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Resum

L’entrellaçament quàntic i la no localitat representen dos dels fenòmens més sor-
prenents de la fı́sica quàntica, la importància dels quals es reconeix no només des
d’un punt de vista conceptual, sinó també a la llum de les seves aplicacions en
diversos protocols d’informació quàntica. Per aquesta raó, trobar criteris per a
la caracterització d’aquests fenòmens en sistemes de molts cossos és una qüestió
molt important. Malauradament, ja en el cas de sistemes de baixa dimensió, aque-
sta tasca sol ser extremadament difı́cil de resoldre i, de fet, s’ha demostrat que la
seva solució és NP-difı́cil (NP-hard) en el cas general. Una estratègia tı́pica per
simplificar el problema és considerar sistemes dotats de simetries en què sembla
raonable esperar que un grau d’ordre més gran pugui resultar en una reducció de la
complexitat del problema original. En aquesta tesi, investiguem la caracterització
de l’entrellaçament i de les correlacions no locals en sistemes de partı́cules indis-
tingibles, els estats dels quals, anomenats simètrics, són invariants sota qualsevol
intercanvi de les parts.
En primer lloc, en el context de la detecció d’entrellaçament, establim una dualitat
formal entre el problema de separabilitat per a estats simètrics de dos qudits en
dimensió arbitrària i la teoria de matrius copositives. Aquesta correspondència és
particularment valuosa per detectar estats entrellaçats que són positius sota trans-
posició parcial (PPTES) i per relacionar les propietats dels entanglement witnesses
(testimoni d’entrellaçament) que els detecten amb les de les matrius copositives
associades. La dualitat entre aquests conceptes permet generar famı́lies d’estats
simètrics PPTES entrellaçats en dimensió arbitrària i pot ser explotada a més util-
itzant tècniques de semidefinit programming per generar exemples de matrius
copositives excepcionals, la caracterització de les quals sol ser molt difı́cil.
En segon lloc, investiguem la robustesa de la no localitat en sistemes simètrics
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de molts cossos que interactuen amb un entorn extern. Utilitzant desigualtats de
Bell, demostrem que les correlacions no locals no només sobreviuen en presència
de soroll tèrmic, sinó també en el cas d’estats estacionaris de no-equilibri. A
més, inspeccionem un escenari on el sistema de molts cossos se sotmet a mesures
repetides, demostrant que, fins i tot en aquest cas, la no-localitat sobreviu a l’efecte
de la dissipació durant un temps curt, encara que significatiu.
Finalment, la darrera part d’aquesta tesi ha estat dedicada a l’anàlisi de les xarxes
neuronals quàntiques del tipus atractor (aQNNs). En aquest cas, atesa la complexitat
del model, les simetries són fortament desitjables per reduir la intrincació original
del problema. Sota aquestes hipòtesis, demostrem que el rendiment de les aQNNs
es pot estudiar utilitzant eines de la teoria de recursos de la coherència, les quals
proporcionen el marc idoni per analitzar les propietats dels mapes quàntics que
descriuen l’ evolució de les aQNNS.



Resumen

El entrelazamiento y la no localidad representan dos de los fenómenos más sorpren-
dentes de la fı́sica cuántica, cuya importancia se reconoce no sólo desde un punto de
vista conceptual, sino también a la luz de sus aplicaciones en diversos protocolos de
información cuántica. Por esta razón, encontrar criterios para la caracterización de
dichos fenómenos en sistemas de muchos cuerpos es una cuestión de suma impor-
tancia. Tipicamente, ya incluso para sistemas de baja dimensión, esta tarea suele ser
extremadamente difı́cil de resolver y, de hecho, se ha demostrado que determinar
si un sistema es entrelazado es NP-difı́cil en el caso general. Una estrategia tı́pica
para simplificar este problema es considerar sistemas dotados de simetrı́as en los
que parece razonable esperar que un mayor grado de orden pueda resultar en una
reducción de la complejidad del problema original. En esta tesis, investigamos la
caracterización del entrelazamiento y de las correlaciones no locales en sistemas de
partı́culas indistinguibles, cuyos estados, denominados simétricos, son invariantes
bajo cualquier intercambio de las partes.
En primer lugar, en el contexto de la detección de entrelazamiento, establecemos una
dualidad formal entre el problema de separabilidad para estados simétricos bipartitos
en dimensión arbitraria y la teorı́a de matrices copositivas. Dicha correspondencia
es particularmente valiosa para detectar estados entrelazados que son positivos bajo
transposición parcial (PPTES) y para relacionar las propiedades de los entanglement
witnesses (testigos de entrelazamiento) que los detectan con las de las matrices
copositivas asociadas. La dualidad entre estos conceptos permite generar familias
de estados simétricos bipartitos PPTES en dimensión arbitraria, y permite utitzando
técnicas de semidefinite programming generar ejemplos de matrices copositivas
excepcionales, cuya caracterización suele ser muy difı́cil.
En segundo lugar, investigamos la robustez de la no localidad en sistemas simétricos
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de muchos cuerpos que interactúan con un entorno externo. Utilizando desigual-
dades de Bell, demostramos que las correlaciones no locales sobreviven no sólo
en presencia de ruido térmico, sino también en el caso de estados estacionarios
de no-equilibrio. Además, inspeccionamos un escenario en el que el sistema de
muchos cuerpos se somete a medidas repetidas, demostrando que, incluso en este
caso, la no-localidad sobrevive al efecto de la disipación durante un tiempo corto,
aunque significativo.
Finalmente, la última parte de esta tesis ha sido dedicado al análisis de las redes
neuronales cuánticas llamadas atractoras (aQNNs). En este caso, dada la complejidad
del modelo, las simetrı́as son fuertemente deseadas para reducir la intrincación
original del problema. Bajo estas hipótesis, demostramos que el rendimiento de
las aQNNs puede estudiarse utilizando herramientas de la teorı́a de recursos de la
coherencia, que proporciona un marco conveniente para analizar las propiedades
de los mapas cuánticos que describen la evolución de las aQNNS.



Abstract

Entanglement and non-locality represent two of the most striking phenomena of
quantum physics whose importance is acknowledged not only from a conceptual
point of view but also in light of their applications in a variety of quantum in-
formation protocols. For this reason, finding criteria for their characterisation in
many-body systems, is a question of uttermost importance. Unfortunately, already
in the case of low dimensional systems, this task is usually extremely difficult to
solve and indeed, its solution has been proven to be NP-hard in the general scenario.
A typical strategy to circumvent this drawback is to consider systems endowed
with symmetries where it seems natural to expect that a higher degree of order
might result in a reduced complexity of the original problem. In this thesis, we
investigate the characterisation of entanglement and non-local correlations in sys-
tems of indistinguishable particles, whose states, dubbed symmetric, are invariant
under any exchange of the parties.
First, in the context of entanglement detection, we establish a formal duality be-
tween the separability problem for two-qudit symmetric states in arbitrary dimen-
sion and the theory of copositive matrices. Such correspondence is particularly
valuable to detect entangled states which are positive under partial transposition
(PPTES) and to relate the properties of the entanglement witnesses that detect them
with those of the associated copositive matrices. The duality between these con-
cepts allows to generate families of two-qudit symmetric PPTES states in arbitrary
dimension and can be further exploited with semidefinite programming techniques
to generate examples of exceptional copositive matrices, which are typically hard
to characterise.
Second, we investigate the robustness of non-locality in symmetric many-body
systems which interact with an external environment. Using Bell inequalities we
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show that non-local correlations survive not only in the presence of thermal noise,
but also in the case of non-equilibrium stationary states. Moreover, we inspect a
scenario where the many-body system undergoes repeated measurements, showing
that, also in this case, non-locality survives the effect of the dissipation for a short,
although significant, time.
Finally, the last part of this thesis has been devoted to the analysis of the so-called
attractor quantum neural networks (aQNNs). In this case, given the complexity
of the model, symmetries are strongly desired to reduce the original intricacy of
the problem. With this assumptions, we show that the performance of aQNNs
can be studied using tools of the resource theory of coherence, which provides a
convenient framework to inspect the properties of the quantum maps that describe
the evolution of aQNNS.
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1
Introduction

Vi arriva il poeta
e poi torna alla luce con i suoi canti
e li disperde.
Di questa poesia
mi resta
quel nulla
di inesauribile segreto.

Giuseppe Ungaretti

Among all human features, curiosity is arguably the noblest. Long before the first
examples of civilisations, humans have always been fascinated by the surrounding
world and, to some extent, our existence is nothing but a constant attempt to ex-
plain what we feel or what we see. It is often argued that poetry, music and Art
in general should be concerned only with emotions, while physics, mathematics
and Science should deal exclusively with empirical observation. To some extent,
this remark is undoubtedly true: after all, applying logical reasoning to feelings
would have little result if not to convert mankind into an insensitive army of robots.
However, drawing such a neat line between these disciplines, seems to suggest
that certain features, that are typically associated with the world of Humanities,
cannot be shared by the realm of Science, conventionally depicted as an exciting,
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1.1. THE SEPARABILITY PROBLEM

although intrinsically arid, field. Nevertheless, it should be stressed that physics is
not less concerned about beauty than what Art is, and indeed, the elegance of a
mathematical proof is often regarded as an additional confirmation of the correct-
ness of a result. Even more important is the role played by symmetry. In the same
way as ancient Greeks regarded certain proportions as perfect, physicists know
that symmetries are a hint of some interesting underlying features. Clearly, being
physics a scientific discipline, symmetries are also envisaged as a mathematical tool
to reduce the intrinsic complexity of certain problems and intuitively, it seems a
reasonable assumption that systems displaying a certain degree of order would be,
a priori, easier to treat. This is particularly evident in quantum physics, where the
characterisation of some phenomena, such as entanglement and non-local correla-
tions, is often a hard task already for simple systems, and dealing with symmetric
systems typically yields a great advantage. It is in this spirit that the present thesis
should be understood: symmetry is not only an elegant way that allows for a nicer
mathematical treatment of certain problems, but is often a necessary assumption
to be able to deal with the inherent complexity of quantum phenomena.
In the following, we present the structure of this thesis. We provide a general
overview of the state of the art of the topics we cover, namely, entanglement
characterisation, non-locality detection and quantum neural networks, along with
a concise presentation of our results for each section.

1.1 The separability problem

1.1.1 State of the art
By the time of its first appearance in 1935 [EPR35; Sch35], the phenomenon of
entanglement was initially regarded as a problem related to an incompleteness
of quantum theory. The impossibility to describe the state of a quantum particle
independently of the ones of other subsystems strongly clashed with the ideas of
classical physics, where the knowledge of a composite system as a whole implies
complete information about its constituents. Quoting E. Schrödinger, one of the
fathers of quantum mechanics, “best possible knowledge of a whole does not
include best possible knowledge of its parts — and this is what keeps coming back
to haunt us” [Sch35]. It was only half a century later, with the advent of the new
field of quantum information theory, that the central role of entanglement was
acknowledged in a plethora of applications ranging from quantum cryptography
[Eke91; GRT+02] and quantum teleportation [BBC+93] to entanglement swapping
[ZZH+93] or measurement-based quantum computation [RB01], just to name a
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CHAPTER 1. INTRODUCTION

few. Thanks to the recent progress in quantum control, entangled states have been
achieved not only for systems of few particles [LKS+05; HHR+05; LZG+07] but
also for many-body systems [HSS+99; MGW+03; AFO+08; MZH+15] and, recently,
even for “macroscopic” objects [LSS+11; KPS+21]. For this reason, the so-called
separability problem, that is, deciding whether a given quantum state is separable
or entangled, is a relevant question not only due to its theoretical implications but
also in light of its experimental applications. Over the years, it has become clear
that entanglement characterisation is a challenging task [HHH+09]. Moreover, it
cannot be quantified by a unique measure. The exception lies in (bipartite) pure
entangled states where it is trivial to determine if the state is entangled and, being
in this case all entanglement measures equivalent, entanglement entropy is the only
measure needed [NC10; BZ06]. Interestingly, in the asymptotic limit, for a sufficient
number of copies of the system, the entanglement entropy measures the resource
interconversion capacity between different pure states, within the paradigm of
local operations and classical communication [BBP+96a]. However, already in
the case of bipartite mixed states, two such measures are needed to quantify this
interconversion rate: the entanglement of formation and the entanglement of
distillation.

A closely related, although inherently different, approach is the characterisation
of entangled states independently of any measure or of their usefulness for a specific
task. In this context, the characterisation of entangled states has been proven to be
NP-hard, in the general case [Gur03]. However, partial characterisation has been
achieved employing criteria that provide necessary, but not sufficient, conditions
to determine if a given state is entangled or not. The most powerful of such
criteria, formulated in terms of linear positive maps, is the positivity under partial
transposition (PPT) [Per96], which is the paradigmatic example of a positive, but
not completely positive map [Cho75; Wor76]. States that do not fulfil the PPT
criterion are entangled but the converse is not true, except for low dimensional
cases [HHH96]. In this regard, quantum maps and their associated entanglement
witnesses (EWs), provide the strongest criteria for entanglement characterisation: a
quantum state is entangled if, and only if, there exists an EW that detects it [TV00;
LKC+00; CS14]. Crucially, in order to characterise entanglement in states that do
not break the PPT criterion, dubbed PPT-entangled states (PPTES), it is necessary to
construct non-decomposable EWs [LKH+01]. Interestingly, EWs have been shown
to provide also a measure of entanglement which is upper and lower bounded by
other entanglement measures [Bra05].
Another possible approach is the method proposed in [DPS02; DPS04], based
on the construction of PPT-symmetric extensions, which allows recasting the
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separability problem in terms of a semidefinite program (SDP). Remarkably, this
technique provides numerical solutions in the case of relatively small systems,
although it becomes computationally demanding when the dimension of the system
under investigation grows. Moreover, it cannot be used to characterise families of
entangled states, but only to check the separability of specific instances of quantum
states.

Nowadays, it is still unclear whether, in general, the problem of entanglement
characterisation remains equally hard for systems displaying some symmetries
[VW01; TG10; TV00; EW01; CK07; Yu16; QRS17; TAQ+18; MAT+21]. A possible
approach in this direction is to investigate if, and how, symmetries can help to
construct EWs for such systems. A natural choice in this sense is to consider
permutationally invariant systems and, more specifically, a subclass of them whose
states, dubbed symmetric, are invariant under any permutation of the parties. Such
states have a clear physical meaning since they provide a natural description for sets
of indistinguishable particles, i.e., bosons. The first entanglement characterisation
for symmetric states of two qudits was given in [Yu16], where it was discussed
the case of particularly simple symmetric states, said diagonal symmetric (DS), that
correspond to mixtures of projectors on symmetric states. The analysis performed
in [TAQ+18] is also particularly valuable for at least two reasons: i) it shows that the
separability property of a two-qudit DS state ρDS , represented by a d2 × d2 matrix,
can be recast in terms of an associated d× d matrix M(ρDS), thus confirming the
role of symmetry in simplifying the complexity of the original problem; ii) it proves
that there exists a class of matrices, known as copositive, which act as entanglement
witnesses for DS states. As a consequence, the separability problem for a state ρDS
can be recast as the equivalent problem of checking the membership of its related
matrix M(ρDS) to the cone of the so-called completely positive matrices. Notice
that checking the membership to this latter cone is still an NP-hard problem, an
observation which is consistent with the result provided in [Gur03]. Nevertheless,
the reduced dimension of the matrix M(ρDS) offers a great simplification for
numerical calculations, thus reducing the computational cost of the original task.

1.1.2 Main results
In chapter 3 we study the separability problem for two qudits of arbitrary dimension
in the symmetric subspace. Our analysis is articulated in two steps. First, we
complement the analysis tackled in [TAQ+18], further exploring the possibility to
use copositive matrices as EWs for DS states. To this end, we first introduce the basic
notions regarding the theory of copositive matrices and provide an explicit method
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to derive an EW, starting from a matrix of this class. Moreover, we establish a link
between the properties of the copositive cone and the features of the related EWs.
Specifically, we prove that: i) copositive matrices that can be decomposed as the sum
of a positive semidefinite and a non-negative matrix, lead to decomposable EWs;
ii) copositive matrices that do not admit such decomposition, dubbed exceptional,
correspond to non-decomposable EWs, and iii) extreme copositive matrices, i.e.,
those that are extremal in the copositive cone, lead to optimal EWs. This analysis
further extends the previous work regarding the entanglement characterisation for
DS states, offering valuable insights about the properties that a copositive matrix
must satisfy in order to define a valid EW.
Second, we investigate the existence of two-qudit PPT-entangled states in the
symmetric subspace, focusing on the first non-trivial case, i.e., d = 3. Making
use of both analytical and numerical techniques, we provide a new family of two-
qutrit PPT-entangled states, along with the expression of the non-decomposable
EW that is able to detect it. We conjecture that any symmetric PPT-entangled
state of two qutrits must belong to such family, a conjecture which is strongly
supported by numerical evidence. It is important to remark that, to the best of our
knowledge, there are no known examples of non-decomposable EWs for generic
symmetric states, with the sole exception of few examples [TG10], which have
been found numerically using weaker entanglement criteria [LKH+01; SBL01;
Cla06; KO12; CD11; MMO10]. For this reason, our work offers a complementary
approach to the characterisation of the entanglement in the symmetric subspace
of two qudits. These results are part of the published paper [MAT+21] which is
a joint collaboration with Albert Aloy, Jordi Tura and Anna Sanpera. Finally, in
Appendix A, we present a method, based on the technique proposed in [DPS02], to
recast the search for exceptional copositive matrices as an SDP problem. Since the
characterisation of such matrices is, in general, an NP-hard problem, our method
provides an alternative tool to find new examples of exceptional copositive matrices
of order d for d ≥ 5.

1.2 Non-locality in open quantum systems

1.2.1 State of the art
Strictly related to entanglement, the concept of non-locality represents one of the
most intriguing phenomena of Nature, in which local measurements on a shared
resource lead to correlations that cannot be explained by any local realistic theory
[Bel64]. Such correlations, dubbed as non-local, are of uttermost importance not
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only from a foundational point of view but also as a resource for technological
applications, ranging from device-independent quantum key distribution [Eke91;
BHK05; SGB+06] and shared randomness generation [CR12] to quantum commu-
nication protocols [SGB21]. Operationally, this resource is assessed by means of
Bell inequalities [BCP+14] whose violation signals unequivocally the presence of
non-local correlations.
Entanglement and non-locality are known to be related but non-equivalent re-
sources for any number of parties [BGS05; VB14; ADT+15; FVM+19]: while every
non-local state is entangled, the converse is not necessarily true if the state is
mixed, and it still remains unclear the intimate nature of such connection. In the
last two decades, following the development of quantum platforms that allow for
the control and manipulation of large systems of particles, the study of entangle-
ment in many-body systems has become a major trend in modern physics. While
on the one hand, this has led to seminal insights into the physics of condensed
matter and material science, on the other, the role of non-local correlations in many-
body systems has remained widely unexplored, with the sole exception of few
significant advances [TAS+14; LSA12; TDA+17]. The reasons behind this gap are
several. First, the characterisation of non-locality in many-body systems typically
requires the construction of N -body correlators [ŻB02; WW01], which in general
poses an unrealistic task within the current technological capabilities. Second, the
complexity of this task grows with the dimension of the system, resulting in an
NP-complete problem in the general case [BFL91]. Nevertheless, recent progress
has been achieved by constructing many-body Bell inequalities that are constrained
by symmetries and involve only one- and two-body correlators [TAS+14; TAS+15;
ATB+19; PAL+19], an advance that has led to the experimental detection of Bell
correlations in some many-body quantum systems [SBA+16; EKH+17; SLS+21].

All the above examples, typically refer to ground states or excited states of
isolated many-body systems. For this reason, a natural question is whether the
interaction with an environment results in a decay or an enhancement of non-local
correlations. Besides its theoretical implications, an answer to this question would
bring key insights at an operational level, especially in view of the recent idea to
use non-locality as a resource in the so-called Device-Independent (DI) framework.
The DI framework exploits the operational assessment of non-locality in order to
perform quantum information processing tasks without the need to require trust
in their implementation. At first sight, the features of the DI framework make
non-locality the ideal tool for the certification of genuinely quantum properties
in noisy environments such as the emergent quantum technological platforms
[AM16; ABG+07]. However, given the fragile nature of quantum correlations, one
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is tempted to believe that non-locality is lost when the quantum system is allowed
to interact with an external environment with many degrees of freedom. In this
thesis, we prove that this is not the case and show that non-locality can be detected
also in many-body open quantum systems (OQS).

1.2.2 Main results
In chapter 4, we investigate the presence of non-local correlations in open quantum
systems. The standard setting for an OQS [BP+02] consists of a quantum system
coupled to an external environment, typically acting as a bath/reservoir at inverse
temperature β = 1/κBT . Of particular interest, especially in the context of quan-
tum thermodynamics, is to consider a scenario that may give rise to non-equilibrium
steady states. Our analysis is structured as follows. First, we introduce a class of Bell
inequalities, originally designed in [TAS+15] for symmetric many-body systems,
which is the main tool that we use for non-locality detection. Then, we present the
physical model that describes the many-body OQS under exam and inspect how
the presence of the environment affects non-local correlations. In particular, we
discuss the coupling with a thermal bath, as well as the case of non-thermal noise.
Using quantum master equation methods, we inspect the presence of non-local
correlations in the stationary states as well as in the dynamical regime, that is
during the evolution that leads to the aforementioned stationary states. In both
cases, we show that non-local correlations are present and can be detected by
means of Bell inequalities involving only one- and two-body correlators. Finally,
we investigate an adversarial scenario in which the principal system undergoes a
series of repeated measurements. Also in this case, starting from a non-local state,
we show that non-local correlations are robust under the presence of noise for a
short, although significant, time. This result is particularly interesting in light of
its potential application in the field of quantum cryptography. Indeed, the action
of repeatedly measuring a system can be seen as the attempt of an eavesdropper
to extract information, while remaining hidden. It is important to remark that,
to the best of our knowledge, this is the first example of non-locality detection
in open quantum systems, an observation which makes our analysis particularly
valuable. These results are part of the published paper [MRS+22] which is a joint
collaboration with Andreu Riera-Campeny, Anna Sanpera and Albert Aloy.
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1.3 Quantum neural networks & quantum maps

1.3.1 State of the art
Modelled on the structure of the nervous system in animals, a neural network con-
sists of n computational units, usually dubbed (artificial) neurons, interconnected
between them. Analogously to the case of real biological systems, the computational
power of artificial neural networks relies on the connections between neurons, a
feature that makes them the ideal candidates in a variety of fields, such as pattern
recognition [BBK10; CQ18], stock market predictions [GKD11; SSC14] as well
as medical diagnosis [Kon01; SAL+03; ALP+13], just to name a few. Among the
different types of artificial neural networks, an interesting class is represented by
attractor neural networks (aNNs), where a collection of n Ising spins with binary
states si ∈ {±1}, dynamically evolve towards one of the states of minimal energy
of the system [Ami89]. Such states are called attractors or patterns. Attractor neural
networks display an exciting feature known as associative memory, that is, the
capability to retrieve, out of a set of stored patterns, the state which is the closest to
a noisy input according to the Hamming distance. Clearly, the larger the number of
attractors, the greater the associative memory, i.e., the storage capacity of the net-
work. When considering the quantum analogue of aNNs, called attractor quantum
neural networks (aQNNs), classical bits are replaced by qubits which evolve under
the action of a completely positive and trace-preserving (CPTP) map. The storage
capacity of an aQNN then corresponds to the maximum number of stationary
states of such a map. Adding quantum features like correlations, entanglement and
superposition to the parallel processing properties of classical neural networks is
expected to result in an enhancement of their performances [RDR+17; CCC+19;
LAT21]. Indeed, an exponential increase in the storage memory of an aQNN, with
respect to its classical counterpart, was already shown in [VM98] by means of
quantum search algorithms. Also, in [RBW+18], the same result was recovered
by using a feed-forward interpretation of the quantum Hopfield neural networks
(for recent development of this model see [MNP20; CGA17]). More recently, in
[LGR+21], the explicit form of the CPTP maps possessing the maximal number
of stationary states was derived. Interestingly, such CPTP maps correspond to
non-coherence-generating operations. Such observation motivates our choice of
addressing aQNNs from a coherence-theoretic approach.
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1.3.2 Main results
Within this framework, in chapter 5, we investigate the relation between the quan-
tum maps that describe aQNNs and the resource theory of coherence. In particular,
starting from the case of error-free aQNNs with maximal number of stationary
states, we show that the related quantum maps correspond to genuinely incoherent
operations (GIOs) and provide the expression for the unitary operators that allow
for their physical implementation. Furthermore, we show that the equivalent of
the Hamming distance in the quantum case is represented by the relative entropy
between the input state and its closest attractor. Hence, we introduce the concept
of the depth of the network, that is, the number of times the map has to be applied
to retrieve faithfully the state which is the closest to the initial input, and show
that is related to the decohering power of the corresponding map. Making use of
this quantity, we provide some no-go results about the performances of error-free
aQNNs. Finally, we tackle the above issues also in the realistic scenario of faulty
aQNNs, i.e., when some error in the realisation of the network is taken into account.
In this case, we prove that the corresponding quantum maps are described by either
strictly incoherent operations (SIOs) or maximally incoherent operations (MIOs),
a result which opens the possibility, in the latter case, for an enhancement of the
performance of the network using coherence as an external resource. These results
are part of the published paper [MSD+22] which is a joint collaboration with Pau
Colomer Saus, Marı́a Garcı́a Dı́az and Anna Sanpera.
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2
Preliminaries

Ho provato a parlare.
Forse, ignoro la lingua.
Tutte frasi sbagliate.
Le risposte: sassate.

Giorgio Caproni

In this chapter we introduce the main tools that we use in this thesis. In section 2.1,
we provide a general overview of the formalism of quantum mechanics regarding
the state of closed systems, their composition and their evolution. Moreover, we
introduce quantum maps and their representations, a tool that we use extensively
throughout this thesis. Section 2.2 is devoted to the theory of open quantum
systems, i.e., the mathematical description of systems that are interacting with
an external environment. The next two sections are dedicated to two of the most
remarkable features of quantum theory, which also represent the main themes of
this thesis: in section 2.3 we introduce the phenomenon of quantum entanglement,
while section 2.4 deals with the related concept of non-locality. Finally, in section
2.5, we present the mathematical tools required to describe symmetric states, i.e.,
the states of systems of indistinguishable particles, which represent the general
framework of this thesis.
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2.1 Quantum states & quantum maps

2.1.1 Pure and mixed states
The first postulate of quantum mechanics asserts that every physical system S is
associated to a complex Hilbert space HS . Hence, the state of S is represented by a
unit vector |ψS⟩ ∈ HS , i.e., ⟨ψS|ψS⟩ = 1. States of this kind are called pure, since
they encode complete knowledge of the properties of the system S.
An equivalent description for the state of a quantum system S is provided by the
density operator ρS , i.e., a positive semidefinite operator (ρS ⪰ 0) with unit trace
(Tr[ρS] = 1) acting on HS . This formalism is particularly useful when dealing with
quantum systems whose state is not completely known. For instance, one could
imagine the case where a system might be found with probability pk in some pure
state |ψk⟩ ∈ HS . Hence, given the ensemble {pk, {|ψk⟩}}k, the density operator ρS
is defined as

ρS =
∑
k

pk|ψk⟩⟨ψk| , (2.1)

where the coefficients pk satisfy
∑

k pk = 1, pk ≥ 0 ∀k.
The state of a system described by Eq.(2.1) is called mixed. In the particular case
when there is only one non-zero coefficient pk = 1 in the sum, ρS reduces to a
rank-one projector onto the pure state |ψk⟩, i.e., ρS = |ψk⟩⟨ψk|. It is a well known
result that ρS corresponds to a pure state if and only if Tr[ρ2S] = 1. Notice that
the decomposition of Eq.(2.1) is not unique and different ensembles of pure states
{pk, {|ψk⟩}}k may correspond to the same quantum state ρS .
If we denote as B(HS) the space of bounded linear operators over HS , the space
of the density operators is defined as D(HS) = {ρS ∈ B(HS) | ρS ⪰ 0,Tr[ρS] =
1}. As a consequence of Eq.(2.1), any mixed state can be expressed as a convex
combination of pure states. This result is particularly relevant because it implies
that D(HS) is a convex set, meaning that for any ρ1, ρ2 ∈ D(HS) and any λ ∈ [0, 1],
it follows that λρ1 +(1−λ)ρ2 ∈ D(HS). Notice that not every state in D(HS) can
be expressed as a linear combination of the other elements: those states that stand
out for their impossibility to be decomposed are usually referred to as the extreme
points of a convex set. Hence, from Eq.(2.1) we deduce that pure states, i.e., rank
one projectors, are extreme points in the set of density operators.
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2.1.2 Quantum measurements
The most general approach to describe measurements in quantum mechanics is
by means of a collection of operators {Mm}, where Mm : H → H′ is a so-called
measurement operator, with associated outcome m. Measuring the state |ψS⟩ with
an operator Mm yields the outcome m with probability pm = ⟨ψS|M †

mMm|ψS⟩ and
leaves the system in the state |ψ(m)

S ⟩, given by

|ψ(m)
S ⟩ = Mm |ψS⟩

⟨ψS|M †
mMm|ψS⟩

. (2.2)

Since
∑

m pm = 1, the operators {Mm} satisfy the completeness relation, i.e.,∑
m

M †
mMm = 1S , (2.3)

but they are not necessarily orthogonal. Eq.(2.2) can be easily generalised to density
operators. In this case, assuming that a measurementMm is performed on a density
matrix ρS , the outcome m is obtained with probability pm = Tr[MmρS], and the
post-measurement state ρ(m)

S is given by

ρ
(m)
S =

MmρSM
†
m

Tr[M †
mMmρS]

. (2.4)

If we are only interested in the outcome probabilities and not in the post-measurement
state, quantum measurements can be described by means of positive operator-
valued measurements (POVMs), defined as a collection {Em,m}, where {Em} is a
set of positive operators, i.e., Em ⪰ 0, fulfilling

∑
mEm = 1. Notice that a POVM

is not unique since there exists, in general, different collections of measurements
operators {Mm} such that Em =M †

mMm ⪰ 0. As a consequence, while a POVM
allows to compute unambiguously the probability pm related to a certain outcome
m, i.e., pm = ⟨ψS|Em|ψS⟩, the expression of the post-measurement state depends
on the explicit choice of the measurements operators {Mm} that implement the
POVM.

2.1.3 Composite systems
The composition of quantum systems is described by means of the tensor product
postulate, which states that, given two physical systems, A andB, the Hilbert space
HAB associated to the composite system A+B is given by the tensor product of
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the Hilbert spaces of each subsystem, i.e., HAB = HA ⊗HB . As a consequence, if
{|ψ(i)

A ⟩}, {|ψ(i)
B ⟩} are orthonormal basis for the Hilbert spaces HA,HB , respectively,

then the state of A+B can be represented as

|ΨAB⟩ =
∑
ij

cij |ψ(i)
A ⟩ ⊗ |ψ(j)

B ⟩ , (2.5)

where the coefficients cij ∈ C sastify the normalisation condition
∑

ij |cij|2 = 1.
In the particular case where there is only one coefficient, i.e., cij ≡ c = 1, Eq.(2.5)
reduces to |ΨAB⟩ = |ψA⟩ ⊗ |ψB⟩. Equivalently, in the case of mixed states, the
expression for the density operator ρAB ∈ B(HA ⊗HB) reads

ρAB =
∑
i

pm|Ψ(m)
AB ⟩⟨Ψ

(m)
AB | , (2.6)

where
∑

m pm = 1 and |Ψ(m)
AB ⟩ =

∑
ij c

(m)
ij |ψ(i,m)

A ⟩ |ψ(j,m)
B ⟩ . If the systems A and

B are uncorrelated, then Eq.(2.6) takes the simpler form

ρAB = ρA ⊗ ρB , (2.7)

where ρA, ρB are the density operators for the systems A,B, respectively.
Finally, the state of the subsystem A can be obtained from ρAB performing the
partial trace over B, i.e.,

ρA = TrB[ρAB] , (2.8)

and similarly for the subsystem B. As we will see in the next section, Eq.(2.8) has
several applications both in the context of entanglement certification as well as in
the case of open quantum systems.

