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Abstract
The precise control and guidance of mechanical vibrations at MHz and GHz frequen-
cies has potential applications in the field of signal processing as well as fundamental
research at quantum level. At mesoscale level, thermal vibrations can represent a
source of noise for many physical phenomena. A proper engineering of frequency
band gaps and guided modes can be achieved by implementing periodic materials.
The most recent topological approach translated into bosonic systems to guide edge
states immune or robust to unwanted scattering is also based in the design of periodic
structures.

In this thesis was covered the design and experimental characterization of trivial
phononic waveguides, also called defect waveguides, as well as the design of phononic
topological waveguides based in the analogy of the quantum spin Hall effect (QSHE)
and the quantum valley Hall effect (QVHE). For the case of trivial waveguides, we
first report the full characterization of hypersonic bandgaps with up to 64 % of gap
to mid-gap ratio. The same structures were used to build defect line waveguides in
which it was possible to measure hypersonic guided modes at room temperature by
measuring thermally excited phonons in the structure.

For the topological waveguides, design constraints related to the anisotropy of the sili-
con material and the particular experimental characterization technique implemented
here were explored. Using the analogy of the QSHE in bosonic systems, a hybrid
phononic-photonic topological insulator based on an hexagonal array of shamrocks
features was designed. The pseudospin concept is illustrated with the topological
phononic edge modes.

Finally the analog of the QVHE is also explored for designing a phononic crystal that
supports topological edge modes above 10 GHz. Te parallel between isotropic and
anisotropic silicon is considered in this design to illustrate the geometrical constraints
on topological phononic crystals design.
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Chapter 1

Introduction and motivation

The ever growing demand for data transmission and signal processing claims for
devices with higher and higher rates of bandwidth operations. Surface Acoustic Wave
(SAW) filters are one of the significant components that have been present in mobile
communications and digital television for decades and nowadays widely used also in
Internet of Things (IoT) devices. Radio Frequency and wireless applications require
to avoid potential interference from surroundings and improve received signal quality.
With the use of filters ranging from few kHz up to 6 GHz range this is achieved. It
is intuitive to think that increasing the operation range, will increase the amount of
processed information. Telecommunication is one of the different fields that clearly
illustrates the necessity to control and route high frequency mechanical vibrations.

Nanostructured materials offer the possibility to manipulate the mechanical vibra-
tions of a solid over a specified spectral bandwidth. This in turn enables the control
of light–matter interactions in the visible and near-infrared regimes for optomechan-
ical applications ranging from high-resolution accelerometers [1] to mass and force
sensors [2, 3], in addition to providing fundamental insights into phenomena such as
quantum ground-state cooling [4, 5]. By periodically distributing the mass within a
system, it is possible to engineer its mechanical modes [6, 7] and open frequency win-
dows over which the destructive interference of scattered waves forbids any phonon
propagation [8, 9]. This approach enables engineering of the thermal conductance
of the structure [10] and allows for the routing of phonons at the mesoscale [11].
Although full-gap gigahertz phononic crystals are widely used in optomechanical sys-
tems to create phononic shields [12], waveguides and cavities [13–16], clear and direct
experimental evidence of a complete omnidirectional phononic bandgap at hypersonic
(GHz) frequencies is still lacking.

The experimental work reported until now is generally limited to megahertz fre-
quencies up to the 1 GHz band, using piezoelectric materials to drive the system
[17, 18], requiring varying interdigitated electrodes to probe different frequencies and
propagation directions. For gigahertz frequencies, only partial and narrow mechanical
bandgaps (with up to 8% gap-to-midgap ratio) have been shown using assembled plat-
forms such as colloidal crystals [19] or two-dimensional phononic crystal membranes
[20]. Furthermore, the control and guiding of elastic waves at gigahertz frequencies
has been difficult to achieve or measure, relying on complex optomechanical systems
or nonlinear stimulated phenomena [21].

In this thesis it is reported direct experimental evidence of a wide full phononic
gap with a central frequency at 8.4 GHz and a spectral width of 5.3 GHz (a gap-to-
midgap ratio of 64%) in a free-standing patterned silicon membrane phononic crystal.
Additionally, it is created a line-defect waveguide with the same geometry in which
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we directly measure two guided modes at 5.7 GHz and 7.1 GHz within the bandgap at
room temperature. We demonstrate the passive spectral tunability of the mechanical
gap as a function of the geometric parameters of the crystal, with a spectral shift
spanning the range from approximately 4 GHz to 11.5 GHz, which subsequently also
enables spectral tunability of the guided modes.

The standard definition of topology is: the study of quantities that are preserved
under continuous (adiabatic) perturbations. The study of topological phases of mater
started recently in 1980 with the discovering of the quantum Hall effect (QHE) by
Von Klitzing [22]. shortly after was shown that the quantization of the conductance
in this effect was originated by the non-trivial topological properties of the energy
bands, described by the TKNN theory [23], later refereed as the band Chern number
C. the Chern number describes the geometrical phase, commonly known as Berry
phase [24], accumulated over the Brillouin zone, that is therefore related with the
topological invariant of energy bands in the reciprocal space [25].

In 2006 was experimentally demonstrated that by applying an external magnetic field,
the spin-orbital coupling of a material can also originate topological phases [26]. This
effect is known as quantum spin Hall effect (QSHE). This was the first observation of
spin currents with minimum dissipation. Also in this century was introduced another
approach to optain topological protected states known as the quantum valley Hall
effect (QVHE) [27]. Valley refers to the two energy extrema generally located at K
and K ′, at wich the Berry curvature have opposite signs giving a zero integral over
the full Brillouin zone [25].

The same ideas discovered in condensed matter physics were translated to bosonic
systems. The analogue of QHE in photonic crystals was shown [28], and more recently
the analog of QSHE [29] and QVHE [30] in acoustic systems. The complexity of topo-
logical designs have limitated the fabrication of many of them down to nanoscale and
therefore, the analog of QSHE and QVHE at hypersonic frequencies is still pending.
The experimental realization of topological states at hypersonic frequencies is lim-
ited to 1 GHz [31]. In this thesis is evaluated the phononic analog of both approach
with the design of two different crystal geometries. The geometrical, material and
experimental limitation are detailed in each model with the aim to optimize the best
platform for the further experimental demonstration.

1.1 Thesis outline

This thesis covers the design of trivial and topological phononic waveguides. Here
it is presented experimental evidence of trivial hypersonic guided modes. For the
topological phononic waveguides, design and experimental limitations are presented.
The content of each chapter is summarized below.

• Chapter 2 presents the theoretical background of Brillouin scattering, the de-
duction of the phase matching condition as a function of the scattering angle
and also a brief explanation of the two main physical mechanisms responsible for
the spontaneous scattering process: the moving boundary and the photoelastic
effect. It is the basis to understand how Brillouin light scattering spectroscopy
works and what is the most optimal experimental configuration for the detec-
tion of thermal excited phonons. In this chapter is also presented a simple
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experimental validation of numerical simulations measuring an unpatterned sil-
icon membrane. Finally it is presented the analytical deduction of the coupling
coefficients for the moving-boundary perturbation.

• Chapter 3 presents a brief introduction of phononic crystals. After that it is
introduced the shamrock geometry, widely used in this work, and it is explained
the relation between this particular geometry and the apperance of wide full
mechanical bandgaps. This geometry is optimized to be implemented in the
standard SOI platform that offers CMOS compatibility for reliable fabrication
at nanoscale level. The CORE fabrication process is summarized and from
the fabricated samples is elaborated an statistical analysis of the geometrical
fluctuations based in the extracted information from SEM images. Finally it
is presented the experimental band reconstruction of GHz phononic bandgaps
and is showed how the variations in the vertical profile of the nanostructures
causes important changes in frequency.

• Chapter 4 introduces the concept of defect waveguides and how this idea is
applied to design hypersonic trivial waveguides based on the shamrock crystal
geometry. In this chapter it is presented the geometrical optimization in order
to obtain the best confinement of guided modes. Based on this optimization
it is presented the experimental detection of hypersonic guided modes detected
at room temperture with no external excitation. Finally the waveguide dis-
persion relation is experimentally reconstructed using Brillouin light scattering
spectroscopy.

• Chapter 5 presents the analog of the quantum spin Hall effect in a hybrid
optomechanic crystal based in an hexagonal array of shamrock features. It is
illustrated the band folding concept as a result of a change in the considered
unit cell of the geometrical lattice. The phononic and photonic analogies of the
QSHE are presented in parallel. The optimization constrains are evaluated to
obtain the best configuration for the hybrid system. It is also presented the
fabricated sample and the experimental limitations are revised.

• Chapter 6 presents the analog of the quantum valley hall effect in a phononic
crystal based in a hexagonall array of rounded triangles. Here it is evaluated the
influence of the material anisotropy in topology. Numerical simulations of 3d
Dirac cones are presented to illustrate how the change in the geometry lift this
degeneracy and allows the construction of topological edge waveguides. Here it
is also explored the geometrical limitations imposed by the size of the drilled
scatters that causes strong linear diffraction of the incident light.

• Chapter 7 Present a summary of the main conclusions and experimental
achievements of this work. Based on it, it is also presented additional ideas
that can be implemented using either the experimental technique, or the knowl-
edge about the geometrical limitations, to evaluate the robustness of topological
structures and prove phonon transport at hypersonic frequencies.
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1.2 Thesis Publications

The experimental results with shamrock crystals and waveguides were summarized
and published in one main article:

• Engineering nanoscale hypersonic phonon transport O. Florez, G. Arregui, M.
Albrechtsen, R. C. Ng, J. Gomis-Bresco, S. Stobbe, C. M. Sotomayor-Torres
and P. D. García. Nat. Nanotechnol. 17, 947–951 (2022).

I had also the opportunity to contribute in the book to celebrate the 100 years of
Brillouin scattering. The contribution was for chapter 15:

• Electromechanical Brillouin scattering. Huan Li, Omar Florez, Bingcheng Pan,
Guilhem Madiot, Clivia M Sotomayor Torres, Mo Li. Elsevier (2022).

There were other contributions to publications within the group:

• Excitation and detection of acoustic phonons in nanoscale systems. Ryan C Ng,
Alexandros El Sachat, Francisco Cespedes, Martin Poblet, Guilhem Madiot,
Juliana Jaramillo-Fernandez, Omar Florez, Peng Xiao, Marianna Sledzinska,
Clivia M Sotomayor-Torres, Emigdio Chavez-Angel. Nanoscale 14 (37), 13428-
13451 (2022).

• Optomechanical generation of coherent GHz vibrations in a phononic waveg-
uide. Guilhem Madiot, Ryan C Ng, Guillermo Arregui, Omar Florez, Marcus
Albrechtsen, Soren Stobbe, Pedro D Garcia, Clivia M Sotomayor-Torres. To be
published in Phys. Rev. Lett.

https://www.nature.com/articles/s41565-022-01178-1
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Chapter 2

Brillouin scattering

2.1 Introduction

Leon Brillouin predicted theoretically in his doctoral thesis, back in 1920, that ther-
mally generated sound waves in transparent media were capable of scattering incident
light with a frequency shift. It was published as Diffusion de la lumière et des rayons
X par un corps transparent homogène. influence de l’agitation thermique [32].This
inelastic process is due to the time dependent refractive index grating induced by
mechanical waves, leading to the generation of two new spectral components: Stokes
and anti-Stokes. From a quantum point of view, it can be seen as the annihilation
of a photon with frequency ω and the creation of a photon with frequency ω ± ωac
mediated by the absorption or creation of a phonon with frequency ωac, as depicted
in Figure 2.1(a).

Figure 2.1: Representation of (a) Brillouin scattering process. (b) wave
vectors in the Brillouin scattering process. φ is called the scattering
angle. The mechanical wavevector has two arrowheads depending on

if a phonon is absorbed or created during the scattering process.

In this inelastic process, energy and momentum are conserved. Considering the prop-
agation direction of the incident and scattered light as shown in figure 2.1(b), the
value of the mechanical wavevctor depends on the angle between incident and scat-
tered light, an is at the minimum at φ = 0 (forward scattering) and at the maximum
at φ = π (backward scattering). These conservation rules determines the phase
matching conditions for the scattering process.
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2.2 Energy and momentum conservation: phase match-
ing conditions

From the energy relation for bosons E = h̄ω, for the scattering process, energy
conservation states that:

ωs = ωi ± ωac, (2.1)

where ωs, ωi and ωac are the frequencies of the scattered photon, incident photon,
and acoustic phonon respectively. The ± signs are due to the Doppler effect and
indicate that the scattered light may be blue-shifted (+ sign, anti-Stokes), or red-
shifted (− sign, Stokes). Stokes and Anti-Stokes processes are associated with heating
or amplification, and quantum ground cooling [4, 5] of nanostructures, respectively.
In the first case, the process gives vibrational energy (phonons) to the structure
(heating), and in the second case, it is taken vibrational energy from the structure
(cooling). From the momentum relation ~P = h̄~k, we have

~ks = ~ki ± ~qac, (2.2)

where ~ks, ~ki and ~kac are the scattered, incident and mechanical wavevectors respec-
tively. Each of these can be positive or negative valued depending on the propagation
direction. The relation between ω and k for optical waves is given by

ωi,s =
c

n
ki,s, (2.3)

where c is the speed of light and n is the refractive index of the medium. For acoustic
waves, in the case of long wavelengths compared to the interatomic distance, the
relation between ωac and k is approximately linear [33], and can be expressed as

ωac = cacqac, (2.4)

where cac is the phase velocity of acoustic waves. considering the difference in or-
der of magnitude between light velocity (c) and sound velocity (cac) and comparing
equations 2.3 and 2.4, we have that ωac � ωs,p. This implies that ωs ≈ ωp and
|ks| ≈ |ki| = ωin/c. Then the vector magnitude in figure 2.1(b) is

qac ≈ 2ki sin φ2 . (2.5)

This relation determines the phase matching condition for Brillouin scattering. For
the particular cases of forward (φ = 0) and backward (φ = π) scattering, the relations
are:

qac ≈ 0 −→forward Brillouin scattering, (2.6a)
qac ≈ 2ki −→backward Brillouin scattering. (2.6b)

For φ = 0, the Brillouin frequency shift approaches zero (ωac ≈ 0) and the forward
Brillouin scattering in bulk is not allowed. However, sub-wavelength confinement
in waveguides can lead to light interaction with transverse acoustic phonons, which
makes forward scattering possible. Phase matching conditions for backward and
forward scattering are summarized in figure 2.2 showing S and AS cases.
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Figure 2.2: Backward and forward wavevectors for Stokes (S) and Anti-
Stokes (AS) configurations. Black arrows represent incident light, blue
and red arrows represent blue and red shifted scattered light respec-
tively and green arrows represent the resulting mechanical wavevec-

tors.

2.3 Refractive index perturbations

As Brillouin scattering arises from the periodic perturbation of the refractive index,
the two main mechanisms responsible for this spontaneous perturbation are the pho-
toelastic (PE) and moving boundary (MB) effects. The first one is induced by the
elastic strain of the material and the second one is induced by displacement of the
surface. A brief description of each one is given below. These perturbations origi-
nate from thermally exited phonons and therefore S and AS cases are equally likely
in this stochastic process. The scattering can become stimulated if a high incident
electric field contributes to the perturbation of the refractive index of the material
by means of the electrostriction (ES) and radiation presure (RP) mechanisms. The
former occurs when the light induces a mechanical strain field inside the material and
the latter when the incident light contributes to increase the surface displacement;
both effects are widely studied in optomechanical systems when phonons and pho-
tons are confined in small volumes enhancing their interaction. In the work presented
here, as the system is not excited externally by means of high optical fields or another
perturbation, all measurements are of spontaneous Brillouin scattering.

2.3.1 Photoelastic effect

When an acoustic mode propagates in a medium, there is an associated strain field.
The strain results in a change of the refractive index. This is referred to as the elasto-
optic or photoelastic effect [34, 35]. The acousto-optic interaction is used in a number
of applications including light modulators, tunable filters, and spectrum analyzers,
among others [36]. The relation between the dielectric perturbation ∆ε and the strain
is given by

∆εij = −
εiεj
ε0

pijklSkl, (2.7)

where Pijkl is the elasto-optic (or photoelastic) tensor and Skl is the strain tensor.
Considering the crystallographic orientation of silicon in standard SOI wafers, the
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elasto-optic tensor in Voigt notation is

p =



p′11 p′12 p12 0 0 0
p′12 p′11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p′66


, (2.8)

where p′11 = (p11 + p12 + 2p44)/2, p′12 = (p11 + p12 − 2p44)/2, p′66 = (p11 + p12)/2.
The coefficients for silicon at 532 nm are p11 = −0.1203, p12 = −0.0223 and p44 =
−0.045 [37].

2.3.2 Moving boundary effect

When the interface between two different materials is displaced, the volume originally
occupied by one material is occupied by the other and vice versa. This leads to a
change in the refractive index over a very small area.This is known as the moving
boundary effect [38]. This effect is proportional to the displacement field at the surface
and to the difference between the dielectric constants of the materials on both sides
of the interface. For the continuous components of the electric field at the interface,
the perturbation ∆ε is the difference of dielectric constants ε

∆ε12 = ε1 − ε2. (2.9)

For the discontinuous components of the electric field at the surface, the perturbation
∆ε is the harmonic mean value of ε:

1
∆ε12

=
1
ε1
− 1
ε2

. (2.10)

As the difference in orders of magnitude between optical frequencies (THz) and me-
chanical frequencies (GHz), the optical wave interact with a deformed but static
medium. The total induced effect on the optical field can be calculated by decompos-
ing the period T of the mechanical wave into a entire number of frames n, separated
in time by T/n. The MB effect becomes important in sub-wavelength confinement
of light by e.g. silica nanowires [39] or silicon waveguides [40], as a large amount of
light is on the surface of the structure and this light can feel the displacement of the
surface. When light directly strikes the surface, as in our case, all the incident light
can interact with the mechanic displacement field on the surface.

