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Abstract

In this thesis, we propose different contributions with the goal of enhancing and recog-
nizing historical handwritten document images, especially the ones with rare scripts,
such as cipher documents.

In the first part, some effective end-to-end models for Document Image Enhance-
ment (DIE) using deep learning models were presented. First, Generative Adversarial
Networks (cGAN) for different tasks (document clean-up, binarization, deblurring, and
watermark removal) were explored. Next, we further improve the results by recovering
the degraded document images into a clean and r ead abl e form by integrating a text
recognizer into the cGAN model to promote the generated document image to be more
readable. Afterwards, we present a new encoder-decoder architecture based on vision
transformers to enhance both machine-printed and handwritten document images, in
an end-to-end fashion.

The second part of the thesis addresses Handwritten Text Recognition (HTR) in
low resource scenarios, i.e. when only few labeled training data is available. We pro-
pose novel methods for recognizing ciphers with rare scripts. First, a f ew-shot ob-
ject detection based method was proposed. Then, we incorporate a progressive learn-
ing strategy that automatically assigns pseudo-labels to a set of unlabeled data to re-
duce the human labor of annotating few pages while maintaining the good perfor-
mance of the model. Secondly, a data generation technique based on Bayesian Pro-
gram Learning (BPL) is proposed to overcome the lack of data in such rare scripts.
Thirdly, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE). This lat-
ter self-supervised model is designed to tackle two tasks, text recognition and docu-
ment image enhancement. The proposed model does not exhibit limitations of pre-
vious state-of-the-art methods based on contrastive losses, while at the same time, it
requires substantially fewer data samples to converge.

In the third part of the thesis we analyze, from the user perspective, the usage of
HTR systems in low resource scenarios. This contrasts with the usual research on HTR,
which often focuses on technical aspects only and rarely devotes efforts on implement-
ing software tools for scholars in Humanities.

Keywords – Computer Vision, Historical Document Analysis, Document Image en-
hancement, Handwritten Text Recognition, Few-shot learning, Generative Adversarial
Networks, Transformers.
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Resum

En aquesta tesi proposem diferents contribucions per tal de millorar i reconèixer imat-
ges de documents manuscrits històrics, especialment aquells amb escriptures rares,
com els documents xifrats.

A la primera part es presenten alguns models efectius d’extrem a extrem per mil-
lorar imatges de documents utilitzant models d’aprenentatge profund. En primer lloc,
s’exploren xarxes adversàries generatives (cGAN) per a diferents tasques (neteja de
documents, binarització, desenfocament i eliminació de marques d’aigua). A contin-
uació, millorem els resultats recuperant les imatges de documents degradats en un
format llegible mitjançant la integració d’un reconeixedor de text al model cGAN. Pos-
teriorment, presentem una nova arquitectura de codificador-decodificador basada en
transformers per millorar les imatges de documents impresos i manuscrits, de manera
integral.

La segona part de la tesi aborda el reconeixement de text manuscrit (HTR) en esce-
naris de baixos recursos, és a dir, quan només hi ha disponibles poques dades etique-
tades d’entrenament. Proposem mètodes nous per reconèixer documents xifrats amb
alfabets rars. En primer lloc, es proposa un mètode basat en mètodes de poques dades
( f ew-shot ) per detectar objectes. Després, incorporem una estratègia d’aprenentatge
progressiu que assigna automàticament pseudoetiquetes a un conjunt de dades sense
etiquetar per reduir el treball humà d’anotar algunes pàgines mentre es manté el bon
rendiment del model. En segon lloc, es proposa una tècnica de generació de dades
basada en l’aprenentatge de programes bayesians (BPL) per superar la manca de dades
en alfabets rars. En tercer lloc, proposem un autoencoder invariable a la degradació
de text. Aquest darrer model autosupervisat està dissenyat per abordar dues tasques,
el reconeixement de text i la millora de la imatge del document. El model proposat
no presenta les limitacions dels mètodes anteriors basats en contrastive losses, mentre
que alhora requereix substancialment menys mostres de dades per convergir.

A la tercera part de la tesi analitzem, des de la perspectiva de l’usuari, l’ús de sis-
temes HTR a escenaris de baixos recursos. Això contrasta amb la investigació habitual
sobre HTR, que sovint se centra només en aspectes tècnics i poques vegades dedica
esforços a implementar eines de programari per a acadèmics en Humanitats.

Keywords – Visió per Computador, Anàlisi de documents històrics, millora d’imatges,
reconeixement de text manuscrit, aprenentatge amb pocs exemples, xarxes adverses
generatives, transformers.
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Resumen

En esta tesis proponemos diferentes contribuciones con el objetivo de mejorar y re-
conocer imágenes de documentos manuscritos históricos, especialmente aquellos con
escrituras raras, como los documentos cifrados.

En la primera parte, se presentan algunos modelos efectivos de extremo a extremo
para la mejora de imágenes de documentos utilizando modelos de aprendizaje pro-
fundo. En primer lugar, se exploran las redes adversarias generativas (cGAN) para
diferentes tareas (limpieza de documentos, binarización, desenfoque y eliminación
de marcas de agua). A continuación, mejoramos los resultados recuperando las imá-
genes de documentos degradados en un formato legible mediante la integración de un
reconocedor de texto en el modelo cGAN. Posteriormente, presentamos una nueva ar-
quitectura de codificador-decodificador basada en transformers para mejorar las imá-
genes de documentos impresos y escritos a mano, de manera integral.

La segunda parte de la tesis aborda el reconocimiento de texto escrito a mano
(HTR) en escenarios de bajos recursos, es decir, cuando solo hay disponibles pocos
datos etiquetados de entrenamiento. Proponemos métodos novedosos para reconocer
cifrados con alfabetos raros. En primer lugar, se propone un método basado en méto-
dos de pocos datos ( f ew-shot ) para detección de objetos. Luego, incorporamos una
estrategia de aprendizaje progresivo que asigna automáticamente pseudoetiquetas a
un conjunto de datos sin etiquetar para reducir el trabajo humano de anotar algunas
páginas mientras se mantiene el buen rendimiento del modelo. En segundo lugar, se
propone una técnica de generación de datos basada en el aprendizaje de programas
bayesianos (BPL) para superar la falta de datos en alfabetos raros. En tercer lugar, pro-
ponemos un autoencoder invariable a la degradación de texto. Este último modelo
autosupervisado está diseñado para abordar dos tareas, el reconocimiento de texto y
la mejora de la imagen del documento. El modelo propuesto no presenta limitaciones
de los métodos anteriores basados en contrastive losses, mientras que al mismo tiempo
requiere sustancialmente menos muestras de datos para converger.

En la tercera parte de la tesis analizamos, desde la perspectiva del usuario, el uso
de sistemas HTR en escenarios de bajos recursos. Esto contrasta con la investigación
habitual sobre HTR, que a menudo se centra solo en aspectos técnicos y rara vez dedica
esfuerzos a implementar herramientas de software para académicos en Humanidades.

Keywords – Visión por Computador, Análisis de documentos históricos, mejora
de imágenes, reconocimiento de texto manuscrito, aprendizaje con pocos ejemplos,
redes adversas generativas, transformers.
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Chapter 1

Introduction

The past resembles the future more than one drop of water resembles another.
– Ibn Khaldun

Historical document analysis has been an active field within the pattern recog-

nition and computer vision community. This Chapter briefly overviews this re-

search field. Then, the problems related to document degradation and the rare

manuscripts (and alphabets) are introduced. Followed by an overview of the meth-

ods that can be used to tackle this problem based on deep learning, especially in

low-resource data scenarios. Finally, we summarize the research questions, objec-

tives, and contributions of this work.

1.1 Historical Documents Analysis

Since the invention of writing, spatio-temporal communications between different hu-
man beings became possible using manuscripts [58]. Nowadays, we can find many his-
torical documents from different nations in libraries. These documents are carrying
valuable information about the history, civilizations, ancient societies, cultures, and
scientific reports. Digitizing these rare documents and making them accessible to ev-
eryone is an important task since they are considered a global human heritage. Indeed,
processing the digitized documents (numerical images) to present them in a good and
enhanced condition is even more appreciated. Also, automatically extracting their in-
formation by r ecog ni zi ng them can facilitate many automatic applications such as
indexation, search and query, recommendation, storing, etc.

1
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Figure 1.1: An example of the degradation that can occur in historical documents

Research in historical documents is being done within the field called Document
Image Analysis and Recognition (DIAR) which is belonging to the Computer Vision
and Pattern Recognition (CVPR) research area. Within this field, researchers were ad-
dressing many analysis problems, for instance: Handwritten Text Recognition (HTR),
Keyword Spotting (KWS), Layout Analysis, Segmentation, Image text alignment, etc.
With the recent improvements in machine learning, especially deep learning [107], its
architectures have become the central component of most of the proposed approaches
for these kinds of document processing problems [121].

1.2 Degraded Manuscripts

Historical manuscripts are valuable items. In consequence, access to these documents
is only allowed to some expert historians in many cases. This is because of security
reasons or also because of the delicate state of some documents when they are too old.
Thus, digitizing the documents and presenting them in image format through the in-
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ternet is a solution to allow more accessibility. However, many historical document im-
ages are coming with deg r ad ati on problems. Degradation can either be be occurred
because of the document itself (Time effect when the document is too old, wrinkles,
stains, ink bleed-through, etc.) or because of a bad scanning condition, like using a
phone camera (Blur, shadow, variation of light condition, perspective angle, etc.). Fig-
ure 1.1 shows some examples of degraded documents. As can be seen, degradation can
obstruct the reading of the document by a human or a machine. Hence, developing a
method to enhance the quality of the document before passing it to the reading stage
is important.

1.3 Ciphered Manuscripts

Ciphered manuscripts form a particular and specific type of handwritten document
that contains secret and encrypted messages or instructions. These documents were
used in diplomatic, military, scientific, or religious matters. In order to hide their con-
tents, the sender and receiver were usually creating their own method of writing, by
transposing or substituting characters, special symbols, or by inventing a completely
new alphabet of symbols to replace the regular one. Some examples of the ciphered
manuscripts are depicted in Figure 1.2. In the national archives and libraries, 1% of
the records contain encrypted manuscripts [128]. Historical Ciphered Manuscripts in
the libraries and archives are seldom indexed as ciphers, which makes them hard to be
found. However, these documents hold valuable information about our past and serve
most of the time as major keys to reinterpreting it.

Given the difficulties in the decryption of such manuscripts, some multi-disciplinary
initiatives, such as the Decrypt project1[129], have emerged to join the expertise in
computer vision, computational linguistics, philology, cryptoanalysis, and history to
make advances in historical cryptology. These joint efforts aim to ease the collection,
transcription, decryption, and contextualization of historical ciphered manuscripts in
order to unlock their contents and make the secret information available for scholars
in history, science, religion, etc.

This thesis has been carried out in the framework of the above-mentioned Decrypt
project [129], with the goal of enhancing and transcribing historical ciphered docu-
ment images. The main obstacles that we encountered were data scarcity, both in
terms of the number of documents and the available labeled data. Hence, develop-
ing models that work in low-resource scenarios (few data) is necessary.

1https://de-crypt.org/

https://de-crypt.org/
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Figure 1.2: Examples of handwritten ciphers dated from the 16th to the 18th century.
Top: Devil cipher. Middle: Borg Cipher. Bottom: Copiale cipher.

1.4 Deep Learning in Computer Vision

Deep learning approaches started gaining attention in computer vision with the AlexNet
in the 2012 and Imagenet Large Scale Visual Recognition Challenges (ILSVRC) [105]. In
contrary to the classic handcrafted feature extraction methods, deep learning aims to
learn high-level features from raw image pixels in an end-to-end fashion.

Convolutional Neural Networks (CNN) [108] are one of the most used deep network
types for image processing tasks. CNN is made up of several cascading layers, with the
output of one layer serving as the input for the following one. A stack of linear filters
(convolution) is often found in a CNN. Each neuron in a convolutional layer only gets
input from a small region of the preceding layer known as the neuron’s receptive field.
For document image enhancement, convolutional layers were successfully applied in
autoencoders [183] and Generative Adversarial Networks (GANs) [174]. Also, CNN was
applied in the HTR task along with Recurrent Neural Networks (RNN) [95].

RNN is a type of neural network that deal with sequence data. Due to its internal
memory, it is able to recall its input. Thus, The output of a current step is depending
explicitly on the output of the previous states. This latter is called the hidden state.
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The improvements of the CNN and RNN models over the classic approaches are
mainly because of giving to the models the ability to learn rich high-level features from
the raw data instead of handcrafting them. However, human priors were still com-
posing a crucial part of those models. This can be seen by forcing the RNN to encode
the data as a sequence (one token at each time step) or using the receptive fields in
CNN (each filter can only see its local information without directly attending to the
other filters in the same convolutional layer). Thus, the transformer [185] model was
recently introduced and outperform the RNN [50] in sequence data and CNN [54] in
images tasks. The main idea behind transformers is to give more freedom to the model
to build its own encoding of the data using its self-attention mechanism (all the se-
quence of data is encoded in parallel and each token (or patch in images) can attend
to the rest of the tokens).

Overall, approaches based on deep CNNs have become favorable in recent years,
significantly outperforming traditional approaches in most image processing and recog-
nition tasks. A drawback of deep learning models, as opposed to shallow-learning ap-
proaches, is that it requires a large amount of training data. Hence, A part of this thesis
is dedicated to finding the mechanisms of training with limited annotated data (low
resource).

1.5 Learning in Low Resource

In some machine learning problems, data is limited and hard to obtain, especially in
an annotated form. Thus, machine learning paradigms had to adapt and learn from
one or few data examples per class [56]. In the case of having one labeled example
per class, it is called one-shot learning [187]. While in the case of having few labeled
examples (usually up to five) it is called Few-Shot Learning (FSL) [192]. In this learn-
ing scenario, prior knowledge is used to address the lack of data issue. FSL methods
can be categorized into the following three types [192] depending on how to solve the
problem:

• Data: In this category, prior knowledge is used to perform data augmentation
[213, 171], pseudo-labeling (use strategies to automatically annotate a set of un-
labeled data belonging to the same domain [173]), or gathering some labeled
samples with the same classes and similar domain [184]. Then, the newly ac-
quired data using these techniques are added to enrich the original training set
and the full data is fed to a machine learning model.

• Model: Here, we use prior knowledge to reduce the size of the hypothesis space.
This can be done by different strategies. For instance:

– Multi-task Learning: when having a set of tasks to learn where in each we
have only a few samples per class, we can design a network that used the full
data from all the tasks. The model employs some shared weight between
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the tasks to capture the generic information while having some layers for
task-specific learning. In this way, we benefit from the global information
to reduce the hypothesis space for all the tasks [209].

– Embedding Learning: In this strategy, the models are designed to embed
the samples in a lower-dimensional space. Then, a smaller hypothesis space
is constructed by simplifying the learning task, for example by transform-
ing the classification problem into a matching problem by the matching
networks [187] or the prototypical networks [169].

• Algorithm: here, we use prior knowledge to find a better start for the search hy-
pothesis. For example, by fine-tuning (or refining the parameters) of a pretrained
model in a supervised way on a similar task (or data) [133]. Or by using Self-
Supervised Learning (SSL) pertaining to learn useful information from a large
set of unlabeled data from the same domain, and then perform the fine-tuning
on the few data samples [2].

In this thesis, few-shot learning and self-supervised learning mechanisms have
been largely explored to deal with the lack of data in historical ciphers and handwritten
documents.

1.6 Scope and Research Questions

Processing historical manuscript images (quality enhancement and text recognition)
is still a challenging problem, in addition, ciphered manuscripts are adding more diffi-
culties. This gives rise to several core research questions addressed by this thesis:

Research Question 1: Can we develop and efficiently implement deep neural network
based models for image quality enhancement to serve as a preprocessing step for them
to better recognize their handwritten text?

Objective: An end-to-end framework for image quality enhancement that can recover
highly degraded images by removing the degradation while maintaining their readabil-
ity.

Contribution: To address this question by the following contributions:

• An end-to-end document image enhancement model based on conditional GANs.
We designed a simple yet effective architecture that can be used to restore differ-
ent kinds of degradation. We tested our model for document cleaning (binariza-
tion) and watermark removal. We showed also that the results of an OCR applied
to the enhanced images by our model is improved compared to inputting the
original degraded images.

• A major drawback of the document image enhancement models is to delete im-
portant parts of the text while cleaning the image. To address this, we designed
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a new training objective that takes into account the readability of the document
rather than only the visual part. This was done by adding a recognizer in the
previous cGAN architecture. Moreover, we did a study to find the best trade-off
between the visual and textual features. This results in producing images that
are as clean and readable as possible.

• Same as the recent related work in document image enhancement, the proposed
models in the two previous chapters were based on the convolutional layers.
However, the current state-of-the-art in image processing tasks is using trans-
formers. Thus, we designed and implemented a new model based on a pure
transformer architecture. The results obtained by using this model demonstrate
its superiority over the previous approaches. The reason behind this superiority
is the self-attention mechanism that is employed in the transformer layers and
gives the ability to enhance the local patched within the image while having a
global view over the rest of the patches.

Research Question 2: Can we develop and efficiently implement deep neural network
based models for historical manuscript image recognition in low resource scenarios
(for example, for ciphered manuscripts)?

Objective: To design and implement models that can work on the very few datasets
that we have in the case of ciphered and historical manuscripts.

Contribution: To address this question by the following contributions:

• A few-shot learning-based model that can recognize historical manuscript im-
ages with an unseen alphabet during training. The model requires only one of
a few annotated characters/symbols of the new alphabet belonging to the in-
putted data.

• A progressive and automatic pseudo-labeling approach that can benefit from the
unlabeled data. We designed a learning strategy that labels at each iteration a set
of new symbols within the unlabeled line to end up in the end by fully pseudo-
labeled lines. We showed that this strategy results in improving the model per-
formance by reducing the human effort of annotating data.

• A data generation approach based on the Bayesian Program Learning (BPL) [106]
that can generate new training data using only one symbol/character image per
each class of the desired manuscript alphabet that will be recognized. The model
is merged with the previous FSL model to obtain better results.

• A SSL approach based on the pretraining/fine-tuning fashion. Well-designed
learning objectives were used for the pretraining phase to learn rich and useful
representations from the unlabeled data. after that, a fine-tuning stage is used
and we demonstrate that we get better results than starting from scratch, espe-
cially when reducing the amount of training data.



Introduction 8

Research Question 3: From a user perspective, is it worth using the developed model
for the automatic recognition of historical manuscripts?

Objective: Demonstrate the utility of our developed models in recognizing the histor-
ical text image than transcribing the documents manually.

Contribution: We developed and tested four different automatic transcription meth-
ods that can be used to train and test models with a limited amount of data. After that,
we have exhaustively evaluated these methods both quantitatively and qualitatively
with regard to their performance. We have discussed the advantages and disadvan-
tages of each method as well as their applicability from the user perspective consider-
ing time consumption in comparison with a fully manual transcription and opportu-
nities for user validation. On the basis of this evaluation, we give recommendations for
further development and usage of transcription tools for this kind of manuscript.

1.7 Thesis Structure/ Outline

This thesis structure is composed of an introduction, and three major parts, each con-
taining several related chapters. Then, a conclusion is given with a discussion and
future work. In the following, we present a brief description of each part and chapter:

Chapter 1 – Introduction

In this Chapter we present an introduction of the thesis, we define the problems
that we are addressing within the field of historical manuscript images and the faced
challenges. We also formalized the research questions that we aim to answer within
the thesis along with our contributions.

Part I – Document Image Enhancement

In this part, we address the document image enhancement problem using deep
learning tools. This part is composed of the following four chapters.

• Chapter 2 – Document Image Enhancement: State-Of-The-Art: This chapter
detail the state-of-the-art in the field of document image enhancement.

• Chapter 3 – Document Image Enhancement Using A Conditional Generative
Adversarial Network: This chapter proposes an approach for document image
enhancement (cleaning, binarization, and watermark removal) based on the con-
ditional generative adversarial networks.

• Chapter 4 – A Multi-Task Adversarial Network for Handwritten Document Im-
age Enhancement: In this chapter, we propose an approach for handwritten
document image enhancement with an improved readability enhancement com-
pared to the approach proposed in the previous chapter.

• Chapter 5 – An End-to-End Document Image Enhancement Transformer: In



9 Introduction

this chapter we propose our approach for handwritten document image enhance-
ment using the transformers architecture.

Part II – Document Image Recognition in Low Resource Data

This part addresses handwritten text recognition in a low-resource scenario. It is
composed of the following chapters.

• Chapter 6 – Handwritten Text Recognition in Low Resource Data: State-Of-
The-Art: This chapter detail the related work in handwritten text recognition
when facing a low resource scenario.

• Chapter 7 – A Progressive Few Shot Learning Approach for Low Resource Hand-
written Text Recognition: In this chapter, we introduce the few-shot learning
model for text recognition as well as the progressive pseudo-labeling strategy to
benefit from the unlabeled data.

• Chapter 8 – A One-shot Learning Approach for Compositional Data Genera-
tion: Application to Low Resource Handwritten Text Recognition: This chapter
introduces the data generation technique for low resource scripts. We detail the
method and used the generated lines to train different models performing the
HTR task.

• Chapter 9 – A Self-Supervised Transformer Autoencoder for Text Recognition
and Document Enhancement: This chapter presents the self-supervised and
the used pretext tasks to learn useful representation from unlabeled data.

Part III – User Evaluation of HTR Systems in Low Resource Data: This part is ded-
icated to the evaluation of HTR methods from a user perspective.

• Chapter 10 – Evaluation of HTR systems for the Automatic Transcription of
Rare Manuscripts from a User perspective: Application to Codex Runicus: In
this chapter, we evaluate the HTR methods applied to a low resource scenario.
We used the rare manuscript called Codex Runuius for this study.

Chapter 11 – Conclusion: In this chapter, we present the conclusion by summa-
rizing our contributions during this thesis, discussing their limitations, and proposing
future work.
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Part I

Document Image Enhancement
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Chapter 2

Document Image Enhancement:
State-Of-The-Art

Documents often exhibit various forms of degradation, which make it hard to be

read and substantially deteriorate the performance of an OCR system. In this Chap-

ter, we detail the related work to document image enhancement.

2.1 Introduction

The preservation and legibility of document images (especially the historical ones) are
of utmost priority for the Document Image Analysis and Recognition (DIAR) research.
Document records usually contain significant information and in the historical cases it
dates back centuries and decades [128]. The conservation of document records can be
hampered by several kinds of degradation such as smears, stains, artefacts, pen strokes,
bleed-through effects and uneven illumination. These distortions could heavily im-
pact the subsequent downstream tasks for information processing, such as segmen-
tation, Optical Character Recognition (OCR), information spotting and layout analy-
sis. This manifests the need for a robust pre-processing task that denoises and recon-
structs a high-quality clean image from its already degraded counterpart. Document
Image Enhancement (DIE) aims towards restoring the quality of the degraded docu-
ment samples to yield a clear enhanced version that is locally uniform.

Automatic document processing consists in the transformation into a form that is
comprehensible by a computer vision system or by a human. Thanks to the devel-
opment of several public databases, document processing has made a great progress

13
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in recent years [33, 165]. However, this processing is not always effective when docu-
ments are degraded. Lot of damages could be done to a document paper. For exam-
ple: Wrinkles, dust, coffee or food stains, faded sun spots and lot of real-life scenarios
[203]. Degradation could be presented also in the scanned documents because of the
bad conditions of digitization like using the smart-phones cameras (shadow [12], blur
[36], variation of light conditions, distortion, etc.). Moreover, some documents could
contain watermarks, stamps or annotations. The recovery is even harder when certain
types of these later take the text place for instance in cases where the stains color is the
same or darker than the document font color. Hence, an approach to recover a clean
version of the degraded document is needed.

In this part, we focus on the enhancement of degraded document images by pro-
viding models that are used for different recovery tasks: document clean up, binariza-
tion, and watermark removal. From a document analyst perspective, this recovery of a
clean version from the degraded document falls in the research field called document
image enhancement. Where we can find, in addition to those three tasks, other ways
to enhance a document image. For instance: unshadowing [12, 101], super-resolution
[139], deblurring [36], dewarping [182], etc. In what follows, we cover some related
works to our addressed tasks.

2.2 Related Work

2.2.1 Degraded document enhancement

Degraded document enhancement is related to document image binarization. Where
the goal is to produce a binary but clean document. The idea is to classify the pixels
of the document as one of two categories: degradation or text. Afterward, assigning
zeros to the text pixels and ones for the degradation will generate a binary clean image.
While generating a gray-scale or colored image can be done by preserving the same
value for the text pixels. Within our work, we aim to recover images that contain hard
degradation by removing the background noise, while keeping its readability by OCR
and HTR systems as accurate as possible.

Classic Approaches

Early image binarization techniques were basing on thresholding. Methods known by
global binarization, aimed to find a single threshold value for the whole document. A
more sophisticated approaches, named local binarization, determine a different thresh-
old value for each pixel [138, 164, 135, 143, 43, 39]. According to the threshold(s), pixels
are classified to be belonging on the text (zero) or the degradation (one). Lelore et al.
[114] presented an algorithm called FAIR, based on edge detection to localize the text
in a degraded document image. A global threshold selection method was proposed
in [5], basing on fuzzy expert systems (FESs), the image contrast is enhanced. Then,
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the range of the threshold value is adjusted by another FES and a pixel-counting al-
gorithm. Finally, the threshold value is obtained as the middle value of that range. A
machine learning based approach was proposed in [41], the goal was the determina-
tion of the binarization threshold in each image region given a three-dimensional fea-
ture vector formed by the distribution of the gray level pixel values. The support vector
machine (SVM) was used to classify each region into one of four different threshold
values. An other and similar SVM based approach was introduced in [198]. The main
drawbacks of these classic methods is that the results are highly sensitive to document
condition. With a complex image background or a non uniform intensity, problems
occurred [146].

Energy Based Approaches

Later, evolved techniques were proposed. Moghaddam et al. [131] proposed a varia-
tional model to remove the bleed-through from the degraded double-sided document
images. For the cases where the verso side of the document is not available, a modified
variational model is also introduced. By transferring the model to the wavelet domain
and using the hard wavelet shrinkage, the interference patterns was removed. Other
energy based methods were also introduced. In [76], authors considered the ink as a
target and tried to detect it by maximizing an energy function. This technique was ap-
plied also for scene text binarization [130], which is a similar task. Similarly, Xiong et
al. [197] estimated the background and subtracted it from the image by a mathemat-
ical morphology. Then the Laplacian energy based segmentation is performed on the
enhanced document image to classify the pixels. Although these sophisticated image
processing techniques, document binarization results are still unsatisfactory.

Deep Learning Approaches

Recently, deep learning architectures were used to tackle this problem by training their
weights directly from raw data. In [3], the problem was formulated as pixels classifi-
cation depending on sequences. Hence, a 2D Long Short-Term Memory (LSTM) was
used to predict each pixel value whether belonging to the text or the degradation given
a sequence of its neighbours. This process is, of course, time consuming. Thus, in-
stead of classifying each pixel separately, images were mapped in an end to end fashion
from the degraded version into the clean one using the Convolutional Neural Networks
(CNNs). These architectures, called auto-encoders, lead to recent improvements in
image denoising [126] and more particularly documents binarization [123, 27, 4] or de-
blurring problems [80]. This kind of applications are now called image-to-image trans-
lation, since the goal is to start from a degraded image and learn a mapping function
that translate it into a clean domain. Following these approaches, [96] proposed an
auto-encoder architecture that performs a cascade of pre-trained U-Net models [157]
to learn the binarization with less data. Also, [75] proposed a neural network to learn
the the enhancement/binarizatoin in an iterative fashion.
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Other deep learning approaches modeled the problem as a generation task, where
the goal is to generate a clean version of the image by conditioning on the degraded
one. This process was carried out using GANs architectures, composed of a gener-
ative model that produce a clean version of the image and a discriminator to assess
the binarization result. Thus, and motivated by other approaches where GANs signifi-
cantly surpasses autoencoders in image-to-image tasks [85], some approaches apply-
ing this method were introduced. In [174], a conditional GAN approach was developed
for document enhancement and achieved good results in recovering handwritten doc-
uments with several backgrounds degradation scenarios, it was also used for optical
documents deblurring and dense watermarks removal. A similar cGAN based method
was also proposed in [211], where the binarization performed by the generator was
done in two stages, learning the pixels in different scales then combining the results
to provide the final output. In [46], a strokes preservation method was developed us-
ing a GAN model, this was done by learning the text boundary in an auxiliary task for
a better document binarization, especially with weak or ambiguous strokes. Another
GAN’s based method was proposed in [20] using a two networks frameworks, for doc-
ument binarization. The first one was conditioning on the clean image to generate
a degraded one, while the other network reconstructed the clean version condition-
ing on the degraded image. Thus, an unpaired data training was performed leading to
good results when using the second network to binarize images. Similarly, [181] treated
the problem as two stages: The first stage was devoted to augment the data by creating
degraded handwritten images using a GAN model, while the second stage exploited
the generated images to train an inverse problem binarization model.

2.3 Conclusion

To summarize, deep learning based methods are now significantly surpassing the clas-
sic or modern image processing handcrafted algorithms for the handwritten document
binarization task. Thus, we are proposing in Chapter 3 a cGAN based method that
achieve good performance in many different degradtion recovery tasks.

The only limitation that can be noticed in such deep learning methods is the "i mag e
onl y" based training. Because, the usual benchmarks for testing the binarization per-
formance do not include a text recognition evaluation (a GT truth text of the degraded
documents). Thus, those methods could easily delete some parts of the handwritten
text while binarizing the image, without noticing. It is to note that we addressed this
problem in a previous work [175], but for printed documents domain and using the
Tesseract OCR engine to evaluate the produced text. Where the character error rate of
the OCR on the generated image is inputted as an additional input channel to the dis-
criminator. Moreover, we are proposing in Chapter 4 a handwritten text recognizer that
is jointly trained in the GAN architecture to maintain the text, while cleaning the de-
graded image. Thus, it is more flexible to be used for different handwritten languages
and writing styles.
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Next, motivating by the success of the recently proposed transformers models [185],
we are proposing an other model using Vision Transformers (ViT) [54] to address the
document image enhancement problems. This is presented in Chapter 5.



Document Image Enhancement: State-Of-The-Art 18



Chapter 3

Document Image Enhancement Using A
Conditional Generative Adversarial
Network

In this Chapter, we propose an effective end-to-end framework named Docu-

ment Enhancement Generative Adversarial Network (DE-GAN) that uses condi-

tional GANs (cGANs) to restore severely degraded document images. To the best

of our knowledge, this practice has not been studied within the context of genera-

tive adversarial deep networks. We demonstrate that, in different tasks (document

clean-up, binarization, deblurring, and watermark removal), DE-GAN can produce

an enhanced version of the degraded document with high quality. In addition, our

approach provides consistent improvements compared to state-of-the-art meth-

ods over the widely used DIBCO 2013, DIBCO 2017, and H-DIBCO 2018 datasets,

proving its ability to restore a degraded document image to its ideal condition. The

obtained results on a wide variety of degradation reveal the flexibility of the pro-

posed model to be exploited in other document enhancement problems.

3.1 Introduction

In this Chapter, we focus on two document enhancement problems. Degraded docu-
ments recovery, i.e., to produce a clean (grayscale or binary) version of the document
given any type of degradation, and watermark removal. The faced obstacles are as fol-
lows: Overlaps of noise or watermarks with the text, dense watermarks, intense dirt

19
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Figure 3.1: Examples of the documents used in this study: (a): Degraded documents,
(b): A document with dense watermark.

or degradation can cover the entire text and reading it becomes very hard, there is no
prior knowledge about the degradation or the watermark that should be removed, etc.
An ideal system should be good in performing two tasks simultaneously, removing the
noise and the watermarks as well as retaining the text quality in the document images.

