetting can be described as a renewal process, which
have been thoroughly studied in the literature (see, for instance, Chapter 7
in [68]). During the last years, in fact, many authors have been employing
renewal theory to model stochastic processes under restarts [52, 65, 66].

More importantly, from renewal equations one can build a general frame-
work for stochastic processes under resets (see O1’ in Section 1.4). This per-
mits us considering many types of walkers and reset time distributions in a
simple and straightforward manner (see Section 2.1). Furthermore, novel el-
ements can be intuitively introduced to the model, making it more complex
and malleable to describe practical scenarios (see Section 2.2 and Section 2.3).
This point leads us to the last objective.

Using renewal equations to model stochastic motion under resetting has
allowed us to widen the knowledge about this class of processes (see O2 in
Section 1.4). Do resetting always generate a NESS? If not, under which cir-
cumstances does stationarity arise? Does it always render optimal MFPTs?
These questions are considered in all the models described in the previous
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section. In the first model, for instance, the existence of a NESS and an op-
timal MFPT is studied for a general class of dynamics. The very same prop-
erties have been also analysed for more intricate models, as the ones in the
second and the third articles. Notably, for long-tailed reset time PDFs such
that φR(t) ∼ 1/t1+γR , the decay exponent γR = 1/2 becomes particularly
relevant on the description of the system. There are several properties of
the system that change drastically when moving from below (γR < 1/2) to
above (γR > 1/2) this change-point.

Finally, the framework herein employed allows us to define the condi-
tioned forward and backward times in the article from Section 2.4. Studying
these magnitudes contribute to the description of stochastic processes with
resetting, taking advantage of its connection with renewal theory.

3.1 Open questions and further work

To finish, let us highlight some lines of research that may be of interest for
the community, following from the results presented on this thesis. Reset-
ting has been lately considered on many different stochastic processes other
than movement [52, 69, 70]. The list of systems that may be described by
stochastic resetting is endless: computer algorithms, investing strategies, hu-
man behaviour, chemical reactions, etc.

Besides the novel elements introduced in this thesis, another interesting
mechanism to further consideration is resetting triggered by the dynamics
of the process itself. This is, instead of being random, resetting could be
self-triggered when a given condition is fulfilled (e.g. finding food in the
case of animal foraging or getting stuck in a local minimum on a stochas-
tic algorithm). In this same direction, resetting models should be employed
to describe natural processes in more detail. At this point, the vast major-
ity of the works devoted to the topic (including ours) focus on studying the
properties of well-known, academic stochastic processes under resets. Nev-
ertheless, apart from the work in [71], the experimental applications of these
models are yet to be considered.

Furthermore, there are some open questions yet to be investigated. What
is the reason behind the drastic change of behaviour at γR = 1/2 for diffusion
with long-tailed reset time PDFs? Do the results from this thesis hold for
other type of reset time PDFs? Are there other reset-based mechanisms able
to tune the transport regime of diffusion? These and many other questions
may widen our knowledge of stochastic processes under resets.
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Stochastic resets have lately emerged as a mechanism able to generate finite equilibrium mean-square
displacement (MSD) when they are applied to diffusive motion. Furthermore, walkers with an infinite mean
first-arrival time (MFAT) to a given position x may reach it in a finite time when they reset their position. In this
work we study these emerging phenomena from a unified perspective. On one hand, we study the existence of
a finite equilibrium MSD when resets are applied to random motion with 〈x2(t )〉m ∼ t p for 0 < p � 2. For
exponentially distributed reset times, a compact formula is derived for the equilibrium MSD of the overall
process in terms of the mean reset time and the motion MSD. On the other hand, we also test the robustness
of the finiteness of the MFAT for different motion dynamics which are subject to stochastic resets. Finally,
we study a biased Brownian oscillator with resets with the general formulas derived in this work, finding its
equilibrium first moment and MSD and its MFAT to the minimum of the harmonic potential.
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I. INTRODUCTION

The strategies employed by animals when they seek food
are complex and strongly dependent on the species. A better
understanding of their fundamental aspects would be crucial
to control some critical situations as the appearance of invad-
ing species in a certain region or to prevent weak species to
extinct, for instance.

In recent decades, a lot of effort has been put into the
description of the territorial motion of animals [1]. Among
others, random-walk models as correlated random walks and
Lévy walks [2,3] or Lévy flights [4] are commonly used.
Nevertheless, in the vast majority of these approaches, only
the foraging stage of the territorial dynamics is described
(i.e., the motion patterns while they are collecting), leaving
aside the fact that some species return to their nest after
reaching their target.

Having in mind that limitation, Evans and Majumdar [5]
studied the properties of a macroscopic model consisting on a
diffusive process subject to resets with constant rate (meso-
scopically equivalent to consider exponentially distributed
reset times), which introduces this back-to-the-nest stage. For
this process, the mean first-passage time (MFPT) is finite and
the mean-square displacement (MSD) reaches an equilibrium
value. The latter result allows us to define the home range of
a given species being a quantitative measure of the region that
animals occupy around its nest.

From then on, multiple works have been published gen-
eralizing this seminal paper [6–18], by introducing for in-
stance absorbing states [7] or generalizing it to d-dimensional
diffusion [10]. Some works have also been devoted to the
study of Lévy flights when they are subject to constant
rate resets [19,20] and others have focused on the analy-
sis of first passage processes subject to general resets [21–
23]. Also, stochastic resets have been studied as a new
element within the continuous-time random-walk (CTRW)
formulation [24–28].

Despite the amount of works devoted to this topic, the
existence of an equilibrium MSD and the finiteness of the
mean first-arrival time (MFAT) found in Ref. [5] for diffusive
processes with exponential resets have not been explicitly
tested in general. In this work we address this issue by ana-
lyzing these properties for a general motion propagator with
resets from a mesoscopic perspective. From all the existing
papers, in Ref. [29] Eule and Metzger perform a similar
study to ours but using Langevin dynamics to describe the
movement. Our work differs from that one in the fact that we
start from a general motion propagator P(x, t ), which allows
us to derive an elegant and treatable expression for the first
moment and the MSD of the overall process in terms of the
motion first moment and MSD respectively [see Eq. (4)].
Moreover, the formalism herein employed eases the inclusion
of processes which are not trivial to model in the Langevin
picture as Lévy flights or Lévy walks.

This paper is organized as follows. In Sec. II A we find
an expression for the propagator of the overall process in
the Laplace-position space and a general formula for the
MSD of the overall process in terms of the motion MSD; the
first-arrival properties of the system are studied in Sec. II B.
In Sec. III we apply the general results to three types of
movement (subdiffusive, diffusive, and Lévy), and in Sec. IV
we apply the formalism to study the transport properties and
the first arrival of a biased Brownian oscillator. Finally, we
conclude the work in Sec. V.

II. GENERAL FORMULATION

In this section we use a renewal formalism to study both
the transport properties of a random motion and its first-
arrival statistics. Concretely, we derive formulas for the global
properties of the system in terms of the type of random motion
and the reset distribution. We focus in three measures which
are of special interest in the study of movement processes: the
first moment, the MSD and the MFAT.
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A. Transport properties

Let us consider a general motion propagator P(x, t ) start-
ing at x = 0 and t = 0 which is randomly interrupted and
starts anew at times given by a reset-time distribution ϕR(t ).
When one of these resets happens, the motion instantaneously
recommences from x = 0 according to P(x, t ) and so on and
so forth. Then, the propagator of the overall process, which
we call ρ(x, t ), is an iteration of multiple repetitions of P(x, t )
and the running time of each is determined by ϕR(t ).

We start by building a mesoscopic balance equation for
ρ(x, t ). For simplicity, we assume that the overall process
starts at the origin. Then, the following integral equation is
fulfilled:

ρ(x, t ) = ϕ∗
R(t )P(x, t ) +

∫ t

0
ϕR(t ′)ρ(x, t − t ′)dt ′, (1)

where ϕ∗
R(t ) = ∫ ∞

t ϕR(t ′)dt ′ is the probability of the first
reset happening after t . The first term in the right-hand side
accounts for the cases where no reset has occurred until t
and, therefore, the overall process is described by the motion
propagator. The second term accounts for the cases where at
least one reset has occurred before t and the first one has been
at time t ′ < t , in which case the system is described by the
overall propagator with a delay t ′. Notably, we have intro-
duced ρ(x, t − t ′) as the propagator of the process starting at
x = 0 at time t ′ [formally, it should be ρ(x, t ; 0, t ′)]. This can
be done independently of the form of P(x, t ) as long as the first
realization of the process does not affect the following ones.
When this is so, the scenario at t ′ is equivalent to a system
starting at t0 = 0 and having a time t − t ′ to reach x.

Taking Eq. (1) to the Laplace space for the time variable,
we can isolate the propagator of the overall process to be

ρ̂(x, s) = L[ϕ∗
R(t )P(x, t )]

1 − ϕ̂R(s)
, (2)

where L[ f (t )] = f̂ (s) = ∫ ∞
0 e−st f (t )dt denotes the Laplace

transform. We can now obtain a general equation for the first
moment of the overall process multiplying by x at both sides
of Eq. (2) and integrating over x. Doing so, one gets

〈x̂(s)〉 = L[ϕ∗
R(t )〈x(t )〉m]

1 − ϕ̂R(s)
, (3)

where 〈x(t )〉m is the time-dependent first moment of the mo-
tion process. Nevertheless, usually this process is symmetric
and its first moment is zero. In these cases, the second moment
or MSD becomes the most relevant magnitude to describe the
transport of the system. From Eq. (2), instead of multiplying
by x, if we do so by x2 and integrate over x we get

〈x̂2(s)〉 = L[ϕ∗
R(t )〈x2(t )〉m]

1 − ϕ̂R(s)
, (4)

where 〈x2(t )〉m is the motion MSD. The importance of this
equation lies in the fact that, if we know the motion MSD and
the reset-time probability density function (PDF) separately,
we can introduce them into Eq. (4) and directly obtain the
transport information about the overall process.

The renewal formulation used herein differs from the
method most commonly used in the bibliography to study
random-walk processes with resets, consisting on introducing

a reset term ad hoc to the master equation of the process (see
Ref. [5], for instance). Contrarily, it resembles the techniques
employed in Ref. [20] to study Lévy flights with exponentially
distributed resets or in Ref. [23] to study from a general per-
spective the first passage problem with resets. In these works,
processes described by a known propagator or completion
time distribution which are subject to resets are studied using
a renewal approach.

1. Exponentially distributed reset times

Let us study the particular case where reset times are ex-
ponentially distributed [ϕR(t ) = 1

τm
e−t/τm ], keeping the move-

ment as general as before. In this scenario, the real space-time
propagator of the overall process in Eq. (2) can be found by
applying the inverse Laplace transform to be

ρe(x, t ) = e− t
τm P(x, t ) + 1

τm

∫ t

0
e− t ′

τm P(x, t ′)dt ′. (5)

Under the condition that the Laplace transform of P(x, t )
exists at s = 1

τm
, an equilibrium is reached and the distribution

there can be generally written as

ρe(x) = P̂
(
x, 1

τm

)
τm

. (6)

The required condition for the equilibrium distribution to exist
includes a wide range of processes from the most studied in
the bibliography: Brownian motion, Lévy flights, etc. Simi-
larly, an expression for the equilibrium first moment of the
overall process in terms of the motion first moment can be
derived from Eq. (3) reading

〈x〉e(∞) =
〈
x̂
(

1
τm

)〉
m

τm
, (7)

and for the MSD we have

〈x2〉e(∞) =
〈
x̂2

(
1
τm

)〉
m

τm
. (8)

Equation (8) introduces an extra condition on the type of
motion for it to define a finite area around the origin: the
Laplace transform of its MSD must be finite at s = 1

τm
. For

instance, despite Lévy flights reaching an equilibrium state
when they are subject to constant rate resets, since its MSD
diverges so does the MSD of the overall process.

Multiple processes can be found in the bibliography with
a MSD which is Laplace transformable and, therefore, reach
an equilibrium MSD when exponential resets are applied to
them. Some of these processes are Lévy walks, ballistic, or
even turbulent motion [30]. Notably, Eq. (6) is also applicable
to movement in more than one dimension when it is rotational
invariant. In this case, the movement can be described by
a one-dimensional propagator P(r, t ) where r is the radial
distance from the origin. Therefore, any process without a pre-
ferred direction as correlated random walks and Lévy walks
in the plane [2] or self-avoiding random walks for arbitrary
spatial dimension [31] are significant processes which form a
finite-size area when they are subject to exponential resets.
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B. First arrival

The second remarkable result from Ref. [5] is the existence
of a finite MFPT when diffusive motion is subject to constant
rate resets. Since then, several works have been published
focused on the first completion time with resets [21–23] but
none of them have put the focus on the generality of these re-
sults with respect to the properties of the random motion. Dur-
ing the writing of this paper we have realized that a deep anal-
ysis of the first passage for search processes has been recently
done in Ref. [32]. Nevertheless, besides our general quali-
tative analysis being similar to the one performed there, we
study in detail cases of particular interest in a movement ecol-
ogy context as subdiffusive motion, Lévy flights, or random
walks in potential landscapes. Moreover, we perform numeri-
cal simulations of the process to check our analytical results.

In this work we use the MFAT as a measure of the time
taken by the process to arrive to a given position, instead of
crossing it as is considered in the MFPT. This is motivated
by the fact that for Lévy flights the MFPT has an ambiguous
interpretation due to the possibility of extremely long jumps
in infinitely small time steps. Contrarily, the MFAT can be
clearly interpreted and its properties have been deeply studied
in Ref. [33].

Before focusing on practical cases, let us start with the
general renewal formulation. We build a renewal equation for
the survival probability of the overall process σx(t ) in terms of
the survival probability of the motion Qx(t ) and the reset-time
PDF ϕR(t ), similar to the equation for the propagator in the
previous section:

σx(t ) = ϕ∗
R(t )Qx(t ) +

∫ t

0
ϕR(t ′)Qx(t ′)σx(t − t ′)dt ′. (9)

Here, the first term on the right-hand side corresponds to the
probability of not having reached x, nor a reset has occurred in
the period t ∈ (0, t]. The second term is the probability of not
having reached x when at least one reset has happened at time
t . In the latter, we account for the probability Qx(t ′) of not
having reached x in the first trip, which ends at a random time
t ′, and the probability of not reaching x at any other time after
the first reset σx(t − t ′); and these two conditions are averaged
over all possible first reset times t ′. Applying the Laplace
transform and isolating the overall survival probability we
obtain

σ̂x(s) = L[ϕ∗
R(t )Qx(t )]

1 − L[ϕR(t )Qx(t )]
. (10)

This equation, which has been recently derived by similar
means in Ref. [32], is the cornerstone from which the exis-
tence of the MFAT is studied. If in the asymptotic limit the
survival probability behaves as

σx(t ) ∼ t−β, (11)

then for β > 1 the MFAT is finite, while for β � 1 it diverges.
Since we have the expression of the survival probability in the
Laplace space, it is convenient to rewrite these conditions for
σ̂x(s) instead. Let us consider the following situations:

(i) When β > 1, the Laplace transform of the survival
probability tends to a constant value for small s. The MFAT

is finite and can be found as

TF =
∫ ∞

0
tqx(t )dt = lim

s→0
σ̂x(s), (12)

where qx(t ) = − ∂σx (t )
∂t is the first-arrival time distribution of

the overall process. Concretely, the MFAT can be found in
terms of the distributions defined above as

TF =
∫ ∞

0 ϕ∗
R(t )Qx(t )dt

1 − ∫ ∞
0 ϕR(t )Qx(t )dt

. (13)

(ii) When β = 1, the Laplace transform of the survival
probability tends to infinity for small s. Therefore, in this case,
the MFAT is infinite since

lim
s→0

σ̂x(s) = ∞,

so

TF = ∞.

(iii) When β < 1, the Laplace transform of the survival
probability diverges as σ̂x(s) ∼ sβ−1 for small s. The MFAT
is infinite and the survival probability decays as σx(t ) ∼ t−β

with time.
Notably, when the reset times are exponentially distributed

[ϕR(t ) = 1
τm

e− t
τm ], the MFAT of the overall process is always

finite for motion survival probabilities which are Laplace-
transformable. Concretely, in this particular case Eq. (13)
reduces to

TF = τmQ̂x
(

1
τm

)
τm − Q̂x

(
1
τm

) . (14)

III. FREE MOTION

To get a deeper intuition about the results in the previous
section, let us take generic expressions for both the reset-time
distribution and the motion propagator. In the first place we
study well-known processes which do not have environmental
constrains (potential landscapes, barriers, etc.).

A. Transport properties

Let us start by studying the transport properties of the
overall process for a symmetric motion, i.e.,

〈x(t )〉m = 0, (15)

with a MSD scaling as

〈x2(t )〉m ∼ t p, (16)

with 0 < p � 2. This choice includes subdiffusive motion for
p < 1, diffusive motion for p = 1 and superdiffusive motion
with for p > 1. Also, we take the reset-time distributions to be

ϕR(t ) = tγR−1

τ
γR
m

EγR,γR

[
−

(
t

τm

)γR
]
, (17)

with 0 < γR � 1, where

Eα,β (z) =
∞∑

n=0

(−z)n


(αn + β )
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FIG. 1. The asymptotic behavior of the MSD of the overall
process for subdiffusive motion with p = 0.5 is shown in a log-log
plot. Three different exponents γR < 1 for the reset-time distribution
are considered and all of them are seen to scale as the solid black
guide line of slope 0.5. Therefore, the reset exponent γR only affects
multiplicatively to the transport regime.

is the generalized Mittag-Leffler function with constant pa-
rameters α and β. This allows us to recover the exponential
distribution for γR = 1 and we can also study power law
behaviors of the type ϕR(t ) ∼ t−1−γR for γR < 1. For this dis-
tribution, the survival probability ϕ∗

R(t ) = ∫ ∞
t ϕ(t ′)dt ′ reads

ϕ∗
R(t ) = EγR,1

[
−

(
t

τm

)γR
]
. (18)

For a wide study about the properties of the Mittag-Leffler
function we refer the reader to [34]. In this case, since the
first moment is zero, the MSD becomes the most significant
moment of the process. From Eq. (8) one can see that MSD of
the overall process has two possible behaviors for large t (see
Appendix 1 for details):

〈x2(t )〉 ∼
{

t p, for γR < 1
t0, for γR = 1

. (19)

Therefore, for power-law reset-time PDFs with any exponent
γR < 1, the MSD of the overall process scales as the motion
MSD, so that a long-tailed reset PDF does not modify the
transport regime. To illustrate this, in Fig. 1 we show sim-
ulations of the asymptotic behavior of the overall MSD for
subdiffusive motion with long-tailed resets. There we see that,
as can be seen from Eq. (19), long-tailed resets only affect the
transport multiplicatively but not modify the regime.

