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Introduction

Gravitational waves have been theorized by General relativity since 1916 but
it was not until September 14th 2015 that a confirmed detection was made
by the LIGO interferometers. Since then, about 90 gravitational wave events
have been detected by the LIGO and Virgo interferometers. This was made
possible not only due to the increase in sensitivity of the interferometer net-
work, but also due to our rising understanding of the population sources and
noise distribution.

Gravitational waves provide a new window into the universe and our un-
derstanding of black holes. In particular, they allow us to probe different
mass regions, as for example, the subsolar mass range. Even though no
event has been found in this range, a possible detection would imply poten-
tial new physics and new formation channels.

The confirmed events have been produced by the coalescence of two compact
objects (Black holes or neutron stars) and were detected by means of dedi-
cated search pipelines. These pipelines use a technique, known as matched
filter, that searches for the signal inside the data by correlating the data
with a set of theoretical waveforms describing the gravitational waves. The
efficiency of this method is limited by the computational resources available,
as it requires a dense sampling of the searched parameter space, and the
understanding of the noise in the detector. Nevertheless, the matched filter
technique remains as a robust approach for the detection of gravitational
waves.

The results of this thesis are divided into two parts: First, we present the
results of the subsolar mass search carried out within the collaboration using
the third observation run and matched filter. We will focus on two possible
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formation channels of subsolar black holes, primordial black holes and dark
matter black holes, and provide limits to their abundance in the universe.
Second, we design a machine learning technique for the detection of gravita-
tional waves from the coalescence of two compact objects. We cover a broad
range of the parameter space and we search for gravitational waves in the
second and third observation runs, where the results are also compared with
the official catalog events.

The thesis is organized in the following way: In Chapter 1, the generation
and emission of gravitational waves are explained. In Chapter 2, the instru-
ment used for the detection of the aforementioned waves is described along
with a comprehensive list of noise sources. In Chapter 3, the noise is charac-
terized and all the elements needed to construct a search for CBC events are
covered. In Chapter 4, the previous elements are used to search for gravita-
tional waves produced by the collision of two compact objects with at least
one subsolar component. In Chapter 5, a machine learning implementation
for the prompt detection of gravitational waves is discussed and tested in
data. Finally, the last chapter is dedicated to conclusions.

The work in this thesis led to the following publications in journals.

• Fiori I, Paoletti F, Tringali MC, Janssens K, Karathanasis C, Menéndez-
Vázquez A, Romero-Rodŕıguez A, Sugimoto R, Washimi T, Boschi V,
Chiummo A, Cieślar M, De Rosa R, De Rossi C, Di Renzo F, Nardec-
chia I, Pasqualetti A, Patricelli B, Ruggi P, Singh N. The Hunt for En-
vironmental Noise in Virgo during the Third Observing Run. Galaxies.
2020; 8(4):82. https://doi.org/10.3390/galaxies8040082

• Ballester, O., et al (2022). Measurement of the stray light in the Ad-
vanced Virgo input mode cleaner cavity using an instrumented baffle.
Class. Quant. Grav., 39(11), 115011. https://doi.org/10.1088/

1361-6382/ac6a9d

• Andrés-Carcasona, M., et al (2022). An instrumented baffle for Ad-
vanced Virgo Input Mode Cleaner End Mirror. Submitted for publica-
tion to Phys. Rev. D. https://arxiv.org/abs/2210.16313

• Menéndez-Vázquez, A., Kolstein, M., Mart́ınez, M. and Mir, Ll. M.
(2021). Searches for compact binary coalescence events using neural
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Chapter 1

Introduction to gravitational
waves

In this chapter, we discuss the elements needed to understand the theoreti-
cal background describing gravitational waves (GWs) [1]. We first introduce
some notions of general relativity [2] and the Einstein field equations. From
these equations we derive the weak-field Einstein equations by assuming that
we are interested in a region with a weak gravitational field. Finally, we de-
duce the existence of GWs by solving the equations outside a gravitational
field source.

Next, we define a convenient gauge to describe these waves, the TT gauge,
and how the GW can always be projected onto it. This gauge will be used
to describe the emission of GWs from a generic source. Furthermore, we
show that, at leading order, the emission is given by a quadrupole moment
contribution. We will particularize this result in the case of a GW produced
by the coalescence of two compact objects (a neutron star or black hole),
and see how the dynamics of the system are affected by the emission of these
waves.

1.1 Einstein’s field equations

General relativity is a classical field theory of gravity [2] that states that the
effect of gravity can be understood as the warping of spacetime. In other
words, gravity is geometry and not a product of an attractive force as was
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previously thought. It provides a unification between special relativity (SR)
and Newton’s law of gravitation.

The first building block of general relativity is known as ”Einstein’s Equiv-
alence Principle”, which states the following: Any local physical experiment
not involving gravity will have the same result if performed in a freely falling
inertial frame as if it were performed in the flat spacetime of special relativ-
ity.
In simpler terms, this means that from inside an isolated system it’s not
possible to distinguish between the physical effects produced by gravity and
those produced by the acceleration of the system. Furthermore, this also
implies that light has to be affected by gravity or, otherwise, the observer
would be able to distinguish between the two situations by following the path
of the light beam.

This notion motivated the idea of a geometrical interpretation of gravity,
and was formalized by describing the spacetime as a four dimensional mani-
fold [3, 4] with a metric. Gravity is produced by the curvature of said space-
time by a mass. Therefore, we need to start by describing what a metric
tensor is [5].

Definition 1. Let M be a smooth manifold, a metric at a point p ∈M is a(
0
2

)
tensor, gp, from the space of all the tangent vectors at point p to R that

varies smoothly with p and satisfies the following conditions.

• Bilineal: For α, β, τ ∈ R and Ap, Bp, Cp contained in the tangent space
of the point p.

gp(αAp + βBp, Cp) = αgp(Ap, Cp) + βgp(Bp, Cp)

gp(Ap, βBp + τCp) = βgp(Ap, Bp) + τgp(Ap, Cp)

• Symmetric: gp(Ap, Bp) = gp(Bp, Ap) for every element of the tangent
space of p.

• Non-degenerate: For every AP ̸= 0 there is at least one Bp in the
tangent space such that gp(Ap, Bp) ̸= 0.

A metric tensor can be understood as the generalization of the notion of
metric from metric spaces. The inner dot product from Euclidean spaces
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is an example of a metric tensor. The metric is fundamental to understand
general relativity as it provides a general framework for non-euclidean spaces,
including curved spaces.

One of the most important metrics is the Minkowski metric, ηµν , defined
in a four dimensional manifold that covers the whole R4. It corresponds to
a flat spacetime with coordinates (x0, x1, x2, x3) = (t, x, y, z) and it can be
represented as a 4x4 matrix as in Eq. 1.1:

η =


−c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.1)

where c is the speed of light. If we take only the three spatial components
(x, y, z), this metric acts as the inner dot product in an euclidean space.

The next concept we need to introduce to understand Einstein’s field equa-
tions is the Stress-energy tensor, Tαβ, defined as follows [2]:

Definition 2. The stress-energy tensor, Tαβ, is a tensor of order two defined
as the flux of the α momentum component across a surface of constant xβ.

In general relativity, the ”α momentum component” is a component of the
four momentum. The elements of this tensor can be interpreted as follows:

• T 00: Flux of zero momentum component, energy, across surfaces of
constant time. This is the energy density.

• T 0i: Flux of energy across surfaces with xi constant.

• T i0: Flux of imomentum component across surfaces of constant t. This
is the i momentum density.

• T ij: Flux of i momentum component across surfaces with xj constant.
In Newtonian theory this is called the stress tensor.

It can be proved that the stress-energy tensor is symmetric and that conversa-
tion laws can be derived from it. In fact, the conservation of four momentum
can be expressed as in Eq. 1.2.
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In general relativity, this condition is generalized by using the covariant
derivative, Dν .

∂νT
µν = 0 (1.2)

DνT
µν = 0.

With these two concepts we can create a covariant theory of gravity in which
the source of the gravitational field, given by the stress-energy tensor, deter-
mines the metric. That is, we ask for solutions to Eq. 1.3:

O(g) = kT, (1.3)

where O(g) is a differential operator acting on the metric. This choice is
inspired from the Newtonian case in which the gravitational field, ϕ, is given
by the differential equation∇2ϕ = 4πGρ. Since T is a

(
0
2

)
tensor, the operator

has to produce a tensor of the same rank. It can be shown that the general
solution is given by Eq. 1.4:

Oαβ = Rαβ + µgαβR + Λgαβ, (1.4)

where Rαβ is known as the Ricci tensor, which represents how much the
space differs from an euclidean space (and is defined as a contraction of the
Riemann tensor on the first and third indices), gαβ are the contravariant
components of the metric, µ and Λ are constants and R is the Ricci scalar.
Using the equivalence principle, we can enforce local conservation of energy
and momentum, which are conserved as stated by Eq. 1.2.

This implies that DβO
αβ = 0 should hold for whatever metric tensor we

are using. Hence, given that Dβg
αβ = 0 due to the definition of covariant

derivative, we obtain Eq. 1.5:

Dβ(R
αβ + µgαβR) = 0, (1.5)

which is true for any metric as long as µ = −1
2
. If we substitute this value

in Eq. 1.4, we get Eq. 1.6:

Rαβ − 1

2
gαβR + Λgαβ = kTαβ, (1.6)
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the Einstein’s field equations. These equations can also be written by intro-
ducing a symmetric tensor called the Einstein tensor, Gαβ, as in Eq. 1.7:

Gαβ + Λgαβ = kTαβ (1.7)

Gαβ = Rαβ − 1

2
gαβR = Gβα.

Finally, by lowering and raising indexes, these equations can be expressed in
covariant form, as in Eq. 1.8:

Gαβ + Λgαβ = kTαβ. (1.8)

Newton’s law of gravitation can be recovered from this expression by assum-
ing the following:

• Small gravitational field.

• The speed of the objects, v, is much smaller than the speed of light
|v| ≪ c.

• Static gravitational field.

This is known as the Newtonian limit and it allows us to estimate the value
of ’k’: k = 8πG

c4
where G is the gravitational constant and c is the speed of

light. However, Λ will remain as a free parameter.

A simple solution to Einstein’s equations is given by the curved spacetime
defined by the following line element in spherical coordinates:

ds2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2(dθ2 + sin2(θ)dϕ2),

(1.9)
which is known as the Schwarzschild metric [6] and describes the gravita-
tional field of a star of mass M with zero electric charge and angular mo-
mentum. Furthermore, at r → ∞ we recover the Minkowski metric. This
metric provides the most general spherically symmetric solutions for Ein-
stein’s equations and, in particular, is used to describe a type of black hole,
known as Schwarzschild black hole, that is defined only by the mass.
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A black hole is a region of spacetime curved by a compact object with a
very high mass that generates a gravitational field strong enough such that
nothing can escape from it (including light). In a Schwarzschild black hole,
the size of this region is given by the Schwarzschild radius:

Rs =
2GM

c2
. (1.10)

This definition is also valid for stars but, in that case, it occurs that RStar ≫
Rs and light can escape its gravitational pull and be observed on Earth.

Another exact solution to Einstein’s equations is given by Kerr metric [7]
which describes a zero electric charge black hole rotating along the axis of
angular momentum. This solution is axially symmetric along this axis and
the black holes are described by two parameters, the mass, M , and the
angular momentum, J . The momentum is generally given in terms of the
dimensionless spin, a, defined as:

a =
cJ

GM2
, (1.11)

which is always lower than one for a black hole. This metric is given by the
following line element:

ds2 =−
(
1− Rsr

ρ2

)
c2dt2 − 2GMRsr · a · sin2(θ)

c2ρ2
cdtdϕ+

ρ2

∆
dr2

+

(
r2 +

(
GM

c2
a

)2

+
G2M2Rsra

2

c4ρ2
sin2(θ)

)
sin2(θ)dϕ2 + ρ2dθ2,

(1.12)

where ρ and ∆ are defined as follows:

ρ2 = r2 +

(
GM

c2
a

)2

cos2(θ)

∆ = r2 −Rsr +

(
GM

c2
a

)2

. (1.13)

In this case, ϕ corresponds to the angle around the axis of symmetry whereas
r and θ are similar to the previous case. This metric reduces to a Schwarzschild
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metric when a = 0. Furthermore, it is asymptotically flat, given that in the
limit r → ∞ we recover the Minkowski metric. A black hole described by
this metric is called Kerr black hole.

A known formation channel for black holes is the gravitational collapse of
stars [7] in the late stage of their evolution. These black holes are known as
”Stellar” black holes, can have a mass up to hundreds solar masses and can
further grow by absorbing matter from its surroundings.

The minimum mass of stellar black holes is roughly estimated to be around
three solar masses. When the mass of the system is below three solar masses,
neutron degeneracy (Pauli Exclusion Principle applied to neutrons) gener-
ates an effective pressure high enough to prevent gravitational collapse of
the original star and, a neutron star (or white dwarf for low mass stars), is
formed. Therefore, as will be explained in Chapter 4, detection of subsolar
mass black holes would indicate new formation mechanisms or new physics.

1.2 Gravitational waves

In this section, we use the field equations shown in Eq. 1.7 to derive the
expression for GWs. We will also discuss the approximations used and con-
venient gauge choices to describe the GWs.

1.2.1 Weak-field Einstein equations

The Einstein’s field equations in Eq. 1.7 are not easily solved and, for this
reason, approximations are made to work with them. One of the most natural
approximation follows from answering the question: How would these equa-
tions look away from large masses? This introduces the notion of a ”weak”
gravitational field. We define ’weak’ as a gravitational field such that the
spacetime is almost flat. This means that the metric should take a form sim-
ilar to the Minkowski metric (as in Eq. 1.1) with some small perturbations.
Explicitly, this takes the shape seen in Eq. 1.14:

gαβ = ηαβ + hαβ (1.14)

|hαβ| ≪ 1,
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which is the simplest way to express a near-flat spacetime metric. From
special relativity, we know that the metric tensor transforms as in Eq. 1.15
under Lorentz transformations, Λµ

ᾱ:

gᾱβ̄ = Λµ
ᾱΛ

ν
β̄gµν (1.15)

ηᾱβ̄ = Λµ
ᾱΛ

ν
β̄ηµν

Taking this into account in Eq. 1.14, we have that it transforms under
Lorentz transformations as in Eq. 1.16:

gᾱβ̄ = ηᾱβ̄ + hᾱβ̄ (1.16)

hᾱβ̄ := Λµ
ᾱΛ

ν
β̄hµν ,

in which we define hᾱβ̄ in such a way that hµν transforms in the same way
as the metric tensors. However, it shall be noted that we have to be very
careful with boosts as the first assumption we made was that we had small
perturbations around the Minkowski metric, that is, the condition |hαβ| ≪ 1
should always hold. Furthermore, the transformation of coordinates given
by Eq. 1.17 leaves Eq. 1.14 unchanged:

(xα)′ = xα + ξα(x), (1.17)

where ξ is a vector with components given by the position, x, such that
|∂βξα| ≪ 1. This is called a gauge transformation and corresponds to an
infinitesimal local transformation. Under this transformation we have that
hαβ changes as in Eq. 1.18:

hαβ → hαβ − (∂βξα − ∂αξβ), (1.18)

where we have defined ξα := ηαβξ
β. It should be noted that using only trans-

formations such that |∂βξα| ≪ 1 is due to the metric being the Minkowski
metric. Under a different metric tensor, we would also need to ask for
|ξα| ≪ 1.

To summarize, under the hypothesis of an almost flat space, we have that lin-
earized theory is invariant under constant global translations, Lorentz trans-
formation and infinitesimal local transformations.
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Before introducing the linearized equations, it’s convenient to define the trace
reverse of hαβ as in Eq. 1.19:

h̄αβ := hαβ − 1

2
ηαβh (1.19)

h := hαα = ηαβhβα,

where h is the trace. This new definition gets its name from the fact that
the trace of h̄αβ is h̄ = h̄αα = −h. Furthermore, this can be used to define
hαβ as the trace reverse of h̄αβ:

hαβ = h̄αβ − 1

2
ηαβh̄. (1.20)

This definition can be introduced into the Riemann tensor and Einstein ten-
sor from Eq. 1.7 to get the linearized version of the Einstein tensor, as seen
in Eq. 1.21:

Gαβ = −1

2
[∂µ∂µh̄αβ + ηαβ∂

µ∂ν h̄µν − ∂µ∂βh̄αµ − ∂µ∂αh̄βµ], (1.21)

where non linear terms of hαβ are ignored. This expression is very complex
but it can be simplified by a clever choice of the gauge. From the transfor-
mations given by Eq. 1.18, we have gauge freedom that can be used for that
purpose. Imposing what is known as the Lorenz gauge (sometimes called
harmonic gauge, De Donder gauge or Hilbert gauge) seen in Eq. 1.22:

∂ν h̄
µν = 0, (1.22)

we have that Eq. 1.21 reduces to Eq. 1.23.

Gαβ = −1

2
∂µ∂µh̄αβ = −1

2
□h̄αβ (1.23)

□ =

(
− 1

c2
∂2

∂t2
+∇2

)
,

where □ is known as the D’Alembertian or wave operator. This convenient
choice of gauge exists thanks to the d’Alembertian operator being invertible.
This property allows us to always be able to find a gauge transformation
such that this condition holds [1, 2].
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Finally, we can substitute Eq. 1.23 in Eq. 1.8 to get the weak field Ein-
stein equations:

□h̄αβ = −16πG

c4
Tαβ, (1.24)

where we have assumed that Λ = 0. In the Newtonian limit, the Newtonian
gravitational field can be recovered from these equations.

The expression for GWs can be derived from the weak-field Einstein equa-
tions using that outside the source, in vacuum, the stress-energy tensor is
zero: Tαβ = 0. This means that Eq. 1.24 takes the form seen in Eq. 1.25:

□h̄αβ =

(
− 1

c2
∂2

∂t2
+∇2

)
h̄αβ = 0. (1.25)

The Eq. 1.25 has the shape of a wave equation with waves propagating at
the speed of light, c. This is known as the three dimensional wave equation
and its solutions are the GWs. The magnitude of the GW signal is expected
to be a very small number.

1.2.2 The transverse-traceless gauge

The solutions to the wave Eq. 1.25 are given by plane waves but they can
be further simplified. In the first place, we should notice that coordinate
transformations of the form xµ → xµ + ξµ with □ξµ = 0 are compatible with
the Lorenz Gauge seen in Eq. 1.22. This is due to the trace reverse of hαβ
transforming as in Eq. 1.26 under these transformations:

h̄µν →h̄′µν = h̄µν − (∂µξν + ∂nuξµ − ηµν∂ρξ
ρ) = h̄µν − ξµν (1.26)

∂µh̄µν →(∂µh̄µν)
′ = ∂ν h̄µν −□ξµ.

Therefore, given that ξµν depends on four arbitrary functions, we can care-
fully choose them so that we add some constraints to hµν . The gauge defined
by these choices is known as the Transverse-Traceless (TT) gauge and is
given by the conditions in Eq. 1.27:

h0µ = 0 (1.27)

hii = 0

∂jhij = 0.
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Components in this gauge will be indicated as hTT
ij . By imposing these two

gauges, we have effectively reduced the degrees of freedom of hαβ to two.
However, it’s important to remark that this derivation is based on the as-
sumption that Tαβ = 0. Inside a source this is not true and hence the TT
gauge cannot be used.

Under this gauge, the general solution to the wave Eq. 1.25 is a single
plane wave propagating along the z-axis and is given by Eq. 1.28:

hTT
ab (t, z) =

(
h+ hx
hx −h+

)
cos[w(t− z

c
)], (1.28)

where w is the angular frequency of the wave and a, b are indices in (x, y)
plane. The two elements h+ and hx are ”plus” and ”cross” polarization of
the wave.

A GW outside the source can be projected into the TT gauge by using
the Lambda tensor defined in Eq. 1.29:

Λij,kl(n̂) = δikδjl−
1

2
δijδkl−njnlδik−ninkδjl+

1

2
(nknlδij+ninjδkl+ninjnknl),

(1.29)
where ni are components of the unit vector, n̂, pointing towards the direction
of propagation of the GW. This tensor allows us to define the transverse-
traceless part of any symmetric tensor. In particular, the wave can be pro-
jected onto the TT gauge as in Eq. 1.30.

hTT
ij = Λij,klhkl (1.30)

1.2.3 Reference frames for GW detection

The TT gauge explained in the previous section is a very convenient choice
to describe a GW. However, it raises the following questions: How does the
GW interact with a detector? Is this also the proper reference frame to use?
In this section, we assume a detector is just defined by a set of test masses. A
more in-depth explanation of how GWs are detected can be seen in Chapter 2.

The most obvious choice would be to work in the reference frame associ-
ated with the TT gauge, the TT frame. The physical meaning of this choice
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can be seen by writing the geodesic equation assuming that the test mass is
at rest at the proper time τ = 0, as in Eq. 1.31:[

d2xi

dτ 2

]
τ=0

= −
[
Γi
00(
dx0

dτ
)2
]
τ=0

, (1.31)

where Γk
ij are the Christoffel symbols. Under the assumption of an almost

flat space, the metric can be written as in Eq. 1.14 and, if we expand to first
order in the perturbation, we have that the symbol can be written as in Eq.
1.32:

Γi
00 =

1

2
(2∂0h0i − ∂ih00), (1.32)

which is zero due to the TT gauge choices seen in Eq. 1.27. We conclude
that, in the TT frame, if a particle was at rest before interacting with a
GW it will remain at rest after it arrives. It is important to remark that
this doesn’t mean there is no effect, only that we cannot see a change in the
coordinates. The reason is that the coordinates will stretch with the GW in
such a way that the position of the test mass remains the same.

In this TT frame, the physical effects are seen when we work with proper
distances or proper times. In general, if we have two events with a separation
given by a vector L, we have that the proper distance can be written as in
Eq. 1.33:

s2 = L2 + hij(t)LiLj

s ≈ L+ hij(t)
LiLj

2L
, (1.33)

where we have approximated s to linear order in hij. We can get the geodesic
equation in terms of the proper distance by differentiating twice over time as
in Eq. 1.34:

s̈ ≈ 1

2
ḧijLj

Li

L
=

1

2
ḧijLjni = nis̈i (1.34)

s̈i ≈
1

2
ḧijLj =

1

2
ḧijsj,

where we have used Li

L
= ni, a unit vector, and that at first order in hij the

approximation Li = si holds. These equations tell us that, in the TT frame,
the proper distance between the two events oscillates due to the interaction

24



of the test masses with a GW. This is the basic idea behind the interferom-
eters designed to detect GWs, as discussed in Chapter 2.

Unfortunately, though the TT frame provides a simple expression for the
GW, it’s not a good reference frame for experiments. The more convenient
reference frame is what we know as the ”detector frame”. The main dif-
ference with the TT frame is that the position of the test masses changes
with respect to our origin when a GW interacts with them. In this frame,
the equation of the geodesic deviation, given by the difference between two
close-by geodesics, ξ, can be reduced to Eq. 1.35:

ξ̈i =
1

2
ḧTT
ij ξ

j. (1.35)

It should be noted that the term hTT
ij corresponds to the GW in the TT

gauge. This term appears due to an invariant tensor in linearized theory.
Therefore, we write it in the TT frame in which we have a simpler expression.
Furthermore, Eq. 1.35 also tells us that the interaction of a GW with a test
mass in the detector frame is given in terms of a Newtonian force.

1.2.4 Gravitational waves emission

In this section, we discuss the mechanisms that generate GWs. We work
under the hypothesis needed for the weak-field Einstein Eq. 1.24, that is, a
weak gravitational field. Due to the linearity in hµν we can use Green’s func-
tions [8] to get a solution. Furthermore, if we impose an additional boundary
condition, known as the Kirchoff-Sommerfeld boundary condition, we can re-
duce the expression to Eq. 1.36 by using a retarded Green’s function.1. This
condition is imposed so that the only physical solution remains. This solution
assumes that the source of the perturbation originates from the past.

h̄µν(t,x) =
4G

c4

∫
d3x′

1

|x− x′|Tµν(t−
|x− x′|

c
,x′). (1.36)

The energy-stress sensor depends on the retarded time tr = t− |x−x′|
c

. Outside
the source, this solution can now be transformed into the TT gauge by using
the Lambda tensor defined in Eq. 1.29:

1G(x− x′) = −1
4π|x−x|δ(tr − t′) where tr is the retarded time
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hTT
ij (t,x) = Λij,kl(x̂)

4G

c4

∫
d3x′

1

|x− x′|Tkl(t−
|x− x′|

c
,x′), (1.37)

where x̂ is a unitary vector along the direction of propagation. We are also
limiting the integral to the spatial components of Tµν due to the relations
given by the conservation of 4 momentum in Eq. 1.2. However, solving this
integral is not easy and more assumptions are needed. For this reason, we
assume a source of radius ’d’ such that |x| = r ≫ d. In practise, we are
interested in the solution at our detector or, in other words, when r → ∞
for a given time. Under these conditions, the term |x−x′| can be written as:

|x− x′| = r − x′ · x̂+O(
d2

r
)

Substituting this in Eq. 1.37 we get Eq. 1.38:

hTT
ij (t,x) = Λij,kl(x̂)

4G

c4

∫
d3x′

1

r − x′ · x̂+O(d
2

r
)
Tkl(t−

r − x′ · x̂+O(d
2

r
)

c
,x′)

≈ Λij,kl(x̂)

r

4G

c4

∫
d3x′Tkl(t−

r

c
− x′ · x̂

c
,x′), (1.38)

where we ignore high order terms in r given the previous assumption about
our detector being very far away from the source. If we write the stress-
energy tensor using the Fourier transformation, we can transform the Eq.
1.38 to Eq. 1.39:

hTT
ij (t,x) =

Λij,kl(x̂)

r

4G

c4

∫ ∞

−∞

dw

2π
T̃kl(w,

wx̂

c
)e−iw(t− r

c
) (1.39)

Tkl(t−
r

c
− x′ · x̂

c
,x′) =

∫
dw

2cπ

d3k

(2π)3
T̃kl(w,k)e

−iw(t− r
c
+x′x̂

c
)+ik·x′

where w is the angular frequency and wx̂
c

= k is the wave-vector. Let’s assume
now that the typical frequency inside the source is ws, then the velocities in-
side should be of the order v ∼ wsd. This means that the frequency of the
GW, w, will be of the same order and the reduced wavelenght2, λ̄, should be
close to λ̄ ∼ c

v
d.

2λ̄ = c
w
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If we assume that the velocities of the source are much lower than the speed
of light, or in other words, non relativistic, we have that v ≪ c and λ̄ ≫ d.
In this situation, we can work on a macroscopic scale and ignore the finer
details from the source. In particular, this means that the leading terms
describing the GW radiation are given by the lowest multipole moments.

To derive this, we first need to realize that, under the low-velocity hypothe-
sis, we have w

c
x′ · x̂ ≤ wsd

c
≪ 1. Where we have used that outside the source,

Tµν = 0 and the integral is different from zero only when |x′| ≤ d. Therefore,
we can do a Taylor expansion of Tkl around

x′·x̂
c

as in Eq. 1.40:

Tkl(t−
r

c
−x′ · x̂

c
,x′) ≈ Tkl(t−

r

c
,x′)+

[
x′ix̂i

c
∂tTkl +

1

2c
x′ix′jx̂ix̂j∂2t Tkl + . . .

]
t=t− r

c

.

(1.40)
Introducing this expansion in Eq. 1.38, we have Eq. 1.41, the fundamental
equation for the multipole expansion:

hTT
ij (t,x) =

Λij,kl(x̂)

r

4G

c4

[
Skl +

1

c
x̂mṠ

kl,m +
1

2c2
x̂mx̂pS̈

kl,mp + . . .

]
t=t− r

c

(1.41)

Skl =

∫
d3x′T kl(t,x′)

Skl,m =

∫
d3x′T kl(t,x′)x′k

Skl,mp =

∫
d3x′T kl(t,x′)x′kx′p,

...

where we have recursively defined new functions, the momenta of the stress
tensor, and used that we can swap the integral in volume and time derivative.
It should be noted that these functions are symmetric with respect to the
indexes before or after the ’,’ but not with respect to swaps between the two
types.

If we focus now only on the leading term from Eq. 1.41, we have:

hTT
ij (t,x) ≈ Λij,kl(x̂)

r

4G

c4
Skl, (1.42)
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and using that Skl can be written as in Eq. 1.43:

Sij(t) =
1

2
M̈ ij(t) (1.43)

M ij(t) =
1

c2

∫
d3xT 00(t,x)xixj,

we can write Eq. 1.42 in terms of M ij(t). The correspondence given by Eq.
1.43 can be reached by using that the conservation of energy-momentum,
given by Eq. 1.2, is valid in linearized theory. This new definition is a two
index symmetric tensor and hence can be decomposed as in Eq. 1.44:

M ij = (M ij − 1

3
δijMnn) +

1

3
δijMnn, (1.44)

as a traceless term plus the trace. This is a very useful decomposition due
to one property of the Lambda tensor: Λij,klδ

kl = 0. Hence, only the first
term survives and will contribute. We can use this traceless term to define
the quadrupole moment as in Eq. 1.45:

Qij :=M ij − 1

3
δijMnn =

1

c2

∫
d3xT 00(t,x)xixj − 1

3c2
δij
∫
d3xT 00(t,x)r2

=

∫
d3x

1

c2
T 00(xixj − 1

3
r2δij) =

∫
d3xρ(t,x)(xixj − 1

3
r2δij), (1.45)

where we have used ρ(t,x) = 1
c2
T 00(t,x). Furthermore, in the non relativistic

case, this term corresponds to the mass density of the source. Introducing
Eq. 1.45 in Eq. 1.42 we have that the leading order term can be written as
in Eq. 1.46:

hTT
ij (t,x) ≈ Λij,kl(x̂)

r

2G

c4
Q̈kl(t−

r

c
) =

1

r

2G

c4
Q̈TT

ij (t− r

c
), (1.46)

where we have used that the Lambda tensor defines the transverse-traceless
part of any symmetric tensor. It should be noted from Eq. 1.46 that the
leading term in the expansion is a quadrupole moment. There are no con-
tributions from monopoles and dipoles in GWs emission. This expansion
can be generalized using spherical harmonics, Ylm, with (l = 2,m = 2) cor-
responding to the quadrupole moment derived here. Further terms in the
expansion are called ”high order modes”.
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From Eq. 1.46, we can extract the expression for the two polarizations as-
suming that the GW is propagating along the z-axis. This is seen in Eq.
1.47:

h+ =
1

r

G

c4
(M̈11 − M̈22) (1.47)

h− =
1

r

2G

c4
M̈12.

These equations are valid only if the GW propagates along our z-axis. How-
ever, they can be generalized to an arbitrary direction by rotating the tensor
M . In particular, assuming that in our reference frame the GW propagates
in a direction x̂ = (sin(θ)sin(ϕ), sin(θ)cos(ϕ), cos(θ)) (where θ is the angle
between our z-axis and this vector and ϕ is the angle between the projection
in the (x, y) plane and the y-axis), we have that the most general formulation
for the plus and cross polarization is given by Eq. 1.48:

h+(t, θ, ϕ) =
1

r

G

c4
[M̈11(cos

2(ϕ)− cos2(θ)sin2(ϕ))

+ M̈22(sin
2(ϕ)− cos2(θ)cos2(ϕ)))

− M̈33sin
2(θ)− M̈12sin(2ϕ)(1 + cos2(θ))

+ M̈13sin(ϕ)sin(2θ) + M̈23cos(ϕ)sin(2θ)] (1.48)

hx(t, θ, ϕ) =
1

r

2G

c4
[(M̈11 − M̈22)sin(2ϕ)cos(θ) + 2M̈12cos(2ϕ)cos(θ)

− 2M̈13cos(ϕ)sin(θ) + 2M̈23sin(θ)sin(ϕ)]. (1.49)

Hence, once the tensor M is known and the assumptions made before are
valid, we can estimate the two polarizations produced by a particular source
at leading order in arbitrary directions. These equations will be used in Sec.
1.3 to understand the GW radiation produced by the coalescence of two com-
pact objects.