2.1.4 Evolution of quantum states
The evolution of a pure state |ψS⟩ ∈ HS is ruled by the Schrödinger’s equation, i.e.,

d

dt
|ψS(t)⟩ = − i

ℏ
H(t) |ψS(t)⟩ , (2.9)

where the Hermitian operator H(t) is the (time-dependent) Hamiltonian of the
system and ℏ is the Planck’s constant, which in the following of this thesis will be
set equal to 1. Due to the linearity of Eq.(2.9), its solution can be cast as

|ψS(t)⟩ = U(t, t0) |ψS(t0)⟩ , (2.10)
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where U(t, t0) is a unitary operator (U(t, t0)† = U(t, t0)
−1) fulfilling U(t0, t0) =

1S . In the case of closed systems, an explicit expression for U(t, t0) can be found.
First, let us cast the Hamiltonian H(t) as

H(t) = H0 + V (t) , (2.11)

where we have distinguished between the time-dependent term, V (t), and the “free”
term, H0. Then, let us consider the interaction picture where the representation
AI(t) of a generic operator A evolves with H0 according to

AI(t) = eiH0(t−t0)A(t)e−iH0(t−t0) . (2.12)

As a consequence, the representation of the Hamiltonian of Eq.(2.11) in the interac-
tion picture is given by

HI(t) = eiH0(t−t0)V (t)e−iH0(t−t0) . (2.13)

Hence, the expression for U(t, t0) is given by [Dys49]

U(t, t0) = T
[
e
−i

∫ t
t0
dt′HI(t

′)
]
, (2.14)

where T is the time-ordering operator which, in the case of two operators, is
defined as

T [HI(τ1)HI(τ2)] = θ(τ1 − τ2)HI(τ1)HI(τ2) + θ(τ2 − τ1)HI(τ2)HI(τ1) , (2.15)

where θ(τ) is the Heaviside function.
In the particular case where H(t) is time-independent, i.e., HI(t) ≡ H , Eq.(2.14)
takes the simpler form

U(t, t0) = e−iH(t−t0) . (2.16)

Similarly to the case of a pure state, quantum theory also provides a method
to describe the dynamics of a system S whose state is represented by a density
operator ρS . In this case, the time evolution of the operator ρS can be deduced by
applying the Schrödinger’s equation to the collection of pure states {|ψk⟩} of its
associated ensemble. In fact, let us suppose that at time t0 the system of interest is
described by a density operator ρS(t0) of the form

ρS(t0) =
∑
k

pk|ψk(t0)⟩⟨ψk(t0)|. (2.17)
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Then, acting with the evolution operator U(t, t0) on the left and with the adjoint
operator U †(t, t0) on the right of Eq.(2.17), we find

ρS(t) ≡ U(t, t0)ρS(t0)U(t, t0)
† =

∑
k

pkU(t, t0)|ψk(t0)⟩⟨ψk(t0)|U(t, t0)† . (2.18)

Finally, deriving Eq.(2.18) with respect to t, we arrive to an expression for the
evolution of the density matrix ρS(t), i.e.,

d

dt
ρS(t) = −i[H(t), ρS(t)] , (2.19)

where the symbol [·, ·] denotes the commutator between two operators.
Eq.(2.19) can be recast as

d

dt
ρS(t) = L [ρS(t)]] , (2.20)

where L is the Liouville operator, acting on ρS(t), whose expression, in the case of
unitary dynamics, reduces to

L [ρS(t)] = −i[H(t), ρS(t)]. (2.21)

Objects like L of Eq.(2.21) are examples of superoperators, that will be discussed
thoroughly in the next section.

2.1.5 Quantum maps
Transformations of quantum states are described by quantum maps, i.e., superoper-
ators E : B(HA) → B(HB) that satisfy the following properties:

• Linearity: E(αO1 + βO2) = αE(O1) + βE(O2) , ∀O1, O2 ∈ B(HA) ,
∀α, β ∈ C ,

• Hermiticity: E(O†) = E(O)† , ∀O ∈ B(HA) .

Further constraints derive from the fact that E has to preserve the positivity of a
state as well as its unitality. Formally, we have the following definitions:

Definition 2.1. A linear map E : B(HA) → B(HB) is said positive if

∀O ∈ B(HA), O ⪰ 0 =⇒ E(O) ⪰ 0 . (2.22)
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Definition 2.2. A linear, self-adjoint map E : B(HA) → B(HB) is said trace
preserving if

Tr[E(O)] = Tr[O] , ∀O ∈ B(HA) . (2.23)

Notice that, in general, the positivity property of a quantum map does not extend
trivially to composite system. For this reason, we need to impose that E remains
positive also when one takes into account the composition with a larger system.
Formally, this is expressed by the notion of complete positivity:

Definition 2.3. A positive map E : B(HA) → B(HB) is said completely positive if
for every extension E ′ = 1A′ ⊗ E , the map E ′ is positive, i.e., (1A′ ⊗ E)[O] ⪰ 0 for
every positive operator O ∈ B(HA′ ⊗HA), where 1A′ denotes the identity map on
B(HA′).

Finally, quantum maps that meet all the above requirement are said CPTP maps,
and represent the set of the allowed physical transformations of a quantum state.

Definition 2.4. Physical operations on quantum states are described by quantum
channels, i.e., linear maps that are completely positive and trace preserving.

Let us conclude this section with the definition of a decomposable map, whose
importance will become clearer in the following of this thesis.

Definition 2.5. A positive map E : B(HA) → B(HB) is said decomposable if and
only if it can be written as

E = E1 + E2 ◦ T , (2.24)
where E1, E2 are completely positive maps and T is the transposition map.

2.1.6 Representations of quantum maps
In this section we present some useful techniques to represent quantum maps. In
particular, focusing on the class of CPTP maps, we show that such representations
provide a way to relate the properties of a quantum channel in terms of those of
some associated operators.

Choi-Jamiołkowski-Sudarshan isomorphism

The Choi-Jamiołkowski-Sudarshan (CJS) isomorphism [Cho75; Jam72; SMR61]
provides a way to relate a quantum map E with an associated operator JE . Formally,
we have the following result:
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Theorem 2.1 ([Cho75; Jam72; SMR61]). Given an operator JE ∈ B(HA⊗HB) there
exists an associated map E : B(HA) → B(HB) defined as

E(ρ) =
∑
k,k′

∑
l,l′

⟨k, l|JE |k′, l′⟩ ⟨k|ρ|k′⟩ |l⟩⟨l′| = TrA[JEρ
T ] , (2.25)

with ρ ∈ B(HA). Conversely, given a map E : B(HA) → B(HB) there exists an
associated operator JE ∈ B(HA ⊗HB) defined as

JE = (1A′ ⊗ E)[|Ψ+⟩⟨Ψ+|] . (2.26)

where |Ψ+⟩ = 1√
d

∑d
i=1 |ii⟩ is the maximal entangled state in HA′ ⊗ HA, where

d = dimHA′ = dimHA.

The operator JE is usually called the Choi matrix (or Choi state) of the quantum
map E . The importance of the CJS isomorphism stems from the fact that it allows
to recast the properties of a quantum map in terms of those of its Choi state, and
vice versa, a result which is expressed by the following theorem:

Theorem 2.2 ([Cho75; Jam72; SMR61]). Given an operator JE and its associated
map E through the CJS isomporphism, the following relations hold:

• E is completely positive ⇐⇒ JE ⪰ 0,

• E is trace preserving ⇐⇒ Tr[JE ] = 1.

As a consequence, checking if E is a CPTP map is equivalent to inspect whether its
associated Choi state JE defines a valid density operator. This result is particularly
valuable in quantum information as it expresses an equivalence between quantum
channels and quantum states and, for this reason, it is sometimes referred to as the
channel-state duality.

Kraus representation

Another way to describe a quantum channel is provided by its Kraus representation,
defined by the following theorem:

Theorem 2.3 ([Kra71; KBD+83]). Let ρ ∈ B(H) be a quantum state. A map
E : B(H) → B(H) is a CPTP map iff it admits a representation of the form

E(ρ) =
r∑
i=1

KiρK
†
i , (2.27)
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where the Kraus operators {Ki} ∈ B(H) fulfil∑
i

K†
iKi = 1 , (2.28)

and r ≤ dim(H)2.

Remarkably, given a quantum map E , it can be shown that the set of associated
Kraus operators can be found diagonalising the Choi state JE [JP18]. To see this,
let us first introduce the operation, denoted as mat(|λ⟩), that transforms the d2 × 1
vector |λ⟩ = (λ00, . . . , λd−1,d−1)

T into a d× d matrix by stacking the entries of |λ⟩
row by row, i.e.,

mat(|λ⟩) =

 λ00 · · · λ0,d−1
... . . . ...

λd−1,0 · · · λd−1,d−1

 . (2.29)

Hence, the Kraus operator Ki is given by

Ki =
√
λ(i)mat(|λ(i)⟩) , (2.30)

where mat(|λ(i)⟩) is the matrix corresponding to the eigenvector |λ(i)⟩ of JE , and
λ(i) its associated eigenvalue.

Let us observe that the decomposition in Eq.(2.27) is by no means unique and
different sets of Kraus operators may lead to the same CPTP map. Indeed, we have
the following corollary:
Corollary 2.3.1. Given two sets of Kraus operators, {Ki} and {K̃i}, they represent
the same quantum map E iff there exists a unitary operator U such that

K̃i =
∑
j

UijKj . (2.31)

Let us conclude by observing that, in general, Kraus operators are not necessarily
orthogonal. Nevertheless, it can be shown [Wol12] that, given a CPTP map, there
always exists a Kraus representation with r orthogonal Kraus operators , i.e.,
Tr[KiK

†
j ] = δij .

Stinespring representation

A different, although related, representation of a quantum map, is given by the
so-called Stinespring representation [Sti55]. In this picture, the action of a map over
a system S is described by a process in which S is first coupled to an ancillary
system A, then a unitary transformation is applied to the composite system S + A
and finally, the partial trace over A is performed. More formally, we have:
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Theorem 2.4 ([Sti55]). Let E(ρ) : B(H) → B(H) be a CPTP map. Then there exist a
Hilbert space HA and a unitary operation U ∈ B(H⊗A) such that

E(ρ) = TrA[U(ρ⊗ |0⟩⟨0|)U †] , (2.32)

for every density operator ρ ∈ B(H) .

Eq.(2.32) defines the Stinespring representation (or Stinespring dilation) of
the CPTP map E . Analogously to the case of Kraus operators, it can be shown
that the dimension of the ancillary Hilbert space can always be chosen such that
dim(A) ≤ dim(H)2. This connection is by no means casual and indeed the two
representations are related. In fact, given the set {Ki}d

2

i=1 of Kraus operators for
the quantum channel E : B(H) → B(H) and a Hilbert space A with orthonormal
basis {|i⟩}d2i=1, it is possible to define a unitary operator U ∈ B(H⊗A) such that

U(|ϕ⟩ ⊗ |0⟩) ≡
d2∑
i=1

Ki |ϕ⟩ ⊗ |i⟩ , (2.33)

with |ϕ⟩ ∈ H. Conversely, expanding Eq.(2.32), we have

E(ρ) =
∑
i

(1H ⊗ ⟨i|)U(ρ⊗ |0⟩⟨0|)U †(1H ⊗ |i⟩) (2.34)

=
∑
i

(1H ⊗ ⟨i|)U(1H ⊗ |0⟩)ρ(1H ⊗ ⟨0|)U †(1H ⊗ |i⟩) ≡
∑
i

KiρK
†
i ,

(2.35)

where we have defined

Ki ≡ (1H ⊗ ⟨i|)U(1H ⊗ |0⟩) . (2.36)

Let us conclude this section with the following remark: the Stinespring theorem
implies the possibility to describe a CPTP map acting on a system S, as the result
of a unitary evolution of a larger system, S + A, where the ancillary system A is
eventually discarded. As we will see in the next section, this description becomes
particularly natural when dealing with open quantum systems, i.e., those physical
systems whose interaction with an external environment cannot be neglected.

2.2 Open quantum systems
In section 2.1 we have described the evolution of a quantum system S in terms of a
unitary operator that depends on the Hamiltonian HS of the system. Nevertheless,
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such approach can be defined only in the approximation of a closed system, i.e.,
when S is regarded as isolated from any other quantum systems. Although in
the case of weakly interacting systems this assumption seems quite reasonable, in
general no quantum system can be considered as perfectly isolated. For this reason,
in the formalism of open quantum systems (OQS), the properties of a quantum
system S are investigated, assuming an interaction with an external environment,
E. Due to such interaction, although the evolution of the composite system S + E
is still unitary (being isolated), the same is no longer true for the dynamics of
the open system S. Hence, the necessity of a new formalism that characterises
correctly the behaviour of S in the presence of the dissipation introduced by the
environment. Ever since its formulation in the ’70s, the importance of the theory
of OQS has been widely recognised, especially due the fact that it has led to great
advances in the description of phenomena related to irreversible dynamics such
as the decay of quantum coherences or the relaxation towards a non-equilibrium
steady state, just name few [DD76; AL07; BP+02; RH12]. The typical approach
in dealing with OQS dynamics is to describe the evolution of the open system by
means of a differential equation, known as master equation, whose explicit form
depends on the microscopical details between system and environment. In the
following, we provide some examples of such master equations.

2.2.1 The GKSL master equation
When dealing with a composite system S + E, the tensor product postulate pre-
scribes that the Hilbert space HSE for the whole system is given by the tensor
product of the Hilbert spaces of the subsystems, i.e., HSE = HS ⊗HE . Hence, the
Hamiltonian H that rules the dynamics of S + E takes the form

H = HS ⊗ 1E + 1S ⊗HE +HSE , (2.37)

where HS, HE are the Hamiltonian for the systems S,E, respectively, and HSE ∈
HS ⊗HE models the interaction between the open system and the environment.
Let us assume that, at t0, system and environment are uncorrelated, so that the
initial state for the composite system is described by

ρ(t0) = ρS(t0)⊗ ρE(t0) . (2.38)

Hence, the total state at time t is given by

ρ(t) = U(t, t0)ρ(t0)U(t, t0)
† , (2.39)
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where we have used the fact that, since the system S + E is closed, its evolution is
governed by the total unitary operator U(t, t0).

Recalling Eq.(2.8), the dynamics of S can be recovered by tracing out the envi-
ronment, i.e.,

ρS(t) = TrE[U(t, t0)ρ(t0)U(t, t0)†] , (2.40)

which can be cast equivalently as

ρS(t) = E(t)[ρS(t0)] , (2.41)

where we have introduced a CPTP map E(t) : B(HS) → B(HS), known as dy-
namical map, that describes the evolution of the open system from the initial state
ρS(t0) to a final state ρS(t).

In almost any practical case, the exact characterisation of E(t) is extremely
hard. For this reason, it is customary to introduce some approximation to reduce
the original complexity of the problem. A typical requirement is to ask that the
correlations between the main system and the environment decay over a time scale
that is much smaller as compared to the time scale over which the system evolves.
As a consequence, when considering the reduced dynamics of the system S, it is
legitimate to neglect the memory effects, i.e., the future history of the system does
not depend on the state of the system at previous times. Such condition can be
formally expressed by the condition

E(t1 + t2) = E(t1) ◦ E(t2) , (2.42)

a relation known as the semigroup property. Hence, given a dynamical map that
satisfies Eq.(2.42), it is possible to show that there exists an associated linear map L
such that E(t) admits the following representation, i.e.,

E(t) = eLt . (2.43)

Recalling Eq.(2.41), one immediately finds the so-called Markov quantum master
equation, i.e.,

d

dt
ρS(t) = LρS(t) , (2.44)

where L is the Liouville superoperator of Eq.(2.21).
Quantum master equations (QMEs) represent a way to approximate the exact

dynamics described by Eq.(2.39) and obtain a linear differential equation for the
state ρS(t). It can be shown [BP+02] that the most general expression for L is given
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by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation [Kos72;
GKS76; Lin76], i.e.,

L[ρS] = −i[H, ρS] +
∑
k

γk

(
JkρSJ †

k − 1

2
{J †

kJk, ρS}
)
, (2.45)

where {·, ·} represents the anti-commutator between two operators. The operators
Jk are referred to as Lindblad (or jump) operators and γk ≥ 0 are dubbed dissipation
rates.

Let us observe that the commutator in Eq.(2.45) represents the unitary evolution
governed by the Hamiltonian H while the latter term takes into account the effect
of the dissipation introduced by the environment. For this reason, the quantity

D[ρS] ≡
∑
k

γk

(
JkρSJ †

k − 1

2
{J †

kJk, ρS}
)
, (2.46)

is sometimes called dissipator, and Eq.(2.45) takes the form

L[ρS] = −i[H, ρS] +D[ρS] . (2.47)

2.2.2 The Redfield master equation
Despite being completely general, Eq.(2.45) does not provide any information about
the shape of the jump operators {Jk} nor about the corresponding rates {γk},
whose expressions can be recovered under some approximations. For reasons
that will become clearer in the following, the validity of such approximations is
based on the assumption that the environment is composed of a large number of
degrees of freedom. To this end, let us consider the case where a system S interacts
with a bath B, i.e., an environment which displays an infinite number of degrees
of freedom. B can be conceived as a macroscopic object in thermal equilibrium,
so that a temperature T can be assigned to describe its state. In analogy with
Eq.(2.37), let us assume that the Hamiltonian for the system S + B is given by
H = HS +HB +HSB . The derivation of a master equation for the open quantum
system becomes easier in the interaction picture where, recalling Eq.(2.13), HSB

can be expressed as

HI(t) = eiH0(t−t0)HSBe
−iH0(t−t0) , (2.48)

with H0 ≡ HS +HB . Hence, the evolution of the state of the total system, is given
by

d

dt
ρI(t) = −i[HI(t), ρI(t)] , (2.49)
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where ρI(t) = eiH0(t−t0)ρ(t)e−iH0(t−t0) is the representation of ρ(t) in the interac-
tion picture. Integrating Eq.(2.49) over time yields

ρI(t) = ρI(t0)− i

∫ t

t0

dt′[HI(t
′), ρI(t

′)] . (2.50)

Substituting the above expression in Eq.(2.49) and tracing over the degrees of
freedom of the bath, we can obtain the evolution of S, i.e.,

d

dt
ρS(t) = −

∫ t

t0

dt′TrB{[HI(t), [HI(t
′), ρI(t

′)]]} . (2.51)

Notice that, in writing Eq.(2.51), we have assumed that TrB {[HI(t), ρI(t0)]} = 0,
a requirement which corresponds to neglect the effect of any first-order dynamics
in the initial state of the system.

A closer look at Eq.(2.51) reveals that the right-hand term still depends on
ρI(t

′), a fact which makes this expression extremely hard to compute since the
dynamics of S depends on the state of the total system at all previous times. A
simpler expression is obtained introducing the so-called Born approximation, which
consists in assuming a weak coupling between S and B, so that it is legitimate
to neglect the back-action of the principal system on the state of the bath, i.e.,
ρI(t) = ρS(t)⊗ ρB . With this assumption, Eq.(2.51) becomes

d

dt
ρS(t) = −

∫ t

t0

dt′TrB{[HI(t), [HI(t
′), ρS(t

′)⊗ ρB]]} . (2.52)

Observe that, if we perform the change of variables t′ → t − t′ in the above
integral, the extremes of integration do not change, i.e.,

d

dt
ρS(t) = −

∫ t

t0

dt′TrB{[HI(t), [HI(t− t′), ρS(t
′)⊗ ρB]]} . (2.53)

Eq.(2.53) still depends on the dynamics of ρS at times t′ < t, but can be converted
into a time-local master equation by resorting to a second assumption, known as
the Markov approximation. If we denote by τR the relaxation time of the S, i.e., the
time scale over which the main system returns to equilibrium after the interaction
with the bath, then the Markov approximation requires that τR ≫ τB , where τB
represents the time scale of bath correlations. This is equivalent to disregard the
memory effects over times greater than τB , so that the upper bound of the integral
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in Eq.(2.53) can be sent to infinity committing a negligible error. The resulting
equation is known as the Redfield master equation and takes the form

d

dt
ρS(t) = −

∫ ∞

t0

dt′TrB{[HI(t), [HI(t− t′), ρS(t
′)⊗ ρB]]} . (2.54)

Despite the two assumptions that we have considered, known as Born-Markov
approximations, the Redfield master equation does not guarantee, in general, the
positivity of ρS(t) at all times. In order to avoid this problem we introduce a third
assumption, known as secular approximation, which leads to a master equation of
the same form of Eq.(2.45).

2.2.3 The Born-Markov secular master equation
We have already seen in the previous section that the expression of an operator in
the interaction picture becomes time-dependent (see, e.g., Eq.(2.48)). The secular
approximation consists in neglecting the rapidly oscillating contributions in the
expression of the master equation, hence allowing to retrieve a positive density
operator ρS(t) for all times. In order to clarify this statement, let us consider an
open quantum systems described by a total Hamiltonian H = HS +HB +HSB .
Without loss of generality, the interacting term HSB can be written as

HSB =
∑
k

Sk ⊗Bk , (2.55)

where {Sk}, {Bk} are hermitian operators acting on the Hilbert spaces HS,HB of
the systems S,B, respectively. As for the system and the bath Hamiltonian, their
spectral decomposition yields, respectively,

HS =
∑
m

Em|Em⟩⟨Em| , (2.56)

HB =
∑
n

ϵn|ϵn⟩⟨ϵn| , (2.57)

where {Em}, {ϵn} are the eigenvalues ofHS, HB , with corresponding eigenvectors
{|Em⟩}, {|ϵn⟩}. Hence, we can define the operator Sk(ω) as

Sk(ω) =
∑
m,n

δ(Em − En − ω)(Sk)m,n|Em⟩⟨En| , (2.58)
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where (Sk)m,n = ⟨Em|Sk|En⟩ and ω is a fixed energy difference. Obviously, sum-
ming over ω, we recover Sk, i.e.,

Sk =
∑
ω

Sk(ω) =
∑
ω

S†
k(ω) . (2.59)

The decomposition of Eq.(2.58) is particularly useful when moving to the interaction
picture, where, recalling Eq.(2.48), the expression of the interacting Hamiltonian
HSB becomes

HI(t) =
∑
k

∑
ω

eiHStSk(ω)e
−iHSt ⊗ eiHBtBke

−iHBt . (2.60)

Notice that, due to the fact that the eigenprojectors {|Em⟩⟨Em|} commute with HS ,
we have

[HS, Sk(ω)] = −ωSk(ω) , (2.61)
so that the following identity holds, i.e.,

eiHStSk(ω)e
−iHSt = e−iωtSk(ω) . (2.62)

It follows that Eq.(2.60) takes the simpler expression

HI(t) =
∑
k

∑
ω

e−iωtSk(ω)⊗Bk(t) , (2.63)

where Bk(t) is the representation of the bosonic operator Bk in the interaction
picture, i.e.,

Bk(t) = eiHBtBke
−iHBt . (2.64)

Getting back to the Redfield master equation of Eq.(2.54), we can substitute the
expression for HI(t) given by Eq.(2.63), to find

d

dt
ρS(t) =

∑
k,k′

∑
ω,ω′

ei(ω−ω
′)tCk,k′(ω)

(
Sk′(ω)ρS(t)S

†
k(ω

′)− S†
k(ω

′)Sk′(ω)ρS(t)
)
+h.c. ,

(2.65)
where we have defined the one-sided Fourier transform of the bath correlation
functions, i.e.,

Ck,k′(ω) =

∫ ∞

t0

dt′eiωt
′TrB{B†

k(t)Bk(t− t′)} . (2.66)

Notice that when ρB is an eigenstate of HB , i.e., [HB, ρB] = 0, the correlation
functions Ck,k′(ω) become time-independent.
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Looking at Eq.(2.65) we can now understand the meaning of the secular approxi-
mation, which simply consists in discarding all the terms such that ω ̸= ω′. The
inverse of the difference |ω − ω′| for ω ̸= ω′ gives the typical timescale τS over
which the system S evolves, i.e., τS ≈ |ω−ω′|−1. Hence, denoting by τR the typical
relaxation time for the open quantum system, the secular approximation is valid
whenever τS ≪ τR, that is when the oscillating terms in Eq.(2.65) change rapidly
during the time over which the evolution of the system becomes appreciable. In
this limit, Eq.(2.65) takes the simpler form

d

dt
ρS(t) =

∑
k,k′

∑
ω

Ck,k′(ω)
(
Sk′(ω)ρS(t)S

†
k(ω

′)− S†
k(ω

′)Sk′(ω)ρS(t)
)
+ h.c. ,

(2.67)
known as the Born-Markov secular master equation. Eq.(2.67) can be cast in the
Linblad form by decomposing Ck,k′(ω) into its real and imaginary parts as

Ck,k′(ω) =
1

2
γk,k′(ω) + iκk,k′(ω) , (2.68)

where it can be shown that the real part γk,k′(ω) = Ck,k′(ω) + C∗
k′,k(ω) defines a

positive matrix. Finally, introducing the so-called Lamb-shift Hamiltonian HLS ,
given by

HLS =
∑
k,k′

∑
ω

κk,k′(ω)S
†
k(ω)Sk(ω) , (2.69)

we get to the expression

d

dt
ρS(t) = −i[HLS, ρS(t)] +D(ρS(t)) , (2.70)

where the dissipator D(ρS) takes the form

D(ρS) =
∑
k,k′

∑
ω

γk,k′(ω)

(
Sk′(ω)ρSS

†
k(ω)−

1

2
{S†

k(ω)Sk′(ω), ρS}
)
. (2.71)

2.3 Entanglement
Quantum superposition is a consequence of the first postulate of quantum mechan-
ics. More specifically, the requirement that the state of a system S is described by
a vector |ψS⟩ ∈ HS , implies that, by the linearity of Hilbert spaces, (normalised)
linear combinations of vectors in HS are also admissible states for S. In a similar
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fashion, entanglement stems from the tensor product postulate of quantum me-
chanics. In fact, let us consider the simple case of two qubits. One possible quantum
state for the composite system A+B could be |ΨAB⟩ = |0A⟩ |0B⟩, or, analogously,
|ΨAB⟩ = |1A⟩ |1B⟩, where the labels A,B, remind that each ket is a vector in the
corresponding Hilbert space HA,HB , respectively. Obviously, the superposition

|ΨAB⟩ =
|0A⟩ |0B⟩+ |1A⟩ |1B⟩√

2
, (2.72)

also defines a valid state for the composite system. However, the problem arises
when one asks the following question: given a composite system whose state is
described by the vector |ΨAB⟩ of Eq.(2.72), what is the state of each subsystem? In
fact, while the state of A + B can be defined without ambiguity, the same is no
longer true for the individual subsystems. A state such that of Eq.(2.72) is said to
be entangled, because it cannot be written as the tensor product of the states of
the subsystems. Similarly to the case of quantum superposition, also entanglement
is a very fragile property and the generation of entangled states is one of the
main challenges from an experimental point of view. Due to its many applications
in quantum information tasks, it is crucial to derive criteria to decide whether a
quantum state is entangled or not. Such problem is referred to as the separability
problem, and it will be the central topic of the following sections.

2.3.1 Entanglement of pure states
In the case of pure states, entanglement can be defined as follows:

Definition 2.6. Let HA and HB be the Hilbert spaces of two physical systems A
and B, respectively. A pure state |ΨAB⟩ ∈ HAB ≡ HA ⊗ HB is said separable or,
equivalently, a product state, iff it can be written as

|ΨAB⟩ = |ψA⟩ |ψB⟩ , (2.73)

where |ψA⟩ , |ψA⟩ are pure states in HA,HB , respectively. If such decomposition does
not exist, the state |ΨAB⟩ is said to be entangled.

Product states possess an operational interpretation since they correspond to
those states that can be prepared by two distant parties, say Alice and Bob, acting on
the systems A and B, respectively. On the contrary, the generation of an entangled
state always requires an interaction between the two subsystems or, as in the case of
entanglement swapping [ZZH+93], with an ancillary system that acts as a mediator
of the interaction.
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2.3.2 Entanglement of mixed states
In the case of mixed states, the definition of entanglement needs to be modified as
follows:

Definition 2.7. Let ρAB ∈ B(HAB), with HAB = HA ⊗HB . We say that ρAB is a
product state if it can be written as ρAB = ρA ⊗ ρB . If ρAB can be cast as

ρAB =
∑
k

pkρ
A
k ⊗ ρBk ,

∑
k

pk = 1, pk ≥ 0 ∀k , (2.74)

then it is said separable. Otherwise, it is called entangled.

As we have seen in the case of pure states, product states correspond to uncor-
related states, i.e., states that can be obtained by two parties, Alice and Bob, acting
locally on their share of the quantum state ρAB . Differently, separable states can
be prepared only when the two parties share classical correlations. Indeed, it is
possible to show that the state of Eq.(2.74) is the most general state that Alice and
Bob can create using local operations and classical communication (LOCC). An
LOCC scenario can be thought as follows:

• Alice and Bob possess their share of the state ρAB .

• Alice performs a local quantum operation on her state, described in terms of
a set of operators {A1

i } such that
∑

i(A
1
i )

†A1
i = 1A, where 1A is the identity

operator on HA. Eventually, she measures her share and sends the result to
Bob using a classical channel of communication (e.g., a phone).

• Depending on the outcome of Alice’s measurement, Bob performs a local
quantum operation on his state. Again, such quantum operator can be de-
scribed in terms of some operators {B1

ij} such that
∑

j(B
1
ij)

†B1
ij = 1B .

• Bob sends the result of his measurement to Alice and the protocol goes on in
this way until required.

Hence, let us suppose that Alice and Bob are given the states |a0⟩ and |b0⟩, respec-
tively, so that the state of the composite system is described by the density operator
ρAB = |a0⟩⟨a0| ⊗ |b0⟩⟨b0|. Now, imagine that, following the aforementioned LOCC
protocol, Alice prepares the state |ak⟩, with probability pk, and then sends the result
to Bob who prepares the state |bk⟩, depending on the outcome he receives. Thus,
the final state for the composite system is given by

ρAB =
∑
k

pk|ak⟩⟨ak| ⊗ |bk⟩⟨bk| , (2.75)
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which is of the same form of Eq.(2.74). As a consequence, LOCC is not sufficient
to generate an entangled state, confirming the genuinely quantum feature of this
phenomenon.

2.3.3 Separability criteria
Deciding whether a quantum state is separable or not is a task known as the
separability problem. Despite its apparent simplicity, it has been proven that, in the
general case, the separability problem is NP-hard [Gur03] and even in the bipartite
case a complete solution is still missing. However, in some cases, there exist criteria
that allow to assess the presence of entanglement in a given quantum state. In
the next section we present some separability criteria, with special attention to
those we will use explicitly in this thesis. Notice that, even though the definition
of entanglement can be extended to the multipartite case, in what follows we will
consider only bipartite states.

Schmidt decomposition

When dealing with pure bipartite states, Schmidt decomposition is a particular
representation which turns out to be useful for the characterisation of entanglement.

Definition 2.8. Let |ΨAB⟩ be the state of a composite system in HAB = HA ⊗HB .
Then there exist two orthonormal basis {|αi⟩}, {|βi⟩} for HA,HB , respectively, such
that |ΨAB⟩ can be decomposed as

|ΨAB⟩ =
M∑
i=1

λi |αi⟩ |βi⟩ , (2.76)

where the positive, real coefficients λi satisfy
∑M

i=1 λ
2
i = 1. Eq.(2.76) is said the

Schmidt decomposition of the state |ΨAB⟩ and M ≤ min{dA, dB} is called Schmidt
rank .

It can be shown that pure product states correspond to states that possess a
Schmidt decomposition with rank one, i.e., with only one non-zero coefficient λi,
while all entangled states have Schmidt rank M > 1. This condition can be easily
computed by noticing that the square root of the Schmidt coefficients correspond
to the eigenvalues of the reduced matrices ρA and ρB of Eq.(2.8). Hence, we can
rephrase the above separability criterion as

Theorem 2.5. A state |ΨAB⟩ is separable if and only if ρA = TrB[|ΨAB⟩⟨ΨAB|] (or,
equivalently ρB) is a pure state, i.e., ρ2A = ρA.
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Schmidt number

In the case of bipartite mixed states, the concept of Schmidt rank can be generalised
to the so-called Schmidt number.

Definition 2.9. The bipartite state ρAB has Schmidt number m if: i) for any decom-
position ρ =

∑
k pk|ψk⟩⟨ψk| at least one of the vectors {|ψk⟩} has at least Schmidt

rankm, and ii) there exists a decomposition of ρ with all the vectors {|ψk⟩} of Schmidt
rank at most m. Equivalently,

m = inf
{pk,|ψk⟩}

max
k

r(|ψk⟩) , (2.77)

where r(|ψk⟩) is the Schmidt rank of the pure state |ψk⟩.

As for pure states, a bipartite mixed state is separable if and only if it has Schmidt
number m = 1. Notice that in the case of a pure state, the Schmidt number is equal
to its Schmidt rank.

