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Abstract 

Most complex traits of interest are controlled by many genes of small effects which 

experience only subtle changes in their frequency, making it hard to detect a specific derived pattern 

in the genome. Therefore, the genetic architecture underlying the phenotypic variation of most 

complex traits is still to be revealed. This thesis aims to understand polygenic effects from a 

population genetics (inference) and a quantitative genetics (prediction) perspective. We reason that 

observing how patterns of variability are formed under different selective and demographic 

conditions, such as domestication, may reveal patterns of polygenic adaptation signals in the genome 

of species. In addition, association between phenotypic traits and causative variants should not be 

restricted to Single Nucleotide Polymorphisms (SNPs). Transposable Insertion polymorphisms (TIPs) 

and Structural Variations (SVs) could also explain an important fraction of the variability. 

Firstly, the thesis focuses on detecting a genome-wide polygenic signal of domestication 

process through the analysis of full Distribution of Fitness Effects (DFE). We study the joint DFE using 

the 2-dimensional site frequency spectrum (2D-SFS) between populations in two ways: (i) we describe 

and compare the patterns of genetic diversity between the wild and domestic populations under ten 

domestication scenarios derived from forward simulations, and (ii) we propose a new joint DFE model 

designed to quantify a signal of domestication. We successfully retrieved this signal in the presence 

of shared polymorphisms. Finally, we highlight the strengths and limitations of current population 

genetic models in detecting a polygenic signal of domestication under different genetic and 

demographic architectures.  

 Secondly, we investigate whether TIPs can increase the effectiveness of Genomic Prediction 

(GP) of traits when compared to using only SNPs. We used eleven traits of agronomic importance 

originated by five different rice population groups (Aus/Boro, Indica, Aromatic, Japonica and 

Admixed), 738 accessions in total. In a within group scenario, we predicted performance of improved 

Indica varieties using the rest varieties. In an across group scenario, all Aromatic and Admixed 

accessions were predicted using the rest of populations. Our analysis showed that TIPs can explain 

an important fraction of total genetic variance and also improve the genomic prediction of complex 

traits.  

The third purpose of this thesis is to add SVs to explore its capacity to predict complex 

agronomic traits in rice. SVs such as deletions, inversions and duplication can be found in a high 

proportion in the plant genomes. As in TIPs, we found that SVs can explain an important fraction of 

genetic variation in the traits of interest. Also, our results suggested that Deep Learning (DL) models 

outperform in 50% of the studied cases. Finally, DL seems to improve prediction ability of continuous 

traits compared to Bayesian models when training and test dataset are distantly related.  
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Chapter 1 

Introduction 

1.1 Natural Selection 

 Evolution means that species change over time. Natural selection is the mechanism that can 

describe the way species change. The theory of evolution through natural selection was the first 

scientific theory that put together evidence of change through time as well as mechanism for how it 

happens. The idea that traits are inherited and passed down from parents to offspring has been 

around since the ancient Greek philosopher’s time. In the middle 1700s Carolus Linnaeus suggested 

a taxonomic naming system which grouped like species together implying that there was an 

evolutionary connection between species within the same group. In the late 1700s, the first theories 

that species changed over time, arise. Theories proposed by scientists like the Compte de Buffon and 

Erasmus Darwin, suggested that species changed over time but neither man could explain how or 

why the changed.  

Natural selection or else “survival of the fittest” as is called was suggested by Charles Darwin 

in his book “On the origin of the species”. Darwin suggested that individuals with the traits most 

suitable to their environments lived long enough to reproduce and passed down those desirable traits 

to their offspring. If an individual had less than favorable traits, they would die and not pass on those 

traits. Over the time, only the “fittest” of the individuals survived. Eventually, after enough time 

passed, these small adaptations would add up to create new species. Due to limited environmental 

resources, not all organisms survive. Over time, the population has adapted to its environment 

through the process of natural selection boosting the most favorable traits in the population. 

According to Charles Darwin, all species descended from only a few lifeforms that had been modified 

over time. This descent with modification as he called it forms the backbone of his Theory of Evolution 

which points out how new certain species evolve.  

1.1.1 From natural to artificial selection 

Darwin considered the process by which animals and plants are domesticated (artificial 

selection) as a useful analogy for the mechanism by which populations are adapted in the wild 

(natural selection). Domestication occupies the introductory chapter of “On the Origin of Species” 

(1859) but also it is thoroughly analyzed in his book “The Variation of Animals and Plants under 

Domestication” published in 1868. In the latter book, Darwin considered two types of artificial 

selection, in addition to natural selection, the methodical and unconscious selection. All three types 

of selection share a mechanism of non-random difference in the reproductive success among 

individuals on the basis of heritable traits.  The difference among the three processes is the reason 

why some individuals will reproduce while others not (Gregory 2009). While natural selection is not 

controlled by humans and is affected by the natural environment, in unconscious artificial selection 

the humans may choose which individuals will contribute more to the next generation but without 

necessarily account for a long-term effect. Instead, in methodical selection, humans select individuals 
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for breeding in order to maintain and enhance the traits of interest. Darwin himself stated that his 

discovery of natural selection came through his studies of artificial selection. Particularly, he 

mentioned in his private autobiography that his recognition of artificial selection as the main process 

in domestication triggered him to conceive the idea of natural selection (Darwin 1958).  Darwin 

dedicated many pages to discuss about the domesticated pigeons in the Origin, fascinated by the 

extraordinary variety of form produced by the methodical selection applied by breeders. Although 

Darwin’s analogy became a target of critics, Darwin made heavy use of this in arguing for the historical 

reality of common descent and the efficacy of natural selection.  

1.1.2 Domestication and selection 

The emergence of human civilization as we know today was achieved thanks to the 

domestication of plants and animals such as wheat, lentils, dogs, pigs, chickens (Purugganan and 

Fuller 2009; Driscoll et al. 2009; Larson and Burger 2013; Amills et al. 2017; Stetter et al. 2018; Avni 

et al. 2017; Redding 2015; Zeder 2012; Dayan 1994). Therefore, the domestication of such as plants 

and animals by Homo sapiens is one of the most crucial developments in the history of humans 

(Purugganan 2022). The transition of human societies from hunting and gathering to the cultivation 

of plants and herbing of animals started 11000 years ago, leaded to the domestication of crops and 

livestock. The definition of what domestication is, can be quite challenging, or it might be used to 

describe mistakenly interspecies relationships. Zeder (2012) gives a definition of domestication 

describing it as the mutualistic long-term relationship between humans and other species based on 

which both sides can increase their fitness. Specifically, a biologically centered definition of 

domestication can be described it as a coevolutionary process in which one species, the domesticator, 

constructs an environment where it actively manages both the survival and reproduction of another 

species, called the domesticate, in order to provide the former with resources. As a result, an increase 

in fitness can be observed for the organisms with this mutualistic relationship leading to the evolution 

of traits that ensures the stable association of domesticator and domesticate across generations. The 

pace of domestication is controlled by the strength of the selection applied by the domesticator and 

the genetic and ecological characteristics of the target domesticate (Purugganan 2022).  

1.1.3 Pathways of domestication 

Even though human evolution is strongly correlated to the domestication process, the 

genomic and evolutionary processes that go along with domestication is not fully understood. 

Selective pressures dictated by unintentional and deliberate human actions, possibly made the 

process relatively faster than natural selection in evolutionary time scale. Animal domestication was 

developed under different pathways including a direct human selection or an unconscious one. Zeder 

(2012) describes three different pathways followed by animal domestication, the commensal 

pathway, the prey pathway, and the directed pathway. Figure 1.1 shows the domesticated pathways 

followed by different species.  
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Figure 1.1: The first large carnivore domesticated was the dog. There are three possible pathways for the 

domestication of wild animals. The first one, the “commensal pathway” (green), occurred when humans saw 

a benefit from living alongside an animal. The second one called the “prey pathway” (blue), happened when 

humans bred animals in captivity for their meat. Directed domestication (red) happened when humans raised 

animals from the wild to take benefits for them. Post-domestication (yellow) took places for many species, 

since humans were able to recognize these traits of animals that could increase their benefits. Figure is form 

Larson and Fuller 2014, https://www.discovermagazine.com/planet-earth/the-origins-of-dogs) 

1.1.4 Genetic variation in domestication 

 Domestication instances are related to bottlenecks and as a consequence a decrease of the 

effect of natural selection is predicted since a small number of individuals from the wild population 

become domesticated (Wright et al. 2005). Even in the human-modified environments that control 

the domesticated traits, the genetic patterns were modified as well by the effect of gene flow 

between the wild and domestic populations. The concept of introgressive capture, introduced by 

Larsson and Fuller (2014), highlighted the importance of gene flow between domestic and wild 

populations to spread domesticated animals across the geography, in front of models considering 

independent domestication events. Domestic animals differentiated from the wild relatives by 

differential effects of selection, reduced gene flow and drift. Nowadays, breeders apply truncation 

selection which is a standard method in selective breeding to select of the top percentage of 

individuals for the desired traits (Granleese et al. 2019). Desired traits can be related to fashion as 

coat color or have an economic impact as milk, wool, and egg-laying. Breeders then rank the animals 

based on their phenotypic value on some of these traits and the top percentage is reproduced (Crow 

and Kimura 1979).  Moyers et al. (2018), described the cost of domestication as an increase in the 

number of deleterious mutations that are segregating at higher frequencies. As a result, the effect of 

selection and genetic gain can be reduced in a breeding program. It is still unclear which evolutionary 

processes contribute most to increase the cost of domestication across species. Andersson and 

Purugganan (2022) reviewed the progress of the last 35 years in discovering the genetic variation that 

underlies the phenotypic variation in crops and domesticated animals. A number of genes associated 
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with the domestication process have been identified in plants, while in animal domestication many 

traits seem to be polygenic without a specific gene involved.  