Recently, a great success is made by deep neural networks in natural images gener-
ation and restoration, especially deep convolutional neural networks (auto-encoders
and variational auto-encoders (VAE)) [126, 52, 99] and generative adversarial networks
(GANs) [85, 97]. GANs, which were introduced in [68], are now considered as the ideal
solution for image generation problems [97] with high quality, stability and variation
compared to the auto-encoders. Generative models gained more attention because
of their ability to capture high dimensional probability distributions, imputation of
missing data, and deal with multimodal outputs. Despite that, the document analy-
sis research community is not benefiting enough from those approaches, yet. Using
them is very limited, for instance, in font translation [19], handwritten profiling [65]
and staff-line removal from music score images [104], where promising results were
found.

In [85], Isola et al. show that conditional generative adversarial networks (cGANs),
a variation of GANs, perform well in image-to-image translation (labels to facade, day
to night, edges to photo, BW to color, etc.). While GANs learn a generative model of
data, conditional GANs (cGANs) learn a conditional generative model, where it condi-
tions on an input image and generate a corresponding output image. Since document
enhancement follows the same process, which means, we want to preserve the text and
remove the damage in a conditioned image, cGANs shall be the suitable solution, and
this is what motivated us for this study.

The main contributions of this Chapter are: As primary, to the best of our knowl-
edge, this is the first occurrence of GANs, conditional GANs specifically, in a frame-
work that addresses different document enhancement problems (clean up, binariza-
tion, and watermark removal). Second, we used a simple but flexible architecture that
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could be exploited to tackle any document degradation problem. Third, we introduce
a new document enhancement problem consisting in dense watermark and stamp re-
moval. Finally, we experimentally prove that our approach achieves a higher perfor-
mance compared to the state-of-the-art methods in degraded document binarization.

The rest of the Chapter is organized as follows. Section 3.2, a summary of previous
works on document enhancement, especially for document clean-up and binarization
and watermark removal in documents as well as in natural images. We review also
some related works using the GANs in image-to-image translation. Then, we provide
our proposed approach in Section 3.3. Some experimental results and comparisons
with traditional and recent methods are described in Section 3.4. Finally, a conclusion
with some future research directions is presented in Section 3.5.

3.2 Related Work

3.2.1 Degraded document Image Enhancement

The reader can refer to Section 2.2 for this part.

3.2.2 Watermark removal

Watermark removal is also related to classical document binarization or image mat-
ting, where the goal is to decompose a single image into background and foreground
knowing that this time the text is in the background while the watermark is in the fore-
ground. But, this problem was not proposed in document processing. In fact, the ap-
peared works that deal with watermark removal were in natural image processing. In
[199], the authors used image inpainting algorithms to remove the watermark. Before
that, a statistical method was used to detect the watermark region. Dekel et al. [49]
proposed to estimate the outline sketch and alpha matte of the same watermark from
a batch of different images. Two watermarks were used in this study, the goal was to
test the effectiveness of a single visible watermark to protect a large set of images. Wu
et al. [194] used the generative adversarial networks [68] to remove watermarks from
face images used in a biometric system. Cheng et al. [38] proposed a method based
on convolutional neural networks (CNN). First, object detection algorithms were used
to detect the watermark region in natural images and then pass it to another model to
remove the watermark. In our study, we investigate for the first time the problem of
watermark removal in document images, this leads us to compare our approach with
some results obtained on natural images for the same purpose.
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3.2.3 Generative adversarial networks for image-to-image translation

As mentioned above, GANs are now achieving impressive results in image generation
and translation. In this paragraph, we investigate the use of this mechanism in related
problems to document processing and enhancement. This shall give intuition to the
document analysis community about exploiting GANs for these tasks. In [124], it was
demonstrated that GANs lead to improvements in semantic segmentation. Ledig et al.
presented SRGAN [109], a Generative Adversarial Network for image Super-Resolution.
Through it, they achieved photo-realistic reconstructions for large upscaling factors
(4×). In [109], conditional GANs were used for several image-to-image translation
tasks (these tasks are related to document enhancement), given paired data. This
work was extended to [214], where CycleGAN, a GAN that uses impaired data, was
proposed as a solution. An other model called "pix2pix-HD" and deals with high-
resolution (e.g. 2048x1024) photorealistic image-to-image translation tasks was ap-
peared in [191]. Furthermore, an unsupervised method for image-to-image translation
was proposed in [201], where authors train two GANs, or "DualGAN" as they denoted.
In their architecture, the primal GAN learns to translate images from a domain U to a
domain V , while the dual GAN learns to invert the task. The closed loop architecture
allows images from each domain to be translated and then reconstructed. Hence, a
loss function that accounts for the reconstruction error of images can be used to train
the translators.

3.3 Proposed approach

We consider the problems of document enhancement as an image-to-image transla-
tion task where the goal is to g ener ate clean document images given the degraded
ones. Since GANs have outperformed auto-encoders in generating high fidelity sam-
ples and while we are using paired data, we propose to use a cGAN. We called our
model DE-G AN (for Document Enhancement conditional Generative Adversarial Net-
work). GANs were initially proposed in [201] and consist of two neural networks, a
generator G and a discriminator D characterized by the parameters ϕG and ϕD , re-
spectively. The generator has the goal of learning a mapping from a random noise
vector z to an image y , GϕG : z → y . While the discriminator has the function of distin-
guishing between the image generated by G and the ground truth one. Hence, given
y , D should be able to tell if it is f ake or r eal by outputting a probability value, DϕD :
y → P (r eal ). Those two networks compete against each other in a min-max game,
in other words, if one wins the other loses. The generator aims to cheat the discrimi-
nator by producing a close image to the ground truth, however, the discriminator will
improve his prediction of the image being fake, and this is what is called adversarial
learning. cGANs follow the same process, except that, they introduced an additional
parameter x. Which is the conditioned image. Here, the generator is learning the map-
ping from an observed image x and a random noise vector z, to y , GϕG : {x, z} → y and
the discriminator is looking, also, to the conditioned image which makes his process
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as DϕD : {x, y} → P (r eal ).

In our situation, the generator will generate a clean image denoted by I C given
the degraded (or watermarked) one which we will denote I W . The generator aims,
of course, to produce an image that is very close to the ground truth image denoted
by I GT . The training of cGANs for this task is done by the following adversarial loss
function:

(3.1)LG AN (ϕG ,ϕD ) = EI W ,IGT log[DϕD (I W , I GT )] + EI W log[1 − DϕD (I W ,GϕG (I W ))]

Using this function, the generator should produce, after several epochs, a similar
image to the ground truth, i.e., the watermark and the degradation will be removed and
this may fool the discriminator. But, it is not guaranteed that the text will be preserved
in a good condition. To overcome this, we employ an additional log loss function be-
tween the generated image and the ground truth, for the purpose of forcing the model
to generate images that have the same text as the ground truth. It is to note also that
this additional loss boosts the training speed, the added function is:

(3.2)Llog (ϕG ) = EIGT ,I W [−(I GT log(GϕG (I W )) + ((1 − I GT ) log(1 −GϕG (I W )))]

Thus, the proposed loss of our network, denoted by Lnet becomes:

Lnet (ϕG ,ϕD ) = mi nϕG maxϕD LG AN (ϕG ,ϕD )+λLl og (ϕG ) (3.3)

Where λ is a hyper-parameter that was set to 100 for text cleaning and 500 for water-
mark removal and document binarization. The architecture of generator and discrim-
inator networks is described in the next sections.

3.3.1 Generator:

The generator is performing an image-to-image translation task. Usually, auto-encoder
models are used for this problem [122, 196, 11]. These models consist, mostly, of a se-
quence of convolutional layers called an encoder which performs down-sampling until
a particular layer. Then, the process is reversed to a sequence of up-sampling and con-
volutional layers called a decoder. There are two disadvantages of using an encoder-
decoder model for the proposed problem: First, due to down-sampling (pooling), a
lot of information is lost and the model will have difficulties in recovering them later
when predicting an image of the same size as the input. Second, image information
flow passes through all the layers, including the bottleneck. Thus, sometimes, a huge
amount of unwanted redundant features (inputs and outputs are sharing a lot of the
same pixels) are exchanged. Which leads to energy and time loss. For this reason, we
employ skip connections following the structure of the model called U-net [157]. Skip
connections are added every two layers to recover images with less deterioration, it is
to note also that skip connection are used when training a very deep model to prevent
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Figure 3.2: The generator follows the U-net architecture [157]. Each box corresponds
to a feature map. The number of channels is denoted at the bottom of the box. The
arrows denote the different operations.

the gradient vanishing and exploding problems. Some batch normalization layers are
also added to accelerate the training. The architecture of the generator used in this
study is illustrated in Fig. 3.2, it is similar to [157] where it was introduced for the pur-
pose of biomedical image segmentation.

3.3.2 Discriminator

The defined discriminator is a simple Fully Convolutional Network (FCN), composed
of 6 convolutional layers, that output a 2D matrix containing probabilities of the gen-
erated image being real. This model is presented in Fig. 3.3. As shown, the discrim-
inator receives two input images which are the degraded image and its clean version
(ground truth or cleaned by the generator). Those images were concatenated together
in a 256×256×2 shape tensor. Then, the obtained volume propagated in the model
to end up in a 16× 16× 1 matrix in the last layer. This matrix contains probabilities
that should be, to the discriminator, close to 1 if the clean image represents the ground
truth. If it is generated by the generator the probabilities should be close to 0. There-
fore, the last layer takes a sigmoid as an activation function. After completing training,
this discriminator is no longer used. Given a degraded image, we only use the gener-
ative network to enhance it. But, this discriminator shall force the generator during
training to produce better results.
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Figure 3.3: The Discriminator architecture

Figure 3.4: The proposed DE-GAN

3.3.3 Training process

Training our DE-GAN was as follows, we took patches from the degraded images of
size 256× 256 and fed them as an input to the generator. The produced images are
fed to the discriminator with the ground truth patches and the degraded ones. Then,
as presented in equation 3.3, the discriminator starts forcing the generator to produce
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outputs that cannot be distinguished from “real” images, while doing his best at de-
tecting the generator’s “fakes”. This training is illustrated in Fig. 3.4 and it is done using
Adam with a learning rate of 1e−4 as an optimizer.

3.4 Experiments and results

3.4.1 Document cleaning and binarization

We begin our experiments with document cleaning. For this task, the Noisy Office
Database which contains different types of degradation, and is presented in [203], is
used. We defined 112 images for training and 32 for testing. From the 112 training
images, a set of overlapped patches of size 256× 256 pixels were extracted. This has
generated 1356 pairs of patches that were fed to our model. This first test intends to
demonstrate the adversarial training effect. Thus, we train another model which is a
simple FCN which is the U-net presented in Fig. 3.2. A validation set of 15 % from the
training images was used in this model. The results obtained by both models are pre-
sented in Table 3.1. As could be interpreted, the result of the encoder-decoder network
(U-net) is acceptable for denoising and cleaning tasks. But, our DE-GAN is further im-
proving the results. Which exposes the reason for using adversarial training for these
types of problems. For more comparison, we have participated in the Kaggle compe-
tition on denoising dirty documents 1, we obtain a root mean squared error score of
0.01952. This makes our method one of the best approaches on the leaderboard.

Table 3.1: The obtained results of document cleaning using Noisy office database [203]

Model SSIM PSNR
FCN (U-net) 0.9970 36.02
DE-GAN 0.9986 38.12

Next, we compare our approach with state-of-the-art results in the document bi-
narization problem. We take the DIBCO 2013 Dataset [149] for testing. While training
our model was done with different versions of DIBCO Databases [64, 147, 148, 137, 151,
152]. Same as the previous test, a set of 6824 training pairs (patches of size 256×256)
was taken from its 80 total images. The obtained results are compared with several
approaches in Table 3.2. Out of the results, we can say that DE-GAN is superior to
the current state-of-the-art methods according to the following metrics [149]: Peak
signal-to-noise ratio (PSNR), F-measure, pseudo-F-measure (Fps ) and Distance recip-
rocal distortion metric (DRD). Some examples of DIBCO 2013 images binarization by
DE-GAN are presented in Fig. 3.5.

1https://www.kaggle.com/c/denoising-dirty-documents/

https://www.kaggle.com/c/denoising-dirty-documents/
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Table 3.2: Results of image binarization on DIBCO 2013 Database.

Model PSNR F-measure Fps DRD
Otsu[138] 16.6 83.9 86.5 11.0
Niblack[135] 13.6 72.8 72.2 13.6
Sauvola et al.[164] 16.9 85.0 89.8 7.6
Gatos et al. [63] 17.1 83.4 87.0 9.5
Su et al. [177] 19.6 87.7 88.3 4.2
Tensmeyer et al [183] 20.7 93.1 96.8 2.2
Xiong et al. [197] 21.3 93.5 94.4 2.7
Vo et al. [188] 21.4 94.4 96.0 1.8
Howe [79] 21.3 91.3 91.7 3.2
DE-GAN 24.9 99.5 99.7 1.1

Figure 3.5: Binarization of degraded documents by DE-GAN, the result is satisfactory,
except in some parts that were highly dense (the red boxes in the row of the predicted
image)

To reflect the results of the previous Table, illustrative comparisons between those
different methods could be found in Fig. 3.6 and Fig. 3.7. It is easy to visualize the
superiority of our method over the classic methods, like those of [138, 135, 164], which
fail to remove the background degradation from the document when it gets very dense
because they are based on thresholds that make the degraded pixels classified as a text,
or classifying the text pixels as damage to be removed. The recent approaches [79, 188],
yield a better result than the classic ones and separate the text from the background
successfully. However, our method gives a higher performance in terms of closeness to
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the ground truth image.

Original Ground truth Otsu[138]

Niblack[135] Sauvola et al.[164] DE-GAN

Figure 3.6: Qualitative binarization results produced by different methods of a part
from the sample (PR5), which is included in DIBCO 2013 dataset

Original Ground truth Otsu[138]

Howe [79] Vo et al. [188] DE-GAN

Figure 3.7: Qualitative binarization results produced by different methods of of a part
from the sample (HW5), which is included in DIBCO 2013 dataset

Moreover, we tested DE-GAN on a recent DIBCO dataset, which is DIBCO 2017
[152]. We train our model on 6098 patches from similar datasets [149, 64, 147, 148,
137, 151]. The comparison is done with the top 5 ranked approaches in ICDAR 2017
competition on document image Binarization [152]. 18 research groups have partici-
pated in the competition with 26 distinct algorithms. The results are presented in table
3.3, where you can notice the superiority of our DE-GAN over the different methods. It
is to note that most of these approaches are based on encoder-decoder models and the
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winner team was using a U-net with several data augmentation techniques. However,
GANs were not exploited in this competition.

Table 3.3: Results of image binarization on DIBCO 2017 Database, a comparison with
DIBCO 2017 competitors approaches.

Model PSNR F-measure Fps DRD Rank in the
competition

10 [152] 18.28 91.04 92.86 3.40 1
17a [152] 17.58 89.67 91.03 4.35 2
12 [152] 17.61 89.42 91.52 3.56 3
1b [152] 17.53 86.05 90.25 4.52 4
1a [152] 17.07 83.76 90.35 4.33 5
DE-GAN 18.74 97.91 98.23 3.01 -

In addition, we compared our model with the most recent approaches, presented
in the H-DIBCO 2018 competition [150] that was held at ICFHR 2018 conference. The
results are presented in Table 3.4. As shown, our approach has the best performance
on DIBCO 2017 test set and gives the second best DRD, PSNR, F-measure, and pseudo
F-Measure on H-DIBCO 2018 test set. We note that the winner system in the compe-
tition integrates a lot of pre-processing and post-processing steps in their algorithm,
which makes it more efficient for this particular H-DIBCO 2018 dataset. On the con-
trary, we are presenting a simple end-to-end model that shows a good ability in several
datasets and enhancements tasks without any additional processing step. Finally, for
more practical usage of the model, we tried to binarize some real (naturally degraded)
documents as well, the degradation consists in stains and show-through. The obtained
results are given in Fig. 3.8, the model is producing a better version of the real images,
which will certainly improve their recognition rate.

Table 3.4: Results of image binarization on DIBCO 2017 and DIBCO 2018 Databases, a
comparison with DIBCO 2018 competitors approaches.

Model
DIBCO 2018 DIBCO 2017 Rank in the

competitionPSNR F-measure Fps DRD PSNR F-measure Fps DRD
1 [150] 19.11 88.34 90.24 4.92 17.99 89.37 90.17 5.51 1
7 [150] 14.62 73.45 75.94 26.24 15.72 84.36 87.34 7.56 2
2 [150] 13.58 70.04 74.68 17.45 14.04 79.41 82.62 10.70 3
3b [150] 13.57 64.52 68.29 16.67 15.28 82.43 86.74 6.97 4
6 [150] 11.79 46.35 51.39 24.56 15.38 80.75 87.24 6.22 5
DE-GAN 16.16 77.59 85.74 7.93 18.74 97.91 98.23 3.01 -

3.4.2 Watermark removal

After testing our model in document cleaning and binarization, we will evaluate it on
the problem of watermark removal. Dense watermarks (or stamps) can cause a huge
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Figure 3.8: Binarization of three historical degraded documents by DE-GAN, the bina-
rized version is presented under each original image. Some parts are not well recovered
as shown in the red boxes.

deterioration in the f or eg r ound of the document, which makes it hard to be read.
However, this problem was not investigated by the document analysis community. We
decided to be the first that addresses it using DE-GAN. Hence, it was not possible to
find a public dataset for testing. We created our own database which contains 1000
pairs (an image of a document with a dense watermark and stamps and its clean ver-
sion).

The used watermarks have random texts, sizes, colors, fonts, opacities, and loca-
tions (see Fig. 3.9). As shown, these watermarks are sometimes covering the entire text
making it unseen by the unaided eye. The code used to produce this data is available at
GitHub 2, for the same dataset used in our study the reader can contact the first author
to obtain it. Training our DE-GAN was done, same as document cleaning, by using

2https://github.com/dali92002/watermarking-documents/blob/master/Watermarking.ipynb

https://github.com/dali92002/watermarking-documents/blob/master/Watermarking.ipynb


31 Document Image Enhancement Using A Conditional GAN

overlapped patches (7658 pairs of patches from 800 watermarked document images).
While taking 200 documents for testing. Since, to the best of our knowledge, there is
no approach in the literature that addresses this problem in documents. Comparing
our obtained results was done with the approaches used in natural image watermark
removal. The comparison results are presented in Table 3.5.

Figure 3.9: 4 Samples from our developed Dataset

Despite that, the watermarks used in our study were very dense and we believe that
removing them is harder than the related approaches presented in Table 3.5. Our ap-
proach surpasses, by far, those in natural images. Fig. 3.10 shows some examples of
watermark removal by DE-GAN, the produced images are preserving the text quality
while removing the foreground watermarks. In addition, since the presented water-
marked documents were synthetically made, it was interesting to apply DE-GAN to re-
move watermarks from a naturally degraded document. Fig. 3.11 shows that DE-GAN
successfully removes a dense watermark from a document paper. As you can see, the
watermark is completely removed, and the reader or the OCR system can easily read
the enhanced document compared to the degraded one.

Table 3.5: Results of watermark removal

Model PSNR SSIM
Dekel et al. [49] 36.02 0.924
Wu et al. [194] 23.37 0.884
Cheng et al. [38] 30.86 0.914
DE-GAN 40.98 0.998
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Watermarked images Ground truth Predicted images

Figure 3.10: Watermark removal by DE-GAN

3.4.3 Comparison with other GAN models

As it is a fact that our model is inspired by the pix2pix model [85] (we are using a
deeper generator and a different additional loss), it would be useful if we tried some
other similar models that are based on GANs and dedicated to the same image-to-
image translation problem. For this aim, cycleGAN [214] and pix2pix-HD [191] mod-
els are considered for the comparison. We evaluate these models on H-DIBCO 2018
dataset [150] with the same conditions and data used to train the DE-GAN. The quan-
titative and qualitative obtained results are presented in Table 3.6 and Fig. 3.12, re-
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Figure 3.11: Qualitative results for dense watermark removal. Above, is a section from
watermarked invoice. Below, it’s enhanced version. Some parts of the text in the in-
voice were blurred due to privacy constraints. Because of different domains, synthetic
vs real, we can see that some tiny parts of the watermark were not completely removed
(red boxes).

spectively. Experimental results show the superiority of DE-GAN compared to cycle-
GAN and pix2pix-HD in achieving higher PSNR, F-measure, and Fps and a lower DRD.
We note that the unsupervised training capabilities of CycleGAN are quite useful since
paired data is harder to find in document enhancement applications. For pix2pix-HD,
the results are promising, since the training samples that we used for training were
few (the number of DIBCO samples is small if we split them into patches with size
512×1024, that’s why we used some flips of images to augment the data). With more
data, we believe that pix2pix-HD could perform much better.

Table 3.6: Results of image binarization for DIBCO 2018 Database

Model PSNR F-measure Fps DRD
cycleGAN 11.00 56.33 58.07 30.07
pix2pix-HD 14.42 72.79 76.28 15.13
DE-GAN 16.16 77.59 85.74 7.93

3.4.4 Document deblurring

The DE-GAN model presented in this Chapter is able to outperform many state-of-
the-art approaches in different problems like binarization, denoising, and watermark
removal. To experimentally prove the efficiency and flexibility of the proposed method,
we evaluate it in a more challenging scenario, which is document deblurring. We use
4000 patches from the dataset developed in [80] to train our model, and 932 patches for
testing. Noting that, in [80] a convolutional neural network architecture is proposed to
address the problem. Thus, we will compare the results with this CNN and pix2pix-HD
models trained on this selected data. The obtained results are presented in Table 3.7.
We can see that GAN’s models surpass CNN. This is much clear in the qualitative re-
sults of some patches presented in Fig 3.13. We can also see that DE-GAN gives similar
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Original Ground truth CycleGan

Pix2pix-HD DE-GAN

Figure 3.12: Qualitative binarization results produced by different models of the sam-
ple (9) from H-DIBCO 2018 dataset

results to pix2pix-HD, however, it is more accurate for predicting some characters. For
example, in the second patch row, third line, the word "kind" is correctly predicted by
DE-GAN but it is predicted as "bind" by pix2pix-HD. We note that the used dataset is
composed of 300x300px image patches, which can explain why pix2pix-HD does not
give better performance (it works generally with a larger input patches with a size of
512x1024, or 1024x2048).

Table 3.7: The obtained results of document deblurring

Method PSNR
CNN [80] 19.36
pix2pix-HD [191] 19.89
DE-GAN 20.37

3.4.5 OCR evaluation

After the quantitatively and qualitatively evaluation of the resulting enhanced images
presented previously, we compare in what follows the performance of OCR on de-
graded and enhanced documents. For this aim, we took a set of 4 images (2 degraded
ones from DIBCO datasets, and 2 images with a dense watermark from our dataset).
Then, we used Tesseract OCR [168] to recognize those images and their enhanced ver-
sions with DE-GAN. We found that the proposed enhancement method boosts the
baseline OCR performance by a large margin, and the character error rate is decreased
from 0.37 for the degraded documents to 0.01 for the enhanced ones. Fig. 3.14 shows a
tiny example of this process. In each row, you can find a line of a degraded document
image and the text produced by the OCR system, then its enhanced version followed
the OCR text.
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Original GT CNN
[80]

pix2pix-HD
[191]

DE-GAN

Figure 3.13: Qualitative deblurring results of some patches produced by different
methods

For Nol expoundsytbe officers expound,

For Nol expounds, the officers expound,

term temperaturef ham Yhanges
in climate-come into play. For the

term temperature changes-changes
in climate-come into play. For the

Figure 3.14: Qualitative results for Tesseract recognition of some text lines
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3.5 Conclusion

In this Chapter, we proposed a Document Enhancement Generative Adversarial Net-
work named DE-GAN to restore severely degraded document images. To the best of our
knowledge, this was the first application of GANs for studying document enhancement
problems. Moreover, we present a new problem in document enhancement which is
dense watermark (or stamps) removal, hoping that it takes the attention of the doc-
ument analysis community. Extensive experiments show that DE-GAN achieved in-
teresting results in different document enhancement tasks that outperform the fully
convolutional networks, cycleGAN, and pix2pix-HD models. Furthermore, we achieve
improved results compared to many recent state-of-the-art methods on benchmarking
datasets like DIBCO 2013, DIBCO 2017 and H-DIBCO 2018.

We showed that the proposed enhancement method boosts the baseline OCR per-
formance by a large margin. Hence, in the next Chapter, we will add the OCR/HTR
evaluation in the discriminator part. Thus, we can give the discriminator the ability to
read the text to decide if it is real or fake, which will force it to generate more readable
images. This will be done in the next Chapter.



Chapter 4

A Multi-Task Adversarial Network for
Handwritten Document Image
Enhancement

In this Chapter, we propose an end-to-end architecture based on Generative Ad-

versarial Networks (GANs) to recover the degraded documents into a clean and

r ead abl e form. Unlike the most well-known document binarization methods,

which try to improve the visual quality of the degraded document, the proposed

architecture integrates a handwritten text recognizer that promotes the generated

document image to be more readable. To the best of our knowledge, this is the

first work to use text information while binarizing handwritten documents. Ex-

tensive experiments conducted on degraded Arabic and Latin handwritten doc-

uments demonstrate the usefulness of integrating the recognizer within the GAN

architecture, which improves both the visual quality and the readability of the de-

graded document images. Moreover, we outperform the state of the art in H-DIBCO

challenges, after fine-tuning our pre-trained model with synthetically degraded

Latin handwritten images, on this task.

4.1 Introduction

As we said in the previous Chapter, one of the problems that Handwritten Text Recog-
nition (HTR) systems are facing is the degradation of an inputted document. This sig-
nificantly decreases the reading performance, reflecting on its utility. Indeed, many

37
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Figure 4.1: Examples of the degradation that can be appeared in handwritten text im-
ages.

degradation scenarios can be attached to a handwritten document, especially histori-
cal ones. Degradation includes background noise, corrupted text, dust, wrinkles, and
historical effects just to name a few related to the condition of the document itself
[146]. The bad scanning process can also produce problems (shadows, blur, light dis-
tortion, angle, etc.) [175, 189]. Moreover, some documents contain watermarks or
stamps inserted for security reasons, those can cover the text and obstruct the HTR en-
gine [174]. Some degradation examples are presented in Figure 4.1, as it can be seen,
cleaning the document before passing it to the HTR stage should be done.

This cleaning task, called document enhancement, includes different recovering
techniques, to reverse the degradation effect, for example, Binarization, dewarping,
deblurring, watermark removal, etc. Classic recovery techniques integrate image pro-
cessing algorithms to be used as a filter that separates the degradation from the text.
However, those methods are failing in removing the high degradation. Also, their pa-
rameters are usually set depending on the quality state of the addressed document to
produce an optimal result. Thus, manual intervention is needed in some cases to ad-
just the parameters, which is quite costly.

Given this, some modern document recovery techniques are appearing, using ma-
chine learning tools. Those are training deep learning models, mainly Convolutional
Neural Networks (CNNs) and Generative Adversarial Networks (GANs), to learn the
parameters for a direct mapping of any degraded document image into a clean binary
version (without a restriction on degradation level) [181, 96, 211]. Similar to those,
we proposed in [174] a document enhancement model called DE-GAN. However, de-
spite the high accuracy that we achieved in various enhancement tasks (Binarization,
cleaning, watermark removal, deblurring), an important evaluation was not done. In
fact, the goal of document enhancement is to provide a cleaner version of the image
which is highly beneficial for HTR engines. But, in the mentioned approaches (includ-
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ing ours), the evaluation was conducted using only the visual similarity measurement
between the recovered image and the Ground Truth (GT) clean version with some met-
rics that depend on pixel values. Thus, an HTR evaluation (which means, passing the
images to an HTR engine and comparing the recognized text with the GT) is missing,
for a better validation of the developed approaches. Also, these models are generally
trained using only the images, while ignoring the text. As result, a model can easily
evolve to deteriorate the text while cleaning the degraded image.

Motivated by those challenges, we propose a new method consisting in an im-
proved version of our previously developed DE-GAN, which was designed to recover
the handwritten document to a clean version while ensuring its readability. Our ap-
proach is a deep learning model based on GANs that learns its parameters not only
from the handwritten image pairs (degraded + GT) but also from the associated GT
text. For this aim, we propose to add a recognizer that is trained jointly in a GAN
model to assess the readability of the recovered document image. Hence, the model
shall learn the best mapping of the degraded image to be as clean as possible while
keeping its text readable. To accomplish this, and since the used datasets for docu-
ment binarization do not (or rarely) contain the text information, we used two publicly
available handwriting text images datasets (KHATT for Arabic script and IAM for Latin
script) that are originally used for HTR to create degraded versions from the GT clean
text lines images. The contribution of this Chapter can be summarized as follows:

• To the best of our knowledge, this is the first work that integrates a recognition
stage in a document binarization model. Thus, the degraded handwritten doc-
ument will be recovered while maximizing its readability, simultaneously. This
is done by combining the GAN and the Connectionist Temporal Classification
(CTC) losses functions: We eliminate the noise while preserving the handwritten
text strokes.

• We demonstrate that training the recognizer progressively (on images ordered
from the degraded domain to the clean versions), improves the recognition per-
formance.

• The proposed model is simple and flexible to restore different forms of degrada-
tion, independently of the document language. This was shown by the experi-
ments conducted on two created datasets namely degraded-IAM (Latin script)
and degraded-KHATT (Arabic script).

• We achieved the SOTA performance in handwritten document binarization ac-
cording to H-DIBCO benchmarks.

The rest of this Chapter is organized as follows. We present our proposed model
in Section 4.2. After that, experimental results and comparisons with recent methods
will be described in Section 4.3. Finally, a conclusion with a future direction is given in
Section 4.4.
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Party ( 280,000 members ) and Mr.Harry Nkumbula's African0 / 1

Generator

Discriminator

HTR

BCE
Loss GT line image

Figure 4.2: Proposed architecture for document binarization.

4.2 Proposed Method

We treat recovering a clean version from a handwritten degraded document as an image-
to-image translation task using a generative model. Our GAN architecture is composed
of three main parts, as shown in Figure 5.1: A generator, a discriminator, and a hand-
written text recognizer. Since we are using the text information, the patches that are
used during training should be in a readable form by an HTR, after binarization. Thus,
the model is designed to be working at the handwritten line images level. During train-
ing, the generator is conditioned on the degraded line image to generate the clean ver-
sion. The generated image is passed to the discriminator to assess it as real (looks
clean) or fake (looks degraded), for ensuring a realistic visual recovery. The image is
also passed also to the HTR model to read it and compare the recognized text to the
GT, hence, maintaining its readability while recovering it. The discriminator, as well as
the recognizer, passed their feedback about the generated image through the adversar-
ial loss. Noting that another additional Binary Cross Entropy (BCE) loss is integrated
into the generator, for faster convergence. In this way, the generator parameters are
learned to produce a handwritten image that is as clean as possible, while keeping the
text quality. In what follows, we explain the three components presented in our archi-
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Figure 4.3: Generator’s architecture design used in this study.

tecture in more detail.