PPT criterion

Before introducing the PPT criterion it is necessary to define the partial transposition
of a quantum state. This operation possesses the physical interpretation of a partial
time reversal [STV98], and can be formally defined as follows:

Definition 2.10. Let ρAB ∈ B(HAB) be a bipartite state, whose representation, in a
chosen product basis, is given by

ρAB =
∑
i,j

∑
k,l

ρijkl|i⟩⟨j| ⊗ |k⟩⟨l| . (2.78)

Then, the partial transposition of the state ρAB with respect to the subsystem B is the
operator ρTBAB , defined as

ρTBAB =
∑
i,j

∑
k,l

ρijlk|i⟩⟨j| ⊗ |k⟩⟨l| . (2.79)

Clearly, the partial transposition can also be defined with respect to the subsystem
A, i.e., ρTAAB , and the two operators are related by the simple formula ρTAAB = (ρTBAB)

T ,
where T is the usual transposition of a matrix. Notice that, as in the case of the
standard transposition, the expression of the partially transposed matrix depends
on the chosen basis, even though its eigenvalues are independent on such a choice.
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A bipartite state ρAB with positive partial transposition, i.e., ρTAAB ⪰ 0, is said a PPT
state. On the contrary, states whose partial transposition bears negative eigenvalues
are usually referred to as NPT. It is easy to show that PPT states form a convex set,
while the same is not true for NPT states. The relation between such sets and the
set of separable states is represented schematically in Fig.2.1.

NPT

PPT

SEP

Figure 2.1: Pictorial representation of the convex sets of separable (SEP) and PPT-
states (PPT), and the set of NPT states.

With this definitions we are now ready to introduce the PPT-criterion, also called
the Peres-Horodecki criterion.

Theorem 2.6 ([Per96; HHH96]). If ρAB ∈ B(HAB) is a bipartite separable state,
then it is PPT.

Despite its simplicity, the PPT-criterion provides an extremely powerful tool to
assess the presence of entanglement in a bipartite state ρAB . In fact, it is sufficient to
compute the spectrum of ρTAAB (or, equivalently, of ρTBAB), and if a negative eigenvalue
is found, ρAB is guaranteed to be entangled. However, when trying to determine if
this criterion is also sufficient for separability, some problems arise. In fact, it has
been proven [HHH01] that ρTAAB does not imply, in general, that the state ρAB is
separable. More formally, we have the following theorem:

Theorem2.7 ([HHH01]). Let ρAB ∈ B(HAB) be a bipartite state. If d = dimHAB ≤
6, ρAB is separable if and only if ρTAAB ⪰ 0.
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The most remarkable consequence of Th.(2.7) is that there exist some states, dubbed
PPT-entangled, that display a positive partial transposition but are nevertheless
entangled.

PPT-entangled states & bound entanglement

The interest in PPT-entangled states derives from their relation with the so-called
distillation of entanglement. This problem can be cast as follows: let us suppose we
have an arbitrary large (but finite) number of copies of a bipartite entangled state
ρAB , shared between two parties. Is there a way to obtain a singlet using only LOCC?
This question is particularly meaningful in the context of quantum communication,
where a message, encoded in a register of qubits, is sent to a receiver through a
quantum channel. Here, the effective transmission of the message relies crucially on
the possibility to dispose of maximally entangled states, i.e., maximally correlated
states between the two parties. However, the amount of the entanglement displayed
by such states is typically deteriorated when they are sent through the channel,
essentially due to the presence of some noise that affects the process. For this
reason, techniques to “extract” singlets from an initial large number of entangled
states are strongly required to guarantee an effective communication between two
distant parties, and indeed there exist protocols of entanglement distillation both for
pure and mixed states [BBP+96a; BBP+96b]. Interestingly, not any quantum state
can be used for this task: states that allow for entanglement distillation are called
distillable, while the others are called undistillable or bound entangled, and display
the weakest form of entanglement. In [HHH98] it was proved that being PPT is
a sufficient condition to be undistillable, and for this reason PPT-entangled states
are sometimes referred to as PPT-bound entangled. Examples of PPT-entangled
states have been provided using unextendible product basis [BDM+99], and by
means of other techniques [BP00; PM07] but their characterisation is, in general,
an extremely hard task. Particularly relevant for our analysis are the so-called edge
states, formally defined as follows:

Definition 2.11. ([LKC+00; LKH+01]) A PPT-entangled state δ ∈ B(HA ⊗ HB)
is edge if and only if, for every product vector |ef⟩ ∈ HA ⊗ HB and every ϵ > 0,
δ − ϵ|ef⟩⟨ef | is not a PPT-entangled state, i.e., it is either δ − ϵ|ef⟩⟨ef | ⪰̸ 0 or
δTB − |ef ∗⟩⟨ef ∗| ⪰̸ 0, where ∗ denotes the operation of complex conjugation.

Intuitively, edge states can be found as follows : starting from a PPT-entangled
state δ one could subtract projectors |ef⟩⟨ef | from it until either the resulting state
δ − |ef⟩⟨ef | or its partial transposition display a negative eigenvalue: in the first
case, the state would not be physical, while in the second it would be NPT. Hence,

33



2.3. ENTANGLEMENT

edge states are PPT states that lie on the boundary between the convex sets of
PPT and NPT states (see Fig. 2.1). For this reason, they are extreme points in the
convex set of PPT states, so that their knowledge is sufficient to construct any other
PPT-entangled state. Obviously, being positive under partial transposition, edge
states cannot be revealed using the PPT criterion, so that other techniques need to
be employed for their detection. Among them, one of the most powerful is known
as the range criterion.

Range criterion

When dealing with PPT-entangled states, range criterion [Hor97] is particularly
effective in detecting entanglement. Let us first recall the definition of the range of
a matrix.

Definition 2.12. Given a density matrix ρ ∈ B(H) we define its range as R(ρ) =
{|ψ⟩ ∈ H | ρ |ψ⟩ = |ϕ⟩ , for some |ϕ⟩ ∈ H}

Hence, the range criterion can be cast as follows:

Theorem 2.8 ([Hor97]). If a state ρAB ∈ B(HA⊗HB) is separable, then there exists
a set of product vectors {|ai, bi⟩} such that {|ai, bi⟩} spans R(ρAB) and {|ai, b∗i ⟩}
spans R(ρTBAB).

As a consequence of Th.2.8, if there exists a vector |α, β⟩ such that |α, β⟩ ∈
R(ρAB) but |α, β∗⟩ /∈ R(ρTBAB), then the state ρAB is entangled. Recalling Def.2.11,
it is easy to see that edge states maximally violate the range criterion. Indeed, we
give an alternative definition of an edge state, i.e,

Definition 2.13. The state δ ∈ B(HA⊗HB) is edge if and only if there is no product
vector |ef⟩ ∈ R(δ) such that |ef ∗⟩ ∈ R(δTB).

CCNR criterion

Besides the range criterion, there exists other criteria that are able to detect PPT-
entangled states. One of them is the so-called computable cross norm or realignment
(CCNR) criterion [CW03; Rud05]. Before proceeding with its formulation, let us
observe that a bipartite state ρAB can always be decomposed as [Rud05]

ρAB =
∑
k

ξkF
A
k ⊗ FB

k , (2.80)
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where ξk ≥ 0, and the operators {F J
k } satisfy Tr[F J

k F
J
k′ ] = δkk′ and form an

orthonormal basis for the space of the Hermitian operators over HJ , with J ∈
{A,B}. Eq.(2.80) represents the analogue of the Schmidt decomposition in the
space of Hermitian operators. Hence, the CCNR criterion can be cast as follows:

Theorem 2.9 ([CW03; Rud05]). If ρAB is a separable state then∑
k

ξk ≤ 1 , (2.81)

where ξk are the coefficients of the Schmidt decomposition of Eq.(2.80).

Obviously, a violation of condition (2.81) signals the presence of entanglement.
The reason for the name of this criterion derives from the fact that it can be recast
equivalently in terms of the norm of a matrix M(ρAB), whose elements are given
by

M(ρAB)
ij
kl ≡ ⟨ij|M(ρAB)|kl⟩ = ⟨ik|ρAB|lj⟩ ≡ (ρAB)

ik
lj . (2.82)

Hence, Th.2.9 can be recast equivalently as

Theorem 2.10. If ρAB is a separable state then

∥M(ρAB)∥ ≤ 1 , (2.83)

where ∥ρ∥ ≡ Tr
[√

ρρ†
]

is the trace norm of the operator ρ.

Interestingly, in [HHH06] it was shown that the above condition can be gen-
eralised to the case of linear contractions in the trace norm, i.e., maps E such that
∥E(ρ)∥ ≤ ∥ρ∥. In particular, any linear map that does not increase the trace norm
of product states, can be used to deduce a sufficient criterion for separability.

Positive but not completely positive maps

The PPT criterion is a particular case of a separability criterion based on the use of
positive but not completely positive maps. Such criterion is based on the observation
that for any separable state ρAB and any positive map E , it must be

(1A ⊗ E) [ρAB] ⪰ 0 . (2.84)

Moreover, it was shown in [HHH96] that the reverse implication must hold for
any positive map, i.e.,
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Theorem 2.11 ([HHH96]). A state ρAB ∈ B(HA ⊗HB) is separable if and only if,
for every positive map E : HB → HB , it holds that (1A ⊗ E) [ρAB] ⪰ 0.

It is clear that the violation of Th.2.11 can be used as a separability criterion. In
particular, the characterisation of an entangled state σ can be accomplished by
searching for a positive but not completely positive map E such that (1A ⊗ E) [σ] ⪰̸
0. An example of such map is the usual transposition T : B(HB) → B(HB).
Indeed, it is easy to check that T (ρ) = ρT ⪰ 0 for all positive operators ρ ∈ B(HB),
although (1 ⊗ T )[ρAB] ≡ ρTBAB ⪰̸ 0, where the last inequality expresses the fact
that there exist PPT states that are nevertheless entangled. The use of positive but
not completely positive maps as entanglement detectors is a topic that has been
widely explored in the literature [Stø63; Wor76; Cho75] and it has been shown that
the sufficiency of the PPT criterion relies upon the observation that every positive
but not completely positive map in C2 ⊗ C2 and C2 ⊗ C3 is decomposable (see
Def.2.5). Another example of a map of this kind is the reduction map ER [HH99],
defined as:

ER(ρ) = 1Tr[ρ]− ρ. (2.85)

A separable state ρAB must satisfy condition (2.84) which, in the case of the reduc-
tion map, becomes (

1A ⊗ ER
)
[ρAB] = ρA ⊗ 1B − ρAB ⪰ 0 , (2.86)

a condition known as the reduction criterion. Hence, in order to check the separa-
bility of a state ρAB , it is sufficient to compute the spectrum of the reduced density
matrix ρA (or, equivalently, of ρB). As we will see explicitly when dealing with the
closely related topic of entanglement witnesses, decomposable maps are not able
to detect PPT-entangled states. Nevertheless, starting from the reduction map, one
can construct a family of other maps that allow to detect PPT-entangled states in
Cd ⊗ Cd, for any even d ≥ 4. Such maps, dubbed Breuer-Hall maps [Bre06; Hal06],
are defined as:

EBH(ρ) = 1Tr[ρ]− UρTU † , (2.87)

where U is a unitary operator such that UT = −U . In particular, these maps can
certify entanglement in states that the PPT criterion fails to detect.

2.3.4 Entanglement witness
Closely related to positive but not completely positive maps is the concept of
entanglement witness (EW).
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Definition 2.14. An Hermitian operator W ∈ B(HAB) is said an entanglement
witness if:

• Tr[Wρsep] ≥ 0, for every separable state ρsep ∈ B(HAB) ,

• there exists at least an entangled state ρent such that Tr[Wρent] < 0 .

EWs are endowed with an interesting geometrical interpretation. Let us first
introduce the following variant of the celebrated Hahn-Banach theorem [BB11]:

Theorem 2.12. Let S1,S2 be two disjoint convex closed sets in a Hilbert space, one of
them being compact. Then there exists a bounded functional that separates S1 and S2.

Recalling that the set of separable states S is a closed convex set, the Hahn-
Banach theorem states that for every entangled state ρent /∈ S there exists an
hyperplane that separates it from S . In particular, choosing W to be the normal
vector to the hyperplane, it is possible to quantify the distance of a state ρ from
the hyperplane by means of the trace distance, i.e., Tr[Wρ]. Hence, it follows
that Tr[Wρsep] ≥ 0 for all separable states ρsep, while there exists at least one
entangled state ρent such that Tr[Wρent] < 0 (see Fig.2.2)

ENTρent

SEP Wopt

W

Figure 2.2: Pictorial representation of the convex set of separable states (SEP)
and the set of entangled states (ENT). An optimal entanglement witness, Wopt,
corresponds to a hyperplane which is tangent to the set of separable states.

It is worth to stress that the correspondence between entangled states and EWs is
by no means unique and there may exist different witnesses that detect the same
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state. Moreover, the explicit expression of the witness depends on the entangled
state that one wants to detect, a fact that makes the construction of EWs a hard
task. Within the set of EWs we distinguish decomposable and non-decomposable.

Definition 2.15. An EWW is said decomposable if it can be written asW = P+QTB ,
with P,Q ⪰ 0 and where TB denotes the partial transposition with respect to the
subsystem B. Otherwise, W is said non-decomposable.

Non-decomposable EWs are the only candidates able to detect PPT-entanglement.
In fact, given a PPT-entangled state ρ, any decomposable EW fails to detect it since
it holds:

Tr[(P +QTB)ρ] = Tr[Pρ] + Tr[QTBρ] = Tr[Pρ] + Tr[QρTB ] ≥ 0 , (2.88)

where the last equality follows from the relation Tr[XY TB ] = Tr[XTBY ]. For this
reason, we can provide an alternative definition of a non-decomposable EW, i.e.,

Definition 2.16. An EW W is said non-decomposable if and only if it detects at least
one PPT-entangled state.

The definition of decomposability for EWs bears some resemblance with the one
that we have introduced in the previous section. Indeed, EWs and positive but not
completely positive maps are linked together through the CJS isomorphism, which
provide the following relations:

Theorem 2.13 ([SSL+06]). Given an operator W ∈ B(HA ⊗HB) and its associated
map EW : B(HA) → B(HA) through the CJS isomporphism, the following relations
hold:

• W is an EW ⇐⇒ EW is positive but not completely positive,

• W is a decomposable EW ⇐⇒ EW is a decomposable map

• W is a non-decomposable EW ⇐⇒ EW is a positive, non-decomposable map.

As a consequence, the properties of an EW W can be characterised in terms of
those of its related positive but not completely positive map EW . However, despite
their equivalence, it can be shown that they do not detect the same set of entangled
states and indeed, a positive but not completely positive map EW detects more
states than its corresponding EW W [SSL+06].
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Another concept of particular interest is that of optimal EW. In order to define
this class let us introduce the set ∆W of the states detected by the EW W , i.e.,

∆W = {ρ ∈ B(H) | Tr[Wρ] < 0} . (2.89)

Given two EWs, W1,W2, we say that W1 is finer than W2 if ∆W2 ⊂ ∆W1 , i.e., if
W1 detects more states than W2. If there exists no other witness finer than Wopt,
we say thatWopt is an optimal EW. More formally, one has the following definition:

Definition 2.17 ([LKC+00]). An EW Wopt is said optimal if and only if for every
ϵ > 0 and every P ⪰ 0, the operator W ′ = (1 + ϵ)Wopt − ϵP is not an EW.

Interestingly, there exists a sufficient criterion to decide whether an EW is optimal
or not.

Theorem 2.14 ([LKC+00]). Let W ∈ B(HA ⊗HB) be an EW, and {|αk, βk⟩} a set
of vectors such that

⟨αk, βk|W |αk, βk⟩ = 0 . (2.90)
If {|αk, βk⟩} spans HA ⊗HB , then W is optimal.

In [LKC+00] a characterisation of optimal witnesses was provided, both for
the decomposable and non-decomposable case, along with a method to optimise a
generic EW. Notice that, from a geometrical point of view, optimal EWs correspond
to the normal vectors to those hyperplanes that are tangent to the convex set of
separable states S (see Fig.2.2).

2.3.5 PPT-symmetric extensions
When one is interested in PPT-entanglement detection, entanglement witnesses
are not the only available tool. Another technique, originally propsed in [DPS04]
by Spedalieri, Parrilo and Doherty, is based on the construction of PPT-symmetric
extensions for a given quantum state. Such method is based on the following
observation. Let us recall that any separable state ρ ∈ B(HA ⊗ HB) can be
decomposed as in Eq.(2.75). If one considers the state ρ̃ ∈ B(HA⊗HB⊗HA) given
by

ρ̃ =
∑
k

pk|αk⟩⟨αk| ⊗ |βk⟩⟨βk| ⊗ |αk⟩⟨αk| , (2.91)

it is easy to see that ρ̃ satisfies three properties:

1. Tr3[ρ̃] = ρ , where Tr3 denotes the trace over the third Hilbert space, which
has been chosen equal to HA.
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2. P13ρ̃P13 = ρ̃ , where P13 is the swap operator exchanging the first with the
third party, i.e.,

P13 |i⟩ |j⟩ |k⟩ = |k⟩ |j⟩ |i⟩ . (2.92)

3. (ρ̃)Ti ⪰ 0 , where Ti denotes the partial transposition with respect to the
i-th party, with i ∈ {1, 2, 3}. Notice that, since the first and the third parties
coincide, it follows (ρ̃)T1 = (ρ̃)T3 .

This procedure can be generalised to the case of any state ρ. In particular, we
say that a state ρ̃ that satisfies the three above properties defines a PPT-symmetric
extension of ρ to two copies of HA. Obviously, one could consider extensions to
more copies of HA (or, equivalently, HB), a procedure that would result in the
construction of a hierarchy where each level refers to the number of copies involved
in a given extension. Since we have shown that any separable state always admits
a PPT-symmetric extension, this observation can be used as a separability criterion,
so that any state which does not admit a PPT-symmetric extension at a certain
level of the hierarchy must be entangled. Although it is unknown, in general, at
which level of the hierarchy an entangled state fails the test, such level is always
guaranteed to exist or, stated differently, the hierarchy is complete [DPS02]. More
importantly, the structure of these tests can be cast as a semidefinite program (SDP),
a class of problems related with the optimization of a convex function. Besides of
the possibility to implement them numerically in an effective way, SDP programs
possess also an equivalent description in terms of their so-called dual formulation
[VB96], a property that allows, given an entangled state, to find the EW that detects
it [DPS02].

2.4 Non-locality
The concept of non-locality appeared for the first time in Physics in 1935 when
Albert Einstein, Boris Podolsky and Nathan Rosen published a paper that was
destined to change forever our understanding of quantum theory [EPR35]. In
their seminal work they presented a thought experiment, nowadays referred to
as the EPR paradox, where they observed that a measurement on a particle could
affect its entangled pair, despite the fact that the two subsystems were spatially
separated. This “spooky action at distance”, as Einstein referred to it, seemed to
violate the principles of Relativity, which forbid a superluminal exchange of infor-
mation between two distant parties. For this reason, the authors concluded that
quantum theory must be incomplete, the reason lying in our ignorance of some
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local properties, dubbed hidden variables, whose knowledge would prevent the
paradox of an instantaneous communication. Almost thirty years later, in 1964,
J.S.Bell showed that the contradiction lied in the requirement that quantum theory
had to be compatible with the physical principle of local realism, consisting of
two assumptions: i) two distant observers cannot exchange information instan-
taneously (principle of locality), and ii) physical quantities of interest have well
defined values before a measurement is performed (realism). Bell’s theorem proves
that quantum theory is incompatible with local realism, ruling out the existence of
a local hidden variable model. As a consequence there are only two possibilities:
either one saves realism and admits the presence of non-local correlations between
two distant parties, or one retains the principle of locality and thus discards the
existence of a hidden variable model. Quoting John S. Bell: “If (a hidden-variable
theory) is local it will not agree with quantum mechanics, and if it agrees with
quantum mechanics it will not be local” [BA04]. The first experimental proof of
Bell’s theorem came in 1982 thanks to Alain Aspect [AGR82] and, ever since then,
its validity has been confirmed by many other experiments [PBD+00; RKM+01;
GMR+13]. Operationally, non-locality is assessed by means of Bell inequalities, i.e.,
mathematical correlations between the measurement outcomes of two or more
parties.

2.4.1 The Bell experiment
A multipartite Bell experiment consists of N spatially separated observers, having
access to an N -partite shared resource. Each party, labelled by an index i ∈
{1, . . . , N}, performs one out of m possible measurements, i.e., xi ∈ {1, . . . ,m},
yielding one out of ∆ possible outcomes, i.e., ai ∈ {1, . . . ,∆}. Such a scenario
is commonly described by assigning the triplet (N,m,∆). After repeating this
procedure several times, the statistics collected through the experiment can be
described in terms of the correlations between the input measurement settings and
the obtained outcomes. Labelling x = (x1, . . . , xN) the measurements for the N
parties and a = (a1, . . . , aN) the associated outcomes, such correlations can be
described in terms of the conditional probability to find the output a given the
input setting x, i.e.,

P (a|x) ≡ P (a1, . . . , ai, . . . , aN |x1, . . . , xi, . . . , xN) . (2.93)
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Notice that, since P (a|x) has to be a valid probabilistic distribution, it must satisfy
the positivity constraint P (a|x) ≥ 0, as well as the normalization condition

∆∑
a1=1

· · ·
∆∑

aN=1

P (a1, . . . , aN |x1, . . . , xN) = 1 . (2.94)

Hence, we can interpret P (a|x) as a point in the subspace P ⊂ R(∆m)N . It is easy
to show that P is a convex set, that is, for any P1, P2 ∈ P and any λ ∈ [0, 1], we
have λP1 + (1 − λ)P2 ∈ P . Convex sets which are also compact and possess a
finite number of extreme points are dubbed (convex) polytopes. As a consequence
of the Minkowski’s theorem [Grü03], polytopes can be either characterised in
terms of such extreme points, called vertices, or as the intersection of a minimal
number of half-spaces, called the facets of the polytope, which are strictly related
with Bell inequalities. Notice that, so far, the only constraints on P (a|x) derive
from the mathematical requirement for them to be probabilities. As we will see in
the following, the choice of an underlying physical model will result in additional
constraints on the set of such correlations.

No-signalling correlations

A first constraint derives from the no-signalling principle, which rules out the
possibility of an instantaneous communication among the parties. Formally, this
requirement translates to the conditions

∆∑
ai=1

P (a|x) =
∆∑

ai=1

P (a|x′) ∀xi ̸= x′i , (2.95)

with x′ = (x1, . . . , x
′
i, . . . , xN). Eq.(2.95) has the following physical interpretation:

the choice of a measurement setting made by one of the parties cannot influence the
outcomes observed by the others. It can be shown that the set of those correlations
that satisfy Eq.(2.95) defines the so-called no-signalling polytope, denoted with the
symbol NS .

Quantum correlations

Another possible requirement is that the probability distribution P (a|x) is obtained
from an N -partite quantum state ρ ∈ B(H) on which some local measurements
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{M(i)
ai|xi} are performed, i.e.,

P (a1, . . . , ai, . . . , aN |x1, . . . , xi, . . . , xN) = Tr
[

N⊗
i=1

M(i)
ai|xiρ

]
. (2.96)

Here, {M(i)
ai|xi} defines a set of positive-operator valued measurements (POVM),

satisfying M(i)
ai|xi ⪰ 0,

∑
ai
M(i)

ai|xi = 1(i), ∀i = 1, . . . , N . In this case, it is possible
to show that the probabilities that satisfy Eq.(2.96) form a convex set, denoted with
the symbol Q, which is nothing but the set of quantum states. However, since
the boundary of Q cannot be characterised in terms of a finite number of extreme
points, Q is not a convex polytope.

Local correlations

A further type of correlations derives from the requirement that the parties of the
Bell experiment can communicate using only local strategies. Formally, this is
equivalent to a scenario where a certain resource λ, commonly referred to as shared
randomness, is distributed among the parties with a certain probability distribution
p(λ). Hence, each probability P (a|x) which is compatible with this constraint can
be cast as

P (a|x) =
∫
Λ

dλp(λ)ΠN
i=1P (ai|xi, λ) , (2.97)

where p(λ) ≥ 0,
∫
Λ
dλp(λ) = 1, and Λ is the space associated to the variable λ.

The set of probabilities which satisfy Eq.(2.97) defines the so-called local polytope,
denoted L.

2.4.2 Bell inequalities
The three sets of correlations introduced so far are not unrelated. In fact, it can
be shown (see for example [Pit86]) that any set of local correlations admits a
representation of the form of Eq.(2.96), so that L ⊂ Q. Moreover, any quantum
correlation satisfies the no-signalling constraint, implying that Q ⊂ NS . Hence,
the following inclusions hold, i.e., L ⊂ Q ⊂ NS . Since they are all convex sets and,
in addition, L and NS are also polytopes, we can apply the Hahn-Banach theorem,
so that for any probability P̂ (a|x) /∈ S = {L,Q,NS} there exists an hyperplane
separating P̂ (a|x) from S . In particular, this separation condition can be expressed
in terms of an inequality that is satisfied by every correlation P (a|x) ∈ S but is
violated by P̂ (a|x). When S = L, such inequality is commonly referred to as a
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Bell inequality. Sometimes, when S = Q, the term quantum Bell inequality is used.
Unless further specified, in this thesis we will deal exclusively with the first type of
Bell inequalities.

Figure 2.3: Pictorial representation of the convex sets of no-signalling (NS), quan-
tum (Q) and local (L) correlations. (Tight) Bell inequalities correspond to the
facets of the local polytope L.

Analogously to the case of EWs, also in this case, due to the Hahn-Banach
theorem, we can interpret Bell inequalities as the hyperplanes which are parallel to
the facets of the local polytopeL and indeed it can be shown that Bell inequalities are
nothing but a particular kind of EWs. Particularly relevant are those Bell inequalities,
dubbed tight, that are tangent to the facets of L. In fact, exactly as optimal EWs,
tight inequalities are those that provide a minimal representation of L, meaning
that any other Bell inequality can be written as a convex combination of them (see
Fig.2.3). Characterising the facets of the local polytope, and thus the corresponding
tight Bell inequalities, is a tremendously hard task whose solution poses a hard
challenge even in the case of a small number of parties and measurement settings
[Śli03]. In order to get an intuition of this complexity, let us restrict without loss of
generality to the case of bipartite outcomes, i.e., ∆ = 2. In this case it is possible to
recast the original problem in terms of the correlators between the parties. If we
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denote as M(i)
xi the measurement performed by the i-th party corresponding to the

measurement setting xi, the k-th order correlator is defined as

⟨M(i1)
xi1

. . .M(ik)
xil

⟩ =
∑
ai1

· · ·
∑
aik

(−1)
∑k

j=1 aijP (ai1 . . . aik |xi1 . . . xik) , (2.98)

where 0 ≤ i1 < . . . ik < N, xil ∈ {0, 1}, ail ∈ {−1, 1}, 1 ≤ k ≤ N and ⟨. . . ⟩
denotes the expectation value of an operator. Hence, in the multipartite scenario,
a complete characterisation of a Bell experiment requires the construction of the
correlators of any order, a task whose complexity quickly grows with the number
of the parties [WW01; ŻB02]. When dealing with experiments, the quantities one
has typically access to are correlators of small order. For this reason it becomes
natural to ask whether non-locality in many-body systems can be revealed with
correlators involving only few parties. As we will discuss thoroughly in section
2.5, we will see that, when dealing with systems of indistinguishable particles, this
is indeed the case and the presence of non-local correlations can be assessed by
means of only one- and two-body correlators [TAS+14].

2.5 Systems of indistinguishable particles
As we have seen in the previous sections, the characterisation of both entanglement
and non-local correlations is, in general, an NP-hard task and usually a solution can
be found only in some specific cases. For this reason, it can be argued that dealing
with systems endowed with symmetries can reduce the original complexity of both
tasks, and indeed, as we shall see in the following chapters, symmetries provide a
useful framework where the original problem can be rephrased in an easier way.
In this section we discuss the case of systems of indistinguishable particles, along
with the mathematical tools that are needed for their description.

2.5.1 Permutationally invariant states
A first natural symmetry one can consider is the permutationally invariance be-
tween the parties of a composite system. This symmetry appears in many situations
of physical interest, for example when one considers the state of a system of indistin-
guishable particles (e.g., bosons) which has to remain invariant under the swapping
of any pair of subsystems. Formally, this requirement can be expressed by consider-
ing the group of permutations N elements, GN . If H = H1 ⊗ H2 ⊗ · · · ⊗ HN

is an N -partite Hilbert space, the action of an element π ∈ GN on a vector
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|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN⟩ ∈ H can be described as

Pπ |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN⟩ = |ψπ−1(1)⟩ ⊗ |ψπ−1(2)⟩ ⊗ · · · ⊗ |ψπ−1(N)⟩ , (2.99)

where Pπ is a unitary representation of the permutation π (e.g., a permutation
matrix). Hence, we have the following definition:

Definition 2.18. Let ρ ∈ B(H), where H = H1 ⊗H2 ⊗ · · · ⊗ HN is an N -partite
Hilbert space. We say that ρ is a permutationally invariant state if, for every π ∈ GN ,
the following relation holds, i.e.,

ρ = PπρP
†
π . (2.100)

2.5.2 Schur-Weyl duality
In the case of permutationally invariant (PI) states there exists a famous result
from representation theory, known as Schur-Weyl duality, which asserts that any
N -partite Hilbert space H = (Cd)N admits a decomposition of the form

(Cd)N ∼=
⊕

λ⊢(d,N)

Hλ ⊗Kλ , (2.101)

where Hλ and Kλ are irreducible representations of the permutation group GN and
the group Ud of unitary matrices of order d, respectively. Here the sum runs over
the partitions λ of N with at most d elements. As a consequence, a PI state ρ ∈ H
is block-diagonal in the basis of Eq.(2.101). When dealing with qubits, i.e., d = 2,
Eq.(2.101) can be written explcitely as

(C2)N ∼=
N/2⊕

J=Jmin

HJ ⊗KJ , (2.102)

where the Hilbert spaces HJ have dimension dimHJ = 2J + 1, and KJ are called
multiplicity spaces, with dimension 1 if J = N/2 and

dimKJ =

(
N

N/2− J

)
−
(

N

N/2− J − 1

)
, J ̸= N/2 . (2.103)

Notice that Eq.(2.102) corresponds to the decomposition of the Hilbert space of a
system of N spin-1

2
particles and, for this reason, HJ are sometimes referred to as
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spin Hilbert spaces. Hence, a PI state possesses a block-diagonal decomposition in
this basis given by

ρ =

N/2⊕
J=Jmin

pJ
dimKJ

1J ⊗ ρJ , (2.104)

where ρJ ∈ B(HJ) and pJ defines a probability distribution. Particularly relevant
for our analysis is the block of maximum spin, i.e., J = N/2, which is spanned by
the so-called Dicke states.

2.5.3 Dicke states
Dicke states [Dic54] have firstly been introduced in quantum optics to describe the
interaction between a single-mode photon and a system of N spin-1

2
particles. In

this context, denoting σ(i)
α , α ∈ {x, y, z} the Pauli matrix σα for the i-th subsystem,

and Jα = 1
2

∑N
i=1 σ

(i)
α the total angular momentum along the direction α, Dicke

states are usually defined as the simultaneous eigenstates of the operators Jz and
J2 = J2

x + J2
y + J2

z . Alternatively, Dicke states correspond to superposition of
states with the same number of excitations, according to the following definition:

Definition 2.19. Let H = (Cd)⊗N . The Dicke states correspond to superpositions of
k1 qudits in the state |0⟩, k1 qudits in the state |1⟩, etc., of the form

|Dk⟩ = C(N,k)−1/2
∑
π∈GN

π(|0⟩⊗k0 ⊗ |1⟩⊗k1 ⊗ · · · ⊗ |d− 1⟩⊗d−1) , (2.105)

where π is a permutation operator, k = (k0, . . . , kd−1) is a partition of N , i.e.,
ki ≥ 0,

∑d−1
i=0 ki = N , and C(N,k) is a normalization factor given by

C(N,k) =

(
N

k

)
=

N !

k0!k1! · · · kd−1!
. (2.106)

The Dicke states, sometimes referred to as symmetric states, span the symmetric
subspace S(H), corresponding to the block λ = (N) in Eq.(2.101), with dimension
dimS(H) =

(
N+d−1
d−1

)
.
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3
Entanglement in symmetric states

Papà, radice e luce, portami ancora per mano
nell’ottobre dorato del primo giorno di scuola.
Le rondini partivano, strillavano:
fra cinquant’anni ci ricorderai.