The emission of GWs originates from different sources: Compact Binary
Coalescence (CBC), stochastic background, burst, and continuous signals.
Up to now, only the ones emitted by CBC events have been detected and the
other potential sources are being actively searched for. In this thesis we focus
on the search for signals produced by CBC events. An order of magnitude
estimation of the magnitude of the GW signal can be obtained by assuming
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a binary system of two 30M⊙ black holes at 10Mpc. Under these conditions,
the emitted gravitational wave will reach a maximum value of ≈ 10−21. For
microscopic objects, the GW turns out to be essentially undetectable.

1.3 Gravitational wave radiation emitted by

CBC events

When two objects orbit around each other they emit radiation in the form
of GWs. This produces a loss of energy, reducing the radius of the orbit
until they collide and coalescence into a new object. If the binary system is
composed of two compact objects (a black hole or a neutron star), and de-
pending on the masses, the frequency of the GW emission is high enough that
it can be detected using the techniques described in Chapter 2. As already
pointed out, CBC events have produced the only confirmed GWs up to now,
90 events [9, 10, 11] since the first detection in 2015 [12]. In this section, we
will go briefly over this family of GW events using the approximations and
equations from Sec. 1.2.4.

Let’s first assume that we have a binary system of masses m1 and m2 in
a stable circular orbit. It can be shown that in the Center of Mass (CM)
frame the tensor M can be written as in Eq. 1.50:

M11 = µR21− cos(2wst)

2

M11 = µR21 + cos(2wst)

2

M12 =
µ

2
R2sin(2wst), (1.50)

where µ = m1m2

m1+m2
is the reduced mass, ws is the angular frequency of the

source and R is the radius of the trajectory. Hence, given the entries of the
tensor M we can estimate the two polarizations for this problem using Eq.
1.48. At the end, we get the following equation:

h+(t, θ, ϕ) =
1

r

G

c4
µw2

sR
2

(
1 + cos2(θ)

2

)
cos(2wst−

wsr

c
+ 2ϕ)

hx(t, θ, ϕ) =
1

r

2G

c4
µw2

sR
2cos(θ)sin(2wst−

wsr

c
+ 2ϕ), (1.51)
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from where we can deduce that, under the assumption of a stable circular
orbit and non relativistic effects, the GW emitted is monochromatic with a
frequency twice that of the source. Furthermore, due to both the angle ϕ
and the distance to the detector, r, being constant, the term 2ϕ− wsr

c
is just

a constant phase inside the sine and cosine that can be removed by shifting
our choice of start time. This means that Eq. 1.51 can be written as Eq.
1.52:

h+(t, ι) =
1

r

G

c4
µw2

sR
2

(
1 + cos2(ι)

2

)
cos(2wst)

hx(t, ι) =
1

r

2G

c4
µw2

sR
2cos(ι)sin(2wst), (1.52)

where we have also changed θ to ’ι’ to better match the standard notation for
the angle indicating the inclination of the source3. Assuming that the line of
sight defines the z-axis of the source, a GW propagating towards us will have
an angle between its direction of propagation and the line of sight given by θ.

The Eq. 1.52 for CBC events are usually written in terms of the chirp

mass Mc = (m1m2)3/5

(m1+m2)1/5
and frequency of the GW fgw = 2ws

2π
. Furthermore,

by Kepler’s law, we can write R in terms of ws as R
3 = Gm

w2
s
. To summarize,

the GW emitted by two compact objects in a circular stable orbit is given
by Eq. 1.53:

h+(t, ι) =
4

r

(
GMc

c2

)5/3(
πfgw
c

)2/3(
1 + cos2(ι)

2

)
cos(2πfgwt)

hx(t, ι) =
4

r

(
GMc

c2

)5/3(
πfgw
c

)2/3

cos(ι)sin(2πfgwt), (1.53)

which tells us that, at first order, the GW is defined only by the chirp mass,
Mc, and not the individual values of the component masses. However, as
was mentioned earlier, the system is losing energy by GW radiation and the
radius of the orbit has to decrease to compensate. Hence, the orbit is not a
stable circular orbit but a quasi-circular orbit and Eq. 1.53 does not com-
pletely describe the system.

3The inclination is defined as the angle between the line of sight and the direction of
propagation
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By including the loss of energy, it can be shown that the GW can be written
as in Eq. 1.54:

h+(t, ι) =
1

r

(
GMc

c2

)5/4(
5

cτ

)1/4(
1 + cos2(ι)

2

)
cos

[
−2

(
5GMc

c3

)−5/8

τ 5/8 + ϕ0

]

hx(t, ι) =
1

r

(
GMc

c2

)5/4(
5

cτ

)1/4

cos(ι)sin

[
−2

(
5GMc

c3

)−5/8

τ 5/8 + ϕ0

]
,

(1.54)

where τ = tcoal − t is the time to coalescence, tcoal is the coalescence time
and ϕ0 is the coalescence phase. These equations are similar to the equations
for a circular orbit but with one main difference: the frequency of the GW
is not constant but changes with time due to the decrease in radius. In fact,
the closer the GW is to the coalescence time, the larger the amplitude and
frequency of the GW. This is known as chirp and an example can be seen in
Fig. 1.1.

Figure 1.1: Plus and cross polarization for a GW produced by the coalescence of
two black holes of 30 solar masses.
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A GW produced by CBC events can be described by 15 parameters:

• Two component masses or chirp mass and reduced mass.

• 6 spin components in Cartesian or spherical coordinates. We have not
taken spins into account here but the emission of GWs is affected by
precession.

• Luminosity distance to the source.

• Sky position in terms of right ascension and declination. These two
will be relevant for the detection and will be explored in Chapter 2.

• A reference time and phase, usually the merger time in the detector.

• Polarization and inclination angles. These angles correspond to the
angles of the radiation frame and are used to define the propagation of
the GW in a generic direction, see ϕ and θ in Eq. 1.48.

This derivation has been made by assuming a weak gravitational field at the
source. This is approximately true when the radius of the orbit, r, is bigger
than the ISCO (Innermost-stable circular orbit) radius, rISCO (minimum dis-
tance from which a circular stable orbit is allowed). The maximum frequency
of this inspiral phase is given by the ISCO frequency, fISCO:

fISCO =
1

6
√
6(2π)

c3

GMT

rISCO =
6GMT

c2
= 3Rs, (1.55)

where MT is the total mass of the system. For frequencies higher than this
value, our hypothesis is no longer valid and we need to solve the full Einstein
equations. These solutions are obtained by applying techniques from numer-
ical relativity (NR).

Therefore, we can divide the evolution of a GW from a CBC event into
three regions, as seen in Fig. 1.1:

1. Inspiral phase, when f < fISCO the system has a quasi-stable circular
orbit radiating energy as GWs. Therefore, the radius of the orbit is
decreasing with time. This can be modelled using Newtonian approx-
imations or including higher terms (known as post-Newtonian (PN)
approximations [13]).
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2. Merger, when f > fISCO the system becomes relativistic and the full
Einstein equations need to be solved. In this phase, the binary system
coalesces at τ = 0 and creates a new compact object.

3. Ring-down, after the coalescence, the new compact object emits GWs
for a short time until it stabilizes and can be described again by per-
turbation theory.

A PN expansion is obtained by expanding the metric and energy-momentum

tensor in terms of ϵ =
(
v
c

)2 ≪ 1 and allows us to solve the field equations
under the assumption of slowly moving sources and a weak gravitational field.

In particular, this approximation holds when
(
v
c

)2 ∼ Rs

d
≪ 1, where d is the

orbital distance of the binary system. Each power of ϵ corresponds to one
PN order in the expansion. For example, a 3.5PN approximation includes

terms up to ϵ3.5 =
(
v
c

)7
. Schematically, the gravitational wave can be written

as in Eq. 1.56:

hij(t,x) =
2G

rc4
(Aij +

1

c
A1PN

ij +
1

c2
A1PN

ij +
1

c3
A1.5PN

ij +

+
1

c4
A2PN

ij +
1

c5
A2.5PN

ij +
1

c6
A3PN

ij +
1

c7
A3.5PN

ij + . . . ), (1.56)

where each term is evaluated at the retarded time t − r
c
. The quadrupole

formula shown in Eq. 1.46 can be recovered from the leading term of the ex-
pansion. In the PN approximation, retardation effects4 are considered small
and is the correct tool in the near zone region of the non relativistic source.
The condition describing this region is given by the wavelength of the emit-
ted radiation: r ≪ λ̄. PN expansion has been successfully used to solve
several problems like the motion of N point-like objects (e.g. Solar System
dynamics) or modelling the emission of GWs from CBC events. In the limit
v
c
→ 0 this approximation reduces to Newton’s law.

In Fig. 1.2 a comparison between the predicted waveforms using NR cal-
ibrations and only PN terms can be seen. During the inspiral phase, the
waveforms show similar amplitudes and frequencies (though with a small
phase shift) but, when the frequency of the orbit is higher than the ISCO
frequency and it gets closer to the merger, the PN approximation doesn’t
hold.

4Effects produced by the limited velocity of propagation of the radiation.
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Figure 1.2: Comparison between the GW modelled by using only post-newtonian
(PN) terms and including numerical relativity (NR) calibrations.

There is a huge effort to properly model the GWs from CBC events [14].
Several families of models have been developed to tackle this task, modelling
the GW both in time and frequency domain. In Fig. 1.2 we show two of
those models in the time domain. The waveform using only PN approxima-
tions [15, 16, 17, 18] is based on the model (template) ”TaylorF2” in which
the inspiral phase is modelled using a 3.5PN approximation. As previously
stated, this approach holds reasonably well in regions of weak gravitational
fields and no relativistic speeds. However, once the system becomes relativis-
tic and the gravitational field intensifies, the approximation fails and different
methods are needed. Nevertheless, for low mass mergers (MT < 30M⊙) the
PN approximations are valid due to the merger frequency being too high to
be detected by the GW detectors.

More sophisticated approaches are done by using the results from NR simu-
lations. These simulations are very expensive due to the computational cost
increasing with the simulated number of cycles. An example can be seen in
Fig. 1.2 where a waveform including NR calibrations, based on the frequency
domain model ’IMRPhenomPv2’, is used [19, 20, 21, 22, 23].

This combination is made in the region in which the PN approximation starts
breaking down and NR simulation starts. Matching PN and NR simulations
was suggested by studying the consistency between PN and NR simulations
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for a variety of physical configurations and the PN amplitudes during mergers
and ringdown. Depending on the procedure used to match the two results,
different families of waveforms were developed.

In the case of waveforms from the phenomenological family, within the win-
dow in which both PN and NR are good approximations, the waveforms
are matched (either in frequency or time domain) and used to interpolate a
hybrid waveform. This hybrid waveform can be divided into three regions:

• Before the window where the waveform is purely PN approximation.

• Within the window where the waveform is interpolated from PN and
NR simulations.

• After the window where the waveform is estimated purely from NR
simulations.

Let’s now assume that D is the space of intrinsic physical parameters and
λ a point from that space. Then, for any point λ in D, the physical wave-
form will be given by h(t;λ). Assuming that we have N hybrid waveforms
with known parameters, the objective is to create a phenomenological model,
hphenom(t;λ), that interpolates between the hybrid waveforms with sufficient
accuracy. However, a more convenient choice is to work with a set of phe-
nomenological parameters, λ̂, defined from a one-to-one mapping, D → D̂,
to the space of phenomenological parameters D̂. Therefore, the phenomeno-
logical waveform can be written as hphenom(t; λ̂(λ)) and is usually expressed
in terms of an amplitude and a phase: h̄phenom(f) = Aphenom(f)e

iϕphenom(f).
The phenomenological parameters that need to be estimated depend on the
models used for the amplitude and phase.

Another important family of waveforms are the EOB (effective-one-body)
waveforms [24, 25, 26, 27]. This waveform family is based on transforming
the two body problem into a one body problem with an effective metric. This
allows us to understand a non precessing binary system as a single particle
moving in a deformed Schwarzschild spacetime. The deformation parameter
is given by the symmetric mass ratio m1m2

(m1+m2)2
. Furthermore, most of the pa-

rameters of this model can be estimated from PN approximations while the
remaining are obtained from calibrating to NR simulations. An example of a
waveform generated using this method is ”SEOBNRv3”, which also includes
spin precession.
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Chapter 2

Laser interferometry for
gravitational waves detection

In Chapter 1, we presented the theory behind GWs and here we study how
they are detected. The detection method is based on measuring the change in
position of test masses by using laser interferometry [1]. We discuss the basic
elements needed to understand a Michelson interferometer, how it couples
to GWs and its limitations. We show that a Fabry-Perot interferometer
is needed to detect GWs. Finally, we provide a comprehensive review of
possible noise sources that limit the sensitivity of the interferometer.

2.1 Michelson interferometer

As we have seen in Sec. 1.2.3, a passing GW will change the distance between
two objects. This motivated the search for GW by measuring the change in
length of a bar due to the passing GW. However, this technique was unable
to achieve the required level of precision and a different approach was needed:
laser interferometers. The GW changes the arm length of the interferome-
ter and consequently changes the interference pattern at the output. This
produces a variation in the measured output power from which the GW is
extracted.

As a first approximation, we consider a Michelson type interferometer (see
Fig. 2.1). The interferometer consists of a monochromatic laser impinging
on a beam splitter that will divide the beam in two. These two beams will
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Figure 2.1: Layout of a Michelson interferometer

propagate along each arm until they reach a highly reflective mirror and
bounce back towards the beam splitter. At this point, the beams will re-
combine and propagate towards the photodetector where the power will be
measured.

Formally, given a beam described by the electromagnetic field:

Ein(t) = E0e
−iwLt+ikL·x,

with a laser frequency wL and a wavenumber given by kL = wL

c
, it will

reach the beam splitter at a time t0 and split into two beams. The beam
going towards the upper mirror (propagating along the y-axis) will cover a
distance Ly before bouncing back and reaching the beam splitter again at a

time t = t0 +
2Ly

c
. The second beam will reach the beam splitter at a time

t = t0 +
2Lx

c
. Therefore, the recombined beam at a time ’t’ will be generated

by the superposition of the beam that reached the beam splitter at a time
t
(x)
0 = t− 2Lx

c
and a second beam entering at a different time t

(y)
0 = t− 2Ly

c
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Assuming that the beam splitter is at (x, y) = (0, 0) we know that the ini-

tial phase of these two beams is e−iwLt
(x)
0 = e−iwLt+2ikLLx and e−iwLt

(y)
0 =

e−iwLt+2ikLLy . During free propagation, this phase will remain unchanged but
there will be a change in the amplitude due to the effect of the mirrors/beam
splitter. Taking into account that we are assuming perfect mirrors1 and beam
splitter2 we have that the change in amplitude is of -1/2 for the first beam
(x-axis) and 1/2 for the second (y-axis):

Ex
1 =

−1

2
E0e

−iwLt+2ikLLx

Ey
2 =

1

2
E0e

−iwLt+2ikLLy . (2.1)

The output beam is given by the superposition of these two electric fields,
Eout:

Eout = Ex
1 + Ey

2 =
E0

2
(e−iwLt+2ikLLy − e−iwLt+2ikLLx)

=
E0

2
e−iwLt+ikL(Lx+Ly)(e−ikL(Lx−Ly) − eikL(Lx−Ly))

= −iE0e
−iwLt+ikL(Lx+Ly)sin[kL(Ly − Lx)], (2.2)

where we have used 2Lx = (Lx + Ly) + (Lx − Ly) and 2Ly = (Lx + Ly) −
(Lx − Ly). We can estimate the power detected at the photodiode by using
that it is proportional to the absolute value squared of the impinging field:

P ∝ |Eout|2 = E2
0sin

2[kL(Ly − Lx)], (2.3)

which allows us to conclude that changes in the length of the arms can be
measured by the photodiodes. Let’s now assume that a GW propagating
along the z-axis with only the plus polarization reaches the interferometer:

h+(t) = h0cos(wgwt),

then, in the TT gauge, the GW will affect the propagation of light between
the free falling masses (mirrors). In this case, the line element is given by:

ds2 = −c2dt2 + [1 + h+(t)]dx
2 + [1− h+(t)]dy

2 + dz2, (2.4)

1Perfect mirror: reflection coefficient of -1
2Perfect beam splitter: reflection coefficient of 1/

√
2 for one side and −1/

√
2 for the

other
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and the photons will follow the path given by the null geodesic:

ds2 = 0 = −c2dt2 + [1 + h+(t)]dx
2 + [1− h+(t)]dy

2 + dz2. (2.5)

In particular, for the light propagating along the x-axis:

0 = −c2dt2 + [1 + h+(t)]dx
2

dx = ±cdt 1√
1 + h+(t)

≈ ±cdt[1− 1

2
h+(t)], (2.6)

where we have approximated to first order in h0. In this case, the ’+’ sign
corresponds to the propagation from the beam splitter to the mirror, while
the ’−’ sign is from the mirror to the beam splitter. Assuming that the
photon is at the beam splitter at a time t0 and reaches the mirror at Lx at
a time t1, we have that:

Lx =

∫ Lx

0

dx =

∫ t1

t0

cdt− c

2

∫ t1

t0

h+(t)dt

= c[t1 − t0]−
c

2

∫ t1

t0

h+(t)dt, (2.7)

where it will reflect and reach the beam splitter at a time t2:

−Lx =

∫ 0

Lx

dx = −
∫ t2

t1

cdt+
c

2

∫ t2

t1

h+(t)dt

Lx = c[t2 − t1]−
c

2

∫ t2

t1

h+(t)dt. (2.8)

These two equations can be added to obtain an expression of t2 as a function
of the starting time, t0:

t2 − t0 =
2Lx

c
+

1

2

∫ t2

t0

h+(t)dt, (2.9)

where we have recovered the term 2Lx

c
plus a first order correction due to the

GW. Now, using that at first order t2 can be approximated as t2 ≈ t0 +
2Lx

c
,

we have that the integral is:∫ t0+
2Lx
c

t0

h+(t)dt =

∫ t0+
2Lx
c

t0

h0cos(wgwt)dt =
h0
wgw

[sin[wgw(t0 +
2Lx

c
)]− sin(wgwt0)],

(2.10)
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which can be simplified by using the identity sin(α+2β)−sin(α) = 2sin(β)cos(α+
β): ∫ t0+

2Lx
c

t0

h+(t)dt = 2
h0
wgw

sin(wgwLx/c)cos(wgw(t0 + Lx/c)). (2.11)

Substituting this derivation in the original equation:

t2 − t0 =
2Lx

c
+

1

2
2
h0
wgw

sin(wgwLx/c)cos(wgw(t0 + Lx/c))

=
2Lx

c
+
Lx

c

sin(wgwLx/c)

wgwLx/c
h0cos(wgw(t0 + Lx/c))

=
2Lx

c
+
Lx

c

sin(wgwLx/c)

wgwLx/c
h+(t0 + Lx/c). (2.12)

In the case of the y-axis, as we can see from the line element in Eq. 2.4,
the derivation is the same but with the sign of h0(t) reversed. Therefore, we
have that:

t2 − t0 =
2Ly

c
− Ly

c

sin(wgwLy/c)

wgwLy/c
h+(t0 + Ly/c). (2.13)

These equations can be used to estimate the phase of the recombined beam
in the same way as before. The beams that will recombine at a time t2 = t,
will start the round trip at a time:

tx0 = t− 2Lx

c
− Lx

c
h(t− Lx/c)

sin(wgwLx/c)

wgwLx/c

ty0 = t− 2Ly

c
+
Ly

c
h(t− Ly/c)

sin(wgwLy/c)

wgwLy/c
, (2.14)

and the phase at the beam splitter (x, y) = (0, 0) will be:

e−iwLt
x
0 = e

−iwL[t− 2Lx
c

−Lx
c
h(t−Lx/c)

sin(wgwLx/c)

wgwLx/c
]
= e−iwL(t− 2Lx

c
)+i∆ϕx(t)

e−iwLt
y
0 = e

−iwL[t− 2Ly
c

+
Ly
c
h(t−Ly/c)

sin(wgwLy/c)

wgwLy/c
]
= e−iwL(t− 2Ly

c
)+i∆ϕy(t), (2.15)

where ∆ϕx and ∆ϕy are the change in the phase produced by the passing
GW:

∆ϕx(t) = h0
wLLx

c

sin(wgwLx/c)

wgwLx/c
cos(wgw(t− Lx/c))

∆ϕy(t) = −h0
wLLy

c

sin(wgwLy/c)

wgwLy/c
cos(wgw(t− Ly/c)). (2.16)
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During the free propagation, the phase will remain the same and only the
amplitude of the electromagnetic field will change (see Eq. 2.1). Therefore,
given that Lx and Ly should be similar (but not equal), we can write this

field in terms of L = Lx+Ly

2
using that 2Lx = 2L + (Lx − Ly) and 2Ly =

2L − (Lx − Ly). Furthermore, inside ∆ϕx and ∆ϕy we approximate L by
L ≈ Lx ≈ Ly:

Ex
1 (t) =

−1

2
E0e

−iwL(t− 2L
c
)+iϕ0+i∆ϕx(t)

Ey
2 (t) =

1

2
E0e

−iwL(t− 2L
c
)−iϕ0+i∆ϕy(t)

∆ϕx(t) =h0kLL
sin(wgwL/c)

wgwL/c
cos(wgw(t− L/c))

∆ϕy(t) =− h0kLL
sin(wgwL/c)

wgwL/c
cos(wgw(t− L/c)), (2.17)

where we have defined ϕ0 = kL(Lx − Ly). Finally, the phase difference in a
Michelson interferometer produced by a GW is:

∆ϕMich = ∆ϕx −∆ϕy = 2∆ϕx, (2.18)

and the recombined electromagnetic field at the photodiode is given by:

Eout(t) = Ex
1 (t) + Ey

2 (t) = −iE0e
iwL(t−2L/c)sin(ϕ0 +∆ϕx(t)). (2.19)

In the limit case wgwL/c ≪ 1 (large GW period compared to the length of
the arms), we have that, at first order, the effect of the GW on the phase
shift is given by the change of Lx − Ly:

h(t− L/c) =
∆(Lx − Ly)

L
, (2.20)

where we have used that sin(wgwL/c)

wgwL/c
→ 1 when wgwL/c→ 0.

The effect in the power by the GW can be obtained from Eq. 2.19 in the
same way as before:

P = P0sin
2(ϕ0 +∆ϕx(t)) ∝ |Eout|2

P =
P0

2
[1− cos[2(ϕ0 +∆ϕx(t))]]

P =
P0

2
[1− cos[2ϕ0 +∆ϕMich(t))]]. (2.21)
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Hence, the detected power at the photodiode will be modulated by the GW.
These oscillations will vary depending on ∆ϕMich(t) and, thus, we want this
value to be large. This can be achieved by maximizing the non time depen-
dent term:

wL

c
L
sin(wgwL/c)

wgwL/c
=

wL

wgw

sin(wgwL/c)

That will be maximum when wgwL/c =
π
2
. In other words, when the length

of the arms is L = λgw

4
or equivalently:

L =
c

4fgw
≈ 750km

(
100Hz

fgw

)
. (2.22)

The Eq. 2.22 shows that a Michelson interferometer for GWs detection
would need an arm length of hundreds of kilometers. This is not realistic
and a different approach is needed; a Fabry-Perot interferometer.

2.2 Fabry-Perot resonator

As we have seen in Eq. 2.22, the detection of a GW using a Michelson inter-
ferometer is not possible due to the arm length needed being of the order of
hundreds of kilometers. This problem can be solved by using a Fabry-Perot
interferometer. A Fabry-Perot interferometer uses Fabry-Perot cavities to
”fold” the path of the light, achieving a similar performance as a hundred
arm length Michelson interferometer with a reduced size.

These cavities are constructed by two parallel mirrors facing each other,
as seen in Fig. 2.2, in which we introduce an electric field, Ein. This electric
field will transmit inside the cavity and propagate until the end mirror. Once
it reaches this mirror, a fraction will reflect and another transmits outside
the cavity. The fraction reflected will go back to the initial mirror and re-
peat. This creates an electric field inside the cavity, Ecav, that will be the
superposition of all the beams bouncing inside.

Let’s assume that our input beam is described by a plane wave, Ein =
E0e

−iwLt+ikLx, and that we have been sending a beam for some time. If
it reaches the first mirror situated at x = 0 at a time t = t0 we have that the
incident electric field is E0e

−iwLt0 . Using the Fresnel equations, the reflected
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Figure 2.2: Schematic representation of a Fabry-Perot cavity with the electric
field identified in each region. We assume that the first mirror is at x = 0 and the
end mirror at x = L

beam is given by the reflection coefficient of the first mirror, r1, times the
electric field:

E
(0)
ref = r1E0e

−iwLt0 . (2.23)

However, given that the beam has been active for a while, as we have hypoth-
esized, the reflected field will interfere with the one that reflected against the
second mirror, came back and transmitted out of the cavity. This means that
the beams had to reach the first mirror at a time t0 − 2L

c
so that it had time

to travel through the cavity twice. Then, its electric field when it entered the
cavity is given by E0e

−iwL(t0− 2L
c
) = E0e

−iwL(t0)e2ikLL, in which a new phase
term appears due to the extra length travelled by the beam. If we take into
account the reflection and transmission using the Fresnel coefficients, we have
that this beam is given by Eq. 2.24, where t1 is the transmission coefficient
of the first mirror and r2 is the reflection coefficient of the second:

E
(1)
ref = (−t21r2e2ikLL)E0e

−iwLt0 . (2.24)

In general, the n-th contribution is given by Eq. 2.25:

E
(n)
ref = (−t21rn2 rn−1

1 e2inkLL)E0e
−iwLt0 , (2.25)
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and at the end we have that the reflected beam is given by the sum of all the
contributions, as in Eq. 2.26:

Eref = E0e
−iwLto

[
r1 − t21

∞∑
n=1

rn−1
1 rn2 e

2inkLL

]

= E0e
−iwLto

[
r1 − t21r2e

2ikLL

∞∑
j=0

(r1r2e
2ikLL)j

]

= E0e
−iwLto

[
r1 − t21r2e

2ikLL
1

1− r1r2e2ikLL

]
, (2.26)

where we have first changed the index of summation by n = j + 1 and then
used the closed form for a geometric series given that |r1r2e2ikLL| < 1 and
thus converges. The transmitted and cavity field can be obtained with a
similar procedure. The end result can be seen in Eq. 2.27:

Eref = E0e
−iwLto

[
r1 − r2(1− l1)e

2ikLL

1− r1r2e2ikLL

]
Etrans = E0e

−iwLto

[
t1t2e

2ikLL

1− r1r2e2ikLL

]
Ecav(0) = E0e

−iwLto

[
t1

1− r1r2e2ikLL

]
Ecav(L) = eikLLEcav(0) = E0e

−iwLto

[
t1e

ikLL

1− r1r2e2ikLL

]
, (2.27)

where we have used the relations between the Fresnel coefficients, t2i + r2i =
1− li, assuming that the mirror ’i’ has a loss given by li. It should be noted
that all the end fields are proportional to the same factor, 1

1−r1r2e
2ikLL . We

can also observe that this factor becomes very large when the exponential is
one and the reflection coefficients are very close to one. These points, given
by the condition 2ikLL = 2πn for integer n, are called resonances.

In a resonance, the beams that propagate through the cavity are interfer-
ing constructively and the resulting cavity and transmitted beam reach high
values. The reflected beam is slightly more complicated due to the addi-
tional contribution of the exponential in the numerator. The power of the
transmitted or cavity field as a function of 2kLL reaches a maximum every
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2kLL = 2πn for integer n (See Fig. 2.3). The distance between two consec-
utive maximums is given by Eq. 2.28, where we have used that wL = πc

L
n,

obtained by using that kL = wL

c
and 2kLL = 2πn for the maximum:

∆wL =
πc

L
. (2.28)

∆wL is known as the free spectral range and along with the full width at half
maximum of the peaks, δwL, allows us to define the finesse, F , of the cavity
as in Eq. 2.29:

δwL =
c

L

1− r1r2√
r1r2

F =
∆wL

δwL

=
π
√
r1r2

1− r1r2
, (2.29)

which is used to characterize the performance of the cavity. In particular, if
we write the reflected field in polar form, we have that changes in the phase
around the resonance are given by Eq. 2.30:

∂ϕ

∂ϵ
≈ 2F

π
(2.30)

with ϵ indicating small variations around the resonance, 2kLL = 2πn+ ϵ. It
can be seen that the change in the phase around the resonance is given by
the finesse of the cavity. Finally, a convenient parameter to define for further
derivations is ’p’, defined as in Eq. 2.31:

(1− p1)r
2
2 = (1− p). (2.31)

These elements describe an ideal Fabry-Perot cavity that can be used to
construct a Fabry-Perot interferometer.

2.3 Gravitational wave coupling to a Fabry-

Perot interferometer

In this section we are going to explore the coupling of GWs to a Fabry-Perot
interferometer, as shown in Fig. 2.4, and how they can be detected. Let’s
assume that we have a beam divided in two perpendicular directions by a
beam splitter. One of the beams will go up entering a Fabry-Perot cavity
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Figure 2.3: Transmitted field squared in units of (E0t1t2)
2, as a function of 2kLL,

for r1r2 = 0.8. The maximums are reached when 2kLL = 2πn for integer n.

aligned with the y-axis and the other will continue to the right, entering a
different cavity aligned with the x-axis. Let’s also assume that only the plus
polarization of a GW enters the interferometer parallel to the z-axis.