When the motion is a Lévy flight, the MSD diverges for
all t , i.e.,

〈x2(t )〉m = ∞, t > 0.

Hence, from Eq. (4), the MSD of the overall process also
diverges for any reset-time PDF except for the pointless case
ϕR(t ) = δ(t ).

Regarding exponential reset-time distributions case (γR =
1), an equilibrium state is reached and we can in principle
compute an equilibrium distribution. We start by considering
a subdiffusive propagator (see Eq. (A2) in Ref. [35]) which,

FIG. 2. Equilibrium distribution of the overall process with sub-
diffusive (SD) with γ = 0.5, diffusive (D) and Lévy flight (LF) with
α = 1.5 motion propagator, all with D = 0.1, and exponential reset
times with τm = 10. Each stochastic simulation is compared to the
corresponding analytical expressions Eqs. (21) and (23) (solid lines).

in the Fourier-Laplace space, reads

ˆ̃P(k, s) = 1

s + Ds1−γ k2
, (20)

with D the (sub-)diffusion constant. This propagator describes
subdiffusive movement for γ < 1 and diffusive movement for
γ = 1. Then, the equilibrium distribution given by Eq. (6)
becomes a symmetric exponential distribution

ρe(x) = 1√
4Dτ

γ
m

e
− |x|√

Dτ
γ
m , (21)

where for γ = 1 we recover the equilibrium distribution found
in Ref. [5]. If instead of a subdiffusive propagator we consider
a superdiffusive motion and, in particular, the propagator for
a Lévy flight in the Fourier-Laplace space,

ˆ̃P(k, s) = 1

s + D|k|α , (22)

with α < 2 and D a constant, the equilibrium distribution of
the overall process becomes

ρe(x) = 2
∫ ∞

0

cos(kx)

1 + τmDkα
dk. (23)

In Fig. 2 we compare both analytical results in Eqs. (21) and
(23) with numerical Monte Carlo simulations of the process.
The agreement is seen to be excellent.

B. First arrival

Let us now study the MFAT for a general motion survival
probability decaying as

Qx(t ) ∼ t−q, q > 0 (24)

for long t and the same reset-time distribution defined in
Eq. (17). Under these assumptions, the asymptotic behavior of
the overall survival probability is (see Appendix 2 for details)

σx(t ) ∼ t−γR−q, if γR + q � 1, (25)
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(a)

(b)

FIG. 3. The tail exponent β of the survival probability σx (t ) ∼ tβ

of the overall process at x = 0.5 is shown for subdiffusive motion
with exponent γ in (a) and Lévy flight motion with exponent α in (b),
both subject to resets at times given by a Mittag-Leffler distribution
with tail parameter γR and τm = 10. The values of β have been com-
puted for γR ∈ {0.05, 0.1...0.9, 0.95}, and γ ∈ {0.5, 0.55...0.9, 0.95}
in (a) and α ∈ {1.05, 1.1...1.9, 1.95} in (b). Gaussian interpolation
has been applied to smooth the simulated results. In each plot,
the solid red curve [γR + γ

2 = 1 in (a) and γR − 1
α

= 0 in (b)]
corresponds to the limit between finite (flat pink region) and infinite
(gradient) MFAT. The dashed curves are the analytical level curves
for β = 0.9, 0.8... from top to bottom. The black regions observed
just below the limiting curves are due to the discretization of the
parameter space.

as has been recently found in Ref. [32] by similar means. This
implies that, in this case, TF = ∞. However, when γR + q > 1
the MFAT is finite and can be expressed as

TF (x) =
∫ ∞

0 EγR,1
[ − (

t
τm

)γR
]
Qx(t )dt

1 − ∫ ∞
0

tγR−1

τ
γR
m

EγR,γR

[ − (
t
τm

)γR
]
Qx(t )dt

. (26)

The two regions where the MFAT is finite and infinite for
a subdiffusive [Fig. 3(a)] and a Lévy flight motion process
[Fig. 3(b)] are shown in Fig. 3. Let us study these two cases
separately. As shown in Ref. [36], for a subdiffusive motion,
the survival probability in the long-time limit decays as

Qx(t ) ∼ t− γ

2 , (27)

with 0 < γ < 1. For γ = 1 we recover the survival probabil-
ity of a diffusion process. Here we can identify q = γ

2 and
from Eq. (25) the survival probability of the overall process
decays as

σx(t ) ∼ t−γR− γ

2 , (28)

when γR + γ

2 � 1 and the MFAT is infinite in this region of
exponents. Contrarily, the MFAT is finite when γR + γ

2 > 1.
This result has been compared with stochastic simulations of
the process [Fig. 3(a)], where the limiting curve γR = 1 − γ

2
and the tail exponent for the overall survival probability are in
clear agreement with the analytical results.

We have also studied the survival probability when the
underlying motion is governed by Lévy flights propagator. In
this case, the survival probability decays as

Qx(t ) ∼ t
1
α
−1, (29)

with 1 < α < 2, as shown in Ref. [33]. Here we can also
recover the diffusive behavior for α = 2. Identifying q = 1 −
1
α

, the overall survival probability reads

σx(t ) ∼ t
1
α
−γR−1 (30)

in the asymptotic limit and for γR − 1
α

� 0. In this case the
MFAT is infinite while for γR − 1

α
> 0 it is finite. In Fig. 3(b)

we present the results to see that these two regions are also
found in a stochastic simulation of the overall process.

Unlike the existence of an equilibrium MSD, the finiteness
of the MFAT is not drastically broken when the reset-time
distribution changes from short to long-tailed. A remarkable
property that we can see in Fig. 3 is that both the reset-time
distribution and the motion first-arrival time distribution can
have an infinite mean value and still the mean value of the
overall process is finite. This property has been explicitly
tested by computing the simulated MFAT for parameters in
the white region in Fig. 3 for both the subdiffusive and the
Lévy flight case, and also for the diffusive limiting case.
The simulated MFAT is compared to the one obtained from
numerical integration of Eq. (13) and the results are shown to
be in agreement (Fig. 4).

IV. BROWNIAN MOTION IN A BIASED
HARMONIC POTENTIAL

In this section we study the transport and the first-arrival
statistics of a Brownian particle starting at x = 0 with a white,
Gaussian noise with diffusion constant D. It moves inside a
biased harmonic potential V (x) = 1

2 k(x − x0)2 and it has a
drift γ . Unlike the cases studied in the previous section, here
the movement has an intrinsic bias towards the point x0. This,
in an ecological context, can be seen as the knowledge the
animal have about the optimal patches to find food.

When this system is constrained by constant rate resets
(i.e., exponentially distributed reset times), an equilibrium
distribution is attained as shown in Ref. [12] by introducing
resets to the Fokker-Plank equation of the system. Instead,
with the general formalism derived in Sec. II, we can first
study the system without resets and introduce the results
to the formulas derived above. Then, we start from the
Langevin equation for the Brownian particle in an harmonic
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FIG. 4. The simulated MFAT for three representative cases of
subdiffusion (SD) with γ = 0.5, diffusion (D) with γ = 1 and a
Lévy Flight with α = 1.5, all with D = 0.1, are compared to the
analytical results obtained from Eq. (13) (solid curves) for different
reset distribution tail exponents γR and τm = 10. Concretely, the
MFAT is computed at a distance x = 0.5 from the origin.

potential [37]:

dx

dt
= −D

γ

∂V (x)

∂x
+

√
2Dη(t ), (31)

where the over-dumped limit has been implicitly taken and
η(t ) is a Gaussian noise so that 〈η(t )〉 = 0 and 〈η(t )η(t ′)〉 =
δ(t − t ′) (i.e., a white noise). For a biased harmonic potential
it becomes

dx

dt
= −DF (x − x0) +

√
2Dη(t ), (32)

where F = k/γ has been defined. From this equation, the
first moment and the MSD of the particle can be derived (see
Ref. [38] for specific methods and tools) to be

〈x(t )〉m = x0(1 − e−DFt ) (33)

and

〈x2(t )〉m =
(

1

F
+ x2

0

)
(1 − e−2DFt )

− 2x2
0e−DFt (1 − e−DFt ), (34)

respectively. Introducing these expressions to the main equa-
tions for the moments of the process [Eqs. (3) and (4)] we can
obtain the Laplace space dynamics of the mean

〈x̂(s)〉 = x0

[
1

s
− ϕ̂∗

R(s + DF )

1 − ϕ̂R(s)

]
(35)

and the MSD

〈x̂2(s)〉 =
(

1

F
+ x2

0

)[
1

s
− ϕ̂∗

R(s + 2DF )

1 − ϕ̂R(s)

]

− 2x2
0
ϕ̂∗

R(s + DF ) − ϕ̂∗
R(s + 2DF )

1 − ϕ̂R(s)
, (36)

in terms of the reset-time PDF. For small s, the terms with
1 − ϕ̂R(s) in the denominator can be neglected with respect
to the term 1

s when the distribution ϕR(t ) is long tailed. This
is because in the s → 0 limit, the numerator of these terms

remains finite while the denominator 1 − ϕ̂R(s) ∼ sγR , with
γR < 1. Therefore, for long-tailed reset-time distributions,
the first is the dominant term. However, for exponentially
distributed resets we have that

ϕ̂∗
R(s + 2DF )

1 − ϕ̂R(s)
= 1

s

1

1 + 2DFτm
+ O(s0)

and, equivalently,

ϕ̂∗
R(s + DF )

1 − ϕ̂R(s)
= 1

s

1

1 + DFτm
+ O(s0).

Therefore, the equilibrium first moment and MSD of the
overall process can be seen to be

〈x(∞)〉e = x0

(
1 − κγR

1

1 + DFτm

)
(37)

and

〈x2(∞)〉e =
(

1

F
+ x2

0

)(
1 − κγR

1

1 + 2DFτm

)

− κγR 2x2
0

DFτm

(1 + DFτm)(1 + 2DFτm)
, (38)

respectively, with κγR = 1 for γR = 1 and κγR = 0 for γR <

1. Then, when the reset distribution is long-tailed, both the
equilibrium mean and MSD are equal to the ones for the pro-
cess without resets. However, when resets are exponentially
distributed, the values of the equilibrium mean and MSD are
diminished by the factors preceded by κγR in the equations
right above. This difference has been tested for the MSD by
means of a stochastic simulation of the Langevin equation
(Fig. 5). As happens for the transport properties of the free
processes studied in Sec. III, for this type of movement we
also find that long-tailed reset distributions do not affect the
significant features of the MSD (and also the mean in this
case), while reset times which are distributed exponentially do
affect actively the long-time behavior of the overall process.

Let us now study its MFAT for this system. The first-arrival
distribution qx0 (t ) at the minimum of the potential for this
motion process has been found to be [37]

qx0 (t ) = 2De−DFt |x0|√
2πσ 3

t

exp

{
− (x0e−DFt )2

2σt

}
, (39)

from which the survival probability can be found as

Qx0 (t ) =
∫ ∞

t
qx0 (t ′)dt ′, (40)

with σt = (1 − e−DFt )/F . In the asymptotic limit, the first-
arrival distribution decays as qx0 (t ) ∼ e−DFt and so does the
survival probability Qx0 (t ) ∼ e−DFt since the decay is expo-
nential. A direct consequence of this is that the global survival
probability also has a short tail. This can be seen by looking at
Eq. (10): When the asymptotic limit of Qx0 (t ) is exponential,
the expression of the global survival probability in the Laplace
space tends to a finite value for small s, which is in fact the
first-arrival time of the global process (see Appendix 3 for
further details).

In Fig. 5 we compare the analytical result predicted by
Eq. (13), taking the survival probability in Eq. (39) instead
of the ones studied in Sec. III, with Monte Carlo simulations
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(a)

(b)

FIG. 5. In (a) we show the MSD as a function of time for a
simulation of a Brownian motion (D = 0.25) with an harmonic
force F = 1 with equilibrium point at x0 = 10 subject to resets with
τm = 10 and different γR parameters. For all three γR < 1 the MSD
tends to the same value, which is larger than the equilibrium MSD for
γR = 1. In (b) the simulated MFAT for F = 1, D = 1, and τm = 10 is
compared to the analytical result for Mittag-Leffler reset distributions
with different γR (solid curves).

of the Langevin equation in Eq. (32). They are seen to be in
perfect agreement. Here, unlike for the free motion processes,
resets always penalize the arrival to the target.

V. CONCLUSIONS

In this work we have derived an expression for the first
moment, the MSD and the MFAT of stochastic motion with
resets from a unified, renewal formulation. Concretely, we
find them in terms of a general resetting mechanism and the
type of stochastic motion. This opens the analysis of resets
acting on a vast range of stochastic motion processes without
the need of building a particular model for each case.

The existence of an equilibrium MSD and a finite MFAT
has been tested for a wide class of stochastic processes subject
to random resets. The first turns to be extremely sensitive with
respect to the reset-time distribution. On one hand, when the
reset-time distribution is long-tailed, the transport regime of
the overall process is qualitatively equivalent to the regime of
the motion [see Eq. (19) for free motion and Eqs. (37) and (38)
for the biased harmonic Brownian oscillator]. On the other

hand, for exponential distributions of reset times, qualitative
changes are observed regarding the transport of the overall
process. Concretely, we have found that for a free motion
process with MSD scaling as 〈x2(t )〉m ∼ t p, an equilibrium
state with finite MSD is reached. For the Brownian oscillator,
both the equilibrium mean and MSD are modified by the re-
setting mechanism. Therefore, while exponentially distributed
resets actively affect the long-time behavior of both processes,
when long-tailed reset-time distributions with infinite mean
are chosen, the asymptotics of the motion process are not
modified.

Regarding the first-arrival time, we have seen that the
difference between long-tailed and exponentially distributed
reset times is not as marked as for the transport properties. In
fact, the transition between them is seen to be soft [compare
Figs. 5(a) and 5(b), for instance]. Interestingly, for the free
motion process case, we find that a motion process with an
infinite MFAT, when it is restarted at times given by a long-
tailed PDF (i.e., with infinite mean), may have a finite MFAT
(see Fig. 4)
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APPENDIX: ASYMPTOTIC ANALYSIS

In this Appendix we derive the results in Eqs. (19) and
(25) about the asymptotic behavior of the MSD Eq. (A1) and
the survival probability Eq. (A2), respectively, for a motion
process with resets. Concretely, we compute them for motion
MSD as in Eq. (16) and the survival probability as in Eq. (24).
Also, in Eq. (A3) we compute the MFAT for an exponentially
decaying motion survival probability.

1. Mean-square displacement of a free process with resets

We start by rewriting the general expression for the MSD
in Eq. (4) as

〈x̂(s)〉 = T1(s)

T2(s)
, (A1)

with T1(s) = L[ϕ∗
R(t )〈x2(t )〉P] and T2(s) = 1 − ϕ̂R(s). To

study the long t limit of the MSD, in the Laplace space we
must study the small s limit. Let us start by T2(s). In the
Laplace space, the Mittag-Leffler distribution can be seen [34]
to be

ϕ̂R(s) = 1

1 + (τms)γR
, (A2)

from which

T2(s) = 1 − 1

1 + (τms)γR
= (τms)γR

1 + (τms)γR
∼ sγR (A3)

in the small s limit. Let us proceed now with T1(s). In the long
t limit, the Mittag-Leffler survival probability in Eq. (18) can
be seen [34] to behave as

ϕ∗
R(t ) ∼

{
t−γR , for γR < 1
e−t/τm , for γR = 1

. (A4)
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Then, with Eq. (16) it follows that

T1(s) ∼
{
L[t p−γR ] ∼ sγR−1−p, for γR < 1
L[t pe−t/τm ] ∼ s0, for γR = 1

. (A5)

Putting the elements together,

〈x̂(s)〉 ∼
{

s−1−p, for γR < 1
s−1, for γR = 1

. (A6)

Finally, applying the inverse Laplace transform one finds

〈x(t )〉 ∼
{

t p, for γR < 1
t0, for γR = 1

. (A7)

2. Survival probability of a free process with resets

We proceed similarly to the MSD case. Here we start from
Eq. (25) and we rewrite it as

σ̂x(s) = T ′
1 (s)

1 − T ′
2 (s)

, (A8)

with T ′
1 (s) = L[ϕ∗

R(t )Qx(t )] and T ′
2 (s) = L[ϕR(t )Qx(t )]. Let

us start for the latter. As in the previous case, we study the
small s limit, where we have that

T ′
2 (0) =

∫ ∞

0
ϕR(t )Qx(t )dt <

∫ ∞

0
ϕR(t )dt = 1. (A9)

In the second step we have used that the survival probability
Qx(t ) < 1, ∀t > 0, and in the last step the normalization of
ϕR(t ) is used. Then, the denominator of Eq. (A8) is strictly
positive when s → 0, which implies that the decaying of σ̂x(s)
when s → 0 is exclusively determined by the decaying of the
numerator T ′

1 (s), i.e.,

σ̂x(s) ∼ T ′
1 (s)

1 − T ′
2 (0)

∼ T ′
1 (s) (A10)

for small s. Applying the inverse Laplace transform to this
expression one gets the equivalent relation

σx(t ) ∼ L−1[T ′
1 (s)] = ϕ∗

R(t )Qx(t ) (A11)

for long t . If the survival probability of the motion process
decays as Qx(t ) ∼ t−q, q > 0, as assumed in the main text,
and ϕ∗

R(t ) is again the Mittag-Leffler survival probability,

which decays as in Eq. (A4), we have that

σx(t ) ∼ t−γR−q (A12)

asymptotically. On one hand, if γR + q � 1, then the mean
first-arrival time is infinite. On the other hand, if γR + q > 1,
which includes exponentially distributed reset times for γR =
1, then the mean first-arrival time is finite and can be found as

TF (x) = σ̂x(0) =
∫ ∞

0 ϕ∗
R(t )Qx(t )dt

1 − ∫ ∞
0 ϕR(t )Qx(t )dt

. (A13)

Finally, taking a Mittag-Leffler reset-time distribution, one
recovers the result in Eq. (13) of the main text.

