UNB

Universitat Autonoma de Barcelona

BLEEDING ASSOCIATED COAGULOPATHY:
NEW TREATMENT STRATEGIES BASED ON
COAGULATION FACTOR CONCENTRATES

Tobias Bernhard Koller

ADVERTIMENT. L’accés als continguts d’aquesta tesi doctoral i la seva utilitzacié ha de respectar els drets de la
persona autora. Pot ser utilitzada per a consulta o estudi personal, aixi com en activitats 0 materials d’investigaci6 i
docencia en els termes establerts a I'art. 32 del Text Refos de la Llei de Propietat Intel-lectual (RDL 1/1996). Per altres
utilitzacions es requereix 'autoritzacié prévia i expressa de la persona autora. En qualsevol cas, en la utilitzacié dels
seus continguts caldra indicar de forma clara el nom i cognoms de la persona autora i el titol de la tesi doctoral. No
s’autoritza la seva reproduccio o altres formes d’explotacié efectuades amb finalitats de lucre ni la seva comunicacio
publica des d’un lloc alié al servei TDX. Tampoc s’autoritza la presentacio del seu contingut en una finestra o marc alie
a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i indexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilizacion debe respetar los derechos de la
persona autora. Puede ser utilizada para consulta o estudio personal, asi como en actividades o materiales de
investigacion y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad
Intelectual (RDL 1/1996). Para otros usos se requiere la autorizacidén previa y expresa de la persona autora. En
cualquier caso, en la utilizaciéon de sus contenidos se deberé indicar de forma clara el nombre y apellidos de la persona
autora y el titulo de la tesis doctoral. No se autoriza su reproduccion u otras formas de explotacion efectuadas con fines
lucrativos ni su comunicacién publica desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentacion de
su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de
la tesis como a sus resimenes e indices.

WARNING. The access to the contents of this doctoral thesis and its use must respect the rights of the author. It can
be used for reference or private study, as well as research and learning activities or materials in the terms established
by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the
author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis
must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX
service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either.
These rights affect both the content of the thesis and its abstracts and indexes.




BLEEDING ASSOCIATED COAGULOPATHY:
NEW TREATMENT STRATEGIES BASED ON
COAGULATION FACTOR CONCENTRATES

Doctoral Thesis
Tobias Bernhard Koller

Barcelona, 2022







UNIVERSITAT AUTONOMA DE BARCELONA
FACULTAT DE MEDICINA, DEPARTAMENT DE CIRURGIA
Doctoral Programme:

Cirurgia i Ciéncies Morfologiques
Research Area: Perioperative Medicine

UNnB

Universitat Autonoma
de Barcelona

BLEEDING ASSOCIATED COAGULOPATHY:
NEW TREATMENT STRATEGIES BASED ON
COAGULATION FACTOR CONCENTRATES

DOCTORAL THESIS
Tobias Bernhard Koller

DIRECTED BY:
Dra. M.Isabel Diaz Ricart
Dra. Pilar Paniagua Iglesias

TUTOR:
Dr. Xavier Ledn Vintro

Barcelona, 2022






INDEX

INDEX OF FIGURES AND TABLES....... 9
ACKNOWLEDGEMENTS......c.coscssssssssssss 13
LIST OF THE ARTICLES MAKING UP THETHESIS.......oe. 7
ABBREVIATIONS......ccssssssssssssssssss .19
DISCLOSURE ... 21
SUMMARY.. 23
TANTRODUCTION e 27
1.1.The Haemostatic System ... 27
Platelet Aggregation .28
Cell-based model of coagulation ... 29
= INTHALION PAASE..............ooocooooeeeeseeeseesseessessssssss s 29
- Amplification Phase .30
- Propagation PRASe ... 32
Fibrin Polymerization ... 32
Inhibition of the Coagulation System and Fibrinolysis.......... .34
= ARLTATOMDIN..........oocooeeeeeeseeere e .34
- Tissue factor pathway inhibitor............eeeeeeeeesseeesseeeessieon 35
- The protein C/protein S pathwap.............eeeeeeeeeeeresseeerssssreeeon 35
= TRE JIDFINOIVIIC SYSIEM.cc..coooooeeoeoeeeeeeseeessersssseesssersssses s 37
1.2. Coagulation Monitoring ... 38
Standard Laboratory Testing and Viscoelastic
Haemostatic ASSAYS..............cooooeeeeeeeseeeeesesseeeeeeesseeess e 38
- Basic principles Of VHA............ooeoeeoeeeeeoeeeeeeeeeesesesee 39

- VHA-guided diagnosis ... 7




BLEEDING ASSOCIATED COAGULOPATHY: NEW TREATMENT STRATEGIES BASED ON

COAGULATION FACTOR CONCENTRATES Tobias Bernhard Koller
1.3. Bleeding-associated coagulopathy ..... ) . X
Back@round...........ccccooooiiioeeeeeeeeeeeeeeeeeeeeeeee e 43
Trauma-Induced Coagulopathy (TIC)...........e 43
Coagulopathy in Peripartum Haemorrhage............ 45
Coagulopathy in Cardiac Surgery ... 46
Dilutional Coagulopathy ... 48
1.4. Resuscitation fluids ... 49
AIDUIIDL.....ooccoooioirreses s 49
Semisynthetic COIOIMS.............orrirreccieeeecessneescessseeneeesssnnn 51
CryStalloids ...t innnee S1
Dilution of Coagulation Factors caused by Resuscitation
FIUEAS ... 52
1.5. Haemostatic therapy of coagulation factor deficiencies
in massive bleeding...........eee 54
Transfusion of allogeneic plasma products................. 54
- Efficacy of plasma transfusion for haemostatic purposes........ 35
O A e e A 36
Fibrinogen Concentrates.................eoeeroooeeesiien 57
Cryoprecipitate....... ... 61
Prothrombin Complex Concentrate..... ; . 61
Factor XIII Concentrates................eomemssersien .65
1.6.Treatment Strategies for coagulation factor deficiencies
in bleeding-associated coagulopathies.............cnn 67
Acquired Hypofibrinogenemia ... 67
Acquired multifactor deficiencies: Coagulation factor
concentrates as an alternative to fresh frozen plasma..... 68
2 HYPOTHESIS ... /3

3L OBUECTIVES......ssssss 77



Role of fibrinogen concentrates for treatment of

critical perioperative haemorrhage ..... ; . 81
Normalization of blood clotting characteristics using
prothrombin complex concentrate, fibrinogen and

FXIII in an albumin based fluid: experimental studies

in thromboelastometry............. . 107
SUDISCUSSION. ... 125

Fibrinogen Concentrates in bleeding-associated

€oAUIOPAtRICS ... 126

The concept of Coagulation Resuscitation Fluids (CRF)

as a potential plasma substitute....................cccciee 128

The role of human albumin colloids as a carrier solution

I CFR ..o 130

Molecular Basis of CFC-driven coagulation processes............ 131

Impact of platelets on Clotting Time (CT) as a surrogate
parameter for thrombin generation potential in CRF-based

€OAZUIALION PIrOCESSES ...........oooooeeerecceeeerecesineeeccsssineeseessnsens s e 132
Study HMitations...............oooooooovooooooeeeeeeeeeeeeeeeeeeeeeeeee e 133
6. FINALCONCLUSIONS ... 137

BIBLIOGRAPHY........ccoosssss 141



BLEEDING ASSOCIATED COAGULOPATHY: NEW TREATMENT STRATEGIES BASED ON
COAGULATION FACTOR CONCENTRATES Tobias Bernhard Koller




INDEX OF FIGURES AND TABLES

Figure 1: Molecular mechansims of platelet aggregation.............ooooo 29
Figure 2: Coagulation factor activation steps during initiation-, amplification-,
and propagation PRASE.............rcsnssrrtssesrss e 31
Figure 3: Molecular structure of fibrinogen...........ccccrc 33
Figure 4: Fibrin polymerization ... 33
Figure 5: Inhibition of the coagulation SyStem.............c..cooco 36
Figure 6: Rotational thromboelastometry (ROTEM®).......ooo 40
Figure 7: Typical thromboelastograph..........ccccc. 40
Figure 8: Parameters from the thromboelastometrical measurement used

for therapeutical decision making..............ooooee 42
Figure 9: Equations for dose calculation based on FIBTEM or Clauss values
(validated for Haemocomplettan®) ... 59
Table 1: Normal values for Rotem parameters...........ooocoosscec 40
Table 2: Summary of coagulopathic mechanisms caused by different

FTUT Y POS .o 53
Table 3: Pharmacokinetic data of commercially available fibrinogen
CONECRNETATES ... 58
Table 4: Comparison of different fibrinogen sources...........ocoec. 60

Table 5: Composition of PCC in the World Federation of Haemopbhilia
register of clotting factor concentrates.............ooococoeeee 64



BLEEDING ASSOCIATED COAGULOPATHY: NEW TREATMENT STRATEGIES BASED ON
COAGULATION FACTOR CONCENTRATES

Tobias Bernhard Koller




“The greatest enemy of knowledge is not ignorance
it is the illusion of knowledge."

— Stephen Hawking—
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SUMMARY

Massive bleeding in clinical settings like trauma, obstetrics, cardiac, and other
high-risk surgery is a severe and life-threatening complication. It is associated
with an elevated mortality rate and causes a heavy economic burden for public
health care systems (1)(2)(3). Bleeding is caused by a surgical lesion of blood
vessels, by disorders of the blood coagulation system, or both. The underlying
severe blood loss leads to severe haemorrhagic shock and a lethal outcome unless
adequate treatment is offered immediately to the patient. Resuscitation fluids are
infused into the bleeding patient’s venous system to correct the intravascular
volume deficit and to restore an adequate macro- and microcirculation to prevent
the deleterious consequences of prolonged and uncontrolled shock (4). For this
purpose, physicians have different kinds of fluids available. Regardless of their
nature, be it crystalloids, artificial-, or natural colloids, all currently available
fluids have a negative impact on the complex mechanisms of the coagulation
system whose functionality and integrity are essential for the effective control
of ongoing bleeding. To avoid a vicious circle of fluid administration leading
to coagulopathy leading to enhanced bleeding, which in turn necessitates more
fluid administration, it is indispensable to guarantee the rapid and consistent
treatment of emerging coagulation disorders as diagnosed by standard laboratory
testing or point-of-care (POC) monitoring like thromboelastometry (TEM).
For the treatment of coagulopathies with deficiency of coagulation factors, the
transfusion of plasma products is still a clinical standard in most hospitals and
forms an integral part of their institutional protocols for massive blood transfusion.
However, there is a certain paucity of high-quality evidence supporting this
clinical praxis and plasma transfusion is not free from serious adverse events.
The concept of plasma transfusion aiming at substitution of coagulation factors
in severe bleeding is currently challenged by new alternative treatment concepts
based on the replenishment of coagulation proteins in form of coagulation
factor concentrates (CFC). Fibrinogen Concentrate (FC), Prothrombin Complex
Concentrate (PCC) and Factor XIII Concentrate (FXIIIC) have been increasingly
used in recent years for the treatment of bleeding-associated coagulopathies, with
growing scientific evidence for a better outcome in several clinical endpoints when
compared to plasma transfusion (5)(6)(7). However, plasma possesses unique
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qualities as a resuscitation fluid, providing reliable intravascular volume effects
combined with a close to physiological coagulation factor composition, which
might partially explain the high acceptance of this product among physicians in
massive bleeding scenarios. Currently, no alternative products are available that
share these therapeutical components with human plasma. The objective of this
doctoral thesis is, 1st, to perform a thorough review of the current evidence on the
role of FC in perioperative bleeding, 2nd, to analyse the capacity of commercial
coagulation factors dissolved in a plasma-free albumin solution to form a stable
fibrin clot and, 3d, to generate an albumin-based colloid solution enriched with
coagulation factors showing a blood clot generation with a normal TEM pattern.
Such fluids with a coagulation capacity comparable to whole blood when tested
in presence of platelets could represent a new class of colloids which will be
referred to as Coagulation Resuscitation Fluid (CRF) in the further course of this
work. CRFs could result in alternative transfusion strategies equally combining
reliable intravascular volume effects with the capacity to maintain adequate
haemostatic properties for bleeding control. Follow-up studies could investigate
if plasma-free transfusion strategies based on CRF would provide acceptable
hemodynamic and haemostatic properties with a non-inferior efficacy and safety
profile when compared to plasma.
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1. INTRODUCTION

1.1. The Haemostatic System

The formation of a stable blood clot at the site of vessel injury is a highly
regulated physiological process, which is determined by the complex interplay
between endothelial cells, platelets, and coagulation factors. Platelet aggregation
and the activation of coagulation factors are two closely interwoven mechanisms
that mutually regulate and influence each other. This process is currently best
described by models highlighting the mechanisms of coagulation factor activation
in close spatial proximity to membrane surfaces of activated platelets (cell-based
model) within three overlapping phases:

1. Initiation phase in which low amounts of activated coagulation factors are
generated,

2. Amplification phase which prompts an important increase in the
concentration of activated coagulation factors, and

3. Propagation phase with formation of fibrin next to highly procoagulant
membranes of activated platelets (8).

Cell-based models of haemostasis challenge the classical, purely enzymatic
concept of two separated coagulation cascades (intrinsic and extrinsic coagulation
cascade) and give more precise answers to timely and spatial interactions between
the vessel wall, platelets and coagulation factors. The haemostatic effects provided
by a platelet plug embedded and stabilized in a fibrin mesh are indispensable
for bleeding control but must be limited to the site of the endothelial lesion.
Inhibitory coagulation factors and the fibrinolytic system provide potent control
mechanisms to avoid excessive activation of the platelet-coagulation interplay
and to minimize the thromboembolic risk at downstream sections of the involved
blood vessel (9).
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Platelet Aggregation

Resting platelets, characterized by a discoid shape are circulating in high
abundance (up to 400 billion cells in one litre of blood) through the human
blood vessels screening the endothelial wall for its integrity (10). A large number
of different receptors and adhesion molecules from the integrin family and
G-protein (GP)-coupled receptors are available at the platelet membrane surface
regulating the cellular mechanisms of platelet adhesion and aggregation. The most
abundant platelet membrane receptor GP-IIbllla (allbf3-integrin) experiences
a conformational change after platelet activation exposing binding sites for its
natural ligands fibrinogen (FGN), fibronectin and von Willebrand factor and
exhibits a crucial role in granule secretion, irreversible platelet aggregation and
clot retraction (11) (12) (13).

Under high shear rates (1000 -4000 s™'), as found under flow conditions in arterial
vessels, platelet aggregation depends on the intermediary role of soluble von
Willebrand factor (14). Soluble von Willebrand factor is captured by exposed
collagen molecules from the subendothelial connective tissue and experiences
a configurational change that leads to binding to the platelet GP-1ba receptor.
These first platelet-collagen interactions mediated by soluble von Willebrand
factor are initially transient under high shear, leading to slowing down and
rolling of platelets along the injured vessel wall. This gives raise to further
interactions between platelet membrane receptors and ligands in the extracellular
matrix thus generating a first layer of adherent stationary and activated platelets.
During rolling along the vessel wall the intracellular signalling induced by the
GP-1ba interaction with the A1 domain of collagen-bound von Willebrand
factor leads to activation of further membrane receptors and transmembrane
adhesion molecules, especially of a2f1-integrins, which then enhance further
GP-VI-mediated collagen-platelet binding. It is this a2f1-collagen interaction
that converts the initially reversible nature of the platelet-collagen interaction
into a stable bonding with high resistance to shear stress (15). a2B1-integrin and
GP-VI synergistically stimulate degranulation of a- and 6-granules from the
platelet cytosol, Ca++-signalling, changes in the platelet membrane shape with
phosphatidylserine (PS) exposure and further platelet aggregation (16)(17)(18).
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The forming microenvironment of negatively charged PS-based platelet
membranes and degranulated and partially activated coagulation factors (FV, von
Willebrand factor) set the prerequisite for the effective interplay between platelets
and activated coagulation factors produced during secondary haemostasis (19).
These early cell-bound mechanisms of primary haemostasis occur mostly
in parallel and simultaneously to the activation of the coagulation processes
of secondary haemostasis driven by tissue factor exposure. Both processes
significantly interact and influence each other within a shared biochemical
environment in close proximity to the surface of activated platelets.

Figure 1: Molecular mechansims of platelet aggregation

0"000 VWF I Gplb-V-IX ? Integrins + Fibrinogen IGPVI MGPCH @ PS

O DN RO

Resting Shape Integrin Secretion Procoagulant activity
change activation

(20)

Cell-based model of coagulation
- Initiation Phase
During the initiation phase of haemostasis plasma comes into contact with

exposed tissue factor-bearing cells of the subendothelial space leading to binding
and complex formation between tissue factor and FVIIa (21). Tissue factor-FVIla
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complexes then induce several proteolytic factor activation steps that belong to
the extrinsic coagulation cascade. It cleaves plasma coagulation FIX and FX to
convert them into their activated forms FIXa and FXa. FXa activates FV and
again FVII, which - in a positive feedback loop - reinforces the initiation phase
of coagulation. Furthermore, FXa produces trace amounts of thrombin from
prothrombin. Thrombin is the key enzyme to

1. activate factor V and FVIII

2. activate FXI which cleaves FIX to FIXa, and

3. activate platelets by protease-activated receptors 1 and 4 (PAR1, PAR 4).

The thrombin-driven activation of factors needed for assembling the tenase
(FVIlIa/FXIa), and prothrombinase (prothrombinase, FVa/FXa ) complex and
further activation of adhering platelets are important mechanisms to perpetuate
and intensify the haemostatic process during the amplification and propagation
phase (20).

- Amplification Phase

The assembly of the stable procoagulant complexes tenase, consisting of activated
FIX and FVIII, and prothrombinase, consisting of activated FX and FV, stands in
the centre of the amplification phase.

The trace amounts of thrombin generated during the initiation phase serve as
a strong activator for platelets via activation of PAR-1 and PAR-4 receptors.
Thrombin-activated platelets release partially activated FV from a-granules,
which — after degranulation - become fully activated by contact with thrombin
and FXa.

FXa from the initiation phase is partially deactivated by tissue factor pathway
inhibitor and antithrombin to guarantee thatno procoagulant stimulus is transmitted
to the downstream healthy parts of the blood vessel (22). By comparison, FIXa,
generated during the initiation phase by trace amounts of thrombin is not targeted
by tissue factor pathway inhibitor/ antithrombin and can diffuse to membranes of
previously activated platelets to further support the formation of thrombin.
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Thrombin bound to the platelet surface activates FXI to FXla, which cleaves
FIX to FIXa and plays an important role in the activation of von Willebrand
factor-bound FVIII. After sufficient cleavage of the von Willebrand factor/FVIII-
complex the released and activated FVIII remains at the membrane surface of
platelets (23).

The totality of these individual processes provides sufficient platelet-bound
cofactors FVIIla and FVa required for assembling with FIXa and FXa to form the
stable procoagulant complexes tenase (FVIIIa/FXIa) and prothrombinase (FVa/
FXa) and to induce the further enhancement of thrombin production during the
propagation phase.

Figure 2: Coagulation factor activation steps during initiation-, amplification-, and propagation
phase

(20)
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- Propagation Phase

The assembly of the tenase (FVIIla/FXla)- and prothrombinase (FVa/FXa)-
complex takes place within proximity to procoagulant, activated platelets.
These platelets have previously passed activation steps mostly driven by
collagen and thrombin. They are characterized by a balloon-like shape exposing
phosphatidylserine (PS) on their membrane surface. The assembly of the tenase
complex occurs on the “cap”-like regions of ballooned platelets where a high
density of adhesive proteins can be identified (24). The local distribution of
activated coagulation factors on the platelet surface seems to be relevant in
supporting the haemostatic procedures during the propagation phase. Once
the tenase-complex, formed by activated FIX/VIII, cleaves FX to FXa the
prothrombinase-complex consistent of FXa and FVa can assemble. The presence
of calcium (Ca++) at physiological concentrations is essential for the assembly
of tenase- and prothrombinase-complexes to the anionic phospholipids exposed
on the platelet membrane. The prothrombinase-complex finally leads to a high
local concentration of thrombin (thrombin burst) that induces effective cleaveage
of FGN and promotes polymerization of insoluble fibrin.

Fibrin Polymerization

The FGN molecule is a key element of haemostasis, integrating the fluid
phase components of coagulation with cell-mediated mechanisms of primary
haemostasis. Thrombin mediates the cleavage of an N-terminal peptide sequence
in the a-chain, thus forming soluble fibrin monomers (Figure 3) (25). A second
slower cleavage process on the B-chain increases the polymerisation capacity of
the molecule. Double-stranded fibrils are generated by end-to-middle alignment
of the D- and E-domains of several fibrin molecules and assemble with each
other, either in parallel forming four-stranded fibrils (bilateral branch junctions),
or in an end-to-side configuration (equilateral branch junctions) (26) (Figure 4).
Altogether, the thrombin-induced cleavage process induces dramatic changes in
solubility and the formation of an insoluble, complex fibre structure, the fibrin
clot.
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Figure 3: Molecular structure of fibrinogen

E-domain

D-domain D-domain

Figure 4: Fibrin polymerization
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Fibrin molecules are crosslinked by FXIIla by covalent bonds within the
generated clot, thereby terminating the coagulation process. FXIII crosslinks lead
to more resilient and elastic properties while protecting the clot from plasmin-
mediated fibrinolytic activity (27)(28)(29). Both FGN and fibrin directly interact
with platelets (30). FGN is a physiological ligand to the platelet membrane-
glycoprotein GP-IIbllla (allbp3-integrin) and its interaction with FGN promotes
platelet aggregation and degranulation. The binding of fibrin within forming
clots to GP-IIblIla enhances clot retraction, which further increases clot stability
and resilience.

Inhibition of the Coagulation System and Fibrinolysis

The activation of the coagulation system and blood clot formation has to be
spatially limited to the site of vessel injury to avoid harmful thrombosis or
thromboembolism. This is provided by a complex inhibitory system consisting
of protease inhibitors (e.g. antithrombin, tissue factor pathway inhibitor) and the
endothelial-based Protein C/Protein S enzymatic activity.

- Antithrombin

Antithrombin is a plasma glycoprotein with regulatory effects on the proteolytic
activity of the procoagulant proteases of both the extrinsic and intrinsic
coagulation cascade (31)(32). It exerts inhibitory effects on all activated
coagulation factors but its main targets seem to be thrombin, FXa and FIXa.
Its inhibitory interaction with coagulation factors is markedly enhanced in the
presence of heparins or glycosaminoglycans from endothelial HSPG (heparin
sulfate proteoglycans)-receptors (33). Antithrombin is considered to be one of
the most relevant inhibitors of thrombin. Its clinical relevance is supported by
the observation of a 10-fold elevated risk for thromboembolic events under
heterozygous antithrombin deficiency in humans (34). Complete antithrombin
deficiency seems to be incompatible with life (35).
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- Tissue factor pathway inhibitor

Tissue factor pathway inhibitor is a multivalent, serine protease inhibitor and a
major physiological regulator of tissue factor-induced blood coagulation. Tissue
factor pathway inhibitor is located in platelets and microvascular endothelium
(36). Tissue factor pathway inhibitor inactivates the enzyme activity of several
proteases like FVIIa and FXa (37). Tissue factor pathway inhibitor-mediated
inhibition of the coagulation system affects both the tissue factor/FVIla/Xa
complex and isolated FXa molecules. The inactivation step of tissue factor/VIla
is dependent on the presence of FXa that is previously formed at the tissue factor/
Vlla complex (38). Protein S is an important cofactor for isolated tissue factor
pathway inhibitor induced FXa-, but not tissue factor/VIla-inactivation (39)(40).
This leads to inhibition of early forms of the prothrombinase-complex during the
initiation of blood coagulation (41). FIXa on the other hand is not affected by
tissue factor pathway inhibitor and can therefore diffuse more easily to platelet
membranes to exercise their important role during the propagation phase.