Maria Luisa Spaziani

In this chapter we present our results concerning the characterisation of the en-
tanglement for bipartite symmetric states of two qudits for generic dimension
d. Remarkably, despite the apparent simplicity of the symmetric subspace due
to its reduced dimensionality (namely, d(d + 1)/2 instead of d2), the character-
isation of entanglement remains, in general, an open problem. In this case, we
demonstrate that there exists a set of matrices, known as copositive, that act as
entanglement witnesses. Further, we demonstrate that there exists a close relation
between copositive matrices and entanglement in symmetric states allowing to
construct decomposable, optimal and non decomposable entanglement witnesses
from the properties of the copositive cone. In section 3.1 we introduce the basic
definitions along with the main results regarding the theory of copositive matrices.
In section 3.2.2 we show how to construct an EW for a subclass of symmetric states
of two qudits, known as diagonal symmetric states. In section 3.2.3 we discuss the
extension of our construction to the the symmetric case, providing some families
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of PPT-entangled states that are detected by our EWs. Results of section 3.2.2 and
section 3.2.3 are based on the work [MAT+21].

3.1 Copositive matrices
Copositive matrices are a set of real matrices that find application in a variety of
different fields, ranging from spectral clustering [DHS05] and dynamical systems
[MS07; BKS12] to Markovian models of DNA evolution [Kel94], just to name
a few. Recently, a renovated interest in copositive matrices has sparked from
the possibility to use them as a tool in combinatorial and nonconvex quadratic
optimization problems [Bom12; Dür10]. Formally, copositive matrices are defined
as follows:

Definition 3.1. A real symmetric matrix, H , is copositive if and only if xTHx ≥
0, ∀x ≥ 0 component-wise.

Notice that copositive matrices have non-negative diagonal elements. In fact,
denoting ei = (0, . . . , 1, . . . , 0) has the basis vector of R+ with a one in the i-th
position, copositivity requires eTi Hei = Hii ≥ 0, ∀i = 1, . . . , d. It is easy to
see that every positive semidefinite matrix is copositive but the converse is not
necessarily true. Deciding whether a matrix H is copositive is a difficult task and
indeed, it has been proved that checking membership in COPd is a co-NP hard
problem [MK87]. The connection between the two sets of matrices can be better
understood if one introduces the concept of convex cone.

Definition 3.2. A set K in a vector space V is called a convex cone if for every
element x1,x2 ∈ K and non-negative scalars α, β, αx1 + βx2 ∈ K .

Examples of convex cones are the set of positive semidefinite matrices and the set
of non-negative matrices, defined, respectively, as PSDd = {A ∈ Sd | A ⪰ 0},
Nd = {A ∈ Sd | Aij ≥ 0 ∀i, j}, where Sd denotes the set of symmetric d × d
matrices. Similarly, also the set of copositive matrices forms a convex cone, denoted
as COPd, and the inclusion PSDd +Nd ⊆ COPd holds. Surprisingly enough, in
his seminal paper of 1962, Diananda proved that the equality holds only for d < 5:

Theorem 3.1 ([Dia62]). Let d < 5. Then COPd = PSDd +Nd.

In d ≤ 4 there exist sufficient criteria to ensure copositivity.
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Theorem 3.2 ([ACE95]). A symmetric matrix H of order 2 is copositive if and only if

H00 ≥ 0, H11 ≥ 0 (3.1)
H01 +

√
H00H11 ≥ 0 (3.2)

Theorem 3.3 ([CS94]). A symmetric matrix H of order 3 is copositive if and only if
the following inequalities are satisfied

H00 ≥ 0, H11 ≥ 0, H22 ≥ 0 , (3.3)
Ĥ01 ≡ H01 +

√
H00H11 ≥ 0 , (3.4)

Ĥ02 ≡ H02 +
√
H00H22 ≥ 0 , (3.5)

Ĥ12 ≡ H12 +
√
H11H22 ≥ 0 , (3.6)

along with the condition√
H00H11H22+H12

√
H00+H02

√
H11+H01

√
H22+

√
2Ĥ01Ĥ02Ĥ12 ≥ 0 . (3.7)

A similar result has been proved also for the case d = 4 (see [PY93]), but we
omit it here for the sake of simplicity. In higher dimension, there exist several other
criteria but none of them is sufficient to ensure membership in COPd (for a review
of some of these criteria see e.g., [HS10; BDS15]).

Exceptional matrices

Theorem 3.1 fails for d ≥ 5 and a counterexample is given by the so-called Horn
matrix [Dia62], i.e.,

H5 =


1 −1 1 1 −1

−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

 . (3.8)

Notice thatH5 ∈ COPd\(PSDd+Nd). Matrices of this type are dubbed exceptional
matrices.

Definition 3.3. A d× d copositive matrix H is said to be exceptional if and only if
H cannot be decomposed as the sum of a positive semidefinite matrix (PSDd), and a
symmetric entry-wise non-negative matrix (Nd), i.e., H ∈ COPd \ (PSDd +Nd).
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As we will see in section 3.2.2, exceptional matrices play a fundamental role in the
entanglement detection for bipartite symmetric states and, for this reason, their
characterisation is particularly valuable. In [JR08] a method to construct exceptional
copositive matrices is proposed but the requirements are quite restrictive and in
general there exist only few necessary criteria to check membership in the set of
exceptional matrices.

Extreme matrices

Finally, among copositive matrices, we distinguish extreme copositive matrices,
that stand out for their impossibility to be decomposed. First, we introduce the
definition of an extreme ray of a convex cone.

Definition 3.4. Let K be a convex cone. If x = x1 + x2 ∈ K , with x1,x2 ∈ K
implies that x1 = ax,x2 = (1 − a)x for all a ∈ [0, 1], then x is said an extreme
vector of K and the cone {x} = {αx, 0 ≤ α ∈ R} is called an extreme ray of K .

Hence, the definition of extreme copositive matrix follows naturally.

Definition 3.5. A d× d copositive matrix H is said to be extreme if H = H1 +H2

with H1, H2 copositive, implies H1 = aH,H2 = (1− a)H for all a ∈ [0, 1] .

Examples of extreme copositive matrices of order d are:

I. eie
T
i , i ∈ {1, . . . , d} ,

II. eie
T
j + eje

T
i , 1 ≤ i < j ≤ d ,

III. xxT , x ∈ Rd
+ .

In d < 5 the above examples represent the only possible extreme copositive matrices.
In fact, recalling that in this case COPd = PSDd +Nd, it is possible to show that
matrices of type I and II are extreme for the cone Nd, while matrices of type III
are extreme for PSDd [BS03]. However, when d ≥ 5, other types of extreme
matrices are possible, besides the ones considered before. A necessary condition
for extremality, which we introduce here for further convenience, is provided by
the following theorem:

Theorem 3.4 ([Bau66]). Let H ∈ COPd be an extreme copositive matrix. Then, for
every ε > 0 and for every i ∈ {1, . . . , d}, it holds

xTHx− εx2i ≱ 0 , (3.9)

for any x ∈ Rd
+.
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Finally, let us conclude this section with an important observation. If we define
the boundary of COPd as the set

∂COPd = {H ∈ Sd | xTHx = 0,∀x ∈ Rd
+}, (3.10)

it can be shown that extreme copositive matrices belong to ∂COPd. However,
not every matrix that lies on the boundary of the cone of copositive matrix is
necessarily extreme. In Fig.3.1 we illustrate, schematically, the relation between
the aforementioned classes of copositive matrices.

Figure 3.1: Pictorial representation of the cone of copositive matrices, COPd, and
the cones PSDd and Nd of positive semidefinite and non-neegative matrices,
respectively. The striped region has been overmagnified for clarity and represents
the convex hull of the cones PSDd (blue) and Nd (pink), denoted as PSDd +Nd

(yellow). Note that exceptional copositive matrices exist only for d > 5 (green).
Extremal copositive matrices lie at the border of the cone COPd (dashed line).

Completely positive matrices

Completely positive matrices are strictly related to copositive matrices. Formally,
one has the following definition.

Definition 3.6. Let A be a d× d matrix. A is said completely positive if and only if
there exists a non-negative d× k matrix, C , such that A = CCT , for some k ≥ 1.

Notice that the definition of completely positivity for matrices has nothing to do
with the same notion for linear maps. Completely positive matrices form a cone,
denoted as CPd, which is the so-called dual cone of COPd.
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Definition 3.7. Let K be a set in a vector space V with inner product ⟨·, ·⟩. The dual
cone of K , denoted as K∗, is the set

K∗ = {y ∈ V | ⟨x,y⟩ ≥ 0,∀x ∈ K} . (3.11)

When dealing with cones of matrices it is customary to assume the inner product to
be the Hilbert-Schmidt scalar product between two matrices, i.e., ⟨A,B⟩ = Tr[A†B].

3.2 Entangled states in Cd ⊗ Cd

In what follows we focus on bipartite systems and we denote H = Cd ⊗ Cd the
finite dimensional Hilbert space of two qudits. In particular, we are interested in
the symmetric subspace S ≡ S(H) ⊂ H which, as we have seen in chapter 2,
corresponds to the subspace of maximum spin in the Schur-Weyl representation
and is spanned by the Dicke states. In the case of two qudits, the Dicke states of
Eq.(2.19) take a simpler expression, i.e.,

|Dii⟩ ≡ |ii⟩ , |Dij⟩ ≡
|ij⟩+ |ji⟩√

2
, i ̸= j , (3.12)

where {|i⟩}d−1
i=0 is an orthonormal basis of Cd. Notice that the dimension of S is

given by dim(S) = d(d + 1)/2. In an abuse of language, we refer to symmetric
quantum states, ρS ∈ B(S), as the convex hull of projectors onto pure symmetric
normalised states, i.e.,

ρS =
∑
k

p(k)
S |Ψ(k)

S ⟩ ⟨Ψ(k)
S | , (3.13)

with p(k)S ≥ 0 ,
∑

k p
(k)
S = 1 and |Ψ(k)

S ⟩ =
∑

ij c
(k)
ij |Dij⟩, c(k)ij ∈ C.

Thus, any ρS ∈ B(S) is a positive semidefinite operator (ρS ⪰ 0) with unit trace
(Tr(ρS) = 1), fulfilling the condition

ΠSρSΠS = ρS , (3.14)

where ΠS = 1
2
(1+ F ) is the projector onto the symmetric subspace of two qudits

and F =
∑d−1

i,j=0 |ij⟩⟨ji| is the so-called flip operator. Notice that, since ΠS is a
projector (i.e., Π2

S = ΠS), Eq.(3.14) implies that symmetric states satisfy also the
following relations

ΠSρS = ρSΠS = ρS (3.15)
FρS = ρSF = ρS . (3.16)
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Using the Dicke basis, symmetric quantum states can be compactly expressed as
follows:

Definition 3.8. Any bipartite symmetric state, ρS ∈ B(S), can be written as

ρS =
∑

0≤i≤j<d
0≤k≤l<d

(
ρklij |Dij⟩ ⟨Dkl|+ h.c.

)
, (3.17)

with ρklij ∈ C. Notice that, due to the symmetry of the Dicke states, it holds that
ρklij = ρklji = ρlkij = ρlkji ∀i, j, k, l.

Convex mixtures of projectors onto Dicke states are denoted as diagonal sym-
metric (DS) states, since they are diagonal in the Dicke basis. They form a convex
subset of S and are particularly relevant for our analysis.

Definition 3.9. Any DS state, ρDS ∈ B(S), is of the form

ρDS =
∑

0≤i≤j<d

pij |Dij⟩ ⟨Dij| , (3.18)

with pij ≥ 0, ∀ i, j and
∑

ij pij = 1.

Due to their explicit structure, symmetric states possess a natural decomposi-
tion:

Lemma 3.1. Every symmetric state, ρS ∈ B(S), can be written as the sum of a DS
state, ρDS , and a traceless symmetric contribution, σCS , which contains all coherences
between Dicke states, i.e.,

ρS = ρDS + σCS =
∑

0≤i≤j<d

pij |Dij⟩ ⟨Dij|+
∑
ij

∑
kl

(i,j)̸=(k,l)

(
αklij |Dij⟩ ⟨Dkl|+ h.c.

)
,

(3.19)
with αklij ∈ C and αklij = (αijkl)

∗.

3.2.1 Separability, EWs & copositive matrices
In this section we rephrase some of the concepts of section 2.3 in the context of
bipartite symmetric states on H = Cd ⊗ Cd.
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Definition 3.10. A bipartite symmetric state ρS ∈ B(S) is separable (not entangled)
if it can be written as a convex combination of projectors onto pure symmetric product
states, i.e.,

ρS =
∑
i

pi |eiei⟩ ⟨eiei| , (3.20)

with pi ≥ 0,
∑

i pi = 1 and |ei⟩ =
∑

i e
(k)
i |k⟩, where e(k)i ∈ C and {|k⟩}d−1

k=0 is an
orthonormal basis in Cd. If a decomposition of this form does not exist, then ρS is
entangled.

Figure 3.2: Pictorial representation of the set of bipartite symmetric separable
states DS (Sym) embedded into the set of bipartite separable states. The cylinder
represents the separable set D. The discontinuous (red) line corresponds to the
extremal points (of the form |e, f⟩) generating the set and the continuous (blue
and green) lines corresponds to the respective boundaries (necessarily requiring
description as density matrices with rank > 1 but not maximal). Both the separable
and the symmetric separable sets share extremal points of the form |e, e⟩, here
represented by the black dots.

We denote by D, the compact set of separable quantum states and by DS ,
its analogous symmetric counterpart, which is also compact (see Fig.3.2). As a
consequence of the Hahn-Banach theorem, the set DS admits also a dual description
in terms of its dual cone, PS , defined as the set of the operators W fulfilling

PS = {W = W † s.t ⟨W, ρ⟩ ≥ 0 ,∀ρS ∈ DS} , (3.21)
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where ⟨W, ρ⟩ ≡ Tr(W †ρ) is the Hilbert-Schmidt scalar product. Recalling Def.2.14,
it is easy to see that PS is the set of EWs for symmetric states. Notice that, by
definition, the set of separable symmetric states, DS , satisfies the inclusion DS ⊂ D,
but P ⊂ PS , where P is the dual cone of the convex set D, i.e.,

P = {W = W † s.t. ⟨W, ρ⟩ ≥ 0 ,∀ρ ∈ D} . (3.22)

In other words, any EW acting on H that detects an entangled state belongs to
PS , but the converse is not necessarily true (see Fig.3.3).

Figure 3.3: Pictorial structure of the quantum states in Cd ⊗ Cd for d > 5. Each
set contains the sets displayed inside. The colored region (green) represents the
set of symmetric states (SYM). Note that, while for d > 5 there exist diagonal
symmetric (DS) states that are PPT-entangled, as represented in the figure, for
d < 5 all PPT-entangled DS state are necessarily separable (SEP) (see the text for
details).

For generic symmetric states, sparsity is preserved when the state is expressed in
the computational basis but it is lost when the partial transposition is performed.
However, for DS states, the corresponding partial transpose remains highly sparse
and can be reduced to an associated matrix, Md(ρDS), of dimension d× d, while
generically ρTBS is a matrix of dimension d2 × d2.

Definition 3.11. The partial transpose of every ρDS ∈ B(S) has the form

ρTBDS =Md(ρDS)
⊕

0≤i ̸=j<d

pij
2
, (3.23)
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where Md(ρDS) is a d× d matrix with non-negative entries defined as

Md(ρDS) =


p00 p01/2 · · · p0,d−1/2
p01/2 p11 · · · p1,d−1/2

...
... . . . ...

p0,d−1/2 p1,d−1/2 · · · pd−1,d−1

 . (3.24)

It has been proven that, in the case of DS states, the properties of the state ρDS
can be rephrased in terms of equivalent properties of the matrix Md(ρDS) [Yu16;
TAQ+18]. In particular, we have the following results:

Theorem 3.5 ([Yu16; TAQ+18]). Let ρDS ∈ B(S) be a DS state. Then,

ρDS separable ⇐⇒ Md(ρDS) ∈ CPd . (3.25)

Theorem 3.6 ([TAQ+18]). Let ρDS ∈ B(S) be a DS state. Then,

ρTBDS ⪰ 0 ⇐⇒ Md(ρDS) ∈ DNN d , (3.26)

where DNN d denotes the cone of doubly non-negative matrices, defined as

DNN d = {A ∈ Sd | A ∈ PSDd, Aij ≥ 0} . (3.27)

In particular, it can be shown [BDS15] that for d ≤ 4, the equality CPd =
DNN d holds, so that we have the following result:

Theorem 3.7 ([TAQ+18]). Let ρDS ∈ B(S) be a DS state, with d ≤ 4. Then,

ρDS separable ⇐⇒ ρDS PPT . (3.28)

Th.3.7 states that PPT condition is sufficient to assess separability in the class of
two-qudit DS states for d ≤ 4. However, in higher dimension, there exist examples
of diagonal PPT-entangled states which can be detected by means of copositive
matrices.

This result stems from the observation that COPd is the dual of the cone of
CPd. For this reason, since deciding if a DS state ρDS is separable is equivalent
to check the membership of Md(ρDS) to the cone of completely positive matrices,
this problem can be recast, equivalently, in the dual cone of CPd, i.e., in the cone
COPd of copositive matrices. As a consequence, copositive matrices act as EWs for
DS states, as we will see in further detail in the following section.
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3.2.2 Diagonal symmetric states
Using the definitions of the previous section we now present a method to construct
an EW for DS states, starting from a copositive matrix. It turns out that the
decomposability of the EWs we propose, depends crucially on the type of copositive
matrix we consider. Indeed, we show that decomposable (non-decomposable) EWs
correspond to non-exceptional (exceptional) copositive matrices. Our findings are
summarised in the following theorems.

Theorem 3.8. Each copositive matrix H =
∑d−1

i,j=0Hij |i⟩⟨j|, with at least one
negative entry Hmn = Hnm < 0 (m ̸= n), leads to an EW on S of the form
W = (Hext)TB =

∑d−1
i,j=0Hij |ij⟩⟨ji|.

Proof. i) We extend H to the symmetric subspace as Hext =
∑d−1

i,j=0Hij |i⟩ ⟨j| ⊗
|i⟩ ⟨j|, and denote W = (Hext)TB . A direct calculation shows that, for every
state |e⟩ =

∑d−1
i=0 ci |i⟩, with ci ∈ C, it holds ⟨ee|W |ee⟩ = ⟨ee∗|Hext|ee∗⟩ =∑

ij |ci|2Hij|cj|2 = xTHx ≥ 0, where x = (|c0|2, |c1|2, |c2|2) and the last in-
equality follows from the copositivity of H . As a consequence, Tr[WρS] ≥ 0 for
all ρS ∈ DS ; ii) The diagonalization of W shows that its eigenvectors are given by
{|ii⟩ , |ψ±

ij⟩ = (|ij⟩ ± |ji⟩)/
√
2}, with corresponding eigenvalues {Hii,±Hij}, i.e.,

W = (Hext)TB =
d−1∑
i=0

Hii |ii⟩ ⟨ii|+
d−1∑
i<j

Hij |ψ+
ij⟩ ⟨ψ+

ij | −
d−1∑
i<j

Hij |ψ−
ij⟩ ⟨ψ−

ij | ,

(3.29)

where |ψ+
ij⟩ = |Dij⟩ and |ii⟩ = |Dii⟩. Notice that the d(d− 1)/2 eigenvectors cor-

responding to the projectors |ψ−
ij⟩ ⟨ψ−

ij |, are orthogonal to the symmetric subspace
and, therefore, can be discarded by projecting on S , i.e.,

WS = ΠSWΠS =
d−1∑
i=0

Hii |Dii⟩ ⟨Dii|+
d−1∑
i<j

Hij |Dij⟩ ⟨Dij| . (3.30)

Finally, since copositivity requires thatHii ≥ 0 ∀i,WS is an EW if and only if at least
one of the remaining eigenvalues is negative, that is if H has at least one negative
element Hmn = Hnm < 0 for some m ̸= n. It is now trivial to see that WS indeed
detects, at least, the entangled state |ψ+

mn⟩ since Tr[WS |ψ+
mn⟩ ⟨ψ+

mn|] = Hmn < 0.
To conclude, if WS is an EW in the symmetric subspace, so it is W given by
Eq.(3.29).
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The following theorem establishes a correspondence between decomposable
EWs and non-exceptional matrices.

Theorem 3.9. If H = HN + HPSD (i.e., H is non-exceptional) with at least one
negative element, then W = ΠS (H

ext
N )TB ΠS + (Hext

PSD)
TB is a decomposable EW.

The converse is also true, that is, if W = P +QTB with P,Q ⪰ 0, then it is always
possible to find a copositive matrix H = HN + HPSD with at least one negative
element, such that P = ΠS (H

ext
N )TB ΠS and Q = (Hext

PSD)
TB .

Proof. ( =⇒ ) Let H be a non-exceptional copositive matrix, i.e., H = HN +HPSD.
Since H has a negative element it must be (HPSD)mn = (HPSD)nm < 0. The
operatorW = ΠS (H

ext
N )TB ΠS+(Hext

PSD)
TB is a decomposable EW on the symmetric

subspace:

i) W is positive semidefinite over symmetric separable states. In fact, for any
ρsep ∈ S it holds:

Tr[Wρsep] = Tr[WΠSρΠS] = Tr[ΠSWΠSρsep] = Tr[ΠS(H
ext)TBΠSρsep] =

= Tr[(Hext)TBρsep] = xTHx ≥ 0 ,

where the result follows from the cyclic property of the trace and the coposi-
tivity of H ;

ii) W has at least one negative eigenvalue. In fact, it is not hard to see that the
spectrum ofW is given by {(HN )ij+(HPSD)ij,−(HPSD)ij}. However, since
we are interested exclusively in symmetric states, we can discard the latter
eigenvalues, i.e., {−(HPSD)ij}, since they correspond to anti-symmetric
states. As a consequence, since there exists, for hypothesis, at least one
negative elementHij ≡ (HN )ij+(HPSD)ij < 0, W has at least one negative
eigenvalue on S ;

iii) W is decomposable. Setting QTB = (Hext
PSD)

TB it follows Q = (Hext
PSD) ⪰ 0.

Hence, if P = ΠS (H
ext
N )TB ΠS ⪰ 0, then W is a decomposable EW. It is easy

to see that ΠS (H
ext
N )TB ΠS =

∑
ij(H

ext
N )ij|Dij⟩⟨Dij| so that its eigenvalues

are given by {(HN )ij}. Hence, since HN ∈ N , P ⪰ 0.

( ⇐= ) Let W = ΠS (H
ext
N )TB ΠS + (Hext

PSD)
TB be a decomposable EW for

symmetric states. Hence, it must have a negative eigenvalue. Recalling the ex-
pression of the spectrum of W , this implies that there exists a negative element
Hij ≡ (HPSD)ij + (HN )ij < 0, so that (HPSD)ij < 0. Moreover, positivity over
symmetric separable states implies Tr[Wρsep] = ⟨ee|W |ee⟩ = xTHx ≥ 0 , a
condition that is satisfied if and only if H is a copositive matrix.
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Notice that W from Theorem 3.9 is not a symmetric operator. In fact, due to
the latter term in the decomposition, i.e., (Hext

PSD)
TB , it follows that ΠSWΠS ̸= W ,

meaning that W /∈ S . Despite one might expect that an entangled symmetric
state σ can be detected only by a symmetric EW, a non-symmetric EW W can
nonetheless be employed as long as its projection WS onto the symmetric sub-
space defines a valid witness and is such that Tr[WSσ] < 0. Indeed, it possible to
show that the construction of a symmetric EW of the form WS = ΠS(H

ext)TBΠS

would lead to a non-decomposable EW for any copositive matrix with at least
one negative element. In particular, this would imply the possibility to construct
a non-decomposable EW for d < 5, a result which contrasts with the fact that
PPT-entangled DS states (PPTEDS) can only occur for d ≥ 5. For this reason, if we
want to stick to the usual definition of decomposability for EWs, an anti-symmetric
contribution must be taken into account. Although one possibility to overcome
these contradictions would be to introduce an alternative definition of decompos-
ability (see, e.g., [CJM+22]), in the rest of this thesis we will stick with the original
definition given in section 2.3.

Let us illustrate Theorem 3.9 by considering the following copositive matrix in
d = 3

H =

1 1 1
1 1 −1
1 −1 1

 . (3.31)

A possible decomposition ofH = HPSD+HN , withHPSD ∈ PSD3 andHN ∈ N3,
is given by:

HPSD =

0 0 0
0 1 −1
0 −1 1

 , HN =

1 1 1
1 0 0
1 0 0

 . (3.32)

The associated EW W = P + QTB , with P = ΠS(H
ext
N )TBΠS , and Q = Hext

PSD,
reads
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P =
1

2



2 0 0
0 1 0
0 0 1

0 0 0
1 0 0
0 0 0

0 0 0
0 0 0
1 0 0

0 1 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0


, Q =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 1


(3.33)

Notice that the decomposition of H might not be unique. For instance, another
possible decomposition of H can be

H ′
PSD =

1 0 0
0 1 −1
0 −1 1

 , H ′
N =

0 1 1
1 0 0
1 0 0

 , (3.34)

but the resulting EW, W ′ = P ′ +Q′TB , detects exactly the same states in the sym-
metric subspace. The link between non-exceptional copositive matrices and decom-
posable EWs extends also to exceptional copositive matrices and non-decomposable
EWs in the symmetric subspace.

Theorem 3.10. Associated to each exceptional copositive matrixH (i.e.,H ∈ COPd\
(PSDd + Nd)) with at least one negative entry, there is a non-decomposable EW,
W = (Hext)TB , able to detect symmetric PPTES.

Proof. For any H ∈ COPd \ (PSDd +Nd), H always admits a decomposition of
the formH = HN +H⋆, whereHN is a non-negative symmetric matrix andH⋆ has
at least one negative eigenvalue but is not positive semidefinite. The associated EW
W = P +QTB with P = ΠS(H

ext
N )TBΠS and Q = Hext

⋆ , is a non-decomposable EW
since P ⪰ 0 but Q ⪰̸ 0. The operator W = (Hext)TB is also a non-decomposable
EW.

Corollary 3.10.1 (From [TAQ+18]). Since for d < 5 every copositive matrix is not
exceptional (i.e., H = HPSD + HN ), all EWs of DS states in d = 3 and d = 4 are
decomposable.

The above corollary rephrases the fact that PPT criterion is necessary and
sufficient to assess separability for bipartite DS states ρDS ∈ B(Cd ⊗Cd) for d < 5.
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3.2.3 Symmetric states
Let us briefly summarise what we have seen so far. The fact that each DS state,
ρDS ∈ B(Cd ⊗ Cd), is associated to a matrix Md(ρDS) (see Eq.(3.24)), allows to
reformulate the problem of entanglement characterisation as the equivalent problem
of checking the membership ofMd(ρDS) to the cone of completely positive matrices
CPd. Equivalently, according to the dual formulation, any entangled state ρDS
is detected by an EW W which can be constructed from a copositive matrix H .
PPT entangled diagonal symmetric states (PPTEDS) can only be detected by non-
decomposable EWs, which correspond to exceptional copositive matrices. Since
for d < 5, all copositive matrices H are of the form H = HPSD + HN , all EWs
defined asW = (Hext)TB are necessarily of the formW = P +QTB , with P,Q ⪰ 0,
meaning that for d < 5 there are not PPTEDS.

However, for d > 5, this is not the case, since there exist exceptional copositive
matrices, i.e., H /∈ PSDd + Nd. Thus, detecting entanglement of ρDS in d ≥ 5,
is equivalent to checking membership of the corresponding copositive matrix
H ∈ COPd \ (PSDd +Nd), which is, in general, a co-NP-hard problem [MK87].

What can we say about symmetric PPTES ρS that are not DS? In this section, we
tackle the problem of entanglement detection for generic states ρS ∈ B(Cd⊗Cd) in
arbitrary dimension d. Since decomposable EWs cannot detect bound entanglement,
one is tempted to believe that separability in the symmetric subspace is equivalent
to the analysis of exceptional copositive matrices only. However, as we shall see
in the following, this is not necessarily the case, and non-exceptional copositive
matrices also play a relevant role in detecting bound entanglement. Following the
argument given above, we split our analysis in two different scenarios, namely
when d ≥ 5 and d < 5. Remarkably, even outside of the DS paradigm, we find that
copositive matrices lie at the core of non-decomposable EWs for symmetric PPTES
in arbitrary dimensions.

Symmetric PPTES in d ≥ 5

The fact that for d ≥ 5 there exist exceptional copositive matrices corresponding to
non-decomposable EWs in S , implies that: (i) such EWs can detect a PPTEDS, and
(ii) the same EWs are able to detect symmetric, but not DS, PPT-entangled states
“around” it.
Theorem 3.11. Let ρDS be a PPTEDS. Then any symmetric state ρS = ρDS + σCS ,
such that ρTBS ≥ 0, is PPT entangled.

Proof. Since ρDS is a PPTEDS state there exists an exceptional copositive matrix H
and an associated non decomposable EW W such that Tr[WρDS] < 0. It follows
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that Tr[WρS] = Tr[W (ρDS + σCS)] = Tr[WρDS] = Tr[HMd(ρDS)] < 0, so that
ρS is PPT entangled.

In [JR08] it was proposed a way to construct exceptional copositive matrices for
any odd d ≥ 5. These matrices bear resemblance with the Horn matix of Eq.(3.8)
and are of the form

HH =



1 −1 1 1 · · · · · · 1 1 1 −1

−1 1 −1 1
. . . . . . 1 1 1

1 −1 1 −1 1
. . . 1 1

1 1 −1 1 −1
. . . . . . 1

... . . . 1 −1 1
. . . ...

... . . . . . . . . . . . . . . . ...
1

. . . . . . 1 −1 1 1

1 1
. . . . . . −1 1 −1 1

1 1 1
. . . 1 −1 1 −1

−1 1 1 1 · · · · · · 1 1 −1 1



. (3.35)

Since theHH is exceptional and has negative entries, it leads to a non-decomposable
EW,W = (Hext)TB , that can be used to detect PPTEDS in any odd dimension d ≥ 5.
Moreover, due to Th.(3.11), by adding suitable coherences to such states, the same
EW can be used to certify PPT-entanglement also in whole families of symmetric
states. Below we provide one of these families.

Corollary 3.11.1. Given a PPTEDS state, ρDS , any symmetric state of the form
ρS = ρDS + σCS , with σCS =

∑
i<j(αij |Dii⟩ ⟨Djj| + h.c.) and |αij| ≤ pij

2
is

PPT-entangled.

Proof. The state ρS and its partial transpose, ρTBS , can be cast as

ρS = M̃d(ρS)
⊕
i<j

pij
2

(
1 1
1 1

)
, (3.36)

ρTBS =Md(ρDS)
⊕

0≤i<j<d

(
pij/2 αij
α∗
ij pij/2

)
, (3.37)
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with

M̃d(ρS) =


p00 α01 · · · α0,d−1

α∗
01 p11 · · · α1,d−1
... ... ... . . .

α∗
0,d−1 α∗

1,d−1 · · · pd−1,d−1

 ,

Md(ρDS) =


p00 p01/2 · · · p0,d−1/2
p01/2 p11 · · · p1,d−1/2

... ... ... . . .
p0,d−1/2 p1,d−1/2 · · · pd−1,d−1

 .

Positive semidefiniteness of ρSTB implies |αij| ≤ pij
2

, so that the state ρS ,
generated from a PPTEDS state, remains PPT-entangled – since it is detected by
the same non-decomposable EW – as long as the coherences respect the condition
|αij| ≤ pij

2
.

A further connection between copositive matrices and EWs appears when con-
sidering extreme copositive matrices. For instance, let us consider the generalised
Horn matrix HH of Eq.(3.35), and the so-called Hoffmann-Pereira matrix HHP
[JR08; HP73], which, besides of being exceptional, is also extreme. For d = 7, such
copositive matrices take the form

HH =



1 −1 1 1 1 1 −1
−1 1 −1 1 1 1 1
1 −1 1 −1 1 1 1
1 1 −1 1 −1 1 1
1 1 1 −1 1 −1 1
1 1 1 1 −1 1 −1

−1 1 1 1 1 −1 1


, (3.38)

HHP =



1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1
1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1

−1 1 0 0 1 −1 1


. (3.39)

Let us inspect the action of both matrices, HH and HHP , on a DS state ρDS ∈
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B(C7 ⊗ C7), described by its associated M7(ρDS) (see Eq.(3.24)):

Md(ρDS) =



1 1 0 0 0 0 1/8
1 2 1 0 0 0 0
0 1 2 1 0 0 1/4
0 0 1 2 1 0 0
0 0 0 1 2 1 0
0 0 0 0 1 2 1
1/8 0 1/4 0 0 1 1


. (3.40)

It can be easily checked that Tr[HHPM7(ρDS)] = Tr[(Hext
HP)

TB ρDS] = −1
4
. Since

both HH and HHP are exceptional copositive matrices, WHP = (Hext
HP)

TB and
WH = (Hext

H )TB are non-decomposable EWs, so that ρDS is a PPT-entangled
state. Moreover, as stated by Th.(3.11), WHP = (Hext

HP)
TB , detects, as well, many

other states around the state given by Eq.(3.40). In contrast, Tr[HHMd(ρDS)] =
Tr[WHρS] = 0, indicating that HH fails to detect this state. This result is by no
means a coincidence. In fact, just like exceptional copositive matrices correspond
to non-decomposable EWs, it is possible to show that extreme matrices generate
optimal EWs. Before proving this result, we introduce the definition of an irreducible
copositive matrix:

Definition 3.12 ([DDG+13]). Given a matrix H ∈ COPd and a set M ⊂ Sd
contained in the space of symmetric matrices of order d, we say thatH isM -irreducible
if there do not exist ϵ > 0 and M ∈ M \ 0 such that H − ϵM ∈ COPd.