3. MFAT for exponential motion survival probability

Here we show that when the motion survival probability
is of the form Qx(t ) = e−r(x)t , the overall process MFAT
is always finite. In this particular case and from Eq. (10),
the overall survival probability in the Laplace space can be
written as

σ̂x(s) = L[ϕ∗
R(t )e−r(x)t ]

1 − L[ϕR(t )e−r(x)t ]
= ϕ̂∗

R[s + r(x)]

1 − ϕ̂R[s + r(x)]
. (A14)

Taking the limit s → 0 one can get the MFAT:

TF = lim
s→0

σ̂x(s) = ϕ̂∗
R[r(x)]

1 − ϕ̂R[r(x)]
. (A15)

The Laplace transform of the survival probability can be
expressed as

ϕ̂∗
R(s) = L

[∫ ∞

t
ϕR(t ′)dt ′

]
= 1 − ϕ̂R(s)

s
,

thus,

TF = 1

r(x)
, (A16)

which is of course finite for all r(x) and independent of ϕR(t ).
In fact, this result is obvious because the completion rate of a
process with Qx(t ) = e−r(x)t is constant in time and, therefore,
resetting it does not modify its completion time. Regarding the
motion survival probability of the process in Sec. IV, since the
finiteness of the MFAT is determined by the long t behavior
of the survival probability, when only the asymptotic decay is
exponential, the mean first-arrival time is also finite.
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1. Introduction

The territorial dynamics of animals are compound multi-stage processes. When they 
are seeking for food, their behaviour is completely dierent than when they are resting 
or socializing around their nest or just exploring potential areas to migrate. Therefore, 
a complete model to describe spatial occupation of animals should consider a combina-
tion of dierent states and the overall process would end up determining their region 
of influence, which is technically called the home range [1].

Among these states, the movement for searching has been the main object of study 
[2–5] but resting phases [6] or migrations [7] have also been analysed. Also, data-ori-
ented models [8] and macroscopic models based in the Fokker–Planck equation [9, 10] 
have been employed to study the home range of animals in practical cases. Nevertheless, 
a mesoscopic multi-stage formulation is still lacking.

The inclusion of resets in diusive motion [11] is a first step in the formulation of a 
model able to capture the global dynamics from the multiple internal states of the ani-
mals. After that, multiple works have been devoted to study many types of processes 
with dierent resetting mechanisms [12–32], some of them focusing on the completion 
time of the processes [33, 34], or using resets to concatenate dierent processes [35, 36].

Generally, resets have been treated as an instantaneous action that connects two 
dierent realisations of a given process. This, for most of the applications of stochas-
tic search (including movement ecology), is not realistic. Nevertheless, some works 
have introduced a penalizing period after a reset happens using the Michaelis–Mentens 
reaction scheme. In particular, search processes with constant rate restarts and finite 
time overheads were studied in [37, 38] and an equation for the first completion time 
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distribution of a process with constant rate restarts and a general PDF for the time 
overheads was derived in [39]. Also, in [40] a stochastic process with Poissonian resets 
followed by a generally distributed quiescent time has been recently studied using a 
renewal approach.

Following this line, we study the transport properties and the first arrival statistics 
of a walker which may experience resets after which we introduce a residence (or rest-
ing) quiescent period before starting anew. Unlike the previous works, our most inter-
esting results correspond to the particular case where both the reset and the residence 
time PDFs have a power-law decay. For this case we show that the inclusion of the 
residence period generates a wide variety of transport regimes. Previous models have 
already shown this capacity of resting states to modify the transport regime of a pro-
cess (see for instance [41, 42] or [43] for a successful application).

In an ecological context, the residence period can be interpreted as the time spent 
by an animal at the nest between two consecutive foraging trips. Furthermore, assum-
ing that the animal ceases to do any task when it decides to return to the nest, the qui-
escent time could also include the time spent by the animal to go there. This partially 
solves the unphysical instantaneous nature of resets.

This paper is organised as follows. In section 2 we present the model and we derive 
an expression for the probability of the walker being at position x at time t. In sec-
tion 3 we find a formula for the overall mean square displacement (MSD) in terms of 
the MSD of the movement process and its long-term behaviour is analysed, while in 
section 4 we study the case where a stationary state is reached. Finally, in section 5 
the first arrival statistics of the process are studied and, in the cases where it is finite, 
a general expression for the mean first arrival time (MFAT) is found. We conclude the 
work in section 6.

2. The process

Let us introduce the general formulation of the process studied in this paper. In order 
to describe both the movement process and the resting of the walker in the nest, we 
define two dierent states. The first state, i  =  1, corresponds to the movement stage, 
while in the second state, i  =  2, the walker rests at the origin. First, we study the trans-
ition probabilities between the two states. Let ϕR(t) be the reset time PDF (i.e. the 
distribution of times the walker spends travelling) and ϕS(t) or residence time PDF (i.e. 
the distribution of times that the walker stays at the origin before moving again). Then, 
the probability of arriving at state i = 1, 2 at time t can be written as

j1(t) = δ(t) +

∫ t

0

j2(t − t′)ϕS(t
′)dt′ (2.1)

j2(t) =

∫ t

0

j1(t − t′)ϕR(t
′)dt′, (2.2)

where the δ(t) in the first equation indicates that the process starts at state i  =  1. 
The second term in the first equation and the second equation are the probabilities of 
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reaching the state i from state i′; which is the probability of reaching the state i′ at 
any past time t − t′ and stay there for a time t′, when the walker switches back to i. 
Transforming equations (2.1) and (2.2) by Laplace for the time variable we get

ĵ1(s) =
1

1 − ϕ̂R(s)ϕ̂S(s)
 (2.3)

ĵ2(s) =
ϕ̂R(s)

1 − ϕ̂R(s)ϕ̂S(s)
 (2.4)

where L[ f(t)] = f̂(s) =
∫∞
0

e−stf(t)dt is the laplace transform of f(t). The next step is 

to introduce the spatial motion in the model. The overall probability that the walker 
is at point x at time t can be split into two parts ρ(x, t) = ρ1(x, t) + ρ2(x, t), where 
ρi(x, t) is the partial probability when it is at state i. For the state i  =  1 we define the 
propagator P (x, t) as the time-dependent distribution of the walker position during a 
single movement stage. On the other hand, we take the position of the the walker to 
be fixed at x  =  0 when it is in the resting state (i  =  2). With these considerations, the 
time-dependent PDF for each of the states becomes

ρ1(x, t) =

∫ t

0

dt′j1(t − t′)ϕ∗
R(t

′)P (x, t′), (2.5)

ρ2(x, t) = δ(x)

∫ t

0

dt′j2(t − t′)ϕ∗
S(t

′) (2.6)

where ϕ∗
R,S(t) =

∫∞
t

ϕR,S(t
′)dt′. These equations can be read as follows: the position dis-

tribution of the walker in each of the states i = 1, 2 at time t is the probability of getting 
there any time before (j1(t − t′) and j2(t − t′), respectively), stay there for the remain-
ing time (ϕ∗

R(t
′) and ϕ∗

S(t
′) respectively), with the dynamics of the walker described by 

the corresponding propagator (P (x, t′) and δ(x), respectively). Transforming by Laplace 
in time, and substituting the transition probabilities by their explicit expressions given 
in equations (2.3) and (2.4) we get

ρ̂1(x, s) =
L [ϕ∗

R(t)P (x, t)]

1 − ϕ̂R(s)ϕ̂S(s)
 (2.7)

ρ̂2(x, s) =
ϕ̂∗
S(s)ϕ̂R(s)

1 − ϕ̂R(s)ϕ̂S(s)
δ(x). (2.8)

Hence,

ρ̂(x, s) =
ϕ̂∗
S(s)ϕ̂R(s)δ(x) + L [ϕ∗

R(t)P (x, t)]

1 − ϕ̂R(s)ϕ̂S(s)
 (2.9)

is the PDF of the overall process. In particular, when the time PDF at the origin is 
taken as ϕS(t) = δ(t), this expression reduces to the case in [44]. Also, if we consider 
only exponentially distributed resets, this expression reduces to the first result in [40]. 
There, the case where the reset time and the residence period (refractory period therein) 
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are correlated is also considered and a general propagator for the resulting process is 
derived.

3. Transport regime analysis

In the previous section we have derived an expression for the probability ρ(x, t) that 
the walker is at point x at time t. Here we will study the asymptotic behaviour of the 
MSD. Particularly, we study how the tails of the reset and residence time PDFs modify 
the transport properties of the overall process, leaving for the next section the study of 
the cases where the walker reaches a stationary state.

To do so, we start from equation (2.9). If we multiply at both sides by x2 and inte-
grate over the whole spatial domain we get an equation for the overall MSD in the 
Laplace space in terms of the time PDFs and the movement MSD:

L[〈x2(t)〉] = L [ϕ∗
R(t)〈x2(t)〉m]

1 − ϕ̂R(s)ϕ̂S(s)
. (3.1)

Here, the subindex m in 〈x2(t)〉m indicates that the MSD corresponds to the movement 
stage, while the expression without subindex 〈x2(t)〉 corresponds to the overall process. 
In order to study more explicitly the MSD we choose a particular expression for the 
time PDFs:

ϕR(t) =
tγR−1

τ γRm
EγR,γR

[
−
(

t

τm

)γR
]

 (3.2)

ϕS(t) =
tγS−1

τ γSs
EγS,γS

[
−
(

t

τs

)γS
]

 (3.3)
with

Eα,β(z) =
∞∑

n=0

(−z)n

Γ(αn+ β)
, (3.4)

being the Mittag-Leer function, and 0 < γi � 1 and τi (for i = R,S) are characteris-
tic parameters. In the large time limit and for γi < 1 we have that ϕi(t) ∼ t−1−γi. The 
choice of these PDFs is motivated by the fact that we can recover exponential PDFs 
for γR = 1 and we can also study power-law behaviours for γR < 1. The first correspond 
to constant rate events, i.e. at any time there is the same probability of switching from 
one state to the other. As for the latter, they are a type of PDFs with infinite mean 
frequently used in the modelling of movement processes. Particularly, sub-diusion 
processes are usually modelled by introducing power law tails in the waiting time 
PDF between two consecutive jumps (see [5]). The dierence here is that the resetting 
mechanism constantly forces the system to wait at the origin, which makes the eect 
of the long tailed waiting time PDF at the origin much stronger.

Let us also assume that the movement proces follows a general MSD which scales as

〈x2(t)〉m ∼ t p, (3.5)
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with 0  <  p   <  2. Then, the asymptotic behaviour of the overall process MSD can be 
found by taking the small s limit of equation (3.1) and performing the inverse Laplace 
transform on the result. Doing so for the whole range of parameters, one finds three 
dierent behaviours 〈x2(t)〉 ∼ ta depending on the relative values of γR and γS:

a =





γS − 1, γS � γR = 1

p+ γS − γR, γS < γR < 1

p, γS � γR < 1.
 (3.6)

This expression, which groups the main results of this section, shows that the 
inclusion of the residence at the origin generates a competition between the tails of 
the PDFs ϕR(t) and ϕS(t). This produces a rich diversity of transport regimes for the 
overall process in terms of the exponent of the MSD for the movement process and the 
reset-and-residence mechanism. In the following we study the dierent cases of equa-
tion (3.6) in detail.

3.1. Long tail ϕR(t) PDF

Let us start with the cases for which the reset time PDF has a long tail (γR < 1). In 
figure 1 the exponent of the MSD at the asymptotic limit, obtained with Monte Carlo 
simulations, is shown for the whole range 0 < γS < 1 and 0 < γR < 1, for both a sub-
diusive and a super-diusive case. There, we can observe the two bottom cases in 
equation (3.6) separated by the analytical limiting case γR = γS (red line). Below the 
red line, the asymptotic exponent of the MSD does not depend on the values of γR and 
γS while above the red line the asymptotic exponent decreases like γR − γS, as we have 
found in the second case of equation (3.6).

Interestingly, shape of the regimes in equation (3.6) does not depend on the move-
ment transport regime exponent p . Therefore, the competition is exclusively between 
the tails of the reset and residence time PDFs. When the tail of ϕR(t) decays equally 
or slower than the tail of ϕS(t) (γS � γR < 1), asymptotically there are less walkers 
resetting their position than leaving the origin, which makes the residence stage neg-
ligible. On the other hand, when the tail of ϕS(t) decays slower than the tail of ϕR(t) 
(γS < γR < 1), the residence PDF becomes significant and the overall transport regime 
is aected by the reset and residence time PDFs. In fact, this change of behaviour is a 
consequence of the requirement of the walker to have restarted its position for the resi-
dence mechanism to be triggered. Therefore, when the reset times are asymptotically 
longer than the residence times, the asymptotic behaviour of the MSD is as if there was 
no residence [44]. Otherwise, when the residence times are asymptotically longer, the 
eect of the particles stacked at the origin becomes qualitatively relevant.

3.2. Exponential ϕR(t) PDF

When the reset time PDF ϕR(t) is exponential, the asymptotic behaviour of the MSD 
changes drastically. This case includes both power law and exponential PDFs for ϕS(t). 
In figure 2 we show the simulated MSD for long tailed residence time PDFs and dierent 
movement: sub-diusive and diusive processes, and super-diusive Lévy walks. In all 
three cases, the MSD increases for short times until it reaches a maximum value and 
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starts to decrease as predicted with the first case in equation (3.6). The asymptotic 
decay depends exclusively on the residence time PDF exponent γS and in this regime 
the movement process only modifies multiplicatively the overall MSD.

To summarize, in figure 3 we present a phase diagram with the possible transport 
regimes. There we can see that a super-diusive process (p   >  1) can be transformed to 
a sub-diusive (or diusive) process when the reset-and-residence mechanism is taken 
into account. Similarly, a sub-diusive process (p   <  1) can derive into a transport 

Figure 1. Exponent a of the asymptotic behaviour of the MSD of the overall 
process 〈x2(t)〉 ∼ ta with respect to the long tailed reset and residence time PDFs 
exponents γR and γS respectively is shown. The plots correspond to simulations 
of two dierent movement processes: a sub-diusive process with p   =  0.5 in (A) 
and a super-diusive Lévy walk with p   =  1.5 in (B). For both cases, in the region 
below the red line (γR = γS) the exponent is constant and equal to the movement 
MSD exponent a  =  p  while in the region above the line the exponent diminishes 
progressively.
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failure regime. Therefore, the reset-and-residence mechanism can be also seen as a tool 
to slow down the transport regime.

4. Stationary state

In the previous section we have derived in a general manner the transport regime of 
the overall process and we have also studied how the reset-and-residence mechanism 

Figure 2. The time evolution of the MSD of a simulation of an overall process 
with γR = 1 and γS = 0.5 is plotted for a sub-diusive (SD), a diusive (D) and a 
Lévy walk (LW) super-diusive motion. In all three cases the MSD decreases as 
t−0.5 in the long time limit as predicted by the first case in equation (3.6). See the 
guide line (black line in the plot) for comparison.

Figure 3. Schematic plot of the dierent overall transport regimes in terms of 
the transport regime of the movement process p  and the dierence between the 
decaying exponents of the reset and residence time PDFs γR − γS. In the red region 
the overall behaviour is super-diusive. In the yellow region it is sub-diusive and 
the pink represents the values for which we have transport failure.
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aects the long term behaviour of the system. In this section we study the special case 
where both the residence and the reset time PDFs are exponential (γS = γR = 1), so 
a stationary state is reached. Concretely, we derive a formula for the overall MSD in 
terms of the MSD of the movement and we find the stationary distribution for some 
well-known movement processes.

To do so, we start from equation (3.1) and the time PDFs from equations (3.2) and 
(3.3) with γR = 1 and γS = 1 respectively. With these parameters the Laplace transform 
of the overall MSD reads

L[〈x2(t)〉] = L[e− t
τm 〈x2(t)〉m]

1 − 1
(1+τms)(1+τss)

. (4.1)

In order to find the asymptotic behaviour of the MSD we make use of the final value 
theorem limt→∞ f(t) = lims→0 sL[ f(t)]. Doing so, the stationary MSD can be easily 
found from equation (4.1) giving

〈x2〉st =
1

τm + τs

∫ ∞

0

e−
t

τm 〈x2(t)〉m dt. (4.2)
For a motion with 〈x2(t)〉m = 2Dt p with D, p positive constants, the stationary MSD 
takes the simple form

〈x2〉st = 2D Γ( p+ 1)
τ p+1
m

τm + τs
. (4.3)

This result has been compared with Monte Carlo simulations in figure 4 for three 
dierent types of movement. Let us now calculate the stationary distribution. Doing so 
it is easy to see that the stationary distribution can be written in terms of the propaga-
tor P (x, t) as

ρst(x) =
τs

τm + τs
δ(x) +

P̂ (x, s = 1
τm

)

τm + τs
, (4.4)

which has been recently found in [40]. For a propagator of the form

P SD(k, s) =
1

s+Dγs1−γk2

in the Fourier–Laplace space, which corresponds to a sub-diusive process for γ < 1 
and diusive for γ = 1, the stationary distribution is

ρSDst (x) =
τs

τm + τs
δ(x) +

τm
τm + τs

e
− |x|√

Dγτm

√
4Dγτ

γ
m

. (4.5)

If instead of a sub-diusive (or diusive) motion we consider a Lévy flight, its propaga-
tor is

P LF(k, s) =
1

s+Dα|k|α
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in the Fourier–Laplace space, where α < 2 and Dα is the corresponding diusion con-
stant. The stationary distribution reads

ρLFst (x) =
τs

τm + τs
δ(x) + 2

τm
τm + τs

∫ ∞

0

cos(kx)

1 + τmDαkα
dk. (4.6)

This distribution has divergent second order moment since it decays as 1
|x|1+α for 

large |x|. Therefore, despite a stationary state is reached the average region of space 
covered by the walker around the nest is infinite. Contrarily, for the sub-diusive and 
diusive movement processes we have a finite stationary MSD, the value of which is 
given by equation (4.3) with properly chosen parameters.

5. Mean first arrival time

In the previous section we have analysed the long-term behaviour of the overall process. 
Here we perform a first arrival time analysis which is still lacking despite of the previ-
ous works including a quiescient period after the resets. It consists on determining the 
conditions for which the MFAT is finite, taking into account finite and infinite mean 
PDFs for the reset and residence time PDFs. To do so, we build up a mesoscopic equa-
tion for the overall survival probability σx(t), which is the probability of the walker not 
having arrived to x at time t. Let us separate the overall survival probability into three 
temporal non-overlapping processes. If the walker starts at the origin but is moving 
(i.e. at the state i  =  1), the three contributions to the overall survival probability are:

Figure 4. Stationary MSD for a sub-diusive (SD), a diusive (D) and a Lévy 
flight (LF) propagator when they are subject to reset times which are exponential 
distributed with τm = 10 and retained at the origin during a time given by an 
exponential PDF with dierent means τs. For the propagators we have chosen 
p = 0.5, D = 1.05 · 10−2 for the sub-diusive, p = 1, D = 2.63 · 10−3 for the 
diusive and p = 1.1, D = 6.11 · 10−3 for the Lévy walk. The crosses correspond to 
the simulated distributions while the solid curves show the analytical result given 
in equation (4.3).
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 (i)  The walker has not yet restarted at time t. This happens with probability ϕ∗
R(t) 

and in this case the overall survival probability is the same as the motion survival 
probability Qx(t).