Under these conditions, when a field enters the cavity and does a full trip, it
will acquire an extra phase modulation due to the GW. The end result will
be a field with two sidebands at wL±wgw, where wgw is the angular frequency
of the GW, and a central component at the carrier frequency wL. These are
the fields that will bounce back and forth through the cavity as seen before.
In general, we have that the field in the left mirror is of the form:

A(t) = A0e
−iwLt +

1

2
h0A1e

−i(wL−wgw)t +
1

2
h0A1e

−i(wL+wgw)t. (2.32)

The presence of a GW also affects the time it would take to do a round trip.
Let t be the time at which the field has finished one round trip, then this
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Figure 2.4: Layout of a Fabry-Perot interferometer.

field has entered the cavity at a time t0 given by Eq. 2.33:

t0 = t− 2L

c
− L

c
h0cos(wgw(t−

L

c
))sinc(wgw

L

c
), (2.33)

where we can observe the additional term given by the effect of the GW.
If we perform similar derivations as before but including the GW we can
generalize Eq. 2.27 to account for its effect. This can be used to estimate
the phase shift in a Fabry-Perot cavity, as in Eq. 2.34:

|∆ϕx| = h0kLLsinc(wgw
L

c
)
r2(1− r21 − p)

[r2(1− p)− r1]

1

|e2iwgwL/c − r1r2|

= h0kLLsinc(wgw
L

c
)
r2(1− r21 − p)

[r2(1− p)− r1]

1

[1 + (r1r2)2 − 2r1r2cos(2wgw
L
c
)]1/2

,

(2.34)

which can be simplified further by assuming that the reflection coefficient
of the second mirror, r2, is one, p → 0 and that we are interested in a
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region where wgwL

c
≪ 1. The last assumption is obtained by using that our

instrument is designed such that F wgwL

c
→ 1, which is achieved by using

large values for the finesse. Therefore, the second term should be smaller
than one and the phase shift can be written as in Eq. 2.35:

|∆ϕx| ≈ h02kLL
F
π

1

[1 + (4πfgwτs)2]1/2

τs =
2L

c

1

1− r21
, (2.35)

where fgw is the frequency of the GW in Hertz and τs is known as the storage
time and describes the average time a photon spends inside the cavity. This
approximation will hold as long as the condition from Eq. 2.36 is true:

fgw ≪ c

2πL
≈ 12kHz

(
4km

L

)
. (2.36)

The total phase shift in the interferometer will be the difference between the
contribution of each arm, that is, ∆ϕ = ∆ϕx − ∆ϕy. However, given that
the space time interval in the TT frame is:

ds2 = −c2dt2 + [1 + h+(t)]dx
2 + [1− h+(t)]dy

2 + dz2,

we have that the derivation will be the same but changing h0 → −h0. This
means that the phase shift in the cavity aligned with respect to the y-axis is
∆ϕy = −∆ϕx and the total phase shift is given by Eq. 2.37:

|∆ϕ| = 2∆ϕx ≈ 4h0kLL
F
π

1

[1 + (fgw
fp

)2]1/2
(2.37)

fp =
1

4πτs
, (2.38)

where fp is known as the pole frequency. This phase shift will affect the
interferometer pattern at the output of the interferometer and thus the GW
will be detected. This formula describes the effect in the phase that a GW
with only plus polarization coming along the z-axis will have. In a real
situation, this is not always the case: the GW can reach the interferometer
from an arbitrary direction and can include the other polarization.
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The coupling between the interferometer and the incoming wave is given by
the antenna pattern functions, F+(θ, ϕ) and Fx(θ, ϕ). Under the approxi-
mation we used before, wgwL

c
≪ 1, it can be shown that these functions are

described by the closed form given by Eq. 2.39:

F+(θ, ϕ) =
1

2
(1 + cos2(θ))cos(2ϕ)

Fx(θ, ϕ) = cos(θ)sin(2ϕ), (2.39)

where θ is the angle between the direction of propagation and the z-axis of
the interferometer and ϕ is the angle between the x-axis and the projection
onto the x − y plane of this vector. These equations can be derived by
rotating the frame in which the GW is propagating along the z′-axis into the
detector frame using the angles defined previously, as we have seen in Eq.
1.48. Using these two functions, we can define the relative phase shift in the
interferometer as in Eq. 2.40:

1

2
(hxx − hyy) = F+(θ, ϕ)h+ + Fx(θ, ϕ)hx. (2.40)

These equations also show that for a given position relative to the incoming
GW, the interferometer is blind in some regions of the sky. These regions are
called blind spots and happen when the relative phase shift is zero. In other
words, the relative displacement is the same in both directions and it gets
compensated. For example, if we have a waveform with only cross polariza-
tion there will be a blind spot at θ = π

2
due to Fx(

π
2
, ϕ) = 0 ∀ϕ ∈ [−π

2
, π
2
].

The Eq. 2.37 allows us to get an estimate on the values of the phase shift
we are expected to encounter in our interferometers. Let’s assume that the
interferometer interacts with a GW of amplitude h0 = 10−21, that the beam
inside the cavity has a wave length of λL = 1064nm and that it has a fre-
quency such that fgw ≪ fp. Under these conditions and considering an
interferometer with arm length L = 4km and a finesse of F = 200, we have
that the expected phase shift is:

|∆ϕ| ≈ 1.2 · 10−8 rad,

which is a very small change in the phase of the beam.
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2.4 Dark fringe

As discussed in the previous section, a passing GW will produce a small
phase shift that will change the detected power at the output photodiode.
Therefore, we need to define the working point of the interferometer so that
we can extract the phase from the detected power. As we have seen in Eq.
2.21, in a Michelson interferometer, the power oscillates as a function of
ϕ = ϕ0 + ∆ϕgw(t) where ϕ0 is the working point of the interferometer and
has to be chosen beforehand. If we want to maximize the change in power
by a passing GW, this working point should be set to ϕ0 = π

4
as it would

correspond to the point of maximum derivative (see Fig. 2.5 red point) and
most sensitive to small displacements ϕ0 → ϕ0 +∆ϕgw(t). This is, however,
not the correct choice since this working point is not only sensitive to a
passing GW but also to fluctuations in the power of the laser, which are
indistinguishable from the phase changes by the wave. The signal is buried
underneath the fluctuations of the DC contribution.

Figure 2.5: Power at the photodiode as a function of the phase of the beam in
a Michelson interferometer. The black dot at ϕ = 0 corresponds to the ”Dark
fringe” while the red dot at ϕ = π

4 is the position with maximum derivative.

For this reason, a different working point is chosen: the dark fringe given
by ϕ0 = 0 (see Fig. 2.5 black point) in which the detected output is zero
(experiments with zero output when there is no signal are known as null
instruments). At this working point, both P and the derivative are zero
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and the output is insensitive to power fluctuations of the laser. However,
in this working point, the response of the interferometer to a signal is no
longer linear but quadratic: ∆P = O(h2). Given the amplitudes we have
seen in Sec. 1.2.4, with a maximum value of ≈ 10−21, it would be impossible
to detect the GW. This is solved by introducing a phase modulation to the
input laser. This modulation will add sidebands to the beam that will create
a term linear in ’h’ oscillating at the frequency of the modulator at the output
photodiode. From this term we can extract the effect of the GW. Therefore,
we can measure an output linear in ’h’ that is insensitive to laser fluctuations.
The modulated beam at the level of the beam splitter is described by the
following electric field:

EIn = E0e
−i(wLt+Γsin(Ωmodt)), (2.41)

where Γ is the modulation index and Ωmod = 2πfmod is the modulation fre-
quency. Assuming that Γ is small, most of the sidebands will be suppressed.
Therefore, we will focus on the first two sidebands around the carrier fre-
quency, wL. These sidebands have a frequency given by w± = wL ± Ωmod.

The output beam with the carrier frequency, (Eout)c will be similar to Eq.
2.2. The only difference is that the amplitude of this beam is now E0J0(Γ),
where Jn(Γ) are Bessel functions. Following the same method, we can derive
the electric field of the sidebands at the output:

(Eout)c = −iE0J0(Γ)e
−iwLt+ikL(Lx+Ly)sin[

2π

λL
(Ly − Lx)]

(Eout)± = ∓iE0J1(Γ)e
−iw±t+ik±(Lx+Ly)sin[2π

(
∆L

λL
± ∆L

λmod

)
]. (2.42)

From these equations we can deduce that in the case of symmetrical arms,
Lx = Ly, both the carrier and sidebands are in the dark fringe: (Eout)c =
(Eout)± = 0. This is solved by introducing an asymmetry, known as Schnupp
asymmetry, in the length of the arms: we set Lx−Ly to be an integer number
of laser wavelengths. Under this hypothesis, only the carrier frequency will
remain in the dark fringe and the electric field of the sidebands will be given
by Eq. 2.43:

(Eout)± = −iE0J1(Γ)e
−iw±t+ik±(Lx+Ly)sin[2π

∆L

λmod

]. (2.43)
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These equations can be used to derive the effect that a GW will have on the
total output field. Assuming that GW with plus polarization and optimal
direction reaches the interferometer, we have that the total output field will
be given by Eq. 2.44:

(Eout)T =− iE0e
−iwLt+2ikLL[J0(Γ)kLLh(t)

+ 2J1(Γ)sin(2π
∆L

λmod

)cos(Ωmodt−
4πL

λmod

)]. (2.44)

Using that the power is proportional to |(Eout)T |2 we find that there will be
three terms contributing to the total measured power.

1. A term proportional to h(t)2 that will be too small to be measured.

2. A term independent of h(t) given by the modulation of the beam.

3. The mixed term that will be proportional to h(t) oscillating at a fre-
quency Ωmod.

The linear term in h can be extracted from the output electric field by es-
timating the time-average of the product of the voltage on the output pho-
todiode and a voltage Vosccos(Ωmodt − α). The terms from the output field
that are not oscillating as cos(Ωmodt − α) will be averaged to zero and only
the linear term in h will remain.

2.5 Ground based interferometers

Following the principles explained in the previous sections, Fabry-Perots ded-
icated to the detection of GWs have been built in the past decades. The three
main experiments are Advanced Virgo [28] (AdV - V1) located in Cascina,
Italy; the two advanced LIGO [29] (aLigo) interferometers: the Hanford (H1)
interferometer, located in Washington state, USA, and Livingstone (L1) in-
terferometer, located in Louisiana, USA; and the Kagra [30] (K1) interfer-
ometer, located in Hida, Japan. The two aLigo interferometers have an arm
length of 4km while AdV and Kagra have an arm length of 3km. A network
of interferometers allows to detect GWs using coincidences between them to
filter the noise. We will see more about this in Chapter 3.
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Figure 2.6: Observing plan with the expected sensitivity for the past and fu-
ture observing runs. For O4, a one year observation period with one month
commissioning break is planned for the aLigo and AdV experiments. Source:
https://observing.docs.ligo.org/plan/

The anticipated observing schedule for the experiments is presented in Fig.
2.6. Apart from the four large inteferometers, there are also smaller instru-
ments where many of the techniques and noise suppression methods have
been developed and tested: GEO600 [31], a 600m arm-length interferometer
located in Hannover, Germany, and TAMA300 [32], Tokyo, Japan, with an
arm-length of 300m.

As we have seen in Sec. 2.4, the degree of precision required from these in-
struments is very high. This is achieved by installing photodiodes in critical
positions to monitor the beam propagating within the cavity. The aforemen-
tioned photodiodes monitor the reflected and transmitted beams at different
stages of the interferometer. An example of a real interferometer can be seen
in Fig. 2.8, where the photodiodes, indicated by the letter ’B’ followed by a
number, are shown.

To improve the sensitivity of the detectors, the power circulating inside the
interferometers is increased by a technique known as ”Power recycling” [34].
This consists of creating a new cavity by adding a mirror, the Power Recy-
cling mirror (PR), between the detector’s input and the beam splitter.
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Figure 2.7: Aerial photo of AdV (Left) and the Livingstone detector (Right)
where the 3 and 4km long arms can be seen. Credit: aLigo and AdV.

The new mirror recycles the light that is reflected into the input laser by
coherently reflecting it back to the interferometer, effectively increasing the
power circulating inside the detector.

The sensitivity is further improved by introducing a mirror between the beam
splitter and the output of the instrument, the Signal Recycling mirror (SR),
to create a new cavity, the Signal Recycling Cavity (SRC) [35]. This mir-
ror reflects the signal back into the interforemeter so that it adds coherently
with more signal produced by the effect of the passing GW. The combination
between PR and SR is known as dual recycling and was used by the aLigo
interferometers during the third observation run (O3). Depending on the
tuning of the SRC, dual recycling can be set to improve the sensitivity in
different regions, broadband and narrowband. In broadband mode, the SRC
is tuned to have maximum response at the carrier frequency, wL. This will
enhance the signal sidebands only if they are within the bandwidth of the
cavity. In narrowband mode, the SRC is tuned to enhance one signal side-
band, allowing it to improve the sensitivity to a narrower frequency region.

The sensitivity of these experiments is characterized by the spectral strain
sensitivity,

√
Sn(f), given by the ensemble average of the detector noise,

n(t), as in:

⟨ñ∗(f)ñ(f ′)⟩ = δ(f − f ′)
1

2
Sn(f) (2.45)

55

https://www.ligo.caltech.edu/
https://www.virgo-gw.eu/


Figure 2.8: Schematics of AdV including photodiodes used to monitor the per-
formance of the instrument. Taken from Ref. [33]

This sensitivity is constrained by different noise sources that affect the in-
strument at different frequencies. An example of the sensitivity of the AdV
interferometer along with different noise sources is presented in Fig. 2.9. At
low frequencies, the sensitivity of the interferometers is limited by seismic
noise, while at high frequencies they are affected by quantum noise originat-
ing from the fact that a laser is composed by a discrete number of photons.
This is discussed in detail in the following section.

2.6 Noise sources in ground based interfer-

ometers

In this section, we will systematically describe some of the noise sources that
affect our instrument and limit its sensitivity. An example of a real sensitivity
curve for AdV can be seen in Fig. 2.10.
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Figure 2.9: AdV reference sensitivity with some of the noise sources that con-
tribute to it. Taken from Ref. [28]

2.6.1 Displacement noise

The displacement noise is produced by the movement of the components of
the interferometer. At low frequency (<10Hz), this noise mostly has a seismic
origin. However, it is not produced by a single source but several: from bad
weather and human activity to micro-seismic background and earthquakes.

The displacement of the main components due to the micro-seismic back-
ground can be modelled as x(f) ∝ 1

f2 , which implies an effect on the sensi-

tivity proportional to 1/f 2. This is a severe limiting factor to the sensitivity
of the interferometer and has to be attenuated. In the case of the AdV inter-
ferometer, the attenuation is achieved by hanging the key components from
compound pendulums with multiple stages. Each pendulum, characterized

by its resonance frequency f0, attenuates the movement by a factor
f2
0

f2 at fre-
quencies f ≫ f0. Therefore, assuming a compound pendulum of N stages, an
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Figure 2.10: Real sensitivity of AdV for a small period of O3a.

attenuation of
(

f2
0

f2

)N
is achieved. However, the wires used to construct the

pendulums have a resonance frequency that results in spectral lines, known
as violin modes, at 300Hz (see Fig. 2.10).

Another source of noise at low frequencies is produced by the changes in
the gravitational gradient around the test masses. These changes might ap-
pear, for example, from mass density fluctuations originated from a micro
seismic, atmospheric turbulence or human activity. This is known as gravity
gradient noise and limits the sensitivity of the interferometer at frequencies
below ≈ 20Hz. Due to the gravitational field being unknown, this noise can
only be attenuated but not eliminated, providing an effective limit to the
sensitivity of ground based detectors at low frequencies. Nevertheless, for
current detectors, this is not the dominant contribution at those frequencies.
Techniques designed to mitigate the contribution from this noise are imple-
mented by monitoring the sources of gravitational gradients.

Thermal fluctuations within the key components are a source of noise, known
as thermal noise, due to the vibrations they produce. These fluctuations
originate from the high powered beam propagating within the cavities. In
the case of the mirrors, the noise is produced by deformations or Brownian
motions due to the temperature increase in the coatings. The suspension
system is similarly affected by thermal fluctuations by inducing horizontal
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and vertical motions. As a simple model, the displacement produced by these
fluctuations can be modelled as:

x(w) =
1

w|Z(w)| [4kbTReZ(w)]
1/2, (2.46)

where kb is the Boltzmann’s constant, T is the temperature and Z(w) is
known as the impedance.

2.6.2 Shot noise and radiation pressure

A fundamental contribution to the noise arises from the fact that our beam
is composed by a discrete number of photons. This fundamental noise, also
known as shot noise, will produce fluctuations in the observed power. A
simple model of the effect of this noise on the sensitivity can be seen in Eq.
2.47:

S1/2
n (f)|Shot =

1

8FL

(
4πℏλLc
ηPbs

)√
1 + (f/fp)2, (2.47)

where Pbs is the recycled power at the level of the beam splitter and η is
the efficiency of the photodetector used for detection. Due to the term f/fp,
the effect of shot noise at f ≪ fp is almost constant. However, when the
frequency becomes comparable to the pole frequency, it becomes linear in f .
This noise is one of the limiting factors at frequencies higher than 1kHz.

Another uncorrelated source of noise originating from quantum light fluc-
tuations is radiation pressure. When a beam hits an object, it exchanges
momentum with the object. This exchange produces a pressure (radiation
pressure) that affects the test masses and negatively impacts the sensitiv-
ity of the interferometer. In Eq. 2.48 a simple model of the strain due to
radiation pressure can be seen:

S1/2
n (f)Rad =

16
√
2F

MMirL(2πf 2)

√
ℏPbs

2πλLc

1√
1 + (f/fp)2

, (2.48)

where MMir is the mass of the mirror. From this model we can observe that
the radiation pressure will be more important at low frequencies and that it
scales with the power inside the cavity. Comparing Eq. 2.48 and Eq. 2.47,
it can be seen that these two mechanisms have an inverse dependence on the
power.
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Therefore, increasing the power will decrease the shot noise at higher frequen-
cies while increasing the shot noise at lower frequencies. These two introduce
a limitation to the sensitivity of the interferometer, known as optical read-
out noise, or quantum noise. If we add the two together, we can estimate the
power of the laser needed to achieve the maximum sensitivity at a frequency
of choice, f0:

S1/2
n (f)QN =

1

Lπf0

√
ℏ

MMir

[
(1 +

f 2

f 2
p

) +
f 4
0

f 4

1

1 + f 2/f 2
p

]2
(2.49)

f0 =
8F
8π

√
Pbs

πλLcM
.

It is not possible to optimize this noise for all frequencies, it can only be
considered minimal at f0 by imposing the condition given by Eq. 2.50:

f 2
0

f 2
= 1 +

f 2

f 2
p

, (2.50)

where we will reach the optimal value of the quantum noise. This value is
known as the standard quantum limit (SQL) and it can be shown that it is
explained by the Heisenberg uncertainty principle due to the fact that there
will be an uncertainty in the amplitude and the phase describing the light
wave:

S
1/2
SQL(f) =

1

2πfL

√
8ℏ

MMir

. (2.51)

This fundamental limitation can be, to some extent, overcome by a technique
known as ”Squeezing” [36, 37]. The basic notion is to prepare the light in
such a way that the uncertainty is reduced in either the amplitude or the
phase at the cost of increasing the other (squeezed states of light). The
squeezed states of light are injected into the interferometer from the output
side of the beam splitter (known as dark port) and are superimposed with the
interferometer output containing the GW. Hence, the vacuum fluctuations
are replaced with the squeezed vacuum states, allowing us to manipulate the
measured uncertainty and reach below the SQL. An example can be seen in
Fig. 2.11.
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Figure 2.11: Squeezing in the L1 interferometer. The black line shows the sensi-
tivity when no squeezing is applied while the green shows the amplitude during a
period of O3. A model of the quantum noise is included in purple. A sum of all the
remaining known (nonquantum) noises is included in grey. Taken from Ref. [38]

2.6.3 Environmental noise

Environmental noise [39] refers to the contributions to the noise from exter-
nal environmental sources. It’s composed of three different noises: scattered
light, magnetic noise and acoustic noise.

Scattered light is produced by the light that scatters inside the interfer-
ometer and re-enters the main beam with an additional modulation given by
the motion of the reflecting surface. The effect that it has on the sensitivity
is modelled as in Eq. 2.52:

S1/2
n (f) = C

(
Kϕ(f)F

[
sin(

4π

λ
x(t))

]
+KδP/P (f)F

[
cos(

4π

λ
x(t))

])
,

(2.52)
where F is the Fourier transformation, x(t) is the movement of the scatterer,
C is the coupling constant that controls how much scattered light couples
back into the interferometer and Kϕ(f) and KδP/P (f) are transfer functions,
from phase and amplitude respectively, to the noise of the interferometer.
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These transfer functions are estimated by using optical models of the instru-
ment, whereas C is estimated from the observed data. A characteristic pat-
tern of scattered light are the arches that are produced in the time-frequency
representation (spectrograms) of the sensitivity. An example of these arches
can be seen in Fig. 2.12. This is a very difficult source to identify due to its
non linear coupling to the sensitivity of the interferometer. In general, the
identification is based on searching for arches as in Fig. 2.12 or excesses of
power in photodiodes.

Figure 2.12: Scattered light seen in AdV during O3a. The characteristic arches
from scattered light are clearly seen below 50Hz.

Magnetic noise is the noise produced by magnetic fields interacting with
components of the instrument. In the interferometer there are several ele-
ments susceptible to magnetic fields, like magnets, coils or actuators that
can be affected by an external magnetic field, producing movements in the
test masses and worsening the overall sensitivity. The origin of these exter-
nal magnetic fields can go from badly insulated cables to a lightning storm.
Therefore, it is important to monitor the magnetic field in the interferometer
by using magnetometers. This noise can also be a source of correlated noise
among the interferometers, by means of Schumann resonances, which can
create problems during the discrimination of signals from the background
by enforcing coincidences between the interferometers (more in Chapter 3).
This is particularly important for detecting GWs of stochastic origin due to
the search being based in correlations between the interferometers.
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Acoustic noise is generated by vibrations produced by acoustic waves, that
is, vibrations produced by changes in density due to a sound wave propagat-
ing through the medium. This noise can originate from several sources, from
humans to noisy machines. It can be decreased by improving the vacuum of
the tubes and dampening possible sources using acoustic insulation materials.

During the commissioning break between the first segment (O3a) and the
second segment (O3b) of the third observation run (O3), a campaign to mit-
igate sources of environmental noise was performed. This work can be seen
in Appendix C and Ref. [39].

2.6.4 Other sources of noise

There are many more sources of noise inside the interferometers and all of
them are modelled and understood as much as possible. Some of these sources
are:

• Electronic noise due to conversion from digital to analog. The data
acquisition systems are designed using digital-to-analogue converters
that can introduce unwanted noise into the measured data due to the
electronics. For that reason, these components are installed away from
sensitive components of the interferometer.

• As seen in Fig. 2.8, in the detector there are several photodiodes mon-
itoring the status of the instrument. Each of these is a possible source
of noise due to dark currents.

• An interferometer has several mirrors that have to be aligned so that
the beam can propagate inside the cavities. This introduces a source of
noise produced by the uncertainty during the alignment of the system.

• The residual gas within the interferometer might produce fluctuations
in the effective refractive index along the path. Due to these fluctua-
tions, the optical path length will change (known as optical path noise),
which might mask or imitate a signal.
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2.7 Calibration and data quality

As we have seen in Sec. 2.5, the current interferometers are designed as
Fabry-Perot interferometers with resonant cavities. This is achieved by us-
ing feedback loop [40, 41, 42, 43] (a loop in which part of the output is used
as input for the next iterations). Therefore, the output strain has to be
calibrated by taking into account all the readout electronics and actuation
hardware affecting the mirrors through the suspension systems [44]. These
effects are modeled as a function of the frequency for a total of three con-
tributions: the actuation function A(f), the sensing function C(f) and the
digital filters D(f). A schematic representation can be seen in Fig. 2.13.

While the response of the digital filters is very well known, this is not the case
for the sensing and actuation functions. The difference between the model
and the measurement of these two functions is the origin of the calibration
error and uncertainty. They have to be independently measured by using
two beams produced by auxiliary lasers [45] (the photon calibrators), with
known intensities modulated at known frequencies and amplitude, that will
interact with the test masses producing radiation pressure and allowing to
measure these functions. Once they are known, the strain is calibrated as in
the following equation:

h(t) =
1

L

[
C−1 ∗ derr(t) + A ∗ dctrl(t)

]
. (2.53)

These calibration measurements are regularly performed during an obser-
vation run along with additional monitoring of time dependent variables.
Furthermore, calibration lines are continuously injected using the photon
calibrators. These lines are removed from the strain [46]. Nevertheless, these
lines wouldn’t affect the search for CBC signals due to the data treatment
techniques that will be explained in Chapter 3.

The calibrated data is processed to filter out periods of unreliable data, in-
cluding periods with strong noise transients (glitches). These glitches mani-
fest as excesses of power in the instruments and might be mistaken for GW
signals. Therefore, possible paths for the noise to couple with the interferom-
eter are monitored (e.g. environmental noise) and used to flag periods with an
excess of noise. This is known as data quality investigations and the flagged
segments are treated based on their severity, with the most polluted segments
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being directly removed from the analysis. In the case of CBC, an example of
a dangerous noise feature are lines of constant frequency, as they might be
confused with the inspiral phase of a long signal [33, 47, 48, 49, 50, 51].

Figure 2.13: Schematic representation of the feedback loop used to control the
differential arm length and the calibration pipeline. The unsuppressed change in
differential arm length, ∆Lfree, is the desired quantity and has to be estimated by
using the models in A and C (purple box) and the data. This data is measured
by the photodiodes and is given by ∆Lres. It corresponds to the differential arm
length suppressed by the loops and can be used to obtain the error signal. The
error signal, derr, is the product of the sensing function, C, and ∆Lres. This
error signal is passed through the digital filters and used as input to the actuators

controlling the differential arm length. x
(PC)
T denotes where the photon calibrators

are used to test the mass mirrors. The output of the calibration pipeline is the
desired strain signal h(t) =

∆Lfree

L . Taken from Ref. [52]
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2.8 Instrumented baffle

As was discussed in Sec 2.6.3, scattered light is one of the noise sources affect-
ing the current interferometers. Within the arms, scattered light is produced
mainly by light scattered off the mirror surfaces. This effect was mitigated
by installing low-reflective, low-scattering baffles, either suspended around
the mirrors or connected to the ground in the vacuum tubes, that were able
to absorb 99.5% of the scattered light. No active monitor of the scattered
light inside the arms has been implemented.

In addition, Virgo lacks the information from photosensors, close to the test
masses, that in the case of LIGO proved to be very useful in the pre-alignment
of the arms. This motivated the design of instrumented baffles, to which pho-
tosensors are added, for O5. These baffles will be installed surrounding the
test masses. A first instrumented baffle was installed around the end mir-
ror of the Input Mode Cleaner (IMC) cavity at Virgo in April 2021. This
baffle served as a demonstrator of the technology designed to instrument
the baffles in front of the main mirrors. The information from the baffles
will allow a better understanding of the scattered light distribution at low
angles and monitor the contamination of the mirror surfaces. Furthermore,
it will facilitate the pre-alignment and fine-tuning of the parameters of the
interferometer. More information can be found in Appendix A.
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Chapter 3

Data preprocessing, searches
and parameter estimation

In this chapter, we discuss the methods used to analyze and process the
data produced by the interferometers. In the first place, the basic notions
needed to characterize the noise from the interferometers are explained. The
technique used to extract the GW produced by CBC event is discussed and
used to construct a search pipeline. Finally, the significance is assigned to
each event detection.

3.1 Gaussian noise, stationarity and whiten-

ing

In Sec. 2.6 we have seen some of the noise sources that affect our interfer-
ometer and, in this section, we will formalize the treatment of the data from
a statistical point of view [1, 52, 53]. The objective is to create a framework
that can be used for the extraction of GWs contained in the data out of the
noise.

The interferometer operates in continuous mode with a data taking sampling
frequency of 16384Hz. The data is described using time series: arrays of data
points with a time assigned. We can describe the interferometer output as a
discrete time series, usually denoted as n(t), with samples ni = n(ti), length
N and that follows a joint probability distribution p(n). This allows us to
introduce statistical terms as the mean, n̂, and covariance, Cij.
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There is an intrinsic limitation in the definition of the covariance. In our
time series we have one and only one data point per time, which is not
enough to estimate the covariance matrix, as in Eq. 3.1:

Cij =
1

K − 1
(ni − n̂)(nj − n̂), (3.1)

where i, j correspond to two time indexes and K is the total number of sam-
ples for that combination. It can be seen that when K = 1, that is, only
one sample, the matrix is not defined. In general, the covariance matrix of a
time series can only be estimated if for each point we have a vector and not a
scalar, as is the case here. This can only be estimated if we assume a model
for the noise distribution or if the features of the noise do not depend on time.

A common assumption is that the noise follows a multivariate Gaussian dis-
tribution, as in Eq. 3.2. A noise following this joint distribution is called
Gaussian noise [54]:

p(n) =
1

det(2πC)
1
2

exp

(
−1

2

∑
ij

(ni − n̂)(nj − n̂)C−1
ij

)
. (3.2)

The hypothesis of Gaussian noise will be used later on to extract GWs from
CBC events by testing if the residual distribution, that is, data from which
we have subtracted a CBC signal with parameters θ (modelled as in Sec.
1.3), follows this distribution.

Furthermore, during the analysis, the data is also assumed to be wide-sense
stationary, or just stationary. A time series is called stationary if the mean
and variance are finite and the covariance matrix only depends on the time
lag between two points. In particular, this also means that the autocorrela-
tion function1, R(t1, t2), depends only on the time lag, τ = t1 − t2 (see Eq.
3.3). It shouldn’t be confused with the concept of strictly sense stationary2,
which is a stronger assumption over the behaviour of the data:

R(t1, t2) = R(t1 − t2, 0) = R(τ). (3.3)

1Defined as the correlation of a signal with itself as a function of the delay.
2We say that a process is strictly sense stationary when the probability distribution

does not change with the time lag τ .
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Under the hypothesis of stationary noise, we can define the power spectral
density (PSD), Sn(f), as the Fourier transformation of the autocorrelation
function, as seen in Eq. 3.4. While the definition given in Eq. 2.45 for the
power spectral density is in general not well defined (it’s not ensured that
n(t) → 0 when t → ±∞), Eq. 3.4 doesn’t have that problem due to the
autocorrelation function going to zero as τ → ±∞:

Sn(f) = 2

∫ ∞

−∞
R(τ)ei2πfτdτ . (3.4)

Under these conditions, the covariance matrix in the frequency space is Cij =
δijSn(fi). This allows to introduce the term of white noise as Cij = δijσ

2,
that is, constant power at all frequencies.

Unfortunately, as we have seen in Sec. 2.6, the noise is not always stationary.
At short time intervals (∽a few hundreds of seconds), the hypothesis holds
and the noise can be considered stationary. In this case, the Fourier transfor-
mation becomes a powerful tool to characterize and handle our data. In par-
ticular through the usage of Fast Fourier Transformation (FFT) [55, 56, 57].
Furthermore, if the data is Gaussian, each frequency bin will be uncorrelated.

This introduces another complication given by the fact that a Fourier trans-
formation requires the data to be periodic. To tackle this problem, window
functions [58, 59] are used. A window function (see Fig. 3.1)is a function that
is zero outside an interval and symmetric around its center. The importance
of these functions is that they can be used to make the data periodic. Not ap-
plying a window function, which is equivalent to using the ”Boxcar” window
seen in Fig. 3.1 (left), before the FFT can produce a phenomenon known as
spectral leakage [58] (see right Fig. 3.1), which will create fake correlations.
These issues appear due to the Fourier transformation of a boxcar window,
also known as step function, being the sinc function, sinc(x) = sin(x)

x
, which

decreases as 1/f 2. The 1/f 2 contribution dominates the whole spectrum and
”leaks” at higher frequencies, producing incorrect results and fake correla-
tions.

Using these window functions and the previous assumptions about station-
arity of the data, we can estimate the power spectral density. Using a single
FFT to estimate the PSD is sub-optimal due to the large variance of the
resulting PSD. Therefore, more sophisticated methods are used for its
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Figure 3.1: (Left) Examples of two window functions. (Right) Spectral leakage is
produced by not using a window function to get periodic data.

estimation, with Welch’s method being one of the most commonly used [60].
This method consists of splitting the initial segment into M segments (with
D overlapping points) and estimating the spectral density of each segment
by means of FFTs after being windowed. The resulting spectral densities
are then averaged to reduce the variance of the individual estimations. This
PSD can now be used to ”whiten” [61, 62] our data, that is, transforming
our data to equally powered frequency bins. This step is needed to suppress
noise artifacts so that the GW can be extracted.

The idea is to transform our data to the frequency space by performing

FFTs, divide by the square root of the PSD (S
1
2
n (f), also knonw as the Am-

plitude Spectral Density or ASD), and go back to the time domain by using
an inverse fast Fourier transformation. Schematically, all the steps are shown
in Eq. 3.5:

h(t)
FFT−−→ ˜h(f)

Whiten−−−−→ h̃W (f) =
˜h(f)

S
1
2
n (f)

iFFT−−−→ hW (t). (3.5)

Finally, using FFTs, we can produce spectrograms which allow us to get a
visual representation of our data in time-frequency space. These are the basic
elements to describe and treat the data from the interferometers and will be
used in the following sections to extract the GW signal from the data.
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3.2 Gating and noise subtraction

The data used not only have to be calibrated, as explained in Sec. 2.7,
but also treated to deal with glitches and non Gaussian noise that pollute
it [63, 64]. The most simple technique is known as ”gating” (see Fig. 3.2)
in which the glitch is smoothly set to zero using a window function. Gating
is used in GWs searches to remove glitches with an excess of energy above a
certain threshold before proceeding with the search. The threshold is care-
fully selected so that the likelihood of gating real GWs signal is negligible.
Even though this method is useful in this context, it introduces problems
in more delicate studies, like parameter estimation of the source properties.
The reason is that these studies assume the Gaussianity of the data.