For extreme copositive matrices the following theorem applies:

Theorem 3.12 ([DDG+13]). Let H be an extreme copositive matrix. Then, it is
Nd-irreducible.

Finally, making use of Th.3.12, we can prove the following theorem:

Theorem 3.13. Let H be an extreme copositive matrix. Then the operator W =
(Hext)TB is an optimal EW on the symmetric subspace S .

Proof. Since H is extreme, then it is also Nd-irreducible. This means that for every
ϵ > 0 and for every non-negative matrix N ∈ Nd, the matrix H ′ = H − ϵN is not
copositive, i.e., H ′ /∈ COPd. Let us now construct the operator W ′ = [(H ′)ext]TB =
(Hext)TB − ϵ(N ext)TB . Since we are interested in symmetric states, let us consider
its projection onto the symmetric subspace, i.e.,

W ′
S = ΠSW

′ΠS = WS − ϵΠS(N
ext)TBΠS , (3.41)
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where we have set WS = ΠS(H
ext)TBΠS . Notice that P = ΠS(N

ext)TBΠS ⪰
since its eigenvalues are given by {Nij}, which are non-negative for hypothesis.
Moreover, since H ′

/∈ COPd, the operator W ′
S is not positive semidefinite over the

separable states in S , i.e., W ′
S is not an EW. Hence, WS is an optimal EW on S .

Th.(2.14) allows us to prove the above result in an alternative way. First, notice
that restricting to the symmetric subspace S ⊂ Cd ⊗ Cd implies that Eq.(2.90) can
be cast as

⟨ak, ak|W |ak, ak⟩ = 0 . (3.42)

Hence, in the case of an EW of the form W = (Hext)TB , setting |ak⟩ =
∑

i a
(i)
k |i⟩,

with a(i)k ∈ C and {|i⟩} ∈ Cd is an orthonormal basis, Eq.(2.90) can be written as

⟨ak, ak|W |ak, ak⟩ =
∑
ij

Hij|a(i)k |2|a(j)k |2 = xk
THxk = 0 , (3.43)

where xk = (|a(1)k |2, . . . , |a(d)k |2). It is evident that the above condition is satisfied
by any copositive matrix H ∈ ∂COPd so that, in particular, Eq.(3.43) holds for any
extreme copositive matrix. Moreover, since any state |ak, ak⟩ can be expressed as a
linear combination of the Dicke states |Dij⟩, they set {|ak, ak⟩} span the symmetric
subspace S . Hence, if H is an extreme copositive matrix, W = (Hext)TB is an
optimal EW.

Let us conclude this section with a result regarding the relation between excep-
tional and extreme copositive matrices.

Theorem 3.14. Let H be an extreme copositive matrix with at least one negative
eigenvalue, and at least one negative element Hij < 0. Then H must be exceptional.

Proof. H cannot belong to neither HPSD nor to HN and, while it is extremal, it
cannot be a combination of their elements as well.

In other words, copositive matrices that are both extreme and exceptional lead
to optimal non-decomposable EWs in the sense of [LKC+00].

Symmetric PPTES in d < 5

In this section, we are interested in symmetric PPTES of the form ρS = ρDS + σCS
where ρDS is separable, so that Tr(HMd(ρDS)) ≥ 0 for all copositive matrices H .
Moreover, since for d < 5, every copositive matrix is non-exceptional, i.e., H =
HN+HPSD, the corresponding witnessW = (Hext)TB will always be decomposable.
For this reason, coherences are needed to create PPTES in low dimensional systems.
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Here we show that such states symmetric PPTES can nevertheless be detected by
EWs which are of the form WS = W +WCS , that is by adding to the decomposable
EW, W , a convenient off-diagonal, symmetric contribution WCS which reads the
coherences of ρS .

For the sake of simplicity, we hereby consider symmetric states of the form

ρS = ρDS + σCS =
∑
ij

pij |Dij⟩ ⟨Dij|+
∑
i ̸=j ̸=k

(αijk |Dii⟩ ⟨Djk|) + h.c. , (3.44)

with pij ≥ 0 ∀i, j ,
∑
pij = 1 and αijk ∈ C.

Indeed, in this case, both ρS and ρTBS can be cast as a direct sum of matrices,
which highly simplifies our analysis. For instance, for d = 3, ρS and ρTBS are of the
form

ρS =
1

2

 p02
√
2α p02√

2α∗ 2p11
√
2α

p02
√
2α∗ p02

⊕ 1

2

 2p00
√
2β

√
2β√

2β∗ p12 p12√
2β∗ p12 p12

⊕ 1

2

 p01 p01
√
2γ

p01 p01
√
2γ√

2γ∗
√
2γ∗ 2p22

 ,

(3.45)

ρTBS =Md(ρDS)⊕
1

2

 p01
√
2α

√
2β√

2α∗ p12
√
2γ√

2β∗
√
2γ∗ p02

⊕ 1

2

 p02
√
2β

√
2γ√

2β∗ p01
√
2α√

2γ∗
√
2α∗ p12

 ,

(3.46)
where we have defined, for the easiness of reading, α ≡ α120 = α102, β ≡ α012 =
α021 and γ ≡ α201 = α210. Such structure, which corresponds to a particular direct
sum decomposition of the total Hilbert space, bears similitude with the so-called
circulant states [CK07].

In order to investigate the existence of PPTES we focus on states with low-
dimensional ranks, which allow for a simpler analysis. By using a notation common
in the literature, we say that a state ρS is of type (p, q) if p = r(ρS) and q = r(ρTBS )
are the ranks of ρS and ρTBS , respectively. While symmetric states in d = 3 are,
generically, of type (6, 9), PPT-entangled edge states must have lower ranks. When
dealing with states of the form of Eq.(3.44), we have found numerically that at least
two coherences must be considered to observe a PPTES. For instance, we can set
γ = 0 and choose α and β in such a way to lower the value of (p, q). Indeed, a
direct inspection of Eqs.(3.45)-(3.46), shows that, by setting |α|2 = p11p02/2 and
|β|2 = p02(p01p12− 2p02p11)/4p12, it is possible to attain a state of type (5, 7). Now,
starting from a copositve matrix H , we can construct a non-decomposable EW of
the form

WS = WDS +
∑
i ̸=j ̸=k

W i
jk |Dii⟩ ⟨Djk|+ h.c. , (3.47)
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where WDS is given by

WDS = ΠS (H
ext
N )

TB ΠS + (Hext
PSD)

TB , (3.48)

and the coefficients W i
jk can be chosen to be real.

Let us illustrate the above results by providing some explicit examples. We first
consider the symmetric PPTES provided in [TG10]. Such state is of the form of
Eq.(3.44) for d = 3 (i.e., of the same form of Eq.(3.45)) and can be obtained from a
DS state ρDS with parameters

p00 = 0.22, p01 = 0.176,

p11 = 0.234/3, p02 = 0.167/3,

p22 = 0.183, p12 = 0.254,

and coherences α =
√
2× 0.167/3, β = −0.059, γ = 0.

In [TG10] the authors showed that ρS is a PPT-entangled state of two qutrits,
providing also a technique to construct (N

2
+ 1)× (N

2
+ 1) PPT-entangled states

starting from symmetric states of N qubits. A non-decomposable EW, WS , for such
state ρS can be found with the method of PPT-symmetric extensions proposed in
[DPS02]. A direct inspection of its DS part shows that WDS can be constructed
from a non-exceptional copositive matrix H of the form

H ≈

 0.003 10.39 100.57
10.39 59.31 −21.02
100.57 −21.02 14.22

 , (3.49)

while the coefficients W i
jk are given by W 1

02 = 23.20 and W 0
12 = −37.40. If we

restrict to the DS part of the state ρS , it is trivial to check that Tr[HMd(ρDS)] ≥ 0.
This is by no means a surprise, since for DS states, in d < 5, the PPT condition
implies separability. For this reason, the coherences provided by the term σCS are
necessary to induce the PPT entanglement. Remarkably, one can vary the value of
the coherences α and β to obtain other symmetric PPTES as certified by the EW, i.e.,
Tr[WSρS] < 0. In fact, the EW WS can be used to derive families of PPT entangled
states obtained by adding to the state ρS any coherent contribution σCS of the form
of Eq.(3.45) that preserves the positivity of both the state and its partial transpose.
Indeed, also in the case γ ̸= 0, as long as the conditions ρS ⪰ 0 and ρTBS ⪰ 0 hold,
the same non-decomposable EW WS , is able to detect, for suitable values of its
entries W i

jk, a whole family of PPTES of the form of Eq.(3.45), as depicted in Fig.3.4.
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Figure 3.4: The PPT entangled states detected by WS of Eq.(3.47) with coefficients
|W 1

02| = 23.20, |W 0
12| = −37.40 (dark orange) as compared to the whole family

of PPT states ρS of Eq.(3.45) with p00 = 0.22, p11 = 0.234/3, p22 = 0.183, p01 =
0.176, p02 = 0.167/3, p12 = 0.254 (light orange).
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Figure 3.5: The PPT entangled states detected by WS of Eq.(3.47) with coefficients
|W 1

02| = 4595
191

, |W 0
12| = 6114

113
(dark orange) as compared to the whole family of

PPT states ρS of Eq.(3.45) with p00 = p11 = p12 = 1848
7625

, p22 = 464
7625

, p01 = 231
1525

,
p02 =

462
7625

(light orange).

In Fig.3.5, we display a new example of a symmetric PPTES ρS of the form of
Eq.(3.45), found by semidefinite programming. Also in this case, we have found a
non-decomposable EW WS of the form of Eq.(3.47), with coefficients W 1

02 =
4595
191

and W 0
12 = −6114

113
and whose associated copositive matrix is given by

H =

 1/172 1009/151 11025/68
1009/151 1803/22 −5829/65
11025/68 −5829/65 1224/7

 . (3.50)

Similarly, we can use the same procedure to derive families of PPT-entangled
symmetric states for d = 4. In this case, we have found, numerically, that at least
three different coherences of the form of Eq.(3.44) are needed in order to get a
low-dimensional PPT entangled edge state. To the best of our knowledge, there are
no explicit examples of symmetric PPT entangled states in d = 4.

The state is given by: i) a DS state ρDS with p00 = p02 = p03 = p11 = p22 =
172+16

√
2

1817
, p01 = p13 =

32+172
√
2

1817
, p11 = p12 = p23 =

86+8
√
2

1817
, p33 = 721−440

√
2

1817
; and ii)

a coherence term σCS withα = p00, β = −p01/2 and γ = p01/4. Again, to certify its
entanglement we have used the PPT-symmetric extension approach [DPS02], which
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provides a non-decomposable EW, WS , via semidefinite programming. Such EW is
of the form of Eq.(3.47), with coefficients W 0

23 =
6526
321

,W 1
03 = −1896

107
,W 2

13 = − 549
1238

and has an associated copositive matrix

H =


21/3590 9425/1571 4853/464 1111/28
9425/1571 1293/88 2122/145 220/323
4853/464 2122/145 6/5951 1355/3014
1111/28 220/323 1355/3014 862/7403

 . (3.51)

Let us observe that, despite the fact that H of Eq.(3.51) does not have any negative
matrix element, the corresponding EW has nevertheless a negative eigenvalue.
This observation makes clearer, once more, the fact that, in d < 5, differently from
the case d ≥ 5, the possibility to detect a PPTES relies exclusively on a convenient
choice of the coherences W i

jk.

3.2.4 Symmetric PPTES in d = 3: a useful mapping
In this section we provide a complementary approach to tackle the separability
problem in the symmetric subspace of two qudits. Making use of a mapping
from the symmetric subspace of N qubits, S((C2)⊗N), to the symmetric subspace
of a (N/2 + 1) × (N/2 + 1) bipartite system, S(CN/2+1 ⊗ CN/2+1), we provide
analytical conditions to decide the separability properties of some families of two-
qudit symmetric states. In [TG09] such mapping was used to provide a numerical
example of a two-qutrit symmetric bound entangled state. Their technique is based
on two steps. First, a symmetric bound entangled state of N qubits is constructed,
according to the following lemma:

Lemma 3.2 ([TG09]). Any symmetric N -qubit state that is PPT with respect to the
N
2
: N

2
partition while NPT with respect to some other partition is bound entangled

with respect to the N
2
: N

2
partition.

Second, such state is mapped to a symmetric bound entangled state of a (N/2 +
1)× (N/2 + 1) system, where this last step relies on the crucial observation that
S((C2)⊗N) ⊂ S(CN/2+1 ⊗ CN/2+1) [TG09].
Before moving to our results, let us present a useful theorem regarding the separa-
bility of N -qubit symmetric states.

Theorem 3.15 ([Yu16; QRS17]). Any DS state of N qubits is separable if and only if
is PPT w.r.t. partition N

2
: N

2
.
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Notice that Th.3.15 is valid only for DS states of N qubits, i.e., for mixtures of
Dicke states that are diagonal in the Dicke basis {|DN

k ⟩}. Remarkably, in this case,
checking the PPT condition of the largest partition is necessary and sufficient to
prove the separability of the state.
Our approach can be summarised as follows. First, we investigate the action of the
mapping on a DS state of N qubits, ρQDS . In particular, making use of Th.3.15, we
derive necessary and sufficient conditions for the separability of the (N

2
+1)×(N

2
+1)

symmetric state ρS = ρDS + σCS that results from the mapping. Second, we repeat
our analysis considering an initial symmetric state of N qubits, ρQS = ρQDS + σQCS .
In this case, making use of Lemma 3.2, we provide sufficient conditions to ensure
the separability of the mapped symmetric states.
The symmetric subspace of N qubits, S((C2)⊗N), has dimension N + 1 and a
convenient basis is given by the Dicke states {|DN

k ⟩}Nk=0, defined as

|DN
k ⟩ =

(
N

k

)−1/2 ∑
π∈GN

π
(
|0⟩⊗(N−k) |1⟩⊗k

)
, (3.52)

where GN denotes the group of permutations of N elements and π is a permutation
operator. Similarly, the symmetric space of two qudits, S(Cd ⊗Cd), has dimension
d(d+ 1)/2 and is spanned by the Dicke states {|Dd

ij⟩}, defined as

|Dd
ii⟩ = |i⟩d |i⟩d , |Dd

ij⟩ =
1√
2
(|i⟩d |j⟩d + |j⟩d |i⟩d) , (3.53)

where the states {|i⟩d} ∈ Cd form an orthonormal basis.
For d = N

2
+1, the corresponding symmetric space, S(CN

2
+1⊗CN

2
+1), is spanned by

the vectors of Eq.(3.53) with {|i⟩N/2+1} ∈ CN/2+1 ∼= S
(
(C2)⊗N/2

)
. Moreover, any

Dicke state ofN qubits can be expressed as a linear combination of (N
2
+1)×(N

2
+1)

system. Let us see an explicit example in the case of N = 4.
The symmetric space of 4 qubits is spanned by the Dicke states {|D4

k⟩}4k=0 and
it holds dim(S((C2)⊗4) = 5. Now consider the bipartite Hilbert space CN/2+1 ⊗
CN/2+1 which, for N = 4, corresponds to the two-qutrit Hilbert space C3 ⊗C3. Its
symmetric subspace, S(C3⊗C3), has dimension 6 and is spanned by the Dicke states
of Eq.(3.53), where {|i⟩3} ∈ C3 is an orthonormal basis. Notice that C3 ∼= S(C2)⊗2,
since it is possible to define

|0⟩3 = |D2
0⟩ , |1⟩3 = |D2

1⟩ , |2⟩3 = |D2
2⟩ . (3.54)
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Now let us consider the 4-qubit Dicke state |D4
1⟩. Such state can be decomposed as

|D4
1⟩ =

1

2
(|1000⟩+ |0100⟩+ |0010⟩+ |0001⟩) (3.55)

=
1√
2

(
|D2

1⟩ |D2
0⟩+ |D2

0⟩ |D2
1⟩
)
≡ |D01⟩ .

In this way it is possible to map a 4-qubit symmetric state to a two-qutrit symmetric
state. Of course, since the dimension of the two spaces are different, this mapping
does not correspond, in general, to an isomorphism. Repeating the same steps of
Eq.(3.55) for any other states in S(C2)⊗4 we find the following relations:

|D4
0⟩ = |D00⟩ , (3.56)

|D4
1⟩ = |D01⟩ , (3.57)

|D4
2⟩ =

1√
3

(√
2 |D11⟩+ |D02⟩

)
, (3.58)

|D4
3⟩ = |D12⟩ , (3.59)

|D4
4⟩ = |D22⟩ . (3.60)

Let us begin our analysis by considering a 4-qubit DS state, i.e.,

ρQDS =
4∑

k=0

qk|D4
k⟩⟨D4

k| , (3.61)

with qk ≥ 0 and
∑

k qk = 1. Making use of Eqs.(3.56)-(3.60) we obtain

ρQDS = ρDS + α(|D11⟩⟨D02|+ h.c.) , (3.62)

where α =
√
2q2/3 and ρDS is a two-qutrit DS state, i.e.,

ρDS =
∑

0≤i≤j≤2

pij|Dij⟩⟨Dij| , (3.63)

with coefficients

p00 = q0 , p01 = q1 , (3.64)
p11 = 2p02 = 2q2/3 , p22 = q4 . (3.65)

Eq.(3.62) shows that a DS state of 4 qubits ρQDS is mapped generically to a two-qutrit
symmetric state of the form ρS = ρDS + α(|D11⟩⟨D02| + h.c.). Setting q2 = 0
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implies that p11 = p02 = α = 0, and ρQDS is mapped to a DS state of two qutrits ρDS .
Moreover, since in this case ρQDS is not of full rank, by means of Th.1 in [QRS17]
we conclude that ρQDS must be either NPT entangled or trivially separable, i.e., a
convex combination of the projectors onto the Dicke states |D4

k⟩ with k ∈ {0, 4}.
The same conclusion is reached when inspecting the matrix M(ρDS) associated to
the mapped state ρDS , which in this case reads

M(ρDS) =

 p00 p01/2 0
p01/2 0 p12/2
0 p12/2 p22

 . (3.66)

Since a two-qutrit DS state ρDS is separable if and only if M(ρDS) ∈ DNN , it
is easy to see that it is either M(ρDS) ⪰ 0 ⇐⇒ p01 = p12 = 0 and the state is
trivially separable, or ρDS is NPT-entangled.
In the case q2 ̸= 0, we can apply Th.3.15 to ρQDS to deduce separability conditions
for the two-qutrit state ρS that results from the mapping. Let us first inspect the
structure of the partial transposition of ρQDS with respect to the partition 2 : 2, i.e.,(
ρQDS

)Γ2|2
. An analytical calculation shows that

(
ρQDS

)Γ2|2
can be cast as:

(
ρQDS

)Γ2|2
=

1

12

12q0 3q1 2q2
3q1 2q2 3q3
2q2 3q3 12q4

⊕ 1

12

(
3q1 2q2
2q2 3q3

)
⊕ q2

6
, (3.67)

where the last two blocks in the decomposition appear with multiplicity 2. Hence,
imposing

(
ρQDS

)Γ2|2
⪰ 0 implies the positivity of each block in Eq.(3.67). Recalling

Eqs.(3.45)-(3.46) and making use of Eq.(3.64), ρS and ρTBS can be cast as:

ρS =
1

6

 q2 2q2 q2
2q2 4q2 2q2
q2 2q2 q2

⊕ 1

2

2q0 0 0
0 q3 q3
0 q3 q3

⊕ 1

2

q1 q1 0
q1 q1 0
0 0 2q4

 , (3.68)

ρTBS =
1

6

6q0 3q1 q2
3q1 4q2 3q3
q2 3q3 6q4

⊕ 1

6

3q1 2q2 0
2q2 3q3 0
0 0 q2

⊕ 1

6

q2 0 0
0 3q1 2q2
0 2q2 3q3

 . (3.69)

Notice that the first 3× 3 matrix in Eq.(3.69) is positive semidefinite since it can be
expressed as6q0 3q1 q2

3q1 4q2 3q3
q2 3q3 6q4

 =

12q0 3q1 2q2
3q1 2q2 3q3
2q2 3q3 12q4

 ⋆

1/2 1 1/2
1 2 1
1/2 1 1/2

 , (3.70)
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where the symbol ⋆ denotes the Hadamard product between two matrices and the
result follows due to the condition

(
ρQDS

)Γ2|2
⪰ 0 and the Schur product theorem.

Similarly, it is straightforward to check that
(
ρQDS

)Γ2|2
⪰ 0 implies ρS ⪰ 0 as well

as the positivity of the remaining blocks in Eq.(3.69). As a consequence, the state
ρS is PPT and separable. Notice that, in this case, the two-qutrit state ρS given by

ρS = ρDS + α(|D11⟩⟨D02|+ h.c.) , (3.71)

with p11 = 2p02 =
√
2α has rank 5, so that it is isomorphic to a DS 4-qubit state

ρQDS . For this reason, the mapping given by Eqs.(3.56)-(3.60) can be inverted. As a
result, we find

|D00⟩ = |0̄⟩ , (3.72)
|D01⟩ = |1̄⟩ , (3.73)
|D02⟩ =

√
3 |2̄⟩ −

√
2 |D11⟩ , (3.74)

|D12⟩ = |3̄⟩ , (3.75)
|D22⟩ = |4̄⟩ , (3.76)

and the state of Eq.(3.71) can be mapped to a 4-qubit DS state ρQDS with coefficients

q0 = p00 , q1 = p01 , (3.77)
q2 = 3p02 , q3 = p12 , q4 = p22 . (3.78)

Repeating a similar analysis of the previous paragraph, we can see that ρTBS ⪰ 0

implies
(
ρQDS

)Γ2|2
⪰ 0, so that the PPT condition is both necessary and sufficient

to ensure the separability of the state ρS of Eq.(3.71). This result can be easily
generalised to the case of other coherences of the same form by considering an
alternative mapping in Eq.(3.54). For instance, defining

|0⟩3 = |D2
2⟩ , |1⟩3 = |D2

0⟩ , |2⟩3 = |D2
1⟩ , (3.79)

would correspond to a mapped state ρS = ρDS + σCS with σCS = γ(|D22⟩⟨D01|+
h.c.). These results can be resumed in the following theorem:

Theorem 3.16. Let ρS ∈ B(S(C3 ⊗ C3)) be a symmetric state of the form ρS =
ρDS + αijk (|Dii⟩⟨Djk|+ h.c.), with pii = 2pjk =

√
2αijk for i ̸= j ̸= k. The state ρS

is separable if and only if is PPT.
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Let us now consider the case where the mapping is applied to a symmetric state
of 4 qubits. Making use of Lemma 3.2, we can derive sufficient conditions for the
separability of the resulting state through the mapping. For instance, consider an
initial symmetric state of 4 qubits of the form:

ρQS = ρQDS + β(|D4
0⟩⟨D4

3|+ h.c.) . (3.80)
Making use of Eqs.(3.56)-(3.60) we find

ρQS = ρDS + α(|D11⟩⟨D02|+ h.c.) + β(|D00⟩⟨D12|+ h.c.) , (3.81)
so that applying the mapping we obtain a symmetric state of two qutrits. Now, we
require (ρQS )

Γ2|2 ⪰ 0 as well as (ρQS )Γ1|3 ⪰̸ 0. An explicit calculation shows that
(ρQS )

Γ2|2 can be written as

(ρQS )
Γ2|2 =

1

12

(
M

2|2
0 ⊕M

2|2
1 ⊕M

2|2
2

)
, (3.82)

with

M
2|2
0 =

12q0 3q1 2q2
3q1 2q2 3q3
2q2 3q3 12q4

 , (3.83)

M
2|2
1 =

3q1 2q2 6β
2q2 3q3 0
6β 0 2q2

 , (3.84)

M
2|2
2 =

2q2 6β 0
6β 3q1 2q2
0 2q2 3q3

 . (3.85)

Similarly, (ρQS )Γ1|3 can be cast as

(ρQS )
Γ1|3 =

1

12

(
M

1|3
0 ⊕M

1|3
1 ⊕M

1|3
2

)
, (3.86)

with

M
1|3
0 =

(
3q1 2q2
2q2 3q3

)
, (3.87)

M
1|3
1 =

12q0 6β 3q1
6β 3q3 0
3q1 0 2q2

 , (3.88)

M
1|3
2 =

2q2 6β 3q3
6β 3q1 0
3q3 0 12q4

 . (3.89)
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Finally, the two-qutrit symmetric state ρS and its partial transposition ρTBS can be
decomposed as: ρS and ρTBS can be cast as:

ρS =
1

6

 q2 2q2 q2
2q2 4q2 2q2
q2 2q2 q2

⊕ 1

2

 2q0
√
2β

√
2β√

2β q3 q3√
2β q3 q3

⊕ 1

2

q1 q1 0
q1 q1 0
0 0 2q4

 ,

(3.90)

ρTBS =
1

6

6q0 3q1 q2
3q1 4q2 3q3
q2 3q3 6q4

⊕ 1

6

 3q1 2q2 3
√
2β

2q2 3q3 0

3
√
2β 0 q2

⊕ 1

6

 q2 3
√
2β 0

3
√
2β 3q1 2q2
0 2q2 3q3

 .

(3.91)

Analogously to what we have seen in the previous case, it is easy to see that
(ρQS )

Γ2|2 ⪰ 0 implies ρS, ρTBS ⪰ 0. Moreover, a tedious but straightforward calcula-
tion shows that

(ρQS )
Γ1|3 < 0 ⇐⇒ det(M

1|3
1 ) < 0 or det(M

1|3
2 ) < 0 . (3.92)

These conditions can be reformulated in terms of equivalent bounds on β, i.e.,

det(M
1|3
1 ) < 0 ⇐⇒ β2 > q0q3 −

3q21q3
8q2

, (3.93)

or
det(M

1|3
2 ) < 0 ⇐⇒ β2 >

q1q2
6

− q1q
2
3

16q4
, (3.94)

where in both cases the right hand sides are non-negative real quantities. Hence,
any β that fulfils either Eq.(3.93) or Eq.(3.94), while preserving the PPT condition
(ρQS )

Γ2|2 ⪰ 0, leads to a two-qutrit PPT-entangled state. Making use of Eq.(3.64), we
can rephrase this result as the following theorem:

Theorem 3.17. Let ρS ∈ B(S(C3 ⊗ C3)) be a PPT symmetric state of the form

ρS = ρDS + αijk (|Dii⟩⟨Djk|+ h.c.) + αjik (|Djj⟩⟨Dik|+ h.c.) , (3.95)

with pii = 2pjk =
√
2αijk for i ̸= j ̸= k. If αjik is such that it is either

(αjik)
2 >

pik
4pii

(4piipjj − p2ij) , (3.96)

or
(αjik)

2 >
pij

16pkk
(4piipkk − p2ik) , (3.97)

then ρS is PPT-entangled.
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Let us conclude this section with a final remark regarding the mapping we have
presented. Notice that Lemma 3.2 provides a sufficient but not necessary condition
for a symmetric N -qubit state to be bound entangled w.r.t. the N

2
: N

2
partition, and

indeed there exist states of this kind that are PPT w.r.t. all partitions. For instance,
in [TAQ+18], it was found a 4-qubit PPTES with all positive partial transpositions.
Interestingly, when mapped to a two-qutrit symmetric state, we obtain a (5, 8) state
of the same form of Eq.(3.45) with coefficients

p00 = p22 =
7

50
, p11 =

4

25
,

p01 = p12 =
6

25
, p02 =

2

25
,

and coherences α = 2
√
2/25, β = 0, γ = (−1/25)

√
15/7. Using the method of

PPT-symmetric extensions we have numerically checked that this state is indeed
PPT-entangled, although α and γ violate both of the requirements of Th.3.17.
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4
Non-locality in open quantum sys-
tems

Dove ti sei perduta
da quale dove non torni,
assediata
bruci senza origine.
Questo fuoco
deve trovare le sue parole
pronunciare condizioni
di smarrimento dire:
“Sei l’unica me che ho
torna a casa”.

Chandra Livia Candiani

As we have seen in section 2.4, the characterisation of non-locality in many-body
systems requires the construction of N -body correlators, a fact which makes this
task NP-hard already for few parties. Surprisingly enough, when dealing with
systems of indistinguishable particles, it has been demonstrated [TAS+14] that
non-locality in the many-body scenario can be assessed by using only one- and
two-body correlators, a result which greatly reduces the complexity of this task. A
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natural question is whether the same technique can be used to detect non-locality
also when the system under exam interacts with an external environment, acting
as a source of noise. In this chapter we investigate this scenario, providing several
examples of many-body open quantum systems where non-local correlations can
be detected also in the presence of noise. In section 4.1 we introduce the family
of permutatationally-invariant Bell inequalities, which represent the main tool
we will use to detect non-locality. After introducing the physical model for the
open quantum system (section 4.2), we analyse both the stationary (section 4.3)
and the dynamical regime (section 4.4), as well as the out of equilibrium scenario
(section 4.5), showing how, in all cases, non-local correlations can be detected by
the aforementioned class of Bell inequalities. Finally, in section 4.6, we inspect the
case of a system undergoing repeated measurements and discuss the robustness of
non-locality in this scenario.

4.1 Permutationally-invariant Bell inequalities

In what follows, we restrict to the Bell scenario (N, 2, 2), i.e., a multipartite Bell
experiment withN parties, each of them able to perform at most two measurements,
yielding at most two possible outcomes. As already discussed, even in this case,
Bell inequalities for many-body systems are extremely difficult to devise. The
reason behind this complexity stems from the fact that tight Bell inequalities
correspond to the facets of the local polytope L, an object which is incredibly
hard to characterise for increasing values of N . In order to simplify this task, in
[TAS+14] the authors considered an approach where L is projected onto a simpler
object by: i) disregarding any correlator of order strictly greater than 2; and ii)
requiring the remaining correlators to be invariant under any permutation of
the parties. As a consequence, L is projected onto a simpler object, dubbed the
permutationally invariant polytope, whose facets correspond to Bell inequalities of
the form [TAS+15]

βcl + αC0 + βC1 +
γ

2
C00 + δC01 +

ϵ

2
C11 ≥ 0 , (4.1)

where α, β, γ, δ, ϵ ∈ R, βcl ∈ R is the so-called classical bound of the associated
Bell inequality and

Cr =
N−1∑
i=0

⟨M(i)
r ⟩ , Crs =

N−1∑
i ̸=j=0

⟨M(i)
r M(j)

s ⟩ , (4.2)
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are the one- and two-body permutationally-invariant correlators, respectively, with
measurement settings r, s ∈ {0, 1}.
Since we are dealing with only two dichotomic measurements for each party, it can
be shown [TV06; Mas05] that it is enough to consider traceless real observables, so
that we can write

M(i)
0 = cos(ϕi)σ

(i)
z + sin(ϕi)σ

(i)
x , (4.3)

M(i)
1 = cos(θi)σ

(i)
z + sin(θi)σ

(i)
x , (4.4)

where σ(i)
µ denotes the Pauli matrix at site i along the direction µ ∈ {x, y, z}

and (ϕi, θi) are the measurement angles of each party. Moreover, it is possible to
introduce a Bell operator B({ϕi, θi}), associated to the family of inequalities (4.1),
i.e.,

βcl12N + αĈ0 + βĈ1 +
γ

2
Ĉ00 + δĈ01 +

ϵ

2
Ĉ11 , (4.5)

where the correlators are replaced by the operators Ĉr,Ĉrs, defined as

Ĉr =
N−1∑
i=0

M(i)
r , Ĉrs =

N−1∑
i ̸=j=0

M(i)
r M(j)

s . (4.6)

Hence, whenever condition Tr[B({ϕi, θi})ρ] < 0 holds, the state ρ is non-local (and
thus, entangled).