 (ii)  The walker has restarted its position once at time t′ < t, during which it has 
not arrived to x, and during the period (t′, t) it has not left the origin. The first 
happens with probability ϕR(t

′)Qx(t
′)dt′, the second with probability ϕ∗

S(t − t′) 
with 0 � t′ � t.

 (iii)  The walker has restarted its position at least once at time t′ < t and it has not 
reached x before t′, which happens with probability ϕR(t

′)Qx(t
′)dt′ as in the 

previous case. However, here the walker leaves the origin after a time t′′ < t − t′ 
and in this case the walker is exactly at the initial scenario but instead of 
having a time t, we have to subtract the time of the first non-triggering journey 
(t → t − t′ − t′′). This happens with probability ϕS(t

′′)σx(t − t′ − t′′)dt′′ given that 
the first reset was at time t′. These scenarios must be taken into account for all 
t′′ < t − t′ and t′ < t.

Putting the three contributions together we get:

σx(t) = ϕ∗
R(t)Qx(t) +

∫ t

0

ϕR(t
′)Qx(t

′)ϕ∗
S(t − t′)dt′

+

∫ t

0

ϕR(t
′)Qx(t

′)dt′
∫ t−t′

0

ϕS(t
′′)σx(t − t′ − t′′)dt′′,

 

(5.1)
where Qx(t) is the survival probability of the movement process and the first, second 
and third terms in the rhs correspond to cases (i), (ii) and (iii), respectively. Applying 
the Laplace transform to equation (5.1) we get

σ̂x(s) =
L[ϕ∗

R(t)Qx(t)] + L[ϕR(t)Qx(t)]ϕ̂
∗
S(s)

1 − L[ϕR(t)Qx(t)]ϕ̂S(s)
, (5.2)

which has been also found as a particular case in [40] by assuming non-correlated reset 
and residence time PDFs on their general result. This equation is completely general 
so it is valid for any survival probability of the movement process Qx(t) and any reset 
and residence time PDFs ϕR(t) and ϕS(t), respectively. Here we focus on studying the 
asymptotic behaviour of the overall survival probability for Qx(t) ∼ t−q with 0  <  q  <  1. 
This choice encompasses some processes associated with animal foraging as shown in 
the particular examples below. For ϕR(t) and ϕS(t) we consider again expressions (3.2) 
and (3.3), respectively.

The existence of a MFAT can be determined by taking the limit s → 0 in equa-
tion (5.2) (TF = lims→0 σ̂(s)). In this limit, corresponding to the long t limit, the domi-
nant term in the numerator of equation (5.2) depends on the tail exponents of the PDFs 
ϕR(t) and ϕS(t). Concretely, we can distinguish three dierent cases:

 (a)  γS � γR + q . At long times, the first term in the numerator of equation (5.2) 
dominates over the second (or they are equal in the limiting case). The MFAT is 
infinite since the survival probability decays as
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σx(t) ∼ tγR+q−1. (5.3)
 (b)  γS < γR + q, γS < 1. At long times, the second term in the numerator of equa-

tion (5.2) is the dominant term. Here, the MFAT is infinite again, with a survival 
probability decaying as

σx(t) ∼ tγS−1. (5.4)
 (c)  γS < γR + q, γS = 1. In this scenario, the MFAT is finite and it can be written as

TF =
I1 + τsI2
1 − I2

, (5.5)
  with

I1 =

∫ ∞

0

EγR,1

[
−
(

t

τm

)γR
]
Qx(t)dt (5.6)

  and

I2 =

∫ ∞

0

tγR−1

τ γRm
EγR,γR

[
−
(

t

τm

)γR
]
Qx(t)dt, (5.7)

  where we have made use of equations (3.2) and (3.3).
From this we see that, when studying the overall survival probability, the reset time 
PDF couples to the survival probability of the movement process and is the joint tail 
the one which competes with the residence time PDF. Therefore, the type of movement 
has a direct eect on which distribution determines the tail exponent of the overall 
survival probability. To illustrate this, we next study these general results for some 
particular cases.

5.1. Infinite MFAT

Let us leave the case (c) in the previous Section apart for the moment. From cases (a) 
and (b) we see that there are two dierent regions in the state space where the govern-
ing tail diers, limited by the plane γS = γR + q. In the following we test this for two 
dierent movement processes: a sub-diusive random walk (figure 5(A)) and a Lévy 
flight (figure 5(B)).

The survival probability of a sub-diusive jump process has been studied in [45], 
where it was found to be

QSD
x (t) =

x√
Dtγ

∞∑

k=0

(
− x√

Dtγ

)k

(k + 1)!Γ
(
1 − γ

2
− k γ

2

) (5.8)

with 0 < γ < 1. This, in the large time limit decays as
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QSD
x ∼ t−

γ
2 . (5.9)

For γ = 1, we can recover the well-known decay for the survival probability of a 
diusive process. From the asymptotic expression we can identify q = γ

2
 and, there-

fore, in this case the limiting plane is γS = γR + γ
2
, which is illustrated as a red line in 

figure 5(A) for the particular case γ = 0.5. There we can see that, below the line, the 
tail exponent of the overall survival probability increases upwards and remains con-
stant in the horizontal direction, which means that it depends on the reset tail only. 

Figure 5. Exponent b of the asymptotic behaviour of the survival probability of 
the overall process σx(t) ∼ t−b with long tailed reset and residence time PDFs is 
shown. Their exponents are γR and γS and the plots are for simulations of two 
dierent movement processes: a sub-diusive process with γ = 0.5 in (A) and a 
super-diusive Lévy walk with α = 1.5 in (B). For both cases, in the region above 
the red line (γS = γR + q with q  =  0.25 in (A) and q  =  0.33 in (B)) b only changes 
horizontally with γS while below the line b only varies vertically with γR. These are 
the results predicted by the cases (a) and (b) in the main text respectively.
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Contrarily, above the red line the decaying exponent of the overall survival probability 
increases from left to right and remains constant in the vertical direction. Therefore, 
in this case, it only depends on the residence tail, which is in agreement with cases 
(a) and (b) above. This general behaviour becomes less clear near the red lines, where 
the tail competition is evener. This can be amended by running considerably longer 
simulations.

Regarding the Lévy flight process, an expression for the Laplace transform of the 
first arrival survival probability was derived in [46]:

Q̂LF
x (s) =

αD1/α sin(π/α)

πs1/α

∫ ∞

0

1 − cos(kx)

s+Dkα
dk. (5.10)

This scales asymptotically as

QLF
x (t) ∼ t

1
α
−1. (5.11)

Here 1 < α < 2, being α = 2 the diusive limit. In this case, the limiting surface is 

γS = γR + 1
α
, which has been plotted for the particular value α = 1.5 in figure 5(B) as a 

red straight line. As for the previous example, the line separates two dierent regions 
in which the dominant exponent is γS above the red line and γR below.

5.2. Finite MFAT

From the three dierent cases from equation (5.2), the (c) scenario is the only one where 
the MFAT is finite. In this case, equation (5.5) gives us its value for dierent movement 
survival probabilities. As for the previous situations, we consider the two cases where 

Figure 6. The simulated MFAT (crosses) with an exponential residence time PDF 
with mean τs = 10 and for three representative cases of subdiusion (SD) with 
γ = 0.5, diusion (D) with γ = 1 and a Lévy flight with α = 1.5, all with D  =  0.1. 
We compare our simulations to the analytical result in equation (3.4) (solid curves) 
for dierent reset time PDF tail exponents γR and τm = 10. Concretely, the MFAT 
is computed at a distance x  =  0.5 from the origin.
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the motion is sub-diusive and a Lévy flight, the survival probabilities of which are in 
equations (5.8) and (5.10) respectively. In figure 6 we show the simulated MFAT for 
a sub-diusive, a diusive (as a limit of the first) and a Lévy flight process in the (c) 
scenario. The simulations are compared with the result obtained by numerically inte-
grating equation (5.5) for the dierent cases.

6. Conclusions

We have studied how a stochastic residence period at the resetting position aects the 
overall dynamics of a random walker. More specifically, we have employed a renewal 
approach to derive analytical expressions for the MSD and the survival probability (or 
MFAT when it is finite), which have been validated with Monte Carlo simulations of 
dierent processes such as diusion, Lévy walks or Lévy flights.

For the MSD we have found that, on one hand, for long tailed reset and residence 
time PDFs the MSD of the overall process depends strongly on the relation between 
the tail exponents of both PDFs (γR for resets and γS for residence times). Concretely, 
for γR � γS the overall MSD exponent is the same as the one for the movement pro-
cess while for γR > γS the exponent of the movement process is diminished by a factor 
γR − γS. On the other hand, for exponentially distributed reset times, if the residence 
time PDF is long tailed the overall process collapses to the origin while for an exponen-
tial residence time PDF a stationary MSD is reached (see equation (4.2)).

Regarding the decaying exponent of the survival probability when both time PDFs 
are long tailed, we have seen that the tail of the residence time PDF competes with 
both the tail of the movement process survival probability and the tail of the reset time 
PDF. In this case the MFAT is always infinite. Contrarily, when the residence time 
PDF is exponential, a finite MFAT may be found but only when q + γR > 1 with q and 
γR being the tail exponents of the survival probability of the movement process and the 
reset time PDF respectively.

We note that, in the context of movement ecology, resets are a natural mechanism 
to concatenate dierent trials of a particular behaviour of the animals. In this work 
we have tried to include explicitly the period that they spend in the nest separating 
excursions for feeding, mating or any other basic functions. The next step towards a 
complete model could be the introduction of multiple search strategies with dierent 
movement patterns to be chosen during the resting period, similarly to what has been 
done in [35, 36] for instance. Also, regarding the interpretation of the quiescent time 
as the time needed by the animal to return to the nest, a further step to be addressed 
in future works would be the introduction of a process driving the individual gradually 
towards the nest instead of leaving it in a motionless state.
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Random walks with stochastic resetting provides a treatable framework to study interesting features about
central-place motion. In this work, we introduce noninstantaneous resetting as a two-state model being a
combination of an exploring state where the walker moves randomly according to a propagator and a returning
state where the walker performs a ballistic motion with constant velocity towards the origin. We study the
emerging transport properties for two types of reset time probability density functions (PDFs): exponential and
Pareto. In the first case, we find the stationary distribution and a general expression for the stationary mean-square
displacement (MSD) in terms of the propagator. We find that the stationary MSD may increase, decrease or
remain constant with the returning velocity. This depends on the moments of the propagator. Regarding the
Pareto resetting PDF we also study the stationary distribution and the asymptotic scaling of the MSD for
diffusive motion. In this case, we see that the resetting modifies the transport regime, making the overall transport
subdiffusive and even reaching a stationary MSD, i.e., a stochastic localization. This phenomena is also observed
in diffusion under instantaneous Pareto resetting. We check the main results with stochastic simulations of the
process.

DOI: 10.1103/PhysRevE.100.042104

I. INTRODUCTION

Living organisms and moving particles in general can
rarely exhibit free motion independent of environmental or
internal constraints. One of these constraints consists of the
presence of a privileged location, which is visited with a
higher frequency, either for natural or artificial reasons. For
instance, in a movement ecology context, the term central-
place foraging [1] is often used to describe how animals seek
for food near their nest. In other scenarios, such as human
visual search [2], a fixed location is also used as a reference
point.

From a physical point of view, this topic has been often
addressed using stochastic motion models. Historically, the ef-
fect from the central point has been modeled via an attracting
potential [3]. This allows the authors to analytically study the
problem from a treatable perspective. However, these models
do not consider the possibility of the walker returning directly
to the central point, instead of (or in addition to) feeling an
attraction for it. A possible mechanism that could mimic this
is the random resetting of its motion to the origin.

It was not until 2011 that a simple model of stochastic
motion with a strong bound to a given position was published
in the physical literature [4]. There, a diffusive particle is
studied when it may occasionally reset its position with a
constant probability and the authors find that a nonequilibrium
steady state (NESS) is reached and the mean first passage time
of the overall process is finite and attains a minimum in terms
of the resetting rate. The existence of a NESS has been further
studied for different types of motion and resetting mecha-
nisms [5–18], showing that they are not exclusive of diffusion
with Markovian resets. Aside from these, other works have

shown that the resetting does not always generate a NESS
but transport is also possible when the resetting probability
density function (PDF) is long tailed [19–22] or when the
resetting process is subordinated to the motion [10,12].

However, the above-cited stochastic resetting models lack
some realism as long as resetting is treated as an instantaneous
process. Some recent papers include a quiescent period after
the resetting [23,24], which could mimic the time required by
the walker to return to the origin. But this only serves as a
partial solution to the problem since it does not consider the
back-to-the-origin movement explicitly. In a slightly different
context, this notion of costly resetting has also appeared in
some works where search processes with restarts are stud-
ied from a Michaelis-Menten reaction scheme perspective
[25,26].

In this direction, we propose a two-state model to describe
both the exploratory motion and the return to the origin, which
we assume to be ballistic. We analyze the main consequences
that the application of a noninstantaneous resetting has on
the results known for the instantaneous case. Particularly, we
derive an expression for the overall propagator to study the
transport properties of the overall process for different types
of resetting PDFs. We also study the statistics of the returning
time in terms of the motion and the resetting PDF.

The paper is organized as follows. In Sec. II, the model is
introduced and general expressions for both the overall PDF
and the overall MSD are derived. Afterwards, in Sec. II B, the
PDF of the time required by a walker to go back to the origin
is studied in terms of the propagator and the resetting PDF. In
Secs. III and IV we study the particular cases of Markovian
and scale-free PDFs, respectively. Finally, we conclude the
work in Sec. V.

2470-0045/2019/100(4)/042104(8) 042104-1 ©2019 American Physical Society
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II. MODEL

We model the dynamics of the walker by considering two
different states: an exploring state (state 1) where the motion
is described by a general propagator P(x, t ) and a returning
state (state 2) where the motion is ballistic with velocity v

towards the origin defined by x = 0. The exploring state ends
at a random time according to the resetting time PDF ϕR(t ),
while the returning state ends when the motion reaches the
origin. At this time, the process is renewed.

Let us start by introducing the flux of particles between
these two states. On one hand, assuming that the motion starts
at state 1, the rate of walkers arriving at the exploring state
(state 1) is

j1(t ) = δ(t ) +
∫ +∞

−∞
dz

∫ t

0
dt ′ j2(z, t − t ′)δ

(
t ′ − |z|

v

)
,

(2.1)

where the integral term is expressed in terms of the rate of the
particle arriving at state 2 at point x at time t , j2(x, t ). This
term implements the probability of entering state 2 at position
z at any time t − t ′ < t and subsequently reaching the origin
ballistically within time t ′ [δ(t ′ − |z|/v)]. The first term on the
right-hand side is the initial condition. On the other hand, the
rate of walkers arriving at the returning state (state 2) reads

j2(x, t ) =
∫ t

0
j1(t − t ′)ϕR(t ′)P(x, t ′)dt ′, (2.2)

which, unlike for state 1, depends explicitly on the position x
(i.e., the rate is not spatially uniform). Here, the probability of
arriving at state 2 at position x and time t is the probability
of having arrived at state 1 at any past time t − t ′, times
the probability that exploration finished at time t ′, given
the walker has reached position x. Transforming these two
equations by Laplace and isolating for the rates we get the
explicit expressions

ĵ1(s) =
[

1 −
∫ +∞

−∞
dze− |z|

v
s�(z, s)

]−1

(2.3)

and

ĵ2(x, s) = �(x, s)

[
1 −

∫ +∞

−∞
dze− |z|

v
s�(z, s)

]−1

, (2.4)

where we have introduced the notation

�(x, s) ≡ L[ϕR(t )P(x, t )], (2.5)

and

f̂ (s) = L[ f (t )] =
∫ ∞

0
e−st f (t )dt

is the Laplace transform of f (t ).
Let us now introduce the spatial dynamics for each of the

states. We write the global propagator as ρ(x, t ) = ρ1(x, t ) +
ρ2(x, t ), i.e., the overall motion is described by the com-
bination of the propagators in states 1 and 2. Defining the
probability that no reset has occurred until time t as ϕ∗

R(t ) =∫ ∞
t ϕR(t ′)dt ′, the probability of finding the walker at the

exploring state at point x and time t can be written as

ρ1(x, t ) =
∫ t

0
j1(t − t ′)ϕ∗

R(t ′)P(x, t ′)dt ′. (2.6)

Transforming by Laplace and inserting Eq. (2.3), we have

ρ̂1(x, s) = �∗(x, s)

[
1 −

∫ +∞

−∞
dze− |z|

v
s�(z, s)

]−1

, (2.7)

with

�∗(x, s) ≡ L[ϕ∗
R(t )P(x, t )]. (2.8)

For the sake of simplicity we will restrict to symmetric
random walks, i.e., P(x, t ) = P(−x, t ). Then, for the returning
state (we consider x > 0, which is labeled by a plus sign in the
following, to later generalize this result for x < 0) we have
that

ρ+
2 (x, t ) =

∫ +∞

x
dz

∫ t

0
dt ′ j2(z, t − t ′)δ(x − z + vt ′). (2.9)

This is, to be at position x > 0 at time t in the returning state,
the motion had to reach this state at a previous time t − t ′ and
position z > x and, during the time t ′, the returning ballistic
motion must have gone from z to x. Transforming by Laplace,
we get

ρ̂+
2 (x, s) = e

x
v

s

v

∫ +∞

x
dze− z

v
s ĵ2(z, s). (2.10)

Now, introducing Eq. (2.4) and generalizing it for the negative
positions [i.e., x → |x| in Eq. (2.10)], we get the general
expression for the propagator in the state i = 2

ρ̂2(x, s) = 1

v
e

|x|
v

s

∫ +∞
|x| dze− |z|

v
s�(z, s)

1 − ∫ +∞
−∞ dze− |z|

v
s�(z, s)

. (2.11)

Finally, putting both propagators together, the overall prop-
agator ρ̂(x, s) = ρ̂1(x, s) + ρ̂2(x, s) turns out to be

ρ̂(x, s) =
�∗(x, s) + 1

v
e

|x|
v

s
∫ +∞
|x| dze− |z|

v
s�(z, s)

1 − ϕ(s)
, (2.12)

where

ϕ(s) =
∫ +∞

−∞
dze− |z|

v
s�(z, s)

= vs

π

∫ +∞

−∞
dk

�(k, s)

k2v2 + s2
, (2.13)

with �(k, s) the Fourier-Laplace transform of �(x, t ).
Therefore, for a general resetting PDF ϕR(t ) and prop-

agation P(x, t ), one can in principle find the PDF of the
overall motion process. In the numerator we have the contri-
butions of the exploring and returning states clearly separated.
However, the first term, corresponding to the exploring state,
is velocity-dependent since in the denominator v appears
explicitly. Therefore, both the exploring and returning states
are actively modified by the finiteness of the resetting velocity.
Transforming Eq. (2.12) by Fourier one finally gets, after
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some calculations,

ρ(k, s) = 1

1 − ϕ(s)

[
�∗(k, s) + s

�(k, s) − ϕ(s)

k2v2 + s2

+ 2kv

k2v2 + s2

∫ ∞

0
dz sin(kz)�(z, s)

]
, (2.14)

where

�(k, s) =
∫ ∞

0
e−stϕR(t )P(k, t )dt . (2.15)

One can check that ρ(k = 0, s) = 1/s, so ρ(x, t ) is conve-
niently normalized.