4.2.1 Generator

Since we are doing an image-to-image translation process, the generator is designed as
an auto-encoder model. We employ the U-net [157] for this task, in which the inputted
image is encoded through a sequence of convolution layers with a down-sampling to
reach a specific layer. After that, the image is decoded with a sequence of up convo-
lution layers with an up-sampling. The model involves some skip connections after
every two successive layers to recover images with a lower deterioration since the goal
is to keep the text while removing the degradation. Thus, skip connections can help the
decoder in maintaining the text features while producing the image. Figure 4.3 shows
further details about the used generator. As can be seen, it is composed of 23 convolu-
tional layers, with Dropout regularization and batch normalization layers. The output
of this model is a single channel (in gray level) image, assumed to be the cleaned ver-
sion of the inputted degraded image.

4.2.2 Discriminator

The discriminator is another Fully Convolutional Network (FCN) that produces an as-
sessment of the generated image in terms of visual similarity (pixel level) with the GT
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Figure 4.4: Discriminator’s architecture used in this study.

(real) images. The model was designed to take a degraded image with its clean version
and output the class "real" if the clean version is the real GT, or assign the class "fake"
if the clean image was produced by the generator. Both input images, which have of
course the same size, are concatenated in an H ×W ×2 shape. Then, the obtained vol-
ume is propagated in the discriminator model detailed in Figure 4.4, to end up in the
last layer as a form of H/16×W /16× 1 matrix. During training, this matrix contains
values that are equal to 1 in case of inputting the GT as a clean image, and equal to 0 in
case of inputting the generator-based enhanced image.

4.2.3 Handwritten Text Line Recognizer

The used handwritten recognizer is a Convolutional Recurrent Neural Network (CRNN)
model, following the architecture presented recently in [134] and considered among
the best HTR architectures. Noting that, any other HTR can be also used for this task,
for instance: [179, 90, 93]. The model architecture is detailed in Figure 4.5. After en-
hancing the image by the generator it is inputted to an encoding stage that uses con-
volutional and gated convolutional layers, with integrated regularization techniques.
The encoded image is passed later to the decoding stage, which consists in two bidi-
rectional Gated Recurrent Unit (GRU) layers. Finally, the CTC is used to decode the
feature frames into text characters. The CTC layer is having the size of the character set
plus one additional symbol corresponding to the blank symbol. During training, the
recognizer could be fitted with two types of clean images, forming the following two
scenarios:

• S1: The Recognizer is trained at each iteration with the GT images that are related
to the degraded batch images inputted to the generator. The GT images are used
with the associated GT text transcription for training in this process.

• S2: The Recognizer is trained using the images enhanced by the generator at
each iteration with the associated GT text. The intuition behind this is that we
may obtain a better recognition convergence that is going progressively from the
degraded domain to the clean domain.
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Figure 4.5: Workflow of the CNN-Bi-GRU recognizer’s architecture.

4.2.4 Training process

The different components presented above were trained jointly. The generator G , which
is a function having the parameters θG , is conditioned on the degraded image Id to
provide its cleaned image that should be as close as possible to the GT image Ig t . This
image is passed to be validated by the discriminator D and handwritten recognizer R,
with parameters θD and θR , respectively. D is giving an assessment of the cleaned im-
age about its cleanliness to be Real or Fake, P (Real) = DθD (GθG (Id )). This adversarial
training process of G and D can be formalized by:

(4.1)Lad v (θG ,θD ) = EId ,Ig t log[DθD (Id , Ig t )] + EId log[1 − DθD (Id ,GθG (Id ))]

R is recognizing the generated image to maintain its readability with the CTC de-
coder, C T C (t ,RθR (GθG (Id ))), where t is the GT text. Note that it is trained with a clean
version of the image (whether using S1 or S2, presented above), at each same itera-
tion: C T C (t ,RθR (Ig t )). Also, for faster convergence, a simple BCE loss is used in the
generator between the cleaned images and the GT ones, BC E(θG ). Thus, the generator
is being affected by three factors to produce its generation. The whole architecture is
formalized as:

L (θG ,θD ,θR ) = mi nθG maxθD Lad v (θG ,θD ) +λ(Et ,Id C T C (t ,RθR (GθG (Id ))) +βBC E(θG )

(4.2)

Where λ and β are the weights balancing the components intervention to produce
the final generated image. During our experiments, we set λ to 1 and β to 10. For
training, we used Adam’s optimizer for the generator and discriminator components,
while using the RMSProp for the handwritten text recognizer.
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4.3 Experiments and Results

We provide in this Section the experiments that were done to validate the effectiveness
of our proposed method. First, we start by presenting the metrics and datasets used in
our evaluation.

4.3.1 Metrics

Following the usual approaches for handwritten document image binarization [148],
we use the same metrics to validate the cleaned images (Same as in the previous Chap-
ter). Those metrics which compare the image’s visual similarity with the GT clean ones
are Peak signal-to-noise ratio (PSNR), F-Measure (FM), pseudo-F-measure (Fps), and
Distance reciprocal distortion metric (DRD). In addition, since we are using the text
information to validate our model, we utilize as well the HTR metrics for comparing
the recognized text to the GT one. These metrics are based on the Levenshtein dis-
tance [115], and they consist of the Character Error Rate (CER) and the Word Error
Rate (WER) measures.

4.3.2 Handwritten text databases

Usual handwritten document binarization databases do not contain text information
[146, 26, 9]. Thus, we opt to create synthetically degraded images from the databases
used in HTR tasks in order to exploit the GT text provided within these datasets. We
address in this study two different alphabets: Arabic and Latin. From each, we took
the most used database for handwritten text line image recognition: KHATT [125] and
IAM [127], to add degradation. We call the created datasets, degraded-KHATT, and
degraded-IAM.

Degraded-KHATT

The KHATT dataset was developed for Arabic manuscript recognition and contains text
line images with their associated GT texts. In our experiments, we used 6161 lines for
training and a set of 1861 lines for testing, while a set of 940 lines was used for vali-
dation as it was done in [179]. Then, we added random distortions as shown in Fig-
ure 4.6 to obtain the degraded-KHATT dataset. To accomplish this, we insert different
background images containing some flaws or artifacts. These background images are
extracted mainly from public historical documents such as Nabuco, Bickley diary, and
Persian datasets. We have also applied different distortion operations, especially, dila-
tion, erosion and blurs using random kernel sizes (2×2 and 3×3 for dilation, 2×2 , 3×3
and 4×4 for erosion and from 1×1 to 15×15 for blurring). We inserted also random
vertical lines having random widths in order to simulate the noise that can occur in old
historical documents.
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Figure 4.6: Examples of distorted line images of the degraded-KHATT database used in
this study, images are presented in gray level.

Degraded-IAM

The IAM dataset was proposed for handwritten Latin script text recognition. It con-
tains 8962 line images taken from the Lancaster-Oslo/Bergen (LOB) corpus. To insert
degradation, we used the same as in KHATT, 6161, 940, and 1861 line images for train-
ing, validation, and testing, respectively. We add dense backgrounds to simulate real
historical deteriorated images same as it was done for the degraded-KHATT presented
above. Examples of the obtained degraded-IAM are illustrated in Figure 4.7.

Figure 4.7: Examples of distorted line images of the degraded-IAM database used in
this study, images are presented in gray level.
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4.3.3 Results

Arabic handwritten texts images recovery

For Arabic, we fed the proposed model with the training set of the created degraded-
KHATT database. As stated above, the generator is trained to map the degraded image
into a clean version, which will be evaluated by the discriminator and the recognizer.
It is to note that in our experiments (for Arabic and Latin manuscripts), we used a high
degradation for a meaningful evaluation in the hard scenarios. Also, we separate the
background types between the training and testing sets (i.e there is no intersection in
the background noise between the two sets).

Table 4.1 illustrates the obtained results of the performed image binarization meth-
ods on the test set of the degraded-KHATT database. Reminding that we proposed two
binarization scenarios sharing the same GAN architecture and integrating a CRNN rec-
ognizer, S1 and S2 stated before. The key difference between the two scenarios is the
data fed to the recognizer during the GAN training stage. In scenario S1, the recognizer
(we call it CRNN1) is fed with ground truth clean images, while it is fed with generated
images (cleaned by the generator) in the second scenario (called CRNN2). As it can be
seen, contrary to the previous related approaches, we evaluate the image in its visual
quality (Binarization performance) and readability (recognition performance) at the
same time. For readability, we tested each of our scenarios S1 and S2 (Reco. CRNN1
and Reco. CRNN2) using the two recognizers (CRNN1 and CRNN2).

To compare our approach, we used a simple GAN architecture as a baseline. The
architecture contains the same generator and discriminator of our architecture, but,
without using a recognizer. We compare also with the method presented in [175] for
printed text recovery, where an OCR is used during training as a part of the discrimina-
tor. However, since we are doing a handwritten text recognition (not optical text). We
modify it by training an HTR having the same architecture as [134] to use it as a part of

Table 4.1: Image binarization results for the test set (degraded-KHATT database). (A →
B): The CRNN is trained on images from domain A and tested on images from domain
B. Deg.: Degraded images. Reco.: Recognition performance.

Binarization Performance
(Visual Quality)

Reco. CRNN1 % Reco. CRNN2 %

Method PSNR FM Fps DRD CER WER CER WER

CRNN [134]
(GT → GT)

ND ND ND ND 12.04 32.39 - -

CRNN [134]
(Deg. → Deg.)

4.80 25.45 25.70 107.22 30.34 54.44 - -

CRNN [134]
(GT → Deg.)

4.80 25.45 25.70 107.22 91.18 100 - -

Baseline cGAN 15.52 75.01 75.11 6.05 29.24 53.68 - -
cGAN [175] 15.10 75.56 75.75 11.78 28.84 54.37 - -
Ours (S1) 15.45 77.45 77.60 7.97 27.03 52.84 24.33 47.67
Ours (S2) 15.44 74.52 74.62 6.18 27.90 53.49 25.31 48.48
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Figure 4.8: Results of our proposed method for recovering degraded lines images. (a):
GT, (b): Distorted, (c): Baseline cGAN, (d): cGAN [175], (e): Ours S1, (f): Ours S2.

the discriminator, more details are given in [175].

Out of the results, we can see that using the GT images, a trained HTR engine based
on CRNN [134] is reaching a CER of 12.04 % and 32.39 % as a WER, this is considered
as our upper bound for recognition. Using the same model to recognize the degraded
images, we obtain a poor performance of 91.18 % in CER, obviously because the model
is trained on clean data. If we train the model on the degraded train set, it results
in 30.34 % of CER and 54.44 % of WER. This experiment is done to verify later if we
can surpass this performance (as a baseline) by cleaning the images and then reading
them, instead of training a model on the degraded domain.

The different binarization approaches, as can be noticed, are enhancing the visual
quality and the readability of the degraded lines. However, we can see that the base-
line cGAN which is not taking the text into consideration while cleaning the image,
is producing a result having a better visual quality in terms of PSNR and DRD, but
worse readability compared to the methods integrating the text information. For the
recognizer-based methods, it is clear that our recovery method (S1) is leading to the
best performance in terms of having a good visual enhancement while conserving text
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readability. Since by recognizing the produced images, we get a CER of 27.03 % and
a WER of 52.84 % when using the recognizer of S1 and a CER of 24.33 % and a WER
of 47.67 % when using the S2 recognizer. This proves that using the text information
during binarizing the images is useful. Also, we notice that the progressive learning
of an HTR (training in order from the degraded images to their clean versions) in a
multitask framework, is better for the recognition task. However, using the HTR pre-
trained with the clean GT images (as a separate task) during enhancing the document,
is better for the binarization performance (visually). To illustrate our method’s effec-
tiveness, we show in Figure 4.8 and Figure 4.9 some qualitative results of recovering
the distorted lines, ranging from easy distortions to hard ones. We can see that our
method is the most successful in producing clean images, especially in cases of highly
degraded ones. In fact, it can even recover the vanished handwritten text strokes.

(a):

(b):

(c):

(d):

(e):

(f):

(a):

(b):

(c):

(d):

(e):

(f):

Figure 4.9: Results of our proposed method for recovering extremely degraded lines
images. (a): GT, (b): Distorted, (c): Baseline cGAN, (d): cGAN [175], (e): Ours S1, (f):
Ours S2.

Furthermore, as we stated above and since different weights can be used in the rec-
ognizer loss level to control the enhancement, we perform an ablation study to evalu-
ate the right trade off between the visual quality and the readability during enhance-
ment. In other words, the effectiveness of the weight λ presented in Equation 4.2. This



49 A Multi-task Adversarial Network for Handwritten DIE

Table 4.2: Impact of the recognizer weight on the final generated image.

Binarization Performance
(Visual Quality)

Reco. performance

λ PSNR CER% WER%
0.5 17.94 11.98 31.07
1 17.88 11.74 31.05
5 17.71 12.66 32.44

10 17.07 15.22 36.74
20 16.32 19.72 40.84

is done by varying the weight λ, then training the model with that setting, and finally
measuring the visual quality and readability (using the recognizer of S1) at each time
to have the right option. The obtained results are shown in Table 4.2, where the exper-
iments were carried out using the first scenario (S1) on a set of the Degraded-KHATT
database, and ended up by selecting the setting of λ to be 1.

Latin handwritten texts images recovery

For the Latin manuscript, we performed the same experiments using the degraded-
IAM dataset. The obtained results are presented in Table 4.3. As it can be seen, training
a CRNN [134] on the degraded images leads to 40.34 % as a CER and a WER of 74.05
%, with an obvious poor visual binarization quality since there was not a performed
binarization with this way (using directly the degraded version). Contrary, by cleaning
the image and passing it to the recognizer, better results were obtained. Here, same
as the previous experiment, we are comparing our method to the basic GAN (without
a recognizer), to validate the use of text information in our current method and our
proposed one in [175]. It can be noticed that our method surpasses both GAN meth-
ods in visual quality, and achieves the best text recognition rate compared to the other
options. By using the recognizer trained in S1, we boost the CER by 1.50 % compared
to [175], 5.46 % compared to the basic GAN and 14.29 % compared to reading hand-
written images in the distorted domain. Moreover, using the recognizer trained in S2
we can even improve the CER result by 4.07 %.

Furthermore, we show some qualitative results in Figures 4.10, 4.11 and 4.12, to
visualize the performances of the different methods. Of course, reading the degraded
image by a model trained on the GT clean images is not a suitable option. Also, training
a model on degraded images is not improving the recognition, especially in hard sce-
narios. That is why, enhancing the image and then reading it is the better solution. As
it can be seen, our method is better in this practice especially than the baseline cGAN
(without a recognizer), because ours is a text conservative method. Hence, it maps the
image to a clean but readable domain, while the basic GAN is mapping the image to a
visually clean version, without taking the text into consideration (see Figures 4.11 and
4.12).
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Table 4.3: Image binarization results for the test set (degraded-IAM database). (A → B):
The CRNN is trained on images from domain A and tested on images from domain B.
Deg.: Degraded images. Reco.: Recognition performance.

Binarization Performance
(Visual Quality)

Reco. CRNN1 % Reco. CRNN2 %

Method PSNR FM Fps DRD CER WER CER WER

CRNN [134]
(GT → GT)

ND ND ND ND 11.92 36.07 - -

CRNN [134]
(Deg. → Deg.)

6.01 26.13 26.12 70.81 40.34 74.05 - -

CRNN [134]
(GT → Deg.)

6.01 26.13 26.12 70.81 90.46 99.50 - -

Baseline cGAN 14.99 75.44 75.01 5.91 31.51 60.95 - -
cGAN [175] 15.86 80.89 80.83 5.00 27.55 58.08 - -
Ours (S1) 15.97 81.69 81.55 4.83 26.05 56.07 21.98 49.74
Ours (S2) 15.87 81.12 81.16 5.09 27.48 58.35 23.07 51.15

For the sake of more confirmation and to prove that our model is independent
from the used recognizer, we took a different state-of-the-art HTR that is Puigcerver’s
model [87] trained on the GT images of IAM and KHATT original datasets. Then, we
carried a binarization stage to our degraded databases using different methods (in-
cluding ours) and measure the final recognition performance. As it can be seen from
Table 4.4, our proposed binarization method enhances the performance of the recog-
nizer compared to the use of images binarized by the classic methods [138, 164] or
the recent cGAN’s based one. Also, we can confirm the efficiency of our proposed bi-
narization method compared to the baseline cGAN which did not integrate the text
readability information.

Table 4.4: Impact of the proposed binarization method (scenario S1) on the recognition
performance by a HTR system.

Dataset Binarization Method CER% WER%

degraded-KHATT

Otsu [138] 54.28 85.42
Sauvola [164] 58.42 99.57
cGAN [175] 28.32 53.96
Baseline cGAN 28.61 53.73
Ours (S1) 26.57 52.31

degraded-IAM

Otsu [138] 62.62 81.96
Sauvola [164] 72.48 98.00
cGAN [175] 27.21 58.18
Baseline cGAN 31.31 61.79
Ours (S1) 25.79 56.43
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GT image:

GT text: which might in time become social fact

R(GT): which might in time become social fact

Distorted:

R(D): pse nvgd in hame Cecome secial hot

R(GT): f

Baseline:

R(GT): ntauder muornd in hme vecome wual tack

cGAN [175]:

R(GT): Andenmignt in time become social Kack

Ours (S1):

R(GT): whuch-might in time become social Lack

R(Generated): xhud-migut in time Gecome social fact

Ours (S2):

R(GT): Aduchimight in time Vecome social Lact

R(Generated) : rduch mgut in time become social fact

Figure 4.10: Results of fixing a degraded handwritten line image. Errors made by the
CRNN reading engine are shown in character level with the red color. R (GT): recog-
nition by the CRNN [134] trained on clean images, R (D): recognition by the CRNN
[134] trained on degraded images (better viewed in color),R (Generated): recognition
by CRNN [134] trained on generated images (S2).
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GT image:

GT text: opportunity presented itself . He must

R(GT): oportunity presented itselyf . He must

Distorted:

R(D): o en a wao on

R(GT): #A

Baseline:

R(GT): pr ". Un t. pri . 1lial! ’- U.

cGAN [175]:

R(GT): rps hm to prsenca itsel! . Lis unor

Ours (S1):

R(GT): sportunty presented . itself He mese

R(Generated): aportun-ty presented itself . Hhe must

Ours (S2):

R(GT): spen ’ in-ty . presen-ed- ritsel He Imist

R(Generated): spantin- ty presened pitseld . be lmist .

Figure 4.11: Results of fixing a highly degraded handwritten line image. Errors made by
the CRNN reading engine are shown in character level with the red color. R (GT): recog-
nition by the CRNN [134] trained on clean images, R (D): recognition by the CRNN
[134] trained on degraded images, R (Generated): recognition by CRNN [134] trained
on generated images (S2).
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GT image:

GT text: take charge , as it were , of the minds of the

R(GT): take change , as it were , of the misnds of the

Distorted:

R(D): Poe oroe wo h ore , of the onay of the

R(GT): AHAH

Baseline:

R(GT): Ari charga na 4 eive of ikes nisndo of iln

cGAN [175]:

R(GT): lode changa , a w iuse of this mondo of His

Ours (S1):

R(GT): Lotr chango , ao st wise , af tho minds g " the

R(Generated): tokerchango , as it mese , of the minds of the

Ours (S2):

R(GT): Lat chanop , na d wore , of tho nundo of the

R(Generated): lake chanop , hat wore , of the mundo of the

Figure 4.12: Results of fixing an extremely degraded handwritten line image. Errors
made by the CRNN reading engine are shown in character level with the red color. R
(GT): recognition by CRNN [134] trained on clean images, R (D): recognition by the
CRNN [134] trained on degraded images, R (Generated): recognition by the CRNN
[134] trained on generated images (S2).

H-DIBCO Competitions

After demonstrating the suitability of our proposed method in recovering clean and
readable images from highly degraded ones. In what follows, we validate it in H-DIBCO
competition on handwritten document binarization, using H-DIBCO 2012 [148], H-
DIBCO 2016, DIBCO 2017 [84] and H-DIBCO 2018 [146]. Since our model was de-
signed to enhance line images with a size of 128×1024, we binarize H-DIBCO images
in form of patches having the same dimensions. We compare with the recent state-
of-the-art approaches, the winners of the different competitions [148] and the classic
binarization methods [138, 164]. To clean H-DIBCO images, and since they are formed
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of Latin script text, we used our pretrained model on the developed degraded-IAM
dataset. Two scenarios were investigated: Using the model directly to clean the im-
ages, or fine-tuning it with a similar distribution before using it. For fine-tuning, we
used the other DIBCO and H-DIBCO versions [146] and the Palm-Leaf dataset [26].
It is to note also that since the DIBCO datasets are not holding the text information,
we removed the recognizer component during the fine-tuning process, we have frozen
also the batch normalization layers of the generator and we trained the architecture for
one only epoch to keep the learned knowledge of the degraded-IAM. During cleaning,
we feed our model with the original degraded image in two forms: A normal condition
and a vertically flipped version. Thus, we produce two instances of the recovered im-
ages. The flipped image is, then, re-flipped again to the normal condition. After that,
a voting method is used to produce the final binarized image, by assigning zero to the
pixel value (black) if it is indeed black in the two produced images by our model. We
found that this led to a better result instead of using just one image condition.

We start our experiments with H-DIBCO 2012, the obtained results are given in
Table 4.5. As it can be seen, our model leads to competitive results in the state-of-the-
art approaches, with superiority in two metrics (PSNR and FM). However, we can see
that the model proposed in [96] is better in terms of Fps and DRD. Then, we tested
our method on a more recent dataset which is H-DIBCO 2016 [83]. As presented in
Table 4.6, our model gives the state of the art compared to all the methods in the three
metrics PSNR, FM, DRD, and the overall average.

Next, we tested with DIBCO 2017, which contains a mix of handwritten and printed
degraded document images. The results in Table 4.7 show that our model is not supe-
rior in this dataset, but it is competitive with the best approaches. We note that our
model performance was affected by the type of binarized documents in this dataset,
which contain several printed documents, while our model is designed essentially for
handwritten text. Finally, we tested with the most recent H-DIBCO 2018 [146]. The
results are shown in Table 4.8, where we compare with the most recent state-of-the-
art results, the winner of the H-DIBCO 2018 competition, and the classic binarization
methods. The performance of our model is superior to the different approaches in

Table 4.5: Comparative results of our proposed method on H-DIBCO 2012 Dataset for
document binarization. Avg = (PSNR + FM + Fps + (100 − DRD)) / 4.

Method PSNR FM Fps DRD Avg
Otsu [138] 15.03 80.18 82.65 26.46 62.85
Sauvola et al. [164] 16.71 82.89 87.95 6.59 70.24
Guo et al. [86] 17.86 86.40 89.00 4.67 72.14
Zhao et al. [211] 21.91 94.96 96.15 1.55 77.86
Competition winner [148] 21.80 89.47 90.18 3.44 74.50
Kang et al. [96] 21.37 95.16 96.44 1.13 77.96
Ours (S1) 16.29 79.25 85.96 7.33 68.54
Ours (S1) + Fine-tuning 22.00 95.18 94.63 1.62 77.54
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Table 4.6: Comparative results of our proposed method on H-DIBCO 2016 Dataset for
document binarization. Avg = (PSNR + FM + Fps + (100 − DRD)) / 4.

Method PSNR FM Fps DRD Avg
Otsu [138] 17.80 86.61 88.67 7.46 71.40
Sauvola et al. [164] 16.42 82.52 86.85 5.56 70.05
Vo et al. [154] 19.01 90.10 93.57 3.58 74.77
Guo et al. [86] 18.42 88.51 90.46 4.13 73.31
He and Schomaker [75] 19.60 91.40 94.30 2.90 75.6
Zhao et al. [211] 19.64 91.66 94.58 2.82 75.76
Competition winner [83] 18.11 87.61 91.28 5.21 72.94
Bera et al. [160] 18.94 90.43 91.66 3.51 74.38
Kang et al. [96] 19.18 93.09 94.85 3.03 76.02
Ours (S1) 14.26 69.52 78.01 12.11 62.42
Ours (S1) + Fine-tuning 21.85 94.95 94.55 1.56 77.44

terms of PSNR, FM, Fps , and average score.

Out of the obtained results in the different datasets, we can say that the classic
thresholding methods [138, 164] have a moderate performance compared to the recent
deep learning approaches. Also, we can notice that if our model uses only degraded-
IAM for training, does not reach a satisfactory result because there is a domain gap
between the training and testing data. However, fine-tuning our model with similar
datasets leads to the best performance compared to all the state-of-the-art methods
in H-DIBCO 2016 and H-DIBCO 2018. While having a competitive result with the best
approach in H-DIBCO 2012 that is [96], where we obtain superior PSNR and FM scores.
We can conclude also that our model is more suitable for binarizing the handwritten
images since it was pre-trained on the developed degraded-IAM dataset before the
fine-tuning stage.

Table 4.7: Comparative results of our proposed method on DIBCO 2017 Dataset for
document binarization. Avg = (PSNR + FM + Fps + (100 − DRD)) / 4.

Method PSNR FM Fps DRD Avg
Otsu [138] 13.85 77.73 77.89 15.54 63.48
Sauvola et al. [164] 14.25 77.11 84.1 8.85 66.65
Zhao et al. [211] 17.83 90.73 92.58 3.58 74.39
Competition winner [84] 18.28 91.04 92.86 3.40 74.69
Kang et al. [96] 15.85 91.57 93.55 2.92 74.51
Bera et al. [160] 15.45 83.38 89.43 6.71 70.38
Ours (S1) 13.54 71.13 80.39 9.60 63.86
Ours (S1) + Fine-tuning 17.45 89.8 89.95 4.03 73.29

Finally, we show some qualitative results about the binarization performance in
Figure 4.14 that demonstrate our method’s superiority compared to the other ones in
this task. Also, we provide the binarization result of other images from the H-DIBCO
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Table 4.8: Results for all methods on H-DIBCO 2018 Dataset for handwritten document
binarization. Avg = (PSNR + FM + Fps + (100 − DRD)) / 4.

Method PSNR FM Fps DRD Avg
Otsu [138] 9.74 51.45 53.05 59.07 38.79
Sauvola et al. [164] 13.78 67.81 74.08 17.69 59.50
Adak et al. [146] 14.62 73.45 75.94 26.24 59.44
Souibgui et al. [174] 16.16 77.59 85.74 7.93 67.89
Tamrin et al. [181] 17.04 83.08 88.46 5.09 70.87
Zhao et al. [211] 18.37 87.73 90.6 4.58 73.03
Competition winner [146] 19.11 88.34 90.24 4.92 73.19
Akbari et al. [4] 19.17 89.05 93.65 4.80 74.26
Kang et al. [96] 19.39 89.71 91.62 2.51 74.55
Dang et al. [46] 19.81 91.26 93.97 3.42 75.40
Bera et al. [160] 15.31 76.84 83.58 9.58 66.53
Ours (S1) 13.88 65.06 73.46 12.86 59.89
Ours (S1) + Fine-tuning 20.18 92.41 94.35 2.60 76.08

Figure 4.13: Results of our method in binarization of some samples from the H-DIBCO
2018 dataset. Images in columns are: Left: original image, Middle: GT image, Right:
Binarized image using our proposed method.



57 A Multi-task Adversarial Network for Handwritten DIE

Original GT Otsu [138]

Sauvola et al. [164] Souibgui et al. [174] H-DIBCO 2018 Winner [146]

Kang et al. [96] Dang et al. [46] Ours

Figure 4.14: Results of the different enhancements on sample 4, from H-DIBCO 2018
Dataset.

2018 dataset in Figure 4.13 where we obtained images that are very close to the GT.
Moreover, Figure 4.15 shows an example where our method can even complete the
missing pixels (that do not exist in the GT image), to provide a more readable text.
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Original

GT

Enhanced (Ours)

Figure 4.15: Qualitative results of our proposed method evaluated on an a part taken
from a sample from H-DIBCO 2018 Dataset (Pixels restoration).

Dataset selection for the fine-tuning stage

Selecting the right dataset for fine-tuning will improve the binarization performance.
Thus, in this section, we study the impact of the different datasets on the binarization
process carried out on the H-DIBCO 2016. For all our experiments, we tested using
the other variations of DIBCO and H-DIBCO (from 2009 to 2018), except DIBCO 2019
since it has different distributions in term of degradation and document types. Also, we
tested including similar datasets which were developed for binarization task, namely,
Palm-Leaf [26], Nabuco [156] and Bickley-diary [1]. Images contained in these datasets
suffer from different kinds of degradation, such as water stains, ink bleed-through, and
significant foreground text intensity. As it can be seen from Table 4.9, using our model
trained only on degraded-IAM leads to poor results, thus, a fine-tuning stage is nec-
essary. Using the H-DIBCO images for fine-tuning improves the performance with a
slight superiority over using the DIBCO ones. This can be explained by the type of text
because our model is pretrained to binarize the handwritten text. However, using H-
DIBCO and DIBCO at the same time is a better option. Because DIBCO contains useful
types of degradation that can be learned to be cleaned by our model even with printed
text. Also, adding other datasets is sometimes useful, but at other times deteriorates
the performance. This can be noticed when adding the Palm-Leaf dataset which im-
proves the binarization while adding the Nabuco or the Bickley-diary is leading the
model to learn non-suitable parameters for H-DIBCO 2016. This can be justified by
the similar domain (degradation and text types) between H-DIBCO 2016 and Palm-
Leaf distributions, while it is different from the other datasets.
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Table 4.9: Impact of the fine-tuning data selection on the binarization performance on
H-DIBCO 2016 Dataset.

H-DIBCO DIBCO Nabuco Bickley-diary Palm-Leaf PNSR
14.26

✓ 18.25
✓ 18.08

✓ ✓ 18.10
✓ ✓ ✓ 16.89
✓ ✓ ✓ 17.98
✓ ✓ ✓ 21.85

✓ ✓ ✓ 14.78
✓ ✓ ✓ ✓ ✓ 17.63

4.4 Conclusion

In this Chapter, we proposed an architecture for handwritten document binarization
based on GANs. Our method recovers the degraded images while conserving their
readability by integrating an HTR to evaluate the enhanced image in addition to the
discriminator. To the best of our knowledge, this is the first approach that includes tex-
tual information when performing the recovery process of handwritten documents.
Experimental results proved the effectiveness of the proposed model in cleaning ex-
tremely degraded documents. We proved also that training an HTR model progres-
sively on the images binarized by the generator at each iteration leads to a better per-
formance in CER and WER. We used in this Chapter a CRNN as a recognizer, but it is
worth noting that by using other HTR architectures we may obtain better recognition
performances, since our method is flexible to integrate different ones. Moreover, we
obtain the best performance compared to the state of the art in H-DIBCO benchmarks
of degraded document binarization.
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Chapter 5

An End-to-End Document Image
Enhancement Transformer

In this Chapter, we present a new encoder-decoder architecture based on vision

transformers to enhance both machine-printed and handwritten document im-

ages, in an end-to-end fashion. The encoder operates directly on the pixel patches

with their positional information without the use of any convolutional layers, while

the decoder reconstructs a clean image from the encoded patches. Conducted ex-

periments show a superiority of the proposed model compared to the state-of-the-

art methods on several DIBCO benchmarks. Code and models are publicly avail-

able at https://github.com/dali92002/DocEnTR .

5.1 Introduction

In recent times, Convolutional Neural Network (CNN)-based approaches have been
widely applied to DIE related sub-tasks, like binarization [96, 91], deblurring [80], shadow
[189] and watermark removal [174], etc. We show in the previous two chapters that
the performance of these models has significantly improved over classical handcrafted
techniques, however, such models do have their own set of drawbacks. Firstly, CNNs
operate on regular grids, and using the same convolutional filter to restore different re-
gions of a degraded document image may not be a sensible choice. Secondly, CNNs fail
to capture high-level long-range dependencies as they are more suited for extracting
low-level spatial information from images.