- The protein C/protein S pathway

The protein C/protein S pathway is a further enzymatic control system to avoid
overshooting coagulant activity, thrombosis and inflammatory processes (42).
Protein C has high homology to vitamin K-dependent procoagulant proteins.
Rising thrombin concentrations during coagulation bind to thrombomodulin
expressed in endothelial cells (43). Thrombin/thrombomodulin then lead to
cleavage and activation of protein C that is bound to endothelial protein C receptor
(44). After cleavage, and still in close proximity to the endothelial membrane,
activated protein C binds to its cofactor protein S (635 amino acids, vitamin
K-dependent protein) as a prerequisite to attain full anticoagulant activity (45)
leading to effective downregulation of prothrombinase activity (46). Being an
endothelial-bound process the overall anticoagulant efficiency can be expected
to be especially high in the capillary bed as a function of a favourable blood-
volume/endothelial-surface-ratio. In bigger arterial vessels with a less favourable
ratio, this seems to be compensated by a higher expression of endothelial protein
C receptor (47). Activated protein C dependent FV-inactivation seems to be only
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effective at the site of endothelial but not platelet membranes, suggesting that
it exerts a rather thrombotic protection within healthy vessels than a switch-off
signal on coagulation near activated platelets (48).

The activated protein C cofactor Protein S is mainly bound in plasma (> 60%) to the
complement regulatory protein C4b-binding protein (C4BP). The anticoagulant
activity of protein S is not strictly limited to its cofactor function for activated
protein C. It also exerts anticoagulant effects by directly inhibiting FV, FXa, and
by contributing to FXa/ tissue factor pathway inhibitor interactions (39)(49)(50).

Heterozygous deficiencies for both protein C and protein S are correlated to a
higher risk for venous thrombosis whereas homozygous deficiencies are not
compatible with life indicating a highly relevant physiological role for controlling
haemostatic and thrombotic processes (51)(52).

Figure 5: Inhibition of the coagulation system
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- The fibrinolytic system

After the generation of a functional haemostatic fibrin clot the fibrinolytic system,
consisting of a cascade of serum proteases converting the zymogen plasminogen
into its active form of plasmin, will finally promote effective fibrinolysis
and thrombolysis. The efficiency of enzymatic fibrinolysis is determined by
fibrinogen (FGN) polymorphism, mechanical characteristics of the fibrin
molecule, thrombin generation rate, thrombus-associated cells (platelets), and the
surrounding biochemical environment.

Fibrin itself enhances the conversion of plasminogen to plasmin by simultaneously
binding of tissue-type plasminogen activator and plasminogen augmenting
the catalytic potential of tissue-type plasminogen activator by two orders of
magnitude (53). The number of plasminogen binding sites to the fibrin molecule
(lysine residues) increases under the cleavage process resulting in high plasmin
activity in direct neighbourhood to its target substrate fibrin.

To avoid premature clot degradation thrombin activatable fibrinolysis inhibitor
bound by thrombomodulin provides a regulatory mechanism by directly
removing COOOH-terminal lysine residues from the cleaved fibrin molecule and
thus reducing the number of potential binding sites for tissue-type plasminogen
activator (54).

Overshoot downstream activity of the potent protease plasmin is controlled
and limited by naturally occurring enzymes like a2 antiplasmin, plasminogen
activator inhibitor 1 and 2 (55).

Although not finally elucidated plasmin-independent mechanisms seem to
play a role in fibrinolysis as both homozygous plasminogen deficiencies and
reduced tissue-type plasminogen activator activities do not account for increased
thrombotic events (56).
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1.2. Coagulation Monitoring
Standard Laboratory Testing and Viscoelastic Haemostatic Assays.

Coagulation Monitoring is an indispensable component of clinical management
in situations of uncontrolled bleeding. Haemostatic pharmacological and/or
transfusional interventions in clinical practice should best be guided by well-
established diagnostic criteria provided by adequate test results. In clinical
practice two general principles for coagulation monitoring can be distinguished:

+ Conventional Standard Laboratory Testing with routine monitoring
generally including prothrombin time, activated partial thromboplastin time,
mechanical or photo-optical determination of plasma FGN concentration
(Clauss method) and platelet count. More specific testing like thrombin
time, reptilase time, etc. can help to determine more specific coagulopathic
disorders.

* POC-monitoring with Viscoelastic Haemostatic Assays (VHA) is based
on the registration of physical blood clot characteristics usually applied as
point-of-care monitoring.

In recent years POC monitoring has gained clinical relevance in the management
of perioperative bleeding due to several advantages compared to standard
laboratory testing. In the first place, the time to availability of test results guiding
treatment decisions is significantly shorter with reported turnaround times for
diagnosis-treatment cycles of up to 100 minutes for standard laboratory testing
(57) compared to only 5 — 10 minutes for VHA (58). This difference is highly
relevant, as rapid and correctly indicated therapeutic decisions in the treatment of
massive bleeding events can be life-saving.

Next, VHA is performed on whole blood samples including information on the
contribution of platelets and red blood cells on the clotting process whereas
standard laboratory testing is performed on centrifuged plasma samples excluding
this relevant information (59).
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Finally, blood samples can be tested directly at the bedside of the bleeding patient.
This facilitates the execution of the test directly by the treating team close to
the patient. The analysed blood probes reflect real temperature conditions of the
bleeding patient’s blood without previous correction to 37°C standard temperature
as done for standard laboratory probes.

- Basic principles of VHA

Thromboelastometry (TEM) was first introduced in 1948 by Hartert et al. (60) but
broader clinical acceptance and introduction as POC monitoring for perioperative
and emergency settings was not achieved until 1996 when technical and
methodological improvements led to significant shorter interpretation times and
higher reliability of the obtained results. Today several commercial VHA systems
are available in the market. The most commonly used and best studied analysers are
rotational thromboelastometry (ROTEM®, Instrumentation Laboratory, Bedford,
MA, USA) and thromboelastography (TEG®, TEG Haemonetics Corporation,
Boston, MA, USA) . In the further course of this thesis unless explicitly stated
otherwise, reference is made to the ROTEM system since the experimental part
of this work was carried out on ROTEM equipment and the interpretation of the
results obtained must be made with reference to Rotem standard parameters.

During TEM temporal and mechanical characteristics of viscoelastic clot
properties of a forming blood clot are measured within a sample of whole blood
under low shear conditions. A small rotating pin immersed in a whole blood
sample registers changes of blood viscosity after coagulation activation and
the onset of platelet-fibrin bonding that leads to increased clot firmness. The
corresponding limitation of the free rotation of the rotating pin is transmitted
via an optical detector system (Figure 6) generating a graphical display resulting
in the typical thromboelastograph (Figure 7). The thromboelastograph plots
the time course on the X axis and the increase in clot firmness on the Y axis.
(Viscoelasticity is expressed as “mm” corresponding to the loss of motion of the
optical signal on the detector as the rotational capability of the pin reduces under
rising resistance of the clotting blood sample). The normal ranges for standard
ROTEM parameters are presented in Table 1.
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Figure 6: Rotational thromboelastometry (ROTEM®)
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Figure 7: Typical thromboelastograph
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Table 1: Normal values for Rotem parameters
Sex related differences in the main parameters of ROTEM
Age (years) CT (s) CFT (s) Alpha angle () MCF (mm)
INTEM
females (n = 79) 41.2 (18.7)* 187.9 (26.8) 62.5 (16.4)" 776 (2.8)* 625 (4.8)*
males (n = 76) 49.8 (17.7)* 184.4 (25.9) 69.4 (16.4)* 76.2 (3.5)* 60.1 (4.8)*
EXTEM
females (n = 130) 41.3 (15.8)* 55.2 (8.2)* 91.2 (27.1) 72.5 (5.3) 60.2 (5.2)
males (n= 72) 46.3 (15.6)* 58.7 (9.2)* 97.0 (25.9) 71.6 (4.8) 59.6 (5.4)
FIBTEM
females (n = 93) 3838 (15.1) nd. nd. n.d. 18.7 (3.9)*
males (n = 50) 389 (13.4) n.d. n.d. nd. 15.1 (4.0)*

Shown are mean values and standard deviations, *P value < 0.05 (two tailed unpaired t-test) in the comparison of female and male subgroup.

(61)
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- VHA-guided diagnosis

ROTEMP" provides different coagulation tests which allow for specific diagnosis
of a variety of coagulopathies. Tests differ in the way coagulation is activated
with either tissue factor used for extrinsic activation (i.e. for EXTEM-, FIBTEM-
and APTEM-subtests) or ellagic acid for intrinsic activation (i.e. for INTEM-
and HEPTEM-subtests). Further reactants can additionally help to discriminate
between different coagulopathic triggers that can result in identical ROTEM
patterns. E.g., FIBTEM subtests containing cytochalasin D as a potent platelet
inhibitor will effectively eliminate the contribution of platelets to the clot firmness
and leave only information on clotting proteins, mainly FGN and FXIII (62).

Therapeutical decision-making is guided by a series of parameters from the
viscoelastometric measurement:

Clotting Time (C7) is defined as the duration from coagulation activation to the
formation of the first fibrin molecules with a recordable increase in viscoelasticity
amplitude to 2 mm. In function of the applied coagulation activator (intrinsic or
extrinsic) CT gives information on the corresponding coagulation factors and
their potential to generate thrombin for initiating FGN cleavage with consecutive
fibrin polymerization.

Clot Formation Time (CFT) is the time needed to increase clot firmness from 2
to 20 mm reflecting the quality and dynamic of fibrin polymerization.

The physical clot strength measured during the coagulation process is expressed
in Maximum Clot Firmness (MCF). FGN, FXIII and platelets, are the main
determinants of this parameter. Platelet inhibition with Cytochalasin D (FIBTEM)
allows for a quantitative estimate of FGN levels (and FXIII) contributing to MCF
(59). Results on clot firmness obtained from EXTEM or FIBTEM are available
within 5- 10 minutes after coagulation activation and provide an early guide
for clinicians to indicate FGN treatment and calculate a corresponding treatment
dose.
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The effects of the fibrinolytic system on the stability of the formed blood clot
are detected by the Maximum Lysis (ML) expressed as the percentage decrease
calculated from the maximum clot firmness over 60 minutes according to the
total duration of the TEM measurement.

Figure 8: Parameters from the thromboelastometrical measurement used for therapeutical
decision making
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Based on these standard TEG parameters several treatment algorithms are
published for different clinical high-risk bleeding scenarios and clinically
validated on evidence-based criteria (58). A general principle to follow according
to these treatment algorithms is to substitute haemostatic blood components in
accordance with goal-directed algorithms as indicated by ROTEM parameters that
are outside the normal range and known to be associated with an increased risk
of'bleeding. Isolated or combined coagulation factor deficiencies are increasingly
substituted by the administration of CFC as an alternative to indiscriminate
plasma transfusion. There is evidence that the concept of VHA-guided, goal-
directed coagulation management is cost-effective, reduces transfusion rates, and
has beneficial effects on the overall outcome, especially in trauma and cardiac
surgery as shown in cross-sectional metaanalysis (63)(64) .

Most clinical guidelines currently include monitoring with VHA as an alternative
or even superior to standard laboratory testing in a variety of clinical situations
(3)(65)(66)(67)(68).
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1.3. Bleeding-associated coagulopathy
Background

Disruption of a well-balanced coagulation system can be both, cause and
consequence of severe bleeding. Different clinical high-risk areas like trauma,
obstetrics, or cardiac surgery are characterized by specific and unique patterns
of disruptive mechanisms in the coagulation system. As a consequence treatment
algorithms have to be adjusted to the specific underlying disorder, leading to
significant differences in treatment algorithms between bleeding patients in
various clinical settings (3)(69)(70). Nevertheless, independent of the specific
underlying coagulation disorder, all bleeding patients share one common
pathomechanism aggravating their original coagulation disorders, which is
dilutional coagulopathy (71). Dilutional coagulopathy is caused by resuscitation
fluids administered to avoid severe intravascular hypovolemia and to guarantee
adequate cardiac output and tissue perfusion. Treatment of bleeding patients with
resuscitation fluids must therefore be seen as a cornerstone of emergency care —
despite their adverse effects on blood coagulation - to avoid haemorrhagic shock
and its serious consequences. The attractiveness of plasma transfusion lies in its
potential to simultaneously provide stabilising effects on the coagulation system
in addition to its volume effects, properties that no other volume therapeutic
agent can match. In other words, plasma is currently the only option to provide
adequate volume therapy during massive bleeding while simultaneously avoiding
the occurrence of severe dilutional coagulopathy.

Trauma-Induced Coagulopathy (TIC)

Trauma is one of the ten most common causes of death, with a worldwide
annual total of over 5 million victims (2). One of the main causes of the high
mortality rate among trauma patients is severe, uncontrolled blood loss leading
to exsanguination (72). Patients with a severe injury pattern who reach the
emergency department alive show signs of ongoing coagulopathy in around one
third of cases (73)(74), which entails a nearly three to four-fold higher mortality
risk (75)(76) compared to those without associated coagulation disorders.
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Tissue damage and shock are the driving forces that contribute to the development
of TIC. It is crucial to distinguish blunt trauma without shock from severe
penetrating trauma with shock. In the absence of shock, the clinical picture is
rather characterized by hypercoagulable conditions with increased thrombin
generation potential. Shock and hypoperfusion in the context of penetrating
trauma mechanisms, however, can result in severe hypocoagulability and
hyperfibrinolysis with an enhanced bleeding tendency (77). Early treatment of
shock is therefore of paramount importance to improve the overall survival rate
(3). Various pathological downstream processes may occur in varying degrees of
severity after the trauma-associated shock has been established.

The following section refers exclusively to hypocoagulopathic alterations in
patients with trauma-associated shock as hypercoagulable situations stand out of
context to this work.

The main mechanisms involved in the onset of TIC are reduced thrombin
generation potential, hyperfibrinolysis, hypofibrinogenemia, and endothelial
damage:

Hypoperfusion-triggered activation of the protein C pathway converting protein
C into activated protein C together with an endothelial overexpression of
thrombomodulin are the main factors that can induce an overall reduced thrombin
generation potential (78). Activated protein C induces direct inhibition of aFVIIla
and aFVa contributing to the hypocoagulable state. Increased thrombomodulin
and decreased protein C levels are associated with higher bleeding rates and
mortality (78). It was also suggested that hypocoagulable conditions might have
protective functions against microvascular thrombosis under shock with low
blood flow conditions (79)(80).

Hyperfibrinolysis under severe trauma with shock is today seen as a consequence
of massive endothelial overexpression of tissue-type plasminogen activator rather
than activated protein C-driven plasminogen activator inhibitor 1 inhibition (81).
Trauma patients with VHA patterns of hyperfibrinolysis (lysis at 30 minutes >
3%) are at the highest risk for trauma-associated mortality when compared to
patients with physiological or even reduced fibrinolytic capacity (82).
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TIC-associated hyperfibrinolysis and dilutional effects from prehospital fluid
resuscitation cause a high incidence of FGN depletion below critical thresholds
which strongly relates to higher mortality (83). A total of 73% of patients with
Hb levels < 10 g/L at hospital admission have FGN levels below the critical
threshold of 1.5 g/L (84).

Shock and hypoxemia also act as central triggers in emerging endothelial damage
among trauma patients. As a consequence glycocalyx shedding of heparans
and thrombomodulin from damaged endothelial cells amplify coagulopathic
mechanisms in trauma (85). Loss of endothelial barrier function leads to elevated
permeability for intravascular fluids and the onset of peripheral oedema. As a
result a vicious circle of even more severe intravascular hypovolemia and again
aggravated shock and hypoperfusion can be induced (77).

Coagulopathy in Peripartum Haemorrhage

Severe Peripartum Haemorrhage, defined as blood loss higher >500 ml/>1000ml
during vaginal/cesarean delivery, is the most frequent cause of peripartum
morbidity and is estimated to be responsible for 34% of maternal deaths
worldwide (86)(87).

Physiological changes of the coagulation system during pregnancy lead to an
overall prothrombotic state of the parturient at term, with a significant increase
in procoagulant factors and reduced activity of anticoagulant and fibrinolytic
factors. E.g., FGN is reported to increase up to twice the levels before pregnancy
with plasma concentrations reaching up to 6 g/l (88)(89). Accordingly,
thromboelastometric reference ranges among parturients differ from non-obstetric
populations (90) with FIBTEM values for obstetric vs non-obstetric populations
of 13-28 mm vs 6-22 mm for amplitude at 5 minutes (AS5), 14 —30 mm vs 7 —23
mm for amplitude at 10 minutes (A 10), 16 — 34 vs 9 — 25 mm for maximum clot
firmness (MCF). These findings confirm previously published data and clearly
reflect the initially hypercoagulable state during pregnancy (91)(92).

Coagulopathies as the primary trigger for bleeding are rare. The main obstetrical
bleeding causes are uterine atony, abnormal placentation and genitouretral trauma.
Acquired bleeding associated with coagulopathy in these settings, caused by
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dilution, local and/or disseminated consumption, and increased fibrinolysis can
become a life-threatening complication. Especially hypofibrinogenemia < 2-2,5
g/, is frequently responsible for bleeding propagation towards severe and massive
blood loss. In case of severe bleeding, the raised plasma FGN concentration at
term apparently confers certain resistance to dilutional effects (93) under fluid
administration for shock therapy. (94). However, this reserve appears to exhaust
when FGN levels drop to the critical level of 2 g/l.

In placental abruption and amniotic fluid embolus hypofibrinogenemia is seen in
100% of the affected patients (95) and eventually high FGN dosage is needed (up
to 18g in extreme cases) to correct plasma FGN levels (96).

Given the heterogeneity of underlying conditions for peripartum haemorrhage it
is questionable if a formulaic transfusion concept with fixed ratios of fresh frozen
plasma (FFP) to red blood cells should be applied. Goal-directed correction of
single- or multifactor deficiencies guided by POC testing as introduced in many
obstetric centres seem to reduce overall transfusion rates, but no clear impact on
morbidity or mortality could be shown so far (97).

Coagulopathy in Cardiac Surgery

Upto 15% of all cardiac surgical patients with cardiopulmonary bypass suffer from
relevant postoperative haemorrhage (98)(99) causing an overall consumption of
up to 20% of all transfused blood products worldwide (100). Besides the highly
relevant economic burden, severe bleeding and transfusion of allogeneic blood
products show a clear negative impact on patient morbidity and mortality (100)
(101).

The onset of coagulopathy in cardiac surgery is a complex interplay of patient-,
cardiopulmonary bypass-related-, and surgical factors. Coagulopathic bleeding
in cardiac surgery can have several causes, including:

* Disruption of the patient’s homeostasis with hypothermia, acidosis, anaemia,
and/or hypocalcaemia

* Disruption of primary haemostasis due to pre-existing antiplatelet treatment,
mechanical disruption of platelet function caused by the extracorporeal
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bypass pump or acquired deficit of von Willebrand factor in patients carrying
intermediate and long-term cardiac assist devices (102)

* Disruption of the plasmatic coagulation capacity in the context of
coagulation factor deficiency or inhibition. Systemic and local coagulation
activation through direct blood exposure to air and thrombogenic surfaces
in the cardiopulmonary bypass circuits, consumption, dilution, loss and
rebound of heparin effects are the main contributers.

* The hyperfibrinolytic activity caused by intrinsic contact activation with
artificial cardiopulmonary bypass surfaces and extrinsic activation by
systemic endothelial tissue-type plasminogen activator release from the
vascular wall (103)

The complexity of the underlying coagulopathies in cardiac-surgery-related
bleeding led to a broad acceptance of TEM-based monitoring systems,
especially in European centres. Increasing scientific evidence, as summarized
in two recently published meta-analysis, is supporting its use (104)(105). Both
investigators found consistent results on the efficiency of VHA monitoring to
reduce transfusion rates. A reduction in mortality rates was only observed in the
smaller sample published by Wikkelsa (104). One relevant study in this field was
interrupted after an interim analysis (50 patients enrolled of 100) due to a highly
significant reduction of red blood cell transfusion in the VHA arm (106).

Under VHA monitoring, hypofibrinogenemia as a single coagulation factor deficit
is - next to heparin rebound in plasma - among the most frequently detected
coagulopathies in cardiac surgery (107). Intraoperative and postoperative plasma
FGN levels falling below thresholds of 1,5 — 2,2 g/l are associated with more
severe blood loss (108)(109). Ranucci et al. reported a negative predictive value
of 100% for plasma FGN levels of 2.87 g/l or 98% for FIBTEM-MCF values of
14 mm. Some controversy is still ongoing about the positive predictive value of
FGN with a considerable risk for overtreatment if pre-emptive strategies were
applied (110)(111). As suggested by current guidelines on bleeding management
in cardiac surgery FC administration can be considered if FGN levels fall below
1.5 g/l and should be based on VHA monitoring if available (65)(112).

There is clear consensus in favour of reversal of oral vitamin-K-antagonist-
associated multifactor deficiencies with four-factor prothrombin complex
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concentrates (PCCs) as it is shown to be faster and safer than plasma-based
reversal (113). However, the currently available evidence on the best treatment of
multifactor deficiencies in the context of loss and consumption under long-lasting
bleeding and/or cardiopulmonary bypass is limited. There is some evidence
from clinical studies that PCC-based management might be more effective than
plasma transfusion to reduce postoperative blood loss and associated transfusion
rates (114)(115)(116)(117). This evidence however does not currently translate
into clear guideline recommendations in favour of plasma-free management of
multifactor deficiencies as some safety concerns associated to PCC administration
like higher rates of thromboembolic events and acute kidney failure exist (115).

Dilutional Coagulopathy

Regardless of the underlying specific coagulopathies in the clinical high-risk
settings like trauma, obstetrics and cardiac surgery, all severe bleeding situations
share a common pathologic pathway that perpetuates pre-existing coagulopathies:
dilutional coagulopathy. Dilutional coagulopathy is caused by coagulation
factor-free resuscitation fluids administered to compensate for blood loss and to
maintain an adequate volume status of the patient. The overall detrimental effect
of resuscitation fluids on coagulation mechanisms is the sum of the unspecific
dilution of haemostatic components (coagulation factors and platelets) in the
intravascular space and specific anticoagulant side-effects of resuscitation fluids
from different pharmacological classes (71).
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1.4. Resuscitation fluids

Several fluid types are available for the treatment of clinically relevant fluid
deficits in the intra- and/or extravascular components of the human body.
Crystalloid fluids (as balanced and unbalanced salt solutions), semisynthetic
colloids like dextrans, starches or gelatines, and natural colloids like albumin
solutions must be distinguished. Despite being one of the most frequently applied
medical interventions it stays unclear for fluid administration which class of fluid
is best for different clinical situations. Under severe bleeding, clinicians try to
choose from fluid types with minimum impact on the haemostatic competence of
the bleeding patient.

In general, crystalloids and albumin solutions seem to trigger less deterioration
of coagulation mechanisms than semisynthetic colloids, such as dextrans or
starches. /z vitro and in vivo VHA assays show a significant reduction of FGN-
dependent clot firmness under 30% dilution with colloids and only at 40 — 60%
dilution with crystalloids (118)(119). A significantly lower intravascular volume
effect with less dilution of coagulation components compared to colloid solutions
could play a role in this context.

All colloids used as plasma substitutes exert specific anticoagulant side effects
on both, the plasmatic coagulation and platelet function. Impaired fibrin
polymerization with reduced clot stability, decrease in von Willebrand factor and
FVIII plasma levels, enhanced fibrinolytic response and reduced platelet adhesion
and aggregability are the underlying mechanisms for the specific anticoagulant
effects of colloid plasma substitutes (Table 2).

