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Abstract

The transcription of sheet music into some machine-readable format can be car-
ried out manually. However, the complexity of music notation inevitably leads
to burdensome software for music score editing, which makes the whole process
very time-consuming and prone to errors. Consequently, automatic transcription
systems for musical documents represent interesting tools.

Document analysis is the subject that deals with the extraction and processing
of documents through image and pattern recognition. It is a branch of computer
vision. Taking music scores as source, the field devoted to address this task is
known as Optical Music Recognition (OMR). Typically, an OMR system takes an
image of a music score and automatically extracts its content into some symbolic
structure such as MEI or MusicXML.

In this dissertation, we have investigated different methods for recognizing a
single staff section (e.g. scores for violin, flute, etc.), much in the same way as most
text recognition research focuses on recognizing words appearing in a given line
image. These methods are based in two different methodologies. On the one hand,
we present two methods based on Recurrent Neural Networks, in particular, the
Long Short-Term Memory Neural Network. On the other hand, a method based
on Sequence to Sequence models is detailed.

Music context is needed to improve the OMR results, just like language models
and dictionaries help in handwriting recognition. For example, syntactical rules
and grammars could be easily defined to cope with the ambiguities in the rhythm.
In music theory, for example, the time signature defines the amount of beats per
bar unit. Thus, in the second part of this dissertation, different methodologies
have been investigated to improve the OMR recognition. We have explored three
different methods: (a) a graphic tree-structure representation, Dendrograms, that
joins, at each level, its primitives following a set of rules, (b) the incorporation of
Language Models to model the probability of a sequence of tokens, and (c) graph
neural networks to analyze the music scores to avoid meaningless relationships
between music primitives.

Finally, to train all these methodologies, and given the method-specificity of
the datasets in the literature, we have created four different music datasets. Two
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of them are synthetic with a modern or old handwritten appearance, whereas the
other two are real handwritten scores, being one of them modern and the other
old.

Keywords – Computer Vision, Pattern Recognition, Document Image Analysis
and Recognition, Deep Neural Networks, Optical Music Recognition, Handwritten
Music Recognition, Music Context.
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Resum

La transcripció de partitures a algun format llegible per un ordinador pot realitzar-
se manualment. No obstant això, la complexitat de la notació musical condueix
inevitablement a un enutjós programari d’edició de partitures, la qual cosa fa que
tot el procés sigui molt lent i propens a errors. Per això, els sistemes de transcripció
automàtica de documents musicals són eines interessants.

L’anàlisi de documents és el camp que tracta l’extracció i el processament de
documents mitjançant el reconeixement d’imatges i patrons. Aquest és una branca
de la visió per computador. Sent les partitures musicals el document a analitzar,
el camp dedicat a abordar aquesta tasca es coneix com a reconeixement òptic de
música (OMR). Normalment, un sistema OMR pren una imatge d’una partitura
i extreu automàticament el seu contingut a alguna estructura simbòlica com MEI
o MusicXML.

En aquesta tesi, hem investigat diferents mètodes per reconèixer símbols musi-
cals d’una sola línia de pentagrama (partitures de violí, flauta, etc.), de la mateixa
manera que la majoria de les recerques sobre el reconeixement de text se centren
en el reconeixement de les paraules que apareixen en una imatge d’una línia de
text. Aquests mètodes es basen en dues metodologies diferents. D’una banda,
presentem dos mètodes basats en Xarxes Neuronals Recurrents, en particular la
xarxa neuronal; Long Short-Term Memory. D’altra banda, es detalla un mètode
basat en Sequence to Sequence.

El context musical és necessari per a millorar els resultats d’OMR, igual que els
models lingüístics i els diccionaris ajuden en el reconeixement de text. Per exemple,
es podrien definir fàcilment regles sintàctiques i gramàtiques per a fer front a les
ambigüitats del ritme. En teoria musical, el compàs defineix la quantitat de temps
per unitat de compàs. Així, en la segona part d’aquesta dissertació s’han investigat
diferents metodologies per a millorar el reconeixement dels mètodes d’OMR. Hem
explorat tres mètodes diferents: (a) una representació gràfica en forma d’arbre en
la qual cada nivell uneix les primitives seguint un conjunt de regles, és el que es
denomina Dendrogrames, (b) la incorporació de Models de Llenguatge per modelar
la probabilitat d’una seqüència de tokens i (c) xarxes neuronals basades en grafs
per analitzar les partitures per a evitar relacions sense sentit entre les primitives
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musicals.

Finalment, per a entrenar totes aquestes metodologies i donada l’especificitat
de les bases de dades segons els mètodes a usar a la literatura, hem creat quatre
conjunts de dades musicals diferents. Dos d’ells són sintètics amb aparença mod-
erna o manuscrita antiga i els altres dos són manuscrits reals, un d’ells modern i
l’altre antic.

Paraules Clau – Visió per Computador, Reconeixement de Patrons, Anàlisis i
Reconeixement d’Imatges en Documents, Xarxes Neuronals Profundes, Reconeix-
ement Òptic de música, Reconeixement de Música Manuscrita, Context Musical.
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Resumen

La transcripción de partituras a algún formato legible por un ordenador puede
realizarse manualmente. Sin embargo, la complejidad de la notación musical con-
duce inevitablemente a un engorroso software de edición de partituras, lo que hace
que todo el proceso sea muy lento y propenso a errores. Por ello, los sistemas de
transcripción automática de documentos musicales son herramientas interesantes.

El análisis de documentos es el campo que trata la extracción y el procesamiento
de documentos mediante el reconocimiento de imágenes y patrones. Este es una
rama de la visión por computador. Siendo las partituras musicales el documento
a analizar, el campo dedicado a abordar esta tarea se conoce como reconocimiento
óptico de música (OMR). Normalmente, un sistema OMR toma una imagen de una
partitura y extrae automáticamente su contenido a alguna estructura simbólica
como MEI o MusicXML.

En esta tesis, hemos investigado diferentes métodos para reconocer los símbolos
musicales de una sola línea de pentagrama (partituras de violín, flauta, etc.), de
la misma manera que la mayoría de las investigaciones sobre el reconocimiento de
texto se centran en el reconocimiento de las palabras que aparecen en una imagen
de una línea de texto. Estos métodos se basan en dos metodologías diferentes. Por
un lado, presentamos dos métodos basados en Redes Neuronales Recurrentes, en
particular la red neuronal; Long Short-Term Memory. Por otro lado, se detalla un
método basado en Sequence to Sequence.

El contexto musical es necesario para mejorar los resultados de OMR, de
la misma forma que los modelos lingüísticos y los diccionarios ayudan al re-
conocimiento de texto. Por ejemplo, se podrían definir fácilmente reglas sintácticas
y gramáticas para hacer frente a las ambigüedades del ritmo. En teoría musical,
el compás define la cantidad de tiempos por unidad de compás. Así, en la segunda
parte de esta disertación se han investigado diferentes metodologías para mejorar
el reconocimiento de los OMR. Hemos explorado tres métodos diferentes: (a) una
representación gráfica en forma de árbol en la que cada nivel une las primitivas
siguiendo un conjunto de reglas, es lo que se denomina Dendrogramas, (b) la incor-
poración de Modelos de Lenguaje para modelar la probabilidad de una secuencia
de tokens y (c) redes neuronales de grafos para analizar las partituras para evitar
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relaciones sin sentido entre las primitivas musicales.

Finalmente, para entrenar todas estas metodologías y dada la especificidad
de los métodos en la literatura, hemos creado cuatro conjuntos de datos musicales
diferentes. Dos de ellos son sintéticos con apariencia moderna o manuscrita antigua
y los otros dos son manuscritos reales, siendo uno de ellos moderno y el otro
antiguo.

Palabras Clave – Visión por computador, Reconocimiento de Patrones, Análi-
sis y Reconocimiento de Imágenes en Documentos, Redes Neuronales Profundas,
Reconocimiento Óptico de Música, Reconocimiento de Música Manuscrita, Con-
texto Musical.
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1 | Introduction

Music has no effect on research work,but
both are born of the same source and com-
plement each other through the satisfac-
tion they bestow.

– Albert Einstein

This chapter details the context of this thesis concerning Optical Music Recogni-
tion. It contains, the music notation, and the differences with handwritten text
recognition. In addition, the objectives and contributions of this work, are ex-
plained. Finally, the structure of the thesis is summarized.

1.1 Setting the Context

A music score is composed of a set of music symbols written in a printed or
handwritten form, following musical notation rules to indicate, among others, the
rhythm and melody of a song. A music score normally is transmitted on paper, but
if we take a look back its medium usually was a parchment and oral transmission
at the beginning.

The first music scores dates back to around 2,000 BC. It was not until the
1980s that one of the first software, the Music Construction Set, was created to
manually compose and transcribe a score into a computer format. The importance
of creating software to speed up the automatic transcription of music scores should
be emphasised to preserve the music heritage. After 4000 years of composing music
scores, the manual transcription of them becomes an impossible task.

Automatic transcription systems for musical documents represent interesting
tools. The field devoted to address this task is known as Optical Music Recogni-
tion (OMR) [6, 21, 116]. Typically, an OMR system takes an image of a music
score and automatically export its content into some symbolic structure such as
MEI, MusicXML, MIDI, etc. Some of the existing tools are PhotoScore1 or Sharp-
Eye2. The music research field has also many other applications such as writer

1https://www.neuratron.com/photoscore.htm
2http://www.visiv.co.uk/
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1. INTRODUCTION

identification, renewal old music scores, the generation of audio files, and finding
differences between the same composition but written by different musicians.

1.2 Music Notation

For a long period of time, music written on paper had no standardisation. Figure
1.1 shows different types of music scores. Figure 1.1.a shows a music score used in
the byzantine rites [11]. Later, appears neumes (see Figure 1.1.b) a signs above the
text which shows how to sing (tempo, dynamics and accentuation). Gregorian’s
music scores (see Figure 1.1.c) as the last music notations is a pneumatic notation
which indicates to the singer how to sing in a mnemonic way. Also, there exists
another type of music scores that is specific for an instrument, such as the tablature
(see Figure 1.1.d). Finally, a standard notation was created, nowadays known as
Western Music Notation (see Figure 1.1.e), which will be the type of notation that
we are going to work with in this thesis.

(a) (b) (c)

(d) (e)

Figure 1.1: Examples of different music scores.

From the 1980s on wards, through advances in technology, the presence of
music in computers has increased. Nowadays a computer is able to write or edit
a song or a music score, and even to play a synthesizer or virtual instrument.
Anyway, some musical notation knowledge is needed to read a music score. Music
notation varies notably in music scores depending on the style or genre of music
[61, 125]. Classical scores always have a clef, normally treble clef, bass clef or
alto clef, the time signature and sometimes the key signature. The time signature
shows how many beats has to sum up each measure [47, 73]. The first number
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indicates the number of beats and the second number the unit (e.g. 2 for half notes,
4 for quarter notes, 8 for eighth notes). The melody is notated on the staff lines
using noteheads. Lyrics could appear very close to notes. Finally, some tempo and
dynamics may appear in music scores, since the classical period ca. 1750, using
Italian expressions such as Grave (slow), Allegro (fast), pianissimo (very soft) or
forte (strong). Before this period, in the Baroque ca. 1600-1750 dynamics and
tempo were not indicated in the score, since it was assumed that the experience
of musicians and singers was enough to know how to play or sing each song. In a
music score there are different symbols as symbol notes, clefs rests, etc (see Figure
1.2). The most common terminology is the following:

• Staff: Set of five horizontal lines and four spaces, in which the positions are
used to represent the musical pitch.

• Clef: Music Symbol used to indicate the pitch of written music notes.

• Bar lines: Vertical lines which separate every bar unit or measure.

• Notes: Define the pitch and duration of a sound. Composed of note heads,
beams, stems, flags and accidentals.

• Accidental: A sign that alters notes by raising or lowering their pitch.

• Rest: An interval of silence in a piece of music, marked by a symbol indicating
the length of the pause.

• Slurs: Curve that indicates that several notes must be played without sepa-
ration.

• Dynamic and Tempo Markings: They indicate the speed and the volume of
the music to be played.

• Lyrics: Set of words that the singers have to sing.

1.3 Motivation

OMR has lately reached a very good performance on scanned printed music scores,
especially for monophonic scores with low density of symbols. The recognition of
handwritten scores is still a challenge due to the variabilities in the handwriting
styles. Besides, the availability of labelled datasets of old handwritten music scores
is scarce, which hinder the training of deep-learning based architectures. Although
there are several projects 3,4,5,6,7 on ancient manuscript music cataloging, digiti-
zation and/or transcription, the immense amount and variability of existing music

3SIMSSA: https://simssa.ca/
4Hispamus: https://grfia.dlsi.ua.es/hispamus/
5IFMuC: http://pagines.uab.cat/ifmuc/es
6RISM: http://www.rism.info/home.html
7MDC: http://mdc.csuc.cat/cdm/search/collection/musicatedra!partiturBC
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1. INTRODUCTION

Figure 1.2: Different symbols found in a music score.

works in archives makes it impossible in practice to manually transcribe and dis-
seminate the entire source and forces musicology to, most of the times, carry out
strictly qualitative research. This problem, obvious at a global level, is equally self
evident at the local one.

In summary, music scores have been written in paper format for centuries.
Due to paper degradation, its digitization and conversion into a machine-readable
format is desired. For this second task, it is important to develop systems able
to transcribe music scores, either printed or handwritten in a sheet of paper.
Given the resurgence of Deep Learning, researchers have taken advantage of this
technology, enhancing the OMR performance. Concretely, the research is often
inspired in powerful Deep Learning techniques applied to Computer Vision which
have shown good performance in text recognition [1, 118, 137, 138].

For above reasons, the motivation of this thesis is to explore the power of deep
learning for proposing reading music systems.
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1.4 Difficulties of Optical Music Recognition

As commented before, music scores are usually written in paper sheet. Historical
handwritten scores are particularly interesting to transcribe because there are
many of them stored in archives, churches and libraries throughout. Most of them
have never been transcribed nor listened, which makes it important to devote
efforts towards their conservation, transcription, study and dissemination. These
scores are much harder to recognise than regular typeset ones because of hundreds
of years worth of paper degradation, the evolution of music notation conventions
and the irregular nature of handwriting, which leads to many ambiguities and
hard-to-read passages even for trained humans. Moreover, in the case of old and
historical scores, the difficulties increase due to paper degradation, the frequent
appearance of touching elements (e.g. lyrics and music symbols often overlap), or
even the lack of standard notation, where one can find music scores that do not
follow current music notation rules, as it can be seen in Figure 1.3.

Figure 1.3: Difficulties recognizing music scores.

In the case of an European church music, for example, in a significant parish or
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cathedral, which will probably have more than 500 years of history of handwritten
music behind, one can find more than 2000 records of different works by various
composers. This can easily mean tens of thousands of handwritten score pages
in one single church. To give an example of the magnitude of this problem, we
should consider that in a city like Barcelona there are four such musical chapels.
Although there are few exceptions, their documentation is almost completely pre-
served in their archives, so the amount of music to be transcribed and analyzed is
overwhelming for a manual process. This task is very time consuming and requires
a huge amount of human resources (for example, a music transcriber can devote
1-3 hours to transcribing one music page, depending on the density of music sym-
bols). The complexity of music notation inevitably leads to burdensome software
for music score editing, which makes the whole process very time-consuming and
prone to errors.

1.4.1 Music vs Text Recognition

Music symbols have to be read from left to right, and in each staff, symbols appear
with a specific rhythm (duration) and pitch (melody). In other words, music is
harder to read than text due to its bi-dimensional nature. Figure 1.4 shows some
similarities and differences between text and music. An Optical Music Recognition
system has some similarities with an Optical Character Recognition system [16, 17,
53, 77, 94, 110, 112, 128]. The recognition of characters in text is similar to isolated
notes in music. The recognition of words is similar to the recognition of compound
notes. Phrases can be seen as a bar units (measures). In this stage syntactical
rules appear. For example, grammatical rules as Subject+Verb+Object are used
in text, whereas in music notation, the number of beats have to sum up the time
signature. And emphasis can be seen as ornaments. However, music has some
other difficulties. Compound music notes have a huge freedom when connecting
music notes. Polyphonic scores do not sum up the time signature or ornaments
escape from the restriction of summing up the beats.

1.5 Objectives and Contributions of this Thesis

In this section we describe the objectives and contributions of this thesis.

1.5.1 Objectives

The main objective of this work is to develop novel techniques based on Deep
Learning for music recognition. During this dissertation three different scenarios
have been exploited according to how the scores have been written (e.g. printed
or handwritten) and the time period (e.g. modern or ancient). Thus, the main
objective could be decomposed in two sub-objectives.
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Figure 1.4: Similarities and differences between music and text.

• To adapt Deep Learning methods to create full Optical Music Recognition
Systems. The methods will be evaluated on modern, old, printed and hand-
written scores.

• To propose some novel or existing OMR methods that incorporate music
context to improve the performance.

1.5.2 Contributions

The contributions of this thesis are described next.

Datasets

In order to use Deep Learning to recognize music scores, a huge quantity of
data is needed. Four different datasets have been created. Each dataset is different
from the rest (modern/old notation, synthetic/handwritten, etc).

OMR based on Bidirectional Long Short-Term Memory Neural Net-
work

This method directly recognizes the music content appearing on an image fol-
lowing the sequence. We address OMR by separating the two components of the
musical symbols: duration and pitch. This separation is done both in terms of
training and evaluation. This provides the RNN with greater robustness, as it can
focus on the specific aspects that concern each component.

7
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OMR based on Convolutional Recurrent Neural Network for Handwrit-
ten Scores

We propose a full staff-wise Handwritten Music Recognition (HMR) system.
It also disentangles the output of the network in the two main components of
music notation: rhythm and pitch. First, we add Convolutional Neural Networks
as feature extractor. Secondly, since the existing amount of annotated handwrit-
ten music scores is scarce, we propose a novel data augmentation technique, and
incorporate transfer learning from printed scores.

OMR based on Sequence-to-Sequence for Old Scores

This work focuses on the adaptation of a sequence-to-sequence model with
attention for historical music recognition. The adaptation of sequence-to-sequence
to the particularities of old music scores is crucial to accelerate the process from
its discovery to its digital transcription, enabling researchers to analyze, publicize
and divulge unknown composers and compositions that traditional methods are
forced to neglect.

Sequence to Sequence with language models

Even the recent Seq2Seq architectures fail when recognizing historical manuscripts.
Language Model (LM) can tackle many of these ambiguities in the recognition.
The integration of Language models into a Seq2Seq architecture to minimise the
ambiguities when recognising historical handwritten scores. Concretely, we inte-
grate a LM through three different techniques: Shallow, Deep [65] and Candidate
Fusion [78].

Convolutional Graph Neural Networks

In order to allow an OMR system to know which primitives form each partic-
ular symbol, a structure that relates them is needed. Music has a large variability
of symbols, combining rhythm and melody. But, despite this variability, it shares
a common set of primitives (e.g. stem, notehead, beam, flag, etc) that are repre-
sentable. Since graphs are suitable for music representation because of its flexibility
and n-dimensional representation power, we propose an OMR method based on
Graph Neural Networks (GNNs).