1.2 Genetic variation and Population Genetics  
 

Theodosius Dobzhansky defined evolution as the change over time in the genetic composition 

of a population in his pioneer work entitled “Genetics and the origin of Species” published in 1937. 

The genetic composition of a population is modified along generations due to alterations on the 

genomes that each individual carries. Population genetics studies the genetic composition of natural 

populations, and the evolutionary forces cause the genetic variation within and between populations.  

 

1.2.1 Genotype and allele frequencies and the Site Frequency Spectrum (SFS) 

Population genetics uses mathematical models of gene frequency dynamics to detect patterns 

that can explain the genetic variance in actual populations. These changes are due to evolutionary 

forces such as mutation, drift, migration, selection, and recombination (Charlesworth 2010). The 

most common type of genetic variation is single nucleotide polymorphisms frequently called SNPs. 

Each SNP represents a difference in a single DNA building block called nucleotide. Population genetics 

uses as basic unit the allele and genotype frequencies to describe the genetic structure instead of 

using just the genotype counts. Allele frequencies play a vital role in population genetics as well as 

genotype frequencies. The allele frequency spectrum or the site frequency spectrum (SFS) as it 

sometimes called, is the distribution of the allele frequencies of a given set of loci in a population or 

sample (Fisher 1930; Kimura 1964; Evans 2007; Hartl and Clark 2007). SFS can be calculated separately 

for synonymous and nonsynonymous sites.  

 

1.2.2 Wright-Fisher model  

 Randomness in a natural population is introduced because of two reasons, Mendel’s law of 

segregation and demographic stochasticity (Gillespie 1994). The first one is caused when a parent 

produces a gamete being randomly selected by one of the two homologous alleles. The second one 

is due to the different number of offspring that an individual can leave to the next generation. Even 

though these two reasons cause the genetic drift in a population, computer simulations follow 

simplest model which easier can be biological interpreted and mathematical analyzed. The Wright-

Fisher model was the first one investigating the impact of genetic drift in this relatively simple way. 

Wright-Fisher model names after the early pioneers of theoretical population genetics, Sewall Wright 

and Ronald A. Fisher, describes the sampling of alleles in a population assuming non-overlapping 

generation times and genetic drift.  

1.2.3 Diffusion approximations  

 

While Wright-Fisher model considers discrete generations, diffusion theory models time and 

the frequencies of alleles as continuous variables assuming a large population size. Thus, diffusion 
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theory estimates a continuous probability distribution of allele frequencies over time.  We expect 

that the estimations of both approaches, Markov chain and diffusion theory, will be similar 

considering a genetic drift. Wright (1931, 1945) laid the foundations of use diffusion process to model 

the dynamics of population generics. His work was completed by Kimura (1955, 1964) who defined 

fixation probabilities using forward and backward equations (Gillespie 1989). Other groups 

significantly contributed to estimation of the accuracy of diffusion approximations (Moran 1962; 

Watterson 1962; Ewens 1965). What make diffusion theory more versatile than Markov chain is that 

it can incorporate not only genetic drift but other evolutionary forces too (Evans et al. 2007) making 

it a central tool for modern population genetics.  

Like Markov chains, diffusion theory can predict the probability distribution of frequency. 

Hence, both predictions are similar to the outcome of neutrality and genetic drift. Also, diffusion 

theory considers large populations resulting in a continuous probability distribution compared to 

discrete prediction over generations outputs form the Markov chain estimations. The probability of 

fixation of neutral alleles at frequency x in diffusion theory is 𝑥 2𝑁⁄ , where N is the population size of 

a diploid species. Kimura (1964, 1968) gave the definition of the probability of fixation of a selective 

allele, one of the most important equations in population genetics: 

 
𝑷𝒇𝒊𝒙𝒂𝒕𝒊𝒐𝒏 =

𝟏 − 𝒆−𝟒𝑵𝒔𝒑

𝟏 − 𝒆−𝟒𝑵𝒔
 

 

(1.1) 

 

Where 𝑝 is the initial frequency of the mutation, 𝑠 is the selection coefficient (in co-dominance) and 

𝑁 is the population size of a diploid species. Particularly, the probability of fixation of a mutation 

strongly depends on the biological effect of this mutation on the individual and on the population size 

(Ohta 1973). The scaled selection coefficient 𝑁𝑠 determines the dynamic of forces such as drift and 

selection. When the scaled selection coefficient is in the interval −1 < 𝑁𝑠 < 1 the probability of 

fixation approaches that of neutrality. In case of |𝑁𝑠|  > 1, probability and time of fixation are mostly 

driven by selection. Whereas if |𝑁𝑠|  > 10, mutations are considered strongly dictated by the power 

of selection. Thus, the scaled selection coefficient is a term of high importance.  

 Following diffusion theory and the Wright-Fisher model, we will describe a fundamental 

equation used in modeling of evolutionary dynamics in population genetics. The equation suggested 

by Wright (1938) defines the population stationary frequency distribution. Specifically, the stationary 

frequency distribution describes the density probability of a mutation 𝑖 at frequency 𝑥 +  𝑑𝑥, 

allowing the calculation of the frequency spectrum at different distributions of selection coefficients.  

Evans et al. (2007) explored further the potential of the equation including non-equilibrium 

populations. The equation for the stationary distribution is the following: 

 
𝝋(𝒙) =

𝟏

𝒙(𝟏 − 𝒙)

𝒆𝟒𝑵𝒔 − 𝒆𝟒𝑵𝒔(𝟏−𝒙)

𝒆𝟒𝑵𝒔 − 𝟏
 

(1.2) 

 

1.2.4 The neutral theory of molecular evolution 

The neutral theory argues that the effect of the vast majority of molecular polymorphisms 

within species and substitution between species is neutral and dictated by the rate of genetic drift 
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and mutation. The role of genetic drift in molecular evolution has been controversial since the 60s, 

when it was introduced, mostly because the divergence of the species seems driven by random drift 

rather than by natural selection. However, neutral theory does not deny the role of natural selection, 

it argues that the most genetic variation has no effect on the fitness though. The theory which also 

called, the mutation-drift balance hypothesis, was proposed firstly by Kimura in 1968 while in 1971 

Kimura and Tomoko Ohta analyzed fully the aspects of the theory in population genetics in their 

paper, “Protein polymorphism as a phase of molecular evolution”. Particularly, Neutral theory 

suggests that the new mutations are either neutral or strongly deleterious (mutations that change 

the protein function negatively affecting the fitness of the individuals). However, these deleterious 

mutations don’t contribute to the polymorphism or substitution rate since they are rapidly eliminated 

by selection. In Neutral theory advantageous mutations (also called beneficial or adaptive because 

they increase the fitness of the individuals) exist but are rare enough reaching fixation state quickly. 

As a result, since neither advantageous mutations contribute to the bulk of polymorphism or 

divergence, they can be ignored. The basic concepts of Neutral theory are following (Casillas and 

Barbadilla 2017):  

• Deleterious mutations are quickly purged by the population while the adaptive mutations 

rapidly reach fixation. As a result, most genetic variation within species is neutral. 

• Polymorphisms that are segregating in a population eventually get lost or fixed rather than 

balanced by selection. 

• The level of polymorphism in a diploid population called 𝜃, is defined as a function of two 

variables, the neutral mutation rate (𝜇0) and the effective population size (𝑁𝑒): 𝜃 = 4𝑁𝑒𝜇0. 

Heterozygosity increases with the increase of the population size. 

• Neutral mutations reach fixation in a population at constant rate (𝐾) independently of 

population size. 𝐾 is defined as the product of the neutral mutation rate and the proportion 

of neutral mutation (𝑓), as 𝐾 = 𝑓𝜇0. 

The strength of genetic drift is inversely proportional to the population size. Requirements of 

Wright-Fisher model are hardly satisfied in natural populations. However, we can assume an idealized 

population size (𝑁𝑒) under which a Wright-Fisher population shows the same amount of genetic 

diversity as at the actual population. Under neutrality, one of the most important and simple equation 

of molecular evolution defines that the rate at which allelic alterations reach fixation in a species is 

equal to the mutation rate (𝜇0). Thus, mutations are fixed in each generation in a population with a 

rate 𝐾. This simple equation encompasses the molecular evolution defining the rate at which species 

diverge over their evolutionary time.   

1.2.5 Nearly neutral theory and the Distribution of Fitness Effect (DFE) 

In 1973 Kimura´s neutral theory was reformulated by Tomoko Ohta (Ohta 1973), who 

introduced a new class of mutation, the nearly neutral mutations. When a new mutation enters the 

population is classified as neutral, deleterious or beneficial regarding its effect on the fitness of the 

individual carrying it. That means that the mutation is neutral when has no effect on the fitness, 

deleterious when disrupts important protein functions leading even in the death of the individual and 

beneficial when increases the fitness of the individual. However, the distribution of all the fitness 
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effects (DFE) of mutations in a certain species is rather continuous than discrete, as Otha proposed 

incorporating two new types of mutations, slightly deleterious and slightly beneficial (Ohta 1973, 

Ohta and Gillespie 1996).  The theory predicts that nearly neutral mutations are mostly removed by 

natural population when the population size is large but there is a proportion of them which behaves 

as effectively neutral and randomly fixed or lost in small populations. Particularly, mutations with 

fitness effects much smaller in magnitude than ≪ 1
𝑁𝑒

⁄  spanning in the range −1 <  𝑁𝑒𝑠 < 1, are 

considered effectively neutral. The fate of these mutations is dictated by the action of genetic drift.  

Mutations with selection coefficients 𝑠 (fitness effects) on the order of  ≈ 1
𝑁𝑒

⁄  are nearly neutral. 