Albumin

Albumin is considered to be the colloid solution with the least negative effects
on the coagulation system, although it has also some theoretical anticoagulant
effects. It can directly inhibit platelet aggregation through induction of nitric
oxide, without showing direct platelet coating effects as seen from other colloid
solutions. Moreover, the binding of antithrombin may result in an anti-Xa effect
(120)(121).
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These albumin-specific properties can translate into the alteration of coagulation
monitoring parameters, including ROTEM parameters (122). Significantly
prolonged clot-formation time and reduced MCF were

demonstrated after albumin substitution under therapeutic plasma exchange.

A further study, comparing coagulation parameters of healthy volunteers with
high, physiologic and low plasma albumin levels showed enhanced primary
haemostasis, platelet aggregation, and clot formation in groups with low
albumin levels, suggesting that a reduced anticoagulant effect under low albumin
concentration could cause a prothrombotic condition (123).

There is some evidence from animal studies that albumin administration might be
beneficial in terms of reducing blood loss and improving survival (124). Clinical
studies comparing human albumin against hydroxyethyl starch (HES 130/0.4)
showed consistently lower perioperative haemorrhage in the albumin arms (124)
(125)(126)(127). In a randomized controlled trial comparing albumin solutions
with lactated Ringer in major non-cardiac surgery, no difference was seen between
study groups (128). However, another study comparing albumin with crystalloids
indicates that albumin might increase the overall risk for perioperative blood loss
(129) in the perioperative setting.

The use of albumin solutions and its safety- and benefit-profile in the ICU setting
is also the subject of intensive research. In 1998 a highly regarded meta-analysis
published by the Cochrane Injuries Group Albumin Reviewers suggested
higher mortality rates in critically ill patients with hypovolaemia, burns, or
hypoalbuminemia comparing administration of albumin or plasma protein
fraction with no administration or with the administration of crystalloid solution
(130). These alarming data on the use of albumin as resuscitation fluid could
not be confirmed in huge follow-up studies. Especially, the large Saline versus
Albumin Fluid Evaluation (SAFE) study, a blinded, randomized, controlled trial,
to examine the safety of albumin in 6997 adults in the ICU could not confirm
higher mortality or end-organ failure rates in the albumin study group (131). A
subgroup analysis suggested a potential survival benefit in patients with severe
sepsis.
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Semisynthetic colloids

Starches belonged to the most frequently used colloids, often used as first-
line therapy for goal-directed volume replacement in the perioperative setting.
Accumulating evidence, however, demonstrates a significant 21 - 35% increase of
risk for renal replacement therapies in critical care patients and an increase in risk
for death (relativerisk, 1.17;95% CI, 1.01 to 1.30; P=0.03) (132)(133)(134). Their
detrimental effect on coagulation parameters is also well documented, especially
among high molecular weight preparations (>200kD). These slowly degradable
starches exert coating of the platelet surface with colloidal macromolecules (135)
resulting in an inhibition in the conformational changes and/or interaction of
glycoproteins IIb—IIla and Ib with their ligands. Simultaneously, a detrimental
effect on fibrin polymerization with a clear impact /7 vizro and 7z vivo on the MCF
in TEM has been shown (136)(137). Altogether this translates into a significant
increase in perioperative blood loss in most non-cardiac surgery settings when
comparing starch solutions against crystalloids. During cardiovascular surgery
metaanalysis data did not demonstrate a significant difference in haemorrhage
comparing HES and crystalloid groups (129)(138) - (148).

Crystalloids

Crystalloids are considered to be the safest resuscitation fluids in terms of negative
side effects on the haemostatic system in patients with ongoing bleeding. Sodium
chloride or normal saline (0.9%) has to be distinguished from “balanced” or
“physiological” crystalloid solutions. The term “normal saline” was introduced,
based on red-cell lysis studies performed by the Dutch physiologist Hartog
Hamburger in 1882/1883. Although the “normal” saline content of extracellular
fluids was later shown to be 0,6% and not 0.9% the term “normal saline” was
maintained (149). Administration of larger volumes of normal saline can be
associated with the onset of hyperchloremic metabolic acidosis and clinical
adverse events like immune and renal dysfunction have been related to this
problem (150)(151).

As a consequence balanced crystalloid solutions with a more physiologic
composition like Ringer Lactate ®, Hartmann solution® or Plasmalyte®have gained

increasing relevance as resuscitation fluids. Theoretical safety concerns are linked
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to the chemical composition and buffer molecules (lactate, acetate, gluconate
or malate) including elevated risk for cerebral oedema (relative hypotonicity),
hyperlactatemia (lactate containing solutions like Ringer or Hartmann solutions),
hyperkalemia or cardiotoxicity (acetate containing solutions like Plasmalyte).
A relevant number of randomized clinical studies however give evidence that
balanced crystalloids compared to normal saline are not associated with worse
organ function or higher mortality (152)(153). On the contrary, lactated Ringer
Solution seems to be associated with reduced amounts of perioperative blood loss
and reduced transfusion of red blood cells compared to normal saline as shown
in a metaanalysis including 28 clinical surgical and non-surgical studies (154).

Dilution of Coagulation Factors caused by Resuscitation Fluids

Dilutional effects of the intravenous administration of resuscitation fluids
are proportionate to their intravascular volume effect. Decreased pro- and
anticoagulant coagulation factors concentration in plasma and a decreased
platelet count without affecting platelet function are the direct consequences of
dilution leading to nonspecific dilutional coagulopathy (155)(156). Although
all resuscitation fluids exert unspecific dilutional effects on coagulation factors
it seems that 7z vivo dilution is context-sensitive and the detrimental effects of
crystalloids are clinically less relevant than those of colloids. This effect is most
likely related to the reduced volume effect in the intravascular space induced by
equal volumes of crystalloids or colloids infused(157)(158). The integrity of the
endothelial glycocalyx layer and the associated capacity of the vascular wall to
retain plasma fluid in the intravascular space (159) play a possibly relevant role
in this context.

Overall minimal changes are to be expected under dilution rates below 20%
for most resuscitation fluids. In viscoelastic tests, a hypercoagulable state can
be detected under dilution grades of < 20% (40%) being unclear the clinical
relevance of these findings (160). Methodological artefacts or a relevant reduction
of antithrombin activity are discussed in this context.

With rising dilutional grades hypofibrinogenemia seems to be the first relevant
coagulopathic mechanism to emerge in form of a single-factor deficiency. The
overall impression that FGN is the first coagulation factor dropping to critically
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low plasma levels with detrimental effects on coagulation is widely supported by
mathematical, animal models and 7z vivo studies (161)(162)(163).

In more severe dilutional models within the range of 60% dilution degree
and higher, a significant impact beyond clot strength impairment caused by
hypofibrinogenemia can be observed including deterioration of thrombin
generation potential and relevant decrease of platelet count. This manifests
in form of prolonged CT in VHA, and prothrombin time and activated partial
thromboplastin time in standard laboratory testing and further enhanced reduction
of blood clot stability (reduced A5, A10 MCF) (164). These changes reflect a
coagulopathic propagation from single-factor- towards multifactor-deficiencies
under increasing dilution rates.

Table 2: Summary of coagulopathic mechanisms caused by different fluid types

Albumin:
» Dilutional, nonspecific decrease of plasma coagulation factor activity
and reduced platelet count
* Specific effects:
* Inhibition of platelet aggregation
* Binding and inactivation of antithrombin

Crystalloids:
* Nonspecific decrease of plasma coagulation factor activity and platelet
count
* Hypercoagulability at a low degree of dilution. Artefact vs reduced
activity of antithrombin.

Synthetical Colloids:

* Dilutional, nonspecific decrease of plasma coagulation factor activity
and platelet count

* Specific effects:
* decrease in FVIII activity
* Detrimental effects on fibrin formation and crosslinking
* Inhibition of platelet dysfunction
* Activation of fibrinolytic mechanisms
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1.5. Haemostatic therapy of coagulation factor
deficiencies in massive bleeding

Perioperative bleeding associated coagulopathies caused by coagulation factor
deficiencies is a dynamic process and progress from hypofibrinogenemia as a
single-factor deficiency in the initial phase of the bleeding event to a multifactor
deficiency owing to ongoing loss, consumption, and dilution. Clinicians have to
thoroughly substitute those coagulation factors that drop below critical plasma
levels that are proven to be related to maintained coagulopathic bleeding. Several
treatment options with products containing coagulation factors are available to
achieve this goal: allogeneic plasma products, cryoprecipitates (Cryo) and CFCs
like FC, PCC and FXIII concentrate (FXIIIC).

Transfusion of allogeneic plasma products

During the second half of the last century, transfusion of separated blood
components like plasma, platelets and red blood cells largely replaced the
previous standard of care of allogeneic whole blood transfusion. The potential
advantage of this change of procedure was seen primarily in the improved
preservability and storability of the separated blood components, as well as in
enabling laboratory-guided transfusion strategies based on real clinical necessity,
which should limit the overall amount of blood transfusion and thus also the rate
of associated side effects. Since the introduction of blood components, a huge
body of scientific work on identifying clinical indications for safe and beneficial
plasma transfusion has accumulated but clear evidence is still lacking for most
clinical scenarios (165). In the clinical scenario of massive bleeding plasma is
transfused to avoid, or correct, clinically relevant coagulation factor deficiencies
as detected by standard laboratory testing or VHA. Interestingly, most guidelines
and massive transfusion protocols have returned to suggest high ratios of plasma:
red blood cells of up to 1:1 which equals the transfusion of reconstituted whole
blood (166).
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- Efficacy of plasma transfitsion for haemostatic purposes

Once separated from red blood cells after whole blood donation, or by direct
apheresis, plasma can be maintained in a liquid state but is mostly frozen for better
preservation. Plasma products that can be found in clinical use today include liquid
quarantined plasma, frozen plasma, lyophilised plasma, and cryoprecipitate-
reduced plasma. (166). To improve the safety of plasma products, several
methods like leucocyte filtration and pathogen inactivation with methylene blue
(single donor and virus-inactivated), or solvent/detergent-treatment (pooled and
virus-inactivated) have been introduced to reduce leukocyte-triggered immune
responses and viral transmission. Most of these pre-transfusion treatments are
associated with a decrease in clotting factor activity and thus with an overall
decrease in the haemostatic quality of the plasma product (167). The amount
of citrate added as an anticoagulant also has a significant effect on the activity
of several coagulation factors (FVIIIL, FV, FIX)(168)(169). Other factors that
influence the plasma quality are time from donation to plasma separation, storage
time and leucocyte filtration (170). An experimental study reconstituting whole
blood from previously separated components showed a significantly reduced
clotting activity when compared to fresh whole blood with dilutional effects not
only on coagulation factor activity but also on haematocrit and platelet count
(171) . Especially FGN levels were just within the limits for recommended
substitution thresholds (1.5 — 2.0 g/l) as proposed by most treatment guidelines
(3)(172). The critically low FGN level of most plasma preparations makes
plasma appear to be an inappropriate source for correction of clinically relevant
hypofibrinogenemia. This assessment is supported also in mathematical models
predicting an exponentially increase of transfused plasma volume to correct FGN
concentrations at, or slightly below, the substitution thresholds (173). The low
activity of most coagulation factors found in pathogen-inactivated preparations
like solvent/detergent or methylene blue plasma are in good agreement with the
clinical experience that very large plasma volumes of up to 30 ml/kg are needed to
correct coagulation disorders with prolonged prothrombin time as an expression
of reduced thrombin generation potential (174). In a recently published Cochrane
meta-analysis, major uncertainty was expressed by the authors concerning safety
and effectiveness of plasma for the treatment of coagulopathies under major
bleeding. This is in line with the results of a major review previously published
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by Kozek et al. on the topic (175). A recent retrospective study reported increased
mortality risk or worse clinical outcomes in different surgical populations (176).

The lack of evidence in favour of plasma transfusion for severe bleeding stands
in a certain contrast to treatment recommendations in guidelines and massive
transfusion protocols and still wide acceptance among physicians. Actually, a
significant rise in the use of plasma products is registered in the past decades
(177). This is mainly driven by evidence from trauma studies showing a mortality
benefit of high plasma: RBC ratios of 1:1 to 1:2 versus low ratios or versus
coagulation factor-free fluids. These results from damage-control resuscitation
in trauma have been included as a treatment recommendation in most guidelines
not only for trauma- but also for non-trauma-related bleeding.

- Adverse effects

Plasma-related adverse effects can be divided into three major groups:
immunological (TRALI, anaphylactic events), physicochemical transfusion-
associated circulatory overload (TACO), intolerance towards chemical additives
like citrate or latex), and infectious reactions like transmission of bacterial-/viral-
or prion-related infectious diseases.

TRALI is defined as acute respiratory distress related to the transfusion of
components of allogenic blood, with the highest risk for plasma-containing
components like platelets or FFP (178). It is considered to be the second most
important cause of transfusion-related morbidity or mortality after blood
group incompatibilities with an overall frequency of 0.08 — 15.1% per patient
or 0.01 — 1.12% per product (179), with a relevant chance of underreporting.
A higher vulnerability is found among critical patients with the previous
activation of neutrophils due to shock, sepsis, or previous surgery (two-hit
hypothesis). Transfused donor antibodies against recipient leucocytes (e.g.
anti HLA II antibodies) seem to be responsible for a strong immune reaction
leading to the production of proinflammatory mediators and onset of increased
vascular permeability with acute pulmonary oedema within 6 to 72 hours after
transfusion. Fluid overload in the context of massive transfusion presents with a
similar clinical picture but is associated with high hydrostatic pressure with low
plasmatic protein levels in contrast to the usually low central venous pressure
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found in TRALI patients (179). Preventive strategies for TRALI like antibody
screening (anti-HNA and anti-HLA antibodies) and deferral of all female donors
(use of male-only plasma donors) led to a significant reduction of TRALI events
in recent years (180).

The incidence of allergic/anaphylactic transfusion reactions is reported to be
between 1:591 and 1:2,184 units FFP transfused with a clinically mostly mild
course consisting of urticaria, pruritus and or flushing although full-blown
anaphylactic reactions with shock symptoms are also reported (181)(182).

The risk for transmission of infectious disease has been considerably reduced
through medical screening and testing for infectious diseases of donors and the
introduction of pathogen inactivated/reduced plasma preparations like solvent/
detergent or methylene blue-treated plasma. Currently, the transmission rate for
acquiring HIV, HCV, and HBV through transfusion is 1:1.467000, 1:1.149000,
and 1:280000 donations, respectively (183)(184).

Fibrinogen Concentrates

FCs are obtained from human plasma pooled from up to 60.000 donors and treated
with virus inactivation/removal processes. Several products are commercially
available: Haemocomplettan®, or RiaSTAP® (CSL Behring, Marburg, Germany)
in the US and some other countries, Clottafact® (LFB, Les Ulis, France) and
Fibryga® (Octapharma, Langenfeld, Germany) are the best documented products
and licensed in several countries (185). Other more regional products are
Fibrinogen HT® (Benesis, Osaka, Japan) and FibroRAAS® (Shanghai RAAS,
Shanghai, China). Riastap is distributed worldwide but is currently not licensed
for acquired hypofibrinogenemia. By contrast, Haemocomplettan and Fybriga
include this indication for some clinical situations such as obstetric bleeding. The
original indications of FCs are congenital hypofibrinogenemia, afibrinogenemia
and dysfibrinogenemia.

Pharmacokinetic data for Haemocompletttan® have been published for patients
with congenital hypo- and afibrinogenemia (186). The median increase in plasma
FGN lies in the range of 1.5 — 1.7 mg/dl per substituted mg of FGN per kg body
weight, resulting in an 7z vivo recovery of 60%. Distribution volume is reported
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to lie between 80 — 140 ml/kg with a median half-life (t1/2) of 77.1 h for FGN
activity. Differences in composition and pharmacokinetic characteristics between
different FCs are described and briefly reviewed in Table 3.

Table 3: Pharmacokinetic data of commercially available fibrinogen concentrates

Pharmacological FGN Factor XIII Clerance Distribution Fibronectin

preparation Antigen  [U/ml (ml/h/kg) Volume (g/)
Level (ml/kg)

Haemocomplettan/RiaSTAP 1g/50ml 23.4 7.2 0,82 -2.55 89 33
(CSL Behring, Germany)
Clottafact (LFB, Les Ulis, 1,5g/100ml na na 0,53 50,7 na
France)
Fibrinogen HT (Benesis, 1g/50 ml na na na na na
Osaka, Japan)
FibroRAAS (Shanghai 0,5 g/25 ml na na na na na
RAAS, China)
Fibryga (Octapharma, 1g/50 ml 29.5 10,1 0,66 70.2 0.19
Lachen, Switzerland)

(185)(187)(188)

The dose needed to correct hypofibrinogenemia to a predefined goal is best
calculated and guided by FIBTEM-MCF values. Dose calculations with Clauss-
derived FGN concentrations are based on the published pharmacokinetic data. The
time delay between sample extraction and report of results together with bleeding
dynamics has to be taken into consideration when FGN dose is calculated with
Clauss values:
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Figure 9: Equations for dose calculation based on FIBTEM or Clauss values (validated for
Haemocomplettan®)

Equation for FIBTEM-guided FGN replacement:'

body weight
FGN dose (g) = (Target FIBTEM MCF — Actual FIBTEM MCF) X 05 nf% x %

- Equation for Clauss-guided FGN replacement:’

(Target plasma con. —Actual plasma con. ) g /1
1.7 mg/dl

FGN dose (g) = % 0.1 x body weight (kg)

I: Validated and published (20), 2: From the author’s institutional treatment algorithm

FC seems to have a good safety profile. A pharmacovigilance report analysing
data from a 27-year period informed of only 1 adverse event per 24600 g FC
administered. The risk for bias due to underreporting of adverse effects has to
be taken into consideration, but consistent data were found in an analysis of
published clinical studies on FC in bleeding scenarios (189). The infusion rate
of FC should not exceed 5 ml/min, although safe administration of 1g FC in 20
seconds or up to 14 g in less than 5 minutes under emergency conditions has been
reported (190).
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Table 4: Comparison of different fibrinogen sources

FC Cryo Plasma
FGN Concentration Standard Preparation variable: 15— 17 g/ variable 2 — (3) g/l
Unit/Volume/Content Vial/50 ml/0.9- 1.3 g pooled bag with 5 units/100-150ml/1,5-2g | bag/200-280 ml/0,5g

Volumen needed to

administer 4 g FC

200ml

250 - 300 ml

2000ml

Coagulation Factors FGN/FXIII/ FGN, FXIII, VWF, FVIII, Fibronectin All coagulation factors
Fibronectin

Shelf life (conditions) 60 months (25°C) 12 months (-20°C) 12 months (-18°C)

Risk for transmission of Extremely low low low

infectious agents

Need for blood group No Required if large volumes transfused Yes

compatibility check

Need for cold chain No Yes Yes

Preparation time 5 min 10 min 30 min

Adverse events

Possibly low/minimal

risk for thromboembolic

(same as plasma)

TRALI, TACO, TRIM, TTI, infection,

allergic reactions, blood group

complications incompatibility
Virus removal/inactivation | Nanofiltration, (same as plasma) Psoralen
Pasteurization Solvent-detergent (SD)
cryoprecipitation Methylene blue
Quarantine
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Cryoprecipitate:

Cryoprecipitate (Cryo) is produced by controlled thawing of FFP (191).
Precipitated high molecular weight proteins are separated from plasma supernatant
(exhausted plasma) by centrifugation, resuspended in a small volume of plasma
(15 — 20 ml) and deep frozen for final storage at -20°C. After thawing Cryos
should be infused immediately, although a storage time of 4-6h at 20 — 24°C
appears to be acceptable (192). Cryo is not only a rich source of FGN and von
Willebrand factor, but also contains coagulation FVIII and FXIII, fibronectin, 0.2-
antiplasmin and minimal amounts of immunoglobulins. A substantial amount of
contaminating platelet membrane micro-particles and phospholipids, generated
during the freezing and thawing process, possible influences the therapeutical
coagulation effects of Cryo. FGN concentration in Cryo can vary between
different units but usually lies between 15 — 17 g/l (95). Five units of Cryo are
usually pooled in a single bag. Standard doses of 4 g FGN in bleeding conditions
would correspond to a treatment dose of two pooled bags. Most of the conducted
clinical studies comparing FC and Cryos for treatment of hypofibrinogenemia
under severe bleeding showed no clear difference in efficacy and safety profiles
(193). Thawing time, the risk for viral transmission and heterogeneous factor
composition affecting coagulation beyond the role of FGN are some of the
drawbacks that makes Cryos appear as a less suitable product, compared to FC to
control perioperative hypofibrinogenemia.

Prothrombin Complex Concentrate

Prothrombin Complex Concentrates (PCCs) are pathogen-reduced, lyophilized
concentrates of the vitamin K-dependent coagulation factors FII, VII, IX, X.
Their protein content is standardized according to their corresponding FIX
concentration (Tabla 5). They are produced by ion-exchange chromatography
from the Cryo supernatant of large plasma pools after the removal of antithrombin
and FXI (194). 3-factor PCCs with sub-therapeutic or without FVII must be
distinguished from 4-factor PCCs that include therapeutic levels FVII and are
known to reverse more effectively the anticoagulant effects of oral vitamin K
antagonists (195). Heparin is added to the product to avoid factor coagulation.
Some preparations also contain other anticoagulants like protein C, protein S,

and/or substituted antithrombin. PCCs were originally developed as a source of
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FIX to treat patients with haemophilia B but since the introduction of recombinant
factor preparations, it is no longer used for this indication (196). In recent years,
the field of application for PCC has been shifted towards several other clinical
indications like emergency reversal before surgical interventions of vitamin K
antagonists and direct FX inhibitors and the treatment of acquired coagulopathies
in bleeding scenarios with coagulation factor deficiencies causing impaired
thrombin generation potential (7)(197)(198). PCCs offer several advantages over
FFP in these new indications. Most importantly, after reconstitution, the activity
of the corresponding coagulation factors is 20 — 30 times higher than in plasma
products which allows for the highly effective replacement of these factors without
the need for high volume administration. Second, there is no time delay due to
ABO compatibility testing or thawing. And finally, PCCs are leucocyte-free and
antibodies are removed during the manufacturing process which substantially
reduces the risk for immunological transfusion reactions and TRALI (199)(200)
(201). All this renders PCCs to be an attractive alternative to plasma for managing
factor deficiencies in a clinical emergency situation with substantial bleeding
risk. Experimental 77 vizro studies and animal models could show that PCC has
good potential to improve and correct reduced thrombin generation potential
induced by previous dilution (202)(203). In the last ten years, several clinical
studies on the use of PCCs in acquired bleeding-associated coagulopathies
have been performed to examine their potential to improve the outcome in
bleeding patients. In a recently published metaanalysis, including 3060 patients
investigated in a total of 17 clinical studies, the use of PCCs, mostly in addition
to plasma, was associated with mortality reduction for bleeding trauma patients
(204). A reduction in blood loss in cardiac surgery and a decrease in red blood
cell transfusion was seen in a wide range of other surgical bleeding patients when
compared to standard of care. The dosage of PCC used was based on clinical
judgment in most groups and ranged from 10 to 50 IU/ml and the coagulation
effect was mostly monitored by viscoelastic testing (CT EXTEM) (7).

Clinical side effects after PCC administration remain a major concern among
clinicians.