1.6 Organization

The rest of the dissertation is organized in ten chapters and two global chapters.
First, the methods that have been traditionally used for Optical Music Recognition
and the datasets created during this years are described.

• Chapter 2 presents the state of the art. This chapter details the evolution
of Optical Music Recognition from the firsts classical methods to the most
recent ones using Deep Learning.

8



1.6. Organization

• Chapter 3 details the datasets that have been created. We provide both real
and synthetic datasets that emulate real scores to deal with the lack of data.

PART I: Neural Network-based OMR methods

The first part of the thesis details some methods adapted to music recognition.

• Chapter 4 explores the use of Recurrent Neural Networks. Specifically, the
Long Short-Term Memory (LSTM). A staff line is read from left to right
through the LSTM network.

• Chapter 5 is quite related to the previous one. In this chapter, the staff
line is first convolved and the features are the input of a Bidirectional Long
Short-Term Memory Neural Network.

• In Chapter 6 a sequence-to-sequence model with attention mechanism is
proposed to recognize historical music scores.

PART II: Contextual OMR methods

In the second part of this thesis, methods that use context music information
are described. Some methodologies are used to improve a previously described
OMR method, whereas some other methods are proposed in which the context is
implicit.

• In Chapter 7, dendrograms are used to represent the unions of music primi-
tives and validate them as compound music notes.

• Chapter 8 focuses on enhancing the sequence-to-sequence models by the
incorporation of language models to improve transcriptions in which the
aforementioned unclear writing produces statistically unsound mistakes.

• Chapter 9 takes advantage of the bi-dimensional structure of music notation
through the proposal of Graph Neural Networks to recognize music scores.

Finally, in Chapter 10 the conclusions are drawn. In addition, next steps in
this field are discussed for a future research lines.
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2 | State of the art: From classical OMR to
Deep Learning

Things are always at their best in
their beginning.

– Blaise Pascal

This section describes the key references of Optical Music Recognition that are
relevant to the present thesis. First, the classic machine learning techniques used
in OMR are described. Usually, classic works focus on a part of the OMR’s
process, so we will detail each step of the pipeline. Finally, the most relevant
methods using Deep Learning are explained.

The Optical Music Recognition has to be able to recognize each element located
in the music score, independently of the input format, either synthetic, real paper,
or in digital format such as a tablet [22, 55, 56]. The classification of OMR methods
may vary depending on the criteria. OMR methods can be classified according to
the type of methodology (classical or deep learning methods), or according to the
task it deal with (full or some steps of the OMR pipeline). In this thesis we will
classify the methods according to whether they have been developed with classical
machine learning techniques or by deep learning. We will also make an special
mention to those works for handwritten scores.

2.1 Classical Machine Learning

In its early days, when machine learning was the most widely used methodology,
the recognition of music scores was divided in stages, following a pipeline. The
methods focused on each particular stage. Figure 2.1 illustrates the usual pipeline
from a scanned music score to a machine-readable format. The steps are the
following. First, preprocessing the image. The aim of this step is to reduce prob-
lems in segmentation. Normally, before segmenting the musical symbols and/or
primitives, the staff lines are removed. Hence, the classification task is simplified.
Afterwards, the primitives are merged to form symbols. Some methodologies use
rules or grammars in order to be able to validate and solve some ambiguities from
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the previous step. In the last step, a format of musical description is created with
the information of the previous steps. These steps will be described in detail next.

Figure 2.1: Pipeline of a classical OMR system.

• Preprocessing and layout analysis The most common techniques to im-
prove the results of the segmentation are binarization, noise removal and
blur correction. However, other techniques as enhancement, skew correction
or deskewing, among others have also been proposed. In music scores doc-
uments, it is important to segment the document into regions. Authors in
[105] propose a new algorithm to segment the regions that include text and
regions containing music scores. This segmentation is based on bag of visual
words and random block voting algorithms. By posterior probability each
block is classified as text or music score. Staff lines are one of the more im-
portant parts of a music score. They provide information about the pitches
looking the vertical coordinate and they also provide a horizontal direction
for the temporal coordinate system. OMR usually removes the staff lines [49]
making the recognition task easier. Normally, the staff removal algorithm
[44, 91] are based on projections and run-length analysis, contour-line track-
ing, or graphs. Moreover, these algorithms have to deal with overlapping
symbols and the distorted lines if they have been handwritten. Figure 2.2
shows an example of staff removal.

12
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Figure 2.2: A music page, its binary image and the page without the staff lines.
Reprinted from [49].

• Symbol recognition The recognition of music symbols consists in the
recognition of isolated and compound music symbols. This classification is
done because compound music symbols cannot be recognized as a whole, so
the techniques are different. It is impossible to have examples of all possible
combination of this type of symbols, only a part of the population can be ob-
tained. Figure 2.3 shows isolated and compound music symbols. Therefore,
the classification is the following:

– Isolated Music Symbols: Isolated music symbols are defined as symbols
that have [0,1] note-head. The most popular techniques to detect this
kind of symbols are: classification methods, Grammar/Rules, Sequence,
Graphs and Deep Neural Networks. Isolated symbol are the easiest
symbols to recognize, they can be recognized using a shape descriptor
and a single-class classifier[33, 92, 115].

– Compound Music Symbols: Compound music symbols are defined as
symbols that have [2,∞) note-heads. Usually, they are recognized using
primitive-based techniques [9]. The most popular methods to deal with
this kind of symbols are: Grammar/Rules, Graphs and Deep Neural
Networks. Grammars or rules are used in order to validate the detected
compound music symbols. Some techniques as classification can not be
used because they are more difficult to be recognized and have infinite
combinations between them.

(a) Some Isolated Music Symbols. (b) Some Compound Music Symbols.

Figure 2.3: Examples of music symbols.

The main symbol recognition techniques have been classified into different
groups:

– Classification: Detection-based methods are the simplest ones. Usually,
each symbol is segmented. Afterwards, template matching techniques
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are used. Some papers propose to use some algorithms that modify
the shape of the symbol blurring it in order to make the matching eas-
ier. Finally, the authors use classification algorithms such as Support
Vector Machine and K-Nearest Neighbors. In [50] the authors describe
a method based on the Dynamic Time Warping (DTW) algorithm to
recognize symbols. Figure 2.4 shows some symbols and the features
vectors that the DTW algorithm uses to calculate the distance. This
method is invariant to rotation and scale. Authors of [45] introduce the
Blurred Shape Model descriptor, a symbol descriptor that is invariant to
rotation and reflection. The BSM encodes the spatial probability of the
symbol shape. In [115] authors compare several methods for classifying
symbols. They performed their experiments by Neural Networks, Near-
est Neighbour, Support vector machines and Hidden Markov models.
And in [117] they propose to learn the best distance for the k-nearest
neighbour classifier and the performance of the method is compared
with the support vector machine classifier.

Figure 2.4: Symbol invariant to rotation and scale. Reprinted from [50].

– Grammars / Rules: These methods propose to define a grammar or
rules based on combinations of primitives (i.e. note-heads, steams,
beam, etc). Grammars/Rules make use of morphological operations to
detect circles (note-heads), vertical lines (steams, bars) and horizontal
lines (beams). After the primitive identification process, the pre-defined
rules are applied in order to find the more probable combination of
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2.1. Classical Machine Learning

primitives to obtain the musical symbol. Authors in [37] propose a
grammar to help the detection of most errors on note duration. Figure
2.5 shows an example of correcting errors. The first measure in the fist
staff a beat is missing.

Figure 2.5: Grammars helps to reduce detection errors. Reprinted from [37].

– Sequence: OMR models using Hidden Markov Models (HMMs)[113]
have produced remarkable results in monophonic music scores. The
main reason of their good performance is that music scores generally
can be seen as a lineal sequence. However, in more complex documents
with more than one voice (polyphonic), HMMs do not have a good
performance. In addition, HMMs are able to segment and recognize
without any previous preprocessing task. For example, in [109] the
author presents an OMR using Hidden Markov Models without staff
line removal. And in [111] they present an approach using maximum
posteriori adaptation in order to improve an OMR based on Hidden
Markov Models.

– Graph: Graph-based techniques try to increase the classical appearance-
based approaches providing structural information. Graphs can define
relations between previously detected graphical primitives or just with
the image skeleton, codifying shape information. Nodes correspond to
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2. STATE OF THE ART: FROM CLASSICAL OMR TO DEEP LEARNING

key-points or primitives whereas the edges codify their relations. This
method avoids the problem about the compound components but in-
creases the complexity of the algorithm. Authors in [107] use graph-like
classification applied to ancient music optical recognition. This method
combines a number of different classifiers to simplify the type of features
and classifiers used in each classification step.

• Validation This step is related with the previous one. Some grammars or
rules are defined by the authors in order to make more robust the recognition
step in front of ambiguities. Some works [37, 87] propose the use of grammars
to correct some mistakes as repeating or missing symbols. Another aspect
that could be verified with these grammars is if the number of beats matches
the time signature.

• Final representation Most optical music recognition systems provides an
output representing the input’s music score at the end of the process. The
most common output files are MIDI1, MusicXML2 or MEI3. MIDI (Musical
Instrument Digital interface) is a communication technical standard used
in electronic music devices. MusicXML is an open musical notation format
based on Extensible Markup Language (XML). And MEI as MusicXML is
an open-source effort to define a system for encoding musical documents in
a machine-readable structure.

Summary Table 2.1 shows advantages and disadvantages of the previously de-
scribed methods. The first column shows techniques described previously, the
second column shows the advantages of each technique whereas the third column
shows their disadvantages. One might conclude that detection-based techniques
are only suitable for isolated symbols. Contrary, grammars and graphs are able to
deal with compound symbols, although many isolated symbols are difficult to be
represented by graphic primitives (e.g. clefs and rests).

2.1.1 Recognition of Handwritten Music Scores

Concerning handwritten scores, although it is remarkable the work in Early musical
notation [107, 111] the recognition of handwritten Western Musical Notation still
remains a challenge. The main two reasons are the following. First, the high
variability in the handwriting style increases the difficulties in the recognition of
music symbols. Second, the music notation rules for creating compound music
notes (groups of music notes) allow a high variability in appearance that require
special attention. In order to cope with the handwriting style variability when
recognizing individual music symbols (e.g. clefs, accidentals, isolated notes), the

1https://www.midi.org/
2http://www.musicxml.com/
3http://music-encoding.org/
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2.2. Deep learning

Table 2.1: Advantages and Disadvantages of different techniques used in OMR
Method Advantages Disadvantages

Classification Simplest method.
Machine learning based.

It needs a segmentation
preprocess. Difficulties in
recognizing compound

music symbols

Grammars/Rules Able to recognize compound
music notes and correct errors.

It needs a segmentation
preprocess.

Sequence
Good performance in monophonic
music scores. It does not need a

segmentation preprocess.

Cannot recognize
polyphonic music scores.

Graph Able to recognize compund music High complexity of the algorithm.

community has used specific symbol recognition methods [46, 50] and learning-
based techniques such as Sector Vector Machine’s, Hidden Markov Model’s or
Neural Network’s [115]. Figure 2.6 shows some results using the Blurred Shape
Model descriptor.

As stated in [93], in the case of the recognition of compound music notes, one
must deal not only with the compositional music rules, but also with the ambi-
guities in the detection and classification of graphical primitives (e.g. headnotes,
beams, stems, flags, etc.). It is true that temporal information is undoubtedly
helpful in on-line music recognition, as it has been shown in [23, 90]. Figure shows
some results on online recognition. Nowadays, a musician can find several appli-
cations for mobile devices, such as StaffPad 4, MyScript Music 5 or NotateMe 6.
Concerning the off-line recognition of handwritten groups of music scores, much
more research is still needed. PhotoScore seems to be the only software able to
recognize off-line handwritten music scores, and its performance when recognizing
groups of notes is still far from satisfactory. One of the main problems is probably
the lack of sufficient training data for learning the high variability in the creation
of groups of notes.

2.2 Deep learning

Deep Learning may seem very novel technique. However, as Goodfellow, Bengio
and Courvill claim in [59] that it appeared between 1940s-1960s. Deep learning
in those years was called cybernetics. Later, between 1980s-1990s it was called
connectionism and the current resurgence in 2006 finally has been called deep
learning. The cybernetics appears by hand of biological learning [71, 88] and the

4http://www.staffpad.net/
5https://www.myscript.com/technology/
6http://www.neuratron.com/notateme.html
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2. STATE OF THE ART: FROM CLASSICAL OMR TO DEEP LEARNING

Figure 2.6: Clef detection in old handwritten music score images. Reprinted
from [46].

first model of perceptron [120]. Afterwards, connectionism appears with the back-
propagation [121] and finally deep learning appears in 2006 by Hinton, Bengio and
Ranzato [12, 74, 114].

2.2.1 Deep learning in Optical Music Recognition

In the last decade, several deep learning techniques have been applied to music
or audio processing. For example, the authors of [133] uses Convolutional Neural
Netwoks (CNN) for detecting symbols or primitives. Figure 2.8 shows two different
datasets with the object detector output. The authors suggest to predict dense
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2.2. Deep learning

Figure 2.7: Some results in online recognition. Reprinted from [90].

energy maps using ResNets [70] and watershed transform that will be used to
predict where is a symbol, what class does it belong to, and to define the bounding
box. Wen et al. [136] use Convolutional Neural Networks in order to recognize
music symbols. First of all, they binarize the music score and remove the staff
lines. Then, they detect the symbols with connected components, and finally, to
recognize each music symbol, they use the CNN as a classifier.

Recurrent Neural Networks also have been used in OMR, the authors of [26]
use long short-term memory recurrent neural networks (LSTMs) [75]. They use
a Convolutional Neural Network followed by a Recurrent Neural Network. The
first network deals with feature extraction problem, and then, the RNN deals
with the sequential nature of the problem. To obtain the correct sequence given
a music score, the authors use the Connectionist Temporal Classification(CTC)
loss[62] commonly used in text recognition. Figure 2.9 shows some qualitative
results comparing the Photoscore’s (comercial software) results and their results.
In [30] the authors of this paper suggest to use Recurrent Convolutional Networks
in order to create one of first complete end-to-end optical music recognition for
monophonic music scores. They use the CTC loss function to avoid the alignment
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2. STATE OF THE ART: FROM CLASSICAL OMR TO DEEP LEARNING

(a) Example result from DeepScores

(b) Example result from MUSCIMA++

Figure 2.8: Objected detection method. Images shows qualitative results of
primitive detecion. Reprinted from [133].

between the image and the groundtruth. The results are evaluated obtaining good
results using a synthetic dataset created though lilypond software. In the same
direction, in [135] the application of sequence-to-sequence models shows very good
results. The authors propose a convolutional sequence-to-sequence model. To
train their model, they use monophonic scores removing dynamics, expressions
and chord symbols.

Figure 2.9: Results using a CRNN. First, the original image, a) is the Photo-
Score’s result and b) their results. Reprinted from [26].
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2.3. Summary

2.2.2 Deep learning in Handwritten Music Recognition

To a lesser extent, deep learning has also been applied to handwritten music recog-
nition. In this section we will highlight some of the most recent work. On [97]
the authors deal with the recognition of handwritten music scores by proposing
an end-to-end trainable object detector for music symbols. They use the COCO
dataset [85] to train the network and finetunnig with MUSCIMA-CVC[68]. Fig-
ure 2.10 shows qualitative results on the object detection task using a handwritten
dataset, specifically MUSCIMA++. Calvo-Zaragoza et al. uses CNNs for staff line
detection[24]. The authors of [106] propose a basic methodology using Convolu-
tional Neural Networks. Specifically they compare how well LeNet[84], AlexNet[83]
and GoogleNet[130] works, recognizing symbols of the HOMUS Dataset[22] clas-
sified in 32 classes.

Figure 2.10: Object detector in handwritten music recognition. Reprinted from
[97].

Other works have used Recurrent Neural Networks for handwritten music
scores. On [3] the authors review the state of the art methods to decrease the
error rate combining different premises. On the one hand, they use as a base-
line the method presented by Alfaro-Contreras et al. in [4] but using as input of
the CRNN the features extracted and concatenated (after the convolutional, after
the first recurrent layer or after the recurrent block). On the other hand, they
use the encoding presented in [122] separating the rhythm and pitch. Castellanos
et al. [32] combine the page layout using Selectional Auto-Encoders to extract the
staff (Figure 2.11 shows the staff region prediction) and a CRNN to detect the
music in each staff.

2.3 Summary

In this chapter we have seen different methods for optical music recognition, classi-
fied into methods based on machine learning and methods based on deep learning.
Moreover, we have also mentioned some of the papers that deal with handwritten
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2. STATE OF THE ART: FROM CLASSICAL OMR TO DEEP LEARNING

Figure 2.11: Staves detected in a page layout process. Reprinted from [32].

music scores. From the literature review, we observe that most classical methods
tend to focus on one part of the recognition process, while deep learning ones start
to have a tendency towards a full OMR pipeline. Even though with this trend,
the problem is not solved and more research is needed.
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3 | Created Datasets

Information is not knowledge. Knowl-
edge is not wisdom. Wisdom is not truth.
Truth is not beauty. Beauty is not love.
Love is not music. Music is THE BEST.

– Frank Zappa

Optical Music Recognition research compared with other research fields is relatively
novel. Therefore, only a few set of datasets exists for this task. This chapter
will mention the existing datasets. Then, the datasets that have been created
throughout this thesis will be detailed, explaining their particularities.

3.1 Introduction

Optical Music Recognition datasets normally are made for specific targets, meth-
ods or steps of the OMR pipeline (i.e. object detection, writer identification, etc).
Depending on the task the datasets will be encoded in one way or another. A
dataset intended for object detection will contain bounding boxes with the co-
ordinates and the corresponding class, while a dataset intended for a recurrent
network having the classes sequentially will be enough. Table 3.1 shows some
OMR datasets. On the first column appears the name, in the second column if
it is handwritten or typeset(printed), in the third column the size, in the fourth
column the format of the information and finally in the last column the task it is
intended for. These include: HOMUS[22], CVC-MUSCIMA[48] and its extension
MUSCIMA++[68], Deep-Scores[133], PrIMuS[26], the Universal Music Symbol
Collection[98] and DoReMi[126].
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3. CREATED DATASETS

The HOMUS (Handwritten Online Musical Symbols) dataset is an online
dataset which incorporates the image of the note and the sequence of strokes.
This work also incorporates a method to test it, based on Nearest Neighbor an
Hidden Markov Models (HMM). CVC-MUSCIMA was created to deal with the
writer identification task and staff removal for this reason this dataset has 20 mu-
sic scores written by 50 writers. Then, a part of the CVC-MUSCIMA was labeled
and named MUSCIMA++ to train models for object detection. For the same
task, but in typeset format, DeepScores includes detailed annotation and oriented
bounding boxes. Printed Images of Music Staves (PrIMuS) is a dataset thought
to end-to-end object recognition task. The authors provides as groundtruth the
MEI, MIDI, the image and the sequence of symbols (rhythm) and positions (pitch).
Exist another version with some distortions called Camera-PrIMuS [25]. The Uni-
versal Music Symbol Collection is a dataset which includes symbols from 7 differ-
ent datasets as MUSCIMA++, HOMUS, Audiveris OMR dataset, Printed Music
Symbols dataset,OpenOMR dataset, Rebelo’s Datasets [115] and Fornés’s dataset
[51] to train a classifier. Finally, DoReMi dataset is the largest dataset created
specifically for Deep learning and to deal with several steps on the OMR pipeline.
It includes bounding boxes, images in different format, MusicXML files. Figure
3.1 shows some examples of the most popular datasets.