2.4 Brillouin light scattering spectroscopy

When coherent light with a wavevector ~ki hits the surface of a medium with a certain
angle θ as shown in figure 2.3, part of this incident light is linearly reflected (~kr), and
another small part is non-linearly scattered by the two different mechanisms described
in the previous section. First it is considered a transparent material as shown in figure
2.3(a). In this case, the incident light is refracted into the material with a wavevector
~kR. As the light propagates within the material, it is nonlinearly scattered as density
fluctuations in the material, indicated by different colors in figure 2.3 (PE effect).
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Figure 2.3: Phase matching conditions for (a) photoelastic and (b)
moving boundary perturbations. The change of color inside the mate-
rial in (a) indicates density fluctuations that locally changes the refrac-
tive index. Corrugation at the interface in (b) denotes the boundary
displacement that dinamically changes the refractive index at the in-
terface. Green arrows denote the mechanic wavevectors in each case.

The relation between ki and kR can be extracted from the momentum conservation
for the parallel component as follows

ki sin θ = kR sinα. (2.11)

This equation result on kR = ki
sin θ
sinα . From Snell’s law we have that n1 sin θ =

n2 sinα. Replacing Snell’s law into equation 2.11 finally gives that kR = ki
n2
n1
. The

backscattered component ~Ks,PE , follows the inverse path of ~kR and is refracted back
into the air, ~ks,PE with the same angle θ. As a result, the phase matching condition
for scattering arising from the PE effect, is ~qac = ~kR + ~ks,PE = 2~kR. After replacing
kR, it is obtained that

~qac = 2n2
n1
~ki. (2.12)

Now it is considered the case of an opaque material as shown in figure 2.3(b). In this
case, light is absorbed and can not penetrate deeper into the material. One small part
is nonlinearly scattered by thermally excited phonons on the surface (MB effect) in all
directions. Once again, we are interested in the backscattered signal ~ks,MB. Given the
absorption in the material, momentum conservation in the perpendicular direction
to the surface is not fulfilled; therefore momentum is only conserved in the parallel
direction to the surface (in-plane component). For the backscattering configuration,
the phase matching condition for the in-plane component, ~q‖ in figure 2.3(b), is:

kac = 2kisin(θ). (2.13)

In summary, phase matching conditions for PE and MB mechanisms can be written
as:

qac = n
4π
λ
−→for PE effect, (2.14a)

q‖ =
4π
λ
sin(θ) −→for MB effect, (2.14b)

where n2 = n, n1 = nair = 1, and ki = 2π/λ, where λ is the wavelength of the
incident light. By changing the incident angle θ, it is possible to probe the mechanical
wavevector for excitations arising in the surface and reconstruct the band diagram
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of the illuminated sample. On the other hand, scattering arising inside the material
does not depend on the incident angle and always will have the same mechanical
wavevector kac, which only depends on the incident wavelength. The contribution
of each effect depends on different factors like the transparency and geometry of
the material. The reconstruction of acoustic band diagrams using the nonlinearly
scattered light is known as Brillouin Light Scattering (BLS) spectroscopy. This is
a non invasive and non destructive technique that allows for the characterization
of opaque and thin film materials, and periodic structures as nanoscale phononic
crysyals, studied in this work. The device used to resolve and increase the contrast
of the weak scattered signal is known as a Tandem Fabry-Perot interferometer [41].

2.4.1 Tandem Fabry-Perot interferometer

To achieve sufficiently high resolution for a Brillouin scattering measurement, a Tan-
dem Fabry-Perot (TFP) interferometer, shown in figure 2.4, is used as a scanning
spectrometer. A single FP interferometer consists of two parallel flat mirrors sep-
arated by a variable distance L. The cavity transmits light of wavelength λ if the
spacing is L = mλ/2, where m is an integer. The cavity acts as a tunable near-unity
narrow spectral range bandpass filter.

In measurements where the linearly scattered signal exceeds the intensity of the non-
linearly scattered signal by orders of magnitude, like backscattering measurements
on opaque materials, it is necessary to increase the contrast (ratio between maximum
and minimum signal) of the system. The contrast of an interferometer may be in-
creased by placing two or more interferometers in series. In addition, multiple passes
through the same interferometer also helps to enhance the signal. The introduction of
multipass interferometers enables Brillouin scattering experiments to detect surface
vibrations both in transparent and opaque materials. Simultaneously, the combina-
tion of two interferometers leads to an increase in the Free Spectral Range (FSR) of
the resulting interferometric system. For these reasons, choosing a multipass tandem
Fabry-Perot interferometer is the most suitable system to measure the vibrational
frequencies of the nanostructures studied in this work.

It is worth noting that spacial care needs to be taken in maintaining the stability
of the system. Stability at least of 5Å (fluctuation of cavities), is required over the
entire measurement duration which may be several hours when recording weak signals
[42]. In the TFP shown in figure 2.4, the scattered light passes three times through
the first cavity before passing an additional three times through the second cavity.
Subsequently, the enhanced scattered signal reaches the detector and can be resolved.

2.4.2 Experimental setup

The free space setup that is used to detect the mechanical vibration of membranes
and nanostructured patterned samples or phononic crystals is shown in fig. 2.5. The
light source is a continuous wave (CW) 532 nm wavelength narrow green laser from
Coherent (Verdi V10) with variable output power up to 10 W. One small part of the
light, represented with the green dashed line, is taken as a reference for the TFP
system. The beam is recollimated to reduce the beam size before reaching a λ/2
waveplate (WP) that controls the polarization of the incident beam. After that, light
passes through a beam splitter (BS) that reflects 10% of the power to the objective
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Figure 2.4: Scheme of the tandem Fabry-Perot interferometer. θ is
the angle of incidence. BS=beam splitter, M=mirror, P=prism and

FP=Fabry-Perot cavity.

(Ob) and transmit 90% of the light that is used to monitor the incident power reaching
the sample (S).

The objective has the ability to simultaneously illuminate the sample with incident
light while also collecting the backscattered signal, represented in red. The light is
routed through the beam splitter and mirrors to reach a second λ/2 waveplate that
controls the polarization of the scattered light. Finally the scattered beam is focused
for the lens (L) to pass through the incident pinhole of the TFP system. The sample is
placed on top of a motorized rotation stage that accurately controls the angle between
incident light and the surface of the sample. Due to the long acquisition time of
measurements and the required precision in angle rotation, the measurement system
was automatized, integrating the rotation stage with the acquisition software of the
TFP system (GOSTH), allowing for autonomous measurements. It was implemented
in a user friendly interface made in LabVIEW.
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Figure 2.5: Experimental setup for Brillouin light scattering measure-
ments. Green, red and green dashed lines represents the incident,
scattered and reference light respectively. WP = waveplate, BS =

beam splitter, Ob = Objective, L = Lens, S = sample

2.5 Experimental and numerical validation: Fully re-
leased silicon membrane

Fully released membranes are a good platform to test and calibrate our experimental
setup. Figure 2.6 shows the measured spectrum in a fully released silicon membrane
(from NORCADA) with a thickness of 250 nm, measured at an angle of 30 degrees.
The strong central peak corresponds with the elastic Rayleigh scattering and the
spectrum is symmetric because of Stokes and anti-Stokes contributions. The y axis
indicates the intensity of scattered peaks. The system counts the number of photons
with slightly different frequency that sets the amplitude (signal to noise ratio, SNR)
of measured spectra. The amplitude is given in arbitrary units because it depends
on the acquisition time. A longer time will increase the SNR of each peak but will
also increase the background of the entire spectrum. Therefore long acquisition times
will not necessarily result in a better SNR in measurements, as the measurement will
stabilize after certain time.

The spectrum shows four peaks whose frequencies correspond with the different vi-
brational modes for this particular thickness. To analyze the data, each peak is fitted
with a Lorentzian shape to obtain its central frequency and then positive and neg-
ative frequencies are averaged. Replicating this process for different incident angles
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Figure 2.6: Measured spectrum for the fully released silicon membrane
with a 30 degrees incidence angle.

allows for experimental reconstruction of the band diagram. Figure 2.7(a) shows the
phononic dispersion relation for the silicon membrane with 250 nm of thickness cal-
culated with finite element method (FEM) using COMSOL multiphysics software.
The elastic equation and the periodic conditions used to find this band diagram will
be discussed with more detail in the next chapter. Blue and red curves represent
symmetric and asymmetric modes with respect to the mid plain (parallel to half of
the thickness) of the membrane.

Black curves represent shear (SH) waves which does not provoke surface deforma-
tion and therefore can not be detected in the BLS measurements. The black points
represent the measured frequencies for different angles and the vertical dotted line
indicates the position of the frequencies shown in figure 2.6. The measurements were
taken from 5 to 60 degrees with a step angle of 5 degrees with the same incident
power and the same acquisition time of 210 minutes. The modes are labeled as Asn
and Sn with n = 1,2,3 and peaks in figure 2.6 can be identified. The frequency of the
modes changes with the angle and therefore the scattering process here is dominated
by the MB mechanism. The x axis in figure 2.7(a) is given in degrees but can be
easily changed to the wavevector using the equation 2.14b.

The phononic dispersion relation of the membrane can be modified by changing the
thickness. Figure 2.7(b) shows the change in frequency for the first three symmetric
and asymmetric modes as a function of the thickness calculated for a wavevector
q = 4π

λ sin 30, the same position indicated with the dashed line in figure 2.7(a). As
the thickness decreases, the frequency of the of the modes increases substantialy
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Figure 2.7: (a) Measured and simulated vibrational modes for a silicon
membrane with a thickness of 250 nm. (b) Evolution in frequency
for the first three symmetric and asymmetric modes as a function of

thickness. The inset shows the mode profile of these modes.
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except for the first mode of each family. The first asymmetric mode decreases in
frequency while the first symmetric mode remains constant. The inset of the figure
shows the mode profile of these modes.

2.6 Brillouin scattering efficiency

The scattering efficiency quantifies how much a mechanical mode scatters the incident
light. To calculate it, we need to consider the origin of the periodic perturbation of
the refractive index. It is caused by the two different mechanisms explained before,
the MB and PE effects. Here we made a first approximation taking into account only
the MB perturbation and neglecting the PE contribution, given the small volume of
interaction in our experiments given the direction of the incident light, in the plane
perpendicular to the measured samples; and also considering the small thickness (220
nm -250 nm) of the studied samples. This approximation allows us to obtain the
coupling coefficients in an almost fully analytical way. According to [38], the MB
coupling is given by:

κmb =
∫
A
Uz
[
∆ε12

(
E∗s,‖ ·Ei,‖

)
− ∆ε−1

12

(
D∗s,⊥ ·D

′
i,⊥

)]
dA (2.15)

where Uz is the normal displacement to the surface A as indicated in Fig. 2.8(a).
∆ε12 = (ε1 − ε2) and ∆ε−1

12 = (ε−1
1 − ε

−1
2 ), E and D are electric and displacement

fields, and scripts s and i denote scattered and incident fields respectively. Taking
into account the relation between the relative permittivity and the refractive index,
ε = ε0n

2, we can write

∆ε12 = ε0(n
2
1 − n2

2) (2.16a)

∆ε−1
12 =

1
ε0

( 1
n2

1
− 1
n2

2

)
. (2.16b)

Replacing the normal component of the displacement field by the electric field com-
ponent, D = εE, we can rewrite Eq. 2.15 as

κmb =
∫
A
Uzε0

[(
n2

1 − n2
2

) (
E∗s,‖ ·Ei,‖

)
− n4

2

( 1
n2

1
− 1
n2

2

)(
E∗s,⊥ ·E

′
i,⊥

)]
dA. (2.17)

The incident and scattered electric field in the sample surface can be treated as planes
waves propagating in free space and can be written as:

Ei(r, t) =
1
2Ei(x, y)e−i(ωit−ki·z) + c.c. (2.18a)

Es(r, t) =
1
2Es(x, y)e−i(ωst+ks·z) + c.c. (2.18b)

We need to account for the polarization of the electric field used in the experi-
ment (TM polarization) as depicted in Fig. 2.8. For the backward Brillouin scat-
tering configuration, ~ks = −~ki and ωs = ωi ±Ω or ωs ≈ ωi given the small fre-
quency of mechanical modes (GHz) compared with the incident light frequency (THz).
Es(x, y) = Ei(x, y) = Ei because light is propagating in free space. Therefore the
product of the incident and scattered fields can be simplified to E∗s ·Ei = E2

i . Incident
and scattered light can then be treated as the same fields.
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Figure 2.8: Components of the incident and backscattered electromag-
netic field (green and red respectively). Each mode of the structure
leads to a particular vertical displacement of the surface that deter-

mines the scattering contribution.

From figure 2.8(a), we have Es,‖ = −Ei,‖ and Es,⊥ = −Ei,⊥, where the parallel
and perpendicular components of electric field are given by Ei,‖ = Ei cos θ, and
Ei,⊥ = Ei sin θ. Replacing all these expressions in Eq. 2.17, we can write

κmb =
∫
A
Uzε0

[(
n2

1 − n2
2

) (
−E2

i cos2 θ
)
−
(
n2

2 − n2
1

) n2
2
n2

1

(
−E2

i sin2 θ
)]
dA. (2.19)

The entire expression inside brackets can be taken out the integral. We only need to
account for the change of the refractive index with respect to the surface displacement.
To do so, we always assume a positive change of the refractive index and take the
absolute value of the normal displacement Uz.

κmb = −ε0E2
i

(
n2

1 − n2
2

) [
cos2 θ+

n2
2
n2

1
sin2 θ

] ∫
A
|Uz|dA. (2.20)

Here the coupling coefficient does not depend on the incident field and it can be
normalized to E2

i = 1W . Each mechanical mode has its own scattering efficiency
depending on the surface displacement Uz. The bigger the refractive index contrast,
the bigger the MB contribution. Finally, the scattering cross section needs to be
accounted for. The illuminated area on the sample surface changes with the angle,
being a circle of area Ac = πb2 for θ = 0, where b is the beam diameter, and
an ellipse with axes b and l = b/cos(θ), and area Ae = πbl for a certain angle θ.
Therefore, Eq. 2.20 needs to be divided by cos(θ) to account for the scattering cross
section. Finally, replacing n1 = nsi and n2 = 1, the coupling coefficient for the MB
perturbation is given by

κmb = −ε0E2
i

(
n2
Si − 1

) [
cos θ+ 1

n2
Si

tan θ sin θ
] ∫

A
|Uz|dA. (2.21)

The integral area depends on the structure in which the scattering efficiency have to
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be calculated. In the case of the membrane, the integration area is the top square of
the unit cell presented in the inset of figure 2.7. Although the expression presented
here does not account for the PE contribution, it is a good approximation to determine
if a particular mechanical mode can be detected in our experimental setup.

2.7 Conclusions

In this chapter has been defined the theoretical basis for the Brillouin scattering
process, as well as the experimental setup description. The main conclusions are
summarized below

• Despite the fact that forward Brillouin scattering is forbidden in bulk, tight
confinement of mechanical waves in waveguides make it possible because the
existence of transverse phonons. These mechanical modes will be standing
waves (qac ≈ 0) to fulfill the phase matching condition for forward scattering.

• BLS spectroscopy is a non-destructive technique that allows the experimental
phononic band reconstruction in nanostructures.

• Brillouin scattering arising from the PE mechanism will have the same fre-
quency no matters the incident angle of light. Scattering arising from MB
mechanism can be mapped with the change of the incident angle. It can be
a easy way to identify the dominant mechanism in the scattering process for
different structures.

• The experimental reconstruction of the dispersion relation for a suspended mem-
brane is an effectively way to validate the experimental setup and FEM simu-
lations simultaneously. The measurements take few time compared with more
intricate structures; besides that, modes are fairly far apart in frequency, mak-
ing them easy to identify.
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Chapter 3

Phononic crystals

3.1 Introduction

The mechanical dispersion relation of a 2D membrane such as the one presented in
the previous chapter can be strongly modified by including periodic patterns (i.e.,
scatters) in the membrane. These periodic materials are called phononic crystals,
as the counterpart of photonic crystals which modulate the refractive index of the
material to modify the photonic band structure. The same periodic material can
simultaneously modify the phononic and photonic dispersion relation. These are
known as optomechanical crystals or phoxonic crystals [11, 43–45]. The ability to
control and modify the acoustic properties in a periodic matrix makes them suitable
for many applications where mechanical vibrations at the nanoscale play the main
role. By exploiting electron-beam lithography of semiconductor materials and care-
fully designing the size and shape of the patterned structure, it is possible to produce
band gaps in the entire Brillouin zone. The introduction of controlled defects to cre-
ate waveguides and cavities with the goal of confining and guiding acoustic waves is
the origin of the potential application of phononic and photonic crystals, which is
only possible when a full gap already exist in the underlying crystal pattern. Here I
present experimental evidence of a complete mechanical gap in the GHz regime for a
shamrock phononic crystal measured using the non-invasive Brillouin light scattering
spectroscopy technique. This geometry also presents a full gap for TE photons in the
THz range. Therefore this structure is an optomechanical crystal.

3.2 Phononic crystals

The periodical distribution of the mass in a system allows to engineer the mechan-
ical modes of the structure and open frequency windows over which the destructive
interference of scattered waves forbids any wave propagation. This characteristic
of phononic crystals allows different applications such as tunable filters, mechani-
cal isolators, thermal management [10] and the most importantly, the routing and
confinement of mechanical waves at the mesoscale [11]. The two different physical
mechanisms that enable the creation of phononic band gaps are Bragg scattering [33]
and local resonances [46]. For Bragg scattering, a stronger wave velocity mismatch
contributes to the formation of broader band gaps due to stronger wave scattering at
the interfaces. In the case of local resonances, band gaps form due to localized exci-
tation at the resonant frequencies, which are considered independent of periodicity.
The combination of these two mechanisms provides a way to design phononic crystals
with simultaneously wide and robust band gaps [47].
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Figure 3.1: “Órgano” sculpture by Eusebio Sempere (1977), located
at the entrance of the Juan March foundation in Madrid. Photo taken

from https://vanguardiaartisticasigloxx.wordpress.com.