A. MSD

The MSD can be obtained as

〈x̂2(s)〉 = −
[
∂2ρ(k, s)

∂k2

]
k=0

. (2.16)

Using Eq. (2.14), after some calculations one obtains

〈x̂2(s)〉 = L[ϕ∗
R(t )〈x2(t )〉P] + 1

s L[ϕR(t )〈x2(t )〉P] − 2 v
s3 �(s)

1 − ϕ(s)
,

(2.17)

where

�(s) ≡ sL[ϕR(t )〈|x|(t )〉P] + v[ϕ(s) − ϕR(s)] (2.18)

and

〈x2(t )〉P =
∫ ∞

−∞
x2P(x, t )dx,

(2.19)

〈|x|n(t )〉P = 2
∫ ∞

0
xnP(x, t )dx,

with n = 1, 2, . . .. In the large time limit, that is, s → 0 we
can simplify Eq. (2.17) keeping the leading-order terms. One
gets, after some algebra

〈x̂2(s)〉 	 L[ϕ∗
R(t )〈x2(t )〉P] + 1

3v
L[ϕR(t )〈|x|3(t )〉P]

1 − ϕR(s) + s
v
L[ϕR(t )〈|x|(t )〉P]

. (2.20)

Therefore, a finite returning velocity makes the overall asymp-
totic MSD depend explicitly on the first and third absolute-
value moments of the propagator, in addition to the second
moment. Crucially, this dependence disappears when the limit
v → ∞ is taken to recover the equivalent expression for
instantaneous resetting [20].

In Secs. III and IV, we explore this and more properties
on particular scenarios to analyze in more detail the effect
that a finite resetting velocity has at long times, comparing
our model to some of the most significant results obtained for
instantaneous resets.

B. Returning time PDF

After a resetting event, the random walker is forced to
interrupt its motion and go back to the origin with constant
velocity v. During the time required to go back to the origin
and restart its motion, the walker remains in a state, which
hinders the overall propagation. Similar models have been
studied in the literature, where the walker is forced to remain

inactive at the origin after resetting [23,24]. Nevertheless,
in none of these models the duration of the nonpropagating
period is considered to depend explicitly on the motion of the
walker, which is a natural correlation to be taken into account.

In Ref. [20], the asymptotic behavior of the overall MSD
is studied for a stochastic motion process which resets its
position at times distributed according to a resetting PDF, after
which remains at the origin during a period determined by a
residence time PDF. There, the scaling of the overall MSD is
shown to strongly depend on the resetting and the residence
time PDFs. In the current model, while the resetting PDF is
explicitly introduced, the PDF of the nonpropagating period
emerges from the combination of both the resetting time PDF
ϕR(t ) and the stochastic motion performed by the walker, i.e.,
the propagator P(x, t ). Therefore, it is convenient to study the
stochastic properties of the returning time for a later analysis
of the overall transport properties of the system.

In general, the PDF of the returning time can be written as

ϕr (t ) =
∫ +∞

−∞
dx δ

(
t − |x|

v

) ∫ ∞

0
dt ′P(x, t ′)ϕR(t ′), (2.21)

which is the probability of the exploratory motion ending at
a given position x (t ′ integral) times the probability of the
returning state to last at time t from this position (δ term),
averaged over all the possible positions. The integral in x can
be performed to give a general expression for the returning
time PDF in terms of both the propagator and the resetting
PDF:

ϕr (t ) = 2v

∫ ∞

0
P(vt, t ′)ϕR(t ′)dt ′ = 2v �(vt, 0), (2.22)

with �(x, s) defined from Eq. (2.5). An equation for the nth
moment of the returning time PDF can be also found by
multiplying both sides of Eq. (2.22) by t n and integrating over
t > 0:

〈
t n
r

〉 = 1

vn

∫ ∞

0
ϕR(t )〈|x(t )|n〉Pdt . (2.23)

It is interesting to observe that the contribution of the
motion to the nth moment of the returning time PDF comes
exclusively from the nth absolute moment of the motion
propagator. In the following we dig into these results for two
different types of resetting time PDFs.

1. Markovian resetting

As a first case, we analyze the returning time PDF when
the resetting is equally probable at any time. This consists on
choosing a reset time PDF of the form

ϕR(t ) = re−rt . (2.24)

The general expressions derived above reduce to

ϕr (t ) = 2vr P̂(vt, r) (2.25)

and 〈
t n
r

〉 = r

vn
〈|x̂(r)|n〉P. (2.26)

Notably, if the nth moment of the motion has a finite Laplace
transform, the nth moment of the returning time PDF con-
verges to a finite value. This includes, for instance, all the

042104-3

82 Appendix C. Third Article



AXEL MASÓ-PUIGDELLOSAS et al. PHYSICAL REVIEW E 100, 042104 (2019)

(a) (b)

FIG. 1. On the left (a), the returning time survival probability ϕ∗
r (t ) = ∫ ∞

t ϕr (t ′)dt ′ = e−v
√

r
D t for diffusion with D = 5 under exponential

resetting with r = 0.25 is shown for different values of the returning velocity v in a stochastic simulation of the process. On the right (b), the
returning time distribution for the same motion is shown with exponential resetting for different r and returning velocity v = 1. In both cases,
the PDF is represented in a log-linear axis and the exponential behavior can be clearly observed to be in agreement with the corresponding
analytical prediction (solid lines).

cases where the moments grow as a power law in time. Be-
tween these, let us consider diffusive motion with a Gaussian
propagator of the form P(x, t ) = exp(−x2/4Dt )/

√
4πDt . Af-

ter some simple calculations, the returning time PDF can be
found to be exponential

ϕr (t ) = v

√
r

D
e−v

√
r
D t . (2.27)

This result has been compared to stochastic simulations of the
process and it has been seen to be in agreement with them
(Fig. 1).

Therefore, for diffusive Gaussian motion, when the reset-
ting PDF is exponential, the duration of the returning state
also follows an exponential distribution. In other words, the
transition from the returning state to the exploring state is also
Markov process and happens at a constant rate, which can be
identified to be

rr = v

√
r

D
.

Remarkably, the return-to-explore transition rate depends on
the explore-to-return rate as a square root. This is, by increas-
ing r, the rate of the return-to-explore transition will be less
increased than the rate of the explore-to-return transition. It
is also interesting to observe that the returning rate depends
linearly with the velocity v. So, aside from the weight factor√

r/D related to the propagation ability of the motion, the
velocity can be interpreted as the actual transition rate from
the returning to the exploring state.

2. Scale-free resetting

Let us now explore the case where the resetting PDF is
scale free, meaning that in the long time regime it decays as

ϕR(t ) ∼ t1+γ , (2.28)

with γ a real, positive number. To do so, we employ a partic-
ular form of the resetting PDF, being a Pareto distribution of
the form

ϕR(t ) = γ r

(1 + rt )1+γ
, (2.29)

with γ > 0. As a difference with the exponential PDF, this
choice allows us to study a resetting PDF with diverging
moments, having that the mth moment will exist whenever
γ > m. In particular, here we will consider diffusive mo-
tion. Introducing the resetting PDF and the propagator to
Eq. (2.22), one can formally write

ϕr (t ) = vγ

√
r

πD



(
γ + 1

2

)
U

(
γ + 1

2
,

1

2
;

rv2

4D
t2

)
, (2.30)

where U (a, b; z) is the Tricomi confluent hypergeometric
function or confluent hypergeometric function of the second
kind (see Sec. 13 in Ref. [27]). Now, from the long time
behavior of the Tricomi function we can obtain the decaying
of the returning PDF:

ϕr (t ) ∼ t−(1+2γ ) as t → ∞. (2.31)

Therefore, the returning PDF always decays faster than the
resetting PDF [see Eq. (2.28)]. This decaying has been also
obtained in stochastic simulations as shown in Fig. 2.

100 101
t

10 4

10 3

10 2

10 1

100

* r(
t)

= 0.75
=1.25
=1.75

FIG. 2. The returning time survival probability ϕ∗
r (t ) =∫ ∞

t ϕr (t ′)dt ′ ∼ 1/t2γ is shown for three different simulations with
the corresponding γ parameters. A diffusion process with D = 5
with resets with r = 1 and returning velocity v = 1 have been
employed. Straight solid lines of slope −2γ have been included as a
guide for the eye.
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Let us now derive the moments of the returning PDF. To
do so, we employ Eq. (2.23) and use the expression for the
nth absolute moment of a Gaussian distribution

〈|x(t )|n〉 = 


(
n + 1

2

)√
(4D)n

π
t

n
2 . (2.32)

This way, one can express the moments of the returning PDF
as 〈

t n
r

〉 = 2vγ rU
(n

2
+ 1,

n

2
+ 1 − γ ; 0

)
. (2.33)

Now, the Tricomi confluent hypergeometric function
U (a, b; z) at z = 0 does not converge when b < 1. This
establishes a condition for the moments of the returning time
PDF to exist, being that the nth moment of ϕr (t ) exist when

γ >
n

2
. (2.34)

In particular, the returning time will have a finite mean (n = 1)
only if γ > 1/2. Therefore, for 1/2 < γ < 1, despite the
exploration (resetting) time has diverging mean value, the
mean returning time to the origin will be finite.

III. MARKOVIAN RESETTING

In this section we analyze the large time behavior of the
propagator ρ(x, t ) and the MSD 〈x2(t )〉 for a random walker
under noninstantaneous resettings when the resetting times
are drawn from an exponential PDF [Eq. (2.24)]. This has
been the most studied case in the literature and various random
walks have been tested under this type of resets. For this
particular case, one has from Eqs. (2.5) and (2.8) that

�(x, s) = rP̂(x, s + r) (3.1)

and

�∗(x, s) = P̂(x, s + r). (3.2)

If P(x, t ) has nondiverging moments, in the large time limit
(small s), Eq. (2.13) reads

ϕ(s) = 1 − sr − sr

v
〈|x̂(s = r)|〉P + O(s2) (3.3)

and the overall propagator reaches the NESS

ρs(x) =
P̂(x, s = r) + r

v

∫ ∞
|x| P̂(z, s = r)dz

1
r + r

v
〈|x̂(s = r)|〉P

. (3.4)

Here we have made use of Eq. (2.14) and inverted by Fourier.
It is interesting to note that this is a general result for any
symmetric propagator P(x, t ) with finite moments under ex-
ponential resetting times.

Despite the tedious calculations employed to reach it, this
result is extremely simple to interpret from a physical point
of view. We have two different contributions to the PDF at
the NESS: the first term in the numerator accounts for the
propagation of the stochastic motion, while the second term
accounts for the walkers returning to the origin at a finite
velocity, after suffering a reset at a position |z| > |x|. In
fact, taking the limit v → ∞, corresponding to instantaneous
resets, one recovers the result recently found in Ref. [20] for
Markovian resetting applied to a general propagator P(x, t ).

In Ref. [24], a model with instantaneous resetting followed
by a random residence period at the origin was studied.
There, it was seen that considering a residence period does
not modify the shape of the NESS. In particular, this occurs
if one considers the returning time distribution obtained in
Eq. (2.25). Contrarily, in Eq. (3.5) one can see that considering
a finite returning velocity does modify the shape of the NESS.
Therefore, from the model in Ref. [24] with the distribution
in Eq. (2.25) one cannot emulate the NESS arising from the
noninstantaneous resetting model.

More specifically, for a diffusive random walks the prop-
agator follows a Gaussian distribution, which in the Laplace
space takes the form P̂(x, s) = √

1/4sD exp(−|x|√s/D). In-
serting this result into Eq. (3.5) we obtain

ρs(x) =
√

r

4D
e−|x|√r/D, (3.5)

which is independent of the returning velocity. This is a well-
known result already obtained for diffusing particles under
Markovian instantaneous resettings [4]. Regarding the MSD,
inserting the exponential distribution for the resetting times
into Eq. (2.20) one readily finds that the MSD tends, in the
t → ∞ limit, to

〈x2〉s = 〈x̂(s = r)2〉P + r
3v

〈|x̂(s = r)|3〉P

1
r + r

v
〈|x̂(s = r)|〉P

. (3.6)

Notably, the overall stationary MSD does not depend only on
the MSD of the motion 〈x2〉P as does when the resetting is
instantaneous [4,20] but also on its first and third absolute-
value moments.

Let us analyze how the overall MSD depends on the
velocity. An extreme (either maximum or minimum) for the
MSD in terms of the velocity v does not exist. Nevertheless,
depending on the relative values of the three first moments of
the motion, the overall MSD may increase, decrease or remain
constant with v. General conditions can be indeed established
for any propagator under exponential resetting PDF. Thus, we
have that the MSD decreases with v if

〈|x̂(s = r)|3〉P > 3r〈|x̂(s = r)|〉P〈x̂(s = r)2〉P, (3.7)

and the MSD remains constant with v. It is independent on the
velocity if

〈|x̂(s = r)|3〉P = 3r〈|x̂(s = r)|〉P〈x̂(s = r)2〉P. (3.8)

In this case, it reduces to the instantaneous resetting value
〈x2〉s = r〈x̂(s = r)2〉P [20]. Finally, the MSD increases with
v if

〈|x̂(s = r)|3〉P < 3r〈|x̂(s = r)|〉P〈x̂(s = r)2〉P. (3.9)

Since 〈x2〉s is directly related to the width of the NESS
distribution, its shape is affected by the returning velocity
v in those cases where 〈x2〉s depends on v, that is, when
one of the conditions (3.7) or (3.9) is fulfilled. Let us be
more specific and consider two cases: the propagators for
Brownian motion and for fractional Brownian motion (fBm).
In the former case P(x, t ) = [4πDt]−1/2 exp(−x2/4Dt ) and
the moments involved in Eq. (3.6) are, in the Laplace space,
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FIG. 3. The results of a stochastic simulation of the stationary
MSD for two fractional Brownian motions with α = 0.75 and α =
1.25, and a normal Brownian motion with α = 1 with noninstan-
taneous resetting (r = 0.2) are presented in terms of the returning
velocity v. The multiplicative constant has been chosen to be K =
rα/
(1 + α) in order to have the same instantaneous resetting limit
(large v) for all of them. The solid lines are the corresponding
analytical predictions from Eq. (3.12).

given by

〈x̂(s)2〉P = 2D/s2

〈|x̂(s)|〉P =
√

D/s3/2

〈|x̂(s)|3〉P = 6D3/2/s5/2. (3.10)

Introducing these results into Eq. (3.6) and simplifying one
finds 〈x2〉s = 2D/r, so that the overall MSD in the large time
limit does not depend on v. Note that in this case, condition
(3.8) is fulfilled and the NESS distribution does not depend
on v.

For a fBm, the propagator is given by P(x, t ) =
[4πKtα]−1/2 exp(−x2/4Ktα ) and the moments we are inter-
ested in are

〈x̂(s)2〉P = 2K
(1 + α)/s1+α

〈|x̂(s)|〉P =
√

4K


(
1 + α

2

)/√
πs1+ α

2

〈|x̂(s)|3〉P = (4K )
3
2 


(
1 + 3α

2

)/√
πs1+ 3α

2 (3.11)

in the Laplace space. It is easy to check from (3.7)–(3.9) that,
unlike the normal diffusion, the overall MSD increases with v

when 0 < α < 1 while it decreases with v when 1 < α < 2.
When α = 1 we recover the normal diffusion case and the
MSD does not depend on v. The overall MSD is found from
Eq. (3.6) and Eq. (3.11), which leads to

〈x2〉s = 2K
(1 + α)

rα

1 + 2
(1+ 3α
2 )

3
√

π
(1+α)

√
4Kr1− α

2

v

1 + 
(1+ α
2 )√

π

√
4Kr1− α

2

v

. (3.12)

In Fig. 3 we show three representative cases of this result
compared to stochastic simulations. There, one can see that
for motion processes, which are prone to stay near the origin,
as fBm with α < 1, the stationary MSD increases with v.

Otherwise, for processes that quickly move away from the
origin, as fBm with α > 1, a larger returning velocity v makes
the stationary MSD decrease. Finally, when α = 1, which is
the case of Gaussian propagator, the overall stationary MSD
is shown to not depend on the returning velocity.

IV. SCALE-FREE RESETTING

In this section we consider a Gaussian propagator and a
Pareto for the resetting time PDF. For practical examples of
phenomena that may generate scale-free reset times we refer
the reader to Ref. [14]. The interest of this distribution is
that the exponent γ controls the existence of finite moments.
When 0 < γ � 1 the distribution lacks moments and behaves
like a Mittag-Leffler distribution in the large time limit, i.e.,
it decays as t−1−γ . However, when 1 < γ � 2 only the first
moment is finite and there exists a characteristic resetting rate,
when 2 < γ � 3 only the first and second moments exist and
so on and so forth.

Our first goal is to study the large time behavior of the
overall distribution. To this end we take the limit s → 0 in
Eq. (2.12). For a diffusive propagator for the exploring state
and the resetting times PDF in Eq. (2.29) we obtain that the
NESS is reached when γ > 1 and it reads

ρs(x) =
(γ − 1)/

√
4πD

r

1 +
√

Dr
v


(γ− 1
2 )


(γ−1)

[



(
γ − 1

2

)
U

(
γ − 1

2
,

1

2
;

rx2

4D

)

+ r|x|
2v




(
γ + 1

2

)
U

(
γ + 1

2
,

3

2
;

rx2

4D

)]
. (4.1)

This has been shown to be in agreement with the results from
stochastic simulations of the process [see inset in Fig. 4(a)].
As for the stationary state with Markovian resetting, this result
shows that the returning state modifies the shape of the NESS.
Particularly, in Fig. 4(a) one can see that the NESS becomes
wider when increasing the velocity, showing an asymptotic
tendency to the instantaneous resetting NESS.