The risk for transmission of infectious diseases or TRALI is low due to the applied
viral inactivation steps and/or nanofiltration for most preparations. The overall
risk of thrombotic or thromboembolic adverse events, being the major safety
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concern for PCC treatment is low as shown from pharmacovigilance reports and
reviews on the topic (205). An elevated risk for thromboembolism under PCC
treatment could arise from an accumulation of prothrombin with repetitive PCC
administration because the half-life of prothrombin (and FX) is significantly
longer than that of other coagulation factors, and therefore accumulation of these
factors is easily possible (206). Some studies also reported an elevated risk for
perioperative acute renal failure which might be explained by the comparatively
reduced volume administration with a compensatory use of vasoconstrictors
when plasma is replaced or complemented by PCC (115).
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Table 5: Composition of PCC in the World Federation of Haemophilia register of clotting factor concentrates

International units relative to factor IX

Factor Factor Factor Factor Additional
Brand name Manufacturer [} Vil X X Viral inactivation information
Bebulin VH Baxter BioScience, 120 (13) 100 100 Vapour heat, 60°C for 10 hours at 190 mbar,  Heparin added
Austria then 80°C for 1 hour at 375 mbar
Beriplex P/N CSL Behring, 128 68 100 152 Pasteurisation at 60°C for 10 hours, and Protein C;
Germany nanofiltration antithrombin, heparin
and albumin added
Cofact Sanquin, 56-140 2880 100 56-140 Solvent/detergent and 15 nm Antithrombin added
the Netherlands nanofiltration
KASKADIL LFB, France 148 40 100 160 Solvent/detergent Heparin added
Octaplex Octapharma, Austria ~ 44-152 3696 100 50 Solvent/detergent and nanofiltration Heparin added; low
and France activated factor V||
content
Profilnine SD Grifols, USA 148 (1 100 64 Solvent/detergent -
ProthrombinexVF  CSL Bioplasma, 100 (=) 100 100 Dry heat, 80°C for 72 hours and -
Australia nanofiltration
Prothromiplex T Baxter BioScience, 100 85 100 100 Vapour heat, 60°C for 10 hours at 190 mbar,  Antithrombin and
Austria then 80°C for 1 hour at 375 mbar heparin added
UMAN Complex Dl.  Kedrion, ltaly 100 (=) 100 80 Solvent/detergent and dry heat, 100°Cfor  Antithrombin and
30 minutes heparin added

Composition of prothrombin complex concentrates (PCCs) listed in the World Federation of Hemophilia register of clotting factor concentrates [54), excluding
concentrates for national markets only or for which the concentrations of factors relative to factor IX were not available from the relevant product information sheets.
Factor Vil presented in parentheses for three-factor PCCs)

(206)
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Factor XIII Concentrates

FXIIIC is a plasma-derived, highly purified and pasteurized product which is
licensed for the treatment of congenital FXIII deficiencies. Recombinant FXIII
is also available for the treatment of FXIII deficiency but only plasma-derived
FXIII is referred to in this work.

Congenital FXIII deficiencies are extremely rare conditions. By comparison,
acquired FXIII is often reported in the context of major trauma, cardiac surgery,
and burns and probably remains underdiagnosed (207).

Both forms of FXIII deficiency, congenital and acquired, can be pharmacologically
treated with FXIIIC. Currently, several plasma-derived products are available
with Fibrogammin®, Corifact®, Cluvot® which are all distributed by CSL
Behring. Other possible sources for FXIII substitution are direct plasma or Cryo
transfusions. The factor concentration in plasma is considerably lower with
only around 300 UI per transfused plasma unit (factor activity of 1.0 to 1.2 TU/
ml). Very large transfusion volumes would therefore be required to effectively
compensate for a relevant FXIII deficit (208).

FXIII is a transglutaminase which plays an important role at the end of the
coagulation process through the covalent cross-linking and stabilization of the
fibrin network (209). It also exerts an important role in many other physiological
processes like angiogenesis, wound-healing and immunological defence against
bacterial infections. FXIII is composed of two A and two B subunits and circulates
in its inactive form in plasma (210). It can be converted into its active form by a
thrombin-induced enzymatic cleavage process which mediates a conformational
change, which then allows forming covalent crosslinks between soluble fibrin
polymers resulting in a stable blood clot. The FXIII-mediated incorporation
of a2-antiplasmin, plasminogen activator inhibitor 2 and thrombin activatable
fibrinolysis inhibitor (TAFI) provides good protection of the forming fibrin clot
against proteolytic degradation by plasmin (211).

FXIII can contribute to the overall mechanical firmness of the fibrin clot. /7 vizro
studies could demonstrate that FXIII supplements added to blood probes from
ICU patients significantly improved the stability of blood clots and the resistance
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to hyperfibrinolysis measured by VHA (212). It is also shown from 77 vizro studies
and animal models for trauma bleeding that high-dosed FXIII supplements
improve clot adhesion and haemostasis (213)(214). A significant reduction of
FXIII levels in trauma patients and postoperative ICU patients is reported with
factor activities dropping to 60% or below (212)(215). These levels of FXIII
activity can impose a relevant risk of bleeding in certain surgical areas (216).
Two major clinical studies following CFC-based algorithms including a goal-
directed substitution of FXIII showed reduced transfusion rates and improved
outcomes on several clinical endpoints, although the individual impact of each
coagulation factor was not definitely attributable (217)(218).

Treatment safety of FXIII deficiencies with plasma-derived FXIIIC has been
investigated in several studies. FXIIIC is considered to be safe for both congenital
and acquired deficiencies (219)(220). Especially the risk for thromboembolic
events or viral transmission seems to be extremely low.
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1.6. Treatment Strategies for coagulation factor
deficiencies in bleeding-associated coagulopathies

Acquired Hypofibrinogenemia

Consumption in extensive wound fields in peripartum haemorrhage, trauma or
by cardiopulmonary bypass circuits and decreased synthesis (liver transplant)
are among the principal underlying causes of FGN depletion. The degree of FGN
shortage in these clinical situations can thereby show great variability. As no
storage and no overexpression can compensate for consumption and loss, the
FGN replacement necessity can be significantly beyond that calculated by a
simple dilutional phenomenon (221).

By contrast, dilutional effects under aggressive resuscitation fluid therapy are
constant and well-studied. Blood dilution with all fluids induces detrimental
effects on FGN levels reflected by standard laboratory and VHA parameters (119)
(164)(222). As previously mentioned severity of the dilutional effects depends
both on the fluid type and the dilutional grade.

FGN replacement has a very strong potential to improve and correct dilutional
effects on viscoelastic clot characteristics confirmed 77z vizro (223) and in bleeding
models in swine (221). The overall efficacy of FGN seems to depend on the
underlying fluid applied for dilution. Hydroxyethyl starches, unlike crystalloid-
and albumin solutions, impair the complete normalization of clot properties by
FGN supplements (224).

Agenerally accepted consensus exists to maintain aminimum plasma concentration
of FGN for effective blood clot formation (3)(66)(228). The optimal treatment
threshold to guide FGN supplementation in different clinical situations is still
controversial, although a general tendency toward more generous plasma FGN
levels has been observed over the last 2 decades (3)(229).

Clinicians can choose from three different FGN sources: FC, Cryos, and plasma.
The potential of plasma to correct a low FGN level compared to FC and Cryo
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is significantly reduced due to the underlying low FGN concentration in most
plasma preparations.

Acquired multifactor deficiencies: Coagulation factor concentrates as an
alternative to fresh frozen plasma.

FGN deficiency seems to be the first mechanism to emerge under dilution, as
clearly supported by mathematical and 7z vivo approaches (162)(226). However,
in more severe dilutional models of 60% and higher, a significant impact beyond
clot strength impairment can be observed including deterioration of the thrombin
generation potential, with prolonged CT in VHA, and prothrombine time and
activated partial thromboplastine time in standard laboratory testing (165).
Overall, these changes during severe dilutional conditions reflect propagation
from single-factor- towards multifactor-deficiencies under increasing dilution
rates.

The efficacy of FGN substitution in severe bleeding-associated multifactor-
coagulopathies strongly depends on a maintained thrombin generation potential
(227), since effective fibrin polymerisation starts with thrombin-mediated
cleavage of the FGN molecule. Other CFCs, especially PCCs, seem to guarantee
an adequate thrombin activity in this context.

The high efficacy of CFC supplements to reverse coagulation factor deficiencies
increasingly challenges the concept of plasma transfusion for this purpose.

Most massive transfusion protocols suggest high ratio plasma transfusion
for severe bleeding, based on a large body of evidence clearly demonstrating
superiority of plasma transfusion against volume resuscitation with coagulation-
Jactor-fiee crystalloid or colloid fluids. This aims to avoidance of volume
therapy-induced dilutional coagulopathy. In trauma patients, a timely transfusion
at a 1:1:1 ratio with FFP, platelet, and red blood cell concentrates as primary
resuscitation fluids are considered to be the currently safest strategy (225)
(226). Nevertheless, despite timely management of massive bleeding with high
ratio plasma transfusion, the onset of bleeding-associated coagulopathies is not
completely avoidable. Although plasma contains all coagulation factors it exerts
by itself dilutional effects on FGN, erythrocytes, and platelets (73)(174). The
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limitation of plasma to efficiently maintain haemostasis has to be compensated
by additional monitoring, ideally performed by point-of-care systems, to deliver
goal-directed top-up replacement of CFCs. FGN deficiency and deteriorated
thrombin generation are efficiently and safely optimized by CFC (FC, FXIII, and
PCC) supplements to plasma transfusion. The necessity of additional monitoring
and treatment strategies to compensate for the haemostatic limitation of fixed
ratio transfusion of allogeneic blood components is reflected in practically all
published guidelines on the management of massive bleeding (3)(69)(70).

It is of great clinical interest in how far plasma transfusion can be completely
substituted by administration of CFC. Recently published data from 77z vizzo studies
by Schochl et al. suggest it might be possible to maintain the basic haemostatic
mechanisms under CFC administration even under complete avoidance of plasma.
They reported higher efficacy of FC on clot firmness and PCC on thrombin
generation compared to plasma if analysed under blood reconstitution conditions
in presence of red blood cells and platelets (227).
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2. HYPOTHESIS

Bleeding-associated coagulopathies often involve the deficiency of coagulation
factors and are increasingly monitored by VHA. A dynamic evolution from a single
factor deficiency in the form of hypofibrinogenemia with reduced viscoelastic
clot properties towards multifactor deficiencies with additionally restricted
thrombin generation potential expressed as prolonged clotting time in VHA can
frequently be observed over the course of massive bleeding. Coagulation Factor
Concentrates (CFCs) have shown 7z vitro, in animal, and in human studies to
have good potential to restore VHA parameters in diluted blood samples and
have become a clear treatment alternative to plasma transfusion to correct factor
deficiencies. However, there is still a lack of evidence if their administration
alone or in combination with plasma transfusion is superior to plasma transfusion
alone.

Despite a paucity of high-quality evidence, plasma-based treatment strategies
are supported by most guidelines and massive transfusion protocols. The high
acceptance of plasma transfusion strategies among many physicians might be
explained, not only by its stabilizing effect on the coagulation system by providing
a close-to-physiological factor composition but also by its resuscitation fluid
quality with good intravascular volume effects in patients with haemorrhagic
shock. Currently, no alternative products are available that share these two
characteristics with human plasma. CRF in form of colloid fluids combining
adequate intravascular volume effects combined with maintained haemostatic
properties could be an interesting future treatment component in massive
transfusion. CRF would be an ideal comparator to plasma transfusion for the
treatment of multifactor deficiencies in future clinical trials trying to analyse
the non-inferiority of CRF-based versus-plasma-based algorithms. Together
with FC for hypofibrinogenemia and top up corrections with CFCs for specific
coagulopathies in different clinical scenarios, CRF would open up a theoretical
option for plasma-free management of factor-deficiency-based coagulopathies
and hypovolemia in massive bleeding.
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We hypothesized that a theoretical basis could be established for a CFC-based,
plasma-free treatment approach for acquired coagulation factor deficiencies as
reflected by VHA during the time course of massive bleeding.

74



OBJECTIVES






OBJECTIVES

3. OBJECTIVES

In order to confirm the previous hypothesis, the specific objectives of this doctoral
thesis were the following:

1.

To confirm that the evidence from current literature would justify a plasma-
free treatment approach based on FC for the treatment of hypofibrinogenemia
as a single-factor coagulopathy during active bleeding.

To investigate that the appropriate combination of FC as clotting substrate
associated with other coagulation proteins facilitating thrombin generation
(e.g. PCC) in a plasma-free albumin-based colloid solution would restore
the basic mechanisms of coagulation and lead to the formation of a stable
fibrin clot.

To demonstrate that a well-defined combination containing adequate
concentrations of FC, FXIII and PCC, reconstituted in an albumin carrier
solution and in presence of platelets would lead to normalized TEM
parameters when compared to whole blood after extrinsic activation of
coagulation.
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SUMMARY:

A literature review was performed to analyse the role of FC in the management of
critical haemorrhage in clinical high-risk scenarios like trauma, cardiac surgery,
and peripartum haemorrhage.

Acquired hypofibrinogenemia is a frequent cause of maintained bleeding
in perioperative high-risk settings. Loss, consumption and dilution under
resuscitation fluid therapy are the principal causes of FGN depletion.
Severe hypofibrinogenemia is frequently associated with an early bleeding
complication that cannot be reliably avoided with high-ratio plasma transfusion
strategies. Replenishment of FGN in uncontrolled bleeding events is currently
recommended by most published guidelines, suggesting treatment thresholds to
maintain a minimum of 1.5 g/L plasma FGN concentration for non-obstetrical
haemorrhage, and 2 g/L for active, obstetric bleeding. Institutional cut-off values
for viscoelastic testing of functional FGN should be established. FIBTEM-MCF
values of 8 mm would most likely predict the critical plasma FGN concentration
of 1.5 g/L. FIBTEM-AS values of 12 mm indicate critical levels for peripartum
haemorrhage. FC and cryos are currently the recommended sources of fibrinogen
for the correction of clinically relevant hypofibrinogenaemia. It is recognised
among experts that these products should be preferred to plasma transfusion,
mainly because of their higher fibrinogen concentration

The currently available data from clinical studies provide good evidence to
recommend against preemptive FC administration for most clinical situations.
There is still a significant shortage of large, multicentre, high-quality randomizaed
controlled trials that can clearly demonstrate FC-associated reduction in
transfusion rates or even mortality. Inconsistent results between clinical trials
are partially explained by inclusion criteria leading to a patient selection with
bleeding events that were not necessarily related to critical FGN plasma levels.
The main potential of FCs, however, is to be expected in bleeding situations
associated with FGN levels below established, critical cut-off values. A huge body
of scientific data from retrospective and observational studies clearly suggests
that hypofibrinogenaemic conditions in actively bleeding patients significantly
increase the risk for massive transfusion and higher mortality, and should therefore
be adequately treated. Therefore, most experts agree on the concept of threshold-
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guided treatment necessity. Some evidence from randomized controlled trials
and observational studies suggests that plasma transfusion, especially within the
framework of fixed component ratios, can be safely substituted by CFCs, guided
by POC monitoring with a beneficial impact on transfusion rates and mortality.
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Summary

Acquired hypofibrinogenemia is a frequent cause of
maintained bleeding in perioperative high-risk set-
tings. Loss, consumption and dilution under resuscita-
tionfluidtherapyare the principal causes forfibrinogen
depletion. Severe hypofibrinogenemia is frequently
associated with an early bleeding complication
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that cannot be reliably avoided with high-ratio
plasma transfusion strategies. Real-time monitoring
with viscoelastic hemostatic assays is a useful tool for
timely diagnosis and treatment of detected coagulop-
athies. Replenishment of fibrinogen in uncontrolled
bleeding events is currently recommended by most
published guidelines, suggesting treatment thresh-
olds to maintain a minimum of 1.5 g/L plasma fibrin-
ogen concentration for nonobstetrical hemorrhage.
Fibrinogen concentrates, originally licensed for treat-
ment of bleeding episodes in patients with congenital
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hypo-, dys- or afibrinogenemia disorders, are used in
many clinical situations as supplementary therapy
for the treatment of acquired hypofibrinogenemia.
This review seeks to provide an overview of the most
relevant topics associated to fibrinogen replacement
therapy for critical perioperative hemorrhage high-
lighting currently available evidence on the risk/ben-
efit profile of purified Fibrinogen concentrates for this
extended clinical indication.

Key words: Fibrinogen - Hypofibrinogenemia -
Fibrinogen replacement therapy - Plasmafibrinogen
concentration - Blood factors - Bleeding disorders —
Hemostatics

Background

Critical hemorrhage in the perioperative setting is a
considerable risk factor for elevated morbidity and
mortality and a major economic burden for public
healthcare systems. Early detection and treatment
of bleeding-associated coagulopathies is becoming
a central component of most transfusion proto-
cols and guidelines on bleeding management (1).
Hemostatic drugs such as Fibrinogen concentrates
(FCs) are in the focus of clinical research looking for
new therapeutical approaches to reduce the overall
transfusion rates and associated adverse outcomes.

Fibrinogen (FGN)—the principle substrate for clot
formation—is the first coagulation factor dropping
to critical levels under severe bleeding with det-
rimental effects on hemostatic mechanisms (2).
A generally accepted consensus exists to maintain a
minimum plasma concentration of FGN for effective
blood clot formation (1, 3, 4). The optimal treatment
threshold to guide FGN supplementation in different
clinical situations is still controversial, although a
general tendency towards more generous plasma
FGN levels has been observed over the last 2 decades
(1, 5). If supplementation is indicated, clinicians can
choose from FC or cryoprecipitate (Cryo) as FGN
sources. The low average FGN concentration of 2 g/L
in frozen plasma (FFP) makes this product unsuit-
able as an effective replacement therapy (6). Data
from several clinical studies suggest that correctly
indicated FC treatment has the potential to reduce
overall transfusion rates in certain clinical high-risk
conditions and that point-of-care (POC)-guided,
goal-directed replacement can be cost-effective

2

T Kolleretal.

(7-9). However, the overall clinical information avail-
able is not consistent and large multicenter random-
ized clinical trials (RCTs) have failed to prove clear
benefit on mortality or transfusion rates in some
high-risk areas.

The aim of this review is to provide the reader with
updated and comprehensive aspects of FC treat-
ment in the management of severe bleeding and to
explore the available evidence from clinical studies
in different high-risk conditions.

Pharmacodynamics

Human FGN is the most abundant clotting factor
in human plasma with a reference range from 2.4 to
4 g/L and a daily synthesis of approximately 3-5 g
which is limited to hepatocytes. Pregnancy and
inflammatory processes can lead to significant
upregulation of the FGN expression (10).

Intracellular FGN synthesis leads to formation of a
hexamer of two sets of disulfide-bridged a-, - and
y-chains building up a long-stretched 45-nm structure
with two outer D-domains connected to a central
E-domain (11) (Fig. 1). Released from hepatocytes
into the plasma compartment, FGN has a half-life of
3-5 days and serves as substrate for three different
enzymes: plasmin, coagulation factor XIII (FXIII) and
thrombin (12).

Thrombin mediates the cleavage of an N-terminal
peptide sequence in the a-chain, thus forming sol-
uble fibrin monomers (fibrin I) (13). A second slower
cleavage process on the (-chain increases the polym-
erization capacity of the molecule. Double-stranded
fibrils are generated by end-to-middle alignment of
the D- and E-domains of several fibrin molecules and
assemble with each other, either in parallel forming
four-stranded fibrils (bilateral branch junctions), or
in an end-to-side configuration (equilateral branch
junctions) (14) (Fig. 2). Altogether, the thrombin-
induced cleavage process induces the formation of a
complex fibre structure, the fibrin clot.

Fibrin molecules are crosslinked by activated coag-
ulation factor Xl (FXllla) by covalent bonds within
the generated clot, thereby terminating the coag-
ulation process. FXIII crosslinks lead to more resil-
ient and elastic properties while protecting the clot
from plasmin-mediated fibrinolytic activity (15).

Drugs of Today 2021, 57(3)
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E-domain

D-domain D-domain

Figure 1. Molecular structure of fibrinogen.

Figure 2. Fibrin polymerization.
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Both FGN and fibrin directly interact with platelets
(16). FGN is a physiological ligand to the platelet
membrane-glycoprotein GPllb-llla (also known as
integrin a,,Bs). The GPllb-llla interaction with FGN
promotes ADP-stimulated platelet aggregation.
Binding of fibrin within forming clots to GPlla-lllb
enhances clot retraction, which further increases
clot stability and resilience (17).

In summary, the FGN molecule is a key element of
hemostasis, integrating the fluid phase components
of coagulation with cell-mediated mechanisms of
primary hemostasis. Deficiency of this molecule
inevitably leads to deterioration of hemostatic
mechanisms.

Fibrinogen Monitoring

FGN monitoring for detection of hypofibrinogene-
mic conditions is the key element for goal-directed
factor replacement under massive bleeding. In the
last decades, POC monitoring systems have been
introduced in many centers as alternatives to stan-
dard laboratory testing (SLT).

Standard laboratory testing

The Clauss method, considered as diagnostic gold
standard, measures coagulation time of platelet
poor plasma samples under thrombin excess and
provides FGN concentration interpolated from a
standard calibrated curve. Coagulation time is
usually measured by photo-optical methods and,
less frequently, by mechanical systems. Clinicians
should know about the routine method used in their
central laboratories as interference of colloid flu-
ids with photo-optical systems, unlike mechanical
systems, is shown to provide falsely high FGN val-
ues (18). Turnaround times for treatment decisions
based on the Clauss method lie between 50 and
100 minutes (19). This delay makes real-time goal-
directed actuation in high dynamic bleeding situa-
tions impractical. Further limitations of the Clauss
method are related to the impact of high heparin
concentrations, and the presence of direct throm-
bin inhibitors such as dabigatran, argatroban and
bivalirudin (20-23). Previous interferences can
result in misinterpretation of the obtained test
results.

T. Koller et al.

Point-of-care methods

Most guidelines recommend FGN monitoring with
either the Clauss method or viscoelastic hemo-
static assays (VHA) for bleeding management (1, 3,
24). VHA give comprehensive information on physical
and timeline characteristics of the developing blood
clot within whole-blood samples. The concept of
VHA-guided, goal-directed, coagulation factor con-
centrate (CFC)-based management is cost-effective,
and it seems to reduce transfusion rates while provid-
ing apparent beneficial effects on overall outcomes,
including multi-organ failure and mortality in some,
but not all, high-risk conditions (25, 26). The recently
published iTACTIC study could confirm these VHA ben-
efits compared with SLT only for trauma patients with
traumatic brain injury, but not for the total of analyzed
trauma patients (27). In the referred study, hemostatic
treatment was partially predefined per protocol with
empiric delivery of blood components at a 1:1:1 ratio
(transfusion ratio of 1 unit red blood cells [RBCs],
1 unit fresh FFP and 1 unit platelet concentrate).
Thus, it is possible that the benefits of POC testing
will remain partially unrecognized if hemostatic treat-
ment is predefined and not guided by diagnostic
results which are more specifically for this purpose.
Additionally, around 75% of the included trauma
patients were not coagulopathic, with coagulopathic
bleeding patients being the subgroup of patients that
most likely would benefit from POC testing.

Several commercial VHA systems have been com-
mercialized in the market. The most commonly used
and best studied analyzers are rotational throm-
boelastometry (ROTEM) and thromboelastogra-
phy (TEG). In essence, these systems are based on
detection of mechanical resistance of a rotating pin
within a blood sample containing cup. The physi-
cal clot strength measured during the activation of
the coagulation system is expressed in maximum
clot firmness (MCF) or maximum amplitude (MA) for
ROTEM and TEG, respectively. FGN, FXIIl and plate-
lets are the main determinants of these parameters.
Platelet inhibition with cytochalasin D (FIBTEM) or
abciximab (FF-TEG) allows to estimate the FGN (and
FXIII) contribution to MCF/MA (28). Results obtained
from FIBTEM and FF-TEG are available within
5-10 minutes and provide an excellent guide for cli-
nicians to indicate FGN treatment and to calculate
the corresponding dose (29) (Fig. 3).
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FGN dose (g) =

- Equation for FIBTEM-guided FGN replacement:*

FGN dose (g) = (Target FIBTEM MCF — Actual FIBTEM MCF) x 0.5

- Equation for Clauss-guided FGN replacement:’

_ (Target plasma con. —Actual plasmacon.)g/!

g . body weight
mm 70

1.7mg/dl

% 0.1 x body weight (kg)

Figure 3. Equations for dose calculation of fibrinogen (FGN) replacement based on FIBTEM or Clauss values (validated
for Haemocomplettan). MCF, maximum clot firmness. Validated and published (30). >From the author’s institutional

treatment algorithm.