3.1.1 Summary

As time went by, during the execution of this thesis, and as the Table 3.1 shows,
there is more and more data to train music recognition systems. However, most
of these are focused on only one part of the pipeline. For this reason we have been
forced to create new datasets to train a full OMR system.

Then, the rest of the chapter (section 3.2) is organized as follows. Section
3.2.1 will describe a new version of CVC-MUSCIMA. In section 3.2.2 we describe
a synthetic dataset which emulates old music scores. Section 3.2.3 explains a
dataset based on old music scores. Finally, section 3.2.4 details a dataset to train
object detection and graph methods.

3.2 Our created datasets

This section describes the datasets created in this thesis.

3.2.1 Symbol level music scores, new version from MUS-
CIMA dataset

The MUSCIMA++ dataset [68] is a selection of 140 pages from the CVC-MUSCIMA
dataset [48], annotated at primitive level. Although these primitives are related
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3.2. Our created datasets

(a) HOMUS (b) MUSCIMA

(c) DeepScores (d) PrIMus

(e) Universal Music Symbol Collection (f) DoReMi

Figure 3.1: Most popular datasets.

each other using a graph, they cannot be directly used for OMR evaluation. For
this reason, having into account the graph relations and keeping the noteheads as
the main node of notes, we have manually labelled 20 music pages at symbol level
(including slurs, dynamic marks, etc.) in order to evaluate a full OMR system. In
any case, we should take into account that the original CVC-MUSCIMA dataset
was created for staff removal and writer identification (for this reason, it contains
the same 20 different musical compositions, rewritten by 50 different writers). This
fact leads us to some limitations when splitting the sets i.e. into train, validation
and test. Our method must never see the same musical composition at test and
train or it may be biased towards the recognition of a specific melody. For this rea-
son, we have selected these 20 pages (musical compositions), from different writers
(see Table 3.2). Figure 3.2 shows two staves of the new dataset.
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3. CREATED DATASETS

Table 3.2: Selected Muscima++ pages for train, validation and test sets. We
indicate the number of staves per page, and if the page is polyphonic.

Train Validation Test

Page 2 4 5 6 7 8 9 13 15 16 19 20 11 12 14 17 1 3 10 18
Writer 20 12 21 16 31 35 32 23 43 34 1 18 49 18 29 44 17 13 15 10

Polyphonic X X X X X X X X X
# Staves 6 5 7 6 4 6 4 5 5 8 3 8 6 8 6 6 5 7 6 8

Figure 3.2: Two music staves from different writer and page.

3.2.2 Synthetic Old Music Scores

Since the amount of historical labelled data is scarce, we must look for alterna-
tives. Therefore, we have generated two synthetic datasets using Lilypond 1. Each
one contains about 30,000 bar images, and are divided into 60% train, 20% vali-
dation and 20% test. These two datasets are complementary: one simulates the
particularities of historical scores, whereas the other provides examples of a large
diversity of symbols, including polyphony. These datasets are described next:

• Old synthetic (monophonic): This dataset tries to imitate the texture and
degradation of the paper of historical scores adding a background. Also,
the type and diversity of symbols is limited, similar to the historical scores
used in the experiments. Figure 3.3 shows a measure from the old synthetic
dataset.

• Modern synthetic (polyphonic): This dataset contains polyphonic symbols
written in one staff, i.e. stacks of notes meant to be played all at once, such
as chords. Figure 3.4 shows a measure from this dataset. This data will
allow our model to generalize to any kind of historical music score, either
monophonic or poliphonic.

3.2.3 Old Music Scores by Pau Llinàs

We have created a historical dataset,a motet composed by Pau Llinàs, a catalan
musician who worked as chapel master in Santa Maria del Pi of Barcelona between

1https://lilypond.org/
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Figure 3.3: Example image from the old synthetic dataset.

Figure 3.4: Example image from the modern (polyphonic) dataset.

1709 and 1749. Most probably, the work was written around that time since Llinàs
spent most of his life as a chapel master and, thus, composing professionally in this
chapel [5]. This religious motet belongs to psalm number 148, –Laudate Domine
(Praise the Lord)– of the Book of Psalms and, though religious, it’s not considered
a proper liturgical work as it does not belong to the liturgical mass texts –Kyrie,
Gloria, Credo, Sanctus, Benedictus, Agnus. Like all religious motets, it could be
sung in a variety of extra-liturgical contexts. In ours, it was usually before the
Eucharist, during its preparation by the priest [36]. It is preserved in 12 separated
parts, instead of a full score (most common in this time period). It consists of 32
pages, written in a choral form, with 10 sung parts arranged in two choirs, one
with four voices and another with six ones. At the instrumental side, we find a
bass part (written for a low-pitched monodic instrument like a bassoon, cello or
double bass) and a thoroughbass part (written for an organ, harp or, ultimately,
any harmonic instrument). This motet actually belongs to the Fons Musical de la
Catedral de Barcelona and ha.s been incorporated at the Biblioteca Nacional de
Catalunya (BNC) catalogue [40].

For our experimental validation, we have manually labeled 40 music staves,
containing 245 measure images. These are divided into 147 measures for training,
49 for validation and 49 for test. Figure 3.5 shows differents measures and Figure
3.6 shows a page from this historical dataset, illustrating their main difficulties.
On the first staff we can observe that the lyrics are touching the staff and in some
cases even the symbols. Also, at the end of the third staff or at the beginning of
the fifth staff the are ink stains.
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Figure 3.5: Different examples of measures.

Figure 3.6: Page example from the historical dataset.

3.2.4 Printed measures for Object detection and Graph recog-
nition

As stated before, to recognize music scores one must deal with the two dimensional
nature of music. It is read from left to right, but also from top to bottom. So,
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to properly train deep learning models, we need a considerable amount of labelled
music scores. Indeed, the problem of current datasets is that they are not suited
for training GNNs. First, because the few existing datasets labelled at graph level
are very small (such as MUSCIMA++ [68]), and second, because most of them
(e.g. DeepScores [133, 134]) do not have an accurate labelling of symbols and
primitives in the score and the relationship between them.

For this reason, we have created a new dataset in order to train our GNNmodel.
Concretely, we have created a new printed-synthetic dataset using Lilypond 2. This
dataset contains more than 18K measures. We have splitted the dataset between
train, validation and test in the following way: 60% Train, 20% Validations and
20%Test. Table 3.3 shows the number of primitves per each symbol that appears
in the dataset. And Table 3.4 shows the different relations that the dataset has
and how many we can find in the dataset. Finally, we provide the images and the
groundtruth in the following formats:

1. At primitive level in COCO format[85] for object detection task.

2. At primitive level including the position in the score in case the symbol has
pitch (e.g notehead line 4).

3. At primitive level in XML format including the position in the score in case
the symbol has pitch and the relations between primitives, so that one can
build the music symbols (e.g. compound notes). Figure 3.7 shows an example
of a music measure groundtruth. The arrows state the relationship, taking
the notehead as the centre of the union of a musical symbol.

Figure 3.7: Groundtruth of a music measure.

2https://lilypond.org
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Table 3.3: Atomic symbols and number of appearances in the dataset.

Symbol Number of appearances

f-clef 2462
thin_barline 37505
timeSig_2-2 2837
stem 98417
notehead-full 91338
8th_flag 12560
sharp 23962
natural 10957
quarter_rest 4790
half_rest 4484
flat 24272
16th_flag 20084
c-clef 2970
beam 16068
notehead-empty 7309
timeSig_cut 2595
8th_rest 3358
16th_rest 4436

Table 3.4: Number of relations between primitives.

Source Target Number of relations

notehead-full stem 91338
notehead-full 8th_flag 12560
notehead-full sharp 22155
notehead-full natural 10083
notehead-full flat 22472
notehead-full 16th_flag 20110
notehead-full beam 64218

notehead-empty flat 1800
notehead-empty stem 7079
notehead-empty sharp 1807
notehead-empty natural 1
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Part I

Neural Network-based Optical
Music Recognition Methods

With the emergence of Deep Learning, Neural Net-
works have performed very good results recognizing
text. In this part, we explore the adaptability of text
recognition models to deal with the sequentiality of
a music staff. In particular, methods based on Long
Short-Term Memory neural Networks and Sequence
to Sequence models will be explored.





4 |
Optical Music Recognition based
on Long Short-Term Memory
Neural Network

Rhythm and harmony find their way into the
inward places of the soul.

– Plato

Many music scores are written in a single staff, and therefore, they could be
treated as a sequence. Therefore, this chapter explores the use of Long Short-
Term Memory (LSTM) Recurrent Neural Networks for reading the music score
sequentially, where the LSTM helps in keeping the context. For training, we have
used a synthetic dataset of more than 40,000 images, labeled at primitive level.
The experimental results are promising, showing the benefits of our approach.

4.1 Introduction

Traditionally, OMR has been approached considering multi-stage systems [116].
The different stages comprise several small sub-tasks such as image binarization
[108], staff-line removal [54], or music symbol classification [98]. This chapter,
however, focuses on directly recognizing the music content appearing on an image.

We do assume that the image depicts a single staff section (e.g. scores for violin,
flute, etc.), much in the same way as most text recognition research focuses on
recognizing words appearing in a given line image [64]. Note that this is not a
strong assumption, as there exist algorithms that achieve good performance for
both isolating staff sections [31] and separating music and lyrics (accompanying
text) [18]. Similarly, one can assume that staves are already segmented and,
therefore, can be processed as a sequence.

To address this specific task, the proposed architecture is based on Recurrent
Neural Networks (RNN), since they have been applied with great success to many
sequential recognition tasks such as speech [63] or handwriting [64] recognition.
The Recurrent Neural networks are able to learn the past information, but is
possible that if the gap between the relevant information is very large, RNNs are
not able to learn to connect the information. To avoid the vanishing gradient
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problem, Long Short-Term Memory (LSTM) units are considered. LSTM are able
to learn long-term dependencies and can avoid the vanishing gradient problem.
They can keep information for long time. Moreover, Bidirectional LSTMs are
used to benefit from context information.

The rest of the chapter is organized as follows. Section 4.2 describes the method,
whereas Section 4.3 analyzes the results. Finally, the conclusions are drawn in
Section 4.4

4.2 Long Short-Term Memory Networks

Single staff sheet music can be seen as a sequence. In this way, a music score
is read from left to right. In order to automatically process the music score and
take into account the sequence of music symbols, a Recurrent Neural Network
(RNN) seems an appropriate tool. In this work, we propose to make use of Long
Short-Term Memory (LSTM) [75] networks. LSTMs have the ability to decide
which information has to be kept as context and which information has to be
removed, i.e. forgotten.

Figure 4.1 shows the different stages of our proposed pipeline. Firstly, the in-
put music scores are preprocessed (Subsection 4.2.1). Afterwards, each column
of the image is processed by an LSTM network (Subsection 4.2.2). The output
of the LSTM is passed by two fully connected layers in order to distinguish be-
tween rhythm and pitch (Subsection 4.2.3). Finally, the output of the system is
the recognition of symbols, including rhythm and pitch (Subsection 4.2.4). The
different steps of this pipeline are explained in the following sections.

4.2.1 Input

The proposed architecture is trained by batches of images that are resized to a
fixed height of 50 pixels. Then, these images are fed into the proposed model
using pixel-wise columns. The maximum width can be variable depending on the
widest image in the batch. Therefore, images with a shorter width are padded
with 0’s to the maximum width of the batch. In this work, the staff lines have
not been removed in order to avoid noise and distortions in the musical symbols.
In addition, staff lines provide useful information in terms of the pitch. Note
that features are not extracted from the image in order to maintain the spatial
information and the spatial order as much as possible.

4.2.2 Long Short-Term Memory

A LSTM network has been used in order to recognize the elements of the sheet
music. In this work, we use a bidirectional network to increase the performance and
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Figure 4.1: Architecture of the network

reduce ambiguities when recognizing some symbols. The combination of forward
and backward pass allows to recognize symbols that may be confused if only one
direction is used.

The proposed LSTM network is composed by 3 recurrent layers with a hidden
state size of 128. We have trained our architecture for 100 epochs with a batch
size of 128 or 64 for LSTM and BLSTM respectively. These values have been
experimentally set. It must to be said that the network is trained column by
column so it predicts one output per column. In other words, the output will end
up being as long as the input image.

4.2.3 Fully Connected Layers

At the end of the LSTM network, we propose to use two heads in order to sepa-
rately predict rhythm and melody. Therefore, after the LSTM output, two fully
connected layers (FC) are used to obtain two different outputs. The reason to split
the output in two parts is that the number of combinations between melody and
rhythm is very high. In case of using a single output, all possible combinations of
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rhythm-melody must be created as possible classes. Therefore, we propose to ex-
ploit the idea that rhythm and pitch can be independent. Thus, rhythm is decided
by the symbol whereas the pitch depends on the position with respect the staff
lines. Following this idea, many more examples are available to train our system.

4.2.4 Output

After the FC layers, the next step is to calculate the loss and backpropagate the
errors. Even though two heads are used to separate between rhythm and pitch,
the output of our system should be able to deal with multiple classes per time step.
Therefore, in validation and test, a threshold is applied to both outputs (Rhythm
and Pitch) in order to obtain the corresponding classes. The outputs and the
ground-truth of each music score is represented by two binary matrices, one for
the rhythm and another for the melody or pitch. Horizontally, it corresponds to
the width of the input image whereas the vertical axis tells the different classes
for symbols and pitch, 54 and 26 respectively. Pitch corresponds to locations in
the staff. Figure 4.2 shows the structure of the matrix for both melody 4.2a and
rhythm 4.2b and Fig. 4.3 shows a real example with its corresponding groundtruth.
The corresponding pixels where the symbol is located in the music score will be
activated in both matrices indicating which symbols are activated in each time
step i.e. pixels. The following symbols have been manually added to ease the
recognition task:

• Epsilon(ε) is used to know where each symbol starts and ends, as it is used
in text recognition. This symbol can be seen as a separator. Wherever this
symbol is activated, it means that it is not possible to have any other symbol
activated as well (see Figure 4.3 blue marks). This symbol appears in both
the rhythm and pitch ground-truths.

• No note is used to indicate that a symbol has not any pitch. This symbol
only appears in the pitch ground-truth.

Finally, these outputs are converted into an array. One with the detection of the
rhythm, another for the pitch and the last one with the combination of rhythm
and pitch. These arrays will be used to evaluate the method.

4.2.5 Loss Function

In music, we can find one or more symbols in one instance of time, for example,
chords or time signature (see Figure 4.3 red marks). Therefore, a multilabel loss
function has to be chosen to deal with the before-mentioned problem. In other
words, the loss function must allow more than one activation per time step. Thus,
the softmax activation function cannot be used because it is thought for single-
label classification problems. In this work, two different loss functions have been
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(a)

(b)

Figure 4.2: Output representation for Rythm (a) and Pitch (b).

used: On the one hand, SmoothL1Loss creates a criterion that uses a squared
term if the absolute element-wise error falls below 1 and an L1 term otherwise
(Equation 4.1). On the other hand, MultiLabelSoftMarginLoss creates a criterion
that optimizes a multi-label one-versus-all loss based on max-entropy (Equation
4.2). The loss is calculated independently for rhythm and melody. Once both
losses are calculated, they are summed and backpropagated.

SmoothL1Loss(x, y) =
1

n

∑{
0.5(xi − yi)2, if |xi − yi| < 1

|xi − yi| − 0.5, otherwise
(4.1)

MultiLabelSoftMarginLoss(x, y) =−
∑
i

y[i] · log
( 1

1 + e−x[i]

)
+ (1− y[i]) log

( e−x[i]

1 + e−x[i]

)
(4.2)
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Figure 4.3: Example of Music Score and the corresponding Ground-truth in a
Binary Matrix. The first row is the music score. The second row is the Rhythm
Ground-truth. The third row is the Pitch Ground-truth.

4.3 Experimental Validation

This Section presents and discusses the experimental results.

4.3.1 Dataset

A Synthetic dataset has been used to train the network. This collection is com-
posed of more than 50000 music scores with 3 different typographies. The dataset
corresponds to incipts from the RISM catalog 1. It is composed of almost 50000
music scores with 3 different typographies. The staffs are divided in 60% (29815)
for training, 20% (9939) for validation and 20% (9939) for test.

4.3.2 Evaluation

The evaluation of a complete OMR system is not well defined in the literature.
Thus, we propose to follow the evaluation described in [135]. The authors proposed
to evaluate three aspects of the framework; pitch, rhythm and their combination.
Note that the combination of pitch and rhythm corresponds to the performance of
the whole system. The chosen evaluation metric is the Symbol Error Rate (SER)

1http://www.rism.info/
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applied to an array produced by the system. Note that a threshold is applied to
convert the output of the FC layers to an array of symbols.

Figure 4.4: Example of music score.

An example of the format of the three output arrays, corresponding to Figure 4.4,
is the following.

• Rhythm: [gClef, accidental sharp, accidental sharp, accidental sharp, quarter
note, eight note, bar line].

• Pitch: [noNote, L5, S3, S5, L4, S1, noNote]2.

• Rhythm+Pitch: [[gClef, noNote], [accidental sharp, L5], [accidental sharp,
S3], [accidental sharp, S5], [quarter note, L4], [eight note, S1], [bar line,
noNote]].

Symbol Error Rate (SER)

This metric is based on the well-known Word Error Rate (WER) metric [52] used
in speech and text recognition. SER also uses the Levenshtein distance. The main
difference between them is that the Levenshtein distance computes the differences
at character level, WER does it at the word level and SER does it at symbol
level. In the case of music scores, given a prediction and a reference ground-truth,
the SER is defined as the minimum number of edit operation i.e. insertions,
substitutions and deletions, to convert one array into the other.

SER =
S +D + I

N
(4.3)

where S, D and I are the number of substitutions, deletions and insertions respec-
tively and N is the quantity of symbols in the groundtruth. Dynamic programming
is used to find the minimum value.

SER(i, j) = min

 SER(i− 1, j) + 1
SER(i, j − 1) + 1

SER(i− 1, j − 1) + ∆(i, j)
(4.4)

where ∆(i, j) is 0 if the symbols predictedi and referencej are the same and 1 if
these symbols are different.

2L = Line; S=Space; L1 is the bottom line on the staff and S1 is the space between line 1
and 2
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Output’s Threshold Evaluation

A threshold is applied to decide which symbols are activated at each time step.
Note that this threshold is needed because we have no knowledge about the number
of symbols appearing at each time step. This threshold has been experimentally set
using a grid search from 0 to 1 and step of 0.1. We have selected the combination
of rhythm and pitch Error Rate as a metric to choose the best threshold. Figure
4.5 shows the evolution of the error rate depending on the threshold. As we can
see, the best threshold is 0.5 even though 0.4 achieves similar results.

Figure 4.5: Evaluation of the best threshold in terms of Error Rate: Rhythm,
Pitch and Rhythm+Pitch.