They are slightly deleterious if 𝑠 < 0 or slight beneficial when 𝑠 > 0. Both types of mutations have 

small effect on fitness and their fate is defined by a combination of natural selection and genetic drift. 

Finally, mutations with fitness effects > 1
𝑁𝑒

⁄  are strongly deleterious with 𝑠 < 0 or strongly 

beneficial with 𝑠 > 0. Their fate is determined by natural selection (Figure 1.2). 

 
Figure 1.2: Hypothetical Distribution of fitness effects for populations of different sizes.  

As we can imagine, when 𝑁𝑒 is small then the range between −1 <  𝑁𝑒𝑠 < 1 is larger than in 

a large population meaning that there are more effectively neutral mutations. On the other hand, 

when 𝑁𝑒 is large the mutations are subject to the action of natural selection. Consequently, a 

mutation can behave as effectively in one species when 𝑁𝑒 is small while it can be under the action 

of natural selection in another species when 𝑁𝑒 is large. The higher the value of 𝑁𝑒 the lower the 

influence of genetic drift on new mutations. Then, natural selection dominates over deleterious 

mutations leading them in elimination while increases the frequency of those that are beneficial.  
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Considering a species following the nearly neutral theory we expect that the DFE is a continuum 

distribution of all the mutational effect ranging from those that are strongly deleterious, slightly 

deleterious, effectively neutral to those that are slightly beneficial and highly beneficial (Figure 1.2). 

The knowledge of the shape and strength of DFE can address several important questions around the 

evolution of the species and the patterns of genetic diversity. We can obtain information about the 

quantity of mutations segregate in a species and the evolutionary forces acting on them. 

Furthermore, by comparing DFE produced by different species, we can learn more about their 

divergence and their different genetic processes. The extent to which the DFE varies across species 

has yet to be revealed along with the different biological factors. DFE has been a fundamental tool in 

population genetics defining the proportion of new mutations that are advantageous, neutral, or 

deleterious. Most of the mutations are either deleterious or neutral while the contribution of the 

strongly deleterious and beneficial mutations in the standing variation is small.  The strongly 

deleterious are eliminated by natural selection while the beneficial mutations reach fixation rapidly. 

(Eyre-Walker and Keightley 2007).  

For modelling the DFE, several mathematical distributions have been used with two 

parameters. Particularly, the negative part (deleterious mutations) of the DFE is usually modelled by 

a normal, lognormal, gamma or beta-shaped distribution. For the positive part (advantageous 

mutations) an exponential distribution is usually used. Overall, the DFE can be modelled by a bimodal 

distribution. The site frequency spectrum (SFS) is widely used to infer the DFE of new mutation in a 

population.  

1.2.6 Inference of DFE and adaptive substitutions  

Expected SFS 

 Models to infer DFE use Maximum Likelihood (ML) estimations and assume a Poisson Random 

Field (PRF) framework (Sawyer and Hartl 1992; Sethupathy and Hannenhalli 2008). PRF framework is 

widely used for multiple statistical approaches to estimate the proportion of adaptive substitutions, 

including ML estimations of the DFE. The same framework can be applied to Bayesian models to infer 

the population-scaled selection coefficients (Sawyer et al. 2003). ML models perform likelihood 

estimates based on the expected levels of fixation and polymorphisms considering different 

evolutionary models. The first models of DFE modelled the deleterious part of the DFE using a Gamma 

distribution (Eyre-Walker et al. 2006; Eyre-Walker and Keightley 2009). However, the more 

sophisticated ML models today go a step further modeling not only the deleterious mutations but 

also the advantageous using an exponential distribution function (Galtier 2016; Tataru et al. 2017). 

Thus, the state-of-the-art methods in population genetics are based on the PRF framework presented 

in Galtier (2016) and Tataru et al. (2017) to perform an ML estimation of the DFE. From PRF theory, 

the expected counts of synonymous mutations (𝑃𝑠) given a frequency 𝑖 is estimated as: 

 
𝑬[𝑷𝑺[𝒊]] =

𝟒𝑵𝒆𝝁𝑳𝑺

𝒊
 

(1.3) 

 

Where 𝐿𝑆 is the total number of synonymous sites, 𝜇 mutation rate per site per generation.  

The expected counts of nonsynonymous mutations are defined as follows: 
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𝑬[𝑷𝑵[𝒊]] = 𝟒𝑵𝒆𝝁𝑳𝑵 ∫ 𝑩(𝒊, 𝒏, 𝒙)

𝟏

𝟎

𝑯(𝒔, 𝒙)𝒅𝒙 

(1.4) 

 

Where 𝐿𝑁 is the total number of nonsynonymous sites, whereas  

 𝑩(𝒊, 𝒏, 𝒙) = (
𝒏

𝒊
) 𝒙𝒊(𝟏 − 𝒙)𝒏−𝒊 (1.5) 

is the binomial probability of observing 𝑖 derived alleles in a sample of size 𝑛 when the true allele 

frequency is 𝑥, and H(s,x) is defined by Eq. 1.2. 

To obtain the expected polymorphic count given the underlying DFE of new mutations, Eq. 

1.4 should be integrated over the full DFE (given a distribution). From Eyre-Walker and Keightley 

(2009), the underlying DFE for new deleterious mutations is defined by a gamma distribution by the 

expression: 

 
𝝋(𝒔; 𝜶, 𝒃) = 𝜶𝒃𝒔𝒃−𝟏

𝒆−𝜶𝒔

𝜞(𝒃)
 

(1.6) 

 

Where 𝛼 and 𝑏 are scale and shape parameters from the Gamma distribution. Then the expected 

polymorphic count given a particular DFE is defined as: 

 

𝑬[𝑷𝑵[𝒊]] = 𝟒𝑵𝒆𝝁𝑳𝑵 ∫ ∫ 𝑩(𝒊, 𝒏, 𝒙)

𝟏

𝟎

𝑯(𝒔, 𝒙)

∞

−∞

𝝋(𝒔; 𝜶, 𝜷)𝒅𝒙𝒅𝒔 

(1.7) 

 

Full DFE and divergence counts  

Apart from considering a Gamma distribution for modeling the deleterious mutations, other 

methods have suggested different distributions as well, which we will review in the next sections. 

Unlike methods to infer a strictly deleterious DFE, Tataru et al. (2017) incorporates a full DFE that 

includes both deleterious and beneficial mutations. The divergence expression can be obtained by 

calculating the Eq. 1.7 to the limit of the frequency x to 1 and multiplying it by the time of divergence. 

Galtier (2016) and Tataru et al. (2017) defined the expected number of synonymous (𝐷𝑆) and 

nonsynonymous (𝐷𝑁)  substitutions as (see also Murga 2022): 

 𝑫𝑺 = 𝟒𝑵𝝁𝒕𝑳𝑺 (1.8)  

 
𝐄[𝑫𝑵]  = 𝟒𝑵𝒆𝛍𝒕𝑳𝑵 ∫

𝟒𝑵𝒆𝐬

𝟏 − 𝐞(−𝟒𝑵𝒆𝐬)
𝛗(𝒔; 𝐚, 𝐛)

∞

−∞

𝐝𝐬 
(1.9) 

 

Note that if 𝑠 = 0 then Eq. 1.7 and 1.9 for expected polymorphic and divergence sites respectively 

become similar to Eq. 1.3 and 1.8.  
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Inferring 𝜶 

The proportion of adaptive substitutions 𝛼 can be calculated from the observed divergence 

counts as follows:  

 𝜶 = (𝒅𝑵 − 𝒅𝑵
𝒏𝒂𝒅𝒗)/𝒅𝑵 (1.10) 

where 𝑑𝑁
𝑎𝑛𝑑𝑣  is the number of non-adaptive substitutions and is estimated as: 

 

𝒅𝑵
𝒏𝒂𝒅𝒗 =

𝟒𝑳𝑵𝑵𝒆𝝁 ∫
𝟒𝑵𝒆𝐬

𝟏 − 𝒆(−𝟒𝑵𝒆𝒔) 𝝋(𝒔)𝒅𝒔
𝒔𝒂𝒅𝒗

−∞

𝑳𝑵
 

(1.11) 

 

Thus, 𝛼 is estimated subtracting the observed non-adaptive substitutions and neutral 

substitutions from the total observed divergence counts at selected sites. 𝑠𝑎𝑑𝑣 is defined by Galtier 

(2016) as the population selection coefficient threshold below which nonsynonymous substitutions  

are not considered adaptive. This expression is similar to the ones shown at Tataru et al. (2017) and 

Eyre-Walker and Keightley (2009) where the 𝑠𝑎𝑑𝑣 = 0. However, Galtier (2016) assumes positive 

values for 𝑠𝑎𝑑𝑣 to subtract nearly neutral positive fixation too. Note that while the above approach 

relies on the calculation of 𝛼 based on the assumption that the ingroup and outgroup share the same 

scaled DFE. Yet, if the estimated full DFE is available from polymorphism data, then 𝛼 can be 

estimated by replacing the observed divergence counts (𝑑𝑁) with the expected (E[𝐷𝑁]) counts 

(Tataru et al. 2017).  

In addition, demography, ascertainment bias, nonrandom sampling and linkage can affect the 

shape of the SFS resulting in bias under a Wright-Fisher constant population. To account for such 

distortions, different methods incorporate nuisance parameters Eyre-Walker et al. (2006). The 

nuisance parameter 𝑟 can modify the frequency of the SFS individually. Hence, 𝑟 modifies the 

effective mutation rate at each frequency 𝑖, considering the relative mutations rate at 𝑖 with respect 

to the mutation rate at singletons Eyre-Walker et al. (2006). This approach accounts for such 

distortions that affect both neutral and selected sites.  