With the recent success of transformers in Natural Language Processing (NLP) [185,
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50], its application to computer vision problems (like image recognition [54], object de-
tection [28], visual question answering [22], handwritten text recognition (HTR) [159],
etc.) also started getting more prominence. The self-attention mechanism proposed
in [185] helps to capture global interactions between contextual features. Using lo-
cal information combined with the knowledge of long-range global spatial arrange-
ment is beneficial for an efficient image restoration model. This local information
is often encoded in the patch content of an image and the large-scale organization
is contained in the redundancy of this information across the patches of the image
[47]. Contrary to CNNs, which process pixel arrays, Vision Transformers (ViTs) [54]
split an image into fixed-size patches (eg. 8x8, 16x16, etc.), and they correctly embed
each of them as latent representation and include positional embedding information
as input to the transformer encoder. This allows encoding the relative location of the
patches, along with both local (spatial) and global (semantic) long-range dependen-
cies. The motivation for using ViTs for our overall proposed baseline model is that a
missing/degraded patch in the distorted document image can be recovered from the
neighboring patches’ information with the power of the multi-head self-attention in
ViTs, which quantifies pairwise global reasoning between them. Also, ViTs have been
adapted in the overall model pipeline in an encoder-decoder-based setting, inspired by
the concept of denoising autoencoders [186] used in the reconstruction of corrupted
input data. The encoder is mapping the degraded image patches into latent represen-
tations, whereas the decoder is recovering a clean image version from those encoded
representations.

The overall contributions of our work can be summarized in three folds:

• We introduce a simple and flexible Document image Enhancement Transformer
(DocEnTr), an end-to-end image enhancement approach, that effectively restores
and enhances a degraded document image provided as input. As far as we know,
DocEnTr is the first pure transformer-based baseline that leverages the effec-
tiveness of Vision Transformers (ViTs) in an encoder-decoder-based framework,
without any dependency on CNNs.

• We have addressed document binarization as the key problem study in this work
to investigate the power of DocEnTr architecture. Experimental evaluation shows
that DocEnTr achieves state-of-the-art results on standard document binariza-
tion benchmarks (DIBCO), for both machine-printed and handwritten degraded
document images.

• A comprehensive and intuitive case study has been dedicated in Section 5.4 to
prove the utility of ViTs with its multi-headed self-attention mechanism in the
task of document enhancement.

The rest of this Chapter is organized as follows. In Section 5.2 we review the state
of the art. The Document Image Enhancement Transformer (DocEnTr) is described in
Section 5.3. Section 5.4 contains an analysis of the extensive experimentation that has
been conducted, including different quantitative and qualitative studies. Finally, in
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Section 5.5 we draw the conclusions and propose open challenges for future research
directions.

5.2 Related Work

5.2.1 Document Image Enhancement

The reader can refer to Section 2.2 for this part.

5.2.2 Transformers in Vision and Image Enhancement Tasks

In very recent years, transformers are behind the advances in deep learning applica-
tions. Transformer-based architectures first showed great success in NLP tasks [185,
50] for text translation and embedding, surpassing the previous LSTM approaches.
This motivates many works to employ them for the vision tasks, for instance, classi-
fication [54], object detection [28], document understanding [200, 6, 117], etc. More
related to this Chapter, transformers were also used for natural image restoration [119]
and document images dewarping [57]. However, the architectures that were used in
these later image and document enhancement approaches are still relying on the CNN
feature extractors before passing to the transformers stage. Also, CNN is used to recon-
struct the output image. Contrary, what we are proposing in this work is a full trans-
former approach that attends directly to the patches on the input images and recon-
structs the pixels without the use of any CNN layer.

5.3 Method

The proposed model is a scalable auto-encoder that uses vision transformers in its
encoder and decoder parts, as illustrated in Fig 5.1. The degraded image is first di-
vided into patches before entering the encoder part. During encoding, the patches
are mapped to a latent representation of tokens, where each token is associated with
a degraded patch. Then, the tokens are passed to the decoder that outputs the en-
hanced version of patches. Unlike the CNN-based auto-encoders, which were usually
employed for the document image enhancement tasks, the transformer auto-encoder
is profiting from the self-attention mechanism which gives global information during
every patch enhancement. Both decoder and especially encoder are inspired by the
vision transformer (ViT) [54] architecture. We present more details of the model’s ar-
chitecture in what follows.
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Figure 5.1: Proposed model: The input image is split into patches, which are linearly
embedded, and the positional information is added to them (this is not shown in Fig-
ure because of space constraint). The resulting sequence of vectors is fed to a stan-
dard Transformer encoder to obtain the latent representations. These representations
are fed to another Transformer representing the decoder to obtain the decoded vector,
which is linearly projected to vectors of pixels representing the output image patches.

5.3.1 Encoder

In the encoding stage (left part of Fig.5.1), given an image, we divide it into a set of
patches. Then, we embed these patches to obtain the tokens and add their positional
information. After that, a number of transformer blocks are employed to map these
tokens into the encoded latent representation. These blocks follow the same struc-
ture as [54], composed of alternating layers of multi-headed self-attention and multi-
layered perceptron (MLP). Each of these blocks is preceded by a LayerNorm (LN) [10],
and followed by a residual connection. The patch embedding size and the number of
transformer blocks are set depending on the model size.

5.3.2 Decoder

The decoder part consists of a series of transformer blocks (having the same number
as the encoder blocks) that take as an input the sequence of outputted tokens from
the encoder. These tokens are propagated in the transformer decoder blocks and then
projected with a linear layer to the desired pixel values. This makes each element of the
output corresponding to a vector representing a flattened patch in the output image.
The ground truth pixel values are obtained by dividing the ground truth (GT) clean
image into patches (in the same way as the input degraded image) and flattening them
into vectors. A mean squared error (MSE) loss is used between the model’s output and
the GT pixel patches to train the model.
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5.3.3 Model Variants

Following a similar convention as previous works [50, 54], the proposed model config-
uration can be modified to produce different variants. In our experiments, we define
three types of variants which are "Small", "Base" and "Large", as enlisted in Table 5.1.
Evidently, setting a larger model requires more computational memory and training
time since the number of model parameters is increasing. Thus, a trade-off between
the model size and its enhancement performance must be taken into consideration.

Table 5.1: Details of our model variants

Model Layers Dim Attention Heads # Parameters

DocEnTr-Small 6 512 4 17M

DocEnTr-Base 12 768 8 68M

DocEnTr-Large 24 1024 16 255M

5.4 Experimental Validation

To validate our model, we use the datasets proposed in the different DIBCO and H-
DIBCO contests [146] (except DIBCO 2019, because of the different degradation do-
main) for printed and handwritten degraded document images binarization and com-
pare our results with the state of the art methods. Before these experiments, we con-
ducted different investigations for a proper selection of the hyperparameters.

5.4.1 Choosing the Best Model Configuration

We begin our experiments by choosing the configuration that gives the best perfor-
mance from our model variants (Small, Base, or Large). For training, each degraded im-
age and its GT clean one is divided into overlapped patches with sizes 256×256×3, the
overlapping was set vertically and horizontally by half of the patches size (means 128).
These resultant images (patches) will be used by our models as input and expected
output (training data). For results evaluation, and same as the usual approaches [81],
we utilize the following metrics: Peak signal-to-noise ratio (PSNR), F-Measure (FM),
pseudo-F-measure (Fps ) and Distance reciprocal distortion metric (DRD). We used
in this experiment the DIBCO 2017 dataset, and the obtained results are given in Ta-
ble 5.2. As it can be seen, a larger model gives a better result in all the metrics, but it
requires more computation resources. Thus, we recommend using a Base model for a
binarization task. Nevertheless, we will test as well the Large version in the following
experiments.

Next, we do another experiment related to the input image size and the patches size
that is used by our model. The reason behind this is that having different image sizes
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Table 5.2: Results of varying the model size for the DIBCO 2017 dataset. ↑: The higher
the better. ↓: The lower the better.

Model PSNR ↑ FM ↑ Fps ↑ DRD ↓
DocEnTr-Small 18.29 91.06 93.82 2.78

DocEnTr-Base 18.69 91.66 94.11 2.63

DocEnTr-Large 18.85 92.14 94.58 2.53

and patch sizes can affect the binarization since the model is accessing to different
types of information (from global to local). The obtained results using the Base model
are given in Table 5.3. As it can be seen, slightly better performance is obtained using
an input with a smaller size (256× 256× 3 compared to 512× 512× 3 ). However, we
can notice that the performance is highly improved when using a smaller patch size.
The reason is that, by employing a smaller patch size, we make each patch of the image
attend to more and much local patches during the self-attention. Thus, the model
is looking to more and much fine information during the enhancement process with
8×8 patch size. But, as before, using a smaller patch size means augmenting the model
parameters, requiring more computation resources.

Table 5.3: Results of varying the input and patch sizes for the DIBCO 2017 dataset

Input Size Patch Size PSNR ↑ FM ↑ Fps ↑ DRD ↓
256×256×3 8×8 19.11 92.53 95.15 2.37

256×256×3 16×16 18.69 91.66 94.11 2.63

256×256×3 32×32 17.57 89.37 91.99 3.44

512×512×3 8×8 18.91 92.2 94.93 2.45

512×512×3 16×16 18.66 92.15 93.89 2.54

512×512×3 32×32 17.27 89.43 91.51 3.54

5.4.2 Quantitative Evaluation

After choosing the best hyper-parameters of the model, we conduct the experiments
on the different datasets and compare our results with the related approaches. We be-
gin by testing with the DIBCO 2011 dataset [82]. This dataset contains degraded doc-
ument images with handwritten and printed text. For training, we use all the images
from the other DIBCO and H-DIBCO datasets and the Palm Leaf dataset [26]. These
images are split into overlapped images with size 256 × 256 × 3 before being fed to
the model. The obtained results are given in Table 5.4, where we can notice a supe-
riority of our method compared to the different variations of the related approaches.
We choose to compare with different families of approaches: classic thresholding and
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deep learning-based methods (whether based on CNN or cGAN). Our model DocEnTr-
Base{8}, which means using the Base setting with a patch size of 8× 8, gives the best
PSNR and DRD compared to all the other methods. While the model DocEnTr-Large{16},
which means using the Large setting with a patch size of 16×16, leads to the second
best performance in the metrics PSNR, Fps and DRD. We note that for a computation
reason, we were not able to train the Large setting with a patch size of 8×8.

Table 5.4: Comparative results of our proposed method on DIBCO 2011 Dataset.
Thresh: Thresholding, Tr: Transformers.

Method Model PSNR ↑ FM ↑ Fps ↑ DRD ↓
Otsu [138] Thres. 15.70 82.10 – 9.00

Savoula et al. [164] Thres. 15.60 82.10 – 8.50
Vo et al. [154] CNN 20.10 93.30 – 2.00
Kang et al [96] CNN 19.90 95.50 – 1.80

Tensmeyer et al [183] CNN 20.11 93.60 97.70 1.85
Zhao et al. [154] cGAN 20.30 93.80 – 1.80

DocEnTr-Base{8} Tr 20.81 94.37 96.15 1.63
DocEnTr-Base{16} Tr 20.11 93.48 96.12 1.93

DocEnTr-Large{16} Tr 20.62 94.24 96.71 1.69

After that, we test our model on the H-DIBCO 2012 dataset [148], which contains
degraded handwritten document images while using the remaining datasets for train-
ing. As in the previous experiment, we use the other datasets for training with the same
split size. The obtained results are shown in Table 5.5, where we can notice that our
model gives the best performance in terms of PSNR and FM with the Base{8} configu-
ration. We notice also that the other configuration gives competitive results compared
to the other approaches.

Table 5.5: Comparative results of our proposed method on H-DIBCO 2012 Dataset.
Thresh: Thresholding, Tr: Transformers.

Method Model PSNR ↑ FM ↑ Fps ↑ DRD ↓
Otsu [138] Thres. 15.03 80.18 82.65 26.46

Savoula et al. [164] Thres. 16.71 82.89 87.95 6.59
Kang et al [96] CNN 21.37 95.16 96.44 1.13

Tensmeyer et al [183] CNN 20.60 92.53 96.67 2.48
Zhao et al. [154] cGAN 21.91 94.96 96.15 1.55
Jemni et al. [91] cGAN 22.00 95.18 94.63 1.62

DocEnTr-Base{8} Tr 22.29 95.31 96.29 1.60
DocEnTr-Base{16} Tr 21.03 93.31 94.72 2.31

DocEnTr-Large{16} Tr 22.04 95.09 96.00 1.64

Moreover, we tested with the more recent DIBCO 2017 dataset. In this dataset, our
model achieves the best performance in all the evaluation metrics, as presented in Ta-
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ble 5.6.

Table 5.6: Comparative results of our proposed method on DIBCO 2017 Dataset.
Thresh: Thresholding, Tr: Transformers.

Method Model PSNR ↑ FM ↑ Fps ↑ DRD ↓
Otsu [138] Thres. 13.85 77.73 77.89 15.54

Savoula et al. [164] Thres. 14.25 77.11 84.1 8.85
Kang et al [96] CNN 15.85 91.57 93.55 2.92

Competition top [84] CNN 18.28 91.04 92.86 3.40
Zhao et al. [154] cGAN 17.83 90.73 92.58 3.58
Jemni et al. [91] cGAN 17.45 89.8 89.95 4.03

DocEnTr-Base{8} Tr 19.11 92.53 95.15 2.37
DocEnTr-Base{16} Tr 18.69 91.66 94.11 2.63

DocEnTr-Large{16} Tr 18.85 92.14 94.58 2.53

Lastly, we test on the H-DIBCO 2018 dataset. Here, as shown in Table 5.7, the best
performance is achieved by [91] based on cGAN. Anyway, we can notice that our model
is still very competitive since it ranks second in the PSNR, FM, and Fps metrics.

Table 5.7: Comparative results of our proposed method on DIBCO 2018 Dataset.
Thresh: Thresholding, Tr: Transformers.

Method Model PSNR ↑ FM ↑ Fps ↑ DRD ↓
Otsu [138] Thres. 9.74 51.45 53.05 59.07

Savoula et al. [164] Thres. 13.78 67.81 74.08 17.69
Kang et al [96] CNN 19.39 89.71 91.62 2.51

Competition top [84] CNN 19.11 88.34 90.24 4.92
Zhao et al. [154] cGAN 18.37 87.73 90.60 4.58
Jemni et al. [91] cGAN 20.18 92.41 94.35 2.60

DocEnTr-Base{8} Tr 19.46 90.59 93.97 3.35
DocEnTr-Base{16} Tr 19.33 89.97 93.5 3.68

DocEnTr-Large{16} Tr 19.47 89.21 92.54 3.96

To summarize the quantitative evaluation, we demonstrate that our model gives
good results compared to the state-of-the-art approaches. This was shown by obtain-
ing the best results in most of the evaluation metrics with the H-DIBCO 2011, DIBCO
2012, and DIBCO 2017 benchmarks.

5.4.3 Qualitative Evaluation

After presenting the achieved quantitative results by our model, we present in this sub-
section some qualitative results. We begin by showing the enhancing performance of
our method. This is illustrated in Fig. 5.2, where we compare our binarization results
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with the GT clean images. As it can be seen, our model produces highly clean images,
which are very close to the optimal GT images, reflecting the good quantitative perfor-
mance that was obtained in the previous subsection.
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Figure 5.2: Qualitative results of our proposed method in binarization of some samples
from the DIBCO and H-DIBCO datasets. Images in columns are: Left: original image,
Middle: GT image, Right: Binarized image using our proposed method.



71 An End-to-End DIE Transformer

Then, we present a quantitative comparison of our method with the related ap-
proaches. This is shown in Fig. 5.3, where we can notice the superiority of our model
in recovering a highly degraded image over the classic thresholding [138, 164], CNN
[96], and cGAN [91] methods.

Original Ground Truth

Otsu [138] Sauvola et al. [164]

Jemni et al. [91] Kang et al. [96]

Competition Winner [17] Ours

Figure 5.3: Qualitative results of the different binarization methods on the sample
number 12 from DIBCO 2017 Dataset.
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Degraded Attention Predicted GT

Figure 5.4: Attention maps from the 2nd head of the last layer of DocEnTr{8} encoder.
We display the self-attention for different (random) tokens.

5.4.4 Self-attention Mechanism

As we stated above, our method differs from CNN-related ones by employing trans-
formers to enhance the degraded document images. The self-attention mechanism
used in the transformer blocks gives a global view to every token on the other tokens
that represent the patches within the image for a better enhancing result. A visual il-
lustration of the attention maps of the last layer from the encoder is given in Fig. 5.4. As
can be seen, a token can attend to all the patches within the image. In these test cases,
each token (patch representation) is focusing on the text elements, while ignoring the
degraded patches. Thus, the attending patches are decoded later and projected to pix-
els while taking into consideration high-level global information from the attended
neighboring patches that cover the full input image. We also notice that the attention
maps are mostly matching the text of the GT images, which leads to a satisfactory bina-
rization result that is closer to the GT. This supports the utility of using the transformers
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Degraded Attention Predicted GT

Figure 5.5: Attention maps from the 2nd head of the last layer of DocEnTr{8} encoder.
We display the self-attention for different (random) tokens. (A failure case).

with their powerful self-attention mechanism in the image enhancement task. How-
ever, in other sample cases, as illustrated in Fig. 5.5, we observe that the attention maps
are considering some portions of the text as a background region. Hence, the resultant
enhanced image is removing foreground text because it considers it background noise.
This explains the failure of the self-attention paradigm in these scenarios.

5.5 Conclusion

This Chapter presents a novel transformer-based architecture called DocEnTr for doc-
ument image enhancement. To the best of our knowledge, this is the first pure trans-
former model addressing DIE-related problems. The model captures high-level global
long-range dependencies using the self-attention mechanism for better performance.
Quantitative and qualitative results on the DIBCO benchmarks prove the effectiveness
of DocEnTr in recovering highly degraded document images. It is a simple and flexible
framework that can also be easily applied to enhance other kinds of degradation oc-
curring in document images (like blur, shadow, warps, stains, etc). These aspects will
be investigated in future work. We also wish to investigate a self-supervised learning
stage that can substantially benefit from large amounts of unlabeled data as well as test
the utility of the proposed model in enhancing the OCR performances on the cleaned
images.
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Part II

Document Image Recognition in
Low Resource Data
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Chapter 6

Handwritten Text Recognition in Low
Resource Data: State-Of-The-Art

Recognizing low resource handwritten text images by a single machine learning

model is challenging because: 1) the alphabet (or language) changes from one doc-

ument to another, 2) there is a lack of annotated corpus for training and 3) touching

symbols make the symbol segmentation difficult and complex. In this Chapter, we

review the related work that address this problem in details.

6.1 Introduction

Historical documents residing in archives and libraries contain valuable information
of our past societies. Despite the mass digitization campaigns for preserving cultural
heritage, many historical documents remain unexploited unless they are properly tran-
scribed and indexed. One particularly interesting type of historical document is ci-
phered manuscripts.

Training data-hungry models based on deep learning in low-resource scenarios is
challenging due to the scarcity of labeled data. This is particularly the case with mod-
ern Handwritten Text Recognition (HTR) systems when applied to manuscripts with
rare scripts or unknown alphabets. For example, ancient civilizations used specific al-
phabets that are no longer used (e.g. cuneiform, Egyptian hieroglyphs) and historical
ciphers (used in diplomatic and intelligence reports, secret societies, or private letters)
often invented fanciful cipher alphabets to hide the content of the message [128].
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Handwritten Text Recognition (HTR) systems are based on deep learning and re-
quire a significant amount of annotated data to reach a satisfactory performance. How-
ever, such systems suffer in low-resource scenarios. For example, data scarcity is a
common problem when dealing with manuscripts with uncommon scripts or alpha-
bets.

Historical ciphered manuscripts [128] is a typical case of low-resource handwritten
text, where invented alphabets replace the known ones to encrypt the text and hide the
content from undesired readers. Nowadays, many handwritten ciphered documents
exist in archives consisting of military reports, diplomatic letters, records of secret so-
cieties, etc. Recognizing and extracting the hidden information is of great interest from
the point of view of cultural heritage and history. However, manual transcription and
cryptoanalysis are costly both in terms of time and human resources. Therefore, the
whole process needs automatic tools.

Because of the absence of context information in terms of language models and
dictionaries, the automatic decryption of historical ciphered manuscripts is separated
in two stages: transcription (HTR) and decipherment. The transcription step, which
is the goal of this study, is a hard task due to the scarce annotated data to train, the
paper degradation (typical in historical documents), and the changing alphabet across
different ciphered manuscripts.

6.2 Related Work

6.2.1 Low Resource Manuscript Recognition: The case of ciphered
text

A manuscript is considered a low resource when it contains rare symbols or unusual
symbol sets. Thus, collecting a training set for this manuscript is difficult (especially a
labeled one).

Nowadays, most of the developed approaches for HTR focus on natural known
scripts (Latin [95], Arabic [72], Chinese [208], etc) and are based on deep learning ar-
chitectures. Most models use Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN), so they require a huge amount of annotated data and context
information to learn in a supervised way the mapping function from the handwrit-
ten text image to the ground truth text class. These models are inappropriate for low-
resource HTR for two main reasons. First, large annotated data are not available for
training. Second, the alphabet of symbols usually changes from one manuscript docu-
ment to another (especially in ciphered text), which makes the building of a single HTR
model even more complex.

The research on the transcription of ciphered manuscripts is quite recent. In [60],
an MultiDimensional Long Short-Term Memory (MDLSTM) [69] approach was pro-
posed . The performance was satisfactory but at the cost of the time-consuming man-
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ual data labeling. The method also required new, manual transcription for each new
cipher. Instead, some unsupervised methods were introduced [14, 202] to avoid the
costly human effort. Those approaches were segmenting the enciphered documents
into isolated symbols and then clustering them. In those approaches, the enciphered
document is first segmented into lines and isolated symbols, then a clustering algo-
rithm is applied to group the visually similar symbols which then could be labeled with
the target symbol used in the transcription. The main disadvantage of the clustering
method turned is the segmentation of symbols because is was often inaccurate, pro-
voking transcription errors. Similarly, researchers have opted for learning-free symbol
spotting approaches [158, 25] for the transcription of ancient manuscripts (e.g. Egyp-
tian hieroglyphs, cuneiform, or runes).

In summary, supervised methods obtain good performance but they require large
amounts of labeled data, while unsupervised or learning-free methods can be applied
when labeled data is not available but they lead to lower performance. Thus, to main-
tain high accuracy while reducing the human effort of manual labeling, few-shot learn-
ing is a promising alternative to use for hand-written text recognition [173]. A similar
approach based on character matching was proposed in [205], although the experi-
ments were mostly carried out on synthetic data, instead of on real historical or cursive
manuscripts.

6.2.2 Handwritten Text Pseudo-Labeling

Pseudo-labeling models aim to take advantage of unlabeled data when training, which
makes it a possible solution for low-resource manuscripts. In semi-supervised learn-
ing [215, 155], a few labeled data are used to start the process. For instance, in the label
propagation approach based on distances [88, 193], labels are assigned from the un-
labeled data (called pseudo-labels) to be used to reinforce the training. Similarly, in
[110], the training started with some true labels that are gradually increased by pseudo
labels. In [195] a shared backbone extracted features from the labeled, pseudo-labeled
and unlabeled data at each iteration. Then, from the feature space, the reliable labels
were estimated according to the distance with the true labels while the non-trusted
labels were pushed away with an exclusive loss. Besides, a pseudo-labeling curricu-
lum approach for domain adaptation used a density-based clustering algorithm in [40].
The idea was to annotate data with the same label set, but taken from a different do-
main.

In HTR, this strategy was hardly applied mainly due to the difficulties in character
segmentation, since touching characters are common in cursive texts. In [61], labels
were guessed at word level using keyword spotting. A confidence score was used to
assign new labels to the retrieved words and enlarge the dataset. Furthermore, a text-
to-image alignment was proposed in [113] following the mentioned strategy.
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6.2.3 Data Augmentation and Generation for Handwritten Text

Data augmentation and generation are suitable solutions for deep learning models
when data is limited. Classic data augmentation techniques used some image manip-
ulation tricks [167], such as geometric transformations (e.g. rotations, resizing, warp-
ing), random erasing, color transformations, font thickness, flipping, etc. However,
these methods need training data, and the augmented text is moderately realistic.

In the case of online handwriting, trajectory reconstruction approaches were intro-
duced based on the kinematic theory of human movements [18, 144, 145] or by recur-
rent neural networks [70]. However, online information (e.g. stroke trajectory, speed,
pressure) is not available in historical manuscripts, where only text images are avail-
able. Generative adversarial networks [68] and style transfer [67, 92] methods were
utilized to generate the handwritten text from images. In [32], an approach to gener-
ate handwritten characters from an existing printed font was proposed. Also, in [94],
cursive Latin words were generated conditioning on content (text) and a writing style.
But these approaches need a huge set of annotated data to be trained on for each par-
ticular handwriting style, which is not available for low-resource applications. It is true
that there are some attempts to use these techniques for few-shot by using only a few
samples of each character class [15, 31, 44, 176]. Nonetheless, the results are still mod-
erate in terms of quality and most of the methods are focusing on font translation while
keeping the same text shape as the example that is conditioned on.

In this work, and to overcome the above limitations, we explore the use of BPL [106]
to mimic the human ability to generate new unseen characters, while maintaining high
quality and shape variation, from a single example.

6.2.4 Self-Supervised Learning

Due to extensive efforts on labeled data requirements of supervised models, this learn-
ing paradigm emerges as a way of exploiting the structured information contained in
the data itself. Self-Supervised learning aims to obtain rich representations of an input
modality by

designing pretext tasks that are used as auxiliary signals that are informative for
a given downstream task. Initial approaches relied on auto-encoders [186] trained
to remove artificially added noise from an image. Later, several approaches intro-
duced other pretext tasks that provide rich signals to train a network as a feature ex-
tractor. Some pretext tasks employed were image colorization [206], jigsaw puzzle
solving [136], patch ordering [51], rotation prediction [66] among others. Recent ap-
proaches rely on extensive image augmentation to maximize the agreement among
paired samples and contrast with all possible negative samples [34, 35, 74, 204, 29, 30].

More recently, generative approaches like Masked Auto-encoders (MAE) [73] are in-
troduced to predict a masked latent representation of patches. Similar ideas have been
also explored in other recent works like BEiT [13] and PeCo [53] which adopt a discrete
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variational autoencoder (VAE) to generate discrete visual tokens from the original im-
age. Motivated by these works, we expand this generative learning framework to tackle
text recognition and document enhancement tasks.
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Chapter 7

A Progressive Few Shot Learning
Approach for Low Resource
Handwritten Text Recognition

In this Chapter, we propose a few-shot learning-based handwriting recognition

approach that significantly reduces the human annotation process, by requiring

only a few images of each alphabet symbol. The method consists of detecting all

the symbols of a given alphabet in a text line image and decoding the obtained

similarity scores to the final sequence of transcribed symbols. Our model is first

pretrained on synthetic line images generated from an alphabet, which could dif-

fer from the alphabet of the target domain. A second training step is then ap-

plied to reduce the gap between the source and the target data. Since this re-

training would require annotation of thousands of handwritten symbols together

with their bounding boxes, we propose to avoid such human effort through an

unsupervised progressive learning approach that automatically assigns pseudo-

labels to the unlabeled data. The evaluation on different datasets shows that our

model can lead to competitive results with a significant reduction in human effort.

The code will be publicly available in the following repository: https://github.
com/dali92002/HTRbyMatching
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7.1 Introduction

Recognizing and extracting information from rare and historical manuscripts are im-
portant to the understanding of our cultural heritage, since it helps to shed new light
on and (re-)interpret our history [129]. However, manual transcription is impractical
due to the number of manuscripts, and automatic recognition is difficult due to the
lack of labeled training data. Moreover, the problem becomes even harder in the case
of ciphers because when the alphabet is invented, no dictionaries or language models
are available to help in the training process.

Contrary to deep learning models, human beings are able to learn new concepts
from one or a few samples only. Recent research has been conducted to imitate and
simulate this ability. One of these recent approaches is called few-shot learning, re-
quiring only a limited number of examples with supervised information [192]. In our
previous work [173], we explored whether few-shot learning could be adapted to the
recognition of various symbol sets in encrypted hand-written manuscripts.

Usually, HTR models must be trained on the particular alphabet to be recognized,
and whenever the alphabet changes, the system must be retrained from scratch with
samples from the new script. To avoid the cumbersome process of re-training, we
treated the recognition as a symbol detection task: by providing one or a few sam-
ples of each symbol type in the alphabet, the system could locate the symbols in the
manuscript. The model was generic and could be used for multiple scripts, while re-
quiring only a small sample of labeled data on each new symbol type. The first exper-
imental results obtained a good performance on encrypted manuscripts compared to
the typical methods, while reducing the amount of labeled data for fine-tuning.

Nevertheless, the required labeled data in our few-shot model still implies a signif-
icant human effort: labeling a few pages with various types of symbols for fine tuning
include manual transcription of thousands of symbols together with their correspond-
ing bounding boxes. To alleviate this, we aim to minimize the time-consuming manual
labeling effort by proposing an unsupervised learning approach that can automatically
and progressively label the data by assigning pseudo-l abel s from the unlabeled hand-
written text lines. Our method requires only a few shot of the desired alphabet: to per-
form the pseudo-labeling, the user crops a few samples – preferably 5 – of each symbol
type thereby avoiding the annotation of text lines and the annotation of the bounding
boxes. This means that the pseudo-labeled data is automatically obtained to fine-tune
our model, with zero manual effort.

The main contributions of our work are: (i ) We propose a few-shot learning model
for transcribing hand-written manuscripts in low resource scenarios with minimal hu-
man effort. Our model only requires few, ideally five samples of each new symbol
type, instead of annotating the entire text lines with the symbols and their bound-
ing boxes. (i i ) We propose an unsupervised, segmentation-free method to progres-
sively obtain pseudo-labeled data, which can be applied to cursive texts with touch-
ing symbols. (i i i ) We propose a generic recognition and pseudo-labeling model that
can be applied across different scripts. (i v) We demonstrate the effectiveness of our
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Figure 7.1: Our few-shot approach for handwriting recognition. Examples of each sym-
bol in the alphabet are used as supports. Up: Detection of a support symbol in a hand-
written line. Down: Construction of the similarity matrix from the predicted bounding
boxes and its decoding to obtain the final text.
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Figure 7.2: An illustration of the attention RPN: the support feature map is average
pooled until obtaining a tensor with the shape of 1× 1× 512. The obtained tensor is
multiplied over depth with the Query feature map to obtain the attention Q, which is
passed to the RPN for region proposing.

approach through extensive experimentation on different datasets with various alpha-
bets, reaching a performance similar to the one obtained with manually labeled data.
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7.2 Proposed Approach

In this Section, we describe our approach to handwritten text recognition by few-shot
learning. First, our model is trained on synthetic data. We create text line images us-
ing various Omniglot symbol alphabets [106]. Then the model is fine-tuned using the
pseudo-labeling approach with the specific alphabet of the target domain, in our case
the hand-written manuscript. The involved steps are described in detail below.

7.2.1 Few-shot Manuscript Matching

As explained in Section 6.2, few-shot modeling for object detection has shown to be
suitable for recognizing manuscripts in low-resource scenarios. In few-shot modeling,
if the size of the alphabet is N , and we provide k examples from each symbol alpha-
bet (named shot s (or supports)), the task is considered as an N -way k-shot detection
problem. In such setting, the model can be trained on certain alphabets with a suffi-
cient amount of labeled data, and later, it can be tested on new alphabets (classes) with
a few labeled examples only.