4.3.3 Results

All the results that are shown in this section are obtained using Adam as optimizer
with a learning rate of 10−4. In this work, the PyTorch 3 library has been used in
order to build the proposed framework.

Table 4.1 shows an error rate comparison in terms of the average and standard
deviation among 5 runs. In this comparison, single directional and bidirectional
LSTM are analyzed with the two described loss functions. The first column shows
the loss function and the network that has been used, the second one shows the
error rate of the rhythm, the third one the results concerning the pitch; and the
last column shows the results when considering the rhythm and pitch jointly. Note
that the BLSTM produces better results. Moreover, regarding the loss function,

3http://pytorch.org/
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the Smooth L1 function obtains better results with 1.5% SER when recognizing the
pitch, 2% SER when recognizing the rhythm and 2.8% SER when recognizing the
pitch an rhythm jointly. Using a bidirectional network, the input is processed in
both directions. Thus, it obtains information of the whole symbol, and becomes
more accurate. For example, if one direction recognizes a note-head, the other
direction can discard that the vertical line that it is reading is a bar line, but
instead a note stem (both stems and bar lines are straight vertical lines).

Table 4.1: Results using LSTM and BLSTM. All results are between [0-1] given
in error rate (ER). The first number is the mean of the five executions and the
number between parenthesis is the standard deviation

Rhythm (R)
Symbol ER

Pitch (P)
Symbol ER

R + P
Symbol ER

LSTM
Smooth L1 0.326 (± 0.007) 0.293 (± 0.008) 0.426 (± 0.009)

BLSTM
Smooth L1 0.020 (± 0.001) 0.015 (± 0.001) 0.028 (± 0.002)

LSTM
Multi Label
Soft Margin

0.431 (± 0.017) 0.567 (± 0.051) 0.747 (± 0.063)

BLSTM
Multi Label
Soft Margin

0.027 (± 0.002) 0.023 (± 0.002) 0.036 (± 0.003

In Figures 4.6 and 4.7 we can see some qualitative results. First subfigure shows
the input of the system. The second, third and fourth subfigures correspond to
the Rhythm ground-truth, output and thresholded output respectively. In the
fifth, sizth and seventh subfigures we can see the Melody ground-truth, output
and thresholded output respectively.

4.3.4 Comparison with a commercial OMR software

The proposed method has been compared with PhotoScore 4, a commercial OMR
software able to recognize printed and also handwritten music scores. Figure 4.8
show qualitative results. Note that this comparison might not be completely fair.
PhotoScore has some features to improve its performance that are not considered in
our method. PhotoScore probably uses syntactic rules for validation. For instance,
the commercial system can recognize the time signature and then validate the
amount of music notes at each bar unit (which is used to solve ambiguities).
Contrary, in our work, no syntactic rules have been applied. This is an important

4http://www.neuratron.com/photoscore.htm
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(a) Input image

(b) Rhythm ground truth

(c) Rhythm Output

(d) Rhythm Output with threshold higher than 50%

(e) Melody ground truth

(f) Melody Output

(g) Melody Output with threshold higher than 50%

Figure 4.6: Qualitative Results Example using LSTM.

difference because we do not correct any miss-classification using music notation
rules.

Figure 4.8 shows that, even with a very simple music score, PhotoScore has pro-
duced two errors. First, it has confused the time of silence (5-10), and second it
has added a duration dot at the end. It must be said that the method proposed
in this work has correctly recognized all the music symbols.
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(a) Input image

(b) Rhythm ground truth

(c) Rhythm Output

(d) Rhythm Output with threshold higher than 50%

(e) Melody ground truth

(f) Melody Output

(g) Melody Output with threshold higher than 50%

Figure 4.7: Qualitative Results Example using BLSTM.

4.4 Conclusions

In this chapter, we have proposed an optical music recognition method that deals
with single staff sheet music as a sequence making use of (B)LSTM networks.

The obtained results show that single staff music scores could be recognized by
means of RNN. We have also shown the benefits of using a BLSTM instead of an
LSTM applied to musical images. However, the recognition of scores as sequences
has some limitations. For instance, more complex music scores (e.g. scores with
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(a) Original Image

(b) Visual Result of PhotoScore

Figure 4.8: Recognition of a music score using the PhotoScore Commercial
OMR software. The errors are shown in red color.

multiple voices) require further research.

In the next chapter we will improve the current method in order to tackle the
handwritten music scores.
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Optical Music Recognition based on
Convolutional Recurrent Neural Network
for Handwritten Scores

I know nothing with any certainty but the
sight of the stars makes me dream.

– Vincent Van Gogh

Optical Music Recognition systems achieve good performance under relatively good
conditions. However, their accuracy dramatically decreases when dealing with
handwritten scores, mainly because of the high variability in the handwriting style.
In this chapter, we propose a full Handwritten Music Recognition (HMR) system
based on Convolutional Recurrent Neural Networks, data augmentation and trans-
fer learning, that can serve as a baseline for the research community.

5.1 Introduction

Although the interest in OMR has reawakened with the appearance of deep learn-
ing, as far as we know, the few existing methods that attempt to recognize hand-
written scores are mostly focused on solving a particular stage of OMR, such as
layout analysis [20] or detection and classification of graphic primitives [67] or
music symbols [97, 133].

Therefore, in this chapter we propose a full staff-wise Handwritten Music Recogni-
tion (HMR) system, which can serve as a baseline for future improvements in this
research field. Our architecture is based on Convolutional and Recurrent Neural
Networks. This work is based on the method explained in the chapter 4, where
we addressed OMR for printed scores as a sequential recognition task, disentan-
gling the output of the network in the two main components of music notation:
rhythm and pitch. In the present chapter, we improve this architecture to deal
with handwritten scores, and we show its viability both in printed and handwritten
scenarios. We have observed that there are not complete OMR systems for hand-
written scores on Western notation yet. There only exist successful approaches for
sub-stages of the process. Nevertheless, these methods are based on the detection
of music symbols, instead of the full OMR pipeline. Moreover, the reported re-
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sults might not be really convincing because the MUSCIMA++ dataset is a subset
of the CVC-MUSCIMA dataset [48], which was created for writer identification.
Since the above mentioned works randomly split the pages into train, validation
and test partitions, using writer-independent partitions only, the same music work
could appear in the training and test sets at the same time, with the only difference
of being written by different persons. Consequently, the system could be biased
towards the recognition of these specific sequences of melodies and rhythms.

Then, we have improved our method in the following way: First, we add Convolu-
tional Neural Networks as feature extractor. Secondly, since the existing amount
of annotated handwritten music scores is scarce, we propose a novel data augmen-
tation technique, and incorporate transfer learning from printed scores. Finally,
we also share the handwritten data that we have created (section 3.2.1) that has
been manually labelled for the experimental evaluation.

The remainder of this chapter is organized as follows. Section 5.2 describes our
architecture. Section 5.3 explains how we deal with few handwritten data. Section
5.4 discusses the results, and conclusions are drawn in Section 5.5.

5.2 Convolutional Recurrent Neural Network

Many music scores, including polyphonic ones, are written using a single staff.
Therefore, we propose to read each staff as a sequence, similar to text recogni-
tion [52], by using Long Short-Term Memory (LSTM) Recurrent Neural Networks
(RNN). Although they can extract information directly from image pixels, we
incorporate Convolutional Neural Networks (CNN) as image feature extractor.
Figure 5.1 shows an schema of our architecture. The different stages are described
next.

Input: In this chapter, we assume that the music scores pages have been previ-
ously segmented into staves. The segmented staves correspond to binary images
resized to a height of 100 pixels in order to feed pixel columns of the same size
to the network. The aspect ratio will be kept, therefore the width will change for
each batch. The images of the same batch are padded according to the longest
staff in the batch.

Convolutional Block: The convolutional block is composed by three convolu-
tional layers increasing the depth and kernel size of 3x3, followed by Batch Nor-
malization [76] and Rectified Linear Unit activation [58]. Finally a max-pool 2x1
operator is used to reduce the vertical dimension while keeping the same image
width. In other words, the output of the Convolutional Block will have the same
width as the input image.

Recurrent Block: This block uses Bi-directional LSTM networks (BLSTM)
[75] to benefit from context when recognizing each symbol. Compared to RNNs,
LSTMs are able to learn long-term dependencies, avoiding the vanishing gradient
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Figure 5.1: Architecture of our method. Each staff is the input of the convolu-
tional block to extract features, and then, it passes the recurrent block. Finally,
two fully connected layers separate the rhythm and melody.

problem, and keeping information for longer time. Moreover, the bi-directionallity
provides an extra information that reduces ambiguities, because it takes into ac-
count the forward and backward directions. For example, if one direction is read-
ing a vertical line and the other direction is seeing a notehead, the network can
correctly predict a quarter note. Figure 5.2 shows an example of the ambiguity
reduction provided by both directions. In our architecture, we use four BLSTM
layers of 512 neurons each.

Dense Layers: After the recurrent block, we incorporate two fully connected
(FC) layers. In this way, we will obtain two outputs: one for the rhythm and one
for the pitch. If we had one single output, we should consider any combination of
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Figure 5.2: BLSTM predictions. The backward direction helps to reduce the
ambiguities when predicting a symbol.

pitch-rhythm as a different class, which would become in a very large number of
classes. Another reason to separate pitch-rhythm and consider them independent,
is that we can obtain many more examples of each class to train. For instance, the
system learns the shape of a 16th note, no matter its pitch. Please note that here
we define the pitch as the location of the note in the staff (e.g. the note is located
on the third staff line), instead of the real pitch (e.g. C4 note), because it depends
on the clef. Also, in this way, we can represent all pitches with few classes.

Output: Finally, the output of each dense layer is a matrix, whose columns
are symbol and pitch probabilities per pixel column in the original image. Each
matrix has the same width as the original image and has a height of 80 classes for
the rhythm and 28 classes for the pitch. By thresholding these matrices, we can
decide which symbols appear in the music scores. In the last chapter, based on our
previous work [7], we performed an exhaustive analysis where we evaluated several
thresholds. The one which provided the best performance was 0.5. In other words,
the network has to be at least 50% confident when recognizing each symbol. Note
that more than one symbol may appear at the same time step (column). Two
symbols have been manually added to ease the recognition:

• Epsilon (ε) is used to know where a symbol starts and ends. If ε is acti-
vated, none of the other symbols can be activated. This symbols works as a
separator.

• No note is a symbol only found in the pitch matrix. When this symbol is
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activated it means that the symbol activated in the rhythm matrix (at the
same instance of time) has not pitch (e.g. symbols without pitch, such as
rests).

Finally, these outputs are converted into an array, combining the rhythm and
pitch. These arrays will be used to evaluate the method at rhythm and pitch level
and also to evaluate the complete system, where both parts should be predicted
correctly.

As it has been stated, in OMR several symbols can appear at the same time stamp
(e.g. chords, time signature, etc.). Hence, several labels can be predicted at the
same output step. For this reason, we choose the Smooth L1-loss function. Con-
cretely, our architecture has been trained using the Stochastic Gradient Descent
(SGD) optimizer with Momentum and weight decay i.e. L2 regularization. The
Smooth L1-loss has been used as objective function defined as

L(x, y) =
1

n

∑{
0.5(xi − yi)2, if |xi − yi| < 1

|xi − yi| − 0.5, otherwise,
(5.1)

where x is the output of the proposed architecture and y is the target we want to
achieve. The proposed loss function can deal with multi-label problems being less
sensitive than L2-loss with respect to outliers.

5.3 Data Augmentation and Transfer Learning

This section describes the training strategies that have been used to exploit our
architecture. As stated before, there is very few labelled handwritten data. Since
little groundtruth data for training leads to overfitting problems, we propose two
different strategies. First, we propose to apply transfer learning by fine-tuning a
printed model with handwritten data. Second, we propose a data augmentation
technique for music scores.

Transfer learning. Training our system with printed scores give insights of the
suitability of the proposed approach for OMR. However, a model for printed scores
may fail when recognizing handwritten scores due to the elastic deformations in
handwriting styles. To overcome this issue, we propose to pre-train our model with
printed scores, and then, fine-tune it with the few available handwritten data.

Data augmentation. To increase the amount and variability of training data,
some distortions have been applied to both the printed and handwritten training
sets. First, we have applied dilation, erosion and blurring distortions. Note that
this data augmentation has been randomly applied for each music score. Beside the
morphological operations, the number of handwritten music scores in the training
set has been increased by shuffling the bar units. For this purpose, we crop each
measure (bar unit) and shuffle among the different measures of the staff, with
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the exception of the first and the last bar unit. These two measures are fixed
because the first one contains the clef and the time signature whereas the last
one can contain a final barline. Figure 5.3 shows the different data augmentation
techniques applied to each dataset. Note that this shuffling also prevents the model
to learn a specific melody and rhythm.

Figure 5.3: Different techniques of data augmentation. Dilating, eroding and
blurring have been applied to both datasets, printed and handwritten ones. Shuf-
fling is only applied to the handwritten dataset.

5.4 Experimental Validation

This section experimentally validates the performance of our architecture. As it
has already mentioned, we propose to firstly train a model able to recognize printed
musical scores and later transfer this learning to handwritten data. Hence, two
datasets have been used.

5.4.1 Datasets

Printed dataset: we use a subset of PrIMuS dataset [26], which consists of
rendered incipts from the RISM1. It is annotated at primitive level i.e. the symbols
are labelled as noteheads, steams and flags, among others instances instead of
quarter notes, 8th notes, 16th notes and such on. This dataset is latter converted

1http://rism.info
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into symbol level. Our set contains almost 50,000 music scores rendered with 3
different typographies.

Handwritten dataset: 20 pages of MUSCIMA++ dataset [68] have been se-
lected al labeled manually to test this approach. For more information see section
3.2.1.

5.4.2 Evaluation

We use the Symbol Error Rate (SER) [26, 30, 135] metric. Similarly to Word
Error Rate (WER) [52], commonly used in text recognition community, SER is
computed as the Levenshtein distance: the sum of edit operations that are needed
to convert the output of our method into the groundtruth in terms of symbol
insertions (I ), substitutions (S ) and deletions (D). Formally,

SER =
S +D + I

N
, (5.2)

where N is the number of symbols in the ground truth. The lower this value, the
better.

To perform the evaluation at different levels, we propose to evaluate Rhythm and
Pitch separately. Therefore, we will provide the SER for both outputs of the
proposed architecture. Finally, both outputs are merged and the SER for pairs
Rhythm and Pitch (considered as one symbol) is provided.

5.4.3 Results on Printed Documents

We first evaluate our model in the printed scenario. Thus, we can test the suit-
ability of our architecture in a controlled scenario. An ablation study has been
performed to test several architecture details. Table 5.1 presents this study in or-
der to evaluate the importance of the BLSTM recurrent block, CNN features and
Data augmentation. Moreover, we compare the current work with our previous
work [7].

As expected, the best configuration uses a CNN to extract image features contain-
ing richer information than merely using pixel columns. Moreover, the BLSTM
provides more context information and improves the previous approaches. Finally,
data augmentation slightly improves the performance whereas making it more ro-
bust to the initialization. The first row shows our previous work, while the last
row shows the best configuration of the current work. The main difference is that
here we propose to incorporate a convolutional block before the recurrent layers,
and we have increased the number of neurons from 128 to 512 and layers from 3 to
4. In this way, we obtained a better performance (the SER decreases from 0.028
to 0.003 when we consider the rhythm and pitch together).
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Table 5.1: Results on printed documents. All results are between [0-1]. The first
number is the mean of the five executions and the number between parenthesis
is the standard deviation. The first row corresponds to our previous work, the
others are results of the current architecture.

RNN CNN Data
Augm.

Rhythm
SER

Pitch
SER

Rhy.+Pit.
SER

BLSTM [7] - X 0.020 (± 0.001) 0.015 (± 0.001) 0.028 (± 0.002)

LSTM - - 0.168 (± 0.014) 0.144 (± 0.011) 0.174 (± 0.012)
LSTM - X 0.163 (± 0.009) 0.139 (± 0.013) 0.169 (± 0.008)
BLSTM - - 0.005 (± 0.002) 0.003 (± 0.001) 0.006 (± 0.002)
BLSTM - X 0.005 (± 0.002) 0.002 (± 0.000) 0.005 (± 0.001)
BLSTM X - 0.003 (± 0.001) 0.002 (± 0.001) 0.003 (± 0.001)
BLSTM X X 0.002 (± 0.001) 0.001 (± 0.000) 0.003 (± 0.001)

Table 5.2: Results on handwritten documents. All results are between [0-1].
The first number is the mean of the five executions and the number between
parenthesis is the standard deviation.

Pre-train
Printed

D. Augm.
Printed BLSTM CNN D. Augm.

Handwritten
Rhythm
SER

Pitch
SER

Rhythm+Pitch
SER

Shuffle Morph.

- - - - - - 0.826 (± 0.009) 0.709 (± 0.012) 0.899 (± 0.007)
X - - - - - 0.771 (± 0.021) 0.668 (± 0.021) 0.872 (± 0.016)
X X - - - - 0.762 (± 0.019) 0.690 (± 0.004) 0.854 (± 0.019)
X X X - - - 0.523 (± 0.018) 0.464 (± 0.020) 0.610 (± 0.016)
X X X X - - 0.493 (± 0.015) 0.396 (± 0.012) 0.559 (± 0.015)
X X X X X - 0.476 (± 0.009) 0.387 (± 0.008) 0.545 (± 0.009)
X X X X X X 0.490 (± 0.005) 0.393 (± 0.004) 0.554 (± 0.007)

5.4.4 Results on Handwritten Documents

As stated before, we aim to create a full staff-wise HMR system for handwritten
music scores that can serve as starting point for future improvements in this field.
Table 5.2 shows the results of our method using the selected pages of the MUS-
CIMA++ dataset. Note that each line introduces an improvement to the previous
one. In the first row, we do not use any of the proposed improvements (no pre-
training, CNNs, etc.). Observe that pre-training with printed data decreases the
error (second row). Data augmentation on printed data helps a little bit. How-
ever, in the fourth row, we can see that the BLSTM is the key modification to
reduce the error rates by 0.2 points. This is because of its ability to use context to
minimize ambiguities. Then, the feature extraction based on CNN also helps to
recognize the handwritten music scores (fifth row). By shuffling the measures (the
sixth row) we obtain the best approach. Finally, in the last row, we observe that
morphological operations for data augmentation only introduce noise and increases
the error rates. The main reason for this behaviour could be that morphological
techniques may make printed scores look closer to handwritten, but when these
techniques are used in handwritten scores, the result may look unrealistic.
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Table 5.3: Results on the handwritten documents, shown per page. All results
are between [0-1]. The first number is the mean of the five executions and the
number between parenthesis is the standard deviation.

Polyph. Rhythm
SER

Pitch
SER

Rhy.+Pit.
SER

W. 17 - P. 1 - 0.528 (± 0.019) 0.349 (± 0.019) 0.594 (± 0.014)
W. 13 - P. 3 - 0.226 (± 0.018) 0.175 (± 0.008) 0.270 (± 0.016)
W. 15 - P. 10 X 0.716 (± 0.017) 0.620 (± 0.010) 0.796 (± 0.018)
W. 10 - P. 18 X 0.483 (± 0.018) 0.422 (± 0.008) 0.565 (± 0.013)

Using the best configuration in Table 5.2, we provide the results from each one test
page in Table 5.3 (two of them are polyphonic). Note that each row corresponds
to a different writer and different page.