Our second goal is to find the overall MSD by using
Eq. (2.20). To this end we need to compute separately the
Laplace transforms that appear in this equation. The Laplace
transform of the Pareto PDF is

ϕ̂R(s) = γU (1, 1 − γ ; s/r). (4.2)

Analogously,

L[ϕR(t )〈|x(t )|〉P] = γ

√
D

r
U

(
3

2
,

3

2
− γ ; s

s

r

)

L[ϕR(t )〈|x(t )|3〉P] = 6γ

(
D

r

) 3
2

U

(
5

2
,

5

2
− γ ;

s

r

)
, (4.3)

where we made use of Eq. (3.10). Finally, since the survival
PDF is ϕ∗

R(t ) = (1 + rt )γ we get

L[ϕ∗
R(t )〈x(t )2〉P] = 2D/r2U (2, 3 − γ ; s/r). (4.4)

Taking into account the asymptotic expansions for small
arguments of the Tricomi functions (see Sec. 13 in Ref. [27]
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FIG. 4. Diffusive motion reset according to a Pareto PDF with r = 0.2 has been stochastically simulated. On the left (a), we show the
NESS from simulations with exponent γ = 2.25 in the Pareto PDF, diffusion constant D = 0.05 and different returning velocities. The solid
black line corresponds to the instantaneous resetting case, which can be obtained by taking the v → ∞ limit in Eq. (4.1). As an inset, we
include the relative distance between the different noninstantaneous resetting NESS and the instantaneous resetting NESS for simulations
(squares, dots and triangles) and the corresponding analytical distribution from Eq. (4.1) (solid curves). On the right (panel B), the stationary
MSD is plotted in terms of γ for three different values of the returning velocity and with diffusion constant D = 5.

for details) we find that, for s/r � 1,

1 − ϕ̂R(s) ∼
{

sγ , γ � 1
s, γ > 1 (4.5)

and from (4.3) we obtain

L[ϕR(t )〈|x(t )|〉P] ∼
{

sγ− 1
2 , γ � 1

2
s0, γ > 1

2 ,
(4.6)

L[ϕ∗
R(t )〈x(t )2〉P] ∼

{
sγ−2, γ � 2
s0, γ > 2,

(4.7)

L[ϕR(t )〈|x(t )|3〉P] ∼
{

sγ− 3
2 , γ � 3

2
s0, γ > 3

2 .
(4.8)

Inserting the results (4.5)–(4.8) into Eq. (2.20) we find the
overall MSD in the large time limit. The temporal scaling
depends critically on the value of the exponent γ as follows:

〈x2(t )〉 ∼
⎧⎨
⎩

t, 0 < γ � 1
t2−γ , 1 < γ � 2

t0, γ > 2
, (4.9)

where, for γ > 2 the following stationary value is reached:

〈x2〉s = 2D

r(γ − 2)

1 + 
(γ−3/2)
v
(γ−2)

√
rD

1 + 1
v


(γ−1/2)

(γ−1)

√
rD

. (4.10)

Therefore, when 0 < γ � 1 the overall MSD is diffusive,
when 1 < γ < 2 is subdiffusive and when γ � 2 there is
stochastic localization, i.e., it saturates to a constant value with
the consequent formation of a NESS. So that, as γ increases,
the resetting PDF decays faster, i.e., the reset rate increases by
hindering the overall transport process. It is interesting to note
that if the instantaneous resetting limit (v → ∞) is taken, the
asymptotic scaling of the MSD remains the same. This can be
explained with the result in Sec. II B in which we have found
that the resetting PDF always decays slower than the returning
PDF. This means that, at long times, the former becomes more
relevant than the latter and therefore the effect of the latter
is negligible. Seeing this, the asymptotic equivalence of the

MSD scaling for instantaneous and noninstantaneous resetting
is not surprising. In fact, this result resembles what has been
recently found for a stochastic motion with a residence period
after resetting [24]. There, it is shown that when both the
resetting and the residence PDFs are long tailed, the residence
only affects the asymptotic transport properties of the overall
process when its PDF decays slower than the resetting PDF
(i.e., it becomes more relevant at long times).

In Eq. (4.10) one can see that the stationary MSD is
sensible to the returning velocity [see Fig. 4(b) for numerical
confirmation] and in this case the MSD is always an increasing
function of v. In addition, the Pareto PDF for resetting times
makes possible the coexistence of a subdiffusive behavior [see
the MSD in Eq. (4.9) for 1 < γ < 2] with the existence of a
NESS given by Eq. (4.1). This counterintuitive phenomenon
is explained by noticing that the NESS for this case has
divergent MSD. The subdiffusive scaling measures then the
speed at which the second moment of ρ(x, t ) diverges. Actu-
ally, the NESS in Eq. (4.1) exhibits the asymptotic behavior
ρs(x) ∼ 1/|x|2γ−1 when x2  2D/r, which resembles the tail
of a Lévy distribution precisely when 1 < γ < 2.

V. CONCLUSIONS

We have developed a two-state model to describe resetting
as a noninstantaneous movement towards the origin. In one of
the states the walker is exploring and performs a random walk,
while in the other it travels ballistically until it reaches the
origin to start exploring again. In some way, the returning state
can be seen as an exploration cost, which depends on both the
type of movement in the exploring state and its duration.

We first focus on the case where the resetting (exploring)
times are drawn from an exponential distribution and we
derive an expression for the stationary distribution attained in
this case. It is seen that it does not depend on the returning
velocity for a diffusion process and the distribution for the
exponential instantaneous resetting case is recovered [4]. Re-
garding the stationary value of the MSD, a general formula
is found in terms of the first, second, and third absolute-value
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moments of the propagator, the resetting rate and the returning
velocity. It is seen to be an increasing function of the returning
velocity for exploring motions, which are more likely to stay
close to the origin (fBm with α < 1) and a decreasing function
when the exploring motion is more likely to occur away from
it (fBm with α > 1). Therefore, depending on the type of
exploration, increasing the returning velocity may help or
harm to have a bigger area of influence.

In the case of diffusion with resetting at times drawn from
a Pareto PDFs, we find that the asymptotic scaling of the
MSD in the noninstantaneous resetting model does not depend
on the returning velocity and, consequently, is equivalent
to the scaling observed in the instantaneous resetting limit.
This is, the MSD scales linearly with time for γ � 1, when
1 < γ � 2 the overall transport is subdiffusive and for γ > 2
the MSD reaches a stationary value. In this case there is a

NESS with a shape that depends explicitly on the returning
velocity.

From a practical point of view, the results of this work may
also help us to understand the underlying dynamics of certain
processes. For instance, in a central-place foraging context
where animals explore their environment and occasionally
return to their nest, the model gives the particular relation
between the dynamics of exploration and return to the nest,
on one side, and the stationary distribution on the other. This
relation could in principle be validated by empirical data.
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Stochastic resetting can be naturally understood as a renewal process governing the evolution of an underlying
stochastic process. In this work, we formally derive well-known results of diffusion with resets from a renewal
theory perspective. Parallel to the concepts from renewal theory, we introduce the conditioned backward B and
forward F times being the times since the last and until the next reset, respectively, given that the current state
of the system X (t ) is known. These magnitudes are introduced with the paradigmatic case of diffusion under
resetting, for which the backward and forward times are conditioned to the position of the walker. We find
analytical expressions for the conditioned backward and forward time probability density functions (PDFs), and
we compare them with numerical simulations. The general expressions allow us to study particular scenarios.
For instance, for power-law reset time PDFs such that ϕ(t ) ∼ t−1−α , significant changes in the properties of the
conditioned backward and forward times happen at half-integer values of α due to the composition between the
long-time scaling of diffusion P(x, t ) ∼ 1/

√
t and the reset time PDF.

DOI: 10.1103/PhysRevE.106.034126

I. INTRODUCTION

The temporal dynamics of point processes are described by
successive events in the time axis. At each of these events, an
action is performed and the system is modified in some way. It
may be the flip of a spin in a magnetic system, the breakdown
of a machine in a factory, or lightning strikes during a storm.

In many cases, the time spotted between two successive
events can be described by independent, identically dis-
tributed (iid) random variables. These type of processes are
called renewal processes [1]. The statistics of renewal pro-
cesses can be analyzed in terms of the density function of
the time between two events, i.e., the holding time probability
density function (PDF). Some examples of these properties
are the number of events that occurred until time t or the
occupation times of different states of the system [2,3]. Two
important magnitudes in renewal theory are the forward and
the backward times, being the time until the next and since
the last event, respectively. The statistical properties of the
forward and backward time PDFs depend on the properties of
the holding time PDF. For instance, if the holding time PDF
is exponential, the forward and backward times have been
shown to be exponential too in the long t limit [2]. Fat-tailed
holding time PDFs have also been investigated thoroughly in
[2,3].

In the past few years, a particular type of renewal pro-
cess has been studied exhaustively in the scientific literature:
stochastic resetting [4,5]. Resets are usually treated as a
renewal process forcing another stochastic process to start
again. For instance, a diffusive random walker would follow
its path until an event (reset) happens. Then, the walker is
set to be at its initial position to diffuse until the next event
(reset). Since diffusion with Markovian resets was studied in

[6], many stochastic processes have been analyzed when they
are suddenly set to start again. For instance, resetting applied
to Levy flights [7–9], run-and-tumble random walkers [10,11],
and subdiffusive [12,13] random walkers has been studied,
as well as other types of stochastic processes [14–21]. Also,
different types of resetting mechanisms have been considered,
apart from instantaneous Markovian resetting [22–27].

The vast majority of these works focus on two measures:
the propagator and the mean first passage time of the pro-
cess. While the first captures the spatial behavior, the latter
provides information about the possible convenience of re-
setting to facilitate reaching certain interesting areas in a
minimum amount of time. Their properties have been studied
extensively for different dynamics and resetting mechanisms,
as has recently been reviewed in [5]. Particularly, renewal
equations have been employed to derive general features of
stochastic search with resets [28,29]. Renewal theory may also
provide supplementary tools to analyze stochastic dynamics
with resets [11,30,31]. For instance, in [31] the forward time
has been shown to be crucial to the understanding of resetting
expediting first-passage times. In this work, we introduce the
conditioned backward and forward times, which are the times
since the last reset and until the upcoming reset, given that we
know the current state of the process. For a random walker,
this would be the backward and forward times conditioned on
the walker being at position x. This is particularly interesting
when asymptotically it does not depend on the measurement
time t . In such cases, the properties of the backward and
forward times may be induced from the current state only.
This may be useful, for instance, in financial applications.
Suppose a particular investor occasionally withdraws capital
to accumulate profit. Then, from the current gains one could
get statistics about the time until the next withdrawal. Also,
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it may have industrial applications: by knowing the current
state of a certain part of the assembly line, one may have
information about its lifetime.

With this aim, in the following we consider a random
walker described by a propagator P(x, t ), starting at x = 0,
which resets its position at times given by the reset time
PDF ϕ(τ ). The resulting motion can be seen as a compound
process from two individual stochastic processes: a temporal
process for the resetting mechanism and a time-dependent
spatial process for the position of the walker between two
successive resets. In Sec. II we study the temporal dynamics of
the process from a renewal theory perspective, and in Sec. III
we include the spatial variable. In Sec. IV we introduce the
conditioned backward and forward PDFs, and we conclude
the article in Sec. V.

II. RENEWAL THEORY FOR STOCHASTIC RESETTING

A renewal process is a counting process where the times
between successive events τi, happening at times ti and ti+1

(i.e. τi = ti+1 − ti), are variables distributed according to a
holding time distribution ϕ(τi ). With this simple, general
setup one can study multiple features in terms of the distri-
bution ϕ(τi ), as the number of events at a given time t , or the
time of the last and the next event given that the measurement
time is t . We refer the interested reader to Chap. 7 in [32] for
a detailed viewpoint on renewal processes.

In the context of random walks, a renewal perspective has
been extensively employed since [33]. In the current work,
we are mainly interested in its applications to resetting, which
has already been explored in recent articles [28,29]. The first
step is to study the distribution of the times since the last reset
and to the next one at a given time t , namely the backward
(B) and forward (F ) times, respectively. To do so, we derive
an expression for the probability QN (t ) that the N th event
happens at time t . For a renewal process, the probability of the
N th event at time t is equal to the probability of the (N − 1)th
event happening at any past time t − t ′, times the probability
of a single event in the remaining time t ′. This is

QN (t ) =
∫ t

0
QN−1(t − τ )ϕ(τ )dt ′ (1)

or

Q̂N (s) = Q̂N−1(s)ϕ̂(s), (2)

where f̂ (s) = Ls[ f (t )] = ∫ ∞
0 e−st f (t )dt is the Laplace trans-

form of f (t ) with respect to the variable t . This recurrence
equation can be easily solved with the initial condition
Q̂1(s) = ϕ̂(s) to obtain

Q̂N (s) = ϕ̂(s)N . (3)

Summing over N , we can get the overall PDF Q(t ) of the last
event happening at time t . In the Laplace space, it reads

Q̂(s) =
∞∑

N=0

ϕ̂(s)N = 1

1 − ϕ̂(s)
. (4)

In renewal theory, Q(t ) is called the rate function. In the limit
of long times, and assuming that the mean holding time is
finite, we have that Q(t ) ∼ 1/〈τ 〉. This is just the time deriva-

tive of the mean number of renewals in the interval (0, t ), i.e.,
〈N (t )〉 ∼ t/〈τ 〉 [3].

Now, the probability that exactly N events have happened
before the measuring time t and the last reset happened at the
previous time t − B is thus

f B(N, t, B) =
∫ t

0
dt ′QN (t ′)δ(t − t ′ − B)

∫ ∞

B
dyϕ(y). (5)

Now, summing over N , the PDF of the backward time B at the
measurement time t reads

f B(t, B) =
∞∑

N=0

∫ t

0
dt ′QN (t ′)δ(t − t ′ − B)

∫ ∞

B
ϕ(y)dydt ′

= ϕ∗(B)
∫ t

0
Q(t − t ′)δ(t ′ − B)dt ′

= Q(t − B)ϕ∗(B). (6)

ϕ∗(t ) = ∫ ∞
t ϕ(t ′)dt ′ is the survival probability of the holding

time, which in the Laplace space reads

ϕ̂∗(s) = 1 − ϕ̂(s)

s
.

Transforming Eq. (6) by Laplace in both t and B, with con-
jugate variables s and u, respectively, and using Eq. (3), one
finds a formal expression for the backward time PDF in terms
of the holding time PDF:

f̂ B(s, u) = 1

1 − ϕ̂(s)

1 − ϕ̂(s + u)

s + u
. (7)

Let us now derive a similar expression for the forward time
distribution f F (t, F ), which is the PDF of the time until the
next event F given that the measurement time is t . In this case,

f F (N, t, F ) =
∫ t

0
QN (τ )ϕ(t + F − τ )dτ. (8)

The forward time PDF is then

f F (t, F ) =
∞∑

N=0

f F (N, t, F )

=
∞∑

N=0

∫ t

0
QN (τ )ϕ(t + F − τ )dτ, (9)

which after transforming by Laplace in t and F , and using
Eq. (6), turns into

f̂ F (s, u) = 1

1 − ϕ̂(s)

ϕ̂(u) − ϕ̂(s)

s − u
. (10)

The forward waiting time plays an important role when study-
ing aging phenomena in random walks (see Chap. 4 in [34])
or the first passage of random walks with resetting [31]. Equa-
tions (7) and (10) for the backward and forward time PDFs
have already been derived and studied intensively in previous
works [2,3].

III. PROPAGATOR

The temporal dynamics of a renewal process can be used
to describe the resetting of a physical system. Resets are re-
newals of an underlying stochastic process. Here, we combine
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the spatial dynamics of a diffusive random walker with the
renewal benchmark presented in the previous section. For a
general, stochastic process with a time-dependent PDF P(x, t )
and resets happening at random times distributed according to
the PDF ϕ(t ), the overall propagator can be written as

ρ(x, t ) =
∫ t

0
f B(t, B)P(x, B)dB

=
∫ t

0
Q(t − B)ϕ∗(B)P(x, B)dB, (11)

where f B(t, B) is the distribution of the last reset (event) hap-
pening at time t − B, i.e., the backward time PDF as defined
in Sec. II.

The propagator of a diffusive random walker is

P(x, t ) = 1√
4πDt

e− x2

4Dt (12)

so that its Fourier transform for the spatial variable reads

P̃(k, t ) =
∫ ∞

−∞
e−ikxP(x, t ) = e−k2Dt . (13)

Introducing this expression into the Fourier transform of
Eq. (11), we obtain

ρ̃(k, t ) =
∫ t

0
Q(t − B)ϕ∗(B)e−k2DBdB. (14)

And performing the Laplace transform on the time variable,
one gets the global propagator in the Fourier-Laplace space in
terms of the reset time PDF:

ˆ̃ρ(k, s) = 1 − ϕ̂(s + Dk2)

s + Dk2

1

1 − ϕ̂(s)
= ϕ̂∗(s + Dk2)

1 − ϕ̂(s)
, (15)

where we have used Eq. (4) to express the result in terms of
the backward time PDF. Then, the behavior of ρ(x, t ) depends
exclusively on the reset time PDF.

In the following, we study the overall propagator for dif-
ferent types of reset time PDFs. We first analyze distributions
with a finite first moment to later consider distributions with
all the moments diverging.