Substantial variability of VHA testing in intra- and
inter-center evaluations, and between different ana-
lyzer types, has been demonstrated (30). Although
the Clauss method also shows certain limitations in
the reproducibility of its results, triggering thresh-
olds for substitutive FGN treatment are published
in most guidelines for Clauss values only, and no
recommendations are usually given for VHA (31).
A recently published meta-analysis on data correlat-
ing Clauss and FIBTEM/FF-TEG results determines
the best predictor values for a Clauss level of 1.5 g/L
at 8 mm for FIBTEM-MCF and 12 mm for FF-TEG (32).
The correlation between Clauss and viscoelastic FGN
testing may worsen during bleeding management,
probably due to variable contribution of FGN, plate-
lets or FXIII on the overall clot firmness (33). This
circumstance has led to corresponding test pairs
with Clauss levels as high as>2 g/L and FIBTEM-MCF
values as low as 8 mm (32, 34). Clinicians should be
aware of these confounders when indicating and
calculating FGN treatment (35).

Newer systems for assessing clot formation param-
eters, like TEG-6S and the Quantra QPlus, have
emerged in recent years. TEG-6S applies multi-
frequency harmonic oscillation to a blood drop,
whose oscillation response is measured by an opti-
cal sensor. The optical signal is converted into a
TEG-similar graph. FGN assessment seems to deliver
acceptable results, although some limitations in its
correlation with standard TEGand ROTEM parameters

Drugs of Today 2021, 57(3)

were reported (36, 37). Due to the absence of hepari-
nase in FF-TEG, the test results under systemic hepa-
rinization have to be critically evaluated.

The Quantra QPlus system (HemoSonics, LLC,
Charlottesville, VA) applies a novel ultrasound tech-
nique to the clotting blood sample, measuring reso-
nant frequency changes. Good correlation to ROTEM
parameters, especially to FIBTEM values in cardiac
surgery, could be demonstrated (38, 39).

Acquired Hypofibrinogenemia and
Effects of Fibrinogen supplementation.
Preclinical Data

The onset of hypofibrinogenemia has a multifac-
torial origin. Dilutional effects, loss, consumption,
fibrinolysis, reduced synthesis (hypothermia, liver
failure) and increased breakdown (acidosis) are the
principle underlying causes (40-42). The magnitude
of FGN deficiency in severe bleeding can therefore be
significantly beyond that caused by dilutional effects
under treatment with resuscitation fluids (43).

Dilutional effects under aggressive resuscitation
fluid therapy are constant and well studied. Blood
dilution with different fluids such as Ringer Lactate,
albumin and gelatin solutions, dextrans and
hydroxyethyl starches induces detrimental effects
on FGN levels reflected by SLT and VHA parameters
(44-46). Severity of the dilutional effects depends
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both on the fluid type and the dilutional grade.
Crystalloids and albumin solutions seem to trigger
less deterioration on coagulation mechanisms than
synthetical colloids, such as dextrans or starches.
In vitro and in vivo VHA assays show a significant
reduction of FGN-dependent clot firmness under
30% dilution with colloids and under 40-60% dilu-
tion with crystalloids (45, 47).

FGN replacement has a very strong potential to
improve and correct dilutional effects on viscoelas-
tic clot characteristics confirmed in vitro (48) and in
bleeding models in swine (42). The overall efficacy
of FGN seems to depend on the underlying fluid
applied for dilution. Hydroxyethyl starches, unlike
crystalloid and albumin solutions, impair complete
normalization of clot properties by FGN supple-
ments (49).

FGN deficiency seems to be the first mechanism
to emerge under dilution, as clearly supported by
mathematical and in vivo approaches (2, 50). In
more severe dilutional models of 60% and higher,
a significant impact beyond clot strength impair-
ment can be observed including deterioration of the
thrombin generation potential, with prolonged clot-
ting time (CT) in VHA, and prothrombin time (PT) and
activated partial thromboplastin time (aPTT) in SLT
(44). Overall, these changes during severe dilutional
conditions reflect propagation from single-factor
towards multifactor deficiencies under increasing
dilution rates.

The efficacy of FGN substitution in severe bleeding-
associated multifactor coagulopathies depends on
a maintained thrombin generation potential (51),
since effective fibrin polymerization starts with
thrombin-mediated cleavage of the FGN molecule.
Other CFC, especially 3- and 4-factor prothrombin
complex concentrates (PCCs), seem to guarantee
an adequate thrombin activity in this context (52).
PCCs, alone or in combination with FC, are increas-
ingly studied for treatment of multifactor coagu-
lopathies with deteriorated thrombin generation
under massive bleeding. This strategy challenges
traditional indications for “plasma” transfusion.
So far, a limited number of RCTs have compared
CFC- against plasma-based treatment, suggesting a
potential benefit for CFC-treated bleeding patients
(53, 54).

6
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Fibrinogen Sources

Three different FGN sources are available for the
treatment of hypofibrinogenemic conditions under
severe bleeding: FC, Cryo and FFP. FC and Cryo
have substantially higher FGN concentrations than
FFP (Table I), and most experts agree on the limited
potential of FFP to correct hypofibrinogenemia.
FCs can be administered immediately after recon-
stitution, and the time from indication to infusion
is reported to lie between 20 and 30 minutes (43).
By contrast, Cryo and FFP have to be thawed and
time to transfusion can be significantly delayed
with a reported median time of 60 minutes (55).
Additionally, the less effective viral inactivation
and a risk for blood group incompatibility raise
safety concerns. Currently, no clear recommenda-
tion based on good quality evidence can be given
with respect to preference of FC or Cryo for treat-
ment of acquired hypofibrinogenemia. While Anglo-
American and British guidelines recommend Cryo,
most continental European Societies prefer FC (1, 3,
4), but administration of the alternative product is
foreseen as acceptable if the first choice product is
unavailable.

Fibrinogen concentrates

FCs are obtained from human plasma pooled from
up to 60,000 donors and treated with virus inac-
tivation/removal processes. Several products are
commercially available: Haemocomplettan, mar-
keted under the trademark RiaSTAP (CSL Behring,
Marburg, Germany) in the U.S. and some other coun-
tries; Clottafact (LFB, Les Ulis, France), marketed with
the trademark FibCLOT in some European countries;
and Fibryga (Octapharma, Langenfeld, Germany),
marketed with the trademark Fibryna in the U.S.,
are the best documented products (56). Other more
regional products are Fibrinogen HT (Benesis, Osaka,
Japan) and FibroRAAS (Shanghai RAAS, Shanghai,
China). RiaSTAP is distributed worldwide, but is
currently not licensed for acquired hypofibrinogen-
emia, which also applies to FibCLOT and Fibryna. By
contrast, Haemocomplettan, Clotttafact and Fybriga
include this indication for some clinical situations
such as obstetric bleeding. The original indications
of FCs are congenital hypofibrinogenemia, afibrino-
genemia and dysfibrinogenemia.
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Table I. Comparison of different fibrinogen (FGN) sources.

Fibrinogen concentrates for perioperative bleeding

FC*

Cryo

Plasma

FGN concentration

Unit/volume/content

Volume needed to
administer4 g FC

Coagulation factors
Shelf life (conditions)

Risk for transmission of
infectious agents

Need for blood group
compatibility check

Need for cold chain
Preparation time

Adverse events

Standard preparation
Vial/50 mL/0.9-1.3 g

200 mL

FGN/FXIlI/fibronectin
60 min (25 °C)

Extremely low

No

No
5min

Possibly low/minimal risk

Variable: 15-17 g/L

Pooled bag with 5 units/
100-150 mL/1.5-2 g

250-300 mL

FGN, FXIII, vWF, FVIII, fibronectin
12 min (=20 °C)

Low

Required if large volumes
transfused

Yes
10 min

(Same as plasma)

Variable 2-(3) g/L
Bag/200-280 mL/0.5¢g

2000 mL

All coagulation factors
12 min (-18 °C)

Low

Yes

Yes
30 min

TRALI, TACO, TRIM, TTI,

for thromboembolic
complications

Virus removal/ Pasteurization

inactivation

(Same as plasma)

infection, allergic reactions,
blood group incompatibility

Psoralen, SD, methylene
blue, quarantine

Cryo, cryoprecipitate; FC, fibrinogen concentrate; SD, solvent/detergent; TACO, transfusion-related circulatory overload; TRALI,
transfusion-related acute lung injury; TRIM, transfusion-related immune modulation; TTI, transfusion-transmissible infections;

VWF, von Willebrand factor.
*Data representative for Haemocomplettan.

Pharmacokinetic data for Haemocompletttan have
been published for patients with congenital hypo-
and afibrinogenemia (57). The median increase in
plasma FGN lies in the range of 1.5-1.7 mg/dL per
substituted mg of FGN per kg body weight, resulting
in an in vivo recovery of 60%. Distribution volume
is reported to lie between 80 and 140 mL/kg with a
median half-life (t,,) of 77.1 h for FGN concentration.
Differences in composition and pharmacokinetic
characteristics between different FCs are described
and briefly reviewed in Table II.

The dose needed to correct hypofibrinogenemia to
a predefined goal is best calculated and guided by
FIBTEM-MCF values. The good correlation between
amplitude at 5 minutes (A5) or 10 minutes (A10) with
the final MCF values allows clinicians to integrate
these parameters into dose calculation resulting in
shorter turnaround times (29). Dose calculations
with Clauss-derived FGN concentrations are based
on the published pharmacokinetic data. The time

Drugs of Today 2021, 57(3)

delay between sample extraction and report of
results together with bleeding dynamics has to be
taken into consideration when FGN dose is calcu-
lated with Clauss values.

FC seems to have a good safety profile. A pharma-
covigilance report analyzing data from a 27-year
period informed of only 1 adverse event per 24,600 g
FC administered. Risk of bias due to the under-
reporting of adverse effects has to be taken into
consideration, but consistent data were found in an
analysis of published clinical studies on FC in bleed-
ing scenarios (58). The infusion rate of FC should not
exceed 5 mL/min, although safe administration of 1g
FCin 20 seconds or up to 14 g in less than 5 minutes
under emergency conditions has been reported (43).

Cryoprecipitates

Cryos are produced by controlled thawing of FFP
(59). Precipitated high-molecular-weight proteins

7



RESULTS

Fibrinogen concentrates for perioperative bleeding

T. Koller et al.

Table II. Pharmacokinetic data and composition of commercially available fibrinogen (FGN) concentrates (56, 57, 107-109).

Pharmacological Clearance Vg IVR FGN Factor Xlll  Fibronectin
preparation (mL/h/kg)  (mL/kg) mg/dL per AL (g/L) (IU/mL) (g/L)
mg/kg BW
Haemocomplettan/ 1g/50 mL 0.8 1.7 1.7 23.4 72 33
RiaSTAP (CSL Behring,
Germany)
Clottafact/FibCLOT 1.5g/100 mL 0.6 53.5 2.2 NA NA NA
(LFB, Les Ulis, France)
Fibryga/Fibryna 1g/50 mL 0.6 61.0 18 29.5 10.1 0.19
(Octapharma, Lachen,
Switzerland)
FibroRAAS (Shanghai 0.5 g/25 mL NA NA NA NA NA NA
RAAS, China)
Fibrinogen HT 1g/50 mL NA NA NA NA NA NA

(Benesis, Osaka,
Japan)

AL, antigen level; BW, body weight; IVR, in vivo recovery (mg/dL per administered mg/kg BW); NA, not available; V. distribution

volume at steady state.

are separated from plasma supernatant (exhausted
plasma) by centrifugation, resuspended in a small
volume of plasma (15-20 mL), and deep frozen for
final storage at =20 °C. After thawing, Cryos should
be infused immediately, although a storage time
of 4-6 hours at 20-24 °C appears to be acceptable
(60). Cryo is not only a rich source of FGN and von
Willebrand factor, but also contains coagulation
factors VIII and Xlll, fibronectin, a2-antiplasmin
and minimal amounts of immunoglobulins. A sub-
stantial amount of contaminating platelet mem-
brane micro-particles and phospholipids, generated
during the freezing and thawing process, possibly
influences the hemostatic effects of Cryo on the
coagulation mechanisms. FGN concentration in
Cryo can vary between different units but usually
lies between 15 and 17 g/L (61). Five units of Cryo
are usually pooled in a single bag. Standard doses
of 4 g FGN in bleeding conditions would correspond
to a treatment dose of two pooled bags. Most of the
conducted clinical studies comparing FC and Cryos
for treatment of hypofibrinogenemia under severe
bleeding showed no clear difference in efficacy and
safety profiles (62). Thawing time, risk for viral trans-
mission, and heterogeneous factor composition
affecting coagulation beyond the role of FGN are
some of the drawbacks that makes Cryos appear as

8

a less suitable product compared with FC to control
perioperative hypofibrinogenemia.

Plasma

FFP contains variable amounts of coagulation fac-
tors depending on processing, virus inactivation and
donors’ blood group (63). The effective FGN concen-
tration in FFP varies from 1.0 to 3.0 g/L. Methylene
blue treatment may reduce FGN levels below 2 g/L.
Collins et al. (6) demonstrated that the amount of
plasma rises exponentially the closer the treatment
objective lies to the actual plasma FGN concentra-
tion. For instance, if the target FGN level is set at
2 g/L (in accordance to European guidelines), and the
underlying plasma product is considered to contain
2 g/L, it is not feasible to effectively treat a hypofi-
brinogenemic condition with FFP. A further draw-
back for using FFP as FGN source is the timely delay
caused by thawing time, which is of special impor-
tance in the emergency room for the treatment of
severe trauma patients. Safety concerns and a vari-
ety of severe adverse effects, such as anaphylactic
reactions, volume overload (transfusion-related cir-
culatory overload), transfusion-related acute lung
injury, etc., are further arguments against uncritical
use of plasma transfusion (64).

Drugs of Today 2021, 57(3)
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Clinical Data from Various Critical
Bleeding Conditions

Peripartum hemorrhage
Background

Preexisting coagulopathies as a primary trigger
for peripartum hemorrhage (PPH) are rare. How-
ever, acquired bleeding-associated coagulopathy,
especially hypofibrinogenemia < 2-2.5 g/L, is fre-
quently responsible for bleeding propagation
towards severe and massive blood loss. In placental
abruption and amniotic fluid embolus, hypofibrin-
ogenemia is seen in 100% of the affected patients
(65) and eventually high FGN doses are needed
(up to 18 g in extreme cases) to correct plasma
FGN levels (66).

Coagulation and pregnancy

Physiological changes of the coagulation system
during pregnancy lead to an overall prothrombotic
state of the parturient at term. FGN is reported to
increase to twice the baseline levels during preg-
nancy with plasma concentrations reaching up to
6 g/L (67). Accordingly, thromboelastometrical
reference ranges among parturients differ from
nonobstetric populations. The raised plasma FGN
concentration at term seems to provide a hemo-
static reserve capacity for the parturient. Among
244 patients with a mean infusion of 1329 mL
(interquartile range [IQR], 900-2000 mL) of crys-
talloids, only a very small percentage (2%) suf-
fered hypofibrinogenemia levels below 2g/L (68)
(Table IIl). This hemostatic reserve appears to
exhaust when FGN levels drop to the critical level
of 2 g/L, leading to a significant risk for advanced
hemostatic interventional procedures like embo-
lization or hysterectomy in PPH (69). Charbit et
al. (70) found a positive predictive value of 100%
for severe PPH (4 RBCs transfused) for FGN levels
< 2.0 g/L. Consistently, FIBTEM has been shown to
be an independent predictor for progression
towards massive bleed > 2500 mL, with FIBTEM-A5
values < 10 mm being associated to more prolonged
bleeds and longer intensive care unit (ICU) stays
(71). Collins et al. suggested in their RCT OBS2 that
FGN replacement is not required if the FIBTEM-A5
is > 12 mm or Clauss FGN > 2 g/L. Beneficial effects
below these levels were not excluded (72).

Drugs of Today 2021, 57(3)
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Clinical data on fibrinogen treatment of PPH

Pre-emptive FGN administration has been ana-
lyzed in different trials. In a double-blinded, multi-
center RCT on 249 parturients, no beneficial effect of
pre-emptive FC (26 mg/kg) could be demonstrated
(68). This study, however, has been criticized as FGN
supplements were indicated by an estimated blood
loss of 1500 mL, and not by critical low FGN levels.

A multicenter, randomized, double-blind, placebo-
controlled trial conducted by Collins et al. also failed
to prove FC benefit on blood loss and transfusion
rates in 55 randomized subjects with ongoing PPH
and FIBTEM-AS5 values < 15 mm. In this study the
number of treated women with Clauss plasma FGN
levels <2 g/L was also very low (a total of 7 patients),
leading to some controversy over the applied inclu-
sion criteria (72).

An observational, nonrandomized, open-label study
in parturients with ongoing PPH (defined as blood
loss>1500 mL) demonstrated a significant reduction
of transfusion requirements in coagulopathic partu-
rients (defined as FIBTEM-A5 < 7 mm or FIBTEM-A5
7-12 mm in ongoing or high risk of hemorrhage). The
study compared FC treatment (3 g) to management
with formulaic allogeneic blood transfusion in the
form of shock packs (66) (Table IlI). The overall inci-
dence of PPH was reported with 2.7% of all deliver-
ies over a 4-year observation period. Among these
parturients with severe PPH, hypofibrinogenemia
(FIBTEM-AS5 < 12 mm) was diagnosed in about 25%.

Conclusion

The currently existing RCTs in the field of PPH include
only a very small number of patients suffering from
severe PPH with simultaneously diagnosed hypofi-
brinogenemia. Consequently, little information is
provided on the effects of FC treatment in clinical
circumstances where the highest benefit could be
expected. On the basis of the available RCTs, current
guidelines on PPH recommend against pre-emptive
FC treatment and in favor of goal-directed, POC (e.g.,
FIBTEM-A5 < 12 mm) treatment (24) (Table IV). FGN
replacement can equally be based on Cryo or FC
(24). FFP transfusion, although still controversially
discussed, should not be performed for hypofibrin-
ogenemia, and should be reserved for multifactorial
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Table IV. Guideline recommendations on fibrinogen (FGN) treatment in perioperative bleeding.

FCin AHF*: Pre-emptive Ttm VHA monitoring: First-line FGN Cost
LoR FC threshold LoR source effectiveness
PPH - Strong™* Strongly -2g/h*® - Moderate! -FC* NA
- Recom?® against' - FIBTEM-MCF - Strong* - Cryo®*
12 mm**° - Recom3®
Trauma - Strong® NA -1.5-2g/L® - Strong® - FC® Yes!
- Recom? -1.5g/13 - Recom?® - Cryo®
Cardiac - May be Not recom?  1.5g/L*** - Strong! -FC* Yes!
surgery considered? - Recom?® - Cryo?®
- Strong?
- Recom?
Liver transpl - Recom* NA 1.5g/L* - Recom?! -FC* NA

AHF, acquired hypofibrinogenemia; Cryo, cryoprecipitate; FC, fibrinogen concentrate; LoR, level of recommendation; NA, not
applicable; recom, recommended; transpl, transplantation; Ttm, treatment; VHA, viscoelastic hemostatic assay.

*If bleeding is present.

!Kozeck-Langenecker et al. 2017 (3); 2Pagano et al. 2018 (4); *Khanna and Bhatt 2018 (112); *“Mufioz et al. 2019 (24); °Collins et al.

2016 (113); *Spahn et al. 2019 (1).

coagulopathies, as expressed by prolonged aPTT, PT
in SLT or CT in VHA (24).

Published results of one ongoing trial are still pend-
ing at the moment of publication of this review (73).

Severe bleeding in trauma patients
Background

Trauma is the leading cause of death in people aged
18-44 years, and patients with comparable injury
patterns suffer higher rates of fatal outcome if coag-
ulopathy develops (74). Shock and hypoperfusion
are the principal triggers of the complex mecha-
nisms of trauma-induced coagulopathy (TIC), with
activation of the protein C pathway and endothelial
tissue plasminogen activator (tPA) release resulting
in a hypocoagulable and hyperfibrinolytic state with
a high risk of bleeding (40). TIC-associated hyperfi-
brinolysis and dilutional effects from prehospital
fluid resuscitation cause a high incidence of FGN
depletion below critical thresholds which relates to
higher mortality (75). A total of 73% of patients with
Hb levels < 10 g/L at hospital admission have FGN
levels below the critical threshold of 1.5 g/L (76).

Monitoring

Reduced clot strength in FIBTEM subtests has shown
to be a strong predictor for massive transfusion

Drugs of Today 2021, 57(3)

(FIBTEM-A10/MCF 4 mm/7 mm) and mortality
(FIBTEM-MCF 7 mm) in the initial phase of trauma
(77). There is preliminary evidence that VHA moni-
toring combined with goal-directed therapy might
reduce transfusion rates and overall exposure to
allogeneic blood products in trauma bleeding (78).
As mentioned previously, the recent international
RCT iTACTIC could show VHA benefit only for a sub-
group population with traumatic brain injury (27).

Evidence from clinical studies

FGN replacement efficiently corrects alterations of
FGN plasma levels and deteriorated clot strength in
functional VHA assays (79).

Feasibility studies analyzing the fast availability
of FC/Cryo (E-FIT 1/Cryostat 1) showed a shorter
median time from hospital admission to treatment
for FC (39 minutes) than for Cryo (60 minutes) (55,
80). Both FC and Cryo seem to reliably raise plasma
FGN levels (43, 81). This has been also confirmed by
the more recently published FlinTIC study, which
has shown preclinical FC administration to be safe
and feasible and to protect against early FGN deple-
tion (81).

Benefit from FGN replacement approaches on sur-
vival and transfusion rates was demonstrated in sev-
eral military, civilian, prehospital and intrahospital
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settings (53, 78, 82, 83). In a retrospective study, civil-
ian patients treated with FC as a first-line treatment
showed significantly reduced mortality compared
with score prediction (mortality of 24.4% vs. calcu-
lated mortality by TRISS of 33.7%, P = 0.032) (83).
The same group reported reduced overall transfu-
sion rates under VHA-guided FC/PCC treatment (78),
with 29% of patients free from any transfusion in the
CFC arm versus only 3% in the FFP study arm.

The highly considered RETIC study published by
Innerhofer et al. compared CFC versus FFP in man-
aging bleeding trauma patients. Bleeding signs of
severely injured trauma patients with plasma coag-
ulopathy assessed by ROTEM were the primary eli-
gibility criteria. After study inclusion, patients were
assignedtotreatmentwith15mL/kgFFPor50mg/kg
FC as first-line CFC treatment. The study was dis-
rupted prematurely owing to safety concerns after
100 patients were included due to a high rate of
rescue therapy necessary in the FFP group (52%
vs. 4%, P < 0.0001), increased massive transfusion
rates (30% vs. 12%; P = 0.042), and a tendency
toward higher multiple organ failure (66% vs. 50%,
P=0.15) and venous thrombosis rates (18% vs. 8%;
P=0.22) (53).