1.2.7 Methods to infer the DFE 

 

1.2.7.1 Estimates of DFE in experimental studies 

The DFE represents the distribution of all selection coefficients (𝑠) of random mutations in 

the genome. Thus, the DFE is an important quantity in evolutionary genetics because it determines 

how selection affects genetic variation (Eyre-Walker and Keightley 2007). Under experimental studies 

DFE can be directly estimated. Particularly, the DFE is estimated by directly measuring the fitness 

from a collection of single-step mutants or indirectly from observed changes in the population fitness 

in mutation accumulation (MA) experiments (Eyre-Walker and Keightley 2007; Bataillon and Bailey 

2014). The first approach has been successfully applied in small mutational target regions in a number 

of viral, bacterial and yeast systems, examining the full spectrum of selection coefficients. These 

methods usually estimated a gamma, unimodal or bimodal shaped DFE (Fowler et al. 2010; Hietpas 
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et al. 2011; Boutcher et al. 2014; Bataillon and Bailey 2014). While the first approach directly 

identifying the mutations involved the second infers the DFE from fitness trajectories of a collection 

of population over time in MA experiments (Kim et al 2017). They modelled DFE by a gamma 

distribution and estimated the parameters that best fit to the observed changes in the mean and 

variance of fitness among populations (Halligan and Keightley 2009). The vast majority of these 

studies suggest a high proportion of new mutations are strongly deleterious pointing out that the DFE 

shape is less leptokurtic than an exponential distribution (Halligan and Keightley 2009).  However, the 

true underlying DFE shape can be more complex than the gamma distribution or the methods MA 

show a bias towards mutations with large fitness effects (Eyre-Walker and Keightley 2007). 

1.2.7.2 Estimates of DFE from genetic variation data 

 

1.2.7.2.1 Folded and Unfolded SFS 

 A second category of methods to infer the DFE, models information from the SFS for two 

classes of nucleotide changes, the neutral ones (generally synonymous variability) and the amino acid 

changing ones under selection (nonsynonymous variability) found in natural populations.  The SFS of 

a sample of chromosomes describes in how many segregating sites each allele appears. That is, in 

one site we can have one copy of this allele, two copies and so on. Accordingly, to the class of 

nucleotide changes, the SFS can describe the distribution of synonymous or nonsynonymous alleles 

across the sample. Furthermore, if we know the ancestral/derived allele at a polymorphic site we can 

obtain the unfolded SFS (uSFS) with 𝑛 − 1 classes for a sample of size 𝑛. Otherwise, the SFS is folded 

with 𝑛 2⁄  or 𝑛 + 1 2⁄  classes depending on whether 𝑛 is even or odd. Unfolded SFS are always a better 

source of information than the folded one, the identification of ancestral state is challenging though 

leading to bias estimation of DFE (Keightley and Jackson 2018). For the estimation of the parameters, 

a maximum likelihood method is applied. The most common distribution used to model the DFE of 

deleterious mutations, is a gamma distribution with a mean 𝑁𝑒𝑠 and a shape parameter. Many 

studies have used this approach to various species such as humans (Eyre-Walker et al. 2006; Keightley 

and Eyre-Walker 2007; Boyko et al 2008; Li et al 2010), D. melanogaster (Keightley and Eyre-Walker 

2007; Kousathanas and Keightley 2013), yeast, gorillas, and mice (Koufopanou et al. 2015; McManus 

et al. 2015; Halligan et al. 2013). Findings of DFE in humans from genetic variation data have been 

proved very useful to different genetic processes such as genetic load, ancient human introgression 

of Neanderthal alleles into humans, estimation of strength of selection acting on disease (Henn et al. 

2016; Harris and Nielsen 2016; Uricchio et al. 2016; Moon and Akey 2016).  

1.2.7.2.2 Assumptions  

 It is assumed that the nonsynonymous sites will be affected by selection. In the presence of 

slightly deleterious mutations, we could expect an excess of rare variants compared with the neutral 

SFS under a mutation drift equilibrium. However, selection is not the only evolutionary force affecting 

the SFS, it is affected by demographic changes too. 

Thus, a similar excess of rare variants would result from a population expansion or not too 

recent bottleneck. The distinguishing between effects produced by selection and demography is 
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challenging yet necessary. For this scope, it is assumed that synonymous sites are evolving under 

neutrality and can be used to infer parameters related to demography. Then, these demographic 

parameters are used to correct for it when estimating the effect of selection from the 

nonsynonymous SFS. This is the central idea upon which all these methods have been built to infer 

the DFE from the SFS. Methods differ in the way the correct for the effects of demography, whether 

they use divergence data, consider beneficial mutations, assume a correlation of DFEs across 

populations on the same species.  Another important assumption considered by the DFE models is 

the independence of the sites. However, this assumption is violated in real data by the effect of 

linkage selection. 

1.2.7.2.3 Violation of assumptions: Linkage selection 

 

1.2.7.2.3.1  Selective sweep 

 Genetic drift is not the only source of randomness in the dynamics of alleles (Coop 2020). 

Random genetic backgrounds with different finesses can alter the frequency of alleles. When a 

beneficial allele arises via a single mutation arises on a particular genetic background. As beneficial 

allele becomes established in the population and increases in frequency rapidly, having escaped the 

loss by genetic drift, other alleles that happened to be present on the haplotype that the mutation 

arose on will do the same. These alleles are usually neutral or at least not too deleterious and are 

getting to “hitchhiking” along (Smith and Haigh 1974). The hitchhiking has as effect the reduction of 

diversity around the beneficial alleles because neutral variants are swept along the beneficial alleles. 

The process was named selective sweep. An example of the effect of selective sweep has been 

identified in the genetic basis of melanism in the peppered moth (Biston betulatia). Van't Hof et al. 

(2011) found that the adaptation of the moth to industrial pollution (Cook et al. 2013) was achieved 

by the insertion of Transposable Element (TE) into a pigmentation gene and its sweep to fixation. As 

a result, a decrease of diversity in region around TE was observed.  

When a novel selection pressure switches on, multiple mutations at the same gene may start 

to sweep such that no one of these alleles sweeps to fixation. This results to soften the impact of 

selection on genomic diversity and so are called “soft sweeps”. Another way that the impact of a 

sweep can be softened is if our allele was segregating in the population for some time before it 

become beneficial. This type of variation is called standing variation. These standing variants can have 

recombined onto various haplotype backgrounds such that when selection pressures switch, the 

selected allele sweeps up in frequency on multiple different haplotypes (Hermisson and Pennings 

2017). 

1.2.7.2.3.2 Background selection 

While populations experience a constant influx of deleterious mutations at functional loci, 

selection purge them from the population preventing deleterious substitutions and maintaining 

function at these loci. This balance between mutation and selection results in a constant level of 

deleterious variation in the population. As a constant selection against a deleterious mutation purges 

it from the site it removes with it any neutral alleles that were also on this haplotype. This constant 
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removal of linked alleles from the population reduces the diversity in the surrounding regions of the 

functional loci (Charlesworth et al. 1993, Hudson and Kaplan 1995, Nordborg et al. 1996).  The effect 

is known as background selection (BGS).  

1.2.7.3 The DFE of deleterious mutations 

Many studies that infer DFE contrasting 1D-SFS of synonymous and nonsynonymous 

mutations, suggest that DFE has a strongly leptokurtic distribution in contrast to the observations 

made by MA-based estimates (Eyre-Walker et al. 2006, Keightley and Eyre-Walker 2007, Boyko et al. 

2008, Li et al. 2010). A large proportion of nearly neutral mutations and strongly deleterious 

mutations reported by many site-directed mutagenesis studies (Batallon and Bailey 2014, Boucher et 

al. 2014). Huber et al. 2017 found that humans have more strongly deleterious mutations than D. 

Melanogaster and that species complexity is positive correlated to the fraction of new deleterious 

mutations. Studies in humans have estimated the parameters of a gamma distribution (Eyre-Walker 

et al. 2006, Boyko et al. 2008). They found approximately 56-61% of new nonsynonymous mutations 

to have moderately to strongly deleterious effect (|𝑠| ≥ 10−3), 15-16% to have weakly deleterious 

effect and about 24-28% to have nearly neutral effect. In another study in humans, Li et al. (2010) 

found that best fit to their data a mixture distribution consisting of a neutral point mass and gamma 

distribution. They found that only 1% of new mutations have |𝑠| > 10−4 (compared to 57% reported 

by Boyko et al. 2008) and 78% of new mutations fall in the 10−4 ≤ |𝑠| ≤ 10−3 range (compared to 

15% in Boyko et al. 2008). The different estimated proportions of moderately vs strongly mutations 

in humans indicating that the estimation of DFE in humans is still elusive and not accurate. Note that 

the number of individuals used in a study of DFE can be key factor for the estimation of proportions 

related to the selection coefficient classes. Thus, the estimated DFE parameters can be in contrast in 

various studies (Boyko et al. 2008, Li et al. 2010). Last advanced approaches exploiting of all the 

genome information have led to more accurate and robust estimates of DFE (Tataru et al. 2017, 

Gutenkunst et al. 2009, Kim et al. 2017, Huber et al. 2017, Huang et al. 2021).  

Finally, several mathematical models have been suggested to infer the DFE yet is still unclear 

what is the best type of distribution that may best fit the data. The DFE of D. melanogaster species 

seem to be better described by a lognormal DFE while of Mus musculus castaneous by a bimodal DFE 

(Kousathanas and Keightley 2013). Galtier and Rousselle (2020) found that a Gamma + lethal model 

can best describe DFE while the mean deleterious effects of nonsynonymous mutations is shared 

across species.  