Notice that, even though the Bell inequalities of Eq.(4.1) are invariant with
respect to any permutation of the parties, neither the Bell operator B({ϕi, θi}) nor
the non-local states that it detects, share necessarily the same symmetry. However,
it has been argued [TAS+15; ATB+19; PAL+19] that the maximal violation of the
Bell inequality of Eq.(4.1) occurs in the case of a permutationally invariant state,
when all the parties perform the same measurements, i.e., θi = θj = θ, ϕi = ϕj = ϕ
for all i ̸= j. Under this assumptions, it is possible to show that B({ϕi, θi}) now
depends only on two angles, i.e., B(ϕ, θ), and becomes a permutationally invariant
operator. Hence, as a consequence of the Schur-Weyl duality, it admits a block-
diagonal decomposition, a result which is particularly relevant when dealing with
many-body systems, since, in this case, the Bell operator can be stored in a sparse
matrix, thus allowing for an effective numerical treatment of the problem.

When one is interested in probing non-locality in symmetric states of N qubits,
it turns out that there exists a convenient description in terms of an associated
reduced density matrix. First, notice that, given an N -qubit symmetric state, ρSYM ,
its two-body reduced density matrix, ρ2 = Tr1,...,N−2(ρSYM), is the same regardless
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of which N − 2 systems have been traced out. Hence, if ρSYM is represented in
the Dicke bases for N -qubits, then the two-body reduced density matrix reads
[TAS+15]

(ρ2)i′, j′ =
N−2∑
k=0

(
N−2
k

)
(ρSYM)k+|i′|, k+|j′|√(

N
k+|i′|

)(
N

k+|j′|

) , (4.7)

where 0 ≤ i′, j′ < 22, i′ = i0i1, j
′ = j0j1 are the binary representations of the

labels associated to the matrix entries and |i|′, |j|′ are their Hamming weights, i.e.,
the number of ones in this representation.
Analogously, we can associate to B(ϕ, θ) a two-qubit Bell operator, B2(ϕ, θ), whose
explicit expression is given by [TAS+15]

B2(ϕ, θ) = βcl (12 ⊗ 12) +
N

2
[α (M0 ⊗ 12 + 12 ⊗M0) + β (M1 ⊗ 12 + 12 ⊗M1)]

(4.8)

+
N(N − 1)

2
[γM0 ⊗M0 + δ(M0 ⊗M1 +M1 ⊗M0) + ϵM1 ⊗M1] .

Again, if condition Tr[B2(ϕ, θ)ρ2] < 0 holds, then the state ρ2 is non-local and
the same goes true for the full state ρ, an observation which allows to greatly
reduce the computational cost required to probe non-locality. Nonetheless, let
us remark that in order to perform a fully device-independent Bell experiment,
one should still be able address all the parties individually. In [TAS+15] it has
been proven that the family of Bell inequalities 4.1 exhibits maximal violation
in the block of maximum spin, which corresponds to the symmetric subspace of
N qubits spanned by the set of Dicke states {|DN

k ⟩}. Since Dicke states appear
naturally in physically relevant models, such as the Lipkin-Meshkov-Glick (LMG)
Hamiltonian, the relevance of Bell inequalities (4.1) is clear in the context of many-
body physics. We now want to take a step further and show that, also in the open
scenario, Bell inequalities (4.1) play a crucial role in the detection of non-local
correlations. In what follows, we restrict to the Bell inequality that is obtained by
setting βcl = 2N,α = −2, β = 0, γ = 1, δ = −1, ϵ = 1 in Eq.(4.1), i.e.,

2N − 2C0 +
1

2
C00 − C01 +

1

2
C11 ≥ 0 , (4.9)

whose associated Bell operator is given by

B(ϕ, θ) = 2N12N − 2Ĉ0 +
1

2
Ĉ00 − Ĉ01 +

1

2
Ĉ11 . (4.10)
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Since we are interested in the subspace of symmetric states, where the maximal
violation occurs, we can make use of the two-qubit Bell operator, i.e.,

B2(ϕ, θ) = 2N (12 ⊗ 12) +
N

2
[−2 (M0 ⊗ 12 + 12 ⊗M0)] (4.11)

+
N(N − 1)

2
[M0 ⊗M0 +M1 ⊗M1 − (M0 ⊗M1 +M1 ⊗M0)] .

4.2 The main system
As the physical model for the main system S we consider a particular case of the
LMG Hamiltonian, i.e.,

HS =
J

N
S2
z − hSx , (4.12)

where J is the interaction energy scale, h is a magnetic field applied along the x
direction and the collective spin operators are Sµ = 1

2

∑N
i=1 σ

(i)
µ , with µ ∈ {x, y, z} .

The choice of this specific model are several: first, HS describes the interaction
between N -qubit symmetric states and the ground state of Eq.(4.12) corresponds to
a Gaussian superposition of Dicke states, which is known to maximally violate the
family of Bell inequalities (4.8) [TAS+14]; furthermore, since HS depends only on
collective spin properties, it admits a block decomposition of the form

HS =
⊕
M

HS(M) , (4.13)

where the sum runs over the total spin number M = Mmin, . . . , N/2 − 1, N/2 ,
with Mmin ∈ {0, 1/2}, depending on whether N is even or odd. This property
turns out to be particularly convenient, since, given the symmetrical nature of our
Bell inequality, we can restrict our analysis to the block of maximum total spin
M = N/2, where the global spin operators can be expressed in the Dicke basis.

4.3 The stationary regime

4.3.1 Thermal noise
We start by considering the stationary regime of the LMG model in contact with a
bosonic bath at inverse temperature β. Let us denote by {bk} the bosonic operators
( [bk, b†k′ ] = δk,k′) and assume an interaction of the form V = Sy ⊗ (bk + b†k). We
derive the corresponding QME (see Eq.(2.45)), and find the stationary solutions by
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imposing L[ρS] = 0.
In the low-temperature limit, we find that the steady states correspond to thermal
states given by a Gaussian superposition of Dicke states of the form [TAS+14]

ρS ≈ |ψN⟩⟨ψN | , |ψN⟩ =
N∑
k=0

ψNk |DN
k ⟩ , (4.14)

with amplitudes ψNk ≈ (1/
4
√
2πσ2)e−(k−N/2)2/4σ2 , for some variance σ2.

Figure 4.1: Non-local correlations in an OQS described by the Hamiltonian of
Eq.(4.12), with N = 20, in the case of thermal noise. Negative values indicate the
quantum violation (Qv) of the Bell inequality associated to Eq.(4.8).

In Fig.4.1 we display the detection of non-local correlations as a function of the
magnetic field h, the energy coupling J and the inverse temperature β. We observe
that there is a significant region of the phase-space for which Tr[B2(ϕ, θ)ρ2] < 0,
providing evidence of their robustness against thermal noise. Notice that our results
are consistent with the fact that, for h = 0, the steady-states of HS of Eq.(4.12) are
clearly separable. Moreover, for high temperatures, i.e., low values of β, thermal
fluctuations hinder the possibility to observe non-locality.
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4.3.2 Non-thermal noise
Although the coupling with a thermal bath is the most common scenario when
dealing with an OQS, we consider the effect of a dissipation that leads to non-
thermal steady-states. To this end, referring to Eq.(2.45), we design an ad hoc jump
operator of the form J (ζ) = cos(ζ)Ŝ+ + sin(ζ)Ŝ−, where Ŝ± = U †S±U and U is
a unitary transformation from the Dicke basis to the energy basis, i.e., the set of
eigenstates of HS , and S± = Sx ± iSy. Again, the resulting steady-state solutions
are found by imposing L[ρS] = 0 for the corresponding GKLS master equation.

Figure 4.2: Non-local correlations in an OQS described by the Hamiltonian of
Eq.(4.12), with N = 20, in the case of a non-thermal jump operator J (ζ) =
cos(ζ)Ŝ+ + sin(ζ)Ŝ−. Negative values indicate the quantum violation (Qv) of the
Bell inequality associated to Eq.(4.8).

In Fig.4.2 we plot the non-local correlations detected by the Bell operator of
Eq.(4.8), and relate them to J, h and the angle ζ . Also in this case, we find that non-
locality is present and can be detected for a large range of values of the parameter
ζ , showing to be robust against the effect of the magnetic field especially around
ζ = 0. Indeed, notice that, for ζ = 0, one gets J (0) = Ŝ+, and the effect of the
dissipation is to force the evolution towards a thermal steady state given by the
same Gaussian superposition of Dicke states of Eq.(4.14). However, for ζ ̸= 0, the
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steady-state solutions are not thermal states, a feature that makes our analysis in
this regime particularly valuable.

4.4 The dynamical regime
While in Fig.4.1-4.2 we showed that stationary steady-states exhibit non-local cor-
relations, we are now interested in the somehow opposite regime of the dynamical
evolution.

Figure 4.3: Comparison between concurrence (green squares), spin squeezing
criterion (orange triangles) and non-local correlations (blue dots) detected by Bell
operator (4.8) in the state ρS(t) for thermal noise. The value of the violation in
the stationary regime corresponds to the steady-state solutions of Fig.4.1 with
N = 20, J = 1, h = 0.05 for β = 10. NL (light blue) and ENT (orange) signal the
region of non-locality and entanglement, respectively. Notice that the latter region
comprises also the former. For the ease of readability, C(ρ2) has been multiplied
by a factor N and ξ2 has been chosen equal to 1 for separable states.
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Figure 4.4: Comparison between concurrence (green squares), spin squeezing
criterion (orange triangles) and non-local correlations (blue dots) detected by Bell
operator (4.8) in the state ρS(t) for a non-thermal jump operatorJ (ζ) = cos(ζ)Ŝ++
sin(ζ)Ŝ−. The value of the violation in the stationary regime corresponds to the
steady-state solutions of Fig.4.2 with N = 20, J = 1, h = 0.05 for ζ = 0.35. NL
(light blue) and ENT (orange) signal the region of non-locality and entanglement,
respectively. Notice that the latter region comprises also the former. For the ease of
readability, C(ρ2) has been multiplied by a factor N and ξ2 has been chosen equal
to 1 for separable states.

In Fig.4.3-4.4, we show how the stationary steady-state solutions of Fig.4.1-4.2
can be recovered as the result of a dynamical evolution. In particular, starting
from a local initial state of the form ρS(0) = |DN

N ⟩⟨DN
N |, we show that non-local

correlations can arise in the state ρS(t), proving to be robust against the effect
of dissipation both in the case of thermal and non-thermal noise. Furthermore,
we compare the estimation of the entanglement of ρS(t) provided by two distinct
criteria. First, with the aid of Eq.(4.7), we derive the two-qubit reduced density
matrix ρ2 and we compute its concurrence, C(ρ2), defined as

C(ρ2) = max(0, λ1 − λ2 − λ3 − λ4) , (4.15)

where the λi’s are the eigenvalues of ρ2ρ̃2, with ρ̃2 = (σy ⊗ σy) ρ
∗
2 (σy ⊗ σy), or-

dered in descending order.
Second, we inspect the value of the so-called spin squeezing parameter ξ2, defined
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as
ξ2 = N

(∆Sz)
2

⟨Sx⟩2 + ⟨Sy⟩2
, (4.16)

where (∆Sz)
2 ≡ ⟨S2

z ⟩ − ⟨Sz⟩2. In this case, if ξ2 < 1, then the state is entangled.
Notice that when dealing with symmetric states of N qubits, the spin squeezing
criterion is able to detect genuine multipartite entanglement [WS03]. In Fig.4.3-
4.4 we display, for both the dissipators previously considered (i.e., thermal and
non-thermal), the violation of the Bell inequality (4.8) along with an estimation
of the entanglement of ρS(t) by means of the concurrence and the spin squeezing
criterion. Notice that, in the case of thermal noise (Fig.4.3), non-local correlations
manifest at a later time as compared to the case of the non-thermal dissipator
(Fig.4.4). Interestingly, we observe a time gap also between the two estimations of
the entanglement, a feature which is consistent with the different nature (i.e., two-
body versus many-body) of the concurrence and the spin squeezing criterion. In
both cases our results provide further evidence that non-locality and entanglement
are inequivalent resources, as they clearly manifest at different times scales.

4.5 The out of equilibrium regime
We study the robustness of non-locality in an OQS also in an out of equilibrium
scenario, by inspecting the time evolution of the system when dissipation is taken
into account. Referring to the Hamiltonian of Eq.(4.12), we consider the simpler
case h = 0, i.e.,

HS = −ωS2
z +

ωN

2

(
N

2
+ 1

)
, (4.17)

with ω = J/N .
Starting from a local state of the form ρS(0) = |DN

N/2⟩⟨DN
N/2|+ |DN

N/2+1⟩⟨DN
N/2+1|+

|DN
N/2⟩⟨DN

N/2+1|+ h.c., we consider the evolution of the system in the presence of
dissipation.
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Figure 4.5: Non-local correlations in an OQS described by the Hamiltonian of
Eq.(4.17), with N = 20 and ω = 1, when a jump operator J = Sy/

√
N is consid-

ered. Light-blue shaded areas correspond to the negative values of the quantum
violation (Qv) as detected by Bell operator (4.8). The two slanting lines on the y-axis
indicate that part of the range has been omitted for the ease of readability.

In Fig.4.5 we plot the quantum violation detected by means of Eq.(4.8) when a
jump operator J = Sy/

√
N in Eq.(2.45) is considered, with γ = 0.001. Despite the

presence of the dissipation, non-local correlations arise periodically in the system
and survive for a certain time. Moreover, the spin squeezing criterion and the
analysis of the concurrence attest the presence of entanglement in the dynamical
state at all times.

4.6 Repeatedly measured system
Finally, we explore the scenario in which the many-body system S undergoes fre-
quent measurements. From a physical point of view, this setting can be interpreted
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as the attempt of an eavesdropper to gain information on S while remaining unde-
tected. Interestingly, a system that is weakly and continuously interrogated also
obeys an equation of the form (2.45). Namely, given a party Eve that repeatedly
performs the measurement M = {mk,Πk} with outcomes mk and eigenprojectors
Πk, the explicit form of the associated Lindbladian is

∂tρS = −i[HS, ρS] + κ

(∑
k

ΠkρSΠ
†
k − ρS

)
(4.18)

where κ is the measurement rate.
This equation was already found in [CBJ+06] but, for completeness, we present an
alternative derivation. We denote by δt a very small time step. Then, if the system
is not interrogated, the system state evolves according to

ρS(t+ δt) = ρS(t)− i[HS, ρS(t)]δt+O(δt2) (4.19)

Instead, if we perform the measurement M = {mk,Πk} (recall that
∑

k Πk = 1S),
the evolved state is given by

ρS(t+ δt) =
∑
k

ΠkρS(t)Πk. (4.20)

Now, if the probability of performing a measurement on the interval [t, t+ δt] is
κδt, we can average the two processes and collect terms to first order in δt to obtain

ρS(t+ δt) =(1− κδt)ρS(t)− i[HS, ρS(t)]δt

+ κδt
∑
k

ΠkρS(t)Πk +O(δt2). (4.21)

Finally, dividing by δt and taking the limit δt→ 0+, one recovers Eq.(4.18).
Our analysis is structured as follows: first, we consider an initial state ρS(0) de-

rived by numerically solving Eq.(2.45); second, we compute its dynamical evolution
under repeated measurements with an operator M = Sz by means of Eq.(4.18);
third, we plot the non-local correlations detected by the Bell operator of Eq.(4.8)
for different values of the rate κ as a function of the probability p = κt. Our results
are shown in Fig.4.6-4.7 where we consider two different initial states: the thermal
steady-state for β = 30 (Fig.4.6); and the non-thermal steady-state for ζ = 0.01
(Fig.4.7).
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Figure 4.6: Non-local correlations in a many-body system undergoing a repeated
measurement M = Sz at rate k. Blue dots correspond to κ = 1; orange triangles
to κ = 0.1 and green squares to κ = 0.01. The initial state has been chosen as the
thermal steady-state for β = 30, N = 30, h = 0.02 and J = 1. NL denotes the
non-local region detected by the Bell operator of Eq.(4.8).
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Figure 4.7: Non-local correlations in a many-body system undergoing a repeated
measurement M = Sz at rate k. Blue dots correspond to κ = 1; orange triangles
to κ = 0.1 and green squares to κ = 0.01. The initial state has been chosen as the
non-thermal steady-state for ζ = 0.01, N = 30, h = 0.02 and J = 1. NL denotes
the non-local region detected by the Bell operator of Eq.(4.8).

Our analysis shows that, except for a slight difference in the survival time, the
trend is basically the same in the two scenarios. Moreover, we observe that, despite
the different values of the measurement rate κ, the slope is identical for all the
curves in the non-local region. This can be understood as follows: for sufficiently
short times such that Jt, ht, κt≪ 1, one can expand the map generated by Eq.(4.18)
as

∂tρS(t) = ρS(0)− i[HS, ρS(0)] + κt

(∑
k

ΠkρS(0)Π
†
k − ρS(0)

)
= (1− κt)ρS(0) + κt

∑
k

ΠkρS(0)Π
†
k , (4.22)

where we have assumed that [HS, ρS(0)] = 0.
Hence, with the aid of Eq.(4.22), the state ρS(t) can be cast as a convex combination,
with probability p = κt, of the initial state ρS(0) and the dephased state ρ̄S(0) =∑

k ΠkρS(0)Π
†
k, i.e., ρS(t) ≈ (1− p)ρS(0)+ pρ̄S(0). Since we have neglected higher

order terms in the exponential map, this result is valid only for κt≪ 1, a condition
which also guarantees the probability p to be bounded.
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5
Quantum maps for neural networks

Ricordami, a settembre – come ricordi l’ultima
stanza della tua casa al mare, in fondo
al corridoio e piccola cos̀ı
da contenere a malapena un letto.
Sarà il tempo per noi sempre più stretto
rifugio.

Gabriele Galloni

In chapter 2 we have seen how every physical process that describes a change in a
quantum state can be represented as the result of the action of a CPTP map on it.
As such, quantum channels are ubiquitous and can be used in a variety of different
scenarios. Here, we present an application to the case of neural networks, whose
evolution, in the case of attractor quantum neural networks (aQNNs) was recently
described in terms of quantum channels [LGR+21]. In this way it was demonstrated
that aQNNs allow for a storage capacity which scales exponentially with the num-
ber of neurons, thus outperforming the one of their classical counterpart [VM98;
RBW+18]. In this chapter, using the formalism of quantum channels and their
Kraus representation, we show that aQNNs can be analysed using tools from the
resource theory of coherence, and discuss their performance both in the error-free
and the faulty case, i.e., when some error in the preparation of the network is taken
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into account. Starting from a brief introduction regarding the major developments
in the theory of neural networks (section 5.1), we focus on aQNNs (section 5.2) and
establish a link between the associated quantum map and the resource theory of
coherence (section 5.3). Within this framework we provide some results regarding
the performance of aQNNs both in the error-free (section 5.4) and in the faulty
scenario (section 5.5).

5.1 Classical neural networks

Human brain is composed of approximately 1011 specialised cells, dubbed neurons,
which represent the basic units of the nervous tissue. Each neuron consists of a
cell body from which originate some branch-like structures, named dendrites, and
a longer termination, called the axon (see Fig.5.1).

Figure 5.1: The structure of a neuron.

Between the axon terminals of a neuron and the dendrites of another, there exist
some structures, called synapses, which allow for the communication of electric
signals. In particular, signals can propagate through synapses due to some chemical
processes whose effect is to alter the electrical potential in the cell body of the
receiving neuron. As a result, if the voltage exceeds a certain threshold, the signal
is transmitted and the neuron is said to “fire”; otherwise, the signal is inhibited
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and the neuron remains in a “rest” state. A collection of interconnected neurons
is referred to as a neural network. Although this description represents a mere
simplification of the functioning of a real neural network, the empirical evidence
that a neuron either fires or rests, suggests the possibility to encode its state in
a binary variable and, more generally, to describe its behaviour in terms of some
mathematical model. Thus, an artificial neural network can be conceived as a set of
interconnected computational units that mimic the behaviour of real neurons in
the nervous system.

5.1.1 The McCulloch-Pitts model
The first attempt to describe mathematically this process is due to McCulloch and
Pitts [MP43]. In their model, an artificial neural network consists of a collection
of n neurons which can assume binary values xi ∈ {±1}, depending on their
status, that is, either active (xi = 1) or inactive (xi = −1), respectively. Each
neuron collects the incoming inputs, {x1, . . . , xn}, of the other neurons and emits
an output, yj , depending on the value of the sum x1 + · · · + xn: if such value is
greater than a certain threshold bj , then yj = 1, and the neuron fires; otherwise,
yj = 0, and the neuron remains inactive (see Fig.5.2). Formally, for the j-th neuron,
we have

yj =

{
1

∑n
i=1 xi − bj ≥ 0 ,

0 otherwise. (5.1)

Figure 5.2: Schematic representation of a McCulloch-Pitts neuron. The inputs xi of
each incoming signal are collected by the j-th neuron, whose output yj depends
on the value of the sum

∑n
i=1 xi.

The comparison between the collected values of the incoming signals and the thresh-
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old is typically described in terms of two functions, g and f , that are usually referred
to as the integration and activation functions, respectively: first, g transforms the
n-dimensional string (x1, . . . , xn) into a number, and then, the output is obtained
by comparing this number with the threshold, i.e., yj = f(g(x1, . . . , xn)). While in
general the integration function is taken as the addition between the inputs, i.e.,
g(x1, · · · , xn) = x1 + . . . xn, the activation function can be chosen in several ways.
In the McCulloch-Pitts model, f corresponds to the step function θ(x), defined as

θ(x) =

{
1 x ≥ 0
0 otherwise . (5.2)

Despite its apparent simplicity, a single McCulloch-Pitts neuron is able to implement
basic logical operations such as the AND and OR gates, and it has been demonstrated
that any logical function F : {0, 1}n → {0, 1} can be computed by a McCulloch-
Pitts network of two layers (see e.g., [Roj13]). However, it has been argued that
the efficiency of this network depends crucially on the specific task that one wants
to solve, and in general it is not possible to intervene dynamically on the network
without modifying the neuronal connections or the threshold of each neuron. A
natural way to circumvent this drawback is to assign a weight wij between two
interacting neurons, that encodes the information regarding the strength of their
synaptic connection. Such approach leads to a computational model, known as
perceptron.

5.1.2 The perceptron
The perceptron is a computational unit introduced for the first time by Rosenblatt
in 1958 [Ros58]. From a mathematical point of view, it consists in adding weights
to the McCulloch-Pitts model, assigning a factor wij to each pair of interconnected
neurons. Formally, we have

yj =

{
1

∑n
i=1 xiwij − bj ≥ 0 ,

0 otherwise. (5.3)

This process is schematically represented in Fig.5.3, where the basic functioning of
a perceptron is depicted.
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Figure 5.3: Schematic representation of a perceptron. The inputs xi of each incoming
signal are collected by the j-th neuron, whose output yj depends on the value of
the weighted sum

∑n
i=1 xiwij .

The conceptual innovation of Rosenblatt’s model lies in the possibility to train
the network in order to increase its performance when accomplishing a certain
task. This feature reflects Hebb’s theory to explain synaptic plasticity, that is
the capability of human brain to adapt to different situations through experience
[Heb05]. According to Hebb, neurons with similar reactions to external stimuli
tend to group together, a concept which is sometimes rephrased with the motto
“neurons that fire together wire together”. Stated differently, if a set of neurons
displays a common behaviour, then the connection between them must be stronger
than those of a group of unrelated neurons. From a mathematical point of view, this
suggests the possibility that the weights wij in a network can be adjusted according
to a learning algorithm. As a result of this procedure, some connections will be
preferred over others, in such a way that the capability of the network in solving a
certain problem can be greatly enhanced. At this point it is evident the advantage
offered by the perceptron: while in the McCulloch-Pitts model the only way to
train the network is to change its topology, in Rosenblatt’s model one can simply
update the weights between neurons by assigning a suitable learning rule. The
simplest example in this sense is represented by the Hebbian rule [Heb05], which
consists in updating the weight wij to a new value w′

ij , according to the relation

w′
ij = wij + γxiyj , (5.4)

where γ is a parameter dubbed learning constant. As a result, the weight wij is
changed by a factor that correlates the input xi with the output signal yj in such a
way that the increment is positive for neurons firing or resting at the same time,
and negative in the opposite case. The learning process is essential to enhance
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the performance of a neural network and guarantees a faster convergence of an
algorithm towards the desired result. However, even when a suitable learning
process is considered, there exist logical operations that a single perceptrons cannot
implement. It is the case of the XOR operation between two binary inputs x1, x2,
defined as x1 ⊕ x2, where the symbol ⊕ stands for the addition modulo 2, i.e.,
y = x1 ⊕ x2 ⇐⇒ y = x1 + x2(mod 2). The possible outcomes of this operation
are represented in the following table, i.e.,

x1 x2 y = x1 ⊕ x2
0 0 0
0 1 1
1 0 1
1 1 0

.

The reason why a single perceptron fails to implement this operation is strictly
related to the way it classifies the input data. In fact, regardless of the specific
value of the weighted sum computed by each unit, i.e.,

∑
ij xiwij , the output yj

can only assume binary values. From a geometrical point of view, this observation
is equivalent to say that the action of the network is to divide the input space in
two half subspaces, corresponding to the two possible outputs: if the input data are
such that yj = 0 they are assigned to one subspace, otherwise they end up in the
complementary subspace.

Figure 5.4: The XOR operation y = x1 ⊕ x2 between two binary variables x1 and
x2 in the input space.

Problems of this kind are known in the literature as linearly separable, and represent
the class of problems that a single perceptron is able to solve. Hence, it is easy
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to understand the failure of the perceptron model when implementing the XOR
gate. To make this statement clearer, let us represent the XOR operation in the
input space (x1, x2) (see Fig.5.4). It is evident that it is impossible to separate the
input data (0, 1), (1, 0), corresponding to the output y = 1, from the input data
(0, 0), (1, 1), corresponding to the output y = 0, with a single line. This simple
argument can be made more formal, but is already sufficient to understand why the
XOR operation cannot be cast as a linearly separable problem. Clearly, analogously
to the case of McCulloch-Pitts neurons, combining together single perceptrons can
overcome this problem, an approach that results in the realisation of multi-layer
neural networks which are able to implement a larger set of Boolean functions as
compared to their single-layer counterparts.

5.1.3 The Hopfield model
The simplest example of a multi-layer neural network is dubbed feed-forward. As
its name suggests, this network consists of different layers where the information
can flow only in one direction: once the first layer is initialised in a certain configu-
ration, the output data is fed to the subsequent layer, and this procedure is repeated
until a final output is reached. Although they can be effectively used in many
practical applications, feed-forward networks display an intrinsic limitation due to
the fact that they cannot keep track of the data computed in the previous steps of
the algorithm. In other words, they do not allow to store input patterns in order to
use them as feedbacks for a learning algorithm. Neural networks of this latter type,
where information can propagate backwards along the neurons, are dubbed recur-
rent networks. Of particular interest for our analysis are attractor neural networks
(aNNs), an example of which is described by the Hopfield model, introduced for
the first time in 1980s [Hop82]. In this model, the network consists of a collection
of n perceptrons with binary values xi ∈ {±1}, and symmetric weights wij = wji,
for i ̸= j, and wii = 0. Despite the simplicity of their description, Hopfield neural
networks are endowed with a remarkable feature known as associative memory,
that is the capability to retrieve the pattern xp = (xp1, · · · , xpn) which is the closest
to an input state xin = (xin

1 , · · · , xin
n ), with respect to their Hamming distance, i.e.,

the numbers of bits one has to flip to turn one string into the other. This property
can be better understood by introducing the energy function of the network E(x),
i.e.,

E(x) = −1

2

n∑
i,j=1

wijxixj +
n∑
i=1

bixi . (5.5)
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Eq.(5.5) is nothing but the energy associated to each configuration x = (x1, . . . , xn)
of then computational units that form the network. Notice that Eq.(5.5) is equivalent
to the Hamiltonian of an Ising model at zero temperature [Isi25]. Such Hamiltonian
describes the behaviour of n spin-1

2
particles in a magnetic field h and takes the

form

H = −1

2

n∑
i,j=1

Jijsisj − h
n∑
i=1

si , (5.6)

where the discrete variable si ∈ {±1} represents the spin of a particle at the i-th
site of a lattice, Jij are the couplings between two interacting particles and h is
a magnetic field. Thus, in the same way a magnetic system relaxes to a stable
configuration, it can be shown that the same happens in a Hopfield neural network,
where an initial input approaches to its attractor. It is important to realise that the
weights {wij} or, equivalently, the couplings {Jij}, are randomly distributed and
can have either positive or negative sign. Notice that, in the case of all positive or
negative contributions, there would only exist one minimum and the above model
would not describe a spin glass. The fact that the couplings can have mixed signs
allows to observe several ”quasi” minima of energy and, thus, several configurations
that can be associated to a a memory. In order to clarify this statement, let us now
consider a specific pattern xp = (xp1, · · · , xpn) which we want to store and suppose
the weight wij is updated to a value w′

ij according to the Hebbian rule, i.e.,

w′
ij = wij + x

(p)
i x

(p)
j . (5.7)

If we extend the above equation to multiple patterns we get

w′
ij = wij +

1

P

∑
p=1

x
(p)
i x

(p)
j , (5.8)

where P denotes the number of patterns that we wish to store. Eq.(5.8) shows that
neurons bearing the same state in a large number of patterns will have a weight
close to 1. Differently, anticorrelations between them will make their weight to
be close to −1. As a consequence, it can be shown that the energy E(x) always
decreases or stays constant from one computational step to the other, so that an
input x will converge to the closest attractor xp, which corresponds to the ground
state or to the local quasi-minima of E(x).

5.2 Quantum neural networks
Quantum neural networks (QNNs) stem from adding quantum features like cor-
relations, entanglement and superposition to the parallel processing properties
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of classical neural networks, an approach which is expected to result in an en-
hancement of their performances [RDR+17; CCC+19; LAT21]. Trying to implement
neural computing with quantum computers results, generically, in an incompat-
ibility, since the dynamics of the former is nonlinear and dissipative, while the
latter’s is linear and unitary, and dissipation can only be introduced by measure-
ments. Nevertheless, a set of desirable properties for QNNs displaying associative
memory has been recently proposed [SSP14]: i) QNNs should produce an output
state which is the closest to the input state in terms of some distance measure; ii)
QNNs should encompass neural computing mechanisms such as training rules or
attractor dynamics; and iii) the evolution of QNNs should be based on quantum
effects. Remarkably, the quantum analogue of attractor neural networks, which we
denote as aQNNs, meet the requirements stated above and represent the main topic
of the following sections. In this case, classical bits are replaced by qubits whose
evolution is described by the action of a CPTP map. The storage capacity, i.e., the
number of attractors of the aQNN, then corresponds to the maximum number of
stationary states of such map. The storage capacity of quantum neural networks
was analysed for the first time in [LO92]. Recently, the explicit form of the CPTP
maps possessing the maximal number of stationary states was derived [LGR+21].
Interestingly, such CPTP maps are described by non-coherence-generating oper-
ations, which represent a common tool in the resource theory of coherence and
motivates our choice to address aQNNs from a coherence-theoretic approach.

5.2.1 Attractor quantum neural networks
Attractor quantum neural networks (aQNNs) correspond to the quantum version
of aNNs where the binary computational units xi are replaced by qubits. More
formally, we define an aQNN of the Hopfield type as a network of n d-dimensional
artificial neurons (qudits) which evolve under a quantum channel, i.e., a non-trivial
CPTP map Λ : B(Hin) → B(Hout). The stored memories correspond to the
stationary states of the map, that is, the states ρS such that Λ(ρS) = ρS [LGR+21].
For an arbitrary input state ρ ̸= ρS , the successive applications of the map will
bring the state to one of the stationary states of the map ρS . In what follows, we
restrict to the case where dim(Hin) = dim(Hout) = N = dn. As demonstrated in
[LGR+21; LGR+22], a non-trivial CPTP map can have up to N stationary states
Λ(|µ⟩⟨µ|) = |µ⟩⟨µ|, where {|µ⟩}N−1

µ=0 forms an orthonormal basis of Hin. Such a
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map has the form of a generalised decohering map, i.e.,

Λ(ρ) =
N−1∑
µ=0

ρµµ|µ⟩⟨µ|+
N−1∑
µ,ν

(µ<ν)

[
ρµν(1 + αµν)|µ⟩⟨ν|+ h.c.