Two recently published meta-analyses raised con-
cerns about the efficacy and safety profile of FGN
replacement in trauma patients by reporting a
2-fold risk of sustained thromboembolic complica-
tions compared with patients who did not receive
FC (84, 85). Of note, the results of the RETIC study
were not included in the final analysis as the direct,
FC-associated thromboembolic event risk could not
be evaluated. The overall quality of the evidence of
the included studies was low and a high risk of bias
was highlighted by the authors. This relevant risk
of bias when interpreting current available data in
the field of trauma is also well reflected in another
meta-analysis on this topic (86). Several clinical tri-
als are currently ongoing which will provide further
insight into the efficacy and safety profile of FGN
replacement in trauma patients (ClinicalTrials.gov
Identifier NCT02864875, NCT02745041, Cryostat
2). The unpublished FEISTY study (NCT02745041),
which reports a completed recruitment status, could
provide new insights into the comparison between
FC and Cryo in bleeding trauma patients.

12
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High-ratio plasma transfusion versus algorithm-based
concentrate transfusion approaches

Most protocols for massive transfusion in trauma
and other high-risk situations suggest hemostatic
resuscitation by high-ratio transfusion (1:1 to 1:2) of
FFP:RBC to counteract hemorrhagic shock, and to
conserve the hemostatic potential by stabilizing the
plasma coagulation factor activity (87). However, the
potential to fully prevent coagulopathy of damage
control resuscitation based on blood component
therapy is limited. Algorithm-based, goal-directed
hemostatic resuscitation has emerged as an alter-
native to aggressive FFP transfusion concepts with
compelling results in studies comparing these
treatment concepts to ratio-driven FFP transfusion
(53, 78).

Conclusion

Current guidelines on the management of bleeding
trauma patients recommend hemostatic resuscita-
tion based on VHA-guided and goal-directed FC or
Cryo treatment (Table IV). The iTACTIC results, cur-
rently providing the best-quality evidence on this
topic, will have to be integrated into future guideline
versions. FGN replacement is indicated as per patho-
logical viscoelastic FGN assays or corresponding
Clauss levels below thresholds of 1.5-2 g/L. These
treatment thresholds for trauma, suggested by
the European guidelines on management of major
bleeding following trauma, are currently based on
expert consensus (1, 3). Well-defined thresholds
from large prospective RCTs as provided for PPH or
cardiac surgery are still lacking for the clinical set-
ting of trauma-associated bleeding (72).

Excessive bleeding during cardiac surgery
Background

Onset of coagulopathy in cardiac surgery is a com-
plex interplay of patient- and cardiopulmonary
bypass (CPB)-related factors. Intraoperative and
postoperative plasma FGN levels falling below
thresholds of 1.5-2.2 g/L are associated with more
severe blood loss (88, 89). Ranucci et al. reported
a negative predictive value of 100% and 98% for
plasma FGN levels of 2.87 g/L and FIBTEM-MCF of
14 mm, respectively. Some controversy is still ongo-
ing about the positive predictive value of FGN, with

Drugs of Today 2021, 57(3)
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a considerable risk of overtreatment if pre-emptive
strategies were applied (90).

Monitoring

A relevant number of clinical trials on the efficiency
of VHA monitoring in surgical procedures are sum-
marized in a recently published meta-analysis,
including data of more than 8,000 patients; 16 of 21
RCTs included in this meta-analysis have been per-
formed in a cardiac surgery setting (26). The inves-
tigators found a significant reduction in mortality,
which was also confirmed for a subgroup analysis
for coagulopathic patients after cardiopulmonary
bypass.

Evidence from clinical studies

Pre-emptive effects of FGN supplements, as in other
clinical entities, could not show a significant reduc-
tion in transfusion rates as demonstrated by several
RCTs (91-93). As in studies from other high-risk areas
(68), these trials included a substantial number of
individuals whose FGN levels lay significantly above
the established thresholds related to bleeding
(> 2 g/L). Eligibility criteria increasing the number
of patients at “real” risk for hypofibrinogenemia-
induced bleeding applying VHA-guided treatment
algorithms could possibly result in more significant
effects of FGN supplements.

A large number of trials support the hypothesis
that interventional FGN replacement significantly
reduces the transfusion rates of allogeneic blood
components (54, 94-96) (Table V).

However, the recently conducted large-scale trials,
designed to provide final conclusions concerning the
efficiency of FGN replacement, could not confirm a
significant reduction of exposure to allogeneic prod-
ucts (97, 98). The REPLACE study reported surpris-
ing results with higher transfusion rates in the FGN
treatment arm. Again, the applied inclusion criteria
led to recruitment of patients missing strict criteria
for hypofibrinogenemia and the interventional trig-
ger was not POC-guided. Instead, FGN supplements
were indicated by 5-minute bleeding mass, which
does not necessarily reflect an indication for FGN
supplements. Low adherence to the study protocol
was also commented by the authors.

Drugs of Today 2021, 57(3)
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Conclusion

Current European guidelines on bleeding man-
agement in cardiac surgery recommend against
FGN administration as a prophylactic hemostatic
agent (3, 4) (Table IV). Assessment of bleeding risk
by analysis of preoperative FGN concentrations
may be considered. If FGN levels fall below 1.5 g/L
FC administration can be considered. Indication for
FGN treatment should be based on VHA monitoring
if available.

Other high-risk bleeding surgeries

Further evidence is provided by clinical studies
from other high-risk surgery. In liver transplanta-
tion, FC supplements are indicated if hypofibrino-
genemia with a plasma concentrations of < 1.5 g/L
(corresponding to FIBTEM-MCF levels < 8 mm) are
diagnosed, with a weak recommendation given by
the European guidelines on bleeding management
(3). The combination of POC monitoring and goal-
directed intervention with CFCs has been shown
to significantly reduce transfusion rates, with a
significant increase in FC administration (99). Pre-
emptive strategies, however, as in many other high-
risk settings, could not improve transfusion rates
(100). These findings have been also confirmed in
a study performed in patients submitted to trans-
urethral prostatectomy showing no additional ben-
efit of pre-emptive supplements of 2 g FC (101). In
cystectomy patients with dilutional coagulopathy,
expressed by deteriorated clot firmness under VAH
monitoring, FC treatment significantly improves the
measured clot firmness and leads to reduction of
transfusion requirement (102).

Clinical evidence from other high-risk surgeries con-
firms the results obtained from previous trials in
different clinical entities demonstrating a negligi-
ble impact of pre-emptive strategies, in contrast to
effective interventions under VAH monitoring and
guided treatment of established hypofibrinogene-
mic conditions.

Cost Effectiveness

FC prices in most countries are substantially higher
than those for Cryo (price FC:Cryo = 4:1); however,
the overall difference after including costs for blood
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group compatibility testing, thawing and adminis-
tration is less significant (price FC:Cryo =1.5:1) (103).
Similar data were presented from an economical
simulation model: applying all costs, including Cryo
wastage and technicians, the calculated price was
USD 414/g FGN for Cryo and USD 740/g FGN for FC
(104).

Several studies analyzed the cost effectiveness of
VHA-guided algorithms integrating goal-directed,
pharmacological interventions with FC and other
CFCs (PCCs, FXIIl). A meta-analysis concluded cost
effectiveness of VHA-based strategies for cardiac
surgery and trauma patients (7). In the majority of
the reviewed studies, implementation of VHA mon-
itoring led to a significant decrease in allogeneic
blood component transfusion accompanied by a
substantial increase in consumption of FC, with an
overall cost-effective balance. The evidence on this
topic has been reinforced by further publications fol-
lowing this meta-analysis (8, 9).

In a retrospective study on visceral surgery and
liver transplantation, FFP and platelet transfusion
decreased by 89% and 58%, respectively, with an
FC consumption increasing from 68 to 745 g per
year. The overall cost savings on allogeneic blood
products including costs on consumed CFCs plus
ROTEM machines and analysis was calculated to be
in excess of 250,000 Euros in a German tertiary uni-
versity hospital (total cost reduction of 36%). Similar
data were reported by Spalding et al. on cardiac sur-
gery patients. ROTEM introduction in their hospital
resulted in a 2-fold increase of FC consumption, with
significant reduction of RBC and platelet transfusion
rates (105). The calculated average monthly sav-
ings lay at 50,000 euros in a German cardiac surgery
center.

Conclusions

Most guidelines on the management of massive
bleeding recommend FGN administration triggered
by the established treatment thresholds of 1.5 g/L
for active, nonobstetric bleeding and 2 g/L for active,
obstetric bleeding. Institutional cut-off values for
viscoelastic testing of functional FGN should be
established and integrated into center- and setting-
specific treatment algorithms (29). FIBTEM-MCF
values of 8 mm and FF-TEG values of 12 mm would
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most likely predict the critical plasma FGN concen-
tration of 1.5 g/L. FIBTEM-AS values of 12 mm indi-
cate critical levels for PPH.

The currently available data from clinical stud-
ies provide good evidence to recommend against
pre-emptive FC administration for most clini-
cal situations. There is still a significant shortage
of large, multicenter, high-quality RCTs that can
clearly demonstrate FC-associated reduction in
transfusion rates or even mortality (Tables II/V).
Inconsistent results between clinical trials are par-
tially explained by inclusion criteria leading to a
patient selection with bleeding events that were not
necessarily related to critical FGN plasma levels. The
main potential of FCs, however, is to be expected in
bleeding situations associated to FGN levels below
established, critical cut-off values. A huge body of
scientific data from retrospective and observational
studies clearly suggests that hypofibrinogenemic
conditions in actively bleeding patients significantly
increase the risk for massive transfusion and higher
mortality, and should therefore be adequately
treated. Therefore, most experts agree on the con-
cept of threshold-guided treatment necessity. Some
evidence from RCTs and observational studies sug-
gests that plasma transfusion, especially within the
framework of fixed component ratios, can be safely
substituted by CFCs, guided by POC monitoring with
a beneficial impact on transfusion rates and mortal-
ity (53, 54, 66). In the last 2 decades, FCs have been
incorporated into institutional protocols for massive
bleeding, leading to a significant rise in the overall
FC consumption for these indications (106). Future
studies with a more rigorous focus on patients with
massive bleeding and simultaneous hypofibrino-
genemia, established by timely VHA testing, and
aiming to reduce plasma transfusion might reinforce
the evidence derived from RCTs on the therapeutic
benefits resulting from FGN replacement.
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Conclusions

* Acquired hypofibrinogenaemia under perioperative bleeding is associated
with a significant increase in the risk for massive transfusion and higher
mortality

» Fibrinogen substitution should be indicated by thresholds related to higher
bleeding risk.

* Monitoring of fibrinogen concentration with viscoelastic POC systems is
cost-effective, reduces transfusion rates, and has beneficial effects on the
overall outcome.

» Fibrinogen Concentrates should be preferred to plasma transfusion for
single-factor coagulopathies

* Plasma transfusion for multifactor deficiencies can be safely substituted
by CFCs, guided by POC monitoring with a possibly beneficial impact on
transfusion rates and mortality.
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SUMMARY:

Colloid fluids supplemented with adequate combinations of CFCs with the
capability to restore coagulation could be a desirable future treatment component
in massive transfusion. Such fluids with the potential to preserve basic coagulation
mechanisms are referred to as CRF.

Starting from a coagulation factor and blood cell-free albumin solution we added
PCC, FC and FXIIIC in different combinations and concentrations to analyse
their properties to restore TEM parameters without the use of plasma. Further
analysis under the presence of platelets was performed for comparability to
whole blood conditions.

We could demonstrate that plasma-free albumin solutions enriched with PCC and
FC show restoring coagulation potential. In a first step we could demonstrate that
PCC showed sufficient thrombin formation for inducing FGN polymerization
after extrinsic activation of coagulation. The combination of PCC and FC in a
plasma-free albumin carrier solution led to the formation of a stable 77 vizro fibrin
clot.

In a second step we analysed the effects of different combinations and
concentrations of three different coagulation factor concentrates (PCC, FC,
FXIII). In a final experiment the effects of different platelet concentations was
tested. These tests were equally performed in a plasma-free albumin-based carrier
solution.

We found that FGN and FXIII have an excellent capacity to improve fibrin clot
firmness expressed as Amplitude at 10 min and Maximal Clot Firmness. FGN
alone, or in combination with FXIII, was able to restore normal Amplitude at 10
min and Maximal Clot Firmness values. In the presence of platelets, the TEM
surrogate parameter for thrombin generation (Clotting Time) improves and
normalizes when compared to whole blood. Under optimized concentrations of
PCC; FC, FXIII and platelets, as determined in different dilutional series, all
clinically relevant ROTEM parameters were within the normal range for human
whole blood.



RESULTS

We conclude from our findings that combinations of CFCs suspended in albumin
solutions can restore basic coagulation mechanisms as expressed by TEM
parameters in the absence of plasma. This kind of artificial colloid fluids with
coagulation-restoring characteristics might offer new treatment alternatives for
hypovolemic patients with massive bleeding and ongoing dilutional coagulopathy.
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Abstract

Background: Colloid fluids supplemented with adequate combinations of coagulation factor concentrates with the
capability to restore coagulation could be a desirable future treatment component in massive transfusion.

Methods: Starting from a coagulation factor and blood cell-free albumin solution we added Prothrombin Complex
Concentrate, Fibrinogen Concentrate and Factor XlIl in different combinations and concentrations to analyze their
properties to restore thromboelastometry parameters without the use of plasma. Further analysis under the
presence of platelets was performed for comparability to whole blood conditions.

Results: Albumin solutions enriched with Fibrinogen Concentrate, Factor Xlll and Prothrombin Complex
Concentrate at optimized concentrations show restoring coagulation potential. Prothrombin Complex Concentrate
showed sufficient thrombin formation for inducing fibrinogen polymerization. The combination of Prothrombin
Complex Concentrate and Fibrinogen Concentrate led to the formation of a stable in vitro fibrin clot. Fibrinogen
and Factor Xl showed excellent capacity to improve fibrin clot firmness expressed as Amplitude at 10 min and
Maximal Clot Firmness. Fibrinogen alone, or in combination with Factor XIll, was able to restore normal Amplitude
at 10 min and Maximal Clot Firmness values. In the presence of platelets, the thromboelastometry surrogate
parameter for thrombin generation (Clotting Time) improves and normalizes when compared to whole blood.

Conclusions: Combinations of coagulation factor concentrates suspended in albumin solutions can restore
thromboelastometry parameters in the absence of plasma. This kind of artificial colloid fluids with coagulation-
restoring characteristics might offer new treatment alternatives for massive transfusion.
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Background

Massive bleeding can cause severe intravascular hypovol-
emia with significant hypoperfusion of peripheral tissues
leading to life-threatening hemorrhagic shock. The cor-
rection of the underlying hypovolemic state with con-
ventional resuscitation fluids like crystalloid or colloid
solutions contributes to bleeding associated coagulopa-
thies by dilution of plasma coagulation factors [1]. De-
terioration of physical clot strength and, in a later stage
of prolonged bleeding, reduced thrombin generation po-
tential are the principal coagulopathic patterns found
when monitored by viscoelastic testing [2]. Viscoelastic
testing, like rotational thromboelastometry (TEM), is fre-
quently used as a point-of-care tool in severe bleeding,
providing comprehensive information about the visco-
elastic and temporal characteristics of blood clot forma-
tion [3]. Thereby identified coagulopathies caused by
single- or combined coagulation factor deficits are in-
creasingly treated with coagulation factor concentrates
(CEC), like Fibrinogen Concentrate (FC), Prothrombin
Complex Concentrate (PCC) and Factor XIII Concen-
trate (FXIIIC) [4—6]. The principle goal of CFC-based
treatment strategies is to reduce transfusion rates of
allogeneic blood products and adverse events associated
with plasma transfusion [7]. There is growing scientific
evidence that coagulation factor deficiencies in bleeding
patients can be effectively and safely treated with CFCs
with some studies showing better outcomes for CFCs
when compared to plasma transfusion [8-10]. By con-
trast there is a certain paucity of high-quality evidence
in favor of plasma, although plasma transfusion is still a
widely accepted standard of trauma and non-trauma
massive transfusion protocols [11]. The high acceptance
of plasma transfusion among many physicians might be
explained, not only by its stabilizing effect on the coagu-
lation system providing a close-to-physiological factor
composition but also by its resuscitation fluid quality
with good intravascular volume effects in patients with
hemorrhagic shock. Currently, no alternative products
are available which share these two characteristics with
human plasma. Therefore, colloid fluids providing
adequate intravascular volume effects combined with
maintained hemostatic properties could be an interesting
future treatment component in massive transfusion and
damage control resuscitation, helping to reduce plasma
transfusion and its associated side effects under

maintenance of the stabilizing effects on coagulation and
hemodynamics.

We hypothesized, that an optimized and well-balanced
combination of different coagulation factors, reconstituted
in an albumin-based carrier solution, would provide basic
clotting characteristics with TEM responses compatible
with whole blood if tested under the presence of platelets.

In this study, we used a thromboelastometric approach
to analyze modifications of viscoelastic parameters in a
plasma-, and blood cell-free environment. It is technic-
ally feasible to perform thromboelastometric analysis in
such conditions, although this approach has been limited
to its use in laboratory investigations [12, 13].

Methods

Experimental design

This study (protocol number IIBSP-CFC-2013-165) was de-
signed to explore in vitro the capability of CFCs to restore
coagulation properties. A series of experimental studies
were performed to define the optimal factor concentrations
of such coagulation resuscitating fluid (CRF). Starting from
a coagulation factor and blood cell-free solution of 5% hu-
man albumin we added PCC, FC and EXIIIC in different
combinations and concentrations to analyze their proper-
ties to restore thromboelastometric parameters without the
use of plasma. The optimal CFC composition was further
analyzed under the presence of platelets to improve com-
parability to whole blood conditions.

All coagulation factors — fibrinogen (FGN), factor XIII
(FXIII) and prothrombin complex (PC) factors II, VI, IX
and X - were derived from commercial CFCs (FC, FXIIIC
and PCC). The optimal concentration of FGN and FXIII
in CRF was determined by direct comparison to clot firm-
ness parameters of plasma from an internal control group.
The optimal concentration of PC coagulation factors was
determined by the shortest obtained clotting time (CT)
value. CRF was considered as having a coagulation restor-
ing potential to allow consideration as plasma substitute,
if thromboelastometric responses of the final CRF com-
position lay within the normal range for whole blood
when tested in presence of platelets [14].

Plasma reference values for thromboelastometry
parameters

TEM parameters were determined from plasma from
healthy volunteers to define the reference range for
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clotting time (CT), the amplitude at 10 min (A10) and
maximum clot firmness (MCF) under blood cell-free
conditions. For this purpose, we collected blood sam-
ples from 33 healthy volunteers who had not taken
medication affecting coagulation- or platelet-function
in the last 10days. A sample of 4.5ml of blood was
drawn from each donor in citrated tubes (0.12° M)
and centrifuged at 3200rpm for 25min. Plasma
supernatant was used for FIBTEM analysis. FIBTEM
was used to minimize viscoelastic signals associated
with residual platelets after centrifugation. The 95%
confidence interval of the obtained values was defined
as the reference range for plasma. The established
reference ranges were later used for comparison with
TEM responses of CRF samples to determine the
optimized CRF factor concentration.

Study samples

Composition of study samples

Study samples were composed of an artificial fluid solu-
tion (AFS) based on 5% human albumin together with
different CFC combinations and concentrations. 20% hu-
man Albumin (Grifols®, Spain) was diluted with an iso-
tonic, balanced, crystalloid solution (Viaflo Plasmalyte®
148, Baxter, Spain) to a final albumin concentration of
5% correspondent to high physiologic plasma concentra-
tions for albumin. Calcium gluconate was added to
achieve a physiological free ionized calcium concentra-
tion of 1.0-1.2 mmol/l. The solution was buffered with
TRIS buffer (1 M) to a physiological pH range between
7.36—7.45. Electrolyte concentrations and pH were mea-
sured on the blood gas analyzer Radiometer”ABL 90 Flex
to confirm the physiological composition of our stem
solution.

All factor concentrates were provided by CSL Behring.
The different coagulation factor concentrates (CFC)
were reconstituted in stock solutions. PCC (Beriplex,
CSL Behring GmbH, Germany), FC (Riastap, CSL Beh-
ring GmbH, Germany) and FXIIIC (Fibrogammin/Clu-
vot, CSL Behring GmbH, Germany) were used as CFCs
for this in vitro analysis. The lyophilized proteins were
reconstituted with the minimum amount of the accom-
panied provider’s solution necessary for protein dissolv-
ing, resulting in final concentrations of 0.025IU/ul for
factor IX (FIX) as reference protein in PCC, 0.1 mg/pl
for FGN, and 0.05IU/ul for FXIII. High final protein
concentrations in the stock solutions were necessary to
avoid dilutional effects during the preparation of the
final study samples. The stock solution was directly used
or stored at — 70 °C for later use. The final composition
of AFS free of proteins and blood cells was tested as a
negative control with EXTEM and FIBTEM subtests as
described in the thromboelastometry section.
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Preparation of study samples

Aliquots of the stock solution containing coagulation
factors were added to the AFS within citrated tubes to
reach the defined final factor concentration. The study
samples were warmed to 37 °C in the provided warming
chamber of the ROTEM® machine before testing.

Variable CFC concentrations and platelet count

The effect of various combinations of CFC-derived co-
agulation factors suspended in AFS on their functional
contribution to clot formation was evaluated by TEM.
The study samples were distributed in different test
series. Within the same test series the protein concentra-
tion of only one component (FGN, FXIII or PC), or
platelet count, was gradually modified while the concen-
tration of the other components was left unchanged.
The protein concentration of PC used in our in vitro-ex-
periments is provided as IU/ml referring to the under-
lying factor IX activity, being the PC reference protein.
Three main series of tests were performed combining
different CFC-derived proteins added to the AFS:

a) Increasing PC concentrations (0.05, 0.1, 0.25, 0.5, 1,
2 and 4 IU/ml) over a fixed FGN concentration of 4 g/l;
b) Increasing FGN concentrations (0.5, 1, 2, 4, 8 and 12
g/1) over a fixed PC concentration of 11U/ml; c) Increas-
ing FXIII concentrations (0.1, 0.5, 1, 2, 4 and 8IU/ml)
over a fixed PC concentration of 1IU/ml and a fixed
FGN concentration of 4 g/l. Each concentration step of
the changing factor component defined one study
sample that was tested by TEM. The study samples were
analyzed for viscoelastic properties with the FIBTEM-S
subtest. A TEM response within the defined reference
values (Table 1) for A10 and MCF derived from internal
controls determined the optimal FGN and FXIII com-
position of the CRF. Combined FGN/FXIII preparations
with TEM responses within the normal range for A10/
MCF were given priority to single factor preparations
(FGN alone) for defining the final CRF composition.
The shortest CT value obtained in a series with increas-
ing PC concentrations defined the final PC concentra-
tion of CRF.

In a fourth test series the effect of platelets on samples
containing the final CRF composition of PC (1IU/ml),
FGN (4 g/1) and FXIII (1 1U/ml) was evaluated adding an
increasing number of washed platelets (12.5, 25, 50, 100,
200 and 400 platelets 10%/ul) obtained from healthy,
non-medicated donors. The samples were analyzed with
the FIBTEM-S and EXTEM-S subtests.