5.4.5 Comparison with commercial OMR software

Since we could not find any complete OMR for handwritten scores in the literature,
we could not make a quantitative comparison. However, we could find a commer-
cial software for qualitative evaluation. Photoscore is a commercial software able
to recognize handwritten and printed music scores. It must to be said that we do
not know whether Photoscore uses any post-processing or grammar rules (detect-
ing the time signatures might be counting the number of beats in each measure
and validating the recognition) in the recognition, so the comparison could not be
completely fair.

Figures 5.4-5.8 show some qualitative results comparing the Photoscore results
with our method. We have used different colors to highlight the common mistakes
of our method. The blue color is used when different symbols appear in the
same column, and our method is not capable to relate each symbol with the
correspondent pitch. Orange boxes show that some symbols, as accents, could
confuse our system. For example, sometimes the method predicts that an accent
is a notehead, thus it detects the notehead located higher up (see Fig. 5.8), whereas
other times it can predict that accent is another notehead and detects a chord (see
Fig. 5.7). In red we show when the system confuses some symbols because of
shape, for example a text dynamics is confused by a quarter note. Finally, Fig.
5.6 shows in green the difficulties to detect all noteheads in a chord. In these
images, please note that when we draw the output of our network, the compound
music symbols have been manually joined for better visualization.

55



5. OMR BASED ON CRNN FOR HANDWRITTEN SCORES

Figure 5.4: Qualitative comparison with Photoscore. Example of one staff of
page 1. The blue box shows that our method is not able to recognize the symbols
when several of them appear in the same column.

Figure 5.5: Qualitative comparison with Photoscore. Example of one staff of
page 3. Contrary to Photoscore, note that our method could detect all the slurs.

5.4.6 Discussion

From these results, we could conclude that our methodology is valid and has shown
to be able to recognize simple staves. From the qualitative point of view, bearing
in mind that the Photoscore software might be using music rules for validation,
our method obtains pretty good results. In fact, in many cases, our method
outperforms Photoscore.

Concerning the quantitative results, although we are aware that the overall SER is
close to 50%, these results are promising. First, we have used very few handwritten
data, and secondly, we have not applied any grammar or rule to validate each bar
unit.

Nevertheless, there are several limitations, most of them related to the way of
labelling the data, which are described next.

Polyphonic music scores: The ground-truth is not able to relate which pitch
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Figure 5.6: Qualitative comparison with Photoscore. Example of one staff of
page 10. The green box shows that our method is not able to recognize all the
noteheads in polyphonic music scores.

Figure 5.7: Qualitative comparison with Photoscore. Example of one staff of
page 10. The orange box shows that our method could confuse some symbols by
others by the position i.e. accents by noteheads.

corresponds to each notehead in the case that the rhythm within a chord (or
polyphonic voices) is different (see Fig. 5.9 red symbols). However, it is able to
recognize polyphony correctly if the rhythm is the same for all the symbols (see
Fig. 5.9 green symbols).

Repeated symbols: If a symbol without pitch appears more than one time at
the same time step, the method will only detect one (see Fig. 5.9 the blue slur
will not be recognized).

Compound Music Symbols: The compound music symbols such as 8th notes,
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Figure 5.8: Qualitative comparison with Photoscore. Example of one staff of
page 18. The red box shows that our method could confuse some symbols by
others by the shape. The blue box shows that our method is not able to recognize
the symbols when there are many in the same column. The orange box shows
that our method could confuse some symbols by others by the position.

16th notes, 32th notes and so on, joined by a beam, will be separately recognized
because there is no symbol for notating this i.e each notehead will have its steam
and its flag, will not be joined by a beam.

Clef position on the stave: The ground truth does not provide the position of
the clef on the stave. This means that a bass clef on the third or forth staff lines
are predicted as the same.

Figure 5.9: Method’s limitations. In red polyphonic notes that could not be
correctly recognized because they have different duration at the same time step.
In blue the slur that will not be detected because there is another slur at the
same time. In green, symbols that will be correctly detected because they have
the same duration.

5.5 Conclusions

In this chapter, we have proposed a complete Handwritten Music Recognition
(HMR) system based on CNNs and RNNs, data augmentation and transfer learn-
ing from printed scores. The experimental results have demonstrated the viabil-
ity of this approach, showing that staves can be recognized as a sequence using
BLSTMs, and also, that the convolutional block acts as an effective feature ex-
tractor. We have first demonstrated that our architecture is valid through the
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evaluation over printed scores. Secondly, we have showed that our methodology
greatly benefits from data augmentation from handwritten scores as well as trans-
fer learning from printed scores.

Taking into account that we have used only 20 pages of the MUSCIMA++ database
in the experiments, the results are promising. We hope that these results, together
with our labelled data, can serve as a baseline for the community, fostering the
research towards full OMR systems.

Of course, the incorporation of more handwritten data labelled at symbol level
would help to obtain better results. For this reason, in the next chapter we will
treat with an old music scores dataset, slightly bigger than the current dataset.
As the dataset is more complicated, we will compare the current method with a
proposed Sequence to Sequence model based OMR approach.
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6 |
Optical Music Recognition based
on Sequence-to-Sequence with
Attention Mechanism for Old Scores

Old music used to mean something.
There is none of that today.

– Ziggy Marley

The recognition of old handwritten music scores remains a challenge because of the
variabilities in the handwriting styles, paper degradation, lack of standard nota-
tion, etc. Therefore, the research in OMR systems adapted to the particularities of
old manuscripts is crucial to accelerate the conversion of music scores existing in
archives into digital libraries, fostering the dissemination and preservation of our
music heritage. In this chapter we explore the adaptation of sequence-to-sequence
models with attention mechanism (used in translation and handwritten text recog-
nition) and the generation of specific synthetic data for recognizing old music
scores. The experimental validation demonstrates that our approach is promising,
especially when compared with long short-term memory neural networks.

6.1 Introduction

The research in OMR systems adapted to the particularities of old music scores
is crucial to accelerate the process from its discovery to its digital transcription,
enabling researchers to analyze, publicize and divulge unknown composers and
compositions that traditional methods are forced to neglect. This paradigm shift
from traditional musicological research -which is usually focused on the aesthetic
assessment and compositional characteristics of a certain number of composers- far
from opposing it, would become a fundamental tool to complement these studies.
This would provide a much more accurate overview of the local characteristics of
each music and its relation to other geographical contexts (transmission, influences,
circuits, etc.).

Recognizing historical documents implies dealing with few labelled data. One
solution is to train with synthetic data and refine with real handwritten one, as in
[8]. Another solution is to explore unsupervised domain adaptation techniques, as
proposed in [79] for handwritten text recognition. Although Adversarial Networks
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for domain adaptation have been explored in et al. for recognizing music symbols,
their application to music score recognition is still an open problem.

Concerning old scores, the are some works for mensural notation. For example,
Calvo-Zaragoza et al. propose to use hidden Markov models and N-gram language
models [29], whereas in [28] they opt for convolutional neural network with a
recurrent neural network and language models. Pacha et al. [96] use a R-CNN with
Inception ResNet V2 for music object detection and mensural scores. However,
mensural notation is rather simple compared to western notation, so the research in
OMR for historical documents dated from 17th-18th is still necessary. Moreover,
the adaptation of the groundtruth to train an object detection method is very
tedious. Methods like [96], not only need an expert to transcribe the music score,
but also to annotate in the image score the position of each symbol. Note that
such a detailed annotation is not needed for training recurrent neural networks,
including sequence-to-sequence methods.

For the above reasons, in this chapter we propose an OMR system for old handwrit-
ten scores. Our method is based on sequence-to-sequence models with an attention
mechanism, which have been successfully applied to translation and handwritten
text recognition. As far as we know, this is the first OMR method based on
sequence-to-sequence (seq2seq) model with attention mechanism adapted for his-
torical music score recognition. Also, and since the lack of available transcribed
scores for training deep learning systems pose a challenge, we also generate specific
synthetic data that emulates the particularities of old scores, for example lyrics
touch the stave or even the musical symbols (see section 3.2.2). The experiments
demonstrate the suitability of our approach, especially when compared to Long
Short-Term Memory Recurrent Neural Networks. Finally, the method has been
tested in a real dataset that we have labeled (see section 3.2.3).

The rest of the chapter is organized as follows. Section 6.2 explains the architecture
that we have used as baseline. Section 6.3 describes our proposed architecture.
Section 6.4 relates how to deal with the lack of historical data. Section 6.5 discusses
the results, and section 6.6 draws the conclusions.

6.2 Baseline: Long Short-Term Memory Neural
Network

Before describing our Seq2Seq OMR architecture, we first describe our baseline,
based on Long Short-Term Memory Recurrent Neural Networks [8, 26]. Note
that our baseline is based on recurrent models because of the sequentiality of
monopohonic music staves.

Although long short-term memory networks are capable of directly treating the
raw image, the performance improves when adding a Convolutional Neural net-
work (CNN) as a feature extractor. Thus, our baseline is composed of a Con-
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volutional Neural Network and a bidirectional Long Short-Term Memory neural
network (BLSTM) with Connectionist Temporal Classification (CTC) loss. Figure
6.1 shows the model architecture. The modules are described next.

Figure 6.1: Convolutional Neural Network and Bidirectional Long Short-Term
Memory model.

• Convolutional Network: In this step we extract the features that will be
used in the next steps. The convolutional network is composed of the first
three layers of the ResNet18 [70], consisting of convolution, batch normal-
ization and rectified linear unit activation.

• Bidirectional LSTM: The BLSTM gets as input the features from the
CNN. We use a LSTM to reduce the vanish gradient problem since LSTMs
can remember information for longer time. We use bi-directonal LSTMs to
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increase context information (from left and right sides in the image) and
reduce the number of ambiguities.

• Fully connected layers: The results obtained by the BLSTM network are
passed to a fully connected layer to return the final result.

• Connectionist Temporal Classification: This step helps to evaluate the
output and check that the predictions are correct. As a loss function we
use the Connectionist Temporal Classification (CTC) [62], which is trained
using Stochastic Gradient Descent (SGD) optimizer with Momentum.

6.3 Sequence to Sequence

As explained before, music scores are written on staves following a sequence, so
our approach is also based on recurrent models. Concretely, our method is based
on the sequence-to-sequence (seq2seq) text recognition method [80], and adapted
to music scores.

6.3.1 Sequence-to-Sequence model with attention mecha-
nism

This methodology makes use of an attention-based encoder-decoder framework.
Thus, our model consists of 3 components, the encoder, the attention mechanism
and the decoder. Figure 6.2 depicts our proposed architecture for optical music
recognition.

• Encoder. Given an input image, the encoder extracts high-level features en-
coding the contents of the image. These features will be later used to obtain
the contents of the image in a machine readable format. In this work, the
proposed encoder is implemented with a VGG-19-BN network [127] with pre-
trained weights from ImageNet. Moreover, the last max-pooling is removed.
Finally, the VGG features are reshaped into a two-dimensional feature map
that will be further used as the input to a multi-layered Bidirectional Gated
Recurrent Unit (BGRU) which provides extra positional information.

• Attention Mechanism. As an attention module, we use a location-based
attention as proposed by Chorowski et al. [35]. This takes into account the
location information explicitly for a better alignment. Otherwise, content-
based attention expects the location information to be coded in the extracted
features in order to differentiate the different representations of the features
of the same symbol in different positions. The attention mechanism is in
charge of aligning our feature representations with our decoding steps.
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Figure 6.2: Sequence-to-sequence model with attention mechanism.

• Decoder. Finally, the decoder module is formed by a one-directional multi-
layered GRU. The decoder provides the recognized symbols in several steps
following a sequential order. At each time step the decoder GRU receives
the concatenation of its previous embedding vector (in step i − 1) and the
current context vector (defined by the encoded features and our attention
mechanism) in order to predict a new symbol. Moreover, to enhance the
decoder we have used, on the one hand a multi-nominal which takes into
account several decoding paths to obtain the final prediction and, on the
other hand, label smoothing that allows a better generalization preventing
over-confident predictions.
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6.3.2 Adaptation to music scores

Recurrent methods, including sequence to sequence (seq2seq) models, have shown
good performance when applied to handwritten text recognition (HTR). But the
recognition of music is much more complex than text. The main reason is that the
nature of text is one-dimensional: a sequence of characters. In music, however, we
have to deal with two-dimensional sequences. First, music notes are composed of
rhythm and melody. Second, some elements, such as ornaments or articulations,
usually appear above or below notes. In addition, groups of notes (e.g. chords) or
even other symbols (e.g. slurs or ties group notes, providing musicality to the work)
appear at the same instant of time. Furthermore, music notation allows notes (e.g.
8th, 16th, etc.) to be written isolated or together (grouped using beams). Besides,
an 8th note can have a stem looking up or down. Although isolated or compound
symbols could seem the same to a non-expert user, a musician or musicologist
makes differences (especially during the interpretation).

For the above reasons, we need to adapt the seq2seq model designed for text
recognition to the particularities of music scores. It is true that, since music
elements are located in a 2D space on the staff, these elements could be represented
using a graph, such as in [68]. Thus, one possible solution is to treat the problem
as a graph serialization task, which can be defined as the conversion of a 2D graph
into a 1D string. In our case, music scores have been annotated at primitive level
(i.e., note heads, stems, beams, flags, rests, etc.), so the output of our architecture
will be a sequence of 1D music primitives. Therefore, we can solve the problem by
defining a reading order, from left to right and from top to bottom, as illustrated in
Figure 6.3. In a horizontal lecture, when we move one step in the staff (the position
of the horizontal arrow), we use the symbol epsilon (ε) as a separator. Contrary,
if the vertical primitives belong together (e.g. same symbol), they appear at the
same time step, as denoted using vertical arrows.

6.4 Dealing with the lack of data

Deep learning methods are data hungry, i.e. they need a lot of labelled data to
train. We have created two datasets detailed in section 3.2.2. These synthetic
datasets are used to pretrain our system. We train our model using curriculum
learning [13] for improving the performance. At the beginning, we train with few
real historical measures and lots of synthetic ones. After n epochs, we increment
the number of historical measures and decrease the synthetic ones. At the end,
the training data is 100% historical.
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Figure 6.3: Example of the labelling of the groundtruth, creating a 1D sequence.
The transcription is written reading each measure from left to right, and from
top to bottom if the symbol is divisible into primitives.

6.5 Experimental Validation

This section experimentally validates our approach. To test it we have used the
Pau Llinàs dataset detailed in section 3.2.3.

6.5.1 Results on historical music scores

We have used the Symbol Error rate (SER) metric to evaluate our approach. This
has already been used in several music recognition publications as a substitute
for the well-known Character/Word Error Rate in text recognition. The SER is
defined by

SER =
S +D + I

N

where S denotes the substitutions, D the deletions and I the insertions and N the
number of symbols in the groundtruth. As it is a metric that evaluates the error,
the lower the better. Next, we evaluate our sequence-to-sequence architecture, and
compare with the baseline described in Section 6.2.

Quantitative Results

Table 6.1 shows the comparison between our Seq2Seq model and the baseline
model using Convolutional Neural Network and Bidirectional Long Short Term
Memory Neural Networks with Connectionist time classification (CNN+BLSTM)
[8]. The first column indicates the method used, the second column indicates which
dataset has been used for training and the third column indicates the percentage
of Symbol Error Rate (SER). From the Table 6.1, we can observe that, in all
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Table 6.1: Quantitative results comparing the CNN+BLSTM model and our
sequence-to-sequence (Seq2Seq) model.

Architecture Dataset
Train Test SER (%)

CNN+
BLSTM

Historical 56.20
Modern Synthetic 96.20
Old Synthetic 75.20

Modern + Old Synthetic 74.40

Seq2Seq

Historical 40.39
Modern Synthetic 83.80
Old Synthetic 61.89

Modern + Old Synthetic 60.69

setups, the Seq2Seq outperforms the BLSTMs by a large margin. As expected,
the best result is obtained when training with real historical data, even though the
amount of real labelled data is very low. We also observe that training with the
modern synthetic dataset leads to a very low performance. However, if we train
with the old synthetic dataset, we can reduce the SER by 20 points. Finally, if we
combine both synthetic datasets (50% modern and 50% old), there is more varied
data during training, so the methods obtain a slightly better SER.

Given that the best results are obtained using our proposed Seq2Seq approach and
combining all synthetic data (modern+old), we have performed a second exper-
iment considering the scenario where both real and synthetic data are available
for training. As explained in Section 6.4, we use curriculum learning to train with
easy examples first, and gradually incorporate more difficult ones. Table 6.2 shows
how we have modified the percentage of historical and synthetic data at training
time. The first four columns of the table shows the percentage of measures used
for training and validation for each dataset, whereas the last column shows the
SER on the real historical test set. We start the first epochs (see the first row)
with few historical data and a high percentage of synthetic data. Every 10 epochs
we augment the percentage of real data, while decreasing the amount of synthetic
one. To minimize the overfitting problem, and given that the amount of syn-
thetic scores are much higher than the historical ones, in the validation set, we do
exactly the opposite: we have started with a high percentage of historical data,
which is progressively decreased during training. At the end of the training phase,
the training set has mainly historical data whereas the validation set has mainly
synthetic one.

From the results reported in Table 6.2, we can conclude that training with real
and synthetic data highly benefits the overall system performance. Indeed, the
obtained SER of 31.79% is significantly lower than the SER of 40.39% that was
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Table 6.2: Results using our Seq2Seq model with Curriculum learning. We show
the amount of data of each kind used during training.
Percentage in Training (%) Percentage in Validation (%) Test SER (%)

Historical Modern+Old Syn. Historical Modern+Old Syn.

10 90 100 0 60.03
40 60 70 30 66.20
60 40 50 50 43.38
80 20 30 70 37.86
90 10 20 80 34.56
100 0 10 90 31.79

obtained when training with historical data only, as shown in Table 6.1.

Qualitative Results

Figure 6.4 shows some qualitative results from the sequence-to-sequence model.
We have highlighted in red some common mistakes. In the first example, we
see that the lyric is often confused by slurs. Some times the shape between the
stem and the flag is also confused. The position of a notehead can be frequently
displaced i.e. a note in the space 3(S3) could be wrongly predicted as to be in line
3(L3) or line 4(L4).

6.6 Conclusions

In this chapter we have proposed a sequence-to-sequence architecture with at-
tention mechanism for recognizing historical handwritten music scores. We have
experimentally demonstrated that our model obtains promising results, especially
compared to Bidirectional Long Short-Term Memory networks. We have also
shown that the generation of specific synthetic data that simulates old scores is
beneficial. In this sense, we have demonstrated that curriculum learning can gain
leverage from the combination of real and synthetic data, improving the overall
performance.