Figure 3.2: Glitch found in real O2 data gated so that it can be used for a search.

Based on this, new techniques for noise subtraction have been developed.
The main idea behind these new methods is to model the offending glitch
and subtract it from the data. This method was successfully used to remove
the glitch in L1 for GW170817 [65] and is now extensively used in the recent
catalogs [11, 66]. Furthermore, noise subtraction is also used to remove
known noise sources, like calibration lines, electric power grid lines or noise
coming from sources monitored by witness sensors.

71



3.3 Search of CBC gravitational waves

Using the techniques and elements defined in the previous sections, we extract
the signal of CBC events from the data. These signals are typically buried
underneath the noise, as seen in Fig. 3.3. In this section we will explain the
technique and elements used in searches for GW signals from CBC events.

Figure 3.3: CBC signal with component masses (30,30)M⊙ at 10Mpc under real
noise from L1 interferometer.

3.3.1 Matched filter

Matched-filter [67] is a technique for searching for a known shape (template)
from a segment of data with larger noise. This is a well known technique in
several fields, like radio engineering. In this section we will prove this method
is optimal for the search for a signal when the noise is Gaussian [1]. We start
by correlating our data with a signal in it, d(t), with a filter function, G(t),
as in Eq. 3.6:

d̂ =

∫ ∞

−∞
dtd(t)G(t), (3.6)

and we derive the filter function that maximizes the SNR for this data know-
ing the form of the GW, h(t).
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The contribution from the signal inside the noise is given by Eq. 3.7:

S =

∫ ∞

−∞
dt⟨d(t)⟩G(t) =

∫ ∞

−∞
dt⟨h(t) + n(t)⟩G(t) =

=

∫ ∞

−∞
dt[⟨h(t)⟩+ ⟨n(t)⟩]G(t) =

∫ ∞

−∞
dt⟨h(t)⟩G(t) = (3.7)

=

∫ ∞

−∞
df⟨h̃(f)⟩G̃∗(f) = Re

∫ ∞

−∞
df⟨h̃(f)⟩G̃∗(f),

where we use ⟨n(t)⟩ = 0 (which can be assumed without loss of generality
due to always being possible to subtract the average noise from our data)
and Parseval formula3 to do the transformation to frequency domain. The
noise contribution is given by the rms value when there is no signal present
and takes the form seen in Eq. 3.8:

N2 = [⟨d̂2(t)⟩ − ⟨d̂(t)⟩2]h=0 = [⟨d̂2(t)⟩] = (3.8)

=

∫ ∞

−∞
df

1

2
Sn(f)|G̃(f)|2 = Re

∫ ∞

−∞
df

1

2
Sn(f)|G̃(f)|2,

where we have used the relation between the auto correlation function and
the power spectral density. Hence, the signal-to-noise ratio (SNR) is:

S

N
=

Re
∫∞
−∞ df⟨h̃(f)⟩G̃∗(f)[

Re
∫∞
−∞ df 1

2
Sn(f)|G̃(f)|2

]1/2 . (3.9)

The SNR can be written in a more compact form using the inner weighted
product defined in Appendix E. This inner product is defined in such a way
that regions in which the detector is more noisy will be suppressed by a larger
weight. Using this product, we obtain Eq. 3.10:

S

N
=

(u|h)
(u|u)1/2 , (3.10)

where u(t) is a function such that its Fourier transformation is equal to:

ũ(f) =
1

2
Sn(f)G̃(f).

3
∫∞
−∞ |h(t)|2dt =

∫∞
−∞ |h(f)|2df
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Using a geometrical interpretation in two dimensions, we know that the max-
imum is reached when the two vectors are parallel or, in other words, they
differ by a constant. This translates into the solution seen in Eq. 3.11:

ũ(f) =
1

2
Sn(f)G̃(f) = αh̃(f) → G̃(f) = κ

h̃(f)

Sn(f)
, (3.11)

which is the optimal filter for Gaussian noise [54] and, from a physical point
of view, favors the frequency regions from the template which are less affected
by the real noise, Sn(f). Furthermore, in the case of white noise, we have
that the filter reduces to simply the template, an expected outcome due to
all the frequencies weighing the same. Introducing this filter in Eq. 3.10, we
get the expression, as seen in Eq. 3.12, for the so-called optimal SNR:(

S

N

)2

= (h|h) = 4

∫ ∞

0

|h̃(f)|2
Sn(f)

(3.12)

3.3.2 Statistical approach to matched-filter

In the previous section, it was shown that the optimal filter to search for
a signal is the signal itself. Therefore, in the search for CBC events [52],
the filter is constructed using waveform models (See Sec. 1.3). The data is
resampled to a lower frequency, e.g. 2048Hz, and split into segments of equal
duration. The length of these segments (e.g: 512s) is selected by considering
several factors, like the maximum duration of the searched signals. Each
segment is correlated with the template and triggers are found based on the
SNR distribution. A detailed description of this procedure is given in this
section.

Let’s assume that we have a period of data, d(t), which might have a real
signal in it. Given that GWs signals from CBCs are described by h(t; θ) for
some parameters θ [68], the residual r(t) = d(t) − h(t; θ) should follow the
model of the noise. Therefore, we can estimate how likely the data is to
have a signal by estimating the probability of the residual following the noise
distribution. In the case of Gaussian noise [54] we can write this likelihood
as in Eq. 3.13:

L(d|h; θ) = 1

det(2πC)1/2
exp

(
−1

2
χ2(d, h(t; θ))

)
, (3.13)
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in which C is the correlation matrix and χ2(d, (t; θ)) is defined as in Eq. 3.14:

χ2(d, h(t; θ)) = r · C−1 · r =
∑

I,J,k,m

(dIk − hIk)C
−1
(Ik)(Jm)(dJm − hJm), (3.14)

where I and J iterate over the different detectors and k and m the data
samples. In the case of uncorrelated noise between all the detectors in
the network, we recover the previous definition for the covariance matrix,
C(Ik)(Jm)(f) = δIJS

I
km(f). Furthermore, under the condition of stationary

noise, we have that the correlation matrixes are diagonal and thus:

χ2(d, h(t; θ)) = (d(t)− h(t; θ)|d(t)− h(t; θ)) = (r(t; θ)|r(t; θ)).

However, even if in most cases the noises are uncorrelated, there are noise
sources that might be present in all the interferometers, like the ones pro-
duced by Schumann resonances or earthquakes (see environmental noise in
Sec. 2.6.3).

This likelihood can be used to construct a hypothesis test.

H0 : Only noise in the data.

H1 : There is a signal with parameters θ.

And in terms of the likelihood we have that:

L(d|H0; θ) = L0(d; θ)

L(d|H1; θ) = L1(d; θ),

which can be used to construct a standard likelihood ratio statistic as in Eq.
3.15:

Λ(d; θ) =
L1(d; θ)

L0(d; θ)
. (3.15)
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Assuming stationary Gaussian noise, the likelihood is given by Eq. 3.13 and
the log ratio test takes the form of Eq. 3.16:

logΛ(d; θ) = log

(
exp

(
−1

2
χ2(d, h(t; θ))

)
exp

(
−1

2
χ2(d, 0)

) )
=

= −1

2
(d(t)− h(t; θ)|d(t)− h(t; θ) +

1

2
(d(t)|d(t)) =

=
1

2
((d(t)|d(t))− (d(t)|d(t))− (h(t; θ)|h(t; θ)) + 2(d(t)|h(t; θ))) =

= (d(t)|h(t; θ))− 1

2
(h(t; θ)|h(t; θ)), (3.16)

where the term (d(t)|h(t; θ)) corresponds to the unnormalized matched-filter
statistic seen in the last section. We are interested in the maximum of this log
likelihood ratio and it’s clear that it’s reached when the residual is minimized.
In the case of a signal, this minimization occurs when it’s well described by
the parameters θ. Using now that we can write the signal as in Eq. 3.17 [69]:

h(t; θ) = Ap(t; θ)cos(ϕ) + Aq(t; θ)sin(ϕ), (3.17)

where A is the amplitude, inversely proportional to the distance, ϕ is the
phase of the signal in the detector and p(t; θ) and q(t; θ) are two orthogonal
functions normalized with respect to the inner weighted product. These
two functions are obtained by decomposing the GW signal in the in-phase
(cosine) and quadrature (sine) components4. Plugging this into Eq. 3.16 we
have that the likelihood ratio can be expressed as in Eq. 3.18:

logΛ(d; θ) = Aρ(t; θ)cos(ϕ− ψ)− 1

2
A2

ψ := arctan
(d|q(t; θ))
(d|p(t|θ)) (3.18)

ρ(t; θ) :=
√
(d|q(t; θ))2 + (d|p(t; θ))2,

where ρ(t; θ) is the SNR time series for a template with parameters θ and
peaks at times in which a signal like the template is likely to be.

4Any sinusoid signal with phase modulation can be decomposed in two components
with an offset of π/2. This can be seen from the fact that sin(A + B) = sin(A)cos(B) +
sin(A + π/2)sin(B).
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These peaks correspond to the mergers times. Finally, the log likelihood
ratio is maximized when:

cos(ϕ− ψ) = 1 ⇐⇒ ϕ = ψ

ρ(t; θ) = A,

reaching the maximum value at 1
2
ρ2(t; θ). In general, it is more convenient

to express the time series as a complex time series, seen in Eq. 3.19:

z(t; θ) = 4

∫ ∞

0

d̃(f)p̃∗(f ; θ)

Sn(f)
e2πiftdf, (3.19)

where p̃∗(f ; θ) is the Fourier transformation of the in-phase waveform. This
complex time series, z(t; θ), is defined in such a way that ρ = |z(t; θ)| and
ϕ = arg(z) [70].

There is a wide range to cover in the signal parameter space. Therefore,
we need to create a template bank to search for signals from CBC events.
The data segments mentioned previously are correlated with the elements
from the template bank and the complex SNR time series per template and
segment, given by Eq. 3.19, is estimated. The triggers are extracted from
these distributions by setting a SNR threshold (e.g. 4). This step has to be
performed for all the interferometers in the network, allowing us to define
the network SNR as:

ρ2Net =
∑
I∈Int

ρ2I .

where Int contains all the online detectors at the time of the trigger. An
example of a SNR time series can be seen in Fig. 3.4, along with the effect
of using a template different from the signal contained in the data.

3.3.3 Creating a template bank

Ideally, the whole signal parameter space would be covered with a dense grid
so that the maximum SNR is reached. In practice, this is not a feasible
option. A template bank so large would be impossible to manage and use
with limited computed resources. Therefore, a more careful approach is
needed.
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Figure 3.4: SNR time series using two different sets of parameters, the same as
the injection and different ones.

The template bank is created by using the overlap and match between tem-
plates [71, 72, 73, 74, 75] to estimate how much SNR is lost by using two
close-by (in parameter space) templates.

We define the overlap between two templates as seen in Eq. 3.20:

O(h1, h2) = (ĥ1|ĥ2) =
(h1|h2)√

(h1|h1)(h2|h2)
. (3.20)

In general, it can be assumed that our templates are normalized with respect
to the inner weighted product, that is, (h1|h1) = 1 and (h2|h2) = 1. The
overlap quantifies how much of the first signal we would recover using the
second, h2, as template for the matched-filter method. It is important to
note that all the waveforms related by time/phase offset are described by the
same template. Therefore, we define the match as seen in Eq. 3.21:

M(h1, h2) = maxϕ,t(h1|h2(ϕ, t)), (3.21)

allowing us to define the mismatch as how much we are missing to reach the
maximum possible overlap of one. That is, we define the mismatch between
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the two templates as 1 −M . This value quantifies the fraction of SNR we
are losing by using h2 to search for h1.

Assuming that we have a grid of templates, we can estimate the match be-
tween all the templates and quantify how much SNR we are willing to lose
due to the finite dimension of our grid. In particular, it’s convenient to use
a term called the ”Fitting Factor” for a template hs, defined in Eq. 3.22,
that estimates the maximum agreement between that template and the rest
of the bank:

FF (hs) = maxh∈{hn}M(hs, h). (3.22)

We can now impose limits on this fitting factor and construct a template
bank in which there is always an overlap between two signals bigger than our
threshold. These elements are used in dedicated algorithms to produce the
template banks that will be used during the search. An example of a very
simple template bank covering the mass range between 2M⊙ and 3M⊙ can
be seen in Fig. 3.5. The distribution of templates within the bank is such
that the minimum fitting factor is at least 0.97. The template bank shows
two main features: the limits given by the condition m1 > m2 and a gap.
The gap is an artifact produced by the algorithm used for the generation of
the bank.

3.3.4 Signal consistency tests

The template bank defined in the previous section along with the matched-
filter technique can be used for the search for GWs. However, as we have
seen before, the noise is not always Gaussian and matched-filter won’t be
the optimal detection statistic. In fact, noise can produce transients that
will trigger with some templates with high SNR. This can be alleviated by
performing data quality activities, as seen in Sec. 2.7. There are more tech-
niques that can be employed to further improve the significance of our search.

An important technique is the imposition of tests to characterize the de-
viation of the data from a model with signal in it, as explained in detail in
Refs. [76, 77, 70, 69, 78]. These tests are called signal consistency tests and
in CBC they allow us to discard many glitches from our triggers. The basic
idea of these methods is to test the Gaussian behaviour of the residual after
subtracting our template from the data.
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Figure 3.5: The template bank covers the mass range between 2M⊙and 3M⊙.
The templates are distributed in such a way that, for a given template, there is
always at least a second template with a match of 97%.

If triggers are still found, this indicates that the template is not properly
describing the data and should be weighed down by a factor.

A test used by current search pipelines is the chi-square test [69]. This
test uses the fact that the accumulation of SNR over time and frequency is
different for glitches and real signals. The SNR of a signal will accumulate
along the duration in a way consistent with the waveform. This is tested by
dividing the template into ’p’ orthogonal subtemplates at different frequency
intervals, such that the SNR of each template over Gaussian noise is the same
on average. Therefore, the signal to noise ratio, z, will be the sum of the
signal to noise ratios from all the frequency bands, zi:

z =

p∑
j=1

zj. (3.23)

From this definition we have that the quantity defined as follows:

∆zj = zj −
z

p
, (3.24)
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will have zero mean and sum zero by definition. We use these to define the
χ2 time frequency discriminator statistic as:

χ2 = χ2(z1, ..., zp) = p

p∑
j=1

(∆zj)
2, (3.25)

which will have an expected value of ⟨χ2⟩ = p − 1 given that the expected
value of (∆zj)

2 is:

⟨(∆zj)2⟩ =
1

p
(1− 1

p
). (3.26)

In conclusion, if the signal matches the given template the reduced χ2, defined
as χ2

r =
χ2

p−1
, will be close to one. In any other situation the output value of

this test can then be used to reweight our detection statistic so that cases in
which the hypothesis is not true have a down-weighted SNR. This derivation
was made in the simplest case of a signal defined by only one polarization
and assuming that the noise is stationary. In general the signal is a linear
combination of two polarizations and, in that case, the degrees of freedom
are 2p− 2. The reduced χ2 is then given by:

χ2
r =

χ2

2p− 2
. (3.27)

Finally, a good understanding of the noise of our interferometers [79] and
the GWs models allows us to declare single detector detection. However, the
most stringent signal consistency test is to require the GW to be detected by
matched-filter in at least two independent interferometers [9], the so-called
coincidence triggers. These triggers should be produced by templates with
consistent parameters and the difference in the time of arrival should be lower
than the maximum time of flight. This limits the detection of GWs to times
in which there is at least two interferometers working.

3.3.5 False Alarm Rate (FAR)

If all the tests explained before are successfully passed by our candidate, the
probability of it being produced by a noise transient is very small. However,
it’s necessary to estimate how significant this trigger really is. The False
Alarm Rate (FAR) is introduced for this purpose. Formally the FAR for
a candidate is defined as the rate of triggers due to noise with a detection
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statistic bigger or equal than our candidate [80, 81]. In other terms, for a
certain detection statistic X the FAR assigned to a candidate, with a value
of the statistic x, is given by Eq. 3.28:

FAR(x) =
N(X ≥ x)

Tobs
, (3.28)

where N(X ≥ x) is the number of triggers produced by noise with detec-
tion statistic bigger than x and Tobs is the total observation time (usually
expressed in years). Unfortunately, an analytical expression for N(X ≥ x)
is in general not know, and we need to estimate it empirically. The simplest
approach consists on time shifting the data of the different interferometers
and re-doing the search again over the new time shifted data. If this shift is
bigger than the possible time-on-flight for real signals (including timing er-
rors, ≈ 150ms is the minimum shift allowed), then all the new triggers found
by the search will be produced by noise and can be used to estimate the
distribution. The time-shift is repeated for different shifts until we achieve
the desired Tobs.

With this method we can obtain a map between the detection statistic we
are using and the FAR. This map can be used to assign significance to all
of our triggers. An example can be seen in Fig. 3.6, where we have esti-
mated this distribution for a machine learning discriminant that we will use
in Chapter 5. This plot shows two features originating from limits in the
FAR: below discriminant values of ∽ 0.1 all the data used for the estimation
is flagged as noise and the FAR remains constant. Instead, the constant line
above ∽ 0.95, arises from the fact that the minimum FAR is bounded by the
total observation time. From Eq. 3.28 it can be extracted that the minimum
FAR is given by: FARMin = 1

Tobs
. Therefore, values below that point would

require to extrapolate from the distribution.

A limitation of this approach is that it does not take into account the possible
noise contributions that are common to all the interferometers, like the ones
produced by Schumann resonances. It is thus fundamental to validate all the
possible candidates by examining all the possible known noise sources using
the witness channels.
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Figure 3.6: Map between the FAR and a detection statistic based in machine
learning techniques.

A detection is claimed by selecting a threshold value for this FAR. For ex-
ample, the O2 catalog paper used a FAR threshold of 0.01 yr−1, or 1 per
100 years, for detection. A trigger with a FAR value below this threshold is
considered a confident detection.

3.3.6 Volume-time and detector efficiency

Using the previous definition, we can estimate the efficiency of the search
pipeline by injecting simulated signals following a given population model.
As we have seen in Sec. 2.3, the efficiency of the detector is not uniform over
the whole sky. Furthermore, the amplitude of the GW is also affected by the
inclination of the source with respect to us. This translates into an effective
sensitive volume modulated by the efficiency of the detector and the target
population [82]. This sensitive volume is given by Eq. 3.29:

⟨V T ⟩ = T

∫
dzdθ

dVc
dz

1

1 + z
ϕ(θ)ϵ(z, θ), (3.29)
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where T is the observation time, dVc

dz
is the differential of co-moving volume

with redshift, ϕ(θ) is our population model and ϵ(z, θ) is the efficiency of
the search for parameters θ at redshift z. The efficiency is not generally
known and has to be empirically estimated by using injections. The integral
is solved by using Monte-Carlo integration.

Firstly, a population model, ϕ(θ), from which we will extract the parameters
of the injections that will be inserted into the data is chosen. For example, a
population uniform in component masses is drawn from a probability density
function given by:

ϕ(md
1,m

d
2) =

1

(md
max −md

min)
2
, (3.30)

wheremd
i are the masses in the detector frame5. These signals will be injected

at a redshift z with a probability given by the distribution defined by Eq.
3.31:

p(z) =
dVc
dz

1

(1 + z)V0
, (3.31)

where V0 is defined as in Eq. 3.32:

V0 =

∫ zmax

0

dVc
dz

1

1 + z
dz, (3.32)

which corresponds to the total volume given the maximum redshift, zmax, of
the used injections. The maximum redshift is selected using the expected
sensitivity for the population model as reference. It should be noted that
the redshift distribution doesn’t depend on the parameters of the injection.
This means that a signal with parameters θ might be injected at a redshift z
from which cannot be recovered by the search, affecting the overall estimate
of the sensitivity by reducing the statistics.

Once the injections are made, the search pipeline is passed through the data
and the sensitive volume is estimated as in Eq. 3.33:

⟨V ⟩ = V0
Ndet

NTotal

= V0ϵ, (3.33)

5The relation between source frame masses and detector frame masses is given by:
md = (1 + z)m. Therefore, masses are bigger in the detector frame.
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where Ndet is the number of injections recovered by the search and NTotal

is the total number of injections used. This sensitive volume depends on
the population model used for the integration and will change if a different
model is used. Therefore, a new population model requires a new injection
campaign to estimate the efficiency and sensitivity.

An injection campaign is usually computationally expensive and this limits
the available results. For that reason, a technique known as ”reweighting”
is used. This method consists of transforming the data from an initial pop-
ulation model, ϕ(θ), to a different one, ϕf (θ), by applying a set of weights
to the sensitive volume. We assume that we have enough injections to cover
the whole parameter space we are considering with our model and the re-
gions in which the new model is. These weights are given by the ratio of the
probabilities, as in Eq. 3.34:

wi =
ϕf ({m1,m2, s⃗1, s⃗2}i)p(z(di))
ϕ({md

1,m
d
2, s⃗1, s⃗2, d}i)Ji

, (3.34)

where d is the luminosity distance of the injection, m1 andm2 are the compo-
nent masses and s⃗1 and s⃗2 are the spins. By definition, the target population
model, ϕf , is given in terms of the source frame component masses and the
original model in terms of the detector frame masses: md

1, m
d
2. Therefore, we

need to add a jacobian, Ji, to transform the initial population model from
the detector frame to the source frame. This jacobian is given by Eq. 3.35:

Ji = (1 + z(di))
2

(
∂d

∂z

)
i

. (3.35)

The next step is to correctly estimate the maximum volume. In this case, the
expression given by Eq. 3.32 is not valid due to the injections not following
the population model. The correct way to estimate the volume is given by
Eq. 3.36:

V m
0 =

∫ Mcmax

Mcmin

∫ zmax(Mc)

zmin(Mc)

ϕf (Mc)
dVc
dz

1

1 + z
dzdMc, (3.36)

where we have used that the models can be written in terms of the chirp mass
and that it’s also the only parameter affected by the redshift. Therefore, the
target population model is marginalized over the rest of the parameters and
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defined in terms of the source frame chirp mass. The integral limits are given
by the model (chirp mass) and the injections used (redshift).

This integral cannot be easily solved so Monte-Carlo integration is used.
We start by drawing NT samples of (Mc, z) from ϕf (Mc) and redshift distri-
bution given by Eq. 3.31. These samples are then converted into detector
frame chirp mass and luminosity distance: (Md

c , d). Finally, we count how
many of them are within the integral boundaries: Nin. By this method we
have that the integral from Eq. 3.36 can be estimated as in Eq. 3.37:

V m
0 = V0

Nin

NT

, (3.37)

This volume can be used along with the weights given by Eq. 3.34 to estimate
the sensitive volume assuming the population model, ϕf :

⟨V ⟩ = V m
0

∑
i∈Detectedwi∑
i∈Injectedwi

, (3.38)

where i ∈ Detected iterates over the detected injections and i ∈ Injected
over the total injections.

3.3.7 Rate estimation

The sensitive volume described in Eq. 3.33 can be used to estimate the
merger rate for the searched population. In first approximation, assuming
that we have a sufficiently large number of confident detections, NObvs, we
can approximate the rate density as in Eq. 3.39:

R =
NObvs

⟨V T ⟩ , (3.39)

which can be derived by assuming that the observation of a GW is described
by a Poisson process. This approximation, known as the foreground domi-
nated statistics, is not valid when the number of detections is zero or not big
enough. For this reason, in this section we describe a generic method to es-
timate the rate posterior [83, 84, 85]. We will follow in the next section with
the particular case of no detection using the ”loudest ranking statistic” [86].
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Let’s start by assuming that we have M events above a chosen threshold of
our detection statistic, x, whose origin we don’t know a priori (astrophysical
or background). If we describe the process using an inhomogeneous Poisson
process, we have that:

dNs

dx
= s(x, θ) = n̂sŝ(x, θ)

dNb

dx
= b(x, θ) = n̂bb̂(x, θ), (3.40)

where θ includes any parameter needed to define the distributions s(x, θ) and
b(x, θ). These distributions can be used to define the cumulative number of
triggers by integrating over the possible values of the detection statistic, x:

S(x, θ) =

∫ x

−∞
dys(y, θ)

B(x, θ) =

∫ x

−∞
dyb(y, θ), (3.41)

and from that definition we extract the expected number of triggers detected
from each type as n̂s = S(∞, θ) and n̂b = B(∞, θ). Furthermore, using an
inhomogeneous Poisson process implies that the number of events from two
non overlapping intervals are independent. The number of events for an in-
terval, x ∈ [x1, x2], is given by S(x2, θ)−S(x1, θ) if it has astrophysical origin
or B(x2, θ)−B(x1, θ) if it is background.

As already mentioned, there is no way to know the origin of each trigger.
This uncertainty is tackled by introducing a nuisance parameter, gi, for each
trigger as a flag: zero for background and one for signal. Therefore, our ob-
jective is to estimate the posterior given by Eq. 3.42 using Bayes’ rule from
Eq. B.2:

p({gi}, n̂s, n̂b, θ|d,M) =
L(d|{gi},M, n̂s, n̂b, θ)π({gi},M, n̂s, n̂b, θ)

p(d,N)
, (3.42)

where ’d’ corresponds to the time ordered data. Using now that our data
is identically and independently distributed (i.i.d.) the likelihood can be
written as the product of the density functions. In other words, we have that
the likelihood is given by Eq. 3.43:

L(d|{gi},M, n̂s, n̂b, θ) =

 ∏
{i|gi=1}

ŝ(xi, θ)

 ∏
{i|gi=0}

b̂(xi, θ)

 . (3.43)
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Furthermore, from the law of total probability seen in Eq. B.1, we have that
the prior can be written as:

π({gi},M, n̂s, n̂b, θ) = p({gi}|M, n̂s, n̂b, θ)p(M, n̂s, n̂b, θ)

= p({gi}|M, n̂s, n̂b, θ)p(M |n̂s, n̂b, θ)p(n̂s, n̂b, θ)

= p({gi},M |n̂s, n̂b, θ)p(n̂s, n̂b, θ). (3.44)

Two of these priors can be chosen using the extra information we have from
the problem. In the first place, for the term p({gi}|M, n̂s, n̂b, θ), we can use

that the probability of the flag being one (zero) is n̂s

n̂s+n̂b

(
n̂b

n̂s+n̂b

)
. Therefore,

that distribution is given by the product of the probabilities as in Eq. 3.45:

p({gi}|M, n̂s, n̂b, θ) =

 ∏
i|gi=1

n̂s

n̂s + n̂b

 ∏
i|gi=0

n̂b

n̂s + n̂b


=

(
n̂s

n̂s + n̂b

)Ms
(

n̂b

n̂s + n̂b

)Mb

, (3.45)

where Ms is the number of elements with flag one and Mb with flag zero.
Secondly, using the assumption that the number of events follows a Poisson
process described by n̂s + n̂b, we have that p(M |n̂s, n̂b, θ) can be written as:

p(M |n̂s, n̂b, θ) =
(n̂s + n̂b)

M

M !
exp[−(n̂s + n̂b)]. (3.46)

Finally, for the term p(n̂s, n̂b, θ) we don’t have extra information. Therefore,
we decide to select a non informative prior and, in particular, we use Jeffrey’s
prior for the Poisson distribution:

p(n̂s, n̂b, θ) =
α√
n̂sn̂b

p(θ), (3.47)

where α is a normalizing constant. At the end we have that our full prior is
given by Eq. 3.48:

π({gi},M, n̂s, n̂b, θ) =
α√
n̂sn̂b

p(θ)
(n̂s + n̂b)

M

M !
exp[−(n̂s + n̂b)]

(
n̂s

n̂s + n̂b

)Ms
(

n̂b

n̂s + n̂b

)Mb

=
α√
n̂sn̂b

p(θ)
n̂Ms
s n̂Mb

b

M !
exp[−(n̂s + n̂b)], (3.48)
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where we have used that Mb + Ms = M . Now, by combining the prior
from Eq. 3.48 and the likelihood in Eq. 3.43 we can construct the posterior
distribution as in Eq. 3.49:

p({gi}, n̂s, n̂b, θ|d,M) =
α

p(d,M)M !

 ∏
{i|gi=1}

n̂sŝ(xi, θ)

 ∏
{i|gi=0}

n̂bb̂(xi, θ)


× exp[−(n̂s + n̂b)]

p(θ)√
n̂sn̂b

. (3.49)

If we marginalize over the discrete nuisance parameter, {gi}, we have that
the marginal posterior distribution is given by Eq. 3.50:

p(n̂s, n̂b, θ|d,M) ∝
∏
i

[
n̂sŝ(xi, θ) + n̂bb̂(xi, θ)

]
exp[−(n̂s + n̂b)]

p(θ)√
n̂sn̂b

,

(3.50)

which can be used to estimate the distribution of the rates. For example, let’s
assume that we have chosen a threshold such that the number of triggers from
an astrophysical origin is much bigger than from background. Under this
assumption we have that ŝ(xi, θ) ≫ b̂(xi, θ) for all elements. If the condition
n̂sŝ(xi, θ) ≫ n̂bb̂(xi, θ) also holds, we have that the marginal posterior in Eq.
3.50 can be written as:

p(n̂s, n̂b, θ|d,M) ∝
∏
i

[ŝ(xi, θ)] n̂
Ms
s exp[−(n̂s + n̂b)]

p(θ)√
n̂sn̂b

. (3.51)

If we marginalize over n̂b we can write this as:

p(n̂s, θ|d,M) =

∫
p(n̂s, n̂b, θ|d,M)d(n̂b)

∝
∏
i

[ŝ(xi, θ)] n̂
M
s exp[−(n̂s)]

p(θ)√
n̂s

∫
exp[−n̂b]

1√
n̂b

d(n̂b)

∝
∏
i

[ŝ(xi, θ)] n̂
M
s exp[−(n̂s)]

p(θ)√
n̂s

, (3.52)
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and if we assume there is no dependence in θ, we have that the maximum is
reached when:

d

d(n̂s)

[
(M − 1

2
)log(n̂s)− n̂s

]
= 0

(M − 1

2
)
1

n̂s

− 1 = 0

n̂s =M − 1

2
(3.53)

Using now that the number of events can be written in terms of rate density
as n̂s = R⟨V T ⟩, we have that:

R =
M − 1

2

⟨V T ⟩ ≈ M

⟨V T ⟩ , (3.54)

where we have approximately recovered the rate for the foreground domi-
nated statistics as in Eq. 3.39. In fact, the term 1

2
appears due to the choice

of prior in p(n̂s, n̂b, θ).

In the next section we will use this formalism to derive the estimation of
an upper limit for the rate in the case of no detection.

3.3.8 Loudest event statistic

Sometimes the confident number of triggers from astrophysical origin is not
large enough to provide a good estimation of the rate density and a different
approach is needed to add constraints. This is done by using the ”Loudest
event statistic”, which consists in using the loudest event, from a list ordered
by a ranking statistics x, to estimate upper limits to the signal rate [87,
88, 86]. However, there is a drawback to this approach: we are discarding
the information given by the other triggers. Nevertheless, this technique has
been used to estimate rate upper limits in several searches [88, 89, 87, 90].
In this section we will explain the basic concepts of this method and derive
the equation used to constrain the rate in the case of no signal.
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Let’s assume that from our list of events we are interested only in the loudest
trigger, xM . Then, under this hypothesis, the marginal posterior in Eq. 3.50
takes the form seen in Eq. 3.55:

p(n̂s, n̂b, θ|d) ∝
[
n̂sŝ(xM , θ) + n̂bb̂(xM , θ)

]
× exp[−n̂s(1− Ŝ(xM , θ))− n̂b(1− B̂(xM , θ))]

p(θ)√
n̂sn̂b

,

(3.55)

where the term inside the exponential, n̂s(1−Ŝ(xM , θ)), indicates the number
of signals/backgrounds expected above the ranking statistic of our loudest
event. Let’s now assume the following:

• The background distribution and n̂b are known.