One particular case of band gaps at the macro scale is the “Órgano” sculpture by
Eusebio Sempere (1977), located at the entrance of the Juan March foundation in
Madrid (figure 3.1). By sccidental design, this sculpture formed by holed stainless-
steel circular bars with a diameter of 2.9 cm in a rectangular array with a periodic
separation of 10 cm, can attenuate the sound (KHz) for a certain range of frequencies
[8]. The same idea is applied at the nanoscale to form periodic structures often known
as hypersonic phononic crystals [9] with vibrational frequencies ranging from 1 GHz to
1 THz. Unlike sonic and ultrasonic waves whose generation usually relies on external
stimuli, acoustic waves at hypersonic frequencies can be formed simply by random
thermal motion of the atoms of the material, and these high-frequency thermally
exited acoustic waves are often referred to as phonons [19]. It is possible to design
the intrinsic vibrational frequencies of the materials and create a range of frequencies
over which not even thermal motion exists. This has interesting applications such as
in the study of optomechanic organic molecular systems [48], in which environmental
phonons represents a source of noise which limits vibration of the system under study.

There are few existing examples of fabricated or measured structures presenting gaps
in the GHz range. The first experimental measurement of a gap at such frequencies
was in colloidal crystals where it was possible to detect a gap of 400 MHz around
5GHz but just for a particular direction in the Brillouin zone [19]; meaning that
this is only a partial gap. Aditionally, the assembly of such structures requires the
collective alignment of small spheres, making the structure more sensitive to disorder
and imperfections that strongly modifies the band structure of the system. Another
important example is the snowflake crystal [49, 50] which simultaneously presents a
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full gap for GHz phonons and THz photons (optomechanical crystal). This geometry
fabricated in silicon on insulator (SOI) platform, was used to build optomechanic
cavities in the GHz range. Up to date, there is not explicit measurements of a full
mechanical gap for hypersonic frequencies. Here we will present the shamrock crystal,
a simple pattern robust to fabrication fluctuations that presents simultaneous gaps for
photons and phonons. This structure is fabricated in SOI platform that allows the
implementation of complementary metal oxide semiconductor (CMOS) fabrication
techniques and enables the integration with electronic and photonic circuits.

3.3 Shamrock geometry

Inspired by the properties of another crystal built upon shamrocks formed by overlap-
ping ellipses [51], we consider an even simpler geometry that still retains the desired
mechanical properties. We aim at exploring a design in which the unit cell building
block is formed by three overlapping circles. The geometry of this phononic crystal
makes it more robust against parameter-noise fluctuations during the fabrication pro-
cess. The projected geometry is depicted in figure 3.2. It consists of three tangential
circles of radius r, shifted by a distance f = 2r/

√
3 from the common center. Three

small semicircles of radius f − r have been added in the junctions to smooth out any
sharp corners in the geometry and create a simpler pattern for fabrication.

Figure 3.2: Three circles touching each other form the basis of the
shamrock geometry (left). Small circles are placed in the adjacent
junctions of circles to avoid sharp corners (center). Final feature of

the shamrock that will be replied to form the crystal (right).

The crystal is formed by a triangular lattice with periodic distance a, as showns figure
3.3(a). The radius of each circle is parametrized as a function of the lattice period
a, r = na where n is a scalar going up to 0.25 which is the limiting case when every
shamrock touches one another. The final unit cell is shown in figure 3.3(b) where
t is the membrane thickness and the blue and red arrows indicate the two Floquet
periodic conditions (applied to the indicated faces) used in simulations that will be
discussed later in this chapter.

3.3.1 Irreducible Brillouin zone

The Irreducible Brillouin Zone (IBZ) of a periodic structure is determined by the
type of lattice (e.g., square, triangular, etc), the symmetries of the repeated pattern,
and the intrinsic properties of the material. The first Brillouin zone of a triangular
lattice such as that presented in figure 3.3(a), is determined by a hexagon with side
4π/3a, where a is the period of the structure [33]. If the phononic crystal is formed
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Figure 3.3: (a) Shamrock unit cell in the triangular lattice with the
period of the structure a. (b) 3D shamrock unit cell indicating the
thickness of the membrane t, and the faces where the Floquet periodic

conditions are applied for simulation.

by shamrocks (that has a C3 rotational symmetry) in an isoptropic material, the
IBZ is determined by 1/12th of the first BZ as indicated by the region bounded by
the ΓKMΓ path in figure 3.4(a). Rotational symmetry of order n, Cn, means that
rotation by an angle of 360◦/n, does not change the object. If the crystal is formed
by squares (which have C4 rotational symmetry) in the same isotropic material, the
IBZ is determined by a quarter of the first BZ as shown by figure 3.4(b). However, if
we consider the anisotropy of the material (as is the case for crystalline silicon), the
IBZ for the shamrock crystal is now defined by the region bounded by the ΓKLY Γ
path described in figure 3.4(c).

Figure 3.4: Irreducible Brillouin zone for a triangular lattice com-
posed of (a) shamrocks (which have C3 rotational symmetry) and (b)
squares (wich have C4 rotational symmetry), considering that the crys-
tal is made in an isotropic material. (c) Irreducible Brillouin zone for

shamrock crystal considering the anisotropy of the material.

The shamrock crystals were fabricated in the SOI platform. The density of silicon
used for simulation is 2331 kg/m3. Depending on the crystallographic orientation,
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Figure 3.5: Miller index for the SOI wafer used in samples fabrication

the elastic matrix for silicon varies. For the [100] (x) and [010] (y) orientation, the
elastic matrix is completely defined by the three coefficients C11 = 165.7 GPa, C12
= 63.9 GPa and C44 = 79.9 GPa. Considering the orientation of crystalline silicon
presented in figure 3.5, in which [110] orientation coincides with x axis, the elastic
matrix with coeficients C ′

ij is given by:


194.7 34.9 63.9 0 0 0
34.9 194.7 63.9 0 0 0
63.9 63.9 165.7 0 0 0

0 0 0 79.9 0 0
0 0 0 0 79.9 0
0 0 0 0 0 50.9


GPa, (3.1)

where C ′
11 = C

′
22 = (C11 + C12 + 2C44)/2, C ′

33 = C11, C
′
44 = C

′
55 = C44, C

′
66 =

(C11 −C12)/2, C ′
12 = (C11 +C12 − 2C44)/2 and C ′

13 = C
′
23 = C12.

3.3.2 Band structure for the IBZ contour path

The plane wave propagation in infinite two-dimensional periodic structures can be
studied using Floquet-Bloch principles. In simple terms, Bloch’s theorem (or Flo-
quet’s principle in the case of one-dimensional periodic structures) says that for any
structure formed with the repetition of an identical unit cell, as is the case for the
crystals studied here, the change in complex wave amplitude across a unit cell, due
to a propagating wave without attenuation, does not depend upon the location of the
unit cell within the structure [52]. Therefore, it is possible to study the wave prop-
agation through the entire lattice by considering wave motion just in the unit cell.
Bloch’s theorem thus leads to enormous savings in the analysis of wave propagation
in periodic structures. For the particular case of the shamrock structure, two periodic
conditions are applied to the unit cell and are indicated in figure 3.3b with blue and
red arrows. The phononic band structure was calculated using finite element methods
(FEM) in COMSOL multhyphysics software to solve the 3D elastic wave equation:

ρ
∂2ui
∂t2

= ∇ · (ρc2
t∇ui) +∇ ·

(
ρc2
t

∂~u

∂xi

)
+

∂

∂xi
[(ρc2

l − 2ρc2
t )∇ · ~u], (3.2)

where ρ is the density of the material, ~u is the mechanic displacement and ct and cl
are the transverse and longitudinal velocities respectively. Figure 3.6(a) shows the
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Figure 3.6: (a) Phononic band dispersion for a shamrock crystal slab
with t= 220 nm, a=330 nm and r=0.22a along the ΓKLY Γ path as
indicated in the inset. Blue and red curves denotes symmetric and asy-
metric modes with respect to the mid plane of the slab as indicated in
(b) and (c) respectively. The band calculation was performed consid-
ering the anisotropy of the silicon when the [110] direction coincides

with the x axis of the crystal.

phononic band dispersion calculated for a shamrock crystal slab with a thickness of
t = 220nm, period a = 330 nm, and radius r = 0.22a along the ΓKLY Γ path as
indicated by the inset. Blue and red modes represent the symmetric (3.6(b)) and
asymmetric (3.6(c)) modes with respect to the mid plane of the slab. The light blue
region highlights a region from 6.7 GHz up to 11.4 GHz between the 6th and 7th
bands where no modes appear. Therefore there is a full gap in this structure with
a width of 4.7 GHz and central frequency of 9.05 GHz which corresponds with a
gap to mid gap ratio (∆f/fc) of 52%. One particularity of this band structure is
the almost flat band (dispersionless) in the lower edge of the gap. This contributes
substantially to increase the density of phonon states around 6.5 GHz. Usually the
band calculations are performed along the high symmetry directions because the
extreme points (maximum and minimum) of all bands occurs along these directions.
However it was shown that this only holds for certain crystallographic groups [53].
Therefore, one can use the IBZ contour to pre-detect band-gaps, but their extreme
values must be confirmed considering the full IBZ.

3.3.3 Gap dependence on geometrical parameters

The particular shape of the shamrock favors the creation of phononic band gaps. As
shown in figure 3.3a, the unit cell is composed of a large mass connected by small
necks; this particular mass distribution enables the creation of wide full band gaps
[33]. To illustrate this better, figure 3.7 shows the gap evolution as a function of the
fraction r/a calculated for a membrane with a fixed thickness of 220 nm and four
different periods. For all considered periods, if the radius of each circle composing
the shamrock is small (below 0.12), there is no gap. For all four curves in figure 3.7
it can be seen that the bigger the radius, the wider the gap, as shown the insets of
the unit cell for r/a = 0.16 and r/a = 0.22. The maximum value of the radius is
r = 0.25a which corresponds to the case when shamrocks touch one another but to not
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Figure 3.7: Gap dependence on radius r calculated for a fixed thickness
membrane of 220 nm and four different periods of 220, 330, 440 and
550 nm. For all simulated periods the width of the gap also increases

when the ratio (r/a) increases.

compromise the integrity of the fabricated crystals, we choose a radius of r = 0.22a
for all the shamrock crystals studied in this work.

Once we have chosen the optimal ratio r/a considering the fabrication limitations,
the evolution of the full gap as a function of the period a can be studied. Figure 3.8
shows the gap width as a function of the period a calculated for a slab with a thickness
of 220 nm and varying periods ranging from 100 nm until 600 nm. The gap starts to
open around 14 GHz for a period of approximately 150 nm. From that point, as the
period increases, the gap width starts to increase reaching a maximum of 6 GHz for a
period around 300 nm before it begins to decrease again. The frequency is inversely
proportional to the period a. High frequencies require small structures indicating a
limitation set by nanofabrication. With this shamrock structure the central frequency
of the gap can be tuned by changing the period a and obtain wider gaps up to 6 GHz.
This shows the advantages of the shamrock crystal as a phononic insulator and also
can be implemented in the fabrication of tunable phononic waveguides. Figure 3.7
also indicates the gap position for three particular periods of 220 nm, 330 nm and
440 nm, which were the periods chosen for fabrication.

3.4 Sample fabrication

The shamrock phononic crystals described in this chapter and the shamrock waveg-
uides described in the next chapter were fabricated at the Technical University of
Denmark (DTU) in the group of Prof. Søren Stobbe by Marcus Albrechtsen. They
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Figure 3.8: Gap dependence on period a calculated for a fixed thickness
slab of 220 nm and fixed radius r = 0.22a nm. The dashed lines
highlights the gap position for the three fabricated crystals of a = 220,

330 and 440 nm.

were fabricated on chips cleaved from a commercial (SOITEC) 12-inch SOI wafer,
which has a nominal 220 nm thick device layer and a 2 µm thick buried oxide layer.
The lithography, dry-etching, and release etch of the suspended membrane was done
as detailed in [54] with some minor changes. There they were able to fabricate a
cavity which confine photons inside 8 nm width silicon bridges. As we do not need
to make as small features for our shamrock phononic crystals, it was spin-coated
onto the substrate a thicker (180 nm) softmask (Chemically Semi-Amplified Resist,
CSAR6200.09), which enables to reduce the periodic sidewall roughness (scallops).
The patterns were defined with a 100 keV 100 MHz JEOL-9500FSZ electron-beam
writer with a 200 pA current and a dose density of 2.5 aC/nm2 in the center, boosted
by 10 % in the corners to compensate long-range proximity effects across the large
crystals [55]. The foot print of the fabricated crystals was 50 by 50 µm. A proximity
effect correction was implemented using the standard Gaussian approximation that
takes the form:

Ψ(r) =
1

π (1 + η)

[ 1
α2 e

−(r/a)2
+

η

β2 e
−(r/a)2

]
. (3.3)

Here the first Gaussian describes the size of the focused electron beam. The spot
size has a full-width half-maximum that is approximately 3.3 nm in our case, since
a 40 µm aperture and 200 pA was used. This is much smaller than the pitch of
the crystals, and therefore the long-range scattering (> 1 µm distances) is effectively
described by

Ψ(r) =
1

π (1 + η)

[
π+

η

β2 e
−(r/a)2

]
, (3.4)

and the intermediate- and short-range effects are neglected. The parameter β de-
scribes the range of the long-range scattering and η describes the fraction of total
dose received from this effect. For 100 keV with a silicon substrate β = (30 ± 2) µm
and η = (0.7 ± 0.4) depending on other parameters such as resist thickness. For the
fabrication process described here the values were β = 30 µm and η = 0.5. In this
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Figure 3.9: Schematic of the CORE, Clear (C), Oxide (O), Remove
(R), Etch (E) cyclic etch process.

process the cyclic dry-etching process CORE [56] was also further modified, with 3
changes from the process described in Ref. [54]. CORE is a switched process based
on 4 steps [54, 56], done cyclically in the following order:

1. The clear step (C), which purges the reactor to obtain a reproducible plasma
in the following steps. The plasma is turned off during this step.

2. The oxidation step (O), which grows a thin layer of silicon oxide everywhere on
the silicon surface using an (≈ 50 mTorr) oxygen plasma with low DC bias; this
step also etches the resist uniformly.

3. The bottom removal step (R), which uses a low density (≤ 0.2 mTorr) SF6
plasma, i.e., a large DC bias will sputter the SiOx from the bottom of the
patterned features. This step will also erode the resist.

4. The main etch step (E), which uses a dense (≈ 50 mTorr) SF6 plasma. This step
etches silicon isotropically, forming so-called scallops, whose size is controlled
by the time of this step. Since it is high pressure it has a low DC bias, which
means that it does not erode the mask.

Figure 3.9 outlines the three main steps (starting with the first E-step in the process).
The sequence is repeated until the pattern is fully etched (220 nm). Therefore, the
size of the scallops, and implicitly the periodic sidewall roughness, is controlled by
the duration of the E-step, with more cycles and shorter steps yielding less roughness.
However, the number of possible cycles is limited by the thickness of the resist, which
is eroded during the O and R steps. In Ref. [54], a thin resist (65 nm) is used to
obtain high aspect-ratio features, though 10 cycles with 73 seconds etch-time is used
to fully etch the sample. Here, we use a thicker resist (180 nm), which enables the
etch in 14 cycles of 45 seconds.

As it was mentioned previously, we chose three different periods to fabricate and
measured changes in the band gap frequencies. Figure 3.10 shows a Scaning Electron
Microscopy (SEM) top view image of the fabricated samples with periods of 220, 330
and 440 nm with the same parameterized radius r = 0.22a. All the crystals have a
full area of 50x50 µm.

3.4.1 Contour fitting and statistical analysis

The SEM images of the fabricated samples can be used to evaluate their quality. The
average shape of the fabricated shamrock holes can be obtained from a statistical
study of shapes extracted from the same SEM image. Each contour comes from a
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Figure 3.10: SEM images of the fabricated shamrock crystals with
periods of (a) 220 nm, (b) 330 nm, and (c) 440 nm.

binarized version of the original SEM image adjusted to obtain the most accurate
result. Because holes in SEM images appear in black, a limiting pixel value can be
set and a new image can be createdin which all the pixels below these values will
be black (holes) while the others above the same value will be white (structure).
The accuracy can be adjusted changing the limiting pixel value and the fidelity of
this approximation can be evaluated by superimposing the fitted contours and the
original image as shows figure 3.11(a) for the crystal with a period of 330 nm. In
this case were fitted 56 shamrock holes and figure 3.11(b) plots the ensemble of all
contours (red dots) and their mean values (blue dots). The shapes of the individual
fitted shamrocks are very similar which is a qualitative measure of the fabrication
tolerance.

Figure 3.11: (a) Fitted contours in a shamrock crystal with a period
of 330 nm. (b) Superposition of all the contours (red) and their mean

values (blue points).

To quantify the degree of imperfection, we compare the mean value and standard
deviation of the ensemble averaged area of the shamrocks with the nominal value.
The fitted areas are obtained performing a numerical integral (in Matlab) of the
coordinates showed in 3.11(b), and the nominal one, from the coordinates of the
projected shamrock shown in figure 3.2. Figure 3.12 plots the histogram distribution
of the fitted areas in nm2 of each individual shamrock (in red), and the mean value
(in blue). The gray line in figure 3.11 indicates the nominal area of the designed
geometry. The difference between the average area, 5.12× 104nm2, and the nominal
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area, 4.91× 104nm2, is attributed to the not fully resolved corners of the shamrock,
as displayed in the inset of the figure. This clearly shows the significance of avoiding
sharp corners in the unit cell geometry, which requires an accurate fabrication process.
Although geometric inspection using SEM images has its limitations, this simple
analysis shows the high quality of the fabrication process used here and also the
simplicity and robustness of the pattern selected to create the periodicity.