Nevertheless, the difficulties of historical scores in terms of paper degradation,
touching lyrics and music symbols as well as the lack of annotated data still pose
a challenge for optical music recognition. Concerning this last issue, the addition
of music context in the recognizer can help to improve the performance. Thus,
the next chapters will be dedicated to incorporate information from the musical
notation theory to the recognition methods. Moreover, we believe that the research
community can benefit from our three labelled datasets, which will be publicly
available.
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Figure 6.4: Qualitative results. Mistakes shown in red color. From left to right
and from up to down. First image: a slur is predicted instead of lyrics. Second
image: the pitch of one notehead is confused. Third and fourth images: multiple
mistakes because lyrics are too close to music symbols.
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Part II

Contextual OMR methods

Music context have been narrowly studied in the Op-
tical Music Recognition literature. Music context
helps Optical Music Recognition methods to decrease
the number of mistakes or errors done in the recog-
nition. The methods have information from musical
notation to deal with the complexity of the problem.
Moreover, we will improve models used in the first
part of this thesis with the advantages that the music
context provides.





7 | Dendrograms

Research is formalized curiosity. It is
poking and prying with a purpose. It is
a seeking that he who wishes may know
the cosmic secrets of the world and they
that dwell therein.

– Zora Neale Hurston

The existing Optical Music Recognition approaches can only deal with very sim-
ple handwritten scores mainly because of the variability in the handwriting style
and the variability in the composition of groups of music notes ( i.e. compound
music notes). In this chapter, we focus on this second problem and propose a
method based on perceptual grouping for the recognition of compound music notes.
Our method has been tested using several handwritten music scores of the CVC-
MUSCIMA database and compared with a commercial Optical Music Recognition
(OMR) software. Given that our method is learning-free, the obtained results are
promising.

7.1 Introduction

The music notation rules for creating compound music notes (i.e. groups of music
notes) allow a high variability in appearance that require special attention. It is
one of the points that makes the music recognition more harder to recognize than
text. As seen in Chapter 1 music notation allows a huge freedom when connecting
music notes, which increases the difficulties in the recognition and interpretation of
compound notes. For example, music notes can connect horizontally (with beams),
and vertically (chords), and the position and appearance highly depends on the
pitch (melody), rhythm and the musical effects that the composer has in mind.
Figure 7.1 shows several examples of compound music groups that are equivalent
in rhythm.

Paying attention in the recognition of compound music notes, one must deal not
only with the compositional music rules, but also with the ambiguities in the
detection and classification of graphical primitives (e.g. note-heads, beams, stems,
flags, etc.). It is true that temporal information is undoubtedly helpful in on-
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Figure 7.1: Equivalent (in rhythm) compound Sixteenth notes.

line music recognition, as it has been shown in [23, 90]. Concerning the off-line
recognition of handwritten groups of music notes, much more research is still
needed. As far as we know, PhotoScore is the only software able to recognize
off-line handwritten music scores, and its performance when recognizing groups of
notes is still far from satisfactory. One of the main problems is probably the lack
of sufficient training data for learning the high variability in the creation of groups
of notes.

In this chapter we focus on the off-line recognition of handwritten music scores,
putting special attention to compound music notes. For this task, we avoid the
need of training data and propose a learning-free hierarchical method inspired
in perceptual grouping techniques that have been applied to text detection [66]
and object recognition [2]. The idea is to hierarchically represent the graphical
primitives according to perceptual grouping rules, and then, validate the groupings
using music rules.

The rest of the chapter is organized as follows. First, section 7.2 describes the
preprocessing and the detection of the graphics primitives. Section 7.3 explains the
hierarchical representation to combine the graphics primitives into more complex
elements, and the validation of each group hypothesis. Section 7.4 discusses the
experimental results. Finally, conclusions are drawn in Section 7.5.

7.2 Preprocessing and Detection of Primitives

In the preprocessing, we remove music braces and ties. In this step we assume
that the input image is binary and the staff lines are already removed by using any
of the staff removal methods in the literature [49]. Then we detect the graphics
primitives: note-heads, vertical lines and beams.

1. Preprocessing

a Brace removal: In polyphonic scores, braces indicate the staffs that are
played together, such as scores for different instruments. Given that
braces appear at the beginning, we analyze the connected components
at the beginning of the staffs. Following the musical notation theory, a
brace must cross consecutive staffs. Thus, these elements are approxi-
mated to a straight line, and if the estimated line crosses several staffs,
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it is classified as a brace. Afterwards, braces are removed using the
straight line estimation in order to avoid the deletion of other elements
such as clefs. The removal of braces will ease the posterior recognition
of music symbols, such as clefs and key-signatures. Figure 7.2a shows
some examples of braces where some of them are overlapping the clefs.
For more details, see [119].

b Tie removal: Long ties are used for adding expressibility in music per-
formance. However, they can be easily misclassified as beams due to
the handwriting style of the musician. 7.2b shows a problematic case,
where the beam is disconnected from the stems. Therefore, we propose
to detect and remove the long ties by analyzing the aspect ratio of the
horizontally long connected components.

(a) (b)

Figure 7.2: a) Examples of braces that are gathered with clefs. b) Beam easily
confused as a tie.

2. Detection of Graphics Primitives The starting point to construct the pro-
posed hierarchical representation is the detection of basic primitives that
defines the musical vocabulary or compound notes. These basic primitives
are created by means of simple detectors.

a Vertical lines detection: Vertical lines are key elements that are mainly
used to represent stems and bar lines. Since music notes are mainly
composed by note-heads, stems, beams and flags (see Fig.3), we must
identify the bar lines so that we can keep the rest of vertical lines as
stem candidates. For this task, we first detect all the vertical lines using
a median filter, and then, we analyze them to identify the bar lines. The
bar line identification consists of two steps:

• Properties checking: The vertical line is kept as a bar line candidate
if it (almost) crosses all the staff and it has no blobs (note-heads)
at it extrema points.
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• Consistency checking: The bar lines in the same page must have
similar length and must cross the same staffs. Therefore, the con-
sistency is analyzed as follows. First, we vertically sort the bar
line candidates using their centroid. Here, one candidate is an out-
lier if its length is very different from the candidates in the same
line. These outliers are analyzed just in case they have not been
correctly detected so they must be joined with other vertical lines.
Otherwise, they are rejected.

b Note-head detection: Note-heads play a key-role in music notes, since
they provide the melody. Moreover, its the only common component
in all type of music notes. Hence, detecting correctly a note-head is of
key importance for the correct symbol construction. Figure 7.3 shows
in red the different types of note heads that must be detected. Filled-

Figure 7.3: Graphics Primitives.

in note-heads are detected using mathematical morphology. First, two
elliptic structural elements are defined using different angles (30º and
-30º). Then a morphological closing is performed using both structural
elements. Finally, blobs closer to a vertical line are considered filled-in
noteheads. For the detection of white note-heads, the filled-in note-
heads are first removed from the image. Then, the holes are filled so
that we can find white note-heads using the same strategy. In both
cases, too large blobs are rejected.

c Beam detection: The beam’s appearance highly depends on the melody.
Consequently, a descriptor based on densities, profiles or gradients (e.g.
SIFT, HOG) will be unstable. For this reason, we propose the detection
of beams by adapting a pseudo-structural descriptor [86] for handwrit-
ten word spotting. The feature vector is created from the information
from every key-point in the word. For each key-point, the characteristic
Loci Features encode the frequency of intersection counts following a
certain direction path. Thus, the shape of the strokes is not taken into
account. For the detection of beams, we propose to modify the pseudo-
structural descriptor as follows. For each pair of consecutive detected
note-heads (and stems), we take the region in between, and divide it
into two parts (left and right). Then, we compute the characteristic
Loci Features in the vertical direction (i.e. the number of transitions).
Finally, we take the statistical mode (the most frequent value), which
indicates the amount of beams that link each pair of notes (see Fig.
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7.4). In this way, the descriptor is invariant to the beam’s appearance
and orientation.

Figure 7.4: Detected primitives in a compound note. The numbers indicate the
number of detected beams per region.

7.3 Perceptual Grouping

Once we have detected the graphics primitives, the next step consists in grouping
them to recognize the compound music notes. First, we create a hierarchical rep-
resentation of primitives (see Fig.7.5), and then we validate the different grouping
hypothesis using syntactical rules.

Figure 7.5: Validation hypothesis (dendrogram) of the compound note shown
in Figure 7.4
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1. Hierarchical representation

Inspired in the perceptual grouping techniques for text detection [66] and
object recognition [2], we propose to build a dendrogram to hierarchically
represent the graphics primitives. In our case the criteria for grouping is the
proximity of the graphics primitives, which means that the coordinates of the
primitives’ centers are used as features to create the hierarchical clustering.
Since compound music notes must contain at least one note-head, we use the
detected note-head candidates as seeds to start the grouping in a bottom-
up manner. Thus, we avoid the creation of many non-meaningful grouping
regions. Notice that the different grouping hypothesis can overlap. For
instance, a chord is composed of several note-heads that share the same
stem (e.g. see the first note in Fig. 7.3). Thus, this stem belongs to more
than one group hypothesis.

2. Validation of grouping hypothesis

The next step is the validation of the groupings. In case of text detection, the
grouping validation could be performed by recognizing the text. For exam-
ple, a grouping hypothesis could be accepted whenever an OCR can recognize
the word. In our case, the recognition of the compound notes as a whole is
not possible because the creation of a dictionary of music notes is unfeasible:
there are almost-infinite combinations of compound notes. Moreover, we
would need an huge amount of samples to train a shape recognizer. There-
fore, we propose to validate each one of the grouping hypothesis through the
following music notation rules:

• Whole note = {[white-note-head]+ }.

• Half note = {[white-note-head]+, stem}.

• Quarter note = {[filled-in-note-head]+, stem}.

• 8th note = {[filled-in-note-head]+, stem, beam}.

• 16th note = {[filled-in-note-head]+, stem, beam, beam}.

• 32th note = {[filled-in-note-head]+, stem, beam, beam, beam}.

• 64th note = {[filled-in-note-head]+, stem, beam, beam, beam, beam}.

The symbol + indicates that minimum one appearance of this primitive is
required. In summary, only the grouping hypothesis that can be validated
using these rules will remain. All the other hypothesis will be rejected.

7.4 Experimental Validation

For the experiments, we have selected a subset of the CVC-MUSCIMA dataset
[48]. Concretely, we have manually created the ground-truth of 10 music pages,
which contain a total of 1932 music notes. The music scores are from 4 different
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writers, mostly polyphonic music (containing several voices and chords). As stated
in the introduction, since we focus on the recognition of compound music notes,
we leave out of our experiments the recognition of isolated symbols (e.g. clefs,
accidentals), which could be faced with symbol recognition methods, as shown in
[50]. Table 7.1 shows the experimental results. The first column indicates the
music page that has been used e.g. ‘w5-p02’ means page 2 from writer 5). The
second column indicates whether the score is polyphonic or monophonic. The
third and forth columns show the detection of note-heads, whereas the last two
columns show the detection of music notes (e.g. half, quarter, 8th note, etc.).
The metrics used are the Precision (number of correctly detected elements divided
by the number of detected elements), and Recall (number of correctly detected
elements divided by the number of elements in the dataset).

Score Polyphonic Noteheads Notes

P R P R

w5-002 0.6 0.62 0.49 0.5
w5-010 X 0.63 0.62 0.36 0.35
w5-011 0.58 0.6 0.48 0.5
w5-012 X 0.72 0.73 0.64 0.65
w10-002 0.61 0.67 0.47 0.52
w10-010 X 0.62 0.61 0.4 0.39
w10-011 0.64 0.54 0.55 0.47
w10-012 X 0.59 0.55 0.49 0.45
w17-012 X 0.64 0.73 0.6 0.68
w38-012 X 0.76 0.82 0.72 0.78

Mean - 0.64 0.65 0.52 0.53

Table 7.1: Results. The detection of note-heads and music notes are shown in
terms of Precision (P) and Recall (R). All results are between [0-1].

We observe that the mean Precision and Recall of music notes is around 52%. The
main reason is that the detection of note-heads (which are used as seeds in the
grouping) is sensitive to the handwriting style. For example, in scores from writer
10, the head-note detector misses almost half of the note-heads. Consequently, the
detection of music notes is always lower that this value. In some other cases, such
as scores from writers 17 and 38, the note-head detector works much better, which
in turn allows the music notes detector to be much higher (recall is 68% and 78%,
respectively). Our method has been compared with PhotoScore1, a commercial
OMR software able to recognize handwritten music scores. Figures 7.6 and 7.7
show qualitative results from both approaches. As it can be noticed, PhotoScore
performs very well in easy parts, whereas its performance decreases considerably
in case of complex compound music notes. In this aspect, our approach is much

1https://www.neuratron.com/photoscore.htm
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more stable.

Figure 7.6: Results on ‘w10-p10’. First row: our method. Second row: original
image. Third row: PhotoScore results

Table 7.2 shows the quantitative results. As it can be seen, our method outper-
forms the recognition of compound music notes ‘w38-012’. Contrary, the differ-
ences in the recognition of the ‘w10-010’ score are very high. There are two main
reasons: first, our limitation of correctly detecting note-heads (the recall is around
60% in this score); and secondly, the accidentals (e.g. sharps or naturals) that
appear inside the compound music symbols (see Fig.7.8) create confusion in the
dendrogram. In addition, flats are similar to half notes, and they are frequently
confused. In any case, it must be said that this comparison is not completely fair.
PhotoScore has some features to improve its performance that are not considered
in our method. First, PhotoScore is a complete OMR system that recognizes the
whole score, which probably uses training data to deal with the variability in the
handwriting style. Since it recognizes all music symbols (including clefs, acciden-
tals and rests), it can use syntactic rules for validation. For instance, the system
can recognize the time signature and then validate the amount of music notes at
each bar unit (which is used to solve ambiguities).

7.5 Conclusions

In this chapter we have proposed a learning-free method for recognizing compound
groups of music notes in handwritten music scores. Our method is composed of a
hierarchical representation of graphics primitives, perceptual grouping rules and a
validation strategy based on music notation. Since our method does not use any
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Figure 7.7: Results on‘w38-p012’. First row: our method. Second row: original
image. Third row: PhotoScore results.

Score PhotoScore Our method

P R P R

w10-010 0.63 0.61 0.4 0.39
w38-012 0.69 0.74 0.72 0.78

Table 7.2: Comparison with the commercial PhotoScore OMR software. De-
tection of music notes in terms of Precision (P) and Recall (R). All results are
between [0-1]..

Figure 7.8: Compound notes with accidentals.

training data, the experimental results are encouraging, especially when compared
with a commercial OMR software.

In the next chapter, we will go a step further by proposing a learning-based method
with language models in order to improve the recognition of old music scores. We
take as a baseline the Sequence to Sequence model explained in the chapter 6.
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An error doesn’t become a mistake until
you refuse to correct it.

– Orlando Aloysius Battista

In this chapter we explore the incorporation of language models into a Seq2Seq-
based architecture to try to improve transcriptions where the aforementioned un-
clear writing produces statistically unsound mistakes, which as far as we know, has
never been attempted for this field of research on this architecture. After study-
ing various Language Model integration techniques, the experimental evaluation
on historical handwritten music scores shows a significant improvement over the
state of the art, showing that this is a promising research direction for dealing
with such difficult manuscripts.

8.1 Introduction

Even though the recent Sequence to Sequence (Seq2Seq) architectures have demon-
strated its capacity to reliably recognise handwritten text, their performance is still
far from satisfactory when applied to historical handwritten scores. Indeed, the
ambiguous nature of handwriting, the non-standard musical notation employed by
composers of the time and the decaying state of old paper make these scores re-
markably difficult to read, sometimes even by trained humans. Nevertheless, in the
handwritten text recognition literature, we have found that the incorporation of a
Language Model (LM) can tackle most of these ambiguities. This technique con-
sists on the application of a statistical LM trained to identify probable sequences of
tokens, which can then be used to assess the likelihood of the recognised sequence
and perform due corrections in the case of an unreasonably unexpected output
[65, 78]. As in n-grams, it regulates what sequences are considered most likely.

Inspired by this idea, in this chapter we explore the integration of LMs into a
Seq2Seq architecture to minimise the ambiguities when recognising historical hand-
written scores. Concretely, we integrate a LM through three different techniques:
Shallow, Deep [65] and Candidate Fusion [78]. From the exhaustive evaluation of
their performance on historical manuscripts, we discuss the advantages and disad-
vantages of these models, concluding that they are capable to significantly boost
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the performance in the aforementioned domain.

The structure for this chapter is the following. Section 8.2 is devoted to describing
the architecture. Section 8.3 describes the adaptation of the input data for music
score recognition, and the datasets employed to train the LMs. Section 8.4 sum-
marises experiments performed to evaluate the performance of the various models
including a discussion of the results. Finally, section 8.5 addresses the conclusions
and closing words.

8.2 On the Integration of Language Models

This section describes the core Seq2Seq system for OMR, the three LM models
and their integration into the architecture.

As stated before, our architecture is inspired in the Seq2Seq OMR model described
in [10, 135]. The whole architecture is depicted in Figure 8.1, with a reference to
the LM integration step (see the dashed lines). Next, we describe its properties
and its inference process.

8.2.1 Sequence to Sequence model
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Figure 8.1: Summary of the Seq2Seq model used in this work.

Seq2Seq models [129] are architectures capable of converting arbitrary-length input
sequences into arbitrary-length output sequences. They are an Encoder-Decoder
architecture: the input sequence is transformed by the Encoder into an interme-
diate representation that the Decoder will use to generate the output sequence.

A score image, which is treated as a sequence of column vectors, is fed into a
Convolutional Neural Network based on a VGG19 [127] with its last max pooling
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layer removed. Then, the Encoder, a bidirectional stack of Gated Recurrent Units
(GRU) [34], generates an intermediate representation comprised of as many feature
vectors as the convolutional output. The idea behind this bidirectionality is that,
by processing the input image from both ends of the sequence, the model has the
information of the full image for all inference steps and is therefore much more
context-aware.

When the Encoder has processed the input image completely, the Decoder iter-
atively receives the generated hidden state alongside the last predicted token in
the sequence, which produces the next output token until a special “end” token is
produced. In order to assess the relevance of each of the hidden state’s vectors, a
location attention mechanism (Chorowsky et al. [35]) weights each vector in the
hidden state, with the idea of making the model capable of “focusing” on specific
regions of the input image.

8.2.2 Language Model Integration

LMs are systems that model the probability distribution of possible tokens at time
step t conditioned by predictions at time steps 1 to t−1. Many language modelling
techniques exist throughout such as n-grams [28], but RNNs are known to be a
superior choice overall [89], thus this work focuses on a single LM architecture
consisting on four stacked GRUs.

LM integration with Seq2Seq models has been explored through various approaches
aiming at improving recognition performance. Three of such approaches have been
explored in this work: Shallow, Deep [65], which are among the most used meth-
ods, and Candidate Fusion [78], which showed good performance on handwritten
text recognition.

Figure 8.2 shows a depiction of these methods and the following paragraphs are
devoted to describing them in detail.