• We don’t have extra information on n̂s but instead of using Jeffrey’s
prior we use a uniform prior: p(n̂s) ∝ k with k constant.

• There is no dependence in θ.

Under these assumptions we have that Eq. 3.55 simplifies to Eq. 3.56:

p(n̂s|d) ∝
[
n̂sŝ(xM) + n̂bb̂(xM)

]
× exp[−n̂s(1− Ŝ(xM))− n̂b(1− B̂(xM))], (3.56)

which can be integrated to estimate the normalization constant, κ:

κ =

∫ ∞

0

p(n̂s|d)d(n̂s)

= e−n̂b(1−B̂(xM ))

[
ŝ(xM)

∫ ∞

0

n̂se
−n̂s(1−Ŝ(xM ))d(n̂s) + n̂bb̂(xM)

∫ ∞

0

e−n̂s(1−Ŝ(xM ))d(n̂s)

]
=

n̂bb̂(xM)

1− Ŝ(xM)
e[−n̂b(1−B̂(xM ))]

[
1 +

ŝ(xM)

(1− Ŝ(xM))n̂bb̂(xM)

]
. (3.57)

Therefore, the posterior is:

p(n̂s|d) =
1

κ

[
n̂sŝ(xM) + n̂bb̂(xM)

]
× exp[−n̂s(1− Ŝ(xM))− n̂b(1− B̂(xM))]

=
ϵ̂

1 + Λ
(1 + n̂sϵ̂Λ)e

−n̂sϵ̂, (3.58)
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where we have defined ϵ̂ and Λ as follows:

ϵ̂ = 1− Ŝ(xM) (3.59)

Λ =
ŝ(xM)

(1− Ŝ(xM))n̂bB̂(xM)
. (3.60)

ϵ̂ describes the detection efficiency or, in other words, the probability that a
trigger louder than xM has an astrophysical origin. Λ measures how likely
it is for a trigger with ranking statistics xM to have an astrophysical origin
versus being background. In particular, Λ → 0 indicates that the origin is
almost sure background.

If we integrate this posterior to estimate a credible interval for n̂s as in
Eq. 3.61, we have that:

1− α =

∫ n

0

p(n̂s|d)d(n̂s) = 1−
[
1 +

nϵ̂Λ

1 + Λ

]
e−nϵ̂. (3.61)

We are interested in the case where the loudest trigger is background. There-
fore, by taking Λ = 0, we have that an upper limit for the number of events
at confidence level 1− α is given by Eq. 3.62:

n = − log(α)
ϵ̂

, (3.62)

which can be transformed into rate density by dividing over the observation
time, T0, and the maximum volume searched V0:

R =
n

TV0
= − log(α)

TV0ϵ̂
= − log(α)⟨V T ⟩ , (3.63)

where we have transformed into sensitive volume using the efficiency as in Eq.
3.33. It should be noted that this efficiency is estimated by using the loudest
event ranking statistics as threshold. Eq. 3.63 provides an estimation of the
upper limit for the rate density at confidence limit of 1− α in the case of no
detection. In particular, the 90% confidence interval (1−α = 0.9 → α = 0.1)
is given by Eq. 3.64:

R90% = − log(0.1)⟨V T ⟩ =
2.303

⟨V T ⟩ . (3.64)

This will be used in Chapter 4 to add constrains to the rate of CBC events
with at least one subsolar mass component.
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3.3.9 Creating a search pipeline

The elements introduced in the previous sections are used to construct a
pipeline dedicated to the search for GW from CBC events. The purpose of
these searches is to identify candidates from detector data and to provide an
estimation of their statistical significance. In this section we will show how
all the steps are merged together to construct these pipelines. We will use the
PyCBC pipeline, explained in detail in Refs. [70, 69, 91, 92, 93, 94], as an ex-
ample. A flowchart showing all the steps of a pipeline can be seen in Fig. 3.7.

The offline PyCBC pipeline [91, 92] is a matched-filter pipeline designed
to search for coincident triggers in two or more detectors [94]. The pipeline’s
input is the calibrated strain data of the different detectors. The data is gated
to remove non Gaussian components and noise transients. Furthermore, the
worst periods of the data are filtered through data quality investigations.
Depending on the objective of the search, a template bank that spans the
astrophysical signal space is created. PyCBC is limited to searches of GW
from binaries in quasi-circular orbits with aligned spins.

The data from each detector is matched filtered against the template bank
independently. A list of triggers is created by searching for the maxima of
the SNR time series that exceed a chosen threshold value. Given that many
sample points in the SNR time series can exceed the threshold and a signal
will have a single narrow peak, a time-clustering algorithm is applied. The
SNR time series is divided into equal one second windows and the maximum
SNR is identified. This list is subject to signal consistency tests, as described
in Sec. 3.3.4, starting with the chi-squared test. The output of this test is
used to down-weight triggers according to the following recipe:

ρ̂ =

{
ρ/[(1 + (χ2

r)
3)/2]1/6, if χ2

r > 1

ρ if χ2
r ≤ 1

, (3.65)

where ρ is the matched filter SNR and χ2
r =

χ2

2p−2
is the reduced chi squared

for each trigger. The re-weighted SNR is used to filter the triggers by set-
ting a re-weighted SNR threshold. Now coincidence between the different
interferometers taking data at the time of each trigger is enforced. The trig-
gers should be observed at times compatible with the maximum travel time of
the GW between interferometers, accounting for uncertainty in the measured
time, e.g. 15ms for the two LIGO detectors.
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Furthermore, only the triggers with the same template in all the detectors
are allowed. Any trigger remaining is labeled as candidate event.

Each of these candidates event is assigned a detection statistic value, e.g.
the network SNR, ranking the likelihood of the trigger being produced by a
GW signal. The significance of each trigger is estimated by using the FAR as
described in Sec. 3.3.5. The estimation of the significance requires a list of
statistically independent candidates. To prevent noise transients and signals
to generate correlated coincident candidates from all the triggers within a
short time, a clustering step is done: If there are more than one coincident
trigger within a time window, e.g. 10s, only the event with the highest detec-
tion statistics is taken into account. Finally, a list of significant candidates
is produced.

The performance of the pipeline is monitored by regular injections into the
data. These injections are also used to estimate the sensitivity of the search.

3.4 Parameter estimation

Assuming we have a detection, the next step would be to estimate the param-
eters of the source [95, 96, 46, 97, 98]. This is done by performing parameter
estimation, using bayesian inference (See Appendix B), assuming a model
and constructing a likelihood with our data. Parameter estimation can also
be used to constrain parameters of models. In this section we will focus on
parameter estimation for CBC sources but the technique for other searches
follows the same principle.

The likelihood is constructed as in Eq. 3.13, where we have assumed that
the residual should follow Gaussian noise if the model correctly describes the
signal within the data. If we also assume that our data is stationary, the
likelihood model is reduced to:

L(d|h; θ) = 1

det(2πC)1/2
exp

(
−1

2
(d(t)− h(t; θ)|d(t)− h(t; θ)

)
. (3.66)
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Figure 3.7: Flowchart showing the different steps of the PyCBC pipeline. Taken
from Ref. [92]
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And with this likelihood, we can construct the posterior probability for pa-
rameters θ using Bayes’ rule, as in Eq. 3.67:

p(θ|d) = L(d|h; θ)p(θ)
Z

, (3.67)

where p(θ) is the prior distribution of our parameters and Z is the evidence,
used to normalize the posterior distribution. A key aspect to notice in this
analysis is that it strongly depends on the choice of signal model for h(t; θ).
This model dependence means that there might be systematics due to differ-
ences in the waveform used to model the signal.

The prior distribution is given by our knowledge of the parameters that
describe the waveform from a CBC event, as we have seen in Chapter 1 and
Chapter 2. For the most general search, we need to provide priors for:

• Two component masses or chirp mass and reduced mass. In detector
frame.

• 6 spin components in Cartesian or spherical coordinates.

• Luminosity distance to the source.

• Sky position in terms of right ascension and declination.

• A reference time and phase, usually the merger time in the interferom-
eter.

• Polarization and inclination angle.

The choice of the functional form of these priors is important and, usually, a
non informative prior is used. For example, the masses are usually described
by a prior uniform in component masses and the distances with a prior uni-
form in comoving volume (using that galaxies are distributed in the same
way in the universe). The same considerations are given to the rest of the
parameters.

The last step is to sample the posterior distribution to get an estimation
of the source parameters. This is not an easy task as we need to estimate
the distribution for 15 parameters, 11 if we assume aligned spins.
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This translates into a staggering amount of 45 parameters, using 3 detectors
and including parameters needed to describe the interferometers uncertainty,
to estimate. This problem is solved by sampling as explained in Sec. B.5.

In particular, two methods are used, a mcmc approach using the Metropoli-
Hasting algorithm (see Sec. B.5.1) and another method based on a different
family known as nested sampling. An example of a posterior distribution for
a five dimensional can be seen in Fig. 3.8. In the diagonal, the individual
posterior distributions for five different parameters are shown. The dotted
lines correspond to the 1σ intervals around the median value, indicated at
the top of each distribution. The elements below the diagonal show the two-
dimensional posteriors where the correlations between the parameters are
seen. Contour lines for the 1σ (darkest), 2σ and 3σ (lightest) confidence
regions are drawn.
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Figure 3.8: Parameter estimation for five parameters corresponding to the masses,
distance and sky position (Right ascension+Declination). The darkest shaded
region corresponds to the 1σ region while the lightest is the 3σ region.
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Chapter 4

Sub solar mass searches with
matched filtering

In this chapter, we will discuss the results of a search for GWs produced
by the coalescence of two compact objects in which at least one of them
has a subsolar mass. The search is motivated by the fact that there are no
standard channels based on star evolution to produce subsolar mass com-
pact objects. Therefore, such a detection would point to a new formation
mechanism different from stellar evolution. We report the search performed
by the Ligo-Virgo-Kagra (LVK) collaboration using the data from the third
observation run (O3a+O3b) [89, 99]. The search includes an extended mass
range with respect to the O1 and O2 subsolar mass searches [88, 87]. Outside
the collaboration, the O3 data was used to independently search for subsolar
mass objects, as detailed in Refs. [90, 100].

The results will be used to estimate the sensitive volume (see Sec. 3.3.6) and
constrain the rate density of subsolar mass CBCs using the loudest event
statistic (see Sec. 3.3.8). Two models will be constrained using these limits:
fraction of primordial black holes (PBHs) in the universe and fraction of mass
of atomic dark matter that collapses into a black hole [101, 102]. A more
in-depth description of these models is presented in the following sections.
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4.1 Primordial black holes

PBHs have been a source of interest since they were independently sug-
gested by Zeldovich and Novikov in 1967 [103] and Hawking in 1971 [104]
to account for at least a fraction of the universe’s dark matter (DM). These
objects would have been formed in the early universe with mass depending
on the formation time [105, 106, 107].

A BH of massMPBH would have a Schwarzschild radius of Rs = 2GMPBH/c
2

and a mean density inside that region of ρs = MPBH

(4πR3
s/3)

. Assuming that the

cosmological density at a time t after the Big Bang is given by ρc ∼ 1/(Gt2),
we have that in order for PBH to form we need densities of the same order
inside the horizon, ρc ∼ ρs. Therefore, the initial mass of a PBH would be
of the order of the horizon mass, MH , at the time, as in Eq. 4.1:

MH ∼ c3t

G
∼ 1015

(
t

10−23s

)
g. (4.1)

From this equation it can be deduced that the PBHs masses could span an
enormous mass range. For example, at a time t ∼ 10−43s they would have
a mass of ∼ 10−5g while at the time of the QCD transition, t ∼ 10−6s, they
would have masses around 1M⊙. Therefore, due to the lower mass limit of
stellar mass black holes being ≈ 3M⊙, a subsolar mass black hole would point
to a possible primordial origin.

The small masses of PBHs motivated Hawking to study their quantum prop-
erties. He found that black holes radiate thermally at a temperature given
by Eq. 4.2:

T =
ℏc3

8πGMkb
≈ 10−7

(
M

M⊙

)−1

K, (4.2)

losing mass and energy during the emission and ultimately evaporating on a
timescale given by Eq. 4.3:

τ(M) ≈ ℏc4

G2M3
≈ 1064

(
M

M⊙

)3

yr. (4.3)

From this result it can be extracted that PBHs smaller than 1015g (formed
before 10−23s) would have evaporated by now and cannot contribute to dark
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matter today. Since their conception, PBHs have been used to explain sev-
eral cosmological features. For example, evaporating PBHs have been used
to explain extragalactic and Galactic γ ray backgrounds or short period γ
ray burst. Non evaporating PBHs have been used not only to explain DM
but also lensing effects or GW detected events. Even though there are other
explanations for these effects, they have been used to constrain the number
of PBHs of a given mass.

In this work, we are going to focus on non evaporating PBHs in the sub-
solar mass range. These are expressed as constraints on the density fraction
of PBHs with respect to the density of DM, that is, fPBH = ΩPBH/ΩDM. It
should be noted that most of the constraints assume that the PBH mass
spectrum is quasi-monochromatic (In other words, a distribution with width
∆MPBH ≤ MPBH). The mass distribution and abundance of PBHs depend
on their formation mechanism and the fluctuations generated in the primor-
dial power spectrum during inflation. In the next section some of the most
relevant formation scenarios will be discussed.

4.1.1 Formation of PBHs

The most natural formation channel follows from the collapse of overdense
regions in the early universe. Density fluctuations would enter the horizon
stopping the expansion and collapsing. This would happen when the over-
density, δ, excess a critical value, δc, at the time of entering the horizon. In
early calculation, this value was estimated to be 1/3 for the radiation era
and spherically symmetric regions. Assuming that the fluctuations follow a
Gaussian distribution with dispersion θ, then the fraction collapsing to PBH
is estimated to be [108]:

β ≈ Erfc

[
δc√
2σ

]
, (4.4)

where ’Erfc’ corresponds to the complementary error function1 and indicates
the excess above the mean value. Assuming a monochromatic spectrum, the
end mass of the resulting PBH [109] on some mass scale K is given by the
Eq. 4.5 when the collapse occurs near the critical point:

M = K(δ − δc)
η, (4.5)

1Erfc(x) = 2√
π

∫∞
x

e−t2dt
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where K is of the order of the horizon mass and η depends on the equation
of state. This allows the mass of the PBHs to extend down to small scales.
The value of the critical density has been estimated several times, including
more effects that might affect PBH formation. Recent numerical simulations
suggest that it should be constrained between 0.4 and 2/3. However, given
that the formation of PBHs originates from the tail of the density fluctua-
tions, it is expected to be very sensitive to non Gaussianities in the density.
Differing values for the equation of state of the universe have also shown to
affect the value of the critical density.

The dependence of δc in the equation of state is particularly important dur-
ing the QCD transition2 that happened when the universe cooled down [110].
During this transition, the equation of state of the universe softened by
around 30% boosting the PBH formation due to a decrease in the critical
density of around 10%. As indicated by Eq. 4.1, the QCD transition would
occur at a time with horizon masses close to 1M⊙, producing in turn a peak
in the PBH mass distribution at that mass. In fact, this boost is not negli-
gible between 0.1M⊙ and 100M⊙ which corresponds to the sensitive region
of the current interferometers. Finally, inflation dynamics might also in-
fluence the formation of PBHs in the subsolar mass range, as explained in
Refs. [111, 112, 113, 114, 115, 116, 117, 118, 119].

4.1.2 Binary formation and merger rate

The mechanism of PBH binary formation depends on the cosmological epoch
at which they formed: before matter-radiation equality (point in which the
energy density of matter and radiation are equal), binaries form when the
PBHs decouple from the cosmic expansion and become gravitationally bound
to each other (early binaries). After matter-radiation equality, they are dy-
namically formed inside PBH clusters (late binaries). The two families of
PBH binaries contribute to the merger rate. However, the contribution from
early binaries is expected to dominate the present rate.

2New results from lattice QCD indicate that this is not a phase transition but a cross-
over. There were no periods of phase coexistence and the thermodynamic quantities
evolved smoothly.
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An estimation of the merger rate of late binaries is given in Refs. [120, 121]
and shown in Eq. 4.6.

RLB = RclustfPBHf(m1)f(m2)
(m1 +m2)

10/7

(m1m2)5/7
, (4.6)

where Rclust is an effective scaling factor incorporating the clustering prop-
erties of PBHs and f(mi) are the PBHs mass distribution.

In this thesis two early binary formation models will be considered. The
models provide an analytical expression of the theoretical merger rate that
will be used along the estimated merger rate limits to constraint fPBH.

3-body system + No suppression

The first model consists on a phenomenological model for early binary for-
mation, following the derivation from Refs. [122, 123]. The model assumes
a population of PBHs uniformly distributed in comoving volume and with
equal mass. This model provides a simple approach that can be used to
constrain generic PBH mass functions [124].

The model in Refs. [122, 125, 123, 126] assumes that the binaries are created
when some PBHs in the early universe decouple from the cosmic expansion.
Without external contributions, the nearest pair of PBHs will move closer
until they collide. The collision is prevented by the gravitational field of the
PBH closest to the pair. It will produce a torque that disrupts the collision
and allows a binary system with a large eccentricity to form.

The new binary system will lose energy in the form of GW until it finally
coalesces at some time tc. Therefore, the probability of coalescence occurring
in a time interval (t, t+ dt) is given by:

dP =


3 f

37/8
PBH

58

[
f
−29/8
PBH

(
t

tc

)3/37

−
(
t

tc

)3/8
]
dt

t
, t < tc

3 f
37/8
PBH

58

[
f
−29/8
PBH

(
t

tc

)−1/7

−
(
t

tc

)3/8
]
dt

t
, t ≥ tc

, (4.7)
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and the coalescence time, tc, is:

tc =
3

170

c5

(GmPBH)5/3
f 7
PBH

(1 + zeq)4

(
8π

3H2
0ΩDM

)4/3

, (4.8)

where c is the speed of light, G the gravitational constant, zeq is the redshift
at matter-radiation equality (zeq ≈ 3000), mPBH the mass of the black hole
and H0 the Hubble constant. The merger rate at present time is given by
Eq. 4.9:

RPBH = nPBH
dP

dt

∣∣∣∣
t=t0

=
3H2

0

8πG

ΩDM

mPBH

dP

dt

∣∣∣∣
t=t0

. (4.9)

This model provides a simple estimation of the merger rate but doesn’t take
into account effects that might disrupt the binary at some point between the
formation and the merger. A more refined model including effects that might
suppress the merger rate is shown in the next section.

N-body system + Rate suppression

The previous model considered that the torque was fully provided by only
one PBH but, recent studies, have found that the contribution from nearby
PBHs is not negligible and a full N-body analysis is needed, as detailed in
Refs. [127, 128, 129]. Furthermore, depending on the initial spatial distribu-
tion of PBHs, the binary might be disrupted shortly after formation due to
the nearest PBHs. This results in a suppressed merger rate.

These effects are taken into account in Refs. [127, 130, 131] and estimated
that the theoretical merger rate is given by Eq.

dRPBH

d lnm1d lnm2

= 1.6× 106Gpc−3 yr−1 × fsupf
53/37
PBH f(m1)×

f(m2)

(
m1 +m2

M⊙

)−32/37 [
m1m2

(m1 +m2)2

]−34/37

, (4.10)

where fsup is the suppression factor and f(m) is the normalized PBH density
distribution. The suppression factor also accounts for the effect of inho-
mogeneities in the surrounding matter and disruptions due to nearby PBH
clusters absorbing the binary. In particular, it was found that the disruption
of the binary due to a single PBH is dominant when fPBH ≪ 1. The con-
tribution from PBH clusters is expected to be more dominant when fPBH ≈ 1.
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The suppression factor has an important contribution in the case of a distri-
bution of PBHs with the same mass or strongly peaked mass function. Under
this hypothesis, the suppression factor is given by fsup ≈ 2.4 × 10−3f−0.65

PBH ,
highly suppressing the merger rate.

4.2 Dark matter black holes

The second source of subsolar objects that will be considered are dark matter
black holes. These black holes are produced by the collapse of dark matter
halos made of dark fermionic particles. Therefore, it is referred to as ”Atomic
dark matter”.

Atomic dark matter models assume that dark matter might couple to new
short or large range forces. In particular, we are going to focus on a long range
force, similar to electromagnetism, mediated by a massless dark photon and
with a strength given by a dark fine structure constant, αD. In this model
we assume that atomic dark matter is made of two dark fermionic particles
of opposite charge: one with mass mx and the other one with mass mc such
that mx > mc. Through the interaction with the new force, these two par-
ticles form bound states similar to atomic and molecular hydrogen [101, 102].

Once enough density of gas dark matter is accumulated in a region of space, it
starts cooling down by several processes [132] (e.g. recombination or Bremm-
strahlung), dissipating kinetic energy into dark radiation. This reduces the
internal gas pressure of the system and, through the effect of gravity, the
dark gas cloud collapses, forming a black hole. Due to the lack of pressure
produced by nuclear fusion, dark matter clouds can only collapse into black
holes. The minimum mass needed for this collapse to occur is given by the
Jeans mass3 for atomic dark matter as in Eq. 4.11:

Mmin ≈ 800M⊙

(
mp

mx

)5/2(
mc

me

)1/2 (αD

α

)1/2
, (4.11)

where mp is the mass of the proton, me the electron mass, mx and mc the
mass of the dark matter particles and α is the fine structure constant in the

3Critical mass at which a gas system starts collapsing due to gravity.
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Standard Model. However, the minimum mass a dark matter black hole may
have is given by the dark Chandrasekhar limit. This limit, shown in Eq.
4.12, corresponds to the Chandrasekhar limit for star formation including a
scaling factor depending on the mass of the dark heavy particle, mx:

MDC = 1.457M⊙

(
mp

mx

)2

. (4.12)

In both situations, the mass can reach subsolar ranges depending on the val-
ues of mx, mc and αD. Therefore, searches in the subsolar range are able to
constrain these models and the fraction of dark matter that collapses into
Dark matter Black Holes (DBHs), fDBH.

Furthermore, given that the formation of DBHs is expected to be similar
to the formation of Population-III stars4, their parameters are used as refer-
ence.

4.2.1 Likelihood and posterior estimation

The analysis is done by means of Bayesian inference: estimating the poste-
rior distribution given the sensitive volume of the search and modelled dark
matter BH rates, R. The posterior is given in Eq. 4.13:

P (f, θ|R, V T ) ∝ P (f)P (θ)L(f, θ;RV T ), (4.13)

where θ = (Mmin, b, r) includes two additional parameters, b and r, needed
to fully model the distribution. These two parameters are used to model the
initial mass function distribution of DBHs: ’b’ corresponds to the slope and
’r’ limits the maximum mass of the initial population. In particular, an expo-
nential described by dP(m) ∝ mb with m ∈ [Mmin,Mmax] = [Mmin, rMmin]
is assumed.

Uniformative priors large enough to include ranges from Population-III stud-
ies are used:

• b: uniform between [-1,2]. Compatible with values from Population-III
studies for binary systems [133, 134, 135].

4Hypothetical population of high massive stars with low metalicity formed in the early
universe. It is suggested that these stars might have started the production of elements
heavier than hydrogen.
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• r: uniform in log between [2,1000]. This range is large enough to
include values from Population-III stars [135].

• fDBH: uniform between [10−10, 1].

• Mmin: uniform between [10−3M⊙, 3.1M⊙].

The rate, R, is modelled as in Eq. 4.14 and restricted to the search chirp
mass range, Mc ∈ [0.2M⊙, 2.5M⊙]:

Ri(Mc = mi|f, θ) = Pi(mi|tm, θ)
(
dP (tm = 10 Gyr|θ)

dt

)
×
(
ρDM × f × fbinary

⟨M⟩

)
,

(4.14)

where ρDM = 3.3× 1019 M⊙ Gpc−3 is the density of dark matter in the uni-
verse, fbinary = 0.26 is the fraction of DBH binaries from the total amount
of DBHs (a choice motivated by the results from Population-III stars [134]),
Pi(mi|tm, θ) is the chirp mass distribution given some parameters θ and a
merger time tm = 10Gyr, P (tm = 10 Gyr|θ) is the probability of the merger
time being tm and ⟨M⟩ is the average mass of the DBHs given the initial
mass function for some parameters θ.

Finally, we need to weight the sensitive volume estimated by the search over
the allowed values of the mass ratio for a population θ:

V Ti(Mc = mi|θ) =
∫ qmax

1

P(q|mi, tm, θ)V T (mi)dq. (4.15)

Assuming that the DBH event counts within a chirp mass bin follows a Pois-
son distribution, we have that the rate posterior in the limit of no detection
is given by:

P (R|V T ) = V T (θ) exp(−R(f, θ)× V T (θ)), (4.16)

which in turn can be used to estimate the likelihood, L(f, θ;RV T ), as in Eq.
4.17:

L(f, θ;RV T ) =
∏
i

∫∞
Ri

Pi(R|f, θ, V Ti)dR∫∞
0

Pi(R|f, θ, V Ti)dR
, (4.17)
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where ’i’ iterates over all the chirp mass bins used. The likelihood in Eq.
4.17 along with the prior choices explained before can be used to estimate
the 4D posterior in Eq. 4.13. As a last step, the posterior is marginalized
over ’b’ and ’r’ so that only the pair given by (Mmin, f) remains.

The PBH models explained in Sec. 4.1.2 and the DBH model in Sec. 4.2.1
will be constrained by the results of the searches in the following sections.
The search was divided into two parts: O3a and O3b. The O3b search
includes modifications with respect to the O3a search.

4.3 Search of subsolar objects in the first half

of the third observing run

In this section we will discuss the main results from the subsolar mass search
performed by the LVK collaboration in the first half of the third observation
run [89].

4.3.1 Data and search pipelines

The first half of the third observation run (O3a) covers the period from 1 April
2019 1500 UTC to 1 October 2019 1500 UTC. As explained in Sec. 2.7, the
data is characterized and calibrated prior to the analysis. A detailed descrip-
tion of the calibration can be found in the catalog papers [43, 136, 10, 137].
The data used for this search includes an additional non-linear removal of
spectral lines [138, 11] that uses the information from sensors monitoring the
interferometer to subtract non-stationary noise. The search is made by using
three different matched-filtering (see Chapter 3 and Sec. 3.3.9) pipelines:
GstLAL [80, 139, 140], MBTA [141], and PyCBC [70, 69, 91, 92, 93, 94]

The offline PyCBC pipeline is explained in Sec. 3.3.9. The configuration
used is the same as in the O3a GW catalog (GWTC2) [10]. For this search,
a log-likelihood model as a ranking statistic was used. This model uses the
SNRs, time delay, phase difference, estimated background and the network
performance at the time of the coincidence to rank each coincidence trigger.
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The Multi-Band Template Analysis (MBTA) pipeline is a matched-filter
pipeline that splits the filtering into two frequency bands to reduce the com-
putational cost [73, 142]. The data is re-sampled to 4096Hz and gated follow-
ing a procedure similar to PyCBC [92] prior to the matched-filter step. The
configuration used for this search is the same used during the third obser-
vation run [141] but with two differences: longer time periods for the FFTs
(from seconds to hundreds of seconds) and longer update time for the PSD
estimation.

The GstLAL [80, 139, 140] pipeline is a matched-filter pipeline that performs
the filtering in the time-domain. Furthermore, it also applies time-domain
signal consistency tests. Candidates are ranked according to a likelihood
ratio statistic based on their SNR, time delay, phase difference, sensitivity,
signal population model [143] and statistical data quality from the iDQ al-
gorithm [51, 144]. However, in this case, population models of subsolar mass
objects are not known and a uniform template density is used. No gating
is applied and the ranking statistic and configuration are the same as in
Ref. [10].

In the next sections we will show the results obtained by the three differ-
ent pipelines and the estimated sensitive volume.

4.3.2 Template bank

As was shown in Sec. 3.3.3, a template bank is needed for a search us-
ing matched-filter. The same bank was used by the three search pipelines.
The bank was constructed following the geometric placement algorithm, de-
scribed in Ref. [71], with a minimum match of 0.97 over the frequency band
45Hz-1000Hz. This algorithm works by defining a metric on the waveform
parameter space and describing the missmatch between two close points us-
ing the metric (see Sec. 3.3.3). This minimum match was selected so that
the loss of signals due to a discrete template bank is no more than 10%.
The signals were modeled using the TaylorF2 waveform, as explained in
Refs. [145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155]. This model
includes phase terms up to 3.5PN order but doesn’t include amplitude cor-
rections (see Sec. 1.3).
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The masses covered by the template bank can be seen in Fig. 4.1. These
masses are in the detector frame. In other words, they are redshifted due
to the propagation of the GW: md = (1 + z)m. As it can be seen, the pri-
mary mass, m1, ranges from 0.2M⊙ to 10M⊙ while the secondary mass, m2,
takes values between 0.2M⊙ to 1M⊙. The lowest mass limit was selected
for consistency with previous searches using the first and second observation
runs [87, 88]. There is an additional constraint in the minimum possible mass
ratio, q ≡ m2/m1. This parameter is constrained to values in the interval
q ∈[0.1, 1.0]. Spins aligned with the orbital angular momentum are also
taken into account for the template bank generation [156].

In order to reduce the amount of computational resources needed, the spin
range covered is limited as follows:

• For a component mass, mi, with mi ≥ 0.5M⊙, the dimensionless com-
ponent spin is allowed to go up to 0.9.

• For a component mass, mi, with mi ≤ 0.5M⊙, the maximum dimen-
sionless component spin is limited to 0.1.

Furthermore, precession is not considered to limit the size of the template
bank for the same reason. The resulting template bank is composed of more
than 1.8 million templates, twice as large as the template bank used in pre-
vious searches.

The matched-filter (see Sec. 3.3.2) lower frequency is 45Hz instead of the
15Hz employed in other searches [10]. This value was selected so that the
search is not computationally prohibitive due to the long duration of the tem-
plates. The higher value for the lowest frequency translates into a maximum
loss of signal-to-noise ratio of 9% which, in turn, implies a reduction of sen-
sitive volume of 24%. For future searches, the implementation of a variable
lower frequency is being explored. This approach would limit the duration
of the signals (e.g. to 512s) instead, allowing matched-filter to recover more
SNR.
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Figure 4.1: Template bank used in the O3a subsolar mass search by all the
pipelines in the (m1,m2) plane.

4.3.3 Injections

An injection campaign per pipeline was made to estimate the sensitivity
following the steps in Sec. 3.3.6. As seen in Eq. 3.29, a population model is
needed to estimate the sensitive volume [95, 157, 158]. The choices used for
this analysis are as follows:

• Masses: Source frame masses between 0.2M⊙ < m1 < 10.0M⊙ and
0.2M⊙ < m2 < 1.0M⊙. However, the masses in detector frame are
larger than in the source frame (md

1 ∈ [0.22, 11.2]M⊙ and
md

2 ∈ [0.22, 1.12]M⊙) and a detector frame mass cut was added so that
the injections are covered by the template bank (given in terms of the
detector frame masses).

• Aligned spins following the same distribution as the template bank.

• Sources uniform in comoving volume with random orientations and
isotropically distributed.

Planck “TT,TE,EE+lowP+lensing+ext” cosmology [159] was used for all
the calculations. These cosmological results are derived from the Planck
observations of the temperature and polarization anisotropies of the cosmic
microwave background. Additionally, reweighting, as explained in Eq. 3.38,
was needed due to the original injection set not being distributed uniformly
in comoving volume.
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4.3.4 Results

Using the template bank defined previously, the O3a data was searched for
GW from subsolar mass objects. No confident detection was found by the
search pipelines. The most significant trigger had a FAR of 0.14 yr−1 which
is not considered enough for claiming detection (< 0.01yr−1). Therefore, we
will use the loudest ranking statistic, as in Sec. 3.3.8, to estimate an upper
limit on the merger rate. We assume that this merger rate is constant as a
function of the redshift, a reasonable assumption since the search is sensitive
only to nearby sources (z ≲ 0.12).