Figure 3.12: Histogram for the 56 fitted areas (red) and its mean
(blue), compared with the nominal value of the designed area (gray).
There is a small difference between the mean and nominal areas caused
by the etching in the intersection of the circles as shown the inset.

Once the shamrock contours have been fitted, this information can be used to study
the period fluctuation in the fabricated structure. This is done by finding the centroid
of each fitted shamrock, the blue central point in figure 3.11(b), and calculating the
distance between neighbours as indicated in figure 3.13(a). From these 56 contours
we can extract 42 horizontal periods, like indicates the horizontal green arrow in the
figure, and 40 vertical periods like indicates the diagonal green arrow. This results
in 82 distances to make a statistical analysis as the one presented in figure 3.13(b).
The obtained mean value for the period is 330.26 nm with a standard deviation of
1.28 nm. This further confirms the accuracy of the fabricated sample with a nominal
period of 330 nm.



30 Chapter 3. Phononic crystals

Figure 3.13: (a) centroids (blue points) for all the fitted shamrocks.
The green arrows indicate the distances (periods) taken for the statis-
tics. (b) histogram for the 82 obtained periods. The main value of
the fitted periods is 330.26 nm with a standard deviation of 1.28 nm
which is accurate compared with the projected period of 330 nm.

3.5 3D phononic dispersion relation and density of states

Taking advantage of the statistical study discussed in the previous section, the mean
fitted shamrock (blue points in figure 3.11(b() can be used to build a more accurate
crystal unit cell for implementation in COMSOL software to obtain the phononic
band structure of the fabricated sample. Figure 3.14 shows the 3D dispersion relation
obtained using the fitted unit cell for the crystal with period of 330 nm. The band
structure is calculated for the entire first Brillouin zone. This is done by discretizing
the reciprocal wavevectors kx and ky, for the IBZ highlighted in pink in the bottom
part of figure 3.14 and then replicating the obtained bands for the rest of the first BZ.
As before, blue and red curves denotes symmetric and asymmetric modes respectively.
From this figure the gap extends along the entire first BZ, it means, is a full gap. From
this full dispersion relation the phononic Density Of States (DOS) for the crystal can
also be calculated, using the following expression:

DOS =
N

∆f · V ·Nk
, (3.5)

where N are the number of modes counted over the frequency range ∆f (histogram
of frequencies). V is the volume of the unit cell, obtained directly from COMSOL,
and Nk is the number of points of the calculation mesh within the IBZ, this is,
the discretization of kx and ky over IBZ. For this particular case ∆f= 100 MHz,
V = 8.9760× 10−21 m3 and Nk=176 points. Figure 3.14b shows the calculated DOS.
The light blue region highlights the full mechanical band-gap from 6.7 GHz up to
11.4 GHz. In the bottom part of the gap, the DOS is particularly high compared
with lower frequencies because of the red flat (dispersionless) band on the edge of the
gap as shown figure 3.14(a). The same phenomenon occurs with the bands around
15 GHz that also increases the DOS.

To experimentally characterise this full gap, it was measured the scattering spectra
along the simplified path ΓKMΓ indicated in figure 3.14(a). This is sufficient to
characterise the full width of the phononic gap as its limiting frequencies do not
change with respect to the IBZ. Figure 3.15(a) shows the edges of the gap calculated
along the IBZ, for the ΓP path, as a function of the rotation angle ϕ, as indicated
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Figure 3.14: (a) Simulated 3D phononic dispersion relation over the
first Brillouin zone, using the extracted geometrical parameters from
SEM images for the crystal with a=330 nm. Blue and red curves indi-
cates symmetric and asymmetric modes respectively. (b) Calculated
phonon density of states (DOS) for the same structure. The light blue
region highlights the full phononic band gap spanning from 6.7 GHz

to 11.4 GHz.

in the inset. P is the point determined by ϕ at the edge of the IBZ. The lower edge
of the gap is constant for all angles because the limiting value is in Γ for the entire
IBZ as shown figure 3.15(b), where we plot the ΓP band dispersion for ϕ = 15◦, 45◦,
and 75◦. ϕ = 0 corresponds with the ΓK path and ϕ = 90 corresponds with the ΓY
path.

3.6 Experimental reconstruction of the mechanical dis-
persion relation

Using Brillouin light scattering and the experimental setup described in chapter 2, it
is possible to obtain the phononic band dispersion of the fabricated shamrock crystals.
When incident light with wavevector ~ki reaches the sample with a certain angle θ as
show figure 3.16, a small part of the light is non-linearly scattered by the photoelastic
(PE) or moving-boundary (MB) mechanisms, both discussed in chapter 2. For the
measurement of shamrock crystals, considering that the structures are suspended and
the thickness is only 220 nm, the scattering volume is small given the direction of the
incident light. In addition, considering the large refractive index contrast between
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Figure 3.15: (a) Band gap edges for the a=330 nm. crystal. The lower
edge is always constant as the limiting value is at the Γ point. (b)
Calculated bands along the ΓP path that is indicated in the inset of

(a), for ϕ=15◦, 45◦, and 75◦.

the surrounding air (n=1) and the silicon crystal (n=4 for λ=532), the scattering
process in this structure will be dominated by the MB mechanism. Therefore it can
be proved the parallel mechanic wavevector ~q‖ in figure 3.16, by changing the angle
θ and reconstruct the phononic band dispersion.

Figure 3.16: Schematic ilustration of Brillouin scattering with the
phase-matching condition for the backward configuration used to mea-
sure the crystal. Here ~ki and ~ks represents the incident and the scat-
tered light respectively, and ~q‖ is the parallel mechanic wavevector.

With the Tandem Fabry-Perot Interferometer described in the previous chapter, we
measure the shamrock crystal. Figure 3.17 shows the obtained spectrum for the
crystal with a=330 nm taken with an incident angle of 32.5◦ which corresponds
with the high symmetry point K in the reciprocal space. The spectrum is symmetric
because Stokes and Anti-Stokes contributions are equally likely in a stochastic process
such as spontaneous Brillouin scattering [32, 57]. The central peak corresponds with
Rayleigh scattering and the other peaks, enumerated from 1 to 7, correspond with
the vibrational frequencies of the phononic modes of the crystal. The amplitude
depend on the scattering efficiency of each mode with the incident laser light [58],



3.6. Experimental reconstruction of the mechanical dispersion relation 33

which is proportional to the displacement of the boundaries. The phonon frequencies
can be obtained by fitting each of the observed peaks to lorentzian line shapes and
extracting the mean value between the resonant frequencies of the Stokes and Anti-
Stokes components.

Figure 3.17: Measured Brillouin scattering spectrum for an incident
angle of θ=32.5◦ with p-polarized light. The green central peak stems
for elastic Rayleigh scattering. Negative and positive frequency peaks
correspond to Stokes and anti-Stokes contributions respectively. The

light blue region highlight the mechanical gap.

The light blue regions in figure 3.17, going from 5.6 GHz until 11.1 GHz shows that
no peaks appear in this frequency window. This is the evidence of the mechanical
gap. One spectrum alone can not confirm a gap as it is possible that there are modes
that do not scatter enough light to be detected. To confirm that we are dealing with
a full mechanical gap, we take the same measurement for different angles using the
same incident power (2.5 mW), the same focusing lens with 3 cm of focal length, and
the same acquisition time of 24 hours for each spectrum.

Figure 3.18 shows the calculated band structure (continuous lines) and experimental
measurements (black dots) from Γ (0◦) until K (32.5◦). We measure from 6◦ until
30◦ with a step of 3◦ and the additional angle for K. Measurements at smaller
angles or in the Γ point (at zero degrees) are rather challenging to obtain in the
backscattering configuration because the specular elastic reflected signal is so strong
that it completely masks the relatively much weaker Brillouin scattered signal. The
minimum angle for acquisition depends on the lens used to focus and collect the
scattered light. This is given when it is possible to block or separate the backscattered
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signal and the strong specular reflected signal. The specular signal must not enter
back into the collection system.

As before, blue and red curves indicate symmetric and asymmetric modes. The green
region on the bottom of the spectra indicates the frequency window that is masked
by the strong Rayleigh peak also indicated in green in figure 3.17. The experimental
measurements in figure 3.18 confirm the existence of the gap at least for the ΓK
direction; although there is poor correlation between experiment and simulations.
This mismatch between theory and experiment is obtained despite the fact that it was
explored the fabricated geometry through the SEM statistical analysis to obtain the
more accurate geometrical parameters for simulations as was discussed in subsection
3.4.

Figure 3.18: Calculated band structure (solid lines) for the a=330
nm crystal from Γ (0◦) until K (32.5◦). Black dots represents fitted
frequencies measured each 3◦. As before, blue and red lines represents
symmetric and asymmetric modes. The green region indicates the
frequency window that is masked by the central Rayleigh peak. The

agreement between simulations and experiment is not good.

There is additional information from he fabricated crystals that can not be extracted
from the original SEM images and it is the vertical profile of the eroded hollows in
the structure. In the previous simulations it was assumed perfectly straight sidewalls
to build the unit cell as shown figure 3.3(b). Due to imperfections in the fabrication
process, during Reactive Ion Etching (RIE), or the CORE process presented schemat-
ically in figure 3.9, the wall can be eroded with a certain angle. Figure 3.19 shows
a Focus Ion Beam (FIB) cut from a fabricated shamrock crystal. The SEM images
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show imperfections in the bottom and vertical walls of the suspended crystal. This
is not the same structure for which measurements are presented in figure 3.18, but is
a good illustration to note how fabrication processes can modify the unit cell of the
projected crystal.

Figure 3.19: Focus ion beam cuts in a suspended shamrock crystal fab-
ricated in silicon. The SEM images shows how the fabrication process

can modify the unit cell of the designed crystal.

This suggest that modifications in the vertical profile of the unit cell need to be in-
troduced to accurately calculate the band structure. Figure 3.20 shows the simulated
bands for the same crystal as figure 3.18, this time considering a 4◦ tilt in the sidewalls
of the unit cell as highlighted by the red lines in the inset. It is worth clarifying that
the measured crystal itself was not cut with a FIB, and that the angle was adjusted
only in the COMSOL model to obtain the best correlation between simulations and
experiment. Figure 3.20 shows a good agreement between theory and experiment
with a close fit between the edges of the gap. The figure also shows that it is possible
to track some bands when changes the angle. In this figure all the bands are purple
as vertical symmetry in the membrane is lost due to this sidewall tilt. Some bands
are invisible to the measurement technique and as the mode profile does not produce
enough surface displacement to scatter the minimal amount of light necessary to be
detected by the TFP interferometer.

These results shows the importance in considering all the geometrical parameters of
the fabricated sample. Fluctuations in the sidewall profile strongly modify the band
structure of the crystal, even more than imperfections in the crystal pattern. The
lower edge of the gap moved from 6.7 GHz to 5.8 GHz at the Γ point, a shift of almost
1 GHz of frequency when considering a tilt of 4◦. This corresponds with a lateral
difference of 15 nm approximately at the top and bottom face of the membrane.

With the TFP interferometer it is possible to probe different crystallographic direc-
tions of the reciprocal space and reconstruct the band diagram. Figure 3.21 plots the
dispersion relation calculated along the ΓKMΓ path, indicated in the bottom part of
figure 3.14. The intensity color scale represents the normalized coupling coefficients
for the MB perturbation. Black dots are the experimental measurements and the
vertical dotted line indicates the frequencies obtained from the measured spectrum
showed in figure 3.17. The inset indicates the thickness of the silicon plate and the
deviation of 4◦ considered in simulations and the green area denotes the masked re-
gion by the Rayleigh peak. This graph also shows that the gap is present in other
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Figure 3.20: Calculated band structure (solid lines) for the a=330 nm
crystal from Γ (0◦) until K (32.5◦) considering tilted sidewalls with
4◦ of deviation angle. Black dots represents the fitted frequencies.
With this small correction, simulation and measurements show closer

agreement.

paths of the reciprocal space and is the experimental confirmation of a full phononic
bandgap.

To measure different paths in the reciprocal space, different rotations of the sample
are required. For the ΓK path the angle θ should be changed as indicated in figure
3.21(b) where the green arrow represents the incident laser. In this case the ΓK path
is aligned with the x axis as indicate the yellow line in the inset. Here, the value of
the maximum angle θ is calculated from the relation q‖ = |ΓK| = 4π

3a = 4π
λi

sin θ.

To map the ΓM direction, we rotate the sample 30◦ to align the ΓM path with the
horizontal direction as indicated in the inset of figure 3.21(d) and, from that position,
we rotate the angle θ. Here, the maximum angle is indicated by q‖ = |ΓM | =
2π√
3a = 4π

λi
sin θ. Mapping the KM path requires the simultaneous variation of two

specific angles α and θ to measure the intersecting point of the blue segment and the
horizontal direction, as depicted in figure 3.21(c).
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Figure 3.21: Calculated dispersion relation based on the geometrical
parameters obtained from SEM images of the fabricated samples that
include a 4◦ sidewall angle correction in the vertical profile (inset). The
black dots represent the measured frequencies of vibrational modes for
different angles and the vertical dotted line indicates the frequencies
obtained from the measured spectrum shown in figure 3.17. The in-
tensity color scale represents the normalized coupling coefficients for
the moving-boundary perturbation. (b)-(d), The direction in which
the sample is physically rotated to scan along the highest-symmetry
directions ΓK (b), KM (c) and ΓM (d). The green arrows indicate
the direction of the incident laser light while the other colored arrows
correspond to the rotation direction during measurements, which rep-
resent (and are color-consistent with) the highest-symmetry direction

indicated in (a).
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3.7 Tunability of the mechanical gap with geometrical
parameters

The mechanical gap of the shamrock crystal can be tuned by changing the period
of the structure as shows figure 3.8. Phononic crystals with periods of 220 and 440
nm also were fabricated (see figure 3.10), and characterized using BLS spectroscopy.
Figure 3.22 shows the experimental band reconstruction for crystals of 220 nm (a),
and 440 nm (b). Solid lines are simulated bands and black dots are the measured
frequencies for different angles. Here we also applied a 4◦ correction to the vertical
profile. For both crystals the full gap could be measured, experimentally validating
gap tunability.

Figure 3.22: Experimental band reconstruction for shamrock crystals
with periods of (a) 220 nm and (b) 440 nm.

The correlation between experiment and theory for the crystal with a=220 nm in
figure 3.22(a) is less accurate as for such a small crystal, the geometry fluctuations
are bigger and the projected/simulated geometry differ more with the experiment.
Even with this limitation, the experiment shows a similar trend for the bands, for
example, on the upper side of the gap, but with a shift in frequency.

3.8 Optical dispersion relation for shamrock crystal

The shamrock crystal also presents a complete gap for TE optical modes in the THz
regime. It makes this structure an optomechanic or a phoxonic crystal. Figure 3.23(a)
shows the optical band structure for the crystal with a = 330 nm calculated along
the optical IBZ. Here, because it is assumed the same refractive index for all the
material, the IBZ is determined by the ΓKMΓ path. The grey zone indicates the
light cone, the location of the guided modes, and the continuum where the modes are
extended in the air. Between the first and the second band appear a complete gap
below the light cone from 350 THz up to 350 THz approximately. This corresponds
to wavelengths between 1000 nm and 860 nm respectively.

Figure 3.23(b) shows the TE gap evolution as a function of the period a, considering
a thickness of t = 220 nm and a radius of r = 0.22a. The y axis is given in terms
of the wavelength instead of frequency to help in the design for a desired λ. For
example, with a period of 600 nm, a shamrock optomechanic crystal has an optical
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Figure 3.23: (a) Optical dispersion relation for TE modes in a sham-
rock crystal with a = 330 nm. The grey area indicates the light cone
and the pink area highlights the complete band gap. (b) TE gap evo-

lution as a function of the period for the shamrock crystal.

gap centered at λ = 1550 nm (telecom wavelength), and a phononic gap of 2 GHz
centered at 4.5 GHz approximately, as indicates figure 3.8. This implies that such
a structure could have interesting applications in optomechanics because allows the
guiding and co-localization of optic and mechanics waves in the same structure and
in a small volume. Furthermore, the overlap and coupling between photonic and
phononic fields is enhanced. The next chapter will explain how to find the best
configuration to build these waveguides.

3.9 Conclusions

This chapter provides a detailed description of the Shamrock system and their ad-
vantages, all this supported by experimental evidence. The main conclusions are
summarized below

• The particular shape of the shamrock feature allows the appearance of wide
frequency gaps. A bigger shamrock radius leads to smaller necks width in the
unit cell that as a consequence produces a wider frequency gap in the phononic
dispersion relation.

• The frequency gap of this system can be tuned by changing the period of the
structure. It was experimentally measured in three different fabricated crystals
obtaining a gap tunability from 4 GHz up to 12 GHz approximately.

• The statistical analysis from SEM images shows the quality of the fabricated
samples. Fluctuations in shape and position of crystals are small and almost
negligible. This fact is reflected at the time to match theory vs. experiment.

• It was shown that geometrical robustness is crucial for the proper band engi-
neering. minimal deviations in the vertical profile of the drilled shamrock holes
causes large frequency shifts.
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Chapter 4

Phononic waveguides

4.1 Introduction

One direct application of crystals with bandgaps is the construction of defect waveg-
uides and cavities. The same idea is applied for light (photons) and mechanical
waves (phonons). In this chapter, I present direct experimental detection of hyper-
sonic guided modes measured in the shamrock phononic waveguides using Brillouin
light scattering spectroscopy to detect these modes at room temperature and with
no external excitation. The tunability of the mechanical gap in shamrock crystals
also allows the tunability of guided modes. Furthermore we can control the numbers
of modes propagating in the waveguide by changing the waveguide width. These re-
sults shows that we are designing structures that can vibrate just by the excitation of
thermal phonons and furthermore enables the propagation of waves with low energy
consumption.