1.2.7.4 The DFE of deleterious plus advantageous mutations 

While most studies have described the DFE of new deleterious mutations, the DFE of new 

beneficial mutations is yet to be investigated fully across species. Most of the studies mentioned 

assume that beneficial mutations contribute negligibly to polymorphism and are not modelled. The 

reasoning behind this assumption is that strongly beneficial mutations are fixed rapidly and 

consequently they don’t contribute to the polymorphism (Smith and Eyre-Walker 2002; Keighley and 

Eyre-Walker 2007). Tataru et al. (2017,2019) showed that weakly selected deleterious and beneficial 

mutations can contribute to both polymorphism and divergence data. In addition, they suggested a 
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model (polyDFE) to infer the full DFE and the proportion of adaptive substitutions (𝑎) using 

polymorphism data. Results indicated that not counting for the contribution of beneficial mutations 

to polymorphism can lead to biased estimation of the DFE and 𝑎.  Using the same model Castellano 

et al. (2019) inferred the full DFE of new amino acids mutations across great apes. They found that 

the shape of deleterious DFE is constant across the set of closely related species while the confirmed 

that 𝑁𝑒 plays an essential role in the strength of negative selection. However, the strength of negative 

selection across species varies more than expected given the differences in  𝑁𝑒.  While Castellano et 

al. focused on new slightly beneficial mutations (still segregating), Zhen et al. (2018) used divergence 

data to detect beneficial mutations that reached fixation many generations ago. They found that 

strongly beneficial mutations contribute significantly more to divergence than to polymorphism. In 

addition, results indicated that when counting for the population size of the outgroup, the proportion 

of beneficial mutations in humans is higher than in mice and flies. The fraction of new beneficial 

mutations seems to be approximately 14% with the vast majority of them to have a small effect on 

fitness. In D. Melanogaster, the proportion of new beneficial mutations is smaller than in humans, 

approximately 1.5% (Huber et al. 2017). Galtier (2016) highlighted the importance of using beneficial 

mutations in shaping the SFS comparing various DFE models to 44 different datasets.  Even though 

polymorphic data are widely used in the inference of DFE, dissimilar results have been presented by 

various studies indicating that DFE can be biased. Consequently, assumptions regarding the DFE 

shape, selection coefficient and populations sizes must be reviewed (Booker 2020; Zhen et al. 2021).  

1.2.7.5 DFE Software 

 Models such as DoDFE and DFE-alpha (Eyre-Walker et al. 2006; Keightley and Eyre-Walker 

2007; Eyre-Walker and Keightley 2009), estimate demography using a Wright-Fisher transition matrix. 

In each new mutation arises in a site, a scaled selection coefficient is assigned, the effective 

population size is constant among loci.  The SFS jointly estimates demographic parameters while DFE 

is drawn from an underlying distribution fitted to the data.  DFE-alpha is slow due to computational 

complexity when accounting for more complex demographic models. A different class of methods 

infer the DFE by using Poisson Ransom Field (PRF) approach (Sawyer and Hartl 1992; Hartl et al. 1994, 

Williamson et al. 2007; Boyko et al. 2008; Tataru et al. 2017).  As we mentioned before, polyDFE infers 

the DFE from an unfolded SFS using only polymorphisms (SFS counts). It can model a full DFE, 

assuming a combination of different distributions as gamma and exponential to model mutations 

with negative and beneficial effects. Grapes (Galtier 2016), DFE-alpha and DoDFE don’t account on 

error in SFS while polyDFE model an independent rate of error in the data. A set of nuisance 

parameters are used to correct for demography. An extension of polyDFE (Tataru and Bataillon 2019) 

can be used to fit several SFS datasets simultaneously. This approach can provide evidence for 

differences in DFE among genomic regions or species. Kim et al. (2017) suggested a new software to 

infer the DFE of new mutations under the PRF using the SFS. The method was an extension of dadi 

packaged (Gutenkunst et al. 2009). 
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Table 1.1: Table based on Moutinho et al. 2020. 

References Input Data 𝑵𝒆𝒔 distribution 
(DFE) 

Beneficial 
DFE 

Joint 
DFE 

Method 

Bierne and 
Eyre-Walker 
2004 

polymorphism 
levels (PN, PS); 
divergence data 

Gamma; Beta No No 
 

DoFE 
 

Eyre-Walker 
et al. 2006 
and Eyre-
Walker and 
Keightley 
2009 
Stoletzki and 
Eyre-Walker 
2011 

folded SFS; 
divergence data 

Gamma No 
 
 
 
 
 

No 

Keightley 
and Eyre-
Walker 2007  
and Eyre-
Walker and 
Keightley 
2009 

folded SFS; 
divergence data 

Gamma No No DFE-alpha 

Schneider et 
al. 2011 

unfolded SFS; 
divergence data 

Gamma No No 

Galtier 2016 unfolded/folded 
SFS; divergence 
data 

Gamma; 
GammaExponential; 
Displaced Gamma; 
FGMBesselK; 
SclaledBeta 

Yes No Grapes 

Tataru et al. 
2017 and 
Tataru and 
Bataillon 
2019 

unfolded SFS; 
divergence data 
(optional) 

Gamma; 
Exponential; 
GammaExponential; 
Displaced Gamma; K 
bins 

Yes No polyDFE 

Gutenkunst 
et al. 2009 
and Kim et 
al. 2017 

unfolded/folded 
SFS 

Gamma, Lognormal, 
Exponential, beta, 
normal,  

Yes Yes dadi 

Uricchio et 
al. 2019b 

unfolded SFS; 
divergence data 

Gamma; 
Continuous 

Yes No ABC*-MK 

*ABC corresponds to the approximate Bayesian computation 

The latter uses diffusion theory to compute the expected SFS for a set of demographic and 

selective parameters. The extension offered a computational improvement of dadi allowing the 

model to precompute the SFS for models involving more than a single selection coefficient. They 

inferred demography and selection from segregating sites in a maximum likelihood framework. 
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Firstly, they estimated a demographic model from synonymous sites and then conditionally to the 

estimated demographic parameters the DFE of nonsynonymous mutations was estimated.  All the 

previously mentioned methods use a 1D-SFS to fit the data and estimate the DFE. Recently, another 

method based on Kim et al. (2017) was suggested using the 2D-SFS (Huang et al. 2021), to infer a 

jointly DFE between species that have undergone an environmental change.  Tataru and Bataillon 

(2019) and Huang et al. (2021) have been discussed and used in Chapter 3. Table 1.1 shows a 

summarize of DFE models based on Moutinho et al. (2020).  

1.2.7.6 Quantifying the fraction of adaptive substitutions 

 Population geneticists usually look at evidence of positive selection in the genome to identify 

adaptive variants and quantify the impact of selection in the genome. It is expected that during the 

process of fixation of adaptive variants, selection leaves signatures in the genome such as a reduction 

in the genetic diversity, a skew toward rare derived alleles and an increase in the linkage 

disequilibrium (Nielsen 2005; Franssen et al. 2015; Garud et al. 2015). Background selection also 

reduces the level of genetic variation in the region by eliminating chromosomes carrying strongly 

deleterious mutations (Charlesworth et al. 1993; Casillas and Barbadilla, 2017). 

1.2.7.6.1 
𝑫𝑵

𝑫𝒔
⁄  𝒓𝒂𝒕𝒊𝒐 

 The strength and direction of selection can be calculated by contrasting the nonsynonymous 

(𝐷𝑁) and synonymous divergence (𝐷𝑁) in a given gene (Miyata et al. 1990; Yang and Nielsen 2002, 

Eyre-Walker et al. 2006). Assuming that mutation rates at synonymous and nonsynonymous sites are 

constant and equal and that silent substitutions are neutral, then one expects that the ratio 
𝐷𝑁

𝐷𝑆
⁄  

(noted as 𝜔) equals 1 under neutrality. Otherwise, if 
𝐷𝑁

𝐷𝑆
⁄ > 1 genes are under positive selection 

since the advantageous mutations have been frequent among nonsynonymous sites and spread 

faster in the population than neutral mutations. Finally, if  
𝐷𝑁

𝐷𝑆
⁄ < 1, genes are under negative 

selection with deleterious mutations have been removed by the population. The statistic is more 

efficient when genes are under strong positive selection otherwise the value tends to be lower than 

1 since the most nonsynonymous mutations are expected to be deleterious (Yang and Bielawski 2000; 

Yang and Nielsen 2002; Eyre-Walker 2006).  

1.2.7.6.2 McDonald and Kreitman test  

 The McDonald and Kreitman (MK, 1991) test is one of the most widely used methods in 

population genetics to identify protein coding sequences under positive selection combined both 

between-species divergence (𝐷) and within-species polymorphism sites (𝑃).  Particularly, it compares 

the number of polymorphisms to the number of substitutions for a locus in two classes of sites, 

synonymous (which are assumed to evolve neutrally) and nonsynonymous (which are potentially 

under selection). The number of nonsynonymous and synonymous substitutions is denoted as DN and 

Ds respectively while the number of nonsynonymous and synonymous polymorphisms is defined as 
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PN and PS. If all mutations are either strongly deleterious or neutral, then 
𝐷𝑁

𝐷𝑆
⁄  is expected to be 

equal to 
𝑃𝑁

𝑃𝑆
⁄ . Conversely, if   

𝐷𝑁
𝐷𝑆

⁄  is higher than 
𝑃𝑁

𝑃𝑆
⁄  is taken as signature of positive selection 

since then adaptive mutations rapidly reach fixation and thus contribute more to divergence than to 

polymorphism compared to neutral mutations. If 
𝐷𝑁

𝐷𝑆
⁄  smaller than  

𝑃𝑁
𝑃𝑆

⁄  balancing selection is on 

action in the region (McDonald and Kreitman 1991; Eyre-Walker 2006).  