Our few-shot learning model, illustrated in Fig. 7.1, is segmentation free and works
at the line level. As input, it takes the text line image with an associated alphabet in the
form of isolated symbol images. In this step, from one to five samples of each alphabet
symbol should be given. The two inputs (the line image as a query and a symbol image
as support) are propagated in a shared backbone to derive two feature maps. Those are
then used in the Region Proposal Network (RPN) with an attention mechanism to out-
put proposals. The attention mechanism performs the depth-wise cross correlation
between the support and query feature maps. As illustrated in Fig. 7.2, this is done by
performing a multiple average pooling to the support feature map to obtain a shape of
1×1×C hannel s then multiplying it over depth with the query feature map. After the
RPN stage, the Region of Interest (ROI) pooling is applied to the RPN proposals and the
support image to provide two feature maps having the same size. These feature maps
are representing the support image as well as the query regions that are candidates to
match the support image. Those are combined together and passed to the final stage
where the bounding boxes are produced with the class 1 (similar to the support) or
0 (different from the support symbol). For each labeled bounding box, a confidence
score between 0 and 1 is predicted according to the similarity degree with the support
image. We repeat this process for all supports (i.e. all the alphabet symbols) and take
only the bounding boxes with a high confidence score (higher than a given threshold)
to construct a similarity matrix between the symbol alphabet and the line image re-
gions. This matrix serves as the input to the decoding algorithm, which provides the
final transcription.
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Figure 7.3: Our pseudo-labeling approach: In the beginning, synthetic lines are gener-
ated using the support set. Then, the pseudo-labeling phase starts. At starting, there is
no pseudo-labeled data, so only synthetic lines will be used for retraining the model.
Then, the model predicts symbols from the real unlabeled lines with the same script.
The symbols with highest confidence score, namely pseudo-labels, are labeled and
added with their predicted bounding boxes. Next, the model is retrained again us-
ing the synthetic lines and the pseudo-labeled symbols from real lines. The process is
repeated until the full dataset is annotated.

7.2.2 Similarity Matrix Decoding

The decoding stage, detailed in Algorithm 1, takes the similarity matrix, traverses the
columns from left to right, and decides for each pixel column the final transcribed sym-
bol class among the candidate symbols. Concretely, for each time step, it chooses the
symbol having the maximum similarity score. To minimize errors, a symbol is only
transcribed if its bounding box is not overlapped by another symbol with a higher sim-
ilarity value for a certain number of successive pixels. In our case, we used 15 pixels
as a threshold. Despite its simplicity, this decoding method is effective for transcribing
sequences of symbols. It can be considered also as a modified version of the Connec-
tionist Temporal Classification (CTC) algorithm [71].

As mentioned before, our few-shot model is first trained on the Omniglot dataset:
we synthetically construct lines to learn the matching in different alphabets. Then,
at testing time, it can be used to recognize new symbols, requiring only a support set
composed of a few examples of each new symbol class. However, in our previous work
[173], experiments showed that the predictions can be significantly improved when we
fine-tuned the model using some real text lines, due to the domain difference between
the synthetic Omniglot symbols and the real historical symbols.

7.2.3 Progressive Pseudo-Labeling

Our proposed progressive data pseudo-labeling strategy consists in two stages described
below.
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Algorithm 1 Similarity Matrix Decoding

Require:
M ▷ Similarity matrix
r ep_thr esh ▷ Repetition threshold

Ensure: C har Li st ▷ Characters sequence
l ast_max ← [−1,0] ▷ [i ndex, scor e]
r epeti t i on ← 0
maxi mums ← M axInd(M) ▷maximum index and score for each column
C an Add ← F al se

for maxi in maxi mums do

if maxi ̸= l ast_max then
r epeti t i ons ← 0
C an Add ← Tr ue

else
if r epeti t i ons > r ep_thr esh andC an Add then

C har Li st ←C har Li st ∪maxi [i ndex]
C an Add ← F al se

else
r epeti t i ons ← r epeti t i ons +1

end if
end if

end for

Synthetic Data Generation

Our few-shot model needs to be fine-tuned using data from the target domain (often
with an unseen alphabet) to reduce the gap between the source and target domains.
But since we aim to minimize the user effort, we restrain the demands on a support
set of few samples from each new symbol alphabet. Hence, the user must only select
up to 5 samples per symbol, called shots. From those shots, we automatically gener-
ate synthetic lines by randomly concatenating them in a line image. We tried to make
those synthetic lines as realistic as possible. To do so, the space between characters was
chosen randomly between 0 and 30 pixels. Also, before concatenation, we rotate each
character randomly between -5 and 5 degrees. Moreover, we add some artifacts to the
upper part and lower part of the line to simulate a realistic segmentation of a hand-
written line. Those created lines compose our starting labeled set, since our model
was only pre-trained on a different data domain, i.e. the synthetic Omniglot lines. This
technique significantly improves the model prediction for unseen alphabets or scripts.
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Figure 7.4: An example of pseudo-labeling of a line image. The background is colored
in grey, while the predicted label classes at each time are shown in colors. Each symbol
class is shown with a different color (best viewed in color).

Pseudo-Labeling Process

After retraining our model with synthetic lines, we begin by annotating the unlabeled
data. The process is illustrated in Fig.7.3. Of course, at the beginning, the pseudo-
labeled set is empty (as no labels are available), so only the synthetic lines can be used
for training. Then, we pass the real text lines through our model to get the predictions,
which include the bounding boxes of the regions that are similar to the input alphabet
images along with the assigned similarity score. Since a higher score means a more
credible label, we choose the top-scored predictions as pseudo labels at this iteration.
We experimentally found that the best option is to choose, at each iteration, 20 % of
the training data size as the number of the new pseudo-labels. The obtained pseudo-
labeled set will be joined to the synthetic set for the next training iteration. This process
is repeated until the whole unlabeled set (i.e. all text lines) is annotated. In the case
where it is not possible to add new pseudo-labels with a credible confidence score, we
set a threshold of 0.4 as the minimum confidence score for assigning pseudo-labels.
In fact, whenever the score is below this threshold, it is better not to label the symbol.
Note that we label the handwritten lines without the need of segmenting them into
isolated symbols. In this way, the remaining unlabeled symbols in the different lines at
each iteration are considered as background during the next training. Fig. 7.4 shows an
example of a handwritten line during the pseudo labeling process. At the beginning,
the whole image is considered as a background. Then, the symbols with higher confi-
dence scores are labeled in the first iteration, while the hardest ones will be labeled in
the next iterations.
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The Borg Cipher The Copiale Cipher Codex Runicus

Figure 7.5: Examples of the three manuscripts with low resource annotated data.

7.3 Experiments

7.3.1 Datasets

For low-resource handwritten text, we chose two historical encrypted manuscripts and
a manuscript with an old, no longer used alphabet, the Codex Runicus. Our choice of
running experiments on encrypted manuscripts is motivated by the fact that ciphers
contain a large variety of more or less fancy symbols instead of or in addition to using
common alphabets and/or digits. In this work, we chose two encrypted manuscripts,
namely the Borg and the Copiale ciphers, both containing a large variety of symbols.
The Borg1. cipher is a 408 pages long manuscript, originating from the 17th century.
The entire manuscript is encoded with the exception of the first and last two pages, and
some headings in Latin. The cipher consists of 34 different symbols, comprising from
graphic signs to Latin letters and some diacritics. The Copiale cipher is a 105 page long
encrypted manuscript from the mid-18th century. The cipher consists of 100 different
symbols from Latin and Greek letters to digits along with a large number of graphic
signs. The cipher has been transcribed and deciphered [102] and is freely available
in high-resolution images2. The Codex Runicus3 is a historical manuscript, the old-
est preserved Nordic provincial law written on 100 parchment folios of 202 pages. Its
symbol set consists of runes where each rune corresponds to a letter of the Latin al-
phabet. Fig. 7.5 shows examples of the two ciphers and the codex Runicus. As it can
be seen, the Borg symbols are connected not only horizontally but also oftentimes ver-
tically with many touching symbols making its recognition challenging.In the Copiale
cipher, on the other hand, the symbols are clearly segmented but the size of the alpha-
bet is large, which makes it a good challenge to test our approach on it. Similar to the
Copiale cipher, the codex Runicus consists of clearly segmented symbols and a rare
alphabet making it also a good case of low resource handwriting recognition. In our
experiments, we exclude the symbols with low frequencies (that occur once or twice)
in all manuscripts. We use 24 symbols from the Borg cipher, 78 symbols from the Copi-
ale cipher, and 25 symbols from the Codex Runicus. Table 7.2 shows more information
about our used datasets.

1https://cl.lingfil.uu.se/~bea/borg/
2https://cl.lingfil.uu.se/~bea/copiale/
3https://www.e-pages.dk/ku/579/

https://cl.lingfil.uu.se/~bea/borg/
https://cl.lingfil.uu.se/~bea/copiale/
https://www.e-pages.dk/ku/579/
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7.3.2 Experimental Setup and Metrics

To carry out the experiments, we first trained our proposed few-shot handwriting recog-
nition model using lines created from the Omniglot dataset only. Then, we retrained
the model using synthetic lines created from the given 5 symbols (shots) as described
above. This data is called Synthetic Data (SD). Afterward, we start predicting the la-
bels and obtaining the Pseudo Labeled Data (PSD) by using the approach detailed in
Subsection 7.2.3. We finally fine-tune the model with the pseudo-labeled data and
compare its performance to the models that use Real Labeled Data (RLD) for training.

The model performance is measured by the Symbol Error Rate (SER) metric. It is
the same as the Character Error Rate used in HTR. Formally, SER = S+D+I

N , where S is
the number of substitutions, D of deletions, I of insertions and N is the ground-truth’s
length. Not surprisingly, the lower the value, the better performance.

We compare our approach with our previous few-shot model [173], the unsuper-
vised [14, 202] and supervised [60] approaches for encrypted manuscript recognition.

7.4 Results

Table 7.1 shows the obtained results. The Borg manuscript is considered to be a hard
case because of the overlapping symbols, which makes predicting correct bounding
boxes challenging. Also, the writing style is variable. As it can be seen, using a few-
shot method with real labels leads to a SER of 0.21, being considered the upper bound.
But, this result is costly, since a user must manually annotate 1913 symbols, including
their labels and bounding boxes. We also notice that the supervised MDLSTM with a
larger training set, annotated at line level (but without any bounding boxes required),
obtains a moderate result, probably due to the connected handwriting. We notice that
the unsupervised methods are only useful when the segmentation of lines into isolated
symbols is accurate, which is a costly and difficult task. Our few-shot model, trained
on Omniglot only and tested on Borg, leads also to a poor result (an SER of 0.53) due
to the big difference between the training and test domains. However, when using the
pseudo-labeled data provided by our approach, we obtained an acceptable result of
0.24 SER, with a high gain in user effort because we only require 5 examples of each
symbol, avoiding a time-consuming manual annotation.

The Copiale manuscript contains easy-to-segment symbols but with a larger alpha-
bet size. As it can be seen from Table 7.1, the MDLSTM performs better on this dataset
because of the larger labeled training lines and a unique handwriting style. However,
our model achieves a competitive result by using less data than MDLSTM. Anyway,
annotating these lines is costly, so a better choice is to automatically produce pseudo-
labels. By using our pseudo-labeling process, we achieve a competitive performance,
compared to the manually labeled data (a SER of 0.15 versus 0.11).

Finally, we test our method on the Runicus manuscript as an example of ancient
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Table 7.1: Obtained Results on the different datasets. FT: Fine Tuning. Om: Omniglot.
SD: Synthetic Data. RLD: Real Labeled Data. PLD: Pseudo Labeled Data. ULD: UnLa-
beled Data.

Dataset Method User Effort Training → FT SER

Borg

Unsupervised [202] None ULD 0.57
Unsupervised [202] Manual Segmentation ULD 0.22
Unsupervised [14] Clusters Processing ULD 0.54
MDLSTM [60] Manual Labeling RLD 0.55
Few-shot [173] Manual Labeling Om → RLD 0.21
Few-shot [173] 5 shots Om → NONE 0.53
Ours 5 shots Om → SD + PLD 0.24

Copiale

Unsupervised [202] None ULD 0.44
Unsupervised [202] Manual Segmentation ULD 0.37
Unsupervised [14] Clusters Processing ULD 0.20
MDLSTM [60] Manual Labeling RLD 0.07
Few-shot [173] Manual Labeling Om → RLD 0.11
Few-shot [173] 5 shots Om → NONE 0.39
Ours 5 shots Om → SD + PLD 0.15

Codex Runicus
Unsupervised [14] Clusters Processing ULD 0.06
MDLSTM [60] Manual Labeling RLD 0.26
Few-shot [173] Manual Labeling Om → RLD 0.05
Few-shot [173] 5 shots Om → NONE 0.40
Ours 5 shots Om → SD + PLD 0.09

document with a rare alphabet. This manuscript can be considered easier than ciphers
because the symbol segmentation is easy and the alphabet size is moderate. Thus,
an unsupervised clustering method can be also appropriate. Using our method with
real labeled data, we obtain results that are better than without any fine tuning, with
a SER of 0.05 and 0.40 respectively. When we compare the quality of our produced-
pseudo labels against the manually created ones, we observe that, by using pseudo-
labeling, we achieve a competitive result of 0.09 SER. This demonstrates the suitability
of our method, because the performance is close to the one obtained with manual
labels while significantly reducing the annotation effort.

We can conclude that our proposed pseudo-labeling method achieves good results
when recognizing low resource handwritten texts, with an important decrease in the
user effort for data annotation. The analysis of the human effort is detailed next.

7.4.1 Annotation Time Consumption

Manually annotating data is a time consuming task and it should be taken into ac-
count when using HTR models. Thus, in this section, we measure the time needed to
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label the three datasets to illustrate the manual labeling effort. As shown in Table 7.2,
the more lines and the bigger the alphabet size, the more time is required to label the
symbols with their bounding boxes. For reference, we measured the required time for
providing the shots for our method and compared it with the manual annotation time.
We found that locating and cropping 5 examples of each symbol in the alphabet takes
approximately 40 seconds. Thus the user needed to spend 16 minutes for Borg, 17
min for Runicus and 52 min for Copiale for providing the shots for all symbols in the
manuscripts for our approach.

We can conclude that automatically providing pseudo-labels significantly mini-
mizes manual effort with a minimal loss in recognition performance compared to the
manual annotation.

Table 7.2: Required time (in minutes) for manually annotating the training lines.

Dataset # Lines # Symbols # Classes Time

Borg 117 1913 24 ≈ 245
Copiale 176 7197 78 ≈ 450
Runicus 56 1583 25 ≈ 206

7.4.2 Pseudo-labeling Performance Analysis

Our proposed method progressively labels the dataset: we start by labeling easy sym-
bols and progressively label the complicated ones. As a consequence, the accuracy of
correctly labeling bounding boxes decreases as we select new pseudo labels at each it-
eration. We evaluate the quality of our pseudo-labeling approach on the three datasets
by comparing the predicted bounding boxes and their corresponding pseudo-labels to
the manually annotated ones. A predicted bounding box is defined as a correct de-
tection if it has a minimum overlap (i.e. Intersection over Union: IoU) of 0.7 with the
ground-truth box. We find that the more difficult the dataset is in terms of segmenta-
tion, alphabet size and similarity between symbols, the more the performance of our
pseudo-labeling approach decreases and the more iterations in the labeling process
are needed. For example, labeling accuracy for the Borg cipher was 74 % after obtain-
ing all the labels. In Copiale, where symbols are easy to segment, the labeling accuracy
reached 85 %. In Codex Runicus, we obtained the highest pseudo-labeling accuracy of
94 % because the symbol segmentation is easier than Borg and the number of classes
is lower than in Copiale.

During our experiments, we found that it is better to continue the pseudo-labeling
process despite the decreasing performance. The reason is that, although we might
add some wrong labels, in general, the incorporation of difficult examples benefits the
training and even a bounding box with a wrong label is still helping in the segmentation
part. Moreover, the experiments show that there is a small difference in performance
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between the manually annotated labels and our automatically produced ones, which
encourages us to further improve our labeling process.

7.4.3 Selecting Threshold for Pseudo-Labeling

In our experiments we set a threshold of 0.4 before adding a character into the labeled
set. This threshold is chosen after testing other values and finding that 0.4 is the opti-
mal one. We show the results of the conducted experience in Table 7.3, where we tested
different thresholds to select the pseudo-labels. The experiments were carried out on
the Borg dataset.

Table 7.3: The symbol error rate when using different thresholds while pseudo-labeling
the data. Thres.: Threshold

Thres. SER Thres. SER Thres. SER Thres. SER
0.8 0.27 0.6 0.25 0.4 0.24 0.2 0.25

7.4.4 Is semi-supervised learning worth to use?

So far, we opt to use an unsupervised approach that starts from a few shots of the de-
sired alphabet. However, the choice of starting by labeling some real lines ( text and
bounding boxes) and pseudo-labeling the rest is also a possible solution. We test this
strategy on the Borg dataset as presented in Table 7.4. For comparison, we use two
recent self supervised learning methods: masked autoencoders (MAE) [73] and UP-
DETR [45]. Given that these methods were proposed for image classification and object
detection, we adapt them to text recognition by adding a transformer decoder [185] in
MAE and using our decoding algorithm in UP-DETR. As pre-training, MAE uses a set
of Latin handwritten images because of the very few available Borg lines, while the UP-
DETR is trained on the 117 unlabeled Borg lines. Then the fine-tuning is done using
20%, 30% and 50% of labeled Borg lines for both methods. The obtained results show
that the more labeled lines, the better the performance. Despite the very few data that
were used (the full training set is 117 lines), our method clearly outperforms the data-
hungry MAE and UP-DETR, showing that they are not suitable for such low resource
scenarios.

It is noteworthy that, in our method, if we start with more manually labeled lines,
the amount of unlabeled lines to pseudo label is reduced, so the training time de-
creases. Overall, we can conclude that starting from only a few shots is a better solution
with regards to the reduced manual effort, since the SER is slightly affected (we obtain
0.24 as SER using our unsupervised pseudo-labeling).
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Table 7.4: Comparative results with self-supervised learning approaches in the semi-
supervised scenario.

Method Labeled lines SER

MAE [73]
20 % 0.99
30 % 0.99
50 % 0.95

UP-DETR [45]
20 % 0.71
30 % 0.70
50 % 0.66

Ours
20 % 0.25
30 % 0.24
50 % 0.20

7.5 Conclusion

We have presented a novel pseudo-labeling transcription method for manuscripts with
rare alphabets or few labeled data. Our method can significantly reduce the human la-
bor of annotating historical manuscripts, while maintaining the recognition perfor-
mance. The performed experiments on the enciphered and historical manuscripts
confirmed the usefulness of our approach, with a significant reduction in user effort
and a minimal loss in recognition performance.

Our few-shot model with pseudo-labeling is a significant extension of our previous
work [173]. In fact, its simplicity makes it even applicable on top of other methods, like
[205]. Also, for widely-used alphabets (like latin) but with few labeled data, pseudo-
labels can be predicted to annotate the data and train usual fully supervised HTRs,
which may lead to better results than the few-shot ones.

In future, we aim to enhance the quality of the provided labels to keep reducing the
need of manual intervention. Also, we plan to extend our approach to cover more low
resource datasets including other unknown scripts.
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Chapter 8

A One-shot Learning Approach for
Compositional Data Generation:
Application to Low Resource
Handwritten Text Recognition

Abstract

In this Chapter, we address the problem of low resource HTR through a data gen-

eration technique based on Bayesian Program Learning (BPL). Contrary to tradi-

tional generation approaches, which require a huge amount of annotated images,

our method is able to generate human-like handwriting using only one sample of

each symbol in the alphabet. After generating symbols, we create synthetic lines to

train state-of-the-art HTR architectures in a segmentation-free fashion. Quantita-

tive and qualitative analyses were carried out and confirm the effectiveness of the

proposed method.

8.1 Introduction

A typical solution to the lack of data is to create more examples for training via data
augmentation or synthetic data generation. But these techniques [167] require training
data. Moreover, and contrary to humans, deep learning models are known to fail on the

97
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compositional nature of generation. Here by compositional, we refer to the generation
of more complex items from simpler components/primitives, a process that humans
can successfully do from just a single example [106]. Furthermore, generating data
that covers the distribution of an alphabet using only a few examples of each symbol is
a hard task for deep learning models.

In this work, we bridge between generation by compositionality and data scarcity
by generating realistic samples to serve as ground truth to train HTR models. Con-
cretely, our work is based on Bayesian Program Learning (BPL) [106], which uses sim-
ple programs to create more complex structures compositionally (i.e. to build rich
concepts from simpler primitives/programs). However, BPL [106] was used to gen-
erate perfectly segmented symbols rather than sequences. This poses an important
limitation for handwritten text recognition, because the text is a sequence of joined
characters, especially in cursive handwriting. To overcome this limitation, we propose
to create realistic text lines from the BPL-generated symbols. These symbols are gen-
erated starting with one single example of each symbol in the alphabet. As a result, the
generated handwritten text lines can be used to train data-hungry HTR deep learning
models for manuscripts with rare alphabets. As a study case, we use the Borg 1 cipher,
a historical ciphered manuscript, written with an invented alphabet and containing
many touching symbols, as shown in Figure 8.2. The goal is to transcribe such a diffi-
cult text with minimal user intervention (in terms of labeled data).

As far as we know, this is the first work that effectively uses BPL for Handwritten
Text Recognition, as an example of the application of BPL for sequence recognition.
The contributions of our work can be summarized as follows:

• We use BPL as a realistic symbol generation technique for handwriting recogni-
tion. The quantitative, and qualitative results and human studies demonstrate
their effectiveness.

• We reduce the cost of annotation and human labor by automatically generating
handwritten text lines by using just a single example per alphabet symbol.

• We experimentally show that the generated data benefits HTR models. Indeed,
our approach outperforms the current state of the art in cipher recognition. This
paves the way for it to be applied to other low-resource manuscripts.

The rest of the Chapter is organized as follows: BPL for handwriting generation
is described in Section 8.2. Section 8.3 describes how BPL can be successfully used
to generate text lines with high but realistic handwriting style variability. Section 8.4
analyzes the experimental results, whereas Section 8.5 presents the conclusions and
future work.

1https://cl.lingfil.uu.se/~bea/borg/

https://cl.lingfil.uu.se/~bea/borg/
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Figure 8.1: (A) A generative model of handwritten ciphered symbols. (i) From a library
of color-coded primitives, new types are generated, (ii) combining these subparts, (iii)
to further generating parts, (iv) and then defining simple programs by combining parts
with relations. (v) Running these programs new tokens are generated, (vi) which are
then rendered as raw images. (B) An image along with their log-probability scores for
the five best programs. Parts are distinguished by color, with a colored flat back indi-
cating the beginning of a stroke and a black arrowhead indicating the end.

8.2 Bayesian Program Learning (BPL)

Human beings have the ability to learn new concepts from a single example. Contrary,
deep learning-based methods usually require tens or hundreds of examples to reach a
human-level performance on recognition, generation, or parsing tasks. Thus, the gen-
eration of handwritten data from a few examples is still challenging. The Bayesian Pro-
gram Learning (BPL) introduced in [106] showed a great ability to learn rich concepts
compositionally and generate new examples from a single unseen concept, making it
an ideal solution for the data scarcity problem.

As it can be appreciated from Fig. 8.1-A, BPL works in a hierarchical manner. At the
highest layer, there are two levels called type level and token level (the dashed line in
the middle). The type level consists of 4 steps which are sampling primitives, sampling
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sub-parts, sampling sub-part sequence, and sampling relation. In BPL, primitives are
defined as the smallest stroke in unit and time. More specifically, given a held-out set of
data, BPL fits a Gaussian Mixture Model (GMM) on the normalized strokes according
to their length and time information. Each of the centers of GMM cluster is treated as
primitives and used as a starting point.

After obtaining the primitives, the number of primitives is sampled with P (κ), where
the distribution is obtained according to held-out data. Then, the number of sub-parts
with P (ni |κ) and sample sub-parts sequences with P (Si |S1,S2, ...,S(i1)) is sampled to
decide which primitives should have relations, i.e. whether they should be combined
into parts. Finally, BPL samples relations given sub-part sequence P (Ri |S1,S2, ...,S(i1))
where there are four relations defined a priori for how the two strokes can be attached
together. The two strokes can be attached “along”, “at start”, “at end”, or “independent”.
All of the mentioned parts are combined with conditional probability to a program,
P (ψ)

P (ψ) = P (κ)
κ∏

i =1
P (Si )P (Ri | S1, . . . ,Si−1) (8.1)

The token level parameters referred as θ, consist of global re-scaling and a global
translation of the center of mass of each sub-part sequence. Moreover, BPL adds vari-
ance to the created types in terms of start location, trajectory, and affine transforma-
tion so that the generated samples are as unique as possible. Token level parameters
are distributed as P (θ|ψ) and the end product of token level is P (I |θ).

At the inference phase, it produces a new image I (2) given an image I (1). First, BPL
reduces the line width of an image to one pixel and then runs a random walk algorithm
to collect at most 10 parses of the I (1). An example of these parses can be found in
Fig. 8.1-B. These parses are sorted according to the log probability of the random walk
search and the most likely one is taken as the starting point. Afterward, a new image is
generated according to the following formulation:

P
(
I (2),θ(2) | I (1)) =

K∑
i =1

N∑
j =1

wi

N
P

(
I (2) | θ(2))P

(
θ(2) |ψ[i j ]

) (8.2)

One of the main advantages of using BPL as a data augmentation is that it does
not require huge training samples but more importantly, domain knowledge is mini-
mized. For example, BPL can be trained on the Omniglot symbols, and later used on
the Borg cipher symbols. Secondly, BPL can generate new exemplars from a single un-
seen example, whereas deep models are incapable of for the moment. Finally and most
importantly, the output images have enough variability while keeping the main struc-



101 A One-shot Learning Approach for Compositional Data Generation

Figure 8.2: Two lines images from the Borg cipher. The image shows that there are
frequent touching symbols in this manuscript, even between different lines.

ture to be used as a training set. In all of our experiments, we have used the code2

to generate each symbol. The parsing includes a ’fast_mode’ option which skips the
expensive procedure of fitting the strokes to the details of the image.

8.3 Handwritten Symbol Generation with BPL

In this section, we present the generation of cipher symbols using BPL. We quantify the
effectiveness of the method and include a discussion of qualitative and human study
results.

8.3.1 Dataset

Borg is a 408 pages ciphered manuscript belonging to the 17th century. Its alphabet is
composed of abstract, esoteric symbols, Roman letters, and some diacritics. Fig. 8.2 il-
lustrates this handwritten text. As it can be seen, symbols are hard to segment, mainly
because of the frequent symbol overlapping not only between consecutive symbols
but also between the different lines. Following related works [14, 173], we have used
273 lines extracted from 16 pages for testing. Note that a pre-processing step (bina-
rization and projections) has been applied to obtain those lines from the full pages of
manuscripts. For data generation, we manually cropped 10 samples of each class in
the alphabet.

8.3.2 Data generation results - Symbol Level

In this section, we show the results of the BPL generation of Borg symbols and evaluate
them according to a human study.

Qualitative Results

We provide two types of qualitative results. In Fig. 8.3-A, samples are generated using
the top-right character. On the other hand, in Fig. 8.3-B, any example belonging to
the same class but the top character can be used for generation. In other words, the

2https://github.com/brendenlake/BPL

https://github.com/brendenlake/BPL
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(A)

(B)

Figure 8.3: Generating new exemplars given one ciphered symbol. (A): Conditioning
on the same symbol (in-sample) shown on top of the nine-cipher grids. (B): Condition-
ing on a different example of the same class (out-sample). The nine-character grids
were generated by BPL.

generated examples of Fig. 8.3-B are not conditioned on the top character, rather it is
conditioned on different examples from the same class of the top one.We will call the
former in-sample and the latter out-of-sample examples.

As it can be seen for the in-sample generation from the Fig. 8.3-A, BPL mostly keeps
intact the symbol structure while introducing variety. For example, from the first col-
umn, it can be seen that in some of the parts where it looks like “o", BPL transforms
it into a more open “o” (3rd row, 3rd column) and transforms the connection of lines.
Moreover, it can change the line thickness and make the lines shorter or curved, see 3rd
column of Fig. 8.3-A. These types of changes are compatible with human handwriting
variability.

From the out-of-sample examples in Fig. 8.3-B, we can observe a much higher
range of variations. The increase in variations is shown in both levels of type and token.
At the token level, we can detect more diversity in affine transformations such as rota-
tion (in the third column of the figure), scaling (third row of the figure), and translation
in terms of the center. We also see a lot more diversity within symbols compared to the
in-sample examples.

Apart from being realistic and introducing variety, what BPL offers cannot be ob-
tained with other data generation techniques. Since BPL has used the actual human
handwriting distribution, it is quite hard to reach a similar realism with any other ad-
hoc generation technique.
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Figure 8.4: Result of the AMT human study where subjects are asked to match between
real and generated images. The consensus seen in the x-axis represents the amount of
agreement among subjects.

Human Evaluation

Aside from providing qualitative results, we want to quantify the effectiveness of BPL
in terms of how similar it is to its original examples. However, quantifying similarity in
the handwritten text is difficult. For this reason, we have run a human study following
a simplified version of our task formulation: Given an original symbol (query) and 5
options, human subjects have to choose the option that matches the query. In the
experiment setup, 4 out of 5 options are BPL generated and a final option is “Not Sure”.

We set up 2 experiments to quantify the “realistic” generation: in-sample and out-
of-sample generation. Both experiments follow the same procedure in which we pro-
vide Amazon Mechanical Turk (AMT) workers with a single symbol (a query) and ask
them to find the most visually similar item to the query. In the first experiment, we
pick the options generated from the query while for the second experiment options
can be generated from any symbol but the query. The former experimentation will
provide how accurate BPL is within in-sample distribution and the latter is how well it
can match the out-of-sample distribution. For each class, we have selected 5 original
symbols and 2 BPL-generated ones, giving us 10 tasks per symbol. Both experiments
are set up using AMT, in which 5 workers had to answer each question. In total, for each
experiment, we have 210 questions and 1050 answers from 5 different human subjects.
The results of these experiments are shown in Fig. 8.4. We show the accuracy vs at least
how many subjects chose the correct option. In other words, we plot what is the ac-
curacy of at least n workers choosing the correct option. As it can be deduced from
Fig. 8.4, from at least 5 workers to at least 3 workers, there is a steady increase. More-
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over, it is quite remarkable to observe that an ad-hoc method that requires no training
can still result in 22.9% or 16.7% accuracy for all workers correctly predicting.

However, we choose to focus on at least 3 workers correctly predicting because of
the majority voting paradigm. Thus, according to at least 3 workers choosing the cor-
rect option, we get 74.3% and 72.2% accuracy for in-sample and out-of-sample. The
first conclusion is that we have quantified our method’s accuracy and it is reasonably
high given that the probability of randomly selecting the correct option is 20%. The
second conclusion is that there is not much difference between in-sample and out-of-
sample accuracy, only 2.1%, which is encouraging considering the training procedure
of our models. Finally, we can see that if we relax the assumption of majority voting,
we are getting 100% accuracy for both experiments. This is quite promising since we
have at least 2 human subjects that can match BPL samples to the query in all tasks in
both types of experimentation.

8.4 Impact of Data Generation for HTR

In this Section, we describe the generation of text lines, the HTR methods, and the
evaluation of cipher text recognition.