4.2 Defect-line waveguides

In 1966, Charles Kuen Kao carefully calculated how to transmit light over long dis-
tances via optical glass fibers [59]. He realized that by carefully purifying the glass,
thin fibers could be manufactured that would be capable of carrying huge amounts of
information over long distances with minimal signal attenuation and that such fibers
could replace copper wires for telecommunication [60]. Thanks to the invention of
laser, light can be guided through the optical fibers based on the principle of total
internal reflection as shown in figure 4.1a. A small change of the refractive index
between the core and the cladding (nco > ncl) enables the light to propagate through
the higher index medium over long distances with low attenuation (0.2 dB/km for
λ=1550 nm). This fact was a huge step for telecommunications because lowering
costs in signal amplification, in addition to leading to a Nobel prize for Charles Kao.
If it is required to guide mechanical waves instead of light, it is not possible to apply
the same principle because acoustic impedance of solid materials are high and close in
value and it is not possible to realize index guiding with large impedance contrast for
elastic phonons; elastic waves will leak to the walls of the waveguide. If the walls can
not absorb the mechanical waves because the surrounding medium of the waveguide
have a bandgap for certain range of frequencies, The wave have to stay in the core of
the waveguide. This is the principle of defect waveguides [61–63] made with phononic
and photonic crystals as illustrates figure 4.1b. Defect waveguides are based in the
confinement of waves in a medium surrounded by crystals that posses a full bandgap.
The same principle it is applied to build the shamrock waveguides.
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Figure 4.1: (a) Total internal reflection used to guide light in optical
fibers. nco have to be higher than ncl. (b) Waveguiding by mean of
a defect line inside two photoni/phononic crystal with a band gap.
Waves can not propagate through the crystal and therefore is guided

within the defect.

4.3 Shamrock waveguides

Given the geometry of the shamrock feature, it is possible to create three diferent
configurations of defect waveguides and it is when the surrounding shield crystals are
pointing in the same direction, back to back, and front to front as figure 4.2 (a), (b)
and (c) indicates respectively. The black dotted line indicates the waveguide in each
case. The different waveguide configurations are possible because the c3 rotational
symmetry of the shamrock and it is not possible for example with a crystal composed
of circles or squares. It is possible to have three more configurations of waveguides if it
is displaced the upper crystal half period in the horizontal direction with respect to the
lower one, refereed as glide-plane waveguides (GPW) [64, 65], employed to study the
chirality of guided modes, with possible applications in non-reciprocal devices. These
waveguide configurations are not considered in this work. The defect waveguides are
only periodic in x direction as shown in figure 4.2; therefore there is no Brillouin zone
in this case and the wavevectors in the reciprocal space are limited to between 0 and
π/a.

Figure 4.2: (a) Total internal reflection used to guide light in optical
fibers. nco needs to be higher than ncl. (b) Waveguiding by means of
a defect line inside two photonic/phononic crystal with a band gap.
Waves can not propagate through the crystal and therefore have to

propagate in the defect.
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4.3.1 Unit cell for shamrock waveguides

The Floquet periodic conditions discussed in the previous chapter also can be ap-
plied here to simplify the simulation of the whole structure to determine the guided
modes for each configuration. Figure 4.3 shows the construction of the unit cell for
the waveguide starting from the shamrock crystal. The yellow features indicate the
shamrocks that will be removed to form the waveguide. d is the distance between
the shamrocks closest to the interface. For the case of figure 4.3 d = 2a sin(60). For
later designs, we will use the parameter nwg to vary the width of the waveguide as
a function of d, where the new width is defined as D = nwg ∗ d. For waveguide
fabrication we chose three different values: nwg= 0.6, 0.8 and 1.

Figure 4.3: Unit cell construction for the shamrock waveguide. a is
the period of the structure, d is the shamrock-shamrock distance at
the interface. The green area represents the unit cell. Blue arrows
indicate the faces for Floquet periodic conditions, red arrows indicate
faces for the low reflecting boundary condition in simmulations and

the numbers represent the amount of rows to build the unit cell.

The green area indicates the unit cell of the waveguide. The width of the unit cell is
a, therefore the reciprocal wavevectors range from 0 to π/a. Blue arrows indicate the
faces where the Floquet periodic conditions are applied and red arrows indicate the
ends of the waveguide where low reflecting boundary conditions are applied, to avoid
the appearance of spurious or reflecting modes. In all simmulations presented here,
the unit cell always ends in the middle of the last row of shamrocks as shown figure
4.3 and not in the space between rows. This convention was adopted here because
it reduces or avoids the appearance of spurious modes. Finally the numbers indicate
the amount of rows used to build the unit cell. For all the configurations, each side
of the waveguide has 12 rows.
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4.3.2 Band dispersion for shamrock waveguides

Figure 4.4 shows the dispersion relation for the three waveguide configurations pre-
sented in figure 4.2, calculated from 0 to π/a (kx is normalized from 0 to 1). The
bands are calculated for the waveguide with period a = 330 nm, radius r = 0.22a,
thickness t = 220 nm and nwg = 0.6. The three configurations present symmetric
and asymmetric guided modes in which the mode deformation is concentrated at the
interface as illustrated by the selected mode profiles for 0.8π/a to the right of each
graph.

Figure 4.4: Phononic dispersion relation for the three waveguides de-
scribed in figure 4.2. The gray areas above and below the gap corre-
sponds with the bulk crystal modes. Blue and red curves represent
symmetric and asymmetric modes respectively. Insets in the left indi-
cate the type of interface and insets on the right illustrate the mode

profile when kx/(π/a) = 0.8 for the pointed modes.
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Configurations (a) and (b) present five and six guided modes respectively and the
modes vary significantly in frequency inside the gap as the wavevector changes. Some
of the modes almost completely cross the gap. On the other side, the configuration
shown in figure 4.4(c) presents less guided modes than the other two variations, and
the curves remains apart except for one crossing of two bands. Beside that, three of
the bands seems to be completely dispersionless (flat bands). These characteristics
facilitates the identification of modes in experiments and therefore configuration (c) is
the most suitable for this study. This configuration allows a better band engineering
of the guided modes and it seems that the modes are strongly confined inside the
gap.

Figure 4.5: Phononic dispersion relation for the front-front waveguide
configuration with nwg = 0.8 (a), and nwg = 1 (b). The bands are

calculated for t = 220nm, a = 330 nm, and r = 0.22a.
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Once that the waveguide configuration has been defined, it is interesting to see what
occurs when the parameter nwg increases. Figure 4.5 shows the phononic dispersion
relation for nwg = 0.8 (a), and nwg = 1 (b) calculated with the same geometrical
specifications used to obtain the bands in figure 4.4. As the width of the waveguide
increases, more guided modes starts to appear inside the gap. Comparing figures
4.5 (a) and (b), the guided modes appear or enter in the gap from the top edge and
decrease in frequency, going to the bottom edge of the gap, as nwg increases.

4.4 Experimental detection of hypersonic guided modes
at room temperature

Figure 4.6 shows a SEM image of the shamrock waveguide fabricated in the same
SOI platform described in the previous chapter with a thickness of t = 220 nm. The
period of this structure is a = 440 nm, and the radius is the same as in the previous
cases r = 0.22a. The width of the waveguide is nwg = 0.8, which in the fabricated
sample corresponds with a minimum waveguide distance of 184 nm as it is indicated
in figure 4.6. To calculate this distance from the nominal parameters the expression
w = D− 2(f + r) can be used, which results in w = nwg2a sin 60− 2(2/

√
3 + 1)r.

Figure 4.6: SEM of the fabricated shamrock waveguide with a = 440
nm and nwg = 0.8. The minimum shamrock distance at the interface

is w = 184 nm.
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Figure 4.7 shows the Brillouin spectra measured on the waveguide (top) and on the
surrounding phononic crystal (bottom), as specified in the insets, taken at the same
incident angle of 23.8◦. The blue region indicates the phononic band-gap of the
structure. The two peaks measured within this gap in the top panel at 5.7 GHz
and 7.1 GHz are clear experimental evidence of mechanical vibrations confined in the
phononic waveguide.

Figure 4.7: Measured Brillouin scattering spectra in the waveguide
(top) and surrounding phononic crystal (bottom) as is illustrated in
the insets, for an incident light angle of 23.8◦. The spectral width of
the measured gap is indicated by the blue regions. Two peaks whose
frequencies correspond with the guided modes of the system appear

inside the gap in the spectrum of the waveguide (top).
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To detect these confined modes, it is necessary to focus the light on the waveguide
with a long-working distance microscope objective to reduce the spot size of the
incident light down to 1.2 µm. In doing so, we reduce the contribution of the Brillouin
scattered signal from the crystal while increasing the contribution from the waveguide.
For the measurements of these waveguide structures, the background is higher due to
a greater collection of reflected and linearly scattered light relative to that of the 3
cm focal length lens used to measure the crystals described in the previous chapter.

Figure 4.8 plots the dispersion relation of the waveguide accounting for the 4◦ correc-
tion of the vertical sidewalls. The same angle correction described in chapter 3 was
implemented here because the structures where fabricated on the same chip. The
color intensity of the bands corresponds to the normalized coupling coefficient for the
moving-boundary perturbation. The fully shaded regions above and below the gap
correspond to the bulk crystal modes and define the band-gap edges of the structure.
The calculated dispersion relation exhibits nine guided modes but only two (which
are indicated with their associated mode profiles) are detected in the experiment.
We attribute this to be because of the elastic displacement of these modes, which is
predominantly out-of-the plane, while the other calculated guided modes displace the
structure primarily in-plane.

Figure 4.8: Calculated dispersion relation of the waveguide. The in-
tensity colour scale represents the normalized coupling coefficient for
the moving-boundary perturbation. The horizontal and vertical dot-
ted lines indicate the mechanical band edges and phononic wavevector,
respectively, while the black dots represent the frequencies of measured
peaks. The insets show the mode profiles for the indicated bands where

the colour represents the normalized out-of-plane displacement.
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The horizontal dashed lines highlight the edges of the band-gap measured in figure
4.7, and the black dots correspond to the frequencies of the guided modes measured at
different angles. The angle θ = 23.8◦ corresponds to a normalized wavevector of 1.34.
this number is obtained from q‖ =

nπ
a = 4π

λ sin θ and solving n, or kx/(π/a) = 0.66
over the first periodic zone of the waveguide. The two black dots (1 and 2) coincide
with the measured frequencies and wavevector in figure 4.7. We assume that the
measured peak around 7 GHz corresponds with the darker flat mode around 7.7 GHz
and not with the lighter curve that it is spectrally closer to.

There is a difference of approximately 700 MHz for this band while the other peaks
agree very closely with the calculated band. A possible explanation comes from figure
3.22(b); the upper limit of the measured gap is shifted in frequency with respect to
the calculated bands. Therefore the guided modes inside the gap also will be shifted
to a lower frequency. The lower limit of the measured gap has a better agreement with
calculated bands, compared with the upper edge of the gap, and it is also extended
to the lower detected guided mode in figure 4.8. The detection of these two modes is
a clear fingerprint of the existence of guided modes along the Shamrock waveguide.

4.5 Conclusions

This chapter gives detailed information of the waveguide design and experimental
evidence of hypersonic guided modes. The main conclusions are summarized below

• A direct consequence of the gap tunability is the frequency tunability of the
guided modes. It offers flexibility in the design of structures looking for specific
technological applications.

• From the three possible configurations of shamrock waveguide, the front-front
configuration offers the best mode confinement, in addition to being the ideal
case for experimental detection due to the large interfacial area relative to the
other configurations. It increases the possibility to detect scattered photons
coming from the interface.

• Experimental detection of guided modes is more complicated than crystal band
structure characterization. Only a few of the guided modes scatter enough light
to be experimentally detected.

• The guided modes reported in this work were measured at room temperature
and with no external excitation. The device is vibrating just by the action of
thermally excited phonons. This result says that it is possible to engineer the
frequency of the guided mode and the phononic waveguide can carry information
as a passive device.
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Chapter 5

Quantum spin Hall effect in
optomechanic crystals

5.1 Introduction

Topological bosonics has been garnering significant attention due to the promise of
back-scattering free propagation of information, resulting from topologically protected
states. While significant advancements have been made in topological photonics and
phononics independently, a platform which combines the two could lead to improved
understanding and applications involving fundamental light-matter interactions be-
tween trivial and topologically protected bosons. The design of topologically pro-
tected photonic and phononic crystal insulators is presented in this chapter brought
together onto one platform based on the quantum spin hall effect (QSHE) at the
nanoscale. How topological insulators and ordinary insulators can be obtained in
both the optics and mechanics is demonstrated by a simple tuning of the geometric
parameters.

5.2 Approaches to obtain Topological Invariants for bosonic
systems

The topological properties of the eigenstates of an insulator depend strongly on the
symmetries of the system. Symmetry and topology are strongly linked to each other
[66]. While symmetry tells us what operations leave the system invariant, topology is
invariant under a set of continuous transformations. Indeed, breaking particular sym-
metries of the system may induce a topological phase transition. The most prominent
and first observed approach is the breaking of the time-reversal symmetry in certain
solids by the presence of an external magnetic field, referred as the quantum Hall
effect [22]. This is not the only type of topological insulator. By breaking spatial
or parity symmetries, it is possible to induce further types of topological insulators:
the quantum Spin-Hall effect or the quantum Valley-Hall effect. There is an ever
increasing variation of topological insulators [67] which have inspired analog insula-
tors for bosons – electromagnetic radiation or mechanical vibrations in solids. For
each existing topological insulator originated from a particular symmetry breaking,
probably a counterpart in photonic and phononic systems will exist.
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5.3 Pseudospin for light and mechanical vibrations

Breaking time-reversal symmetry in optics and mechanics is challenging. While mag-
netic fields strongly act on charged fermions, the physical effects that induce such a
breaking for light are in general very weak. The first attempts to obtain photonic
topological insulators exploited the Faraday effect in dielectric nonreciprocal media
[28]. An alternative approach to obtain a topological insulator without the appli-
cation of an external magnetic field is the quantum Spin-Hall effect [68]. However,
this imposes another challenge: bosons have integer spin meaning that the bosonic
quantum-spin Hall effect cannot naturally guarantee Kramers degeneracies. To in-
duce a Bosonic analogue of the quantum-spin Hall effect, an artificial pseudospin must
be engineered by polarization or modal hybridization [69]. The main idea under this
approach is to obtain a system with a double dirac point in Γ with four degenerate
modes that will serve as a basis to build up the two opposed artificial pseudospin with
different polarization or modal properties. The system is modified geometrically to
split the double Dirac point and create a gap in which two topological edge modes
with the artificial pseudospin will appear. This has been achieved experimentally,
both for THz photons [70, 71] and KHz phonons [72], independently.

5.4 Shamrock optomechanic topological crystal

Here the design towards achieving an analogue of the quantum spin Hall effect is
described for both GHz phonons and THz photons within the same nanostructure.
This design follows the strategy presented in reference [69] where a honeycomb lattice
is deformed to create two crystals with different topological invariants that allows the
appearance of topologically protected edge modes. The hexagonal array of shamrocks
presented here combines the results of a hexagonal array of triangles [70, 71], that
produces a topological optical interface, and the results of a hexagonal array of cir-
cles [72], that produces a topological mechanical interface. Figure 5.1(a) shows the
projected geometry composed of the same shamrock feature described in the previous
chapters. The material should be isotropic to not introduce any anisotropy that can
break the symmetry along any direction of the superimposed periodic structure. The
nominal thickness of the 2D membrane is t = 250 nm.

This periodic structure can be seen as a triangular array of parallelograms each with
two shamrock holes as shown in the red inset. The resulting period of such a unit
cell is s, also indicated in red. The same crystal also can be arranged to have a unit
cell composed of a triangular array of hexagons with six shamrock holes inside as
indicates the blue inset in figure 5.1(a). The period of this array is a, that is related
to s by a =

√
3s, and the size of the large unit cell (blue) is three times the size of

the small unit cell (red). When the considered material to build the optomechanic
insulator is isotropic, the sides of the hexagon s must be integer multiples of the
thickness t; otherwise the mechanical topological behavior will not be present. For
the model of isotropic silicon considered here s = 2t = 500 nm.

Figure 5.1(b) details the hexagonal unit cell. p is the distance from the center of the
unit cell to the center of each shamrock as indicated by the circle. This distance is
one third the period, p = a/3, as indicated by the light blue lines in 5.1(a). The
radius of each circle composing the shamrock is parameterized in terms of the side of
the hexagon, r = nr · s, and f = 2r/

√
3 as before.
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Figure 5.1: (a) Hexagonal array of shamrocks in a 2D silicon mem-
brane. This crystal can be seen either as a triangular array of parallel-
ograms with period s (red), or as a triangular array of hexagons with
period a (blue). (b) Hexagonal unit cell of shamrocks. t = 250 nm,

s = 2t, a =
√

3s, p = a/3, r = nr · s, f = 2r/
√

3.

For the purpose of comparing the difference of choosing the small or big unit cell,
the mechanical and optic dispersion relation will be considering in each case. Figure
5.2 shows the mechanical (a), and optical (b) dispersion relation calculated for the
crystal described in figure 5.1, obtained from the simmulation of the small (red) unit
cell. For this calculation nr = 0.117, which gives a shamrock radius r = 58.5 nm.
The mechanical dispersion relation in figure 5.1(a) is duplicated along the x axis
(dimensionless wavevector), to demonstrate the existence of a double Dirac point in
Γ at 6.6 GHz. Consequently, this means that there will be four different modes with
the same frequency in Γ.

Figure 5.2: (a) mechanical dispersion relation for the small unit cell
shown in the inset. There is a double Dirac point in Γ at 6.6 GHz. (b)
Optical dispersion relation for TE modes also considering the small

unit cell. There is a single Dirac point in K at 181.2 THz.