1.2.7.6.3 Proportion of adaptive substitution (𝜶) 

An extension of MK test to estimate the proportion of adaptive substitution is given 

considering that adaptive mutations contribute substantially more to divergence than to 

polymorphism. Thus, proportion of adaptive evolution is defined as 𝛼 = 1 −
𝐷𝑠𝑃𝑁

𝐷𝑁𝑃𝑠
⁄  

(Charlesworth 1994; Smith and Eyre-Walker 2002). Estimates of 𝛼  for single genes tend to have large 

sampling variances since the numbers of polymorphic sites and nonsynonymous substitutions are 

very small for most genes taken individually. Hence, a solution can be the pooling of data across many 

genes summing counts of polymorphisms and divergence in each category or by calculating the 

average across genes (Stoletzki and Eyre-Waler 2011; Fay et al. 2001; Smith and Eyre-Walker 2002). 

Another approach suggested by Sawyer and Hatl (1992) used a PRF model to define the expected 

counts of DN, DS, PN, PS assuming that the processes of mutation, selection and genetic drift acting 

independently and simultaneously ay multiple sites. This approach was fundamental for the 

development of Bayesian models relating the scales selection coefficient and counts of polymorphism 

and divergence (Moutinho et al. 2020). Particularly, Bayesian models would assume a fixed-effect 

model when the scaled selection coefficient (𝛾) is constant across sites (Bustamante et al. 2002) or 

would be of random effects if 𝛾 of each new mutations is coming from a single underlying normal 

distribution (Sawyer et al. 2003).  

    However, a limitation of these approaches is that estimates of 𝑎 can be biased since they 

do not account for the segregation of slightly deleterious mutations (Smith and Eyre-Walker 2002). 

Also, while the most methods assume that sites evolve independently, there evidence that selection 

at linked sites controls for patterns of polymorphisms (Barton 1995; Andolfatto 2007). Moreover, the 

frequency of a given allele can be shaped by genetic draft, a process of recurrent selective sweeps at 

closely linked positions (Gillespie 2000).  Messer and Petrov (2013) developed an improved extension, 

the asymptotic MK test, to correct for the underestimation of 𝑎 due to slightly deleterious mutations 

accounting for the effects of background selection and genetic draft. An extension of this method 

suggested by Uricchio et al. (2019b), investigating the impact of background selection on the rate of 

adaptation using an approximate Bayesian computation method (ABC). These methods are less 

sensitive to the demography of population (Moutinho et al. 2020). Other robust estimates of 𝑎 that 

are not sensitive in the presence of slightly deleterious mutations, are derived from the DFE and 

accounting for demography (Keightley and Eyre-Walker 2007; Galtier 2016; Tataru et al. 2017). As it 

is already mentioned, polyDFE estimates 𝑎 using only polymorphism counts to infer the negative DFE 

and the expected number of non-adaptive nonsynonymous substitutions is contrasted with the 

observed number of nonsynonymous substitutions to estimate  𝑎.    
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1.3 The analysis of complex traits: Polygenic adaptation 
 

1.3.1 From sweeps to shifts 

The genetic architecture of a complex trait can be varied, and the trait can be controlled either 

through a few loci with strong effects or via many loci with small effects (Jain and Stephan 2017a; b; 

Orr and Coyne 1992; Johnson and Barton 2005).  Consequently, different patterns of genetic diversity 

can be observed around the selected loci depending on these two models of selection (Figure 1.3, 

Stephan and John 2020).  

 
Figure 1.3: Figure depicts the genomic footprints observed in regions under a hard sweep and a polygenic 

adaptation process.   

Usually looking at the genome, we try to find evidence of positive selection through the 

existence of hard selective sweeps. In standard selective sweep models, a single new mutation 

sweeps through a population to fixation, purging variation from a region of linkage around the 

selected site (Figure 1.3, Smith at al. 1974). Recent models focus on partial sweeps and soft sweeps 

as well. A hard sweep pattern in the genome shows that a strong selection is acting on the selective 

loci affecting few of them (Pritchard et al. 2010; Hermisson et al. 2005). Patterns like these have been 

observed in domesticated traits such as IGF2 gene region associated with lean domestic pigs 

(Andersson 2012; van Laere et al. 2003) and in the thyroid-stimulating hormone receptor (TSHR) in 

domestic chickens (Rubin et al. 2010).  Domesticated traits controlled by a few loci like the one 

reported above, can be described by the standard Mendelian genetic architecture. On the contrary 

of selective sweeps, polygenic adaptation describes a process under which a population adapts to a 

new environment through small changes in allele frequencies at hundreds or thousands of loci (Figure 

1.3, Pritchard et al. 2010). Most of the traits in humans but in other species too, are highly polygenic, 

affected by standing genetic variation at many loci. When a population experiences a change in its 

phenotypic optimum, the population adapts to its new environment via small direction shifts in allele 
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frequencies spread across all the variants that affect the trait. Because of these small and subtle 

changes, polygenic adaptation is hard to be detected. Boyle et al. (2017) proposed an extended 

version of the polygenic model which was similar to the infinitesimal model developed by Ronald 

Fisher, the omnigenic model. According to the model thousands of individuals genes with biological 

relevance to a trait and their regulators, contribute at least slightly to the phenotype through the 

expression in relevant cells. However, polygenic adaptation signals can be overestimated because of 

the effect of population stratification on the genome as observed in height (Sohail et al. 2019). 

1.3.2 Simulating the polygenic adaptation 

Numerous studies in population genetics, model and simulate the polygenic adaptation 

process (Stephan 2016; de Vladar and Barton 2014). Jain and Stephan (2015) studied the response of 

polygenic trait in an infinite large population under the action of stabilizing selection and mutation 

assuming that the allelic effects control the trait vary between the loci. Their results could be 

interested when considering a rapid adaptation since studies have shown that indeed adaptation can 

occur very rapidly (e.g., Reznick 2009, Vignieri et al 2010), as they did in a later study in 2017 (Jain 

and Stephan 2017a). In the latter study, they showed that fast polygenic adaptation can be caused 

by two very different mechanisms, strong positive directional selection at a few loci of large effects 

or subtle shifts of alleles at many loci of small effects. Combinations of these two mechanisms could 

lead to rapid adaptation. Finally, the study highlights the need of new powerful statistical methods 

to detect the signatures of polygenic adaptation in the genome. The short-term response of a 

quantitative trait after a sudden environmental change of the phenotypic optimum is related to the 

effect sizes and to the scaled mutation rate (Jain and Stephan 2017b). Polygenic adaptation in 

response to selection on quantitative trait was investigated under a highly polygenic model that 

includes both directional and stabilizing selection in a population of finite size that experiences 

random genetic drift (Stephan and John 2020).  Adaptation of populations to new environments is 

often accompanied by population size bottlenecks. Because bottlenecks reduce the genetic variance, 

they cause large deviation of the trait mean from the fitness optimum.  Also, the effect of genetic 

drift seems to reduce the signals of polygenic adaptation in the genome (Stephan and John 2020). 

Höllinger et al. (2019) studied the effect of selection and genetic drift in the two adaptive modes, 

hard sweep, and polygenic adaptation by measuring the sweeps and small allele frequencies shifts in 

a finite population size. Forward simulations used to describe the average behavior of selected and 

neutral mutations during the adaptation of a quantitative trait to a single sudden shift in the optimal 

trait value (Thornton 2019). The study showed that the new optimum trait in a population of finite 

size is reached before selective sweeps are completed in polygenic models with many involved loci. 

The impact of the demographic conditions investigated further by Stetter et al. (2018) using forward 

simulations for several different traits varying in the effect size distribution of new mutations, the 

strength of stabilizing selection and the contribution of the genomic background. They found that 

selective sweeps occur even for traits under relatively weak selection and where the genetic 

background explains most of the variation.  Also, the study showed that population bottlenecks and 

expansion affect the genetic variation along with the relative importance of sweeps from standing 

variation and the speed with which adaptation can occur. As many of the mentioned studies showed, 
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demographic conditions can affect the capacity of detecting signatures of polygenic adaptation in the 

genome causing deviation of the fitness optimum.  

As previous work has shown, the detection of polygenic adaptation is harder that in classic 

selective sweeps (Pritchard et al. 2010). However, some studies successfully detected polygenic 

adaptive signals. Firstly, an empirical framework and a model-based rejection sampling approach was 

developed by Uricchio et al. (2019a) for detecting polygenic selection and mutational bias that can 

be applied to genome-wide association studies (GWAS) data for a single population. Berg and Coop 

(2014) found that combining GWAS with population genetic modeling can be proved a powerful 

method for detecting signals of polygenic adaptation. Distinct patterns of selective sweep and 

polygenic models were found by generating computer simulations for each model based on the 

experimental evolution framework (Barghi and Schlotterer 2020).  A polygenic adaptive response to 

temperature changes was detected in D. melanogaster that could be explained by functional 

redundancy and quantitative traits (Barghi et al. 2019). Selection acting in maize domesticated traits 

seems to eliminate large-effect genetic variants while the small-effect polygenic variants are 

responsible for most of the standing variation (Xue et al. 2016). In humans, evidence of polygenic 

adaptation was detected at the pathway or gene set level instead of analyzing single independent 

genes. Most pathways globally enriched for signals of positive selection are whether directly or 

indirectly involved in immune response (Daub et al. 2013). Initial domestication process in animals 

seem to act mostly on complex behavioral traits such as taming (Trut et al. 2009) while other studies 

have shown a large number of genes involve in domesticated traits (Jasinska and Freimer 2009).  

Chapter 3 of this thesis focuses on detecting signals of domestication process simulating it 

under the two different adaptive mechanisms, a few loci with large effects and many loci with small 

effects. The study uses forward simulations under different selective and demographic parameters 

to define which conditions could describe better a domestication process. 