For this analysis, it is assumed that the sensitivity is, at first approxima-
tion, a function of the chirp mass [160], ⟨V T ⟩(Mc). Therefore, the sensi-
tive volume is estimated in nine equally spaced chirp mass bins between
0.17M⊙ and 2.39M⊙. Each bin is denoted by the index ’i’ and the associated
sensitive-volume as ⟨V T ⟩i. The 90% confidence interval on the merger rate
is estimated using the sensitive volume and Eq. 3.64.

The results of the search can be seen in Fig. 4.2 where the rate density
upper limits as a function of chirp mass are shown for each pipeline. These
upper limits are in the range [220 − 24200] Gpc−3 yr−1. Even though the
pipelines generally agree, there are some discrepancies due to differences in
the background estimation and ranking statistics used. These differences can
lead to sensitive volume measurements that agree to within O(30%). Fur-
thermore, there is a loss of sensitivity in the upper chirp mass limit due to
the injection set mass range being larger than the template bank.

Given these considerations, only the MBTA results, which shows a good
compromise between the three pipelines, will be used to constrain the PBHs
and DBHs models. Instrumental calibration errors [43] have been neglected
for this work as in the GWTC 2.1 catalog and population papers detailed
in Refs. [11, 161]. These errors are small in the sensitive region of interest
with an expected maximum contribution of ∼ 10% to the uncertainty of the
sensitive volume.

In the following sections we will use these rate limits to add constraints
to the two proposed models.
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Figure 4.2: 90% confidence limit for the upper limit on the merger rate as a
function of the chirp mass obtained by the different pipelines: GstLAL (dotted),
MBTA (dashed) and PyCBC (solid). Taken from Ref. [89].

Limits in the fraction of primordial black holes

The estimated upper limits on the rate are used to constrain fPBH assuming
the PBH binary model given in Sec. 4.1.2 (3-body system + No suppres-
sion). The coalescence time given by Eq. 4.8 is evaluated using the Planck
“TT,TE,EE+lowP+lensing+ext” cosmology [159], the same cosmology used
to create the injection set.

We estimate fPBH as a function of the component mass of the black holes
in the binary, mPBH. The model assumes a monochromatic distribution
of masses (q = 1) and our injection set includes unequal mass binaries
(0.1 ≤ qinj ≤ 1), as indicated in Sec. 4.3.3. Therefore, given that the
sensitivity of the detectors is mainly dependant on the chirp mass and not
on the mass ratio, we assume that R90(M, q = 1) ≈ R90(M) and limit the
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estimation to masses m1,2 < 1M⊙. This assumption allows us to use the
upper limits seen in Fig. 4.2.

The results are shown in Fig. 4.3. Unexplored region of the parameter
space is further constrained by our observations. It was found that, for a
monochromatic model with masses between 0.2M⊙ and 1M⊙, an upper limit
to the fraction of dark matter in PBHs is fPBH ≤ 6%. Fig. 4.3 also shows
(model dependent) constraints from different methods and mass ranges. The
high mass region (m > 10M⊙) is constrained from observation of dwarf galax-
ies Eridanus II and Segue I. These constraints are obtained by observing the
dynamics of dark matter dominated galaxies assuming that a fraction of the
dark matter is made by massive black holes.

In the region below 10M⊙, limits were estimated by monitoring the Mag-
ellanic clouds for microlensing events caused by Massive Compact Halo Ob-
jects (MACHOS). A MACHO is a compact object with little (or no) radiation
emission that might explain a fraction of dark matter. They are detected by
the transient magnification of a star image produced when they pass in front
of it (microlensing).

Constraining dark matter black holes

Constrains are estimated on the DBH model explained in Sec. 4.2. The anal-
ysis is performed using the likelihood and posterior model from Sec 4.2.1.

Using this method, the results presented in Fig. 4.4 are obtained. It was
found that that the lowest upper limit is located at Mmin = 1M⊙ corre-
sponding to fDBH = 0.003%. Given the fact that the minimum mass is
set by the Chandrasekhar limit, which depends on the mass of the heaviest
fermionic particle [101], mx, these limits can be used to constrain the range
of values allowed for the mass of this particle. It was found that mx is in the
range 0.66GeV/c2 to 8.8GeV/c2. Below Mmin < 2× 10−2M⊙ no meaningful
constraints can be set since, with the current sensitivity, none of the black
holes in the population would be detected.
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Figure 4.3: Upper limits on fPBH as a function of the component mass of the black
hole in the source frame for the model given in Sec. 4.1.2 (3-body system + No
suppression). Previous results from the LVK collaboration are shown [87, 88] along
with the new O3a results [89]. Constraints by non-GWs are shown as compari-
son: (Orange) Microlensing from MACHO [162],EROS [163], and OGLE [164];
(blue) supernova lensing (Union and JLA) [165]; (green) dynamical constraints
from dwarf galaxies (Segue I and Eridanus II) observations [166, 167]. It should be
noted that there is a model dependency on each constraint. Taken from Ref. [89].
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Figure 4.4: Limits on the fraction of dark matter that collapses into dark matter
black holes, fDBH, as a function of the minimum mass, Mmin, in the source frame
for the model given in Sec. 4.2.1. Taken from Ref. [89].

4.4 Search of subsolar objects in the second

half of the third observing run

The subsolar mass search was extended to the second half of the third ob-
serving run, covering the period from 1 November 2019 1500 UTC to 27
March 2020 1700 UTC. The data was calibrated in the same way as in Sec.
4.3.1 and searched with the same pipelines. The template bank is the same
as the one depicted in Sec. 4.3.2. Improvements with respect to the O3a
search were made in the creation of the injection set and PBH model used.
Furthermore, this search used the whole O3, increasing the observation time
by a factor two with respect to the O3a search, to constrain the two models.
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4.4.1 Injections

The injection set had slight modifications from what was used in O3a. For
this search, a common injection set among all the pipelines was used. The
set was designed as follows:

• Source component masses following a log-uniform distribution with
m1 ∈ (0.19, 11.0) M⊙ and m2 ∈ (0.19, 1.1) M⊙.

• Component spins isostropically distributed with dimensionless spin up
to 0.1.

• Distributed uniformly in comoving volume up to redshift z = 0.2.
Therefore, no reweighting was needed for this analysis.

Furthermore, the sensitivity over the O3a period is re-estimated using this
new injection set. This was done by covering the full O3 period with approx-
imately 2 million signals.

4.4.2 Results

The O3b period was searched by cross correlating the template bank with
the data. There is no statistically significant evidence of GW from a subsolar
mass source in O3b. In Table 4.1 the three most significant candidates, down
to a threshold of FAR < 2 yr−1, are reported. No data quality issues were
identified by a visual inspection around the time of the triggers. However,
the number of triggers with their estimated FAR is consistent with what we
would expect if no astrophysical signal was present in the data, given that
three pipelines were used and an observation time of 0.34 yr.

FAR [yr−1] Pipeline GPS time m1 [M⊙] m2 [M⊙] χ1 χ2 Network SNR
0.20 GstLAL 1267725971.02 0.78 0.23 0.57 0.02 8.90
1.37 MBTA 1259157749.53 0.40 0.24 0.10 −0.05 10.25
1.56 GstLAL 1264750045.02 1.52 0.37 0.49 0.10 9.10

Table 4.1: The triggers with a FAR < 2yr−1 in at least one search pipeline.
The parameters of the template associated with the trigger are shown for
each candidate: m1 and m2, the redshifted component masses, and χ1 and
χ2, the dimensionless component spin.
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As in the case of the O3a search, the results from the search and the injection
campaign were used to estimate the sensitive volume. Each pipeline used all
injections with q > 0.05. A 90% confidence interval for the sensitive volume
was estimated considering binomial errors in the efficiency, as in Eq. 4.18:

δ(V T ) = 1.645

√
ϵ(1− ϵ)

Ninj

VinjTobs, (4.18)

where ϵ is the efficiency, Ninj are the total injections, Vinj is the volume
at the farthest injection and Tobs is the observation time. Though PyCBC
and MBTA used the full injection set, GstLAL analyzed a subset, result-
ing in larger uncertainties in the sensitive volume. The population was split
into nine chirp mass bins equally spaced within the range 0.16M⊙ ≤ M ≤
2.72M⊙.

The sensitive volume as a function of the chirp mass is presented in Fig. 4.5.
The estimated sensitive volume is approximately twice as large as the one
from O3a data, in agreement with the increased observation time. The drop
in sensitivity in the highest chirp mass bin is due to the component masses
contained within that bin being beyond the scope of the template bank.
The re-estimated O3a sensitive volume, using the common injection set, was
found to be compatible with the results shown in the previous analysis (see
Sec. 4.3). Furthermore, between chirp masses of 1.3M⊙ and 2.3M⊙, the sen-
sitive volume is compatible with the estimation presented in the GWTC-3
catalog [66].

An upper limit on the merger rate was obtained by using the loudest ranking
statistic, as in Sec. 3.3.8. Each pipeline used the most significant candidate
in the full O3 as the FAR threshold: 0.2yr−1, 1.4yr−1 and 0.14yr−1 for Gst-
LAL, MBTA and PyCBC respectively. The results as a function of the chirp
mass are shown in Fig. 4.6. Upper limits were also obtained as a function
of the source component masses,(m1,m2), in Fig. 4.7. Similarly to the O3a
search, these results will be used to constrain two models of subsolar mass
objects.
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Figure 4.5: Sensitive volume as a function of the chirp mass for each pipeline. The
results from the O3a analysis are shown as a comparison. Taken from Ref. [99].
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Figure 4.7: Upper limits for the merge rate as a function of the source frame
component masses for the full O3. Taken from Ref. [99].
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Limits in the fraction of primordial black holes

The estimated upper limits are used to constrain the PBH binary model given
in Sec. 4.1.2 (N-body system + Rate suppression). The obtained results are
less stringent with respect to the O2 and O3a limits due to the inclusion of
suppression effects in the merger rate. Furthermore, due to the uncertainty
and caveats in the derivation of the merger rate for early binaries, a merger
rate for late binaries, given by Eq. 4.6, is also considered. These caveats
include the initial spatial PBH distribution, assumed to be Poissonian, and
PBH cluster dynamics. This allows us to show the variation in the PBH
limits depending on the binary formation scenario.

The results can be found in Fig. 4.8, where fPBH was not restricted to values
lower than one as to show the results from late binaries. In the case of late
binaries, no significant limits were found within the searched mass range. For
early binaries, the scenario fPBH=1 becomes strongly disfavored up to 1M⊙.
In particular, we have found that fPBH < 0.5 at 0.3M⊙ and is below 0.08 at
1M⊙. These results provide a looser constrain to fPBH compared to the LVK
O2 subsolar mass search [88] when no suppression factor was implemented.
This is not the case when the suppression factor is included in the estimation.

The rates given in Fig. 4.7 can be used to constrain unequal mass merger
rates. Unfortunately, these are more uncertain and model dependent. Un-
equal PBH mass distribution allows us to explain dark matter even if it has
a small contribution in a particular mass range. However, it introduces the
problem that the extended mass function should not violate the constraints
at all mass scales. This is particularly important in the case of PBH for-
mation extending over decades, as it would affect the mass of the collapsed
PBHs (See Eq. 4.1).

Under these considerations, we can obtain a limit on an effective parame-
ter:

FPBH ≡
(

fsup
2.4× 10−3

)
f(m1)f(m2)f

53/37
PBH , (4.19)

defined in such a way that it corresponds to the product of the mass dis-
tributions in the scenario of fpbh ≈ 1. Such definition allows us to define a
model-independent limit since the uncertainties on the mass distribution and
suppression factor are encompassed by FPBH.
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Figure 4.8: Constraints on fPBH for a monochromatic mass function for early
binaries (orange) and late PBH binaries (blue). In black, the results from O2 [87]
are shown with and without the suppression factor. fPBH=1 is excluded for the
first time in the whole subsolar mass range for early binaries. Taken from Ref. [99].

It was found that FPBH is sensitive to the location on the m1 −m2 plane by
using the limits shown in Fig. 4.7 and theoretical rates from Eq. 4.10.

In particular, this allows us to restrict possible PBH distributions in the
SSM range for models with fPBH = 1 and a peak above 1M⊙. We find that
some distributions with QCD enhanced features, as explained in Refs. [110,
116, 168, 169], are constrained in the range fPBH ≈ (0.1 − 1). This result
implies that subsolar mass searches are complementary to searches in the
solar mass range in order to distinguish viable PBH mass functions.

Constraining dark matter black holes

As in the case of the O3a search, we consider the model introduced in Sec.
4.2.1. The updated limits using the full O3 are shown in Fig. 4.9.
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The strictest limit was derived at 1M⊙ for fDBH < 0.0012− 0.0014%, which
corresponds to an improvement of a factor two from the previous O3a con-
strains. From these results we are also able to constraints the mass of the
heavy dark matter particle, mx, due to the relation with the Chandrasekhar
mass for dark matter black holes given by Eq. 4.12. We have found that
the mass is constrained in the following range: 1.1GeV/c2 to 8.9GeV/c2. No
constraints are given below 0.01M⊙ due to the searches not being sensitive
enough to support distributions within that region.

Figure 4.9: Constraints on fDBH as a function of the minimum mass, Mmin for
the three pipelines using the full O3 for the model given in Sec. 4.2.1. The results
from the previous O3a search are shown as a comparison. Taken from Ref. [99].
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Chapter 5

Machine learning methods for
early detection of gravitational
waves

In this chapter, a machine learning implementation for the detection of GWs
using O2 [170] and O3 data is explored. The implemented searches cover
the mass range explored in the catalog papers [9, 10, 11, 66]. The major
motivation for using these algorithms arises from the fact that a good per-
formance can be achieved with less computational resources in a fast way,
helping with low latency analysis and multi messenger astronomy by speed-
ing up the detection of GWs. In Ref. [171] a review of machine learning
method implemented for GW astronomy can be found.

The chapter is divided as follows: First, the basic elements to understand ma-
chine learning are discussed along with the architecture used for the search.
Second, the training, testing and performance studies are explained. Finally,
the whole O2 and O3 are scanned and the results are compared to the con-
firmed events from the released catalogs.

5.1 Introduction to machine learning

Machine learning algorithms [172] can be defined in broad terms as algo-
rithms that, from a set of data, learn how to perform a task.
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The basic concepts for every machine learning algorithm are:

• A task we want our algorithm to learn how to perform. For example,
in a classification task the algorithm should learn how to classify an
input in different categories. Another examples of tasks are denoising,
regression or estimation of density functions.

• A function to quantitatively estimate the performance of the algorithm.

• A set of data from where it should learn how to perform the task.

During the learning process, the objective is to reach the highest performance
possible. This is achieved by minimizing a function that adequately describes
the desired task. This function, usually called loss or cost function [173], is
a map between some values and a real number that describes the associated
cost that, in an optimization problem, has to be minimized. This learning
process is also referred as ”Training”. An example of a commonly used loss
function for binary classification is the binary cross-entropy, seen in Eq. 5.1:

Hq(p) = − 1

N

N∑
i

yilog(p(yi)) + (1− y1)log(1− p(yi)), (5.1)

where yi are the true labels of the input, p(yi) are the values found by the al-
gorithm and N is the total number of inputs we are using. This cost function
models how much information we are losing by describing the distribution
’q’ using the estimated distribution ’p’.

Another example of a loss function is the Mean Squared Error (MSE), defined
in Eq. 5.2:

MSE =
1

N

N∑
i

(yi − ŷi)
2, (5.2)

generally used for regression problems where yi is the real data point and
ŷi the value obtained by the algorithm. The minimum value of these loss
functions is found by using optimization algorithms particularly suitable for
complex problems, generally by using a numerically estimated gradient to
move towards the minimum of the function.

Once the learning is finished, the performance can be studied over a new
data set never used during the training, the testing set. This data set is used
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to understand how it generalizes to new data and estimate the generalization
error of the algorithm (error between estimation and real when the testing
set is used). The ultimate objective of this procedure is to train an algorithm
to perform a task over data never seen before with a good performance.

However, it might happen that even though the algorithm has a very good
performance over the train data set, it is unable to provide good predictions
when a new data set, different from the training set, is used. This is known
as overfitting and occurs when the generalization error is too large in com-
parison to the training error. In general, we want our algorithm to learn in
such a way that not only the training error is small, but that the gap with
respect to the generalization error is also small. For this reason, the evolution
of the training is monitored using another set, the ”validation set”, that is
not used for the training.

5.1.1 Linear regression

In this section we will discuss a simple machine learning problem: linear
regression. The objective is to find a set of parameters, w ∈ Rn, that, for a
given x ∈ Rn as input, predicts ŷ ∈ R as follows:

ŷ = wTx+ b, (5.3)

where ’b’ is the intercept, also called ”bias”, and the vector ’w’ is given the
name of weights. The next step is to define how to estimate the perfor-
mance/loss function. In this case, we will use the MSE defined in Eq. 5.2, a
loss function commonly used for regression problems.

Therefore, given a set of data (xtrain, ytrain), we want to find the set of weights
such that the value in Eq. 5.4 is minimized:

MSEtrain(w) =
1

m

m∑
i

(ytrain − ŷ)2 =
1

m

m∑
i

(ytrain − (wTx+ b))2. (5.4)

This problem can be solved both numerically and analytically by deducing
the expression of the gradient as a function of the weights and searching for
the value of w that makes it zero, that is, ∇wMSEtrain = 0.
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5.1.2 Layers and activation functions

Until now, we have been talking about machine learning algorithms but we
have not yet defined how those are constructed. In general terms, a machine
learning method is constructed by stacking blocks that transform an input
into some output, usually called layers. Some of these layers (though not all
of them) are defined by some weights that control this transformation. Inside
a layer, these small blocks that perform transformations over the input are
called ”neurons”. A neuron works as seen in Eq. 5.5:

y = wTx+ b. (5.5)

However, a limitation of this approach is that the method is only able to
learn linear relations. This is solved by composing the output ’y’ with a
different function, called the activation function, to introduce non linearities
into the problem. In other words, the neuron takes some input ’x’ and
outputs ’y’ which is then passed through a function that will decide if the
neuron activates or not. The output of a neuron after passing through an
activation function, σ, is given by Eq. 5.6:

y = σ(wTx+ b). (5.6)

An example of an activation function is the threshold function, σ(x), defined
as σ(x) = 1 if x > 0 and σ(x) = 0 otherwise. This transforms the output into
a Boolean variable. There are many activation functions and they have to be
carefully chosen so that the algorithm is able to learn how to perform the task.

These layers, along with their activation functions, are used to define the
machine learning algorithm, or architecture. Some of the most commonly
used layers are:

1. Dense layers (also known as fully connected layers): This is the most
common layer associated with machine learning. It refers to a layer
in which all the neurons are connected to the neurons of the previous
layer.

2. Convolutional layers: Applies a convolution to the input data and pass
the result to the next layer. Widely used in image recognition to high-
light important patterns before feeding them to the next layers.
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3. Pooling layers [174]: Used to reduce the dimensions of the data by com-
bining the output in some way, usually using the mean or maximum.
This layer doesn’t have weights.

4. Batch normalization layers [175]: Standardizes the input, xin, as fol-
lows:

xout =
xin − µ(xin)√
V ariance(xin)

This layer doesn’t have weights.

All of this makes neural networks very suitable to be represented in graph
formats, as in Fig. 5.1, where all the connections can be shown along with
the flow of the data.

5.1.3 Convolutional neural networks

A particular family of machine learning algorithms are the convolutional neu-
ral networks (CNNs) [172]. In broad strokes, these are algorithms in which
at least one of the layers is a convolutional layer. They are specialized to be
used in problems in which the data has a grid-like structure, like, for exam-
ple, spectrograms and their time-frequency bins. A schematic representation
of a CNN is shown in Fig. 5.2.

A convolutional layer applies a convolution to the input data, that is, it
transforms the input as in Eq. 5.7:

O(t) = (f ∗ w)(t) =
∫
f(τ)w(t− τ)dτ , (5.7)

where f(τ) is known as the input, ’w’ as the kernel and O(t) as the feature
map. In the particular case when the variable ’t’ only takes integer values,
we can define the discrete convolution as in Eq. 5.8:

O(t) =
∞∑

n=∞
f(n)w(t− n), (5.8)

which is useful when the input is given in a grid. Notice that even though
we have an infinite sum, in practise our data is limited and can be assumed
to be zero outside the data points. The notion can be generalized to more
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Figure 5.1: (left) Example of a graph from a convolutional neural network. The
arrows point to the direction that the data takes and how its dimensions change
with each one. The first dimension corresponds to the batch of the input, that is,
how many examples we introduced. (right) Graphical representation of a neural
network showing the input, output and the hidden layers in which the calculations
are done.

dimensions by summing over the different axes. For example, for a two
dimensional case, we have that the discrete convolution is given by:

O(i, j) = (f ∗K)(i, j) =
∑
m

∑
n

f(m,n)K(i−m, j − n), (5.9)

usually used in the case of two dimensional images. However, for most of the
machine learning algorithms, what is really implemented is not the convolu-
tion but the cross-correlation, given by Eq. 5.10:

O(i, j) = (f ∗K)(i, j) =
∑
m

∑
n

f(i+m, j + n)K(m,n). (5.10)
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Figure 5.2: Representation of a convolutional neural network. Source:
https://towardsdatascience.com/

This is not a problem in machine learning given that cross-correlation and
convolution are related by how the elements in the kernel are distributed.
During the learning phase, it will learn the optimal way to assign the ker-
nel values and will produce the same output. For this reason, in machine
learning, these two operations are called the same way. An example of a 2D
convolution can be seen in Fig. 5.3.

Figure 5.3: Discrete 2-D convolution with a 2x2 kernel that we slide through the
elements of the input.

As we can see from Fig. 5.3, usually the kernel is smaller than the input
data. The operations are done by moving the kernel through the input in
independent steps along each axis.
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This is usually known as the stride and, for example, in Fig. 5.3 we have
a stride of (1, 1). In other words, the kernel moves in steps of one element
in each direction. There might be cases where the size of the input data
is not big enough for the kernel size and stride used. In that situation, we
add elements to the input data so that this operation is possible. This is
known as ”padding” and there are several ways to do it. For example, ”zero
padding” adds zeroes at the edges of the input.

The main advantage of convolutional layers is that the extraction of shapes
and features from the input data can be achieved with small kernels, with
respect to the input size, and reduces the amount of memory needed in
comparison to traditional matrix multiplication. Furthermore, while in tra-
ditional dense layers each weight is used only once, in convolutional layers the
elements of the kernel are used in all the positions. This parameter sharing
means that it only needs to learn one set of parameters. This, again, reduces
memory consumption in comparison to traditional problems.

Moreover, the input data can be introduced separated in different inputs,
known as channels, each one with its own feature. The kernel can be applied
to all the channels in the same way. For example, a 2D image can be de-
composed into three colors: red, green and blue (RGB decomposition). Each
color can be used as a different channel and passed through the convolutional
layers which will apply the kernel to extract the feature map.

A common block of layers is done by stacking convolutional layers followed
by a pooling layer. The reason is that pooling helps to achieve invariance
under translations during the learning process [172, 174]. In other words,
small shifts in the input will produce similar pooled outputs. This is useful
for recognizing features from images, like faces or the characteristic chirp-like
structure of GWs. Furthermore, pooling also reduces the dimensions of the
data and the computational resources needed along with it.
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5.2 The architecture: ResNet50

For this work we will use an architecture based on the ResNet (Residual
Networks) architecture [176] to detect the GW produced by CBC events
(See Fig. 5.4). This family of neural networks was designed to solve the
vanishing gradient problem.
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Figure 5.4: Injected BBH GW in the L1 interferometer as a two-dimensional
image in time versus frequency with BH masses of 51 M⊙ and 53 M⊙ at a distance
DL = 664 Mpcs.

The vanishing gradient problem was a common issue that appeared in the
training when too many layers were stacked on top of each other. During the
training, the weights are updated using backgpropagation in such a way that
the loss function is minimized. The gradient of each layer (gradient of the
cost function with respect to the weights of the layer) is then used to estimate
the direction and value to update the weights. However, when the network
is too deep (many layers), this gradient becomes too small, reaching a point
at which the update of the weights is insignificant, making it impossible to
reach the optimal point.

These networks apply a method called skip connections, see Fig. 5.5, which
allows the neural network to map the identity function (That is, a function
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Figure 5.5: Graphical interpretation of skip connection

I(x) such that ∀x I(x) = x) and for the gradient to flow. Using this method,
it has been shown that ResNet architectures have better training and test
performance than smaller architectures. There are several versions of this ar-
chitecture, but the most prominent are ResNet18, ResNet50 and ResNet101,
with the number being the number of layers that particular architecture has.

For our work we will use ResNet50, shown in Table 5.1, as the default archi-
tecture with the binary cross-entropy as loss function and the optimization
algorithm Adam [177]. The objective is for the neural network to classify the
background input as zero and the signals as one.

5.3 Second observation run (O2)

In this section, the results of the search implemented using neural net-
works [170] in O2 open data [178] are discussed. The second observation
run covers the period between November 30, 2016 up to August 25, 2017
with the AdV detector joining from August 1, 2017.
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Layer name Output size Layer structure
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2 1×1, 64
3×3, 64
1×1, 256

×3

conv3 x 28×28

 1×1, 128
3×3, 128
1×1, 512

×4

conv4 x 14×14

 1×1, 256
3×3, 256
1×1, 1024

×6

conv5 x 7×7

 1×1, 512
3×3, 512
1×1, 2048

×3

1×1 Global average pool, 1-d fc, sigmoid

Hyper parameters
Learning rate 0.01
Mini batch size 32
Maximum number of epochs 12
Optimizer Adam
Loss function Binary-cross entropy

Table 5.1: ResNet50 architecture and hyperparameters used during the
training. Downsampling is performed by conv3 1, conv4 1, and conv5 1 with
a stride of 2. Taken from Ref. [176].

5.3.1 Data preparation

Data from the three interferometers with a sampling rate of 4096Hz is used to
construct the training and testing sets. The training set consists of 5s images
with an even mix between background samples and simulated signal samples.
An image duration of 5s was selected as it provides a good compromise be-
tween the size of the image and the duration of the GWs. Furthermore,
special precaution was taken to avoid including any of the identified GWs
events in the GWTC-1 catalog [9].

The parameters of the simulated signals are drawn following a uniform dis-
tribution between the limits given in Table 5.3.1. To constrain the size of
the parameter space, we vary only seven parameters of the waveform: the
masses, luminosity distance, sky position, polarization and inclination.
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Low mass High mass
M1, M2 [M⊙] [0.2,2] [25,100]
Dl [Mpc] [1,50] [100,1000]
RA [Rad] [0, 2π] [0, 2π]
Dec [Rad] [0, π] [0, π]
Pol [Rad] [0, π] [0, π]
Inc [Rad] [0, π

2
] [0, π

2
]

Table 5.2: Limits in O2 with masses in detector frame.

We use the IMRPhenomPv2 approximant as the waveform model. Moreover,
the parameter space is divided into two mass regions: a low mass region and
a high mass region. This choice was made to better train the neural network
as the morphology of the signal changes greatly with the mass of the system.
Low mass signals have longer tails and last longer in the sensitive band of
the interferometer (see Fig. 5.6 left) while high mass signals are sharper in
frequency (see Fig. 5.6 right).

Figure 5.6: Example of a spectrogram as a two dimensional image in frequency
versus time corresponding to two signals: low mass signal (left) and high mass
signal (right).

In order to control the duration of the signal, a low frequency threshold of
80Hz (25Hz) is applied for the low mass (high mass) signals. The signal du-
ration is limited to 5s counting backwards from the merger time to remove
low frequency components that might confuse the neural network. Finally,
the signals are randomly placed within the 5s window of each image.
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In total, O(250000) signal and background samples are generated. These
samples are whitened [61, 62] following the recipe from Eq. 3.5 so that the
noise is reduced and the signals can be seen. From the whitened strain, spec-
trograms [179] with 400 bins in time and 100 bins in frequency are made.
This choice of binning was taken as a good compromise between resolution
and size of each image. The spectrograms are limited to the range [20,512]Hz
corresponding to the most sensitive region of the interferometers. Due to the
high variation between the values of the images (faint and loud signals are
mixed in the data), the image is standardized as follows:

X̂ =
X − µX

σX
, (5.11)

where X is the matrix containing the pixels of the image and µX and σX
are the mean and standard deviation of each image. The data sets are now
ready to be split and used for training and testing.

5.3.2 Testing the performance

The training is made using the python package Keras [180] and Graphics
processing units (GPUs) [181]. GPUs are used to speed up the training and
testing of the neural network due to their capability to perform simultaneous
computations. The images are randomly distributed in batches of 32 (batch
size) evenly mixed between background and signal for a total of 122.000 im-
ages. From these, 10% are used as validation to check the performance during
the training and select the best epoch for our analysis. The optimal epoch
corresponds to the epoch with the best performance over the validation set.

For each mass region, the possibility of introducing data from more than
one interferometer as input was studied. This should allow the neural net-
work to recognize that a real signal should appear in all the input images
and help to discriminate between them and glitches. Therefore, a neural net-
work per combination of inputs is trained: H1-L1, H1-V1 and L1-V1. The
possibility of using only one interferometer as an input was also explored but
a performance worse than with a combination was achieved. For O2, the
triple combination (H1-L1-V1) was not considered due to the small amount
of data.
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An example of the output of the neural network can be found in Fig. 5.7,
where the discrimination between background (blue) and signal (orange) can
be seen.
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Figure 5.7: CNN output corresponding to H1-L1 for background (blue) and signal
(orange). The distributions for the two implemented neural networks are shown:
(left) low mass and (right) high mass. The dashed-dotted line indicates the thresh-
old from Table 5.3. Taken from Ref. [170].

The performance of the NNs in terms of true positive rate and false positive
rate can be seen in Fig. 5.8. The highest performance is achieved by using
as input the data from H1-L1 which corresponds to the most sensitive com-
bination.

From the curves in Fig. 5.8, a threshold for binary classification can be
selected by limiting the number of false positives per day. However, the
threshold was chosen by limiting the number of false positives estimated over
a sample of the background to 25 events/day. The final values are in Table
5.3 and the thresholds in the first column will be used to claim detection in
the following sections.
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Figure 5.8: ROC curves for CNNs using pairs of interferometers inputs for (left)
low mass and (right) high mass. Taken from Ref. [170]

double interferometer channel
CNN discriminant (%) TP rate (%) FP rate (%)

low/high mass low/high mass low/high mass
L1 – H1 99/96 74/95 0.06/0.09
L1 – V1 99/97 69/93 0.09/0.04
H1 – V1 99/98 66/88 0.03/0.05

Table 5.3: CNN discriminant and true positive (TP) and false positive (FP) rates
from the ROC curves. Taken from Ref. [170]
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5.3.3 Injection test

The performance of the neural networks is studied by preparing a data set
consisting of only signals with a known optimal signal-to-noise ratio (SNR or
ρ), defined in Eq. 3.12. The injected signals follow the same distribution as
the training set but are re-scaled to a target SNR before being injected into
real noise. This is achieved by multiplying the amplitude of the signal by the
factor ρT/ρ where ρ is the original optimal SNR and ρT the target SNR. The
signals were re-scaled to the same optimal SNR in all the interferometers as
it allows for an easier implementation.

Figure 5.9: Injection test in O2 for both low mass (left) and high mass (right)
for the three combinations. The x-axis is the SNR in one of the interferometers
and not the network SNR, which will be a factor

√
2 bigger given the re-scaling.