From the optical dispersion relation for TE modes in figure 5.1(b), there is a single
Dirac point (two modes with the same frequency), in K at 178.5 THz. For the
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emulation of the QSHE, the existence of a double Dirac point in Γ is necessary to
hybridize two pair of modes and obtain two interface modes with artificial pseudo
spin. The mechanical dispersion relation already fulfills this requirement. To have
a hybrid insulator, the optical dispersion relation also needs to have the two Dirac
points in Γ. To solve this issue, it is necessary to obtain the dispersion relation
considering the large hexagonal unit cell.

Figure 5.3 shows the mechanical (a), and optical (b) dispersion obtained from the
simulation of the hexagonal (big) unit cell. For the mechanical dispersion relation,
the double Dirac point in Γ at 6.6 GHz remains unchanged. For the optical dispersion
relation, a double Dirac point in Γ appears at the same frequency of 178.5 THz. This
change in the dispersion relation is a consequence of the band folding in reciprocal
space [69].

Figure 5.3: (a) mechanical dispersion relation considering the hexag-
onal unit cell. The double Dirac point in Γ remains at the same fre-
quency. (b) Optical dispersion relation for TE modes also considering
the hexagonal unit cell. In this case there is a double Dirac point in Γ

at the same frequency of 178.5 THz.

5.5 Band folding

To illustrate the origin of the double Dirac point in Γ when the hexagonal unit cell
is considered, figure 5.4 shows the optical dispersion relation for small (red) and big
(blue) unit cells, and their respective Brillouin zones. Given that the Brillouin zone
is inversely proportional to the period of the structure (|ΓK| = 4π/3a), the red unit
cell will have a bigger Brillouin zone. It is tilted with respect to the blue one 30
degrees because the small unit cell is also tilted 30 degrees in the direct space with
respect to the big one.

The dispersion relation in the small unit cell is considered along the ΓKMΓ path,
indicated by the green, yellow and purple segments in the reciprocal space. The
green ΓK path in the red Brillouin zone is equivalent to the ΓMΓ path in the blue
Brillouin zone, as the green arrow also indicate in the dispersion relation on the right.
Therefore, the Dirac point located in K for the small unit cell is now in Γ considering
the big unit cell. The yellow segment KM in the red Brillouin zone is equivalent to
the ΓM path in the blue unit cell. Finally, the purple path MΓ in the red Brillouin
zone is equivalent to the MKΓ path in the blue Brillouin zone. This is also evident if



5.6. Opening a gap for the double Dirac point 55

the reciprocal space is artificially folded along the dashed gray line. the yellow path
will coincide with the position of the ΓM path in the first and centered blue hexagon.

Figure 5.4: Band folding scheme considering the optical dispersion
relation for the small (left) and big (right) unit cells. The central
scheme shows the Brillouin zone for both unit cells and also the high
symmetry points in each case. The green, yellow and purple ΓKMΓ
path in the Brillouin zone corresponds with the ΓMΓMKΓ path in

the blue Brillouin zone.

5.6 Opening a gap for the double Dirac point

Once there is a system that fulfills the requirements to have a double DP for the
mechanical and optical dispersion relations, the next step to create topological edge
modes is to perturb the system to open a gap inside the double DP and obtain two
different topological insulators in which the mode profile for the upper and lower
bands of the gap are inverted in both insulators. The way to do that is to displace
the shamrocks inwards and outwards as shown figure 5.5.

Figure 5.5: Unit cell perturbation to split the Dirac point. All the
shamrocks move inwards the same distance (shrunken), or all the

shamrocks move outward (expanded).
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When all the shamrocks are displaced inwards or outwards, the unit cell is called
shrunken or expanded respectively. Once the center of the shamrocks does not co-
incide with the position p, it is no longer possible to replicate the crystal with the
small unit cell, only with the hexagonal one. The displacement of the shamrocks is
given in terms of p as R = np · p, where R is the distance from the center of the
hexagonal unit cell to the center of each shamrock and np is an scalar. np greater
than one means expanded and less than one means shrunken. Therefore it is possible
to obtain two different crystals, one with the shrunken unit cell and another with the
expanded unit cell. Figure 5.6 presents the mechanical and optical dispersion relation
for shrunken (np = 0.95) and expanded (np = 1.05) crystals, only in the vicinity of
the Γ point and with frequency close to the DP.

Figure 5.6: Mechanical and optical dispersion relation for the shrunken
(np = 0.95) and expanded (np = 1.05) crystals. The inset shows the
mode profile for the out of plane displacement, Uz for the mechanics,
and out of plane magnetic field, Hz, for optics. There is band inversion
for the optical profiles but it is not achieved for the mechanical profiles.

For all the cases it is possible to open a gap. For the shrunken crystal, the gap
opens from 6.54 to 6.60 GHz for the mechanics and from 175.7 to 182.6 THz for the
optics. For the expanded case, the mechanical gap opens from 6.54 to 6.61 GHz and
the optical gap from 174.6 to 183.9 GHz. The insets display the mode profiles at
the edges of the gap as the dashed arrows indicates. For the mechanical part, the
out of plane displacement Uz is shown, and for the optical part, the out of plane
magnetic field Hz is shown. From the optical part it is possible to observe that
the mode profiles appearing in the lower bands for the shrunken case, appear in the
upper bands for the expanded case, and vice versa. This is the band inversion for
the shrunken and expanded crystals. On the other side, with the mechanical mode
profiles is not happening the same. Besides the existence of a gap inside the double
DP, the band inversion is a requirement to build a topological interface waveguide.
This phenomena can be explained with bulk-edge correspondence.
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5.7 Chern number and bulk-edge correspondence

Topologies for photonic and phononic systems are defined on the dispersion bands
in the reciprocal space. The Chern number C is the topological invariant of a 2D
dispersion band, as the systems presented here. This number characterizes the quan-
tized collective behavior of the wavefunctions on each band [73]. Once the bands
are defined in terms of a topological invariant, they change only discretely and will
not respond to continuous small perturbations [23, 24, 74–79]. This is the case of a
ball and a spoon, or a donut and a mug; the latter couple have one hole (g = 1),
and the former have no holes (g = 0). They are topologically equivalent despite the
differences in shape.

The numerical calculation of the Chern number for the system presented in this
chapter is out of the scope of this work; but it can be deduced by analogy from
similar works in photonics [70, 71] and phononics [72]. These references state that
the Chern number for the four bands that splits to form the gap are C = 0 for
the shrunken geometry and C = ±1 for the expanded case. Crystals with C = 0
are denominated trivial or ordinary insulators (OI) and crystals with C 6= 0 are
denominated non-trivial or topological insulators (TI). The topological edge modes
appear at the interface of two crystals with different topological invariant or Chern
numbers as in the system shown in figure 5.7(a), composed of a shrunken crystal (OI),
joined with a expanded crystal (TI).

Figure 5.7: (a) Topological waveguide, highlighted in purple, formed
at the interface of a ordinary insulator (OI) and a topological insulator
(TI). (b) Topological phase transitions at the interface of OI and TI
insulators. Blue and red curves represents bands with C = 0 and
C = ±1 respectively. The gap has to close at the interface of a OI-
TI system to equalize the Chern numbers. It ensures the existence of

topologically protected edge modes.
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In this system there is no space between both crystals acting as the waveguide. Here
the waveguide is the interface highlighted in purple that is topologically different from
a trivial waveguide, composed by two crystals with the same topological invariant. If
the two crystals have the same Chern number, they can directly connect across the
interface without closing the frequency gap. This is illustrated in figure 5.7(b). The
background color indicates the crystal geometry and blue and red curves indicate
bands in the reciprocal space with Chern numbers 0 and ±1 respectively. In the
upper (TI-TI) and lower (OI-OI) case, bands do not need to close to equalize the
Chern numbers.

If both crystals have different C, as the case illustrated in the middle of figure 5.7(b),
will exist necessarily a topological phase transition at the interface. The gap will
close, all the Chern numbers will be neutralized, and then the gap will open again.
This phase transition ensures edge states at the interface of both crystals and their
existence is guaranteed by the different topological invariant on each side of the
interface. The number of edge modes appearing at the interface is the difference of
the Chern numbers associated with the bands below the gap [73, 80, 81]. In the
system studied here, there are two bands in the lower part of the gap with C = ±1
(TI), that interfaces with two bands with C = 0; therefore there will be two modes
appearing at the interface. This is known as the bulk-edge correspondence principle
[80, 82].

5.8 Band inversion for phonons and photons

Considering the hexagonal shamrock system presented in figure 5.6, the band inver-
sion for the photonic profiles suggest that both crystals have different Chern numbers,
being C = 0 for the shrunken and C = ±1 for the expanded. on the other hand, the
absence of band inversion for the phononic profiles suggest that both crystals have
the same topological invariant and therefore the existence of topological edge modes
will not be ensured.

From numerical simulations of the phononic dispersion relations, by decreasing the
size of the shamrocks, placed at the fixed position p with the same period and thick-
ness, a frequency bandgap started to appear. Even more interesting was the observa-
tion that by displacing the smaller shamrock around the position p, the gap started
to close again. This fact suggests that reducing the size of the shamrocks causes a
change in the position of the DP. For the photonic dispersion relations is not the same
case because the DP is always at position p, no matter if the shamrocks increases or
decreases in size. For example, when reducing the radius of the shamrock from 0.117a
to 0.110a, the DP moves from position p to position 1.06p. There is another DP on
the opposite position with respect to p at 0.94p. Figure 5.8 illustrates this for the me-
chanical (a), and optical (b) cases and the inset represents the A, p, and B positions
in the unit cell. The y axis indicates the frequency, and DP indicates the frequency
at which the blue and red bands closes. The bands are indicated with different colors
to represent the different mode profiles.

From the optical part in figure 5.8(b), mode profiles invert in p as shown figure 5.6.
For the mechanical part, the band inversion has a different and interesting behavior.
The mode profiles change with the position A with a maximum gap width at p. The
gap once again closes in B, and the mode profile once again varies at distances greater
than B. This particular behavior can help to understand what happens when the DP
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Figure 5.8: (a) Mechanical and optical (b) band inversion around the
DP as the radial distance of shamrocks changes. There is a double
band inversion for the mechanical profiles at points A and B. S and
E represents the optimal positions for shrunken and expanded respec-

tively, for a hybrid topological crystal.

is located at p. If the radius of the shamrock is increased from 0.110a to 0.117a,
points A and B start to get closer to p and finally coincide for r = 0.117a. This
means that the mode profile for frequencies higher than the DP always will be blue,
and red for lower frequencies, as observed in figure 5.6.

Therefore choosing a distance greater than B is necessary for the expanded case to
have blue profiles above the DP, both in optics and mechanics (position E), and a
distance between A and p to have red profiles above the DP in optics and mechanics
(position S). There are three constraints for the optimal design: first, the position E
can no be to far from p because the optical gap starts to lose its shape. Second, the
position S can not be to close to p because the optical gap will be to small. Third,
the positions A and B can not be to close to p because the mechanical gap will be to
small.

With all these constraints we have chosen for our hybrid model r = 0.110a, S = 0.97p,
and E = 1.08p, considering the same period a =

√
3 · 500 nm, and thickness t = 250

nm. The mechanical and optical dispersion relations for this system are presented
in figure 5.9. In this case it is possible to infer that the topological invariants are
different for both crystals, being C = 0 for shrunken, and C = ±1 for expanded.
This is an optimal system to obtain phononic and photonic topological edge modes
simultaneously at the same interface.

5.9 Mode hybridization and topological helical states

The four modes that compose the edges of the gap hybridize into two modes that
form an orthogonal basis for the topological guided modes. To illustrate this, the
mechanical mode profiles are presented in figure 5.10. The degeneracy of the bands
on each side of the DP correspond to px, py (-like) and dx2−y2, dxy (-like) crystal modes
which are similar to p and d orbitals of electrons [72]. These modes are classified with
respect to the symmetry of the axes x′ and y′, σx′(y′) = ±1, being even (+1) or odd
(-1) with respect to x′ or y′ axis. Here σx′ ,σy′ = 1,-1; -1,1; 1,1; and -1,-1, for px, py,
dx2−y2, and dxy respectively. The pair px and dx2−y2 hybridize to form a symmetric
mode S, and the pair py and dxy hybridize to form an asymmetric mode A, both with
respect to y.
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Figure 5.9: Mechanical and optical dispersion relation for the shrunken
(np = 0.97) and expanded (np = 1.08) crystals. The inset shows the
mode profile for the out of plane displacement, Uz for the mechanics,
and out of plane magnetic field, Hz, for optics. There is band inversion

for optical and mechanical mode profiles profiles.

Figure 5.10: Representation of the mechanical mode hybridization.
Both of the modes from the upper and lower band hybridize respec-
tively to form two new orthogonal modes that are the basis of the two

topological helical edge modes.

Figure 5.11(a) shows the phononic dispersion relation of asymmetric modes for the
waveguide composed of the shrunken (np = 0.97), and expanded (np = 1.08) system
presented in figure 5.9. There are two guided modes inside a small gap spanning 6.75
GHz to 6.92 GHz represented with purple and green dots. The insets show the mode
profile of each mode, the helicity, and the artificial elastic pseudospin. To understand
the helicity of these modes, figures 5.11 (b) and (c) show the temporal evolution of
the edge modes over half a period, divided in seven equally spaced frames. For the
mode represented with purple points, at t = 0, the mode profile of the guided mode
resembles the A mode presented in figure 5.10.
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Figure 5.11: (a) Phononic dispersion relation of asymmetric modes
for the topological waveguide composed of the shrunken (np = 0.97)
and expanded (np = 1.08) crystals. (b), (c) temporal evolution of the

elastic pseudospin up and down respectively.
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After a quarter of the period, the mode profile now resembles the S mode but with
inverted colors, it means −S. Finally after a half of the period, the mode profile
resembles the −A mode. This means that the helical mode can be described in terms
of the basis S/A as a time-dependent anti-clockwise elastic pseudospin + as S + iA.
The other mode represented with green dots can be represented as a time-dependent
clockwise elastic pseudospin − as S − iA. The profile of both modes are the same
but evolve in time with different helicity. With the system presented in figure 5.9,
there will be four topological modes that can propagate at the interface, two optical
and two mechanical modes each of them with different helicity which also favors the
nonreciprocal wave propagation.

5.10 Samples fabrication and experimental limitations

Figure 5.12 shows a SEM image of the system described in figure 5.9. The structure
was made in a nanocrystalline silicon plate with a thickness of 250 nm. This structure
imposes different challenges for the experimental characterization. For the mechanical
part, the measurements can not be taken with the BLS spectroscopy setup described
in chapter 2, because this system can not resolve a small frequency gap of 170 MHz
as the one presented in 5.11(a). A good resolution of the frequency gap is necessary
to favor the detection of edge modes inside it. Even if the structure is optimized to
be not hybrid but just a mechanical topological insulator, the change of the mass
distribution by the displacement of the shamrock features inside the unit cell is not
enough to open a gap bigger that 250 MHz.

Figure 5.12: SEM image of the fabricated topological waveguide in
nanocrystalline silicon.
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For the optical part, this kind of structure also present difficulties at the time to be
characterized. Figure 5.3(b) shows that the double DP for THz photons is above
the light cone meaning that they are leaky and not guided modes. This requires for
example, the implantation of quantum emitters inside the system to enhance the out
of plane light detection [71], and far-field radiation detection systems [83].

5.11 Conclusions

This chapter presents in parallel the numerical construction of a topological phononic-
photonic system based on an hexagonal array of shamrock features. The main con-
clusions are summarized below

• The necessary requirements that a system must fulfill to support topological
edge modes are: a double DP in Γ, splitting of the DP through geometrical per-
turbation, and band inversion of the edge modes of the structures that composes
the interface.

• The position p for the DP in the optical and mechanical dispersion relations,
imposes an additional restriction in the design of an hybrid structure.

• Experimental detection of topological modes is challenging. Besides geomet-
rical complexity imposed by the small displacement of shamrock features for
shrunken and expanded crystals, the small gap width produced by this mass
redistribution is not enough to be measured by the BLS spectroscopy system.





65

Chapter 6

Quantum Valley Hall efect in
phononic crystals

6.1 Introduction

A different approach for the quantum spin Hall effect (QSHE) to obtain topological
edge states is the quantum valley Hall effect (QVHE). Both models do not require
external gauges as magnetic fields or air flow currents to break the time reversal
symmetry. Topology is achieved just by breaking the geometry of the system as was
shown in chapter 5 for QSHE. In this chapter the design of topologically protected
phononic crystal insulator is presented based on the QVHE at the nanoscale to obtain
hypersonic (GHz) topological edge modes. Here the influence of the isotropy in the
material is explored to obtain the Dirac points required for the model to develop the
Valley approach.

6.2 Valley Hall effect

Hexagonal two-dimensional crystals, such as graphene and transition-metal dichalco-
genides, exhibit a pair of degenerate bands at the K and K ′ valleys in reciprocal
space [27]. In the solid state, the valley electrons have non-trivial Berry curvatures,
and this fact causes anomalous quantum Hall states in graphene [84]. The same ideas
have been translated to bosonic systems to build the Valley Hall analogy in photonic
crystals and shows topological protected transport of light at telecom wavelengths
[85]. For the case of mechanical waves, the same analogy has been applied to ob-
tain protected transport of phonons at KHz [30], MHz [86] and GHz [31] frequencies.
Such Two-dimensional chiral states are topologically protected as long as there are
no inter-valley scatterings generated by geometrical defects.