8.4.1 Data Generation results - Line Level

Most HTR methods recognize the text at the word or line level because it is hard to seg-
ment it into isolated characters, which is also the case with most cipher manuscripts.
As a consequence, segmenting symbols and classifying symbols is not a feasible op-
tion. For this reason, we have created text lines to be used for training the HTR. Con-
cretely, we take the symbols generated by BPL and horizontally concatenate them in
a manner as much realistic as possible. We set the space between characters, chosen
randomly between 0 and 30 pixels, and we rotate each character randomly between −5
and 5 degrees. Also, we add some artifacts to the upper part and lower part of the line.
The synthetic text lines created from the BPL-generated symbols are called the BPLL
set.

For comparison, we also applied some data augmentation techniques (rotation,
resizing, random thickness,...) on the real symbols and concatenated them to generate
synthetic lines from the real symbols. We denote this set as DAL. Moreover, we created
another set of lines by randomly mixing symbols from the two previous sets, resulting
in three different sets of lines. A few samples from those lines are shown in Fig. 8.5. As
can be seen, some noise was introduced to make the lines as similar as possible to the
real ones. The training of the HTR models can be done using one of the created sets,
and also by mixing sets. Thus, we used the following two forms of mixing:

• Homogeneous Lines (HomL): composed of lines from the BPLL set + lines cre-



105 A One-shot Learning Approach for Compositional Data Generation

Line created from the BPL generates symbols (BPLL set)

Line created from the real few symbols + applied transformations (DAL set)

Line created from mixing the above ones.

Figure 8.5: Examples of the three sets of lines, created by concatenating the symbols.

ated from the DAL set. In other words, we do not mix in the same line real sym-
bols with BPL-generated symbols and vice versa.

• Heterogeneous Lines (HetL): composed of lines created from the mixed symbols
(generated by BPL and data augmentation) + lines from the DAL set. In other
words, we mix real symbols with BPL-generated symbols while generating a line
and vice versa.

It is to note that we used three scenarios in this study: 10 samples, 5 samples, and
1 sample. That means that we start with only 10, 5, or 1 example(s) of each of the Borg
symbols, respectively, to perform the data augmentation and the BPL generation in
order to create the synthetic data from a low-resource alphabet.

8.4.2 HTR models and Evaluation Metric

After generating the synthetic lines, an HTR model can be trained for recognition. For
this, we consider two options: A supervised model based on sequence to sequence
with attention [95] and a few-shot learning-based model [173].

Seq2Seq for HTR The first method follows most of the HTR models, where the goal
is to learn a mapping function from a line image X to a text Y . It is an attention-based
sequence-to-sequence model, proposed in [95] and composed of three main parts: an
encoder includes a CNN and a bi-directional Gated Recurrent Unit (GRU), an atten-
tion mechanism, and a decoder constituted from a one-directional GRU. Thus, given a
line image as an input, the recognition is done character by character using the atten-
tion mechanism to produce the output text. This model showed competitive results in
handwritten recognition with a huge amount of data using various Latin manuscript
datasets for evaluation.

Few-shot for HTR Since we are using one or a few examples of each Borg symbol
to generate the data (a few-shot generation), using a few-shot model for recognition
could be suitable. Thus, we choose the approach proposed in [173], a segmentation
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free (works at line level) method for historical ciphered handwritten text recognition. It
consists in inputting a ciphered text line image with an associated alphabet as isolated
symbols to a matching model, where one or a few examples (usually up to five) of each
symbol should be given. Then, a similarity matrix between the line and the alphabet is
outputted. After that, the recognized text is decoded from the matrix. Formally, if the
size of the Borg alphabet is N and we provide k examples from each of the alphabet
symbols for matching (the shots), the process is considered a N -way k-shot detection
problem.

Table 8.1: Obtained results by different methods and settings: Real and synthetic data
were tested with various sizes (# of ann. lines). # of generated samples indicates the
number of images per each symbol, used to generate the synthetic lines.

Data Type Model #of ann. lines # of gen. samples k-shot SER

Real

Unsupervised [14] None – – 0.54

Few-shot [173] None – 5 0.53

MDLSTM [60]

≈ 81 – – 0.71
≈ 114 – – 0.66
≈ 148 – – 0.69
≈ 214 – – 0.55

Few-shot [173] 117 – 5 0.21

Ours (HomL) Few-shot [173]
1000 10 5 0.25
1000 5 5 0.25
1000 1 1 0.31

Ours (HetL) Few-shot [173]
1000 10 5 0.30
1000 5 5 0.28
1000 1 1 0.41

Ours (HomL)
Seq2Seq +
Attention [95]

1000 10 - 0.70
1000 5 - 0.69
1000 1 - 0.77

Ours (HomL) + Real Few-shot [173] 117 + 117 5 5 0.20

Ours (HomL)
Seq2Seq +
Attention [95]

2500 5 - 0.50
5000 5 - 0.48
10000 5 - 0.47
20000 5 - 0.47

We have chosen this model because it has been applied to ciphers in a few shot sce-
nario. The method is trained on synthetic alphabets (e.g. Omniglot [106] constructed
lines) and tested on real ciphered data, requiring only the support set. However, the
results show that this model can obtain better results when it is fine-tuned on some
real data.

Evaluation Metric The evaluation of the ciphered text transcription is done accord-
ing to the Symbol Error Rate (SER) metric. It is similar to the Character Error Rate (CER)
for text recognition. Formally, SER = S+D+I

N , where S, D and I are the numbers of re-
quired substitutions, deletions, and insertions, respectively, while N is representing
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Figure 8.6: SER of testing with real Borg lines and synthetic BPLL lines, using different
mixing settings and conditioning on different numbers of samples for generation.

the ground-truth’s line length in term of symbols.

8.4.3 HTR Results

We begin by finding the best setting to mix the created datasets, then we compare the
best performance with the state-of-the-art methods for transcribing the Borg ciphered
manuscript using real data.

Effect of mixing: We took lines from BPLL and DAL sets to find the best mixing set-
ting for the HomL mixed set, defined above. The assumption is that using this mixing
we can obtain better results than using separate sets. Because, as it can be seen from
Fig. 8.5, BPLL lines are visually rich: the writing style variation of each symbol is realis-
tic, while DAL lines are visually similar to the real Borg lines. To find the right amount of
lines from each set that should be added to the total mix, we perform an experiment of
varying the percentages of the BPLL and the DAL, and calculating the SER at each time.
The used model for this training is the one presented in [173] which shows good results
for the Borg manuscript. As shown in Fig. 8.6, the performance of the model trained
using only the BPLL is not optimal, but it is stable using different amounts of shots
[0.33,0.38]. On the other hand, by using only the DAL based on classic data augmenta-
tion techniques, the performance decreases if we reduce the number of examples per
each Borg symbol that are used to create the data (from 0.25 using 10 samples to 0.45
using 1 sample). Mixing both sets, leads to better performance, especially if the mixed
data is composed of 50 % from each set. Thus, we can conclude that adding the same
number of DAL to the BPLL lines acts like a regularization technique. That is why we
will keep this setting in the next experiments to compare our generated data with using
real Borg data to train models.
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SOTA results: The obtained results using different approaches and data settings
are presented in Table 10.3. We compare the performance when using real Borg lines
(where we can apply unsupervised or supervised learning), versus using our synthet-
ically generated lines. As expected, annotated data-free approaches, such as the un-
supervised [14] or few-shot without fine-tuning [173] (although providing one or few
examples from each symbol to be used as supports is still needed) obtains very poor
results. The reasons are the high degree of similarity among the Borg symbols and the
difficult symbol segmentation in the unsupervised approach, whereas in the few-shot
method the problem is the difference of distribution between the Borg dataset and the
Omniglot one that was used to train. It is better, hence, to train the segmentation-free
models with annotated data. This leads to two options: Using real annotated data or
using our synthetically created one.

In the case of having a high amount of annotated lines, training an MDLSTM in a
supervised way could lead to a good result. But, in our experiments, since the maxi-
mum number of available annotated lines is 214, and knowing that the Borg manuscript
has different handwriting styles, the results are still moderate. Note that, of course,
the performance improves when providing more annotated pages, which require more
user effort. With the few-shot method, however, a much better result of 0.21 SER is ob-
tained with few annotated data (117 lines for fine-tuning the model pretrained on Om-
niglot). But, even the annotation of these 117 lines at the symbol level (i.e. providing
the bounding box of each one) is a time-consuming task. Note that when performing
the human annotation experiment, we found that those lines require approximately 4
hours to be labeled.

To reduce this effort, the same model is fine-tuned with our synthetically created
lines. Using the HomL set, the results are slightly diminished, from 0.21 to 0.25 as SER.
But, we believe that this difference of 0.04 is not worth it because it implies annotat-
ing 117 lines. Instead, by using our BPL-based approach, the user just needs to pro-
vide 5 examples of each Borg symbol. Moreover, we can obtain a SER of 0.31 which is
also competitive, when using only 1 example per symbol, to generate the lines. This
proves the effectiveness of our synthetically generated data in replacing the real one,
with a huge gain in annotation effort, and a minimal decrease in recognition perfor-
mance. We also notice that using 10 or 5 examples to generate data gives the same
results when testing instead of improving. This can be explained by increasing the out-
of-the-sample matching, which may require using more data to cover it. We note also
that using the other set (HetL) for training leads to a minor performance.

For comparison sake, we tested the Seq2Seq [95] model, with the same lines. But
results were unsatisfactory because it needs much more data to be trained than MDL-
STM. Hence, we generated thousands of text lines for training using the 5 shots setting.
However, we can see that the performance stabilizes after using a certain amount of
lines. The reason is that the generated sample variation is quite limited since we are
only using 5 samples. Thus, we can conclude that generating fewer samples and train-
ing the few-shot model is a much better option.

Finally, we can see that when mixing the real Borg lines with the same amount
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of lines generated synthetically from 5 examples by BPL, we obtain the best result,
concretely 0.20 SER, which indeed outperforms the state of the art of recognizing this
manuscript.

8.4.4 Latin Handwritten Text

Next, we select a modern manuscript to further investigate the applicability of BPL
generation. For this purpose, we take the English manuscript from the IAM dataset and
simulate the low resource scenario by taking only 73 lines belonging to the writer 552.
Then, we cropped 1 example from each English character (upper and lower cases) to
generate data using our method. After that, we train the few-shot model in a 1 shot set-
ting (note that we are not using any labeled text lines, we are just using 1 labeled exam-
ple from each isolated character). The obtained results are shown in Table 8.2. As it can
be seen, applying our model without the BPL generation leads to 0.35 as CER. While by
adding the BPLL lines, we boost the performance to 0.31 as CER, which demonstrates
the utility of our method.

Data Type Model CER
DAL Few-shot [173] 0.35
HomL Few-shot [173] 0.31

Table 8.2: The results on IAM dataset, simulating the low resource handwritten recog-
nition. The numbers are in terms of character error rate (lower is better).

8.5 Conclusion

In this Chapter, we have used a one-shot approach for compositional handwritten text
generation and we have demonstrated its effectiveness for low resource text recogni-
tion, as an example of sequence recognition. Although we have taken historical ci-
phered manuscript recognition as a study case, it can be applied on any other alphabet
or script.

Our method uses BPL to generate synthetic symbols from a few real examples. Af-
terward, synthetic lines were created to train machine learning algorithms for HTR.
From the experiments, we can say that the created data leads to competitive results
compared to using a real annotated dataset, with a significantly reduced manual an-
notation effort by a huge margin. Moreover, we have achieved the state of the art in
Borg ciphered text recognition when combining it with real data for training.

As future work, we will investigate more realistic approaches to creating text lines
from the generated symbols, for instance, the impaired domain translation methods.
Moreover, we will investigate using the compositional generation to directly create
words or lines instead of isolated symbols, with the possibility of applying this to dif-
ferent manuscripts.
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Chapter 9

A Self-Supervised Transformer
Autoencoder for Text Recognition and
Document Enhancement

In this Chapter, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE),

a self-supervised model designed to tackle two tasks, text recognition (handwrit-

ten or scene-text) and document image enhancement. We start by employing a

transformer-based architecture that incorporates three pretext tasks as learning

objectives to be optimized during pretraining without the usage of labeled data.

Each of the pretext objectives is specifically tailored for the final downstream tasks.

We conduct several ablation experiments that confirm the design choice of the se-

lected pretext tasks. Importantly, the proposed model does not exhibit limitations

of previous state-of-the-art methods based on contrastive losses, while at the same

time requiring substantially fewer data samples to converge. Finally, we demon-

strate that our method surpasses the state-of-the-art in existing supervised and

self-supervised settings in handwritten and scene text recognition and document

image enhancement. Our code and trained models will be made publicly available

at https://github.com/dali92002/SSL-OCR .

9.1 Introduction

In recent times, self-supervised learning paradigms have gained a lot of attention due
to their ability to benefit from massive unlabelled data which is easily accessible from
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Text-Degradation Invariant Auto-Encoder

Masked image Blurred image Noisy image
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Figure 9.1: Text-Degradation Invariant Auto-Encoder (Text-DIAE), we employ image
reconstruction pretext tasks at pretraining. Masking, blurring and adding noise are
employed to learn richer representations.

different sources. However, applying these approaches remain quite limited in the do-
mains of optical character recognition (OCR), handwritten text recognition (HTR), and
document image enhancement, which motivate us to tackle the problem in this study.

Common computer vision pipelines using self-supervised frameworks employ a
pretext-task (e.g. relative position prediction of patches [51], contrastive views [34], im-
age inpainting [140], etc.) to learn visual representations for solving down-stream tasks
like classification, object detection and so on. Current self-supervised paradigms [30,
29, 34, 37] have adapted transformers [185] to learn visual representations from un-
labelled images which are semantically meaningful. More recently, generative self-
supervised approaches [73, 13, 53] using auto-encoders have been used to learn repre-
sentations in the feature space through image patches and visual tokens.

Closely related to our work, some contributions in visual representation learning
were addressing text recognition (HTR) [2, 21, 120] and Scene-Text Recognition (STR) [2,
207]) and image enhancement [118]. Despite the performance gains, there are some
drawbacks of such models: (1) independent sequences of tokens are treated as single
data points, which can cause misalignment of similar sequences among a batch, (2)
considerable batch size requirements to define negative contrastive pairs, (3) consid-
erably slow convergence rates.

For humans, reading text in noisy scenarios is possible because of the ability or
reconstructing the degraded regions and predicting the missing/blurry content [78,
48]. Incorporating such an ability in a model could immensely help in the restora-
tion, recognition, and understanding of characters and symbols, considering that text
carries rich linguistic information that allows humans to reason explicitly according
to context. In order to endow this human-specific skill to our models, we present in
this Chapter a new self-supervised framework called Text-Degradation Invariant Auto-
Encoders (Text-DIAE) inspired by the principle of denoising autoencoders [186], as de-
picted in Figure 9.1. Our model focuses on exploring the dynamics of learning repre-
sentations under different degradation scenarios. Specifically, we propose the usage
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of a robust self-supervised auto-encoder along with customized pretext tasks (mask-
ing, blur and background noise) that are designed to specifically tackle two different
downstream tasks: text recognition (HTR and STR) and document image enhance-
ment (document binarization, document deblurring). As a consequence, the choice
of the proxy tasks has been realized to learn useful representations for solving these
specific downstream tasks using unlabeled data.

The benefits of employing such an approach are: We do not define sequences at
the feature level. Rather, by employing a transformer-based [185] approach, similar
to BERT [50] we utilize the self-attention layers to attend among patches which does
not require big batches of negative samples. Also, the combination of these pretrain-
ing tasks result in a significantly faster convergence compared to previous approaches.
The resulting representations are evaluated by a scenario that resembles the linear
probing evaluation often used in self-supervision [103, 206] and follows the scheme
of [2] in the text recognition task. By this assessment, we find that our method outper-
forms previous self and semi-supervised pipelines. Furthermore, by employing Text-
DIAE, we achieve state-of-the-art in handwritten text recognition and document im-
age enhancement, while outperforming scene text recognition under self-supervision
settings. The essential findings and novelties of our work are based on the following
interesting deductions:

• The impact and combination of pretext tasks depend on the downstream task.

• The closer the association between a pretext task and a downstream task, the
better is the model performance.

• By employing Text-DIAE, we achieve faster convergence and use order of mag-
nitude lesser data during pretraining than the contrastive-learning-based ap-
proaches.

To add on top of this, this is the first work to our knowledge that investigates different
self-supervised pretext tasks for multiple significant downstream tasks in text recogni-
tion (HTR-word level, STR) and document image enhancement (document binariza-
tion, deblurring) while achieving state-of-the-art performance with 43 and 45 times
lesser data for HTR and STR, respectively.

9.2 Method

In this section, we present our proposed method for text image recognition and en-
hancement by describing its building blocks. Our approach uses two steps: a pre-
training stage to learn useful representations from unlabeled data and a supervised
fine-tuning phase for the desired downstream task.
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Figure 9.2: pretraining pipeline. Text-DIAE aims to learn degradation invariant repre-
sentations. These are later used to reconstruct the input image with a specific learning
objective for each degradation type.

9.2.1 pretraining Module

The overall pretraining pipeline of Text-DIAE is shown in Fig. 9.2. For each task, given
an unlabeled image I (eg. a cropped handwritten text, cropped scene text, or a scanned
document image)we use a function φ to map I to a degraded form. The function φ

takes as parameters the original image I and the degradation type T ∈ {mask,bl ur,noi se}
where we denote a degraded image by Id =φ(I ,T ).

Our model is composed of an encoder E and a decoder D with learnable param-
eters θE , θD respectively. The pretraining pipeline trains an encoder function E that
maps the degraded image Id to a latent representation zT in a multi-task fashion (un-
masking, deblurring, and denoising) and then learning a decoder D to reconstruct the
original image I from the representation zT :

zT = E (φ(I ,T );θE )

Ir = D(zT ;θD )
(9.1)

The learned visual representations from the latent subspace should be invariant to the
applied degradation T .

Encoder. The encoder architecture consists of a vanilla ViT [55] backbone. Given an
input image Id , it is first split into a set of N patches, I p

d = {I p1

d , I p2

d , . . . , I pN

d }. Then,
these patches are embedded with a trainable linear projection layer E . Text-DIAE uses
a distinct linear projection layer for every defined pre-text task. These tokens are later
concatenated with their 2-D positional information embedded with Epos and fed to L
transformer blocks to map these tokens to the encoded latent representation zl . These
blocks are composed of L layers of Multi-head Self-Attention (MSA) and a feedforward
Multi-Layered Perceptron (MLP) as depicted in Figure 9.2. Each of these blocks are
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to solve a specific downstream task. Explicit decoders are used for text recognition
(left) and document image enhancement (right).

preceded by a LayerNorm (LN) [10] and followed by a residual connection:

z0 = E(I p
d )+Epos

z ′
l = MSA(LN(zl−1))+ zl−1, l = 1, . . . L

zl = MLP(LN(z ′
l ))+ z ′

l , l = 1, . . . L

zT = LN (zL)

(9.2)

Decoder. The decoder is composed of transformer blocks following the same struc-
ture and number of layers as the encoder. The decoder input is the output of encoder
zT . The output of the decoder is a set of vectors Ir = {I p1

r , I p2
r , ..., I pN

r } where each of
which corresponds to a flattened patch in the predicted (reconstructed) image. Same
as before, a distinct linear layer is used for each pre-text task.

z ′
l = MSA(LN(zl−1))+ zl−1 , l = 1, . . . L

zl = MLP(LN(z ′
l ))+ z ′

l , l = 1, . . . L

Ir = Linear(zL)

(9.3)

9.2.2 Fine-Tuning

Our fine-tuning process is illustrated in Fig. 9.3 where we perform two different down-
stream tasks; text recognition and document image enhancement.
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Text Recognition. Text recognition aims to transform an image into a machine-encoded
form, i.e., a sequence of characters. Let I be a cropped text image and C = {c1 ,c2 , ...,cN }
its ground truth label which corresponds to a sequence of characters, where N is the
length of the text. The training is done by passing I to an encoder function E to pro-
duce a latent representation z. Then, z is later fed to a decoder function D′ to produce
a sequence of characters Cp = {cp1 ,cp2 , ...,cpN } that should match the ground truth label
sequence.

We initialize the encoder with the pretrained weights θE while we employ a sequen-
tial transformer decoder [185] as seen in Fig. 9.3-Left. The decoder is initialized ran-
domly and composed of L transformer blocks of MSA, MLP and Masked-MSA layers
preceded by LN layers and followed by a residual connection. The output of the de-
coder is a sequence of characters where at each time step t , the predicted character is
formed by attending to the representation z and previous character embeddings until
t −1.

Document Image Enhancement. Document enhancement consists of mapping a
degraded document into a clean form. Let Id be a degraded image and Ic its clean
version, then the goal is to learn an encoder function E that maps Id to a representation
z in the same way as in Eqn 9.2. E weights are initialized from the pretraining stage.
The decoder D′′ generates the clean image Ic from z as in Eqn 9.3.

9.2.3 Learning Objectives

Our model makes use of different sets of losses for each phase. During pretraining, we
use three different losses. Each one is dedicated to a particular pre-text task: Lmask ,
Lbl ur and Lnoi se . Each of these losses is a mean squared error (MSE) between the
reconstructed image Ir (from the masked, blurred, or noisy image) and its ground-
truth version Ig t . Thus, the overall loss for our pretraining stage is:

Lpt =λ1Lm
(
Ir , Ig t

)+λ2Lb
(
Ir , Ig t

)+λ3Ln
(
Ir , Ig t

)
(9.4)

Where during our experimentation, the best results were obtained with setting λ1 =
λ2 = λ3 = 1. Also, while fine-tuning on text recognition, we use a cross-entropy loss
between the predicted sequence of characters Cp and C . And document image en-
hancement fine-tuning, we used an MSE loss between the cleaned image Ic and I .

9.3 Experiments

In this section we describe the studied scenarios and experiments performed for text
recognition and document enhancement respectively. We ask the reader to refer to the
supplementary material for specific implementation details.
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Table 9.1: Representation quality. We evaluate the encoder capability of learn-
ing visual representations. This scenario is analogous as the linear probing in self-
supervised models. We train a decoder with labelled data on top of a frozen encoder
pre-trained on the proposed degradation. The column Seen refers to the number of
samples in millions seen during pre-training. Word prediction in terms of Accuracy
(Acc) and single edit distance (ED1) in handwritten and text recognition.

Method Encoder Decoder
Handwritten Text Scene-Text

IAM CVL IIIT5K IC13
Acc ED1 Seen Acc ED1 Seen Acc ED1 Seen Acc ED1 Seen

simCLR [34]
CNN

CTC

4.0 16.0 205.8 1.8 11.1 205.8 0.3 3.1 409.6 0.3 5.0 409.6
seqCLR [2] 39.7 63.3 205.8 66.7 77.0 205.8 35.7 62.0 409.6 43.5 67.9 409.6
PerSec [120] – – – – – – 37.9 – – 46.4 – –
PerSec [120] ViT – – – – – – 38.4 – – 46.7 – –
simCLR [34]

CNN
Attn.

16.0 21.2 205.8 26.7 30.6 205.8 2.4 3.6 409.6 3.1 4.9 409.6
seqCLR [2] 51.9 65.0 205.8 74.5 77.1 205.8 49.2 68.6 409.6 59.3 77.1 409.6
PerSec [120] – – – – – – 50.7 – – 61.1 – –
PerSec [120] ViT – – – – – – 52.3 – – 62.3 – –
Ours ViT Transf. 71.0 82.1 4.7 78.1 81.5 1.2 77.1 87.8 9.1 92.6 95.6 18.2

9.3.1 Text Recognition

Evaluating Representations. In order to evaluate the quality of the learned represen-
tations, and extend commonly used linear-probing settings [206], we employ a similar
approach as introduced by [2]. As a first step, the encoder is pretrained with unlabeled
data as described in Section 9.2.1. After that, the encoder’s weights are frozen and a
new decoder is trained on top of it with all the labeled data. The decoder, as we de-
tailed above, generates the predicted characters in a time-step manner. Since the en-
coder remains frozen, this scenario is a good proxy that represents the expressivity of
the learned visual representations. To this end, Table 9.1 shows the results of our pro-
posed approach. We compare self-supervised methods specifically designed for the
text recognition task.

Better performance. As it can be seen from Table 9.1, the seqCLR method pre-
sented by [2] improves significantly a self-supervised baseline inspired by SimCLR [34].
In the recently released approach PerSec by [120], they slightly improve over the se-
qCLR. It is evident that our Text-DIAE model greatly outperforms all the aforemen-
tioned state-of-the-art approaches regarding the representation quality obtained, both
in handwritten and scene-text. The improvements in terms of the accuracy in a hand-
written text dataset, IAM, is close to +20 points. Moreover, a bigger improvement gap
is obtained when evaluating scene text. An average gain of +30 points is accomplished
in IIIT5K and ICDAR13, proving the generalization of our method to different domains.
In our model, the great expressivity of features achieved by the encoder is mainly due
to two factors. Firstly, by masking image patches, the encoder learns a strong unigram
character distribution (refer to Figure 9.4), which is not leveraged in previous methods.
Secondly, by distorting and recovering the image, we make the model learn richer rep-
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Table 9.2: Semi-supervised results. Accuracy obtained by fine-tuning a pre-trained
model with varying percentages of the labeled dataset. Under this setting, we back-
propagate the gradients through the specific decoder and the pre-trained encoder.

Method Encoder Decoder
Handwritten Text Scene-Text

IAM CVL IIIT5K IC13
5% 10% 100% 5% 10% 100% 100% 100%

Supervised [2]

CNN
CTC

21.4 33.6 75.2 48.7 63.6 75.6 76.1 84.3
simCLR [34] 15.4 21.8 65.0 52.1 62.0 74.1 69.1 79.4
seqCLR [2] 31.2 44.9 76.7 66.0 71.0 77.0 80.9 86.3
PerSec [120] – – 77.9 – – 78.1 82.2 87.9
PerSec [120] ViT – – 78.0 – – 78.8 83.7 89.7

Supervised [2]

CNN
Attn.

25.7 42.5 77.8 64.0 72.1 77.2 83.8 88.1
simCLR [34] 22.7 32.2 70.7 59.0 65.6 75.7 77.8 84.9
seqCLR [2] 40.3 52.3 79.9 73.1 74.8 77.8 82.9 87.9
PerSec [120] – – 80.8 – – 80.2 84.2 88.9
PerSec [120] ViT – – 81.8 – – 80.8 85.2 89.2

Supervised (Ours)
ViT Transf.

22.8 25.3 71.7 17.9 19.8 71.9 75.7 91.9
Ours 49.6 58.7 80.0 47.9 68.5 87.3 86.1 92.0

resentations to detect and recover the text into a clean and readable state. Thus, the
model is learning the most valuable features that lead to the best recognition perfor-
mance.

Faster convergence. One of the most important outcomes by employing our method,
is that a paramount improvement in convergence is achieved during pretraining. Ta-
ble 9.1 shows this effect under the column labelled as “Seen”. It depicts the total num-
ber of seen samples that each model requires during the pretraining stage. It is worth
highlighting that during pretraining the encoder of our model requires 43 and 166
times lesser data in IAM and CVL respectively when compared to the seqCLR and sim-
CLR. In scene-text, our model employs only 18.2M samples to yield powerful repre-
sentations compared to the 409M samples required by previous self-supervised ap-
proaches.

Fine-Tuning. In this stage, we evaluate our model considering a semi-supervised set-
ting where the obtained results are depicted in Table 9.2. Here we use the self-supervised
pretrained encoder as a backbone and train a transformer-based decoder from scratch
that predicts the characters in a sequential manner, as illustrated in Fig. 9.3-Left. In this
scenario, the gradients are back-propagated not only to the decoder but also to the en-
coder. Following the previous work [2], we use 5% and 10% of the labeled dataset by
randomly selecting the training samples. As suggested in [34] we perform fine-tuning
on all the labeled dataset. In order to compare with [2] and since the scene-text dataset
is synthetic, we evaluate with the complete labeled dataset.

Higher performance in fine-tuning settings. Our model exploits data in a more ef-
ficient manner than previous self-supervised methods in the fine-tuning setting. We
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Table 9.3: Ablations of the pre-training objectives. Results in handwritten and scene-
text recognition obtained by each pretext task. The performance is measured in terms
of Word and Character error rates (WER and CER).

Lmask Lbl ur Lnoi se
IAM IC13

CER↓ WER↓ Avg. CER↓ WER↓ Avg.

✓ ✗ ✗ 9.3 20.0 14.65 4.5 8.0 6.25
✓ ✓ ✗ 12.3 24.8 18.5 4.2 8.0 6.10
✓ ✗ ✓ 11.1 23.3 17.2 4.8 8.6 6.70
✓ ✓ ✓ 11.4 23.8 17.6 5.1 9.3 7.20

infer that the set of degradations proposed yields rich signals, helping the encoder to
adapt to the downstream task more efficiently. Our model achieves state-of-the-art in
all scenarios when all the labeled datasets are used except in IAM where the PerSec is
slightly better. Under semi-supervised settings, our model performs better at the IAM
dataset when employing 5% and 10% of the labels than simCLR and seqCLR. Since CVL
contains substantially fewer data samples than IAM, SeqCLR still outperforms our ap-
proach in the CVL dataset. However, while employing the full labels of CVL, Text-DIAE
outperforms all the methods by a large margin.

More efficient than a supervised baseline. From table 9.2, we can also notice the su-
periority of pretraining our architecture compared to a fully supervised model starting
from scratch. This suggests that the self-supervised pretraining of such transformer-
based architectures is essential to obtain better results, and beneficial especially in
small labeled datasets scenarios, since the unlabeled data is generally easier to obtain
for a self-supervised pretraining.

The effect of fine-tuning after pretraining. By proposing the degradation invariant
optimization at pretraining, our model achieves a significant gain in recognition on
handwritten text datasets. An average of 10 points of accuracy are gained after fine-
tuning (refer to Table 9.1 and 9.2). Finally, it is important to note that our model reaches
state-of-the-art in the handwritten text recognition task, even compared to specifi-
cally designed supervised approaches. The results on the IAM dataset are shown in
Table 9.4, which measures the performance of a model in terms of word and character
error rate, WER and CER respectively.

Ablation Studies. The results of experimentation regarding the effect of each degra-
dation as a pretext task in pretraining are given in Table 9.3. Firstly, among the three
proposed degradations, masking is the most crucial to be applied in both tasks, hand-
written and scene text recognition. When an input word is masked, and in order to
properly reconstruct it, the model has to learn a character level distribution. This by
itself provides a strong prior compared to denoising or deblurring an image. Addition-
ally, adding blur in scene-text imagery improves the representations learned by the
model shown by the results. Lastly, adding noise does not result in an improvement in
text recognition tasks. However, as it is shown in the next section, the combination of
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Figure 9.4: Qualitative results of pretraining samples. The left refers to handwritten
text, while scene-text is depicted on the right. On each scenario, from left to right, the
original, masked and reconstructed images are depicted.

Table 9.4: SOTA results. Quantitative evaluation with state-of-the-art methods on the
IAM word level dataset.

Method CER↓ WER↓ Avg.

Bluche et al. [23] 7.3 24.7 16.00
Bluche et al. [24] 7.9 24.6 16.25
Sueiras et al. [178] 8.8 23.8 16.30
ScrabbleGAN [59] - 23.6 -
SSDAN [210] 8.5 22.2 15.35
SeqCLR [2] 9.5 20.1 14.80
PerSec [120] - 18.2 -
Ours 9.3 20.0 14.65

the 3 degradation produces a richer encoder in document enhancement. Therefore,
we can safely assume that each degradation has a task-dependent impact on the rep-
resentations learned depending on their similarity of them when compared to the final
downstream task and input data distribution.