Taken from Ref. [170]

The results can be seen in Fig. 5.9 for both mass ranges. As expected, the
efficiency increases rapidly with ρT reaching higher values at higher optimal
SNR. We obtain that the highest efficiency is achieved using H1-L1, which is
the most sensitive combination. The value of ρT for several efficiency values
can be seen in Table 5.4.
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double interferometer channel
ρT (50%) ρT (80%) ρT (99%)

low/high mass low/high mass low/high mass
L1 – H1 11.0/5.0 12.0/6.0 19.0/7.0
L1 – V1 13.0/5.5 15.5/6.5 24.5/8.0
H1 – V1 13.5/5.0 17.5/6.0 23.0/7.5

Table 5.4: Values of ρT for different efficiencies. The high mass network becomes
fully efficient at SNR higher than 8. In the case of the low mass, a SNR larger
than 24 is needed. Taken from Ref. [170]

5.3.4 Search in O2 data

The neural networks described in the last sections were used to search for
GW in O2 data. The O2 science period was sliced into images of 5s with an
overlap of 2.5s between consecutive images. The overlap is motivated by the
fact that the chirp of a GW could be cut between two consecutive images,
making the detection more difficult. With this method, the chirp will always
be fully contained in at least one of the images.

The results of the search can be found in Table 5.5. The L1-H1 CNNs
are able to filter 99.9% of the background with a detection rate of 47 and
34 triggers per day for the low and high mass respectively. This rate is big-
ger than the desired by our choice of threshold but plausible due to glitches
and periods of bad data in long stretches of time. In the case of H1-V1,
only 0.07% were detected as triggers, resulting in a rate of approximately 25
events per day. L1-V1 high mass has shown a similar performance as H1-V1
whereas the low mass case performance has shown to be much worse, with a
trigger rate of 180 per day.

CNNs Response to full O2 scan
low mass NN high mass NN

CNN Images Detected Events/day Detected Events/day
L1-H1 4077233 5496 47 3973 34
H1-V1 584993 439 26 414 24
L1 -V1 601877 3078 178 445 26

Table 5.5: Results of the low and high mass searches over O2. Taken from
Ref. [170].
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The triggers found by the low mass and high mass CNNs were correlated
with the results of the O2 single triggers from the pyCBC pipeline [92]. Al-
most all the images flagged by the neural networks were also detected by
this pipeline with SNR between six and eight. This indicates a performance
similar to the first step, in which single triggers are listed, of the dedicated
pipelines. From this list, dedicated pipelines filter real triggers by imposing
more conditions like coincidence between interferometers, detection by the
same template in all the detectors and phase/time correlations.

The method has also proven capable of detecting the O2 (+O1) catalog
events [9], as indicated in Table 5.6, for a total of 7 from 8 O2 events and 1
of 3 O1 events. In particular, this includes the NS-NS event, GW170817 [182],
which was identified by the low mass neural network. Furthermore, all the
non detected events have masses outside the training range.

CNNs response to O1+O2 catalog
low mass high mass

Event CNN Detected CNN Detected
value (Y/N) value (Y/N)

GW170104 0.001 N 1.0 Y
GW170608 0.02 N 0.008 N
GW170729 0.1 N 1.0 Y
GW170809 0.15 N 1.0 Y
GW170814 0.01 N 1.0 Y
GW170817 1.0 Y 0.04 N
GW170818 0.003 N 1.0 Y
GW170823 0.05 N 1.0 Y
GW150914 (O1) 0.24 N 1.0 Y
GW151012 (O1) 0.06 N 0.95 N
GW151226 (O1) 0.29 N 0.08 N

Table 5.6: Summary of the CNNs response to the O1+O2 catalog events. A total
of 9 from 11 O1+O2 events were detected. Taken from Ref. [170]

This method has demonstrated to be able to detect GWs from CBC events
and filter almost all the noise from the data. However, to reduce the number
of false positives, a more refined technique was needed to classify as detection.
This improvement was done in O3 by using the FAR to further filter the
images, as we will see in the following sections.

142



5.4 Third observation run

In this section we will discuss the results of the search implemented using
neural networks in O3 data. As already discussed, the O3 analysis imple-
ments improvements with respect to the O2 search.

5.4.1 Data preparation

The data is processed almost in the same way as in Sec. 5.3.1 but with some
differences. Firstly, the lower frequency for the low mass signals is changed
to 45Hz to better match the values used in the subsolar mass searches [87,
88, 89]. Secondly, the upper mass limit in the low mass case is increased to
5M⊙. Finally, a new training data set with masses between [5M⊙,25M⊙] is
created so that the full mass range can be searched for GW candidates. The
parameter space covered can be found in Table 5.7. Very asymmetric cases
(q < 0.05) are excluded from the training and testing sets.

Low mass In-between High mass
M1, M2 [M⊙] [0.2,5] [5,25] [25,100]
Dl [Mpc] [1,100] [1,1000] [100,1400]
RA [Rad] [0, 2π] [0, 2π] [0, 2π]
Dec [Rad] [0, π] [0, π] [0, π]
Pol [Rad] [0, π] [0, π] [0, π]
Inc [Rad] [0, π

2
] [0, π

2
] [0, π

2
]

Table 5.7: Limits of each parameter for the signal generation in O3. Masses
are in the detector frame.

5.4.2 Testing the performance

The training is done in the same way as in previous sections. However, given
the amount of data with three interferometers online and observing, in O3 we
can explore the performance when using as input the three interferometers:
H1-L1-V1. For the training, only O3a data was used but avoiding times
with the GWTC-2 [10] catalog events. It was checked that the differences in
sensitivity between O3a and O3b were negligible.
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Figure 5.10: ROC curves for CNNs over O3 data using all the possible combina-
tions between interferometers. (top left) shows the ROC curve for the low mass
neural network, (top right) for the high mass network and (bottom) for the in-
between neural network. At low false positive rate (<0.1) the highest true positive
rate is achieved by the high mass neural network.

The results of the training and testing can be seen in Fig. 5.10. The best
performance is achieved with the H1-L1-V1 combination. This was expected
given the fact that more information was available to discriminate between
background and signal. To further reduce the number of false positives de-
tected, the outputs of the separate networks are combined into a single dis-
criminant. A combination using the arithmetic mean, as in Eq. 5.12, was
selected. The performance using different algorithms was studied but similar
results were achieved. The combined discriminant is shown in the blue line
”Combined” in Fig. 5.10.

XComb =
1

4
(XH1L1V 1 +XH1L1 +XH1V 1 +XL1V 1). (5.12)

The combination suppresses the triggers produced by glitches affecting the
interferometers. This effect can be seen in Fig. 5.11. The significance of
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background triggers (left) at high discriminant is reduced due to the com-
bined discriminant suppressing triggers not seen in all the networks. In the
case of the signal distribution (right), there is a slight suppression of low
SNR signals that are not fully detected by the network. This effect leads to
a small decrease in the true positive rate, as seen in Fig. 5.10.

Figure 5.11: Comparison between the combined discriminant of all the neural
networks and the one provided by the H1-L1-V1 neural network. (left) shows the
background distribution and the suppression at high values of the discriminant.
(right) the signal distribution is presented.

5.4.3 Estimation of the False Alarm Rate (FAR)

In this section, the estimation of the FAR used to assign a significance to the
detected triggers will be discussed. This significance will be used to declare
detection by selecting a FAR threshold. The relation between the FAR and
our combined discriminant (Eq. 5.12) is empirically estimated using time-
slides as explained in Sec. 3.3.5. The observation time reached by doing these
slides is ≈ 150yr, which is enough to claim an early detection within the LVK
collaboration. This analysis was carried out using resources provided by the
Barcelona Supercomputing Center (BSC).

The FAR was estimated separately for O3a and O3b. A comparison between
the two can be seen for the high mass case in Fig. 5.12. The distributions are
similar up to higher values of the discriminant (lower values of FAR) where
small differences are visible. The origin of this difference seems to be the
increase in glitch rate between O3a and O3b, as indicated in Fig. 4 from the
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Figure 5.12: FAR distribution for the high mass case in both O3a and O3b.

GWTC-3 catalog in Ref. [66]. This interpretation is further motivated by
the fact that the low mass neural network has better performance, as seen in
Fig. 5.13 (left), for the O3b case. This neural network is able to better filter
glitches due to their shape being very different from low mass signals.

Figure 5.13: FAR distribution for the low mass (left) neural network and the
in-between neural network (right) for O3a and O3b.

The effect of the noise suppression provided by the combined discriminant
can be seen in Fig. 5.14. The combination allows us to reach lower values
in FAR, leading to a higher significance of the signal events. Therefore,
the combined output will be used to assign the significance of the analyzed
images.
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Figure 5.14: Effects on the FAR distribution using a combined discriminant or
the value from H1L1V1 only. At 0.9 discriminant, the FAR obtained from the
combination is ≈ 3yr−1 while the estimation using only H1L1V1 is > 1500yr−1

.

5.4.4 Injection test

Following the method explained for O2, an injection set is generated to un-
derstand the performance of the neural networks. Some modifications were
implemented with respect to the O2 analysis:

1. We use the same distribution for the parameters as the training set
but instead of sampling uniform in distance (r) we sample uniform in
comoving volume (r3). This is in better agreement with the distribution
of galaxies in the cosmos.

2. The simulated signals are not re-scaled to a target optimal SNR, we
allow the values to vary freely so that the parameter space is fully
sampled. This is different from the approach taken in O2 where the
signals were scaled to a target SNR.

3. Injections are declared as detected based on a threshold in the assigned
significance. The significance is estimated from the one-to-one map
between the FAR and combined discriminant estimated in Sec. 5.4.3.
Unless stated otherwise, 1 yr−1, or 1 event per year, will be used as a
threshold.

The efficiency is measured as a function of the source frame chirp mass and
the network SNR of the injections. The masses are converted into source
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frame by assuming Planck15 [159] cosmology from the astropy [183] python
package. This is done by estimating the redshift from the luminosity dis-
tance and using it to transform the masses to source frame: msource =
mdetector/(1 + z). In total, 32000 injections per neural network were per-
formed in O3a data.

The effect the FAR threshold has on the estimated efficiencies can be seen
in Fig. 5.15. This figure shows the efficiency as a function of the chirp mass
(left) and network SNR (right) for different thresholds: 0.01 yr−1, 1 yr−1

and 10 yr−1. Lower FAR values correspond to a more stringent condition in
the significance of the image. This results in a reduced efficiency for a given
chirp mass/network SNR bin. At 50M⊙, the efficiency decreases from 85%
with a FAR threshold of 10 yr−1 to 79% when the threshold is lowered to
0.01 yr−1. In the case of the network SNR, the efficiency at 12 network SNR
is 71% with a FAR threshold of 10 yr−1 and decreases to 47% at a threshold
of 0.01 yr−1.

Figure 5.15: Efficiency as a function of the chirp mass (left) and network SNR
(right) for high mass injections using three different FAR thresholds.

The efficiency of all our neural networks as a function of the network SNR
can be seen in Fig. 5.16 for a FAR threshold of 1 yr−1. The neural network
dedicated to high masses peaks in efficiency much faster than the other two,
reaching 90% at network SNR of ≈ 15. The low mass neural network reaches
this point at a network SNR of ≈ 30.
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Figure 5.16: (left) Efficiency as a function of the network SNR for all the combi-
nations for a FAR threshold of 1yr−1. (right) Zoom over a region of interest for
the O3 catalog. The high mass neural network reaches an efficiency larger than
90% at network SNR of ≈ 15. The In-between neural network reaches this point
at ≈ 20 while the low mass network is almost fully efficient at network SNR of
≈ 30.

The efficiency as a function of the chirp mass is shown in Fig. 5.17 for a
FAR threshold of 1yr−1. The highest efficiency is achieved at the highest
chirp mass values. In the case of the high mass neural network, we reach
almost 90% efficiency for signals with chirp mass bigger than 60. The neural
network working in the middle mass range is not very efficient in the lowest
chirp mass range. This seems to indicate that this particular neural network
has learnt to recognize the sharper frequency features of the higher mass
signals instead of the longer tail of low mass GWs.

5.4.5 Search in O3 data

The neural networks are used to search the whole O3 (O3a+O3b) period.
An overlap of 2.5s between consecutive images, as in Sec. 5.3.4 for O2, was
used. The significance of each image is assigned using the FAR distribution
estimated in Sec. 5.4.3. The estimated FAR is transformed into IFAR (In-
verse False Alarm Rate) and compared with the number of events expected
for a given IFAR assuming only background. The expected number of events
is obtained from Poisson statistics. Finally, candidates are identified from
excesses in the background distribution.
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Figure 5.17: Efficiency as a function of the chirp mass for the three neural net-
works. The highest efficiency is reached at the upper bound of the training set for
all the networks. (top left) shows the results for the high mass neural network,
(top right) for the low mass neural network and (bottom) for the in-between neural
network.
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The results of the search can be found in Fig. 5.18. The distribution of
the low mass and in-between masses neural network is compatible with the
background distribution and, therefore, nothing has been detected in the
scan. However, an excess can be seen in the distribution of the high mass
neural network, both for O3a (top left) and O3b (top right), that indicates
triggers detected with high significance.

Figure 5.18: IFAR distribution compared to expected by pure background (dashed
line). In the left column are the results for O3a and on the right for O3b. The
excess seen at higher values of IFAR in high mass NN (top left and top right)
indicate the presence of confident triggers. In the case of the low mass (mid left
and mid right) and in-between neural networks (bottom left and bottom right),
no confident trigger was found.
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The main suspects for this excess are the events detected in the O3 cata-
log [10, 11, 66]. This interpretation is further motivated by the fact that
once they are removed from the analysis the excess is no longer present, as
seen in Fig. 5.19. Given that the analysis is limited to H1-L1-V1 times, 51
events are available from the full catalog: 30 from O3a and 21 from O3b.
This result proves that the method is able to detect real events by searching
the data.

Figure 5.19: IFAR distribution compared to expected by pure background (dashed
line) in which the catalog events have been removed. The O3a and O3b results
are shown in the (left) and (right) figures respectively.

The results for all the catalog events can be seen in Appendix D, where we
show the value of the discriminant and the associated FAR. A plot showing
the FAR distribution vs the discriminant of the high mass neural network
is shown in Fig. 5.20. This figure shows that all the detected events are
concentrated at high discriminant (>0.95) which corresponds with the lower
tail of the FAR distribution seen in Fig. 5.12.

The high mass neural network has detected 17 of the 51 events available,
giving a detection efficiency of ≈ 33% with a FAR threshold of 1 per year.
As indicated in Fig. 5.15, the detection efficiency depends on the selected
FAR threshold. Different threshold values have shown that the efficiency can
be increased up to 50% with a reasonable admittance of false positives. In
particular, a FAR threshold of 1 event per month provides an efficiency of
≈ 33% (19 from 51 events) while a threshold of 1 per week has an efficiency
of ≈ 50% (26 from 51).
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Figure 5.20: Catalog events distributed by their matched filter network SNR and
chirp mass in the source frame. (top) shows all the catalog events. (bottom) zoom
at high values of the discriminant (>0.9).
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The previous estimation includes events outside the training range. Lim-
iting the analysis to events within the training range, 16 of 34 events are
detected, resulting in a detection efficiency of ≈ 47%. This value matches
the expected outcome given the injection studies in Sec. 5.4.4 for signals
with network signal-to-noise ratio between 10-15. As shown in Fig. 5.21 this
is the region where the catalog events are mostly concentrated. Loosening
the FAR threshold up to 1 per week, provides a detection efficiency of ≈ 69%
in the training range (24 of 35).

Figure 5.21: Catalog events distributed by their matched filter network SNR and
chirp mass in the source frame. (top) shows all the catalog events. (bottom) only
catalog events with source frame chirp mass bigger than 17M⊙.
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The analysis indicates that the injection tests are accurate enough to under-
stand the performance of the neural networks and predict their performance
over catalog events. Furthermore, this new methodology allows us to better
control the number of false positives by means of the FAR threshold.

5.5 Outlook

We have seen the application of a machine learning technique for the detec-
tion of CBC events in real data. This method has been tested in both O2
and O3 data and was able to detect real events and filter out most of the
background.

In O3, the false positives were largely reduced by implementing the FAR,
allowing a better control over the detection efficiency and false positive rate
by means of a FAR threshold. Nevertheless, the implementation of an ad-
ditional method dedicated to filter the background from glitches and non-
Gaussian noises would further improve the performance of the network. One
possibility would be a neural network dedicated to the search for glitches.
More information can be found in Refs. [184, 185, 186]. Furthermore, the
extra information would perhaps allow us to decouple the discriminant and
run over double interferometer coincidence times, which has a larger duty
cycle and reduces the number of missed real events.

Related to the training, from the injection tests seen in Fig. 5.17, we can
also conclude that in some cases the training was too broad in scope, making
the neural network unable to learn the important details. For future inves-
tigations, dividing into more regions, e.g. chirp mass of the source between
[2.5, 4]M⊙and [16,20]M⊙, seems to be the course of action to maximize the
efficiency of our neural networks.

Finally, it was found that the performance seemed to remain stable during
the whole O3 (see Fig. 5.12). This coincides with our expectations as there
was no significant change in sensitivity between O3a and O3b. Neverthe-
less, the possibility of retraining the neural network to account for important
changes in sensitivity is possible and can be done on a short time scale.
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Conclusions

In this thesis I show the results from a search of subsolar mass compact
objects using a matched filter pipeline and a general search of CBC events
using a machine learning implementation.

I present the design and installation of an instrumented baffle and the noise
hunting activities that were carried out to improve the sensitivity of the in-
strument. The instrumented baffle installed in the IMC was able to detect
scattered light within the cavity. These results will be used to design the
instrumented baffles that will be installed surrounding the test masses for
O5. The baffles will be able to monitor the scattered light within the main
arms and facilitate the pre-alignment of the cavity.

The subsolar mass search was able to set upper limits on the rate density of
subsolar mass events. The estimated range is between [220−10000] Gpc−3 yr−1

depending on the chirp mass of the binary. The obtained values of the rate
were used to constrain models of PBH binary formation and dark matter
black holes. The dark matter black hole model was used to constrain the
fraction of dark matter collapsing into black holes and the minimum mass
of the aforementioned objects. The strictest limit was derived at 1M⊙ for
fDBH < 0.0012 − 0.0014%. For PBHs, two different models for early binary
formation were considered: a 3-body system that doesn’t include suppres-
sion factors in O3a and a N-body system with suppression factors in O3b.
Each model was used to constrain the fraction of dark matter collapsing
into PBHs. The O3b results have found that, considering the N-body sys-
tem model, fPBH < 0.5 at 0.3M⊙ and is below 0.08 at 1M⊙. These results
strongly disfavor the fPBH=1 scenario up to 1M⊙.
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The implemented machine learning methods were used to search for GW
from CBC events. A wide mass range was covered but very asymmetric
events were not considered. The search was first tested on O2 data and was
able to detect catalog events, for a total of 7 from 8 O2 events and 1 of 3 O1
events. The NS-NS event GW170817 was detected by the low mass neural
network. This technique was implemented with some improvements in O3.
These improvements include the addition of FAR estimation to assign sig-
nificance to each trigger. This allowed better control over the false positives
detected by the neural network. Furthermore, an injection campaign was
performed to understand the efficiency of the method. It was found that a
detection efficiency of ≈ 69% was obtained with a FAR threshold up to 1 per
week.

Finally, the contribution to the subsolar mass searches was focused on the
search using the PyCBC pipeline and the estimation of the sensitive volume.
Future searches will be improved by taking into account the limitations found
during this analysis. For example, a variable lower frequency for the matched
filtering or correlation studies between the pipelines. Similarly, in the case
of machine learning methods, an online implementation is being considered.
Furthermore, the estimated efficiency can be used to constrain different GW
emission models by performing a similar analysis as the subsolar mass search.
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Appendix A

Instrumented baffle for
scattered light control

As was discussed in Sec. 2.8, part of the planned upgrades of the AdV inter-
ferometer for O5 includes the installation of instrumented baffles around the
main test masses. These new baffles will open up the possibility to monitor
the scattered light within the cavity, the contamination of the mirror sur-
faces and facilitate the pre-alignment and fine-tuning of the parameters of
the interferometer.

A demonstrator of the technology designed to instrument the baffles around
the mirrors was installed in April 2021. The instrumented baffle was sus-
pended surrounding the suspended end mirror of Virgo’s IMC cavity [187].
In this Appendix, the first results of the detector are discussed and compared
with the scattered light distribution expected from simulations.

A.1 Input Mode Cleaner

A beam propagating inside a cavity is described by a set of orthonormal
solutions, known as the Hermite-Gauss modes TEMmn, parameterized by
two natural numbers (m,n). In particular, the (0, 0) solution is given by a
Gaussian beam (See Fig. A.1). Solutions with higher values of (m,n) are
known as ”Higher order modes”. The interferometers are designed to work
with Gaussian beams and, for that reason, they are filtered from higher order
modes before being introduced into the cavity.
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This filtering is done through a cavity tuned to resonate with the (0, 0) mode,
the Input Mode Cleaner (IMC).

Figure A.1: TEM modes for different combinations of (m,n). Source: https:

//www.rp-photonics.com/resonator_modes.html.

The IMC cavity is a triangular cavity (see Fig. A.2) used to filter the beam
before entering the main cavities of the interferometer [28]. This cavity con-
sists of three suspended mirrors: MC1, MC2 and MC3. Both MC1 and
MC3 are flat mirrors while MC2, the end mirror, is curved with a radius of
curvature of 187m. This cavity has a length of ∼ 143 m and a finesse of 1200.
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Figure A.2: AdV IMC cavity with half roundtrip length of ∼ 143m. MC1 and
MC3 are two flat mirrors while the end mirror (MC2) is curved. Taken from
Ref. [188].

A.2 Instrumented baffle

A demonstrator of the technology designed to instrument the baffles around
the mirrors was installed in April 2021 surrounding the end mirror (MC2
from Fig. A.2) of Virgo’s IMC. This baffle has been taking data since and
is able to detect variations of power inside the IMC cavity. It has an inner
radius of 7cm and an outer radius of 17.5cm. The baffle is divided into two
halves tilted 9 degrees with respect to the direction of the beam to avoid
back reflections in the cavity. A total of 76 Si-based photosensors were in-
stalled in 4 mm diameter conical shaped holes centered around the sensors,
such that the light does not resolve the sensor edge and the scattering of
light with the hole geometry is minimized. Each sensor has a sensitive area
of 6.97x6.97mm2. Both the baffle and sensors surfaces include anti-reflective
coating at 1064nm. All the components are certified for ultra high vacuum
conditions.

A diagram showing the sensor holes and the baffle can be seen in Fig. A.3.
Most of the sensors are located in two concentric rings at radii of 8.8 and
9.8 cm. The signals from the sensors are processed by 16 ADCs (8 per half
baffle) averaging to a sampling frequency of 2 Hz with the potential to reach
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Figure A.3: (left) Instrumented baffle installed in the IMC tower. (Right) Repre-
sentation of the baffle with the holes in which photosensors are added. The baffle
is divided into six regions in such a way that the symmetry along the y-axis is
preserved. Taken from Ref. [187].

up to 10 Hz in the future. Each ADC is instrumented with a temperature
sensor and the system operates at a voltage of 3.3 V. The IMC cavity was
checked after the installation and it was successfully restored.

A.2.1 Calibration

The sensors were calibrated using a dedicated laser setup shown in Fig. A.4.
An infrared beam (1064nm) is used as the source of light. The beam was
collimated so that its transverse size is limited to a diameter of 1.38mm
at a focal distance of about 6mm. The setup was also used to study the
performance of the sensors as a function of the temperature in the range
between 23 ºC and 40 ºC. No significant dependence was observed. The
laser is aligned to the center of each photodiode (PD) by using a red beam
as reference. It was found that the response of the sensors does not depend
on the exact location as long as the beam is fully within the sensitive region
of the PD.
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Figure A.4: Optical setup used to estimate the response of the photodiodes. The
laser is collimated before being sent to the photodiodes. The beam is aligned to
the center of each photodiode by using a red beam as reference.

The response of the photodiodes was studied by measuring the number of
counts for different values of nominal laser power, as shown in Fig. A.5.
The photodiodes were found to have a linear response at powers lower than
15mW, corresponding to the whole range of interest. These measurements
were repeated for all the photodiodes and similar results were obtained. In-
terpolating the slope of the linear region, we obtain that the calibration factor
is 6.2± 0.2 µW/(ADC counts), as shown in Fig. A.6.

Due to the collimator, the power of the beam is attenuated and smaller than
the initial value. Therefore, a calibrated photodiode was used to measure
the real power illuminating the photodiodes. With this correction it was
found that the absolute calibration factor is 4.6 µW/(ADC counts), with an
uncertainty of about 5%.
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Figure A.5: Response of the photodiode as a function of the power of the laser.
The linear region has a slope of 6.2µW/(ADC counts).

Figure A.6: Estimation of the calibration factor for different values of the (colli-
mated) laser power. A value of
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A.2.2 Temperature evolution

As was mentioned earlier, each ADC is instrumented with a temperature sen-
sor to monitor the potential overheating of the front-end electronics. This
was found to not be an issue thanks to the moderate operating voltage, effi-
cient heat dissipation of the PCBs and the mechanical design.

The evolution of the temperature can be seen in Fig. A.7. After switch-
ing on the baffle, the system reaches thermal equilibrium 40 minutes later
with temperatures in the range between 22 and 28ºC. The maximum tem-
perature is reached by the ADC closest to the micro-controller electronics.
This plateau is well in the safety zone of the photosensors.
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Figure A.7: Temperature evolution for a period of one hour. The highest tem-
perature corresponds to the board from which the data is sent out of the baffle. A
plateau is reached after around 40 minutes without leaving the safety threshold.
Taken from Ref. [187].

A.2.3 Results

The baffle has been running and taking data periodically since the installa-
tion. In the absence of light inside the cavity, it has shown average noise levels
limited up to seven counts, with an RMS of 0.01 to 0.16 counts depending on
the sensor. In the presence of light, the SNR varies in the range between 1
and more than 10 times. The performance of the baffle was studied for long
periods of time and was shown to remain stable.
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The raw signals per photosensor averaged over one hour are shown in Fig.
A.8 for two separate data sets.

The signals are concentrated at low radius in which sensors reach more than
100 counts. Furthermore, there is a left-right asymmetry with more power at
negative x values. In addition, the power is concentrated in the plane tilted
by about 15 degrees with respect to the nominal plane of the cavity. These
effects remain in all the data. The performance of the baffle was tested by
forcing small displacements of the IMC end mirror with respect to its nominal
position. These changes produced a variation in the IMC output power and
the appearance of higher order modes within the cavity. This translated into
a variation of the total power measured by the baffle of about 5%, showing
that the baffle is sensitive to the cavity. Furthermore, the baffle was able to
detect fast unlocks inside the cavity, showing a sharp drop in counts for the
duration of the unlock (at most a few seconds). Before the final calibration,
the average noise in the absence of a beam is subtracted channel by channel.
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Figure A.8: Counts measured by the baffle when a beam is propagating inside
the cavity. The data corresponds to two different periods of time. Taken from
Ref. [187]
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Comparison with simulations

The calibrated data are compared to simulations of the IMC cavity. These
simulations were used to design the baffle and the position of the sensors [188,
189]. Following studies from Ref. [188], an input power of 28.5±0.1W, corre-
sponding to the average input power during the data taking period, was used
and updated mirror maps of the IMC mirrors were considered. An additional
uncertainty of 0.2% was included in the calibrated data due to oscillations
of the input power. The simulation does not include thermal effects in the
mirrors induced by the laser, that are expected to be small.

A similar representation to Fig. A.8 but using the simulated values can
be seen in Fig. A.9, showing a general agreement with the observed data.
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Figure A.9: Power per surface area (W/m2) estimated by the simulation in the
positions where the sensors are located. Taken from Ref. [187].

In Fig. A.10 a comparison between the measured distribution and simula-
tions as a function of the radius, r, and the angle, ϕ, can be seen. In the
simulations, the value is estimated at the center of each sensor and only the
active area of the sensor is taken into account (ϕ × 4mm2). The observed
power varies between 1.1 W/m2 and 52.3 W/m2 at small r and 0.4 W/m2

and 9.6 W/m2 at very large r, showing a strong dependence on r.
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Figure A.10: Measured power (dots) as a function of the angle (ϕ) for the
four rings vs the expected result from the simulations. It should be noted that
there are four sensors with different radius. These are included in the second
ring. The simulations were repeated for several cases: including the three mir-
rors (MC1+MC2+MC3) in the IMC cavity, removing the dihedron right mirror
(MC1+MC2) or only including the end mirror (MC2) surface maps. Taken from
Ref. [187].
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A more in-depth study shows that systematically the power reaching the
baffle is underestimated in simulations. This is shown in Table A.1, where
the results are integrated over the sensors in each sextant. The power given
by the simulations is normalized by the circulating power within the cavity
(9695 W). Experimental data shows a total power in the sensors of about 6.6
mW while the simulation predicts around 4.4mW. Furthermore, the simula-
tion does not completely support the left-right asymmetry observed.

Further studies have shown that the measured tilt in ϕ cannot be attributed
to misalignment in the cavity. We conclude that the most probable origin of
the disagreement is due to a description non accurate enough of the mirror
surface maps. At a large radius, the predictions might also be affected by
large angle scattering not included in the simulations. These topics will be
studies using the data measured by the instrumented baffle.

Sextant Data Simulation

Power (mW) Ratio (×10−5) Ratio (×10−5)

S1 0.47 ± 0.02 4.8 ± 0.2 1.0
S2 1.92 ± 0.10 19.8 ± 1.0 19.6
S3 0.55 ± 0.03 5.7 ± 0.3 1.6
S4 0.67 ± 0.03 6.9 ± 0.4 1.1
S5 2.25 ± 0.11 23.2 ± 1.2 20.6
S6 0.76 ± 0.04 7.8 ± 0.4 1.5

Table A.1: Measured power distribution in the baffle sextants (See right Fig. A.3)
compared to simulations. The column ”Ratio” shows the total power normalized
by the circulating power. Taken from Ref. [187]

In summary, the baffle has proven itself able to directly detect scattered light
inside the cavity. These results will serve to calibrate the simulations and
demonstrate already the potential of instrumented baffles to detect defects
in the mirrors and to improve the understanding of the scattered light inside
ground-based gravitational wave experiments like Virgo.
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Appendix B

Statistical model

In this appendix we explain the basic elements needed to understand the
concepts of Bayesian inference used in this work [190, 191]. The main ad-
vantage of Bayesian inference over a frequentist approach is that it allows
to update the model with new information. In broad strokes, a Bayesian
inference process can be divided in three steps.

1. Define a model, consistent with the problem, that describes the full
probability distribution of all the parameters involved.

2. Update the model using Bayes’ rule and a given sample of data. This
is known as the posterior distribution.

3. Evaluate the performance of the updated model and how the assump-
tions used fit the data.

The main focus of this appendix will be in the first two steps. In first place,
we will go through an explanation to Bayes’ rule and the terms involved. We
will follow with an introduction to credible intervals and nuisance parameters
and end with commonly used sampling methods.

B.1 Bayes’ rule

The main objective of Bayesian analysis is to provide statements in terms of
probability for the unknowns involved in a problem, be it a set of unknown
parameters θ or unobserved data d̂. These statements are made by condi-
tioning our proposed model with real data, d.
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Let’s assume that we have a problem defined by some parameters θ and
a joint probability distribution given by p(θ, d). Then, by using the law of
total probability, we have that the joint distribution can be written as in Eq.
B.1:

p(θ, d) = p(d|θ)p(θ) = p(θ|d)p(d), (B.1)

from where we can extract the Bayes’ rule by using the second equality, as
in Eq. B.2.

p(θ|d) = p(d|θ)p(θ)
p(d)

. (B.2)

Notice that the terms p(θ|d) and p(θ) are well defined only from a Bayesian
perspective. This is due to θ not being understood only as a parameter of a
distribution but also as a random variable.