In this chapter it was elaborate the same idea to design a phononic topological crystal
that can be fabricated in SOI platform to obtain topological phononic edge states
with frequencies above 10 GHz. The process to obtain this is first find a crystal
geometry with an isolated Dirac point in K; it generally is found in cystals with
hexagonal geometry. After that, break the C6 symmetry to release the degeneracy of
the Dirac point and open a gap, and finally build the interface waveguide to obtain
the topologically protected edge mode.
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6.3 Valley topological phononic crystal

Figure 6.1(a) shows the Valley Hall phononic crystal with periodic distance a. The
unit cell in figure 6.1(b) is inspired once again in the shamrock geometry. The dif-
ference with previous geometries is that this time the shamrock is not drilled in the
plate, but is now part of the suspended material. the shape of the crystal is composed
of the same three tangential circles of radius r but now the geometry is filled in the
circle intersections up to the tangential line between each two circles. The final shape
is a rounded triangle and the unit cell is composed of two of these rounded triangles
inverted among them, separated by a distance s and interconnected with walls of
width w.

Figure 6.1: (a) Geometry of the valley hall crystal with period a. (b)
Unit cell construction based on the shamrock geometry. s is center to
center distance or the side of the hexagon in (a), and w is the width

of the connectors.

6.4 Isotropic vs. anisotropic silicon

In this section the difference in the phononic dispersion relation between isotropic
and anisotropic materials is explored. Here isotropic silicon and [110] x oriented
anisotropic silicon is considered. The difference between both materials is the elastic
matrix. For the isotropic case, the full matrix can be defined by two independent
elastic constants C12 and C44, defined as functions of the Young’s modulus E, and
the Poisson’s ratio ν, as C44 = E/2(1 + ν) and C12 = Eν/(1 + ν)(1− 2ν). The
third elastic constant can be defined in terms of the other two as C11 = C12 + 2C44.
For the anisotropic case, the elastic matrix is defined by three independent elastic
coefficients.

To make crystal resizing easier, the geometry is parameterized in terms of the center
to center distance s. The period of the structure is then a =

√
3s, the radius of each

circle is r = nr · a, and the width of the walls is defined as w = nw · s. The thickness
of the structure is defined by t. Figure 6.2 shows the phononic dispersion relation
for the designed Valley crystal with nr = 0.13 and nw = 0.2 and t =220 nm, for
Isotropic and [110] oriented silicon. Two different dimensions with s = 220 nm and
440 nm are also considered.
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For the case of isotropic silicon, there are isolated Dirac points at 8.28 GHz for s=440
nm and 12.66 GHz for s=220 nm. For the anisotropic case, the isolated Dirac point
only appears for s = 220nm. In terms of fabrication, the E-beam lithography pro-
cess can be more accurate in larger structures. Therefore the first option is fabricate
the structure in nano-crystalline silicon that is supposed to behave as isotropic ma-
terial and develop the topology on it. But this big structure also introduces some
experimental limitations as will be described next.

Figure 6.2: Phononic dispersion relation for the designed topological
crystal considering Isotropic and [110] oriented silicon. Two crystal di-
mensions with s= 440 and 220 nm are considered. For the isotropic sil-
icon an isolated Dirac point appears in both sizes. For the anisotropic
[110] silicon, only the crystal with s=220 nm presents the required

Dirac point to develop the Valley topological approach.

6.5 Linear diffraction for large holed scatters

Figure 6.3(a) shows a SEM image of the designed topological crystal fabricated in
nano-crystalline silicon with a thickness of t=220 nm, s=440 nm and period a=762
nm approximately. The radius and the width of the conectors are the same used in
the previous simulations. Given the dimensions of the fabricated structure, the size
of the drilled holes or scatters is similar or even bigger than the wavelength of the
laser (λ=532 nm) used for the experimental measurements. This issue can introduce
linear diffraction that interferes in the measurements.
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Figure 6.3(b) shows three different measured BLS spectra. The black curve is the BLS
spectra obtained when the green lasers hits a flat surface at zero degrees that can be a
silver coated mirror or unpatterned silicon. The spectrum is composed of peaks that
repeats each 740 MHz approximately and correspond with the intrinsic linear laser
scattering. These strong peaks can mask the weak nonlinear scattering coming from
the structures intended to be measured. The way to avoid this interference is ensuring
that the specular reflection coming from the structure that is being measured, does
not enter in the objective or lens used to focus the incident light and collect the back
scattered signal. This limitation prevents to take measurements at zero degrees and
sets a minimum angle for experimental measurements that can change with the lens
or objective used in the experimental setup. For the 50x objective with numerical
aperture of 0.45 used in this measurements, the minimum angle of measurements is
16 degrees.

Figure 6.3: (a) SEM image of a topological crystal fabricated in nano-
crystalline silicon. The period of the structure is 762 nm. (b) Brillouin
spectrum obtained from the laser reference (black), topological crystal
(blue) and circular phononic crystal (red). (c) Triangular phononic
crystal of cricular hollows fabricated in a SOI wafer ([110] crystalline
silicon) of 250 nm of thickness. The period of the structure is 750 nm
and the diameter of the circles is 520 nm. These spectra show the

influence of large size scatters in BLS measurements.

The blue curve in figure 6.3(b) shows the scattering spectra obtained from the topo-
logical crystal shown in figure 6.3(a). The measurement was taken with an angle of
25 degrees to ensure that no specular reflection was entering in the objective. The
result was the same obtained with normal measurements in high reflecting surfaces.
This kind of spectrum was not obtained before for measurements in the shamrock
phononic crystals and waveguides described in chapters 3 and 4. The other differ-
ence with the previous structures besides the size and shape is the material used to
fabricate this one. To discard that the origin of the peaks are from the use of nano
crystaline silicon, figure 6.3(c) shows a SEM image of a triangular phononic crystal
made of simple circular holes fabricated in the same SOI platform used to make the
shamrock structures. The thickness is 250 nm, the period is 750 nm. similar to the
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period of the topological crystal and the diameter of the circular holes are 520 nm
approximately. the measured Brillouin spectrum is the red curve showed in 6.3(b).

The superposition of these three spectra shows the same frequency peaks and suggests
that the the measured spectra for structures in figures 6.3(a) and (c) are the result of
strong linear scattering coming from the light that is diffracted by the large periodic
array that enters back into the collection objective. These results set a geometrical
limitation for measurements in the BLS spectroscopy setup. Changing the laser for
one with a longer wavelength is not an option because all the optics and detection
system is fixed for a wavelength of 532 nm. The solution is to reduce the size of
the scatter in the phononic crystal and figure 6.2 shows that the designed geometry
also presents an isolated Dirac point for crystals with s=220 nm, which gives a period
a=381 nm approximately. The experimental results obtained in the previous chapters
shows that there will not be diffraction issues with this sizes. Besides that, these
dimensions allows the use of standard SOI wafers for the fabrication of the structures
in which this work already shown that theory and experiments agrees well.

6.6 Opening a gap for the Dirac cones in K

The next step to obtain the edge modes in the Valley approach is to open the Dirac
point to create a gap. The way to do that is to break the C6 symmetry of the crystal
by changing the size of the rounded triangles that form the unit cell. Figure 6.4(a)
shows the modified crystal and figure 6.4(b) the unit cell. The only change is that
now there are two different circle radii r1 and r2 for each rounded triangle. The
considered thickness is t=220 nm, the side of the hexagon is s=220 nm which gives a
period a=381 nm. The width of the connectors are w = 0.2s=44 nm. r1 = 0.105a and
r2 = 0.155a. These values for the radius are optimized to open the largest possible
gap.

Figure 6.4: (a) Modified Valley Hall crystal geometry to perturb the
system and lift the degeneracy of the Dirac point. (b) Unit cell for the
new geometry. There is a different radius for each rounded triangle.
The period and the width of the connectors remains the same as in

the original geometry.

Figure 6.5 shows the dispersion relation only for the band that exhibits the Dirac point
in figure 6.2 when s=220 nm. The calculation considers both isotropic silicon (a) and
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[110] crystalline silicon (b). When r1 = r2 = 0.13a, there are two conical dispersion
(Dirac cones) in each vertex of the Brillouin zone and they do not close completely
in the case of crystalline silicon. This is a consequence of the inhomogeneity of the
material. It will close completely for a closer value in the radius that can be further
optimized.

Figure 6.5: Phononic dispersion relation for isotropic (a), and [110]
crystalline silicon (b) calculated along the entire Brillouin zone con-
sidering only the band that presents a Dirac point as shown figure 6.2.
When r1 = r2 = 0.13a, there are two Dirac cones in each vertex of
the hexagon (Brillouin zone), and it does not close completely for the
case of [110] silicon. When r1 = 0.155a and r2 = 0.105a, it is possible

to open a full gap of approximately 1 GHz in both cases.

When r1 = 0.105a and r2 = 0.155a, the degeneracy of the Dirac points is lifted and it
is possible to open a gap from 12.27 GHz to 13.36 GHz for the isotropic case and from
13.03 GHz to 14.13 GHz in the [110] silicon. A gap of approximately 1 GHz is found in
both cases which is important to resolve the peaks in the experimental measurements
using the Brillouin setup. From now on, the calculations will be focused on the [110]
crystalline silicon because this platform was already tested in this work using other
phononic crystal geometries.

Once the degeneracy in the Dirac point was lifted, the next step is to ensure the
band inversion of the mode profiles at the edges of the gap. This can be achieved
in the VH approach just by flipping the unit cell of the crystal. Figure 6.6 shows
the phononic band dispersion calculated considering the original and flipped unit
cell. The dispersion relation is exactly the same because it is the same crystal in
both cases. This figure is intended to show the mode profile at the edges of the gap
and show the band inversion. The band inversion also can be understood intuitively
because because in the lower edge of the gap, the mode profile is the same in both
cases with the only difference that it is flipped. If the mode profiles are compared
without taking into account the size of the rounded triangles, the mode profile in the
lower band for the dispersion shown on the left is similar to the mode profile in the
upper band shown on the right and vice versa.
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Figure 6.6: Phononic dispersion relation for the optimized geometry
considering [110] silicon and the unit cell shown in the insets. The
band diagram is exactly the same in both cases because it is the same
simulated crystal; but the mode profile at the edges of the gap changes
when the unit cell changes. It shows the band inversion required to

obtain topological edge states inside the gap.

6.7 Valley Hall edge states

From literature [31, 85], is known that the Valley Chern numbers at the K point are
+1/2 or −1/2 as shows figure 6.6. Therefore, according to the bulk-edge correspon-
dence, if two crystals formed by different unit cells face each other as shown in figure
6.7, the gap needs to close to neutralize the Valley Chern numbers and re-open again.
At this change of phase, an edge mode has to appear at the interface of both crystals,
highlighted by the dotted line. The absolute value of the difference of Valley Chern
numbers for the bands below the gap is |∆C| =

∣∣∣+ 1
2 −

(
−1

2

)∣∣∣ = 1, which corresponds
with the number of modes that must appear inside the gap.

Figure 6.7: construction of the Valley Hall topological interface as a
result of the interface between two different crystals formed by the

flipped unit cells highlighted in the left part.
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Figure 6.8 shows the simulated phononic dispersion relation for the geometry pre-
sented in figure 6.7. The considered material is the [110] crystalline silicon, the
thicknes of the suspended membrane is t=220 nm, side of the hexagon s=220 nm,
period a=381 nm, connectors width w=44 nm, radius r1 = 0.105a=40 nm, and
r2 = 0.155a=59 nm. For these parameters, there is an isolated mode inside the gap
going from approximately 13 GHz for kx = 0, to 13.7 GHz for kx = π/a.

Figure 6.8: Phononic dispersion relation for the Valley Hall topological
waveguide. There is a clear isolated mode inside the gap. The inset on
the right shows the mode profile of the interface mode for kx/(π/a) =
0.8. The mechanical displacement of the mode is localized at the
interface of both crystals. Color bar indicates normalized out of plane

displacement.

The inset on the right of figure 6.8 shows the mode profile of the guided mode for
kx/(π/a) = 0.8. The color bar indicates the normalized out of plane displacement.
The mechanical displacement is fully localized at the interface of both crystals. The
guided mode is well localized at the middle of the gap for wavevectors close to π/a. It
increases the probability to be detected and resolved in the BLS spectroscopy setup.
Therefore this is a potential geometrical configuration for the experimental detection
of topological modes above 10 GHz for the first time.

6.8 Conclusions

This chapter presents the design of a topological crystal based on the Valley Hall
approach. The influence of the anisotropy of the material is explored for the particular
case of crystalline silicon. The main conclusions are summarized below.
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• 2D Periodic structures with an hexagonal array similar to that of the graphene
are the best systems to emulate the Valley hall approach in phononics because
in many cases exceptional points are founded in K.

• For the proposed geometry, the anisotropy of the silicon restricts the design of
topological structures to dimensions where the thickness of the membrane and
the side of the hexagonal array coincides; it is, when S = t. For the case of
isotropic silicon, it was shown that topological modes can be obtained at least
for geometries with S = t and S = 2t.

• With the design and fabrication of large periodic structures compared with the
laser wavelength (λ = 532), an experimental limitation settled by the linear
diffraction of the light by the periodic structure itself was evident. This sets
an upper limit in the dimensions of the drilled scatters. The diameter of the
drilled hole in 2D plates should be less than the laser wavelength used in the
experiment.

• The valley Hall approach allows large gaps to be obtained which enables further
experimental detection of topological edge states using BLS spectroscopy. The
mass distribution of the unit cell in the proposed geometry results in a 1GHz
gap for the optimized dimensions and an isolated edge mode that can be located
right at the middle of the gap for certain mechanical wavevectors.
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Chapter 7

Conclusions and perspectives

This thesis was intended to study the propagation of hypersonic waves in phononic
waveguides. It covered the study of trivial waveguides and the more recently in-
troduced topological waveguides. It also explores the advantages and limitations of
both types of waveguides, the geometrical constraints for their realization and in this
particular work, the experimental limitations for final characterization.

Here the physics behind the spontaneous Brillouin scattering was analytically detailed
and a simplified approach was introduced for the scattering efficiency calculations
based on the displacements of the interfaces under study and their overlap with the
incident light. Besides that, the Brillouin light scattering spectroscopy technique
was explained and presented as the measurement tool for the experimental results
presented in this thesis.

The design of phononic crystals with wide bandgaps have many applications such as
the engineering of the thermal conductance of the structure [10], and can be used as a
platform to isolate thermal damping for the study of organic molecular systems [48],
among others. Here we made a detailed study of the gap design as a function of the
geometrical and intrinsic material parameters. A clear and direct characterization of
hypersonic band gaps covering different directions in the reciprocal space was also
presented here [87]. At the time of writing this thesis, similar results in the literature
was not reported.

One advantage to use shamrock crystals to design defect line waveguides is that the
wide bandgaps in these structures allows a better resolution for the measurement of
guided modes. In small gaps these modes can be mixed and difficult to identify. the
results in chapter 4 show a measured guided mode isolated at least one GHz from
lower and higher frequencies. This also makes shamrock waveguides a nice platform
for the integration of IDT transducers. The constraints in the design of the fingers in
the transducers can be relaxed to cover a broad range of frequencies without exciting
undesired mechanical modes.

From the design of topological waveguides, some geometrical limitations were clear. In
the case of the QSHE, the small change in the mass distribution within the crystal unit
cell, limits the width of the gap that can be opened from the shrunken or expanded
configurations. This sets some limitations for the experimental characterization using
BLS spectroscopy. One possible solution is to downscale the full system to enlarge
the gap but the E-beam lithography fabrication becomes even harder, or almost
impossible.

It seems that the most suitable system for the experimental demonstration of topo-
logical transport above 10 GHz frequencies is the QVHE geometry approach. This is
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true at least for the materials, dimensions, and characterization techniques explored
throughout this work. This configuration enables the possibility to open wide gaps af-
ter lifting the degeneracy of Dirac points and obtain centered and isolated topological
edge modes.

7.1 BLS spectroscopy mapping

The BLS spectroscopy technique joined with an external excitation source can be
a powerful tool to show phonon transport and robustness in trivial and topological
waveguides. The general idea of the proposed system is shown in figure 7.1. the
external excitation is illustrated as an IDT transducer that can excite one or more
guided modes of the waveguide structure. If it is possible to couple the excitation into
the structure, the BLS setup can map different positions, by placing the incident laser
along the waveguide, notated in the figure with numbers, and record the amplitude
of the measurement for a certain period of time. The changes in amplitude along the
waveguide, as illustrated on the right part of the figure, can give information about
the attenuation of the propagated mode.

Figure 7.1: Phonon trasport measurements using BLS spectroscopy.
An external source illustrated here as an IDT transducer can excite
guided modes of the system. The incident laser can be placed in dif-
ferent points along the waveguide to measure in the same period of
time, the amplitude of the light scattered by the guided mode. The
attenuation of the peak can give information about the robustness of

the guided mode.

For the case of trivial waveguides, it will be interesting to see the phonon propagation
along straight waveguides, evaluate the robustness of different configurations and also
explore the so called glide-plane waveguides [64, 65], to see if it is possible to obtain
trivial chiral phonon transport at GHz frequencies. Waveguides with angles also can
be designed and measured to have an estimation on how much a trivial mode is
scattered when facing a change of direction in the path.
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For the topological waveguides the robustness along Z and Ω shaped bends can be
evaluated, as is explored in almost all the works that intend to evaluate the robust-
ness of the interface waveguides [30, 31, 72, 86, 88–90]. For the particular case of
Valley Hall, different topological interfaces can be explored beside the bridge interface
presented in chapter 6. Zig-zag interfaces can support two guided modes [91], one of
them being topologically protected, and the other one being a trivial guided mode.
This can be an ideal structure to compare the robustness of trivial and topological
modes propagating along the same interface. The robustness of each mode can be
evaluated simultaneously and provides experimental proof that topology in fact works
and is better when compared with non-protected guided modes.

Even without an external source of excitation, BLS spectroscopy is a promising tool
for the characterization of topological waveguides. As was shown in chapter 3 for the
shamrock crystal, this technique allows band characterization and band reconstruc-
tion of a Dirac point as was done before for KHz frequencies [92]. These experimental
results set the basis to prove the topological nature of an interface mode that also
can be potentially detected.





79

Bibliography

[1] Alexander G Krause et al. “A high-resolution microchip optomechanical ac-
celerometer”. In: Nature Photonics 6.11 (2012), pp. 768–772.