Shallow Fusion (Gulcehre et al. )

This technique was devised in the context of neural machine translation. It is a very
intuitive system in which the final output is obtained by summing log probabilities
from the LM and the Seq2Seq model. Let P , PCL and PLM be the probability
distribution of tokens predicted by the full model, the Seq2Seq component and
the LM respectively, and let λ be an arbitrary hyperparameter set on training,
Shallow Fusion is implemented as

logP (yt|y1 . . . yt−1) = logPCL (yt|y1 . . . yt−1) + λ logPLM (yt|y1 . . . yt−1) . (8.1)
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Figure 8.2: Dataflow graph depicting every integration method that was imple-
mented

Deep Fusion (Gulcehre et al. )

This method comes from the same context as Shallow Fusion and builds further on
its idea by merging both LM and Seq2Seq’s outputs in a more fine-grained manner.
Essentially, the λ parameter is substituted by a coarse gating mechanism and the
final output is obtained using more information from across the model. Let σ be
the sigmoid activation function and WDF and bDF be learnable parameters, Deep
Fusion is implemented as

P (yt|y1 . . . yt−1) = softmax(WDFh
DF
t + bDF ). (8.2)

The Deep Fusion hidden state hDF
t is obtained concatenating the Seq2Seq context

vector ct, the Classifier’s hidden state hCL
t and a gated version of the LM’s hidden

state, as seen in
hDF
t =

[
ct;h

CL
t ; gth

LM
t

]
. (8.3)

The coarse gate mechanism gt is in its turn computed as

gt = σ(vTg h
LM
t + bg) (8.4)

where vg and bg are learnable parameter vectors. We use the implementation seen
in [131], which does not feed the previously inferred character in equation 8.3.

Candidate Fusion (Kang et al. )

This method was shown to be more suitable than Deep and Shallow fusion in the
context of Handwritten Text Recognition. The core idea behind it is to reinforce
the decision process of the Seq2Seq Decoder at each output time step by feeding
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it the output of the LM, so that both pipelines can be leveraged accordingly. It
can be defined as

ht = Decoder(
[
ct, yt−1, p

lm
t−1
]
, ht−1) (8.5)

where ct is the current context vector, yt−1 is the previous prediction and plmt−1 is
the probability distribution obtained by the LM with the output at the previous
time step.

Some comparisons can be drawn among all three methods both from their litera-
ture and their architectures. The main selling point for Shallow Fusion is that it
adds very little complexity into the model, which is compensated by the fact that
it requires hyperparameter tuning for its λ value and the impossibility to mod-
ify said value depending on the LM output. Deep Fusion poses as a more flexible
model that can learn to weight the importance of the output of the LM, at the cost
of incorporating further layers into the model. Finally, Candidate fusion boosts
the communication between the LM and the Seq2Seq component and produces
an output obtained not by linearly combining both outputs at the final inference
step, but rather by letting the Seq2Seq combine the criteria of visual features and
Language Probabilities. However, this might involve more training for the model
to become acquainted with the output of the LM.

All these methods require both the classifier and the LM to be properly pretrained
for successful integration. More detail is provided in section 8.4.

8.3 Dataset

This section describes the adaptation of the data for music score recognition using
the Seq2Seq architecture.

a) b)

c)

Figure 8.3: Sample measures from the SM, SO and HW datasets respectively.
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8.3.1 Serialising Input Data

Input music measures are annotated at a musical primitive level. This means that
notes are not full tokens by themselves, but are instead divided into their core
elements: noteheads with their pitch and type (black or white), stems with their
orientation, flags, beams and so on. There are also some tokens which are atomic,
such as time signatures, dots, accidentals and rests, and some twin tokens that
require opening and closing, such as beginning and end segments of a slur or a
beam.

The epsilon token is a special one used to separate groups of primitives belonging
to different symbols placed in adjacent columns. Thanks to this, 2D music notation
can be serialised into a flat one-dimensional array of tokens that Seq2Seq can work
with. An example of this format is given in Figure 8.4.

barline_light.noNote, epsilon,

sharp.S4, epsilon, noteheadBlack.S4,

steamQuarterHalfDown.noNote,

epsilon, dot.noNote, epsilon,

noteheadBlack.S4, flag8thDown.noNote,

epsilon, noteheadBlack.S3,

steamQuarterHalfDown.noNote

epsilon, noteheadBlack.S3,

steamQuarterHalfDown.noNote, epsilon,

barline_light.noNote

Figure 8.4: Sample measure from the HW dataset with its ground truth an-
notation. Bounding boxes indicate the boundaries of what each “atomic” token
is, dotted arrows indicate epsilons in the transcription and small vertical arrows
indicate symbols that are placed together between epsilons (or rather, primitives
belonging to the same symbol).

8.3.2 Training Datasets

Various datasets of differing characteristics were used to train the models, each of
them for a specific task (more detail on section 8.4). Their description is shown be-
low along with some examples (See Figure 8.3). Note also that, when referring to
synthetic datasets, we imply the musical content of these scores is randomly gen-
erated (thus we assume that these datasets are, except for some trivial examples,
disjoint).

Synthetic Modern (SM): Dataset comprised of polyphonic measures of syn-
thetic typeset scores. Most usual music symbols can be found: G, C and F clefs,
accidentals, note components, time signatures and barlines, to name a few. See
more information in section 3.2.2. An example is shown in Figure 8.3a.
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Synthetic Old (SO): A synthetic dataset with monophonic measures distorted
with typical paper degradation effects. Similar to SM in terms of the range of
tokens present. See more information in section 3.2.2. An example is shown in
Figure 8.3b.

Handwritten (HW): A compilation of measures of real handwritten scores from
a church in Barcelona called Santa María del Pi. They were composed by its
Kapellmeister Pau Llinàs back in the 18th century for choral interpretation during
liturgical events. See more information in section 3.2.3. An example is shown in
Figure 8.3c.

Adjusted Synthetic Modern (ASM): A reduced version of the SM dataset
(see section 8.4).

8.4 Experimental Validation

The evaluation of all proposed LM integration methods was performed under two
training strategies, characterised by the dataset which was used to pretrain the
LM. Regardless of the LM dataset, training parameters and strategies were the
same altogether. For the sake of reproducibility, Table 8.1 summarises these hy-
perparameters and characterises the various datasets employed throughout.

Table 8.1: Reproducibility table. The first segment is devoted to training hyper-
parameters. The second one to showing relevant information about the various
datasets that have been employed.

Parameters All Training Data SM SO HW

Optimiser Adam Train Samples 18,900 17,872 147
Learning Rate (LR) 3 · 10−4 Valid Samples 6,300 5,957 49
LR Checkpoints @ 20, 40, 60, 80, 100 epoch Test Samples 6,300 5,957 49
LR Sigma 0.5 Avg. Line Length 22 15 17
Loss Function Cross-Entropy Classes 109 123 62

Since the goal for our work is to improve results on handwritten scores, a training
strategy was conceived to gain the benefits of extra data from synthetic scores while
preventing optimisation towards them. All integration methods tested hereby
require both the LM and the recogniser to be properly pretrained. Thus, we first
trained a LM with an unmodified version of the SM dataset. Since we were aware
that this dataset had many tokens that were not present in the HW one, we created
a version of the SM dataset comprised of the 66% of samples which contained a
higher ratio of tokens also present in the HW one, which we will refer to as ASM,
and we trained another LM with it. The idea was trying to “de-noise” the output
of the LM in HW scores so that its predictions had a higher level of confidence.

In both cases, we trained the Seq2Seq classifier with the unmodified SM dataset
until the model did not improve for 30 epochs. We then joined both models and

89



8. LANGUAGE MODELS INTO SEQ-2-SEQ MODELS

trained them using a Curriculum Learning strategy: initially, 90% of samples
in the training mix were from the SO dataset and the remaining 10% from the
HW dataset. Every 10 epochs the proportion of SO scores decreased by 10%
over the total, down to 10%. Since the number of SO samples is much higher
than the number of HW samples, the latter were duplicated randomly to match
the number of samples from the former. The incorporated image augmentation
system for training was used to prevent overfitting on input images. Note also
that experiments with homogeneous datasets were avoided since they were seen to
decrease performance in earlier tests.

Validation and test were performed using HW dataset samples. Lastly, for Shallow
Fusion we used a λ = 0.1 after testing three instances of the full architecture on
the SM dataset and keeping the value that gave better output results.

8.4.1 Quantitative Results

This section is devoted to explaining the results obtained with the aforementioned
training strategies. This is, Shallow, Deep and Candidate Fusion using a LM
pretrained with the SM or the ASM Dataset. Numerical results are provided
using the Symbol Error Rate (SER(%)) metric, which is defined as

SER(%) =
I +R+ S

T
· 100 (8.6)

where I, R and S are the number of token insertions, removals and substitutions
in order to obtain the ground truth sequence from the predicted sequence and T
is the length of the ground truth sequence. Lower values mean better results.

Table 8.2: Summary of performed experiments and results in SER(%) (Lower
is better). The table header indicates the proportion of Synthetic scores against
Handwritten scores. The “Pre” column indicates the LM pretraining dataset.

Model Pre 90-10 80-20 70-30 60-40 50-50 40-60 30-70 20-80 10-90 0-100

CNN + BLSTM[10] - - - - - - - - - - 56.20
Seq2Seq Baseline [10] - 60.03 - - 66.20 - 43.38 - 37.86 34.56 31.79

Seq2Seq + Deep LM SM 31.30 28.52 29.87 29.37 28.05 26.11 27.74 27.37 28.32 -
Seq2Seq + Shallow LM SM 36.79 32.91 33.27 33.36 31.76 32.75 30.87 30.72 30.58 -
Seq2Seq + Cand. LM SM 33.50 28.93 28.64 28.08 27.48 26.82 27.23 26.61 25.80 -

Seq2Seq + Deep LM ASM 28.24 29.53 27.82 27.36 25.95 27.21 25.63 25.15 25.54 -
Seq2Seq + Shallow LM ASM 35.34 34.75 36.67 32.42 34.23 34.52 33.76 33.79 35.13 -
Seq2Seq + Cand. LM ASM 32.07 28.61 28.71 27.55 27.71 27.20 27.77 28.04 25.73 -

Table 8.2 shows the results obtained from all of our experiments. Given the fact
that Seq2Seq model pre-training on the SM gave results well below 1% SER(%), we
believe it is not worth to experiment with the addition of a LM when transcribing
synthetic samples. Instead, we show test results using the training strategy in 8.4
and two baseline models: the BLSTM + CTC model and the LM-less Seq2Seq
model [10]. All results are obtained using the HW test partition as input.
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Best baseline results are 56.20% and 31.79% of SER(%) for BLSTM + CTC and
Seq2Seq respectively. However, authors comment in the paper that there might
be overfitting in the best result of the former model because training was done
only with handwritten samples. When training with a mix of synthetic and real
data, the authors state an increase from 56.20 SER(%) to 74.40 SER(%).

Our proposed models obtained mostly better results than those from the Baseline.
Candidate and Deep Fusion are the better performing architectures, with best
results (in bold in Table 8.2) between 5 and 6 SER(%) points below the baseline.
Shallow Fusion obtained best results on par with the baseline.

The general pattern is that earlier iterations perform worse than latter ones. There
are a few exceptions, which are the SM version of Deep Fusion and the ASM version
of Shallow Fusion, which obtain better results in intermediate phases. This might
be caused by the fact that the model might be entering local minima, which it
may leave after further epochs.

Another general remark is that models pretrained with the ASM dataset seem to
perform slightly better, with a 0.96 SER(%) improvement in Deep Fusion and a
0.07 one in Candidate Fusion, although this difference could be also attributed to
optimisation since it is not substantial.

8.4.2 Discussion

Numerical proof is found that a LM does help improve recognition results in his-
torical handwritten music scores, especially when using Candidate or Deep Fusion.
However, we agree that it is not easy to assess their differences outside of a sub-
jective qualitative study.

Expectedly, LM lowers the presence of certain syntactic mistakes (for instance,
tokens that require a specific successor) or provides information on tokens that
appear frequently. There is, however, a set of possible recognition mistakes that
the LM was initially presumed to be able to correct which we found it unable to.
The most relevant was enforcing the beat of the bar that is being recognised. It
can be argued that at no point in the measures that comprise the dataset the time
signature is indicated aside from its very beginning, but since the training dataset
is written exclusively in a 4/4 time signature, the LM might have adapted to
measures adding up to a beat value. Perhaps this is due to the purely statistical
approach taken with the LM, so some postprocessing (based on music notation
rules) may be needed for approaching such consistency checks.

Other “artistic” aspects of music cannot be corrected with the LM, such as the
pitch and duration of notes, which can only be predicted up to a certain point
based on its frequency of appearance. This was expected and, unsurprisingly,
most noteheads have been predicted on the most common range within the original
score.
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A final remark is that we have observed that the adjustment strategy attempted
with the ASM dataset showed no significant improvement. Instead, in order to
better align training and test datasets without overfitting, more data should be
used for training. A common issue when trying to collect data for this purpose is
that most common transcriptions of old music adapt their notation style to current
trends, which defeats the purpose of using such data for recognition.

8.5 Conclusions

This work successfully explored the integration of LMs into a Seq2Seq OMR archi-
tecture for recognising historical handwritten scores. An improvement of around
6 SER(%) points from the baseline was obtained when using a Deep Fusion mech-
anism, lowering it to 25.15 SER(%). This was achieved by reinforcing the model’s
capacity to keep consistency on predicted sequences. Thus, we can conclude that
the integration of language models into OMR Seq2Seq architectures is a promising
research direction worth exploring.

In the next chapter 9 we will go a step further in the contextual analysis. Con-
cretely, we will present a method based on primitive detection and graph neural
networks which relates the primitives, taking into account the music notation
rules.
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9 | Object Detection and Graph Neural
Network

Learn how to see. Realize that everything
connects to everything else.

– Leonardo da Vinci

In this chapter we explore the use of graph neural networks for musical score
recognition. First, because graphs are suited for n-dimensional representations,
and second, because the combination of graphs with deep learning has shown a
great performance in similar applications. Our methodology consists of: First, we
will detect each isolated / atomic symbols (those that can not be decomposed in
more graphical primitives) and the primitives that form a musical symbol. Then,
we will build the graph taking as root node the notehead and as leaves those prim-
itives or symbols that modify the note’s rhythm (stem, beam, flag) or pitch (flat,
sharp, natural). Finally, the graph is translated into a human-readable character
sequence for a final transcription and evaluation. Our method has been tested on
more than five thousand measures, showing promising results.

9.1 Introduction

Since many music symbols can be drawn in different position and with different
shapes, it is necessary to decompose those musical symbols into subparts. In
other words, not all the symbols are atomic, some of them can be divided into
smaller symbols called primitives. For example, a quarter note is composed of a
full notehead and a stem, an eighth note is composed of a full notehead, a stem
and a beam or a flag (see Figure 9.1).

In order to make the OMR system to understand which primitives form a symbol,
a structure that relates them is needed. Music has a large variability of symbols,
combining rhythm and melody, which is even increased in polyphonic scores. But,
despite this variability, it shares a common set of primitives (e.g. stem, notehead,
beam, flag, etc). Graphs are suitable for music description because of its flexibility
and n-dimensional representation power. Music does not have a fixed representa-
tion (e.g. the measures do not have to be equal to each other), but each primitive
will be related to others following the rules of music theory.
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Figure 9.1: Graphic primitives. Isolated / atomic symbols shown in black color,
whereas music primitives are shown in colors.

For the above reasons, in this chapter we present Musigraph, a graph-based OMR
system for music scores. Inspired by the success of Graph Neural Network models,
we explore their adaptation to optical music recognition. Our method is based on
Convolutional Neural Networks and Graph Neural Networks. As far as we know,
this is the first OMR method based on GNNs. Besides, given the few labelled
available music scores, we have created a labeled synthetic dataset to train such
deep learning systems. We provide the groundtruth for music object detection and
graph recognition.

The rest of this paper is organized as follows. First, section 9.2 is devoted to
describing the architecture. Section 9.3 discusses the experimental results. Finally,
conclusions and future work are drawn in Section 9.4.

9.2 The Musigraph model

As explained before , music recognition can be seen as a two-dimensional problem.
The music score has to be read from left to right, but taking into account the
rhythm and the pitch of each symbol. Thus, our approach will be composed of two
steps. First, we will detect each atomic symbol or primitive by an object detector.
Note that each of these primitives are just compounding parts of the symbols we
consider on a music score. Second, we will relate the primitives detected by a
graph neural network. Figure 9.2 shows the full pipeline.

We use the same set of music measures to train the object detector and the graph
neural Network. During training, the graph neural network uses the bounding
boxes obtained by the groundtruth. Concretely, to train the graph neural network
we need to initialize the graph by specifying the edges (i.e. connecting nodes
between each others), and later, the GNN will decide if the edge should exists or
not. At test time, we use the bounding boxes provided by the object detector.
So, once the object detector is trained, at test time, we obtain the candidate
locations of each primitive and symbol, which will be postprocessed for improving
the bounding-box prediction accuracy. Finally, these detections will be the input
of the graph neural network during the test time.
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Figure 9.2: Architecture Pipeline. In blue the training process, in red, testing.

9.2.1 Object Detector

The object detector will be used in the test phase. Note that during the training,
we use the bounding boxes provided in the groundtruth to ensure that the graph
neural network learns properly. Specifically, for object detection we have used
the well-known library Detectron 2 by Facebook AI Research [139]. This library
provides the current state-of-the-art detection algorithms. Particularly, we have
used the Faster R-CNN, which consists of a CNN with a final ROI pooling to
extract a fixed-length feature vector from each region proposal. Finally, the fully
connected layer is divided in two branches; a category softmax and a bounding
box regression.

Once all the bounding boxes have been detected by the Faster R-CNN, we have
used the soft non-maximum suppression (soft-NMS) algorithm [14]. The main
difference with the classic NMS is that it removes a detection if the confidence is
lower than a threshold. Moreover, in the soft-NMS when the degree of overlap
reaches a threshold and the confidence is lower, it is not directly suppressed, in-
stead, its confidence only is reduced. Algorithm 1 shows this difference (in blue
the soft-NMS and in red the classic NMS).

Moreover, we have improved the beam and stem detections using morphological
operations. Stems have been detected through the noteheads detections. By
applying a vertical projection in the closest area of the notehead’s bounding box,
we find peaks that allow us to detect stems, a very thin and elongated primitive.
For beam detection, we have eroded and dilated the image using as a kernel a
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Algorithm 1 Classic and soft non-maximum suppression algorithm. Reprinted
from [14]

Input: B = {b1, .., bn},S = {s1, .., sn}
B is the list of bounding boxes
S is the list of confidence scores
Nt is the NMS threshold
D ← {}
while B 6= empty do

m← arg max S
M ← bm
D ← D ∪M ; B ← B −M
for bi in B do

if iou(M , bi) ≥ Nt then
B ← B − bi; S ← S − si

end if
si ← sif(iou(M , bi))

end for
end while
returnD ,S

vertical and horizontal line respectively; and then, we find those regions with an
aspect ratio in which the width is three or more times the height.

Finally, having the noteheads’ bounding boxes, we perform a horizontal projection
to detect the staff lines, which allows us to recognize the pitch of each note.

9.2.2 Graph Neural Network

A graph is a symbolic data structure describing relations (edges) between a finite
set of objects (nodes). Let LV and LE be a finite or infinite label sets for nodes
and edges, respectively. A graph g is a 4 − tuple g = (V,E, µ, ν) where, V is the
finite set of nodes; E ⊆ V ×V is the set of edges; µ : V → LV is the node labelling
function; and, ν : E → LE is the edge labelling function.