Qualitative Results. In Figure 9.4 we show the reconstructed images at pretraining
stage for handwritten and scene-text samples. It is important to note the complexity of
the reconstruction task even for humans. Even though high masking percentages are
employed (75%), our model learns to properly adapt to handwritten styles and fonts
found in scene text. As can be appreciated, although sometimes our model’s recon-
struction does not match with the ground truth images, it can still reconstruct the most
probable and plausible English words (e.g. see “school” vs “sand” in 4th row in hand-
written examples). Another interesting outcome is also noticed for the scene-text ex-
ample where “xperia” is reconstructed correctly while the last character “a” is selected
from another font, demonstrating the model’s capability. Minor reconstruction errors
are found such as that the model eventually learns to overcome at the fine-tuning stage.
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9.3.2 Document Image Enhancement

Performance Analysis on Binarization. As shown in Table 9.5, the Text-DIAE outper-
forms the previous state-of-the-art approaches on the majority of the standard metrics
for document binarization tasks. Specifically, the quantitative comparison of results
demonstrates that Text-DIAE achieves an optimal gain in PSNR, FM, Fps and DRD
performance surpassing all previous arts. The largest performance improvement is
obtained over the H-DIBCO 2012 while the least performance gain is obtained in the
H-DIBCO 2018. One of the major concerns that degraded historical documents face
is the show-through effect, which appears when ink impressions from one side of the
document start appearing on the other side, making it almost impossible to read. The
enhanced Text-DIAE output illustrates that it not only resolves the show-through but
also sharpens and smoothens the edges of the foreground text approximately to the
ground-truth level.

Table 9.5: SOTA results. Comparison of the proposed Text-DIAE compared to previous
state-of-the-art approaches on the different DIBCO and H-DIBCO Benchmarks

Method
DIBCO Benchmarks

2011 2012 2017 2018
PSNR↑ FM↑ Fps↑ DRD↓ PSNR↑ FM↑ Fps↑ DRD↓ PSNR↑ FM↑ Fps↑ DRD↓ PSNR↑ FM↑ Fps↑ DRD↓

[164] 15.60 82.10 - 8.50 16.71 82.89 87.95 6.59 14.25 77.11 84.1 8.85 13.78 67.81 74.08 17.69
[96] 19.90 95.50 - 1.80 21.37 95.16 96.44 1.13 15.85 91.57 93.55 2.92 19.39 89.71 91.62 2.51
[211] 20.30 93.80 - 1.80 21.91 94.96 96.15 1.55 17.83 90.73 92.58 3.58 18.37 87.73 90.60 4.58
[170] 20.81 94.37 96.15 1.63 22.29 95.31 96.29 1.60 19.11 92.53 95.15 2.37 19.46 90.59 93.97 3.35
Ours 21.29 95.01 96.86 1.48 23.66 96.52 97.04 1.10 19.64 93.84 95.71 1.93 19.95 91.32 94.44 3.21

Performance Analysis on Deblurring. In Table 9.6 we show a quantitative compar-
ison and superiority of Text-DIAE over supervised techniques [80, 191, 174, 170] on
the document deblurring benchmark. A substantial gain in PSNR by +2 points on a
logarithmic scale is obtained over DocEnTr [170], which signifies the greater quality
of deblurred images generated by Text-DIAE. There are two different kinds of blurring
which appear in documents: motion blur owing to the sudden rapid camera move-
ment and out-of-focus blur which emerges when the light fails to converge in the im-
age. In Fig. 9.5, we show an interesting qualitative case study of a motion-blurred doc-
ument image. We assess the performance of deblurring by running the Tesseract-OCR
engine [168] over the blurred, ground-truth, DocEnTr prediction and the Text-DIAE
output. Qualitative results show that Text-DIAE significantly decreases the CER, show-
ing vast improvement in OCR performance as depicted in green font.

Ablation Studies. We also showcase an interesting ablation on the task of document
image binarization for the challenging DIBCO 2018 benchmark. From Table 9.7, we
infer that any pretraining task is beneficial while the denoising task is the most cru-
cial to be applied when each pre-text task is applied separately. The aforementioned
result can be attributed to the fact that denoising is much closer to the downstream bi-
narization task. Also, it demonstrates that Text-DIAE performs the best for document
enhancement tasks when the model learns all the possible degradation (masking, blur-
ring, and adding noise) together.
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Table 9.6: SOTA results: Quantitative evaluation with state-of-the-art methods on the
deblurring dataset.

Method PSNR
CNN-Baseline [80] 19.36
Pix2Pix-HD [191] 19.89
DE-GAN [174] 20.37
DocEnTr [170] 21.28
Ours 23.58

Original Input DocEnTr [170] Ours Ground Truth

OCR output: "Mae yw spaniedod'» 
if MA AAPAIMAAPE dosh anelf, 

Awanaisnn A dnnmoupil 1 Mie 

Myrtle dial cell sagos Alo Wie 

sascled saesye dias,"

OCR output: "the parameters 

of Ure conmnnon del iticif, 

because it mecensartly r the 

hypotictical wealth shares 

ndoed the model worn truc."

OCR output: "the parameters 

of the common del ituelf, 

because it necessarit r the 

hypothetical wealth shares 

rdeed the model were true."

OCR output: "the parameters 

of the common del itself, 

because it necessarily r the 

hypothetical wealth shares 

ndeed the model were true:"

CER: 78.86 CER: 18.51 CER: 8.94 CER: 4.88

Figure 9.5: Qualitative results of deblurred samples. The document image on the left
refers to the originally captured blurred image, followed by the ground-truth, and the
deblurred results from the DocEnTr and our Text-DIAE model towards the right. The
correctly predicted OCR output is shown in "Green" font while the inaccurate ones are
depicted in "Red" and recognition performance in terms of CER.

Table 9.7: Ablations of the degradations as pre-training objectives. Results in doc-
ument image binarization on DIBCO 2018 obtained by each pretext task in terms of
PSNR.

Lmask Lbl ur Lnoi se PSNR
✗ ✗ ✗ 18.75
✓ ✗ ✗ 19.65
✗ ✓ ✗ 18.98
✗ ✗ ✓ 19.82
✗ ✓ ✓ 19.34
✓ ✗ ✓ 19.45
✓ ✓ ✓ 19.95
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9.4 Conclusion

This work demonstrates the capability of learning richer representations through pre-
text degradation tasks. Self-supervised learning can immensely boost the performance
of text recognition and document image enhancement without any requirement of la-
beled data. Notably, we show that Text-DIAE does not share the limitations of con-
trastive or sequential approaches and is more effective at learning rich representations
while seeing significantly fewer data points. Extensive experimentation during fine-
tuning demonstrates that Text-DIAE surpasses previous supervised and self-supervised
state-of-the-art in handwritten text recognition and document image enhancement
while outperforming previous self-supervised approaches in scene-text recognition.
We hypothesize that Text-DIAE performs complex variable reconstructions during pre-
training, which helps to learn meaningful visual concepts from the latent representa-
tion space. We also provide the community with the following insights to work on: 1)
Designing new pretext tasks that are similar to downstream tasks. 2) The effect/trade-
off of a combination of various pretext tasks on the downstream tasks. 3) A need for a
holistic approach to combine all the tasks into a single model.
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Chapter 10

Evaluation of HTR systems for the
Automatic Transcription of Rare
Manuscripts from a User perspective:
Application to Codex Runicus

Recent breakthroughs in Artificial Intelligence, Deep Learning, and Document Im-

age Analysis and Recognition have significantly eased the creation of digital li-

braries and the transcription of historical documents. However, for documents

in rare scripts with few labeled training data available, current Handwritten Text

Recognition (HTR) systems are too constrained. Moreover, research on HTR of-

ten focuses on technical aspects only, and rarely puts emphasis on implementing

software tools for scholars in Humanities. In this Chapter, we describe, compare

and analyze different transcription methods for rare scripts. We evaluate their per-

formance in a real use case of a medieval manuscript written in the runic script

( Codex Runicus) and discuss the advantages and disadvantages of each method

from the user perspective. From this exhaustive analysis and comparison with a

fully manual transcription, we raise conclusions and provide recommendations to

scholars interested in using automatic transcription tools.
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10.1 Introduction

The protection and preservation of cultural heritage has been considered of paramount
importance for decades. This awareness was especially evident after the two World
Wars and increased with the UNESCO World Heritage Convention in 1972. Among
the cultural assets and objects (e.g. archaeological sites, buildings, paintings, coins,
etc.), historical documents form one important part containing valuable information
related to the culture and memory of our past societies. There have been many digiti-
zation campaigns in archives and libraries around the world. However, this is just the
first step towards the spread of our cultural heritage. Indeed, access to the information
contained in document collections remains limited until the documents are properly
transcribed, indexed, or even, linked.

Manual transcription of a vast amount of historical documents is extremely time-
consuming and their evaluation requires the interdisciplinary expertise of scholars in
paleography, history, etc. Recent breakthroughs in Artificial Intelligence, Deep Learn-
ing, Computer Vision, and Document Image Analysis and Recognition, in particular,
have eased the processing of documents for creating digital libraries. In fact, current
deep-learning-based Handwritten Text Recognition (HTR) methods obtain satisfac-
tory performance, so that, in theory, scholars can significantly speed up the transcrip-
tion process.

However, there are some practical limitations. First, research on HTR technology
has often focused on algorithms and methods from a mere technical perspective, fre-
quently disregarding the development of software tools for end users, such as scholars
in Humanities. Consequently, scholars require a substantial technical background for
applying such techniques to their particular manuscripts. Second, deep-learning al-
gorithms need a significant amount of labeled data to train. This constraint poses a
problem when transcribing uncommon scripts or alphabets (e.g. cuneiform, runes,
ciphered documents, Egyptian hieroglyphs, etc.) [172] because, contrary to common
scripts (e.g. Latin, Chinese, Arabic), such labeled data is barely available. Indeed, ex-
isting methods are often too constrained since they need labeled data for training and
fine-tuning. As a result, in practice, most of the existing HTR methods have little appli-
cability for transcribing uncommon scripts.

Therefore, our goal is to research and develop useful computational methods and
software tools to facilitate transcribing rare scripts for which no or very limited amount
of training data can be provided. In this work, we propose a first step towards the cre-
ation of such generic tools by developing and evaluating various transcription meth-
ods for rare scripts. As a real use case, we apply the transcription methods on the Codex
Runicus, an Old Danish manuscript text with legal works from the end of the 13th cen-
tury written in runic script.1

1The runes had been employed by Germanic people since the 2nd century AD and survived in Scandi-
navia also after the introduction of the Latin alphabet around the year 1000. Runes were mainly used epi-
graphically, i.e. for inscriptions on solid materials, such as stone or wood. The Codex Runicus is one of only
two longer manuscript texts that were written in runes.
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The contribution of this work is two-fold. Firstly, we have developed four different
transcription methods, each one with different characteristics (e.g. required amount of
labeled data, segmentation level, speed, etc.). Concretely, one learning-based method
is based on recurrent neural networks, one learning-free method based on cluster-
ing, and two few-shot learning methods (one for classification and another for de-
tection).Secondly, we have exhaustively evaluated these methods both quantitatively
and qualitatively with regard to their performance. We have discussed the advantages
and disadvantages of each method as well as their applicability from the user perspec-
tive considering time consumption in comparison with a fully manual transcription
and opportunities for user validation. On the basis of this evaluation, we give recom-
mendations for further development and usage of transcription tools for this kind of
manuscript.

The rest of the Chapter is organized as follows. Section 10.2 reviews the existing
HTR methods and software tools. Section 10.3 describes the different methods that
have been developed. Section 10.4 analyzes the experiments and Section 10.5 raises
recommendations for scholars. Finally, Section 10.6 concludes the Chapter.

10.2 Related work

In this section, we review the existing HTR methodologies and software tools.

10.2.1 Transcription methods for historical manuscripts

Handwritten text recognition (HTR) is an active research field in computer vision. Nowa-
days, one may find many different approaches for transcribing popular and widely
used scripts, such as Latin [93, 42], Chinese [212], Arabic [89] alphabets. Thanks to the
available resources in those alphabets (especially in terms of annotated data), most
existing methods opt for data-driven deep learning architectures, such as Recurrent
Neural Networks (RNN) and Convolutional Neural Networks (CNN). Using those deep
learning-based methodologies, a mapping function from the handwritten image to the
text characters is learned in a supervised way, leading to very satisfactory performance.
Moreover, recognizing text by Keyword Spotting Systems (KWS) was applied for histor-
ical text in [161, 162]. The time of using KWS and validating the output by a user was
shown to be a better option compared to the fully manual transcription.

However, in the case of uncommon or rare alphabets (e.g. Egyptian hieroglyphs,
cuneiform, runes), the literature is not so prolific. Not surprisingly, the few existing ap-
proaches are usually learning-free methods, because the performance of deep learning
models dramatically decreases when there is few annotated data to train. For this rea-
son, some researchers propose learning-free spotting for cuneiform [158, 25], whereas
others propose unsupervised transcription for ciphered manuscripts [14, 202]. Al-
though learning-free methods are flexible, their performance is moderate compared to
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learning-based approaches, especially when alphabets contain very similar symbols or
when characters are difficult to segment (e.g. touching characters in cursive writing).
Consequently, considerable manual intervention is needed to validate the HTR output
for an acceptable result.

Lately, and as an alternative to standard deep learning, Few-shot learning has been
proposed for computer vision tasks, including image classification [116, 111, 112] and
object detection [142]. These approaches require very few annotated data while reach-
ing a performance close to the standard deep learning-based ones. Founded on the
way humans learn novel concepts, few-shot has the ability to easily adapt to unseen
data. Thus, the data used for training is very few compared to standard deep learning
methods [169].

10.2.2 Transcription tools and user platforms

While research on HTR methods for historical manuscripts has significantly progressed
in recent years, Virtual Research Environments that make the technology accessible
and available for the Humanities scholars, archives, or the interested public are still
rare. Many transcription tools such as FromThePage2, Scripto3 or eLaborate4 are de-
signed to facilitate the (collaborative) manual transcription and provide tools to pro-
duce digital editions, but do not include HTR technology.

The most popular platform that offers an infrastructure for transcription and text
search of historical manuscripts is Transkribus. It has a workflow that includes the up-
load of digitized images, layout analysis tools for segmenting the digitized page images
into text lines, and transcription tools for transcribing these lines. The GUI allows both
for automatic and manual segmentation to mark lines. Users have the option to tran-
scribe either in a downloadable application or in an online web interface.5 It is possible
to use pre-trained HTR models or train one’s own HTR model from the ground truth.
The tool outputs a "confidence matrix" where the likelihood of a transcription char-
acter is shown in the image, which allows the user to decode the confidence into the
final transcribed text. The tool can obtain very good results (a CER lower than 5%) in
certain cases (cf. [132]), and includes pre-trained HTR models for Latin, Devanagari,
and Cyrillic alphabets. However, a crucial limitation of Transkribus is the need for a
very large ground truth data set for training (15,000 transcribed words) [132, pp. 959,
967]. This precondition makes the technology unavailable for manuscripts using rare
scripts, because such a large data set simply does not exist. An additional challenge for
transcribers of rare scripts is that these writing systems may include written characters
without a current Unicode coding (e.g. some runes in the here analysed Codex Runicus
[141]).

Contrary to Transkribus, eScriptorium [98] is an open-source transcription plat-

2https://fromthepage.com (accessed 20 July 2021)
3https://scripto.org/ (accessed 20 July 2021)
4https://elaborate.huygens.knaw.nl (accessed 20 July 2021)
5https://transkribus.eu/lite/#features (accessed 20 July 2021)

https://fromthepage.com
https://scripto.org/
https://elaborate.huygens.knaw.nl
https://transkribus.eu/lite/#features


131
A User Perspective on HTR systems for the Automatic Transcription of Rare

Manuscripts

form6, based on Kraken, an HTR system based on neural networks. The platform also
includes tools for layout analysis, and it is specifically designed for transcribing his-
torical manuscripts of any kind or alphabet. However, it has the same limitation as
Transkribus: the methodology is based on deep learning, so it requires a significant
amount of labeled data (aprox. 100 pages) to retrain the models for any new scripts.

The newly released platform Fabricus7, a tool included as an experiment in Google
Arts & Culture, also uses deep learning to translate ancient Egyptian hieroglyphs. It
features a workbench for researchers that includes the possibility to upload a digitized
image, clean the image, separate the different signs, and automatic recognition, classi-
fication and translation of the hieroglyphs. The classification is supported by a trained
neural network, whereas for the translation, the hieroglyphs are matched to dictio-
naries and published translations.8 Obviously, this tool is restricted to documents in
hieroglyphs and cannot be used for other kinds of scripts and writing systems.

In summary, generic and flexible transcription tools that do not imply a significant
human effort in providing manually annotated data are still lacking for the end-user
that wishes to transcribe manuscripts with rare scripts.

10.3 Transcription methods

In this section, we describe the methods that have been developed for transcribing
rare scripts. We have selected one representative method of each methodology so that
we can analyze the advantages and disadvantages of each methodology when applied
to a real use case. First, we have developed a deep learning method based on Long
Short-term Recurrent Neural Networks (LSTM-RNNs), which is very similar to the HTR
methods used in Transkribus and eScriptorium. Second, we have developed an un-
supervised clustering method (Cluster(sup)), and included a semi-supervised variant
that benefits from the user feedback (Cluster(semi-sup)). Third, we have adapted a
few-shot learning method proposed for image classification (FS-classification) to our
transcription task. Finally, we have developed a few-shot learning method originally
proposed for object detection (FS-detection), and applied it to transcription.

Table 10.1 describes the characteristics of each method. The user effort refers to the
amount of labeled data (ground-truth) that the user must provide to each method. The
segmentation level indicates whether the method requires, as input, segmented lines
or symbols. The performance indicates the typical accuracy, in general (as expected,
learning-based methods are usually the best). Scalability refers to the generalization
ability of the method with respect to the different kinds of manuscripts. Finally, the
hardware needs refer to the memory and processing power needed to train the differ-

6https://escripta.hypotheses.org/ (accessed 20 July 2021)
7https://artsexperiments.withgoogle.com/fabricius/en (accessed 20 July 2021)
8The platform additionally engages the wider public with two features: a "Learn" tool with tutorials and

training sequences and a "Play" feature where one can create their own messages in hieroglyphs and share
them.

https://escripta.hypotheses.org/
https://artsexperiments.withgoogle.com/fabricius/en
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ent methods. As it can be observed, there is no method that excels in all aspects.

Method User effort Segmentation Performance Scalability Hardware
(labelled data) level needs

LSTM-RNNs High Line High High Medium
Cluster(sup) None Symbol Moderate Low Low
Cluster(semi-sup) Very Low Symbol Moderate Medium Low
FS-classification Low Symbol Good Medium Medium
FS-detection Low Line Good High Medium

Table 10.1: Overview of the characteristics of the different methodologies.

Next, we describe the preprocessing steps commonly applied before the transcrip-
tion step. Then, we will describe the four transcription methods.

10.3.1 Preprocessing: Binarization and Segmentation

First of all, the manuscript is scanned at a minimum of 200 dpi, and the image is bina-
rized using Sauvola’s adaptive binarization method [164]. The aim of the binarization
is to remove the background noise as much as possible, highlighting the text as fore-
ground pixels. Afterward, vertical and horizontal projections are used to segment the
text in the page and disregard the page margins. Then, text lines are segmented using
horizontal projections.

The above-described preprocessing steps are common to all the methods. How-
ever, the clustering and few-shot classification methods need to segment the text lines
into symbols. So, to fulfill the segmentation requirements of these latter methods, we
segment the symbols as follows. First, we compute the connected components in the
image to isolate the symbols. Then, and since some symbols are formed by several
connected components (e.g. symbols with dots and accents), we group the connected
components according to their distance and center of mass to obtain the final charac-
ter segmentation.

Since our objective is to analyze the different transcription algorithms, we have
manually checked and corrected any inaccuracy in the segmented lines and symbols.
Thus, we make sure that the segmentation does not affect the transcription experi-
ments.

10.3.2 Learning-based method: LSTM-RNNs

The first implemented transcription method is a deep learning-based approach based
on Long Short-term Memory blocks Recurrent Neural Networks (LSTM-RNNs), which
is one of the most well-known and widely used approaches for handwritten text recog-
nition (HTR). In the case of handwriting recognition, the input is an image of a textline,
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whereas the output is the sequence of transcribed characters, which is typically ob-
tained using Bi-directional LSTM-RNNs [62]. It consists of computing a (previously
defined) vector of features for each column in the image, and processing the textline
in both directions (left-to-right and right-to-left) with the recurrent networks. In this
architecture, the Connectionist Temporal Classification (CTC) loss is used for training.

Lately, several architecture improvements have been proposed. Concretely, we
have opted for Multi-dimensional LSTMs (MDLSTM) [153, 60] because they obtain
good results while avoiding computing a manually pre-defined feature vector over the
image. In this way, the network can automatically learn which is the most suitable fea-
ture representation for each particular alphabet or manuscript. However, it is a deep
learning-based method, so it needs a considerably amount of labelled data to properly
learn.

10.3.3 Learning-free method: Unsupervised Clustering

In this Section, we describe the unsupervised and semi-supervised clustering methods.
Clustering is typically used for classification tasks, and has been adapted for transcrib-
ing ciphered texts [14]. In this case, the input of the method is the set of segmented
symbols in the manuscript.

Method description.

The method is composed of two steps: hierarchical clustering and label propagation.
First, we compute the SIFT [166] descriptor for each segmented symbol image, and
apply a hierarchical k-means [7] to obtain clusters. At the beginning, the algorithm
assumes that all symbols belong to the same cluster. Then, each cluster is recursively
subdivided into smaller clusters until the clusters are no more divisible or because we
have reached the minimum amount of symbols per cluster. Then, the most populated
clusters are automatically selected to be used as initial seeds for the label propagation
algorithm. The objective is to progressively propagate the labels (e.g. the cluster id) of
these populated clusters through the rest of the (not yet labeled) symbols. The algo-
rithm repeatedly assigns a label to each unlabelled symbol according to the labels of
its neighbors, until convergence (i.e. no more label changes).

Except for the initial seeds, the assignation of labels is a soft assignment, which
means that each symbol has a vector of probabilities between 0 and 1 for each possi-
ble label (e.g. an element x has a probability of 65% of belonging to cluster 4, and a
35% of belonging to cluster 7). To determine the final label for each symbol, we set a
confidence threshold of 60% as it was shown to be the optimal choice in [14]. For each
symbol, if the most probable label has a higher probability than a given threshold, we
will assign that label to the symbol. Otherwise, that symbol will remain unlabelled be-
cause there is no consensus (of course, it is better to leave a symbol as unlabelled rather
than assigning a wrong label). We will use the label */? for those unlabelled/unknown
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symbols.

Modalities.

In an ideal situation, each initial seed for the label propagation should have instances
of the same symbol class. However, it is common to find symbols in the alphabet that
are visually similar. Consequently, a cluster may contain samples from different sym-
bol classes as can be seen in Fig. 10.1, so we may propagate wrong label information.
For this reason, we have designed the following modalities:

Figure 10.1: Examples of elements from two different clusters. The scores shown in
green mean that the element is correctly clustered, while the ones in red are wrongly
clustered because of the high visual similarity.

Without user intervention In this case, there is no user intervention. The labels in
each cluster are propagated. So the user just validates and corrects the transcription
errors at the end of the process.

With user intervention In this scenario, the user can correct the clusters before the
label propagation starts, by doing two interventions:

• Cleaning the initial seeds. The user removes those symbols that do not belong to
that cluster (see figure 10.2a)). Since we ensure that the initial labels to propagate
are correct, the final transcription error is minimized.

• Select a cluster for each different symbol. The user can assign a cluster for each
symbol in the alphabet (see figure 10.2b)). In this way, we can ensure that the
labels to be propagated cover all the alphabet of symbols.
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Figure 10.2: Unsupervised clustering with user intervention. Left: The user removes
the wrongly clustered symbol in each cluster. Right: The user assigns the correspond-
ing label/transcription to each cluster.

10.3.4 Few-Shot Classification method

In this section, we describe the first few-shot learning method that we have developed
for transcription, which is inspired by the few-shot learning architecture presented in
[163] and the extensions proposed in [16]. Graphs have always been a powerful tool
to represent a set and the relationships between its elements, hence it was evident
to make use of this in Graph Convolutional Networks (GCNs). The main idea is to
represent each symbol as a node in the graph, and learn the similarity degree between
each pair of symbols, stored in the edges of the graph. Contrary to the previous deep
learning method, few-shot learning is able to learn in a particular set of classes and
test in a completely new set of classes. This means that the method can be trained on
common scripts (with training data available), and applied to unseen scripts.

Method description.

The few-shot architecture for symbol classification assumes that the input is segmented
symbols. Then, Convolutional Neural Networks are used to learn the embedding for
each node in the graph. At the beginning, it is the one-hot encoding of the label if
the label is known, and a uniform probability distribution otherwise. Ideally, and once
trained, the model is able to distinguish among symbol classes never seen before. We
have improved the original architecture with some improvements proposed in [16].
The first one consisted of exploring the information available in the edges, which re-
sulted in the omission of the model’s last layer and a decrease in the number of train-
able parameters. This model is illustrated in Figure 10.3.

Adaptation for transcription.

We concatenate the label for each segmented symbol to obtain the final transcription.
If we have k examples for each one of the N different symbols in the alphabet, the
problem is considered an N-way, k-shot classification task. In the experiments, we
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Figure 10.3: Few-Shot classification model.

have used the same number of examples per symbol class, this means that, during the
transcription, the number of ways and shots does not change.

In the original few-shot classification, the experiments are performed over disjoint
sets, which means that the training, validation, and test sets contain a distinct set of
classes. However, for transcription, we require to classify all the symbol classes in the
alphabet. For this reason, our training, validation, and test sets contain instances of
each one of the symbols in the alphabet.

10.3.5 Few-shot Detection method

The previous few-shot method requires segmenting the text line into isolated charac-
ters. Since the segmentation accuracy can affect the final transcription accuracy, we
propose to overcome this limitation by using a segmentation-free few-shot detection
method, which only requires segmented lines as input.

Method description.

Few-shot object detection could be defined as finding one or several instance(s) of an
object by providing a cropped example image, called a suppor t , in an image that con-
tains the object, called quer y image. Similarly to the previous method, if we have N
classes and we provide k examples from each symbol class, the problem is considered
N -way k-shot detection task.

We apply the few-shot transcription method proposed in [173] for recognizing ci-
phered manuscripts, where the query is the handwritten line image and the supports
are one or few examples of each symbol class in the alphabet. The model was trained
to match the support set within the query text lines, as shown in Fig. 10.4. The method,
trained on known alphabets of symbols, was able to transcribe manuscripts with un-
seen alphabets. However, the performance was highly enhanced if the model was fine-
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tuned (i.e retrained on some annotated data from the unseen alphabet). For this rea-
son, we use some annotated lines from the runic manuscript to retrain this method.

.  .  .

Matching 

Line Image 
(the query)

Alphabet Symbols
(the supports)

.  .  .

Similarity Matrix

Decoding

“it; þær:han;kænnir:þæt:fore:”

Recognized Text

Figure 10.4: Few-shot detection method for transcription: The matching model is ap-
plied to construct the similarity matrix between the alphabet and the query line. After
that, the matrix is decoded to obtain the final recognized text.

Adaptation for transcription.

After obtaining the symbols similarities, a decoding algorithm is used to obtain the
final transcribed text. From the input image line (the query) and the cipher alphabet
images (supports), we obtain the potential bounding boxes coordinates for each one
of the support symbols. It may occur that overlapping areas from different supports
are detected, each one with the assigned similarity score. So, the final transcription is
obtained by selecting the maximum similarities while traversing the matrix from left to
right.

10.4 Experiments

In this section, we describe the dataset, the metrics and the results obtained in a real
use case of a medieval manuscript written in a rare script.
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Figure 10.5: Codex Runicus, Arnamagnæan Collection, University of Copenhagen, AM
28 8vo, fol. 86r (https://www.e-pages.dk/ku/579/)

10.4.1 Dataset

The Codex Runicus [8] is a manuscript consisting of 100 parchment folios (leaves), i.e.
200 pages and is dated to around 1300AD. It contains mainly of legal texts and was
produced in a monastic context in the province of Scania in medieval Denmark (now
the southernmost part of Sweden). The manuscript text was recorded by mainly one
scribe who wrote the pages 1r-82v (pages 1-165) and 84r-91v (pages 168-182) and two
more scribes were involved for pages 83r-v (pages 166-167) and 92r-100r (pages 184-
200), respectively. An example of this manuscript is shown in Fig. 10.5. The text is
written in the Scanian dialect of Old Danish and for the entire manuscript, the runic
writing system was used [77, 180].9

The legal works contained in the manuscript have been made accessible digitally in

9The manuscript is kept at The Arnamagnæan Manuscript Collection at the University of Copenhagen,
shelfmark AM 28 8vo. It is also accessible online: https://www.e-pages.dk/ku/579/. A description of the
manuscript and a bibliography can be found on the Handrit-page https://handrit.is/da/manuscript/
view/AM08-028.

https://www.e-pages.dk/ku/579/
https://www.e-pages.dk/ku/579/
https://handrit.is/da/manuscript/view/AM08-028
https://handrit.is/da/manuscript/view/AM08-028
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a project of Det Danske Sprog- og Litteraturselskab.10 However, this edition provides
a so-called normalized language and hence involves an interpretation made by the
editor. The original runic text is to date not available as a machine-readable text11.
Such an edition and transcript is needed for further computational linguistic analysis
or questions regarding the writing system.

To evaluate the transcription methods, we took 10 pages the Codex Runicus manuscript,
written by the same scribe, each one containing 14 lines. Using those pages, we created
three different scenarios, progressively increasing the number of training pages. This
leads us to the configurations presented in Table 10.2. We start in scenario L1 with 2
pages for training, 2 for validation, and 6 for testing. Then we move each time 2 pages
from the testing set to the training set. The purpose of having three different scenar-
ios is to gain information about the influence of the training data size in the different
approaches. The aim is to find the method performing best in automatic recognition
according to the evaluation metrics while using as few training pages as possible.

Table 10.2: Codex Runicus manuscript pages used in the different experiments scenar-
ios, the numbers are related to the order of the pages in the original manuscript

Scenario Training pages Validation pages Testing pages

L1 124, 109 107, 108 99, 173, 30, 97, 110, 137
L2 124, 109, 110, 137 107, 108 99, 173, 30, 97
L3 124, 109, 110, 137, 30, 97 107, 108 99, 173

10.4.2 Evaluation Metrics

As an evaluation metric, we use the Character Error Rate (CER), described in [173].
Formally, C ER = S+D+I

N , where S is the number of substitutions, D of deletions, I of
insertions and N is the ground-truth’s text length. Thus, the lower the value the better.
The CER is shown between 0-100%.

For the unsupervised clustering, we also compute the percentage of missing char-
acters, i.e. the characters that are not transcribed. In these cases, the algorithm as-
signed too low confidence during classification, so a manual transcription is needed.
The confidence is a hyper-parameter set by the user. Obviously, if the confidence
threshold increases, the CER decreases, but the percentage of missing symbols also

10https://tekstnet.dk/search?search=codex+runicus.
11After having conducted our research on Codex Runicus, we heard from a pilot project of a manual XML

encoding of the runic manuscript conducted by Paola Peratello at the University of Verona [141]. As part of
her current PhD-project, her aim is a full XML encoding of the manuscript on four levels: the facsimile level
of the runic script, the diplomatic level with a transliteration into the Latin alphabet, the linguistically nor-
malized level of a common Old Norse language, and linguistic annotation. The encoding of the manuscript
will be included in the Medieval Nordic Text Archive (www.menota.org). We investigate possible collabora-
tions between our projects.

https://tekstnet.dk/search?search=codex+runicus
www.menota.org


A User Perspective on HTR systems for the Automatic Transcription of Rare
Manuscripts 140

increases, which means that the user must transcribe more symbols during the valida-
tion stage. Thus, the ideal situation is to find the right trade-off between the CER and
the percentage of missing symbols.