[2] Julien Chaste et al. “A nanomechanical mass sensor with yoctogram resolution”.
In: Nature nanotechnology 7.5 (2012), pp. 301–304.

[3] Emanuel Gavartin, Pierre Verlot, and Tobias J Kippenberg. “A hybrid on-chip
optomechanical transducer for ultrasensitive force measurements”. In: Nature
nanotechnology 7.8 (2012), pp. 509–514.

[4] John D Teufel et al. “Sideband cooling of micromechanical motion to the quan-
tum ground state”. In: Nature 475.7356 (2011), pp. 359–363.

[5] Jasper Chan et al. “Laser cooling of a nanomechanical oscillator into its quan-
tum ground state”. In: Nature 478.7367 (2011), pp. 89–92.

[6] Michael Sigalas and Eleftherios N Economou. “Band structure of elastic waves in
two dimensional systems”. In: Solid state communications 86.3 (1993), pp. 141–
143.

[7] Manvir S Kushwaha et al. “Acoustic band structure of periodic elastic compos-
ites”. In: Physical review letters 71.13 (1993), p. 2022.

[8] Rosa Martínez-Sala et al. “Sound attenuation by sculpture”. In: nature 378.6554
(1995), pp. 241–241.

[9] Taras Gorishnyy et al. “Hypersonic phononic crystals”. In: Physical review let-
ters 94.11 (2005), p. 115501.

[10] Nobuyuki Zen et al. “Engineering thermal conductance using a two-dimensional
phononic crystal”. In: Nature communications 5.1 (2014), pp. 1–9.

[11] Matt Eichenfield et al. “Optomechanical crystals”. In: Nature 462.7269 (2009),
pp. 78–82.

[12] Gregory S MacCabe et al. “Nano-acoustic resonator with ultralong phonon
lifetime”. In: Science 370.6518 (2020), pp. 840–843.

[13] Kejie Fang et al. “Optical transduction and routing of microwave phonons in
cavity-optomechanical circuits”. In: Nature Photonics 10.7 (2016), pp. 489–496.

[14] Rishi N Patel et al. “Single-mode phononic wire”. In: Physical review letters
121.4 (2018), p. 040501.

[15] Hengjiang Ren et al. “Two-dimensional optomechanical crystal cavity with high
quantum cooperativity”. In: Nature communications 11.1 (2020), pp. 1–10.

[16] Jordi Gomis-Bresco et al. “A one-dimensional optomechanical crystal with a
complete phononic band gap”. In: Nature communications 5.1 (2014), pp. 1–6.

[17] Saeed Mohammadi et al. “Evidence of large high frequency complete phononic
band gaps in silicon phononic crystal plates”. In: Applied Physics Letters 92.22
(2008), p. 221905.



80 Bibliography

[18] Sarah Benchabane et al. “Guidance of surface waves in a micron-scale phononic
crystal line-defect waveguide”. In:Applied Physics Letters 106.8 (2015), p. 081903.

[19] Wei Cheng et al. “Observation and tuning of hypersonic bandgaps in colloidal
crystals”. In: Nature materials 5.10 (2006), pp. 830–836.

[20] B Graczykowski et al. “Phonon dispersion in hypersonic two-dimensional phononic
crystal membranes”. In: Physical Review B 91.7 (2015), p. 075414.

[21] Qiyu Liu, Huan Li, and Mo Li. “Electromechanical Brillouin scattering in inte-
grated optomechanical waveguides”. In: Optica 6.6 (2019), pp. 778–785.

[22] K v Klitzing, Gerhard Dorda, and Michael Pepper. “New method for high-
accuracy determination of the fine-structure constant based on quantized Hall
resistance”. In: Physical Review Letters 45.6 (1980), p. 494.

[23] David J Thouless et al. “Quantized Hall conductance in a two-dimensional
periodic potential”. In: Physical review letters 49.6 (1982), p. 405.

[24] Michael Victor Berry. “Quantal phase factors accompanying adiabatic changes”.
In: Proceedings of the Royal Society of London. A. Mathematical and Physical
Sciences 392.1802 (1984), pp. 45–57.

[25] Xiujuan Zhang et al. “Topological sound”. In: Communications Physics 1.1
(2018), pp. 1–13.

[26] B Andrei Bernevig, Taylor L Hughes, and Shou-Cheng Zhang. “Quantum spin
Hall effect and topological phase transition in HgTe quantum wells”. In: science
314.5806 (2006), pp. 1757–1761.

[27] Long Ju et al. “Topological valley transport at bilayer graphene domain walls”.
In: Nature 520.7549 (2015), pp. 650–655.

[28] FDM Haldane and S Raghu. “Possible realization of directional optical waveg-
uides in photonic crystals with broken time-reversal symmetry”. In: Physical
review letters 100.1 (2008), p. 013904.

[29] Cheng He et al. “Acoustic topological insulator and robust one-way sound trans-
port”. In: Nature physics 12.12 (2016), pp. 1124–1129.

[30] Jiuyang Lu et al. “Observation of topological valley transport of sound in sonic
crystals”. In: Nature Physics 13.4 (2017), pp. 369–374.

[31] Qicheng Zhang et al. “Gigahertz topological valley Hall effect in nanoelectrome-
chanical phononic crystals”. In: Nature Electronics 5.3 (2022), pp. 157–163.

[32] Léon Brillouin. “Diffusion de la lumière et des rayons X par un corps transparent
homogène”. In: AnPh 9.17 (1922), pp. 88–122.

[33] Charles Kittel and Paul McEuen. Introduction to solid state physics. Vol. 8.
Wiley New York, 1976.

[34] DF Nelson and M Lax. “Theory of the photoelastic interaction”. In: Physical
Review B 3.8 (1971), p. 2778.

[35] Yariv Amnon and Pochi Yeh. “Optical waves in crystals: propagation and con-
trol of laser radiation”. In: New York City, NY: Wiley (1984).

[36] Jieping Xu and Robert Stroud. Acousto-optic devices: principles, design, and
applications. Wiley, 1992.

[37] LS Hounsome et al. “Photoelastic constants in diamond and silicon”. In: physica
status solidi (a) 203.12 (2006), pp. 3088–3093.



Bibliography 81

[38] Steven G Johnson et al. “Perturbation theory for Maxwell’s equations with
shifting material boundaries”. In: Physical review E 65.6 (2002), p. 066611.

[39] Omar Florez et al. “Brillouin scattering self-cancellation”. In: Nature commu-
nications 7.1 (2016), pp. 1–8.

[40] Raphaël Van Laer et al. “Interaction between light and highly confined hyper-
sound in a silicon photonic nanowire”. In: Nature Photonics 9.3 (2015), pp. 199–
203.

[41] SM Lindsay, MW Anderson, and JR Sandercock. “Construction and alignment
of a high performance multipass vernier tandem Fabry–Perot interferometer”.
In: Review of scientific instruments 52.10 (1981), pp. 1478–1486.

[42] Manuel Cardona, Gernot Güntherodt, and R Merlin. Light scattering in solids
III: recent results. Vol. 3. Springer, 1982.

[43] Ralf Lucklum, Mikhail Zubtsov, and Aleksandr Oseev. “Phoxonic crystals—a
new platform for chemical and biochemical sensors”. In: Analytical and bioan-
alytical chemistry 405.20 (2013), pp. 6497–6509.

[44] Jordi Gomis-Bresco et al. “A PhoXonic crystal: Photonic and phononic bandgaps
in a 1D optomechanical crystal”. In: 2014 16th International Conference on
Transparent Optical Networks (ICTON). IEEE. 2014, pp. 1–4.

[45] Bahram Djafari-Rouhani, Said El-Jallal, and Yan Pennec. “Phoxonic crystals
and cavity optomechanics”. In: Comptes Rendus Physique 17.5 (2016), pp. 555–
564.

[46] Zhengyou Liu et al. “Locally resonant sonic materials”. In: science 289.5485
(2000), pp. 1734–1736.

[47] Zian Jia et al. “Designing phononic crystals with wide and robust band gaps”.
In: Physical Review Applied 9.4 (2018), p. 044021.

[48] Burak Gurlek, Vahid Sandoghdar, and Diego Martin-Cano. “Engineering long-
lived vibrational states for an organic molecule”. In: Physical Review Letters
127.12 (2021), p. 123603.

[49] Amir H Safavi-Naeini and Oskar Painter. “Design of optomechanical cavities
and waveguides on a simultaneous bandgap phononic-photonic crystal slab”.
In: Optics express 18.14 (2010), pp. 14926–14943.

[50] Amir H Safavi-Naeini et al. “Two-dimensional phononic-photonic band gap op-
tomechanical crystal cavity”. In: Physical Review Letters 112.15 (2014), p. 153603.

[51] Immo Söllner, Leonardo Midolo, and Peter Lodahl. “Deterministic single-phonon
source triggered by a single photon”. In: Physical review letters 116.23 (2016),
p. 234301.

[52] A Srikantha Phani, J Woodhouse, and NA Fleck. “Wave propagation in two-
dimensional periodic lattices”. In: The Journal of the Acoustical Society of
America 119.4 (2006), pp. 1995–2005.

[53] Florian Maurin et al. “Probability that a band-gap extremum is located on the
irreducible Brillouin-zone contour for the 17 different plane crystallographic
lattices”. In: International Journal of Solids and Structures 135 (2018), pp. 26–
36.

[54] Marcus Albrechtsen et al. “Nanometer-scale photon confinement in topology-
optimized dielectric cavities”. In: arXiv preprint arXiv:2108.01681 (2021).



82 Bibliography

[55] Geraint Owen and Paul Rissman. “Proximity effect correction for electron beam
lithography by equalization of background dose”. In: Journal of Applied Physics
54.6 (1983), pp. 3573–3581.

[56] Vy Thi Hoang Nguyen et al. “The CORE sequence: A nanoscale fluorocarbon-
free silicon plasma etch process based on SF6/O2 cycles with excellent 3D
profile control at room temperature”. In: ECS journal of solid state science and
technology 9.2 (2020), p. 024002.

[57] Robert W Boyd. Nonlinear optics. Academic press, 2020.
[58] R Loudon and JR Sandercock. “Analysis of the light-scattering cross section for

surface ripples on solids”. In: Journal of Physics C: Solid State Physics 13.13
(1980), p. 2609.

[59] K Charles Kao and George A Hockham. “Dielectric-fibre surface waveguides for
optical frequencies”. In: Proceedings of the Institution of Electrical Engineers.
Vol. 113. 7. IET. 1966, pp. 1151–1158.

[60] Jeff Hecht. City of light: the story of fiber optics. Oxford University Press on
Demand, 2004.

[61] Abdelkrim Khelif and Ali Adibi. Phononic crystals: fundamentals and applica-
tions. Springer, 2015.

[62] Jean-Michel Lourtioz et al. Photonic crystals: towards nanoscale photonic de-
vices. Springer, 2008.

[63] John D Joannopoulos et al. Photonic crystals: molding the flow of light. Springer,
2008.

[64] Peter Lodahl et al. “Chiral quantum optics”. In:Nature 541.7638 (2017), pp. 473–
480.

[65] Immo Söllner et al. “Deterministic photon–emitter coupling in chiral photonic
circuits”. In: Nature nanotechnology 10.9 (2015), pp. 775–778.

[66] Mikio Nakahara. Geometry, topology and physics. CRC Press, 2003.
[67] Barry Bradlyn et al. “Topological quantum chemistry”. In: Nature 547.7663

(2017), pp. 298–305.
[68] Charles L Kane and Eugene J Mele. “Quantum spin Hall effect in graphene”.

In: Physical review letters 95.22 (2005), p. 226801.
[69] Long-Hua Wu and Xiao Hu. “Scheme for achieving a topological photonic

crystal by using dielectric material”. In: Physical review letters 114.22 (2015),
p. 223901.

[70] Sabyasachi Barik et al. “Two-dimensionally confined topological edge states in
photonic crystals”. In: New Journal of Physics 18.11 (2016), p. 113013.

[71] Sabyasachi Barik et al. “A topological quantum optics interface”. In: Science
359.6376 (2018), pp. 666–668.

[72] Si-Yuan Yu et al. “Elastic pseudospin transport for integratable topological
phononic circuits”. In: Nature communications 9.1 (2018), pp. 1–8.

[73] Ling Lu, John D Joannopoulos, and Marin Soljačić. “Topological photonics”.
In: Nature photonics 8.11 (2014), pp. 821–829.

[74] Barry Simon. “Holonomy, the quantum adiabatic theorem, and Berry’s phase”.
In: Physical Review Letters 51.24 (1983), p. 2167.



Bibliography 83

[75] Alfred Shapere and Frank Wilczek. Geometric phases in physics. Vol. 5. World
scientific, 1989.

[76] Arno Bohm et al. The Geometric phase in quantum systems: foundations, math-
ematical concepts, and applications in molecular and condensed matter physics.
Springer, 2003.

[77] Fukui Takahiro, Hatsugai Yasuhiro, and Suzuki Hiroshi. “Chern Numbers in
Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Con-
ductances”. In: Journal of the Physical Society of Japan (2005).

[78] Di Xiao, Ming-Che Chang, and Qian Niu. “Berry phase effects on electronic
properties”. In: Reviews of modern physics 82.3 (2010), p. 1959.

[79] Xiao-Liang Qi and Shou-Cheng Zhang. “Topological insulators and supercon-
ductors”. In: Reviews of Modern Physics 83.4 (2011), p. 1057.

[80] Mário G Silveirinha. “Bulk-edge correspondence for topological photonic con-
tinua”. In: Physical Review B 94.20 (2016), p. 205105.

[81] Vincent Laude. “Principles and properties of phononic crystal waveguides”. In:
Apl Materials 9.8 (2021), p. 080701.

[82] Mário G Silveirinha. “Proof of the bulk-edge correspondence through a link
between topological photonics and fluctuation-electrodynamics”. In: Physical
Review X 9.1 (2019), p. 011037.

[83] Nikhil Parappurath et al. “Direct observation of topological edge states in silicon
photonic crystals: Spin, dispersion, and chiral routing”. In: Science advances
6.10 (2020), eaaw4137.

[84] Kostya S Novoselov et al. “Unconventional quantum Hall effect and Berry’s
phase of 2π in bilayer graphene”. In: Nature physics 2.3 (2006), pp. 177–180.

[85] Mikhail I Shalaev et al. “Robust topologically protected transport in photonic
crystals at telecommunication wavelengths”. In: Nature nanotechnology 14.1
(2019), pp. 31–34.

[86] Hengjiang Ren et al. “Topological phonon transport in an optomechanical sys-
tem”. In: Nature communications 13.1 (2022), pp. 1–7.

[87] Omar Florez et al. “Engineering nanoscale hypersonic phonon transport”. In:
arXiv preprint arXiv:2202.02166 (2022).

[88] Xin-Tao He et al. “A silicon-on-insulator slab for topological valley transport”.
In: Nature communications 10.1 (2019), pp. 1–9.

[89] Motoki Kataoka, Masaaki Misawa, and Kenji Tsuruta. “Design and Robustness
Evaluation of Valley Topological Elastic Wave Propagation in a Thin Plate with
Phononic Structure”. In: Symmetry 14.10 (2022), p. 2133.

[90] Bakhtiyar Orazbayev and Romain Fleury. “Quantitative robustness analysis of
topological edge modes in C6 and valley-Hall metamaterial waveguides”. In:
Nanophotonics 8.8 (2019), pp. 1433–1441.

[91] Hironobu Yoshimi et al. “Experimental demonstration of topological slow light
waveguides in valley photonic crystals”. In:Optics Express 29.9 (2021), pp. 13441–
13450.

[92] Daniel Torrent and José Sánchez-Dehesa. “Acoustic analogue of graphene: ob-
servation of Dirac cones in acoustic surface waves”. In: Physical review letters
108.17 (2012), p. 174301.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction and motivation
	Thesis outline
	Thesis Publications

	Brillouin scattering
	Introduction
	Energy and momentum conservation: phase matching conditions
	Refractive index perturbations
	Photoelastic effect
	Moving boundary effect

	Brillouin light scattering spectroscopy
	Tandem Fabry-Perot interferometer
	Experimental setup

	Experimental and numerical validation: Fully released silicon membrane
	Brillouin scattering efficiency
	Conclusions

	Phononic crystals
	Introduction
	Phononic crystals
	Shamrock geometry
	Irreducible Brillouin zone
	Band structure for the IBZ contour path
	Gap dependence on geometrical parameters

	Sample fabrication
	Contour fitting and statistical analysis

	3D phononic dispersion relation and density of states
	Experimental reconstruction of the mechanical dispersion relation
	Tunability of the mechanical gap with geometrical parameters
	Optical dispersion relation for shamrock crystal
	Conclusions

	Phononic waveguides
	Introduction
	Defect-line waveguides
	Shamrock waveguides
	Unit cell for shamrock waveguides
	Band dispersion for shamrock waveguides

	Experimental detection of hypersonic guided modes at room temperature
	Conclusions

	Quantum spin Hall effect in optomechanic crystals
	Introduction
	Approaches to obtain Topological Invariants for bosonic systems
	Pseudospin for light and mechanical vibrations
	Shamrock optomechanic topological crystal
	Band folding
	Opening a gap for the double Dirac point
	Chern number and bulk-edge correspondence
	Band inversion for phonons and photons
	Mode hybridization and topological helical states
	Samples fabrication and experimental limitations
	Conclusions

	Quantum Valley Hall efect in phononic crystals
	Introduction
	Valley Hall effect
	Valley topological phononic crystal
	Isotropic vs. anisotropic silicon
	Linear diffraction for large holed scatters
	Opening a gap for the Dirac cones in K
	Valley Hall edge states
	Conclusions

	Conclusions and perspectives
	BLS spectroscopy mapping

	Bibliography

	Títol de la tesi: Brillouin scattering in bosonic systems
	Nom autor/a: Omar Enrique Florez Peñaloza