A. ϕ(t ) with a finite first moment

We start by considering reset time PDFs with a finite first
moment. This includes the cases in which all the moments
are finite [e.g., Markovian resetting ϕ(t ) = re−rt ], but also the
cases in which only the first moment converges [e.g., a power-
law PDF decaying as ϕ(t ) ∼ t−1−α for large t with 1 < α <

2]. In all these cases, the reset time PDF can be expanded in
the Laplace space as ϕ̂(s) ≈ 1 − 〈t〉ϕs + o(s). In the long-time
limit (small s), Eq. (15) reads

ˆ̃ρ(k, s) 
 ϕ̂∗(Dk2)

〈t〉ϕs
. (16)

Taking into account that

ϕ̂∗(Dk2) =
∫ ∞

0
e−Dk2tϕ∗(t )dt, (17)

and applying the inverse Fourier and Laplace transforms for
the spatial and time variables, respectively, the propagator

reads

ρ(x, t ) 
 1

2π〈t〉ϕ

∫ ∞

−∞
dkeikx

∫ ∞

0
dt ′e−Dk2t ′

ϕ∗(t ′)

= 1

〈t〉ϕ

∫ ∞

0
dt ′ ϕ∗(t ′)√

4πDt ′ e
− x2

4Dt ′ . (18)

Since this is time-independent, a stationary state is reached in
this scenario, and the propagator is given by

ρs(x) = 1

〈t〉ϕ

∫ ∞

0
dt ′ ϕ∗(t ′)√

4πDt ′ e
− x2

4Dt ′ . (19)

This is general for any type of reset time PDF with a finite
first moment. Therefore, under this condition, the resetting is
always capable of stopping the expansion of the diffusion and
reaching a stationary distribution in space. Let us consider
specific types of resetting PDFs. To deal with Markovian
resetting, we consider the exponential PDF, i.e.,

ϕ(t ) = re−rt , (20)

where r is the constant reset rate. Inserting Eq. (20) into
Eq. (19), one has

ρs(x) = 1

2

√
r

D
e−|x|√r/D, (21)

which is a well-known result in the resetting literature [6].
Otherwise, for non-Markovian resetting we consider a power-
law reset time PDF of the form

ϕ(t ) = α/T

(1 + t/T )1+α
(22)

with α > 1 (i.e., a Pareto type II or Lomax distribution), such
that

ϕ∗(t ) = 1

(1 + t/T )α
. (23)

Then

ρs(x) = α − 1√
4πDT

�

(
α − 1

2

)
U

(
α − 1

2
,

1

2
,

x2

4DT

)
. (24)

Here, U (a, b, z) is Tricomi’s (confluent hypergeometric) func-
tion (see Chap. 13 in [35]). This result was also found in
[22] by similar means. In the limit x → 0, the argument of
the Tricomi function is small, and using the expansions from
Sec. 13.1 in [35], we have

ρs(x) 
 (α − 1)�(α − 1/2)√
4DT �(α)

− α − 1

2DT
|x|, (25)

and at the resetting point it reaches a finite value

ρs(0) = (α − 1)�(α − 1/2)√
4DT �(α)

. (26)

When the argument is large, i.e., x2 � 4DT , using Eq. 13.1.8
of Ref. [35], we obtain

ρs(x) 
 (α − 1)�(α − 1/2)√
4πDT

(√
4DT

|x|
)2α−1

. (27)

Equations (21) and (24) are in agreement with numerical
simulations of the process, as shown in Fig. 1. The stationary
state in Eq. (24) is reached if α > 1 and hence the solution
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FIG. 1. Log-lin plot of the stationary distribution for diffusion
with an exponential reset time distribution (red) and two Pareto reset
time distributions with different decay exponents α (green and blue).
The simulations have been performed for N = 105 trajectories with
D = 0.5, T = 1 (r = 1 for the exponential), and measurement time
t = 104. The solid curves show the analytical results in Eqs. (21) and
(24).

is time-independent. However, when α < 1 a natural steady
state does not always exist, as we show below.

B. ϕ(t ) with all diverging moments

We consider now the scenario in which all the moments of
the reset time diverge. We can express the distribution in the
Laplace space as

ϕ̂(s) ≈ 1 − bαsα with 0 < α < 1 (28)

for small s. This corresponds to a power-law decay of the form
t−1−α as t → ∞. For a Pareto distribution, bα = T α�(1 − α)
with α < 1. Plugging this result into Eq. (4), we have that

Q̂(s) 
 1

�(1 − α)(sT )α
, sT  1. (29)

Applying the inverse Laplace transform, we get

Q(t ) 
 T −α

�(1 − α)�(α)t1−α
, t � T, (30)

which is decreasing with measurement time. Let us analyze
ρ(x, t ) by studying the bulk of the distribution and its tail
separately.

1. Bulk: t � x2/D and t � T

When the measurement time is much larger than the posi-
tion, the integral in Eq. (11) can be simplified with Eq. (30).
Working out the resulting integral, one arrives at the following
expression for the propagator in this region:

ρ(x, t ) 
 1√
4πD

1

�(1 − α)�(α)

×
∫ t

0

e− x2

4DB√
B(t − B)1−α (T + B)α

dB. (31)

If we analyze the long-time limit t � T , the propagator in the
bulk region can be expressed as (see Appendix A 1 for further

details)

ρ(x, t ) 

⎧⎨
⎩

�( 1
2 −α)

2π�(1−α)
1√
Dt

if 0 < α < 1
2 ,

sin(πα)�(2α−1)
π�(α)(Dt )1−α

1
|x|2α−1 if 1

2 < α < 1.

(32)

It is worth noting that the long-time behavior of the prop-
agator does not have a unique expression for all values of
α < 1. While for α > 1/2 it decays as t−1+α , when α < 1/2
it decays as t−1/2, i.e., independent of the exponent α. This
change of behavior below or above α = 1/2 has been ob-
served to appear for various measures of a diffusive process
under resetting times drawn from the Pareto PDF given in
Eq. (22). For instance, in [23], the mean first passage time
is shown to converge only when α > 1/2, and the PDF at
the origin ρ(0, t ) has been seen to behave differently for
α < 1/2 and α > 1/2 [25]. The two distinct behaviors of
Eq. (32) have been numerically studied, and the results are
presented in Fig. 2. There, it is shown that for α < 1/2 the
propagator tends to be flat when x2  4Dt , while it behaves
as ρ(x, t ) ∼ 1/|x|2α−1 when α > 1/2.

2. Tail: x2 ∝ 4Dt and t � T

When x2 is comparable to Dt , one has to deal with Eq. (15)
differently. In this scenario, both t and x2/D are large, so s and
s + Dk2 are small enough to consider that

ϕ̂(s + Dk2) 
 1 − bα (s + Dk2)α. (33)

Then, the propagator in the Fourier-Laplace space can be
approximated by

ˆ̃ρ(k, s) ≈ 1

sα (s + Dk2)α
= 1

s
g

(
k√
s

)
, (34)

where we have introduced the scaling function

g(χ ) = 1

(1 + Dχ2)1−α
. (35)

In Appendix A 2, we analyze this expression following the
same procedure as in [2]. Doing so, we get the formula for the
propagator when x2 ∝ 4Dt as

ρ(x, t ) 
 1

�(1 − α)

e− x2

4Dt√
4πDt

U

(
α,

1

2
+ α,

x2

4Dt

)
. (36)

This result was found in [22] by different means. This has
been compared to numerical simulations of the process for
two distinct exponents α. The results are shown in Fig. 2.

IV. CONDITIONED BACKWARD AND FORWARD TIME

Renewal theory provides information about the backward
and forward times of a temporal process given that the current
absolute time (measurement time) since the dynamics started
is known. Nevertheless, in some scenarios, the measurement
time may not be an available quantity. For instance, for a ran-
dom walker that occasionally resets its position by returning
to the origin, it is clear how to determine the current posi-
tion, while it may not be obvious how to determine the time
since its motion started. With this in mind, in this section we
introduce the concepts of conditioned forward and backward
time PDFs, being the PDF for the forward and backward times
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FIG. 2. (a) Propagator of diffusion with Pareto resetting (α = 0.25) for the simulation of N = 105 trajectories at different measurement
times t . The multiplicative factor in the y-axis is C1(t ) = 2π�(1−α)

�(1/2−α)

√
Dt . As the time increases, the renormalized propagator tends to be flat

as found in Eq. (32). (b) Propagator of diffusion with Pareto resetting (α = 0.75) for the simulation of N = 105 trajectories at different
measurement times t . The multiplicative factor in the y-axis is C2(t ) = π�(α)(Dt )1−α

sin(πα)�(2α−1) . As time increases, the propagator approaches this scaling
limit. In both panels A and B, the diffusion constant is D = 0.5 and T = 1 in the Pareto reset distribution. The solid colored lines have been
drawn from Eq. (36), while the dots, the triangles, and the squares correspond to the propagator obtained from the simulations. The solid black
curves correspond to the asymptotic behavior found in Eq. (32). Both panels have been plotted on the log-lin axis.

given that the current state of the system x is known. We
study this magnitude for different types of reset time PDF and
determine the conditions under which a stationary form for
long t is attained. This is particularly relevant since it permits
the study of the backward and forward times by only knowing
the current state, independently of the measurement time of
the process. In the following, only the position of a diffusive
random walker will be considered for an in-depth study of the
conditioned forward and backward times, though some of the
results herein derived are general for any stochastic process.

A. Conditioned backward time

Let us start by computing the time since the previous reset,
given that the walker is currently at position X(t ). This is,

p(B|x, t ) = p(B, x|t )

p(x|t )
= p(x|B, t )p(B|t )

p(x|t )
, (37)

where Bayes’ law has been employed twice. Now, we de-
fine f (B|x, t ) = p(B|x, t ) to be the conditioned backward
time PDF. On the right-hand side, p(B|t ) = f B(t, B) is the
backward time PDF, p(x|t ) = ρ(x, t ) is the propagator of the
process with resets, and p(x|B, t ) = P(x, B) is the Gaussian
propagator. Note that the latter is independent of t since the
position of the walker only depends on the time elapsed since
the last reset. Introducing the expression for the backward
time PDF in Eq. (6), one gets

f (B|x, t ) = pB(B, x|t )

ρ(x, t )
= Q(t − B)ϕ∗(B)P(x, B)

ρ(x, t )
. (38)

In the following, we derive f (B|x, t ) from a different
perspective, which will be used afterwards to obtain the equiv-
alent distribution for the conditioned forward time. We start by
computing p(B, x|t ) in Eq. (37). This is the joint PDF of the
walker being at position x and that the last reset happened at a
previous time t-B, given that measurement time is t . As for the
usual backward time, we start by finding the equation when

exactly N resets have happened before the measuring time,
i.e.,

pB(N, B, x|t ) =
∫ t

0
QN (τ )δ(t − τ − B)ϕ∗(B)P(x, B)dτ,

(39)

where we have included the condition that the walker must
be at position X(B) at the measurement time t . Adding all the
contributions for N , we get

pB(B, x|t ) =
∞∑

N=0

∫ t

0
QN (τ )δ(t − τ − B)ϕ∗(B)P(x, B)dτ.

(40)

Applying the Laplace transform and using Eq. (3), one obtains

p̂B(B, x|s) = ϕ∗(B)P(x, B)e−sB
∞∑

N=0

Q̂N (s)

= e−sB

1 − ϕ̂(s)
ϕ∗(B)P(x, B), (41)

and applying the inverse Laplace transform to the result back
to t , taking Eq. (4) into account, we readily obtain

pB(B, x|t ) = Q(t − B)ϕ∗(B)P(x, B). (42)

It is easy to see that integrating Eq. (42) over x one obtains
the marginal PDF for B given in Eq. (6). On the other hand,
the marginal PDF obtained by integrating p̂B(B, x|s) over B is
the propagator of a process with resets given by Eq. (11). Now,
the backward time distribution conditioned on the walker be-
ing at position x at time t reads

f (B|x, t ) = pB(B, x|t )

ρ(x, t )
= Q(t − B)ϕ∗(B)P(x, B)

ρ(x, t )
, (43)

which is the same as Eq. (38).
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FIG. 3. (a) Stationary conditioned backward time distribution for diffusion and exponential resetting with r = 0.05 and Pareto resetting
with T = 5 and two different values of the decay exponent α. The solid lines have been drawn from the behaviors in Eqs. (46) and (47) for the
exponential and Pareto cases, respectively. (b) Conditioned backward time PDF for diffusion and Pareto resetting with T = 5 and α = 0.25.
Three different measurement times have been plotted, showing that f (B|x, t ) does not reach a stationary shape. The solid lines correspond
to the behavior in Eq. (47) with the time-dependent normalization defined in Eq. (49). Both panels (a) and (b) have been obtained averaging
N = 106 different trajectories with diffusion constant D = 0.1.

Let us study the long-time limit (t � B) of this expression,
where we have that Q(t − B) 
 Q(t ). This approximation is
accurate for systems where the measurement time scale of the
process is many orders of magnitude smaller than the time
elapsed since it started. Thus, in this scenario,

f (B|x, t ) 
 Q(t )

ρ(x, t )
ϕ∗(B)P(x, B). (44)

The time dependence of f (B|x, t ) comes from the normaliza-
tion factor only. So, if Q(t )/ρ(x, t ) attains a stationary value
for long t , then a stationary conditioned backward time PDF
f (B|x) exists that only depends on the current position x.
Despite focusing on the position of a random walk, let us
recall that this expression is general for any stochastic process
ξ (t ) with propagator P(ξ, t ) and resets happening at times
given by ϕ(t ). In the following, we analyze the characteristics
of the conditioned backward time PDF for different reset time
distributions.

1. ϕ(t ) with a finite first moment

When the reset time PDF has a finite first moment, the
diffusion process attains the stationary state given by Eq. (19).
Also, in the asymptotic limit t � T , one has Q(t ) 
 1/〈t〉ϕ .
Therefore, the ratio Q(t )/ρ(x, t ) reaches a stationary value,
and from Eq. (44) the conditioned backward time PDF tends
to

f (B|x) 

ϕ∗(B)√

B
e− x2

4DB

∫ ∞
0 dt ′ ϕ∗(t ′ )√

t ′ e− x2

4Dt ′
, t � T, B (45)

considering a diffusive process [Eq. (12)].
When the resetting PDF is exponential, the stationary PDF

behaves as

f (B|x) ∼ e−rB− x2

4DB√
B

, t � T, B. (46)

Thus, the PDF of the conditioned backward time explicitly
depends on the position of the walker even if the resetting is a
Markov process. In Fig. 3(A) we compare Eq. (46) (solid line)
with numerical simulations (circles). An excellent agreement
is observed.

If the reset time PDF is a Pareto distribution with α > 1,
the behavior of the stationary PDF with B is as follows:

f (B|x) ∼ e− x2

4DB√
B(1 + B/T )α

, t � T, B, (47)

which has been corroborated by numerical simulations of the
process in Fig. 3(a) (triangles). We can identify two different
regimes. For small B, such that B ∝ x2/4D, the diffusion
process dominates the behavior of f (B|x) and its shape is
Gaussian. However, when B � x2/4D, the effect of the re-
setting becomes more important and the resulting conditioned
backward time PDF is a power law of the form

f (B|x) ∼ 1

Bα+1/2
as B � x2/4D. (48)

Note that when 1 < α < 3/2, while the reset time PDF has
a finite mean, the conditional mean 〈B|x〉 apparently di-
verges. Nevertheless, f (B|x) is the asymptotic distribution of
f (B|x, t ), which has a cutoff at t . Therefore, even when t is
large, the cutoff prevents the first moment of the conditioned
backward time PDF from diverging.

2. ϕ(t ) with all diverging moments

Let us study the behavior of the conditioned backward time
PDF for power-law resets of the form Eq. (23) with infinite
first moment (α < 1). In this case, if t � x2/DB, we have

Q(t )

ρ(x, t )



⎧⎨
⎩

2π

�(α)�( 1
2 −α)

√
D

T αt
1
2 −α

if 0 < α < 1
2 ,

�(α)
�(2α−1)

|x|2α−1

D1−αT α if 1
2 < α < 1.

(49)

So, for α � 1/2, it decays as tα−1/2 and consequently
f (B|x, t ) does not reach a stationary distribution in this case.
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In Fig. 3(b) we show numerical simulations on which the
conditioned backward time PDF varies with t even in the long
t limit. However, it does reach a stationary distribution when
1/2 < α < 1. This case is shown in Fig. 3(a), where we com-
pare the result in Eq. (47) with the numerical simulations for
α = 0.75 (squares). Here, the ratio Q(t )/ρ(x, t ) is finite when
t → ∞ and therefore f (B|x, t ) converges to the distribution
in Eq. (47) as when α > 1 [see Fig. 3(b)].

B. Conditioned forward time

We can proceed similarly for the forward time PDF. In
this case, we are interested in knowing the time F until the
upcoming reset, given that we know the position of the walker
and the measurement time t . We start again by computing the
joint PDF of the walker being at position x at time t and the
following reset happening at time t + F . Given that exactly N
resets have occurred since the process started, the joint PDF
reads

pF (N, F, x|t ) =
∫ t

0
QN (t ′)ϕ(t + F − t ′)P(x, t − t ′)dt ′,

(50)
which is similar to Eq. (8) introducing the probability of being
at x at time t . Summing over N , we have that

pF (F, x|t ) =
∞∑

N=0

∫ t

0
QN (t ′)ϕ(t + F − t ′)P(x, t − t ′)dt ′,

(51)
and performing the Laplace transform on t , we obtain

p̂F (F, x|s) = Ls[ϕ(t + F )P(x, t )]

1 − ϕ̂(s)
, (52)

where we have used Eq. (3). Using Eq. (4), the above equa-
tion can be inverted by Laplace to obtain

pF (F, x|t ) =
∫ t

0
Q(t − t ′)ϕ(t ′ + F )P(x, t ′)dt ′. (53)

Now, one can recover the general propagator ρ(x, t ) in
Eq. (11) by integrating over F . The PDF for F is thus

f (F |x, t ) = pF (F, x|t )

ρ(x, t )
=

∫ t
0 Q(t − t ′)ϕ(t ′ + F )P(x, t ′)dt ′

ρ(x, t )
.

(54)
Again, this expression has been derived for the position of
a random walker, but it is general for any stochastic process
ξ (t ) with resets. As we have done for the backward, in the
following we study the behavior of this PDF for different
types of reset time distributions.

1. ϕ(t ) with finite first moment

Let us first consider resets happening with a finite mean
time. In Sec. III we have seen that the system reaches a
stationary state under this condition. So, in the long t limit,

f (F |x, t ) 

∫ t

0 Q(t − t ′)ϕ(t ′ + F )P(x, t ′)dt ′

ρs(x)
(55)

and, applying the Laplace transform for t ,

f̂ (F |x, s) 
 Q̂(s)L[ϕ(t ′ + F )P(x, t ′)]
ρs(x)

. (56)

Now, recalling that Q̂(s) ∼ 1/〈t〉ϕs for small s (large t), we
have that

f (F |x) = lim
t→∞ f (F |x, t ) 


∫ ∞
0 ϕ(t ′ + F )P(x, t ′)dt ′

〈t〉ϕρs(x)
. (57)

If the resets are exponentially distributed as in Eq. (20), the
conditioned forward time PDF approximation takes the same
exponential form,

f (F |x) 
 re−rF , (58)

which does not depend on the position of the walker x. This is
due to the Markovianity of the resetting process. Regardless
of the moment (or position) we consider, the time until the
next reset is equally distributed.

If, instead, the reset times are drawn from a Pareto PDF
according to Eq. (22) with α > 1, the stationary conditioned
forward time PDF can be approximated by

f (F |x) 
 α
(
α − 1

2

)
T

(
1 + F

T

) 1
2 +α

U
(
α + 1

2 , 1
2 , x2

4D(T +F )

)
U

(
α − 1

2 , 1
2 , x2

4DT

) . (59)

We refer the reader to Appendix B for the detailed deriva-
tion. For small arguments, the Tricomi function tends to a
constant value. Therefore, in the limit F � x2/4D, the only
dependence on the forward time comes from the power-law
factor, and the conditioned forward-time PDF scales with F
as

f (F |x) ∼ T α− 1
2

F
1
2 +α

as F � x2/4D, (60)

as can be seen in Fig. 4(a), where we show some examples
of the distribution obtained from numerical simulations of
the process. It is worth noting that the conditioned forward
time PDF seems to have a long tail when the reset time PDF
scales as ϕ(t ) ∼ t−1−α with α > 1. This happens for α < 3/2.
So apparently for 1 < α < 3/2, the mean conditioned for-
ward time is finite while the mean reset time diverges. This
strangeness comes from the nonvalidity of the approximation
when F ∝ t . In Eq. (57), when eliminating the current time
by taking t → ∞, we are implicitly considering the F  t
limit, where the scaling in Eq. (60) is valid. Nevertheless,
this behavior varies when F ∝ t , where the properties of the
forward time are significantly different (see [3] for further
details). Thus, the approximation employed herein to describe
the conditioned forward time is only valid for F  t . This
explains the apparent paradox of having a finite mean condi-
tioned forward time when the mean reset time is finite.