The term p(θ|d) is known as the posterior probability and it should be un-
derstood as the probability of θ given the realization of the data, d. The
terms on the right side of the Eq. are defined as follows:

• p(θ): This term encapsulates the information we have of our parameters
before doing the experiment. For this reason it’s usually referred as
”prior distribution”.

• p(d|θ): The probability of obtaining a particular realization of the data
given a set of parameters θ. It should be noted that this is a function
only of the parameters and not of the observed data.

• p(d): A normalization constant for the posterior. It corresponds to the
marginal distribution over θ of our joint probability model. There are
several ways to refer to this term but the most common in this field is
”evidence”.

It should be noted that the observed data, d, affects the posterior only from
the term p(d|θ) when seen as a function of θ. For this reason this term is
usually called ”Likelihood”.
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Given two values of the parameters θ1 and θ2, we can estimate which set of
parameters is favored by the observed data by dividing the posterior distri-
butions as in Eq. B.3:

p(θ1|d)
p(θ2|d)

=
p(θ1)

p(θ2)

p(d|θ1)
p(d|θ2)

. (B.3)

This is known as the Bayes factor and is generally used to compare two
models. In the case of using the same prior distribution the first term on the
right side cancels out and this factor is given by the likelihood ratio between
the two models.

B.2 Priors

We have seen that the estimation is heavily dependant on the prior choice.
At first approximation we could try to use a prior that encapsulates all our
knowledge about the parameters. This is however unfeasible when the prob-
lem is too complex or there are too many parameters, as the prior might
become unwieldy.

A possible solution would be to use a prior that is as non informative as
possible, for example a flat prior, p(θ) ∝ constant. This is one of the most
used alternatives but it also has its own limitations:

• A flat prior is not always normalizable. For example a flat prior over
the whole real number will integrate to infinity. However, this is not a
problem if the posterior distribution can be normalized. These priors
are known as ”improper priors”.

• They are not necessarily invariant under transformations of the vari-
able, that is to say, a flat prior over a parameter doesn’t mean that it
will be flat over transformations of that parameter.

There has been several attempts to generalize the concept of noninformative
priors and one of the most important is known as ”Jeffreys prior” [192].
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This prior is invariant under transformations of variable and is given as in
Eq. B.4. In some cases it might be an improper prior:

p(θ) ∝
√
det(I(θ)) (B.4)

I(θ)ij = E

[
∂2

∂θi∂θj
log(p(d|θ))

∣∣∣θ] ,
where I(θ) is the Fisher information matrix. However, this choice of prior
does not mean that the functional form is the same. In this sense being
transformation invariant means that it assigns the same probability volume
independently of the parametrization used.

Another convenient choice of priors are known as the conjugate priors for
the likelihood p(d|θ). These are defined as the priors that produce a pos-
terior in the same probability distribution family. For example, if we use a
likelihood model defined by a Poisson distribution, a prior following a gamma
distribution will result in a posterior also described by a gamma. These pri-
ors are convenient in the case that a closed form for the posterior is needed
and simplify the process of normalization and sampling from it.

B.3 Nuisance parameters

We have seen that the first step for Bayesian inference is to define the model,
p(θ, d), for a set of parameters θ that describe all the unknowns of the system
(experiment). However, there might be situation in which some parameters
have to be accounted to define the statistical model but are not of interest
for the analysis. These are known as nuisance parameters. For example,
assuming a Gaussian model with unknown variance, any model testing the
mean of the distribution will treat the variance as a nuisance parameter.

In general, the parameter space can be divided in two types: θ = (µ, ν),
where µ are the parameters of interest and ν are the nuisance parameters.
The standard procedure to handle nuisance parameters is to marginalize
them from the posterior. Therefore, we have that the marginalized posterior
distribution will be:

p(µ|d) =
∫
p(µ, ν|d)dν =

∫
p(µ|ν, d)p(ν|d)dν, (B.5)
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where we can see that the marginalized posterior over the nuisance param-
eters depends on the conditional distributions, p(µ|ν, d), times the posterior
density p(ν|d). That is to say, a combination of the experimental data and
the priors chosen to model the nuisance parameters.

B.4 Credible intervals

The posterior distribution can be used to define credible intervals. A cred-
ible interval is an interval in which the value of the parameter falls with a
probability selected beforehand. A (1 − α) credible interval is defined as in
Eq. B.6: ∫ b

a

p(θ|d)dθ = 1− α. (B.6)

This can be generalized to higher dimensions, known as credible regions, by
integrating over a volume. There are several methods to select the bounds of
these intervals. One of them is to define the interval such that we have the
same probability above and below a selected point. These are called equal-
tailed intervals and will contain the median of the parameter.

Credible intervals are the Bayesian analogue of frequentist confidence inter-
vals. There are however some key differences in how to interpret them. From
a frequentist point of view it doesn’t make sense to consider the probability
of a parameter being inside an interval, a parameter is a fixed value and will
be inside or it will not. Therefore, a confidence interval with confidence level
of (1−α), constructed from an estimator of the parameter, gives an interval
in within the estimator will fall for subsequent repetitions with a probability
of (1−α). Meanwhile, in Bayesian inference, the interpretation is as follows:
given the observed realization of the data, the parameter will be inside the
credible interval with a probability of (1− α).

B.5 Sampling

From Bayes’ rule in Eq. B.2 we can obtain an analytical expression for the
posterior distribution. However, in general, we are not interested in the pos-
terior itself but in quantities and distributions obtained by manipulations
over this posterior. For example, estimating mean values, marginalizing over
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the nuisance parameters or estimating the posterior of only one parameter.
All these require to integrate the posterior over the sample space which is
doable with numerical integration only when the number of parameters that
describe the model is small. This problem is tackled by using sampling tech-
niques.

The main idea is to generate a sample big enough of the posterior such that
all the quantities we want can be estimated using these samples. There are
two possible ways to proceed: Independent and dependent sampling. How-
ever, independent sampling methods are not easy to generalize and dependent
techniques are usually used. Many important algorithms are based in Markov
chain simulations [193] (Also known as Markov chain Monte Carlo or mcmc).

A Markov chain is a sequence of random variables x1, x2, x3, ... such that
for all i the conditional distribution of xi with respect all the previous ele-
ments in the sequence only depends in xi−1. An important characteristic of
this chain is that when the number of samples is big enough it will converge
to the sampled distribution. In mcmc methods the first point is arbitrar-
ily selected while the following are obtained by drawing from a distribution
chosen beforehand such that the Markov chain condition is fulfilled. The
new points of the chain are corrected to better approximate the distribution
we want to sample and, depending on how this step is performed, we have
different algorithms. One of the most widely used is the Metropolis-Hasting
algorithm.

B.5.1 Metropolis-Hasting Algorithm

The basic idea of this method is to perform random walks around the param-
eter space. In each iteration a new point is added to the chain if a condition
is true and rejected otherwise. We first need to define a ”transition function”
or ”proposal density function”, Q(θi|θi−1), that will be used to perform the
random walks by drawing the new candidates.
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The algorithm to sample from a distribution p(θ|d) can be summarized as
follows:

1. Draw or select a starting point θ0.

2. for i = 1,2,3...:

(a) Draw a proposal, θ∗, from Q(θ∗|θi−1).

(b) Estimate the following ratio:

r =
Q(θi−1|θ∗)p(θ∗|d)
Q(θ∗|θi−1)p(θi−1|d)

(c) Generate a random number, u, following a Uniform(0,1) distribu-
tion.

(d) If u < min(1, r) then the proposal is accepted and we set θi = θ∗.
Otherwise we reject the proposal and set θi = θi−1.

In other words, we accept θ∗ with a probability of min(1,r) and we reject
otherwise. This should be repeated until we reach the desired number of
samples. If the number of samples is large enough for the problem this
Markov chain will converge to the posterior distribution. However, due to
the first point being random, some elements at the beginning of the chain
might not follow the posterior distribution and should be discarded. This is
known as the burn-in period.

In the case of a symmetric transition function, that is, Q(θi|θi−1) =Q(θi−1|θi),
the ratio r is given by the ratio of the target distributions at each point.
This version is also known as Metropolis Algorithm. A common choice for
the transition function is a normal distribution centered around the previous
element of the chain with standard deviation of σ: θ∗|θi−1 ∼ N(θi−1, σ) or
more explicitly:

Q(θ∗|θi−1) =
1

σ
√
2π
exp(

1

2σ2
(θ∗ − θi−1)2),

where the spread, σ, is selected taking into account the complexity of the
problem and the expected acceptance rate or efficiency of the sampling. In
one hand, if the spread is much larger than the width of the target distribu-
tion, the acceptance rate will be very small and we will have many repeated
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samples in the chain. On the other hand, if the spread is too small then the
parameter space will be covered very slowly and it will take much longer to
converge.
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Appendix C

Mitigation of environmental
noise in O3

In October 2019, between the first and second half of the third observation
run, there was a commissioning period in which the sensitivity of the interfer-
ometers was slightly improved. One of the tasks during this period was the
mitigation of noise from environmental sources (see Sec. 2.6.3) in Virgo [39].

In Virgo, all the possible causes of environmental noise in key areas of the
interferometer are closely monitored. This includes temperature (thermome-
ters), magnetic fields (magnetometers), acoustic noise (microphones) and
displacement of critical components (accelerometers), among others. In this
section we will discuss the steps that were taken to find and mitigate these
contributions in preparation for the second half of the third observation run.

C.1 Methodology

Identifying the source of environmental noise, also known as ”Environmental
noise hunting”, is not an easy task due to the high complexity of the inter-
ferometer. There are, however, some techniques that have proven useful.

In general, the search for environmental noise hunting is empirical. That
is, the sensitivity of the interferometer is examined for features that might
have been produced by noise. The most common features that are searched
for are lines or bumps in the data that are new or not understood. These are
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then compared with known interventions in the interferometer at the same
time and, if no coincidence is found, they are further investigated. Dedicated
tools are used to estimate the correlation of the noise with the witness sen-
sors available to try to identify the source.

The possible sources are then explored by performing noise injections, switch
off tests or measuring the contribution by using portable sensors. Noise in-
jections are performed by simulating the causes of environmental noise. For
example, we apply displacements with known frequencies to critical compo-
nents to search for resonances or scattered light. However, due to the large
number of candidates, switch off tests are the best solution to constrain the
possible source of noise. During a switch off test, the suspected elements are
disconnected one by one while the sensitivity of the interferometer is closely
monitored. If the noise disappears, then the source has been found and we
only need to understand how it couples to the interferometer.

C.2 Scattered light mitigation

Scattered light studies were performed during this period. Firstly, a switch
off test of the heating, ventilation and air conditioning (HVAC) system was
performed. This system controls the temperature and dust decontamination
of key areas and produces both acoustic and seismic disturbances that might
couple with the interferometer. During this test, it was found that noise fea-
tures in the sensitivity were correlated with working HVAC units (see Fig.
C.1), in particular inside the detection clean room and the laser lab room.

To constrain the location of the source inside the detection clean room, acous-
tic noise was injected by means of a loudspeaker. With this injection we found
an increase of noise in the sensitivity between 46 and 50Hz and, with fur-
ther testing, the noise was constrained to the bench. The source was finally
identified and the noise dampened by optimizing the alignment of the bench.
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Figure C.1: Sensitivity before (blue) and after (orange) disconnecting all the
HVAC units. The reduction of noise below 100Hz is clear. Taken from Ref. [39].

C.3 Electromagnetic noise studies

As it was mentioned in Sec. 2.6.3, understanding the effect of electromag-
netic fields in our sensitivity is fundamental for some GWs searches. For that
reason, magnetic fields [194] were injected on a weekly basis during the third
observation run.

In this commissioning period, more injections were performed, both far field
injections, to understand the coupling with ambient magnetic fields, and
close field injections, to identify components susceptible to magnetic fields.
The coupling between the magnetic field and the sensitivity was estimated
as in Eq. C.1, where an upper limit was given when no visible effect was seen
on the sensitivity during the injection. The coupling is considered measured
when the effect on the nominal sensitivity is bigger by at least a factor two:
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C(f)measured =

√
Y 2
inj − Y 2

bkg(f)

X2
inj(f)−X2

bkg(f)
(C.1)

C(f)upperlimit =
Y 2
bkg√

X2
inj(f)−X2

bkg(f)
, (C.2)

where Y is the sensitivity of the interferometer and X is the magnetic field
as measured by the corresponding witness sensor, the magnetometers. The
magnetometers are orientated in three perpendicular directions so that we
can measure the three components of the magnetic field. We use as the total
field the modulus of this vector. The coupling of the magnetic field for dif-
ferent periods can be seen in Fig. C.2. This coupling can be divided into two
regions; a downward coupling below 100Hz and a rising slope above. The
low frequency component is due to the coupling with the magnets attached
to the mirrors. This coupling is expected to decay as f 3, which is the case
for both the North End Building (NEB) and West End Building (WEB) but
not the Central Building (CEB)1. Even though the reasons are unclear, it is
reasonable to assume that this difference is due to coupling with more sources
affected by the magnetic injection.

The rise at high frequency was investigated by performing close field injec-
tions around key components in CEB. Though we can’t estimate the coupling
with these studies, they are convenient to identify the elements more suscep-
tible to magnetic fields. It was found that there is a significant coupling
at 28Hz close to the input mirror of the north cavity, which is expected for
the magnets controlling the mirror movements. There was also a significant
coupling at 368Hz around the suspended detection bench. This indicates a
possible coupling at higher frequencies: ambient magnetic fields affect the
magnets acting on the bench and shaking it. In turn, this movement in-
creases the amount of scattered light coupling back with the interferometer
and limits the sensitivity between 300 and 600Hz.

1CEB: Building where the laser, beam splitter and input test masses are located; NEB:
Building containing the end point of the north arm; WEB: Analogous to NEB but for the
west arm.
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Figure C.2: Magnetic coupling for the Central Building (CEB), West End Build-
ing (WEB) and North End Building (NEB). A star corresponds to an upper limit
and a star to measured value, as indicated by Eq. C.1. Taken from Ref. [39].

Using this coupling and the ambient magnetic field measurements, we can
estimate the contribution to the noise from this source. This is shown in Fig.
C.3. This projection has shown regions that will limit Virgo’s sensitivity in
the future. Many peaks are located at 50Hz (and subsequent harmonics),
which correspond to the electrical frequency, but there are two, at 49.5Hz
and 50.5Hz, that originated from a different source and limited the sensitiv-
ity during O3b. These were produced by currents flowing through a metal
pipe into CEB and were successfully mitigated later.

These investigations are being used as reference for planning activities so that
the noise budget from ambient magnetic fields is improved. For example,
diaphragm baffles are going to be installed in the suspended detection bench
to mitigate the scattered light coupling back into the interferometer and
reduce the magnetic coupling above 100Hz.
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Figure C.3: Contribution to the noise from external magnetic field sources (NP).
A continuous projection was obtained by using linear interpolation between the
points used to estimate the coupling. Transparent regions correspond to upper
limits. Taken from Ref. [39].

C.4 50Hz line and sidebands

As we have mentioned previously, the 50Hz line appears due to the electrical
frequency in Italy. However, before O3, this line was unusually large and,
though it was investigated, the reason was not found. At the end, it was
decided to apply a correction using a feed forward control scheme to remove
this noise from the sensitivity. The mitigation was done by applying a cor-
rection on the actuators that control the movement of the west end mirror.
This correction is based on the voltage monitor of the uninterruptible power
supply (UPS). This mitigation can be seen in Fig. C.4 (left).
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Figure C.4: (left) Feed foward control scheme applied to mitigate the 50Hz line.
(right) The sidebands disappear from the magnetometer (top) and the strain (bot-
tom) after switching off the infra-red laser beam profiles in the thermal compen-
sation benches. Taken from Ref. [39].

Once the line was suppressed, sidebands around 50Hz were found in the resid-
ual noise, as seen in Fig. C.4 (right). In particular, two main families were
found, one at ±1.25Hz and the other at ±1.7Hz, both including harmonics.
Using tools to correlate this noise with witness channels, it was found that
there was a high correlation between these sidebands and the magnetic sen-
sors and UPS monitor channels in the central building. This was followed by
a search using a portable probe and a possible source was found in the ther-
mal compensation benches, with the 1.2Hz coming from the west bench and
the 1.7Hz from the north bench. After performing a switch off test, the origin
of the noise was found. The culprits were devices used to monitor infra-red
laser beam profiles that were installed to monitor the heating pattern profiles.

The devices were used only to monitor and the noise was successfully miti-
gated by switching them off during observation periods.
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Appendix D

O3 scan results

In this appendix, the values of the discriminant and significance for all the
O3 events are shown. Only the 51 events in H1-L1-V1 times have a value
assigned. The discriminant assigned by the neural networks is given in the
columns under the name ”Discr” whereas the significance is given under the
”FAR” columns. The acronyms correspond to the mass range covered by the
neural network:

• HM: High mass - [25M⊙, 100M⊙].

• MM: Masses in-between - [5M⊙, 25M⊙].

• LM: Low mass - [0.2M⊙, 5M⊙].

A detection is claimed when the FAR is lower than a preselected threshold.

Event Discr HM Discr LM Discr MM FAR HM FAR LM, FAR MM

GW190403 051519 0.79 0.18 0.5 37.344 >100 >100
GW190408 181802 1.0 0.2 0.88 0.007 >100 >100
GW190412 053044 0.99 0.24 0.9 0.007 >100 >100
GW190413 052954 0.77 0.15 0.73 68.624 >100 >100
GW190413 134308 0.88 0.29 0.41 5.01 >100 >100
GW190421 213856 - - - - - -
GW190424 180648 - - - - - -
GW190425 081805 - - - - - -
GW190426 152155 0.06 0.55 0.22 >100 >100 >100
GW190426 190642 0.28 0.22 0.26 >100 >100 >100
GW190503 185404 0.99 0.3 0.76 0.007 >100 >100
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GW190512 180714 0.79 0.18 0.8 39.744 >100 >100
GW190513 205428 1.0 0.14 0.76 0.007 >100 >100
GW190514 065416 - - - - - -
GW190517 055101 0.96 0.16 0.43 0.185 >100 >100
GW190519 153544 1.0 0.18 0.4 0.007 >100 >100
GW190521 030229 1.0 0.15 0.49 0.007 >100 >100
GW190521 074359 - - - - - -
GW190527 092055 - - - - - -
GW190602 175927 0.78 0.17 0.67 53.144 >100 >100
GW190620 030421 - - - - - -
GW190630 185205 - - - - - -
GW190701 203306 1.0 0.15 0.49 0.007 >100 >100
GW190706 222641 1.0 0.22 0.47 0.007 >100 >100
GW190707 093326 - - - - - -
GW190708 232457 - - - - - -
GW190719 215514 - - - - - -
GW190720 000836 0.07 0.14 0.58 >100 >100 >100
GW190725 174728 0.08 0.25 0.65 >100 >100 >100
GW190727 060333 1.0 0.16 0.76 0.007 >100 >100
GW190728 064510 0.17 0.54 0.97 >100 >100 5.035
GW190731 140936 - - - - - -
GW190803 022701 0.85 0.16 0.35 10.01 >100 >100
GW190805 211137 0.81 0.2 0.46 26.524 >100 >100
GW190814 211039 - - - - - -
GW190828 063405 1.0 0.24 0.64 0.007 >100 >100
GW190828 065509 0.17 0.2 0.46 >100 >100 >100
GW190909 114149 - - - - - -
GW190910 112807 - - - - - -
GW190915 235702 0.99 0.17 0.54 0.007 >100 >100
GW190916 200658 0.68 0.17 0.39 >100 >100 >100
GW190917 114630 0.05 0.21 0.2 >100 >100 >100
GW190924 021846 0.05 0.16 0.56 >100 >100 >100
GW190925 232845 - - - - - -
GW190926 050336 0.75 0.2 0.2 >100 >100 >100
GW190929 012149 0.77 0.23 0.3 76.784 >100 >100
GW190930 133541 - - - - - -
GW191103 012549 - - - - - -
GW191105 143521 0.05 0.2 0.62 >100 >100 >100
GW191109 010717 - - - - - -
GW191113 071753 0.07 0.19 0.33 >100 >100 >100
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GW191126 115259 - - - - - -
GW191127 050227 1.0 0.19 0.65 0.006 >100 >100
GW191129 134029 - - - - - -
GW191204 110529 - - - - - -
GW191204 171526 - - - - - -
GW191215 223052 0.81 0.15 0.49 32.971 >100 >100
GW191216 213338 - - - - - -
GW191219 163120 0.09 0.16 0.34 >100 >100 >100
GW191222 033537 - - - - - -
GW191230 180458 0.98 0.17 0.63 0.505 >100 >100
GW200112 155838 - - - - - -
GW200115 042309 0.08 0.17 0.23 >100 >100 >100
GW200128 022011 - - - - - -
GW200129 065458 0.95 0.15 0.62 1.562 >100 >100
GW200202 154313 0.08 0.33 0.6 >100 >100 >100
GW200208 130117 0.99 0.27 0.38 0.223 >100 >100
GW200208 222617 0.51 0.22 0.44 >100 >100 >100
GW200209 085452 0.78 0.23 0.46 86.132 >100 >100
GW200210 092254 0.08 0.39 0.62 >100 >100 >100
GW200216 220804 0.47 0.17 0.47 >100 >100 >100
GW200219 094415 0.8 0.15 0.39 45.064 >100 >100
GW200220 061928 0.13 0.18 0.31 >100 >100 >100
GW200220 124850 - - - - - -
GW200224 222234 1.0 0.25 0.95 0.006 >100 12.614
GW200225 060421 - - - - - -
GW200302 015811 - - - - - -
GW200306 093714 - - - - - -
GW200308 173609 0.23 0.2 0.31 >100 >100 >100
GW200311 115853 1.0 0.18 0.94 0.006 >100 22.981
GW200316 215756 0.2 0.16 0.19 >100 >100 >100
GW200322 091133 0.17 0.14 0.48 >100 >100 >100
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Appendix E

Inner weighted product

We define the inner weighted product for two real functions, b(t) and g(t), by a
weight Sn(f) as in Eq. E.1:

(b|g) :=

∫ ∞

−∞

b̃∗(f)g̃(f)
1
2Sn(f)

df = 2

∫ ∞

0

b̃(f)g̃∗(f) + b̃∗(f)g̃(f)

Sn(f)
df. (E.1)

It should be noted that Sn(f) > 0 and the numerator will be real due to being com-
plex conjugate terms. For this reason another popular way to write this product
is as seen in Eq. E.2:

(b|g) = 4Re

∫ ∞

0

b̃(f)g̃∗(f)

Sn(f)
df. (E.2)

Proposition 1. The operation defined in Eq. E.1 is an inner product.

Proof. Let b(t) and g(t) be two real functions and Sn(f) a positive definite function.

1. Symmetry:

(b|g) = 2

∫ ∞

0

b̃(f)g̃∗(f) + b̃∗(f)g̃(f)

Sn(f)
df = 2

∫ ∞

0

b̃∗(f)g̃(f) + b̃(f)g̃∗(f)

Sn(f)
df =

=

∫ ∞

0

g̃(f)b̃∗(f) + g̃∗(f)b̃(f)

Sn(f)
df = (g|b)

2. Linearity: Let a be any real number

(ab|g) = 2

∫ ∞

0

ab̃(f)g̃∗(f) + ab̃∗(f)g̃(f)

Sn(f)
df = 2a

∫ ∞

0

b̃(f)g̃∗(f) + b̃∗(f)g̃(f)

Sn(f)
df = a(b|g)
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3. Positive-definite:

(b|b) = 2

∫ ∞

0

b̃(f)b̃∗(f) + b̃∗(f)b̃(f)

Sn(f)
df = 4

∫ ∞

0

|b̃(f)|2
Sn(f)

df ≥ 0

And (b|b) = 0 ⇐⇒ b = 0 due to the integrand being definite positive.

A physical interpretation of this inner product is that regions in which the detector
is more noisy will have a bigger weight and contribute less to the total product.
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merger-ringdown waveforms of spinning, precessing black-hole binaries in the
effective-one-body formalism. Physical Review D, 89(8), apr 2014.

[28] F Acernese, M Agathos, K Agatsuma, D Aisa, N Allemandou, A Allocca,
and et al. Advanced virgo: a second-generation interferometric gravitational
wave detector. Classical and Quantum Gravity, 32(2):024001, dec 2014.

[29] The LIGO Scientific Collaboration. Advanced LIGO. Classical and Quantum
Gravity, 32(7):074001, mar 2015.

[30] The KAGRA Collaboration. Overview of kagra: Detector design and con-
struction history, 2020.

[31] H Lück, C Affeldt, J Degallaix, A Freise, H Grote, M Hewitson, S Hild,
J Leong, M Prijatelj, K A Strain, B Willke, H Wittel, and K Danzmann. The

195



upgrade of GEO 600. Journal of Physics: Conference Series, 228:012012,
may 2010.

[32] The TAMA collaboration. Stable operation of a 300-m laser interferome-
ter with sufficient sensitivity to detect gravitational-wave events within our
galaxy. Physical Review Letters, 86(18):3950–3954, apr 2001.

[33] F. Acernese, M. Agathos, A. Ain, S. Albanesi, A. Allocca, and et al. Virgo
detector characterization and data quality during the o3 run, 2022.

[34] E McClelland David. An overview of recycling in laser interferometric grav-
itational wave detectors. Australian Journal of Physics, 48:953–970, 1995.

[35] Brian J. Meers. Recycling in laser-interferometric gravitational-wave detec-
tors. Phys. Rev. D, 38:2317–2326, Oct 1988.

[36] The LIGO Scientific collaboration. Enhanced sensitivity of the ligo gravi-
tational wave detector by using squeezed states of light. Nature Photonics,
7(8):613–619, jul 2013.

[37] Moritz Mehmet and Henning Vahlbruch. The squeezed light source for the
advanced virgo detector in the observation run o3. Galaxies, 8(4), 2020.

[38] M. Tse et al. Quantum-enhanced advanced ligo detectors in the era of
gravitational-wave astronomy. Phys. Rev. Lett., 123:231107, Dec 2019.

[39] Irene Fiori, Federico Paoletti, Maria Concetta Tringali, Kamiel Janssens,
Christos Karathanasis, Alexis Menéndez-Vázquez, Alba Romero-Rodŕıguez,
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M. Pitkin, C. Rodriguez, C. Röver, T. Sidery, R. Smith, M. Van Der Sluys,
A. Vecchio, W. Vousden, and L. Wade. Parameter estimation for compact
binaries with ground-based gravitational-wave observations using the LAL-
Inference software library. Physical Review D, 91(4), feb 2015.

[99] B.P. Abbott et al. Search for subsolar-mass black hole binaries in the second
part of Advanced LIGO’s and Advanced Virgo’s third observing run. In
preparation.

[100] Alexander H. Nitz and Yi-Fan Wang. Broad search for gravitational waves
from subsolar-mass binaries through ligo and virgo’s third observing run,
2022.

[101] Sarah Shandera, Donghui Jeong, and Henry S. Grasshorn Gebhardt. Grav-
itational Waves from Binary Mergers of Subsolar Mass Dark Black Holes.
Phys. Rev. Lett., 120(24):241102, 2018.

202



[102] Divya Singh, Michael Ryan, Ryan Magee, Towsifa Akhter, Sarah Shandera,
Donghui Jeong, and Chad Hanna. Gravitational-wave limit on the Chan-
drasekhar mass of dark matter. Phys. Rev. D, 104(4):044015, 2021.

[103] Ya. B. Zel’dovich and I. D. Novikov. The Hypothesis of Cores Retarded
during Expansion and the Hot Cosmological Model. Sov. Astron., 10:602,
February 1967.

[104] Stephen Hawking. Gravitationally collapsed objects of very low mass. Mon.
Not. Roy. Astron. Soc., 152:75, 1971.

[105] Bernard Carr, Kazunori Kohri, Yuuiti Sendouda, and Jun’ichi Yokoyama.
Constraints on primordial black holes. Reports on Progress in Physics,
84(11):116902, nov 2021.

[106] Pablo Villanueva-Domingo, Olga Mena, and Sergio Palomares-Ruiz. A brief
review on primordial black holes as dark matter. Frontiers in Astronomy
and Space Sciences, 8, may 2021.

[107] Bernard Carr and Florian Kühnel. Primordial black holes as dark matter
candidates. SciPost Physics Lecture Notes, may 2022.

[108] B. J. Carr. The primordial black hole mass spectrum. Astrophysical Journal,
201:1–19, October 1975.

[109] J. C. Niemeyer and K. Jedamzik. Near-critical gravitational collapse and
the initial mass function of primordial black holes. Physical Review Letters,
80(25):5481–5484, jun 1998.

[110] Christian T. Byrnes, Mark Hindmarsh, Sam Young, and Michael R. S.
Hawkins. Primordial black holes with an accurate QCD equation of state.
JCAP, 08:041, 2018.
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A M Vazquez, G Gemme, and A Chincarini. Investigation of magnetic noise
in advanced virgo. Classical and Quantum Gravity, 36(22):225004, oct 2019.

211




	Introduction
	Introduction to gravitational waves
	Einstein's field equations
	Gravitational waves
	Weak-field Einstein equations
	The transverse-traceless gauge
	Reference frames for GW detection
	Gravitational waves emission

	Gravitational wave radiation emitted by CBC events

	Laser interferometry for gravitational waves detection
	Michelson interferometer
	Fabry-Perot resonator
	Gravitational wave coupling to a Fabry-Perot interferometer
	Dark fringe
	Ground based interferometers
	Noise sources in ground based interferometers
	Displacement noise
	Shot noise and radiation pressure
	Environmental noise
	Other sources of noise

	Calibration and data quality
	Instrumented baffle

	Data preprocessing, searches and parameter estimation
	Gaussian noise, stationarity and whitening
	Gating and noise subtraction
	Search of CBC gravitational waves
	Matched filter
	Statistical approach to matched-filter
	Creating a template bank
	Signal consistency tests
	False Alarm Rate (FAR)
	Volume-time and detector efficiency
	Rate estimation
	Loudest event statistic
	Creating a search pipeline

	Parameter estimation

	Sub solar mass searches with matched filtering
	Primordial black holes
	Formation of PBHs
	Binary formation and merger rate

	Dark matter black holes
	Likelihood and posterior estimation

	Search of subsolar objects in the first half of the third observing run
	Data and search pipelines
	Template bank
	Injections
	Results

	Search of subsolar objects in the second half of the third observing run
	Injections
	Results


	Machine learning methods for early detection of gravitational waves
	Introduction to machine learning
	Linear regression
	Layers and activation functions
	Convolutional neural networks

	The architecture: ResNet50
	Second observation run (O2)
	Data preparation
	Testing the performance
	Injection test
	Search in O2 data

	Third observation run
	Data preparation
	Testing the performance
	Estimation of the False Alarm Rate (FAR)
	Injection test
	Search in O3 data

	Outlook

	Conclusions
	Instrumented baffle for scattered light control
	Input Mode Cleaner
	Instrumented baffle
	Calibration
	Temperature evolution
	Results


	Statistical model
	Bayes' rule
	Priors
	Nuisance parameters
	Credible intervals
	Sampling
	Metropolis-Hasting Algorithm


	Mitigation of environmental noise in O3
	Methodology
	Scattered light mitigation
	Electromagnetic noise studies
	50Hz line and sidebands

	O3 scan results
	Inner weighted product

	Títol de la tesi: Search for subsolar mass black holes in
LIGO/Virgo using O3 data and the implementation of Machine Learning
algorithms in the identification of Compact Binary Coalescence events
	Nom autor/a: Alexis Menéndez Vázquez