]
, (5.9)

where αµν ∈ C.
To determine the complete-positivity of the map, it is easier to work in terms of

its Choi state, JΛ ∈ B(Hin ⊗Hout), obtained by means of the Choi-Jamiołkowski
isomorphism, so that Λ is CPTP iff JΛ ≥ 0 and Trout(JΛ) = 1in, where Trout
denotes the partial trace over the subsystem Hout. The Choi state of the map of
Eq.(5.9) reads

JΛ =
N−1∑
µ=0

|µµ⟩⟨µµ|+
N−1∑
µ,ν

(µ<ν)

[
(1 + αµν)|µµ⟩⟨νν|+ h.c.

]
. (5.10)

The positivity requirement, JΛ ≥ 0, demands that |1 + αµν |2 ≤ 1 ,∀αµν (and
αµµ = 0 ∀µ), as well as the positivity of all minors of |JΛ|, which can be checked
by, e.g., the Sylvester’s condition [LGR+21]. In the most general case checking
positivity is evidently hard, but here we simplify our analysis by restricting to the
particular cases where αµν = ανµ = α ∈ R for every µ ̸= ν. Upon this requirement,
we find that Λ is CPTP whenever α ∈ [−N/(N − 1), 0]. We remark that our results
are, nevertheless, general and apply also when this restriction is lifted as long as the
map Λ is CPTP. Throughout this work, we will only consider aQNNs with maximal
storage capacity, that is, those whose evolution is given by Eq.(5.9). With an abuse
of language, we will sometimes refer to the map Λ in Eq.(5.9) metonymically as
aQNN.

5.3 Resource theory of coherence
In any resource theory, one should firstly introduce the sets of free states and
free operations. Given a Hilbert space H of dimension N , we denote by B(H) the
set of the bounded operators acting on H. The set of free states in the resource
theory of coherence, denoted as I, comprises the so-called incoherent states, that
is, all the states δ ∈ B(H) that are diagonal in a fixed basis {|i⟩}N−1

i=0 of H, i.e.,
I = {δ =

∑
i δi|i⟩⟨i| |

∑
i δi = 1}. Free operations are the CPTP maps, E , that leave

incoherent states incoherent, i.e., E(I) ⊂ I. Stated differently, E fulfills ∆ ◦ E ◦
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∆ = E ◦ ∆, where ◦ denotes the composition between two maps and ∆ is the
complete-dephasing map in the chosen basis, i.e., ∆(·) =

∑
i |i⟩⟨i| · |i⟩⟨i| [LHL17].

Operations satisfying the above relation are said to be non-coherence-generating,
since they are unable to create coherence on any incoherent state. In contrast to
what happens in the resource theories of asymmetry, athermality or entanglement
[CG16], in coherence theory the set of free operations is not unique. This can
be grasped by looking at the Kraus structure of the corresponding CPTP maps
(E(·) =

∑
αKα ·K†

α).
The largest class of non-coherence-generating operations are the maximally

incoherent operations (MIOs), whose Kraus operators, {Kα}, fulfil
∑

αKαIK†
α ⊂ I

[Abe06]. A subset of MIOs are the incoherent operations (IOs) [BCP14], consisting
of all MIOs whose Kraus operators satisfy the relation KαIK†

α ⊂ I for all α. Inside
the set of IOs we find the strictly incoherent operations (SIOs) [WY16], for which
the Kraus operators further fulfil that K†

αIKα ⊂ I for all α. Finally, genuinely
incoherent operations (GIOs) [DS16] are SIOs preserving every incoherent state, i.e.,
EGIO(δ) = δ for all δ ∈ I. As a consequence, GIOs present diagonal Kraus operators.

Besides free states and free operations, one should also introduce a proper
measure of the resource considered. To quantify the amount of coherence present
in an arbitrary state ρ ∈ B(H), a coherence measure [BCP14] must be defined as
a functional C : B(H) → R≥0 satisfying two main conditions: (i) faithfulness,
meaning that C(δ) = 0 for all incoherent δ ∈ I, and (ii) monotonicity, i.e., C(ρ) ≥
C(E(ρ)), for all non-coherence-generating operations E . Among the most typical
coherence measures we find the robustness of coherence [NBC+16], the relative
entropy of coherence, i.e.,

Cr.e.(ρ) = S(∆(ρ))− S(ρ), (5.11)

where S(ρ) = −Tr(ρ log ρ) is the Von Neumann entropy [BCP14], and the l1-
coherence measure,

Cl1(ρ) =
∑
µ̸=ν

|ρµν |, (5.12)

which is a valid measure under IOs, but not MIOs [BX16].
Finally, every coherence measure achieves its maximum value on the set of maxi-

mally coherent states (SMCS), defined, in dimensionN , asSMCS := { 1√
N

∑N−1
j=0 e

iθj |j⟩ |
θj ∈ [0, 2π) ∀j} [PJF16].
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5.4 Error-free aQNNs

A direct inspection of Eq.(5.9) shows that, in the basis {|µ⟩}N−1
µ=0 , the condition

∆ ◦ Λ ◦∆ = Λ ◦∆ holds, implying that aQNNs are not able to generate coherence
on any input state. In particular, since Λ(δ) = δ for all δ ∈ I, it follows that the set
of attractors of the aQNN is equivalent to the set of incoherent states I, and that:

Remark 5.1. aQNNs are described by GIOs.

As stated in the introduction, this observation justifies addressing aQNNs from
a coherence-theoretic perspective. Moreover, analogously to the case of aNNs,
aQNNs are bona fide models for associative memory. Indeed, in the asymptotic
limit, they are able to retrieve the stored attractor which is closest to the input state,
in terms of their relative entropy. We show this fact in the following lemma:

Lemma 5.1. After r → ∞ iterations, an aQNN outputs the stored attractor that min-
imises the relative entropy with respect to the input state ρ, i.e., S(ρ|| limr→∞ Λr(ρ)) =
minδ∈I S(ρ||δ), where S(ρ||σ) = Tr(ρ log ρ) − Tr(ρ log σ) is the quantum relative
entropy of ρ with respect to σ. Equivalently, Cr.e.(ρ) quantifies the minimum relative
entropy between ρ and the set of the attractors of the aQNN.

Proof. From Eq.(5.9) one notices that applying Λ a sufficient number of times on
an input state ρ results in a complete dephasing of ρ, i.e., limr→∞ Λr(ρ) = ∆(ρ).
Now, let us write the relative entropy between ρ and an incoherent state δ as
S(ρ||δ) = S(∆(ρ))− S(ρ) + S(∆(ρ)||δ). It is immediate to see that

min
δ∈I

S(ρ||δ) = S(∆(ρ))− S(ρ) + S(∆(ρ)||∆(ρ)) = S(∆(ρ))− S(ρ) = Cr.e.(ρ) ,

(5.13)
that is, the minimum relative entropy between an input state ρ and the set of
incoherent states (or attractors) is achieved on ∆(ρ), i.e., the state retrieved by the
aQNN after a sufficient number of applications. As proven above, such minimum
distance between the input state and the retrieved attractor is quantified by the
relative entropy of coherence of the input.

5.4.1 Physical realization of aQNNs
Physical operations on a system can always be understood as unitary dynamics
and projective measurements on a larger system. Indeed, given a quantum channel
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E : B(H) → B(H), there always exists an ancillary Hilbert space A of arbitrary
dimension and a unitary operation U ∈ B(H⊗A) such that

E(ρ) = TrA
[
U(ρ⊗ |a0⟩⟨a0|)U †] , (5.14)

for any ρ ∈ B(H), where TrA denotes the partial trace on the subsystem A and
|a0⟩⟨a0| is the initial state of the ancilla. The corresponding unitary U is known
as the Stinespring dilation of the map E [Pau03]. Thus, aQNNs can be physically
realised by appending an ancillary qudit to the network qudits, letting the composite
system evolve under the corresponding Stinespring dilation, and finally discarding
the ancilla. Knowing that aQNNs are associated to GIOs allows us to derive the
Stinespring dilation of the former in a straightforward way:

Proposition 5.2. The Stinespring dilation of an N -dimensional aQNN is given by

UaQNN =
N−1∑
µ=0

|µ⟩⟨µ| ⊗ Uµ, (5.15)

where {|µ⟩}N−1
µ=0 is an orthonormal basis and Uµ is a unitary operator such that

Uµ |a0⟩ = |cµ⟩, with {|cµ⟩}N−1
µ=0 a set of normalised states fulfilling ⟨cν |cµ⟩ = 1+αµν ,

∀µ ̸= ν.

Proof. Let {|µ⟩ ⊗ |aµ⟩} be an orthonormal basis of the composite Hilbert space
H⊗A. In [YDX+17] it was proven that the action of the Stinespring dilation of a
GIO can be expressed as

UGIO(|µ⟩ ⊗ |a0⟩) = |µ⟩ ⊗ |cµ⟩ , (5.16)

where |cµ⟩ =
∑

i c
(i)
µ |ai⟩ and {|cµ⟩} is a set of normalised but not necessarily or-

thogonal states. Expressing the state ρ in the basis {|µ⟩}N−1
µ=0 , i.e., ρ =

∑
µν ρµν |µ⟩⟨ν|,

and making use of Eq.(5.15), we find that Eq.(5.14) takes the form

EGIO(ρ) =
∑
µν

(∑
k

c(k)µ c̄(k)ν

)
ρµν |µ⟩ ⟨ν| . (5.17)

Let us observe that, due to the normalization of the states {|cµ⟩}N−1
µ=0 , it holds∑

k

c(k)µ c̄(k)µ = 1 ,
∑
k

c(k)µ c̄(k)ν < 1, ∀µ ̸= ν, (5.18)
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so that EGIO(ρ) = ρ for any diagonal state ρ, and the action of EGIO does not increase
the value of the off-diagonal elements.
A direct comparison between Eq.(5.17) and the map of Eq.(5.9) shows that the two
maps are equivalent if

1 + αµν =
∑
k

c̄(k)ν c(k)µ = ⟨cν , cµ⟩, ∀µ ̸= ν, (5.19)

which completes the proof.

5.4.2 Depth of aQNNs and decohering power

Consider the simple case of a maximally coherent qubit |Ψ2⟩ = 1√
2
(|0⟩+ |1⟩) suffer-

ing decoherence under the action of an aQNN, i.e., Λ(Ψ2) =
1
2

(
1 1 + α01

1 + ᾱ01 1

)
,

where, from now on, we use the notation Ψ := |Ψ⟩⟨Ψ|. From here it is easy to see
that an aQNN with a smaller value of |1 + α01| needs to be applied less times on
a state in order to completely destroy its coherences. To quantify the ability of
operations to cause decoherence, the notion of decohering power is invoked. The
decohering power of a map E : B(H) → B(H), dim(H) = N , with respect to some
coherence measure C was introduced in [MK15]:

DC(E) = max
ΨN∈SMCS

(C(ΨN)− C(E(ΨN)))

= C(ΨN)− min
ΨN∈SMCS

C(E(ΨN)). (5.20)

When considering the l1-coherence measure we immediately find:

Proposition 5.3. The l1-decohering power of an N -dimensional aQNN described by
the CPTP map Λ is given by

DCl1
(Λ) = N − 1− 1

N

∑
µ̸=ν

|1 + αµν |, (5.21)

fulfilling 0 ≤ DCl1
(Λ) ≤ N − 1.

We define the depth of an aQNN as the minimum number of times, r, that the map Λ
has to be applied on a state until it becomes stationary up to some tolerable error η,
that is, until the classification process is accomplished with sufficient accuracy (see
Fig.5.5a). At that moment, the coherence of the input is small, i.e., Cl1(Λr(ρ)) = η,
with 0 < η ≪ 1.
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Figure 5.5: (a) Scheme of a typical classification process. The aQNN described by Λ
is applied r times until a stationary state ρr is reached. (b) Protocol for enhancing
the performance of an aQNN associated to Λ at layer i using the coherence present
in ωi: ρi+1 = Ni(ρi) = TrA(Λ(ρi ⊗ ωi)). (c) Protocol for reducing the depth of
an aQNN exploiting the entanglement present in ψi s.t. ρi = TrA(ψi): ρ′i+1 =
TrA{(Λ⊗ id)(ψi)}.

Consider the case where the input state is a maximally coherent state, ΨN ,
which decoheres uniformly under the action of an aQNN, i.e., αµν = ανµ ≡ α ∀µ, ν.
In this case we have Cl1(Λr(ΨN)) = (N − 1)1−r(N − 1−DCl1

(Λ))r. Allowing for
stationarity to be reached within a small error η, i.e.,Cl1(Λr(ΨN)) ≤ η, immediately
yields

Proposition 5.4. The depth r of an N -dimensional aQNN described by the CPTP
map Λ with αµν = ανµ ≡ α ∀µ ̸= ν acting on a maximally coherent state such that
stationarity is reached within η-precision is given by its l1-decohering power:

r ≥

⌈
log(η)− log(N − 1)

log(N − 1−DCl1
(Λ))− log(N − 1)

⌉
. (5.22)

Note that the lower bound for r is tight, since in this case Cl1(Λr(ΨN)) and
DCl1

(Λ) are exactly related.
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Figure 5.6: Minimum depth of a 100-dimensional aQNN with αµν = ανµ ≡ α for
all µ ̸= ν acting on a maximally coherent state such that stationarity is reached
within error η = 0.01, as a function of its l1-decohering power.

Fig.5.6 shows the minimum number of layers that a 100-dimensional aQNN of this
kind needs to have in order for stationarity to be achieved within an error η = 0.01.
Moreover, it illustrates how the depth of an aQNN decreases with its decohering
power. Turning to generic aQNNs, however, it is not possible to find a tight lower
bound for the depth, since under non-uniform decoherence the main quantities
Cl1(Λ

r(ΨN)) and DCl1
(Λ) are not equivalent.

5.4.3 No-go results for the performance of error-free aQNNs
Throughout this chapter we have assumed already trained aQNNs and we have
investigated their properties during the inference phase, i.e., the stage when the
output is produced. In this section, we are interested in analysing whether the
performance of an aQNN can be improved at the inference stage itself. As it is
common in the literature about neural computing, enhancing the performance of a
neural network implies: i) increasing its accuracy, and ii) accelerating the inference
process, that is, reducing the depth of the network (as we defined it in section
5.4.2). Here we want to investigate whether the performance of an aQNN can be
improved by resorting exclusively to quantum resources. To that aim, one can
begin by implementing some channel Ni on a given layer i capable of mitigating
some of the errors occurred in previous layers, which results in an increased overall
accuracy, and/or reducing the number of layers left until the inference process is
accomplished, i.e., decreasing the overall r. We consider a scenario where an aQNN
of arbitrary dimension is coupled to an ancillary system A, under the action of
a CPTP map Λ : B(H ⊗ A) → B(H ⊗ A), where the ancilla supplies coherent
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states ωi ∈ B(A). In this case, one could only exploit the aQNN and the coherent
resources in order to realise the target channel Ni : B(H ⊗ A) → B(H). The
procedure would be as follows: i) append a coherent ancilla ωi ∈ B(A) to the input
state ρi ∈ B(H), ii) apply Λ on the composite system, and iii) discard the ancillary
state (see Fig.5.5b). Formally, we can express this process as

ρi+1 = Ni(ρi) = TrA(Λ(ρi ⊗ ωi)). (5.23)

As discussed in [DDM+17], a non-coherence-generating operation M is able
to realise a coherent channel in this way only if it can activate coherence, i.e., if it
fulfills ∆ ◦M ◦∆ ̸= ∆ ◦M. Noting that GIOs violate this condition [LHL17], the
following no-go result holds:

Proposition 5.5. Coherence cannot be used to enhance the performance of aQNNs.

Since GIOs are unable to exploit the coherence of ωi to help implement Ni(ρi)
(unlike MIOs [DFW+18] or IOs), aQNNs cannot use coherence to boost their own
performance.

Another strategy to reduce the depth of an aQNN by increasing its decohering
power relies on the exploitation of initial correlations [TRS22]. Consider an input
state ρi ∈ B(H), purified by the entangled state ψi ∈ B(H ⊗ A), i.e, TrA(ψi) =
ρi. The question is to find whether using such an entangled input state causes
a stronger decoherence in the output, thus reducing the number of times that
the map Λ : B(H) → B(H) has to be applied before the classification task is
completed. Stated differently, we want to investigate whether C(Λ(ρi)) is greater
than C(TrA{(Λ⊗ id)(ψi)}) (see Fig.5.5c). We hereby show this is not possible:

Proposition 5.6. Initial entanglement cannot be used to reduce the depth of aQNNs.

Proof. Consider a generally mixed input state ρ =
∑

k pk|ϕk⟩⟨ϕk|, where pk ∈ [0, 1]
and the states |ϕk⟩ are not necessarily orthonormal. A purification of ρ is given by
|ψ⟩ =

∑
k

√
pk |ϕk⟩ |k⟩, where {|k⟩} is an orthonormal basis of A. Expressing ρ in

this basis, i.e., ρ =
∑

k pk
∑

µν c
(k)
µ c̄

(k)
ν |µ⟩⟨ν|, with c(k)ξ = ⟨ξ|ϕk⟩, leads to

TrA[(Λ⊗ id)(ψ)] =
∑
k

pk

[∑
µ

|c(k)µ |2|µ⟩⟨µ|+
∑
µ<ν

{
c(k)µ c̄(k)ν (1 + αµν)|µ⟩⟨ν|+ h.c.

}]
= Λ(ρ). (5.24)

Therefore, C(Λ(ρ)) = C(TrA{(Λ⊗ id)(ψ)} and initial correlations cannot produce
a faster decoherence in the input state ρ.
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5.5 Faulty aQNNs
We examine now the realistic scenario of non-error-free aQNNs, that is, the case
where some error in the implementation of the network is taken into account. In
particular, we denote as faulty an aQNN such that the associated map, Λϵ, preserves
the stationary states up to a certain error ϵ ∈ [0, 1], i.e.,

Λϵ(|µ⟩⟨µ|) = (1− ϵ)|µ⟩⟨µ|+ ϵ

N − 1

N−1∑
µ̸=ν

|ν⟩⟨ν| .

According to this definition, it is clear that there exist many maps satisfying the
above requirement. In what follows we consider one, denoted as Λϵ,γ , whose action
over a generic quantum state ρ can be written as

Λϵ,γ(ρ) =
N−1∑
µ=0

ρµµ

[
(1−ϵ)|µ⟩⟨µ|+

N−1∑
ν=1
(µ̸=ν)

ϵ

N − 1
|ν⟩⟨ν|

]
+
N−1∑
µ<ν

{
ρµν

[
(1+αµν)|µ⟩⟨ν|+γ|ν⟩⟨µ|

]
+h.c.

}
,

(5.25)
with ϵ ∈ [0, 1] and γ ∈ C. Notice that Eq.(5.25) corresponds to a faulty map where
ϵ represents the error on achieving the stationary states and γ is a damping factor
in the off-diagonal terms. We define a faulty (ϵ, γ)-aQNN as that associated to the
map Λϵ,γ of Eq.(5.25), whose corresponding Choi state is

JΛϵ,γ =
N−1∑
µ=0

[
(1−ϵ)|µµ⟩⟨µµ|+

N−1∑
ν=1
(µ̸=ν)

ϵ

N − 1
|µν⟩⟨µν|

]
+
N−1∑
µ<ν

[
(1+αµν)|µµ⟩⟨νν|+γ|µν⟩⟨νµ|+h.c.

]
,

(5.26)
with |1 + αµν |2 ≤ (1− ϵ)2 for all µ ̸= ν.
Notice that Eq.(5.26) can be cast as a direct sum, i.e., JΛϵ,γ = J

⊕
0≤µ<ν≤N−1

Jµν , with

J =


1− ϵ 1 + α01 · · · 1 + α0,N−1

1 + ᾱ01 1− ϵ · · · 1 + α1,N−1
... ... . . . ...

1 + ᾱ0,N−1 1 + ᾱ1,N−1 · · · 1− ϵ

 , (5.27)

Jµν =

(
ϵ/(N − 1) γ

γ̄ ϵ/(N − 1)

)
, (5.28)
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where the bar symbol denotes the complex conjugation and each 2 × 2 matrix
Jµν appears with multiplicity N(N − 1)/2. Following the same arguments of
section 5.2, Λϵ,γ is a CPTP map iff JΛϵ,γ ≥ 0. Choosing |γ| ∈ [0, ϵ/(N − 1)]
guarantees that Jµν ≥ 0 for every µ ̸= ν, but finding analytical conditions on
the parameters such that J ≥ 0 is, in general, a cumbersome task. Nevertheless,
recalling that αµν = ανµ = α ∈ R for every µ ̸= ν, Λϵ,γ is a CPTP map whenever
α ∈ [(ϵ−N)/(N − 1),−ϵ] and |γ| ∈ [0, ϵ/(N − 1)].

Notice that, also in the case of faulty maps Λϵ,γ , the non-coherence-generating
condition ∆ ◦ Λϵ,γ ◦∆ = Λϵ,γ ◦∆ holds true. Moreover, it is possible to show that
(ϵ, γ)-aQNNs correspond to SIOs:

Lemma 5.2. (ϵ, γ)-aQNNs are described by SIOs.

Proof. First, we derive the Kraus operators, defined as Ki =
√
λ(i)mat(|λ(i)⟩),

where λ(i) is an eigenvalue of the Choi state and mat(|λ(i)⟩) the row-by-row matrix
representation of the corresponding eigenvector |λ(i)⟩. The diagonalization of JΛϵ,γ

can be made simpler thanks to the direct sum decomposition of Eqs.(5.27)-(5.28).
Notice that the diagonalization of Eq.(5.27) always yields diagonal Kraus operators.
In fact, a generic eigenvector of the N ×N matrix J is of the form

|λ(i)J ⟩ =
(
(λ

(i)
J )00, (λ

(i)
J )11, . . . , (λ

(i)
J )N−1,N−1

)T
. (5.29)

When extending this vector to dimension N2, we need to add N zeroes between
each pair of entries, i.e.,

|λ(i)J ⟩ext = ((λ
(i)
J )00, 0, . . . , 0︸ ︷︷ ︸

N

, (λ
(i)
J )11, . . . , (λ

(i)
J )N−1,N−1)

T . (5.30)

Hence, when converting the extended eigenvector into a matrix, it is immediate
to find that this operation always yields a diagonal Kraus operator, regardless of
the particular eigenvector considered. Let us now inspect the eigenvectors of the
operator Jµν of Eq.(5.27). First notice that, for any 0 ≤ µ < ν ≤ N − 1, Jµν can be
written in the chosen basis as

Jµν =
ϵ

N − 1

(
|µν⟩⟨µν|+ |νµ⟩⟨νµ|

)
+ γ|µν⟩⟨νµ|+ γ̄|νµ⟩⟨µν| .

The diagonalization of Jµν yields a couple of eigenvectors of the form |λ(±)
Jµν

⟩ =

(±(λJµν )0, (λJµν )1)
T . However, differently from the previous case, when extending

these vectors to dimension N2, we need to add N2 − 2 zeroes whose position
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will vary according to the specific matrix Jµν considered. It is easily found that
the zeroes of the extended eigenvector correspond to the elements of the basis
of the form |µ′ν ′⟩ with µ′, ν ′ ̸= µ, ν. Thus, the Kraus operators are given by
Kµν = κ

(1)
µν |µ⟩⟨ν| + κ

(2)
µν |ν⟩⟨µ| , for some κ(i)µν ∈ C. For every incoherent state δ it

holds
KµνδK

†
µν = |κ(1)µν |2δνν |µ⟩⟨µ|+ |κ(2)µν |2δµµ|ν⟩⟨ν| , (5.31)

and K†
µνδKµν is obtained by relabelling µ → ν. Hence, for every δ ∈ I, it holds

that KµνδK
†
µν ⊂ I, K†

µνδKµν ⊂ I , with 0 ≤ µ < ν ≤ N − 1.

Further, we provide the expression of the distance between the two quantum
channels Λ and Λϵ,γ . In order to do so, we introduce the diamond distance, denoted
by D⋄, which is formally defined, for any pair of CPTP maps, as [Wat09; AKN98]

D⋄(E ,F) =
1

2
max
ρAB

∥(id ⊗ E)(ρAB)− (id ⊗F)(ρAB)∥1 ,

where ρAB ∈ B(HA ⊗HB) and ∥X∥1 = Tr
√
XX† is the usual trace norm.

Operationally, the diamond distance quantifies how well one can discriminate
between two quantum maps. Indeed, it is possible to show that E and F become
perfectly distinguishable whenever D⋄(E ,F) = 1 [Wil11]. The computation of the
diamond distance between two CPTP maps can be cast as a semidefinite program
(SDP) which admits a simple formulation in terms of their Choi states [DFW+18],
i.e.,

min λ (5.32)
s.t. Z ≥ JE − JF

λ1A ≥ TrB(Z)
Z ≥ 0 .

Taking into account Λ and Λϵ,γ , the solution of the above SDP program does not
admit, in general, a simple analytical expression. However, upon suitable conditions,
we prove the following result:

Proposition 5.7. Let αµν = ανµ ≡ α ∈ R for all µ ̸= ν and γ = 0. Then, the
diamond distance between Λ and Λϵ is given by D⋄(Λ,Λϵ) = ϵ .

Proof. Notice that, since the difference between the Choi states yields a diagonal
matrix, the SDP program (5.32) can be solved by restricting to the diagonal matrices
Z = diag(z00, . . . , zN−1,N−1) satisfying the constraints Z ≥ JΛϵ,γ − JΛ and λ1A ≥
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TrB(Z). The former condition is easily satisfied by choosing zii = ϵ
N−1

whenever(
JΛϵ,γ − JΛ

)
ii
= ϵ

N−1
and zii = 0 elsewhere. With this choice, we find TrB(Z) =

ϵ1, so that the latter condition reduces to λ ≥ ϵ. Hence, the minimization over λ
yields ϵ, which completes the proof.

Notice that, when restricting to the case of Proposition 5.7, for ϵ = 1 it is
possible to fully discriminate between Λ and Λϵ. Moreover, we have numerically
found that, also when γ ̸= 0, Proposition 5.7 holds true, thus implying that the
diamond distance is independent of the choice of γ.

Regarding the physical realization of (ϵ, γ)-aQNNs, the following result holds:

Proposition 5.8. The Stinespring dilation of an N -dimensional (ϵ, γ)-aQNN is given
by

U(ϵ,γ)-aQNN =
∑
µ

∑
k

c(k)µ |πk(µ)⟩⟨µ| ⊗ |an⟩⟨a0| , (5.33)

where πk is a permutation function swapping two states |µ⟩ and |ν⟩ ∀µ ̸= ν, i.e.,
|πk(µ)⟩ = |ν⟩, |πk(ν)⟩ = |µ⟩, and {|c(k)µ ⟩}N−1

µ=0 is a set of normalised states fulfilling

|c(0)µ |2 = 1− ϵ , c(0)µ c̄(0)ν = 1 + αµν , ∀µ ̸= ν ,

c(k)µ c̄(k)ν = γ, ∀k ̸= 0 .
(5.34)

Proof. The Stinespring dilation of a SIO is given by [CG16]

USIO =
∑
µ

∑
k

c(k)µ |πk(µ)⟩⟨µ| ⊗ |an⟩⟨a0| , (5.35)

where πk is a permutation function labelled by the index k and the coefficients {c(k)µ }
are such that the vector |cµ⟩ = (c

(0)
µ , · · · , c(r)µ ) is normalised. Inserting Eq.(5.35) in

Eq.(5.14) it is easily found that

E(ρ) =
∑
µν

∑
k

c(k)µ c̄(k)ν ρµν |πk(µ)⟩⟨πk(ν)| . (5.36)

In order to relate the above expression with the one of Eq.(5.25), we rewrite it as

E(ρ) =
∑
µ

∑
k

ρµµ|c(k)µ |2|πk(µ)⟩⟨πk(µ)|+
∑
µ ̸=ν

∑
k

ρµνc
(k)
µ c̄(k)ν |πk(µ)⟩⟨πk(ν)| .

(5.37)
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Let us now denote by k = 0 the identical permutation that leaves unchanged the
elements of the chosen basis, i.e., |π0(µ)⟩ = |µ⟩ for all µ = 0, . . . , N − 1. Hence,
the first term of Eq.(5.37) can be cast as∑

µ

ρµµ|c(0)µ |2|µ⟩⟨µ|+
∑
µ

∑
k ̸=0

ρµµc
(k)
µ c̄(k)ν |πk(µ)⟩⟨πk(ν)| . (5.38)

Comparing Eq.(5.38) with the diagonal terms in Eq.(5.25), we find

|c(0)µ |2 = 1− ϵ , c(0)µ c̄(0)ν = 1 + αµν , ∀µ ̸= ν .

To find the rest of the conditions let us rewrite the second term of Eq.(5.37) as∑
µ ̸=ν

ρµνc
(0)
µ c̄(0)ν |µ⟩⟨ν|+

∑
µ̸=ν

∑
k ̸=0

ρµνc
(k)
µ c̄(k)ν |πk(µ)⟩⟨πk(ν)| . (5.39)

A direct comparison between Eq.(5.39) and the off-diagonal terms of Eq.(5.25), shows
that we need to impose some restrictions on the permutation function. Choosing
πk to be a swap between any two pair of orthogonal states, i.e., |πk(µ)⟩ = |ν⟩ and
|πk(ν)⟩ = |µ⟩ with µ ̸= ν, we find:

|c(k)µ |2 = ϵ/(N − 1) , c(k)µ c̄(k)ν = γ , ∀k ̸= 0 .

As a consequence of Proposition 5.8, an error-free aQNN may turn faulty if the
unitary operator that physically implements it degrades from UaQNN to U(ϵ,γ)-aQNN.
We conclude this section by observing that also SIOs are non-coherence-activating
operations [LHL17], which results in the following no-go proposition:

Proposition 5.9. Coherence cannot be used to enhance the performance of (ϵ, γ)-
aQNNs.

In addition, entanglement cannot be exploited either to accelerate the inference
process in this case:

Proposition 5.10. Initial entanglement cannot be used to reduce the depth of (ϵ, γ)-aQNNs.

Proof. Consider a generally mixed input state ρ =
∑

k pk|ϕk⟩⟨ϕk|, where pk ∈ [0, 1]
and the states |ϕk⟩ are not necessarily orthonormal. A purification of ρ is given by
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|ψ⟩ =
∑

k

√
pk |ϕk⟩ |k⟩, where {|k⟩} is an orthonormal basis of A. Expressing ρ in

this basis, i.e., ρ =
∑

k pk
∑

µν c
(k)
µ c̄

(k)
ν |µ⟩⟨ν|, with c(k)ξ = ⟨ξ|ϕk⟩, leads to

TrA[(Λϵ,γ ⊗ id)(ψ)] =
∑

k pk

[∑
µ |c

(k)
µ |2[(1− ϵ)|µ⟩⟨µ|+

∑
µ<ν

ϵ
N−1

|ν⟩⟨ν|
]

+
∑

µ<ν

{
c
(k)
µ c̄

(k)
ν

[
(1 + αµν)|µ⟩⟨ν|+ γ|ν⟩⟨µ|

]
+ h.c.

}]
= Λϵ,γ(ρ). (5.40)

Therefore, C(Λϵ,γ(ρ)) = C(TrA{(Λϵ,γ ⊗ id)(ψ)} and initial correlations cannot
produce a faster decoherence in the input state ρ.

So far, we have considered the case when faulty aQNNs are described by SIOs,
showing that neither coherence nor entanglement can be used to enhance the
performance of the associated aQNN. Nevertheless, it is possible to show that,
when other sources of error are considered, this is not necessarily the case. In
particular, we define a map Λϵ,γ,λ defined as:

Λϵ,γ,λ(ρ) = Λϵ,γ(ρ) +
∑
µ<ν

[ρµνλ|µ+ 1⟩⟨ν + 1|+ h.c.] , (5.41)

where λ ∈ C and Λϵ,γ(ρ) is the map of Eq.(5.25).
It can be checked numerically that Λϵ,γ,λ corresponds to a MIO, but not IO, thus
possibly allowing the use of coherence to enhance the performance of the related
aQNN, as proven in [DFW+18].
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Conclusion

E me ne devo andare via cos̀ı?
Non che mi aspetti il disegno compiuto
ciò che si vede alla fine del ricamo
quando si rompe con i denti il filo
dopo averlo su se stesso ricucito
perché non possa più sfilarsi se tirato.
Ma quel che ho visto si è tutto cancellato.
E quasi non avevo cominciato.

Patrizia Cavalli

In this thesis we have analysed different, although related, topics in quantum
information theory. In particular, our work has been devoted to three main lines,
that is, entanglement characterisation, non-locality detection and quantum neural
networks. In all cases, symmetry plays a crucial role in reducing the complexity
of the original problems, while providing, as well, an elegant framework for their
mathematical description. In the following sections we provide a summary of the
main results of this thesis, along with some open questions for each of these topics.