Preparation of platelet suspensions

Blood was collected into citrate/phosphate/dextrose
(final concentration of citrate of 19 mM) and centrifuged
(120 x g for 15min) to obtain platelet-rich plasma.
Washed platelets were obtained by mixing PRP with
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Table 1 Reference ranges for standard TEM parameters CT, A10, MCF. Reference ranges are presented for plasma and whole blood.
Plasma ranges are derived from an internal control group. Values from an external control group from previous studies are also
highlighted for comparison. Whole blood reference ranges are shown for comparison with TEM results of CRF under presence of
platelets. The recommended treatment thresholds are presented to provide a clinical context of the obtained TEM results

Reference ranges Plasma (Internal control)® Plasma (External control)® Whole blood® Treatment threshold®
CT (sec) 47-54 53-71 42-74 >80

A10 (mm) 17-24 na. 43-65 <7

MCF (mm) 18-26 17-35 49-71 < 14

2 Values derived from fresh plasma from 33 healthy, non-medicated volunteers. Reference range corresponds to 95% confidence interval

b Values derived from fresh plasma as published by Schérgenhofer et al. [13]
© Values derived from whole blood as published by Lang et al. [14]

d Treatment thresholds for whole blood EXTEM-CT and whole blood FIBTEM-A10/MCF as published by

Schéchl and Schlimp [15]. and Ranucci et al. [16]

equal volumes of citrate/acid citric/dextrose (93 mM so-
dium citrate, 7 mM acid citric, and 140 mM dextrose),
pH 6.5 containing 5 mM adenosine and 3 mM theophyl-
line (CCD-AT) [17]. The final pellet was resuspended in
a Hanks’ balanced salt solution (136.8 mM NaCl, 5.3
mM KCl, 0.6 mM Na2HPO4, 0.4 mM KH2PO4, 0.2 mM
NaH2P04-2H20) supplemented with dextrose (2.7 mM)
and NaHCO3 (4.1 mM), pH 7.2, and maintained for 50
min at 37 °C before experiments were performed. Con-
centrated washed platelets were added to the study
samples to reach the established platelet counts.

Thromboelastometry

TEM analysis was performed on the ROTEM® delta ma-
chine (Rotation Thromboelastometry, TEM Inter-
national, Munich, Germany). Plastic cups were filled
with 300 pl of pre-warmed (37 °C) solutions. FIBTEM-S/
EXTEM-S subtests were used providing extrinsic coagu-
lation activation with/without cytochalasin-based deacti-
vation of platelets. FIBTEM is essentially dependent on
the FGN function. This test inhibits the platelet contri-
bution to clot formation, leaving only the clotting pro-
teins. Thus, one can observe the contribution of
functional FGN to clot formation. A minimum of three
independent measurements on different, freshly pre-
pared samples were performed for each concentration
step. Thromboelastometry measurements were per-
formed immediately after combining the different pro-
tein and/or cellular components of the study samples.
Standard TEM parameters were obtained for statistical
analysis: CT, A 10, and MCF.

Statistical analysis

The 95% confidential interval defined the normal range
for the obtained TEM parameters of the internal control
group: CT, A10, and MCF. Statistical analysis was per-
formed on SAS® 9.3 Statistical Software. The correlation
analysis of the collected data was performed on basis of
a dispersion graph for illustrating values of TEM param-
eters in function of the corresponding dose. Linear cor-
relation was analyzed on basis of the underlying

dispersion graph. In the case of linear correlation the
Pearson coefficient for linear correlation was applied.
For interpreting our data p <0.050.05 were considered
significant.

Results

Negative control of coagulation factor free AFS samples
No response was detected in FIBTEM or EXTEM sub-
tests when performed on AFS that were not enriched
with coagulation factors. The tests resulted in an infinite
CT value and no clot formation could be detected.

Normal range of plasma tested by TEM

The 95% confidence interval of the TEM parameters de-
termined in 33 plasma samples of healthy volunteers
was defined as the “normal range” for plasma. The re-
sults are summarized in Table 1 as “Internal Control”.
The upper limit of normal for CT in our internal control
group was 53s for EXTEM subtests and 54 s for FIB-
TEM subtests. The obtained plasma reference range for
A 10 and MCF was 17-24 mm and 18-26 mm, respect-
ively. Previously published reference ranges for standard
TEM parameters for plasma and whole blood and usu-
ally accepted treatment thresholds are shortly summa-
rized in Table 1 for comparison [13-16].

Combination of PC and FGN leads to fibrin clot formation
in a plasma and platelet free environment

The combination of PC and FGN in an artificial colloid
solution free from other blood components leads to the
formation of a thromboelastometrically measurable fi-
brin clot. The formed fibrin clots were stable as no sig-
nificant deterioration of its viscoelastic integrity was
observed during the 60min TEM response. Figure 1
shows a typical TEM graph using a FGN concentration
of 4g/l and PC at 11U/ml (using the concentration of
FIX as a reference). The viscoelastic properties of the
tested fluids at this coagulation factor combination (CT
117 +20s, A10 10.7 + 0.6 mm, MCF 12 + 1.7 mm) were
located outside the aspired, predefined normal values
(Table 1), especially CT was considerably prolonged.
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FIBTEM S

CT:117 A 10:10.7

+/-0.6 mm

MCF: 12.0

+/-1,7 mm

+/- 20 sec

Fig. 1 Combination of PCC and FGN leads to fibrin clot formation in
a plasma and platelet free environment. Figure is representative for
fibrin clot formation under a combination of PCC at 11U/ml with
FGN at 4 g/l.

Fibrin formation was dependent on the presence of PC
as negative controls without PC proteins ruled out spon-
taneous fibrin formation during TEM analysis.

Increasing concentrations of PC caused progressive
improvements in TEM parameters at a fixed FGN
concentration of 4 g/l
As described in Table 2, a progressive shortening of CT
was observed with increasing concentrations of PC. An
inverse association between PC concentration and CT
was observed within the 0.05-1IU/ml concentration
range with the shortest CT detected at a concentration
of 1IU/ml and an average CT of 117s. This value was
significantly prolonged when compared to the CT refer-
ence range of our internal control group, to external
controls, and published treatment thresholds (Table 1).
Higher PC concentrations (>1IU/ml) did not further
shorten CT values. Even in very high concentrations like
41U/ml, CT did not further improve.

Effects of increasing concentrations of PC on fibrin
clot strength measured by A 10 and MCF were less
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evident than those observed on CT. As shown in Table
2, a positive linear correlation between rising PC con-
centrations and thromboelastometry clot strength pa-
rameters was seen (Pearson correlation coefficient of
rho = 0.65, 0.57 and p-values <0.0013, 0.0063 for A10
and MCF respectively).

According to these data, a concentration of 1IU/ml
PC for the final CRF composition was determined.

Rising FGN concentrations improved clot strength related
parameters at a fixed PC concentration of 11U/ml
Based on the previous results, a fixed PC concentration
of 1IU/ml was chosen for this test series as it provided
the shortest CT values in our model. As summarized in
Table 3, a negative non-linear correlation was seen be-
tween increasing FGN concentrations and measured CT
values. This effect was more pronounced in the lower
FGN range between 0.5 and 2.0 g/l and became less sig-
nificant with higher FGN concentrations above 2 g/1.
Moreover, FGN concentrations rising from 0.5 to 12 g/
1 improved the TEM parameters that characterize the
clot strength with a strong positive correlation between
FGN concentrations and the corresponding TEM pa-
rameters (Pearson correlation coefficient of rho =0.98
and p-values of < 0.0001 for both A10 and MCF respect-
ively, Table 3). At a physiological FGN concentration of
4 g/1 the measured TEM responses (11/12 mm for A 10/
MCEF) were slightly below the desired TEM range of 17
mm. The final FGN concentration for CRF composition
of 4g/l was determined in synopsis with the results
achieved in combination with FXIIIL.

Increasing concentrations of FXIII (0.1, 0.5, 1, 2, 4, 8 1U/ml)
enhanced clot strength at fixed concentrations of PC (1
1U/ml) and FGN (4 g/l

Fixed concentrations of FGN (4 g/l) and PC (1IU/ml)
were used in this experimental setting. FXIII effects on
fibrin clot strength were evaluated by A 10 and MCF. As
shown in Table 4, a moderate to high positive

Table 2 Analysis of viscoelastic parameters in albumin-based colloid solutions enriched with prothrombin complex concentrate
(PCQ) and fibrinogen (FGN). Different PCC concentrations (0.05, 0.1, 0.25, 0.5, 1, 2, 4 IlU/ml) were combined with fixed fibrinogen
(FGN) concentrations of 4 g/I. The albumin concentration was maintained stable at 5%. Negative controls on PCC-free solutions did
not show any measurable ROTEM response (infinite CT). A minimum of three repeats for each concentration step was performed.
The value in bold letters is prolonged (>80s) but still reflects the optimal PCC response for CRF composition

Increasing PCC concentrations over FGN 4 g/I

PCC conc? 0,05 0,1 0,25
cre” 613 + 251 337 £46 216 + 50
A10%" 57+15 63+15 6.7 +06
MCFe™ 63+15 73+21 741

05 1 2 4

168 + 22 117+ 20 95 + 40 115+18
83+15 10.7 £ 0.6 14+43 117 +21
93+23 12+17 143 £ 49 12+£26

*p <0,0001, Pearson rho 0,9 for1/CT, **p =0,0013, Pearson rho 0,65, ***p =0,0063, Pearson rho 0,57
®PCC concentrations in IU/ml refer to final factor IX concentrations as reference protein in this product

°CT in seconds. Mean values + SD
°A10 and MCF in mm. Mean values + SD
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Table 3 Analysis of viscoelastic parameters in albumin-based
colloid solutions enriched with fibrinogen (FGN) and
prothrombin complex concentrate (PCC). Different FGN
concentrations (0.5, 1, 2, 4, 8, 12 g/1) were combined with fixed
PCC concentrations of 1 IU/ml. The albumin concentration was
maintained stable at 5%. Negative controls on fibrinogen free
solutions did not show any measurable ROTEM response
(infinite CT). A minimum of three repeats for each concentration
step was performed. The values in bold letters reflect the
optimal FGN response for CRF composition

Increasing FGN concentrations over PCC 11U/ml

FGN 05 1 2 4 8 12

conc. ?

CT® 4032+ 6204620 221+90 117420 154+27 198+ 1
1949

A10°"  na. 27406 36+06 10706 257+42 47+ 14

MCF™ na. 37406 33406 12+17 263+31 495+35

*p <0,0001, Pearson rho 0,84 for1/FGN, **p < 0,0001, Pearson rho 0,98, ***p <
0,0001, Pearson rho 0,98

2FGN concentrations in g/l

°CT in seconds. Mean values + SD

°A10 and MCF in mm. Mean values + SD

correlation was observed for the Pearson correlation coef-
ficient between rising FXIII concentrations and A10 and
MCEF (p-values of 0.004 and 0.002, respectively). The pre-
viously observed TEM response at a FGN concentration
of 4 g/l (MCF 12mm) in a FXIII-free environment (MCF
12 mm), significantly improved to MCF of 24 mm by add-
ing 1IU/ml of FXIII, thus reaching the upper limit of our
predefined range for normality. No additional effect or
statistical correlations were observed for other tested
TEM parameters (CT). According to the combined data
on FGN and FXIII, final concentrations of 4 g/l for FGN
and 1 IU/ml for FXIII were determined for further analysis
of CRF under the presence of platelets.

Platelets completely restore whole blood TEM
parameters, including CT

The impact of increasing platelet counts (12.5, 25, 50,
100, 200, 400 x 10%/l) on various TEM parameters was
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investigated under the previously established conditions
using fixed CRF concentrations of PC (11U/ml), FXIII
(1IU/ml) and FGN (4 g/l) as this combination provided
optimal values for CT and clot strength in TEM studies.

The presence of platelets (in the optimally designed
CREF) significantly improved fibrin clot strength parame-
ters assessed by A10 and MCF (Fig. 2a and b). A moder-
ate to high positive correlation was observed between
rising platelet concentrations and A10 and MCF mea-
surements (Pearson correlation coefficient of rho = 0.89/
0.86, respectively and p-values of 0.0001). Clot strength
values reached the normal range for EXTEM whole
blood under a minimum platelet concentration around
100 x 10%/yl, as calculated from a regression analysis. No
effect on clot strength was observed for platelets in the
FIBTEM tests performed in parallel.

As shown in Fig. 2¢, the presence of platelets (in the
optimal CRF) shortened CT. A moderate to high nega-
tive correlation was observed with rising platelet concen-
trations and measured CT (Pearson correlation
coefficient of rho=-0.80, p<0.0001). TEM values
reached normal whole blood CT values for EXTEM sub-
tests under a minimum platelet concentration of around
100 x 10%/yl.

As shown in Table 5, CRF at PC 1IU/ml, FGN 4 g/],
FXIII 11U/ml reached TEM parameters comparable to
whole blood EXTEM reference ranges when tested
under the presence of 100 x 10%/ul platelets.

Discussion

Data from our in vitro study demonstrate that it is pos-
sible to restore coagulation properties by combining de-
fined concentrations of coagulation factor concentrates
in an albumin-based colloid solution. The viscoelastic
clot formation parameters A 10 and MCF observed in
CRF were comparable not only to human plasma, but
also to whole blood under the presence of platelets. The
surrogate parameter for thrombin generation, CT, was
prolonged when compared to our internal control group,

Table 4 Analysis of viscoelastic parameters in albumin-based colloid solutions enriched with factor Xl (FXIIl), prothrombin complex
concentrate (PCC) and fibrinogen (FGN). Different FXIII concentrations (0.1, 0.5, 1, 2, 4, 8 1U/ml) were combined with fixed PCC and
FGN concentrations of 11U/ml and 4 g/I, respectively. The albumin concentration was maintained stable at 5%. Negative controls for
FXIII- free solutions are represented by the corresponding compositions shown in Tables 2 and 3. A minimum of three repeats for
each concentration step was performed. The values in bold letters reflect the optimal FXIII response for CRF composition

Increasing FXIll concentrations over PCC 11U/ml and FGN 4 g/I

FXIIl conc. @ 0.1 05 1 2 4 8

cT” 123+127 128 +173 1353 127 1223+75 1335+ 29 1333 +22.2
A10%” 125+07 163+ 15 213+ 2.1 243 +23 303+ 114 307 +99
MCFe™ 135+ 07 187 + 21 23.7 3. 267 + 46 3234104 357 + 124

*no correlation, **p = 0,004, Pearson rho 0,65, ***p =0,002, Pearson rho 0,69
°FXIIl concentrations in 1U/ml

°CT in seconds. Mean values + SD

°A10 and MCF in mm. Mean values +SD
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Fig. 2 Analysis of viscoelastic parameters of CRF, defined as albumin-based colloid solution containing PCC [1 1U/ml], FXIII [11U/ml] and FGN
[4 g/I]). Different platelet concentrations (12.5, 25, 50, 100, 200, 400 x 103/u\) were combined with CRF. A minimum of three repeats for each
concentration step was performed. The continuous line in the graph shows the lower limit of normal range for whole blood TEM parameters. a
Effect of different platelet concentrations on A10. b Effect of different platelet concentrations on MCF. ¢ Effect of different platelet concentrations
on CT

but reached normal levels for whole blood when ana-
lyzed in presence of platelets at 100 x 10%/pl [14]. Fluid
substitutes like CRF could be an interesting treatment
option, with clinical indications comparable to those of
fresh frozen plasma.

Massive bleeding, independent of its etiology (trauma,
obstetrical or surgical), usually includes high ratio FFP
transfusion guided by institutional massive transfusion
protocols, based on a large body of evidence favoring
plasma against coagulation factor-free resuscitation
fluids [11, 18]. This hemostatic resuscitation concept,
however, is insufficient to avoid massive transfusion-
associated multifactor coagulopathies [19]. Factor con-
taining fluids for volume therapy, like CRF, that are
characterized by optimized viscoelastic properties could

Table 5 Comparison of whole blood reference ranges with TEM
results for CRF under presence of 100 x 10%/ul platelets

WHOLE BLOOD? CRF + PLATELETS
CT (s) 42-74 744/~ 5
A 10 (mm) 43-65 45 +/-3
MCF (mm) 49-71 59 +/-2

2 Whole blood reference ranges as published by Lang et al. [14]

be an appealing new treatment component. Additional
point-of-care monitoring would still allow for goal-
directed top-up corrections, but monitoring intensity
could be reduced. Easy storage of the CRF components
at 4°C, immediate availability without thawing time, and
the universal applicability, independent of blood group
compatibility, could provide both logistic and clinical ad-
vantages of this new product compared to frozen
plasma. The clinical indications for CRF administration
could largely be analog to those of plasma, focusing on
uncontrolled bleeding events related to multifactor defi-
ciencies in hypovolemic patients, in which ongoing
factor-free fluid therapy could cause further deterior-
ation of the basic coagulation mechanisms. In these ur-
gent scenarios CRF could provide shorter decision-to-
treatment times than those known for plasma transfu-
sion. CRFs could easily be held available, independent of
blood bank facilities, in all areas exposed to massive
bleeding scenarios, like operating theatres, ICUs, delivery
rooms, emergency departments and even in prehospital
emergency- or military settings.

Future clinical studies in massive transfusion scenarios
will have to show if substituting plasma by CRF is feas-
ible and if equal efficacy in terms of hemodynamic and
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coagulation stability will be provided. Furthermore clin-
ical trials will have to show if plasma-specific adverse
events like “transfusion-related acute lung injury (TRAL
1)” or “transfusion-related immune modulation (TRIM)”
would be less frequent under treatment of purified
plasma-derived components like CFCs or albumin. It is
not finally established from previous clinical studies, if
the overall complication rate, especially when compared
to solvent and detergent treated pooled plasma (S/D
plasma), really results in a better safety profile for factor
concentrates. Next to these still to be answered clinical
issues, current prices for the final CRF components
would imply a major economic obstacle for the imple-
mentation of this product into clinical routine, even if
outcome superiority compared to plasma-based standard
of care could be demonstrated in future clinical studies.
Human albumin 5% was chosen as carrier solution for
the coagulation factor compound of our CRF for differ-
ent reasons. First, colloids were favored against crystal-
loids, because accurately defined coagulation factor
concentrations within a predefined volume of a resusci-
tation fluid would only make sense, if the underlying
carrier showed adequate and sustained volume effects in
the intravascular space. Second, the colloid should not
interfere in a significant manner with the coagulation
system. Although all colloid solutions show dilutional ef-
fects, albumin solutions, together with gelatins, seem to
cause less colloid-specific, detrimental effects on platelet
function or fibrin polymerization than other colloids,
like dextrans, or starches [20, 21]. We preferred albumin
against gelatins to optimize comparability to FFP in fu-
ture trials. Experimental studies show that albumin-
based colloid solutions provide stabilizing effects on the
endothelial barrier and show intravascular plasma ex-
pander effects of nearly 100% [22, 23]. By contrast, no
such effects on the endothelial barrier could be demon-
strated for CFCs [24]. The administration of well-
balanced coagulation factors in carrier solutions with
constant intravascular volume effects might be a safe
way to treat bleeding associated coagulopathies, as “over-
shot” peak plasma concentrations caused by the infusion
of highly concentrated factor formulas (as under non-
diluted CFC administration) would be avoided. The
intravascular volume effect of colloidal resuscitation
fluids seems to be context-sensitive and correlated to
the integrity of the endothelial glycocalyx layer. There is
growing evidence that in special clinical conditions like
sepsis and trauma, characterized by elevated glycocalyx
shedding rates, the volume expander rate of isooncotic
colloids would be less than predicted. The underlying
glycocalyx disruption seems to be partially driven by a
“low-protein environment” caused by aggressive crystal-
loid or synthetical colloid fluid treatment. By contrast,
protein containing resuscitation fluids like plasma or
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albumin-based colloids seem to provide protective ef-
fects against glycocalyx shedding. This albumin-
mediated protection of the glycocalyx layer is currently
demonstrated in mostly preclinical, in-vitro studies, and
it remains a matter to future studies if this translates
into a clinically detectable advantage of albumin contain-
ing resuscitation fluids [25, 26] .

Hemostasis is a result of coordinated interactions be-
tween platelets and coagulation mechanisms [27]. Co-
agulation mechanisms necessary for consolidation of
platelet mediated primary hemostasis require a cascade
of enzymatic reactions leading to the formation of fibrin
[15, 28, 29]. Results of the present study indicate that co-
agulation mechanisms can be reproduced using a re-
stricted number of coagulation factors suspended in a
neutral fluid. To our knowledge, this is the first experi-
mental study that has been able to demonstrate that the
combination of commercially available CFCs in an initial
coagulation factor- and blood-cell-free solution leads to
the formation of a stable in vitro fibrin clot. The initi-
ation of the coagulation in this fluid requires the use of
EXTEM or FIBTEM reagents whose components (cal-
cium, phospholipids and tissue factor) would trigger the
activation of the prothrombin complex coagulation fac-
tors VII, IX, X and II contained in commercial PCCs [6].
These coagulation factors lead to sufficient thrombin
generation and warrant the basic activating mechanism
of the coagulation system to sustain in vitro fibrin
polymerization. FGN provides the structural clotting
substrate supporting secondary hemostasis [30]. The ne-
cessary FGN concentration in CRF to reach normal
TEM values (when combined with FXIII) was found in
the range of physiological plasma concentrations, around
4g/l for FGN and 0,5-11U/ml for EXIIL. FXIII cross-
links fibrin, completing blood coagulation and protecting
the hemostatic plug from the fibrinolytic activity at the
clot formation site. In vitro studies demonstrated that
supplementation with FXIIIC increases clot firmness
assessed by TEM in perioperative patients with elevated
FGN and reduced FXIII levels [31]. However, in another
in vitro model of massive transfusion in trauma, com-
bination therapies with FC and fresh frozen plasma, but
not FXIIIC, improved both coagulation kinetics and
fibrin-based clot strength [32, 33]. Our present study in-
dicates that increasing concentrations of FXIII enhance
clot strength at fixed concentrations of PC (1 IU/ml) and
FGN (4 g/l). Consistently, there is further evidence that
EXIII deficiency will impair FGN function and fibrin for-
mation, suggesting an inverse link between low FXIII
levels and enhanced thrombin generation, modifying the
structure-function relationship of fibrin to support
hemostasis [34]. Data derived from clinical studies
propose maintenance of 50-60% of FXIII activity to
avoid bleeding tendency in the perioperative setting [35].
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CRF compositions without FXIII, yielding comparable
clot strength in TEM when compared to our final com-
position, are possible from a theoretical point of view.
We decided to add a purified source of FXIII to our final
CRF composition despite the high potential of
concentrate-derived FGN on viscoelastic clot strength to
maintain a close-to-physiological factor composition.

The safe upper limit of FC treatment has not been
precisely defined. It is currently suggested that plasma
levels of FGN should reach 1.5 to 2 g/l in bleeding pa-
tients [36]. There is a clear tendency, as reported in dif-
ferent guidelines, to recommend elevating plasma FGN
in some clinical situations [8, 37, 38]. Taking into con-
sideration the results of our TEM studies it may be diffi-
cult to maintain a well-balanced coagulation factor
composition during a long-lasting, high-dynamic bleed-
ing event if supplements are only point-of-care driven
and punctual. In this context, a fixed ratio of clotting
factors in CRFs administered under volume therapy
could provide more balanced stability within the com-
plex multifactor system of blood coagulation than single
factor substitutes as proposed in current algorithms.

CT in TEM is partially dependent on thrombin gener-
ation. Direct anticoagulants reducing thrombin gener-
ation definitively prolong CT [39]. Platelets contribute to
enhance thrombin generation, accelerate CT, and in-
crease MCEF. Additionally, platelet phospholipids dra-
matically contribute to the amplification of coagulation
mechanisms, thus potentiating thrombin generation and
fibrin polymerization. Fibrin then interacts with acti-
vated platelets and plays a critical role in MCF. CT
values of platelet-free CRF samples in our in-vitro exper-
iments were significantly prolonged when compared to
plasma CT levels of our internal control group. Several
reasons may account for these findings:

First, our in vitro samples were completely free of any
phospholipids or cell membrane fragments that could
influence factor activation. Consequently, the addition of
platelets to CRF containing 11U/ml PC, 4 g/l of FGN
and 1IU/ml FXIII leads to the normalization of CT and
MCE. It could be assumed from our studies that, when
combined with CRF, a platelet count around 100 x 10%/
ul should be required to fully reconstitute TEM parame-
ters to levels observed in whole blood studies (see Fig.
2a-c). CT values above 80s are considered to reflect
pathological thrombin generation and are generally ac-
cepted as treatment threshold. CT values of CRF com-
bined with platelets were significantly shorter than this
generally recommended treatment thresholds [15]
(Tables 1 and 5).