2. ϕ(t ) with all diverging moments

Finally, we study the conditioned forward time PDF when
all the moments of the reset time distribution diverge. Intro-
ducing Eq. (31) into Eq. (54) and proceeding analogously, we
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FIG. 4. (a) Stationary conditioned forward time distribution for diffusion under exponential resetting with r = 0.05 (circles) and under
Pareto resetting with T = 5 and two different values of the decay exponent: α = 0.75 (squares) and α = 1.75 (triangles). The solid lines have
been drawn from the behaviors in Eqs. (58) and (59) for the exponential and Pareto cases respectively. (b) Conditioned forward time PDF for
diffusion and Pareto resetting with T = 5 and α = 0.25. Three different measurement times have been plotted, showing that f (B|x, t ) does
not reach a stationary shape. The solid lines correspond to the power-law behavior in Eq. (60) for α < 1/2. Both panels (a) and (b) have been
obtained averaging N = 106 different trajectories with diffusion constant D = 0.1.

obtain (see Appendix A for detailed calculations)

f (F |x, t )
 1

T

∑∞
n=0

�(n+α+1)
n!

(− t
T +F

)n
U

(
α, 1

2 − n, x2

4Dt

)
(
1 + F

T

)1+α ∑∞
n=0

�(n+α)
n!

(− t
T

)n
U

(
α,−n, x2

4Dt

) .

(61)

Similarly to what we have done for the propagator, we can
get the long-time limit t � T , t � F , and F � x2/4D is the
scaling behavior of the conditioned forward time PDF with F
in terms of α to be

f (F |x, t ) ∼

⎧⎪⎨
⎪⎩

tα− 1
2

F
1
2 +α

for 0 < α < 1
2 ,

T α− 1
2

F
1
2 +α

for 1
2 < α < 1.

(62)

As in the finite-moment scenario, the conditioned forward
time PDF attains a stationary shape when α > 1/2. However,
when the tail of the resetting distribution is wider (α < 1/2),
the conditioned forward time PDF depends explicitly on time
even in the t → ∞ limit, similarly to what happens with the
conditioned backward time PDF. This has been checked nu-
merically, and the results are shown in Fig. 4(b). Once again,
the value α = 1/2 is relevant to describe both the conditioned
forward and backward time PDFs.

V. CONCLUSIONS

In this work, we have introduced the conditioned forward
and backward times for stochastic processes with resetting.
Interestingly, for a diffusive process with resets, under certain
conditions (see Sec. IV) we are able to find a PDF for the
forward and backward times that is independent of the mea-
surement time t , depending only on the position of the walker.
This result may be of particular relevance when considering
processes for which the measurement time is inaccessible.
In such cases, one can have statistical information about the
forward and backward times by only knowing the current
position of the walker. It may be interesting to study the con-

ditioned backward and forward times for dynamics different
from the diffusive random walker.

We have found that the behavior of the conditioned back-
ward and forward time PDFs for Pareto distributed reset times
is different for α < 1/2 than when α > 1/2. The appearance
of α = 1/2 as a turning point is not new in the resetting
literature [23,25], and it appears to be a general characteristic
of diffusion with power-law resetting. Particularly, it arises
when studying temporal features of the process. Somehow,
the long-time behavior of diffusion P(x, t ) ∼ 1/

√
t adds on

the reset time PDF scaling ϕ(t ) ∼ t−1−α when the focus is put
on the time variable. As a result, for diffusion with power-law
resetting, significant changes on the dynamics occur when α

is a half-integer instead of an integer. It would be interesting
to study this aspect in much more detail to acquire more
knowledge on the precise mechanism behind the junction of
the temporal behavior of diffusion and the resetting.
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APPENDIX A: PROPAGATOR WITH
INFINITE-MEAN RESETTING

1. Bulk x2/4D � t

Computing the Fourier transform of Eq. (31), we obtain

ρ̃(k, t ) = aαe−Dk2t

�(α)�(1 − α)

∫ 1

0

eDk2ty

y1−α (1 − ay)α
dy,

where we have introduced the new variable y = 1 − B/t , and
we have defined

a = t/T

1 + t/T
.

034126-8

Appendix D. Fourth Article 97



CONDITIONED BACKWARD AND FORWARD TIMES OF … PHYSICAL REVIEW E 106, 034126 (2022)

In the long-time limit t � T one has a 
 1, and the integral
can be expressed in terms of Kummer’s M function as

ρ̃(k, t ) 
 e−Dk2t M(α, 1, Dk2t ) if 0 < α < 1. (A1)

Since we are interested in obtaining the expression of the
propagator in the bulk region, we consider x2  Dt , which
is equivalent to Dtk2 � 1. Kummer’s M function M(a, c, z)
admits the asymptotic expansion for a large argument (see
Eq. 13.1.4 in [35]),

M(a, c, z) 
 �(b)ezza−b

�(a)
[1 + O(|z|−1)].

Thus, from (A1),

ρ̃(k, t ) 
 (Dt )α−1

�(α)|k|2(1−α)
,

which after Fourier inversion yields

ρ(x, t ) 
 1

π�(α)(Dt )1−α

∫ ∞

0

cos (kx)

|k|2(1−α)
dk

= sin(πα)�(2α − 1)

π�(α)(Dt )1−α

1

|x|2α−1
if

1

2
< α < 1.

(A2)

Alternatively, we can make use of the power-series expansion
of Kummer’s M function (see Eq. 13.1.2 in [35]) before in-
verting by Fourier. Hence, inserting

M(α, 1, Dk2t ) = 1

�(α)

∞∑
n=0

�(α + n)

(n!)2
(Dk2t )n

into Eq. (A1), we find

ρ(x, t ) 
 1

π�(α)

∞∑
n=0

�(α + n)

(n!)2(Dt )−n

∫ ∞

0
k2n cos (kx)e−Dk2t dk

= e− x2

4Dt

2π�(α)
√

Dt

∞∑
n=0

�(α + n)�
(
n + 1

2

)
(n!)2

× M

(
−n,

1

2
,

x2

4Dt

)
. (A3)

In the bulk region, x2  4Dt and then e− x2

4Dt 
 1 + O(x2/Dt )
and M(−n, 1

2 , x2

4Dt ) 
 1 + O(x2/Dt ). On the other hand,

∞∑
n=0

�(α + n)�
(
n + 1

2

)
(n!)2

= �
(

1
2 − α

)
�(α)

�(1 − α)
if 0 < α <

1

2
.

Finally, from this result and (A3) one readily finds

ρ(x, t ) 
 �
(

1
2 − α

)
2π�(1 − α)

1√
Dt

if 0 < α <
1

2
. (A4)

2. Tail x2 ∝ Dt

To derive the expression for the propagator when x2/4D ∝
t , we will demonstrate the four points enumerated in Ap-
pendix B from [2] for the unconditioned backward time PDF.
Here, we reproduce the derivation for the propagator ρ(x, t ).

a. Existence of a limiting distribution

To demonstrate that a limiting distribution exists, we study
the asymptotic behavior of the moments of the global prop-
agator ρ(x, t ). To do so, we employ the well-known formula
for the nth moment in terms of the Fourier transform of the
propagator,

〈xn(s)〉 = in

[
∂n ˆ̃ρ(k, s)

∂kn

]
k=0

(A5)

in the Laplace space. The nth derivative of (A5) can be ex-
pressed in terms of the Bell polynomials by using the Faà di
Bruno formula [36][

∂n ˆ̃ρ(k, s)

∂kn

]
k=0

=
∑n

l=1 ϕ̂∗(l )(s)Bn,l (0, 2D, 0, . . . , 0)

1 − ϕ̂(s)
,

(A6)
where the exponent (l ) means derivative of order l . Note
that the Bell polynomials Bn,l (0, 2D, 0, . . . , 0) �= 0 only when
n is even. Thus, the (2n − 1)th derivative of the prop-
agator and, therefore, the (2n − 1)th moments are 0 as
expected due to the symmetry of the process. Then for even
n, only the term l = n/2 is different from 0. In particu-
lar, Bn,n/2(0, 2D, 0, . . . , 0) = n!Dn/2/(n/2)!. Therefore, from
(A5) and (A6),

〈x2n(s)〉 = (−1)n

1 − ϕ̂(s)
ϕ̂∗(n)(s)B2n,n(0, 2D, 0, . . . , 0)

= (−1)nDn 2n!

n!

ϕ̂∗(n)(s)

sϕ̂∗(s)
, (A7)

where we have used that 1 − ϕ̂(s) = sϕ̂∗(s). In the small s
limit (or long t), this can be inverted by Laplace to yield

〈x2n(t )〉 ≈ (−1)n �(α)

�(α − n)�(n)
Dntn as t → ∞. (A8)

In this limit, all the even moments of the global propagator
scale as 〈x2n(t )〉 ∼ t n. Therefore, there must exist a limiting
distribution ρY (y) for the variable y = x/

√
t .

b. Expression of the scaling function g(χ) in terms
of the limiting distribution ρY (y)

Let us find the integral expression of the scaling function
in terms of the (yet unknown) limiting distribution of the
previously defined variable y. In the Fourier-Laplace space,
the global propagator can be expressed as

ˆ̃ρ(k, s) =
∫ ∞

0
dte−st 〈e−ikx〉X =

∫ ∞

0
dte−st 〈e−ik

√
ty〉Y ,

(A9)
where, in the second equality, the expected value is computed
with respect to the new variable y instead of the original po-
sition variable x. Taking the expected value out of the integral
and performing the Laplace transform within the brackets, one
gets

ˆ̃ρ(k, s) = 1

s
− k

√
π

2s3/2

〈
ye− k2y2

4s

[
i + erfi

(
ky

2
√

s

)]〉
Y

. (A10)

The expected value has to be taken with the limiting distribu-
tion ρY (y).
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Now, in the long-time limit (small s), the propagator can be
described by the scaling function defined in Eq. (35), as shown
in Eq. (34). From this relation, one can isolate the scaling
function to be

g(χ ) = 1 −
√

π

2
χ

〈
ye− χ2y2

4 erfi

(
χy

2

)〉
Y

, (A11)

where we have used that 〈ye−χ2y2/4〉Y = 0 due to symmetry.

c. Expression of the moments of the limiting distribution

Let us now expand the expressions of g(χ ) from Eqs. (35)
and (A11), and compare to get the moments of ρY (y). Starting
from the first, its Taylor series for χ gives

g(χ ) =
∞∑

n=0

(−1)n �(n + 1 − α)

n!�(1 − α)
Dnχ2n, (A12)

while by expanding the derivative of the imaginary error func-
tion in the expected value of Eq. (A11), we obtain

g(χ ) =
∞∑

n=0

(−1)n χ2n

2n(2n − 1)!!
〈y2n〉. (A13)

Now, comparing both expressions term by term, one can
isolate the even moments of the limiting distribution to be

〈y2n〉 = (4D)n �
(
n + 1

2

)
�(n + 1 − α)√

π�(1 − α)
. (A14)

The odd moments are null due to the symmetry of the process.

d. Expression of the limiting distribution ρY (y)

Finally, we can gather the information in the moments of
ρY (y) to get an expression for it. The characteristic function
of the limiting distribution can then be computed from the
moments

ρY (k) = 〈eiky〉 =
∞∑

n=0

(−k2)n

(2n)!
〈y2n〉 (A15)

so that

ρY (k) = 1

�(1 − α)

∞∑
n=0

(−Dk2)n

n!
�(n + 1 − α)

= M(1 − α, 1,−Dk2),

where M(a, b, z) is Kummer’s M function. To invert by
Fourier, we express Kummer’s M function in integral form,

M(1 − α, 1,−Dk2) = 1

�(α)�(1 − α)

∫ 1

0

e−Dk2u

uα (1 − u)1−α
du.

Then

ρ(y) = 1

�(α)�(1 − α)

1√
4πD

∫ ∞

1

e− y2

4D z

√
z(z − 1)1−α

dz

= 1

�(1 − α)

e− y2

4D√
4πD

U

(
α,

1

2
+ α,

y2

4D

)
,

where U (a, b, z) is Kummer’s U function. If we undo the
change of variable y = x/

√
t , we get the PDF

ρ(x, t ) = 1

�(1 − α)

e− x2

4Dt√
4πDt

U

(
α,

1

2
+ α,

x2

4Dt

)
. (A16)

APPENDIX B: DERIVATION OF EQ. (59)

Inserting Eqs. (12) and (22) in the integral of Eq. (57), one
has∫ ∞

0
ϕ(t ′ + F )P(x, t ′)dt ′

= α√
4πDT

1(
1 + F

T

) 1
2 +α

×
∫ ∞

0
uα− 1

2 (1 + u)−1−αe− x2

4D(T +F ) udu

= α√
4πDT

�
(
α + 1

2

)
(
1 + F

T

) 1
2 +α

U

(
α + 1

2
,

1

2
,

x2

4D(T + F )

)
,

(B1)

where we have introduced the variable u = (T + F )/t ′. Com-
bining Eqs. (24) and (B1), we finally obtain Eq. (59).

APPENDIX C: DERIVATION OF EQ. (61)

Let us begin with the calculation of the numerator in
Eq. (54) in the limit t � T . Introducing Eqs. (12), (22), and
(30) into the integral of Eq. (54), we obtain∫ t

0
Q(t − t ′)ϕ(t ′ + F )P(x, t ′)dt ′


 α

t3/2
√

4πD�(α)�(1 − α)

×
∫ ∞

1

e− x2

4Dt y
(

T +F
t + y−1

)−1−α

y
1
2 +α (y − 1)1−α

dy, (C1)

where we have defined the variable y = t/t ′. It is useful to
write the factor as

(T + F

t
+ y−1

)−1−α

=
∞∑

n=0

λny−n (C2)

as power series of y−1, where λn are the corresponding coeffi-
cients of the Maclaurin expansion:

λn =
(

t

F + T

)1+α
�(1 + n + α)

�(1 + α)n!

(
− t

F + T

)n

.

Plugging the above expansion into Eq. (C1), we express the
integral in the following form:∫ t

0
Q(t − t ′)ϕ(t ′ + F )P(x, t ′)dt ′


 αe− x2

4Dt

t3/2
√

4πD�(1 − α)

∞∑
n=0

λnU

(
α,

1

2
− n,

x2

4Dt

)
, (C3)

where we have made use of Eq. 13.2.6 in [35]. The denomi-
nator in Eq. (54) is merely the propagator. It can be obtained
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by inserting Eqs. (12), (23), and (30) into (11). After defining
the new variable y = t/B, one has

ρ(x, t ) 
 1

T αt1/2−α
√

4πD�(α)�(1 − α)

×
∫ ∞

1

e− x2

4Dt y
(

T
t + y−1

)−α

y1+α (y − 1)1−α
dy, (C4)

which holds in the limit t � T . Making use of the Maclaurin
expansion, the factor ( T

t + y−1)−α reads
(

T

t
+ y−1

)−α

= 1

�(α)

∞∑
n=0

�(n + α)

n!

(
− t

T

)n

y−n,

and the integral in Eq. (C4) can be computed using again Eq.
13.2.6 in [35]. One readily finds

ρ(x, t ) 
 e− x2

4Dt

T αt1/2−α
√

4πD�(α)�(1 − α)

×
∞∑

n=0

�(n + α)

n!

(
− t

T

)n

U

(
α,−n,

x2

4Dt

)
. (C5)

Dividing Eqs. (C1) and (C5), we finally find Eq. (61) in the
main text.
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[12] Ł. Kuśmierz and E. Gudowska-Nowak, Subdiffusive
continuous-time random walks with stochastic resetting,
Phys. Rev. E 99, 052116 (2019).

[13] J. Masoliver and M. Montero, Anomalous diffusion under
stochastic resettings: A general approach, Phys. Rev. E 100,
042103 (2019).

[14] M. Montero and J. Villarroel, Directed random walk with ran-
dom restarts: The sisyphus random walk, Phys. Rev. E 94,
032132 (2016).

[15] C. Maes and T. Thiery, The induced motion of a probe coupled
to a bath with random resettings, J. Phys. A 50, 415001 (2017).

[16] S. Belan, Restart Could Optimize the Probability of Success in
a Bernoulli Trial, Phys. Rev. Lett. 120, 080601 (2018).

[17] G. Mercado-Vásquez and D. Boyer, Lotka–volterra systems
with stochastic resetting, J. Phys. A 51, 405601 (2018).

[18] J. Masoliver, Telegraphic processes with stochastic resetting,
Phys. Rev. E 99, 012121 (2019).

[19] M. Magoni, S. N. Majumdar, and G. Schehr, Ising model with
stochastic resetting, Phys. Rev. Res. 2, 033182 (2020).

[20] T. Sandev, V. Domazetoski, L. Kocarev, R. Metzler, and A.
Chechkin, Heterogeneous diffusion with stochastic resetting,
J. Phys. A 55, 074003 (2022).

[21] M. R. Evans, S. N. Majumdar, and G. Schehr, An exactly
solvable predator prey model with resetting, J. Phys. A: Math.
Theor. 55, 274005 (2022).

[22] A. Nagar and S. Gupta, Diffusion with stochastic resetting at
power-law times, Phys. Rev. E 93, 060102(R) (2016).

[23] A. Masó-Puigdellosas, D. Campos, and V. Méndez, Transport
properties and first-arrival statistics of random motion with
stochastic reset times, Phys. Rev. E 99, 012141 (2019).

[24] A. Masó-Puigdellosas, D. Campos, and V. Méndez, Transport
properties of random walks under stochastic noninstantaneous
resetting, Phys. Rev. E 100, 042104 (2019).

[25] A. S. Bodrova, A. V. Chechkin, and I. M. Sokolov, Scaled
Brownian motion with renewal resetting, Phys. Rev. E 100,
012120 (2019).

[26] A. S. Bodrova, A. V. Chechkin, and I. M. Sokolov, Nonrenewal
resetting of scaled Brownian motion, Phys. Rev. E 100, 012119
(2019).
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