1.4 The analysis of complex traits: Prediction 

Quantitative genetics focuses on the phenotype and aims at modelling the genetic basis 

underlying phenotypic variation in a population. The main assumption of quantitative genetics is that 

many genes influence a trait while non-genetic factors may also be important. Therefore, to 

understand how genetic variation contributes to phenotypic variation is a basic question in genetics. 

During the beginning of the 20th century, there was a debate between supporters of Mendelian 

inheritance which believed on discrete, monogenic phenotypes and of biometricians, who argued 

that Mendelian genetics could not explain the continuous distribution of variation observed for many 

traits in humans and other species. RA Fisher gave an end to this fierce debate showing that if many 

genes affect a trait, then the random sampling of alleles at each gene produces a continuous, normally 

distributed phenotype in the population (Fisher 1918). As the number of genes grows very large, the 

contribution of each gene becomes correspondingly smaller, leading in the limit to Fisher´s famous 

“infinitesimal model” (Barton et al. 2016; Boyle et al. 2017). Fisher (1918) together with Haldane 

(1932) and Wright (1921), laid the theoretical basis of quantitative genetics which was established 

around the 1920 by the work of these three pioneers. They proposed statistical methods, such as the 

analysis of variance and path coefficients, to partition the variation and describe the resemblance 

between relatives. These methods have remained at the center of the field since then and allow 



 40 

predictions of quantities such as response to artificial and natural selection. Some of the useful 

parameters are the breeding value (𝐴), which is the expected performance of offspring, and the 

heritability (ℎ2 =
𝑉𝐴

𝑉𝑃
⁄ , the ratio of additive genetic variance to the overall phenotypic variance). 

Quantitative genetics has various applications. Firstly, can be used to help us explain and understand 

the phenotypic evolution in natural populations and between them, as well as the selective breeding 

of domestic animals and crops. Secondly can be used in methods of animal and plant improvement, 

such as genomic prediction, and for alleviation of complex disease focusing on detecting genes 

associated to specific diseases (Hill 2010).   

1.4.1 The statistical foundation of quantitative genetics  

 

1.4.1.1 Genetic variance components  

The partition of variation to different causes is fundamental for a trait. The amount of 

variation is measured and expressed as the variance. The main components of the variance are the 

genotypic variance (𝑉𝐺), that is the variance of genotypic values, and the environmental variance (𝑉𝐸), 

that is the variance of environmental deviations. Then, the total variance will be the sum of the 

separate components and is defined as the phenotypic variance (𝑉𝑃). The genetic variance can be 

further divided into additive variance (𝑉𝐴), dominance variance (𝑉𝐷) and interaction variance (𝑉𝐼). The 

model of partition variance components firstly proposed Fisher (1918), Cockerham (1954), 

Kempthorne (1954) and later popularized by Falconer and Mackay (1996) and Lynch and Walsh 

(1998). An important question about what determines a phenotype is the role of heredity versus the 

environment. Then, the relative importance of a specific source of variation is the variance caused by 

that source versus the total phenotypic variance. The relative importance in determining phenotypic 

variation is named heritability. Table 1.2 shows the different categories of variance components.  

Table 1.2: Variance components 

Variance Component Symbol Corresponding variance 

Phenotypic 𝑉𝑃 Phenotypic value 
Genotypic  𝑉𝐺 Genotypic value 
Additive 𝑉𝐴 Breeding value 
Dominance 𝑉𝐷 Dominance deviation 
Interaction 𝑉𝐼 Interaction deviation 
Environmental 𝐸 Environmental deviation 
Narrow sense heritability ℎ2 =

𝑉𝐴
𝑉𝑃

⁄  Phenotypic value due to 
genes transmitted from the 
parents  

Broad sense heritability  𝐻2 =
𝑉𝐺

𝑉𝑃
⁄  Phenotypic value due to 

genotypes 

 

1.4.1.2 Linearity 
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 To assess the relationship between genotypes and phenotypes, linear models are used to fit 

the data. Usually, a linear regression of phenotypes for our individuals on their genotypes at a 

particular 𝑆𝑁𝑃𝑙  is defined as follows: 

 𝒚~𝝁 + 𝜶𝒍𝑮𝒍 (1.12) 

 

Where 𝑦 is a vector of phenotypes of a set of individuals, 𝐺𝑙  is the vector of genotypes at locus 𝑙 taking 

the values 0, 1 or 2 depending on whether the individual is homozygote, heterozygote, or the 

alternate homozygote at the locus of interest and 𝜇 is the phenotypic mean. The slope of this 

regression line (𝛼𝑙) is interpreted as the average effect of substituting a copy of allele 2 for a copy of 

allele 1 (Coop 2020). A basic assumption is that the regression is linear.  

1.4.1.3 The infinitesimal model  

 We can predict the phenotypic values for the first generation under truncation selection using 

the breeder´s equation, Response = ℎ2 × S, where S is the selection differential (Lush 1937). The 

breeder equation predicts evolutionary change in a trait of interest. The process of selection either 

natural or artificial, introduces into the prediction through S. The selection differential is a measure 

of association between trait values and fitness (Falconer and Mackay, 1996). Hence, S is negative 

when lower values of a trait increase fitness; positive when selection favors higher traits values. In 

the case of truncation selection, where a fixed proportion of the population is selected and 

reproduced, S is equal to the difference in mean traits values between the selected individuals and 

the entire population. However, we know that selection changes the gene frequencies and hence the 

genetic variance (Hill 2010), making the prediction of response without knowing of the individual 

gene effects and frequencies difficult. Bulmer (1980) suggested a formalized Fisher´s infinitesimal 

model to provide a practical but some unrealistic biological resolution; the model assumes infinitely 

many unlinked genes with infinitesimally small additive effect so that the selection produces 

negligible changes in gene frequencies and variance at each locus. Consequently, the selection 

response in successive generation can be predicted by estimated population parameters such as 

heritability and phenotypic variance (Hill 2010).  

1.4.2 Genomic prediction and analysis of polygenic traits 

 

1.4.2.1 The incorporation of markers to determine genetic potential of livestock and plants era 

The investigation of DNA during the late 1970´s and early 1980´s was fundamental for the 

discovery of several polymorphism marker types in the genome. One of the first works describing the 

multiple uses of the new polymorphism published by Soller and Beckman (1983). Surprisingly, their 

vision of using markers was not much different than how DNA is used today in the genetic 

improvement of livestock and plants. Specifically, they assumed that markers would be beneficial in 

constructing more precise genetic relationships, followed by parentage determination and the 

identification of quantitative trait loci (QTL). Although the newly discovered markers looked very 

promising, the high cost of genotyping animals and plants at that time prevented the early 
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widespread use of this technology. However, the Human genome project in 2001 (The International 

SNP MAP Working Group, 2001) allowed the discovery of numerous SNPs, which genotyping could 

be automatized. They have become the main markers used to analyze variation as they can found 

throughout the entire genome (Schork et al. 2000). Also, to genotype SNPs is cheap and easy in an 

automated high-throughput manner (Lourenco et al. 2017).  

Marker genotyping contributes to the detection of genes that affect traits of importance. The 

idea behind this task is that a SNP found to be associated with a phenotypic trait is a proxy for a 

nearby gene or causative variant (a SNP that directly affects the trait). Since many SNPs are present 

in the genome, at least one SNP would be linked to a causative variant increasing the chance of finding 

genes that contribute to the genetic variation of the trait of interest. New genetic tests or profiles of 

DNA were developed trying to find which of these tests were associated to genetic variation of traits. 

One method that became popular was the marker assisted selection (MAS). MAS is an indirect 

selection method, where a trait of interest is selected based on its association to a marker. The 

process has been extensively used in plant breeding. For example, individuals with disease resistance 

are selected if a marker allele is identified that is linked with disease resistance rather than the level 

of disease resistance. This could result in great genetic improvement with the selection of parents 

that fulfilled the desired marker profile. However, many quantitative and complex traits of interest 

are often controlled by many small-effect genes and influenced by environmental factors which have 

been difficult to take advantage of in practical breeding (Lande and Thompson 1990). These genes of 

small effects are difficult to map and even if mapping is successful often multiple quantitative trait 

loci are involved which are usually difficult to use simultaneously in breeding (Robertsen et al. 2019). 

Therefore, MAS when defined as the use of mapped genes in breeding has had limited success in 

improving quantitative traits (Heffner et al. 2009). Worthy to note that using MAS, important genes 

or loci were detected but not always the same as it would be expected in replicated studies; that is 

the most of these QTL had small effects on the traits (Meuwissen et al. 2016).  Andersson (2001) 

showed that the number of QTL associated with a phenotype depends on the threshold effect size 

used. To sum up, for any given polygenic trait there is only a small number of genes contribute more 

than 1% of the genetic variation (Lourenco et al. 2017).  

1.4.2.2 The genomic selection era  

In 1989, Fernando and Grossman incorporated marker information into Best Linear Unbiased 

Prediction (BLUP). The method resulted in a large amount of genetic gain in breeding programs which 

traditionally used pedigree information to define the covariance between relatives. The covariance 

matrix using markers is named the genomic relationship matrix (GLM). An extension of this idea was 

proposed by Meuwissen et al. (2001), introducing what we know today as genome-wide selection or 

genomic selection (GS). The paper suggested that using SNPs results in an increase of genetic gain 

especially for traits with low heritability as well as animals can be selected early in life prior to 

performance or progeny testing. Therefore, GS promised to overcome the limitations of MAS of 

quantitative traits. The goal of GS is to determine the genetic potential of an individual instead of 

identifying the specific QTL. However genetic markers are not only used for determining the genetic 

value of individuals so that they can be selected for breeding purposes. They are widely used for the 

estimation of heritability and genetic variance components as well as for the prediction of genetic 



 43 

merits such as phenotypic values especially in animal and plant industries (Genomic Prediction). 