Entanglement in symmetric states: outlook & open
questions
In chapter 3 we have tackled the separability problem for symmetric states of
two qudits. Motivated by the results of [TAQ+18], where the case of diagonal
symmetric states was discussed, we have further explored the connection between
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this class of states and the cone of copositive matrices. In particular, we have
provided the explicit conditions that a copositive matrix has to satisfy to define
a valid entanglement witness. Moreover, intrigued by the concept of exceptional
copositive matrices, we have shown that they correspond to non-decomposable EWs
for diagonal symmetric states, a result which has allowed for the characterisation
of new families of PPT-entangled states in arbitrary dimension. We have then
turned our analysis to the set of two-qudit symmetric states, focusing on the first
non-trivial case, i.e., d = 3, where we have been able to provide a new family
of two-qutrit PPT-entangled states. Numerical evidence as well as the analytical
mapping between two-qutrit and four-qubit symmetric states introduced in chapter
3, strongly suggest that this is the only family of PPT-entangled states in d = 3
and indeed, we conjecture that any two-qutrit symmetric PPTES is of the form
of Eq.(3.44). Interestingly, also in this case, the diagonal symmetric part of the
EW for symmetric states, can be constructed from a copositive matrix, possibly
indicating that this class of matrices play a decisive role in the construction of EWs
also outside the diagonal symmetric paradigm.

Open questions
A first open question regards the characterisation of PPT-entangled edge states
of two symmetric qudits in d < 5. In d = 3 we conjecture that there exists only
one family of such states, a conjecture which is strongly supported by numerical
calculations but still requires an analytical proof. In d = 4 the numerical examples
of PPT-entangled states that we have found are of the same form of their counterpart
in d = 3, an observation that suggests the possibility to extend the validity of our
conjecture also to this latter case. Moreover, it has been recently proven that any
two-qutrit PPT-entangled state has Schmidt number 2 [SBL01; YLT16; MMO21].
Hence, it would be interesting to investigate whether a similar result holds also in
d = 4, that is, if any PPT-entangled state in the symmetric subspace of C4 ⊗ C4

has Schmidt number 3. Since in d = 3 and d = 4 the structure of the copositive
cone is the same, we expect that this is the case, but a complete answer to this
question certainly requires further investigation. A different, although related
topic, refers to the possibility to use bipartite PPT-entangled states in the context
of quantum communication. In particular, it has been recently shown [Bra05;
SY08] that the combination of two zero-capacity quantum channels can lead to a
quantum channel which is useful for communication, a phenomenon known as
superactivation. Crucially, this effect can be achieved only if one of the two channels
is constructed from a bipartite PPT-entangled state. As a consequence, it seems
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plausible that our characterisation of PPTES can lead to valuable insights into this
remarkable phenomenon. Another interesting line of research consists in looking
for generalisation of our results to the multipartite scenario of N qudits. While the
separability problem for N DS qubits has already been discussed in the literature,
this question remains open in the case of N DS qudits. Given the strong symmetry
of the problem, we expect that, also in this case, the properties of a multipartite state
of N qudits can be rephrased in terms of an associated matrix, and that copositive
matrices still act as EWs for PPT-entangled states. Finally, a closely related topic
is the prospect to use semidefinite programming not only as a method to tackle
the separability problem but also as a tool to characterise exceptional copositive
matrices. Indeed, the preliminary results presented in Appendix A suggest that the
method of PPT symmetric extension could be particularly useful in this sense, but
a more systematic approach to the problem is still needed.

Non-locality in open quantum systems: outlook &
open questions
In chapter 4 we have investigated the presence of non-local correlations in open
quantum systems. Although one might expect that, given its fragile nature, non-
locality is lost when when we consider the interaction with an environment, we
prove that this is not necessarily the case and non-local correlations can be detected
by means of Bell inequalities involving only one- and two-body correlators. In
particular, considering a many-body system described by an LMG Hamiltonian,
we have discussed the case where the open quantum system is subjected both
to thermal and non-thermal noise. In both case, using quantum master equation
methods, we have been able to derive the stationary states of the model and we
have shown that they display non-local correlations. Hence, we have compared
this result with the dynamics of the entanglement in the evolved state, showing
that the violation of a Bell inequality occurs at a later time when compared to
the appearance of entanglement in the state of the open system, a behaviour that
confirms the inequivalence between entanglement and non-locality. Finally, we
have discussed the robustness of non-locality in a scenario where a many-body
system undergoes repeated measurements: starting from a state that violates a Bell
inequality, non-local correlations survive for a short, though significant, time, to
the effect of external noise.
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Open questions
When investigating the presence of non-locality in an open quantum system, we
have considered both the case of thermal and non-thermal noise. However, the
expression for the dissipator in this latter case is the result of an ad hoc construction
and one might argue that cannot be ascribed to some known physical interaction.
For this reason, it would be interesting to consider other examples of environments,
outside the paradigm of the thermal bath, that lead to the violation of a Bell in-
equality in the open system. This might require to change the description of the
open system, for instance, considering a different Hamiltonian, and/or a different
expression for the dissipator. More importantly, the analysis of alternative sources
of non-thermal noise allows to investigate the presence of non-locality in out of
equilibrium states. For instance, one could inspect whether our technique can
be useful to detect non-local correlations also in open quantum systems whose
evolution crosses a phase transition, or in the more complex scenario where a time
crystal open quantum system is considered. Another interesting line of research
concerns the relation between the scenario where the open quantum system is
repeatedly measured and quantum cryptography. In fact, since the disturbance
introduced by the measurement bears strong resemblance with the action of an
eavesdropper, exploring further the connection between these two settings could
lead to new insights into this field and pave the way for innovative avenues of
research.

Quantum neural networks & quantum maps: con-
clusions & outlook questions
The relation between quantum neural networks and the resource theory of coher-
ence is the main topic of chapter 5, where special attention is devoted to the class
of attractor quantum neural networks due to the possibility to use their stationary
states as associative memories. Motivated by the results in [LGR+21], where the
expression of the quantum map with the maximal number of stationary states
was derived, we have described such map in the context of the resource theory
of coherence. In particular, starting from the error-free case, we have shown that
the quantum maps that describe the evolution towards the attractors corresponds
to GIOs. Besides, we demonstrate that, for such aQNNs, the equivalent of the
Hamming distance is the quantum relative entropy. After deriving their physical
implementation, we have defined their depth and established a relation to the con-
cept of decohering power. Further, we show that, in the case of noiseless aQNNs,
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neither coherence nor entanglement can be exploited as resources to enhance their
performance. The same issues were discussed also for the case of faulty aQNNs,
where we have shown that the corresponding aQNNs are described either by SIOs
or by MIOs, thus opening the possibility, in the latter case, to an enhancement of
their performance by using coherence as an external resource.

Open questions
Our analysis of faulty aQNNs shows that the corresponding quantum maps can
be described by MIOs, a result which is particularly relevant since it opens the
possibility to observe an enhancement of the performance of the network by using
coherence as an external resource. For this reason, it would be interesting to provide
an explicit example of a quantum neural network where this is indeed the case,
deriving the expression of the unitary operators that implement the MIO. A related,
although different topic, concerns the training of the network. In particular, since
in our approach we deal with trained aQNNs, it would be interesting to discuss
how this stage can be taken into account in our description. Another open question
regards the characterisation of quantum maps that describe aQNNs with a reduced
number of stationary states. This question is particularly relevant for certain tasks,
such as image recognition, where restricting the number of stable patterns is a
desirable feature to guarantee a higher capability of the network to distinguish
between different outcomes. For this reason, it is natural to ask whether the same
analysis performed in [LGR+21] can be applied also in this case to deduce the
shape of the corresponding maps. Finally, it would be interesting to discuss the
generalisation of our results to the case of stationary mixed states. While a partial
characterisation of this question was already given in [LGR+21] for the case of
error-free aQNNs, a complete answer in the faulty scenario is still missing.
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A
Semidefinite programming for the
copositive cone

In this Appendix we present a method, based on the construction of PPT-symmetric
extensions of [DPS02; DPS04], to generate examples of exceptional copositive
matrices in d ≥ 5. In section A.1 we first recall the formalism used in [DPS02;
DPS04]. Then, in section A.2, we focus on the case of two-qudit symmetric states.
Finally, in section A.3, we provide a way to construct exceptional copositive matrices
using semidefinite programming.

A.1 Semidefinite programming and PPT symmet-
ric extensions

As we have seen in chapter 2, the method of PPT-symmetric extensions allows to
cast the separability problem for a quantum state in the form of a hierarchy of SDPs.
More specifically, if a quantum state does not admit a PPT-symmetric extension at
a certain level of the hierarchy, then it is entangled. A generic semidefinite problem
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can be cast as

min cTx (A.1)
s.t. F (x) ⪰ 0 ,

where c is a given vector, x = (x1, . . . , xn) is the vector over which the minimiza-
tion is performed and F (x) = F0 +

∑
i xiFi ⪰ 0 is a linear constraint over x.

When c = 0, the SDP simply consists in checking whether the linear constraint
is satisfied and the SDP is said a feasibility problem. The form of the SDP in (A.1)
is usually referred to as the primal problem. Each primal problem admits a dual
representation of the form

maxZ − Tr[F0Z] (A.2)
s.t. Z = Z†, Z ⪰ 0 , Tr[FiZ] = ci .

The importance of the dual formulation (A.2) lies in the fact that, in the case of
a feasibility problem (i.e., c = 0), if there exists Z ⪰ 0 such that Tr[FiZ] = 0
and Tr[F0Z] < 0, then the primal problem must be infeasible. It has been shown
[DPS02; DPS04] that such scenario is equivalent to the case where an entangled
state violates one of the tests in the hierarchy, thus allowing for the expression of
the EW that detects it.
In what follows we will focus on the second test of the hierarchy, that is we
look for PPT-symmetric extensions of a state ρ ∈ B(HA ⊗ HB) to two copies
of the subsystem A. Introducing two bases for the spaces of Hermitian matrices
acting on HA and HB , i.e., {σAi }

d2A
i=1 and {σBi }

d2B
i=1 respectively, we can expand ρ

on the basis {σAi ⊗ σBj } as ρ =
∑

ij ρijσ
A
i ⊗ σBj . Analogously, we can express

ρ̃ ∈ B(HA ⊗HB ⊗HA) as

ρ̃ =
∑
ijk

i<k

ρ̃ijk{σAi ⊗ σBj ⊗ σAk + σAk ⊗ σBj ⊗ σAi }+
∑
kj

ρ̃kjkσ
A
k ⊗ σBj ⊗ σAk ,

where we have made use of the invariance under the exchange of the first and the
third party. Let us now impose that the trace of ρ̃ over the third party yields the
initial state, i.e., Tr3[ρ̃] = ρ. As a consequence we find

ρ̃ij1 = ρij ,

where the result follows from the fact that we have chosen the basis elements
in such a way they satisfy the commutation relations of SU(n), i.e., Tr[σXi ] =
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δi1,Tr[σXi σXj ] = cXδij , for some constant cX , with X ∈ {A,B}. Notice that the
condition Tr3[ρ̃] = ρ fixes some of the components of ρ̃, the remaining ones being
the variables of the SDP over which the minimization is performed.
In order to write the linear constraints of the SDP in the form of (A.1), we define

G0 =
∑
j

ρ1jσ
A
1 ⊗ σBj ⊗ σA1 +

∑
i=2,j=1

ρij{σAi ⊗ σBj ⊗ σA1 + σA1 ⊗ σBj ⊗ σAi } ,

(A.3)
Giji = σAi ⊗ σBj ⊗ σAi , i ≥ 2 , (A.4)
Gijk = (σAi ⊗ σBj ⊗ σAk + σAk ⊗ σBj ⊗ σAi ) , k > i ≥ 2 , (A.5)

so that the condition ρ̃ ⪰ 0 can be cast as

G(x) = G0 +
∑
J

xJGJ ⪰ 0 ,

where J is a multi-index labelling the indices in the above equations.
With the aid of this definitions, the SDP takes the form of the primal problem of
Eq.(A.1), where the coefficients ρ̃ijk(k ̸= 1, k ≥ i) play the role of the free variables
of the SDP. Moreover, if we introduce the matrix F = ρ̃⊕ ρ̃TA⊕ ρ̃TB , the constraints
on the positivity of ρ̃ and its partial transpositions, ρ̃TA and ρ̃TB , can be written in
a compact way as F ⪰ 0, and the primal form for the second test of can be cast as
a feasibility problem, i.e.,

min 0

s.t. F = ρ̃⊕ ρ̃TA ⊕ ρ̃TB ⪰ 0 .

Let us now inspect the associated dual form (A.2) with c = 0. Given the block
structure of F , we can cast

F0 = G0 ⊕GTA
0 ⊕GTB

0 , (A.6)
FJ = GJ ⊕GGA

J ⊕GGB
J , (A.7)

for every multi-index J . For the same reason, and without loss of generality, the
maximization over Z in (A.2) can be restricted to Hermitian matrices of the form

Z = Z0 ⊕ ZTA
1 ⊕ ZTB

2 ,

and the requirement Z ⪰ 0 implies Z0, Z
TA
1 , ZTB

2 ⪰ 0.
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An explicit calculation yields

Tr[F0Z] = Tr[G0(Z0 + Z1 + Z2)] = Tr[G0V ] = Tr[Λ(ρ)V ] ,

where we have introduced V = Z0 +Z1 +Z2 and we have recast G0 in Eq.(A.3) as
G0 = Λ(ρ), that is as the action of a linear map Λ : HA ⊗HB → HA ⊗HB ⊗HA

over the state ρ. Denoting by Λ∗ the adjoint map of Λ, i.e., the map satisfying
Tr[Λ(X)Y ] = Tr[XΛ∗(X)], we can write

Tr[F0Z] = Tr[Λ(ρ)V ] = Tr[Λ∗(V )ρ] = Tr[Wρ] , (A.8)

where we have defined W = Λ∗(V ).
If ρsep is a separable state, then we know that there exists a PPT symmetric extension
or, equivalently, the primal problem (A.1) with c = 0 is feasible. As a consequence of
Eq.(A.8), for any feasible solution Z it holds that the associated Hermitian operator
W satisfies

Tr[Wρsep] ≥ 0 . (A.9)
On the contrary, whenever the primal problem is infeasible for a given state ρent,
this implies that such state is entangled. Hence, there exists a feasible solution of
the dual problem, i.e. Z , such that Tr[F0Z] < 0. This implies that

Tr[Wρsep] ≥ 0 , Tr[Wρent] < 0 , (A.10)

thus defining a valid EW for the state ρent.

A.2 PPT symmetric extensions for symmetric states
The separability criterion we have presented so far is based on the construction of
PPT symmetric extension for a generic state ρ ∈ B(HA ⊗HB). In the following,
we focus on the subset of symmetric states of n qudits, i.e, ρ ∈ B(S(Cd)⊗n). In
this case, one should specify how many qudits lie in the state |0⟩, how many in the
state |1⟩, etc. For this reason, we introduce an alternative notation where the Dicke
states are indexed according to the partitions λ of n in d elements, i.e.,

|Dλ⟩ =
∑
π∈Gn

(
n

λ

)−1/2

π
(
|0⟩λ0 ⊗ · · · ⊗ |d− 1⟩⊗λd−1

)
,

where λ = (λ0, . . . , λd−1),
∑

i λi = n, λi ≥ 0, the sum runs over all possible
permutations of n elements, and the multinomial coefficient is given by(

n

λ

)
=

n!

λ0! · · ·λd−1!
.
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For the ease of notation we will write |Dλ⟩ ≡ |λ⟩, and a generic state ρS ∈
B(S(Cd)⊗n) will be written as

ρ =
∑

λ,µ ⊢n

ρλµ|λ⟩⟨µ| ,

where the notation λ,µ ⊢ n means that we are considering partitions of n.
Our aim is to solve analytically the SDP associated to the second test of the hierarchy
for the class of symmetric states. In order to do so, the first step is to require that
a symmetric state of n qudits, ρ̃, is an extension of a symmetric state of m qudits,
ρ. In other words, given a state ρ̃ ∈ B(S(Cd)⊗n) and a state ρ ∈ B(S(Cd)⊗m), we
want to derive under which conditions the equation ρ = Tr1,...,n−m[ρ̃] holds true.
Such conditions are expressed by the following theorem:

Theorem A.1 ([AFT21]). Let ρ̃ =
∑

λ,µ ⊢n ρ̃
λ
µ|λ⟩⟨µ| be a symmetric state of n qudits

and let us define ρ = Tr1,...,n−m[ρ̃], with m ≤ n. If

ραβ =
∑

λ,µ ⊢n

ρ̃λµ
∑

κ ⊢n−m

(
n−m

κ

)√√√√(mα)(mβ)(
n
λ

)(
n
µ

) δ(α+ κ− λ)δ(β + κ− µ) , (A.11)

then ρ =
∑

α,β ⊢m ρ
α
β |α⟩⟨β| is a symmetric state of m qudits.

As a consequence of Th.(A.1), some of the coefficients ρ̃λµ will be referred to as
”fixed”, since they can be expressed as a function of others, dubbed as ”semi-free”,
and of the ραβ . Notice that not every ρ̃λµ will occur in Eq.(A.11), and we will call
”free” those coefficients that do not appear in the above equation. Formally, we
define:

1. Fixed variables: ρ̃λµ = ρ̃α+κ0
β+κ0

with κ0 arbitrarily chosen,

2. Semi-free variables: ρ̃λµ = ρ̃α+κ
β+κ with κ < κ0 such that

∑
imin{λi, µi} ≥

n−m, λ1 < n−m or µ1 < n−m ,

3. Free variables: ρ̃λµ such that
∑

imin{λi, µi} < n−m ,

where the notation κ < κ0 refers to a lexicographic ordering, i.e., κi < κ0i for
every component of each vector. Notice that the explicit form of the fixed (and,
consequently, of the semi-free) variables depends on the choice of the vector κ0.
Without loss of generality, we choose κ0 = (n − m, 0, . . . , 0), so that it holds(
n−m
κ0

)
= 1.
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Expanding the right-hand side of Eq.(A.11) according to the definitions above, we
have

ραβ =
∑
κ<κ0

(
n−m

κ

)√√√√ (
m
α

)(
m
β

)(
n

α+κ

)(
n

β+κ

) ρ̃α+κ
β+κ +

√√√√ (
m
α

)(
m
β

)(
n

α+κ0

)(
n

β+κ0

) ρ̃α+κ0
β+κ0

, (A.12)

from which it follows that the fixed variables can be written as a linear combination
of the coefficients ραβ and the semi-free variables, i.e.,

ρ̃α+κ0
β+κ0

=

√√√√( n
α+κ0

)(
n

β+κ0

)(
m
α

)(
m
β

) ραβ−

√(
n

α+ κ0

)(
n

β + κ0

) ∑
κ<κ0

(
n−m

κ

)
ρ̃α+κ
β+κ√(
n

α+κ

)(
n

β+κ

) .
(A.13)

Hence we can write ρ̃ as

ρ̃ =
∑

α,β ⊢m

√√√√( n
α+κ0

)(
n

β+κ0

)(
m
α

)(
m
β

) ραβ |α+ κ0⟩⟨β + κ0| (A.14)

−
∑

(α,κ)∈SF
(β,κ)∈SF

√(
n

α+ κ0

)(
n

β + κ0

)(
n−m

κ

)
ρ̃α+κ
β+κ√(
n

α+κ

)(
n

β+κ

) |α+ κ0⟩⟨β + κ0|

+
∑

(α,κ)∈SF
(β,κ)∈SF

ρ̃α+κ
β+κ |α+ κ⟩⟨β + κ|+

∑
(λ,µ)∈F

ρ̃λµ|λ⟩⟨µ| ,

where F and SF refer to the set of free and semi-free variables respectively.
In order to solve the dual formulation of the SDP (A.2) for c = 0 we need to derive
the expression of the matricesG0 andGJ . Notice that, differently from the previous
case, due to the permutational invariance of the parties, the partial transposition
will be the same regardless of the choice of the subsystem. Hence, we can restrict
our search over a Hermitian matrix of the form Z = Z0⊕ZTB

1 , and the quantities in
the previous section will change accordingly, i.e., F0 = G0 ⊕GTB

0 , FJ = GJ ⊕GTB
J

and V = Z0 + Z1.
Let us observe that the first element in the right-hand side of Eq.(A.14) is a linear
combination of the coefficients ραβ . Following the same argument as before, we can
write

G0 = Λ(ρ) =
∑

α,β ⊢m

√√√√( n
α+κ0

)(
n

β+κ0

)(
m
α

)(
m
β

) ραβ |α+ κ0⟩⟨β + κ0| , (A.15)
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and recalling that W = Λ∗(V ), we find

W =
∑

α,β ⊢m

√√√√( n
α+κ0

)(
n

β+κ0

)(
m
α

)(
m
β

) V α+κ0
β+κ0

|α⟩⟨β| , (A.16)

where the last equation follows from the definition of the adjoint map Λ∗, i.e.,
Tr[Λ(ρ)V ] = Tr[Λ∗(V )ρ] . A direct inspection of the dual SDP (A.2) with c = 0
shows that we still need to impose the constraints Z ⪰ 0 and Tr[FJZ] = 0 for
every multi-index J labelling the free and semi-free variables of the SDP. Let us
observe that, since FJ = GJ ⊕GTB

J , the latter condition can be rewritten as

Tr[FJZ] = Tr[GJ(Z0 + Z1)] = Tr[GJV ] = 0 . (A.17)

The expression of GJ ≡ Gλ,µ can be found by deriving ρ̃ of Eq.(A.14) with respect
to a pair of semi-free variables ρ̃λµ, i.e.,

Gλ,µ = |λ⟩⟨µ| , if (λ,µ) ∈ F , (A.18)

Gλ,µ = |λ⟩⟨µ| −
∑

(α,κ)∈SF
(β,κ)∈SF

δ(α+ κ− λ)δ(β + κ− µ) (A.19)

√√√√( n
α+κ0

)(
n

β+κ0

)(
n

α+κ

)(
n

β+κ

) (n−m

κ

)
|α+ κ0⟩⟨β + κ0| , if (λ,µ) ∈ SF .

A straightforward calculation shows that Eq.(A.17) takes the form

V λ
µ = 0 , if (λ,µ) ∈ F , (A.20)

V λ
µ =

∑
(α,κ)∈SF
(β,κ)∈SF

δ(α+ κ− λ)δ(β + κ− µ) (A.21)

√√√√( n
α+κ0

)(
n

β+κ0

)(
n

α+κ

)(
n

β+κ

) (n−m

κ

)
V α+κ0
β+κ0

, if (λ,µ) ∈ SF .

A.3 The diagonal symmetric case
Let us consider the case where ρ is a PPT-entangled diagonal symmetric (PPTEDS)
state of m qudits, i.e., ρDS =

∑
α ⊢m(ρDS)

α
α|α⟩⟨α|, with ρΓDS ⪰ 0. In this case
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we know that, given a copositive matrix H =
∑

ij Hij|i⟩⟨j|, it is always possible
to construct an EW, WDS = ΠS(H

ext)ΓΠS , where ΠS is the projector onto the
symmetric subspace of two qudits, and Hext =

∑
ij Hij|ii⟩⟨jj|, is the extension of

the copositive matrix to the space Cd ⊗ Cd. In particular, non-decomposable EWs
correspond to exceptional copositive matrices, i.e., those matrices that cannot be
decomposed as H = HPSD + HNN , with HPSD ∈ PSD, HNN ∈ NN , where
PSD, NN are the cones of positive semidefinite and non-negative matrices,
respectively.
In what follows, we restrict to the case d = 3 although we stress that, in principle,
our approach can be generalized to any other dimension. Since any PPTEDS in
d < 5 is necessarily separable, we want to prove that the operator WDS = Λ∗(V )
is a decomposable EW or, equivalently, that its associated copositive matrix is
non-exceptional. Let us start by proving that WDS is a decomposable EW.
Since Λ∗ is a linear map, we can split its action on V = Z0 + Z1 in two terms, i.e.,
WDS = Λ∗(Z0) + Λ∗(Z1). Hence, proving the EW to be decomposable consists in
showing that it can be written as WDS = P +QΓ, with P,Q ⪰ 0. In what follows,
we typically construct decompositions where P = Λ∗(Z0) and Q = Λ∗(Z1)

Γ,
although, due to the fact that Z0 and Z1 have the same structure, an equivalent
result would hold true under the swap Z0 ↔ Z1.

Notice that the PPT symmetric extension of n qudits of a DS state must be a DS
state, i.e., ρ̃DS =

∑
λ ⊢n(ρ̃DS)

λ
λ|λ⟩⟨λ|. Due to the symmetry of the problem, we can

now solve the dual formulation of the SDP by restricting our search to Hermitian
matrices of the form ZDS = Z0 ⊕ ZΓ

1 , where each Zi is a DS state of n qudits, with
Z0, Z

Γ
1 ⪰ 0. Moreover, recalling the definitions of fixed and semi-free variables,

any Zi can be cast as

Zi =
∑
α⊢m

(Zi)
α+κ0
α+κ0

|α+ κ0⟩⟨α+ κ0|+
∑

(α,κ)∈SF

(Zi)
α+κ
α+κ|α+ κ⟩⟨α+ κ| . (A.22)

The constraint Z0 ⪰ 0 implies (Z0)
λ
λ ≥ 0 ∀λ ⊢ 3, and we can set

P ≡ Λ∗(Z0) =
∑
α ⊢2

(
3

α+κ0

)(
2
α

) (Z0)
α+κ0
α+κ0

|α⟩⟨α| ⪰ 0 . (A.23)

The structure of ZΓ
1 can be represented more easily in the Dicke basis of three

qutrits, where a generic operator Z ∈ S((C3)⊗3) takes the form

Z =
∑

0≤i≤j≤k≤2

Zijk|Dijk⟩⟨Dijk| . (A.24)
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Using the same notation, ZΓ
1 can be cast as

ZΓ
1 = A⊕B ⊕ C

⊕
i<j

(Z1)iij
3

⊕
i<j<k

(Z1)ijk
3

, (A.25)

where we have set

A =
1

3

 3(Z1)000
√
2(Z1)001

√
2(Z1)002√

2(Z1)001 2(Z1)011 (Z1)012√
2(Z1)002 (Z1)012 2(Z1)022

 ,

B =
1

3

 2(Z1)001
√
2(Z1)011 (Z1)012√

2(Z1)011 3(Z1)111
√
2(Z1)112

(Z1)012
√
2(Z1)112 2(Z1)122

 ,

C =
1

3

 2(Z1)002 (Z1)012
√
2(Z1)022

(Z1)012 2(Z1)112
√
2(Z1)122√

2(Z1)022
√
2(Z1)122 3(Z1)222

 .

Hence, ZΓ
1 ⪰ 0 implies A,B,C ⪰ 0, as well as the positivity of the coefficients

in Eq.(A.25). We want to show that QΓ = Λ∗(Z1) with Q ⪰ 0. The partial
transposition of Λ∗(Z1) yields

Λ∗(Z1)
Γ = HZ1 ⊕

3

4
(Z1)001 ⊕

3

4
(Z1)002 ⊕

3

2
(Z1)012 , (A.26)

where the matrix HZ1 is given by

HZ1 =
3

4

4(Z1)000/3 (Z1)001 (Z1)002
(Z1)001 4(Z1)011 2(Z1)012
(Z1)002 2(Z1)012 4(Z1)022

 . (A.27)

Introducing the matrix G, given by

G =
3

4

 4/3 3/
√
2 3/

√
2

3/
√
2 6 6

3/
√
2 6 6

 , (A.28)

it is straightforward to see that HZ1 = G ⋆ A, where ⋆ denotes the Hadamard
product between two matrices. Since G,A ⪰ 0, by the Schur product theorem it
follows thatHZ1 ⪰ 0, thus proving thatWDS = Λ∗(Z0)+Λ∗(Z1) is a decomposable
EW.
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Analogously, we want show that WDS can be constructed from a non-exceptional
copositive matrix H . Similarly to the previous case, we expect that the two
terms of the decomposition, i.e., HNN and HPSD, will stem from the operators
Λ∗(Z0),Λ

∗(Z1). Let us first consider the term Λ∗(Z0), whose expression in the
Dicke basis is given by

Λ∗(Z0) = diag
(
(Z0)000,

3

2
(Z0)001,

3

2
(Z0)002, 3(Z0)011, 3(Z0)012, 3(Z0)022

)
.

(A.29)
The expression of its associated matrix, HZ0 , in the computational basis can be
obtained by stacking the elements of Λ∗(Z0) row by row in a 3 × 3 matrix an
multiplying the off-diagonal elements by a factor 1/2, i.e.,

HZ0 =
3

4

4(Z0)000/3 (Z0)001 (Z0)002
(Z0)001 4(Z0)011 2(Z0)012
(Z0)002 2(Z0)012 4(Z0)022

 . (A.30)

Notice that, as a consequence of the constraint Z0 ⪰ 0, it follows that HZ0 ∈ NN .
By the same argument, we can construct the matrix HZ1 , whose expression can
be obtained by Eq.(A.30) by relabeling Z0 → Z1, thus yielding the same matrix of
Eq.(A.27). As before, due to the condition (Z1)

Γ ⪰ 0, it follows that HZ1 ∈ PSD,
thus concluding the proof.

This result suggests that the separability criterion based on the construction of
PPT-symmetric extension can be applied also to the cone of copositive matrices. In
fact, if a DS state does not admit a PPT extension at some level of the hierarchy,
then it is entangled and can be detected by a witness constructed from an excep-
tional copositive matrix. Since the characterisation of this class of matrices is, in
general, NP-hard, this method can provide a computational method to generate
new examples of exceptional copositive matrices in arbitrary dimension d ≥ 5.
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[KBD+83] K. Kraus, A. Böhm, J. D. Dollard, and W. Wootters, States, effects, and op-
erations fundamental notions of quantum theory: lectures in mathematical
physics at the university of texas at austin (Springer, 1983).

[Pit86] I. Pitowsky, “The range of quantum probability”, Journal of Mathemati-
cal Physics 27, 1556–1565 (1986).

[MK87] K. G. Murty and S. N. Kabadi, “Some np-complete problems in quadratic
and nonlinear programming”, Math. Program. 39, 117–129 (1987).

[Ami89] D. J. Amit, Modeling brain function: the world of attractor neural networks
(Cambridge university press, 1989).

[BFL91] L. Babai, L. Fortnow, and C. Lund, “Non-deterministic exponential time
has two-prover interactive protocols”, Computational complexity 1,
3–40 (1991).

[Eke91] A. K. Ekert, “Quantum cryptography based on bell’s theorem”, Physical
review letters 67, 661 (1991).

[LO92] M. Lewenstein and M. Olko, “Storage capacity of “quantum”neural
networks”, Physical Review A 45, 8938 (1992).

[BBC+93] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
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quantum critical points”, Physical review letters 123, 170604 (2019).

[MNP20] N. Meinhardt, N. M. Neumann, and F. Phillipson, “Quantum hopfield
neural networks: a new approach and its storage capacity”, in Interna-
tional conference on computational science (Springer, 2020), pp. 576–
590.

[AFT21] A. Aloy, M. Fadel, and J. Tura, “The quantum marginal problem for
symmetric states: applications to variational optimization, nonlocality
and self-testing”, New Journal of Physics 23, 033026 (2021).

[KPS+21] S. Kotler, G. A. Peterson, E. Shojaee, F. Lecocq, K. Cicak, A. Kwiatkowski,
S. Geller, S. Glancy, E. Knill, R. W. Simmonds, J. Aumentado, and J. D.
Teufel, “Direct observation of deterministic macroscopic entanglement”,
Science 372, 622–625 (2021).

[LGR+21] M. Lewenstein, A. Gratsea, A. Riera-Campeny, A. Aloy, V. Kasper, and
A. Sanpera, “Storage capacity and learning capability of quantum neural
networks”, Quantum Science and Technology 6, 045002 (2021).

[LAT21] Y. Liu, S. Arunachalam, and K. Temme, “A rigorous and robust quantum
speed-up in supervised machine learning”, Nature Physics 17, 1013–
1017 (2021).

[MMO21] M. Marciniak, T. Młynik, and H. Osaka, “On a class of k-entanglement
witnesses”, arXiv preprint arXiv:2104.14058, 10.48550/arXiv.
2104.14058 (2021).

[MAT+21] C. Marconi, A. Aloy, J. Tura, and A. Sanpera, “Entangled symmetric
states and copositive matrices”, Quantum 5, 561 (2021).

[SGB21] L. F. Streiter, F. Giacomini, and C. Č. Brukner, “Relativistic bell test
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