Second, the used PCC in our experiments contains
heparin. Other study groups previously reported about
CT sensitivity of extrinsically activated TEM tests [40].
It is questionable if this phenomenon has any clinical
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relevance. The currently scientific rationale rather sug-
gests that PCCs might be associated to overshot throm-
bin generation with the potential to induce disseminated
intravascular coagulation and that Antithrombin III sup-
plements might mitigate this potentially dangerous ad-
verse effect [41]. The complete absence of antithrombin
in the final CRF composition is a major limitation of our
experiments and the effects of PCC supplements in clin-
ical situations with reduced antithrombin levels will have
to be analyzed in future trials.

A further limitation of our experimental studies is the
complete absence of red blood cells. Red blood cells
seem to exert a more important role in primary
hemostasis, whereas their modulating effect on second-
ary hemostasis seems to be negligible [13]. The fact is
that, viscoelastic studies can be reliably performed in
plasma samples [12, 13]. Surprisingly, an inverse relation
between hematocrit and clot firmness was previously re-
ported under experimental and clinical anemic condi-
tions [42]. We cannot rule out that the presence of red
blood cells in our in vitro model could lead to a measur-
able reduction of clot firmness parameters. However, fol-
lowing reports of Schoergenhofer et al. [13] no effects
on other TEM parameters should be expected under
whole blood conditions. Under massive transfusion
using CRF as a plasma substitute, transfusion of red
blood cells would be an integral part of the clinical man-
agement to uphold an adequate amount of oxygen car-
riers within the circulating blood volume.

Altogether, the transfer of our data into a clinical con-
text must therefore be done very carefully. All factor
components of CRFs have previously been safely admin-
istered in loose compositions for the management of
bleeding associated coagulopathy [43]. PCCs show a reli-
able safety profile and are now the treatment of choice
for the emergency reversal of Vitamin K antagonists [44,
45]. Nevertheless, a careful assessment of the thrombo-
genic potential of fixed factor combinations for the treat-
ment of a multiple factor deficit under massive bleeding
will have to be performed in future studies.

Conclusions

Coagulation factor concentrates suspended in albumin
solutions have the potential to restore mechanisms of
secondary hemostasis in the absence of any blood com-
ponent, showing viscoelastic properties comparable to
whole blood when tested in presence of platelets. Coagu-
lation factor enriched albumin-based colloids could be a
valuable tool to provide stable intravascular volume ef-
fects in hypovolemic conditions and to simultaneously
maintain basic coagulation mechanisms. This could offer
future alternatives to transfusion of fresh frozen plasma
under resuscitation conditions.
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RESULTS

Conclusions

The combination of FC and PCC in colloid carrier solutions leads to the
formation of a stable fibrin clot after extrinsic coagulation activation.

An optimized combination of PCC, FC and FXIII has the capacity to restore
coagulation without the additional use of plasma.

PCC provides sufficient thrombin formation for inducing fibrin
polymerization. FC and FXIII show a great potential to improve clot
firmness.

In the presence of platelets, an optimized combination of PCC, FC and
FXIII reconstituted in human albumin carrier solutions provide normalized
TEM parameters when compared to whole blood.

CRFs could be a new treatment option providing hemostatic properties
comparable to plasma but being based on products that might provide an
improved risk/benefit profile when compared to plasma.
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5. DISCUSSION

In the present doctoral thesis we hypothesized that a theoretical basis could be
established for a plasma-free treatment approach for acquired single- and multi-
coagulation factor deficiencies during the time course of massive bleeding. To
verify the theoretical basis for this consideration a review of the currently available
scientific evidence on the treatment of bleeding-associated coagulopathies with
FC was performed as a first step. In a second step, a series of experimental
trials should demonstrate that well-defined compositions of CFCs in plasma-
free, albumin-based carrier solutions have the potential to conserve the basic
coagulation mechanisms.

The performed literature review confirmed that FC, when used as threshold-
guided treatment based on VHA monitoring, is an adequate treatment of
acquired hypofibrinogenaemia and has a beneficial impact on transfusion rates
and mortality. There is broad consensus among experts that FC supplements (or
Cryo) should be given preference to plasma transfusion to correct critically low
FGN levels as detected in standard laboratory testing or VHA-based monitoring.

From the results of our experimental /7 vizro investigations, we conclude that
absent coagulation factors can be efficiently replaced with CFCs 7z vizro, restoring
coagulation mechanisms with normal VHA parameters and without the use of
plasma. This allows for the option to reconstitute CFCs in an optimal composition
for creating a CRF based on plasma-free albumin solution as plasma-free carrier
solution. CRFs could have the potential in clinical settings to eliminate the onset
of dilutional coagulopathies which is yet to be proven in follow-up studies.

Altogether this work demonstrates that in the clinical setting of acquired
hypofibrinogenaemia FCs are preferable to plasma and that an optimized
composition of CFCs has the 7z vizro potential to restore VHA parameters
starting from coagulation factor-free solutions without the requirement for using
additional plasma.
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Fibrinogen Concentrates in bleeding-associated coagulopathies

Coagulopathies in massive bleeding events are complex and multifactorial. In
practically all clinical settings the onset of coagulation factor deficiencies seems
to follow a two-step dynamic with plasma FGN being the first coagulation
factor dropping to critically low levels resulting in a single-factor deficit at the
early stage of bleeding (161). It has been demonstrated that dilution phenomena
cause clinically relevant deficiencies of all coagulation factors, including FGN
(77)(228). Other mechanisms like hyperfibrinolysis, loss, and consumption of
clotting factors can explain that the magnitude of FGN deficiency in severe
bleeding can be significantly beyond that caused by dilutional effects (190). This
early single factor deficit of hypofibrinogenaemia is followed in a second step by
the onset of multifactor deficiencies as the dilutional grade exceeds 60% or more
(164) negatively affecting the thrombin generation potential. It is reasonable to
perform monitoring of bleeding-related factor deficiencies applying VHA as
its use is shown to reduce blood loss and transfusion rates of allogeneic blood
products. VHA provides comprehensive information on the physical and timeline
characteristics of the developing blood clot within whole-blood samples. The
concept of VHA-guided, goal-directed, CFC-based management is cost-effective,
and it seems to reduce transfusion rates while providing apparent beneficial
effects on overall outcomes, including multi-organ failure and mortality in some,
but not all, high-risk conditions (63)(229). The physical clot strength measured
during the activation of the coagulation system is expressed in MCF. FGN, FXIII,
and platelets are the main determinants of these parameters. To eliminate the
impact of platelets on clot formation and to reduce the information of MCF to the
contribution of FGN (and FXIII) to the firmness of the forming fibrin clot, platelet
inhibition with cytochalasin D can be induced within FIBTEM subtests (59).
Results obtained from FIBTEM are available within 5-10 minutes and provide
an excellent guide for clinicians to indicate FGN treatment and to calculate the
corresponding dose (58). It has been demonstrated that FGN replacement has
a very strong potential to improve and correct dilutional effects on viscoelastic
clot characteristics (223)(230). FC is therefore increasingly used in bleeding-
associated coagulopathies with risk for acquired hypofibrinogenaemia (58).
A huge body of scientific evidence has been published in recent years on the
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efficacy of FC supplements in perioperative bleeding. In our Review on the topic,
a total of 24 clinical studies were analysed comparing FC to placebo or other
haemostatic agents (like plasma or platelets), in the clinical high-risk settings
of trauma, peripartum haemorrhage, Cardiac Surgery, or other high risk surgery.
The total of studies with an interventional design and applying an interventional
trigger for FC supplements defined by previously thresholds proven to be related
to increased bleeding risk have shown a significant reduction of transfusion rates
when compared to placebo or other haemostatic agents as a comparator (5)(6)
(96)(231)-(234). The best established thresholds for this purpose are currently 1.5
g/l for non-obstetrical bleeding or 2 g/l for obstetrical bleeding or corresponding
FIBTEM values.

In contrast, "the majority of studies that opted for a pre-emptive treatment strategy,
or for an interventional trigger other than critical FGN thresholds, failed to show
any benefit from FC supplements (94)(190)(235)-(245). These results could
possibly be related to the fact that the highest FC efficacy can only be expected
when bleeding is directly related to a clinically relevant hypofibrinogenaemia.
Those studies that miss this inclusion criterion are at risk to include patients with
bleeding causes other than hypofibrinogenaemia, who then would be insensitive
to FC treatment.

Currently, no clear recommendation based on good quality evidence can
be given concerning the preference of FC or Cryo for treatment of acquired
hypofibrinogenemia. While Anglo- American and British guidelines recommend
Cryo, most continental European Societies prefer FC (3)(65)(246), but
administration of the alternative product is foreseen as acceptable if the first
choice product is unavailable.

Taken together the current evidence definitely supports the use of FC (or Cryo)
before plasma as a FGN source for replenishment of critically low FGN plasma
levels in patients with ongoing bleeding and diagnostic criteria for acquired
hypofibrinogenaemia established by VHA or standard laboratory testing.
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The concept of Coagulation Resuscitation Fluids (CRF) as a potential plasma
substitute

CRF with combined therapeutic effects on the circulating intravascular volume
and on the maintenance of the basic coagulation mechanisms could be a desirable
future treatment option. Currently, plasma is the only available product combining
these two therapeutic principles which together form the mainstay of clinical
management of coagulopathy-driven massive bleeding. Inrecent years, therapeutic
concepts are increasingly applied to uncoupling volume- from haemostatic
therapy by infusing crystalloids or colloids for haemodynamic stability and to
correct coagulation deficiencies (mainly caused by the administered resuscitation
fluids) with goal-directed administration of corresponding CFCs (247). This
stands in clear contrast to formulaic strategies suggesting high-ratio transfusion
of blood components of 1:1:1 for plasma:RBC: platelets (226). This strategy
provides volume therapy with simultaneous administration of coagulation factors
contained in the transfused plasma products. High transfusion rates of allogeneic
blood products are the consequence, raising considerable concern among
clinicians due to the overall limited evidence regarding the risk/benefit profile of
plasma transfusion (175)(248). In this context, CRFs could be a new treatment
option combining the same therapeutic properties as plasma but being based on
products that might provide an improved risk/benefit profile when compared to
plasma.

Data from our in vitro study demonstrated that it is possible to restore coagulation
properties by combining defined concentrations of CFCs in an initially factor-
free albumin-based colloid solution. The viscoelastic clot formation parameters
A 10 and MCF observed in CRF were comparable not only to human plasma but
also to whole blood under the presence of platelets. The surrogate parameter for
thrombin generation, CT, was prolonged when compared to our internal control
group, but reached normal levels for whole blood when analysed in presence of
platelets at 100 x 103/ul (249).

Massive bleeding, independent of its aetiology (trauma, obstetrical or surgical),
usually includes high ratio FFP transfusion guided by institutional massive
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transfusion protocols, based on a large body of evidence favouring plasma
against coagulation factor-free resuscitation fluids (250)(251). This haemostatic
resuscitation concept, however, is insufficient to avoid massive transfusion-
associated multifactor coagulopathies (252). Factor-containing fluids for volume
therapy, like CRF, that are characterized by optimized viscoelastic properties
could be an appealing new treatment component. Additional point-of-care
monitoring would still allow for goal-directed top-up corrections to compensate
for additional factor deficiencies (not dilution-related) but monitoring intensity
could be reduced. Easy storage of the CRF components at 4°C, immediate
availability without thawing time, and the universal applicability, independent
of blood group compatibility, could provide both logistic and clinical advantages
of this new product compared to frozen plasma. The clinical indications for CRF
administration could largely be analog to those of plasma, focusing on uncontrolled
bleeding events related to multifactor deficiencies in hypovolemic patients, in
which ongoing factor-free fluid therapy could cause further deterioration of the
basic coagulation mechanisms. In these urgent scenarios, CRF could provide
shorter decision-to-treatment times than those known for plasma transfusion.
CRFs could easily be held available, independent of blood bank facilities, in
all areas exposed to massive bleeding scenarios, like operating theatres, ICUs,
delivery rooms, emergency departments and even in a prehospital emergency-
or military settings. Future clinical studies in massive transfusion scenarios
will have to show if substituting plasma with CRF is feasible and if equal
efficacy in terms of hemodynamic and coagulation stability will be provided.
Furthermore, clinical trials will have to show if plasma-specific adverse events
like “transfusion-related acute lung injury (TRALI)” or “transfusion-related
immune modulation (TRIM)” would be less frequent under treatment of purified
plasma-derived components like CFCs or albumin. It is not finally established
from previous clinical studies, if the overall complication rate, especially when
compared to solvent and detergent treated pooled plasma, really results in a
better safety profile for factor concentrates. Next to these -still to be answered-
clinical issues, current costs for the final CRF components would imply a major
economic obstacle for the implementation of this product into clinical routine,
even if outcome superiority compared to plasma-based standard of care could be
demonstrated in future clinical studies.

129



BLEEDING ASSOCIATED COAGULOPATHY: NEW TREATMENT STRATEGIES BASED ON
COAGULATION FACTOR CONCENTRATES Tobias Bernhard Koller

The role of human albumin colloids as a carrier solution in CFR

Human albumin 5% was chosen as a carrier solution for the coagulation factor
compound of our CRF for different reasons. First, colloids were favoured against
crystalloids, because accurately defined coagulation factor concentrations within a
predefined volume of a resuscitation fluid would only make sense if the underlying
carrier showed adequate and sustained volume effects in the intravascular space.
Second, the colloid should not interfere in a significant manner with the coagulation
system. Although all colloid solutions show dilutional effects, albumin solutions,
together with gelatins, seem to cause less colloid-specific, detrimental effects
on platelet function or fibrin polymerization than other colloids, like dextrans,
or starches (4)(253). There is some experimental 77 vitzro evidence that albumin
might exert anticoagulant and anti-platelet effects. These effects seem to be related
to heparin-like mechanisms caused by direct binding to antithrombin and by an
albumin-associated induction of nitric oxide affecting platelet aggregation (120)
(121). These specific albumin actions on coagulation and platelet function do not
appear to have a relevant clinical effect with increased bleeding tendency. In our
experimental model different combinations and concentrations of coagulation
factors and platelets were tested under physiological albumin concentrations.
Therefeore, possible albumin effects on coagulation mechanisms should not
affect the transferability of our results to 7z v/vo conditions.

We preferred albumin against gelatins to optimize comparability to FFP in future
trials. Experimental studies show that albumin-based colloid solutions provide
stabilizing effects on the endothelial barrier and show intravascular plasma
expander effects of nearly 100% (254)(255). By contrast, no such effects on the
endothelial barrier could be demonstrated for CFCs (256). The administration of
well-balanced coagulation factors in carrier solutions with constant intravascular
volume effects might be a safe way to treat bleeding-associated coagulopathies,
as “overshot” peak plasma concentrations caused by the infusion of highly
concentrated factor formulas (as under non diluted CFC administration) would
be avoided. The intravascular volume effect of colloidal resuscitation fluids
seems to be context-sensitive and correlated to the integrity of the endothelial
glycocalyx layer. There is growing evidence that in special clinical conditions
like sepsis and trauma, characterized by elevated glycocalyx shedding rates,
the volume expander rate of iso-oncotic colloids would be less than predicted.
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The underlying glycocalyx disruption seems to be partially driven by a “low-
protein environment” caused by aggressive crystalloid or synthetical colloid
fluid treatment. By contrast, protein-containing resuscitation fluids like plasma
or albumin-based colloids seem to provide protective effects against glycocalyx
shedding. This albumin-mediated protection of the glycocalyx layer is currently
demonstrated in mostly preclinical, in-vitro studies, and it remains a matter of
future studies if this translates into a clinically detectable advantage of albumin-
containing resuscitation fluids (257)(258).

Molecular Basis of CFC-driven coagulation processes

Haemostasis is a result of coordinated interactions between platelets and
coagulation mechanisms (259). Coagulation mechanisms necessary for the
consolidation of platelet-mediated primary haemostasis require a cascade of
enzymatic reactions leading to the formation of fibrin (260)(261)(262). Results of
our 7z vitro experiments indicate that coagulation mechanisms can be reproduced
using arestricted number of coagulation factors suspended in a neutral fluid. To our
knowledge, this is the first experimental study that has been able to demonstrate
that the combination of commercially available CFCs in an initial coagulation
factor- and blood-cell-free solution leads to the formation of a stable 7z vizro fibrin
clot. The initiation of the coagulation in this fluid requires the use of EXTEM or
FIBTEM reagents whose components (calcium, phospholipids, and tissue factor)
would trigger the activation of the prothrombin complex coagulation factors VII,
IX, X, and II contained in commercial PCCs (115). These coagulation factors lead
to sufficient thrombin generation and warrant the basic activating mechanism of
the coagulation system to sustain 7z vizzo fibrin polymerization. FGN provides the
structural clotting substrate supporting secondary haemostasis (263). Thenecessary
FGN concentration in CRF to reach normal TEM values (when combined with
FXIII) was found in the range of physiological plasma concentrations, around 4
g/l for FGN and 0,51 IU/ml for FXIII. FXIII crosslinks fibrin, completing blood
coagulation and protecting the haemostatic plug from the fibrinolytic activity at
the clot formation site. Zz vitro studies demonstrated that supplementation with
FXIIIC increases clot firmness assessed by TEM in perioperative patients with
elevated FGN and reduced FXIII levels. However, in another 77 vifro model of
massive transfusion in trauma, combination therapies with FC and FFP, but
not FXIIIC, improved both coagulation kinetics and fibrin-based clot strength
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(264)(265). Our present study indicates that increasing concentrations of FXIII
enhance clot strength at fixed concentrations of prothrombin complex (1 IU/ml)
and FGN (4 g/1). Consistently, there is further evidence that FXIII deficiency will
impair FGN function and fibrin formation, suggesting an inverse link between
low FXIII levels and enhanced thrombin generation, modifying the structure-
function relationship of fibrin to support haemostasis (266). Data derived from
clinical studies propose maintenance of 50-60% of FXIII activity to avoid
bleeding tendency in the perioperative setting (267). CRF compositions without
FXIII, yielding comparable clot strength in TEM when compared to our final
composition, are possible from a theoretical point of view. We decided to add a
purified source of FXIII to our final CRF composition despite the high potential
of concentrate-derived FGN on viscoelastic clot strength to maintain a close-
to-physiological factor composition. The safe upper limit of FC treatment has
not been precisely defined. It is currently suggested that plasma levels of FGN
should reach 1.5 to 2 g/l in bleeding patients (268). There is a clear tendency, as
reported in different guidelines, to recommend elevating plasma FGN in some
clinical situations (5)(172)(269). Taking into consideration the results of our
TEM studies it may be difficult to maintain a well-balanced coagulation factor
composition during a long-lasting, high-dynamic bleeding event if supplements
are only POC driven and punctual. In this context, a fixed ratio of clotting factors
in CRFs administered under volume therapy could provide more balanced
stability within the complex multifactor system of blood coagulation than single
factor substitutes as proposed in current algorithms.

Impact of platelets on Clotting Time (CT) as a surrogate parameter for
thrombin generation potential in CRF-based coagulation processes

CT in TEM is partially dependent on thrombin generation. Direct anticoagulants
reducing thrombin generation definitively prolong CT (270). Platelets contribute
to enhancing thrombin generation, accelerating CT, and increasing MCEF.
Additionally, platelet phospholipids dramatically contribute to the amplification
of coagulation mechanisms, thus potentiating thrombin generation and fibrin
polymerization. Fibrin then interacts with activated platelets and plays a critical
role in MCF. CT values of platelet-free CRF samples in our in-vitro experiments
were significantly prolonged when compared to plasma CT levels of our internal
control group. Several reasons may account for these findings: First, our 7z vitro
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samples were completely free of any phospholipids or cell membrane fragments
that could influence factor activation. Consequently, the addition of platelets to
CRF containing 1 IU/ml prothrombin complex, 4 g/l of FGN, and 1 IU/ml FXIII
leads to the normalization of CT and MCEF. It could be assumed from our studies
that, when combined with CRF, a platelet count around 100 x 103/ ul should be
required to fully reconstitute TEM parameters to levels observed in whole blood
studies.

CT values above 80 s are considered to reflect pathological thrombin generation
and are generally accepted as a treatment threshold. CT values of CRF combined
with platelets were significantly shorter than the generally recommended
treatment thresholds (260). Second, the used PCC in our experiments contains
heparin. Other study groups previously reported on CT sensitivity of extrinsically
activated TEM tests (271). It is questionable if this phenomenon has any clinical
relevance. The current scientific rationale rather suggests that PCCs might be
associated with overshot thrombin generation with the potential to induce
disseminated intravascular coagulation and that AT supplements might mitigate
this potentially dangerous adverse effect (272).

Study limitations

The complete absence of antithrombin in the final CRF composition is a major
limitation of our experiments and the effects of PCC supplements in clinical
situations with reduced antithrombin levels will have to be analysed in future
trials. A further limitation of our experimental studies is the complete absence of
red blood cells. Red blood cells seem to exert a more important role in primary
haemostasis, whereas their modulating effect on secondary haemostasis seems to
benegligible (273). The factis that viscoelastic studies can be reliably performed in
plasma samples (273)(274). Surprisingly, an inverse relation between hematocrit
and clot firmness was previously reported under experimental and clinical anemic
conditions (275). We cannot rule out that the presence of red blood cells in our
in vitro model could lead to a measurable reduction of clot firmness parameters.
However, following reports of Schoergenhofer et al. (273) no effects on other
TEM parameters should be expected under whole blood conditions. Under
massive transfusion using CRF as a plasma substitute, transfusion of red blood
cells would be an integral part of the clinical management to uphold an adequate
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amount of oxygen carriers within the circulating blood volume. Altogether, the
transfer of our data into a clinical context must therefore be done very carefully.
All factor components of CRFs have previously been safely administered in
loose compositions for the management of bleeding-associated coagulopathy
(276). PCCs show a reliable safety profile and are now the treatment of choice
for the emergency reversal of Vitamin K antagonists (277)(278). Nevertheless,
a careful assessment of the thrombogenic potential of fixed factor combinations
for the treatment of a multifactor deficit under massive bleeding will have to be
performed in future studies.
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6. FINAL CONCLUSIONS

1. A huge body of scientific evidence from retrospective and observational
studies supports the idea that hypofibrinogenaemic conditions in actively
bleeding patients significantly increase the risk for massive transfusion and
higher mortality, and should therefore be adequately treated.

2. Most experts agree on the concept of threshold-guided treatment necessity.

3. Evidence from randomized controlled trials and observational studies
suggests that plasma transfusion, within the framework of fixed component
ratios, can be safely substituted by CFCs, guided by POC monitoring with
a beneficial impact on transfusion rates and mortality.

4. CFCs suspended in initially factor-free albumin solutions have the potential
to restore mechanisms of secondary haemostasis in the absence of any
blood component, showing viscoelastic properties comparable to whole
blood when tested in presence of platelets.

5. Coagulation factor enriched albumin-based colloids could be a valuable tool
to provide stable intravascular volume effects in hypovolemic conditions
while simultaneously maintaining basic coagulation mechanisms.

6. This approach could offer future alternatives to transfusion of FFP under
resuscitation conditions.

7. In the clinical scenario of hypofibrinogenaemia-related bleeding, there
is current consensus favouring FC (or Cry) supplements before plasma
transfusion to improve haemostatic potential and reduce the overall
transfusion rates of allogeneic blood products.
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8. CFC-based treatment of multi-coagulation factor deficiencies seems to
be a feasible alternative to plasma-based treatment strategies in acquired
bleeding-associated coagulopathies.

9. CFC reconstituted in albumin carrier solutions could have a future role as
resuscitation fluids with haemostatic potential in severe bleeding.
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