10.4.3 Results

The results obtained for the three scenarios are shown in Table 10.3. We order the
methods according to the need of labeled data (from low to high). Note that the CER
values between the L1, L2, L3 scenarios are not directly comparable, because the num-
ber of test pages differs.

From the results, we observe that the learning-based method (MDLSTM) obtains
the worse performance (so, the highest CER) because deep-learning methods suffer

Table 10.3: Obtained results by the transcription methods over the different scenarios.
The CER and the Missing Characters are shown in %. Unsupervised clustering methods
include with and without User Intervention (UI)

Scenario Method Shots CER Missing chars

L1

Clustering (without UI) – 3,2 22,6

Clustering (with UI) – 6,7 2,1

Few-shot Detection
1 7,4 –
5 6,7 –

MDLSTM – 47,9 –

L2

Clustering (without UI) – 6,7 23,2

Clustering (with UI) – 6,9 3

Few-shot Classification 1 34,2 / Batch –

Few-shot Detection
1 7 –
5 5,2 –

MDLSTM – 26 –

L3

Clustering (without UI) – 3,5 22,3

Clustering (with UI) – 8,9 3,3

Few-shot Classification 1 6,5 / Batch –

Few-shot Detection
1 10,9 –
5 8,1 –

MDLSTM – 16,9 –
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when there is insufficient labeled data to train. As expected, the more training pages
(scenarios L2 and L3), the performance improves, but this implies that more tran-
scribed pages must be provided for training.

The unsupervised clustering method without any user intervention obtains the
best result (CER of 3,2%) but at the cost of a high percentage of missing characters
(over 20%), which implies that the user must transcribe later an important amount of
characters (those are marked with the symbol ’?’). In case the user cleans the clusters
prior to the label propagation step, the missing symbols significantly decrease (2,1%)
whereas the CER only increases a bit. Hence, the clustering method with user inter-
vention is preferable.

In the Few-shot classification method, and given the few amount of samples per
symbol in the Runic pages, only 1-shot learning is performed. As expected, the best
performance was achieved in L3 due to the higher amount of labeled pages, but we
have observed that this model has a trend to suffer from overfitting (i.e. learning the
appearance of the training symbols by heart, so losing generalization).

In the case of the Few-shot detection method, we observe that the performance
is satisfactory in all scenarios, with a CER similar to the clustering method (note that
there are no missing characters). As expected, the 5-shot detection setting obtains bet-
ter performance. We note that for a fair comparison between the scenarios (in time),
training them was done for the same number of epochs. Thus, L3 would need more
time for training to surpass the other scenarios.

Next, we show some qualitative results in Figure 10.6. The unsupervised cluster-
ing method often makes errors when the shape of symbols is similar, for instance be-
tween a ("a") and o ("o") or k ("k") and f ("f"). Similarly, the few-shot methods also
confuse similar symbols, like the symbol class ":" and the class ";". Concerning the
MDLSTM, instead of making errors, it tends to miss some characters. Since the output
is a sequence of characters, it tends to skip some frames, mainly because of the few
annotated data used for training.

Figure 10.6: Transcription results from scenario L2 of page 173, line 13. The first row
corresponds to the ground truth provided by the expert. Errors are shown in orange
color, and skipped characters in blue (better viewed in color).
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In summary, from the user perspective, we can conclude that the most suitable
methods are the few-shot detection and the clustering with user intervention in the L1
and L2 scenarios, since less training data is required.

10.4.4 Time Needed for Preparing the Training Data

In this subsection, we focus on the user’s time consumption for preparing the training
data, such as transcribing some pages, cleaning clusters, selecting bounding boxes,
etc. Table 10.4 shows the time needed for each method in each scenario. For the
MDLSTM method, the user must validate and transcribe each segmented line in the
pages. For the unsupervised clustering method, the user must provide a transcription
label for each cluster. The clustering with user intervention also needs user input for
cleaning the clusters. In the few-shot detection method, the user has to validate the
segmented lines and provide the bounding boxes of each symbol, which is a rather
time-consuming step because it means locating and cropping each symbol in the seg-
mented lines. Besides, in the clustering and few-shot classification methods, the user
needs to validate the segmentation of symbols.

Table 10.4: Time consumed for data preparation for training (hours:minutes).

Method Scenario L1 Scenario L2 Scenario L3

MDLSTM 0:52 1:16 1:51
Clustering (without UI) 0:12 0:16 0:28
Clustering (with UI) 0:32 1:23 2:01
FS-classification 1:18 2:07 3:08
FS-detection 1:16 2:04 3:03

Obviously, scenario L1 requires the lowest preparation time because only 4 pages
are labeled (2 for training, 2 for validation). The time consumption raises for L2 and
L3 scenarios because the number of training pages increases to 6 and 8 pages, respec-
tively. We observe that there is an important difference between the time needed for
each method. For example, the time needed for the clustering without user interven-
tion is very low, whereas it is moderate in the case of MDLSTM, but at the cost of low
performance, as shown in Table 10.3. Contrary, the few-shot methods need more time
due to the annotation of the bounding boxes for each symbol.

10.4.5 User Validation

Next, we analyze the time that the user needs for validating the output of the transcrip-
tion methods. During this post-processing phase, the user checks the output and cor-
rects the transcription errors. Here, we restrain our analysis to the scenario L2 (4 pages
for testing) using the two best-performing methods: clustering with user intervention
and few-shot detection.
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The validation was performed as follows. The transcription results were provided in
txt-documents and were checked next to the digital images of the respective manuscript
pages on one desktop. For each page, the specialist counted the number of errors and
measured the time needed to check the transcriptions and correct the errors in the txt
file. The user validated the transcription results of the two methods on two different
days. In general, we noted that on three of the test pages (pages 30, 97 and 99) only
very few errors occurred. These errors include mainly confusions of visually similar
symbols: e ("e") and æ ("æ"), i ("i") and t ("t"), f ("f") and k ("k"), and the punctu-
ation marks ":" and ";". The first two symbol pairs and the punctuation marks are –
depending on the handwriting and the conservation status of the manuscript page – in
many instances also difficult to differentiate for a specialist in runes, and disambigua-
tion is only possible in the later process of the linguistic analysis. On the fourth page
(page 173), the number of errors was significantly higher because there is a different
handwriting style, with smaller and narrower symbols compared to the other pages.
The mistakes produced by the few-shot detection method include again confusion of
visually similar symbols, e.g. e ("e") instead of æ ("æ"). Moreover, however, slim sym-
bols (such as ";" and ":", as well as i ("i") and h ("h")) have been missed out. For the
clustering method, there were many missing symbols (indicated by "?") that had to be
manually transcribed.

Table 10.5: Number of errors and time needed for validation time vs manual transcrip-
tion.

Method Clustering with UI Few-shot detection Manual transc.

Page 30 19 errors, 7 min 4 errors, 5 min 21 min
Page 97 16 errors, 7 min 2 errors, 5 min 14 min
Page 99 14 errors, 6 min 2 errors, 5 min 15 min
Page 173 34 errors, 10 min 33 errors, 14 min 14 min
Total 30 min 29 min 64 min

The time needed for the manual validation, as well as the number of mistakes,
are presented in Table 10.5. From the user perspective, an interesting point to note is
that the validation of the clustering method is quite fast despite a significantly higher
amount of mistakes, in comparison with the few-shot detection method. The reason is
that the clustering method only transcribes each symbol if its confidence is high, oth-
erwise, it labels it as ’?’ (missing symbol). Thus, for the user, it is easier and faster to
detect and label each ’?’ symbol rather than searching for errors.

As a reference, we also provide the time needed for a full manual transcription
(without automatic tools). The transcription was written into a txt file that was shown
together with the digital images of the manuscript pages on one desktop. The tran-
scription included a transliteration of the runes to the roman alphabet in order to fa-
cilitate the typing process. After transcribing five pages, the transcriber took a break.
In the end, after another break, the first transcription of the ten pages was validated
showing the digital pictures and the transcription in the txt-files on one desktop. The
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manual transcription of each page took between 14 and 21 minutes. In this time frame,
we also include the time for validating the manual transcription. It has to be noted that
the transcriber was familiar with the runic writing system and knew the transliteration
system by heart. Hence, the manual transcription speed of our specialist has to be re-
garded as rather high in comparison with a transcriber that meets unfamiliar writing
systems.

From Table 10.5, we observe that when the transcription methods obtain a low CER,
the validation time is low, making it remarkably faster than manual transcription. For
instance, page 30 was manually transcribed in 21 min, which is significantly higher
compared to the 5 minutes needed for validating the output of the few-shot detection
method, or the 7 minutes of the clustering method. Moreover, when CER increases, like
in page 173, the time for validation increases and being closer to the time needed for
a full manual transcription. If the amount of errors increases above these values, obvi-
ously, the time for correcting errors would explode and surpass the time for a manual
transcription.

10.5 Recommendations for tools in Digital Humanities

In the previous section, we tested and evaluated four different transcription meth-
ods with regard to their performance and user validation time. Based on the analysis
of these results, we here point out the advantages and disadvantages of the different
methods from a user perspective, comment on general affordances and constraints of
automatic transcription of historical documents written in rare scripts, and raise rec-
ommendations for scholars interested in applying HTR tools.

10.5.1 Advantages and Disadvantages

A general observation from the user perspective is that there are many arguments in
favor of the use of HTR technology in the transcription of documents in rare scripts –
despite the constraints mentioned above. Manual transcription is not only highly time-
consuming, but also prone to errors, especially when a transcriber is unfamiliar with a
symbol set and/or the single symbols are visually similar and hard to differentiate. It
requires utmost concentration and leads to fatigue. Automatic transcription decreases
time consumption significantly in the work with larger documents. In addition, and
this applies also to the work with shorter documents, manual correction of the tran-
scription output is facilitated since the mistakes or insecurities provoked by automatic
transcriptions are systematic. An HTR analysis with a performance of the here-tested
few-shot detection method and the unsupervised method gives a transcription for the
single symbols and enables to channel of the attention of the user to difficult cases.
This shortens the time and effort that has to be invested in transcription in general.

However, some general downsides of currently available HTR methods for the philol-
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ogist or paleographers have to be mentioned. The algorithms are so far not able to
detect and represent philological details such as erasures or other corrections. Differ-
ent color shades of inks or other material details, such as illustrations in the margin, are
also lost in pre-processing. These aspects are important if the purpose of the transcrip-
tion is an edition of a certain text document. In such cases, HTR technology can only
be a help in the work of a transcriber and does not fully replace manual work with his-
torical documents. In other use cases with different purposes and research questions,
however, such as for a historical or literary research purpose where the text content
is of central significance and the material context of the manuscript is less important,
HTR technology speeds up the research process significantly and can replace laborious
transcription work.

10.5.2 Recommendations

First, we provide recommendations depending on the particularities of the manuscripts
to transcribe.

Availability of labeled training data.

In scenarios where enough annotated training data is available to train, deep-learning-
based HTR methods, such as MDLSTM, obtain the best performance. However, in the
case of rare scripts, labeled data is barely available, so the MDLSTM has to be dis-
carded. The same occurs with the few-shot classification method, which tends to over-
fit when few data is available. Hence, in scenarios where labeled data is very limited
and/or has to be manually generated, the few-shot detection and clustering methods
are preferable. Considering both the transcription errors and the time for validation,
the few-shot detection method is the most suitable one.

Multi-writer manuscripts.

If the manuscript to transcribe contains different handwriting styles, the differences in
the shape of symbols will affect all the transcription methods. This means that the user
should provide examples for each alphabet symbol for the different handwriting styles
so that the system learns those variants. Of course, this implies that the amount of la-
beled training data has to be increased. If this amount of training data is not likely to be
provided, the recommendation is to use the clustering method. The clustering groups
samples according to the similarity in shape appearance, hence, it is more likely to
group those samples belonging to the same symbol class for each handwriting style.
Indeed, clustering could also be useful to visually compare writing systems and differ-
entiate among scribes.
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Cursive Handwriting.

As we mentioned before, the clustering and few-shot classification methods require
the segmentation of the text lines into symbols. In cursive or untidy handwriting, sym-
bols often touch or overlap. This provokes an inaccurate symbol segmentation with
the consequent impact in the transcription stage unless the user spends a consider-
able amount of time in correcting the wrongly segmented symbols. For this reason,
MDLSTM and few-shot detection methods are preferable for untidy or cursive hand-
writing.

Unknown alphabet.

Although the few-shot detection method with five shots obtained the best performance
in our experiments, such a scenario means that the user has to provide five examples
of each symbol in the alphabet. This setting is unproblematic if the writing system
is previously known (as is the case for the runes in the here investigated case study)
or consists of a small and limited set of distinct symbols. However, for texts with un-
known graphic signs and unknown sizes of the symbol set, it might be time-consuming
for the user to find five examples of the same symbol. Since this method obtains good
performance, it is true that such training time can be later compensated because the
user will likely devote fairly little time for post-processing correction. Anyway, it is rec-
ommended to use this method only when the manuscript is long and the symbol set
of a writing system is fairly transparent for the user. Contrary, when the writing sys-
tems are complex, completely unknown, and presumably large, the clustering method
is a better choice. First, because it can group symbols that look similar, providing a
hint of the underlying alphabet in the manuscript, and second, because it allows for
user intervention to clean the clusters. This means that a user can, for instance, au-
tomatically transcribe one or two pages, then clean the clusters on the basis of these
results and continue with the label propagation and transcription using the cleaned
data. Finally, the user has the possibility to tune the confidence threshold for symbol
transcription. Hence, a higher threshold value would produce a more accurate tran-
scription (but more "missing characters"), as only the symbols recognized with a high
confidence would be transcribed. This scenario, however, means that more time has
to be invested in manually transcribing the symbols marked as "?" during the post-
processing correction.

Length of Manuscript.

Along the experiments, we have observed that all methods need the user to provide
labeled data to train, clean clusters, etc. Although this step is only required for the
initial setup of the methods, it can limit the suitability of transcription methods for
manuscripts with few pages. For example, in the L2 scenario, the total time consump-
tion (including data preparation and user validation) is significantly higher than the
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time needed for manually transcribing the four test pages. Indeed, the longer the
manuscript, the more suitable is the use of automatic transcription tools (e.g. Codex
Runicus contains 200 pages). The reason is that the time for data preparation is con-
stant no matter the amount of pages to transcribe, so in longer manuscripts, the train-
ing time gets compensated by the higher speed (5-7min/page) for user validation, when
compared to a manual transcription (14-15min/page). We have illustrated this evolu-
tion in Fig.10.7, where we take the scenario L2 and assume an average time for valida-
tion per page. As it can be observed, a manual transcription is faster if the manuscript
is shorter than 12 pages, the clustering method is faster beyond that number, whereas
the few-shot detection method is preferable when the number of pages to transcribe is
above 28.

Figure 10.7: Estimated total time needed for transcribing the Codex Runicus in scenario
L2. We assume that the Few-shot detection method needs 2h for data preparation (6
pages), and 5 min/page for validation; the clustering method with user intervention
needs 1’4h for data preparation, and 6’5 min/page for validation; the manual tran-
scription is 14’5 min/page.

10.5.3 Summary

In summary, we can conclude that there is no perfect method to be applied to any sce-
nario, so the method to be chosen depends on the particularities of the manuscript to
transcribe. We summarize the recommendations for scholars in Table 10.6. In general,
the conclusions are:
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• Automatic transcription methods are worth it when there are many pages to
transcribe, especially if there are few handwriting styles. Otherwise, the amount
of labeled data to be trained increases significantly.

• Learning-free methods, like unsupervised clustering, are suitable when symbols
are easy to segment and/or the alphabet of symbols is complex or unknown.

• Few-shot detection and MDLSTM methods are preferable for cursive or untidy
handwriting styles because they do not need any symbol segmentation step.

• Supervised deep learning-based methods, like MDLSTM, are suitable only when
an important amount of labeled data is available to train.

Table 10.6: Summary of recommendations for choosing a transcription method. The
symbols mean the following. ✗means not suitable, = means medium suitability, and
✓means very suitable.

Few labeled
data

Short
texts

Long
texts

Complicated or
Unknown scripts

Cursive or
Untidy text

Deep learning
(MDLSTM)

✗ ✓ ✓ ✓ ✓

Learning-free
(clustering)

✓ = ✓ ✓ ✗

Few-shot learning
(detection)

= ✓ ✓ ✗ ✓

Manual
Transcription

✓ ✓ ✗ = ✗

10.6 Conclusion

In this work, we have developed and extensively evaluated the performance of differ-
ent transcription methods when applied to uncommon scripts. The analysis of the
results, both in terms of transcription performance and time consumption for data
preparation and post-processing validation has been the basis for providing recom-
mendations from the user perspective. We focus our experiments on the Codex Runi-
cus manuscript, however, we hope that our work can serve as a guide for scholars in-
terested in using transcription tools in the humanities with any script.

Since the best methods for transcribing rare manuscripts are the clustering and
few-shot methods, we have started the implementation of both methods as a web ser-
vice. The clustering method is already freely available 12, whereas the few-shot detec-
tion method will be soon incorporated into our transcription platform.

12https://de-crypt.org/service.php

https://de-crypt.org/service.php
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In the near future, we plan to incorporate interactive tools for easing the valida-
tion of the automatically transcribed pages so that the time for post-correction is min-
imized (for example, highlighting the "missing characters" or suggesting possible tran-
scriptions for ambiguous characters). From the methodological point of view, we will
explore incremental learning and relevant feedback, so that our transcription tools
can continuously learn from the errors that the user corrects, and hopefully, progres-
sively reduce the transcription errors along the rest of the pages to be transcribed in
the manuscript.
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Chapter 11

Conclusion

There is no real ending. It’s just the place where you stop the story.
– Dune, 1965 by Frank Herbert

In this Chapter, we summarize the contributions proposed in this thesis and their

application to the historical document analysis problems. We highlight the main

success and limitations of our proposed models.

In this thesis, we focused on problems related to handwritten document image
enhancement and recognition using different computer vision and machine learn-
ing mechanisms. The main challenge to address these problems was the scarcity of
data. Thus, we used multiple learning strategies to overcome this issue, e.g. few-shot
learning, data generation, self-supervised learning, etc. Moreover, an evaluation from
a user perspective was presented to validate the usefulness of the proposed tools to the
standard users. So far, the proposed tools and models showed a good performance to
facilitate the access to the historical manuscripts (ciphers and handwritten text) by au-
tomatizing the enhancement and recognition with a significant gain in terms of time
and human labor. in what follows, a brief summary of the contributions.

11.1 Summary of the Contributions

With the advent of smart devices, it has become an utmost requirement to ease the
digitization and processing of handwritten documents. Historical documents are an
important part of the human cultural heritage, thus, our aim was to facilitate the pro-
cessing of such documents by providing image quality enhancement and handwritten
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text recognition methods. This was detailed in Chapter 1 along with the difficulties and
challenges that construct the motivation of this thesis.

After that, we present the rest of this thesis in three major parts. The first part fo-
cused of the pre-processing of the document image by enhancing its quality. The sec-
ond part was addressing the recognition of the historical and ciphered handwritten
text images with different deep learning models and learning strategies. Finally, the
third part was dedicated to evaluating some automatic recognition methods of hand-
written text from a user perspective and comparing them with a manual transcription
while stating the benefits and drawbacks of each method. In the following, we present
the contributions of this thesis in more detail.

• End-to-end Document Image Enhancement: A new model for document im-
age enhancement was proposed. At the start, we formulate the problem as an
image-to-image translation in an end-to-end fashion, where a conditional GAN
was used to tackle it. After that, we propose an improvement of the conditional
GAN model by making it focus more on the textual details while enhancing the
document image. This was done by adding a mechanism to evaluate the text dur-
ing training, which consists in a recognizer model. A well-designed loss was used
to produce a clean version of the degraded document image while maintaining
its readability. Then, we use a transformer model to address the enhancement
problem. The new model shows a better performance than the GAN-based mod-
els and leads to state-of-the-art performance in the document binarization task.

• Few-shot Learning for HTR: To overcome the problem of data scarcity in histor-
ical rare documents, like ciphered manuscripts, we used the few-shot learning
mechanism as a symbol/object detection problem. Our work was, to the best of
our knowledge, the first few-shot learning model for HTR that works at line level.
Our proposed model demonstrated that it was possible to accurately recognize
a new manuscript with an unseen alphabet by using only 2 labeled pages during
training.

• Progressive Learning for HTR: Despite the significant gain in data annotation,
a human effort is still necessary to annotate a few pages (including transcription
and segmentation into bounding boxes). Thus, we proposed to overcome this
by a progressive learning technique that used the pseudo-labeling strategy. Our
method starts only from a few labeled examples (we used five) from each sym-
bol (or character) belonging to the desired alphabet to recognize. The proposed
method was suitable because it lead to an important gain in the human labor of
annotating historical manuscripts with a minimal loss in terms of accuracy.

• Data generation for HTR: Another way to overcome the limitation of data scarcity
was to use generative models to produce more data. Given the scarcity con-
straint, the model should generate data in a few-shot scenario. Thus, we ex-
plored the PBL model to generate new examples of any symbol/character be-
longing to a new alphabet given only a single image. After generating the iso-
lated characters, synthetic lines were created and used to train HTR models. We
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showed that this strategy lead to a good performance while requiring only a few
annotated data.

• Self-Supervised Learning for HTR: When addressing an HTR task, it is easier to
obtain unlabeled data than labeled one. In our case, it is possible to benefit from
similar unlabeled data, although with a new alphabet, to train a model on. For
this reason, we explored the application of self-supervised learning in HTR. We
showed that this strategy is useful since a self-supervised pretrained model was
leading to a better performance than starting from a scratch model using only
labeled data, especially when the amount of the labeled data is reduced.

• A user perspective evaluation of HTR tools: As a final contribution to this thesis,
we evaluated the HTR models that can be used to transcribe historical manuscripts
from the user perspective. We compared the use of different machine / deep
learning models as well as manual transcription. From the evaluation, some rec-
ommendations for end users when using HTR models were provided.

11.2 Discussion

This thesis aimed to contribute to the historical document image analysis and recog-
nition research field. But, we believe that the machine learning strategies and insights
proposed within the thesis can also be used to tackle problems in other fields.

During Chapter 3, Chapter ??, and Chapter 5 we showed that our proposed models
for document image enhancement can outperform the state-of-the-art approaches on
different benchmarks. However, in real scenarios, we found that the performance of
these models can decrease if the resolution of the input image is low. Also, the public
datasets that we used to evaluate the models were synthetically created. Hence, when
enhancing real images the performance can slightly decrease because of the different
domains.

The domain gap was also a limitation of our developed models for HTR in low re-
sources. In Chapter 8, the generated lines with BPL were not as realistic as desired. For
this reason, we also used training lines generated by data augmentation to reduce the
domain gap with real data and slightly improve the performance of the model. How-
ever, we believe that the combination of BPL with domain adaptation techniques could
lead to further improved results.

The self-supervised approach that was proposed in Chapter 9 was tested on the
IAM and CVL datasets for the HTR task. For each experiment, the pretraining and fine-
tuning were done on the same dataset. However, it would be interesting to pretrain
and fine-tune on data from different domains. Unluckily, obtaining many unlabeled
data from the same domain, as required by the SSL models, is difficult in case of the
historical and ciphered manuscripts.

To summarize, we can conclude that many improvements can be built on top of
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our proposed models within this thesis. Anyway, our models pave the way for more re-
search and improvements to address the recognition of historical manuscripts in low-
resource scenarios.

11.3 Future Work

Future work could address the limitations of our developed models, stated in the pre-
vious section. We list them next:

11.3.1 Models Robustness in Document Image Enhancement

As we said before, training on synthetically degraded images can lead to a performance
decrease when testing with real data. Also, during the training, the publicly available
datasets especially for document binarization are available only in a high resolution.
Contrary, in real use-case scenarios, a user might want to enhance an image with low
resolution. But, training a supervised approach using r eal and paired data (degraded
image with its clean version and GT text) is costly, since it is really hard to obtain this
kind of resource. That is why most of the datasets are synthetically made. Thus, one
could explore the use of unpaired data. In this way, real images can be easily obtained
(degraded images and clean ones). With this data and unpaired training, the model
could be trained to produce images that are for the discriminator as real as possible
(similar to the clean real documents), while as much readable and real as possible for
the recognizer (the recognized text must have a sense).

11.3.2 Domain Adaptation

As commented before, in the low-resource scenario, sufficient real data to train mod-
els is not available. However, in some cases, similar data (real or synthetically created)
could be available. Obviously, when training an HTR model, its performance will de-
crease when recognizing images from a domain different from the training one. This
phenomenon was faced in this thesis when designing the few-shot model (fine tuning
on the low resource data was necessary to improve the results) or when generating the
synthetic data (we had to combine data augmentation and data generation to reduce
the domain gap). To overcome the domain shift issue, domain adaptation [190] tech-
niques could be explored. With domain adaptation, the performance of our models
can be further improved since it will allow us to enrich the training by using similar
handwritten text images.
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11.3.3 Continual Learning

The historical and ciphered manuscripts addressed in this thesis are written using dif-
ferent alphabets (including different languages). As a consequence, different models
were developed, since each one was trained for a specific alphabet. However, some
useful information could be wasted using this strategy. Thus, one interesting idea to
explore is to benefit from the previously learned weights, which means to conti nue
learning other alphabets while avoiding catastrophic forgetting. Continual learning
[100] aims to develop the mechanisms to avoid the catastrophic forgetting issue. By
employing continual learning techniques, we believe that we could create better and
more generic approaches. Also, it could facilitate the update of existing models by
adding the ability to recognize new languages or alphabets.
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List of Contributions

Coming together is a beginning; keeping together is progress;
working together is success.

by Henry Ford

Topics

The main topic of this dissertation is the development of better document image en-
hancement and recognition systems. However, this thesis has also generated other side
contributions on other topics that had raised our attention in the same field.

• Document Image enhancement: This topic investigates the problem of enhanc-
ing the quality of document images (binarization, cleaning, watermark removal,
etc).

• Document Image Recognition: This task refers to algorithms and techniques
that are applied to images of documents to obtain a computer-readable descrip-
tion from pixel data. In particular historical and handwritten documents with
rare manuscripts, N-gram spotting, alphabet matching, image text alignment,
etc.

• Transcription Tools/Methods Development and Evaluation: This task refers to
the development of tools for automatic transcription and the evaluation of dif-
ferent transcription methods efficiency from a user perspective.

International Journals

1. Souibgui, Mohamed Ali, and Yousri Kessentini. "DE-GAN: a conditional gener-
ative adversarial network for document enhancement." in IEEE Transactions on
Pattern Analysis and Machine Intelligence (2020).
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2. Jemni, Sana Khamekhem, Mohamed Ali Souibgui, Yousri Kessentini, and Alicia
Fornés. "Enhance to read better: a multi-task adversarial network for handwrit-
ten document image enhancement." in Pattern Recognition, 123 (2022).

3. Souibgui, Mohamed Ali, Alicia Fornés, Yousri Kessentini, and Beáta Megyesi.
"Few shots are all you need: A progressive learning approach for low resource
handwritten text recognition." in Pattern Recognition Letters, 160 (2022).

4. Souibgui, Mohamed Ali, Asma Bensalah, Jialuo Chen, Alicia Fornés, and Michelle
Waldispühl. "A User Perspective on HTR methods for the Automatic Transcrip-
tion of Rare Scripts: The Case of Codex Runicus." in Journal on Computing and
Cultural Heritage (JOCCH) (2022).

International Conferences

1. Chen, Jialuo, Mohamed Ali Souibgui, Alicia Fornés, and Beáta Megyesi. "A Web-
based Interactive Transcription Tool for Encrypted Manuscripts." In International
Conference on Historical Cryptology 2020.

2. Souibgui, Mohamed Ali, Yousri Kessentini, and Alicia Fornés. "A conditional gan
based approach for distorted camera captured documents recovery." In Mediter-
ranean Conference on Pattern Recognition and Artificial Intelligence, pp. 215-228.
Springer, Cham, 2020.

3. Souibgui, Mohamed Ali, Alicia Fornés, Yousri Kessentini, and Crina Tudor. "A
few-shot learning approach for historical ciphered manuscript recognition." In
2020 25th International Conference on Pattern Recognition (ICPR), pp. 5413-
5420. IEEE, 2021.

4. Chen, Jialuo, Mohamed Ali Souibgui, Alicia Fornés, and Beáta Megyesi. "Un-
supervised Alphabet Matching in Historical Encrypted Manuscript Images." In
International Conference on Historical Cryptology, pp. 34-37. 2021.

5. Souibgui, Mohamed Ali, Ali Furkan Biten, Sounak Dey, Alicia Fornés, Yousri Kessen-
tini, Lluis Gomez, Dimosthenis Karatzas, and Josep Lladós. "One-shot compo-
sitional data generation for low resource handwritten text recognition." In the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 935-943.
2022.

6. Souibgui, Mohamed Ali, Sanket Biswas, Sana Khamekhem Jemni, Yousri Kessen-
tini, Alicia Fornés, Josep Lladós, and Umapada Pal. "Docentr: An end-to-end
document image enhancement transformer." 2022 26th International Confer-
ence on Pattern Recognition (ICPR) (2022).

7. Magnifico, Giacomo, Beáta Megyesi, Mohamed Ali Souibgui, Jialuo Chen, and
Alicia Fornés. "Lost in Transcription of Graphic Signs in Ciphers." In Interna-
tional Conference on Historical Cryptology, pp. 153-158. 2022.
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8. De Gregorio, Giuseppe, Sanket Biswas, Mohamed Ali Souibgui, Asma Bensalah,
Josep Llados, Alicia Fornés, and Angelo Marcelli. "A Few Shot Multi-Representation
Approach for N-gram Spotting in Historical Manuscripts" In International Con-
ference on Frontiers in Handwriting Recognition. 2022.

9. Souibgui, Mohamed Ali, Sanket Biswas, Andres Mafla, Ali Furkan Biten, Alicia
Fornés, Yousri Kessentini, Josep Lladós, Lluis Gomez, and Dimosthenis Karatzas.
"Text-DIAE: A Self-Supervised Degradation Invariant Autoencoders for Text Recog-
nition and Document Enhancement." In 2023 AAAI Conference on Artificial In-
telligence (AAAI). (Under Review)

International Workshops

1. Torras, Pau, Mohamed Ali Souibgui, Jialuo Chen, and Alicia Fornés. "A Tran-
scription Is All You Need: Learning to Align Through Attention." In International
Conference on Document Analysis and Recognition Workshops, pp. 141-146. Springer,
Cham, 2021.

GitHub Repositories

1. https://github.com/dali92002/DE-GAN

2. https://github.com/dali92002/DocEnTR

3. https://github.com/dali92002/HTRbyMatching

4. https://github.com/dali92002/SSL-OCR

Awards

1. ICPR2020 Best Student Paper Award: Given by the ICPR2020 organizing com-
mittee for the paper entitled "A Few-shot Learning Approach for Historical Ci-
phered Manuscript Recognition in the track of Document and Media Analysis.
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