GNNs introduced by Gori and Scarselli [60, 124] were the first attempt to general-
ize neural networks to graphs. Then, Bruna et al. [15] proposed a new formulation
based on the spectral graph theory. Later, the works of Henaff et al. [72], Deffer-
rard et al. [41] and Kipf et al. [82] addressed these computational drawbacks. In
its simplest form, a GNN layer Gc(·) is defined as:

h(k+1) = Gc(h
(k)) = ρ

 ∑
B∈A(k)

Bh(k)Θ
(k)
B

 (9.1)
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where h(k) is the node hidden state at the k-th layer, ρ is a non-liniarity such
as ReLU(·), A is a set of graph intrinsic linear operators that act locally on the
graph signal and Θ are learnable parameters. In most cases, A it only contains
the adjacency matrix [123].

More recently, Gilmer et al. [57] proposed the Message Passing Neural Networks
(MPNNs) as a general supervised learning framework for graphs. MPNNs define its
layers in terms of a message and update functions. Similarly, Hamilton et al. [69],
proposed a graphSAGE layer which SAmples and aggreGatEs node features.

Given a graph g, our proposed graph neural network architecture ϕ(·) has N GNN
layers and is defined using graphSAGE [69] layers, with mean aggregation function
and ReLU activations.

In order to initialise the graph we have tried different input graphs by changing
the heuristics about how to relate the nodes to each other. In all cases, the
nodes are the symbols or the primitives. During training, these correspond to
the groundtruth, whereas in testing, these are the ones detected by the Faster
R-CNN. The edges connect the nodes between them according to the heuristic
selected, which is detailed next.

1. K-Nearest Neighbours (KNN) graph: The graph is initialized connecting
each node with the K nodes closer to itself. We have used the Euclidean
distance expressed in Equation 9.2.

distance =
√

(X2 −X1)2 + (Y2 − Y1)2 (9.2)

2. Music Heuristic: This heuristic consists on analysing the music scores (fre-
quent relations and distance) to avoid meaningless relationships. For each
primitive we consider which other primitives are usually related to it, and
how far they are. Thus, when the graph is constructed all this informa-
tion is taken into account to avoid relations between primitives that are too
far apart. Furthermore, we avoid meaningless primitive relations, in other
words, we avoid the relation of atomic symbols (they are already a unit by
themselves, for example a rest) with other elements.

Once the graph neural network is built, each node is embedded in a learned feature
vector according to its detected class and bounding box using a fully-connected
layer. Then, after each GNN layer (all but the last), the previous hidden state
is concatenated. Afterwards, each node feature is normalized using the L2-norm.
Finally, an edge score is computed by performing an element-wise dot product
between features of u (source node) and v (target node).

Our GNN has been trained using the binary cross entropy objective with the edge
scores and its corresponding ground-truth. Our model has been optimized with
the Adam [81] optimizer.

The end of the full pipeline finishes once the model is trained and the primitives are
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transformed into symbols through the detected graph for an evaluation at symbol
level.

9.3 Experimental Validation

This section describes the experiments performed to validate our approach. On the
one hand, we will show and discuss the object detection results, and on the other
hand, we will show and analyze the graph neural network results. To test this
approach we have created a new dataset for object detection and Graph Neural
networks detailed in section 3.2.4.

9.3.1 Object detection results

To evaluate the object detection method we have used the mean average preci-
sion(mAP) [100, 101]. The mAP is defined by

mAP =
1

n

k=n∑
k=1

APk (9.3)

where n is the number of classes and APk is the average precision of class k.

Quantitative Results:

Table 9.1 shows the comparison between the object detection method baseline and
the post processing, including the non-maximum suppression and the beam and
stem detection improvement. The first column shows the list of primitives and
symbols. The second column shows the average precision using the Faster R-CNN
from Detectron 2 per each primitive or symbol. And finally, the third column
indicates the average precision after the non-maximum suppression and the beam
and stem betterment. The last row of the table shows the mean average precision
per each method. From the Table 9.1 we can observe that the Faster R-CNN
performs very well in all symbols and primitives except those primitive in which
one side is much larger than the other. For example, stems are very large and
thin with lots of close primitives, whereas beams have the same particularity but
horizontally. From the last column, we observe that the morphological operations
have improved more than 15 points in the case of beams and almost 10 points in
the case of stems. This betterment will help the creation of the graph because,
when one node is not detected by the Faster R-CNN, the graph will not be able to
recognize the complete symbol (e. g. if the network detects a notehead and stem
and a beam is missed, the graph will recognize the note as a quarter-note instead
of an 8th-note).
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Table 9.1: Detectron results using the Faster R-CNN. We show the results of
the baseline and improving the stem and beam detection.

AP% AP % after processing

16th_flag 99.73 99.73
16th_rest 99.48 99.48
8th_flag 99.76 99.76
8th_rest 99.85 99.85
beam 84.48 100
c-clef 100 100
f-clef 100 100
flat 99.26 99.26
half_rest 99.56 99.56
natural 97.11 97.11
notehead-empty 99.93 99.93
notehead-full 99.48 99.48
quarter_rest 99.90 99.90
sharp 99.43 99.43
stem 79.71 88.85
thin_barline 99.17 99.17
timeSig_2-2 100 100
timeSig_cut 100 100

mAP 97.60 98.97
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(a)

(b)

Figure 9.3: Object detection results.

Qualitative Results:

Figure 9.3 shows some qualitative results from the Faster R-CNN before applying
the post processing. In Figure 9.3a we can observe one of the main problems of the
Faster R-CNN: the missdetections of beams (note that only one is detected in each
group of 16th notes). In Figure 9.3b we can observe that the third notehead in
each 16th group of notes has missed the stem. Apart from this, in the second group
of 16th notes multiples beams are detected and the non-maximum suppression is
needed.

9.3.2 Graph Neural Network results

Quantitative Results:

Table 9.2 demonstrates the results of the Graph Neural Network using the different
initialization options. The results are provided in terms of Music Error Rate
(MER) at symbol level, which means that we first convert the different primitives
into a symbol (e. g. flag+stem+notehead-full is converted into a 8th note). The
Music Error Rate is defined as

MER =
I +R+ S

T
(9.4)

where I, R and S are the number of insertions, deletions and substitutions to obtain
the groundtruth sequence. T is the length of the groundtruth. Lower values mean
better results. The first columns shows the different graph initialization techniques
explained in section 9.2. The second column shows the mean percentage of Music
Error Rate and the standard deviation after five iterations.
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Table 9.2: Results using our Graph Neural Network. We show which graph
initialization has been used and the Music Error Rate. Note that the lower the
better. The first number is the mean of the five executions, whereas the standard
deviation is shown between parenthesis. All results use the Faster R-CNN and
the post-processing to detect the nodes at test time.

Graph initialization MER %

KNN 10.01 (± 0.72)
Music Heuristic 5.32 (± 0.43)

From Table 9.2 we can observe that using the Music Heuristic as graph constructor,
we obtain very good results (around 5% of MER). However, it has to be taken
into account that KNN does not use any musical information, so having one error
for every ten is quite understandable, even if it is almost twice the previous one.

Qualitative Results:

Figures 9.4 and 9.5 show some qualitative results from all the pipeline. The first
row of each image shows the groundtruth, the blue points are the centers of the
nodes and the arrows, the edges. The second row shows the edges detected by
the Graph Neural Network. The blue arrows mean that this edge was created
by the graph initialiser, but the GNN has decided that the edge is not relevant.
Oppositely, the red arrows are the relevant edges. Finally the third row is the
graph translated into text as a final result. Figure 9.4a and 9.5a shows the results
using the music heuristic in the graph constructor. Figure 9.4b and 9.5b shows
results using the K-Nearest Neighbours. In Figure 9.4a we can observe that the
graph creator has not related the last flag with the stem, so the network is not
able to predict this relation and finally it is detecting a quarter note. In contrast,
in Figure 9.4b, the KNN initialisation has many more relations, so this measure
is perfectly recognized. In addition, in Figure 9.5a the recognition is perfect but
in Figure 9.5b, the last notehead has an edge with the beam but the network has
decided that edge is not important.

9.4 Conclusions

In this chapter we have proposed Musigraph, an Object Detection and Graph
Neural Network architecture for recognizing music scores. We have demonstrated
that our model obtains very good results. With more than 98% of mAP in the
object detection task and with almost 5% of Music Error Rate as a final result,
our model proves to be a promising technique for recognizing music scores, or to
help musicians when transcribing them.
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(a) Music Heuristic

(b) K-Nearest Neighbours

Figure 9.4: Final qualitative results of a measure comparing the graph initialiser.
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(a) Music Heuristic

(b) K-Nearest Neighbours

Figure 9.5: Final qualitative results of another measure comparing the graph
initialiser.
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Think about a piece of music - some great
symphony - we don’t expect it to get better
as it develops, or that its whole purpose is to
reach the final crescendo. The joy is found in
listening to the music in each moment.

– Alan Watts

In this last chapter, we summarize the main contribution of this thesis to the
computer vision literature, specifically to the optical music recognition research
field. We will then discuss the benefits and limitations of the developed methods.
Finally, based on the experience obtained during this thesis, we will propose how
to improve some of the methods or create new lines of research.

10.1 Summary of the Contributions

During this thesis, we have focused our research on the recognition of music scores
through different methodologies. On the one hand, the methods detailed in the
first part are based on recurrent networks such as Long Short-Term Memory or
Sequence to Sequence models. On the other hand, we take advantage of the music
context to improve the previous methodologies or to propose some others (e.g.
GNNs).

In chapter 3, we have described the datasets that have been created during this the-
sis. These are from different varieties: from simple datasets, such as a monophonic
and printed dataset, to more complicated datasets, such as the old handwritten
one. In particular, we have created four different datasets which covered the re-
search needs at the time they were created. The monophonic printed dataset
includes relations between primitives, a monophonic printed one that emulates
the appearance of old scores, a polyphonic dataset with a modern appearance,
a handwritten dataset with polyphonic and monophonic staff lines, and finally a
monophonic old handwritten dataset.

In chapter 4, the first OMR method is presented. We address the recognition of
printed monophonic staff lines through Recurrent Neural Networks. We propose
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to use Long Short-Term Memory Neural Networks. We have split the output of
the network in two parts. On the one hand we obtain the rhythm in each time
step. On the other hand, the network provides us the pitch per time step.

Next, in chapter 5, this first OMR method is improved by adding a Convolutional
Neural Network before the recurrent block. This, combined with a novel data
augmentation technique for staff lines that consists of mixing measures and trans-
ferring the learning obtained by training printed scores, allows us to deal with
more difficult scores such as handwritten ones.

In chapter 6, we have proposed an OMR method based on sequence to sequence
models with attention mechanism. The seq2seq model consists on two parts. The
encoder is formed by a features extraction block, which feeds a bidirectional gated
recurrent unit (bGRU) neural network, whereas the decoder is formed by a one-
directional multilayered GRU. The method also incorporates an attention mech-
anism which aligns our feature representations with our decoding steps. In addi-
tion, we generate a synthetic dataset with the appearance of old scores so that the
method can handle old real scores.

The part concerning the benefit of using music context starts in chapter 7, with
a first application based on dendrograms. This method consists in detecting the
primitives with mathematical morphology and then, joining them to form com-
pound music notes. We use dendrograms to check whether the groups of primitives
that have been assembled are valid or not according to the music notation theory.

Then, in chapter 8, and given the difficulty in recognizing old music scores, we
have improved the seq2seq model detailed in chapter 6 by incorporating Language
Models. We have applied three different language models which basically model the
probability distribution of possible tokens at time step t conditioned by predictions
at time steps 1 to t-1.

Finally, in chapter 9, we propose to combine object detection models (for detecting
atomic symbols or primitives) with Graph Neural Networks. The objective of this
architecture is to take advantage of the relationality offered by graphs to combine
the detected primitives to form music symbols. In this case, the music context
help the network to avoid wrong relations from the music notation point of view.

10.2 Discussion

Throughout these years of research in optical music recognition, some contributions
have been made that will be discussed next.

In Chapter 3 we have proposed four datasets. The first three datasets are intended
for methods that do not require to label the exact position of each element in the
image, i.e. methods such as recurrent networks. However, the last one is created
to satisfy the necessities of various methods such as object detection and graph
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neural networks. In the future, music datasets should tend to be created and
labelled independently of the task or type of methods.

Some of the proposed OMR methods are restricted to monophonic scores. For
example, the methods presented in Chapters 4 and 5 can only detect one musical
symbol per time step. In other words, these methods will only be able to recognise
monophonic scores. Since rhythm and pitch are obtained separately, the system
does not know which pitch corresponds to which note if they are in the same
column, as might happen in a chord. The same occurs if two ligatures were to
appear at the same time; in such case, one of them would also be lost in detection.

The sequence to sequence model described in Chapter 6 works well for recognizing
measures. It can be seen, how the method achieves good results even with the
complexity of the old scores. However, as it has been demonstrated in text recog-
nition, it is not appropriate for long sequences, i.e. seq2seq will suffer to properly
recognize long staff lines.

In Chapter 7 and 9 it has been observed that the musical context helps to improve
the recognition. However, these methods have the limitation that they are very
sensitive to the accuracy of the object detector. An inaccurate detection of primi-
tives will make the OMR method to significantly decrease the overall performance.

Finally, the language models described in Chapter 8 can effectively improve the
baseline results. However, they also have some limitations. On the one hand, being
a measure-sliced dataset, the language model does not know how many beats a
measure has to sum up, so it will guess it purely statistically. On the other hand,
it will try to modify artistic elements written by the composer, if any, whenever
these are not frequent (so, they have a low probability in the probabilistic model).

10.3 Open Challenges

Along this thesis some lines of research in optical music recognition have been
addressed. Despite all the contributions and the latest publications, the research
on music score recognition still has a long way to go. Next, given the experience
acquired along this thesis in this field, we detail some lines of research that have
not yet been investigated, or not sufficiently researched, and could be addressed
in the coming years.

General Dataset As we have seen in chapter 3, although there are nowadays
a good amount of datasets for music recognition, all of them are designed to be
used by a specific type of method. Given the limitations of getting annotated real
data, a possible line of research would be the generation of synthetic data with
handwritten or printed appearance. This dataset should be labelled in a way to
allow the training of different type of methods, i.e. the data would be given in
various formats. Therefore, works in the literature could be compared with each
other.
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Layout Analysis Music can be written using more than one staff at a time
(e.g. voices written in different staves). An essential line to investigate is layout
analysis in order to determine how to correctly recognise these polyphonic music
scores. For this purpose, a segmentation free recognition method would be the
most interesting to be investigated. For example, given the two dimensionalities of
music notation and the representation power of graphs, it could be the best choice
to recognize this kind of music scores. The nature of graphs, which can easily
create relations between primitives demonstrates that it is suitable for addressing
music score recognition without the limitations of a proper segmentation step.

Transfer Learning To preserve the music heritage, it is important to address the
recognition of old scores existing in archives. Since old scores do not have labelled
data to ease the training of deep learning models, transfer learning needs to be
investigated. Indeed, if we could create realistic synthetic data that resembles
the real target dataset, we could better adapt the OMR system to recognize such
real scores. As a result, one could enjoy unknown scores because there are many
music compositions in archives, churches or theatres that have never been listened
because that they have not been yet transcribed nor edited.

Music context or Notation Rules Further research is needed towards the
incorporation of music notation rules to solve ambiguities and improve the perfor-
mance. As it has been observed in the music context part, the incorporation of
some music knowledge in the model could improve the overall performance. For
example, the time measure can be used to check if the number of beats in a bar
unit is correct. Indeed, the more musical information the method has, the better
it will work and the better the final result will be.

Final Output Finally, a standard output format would allow a standardised as-
sessment among research works, but also, it would benefit the development of
software applications. For example, the conversion of the output of the OMR ar-
chitectures into a MIDI file, MEI or MusicXML formats, which can be listened and
edited with music editors (such as PhotoScore), would bring the benefits of optical
music recognition research to end users, including musicologists or archivists who
want to share the works stored in their music archives.
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List of Publications

Share your knowledge. It is a way to achieve
immortality.

– Dalai Lama XIV

During the years researching on Optical Music Recognition, several publications
have been developed on this topic and others. In this chapter, the Scientific Com-
munications are listed.

Journals

1. Arnau Baró, Pau Riba, Jorge Calvo-Zaragoza and Alicia Fornés. From Op-
tical Music Recognition to Handwritten Music Recognition: a Baseline. In
Pattern Recognition Letters, Vol.123, pp.1–8, 2019, (Q2)

International Conferences

1. Arnau Baró, Pau Riba and Alicia Fornés. Towards the recognition of com-
pound music notes in handwritten music scores. In 15th International Confer-
ence on Frontiers in Handwriting Recognition (ICFHR), pp.465–470, 2016.

2. Arnau Baró, Pau Riba, Jorge Calvo-Zaragoza and Alicia Fornés. Optical
Music Recognition by Recurrent Neural Networks. In 12th IAPR International
Workshop on Graphic Recognition (GREC), pp.25–26, 2017.

3. Alicia Fornés, Verónica Romero, Arnau Baró, Juan Ignacio Toledo, Joan An-
dreu Sánchez, Enrique Vidal, Josep Lladós. ICDAR2017 Competition on In-
formation Extraction in Historical Handwritten Records. In 14th International
Conference on Document Analysis and Recognition (ICDAR), pp. 1389-1394,
2017.
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4. Arnau Baró, Pau Riba, Alicia Fornés. A Starting Point for Handwritten
Music Recognition. In 1st International Workshop on Reading Music Systems
(WoRMS), pp. 5-6, 2018.

5. Arnau Baró, Jialuo Chen, Alicia Fornés, Beata Megyesi. Towards a generic
unsupervised method for transcription of encoded manuscripts. In 3rd Inter-
national Conference on Digital Access to Textual Cultural Heritage (DATeCH),
pp. 73-78, 2019.

6. Arnau Baró, Carles Badal, Alicia Fornés. Handwritten Historical Music
Recognition by Sequence-to-Sequence with Attention Mechanism. In 17th In-
ternational Conference on Frontiers in Handwriting Recognition (ICFHR), pp.
205-210, 2020.

7. Arnau Baró, Carles Badal, Pau Torras, Alicia Fornés. Handwritten Historical
Music Recognition through Sequence-to-Sequence with Attention Mechanism.
In In 3rd International Workshop on Reading Music Systems (WoRMS), pp.
55-59, 2021.

8. Pau Torras, Arnau Baró, Lei Kang, Alicia Fornés. On the Integration of Lan-
guage Models into Sequence to Sequence Architectures for Handwritten Music
Recognition. In 22nd International Society for Music Information Retrieval
Conference (ISMIR), pp. 690-696, 2021.

9. Arnau Baró, Pau Riba and Alicia Fornés. Musigraph: Optical Music Recog-
nition through Object Detection and Graph Neural Network. In 18th Interna-
tional Conference on Frontiers in Handwriting Recognition (ICFHR), Accepted,
2022.

Lecture Notes in Computer Science

1. Arnau Baró, Pau Riba, Jorge Calvo-Zaragoza and Alicia Fornés. Optical
Music Recognition by Long Short-Term Memory Networks. In Graphic Recog-
nition. Current Trends and Evolutions, Vol.11009, pp.81–95, 2018.
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