Genomic prediction (GP) is established to select new lines and crosses based on genomic data without 

the need for laborious phenotypic by making accurate prediction of phenotypic values using statistical 

methods. A schematic workflow of GP is depicted in Figure 1.4.  

 

Figure 1.4: Overview of GS with cross validation using a training population to predict the phenotypic or genetic 

values of lines in the test-population. Particularly, the process starts with the generation of training population, 

that is individuals having both genotypic and phenotypic information. This information is used to build a model, 

where the phenotype is used as response and genotype as a predictor. Then, the information from the 

developed model is used to estimate the breeding or phenotypic values of breeding populations, i.e, 

individuals having only genotypic information.  

1.4.2.3 Importance of linkage disequilibrium and marker density 

 The importance of incorporating SNPs in the GP studies relies on the fact that they may be 

linked to QTL or genes through linkage disequilibrium (LD). The LD measures the non-random 

association of alleles across loci and is based on expected versus observed allele frequencies. This 

association can represent the physical distance between loci that is strong LD means two loci are 

close. As a result, a locus can be used as a proxy for the others. Assuming a dense SNP panel, there is 

a high chance that QTL will be in LD with at least one SNP. Then if QTL A is linked to SNP B, depending 

on the strength of this linkage, once SNP B is observed it will imply QTL A was inherited together. As 

a result, an indirect association between SNP and trait can be observed (Figure 1.5). Meuwissen et al. 

(2001) showed that prediction accuracies are increasing with an increase in marker density and in 

training population size. It can be argued that at least one marker should be in LD with each QTL to 

capture all the genetic variation in a population. Especially when unrelated lines are used, as LD 

between markers may vary between the training and the test population. Also, high marker density 

seems to be more critical in prediction of distant relatives (Robertsen et al. 2019; Norman et al. 2018).  

1.4.2.4 Genetic factors affecting the predictive ability  

 The accuracy of GP methods in crop breeding can be affected by several genetic factors as 

marker density, linkage disequilibrium (LD) between markers and QTL, sample size, the relationship 

between the training population and test population, population structure, heritability, and genetic 

architecture of the traits of interest (Xu et al. 2021). The predictive ability increases as marker density 

and sample size grow until reaching a plateau. Several studies have shown that the prediction 
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accuracy is affected by the training population size (Voss-Fels et al. 2019, Guo et al. 2019). The 

number of lines to be genotyped and phenotyped is of high importance for breeders since determines 

the training dataset and at the same time is a large investment. A reduced accuracy of GP was 

observed by reducing the training dataset while accuracy values varied more (Nielsen et al. 2016).  

The desirable size of the training population is associated with the heritability of the target trait and 

population relatedness. For example, when the heritability is low (e.g., h2=0.2), the training 

population size must be more than 1000 individuals (Voss-Fels et al. 2019). Moreover, the necessary 

size of training population is much smaller for a closely related population than that for a distantly 

related population. As studies have shown (Jia 2017) the predictive ability is closely influenced by the 

heritability of traits. High heritability traits such as plant heigh often have higher predictive abilities 

than low heritability traits such as grain yield. Another important factor affecting the prediction ability 

is the genetic relationship between the training and the test population. It seems that the prediction 

accuracy grows when the populations are genetically similar (Daetwyler et al. 2014, Wang et al. 2018). 

Isidro et al. (2015) observed the highest prediction accuracies when training data represented the 

whole population and had a strong relationship to the testing data. On the contrary, a decrease in 

the prediction accuracies was observed by Lorenz et al. (2015) and Nielsen et al. (2016) when using 

less related individuals. A higher predictive ability can be obtained by adding more related materials 

in the training population rather than increasing the size of the training population with unrelated 

materials. However, we have to increase relatedness with caution since this might damage the 

genetic gain 

 

Figure 1.5: GP relies on the assumption that a QTL will be in LD with at least one SNP. Therefore, instead of 

detecting all the QTL associated with a trait we can find the indirect association between SNP and trait. 

Figure adapted by Lourenco et al. 2017. 

in the long run as the genetic variation will be limited if the related populations are overused. As a 

result, a balanced relationship between training and testing population is the optimal in practical 

breeding (Xu et al. 2020). The predictive ability is also closely related to population structure as GP in 

stratified populations can lead to biased effect estimates and predictive ability (Yu et al. 2006). Finally, 

the degree of LD between markers and QTL influences GP. The training population needs to be 
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updated regularly because the LD between markers and QTL will gradually decrease as the number 

of generations grows (Desta et al. 2014).  

1.4.2.5 Genetic variance explained by markers 

 It is important to know what part of the genetic variance is explained by each marker. If a 

marker has an effect of 𝛼𝑖 for each copy of the 𝐴 allele and the frequency of 𝐴𝐴 is 𝑝2, then these 

individuals have value of 𝑢 = +2𝛼𝑖; individuals 𝑎𝑎 with frequency 𝑞2 have value 𝑢 = 0; individuals 

𝐴𝑎 with frequency 2𝑝𝑞 have a value of 𝑢 = 𝛼𝜄. Hence, the variance explained by this marker is 

V(𝑢) = 𝐸(𝑢2) − 𝐸(𝑢)2. Finally, the variance explained by one marker is 4𝑝𝛼𝑖
2 + 2𝑝𝑞𝛼𝑖

2 − (2𝑝𝛼𝑖)
2 =

2𝑝𝑞𝛼𝑖
2. It is expected that markers with intermediate frequencies will explain most genetic variance 

(Legarra et al. 2014). However, how do we calculate the total genetic variance explained by markers? 

Assuming that in most cases the marker effects are not known, a prior information might be used as 

their variance. Then, the total variance is  

 
𝝈𝒖

𝟐 = 𝑽𝒂𝒓(𝒖) = 𝟐 ∑ 𝒑𝒊𝒒𝒊𝝈𝜶𝒊
𝟐

𝒏𝒔𝒏𝒑

𝒊

 
(1.13) 

If the markers have effect coming from distribution with the same variance 𝛼 priori 𝜎𝛼0
2  (say 

𝜎𝛼1
2 =𝜎𝛼2

2 =𝜎𝛼3
2 =…=𝜎𝛼0

2 ), Then 𝜎𝑢
2= 2 ∑ 𝑝𝑖𝑞𝑖𝜎0

2𝑛𝑠𝑛𝑝
𝑖 = 2𝜎0

2 ∑ 𝑝𝑖𝑞𝑖.  
𝑛𝑠𝑛𝑝
𝑖  Factoring out 𝜎0

2 from the 

formula, we end up with the famous identity (Gianola et al. 2009; VanRden 2008). 

 
𝝈𝜶𝟎

𝟐 =
𝝈𝒖

𝟐

𝟐 ∑ 𝒑𝒊𝒒𝒊
𝒏𝒔𝒏𝒑
𝒊

 
(1.14) 

Based on equation (1.14) the priori variance of the markers is defined as a function of the genetic 

variance of the population, a formula used constantly in most applications in GP. 

 In case we want to calculate the genetic variance explained by markers after fitting the model, then 

estimates �̂� for each marker are available. Hence, each marker 𝑖 explains a variance 2𝑝𝑖𝑞𝑖�̂�𝑖
2. 

Therefore, the genetic variance contributed by each marker is not the same across all markers 

(Legarra et al. 2014). Also note that 2 ∑ 𝑝𝑖𝑞𝑖 �̂�𝑖
2 underestimated the total genetic variance since 

estimates �̂�𝑖 are shrunken towards 0. In the following paragraphs, different estimators are presented.  

1.4.2.6 Models of genomic prediction 

As we mentioned above, the prediction ability of GP methods is influenced by the proportion of 

variance on the traits the SNPs can explain. Conceptually GP is a large p and small n (genotyped 

animals) scenario since the number of variables p is far larger than the number of n of observations. 

As a result, methods can have a large sampling variance and mean-squared error. To overcome this 

limitation, variables must be selected or restrictions on the solutions must be applied or sometimes 

both can be applied simultaneously. Here GP methods are divided into two main classes based on the 

fact if they estimate the marker effects or not: 

1) SNP effect-based method 

2) Genomic relationship-based method 
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1.4.2.6.1 SNP effect-based methods 

SNP effect-based methods estimate marker-effects for all genome-wide markers 

simultaneously. For practical reasons, markers are assumed to be uncorrelated even if they are close. 

For instance, if two markers are in strong LD, they will likely show a similar effect after fitting the 

model but before fitting the model, we cannot say that their effects will be similar or not. The most 

common methods used in this class are: 

1. Random Regression BLUP (RR-BLUP), SNP-BLUP  

These methods assume that the marker effects are random (“random regressions”) coming from a 

normal distribution with constant variance for all loci. As a result, all markers explain the same 

proportion of variance on the traits. The methods are described by the following mixed model: 

 𝒚 = 𝑿𝒃 + 𝒁𝜶 + 𝒆                                                          (1.15) 

Where, y is the vector of pre-corrected phenotypes, 𝑋 is the incidence matrix for the fixed effects in 

b, 𝑍 is a matrix of the marker genotypes, 𝛼 is a vector of marker effects, 𝑒 is the residual term. 

Although method does not estimate breeding values, 𝑢, these can be derived as linear combination 

of the SNP effects, 𝑍𝛼.  

2. Bayesian Methods  

One possible problem of the methods of Regression is the assumption of homogeneity across the 

marker effects, that is all markers have a constant variance. Thus, assuming homogeneity may not be 

optimal if some markers are in LD with QTL while some others are not. To deal with these, methods 

such as the Bayesian ones perform variable selection and shrinkage on the effects simultaneously. In 

Bayesian methods variable selection and differential shrinkage of estimates of effects can be applied 

using priors other than the Gaussian. For example, heavy-tailed prior distributions or mixture 

distributions are used as the distribution of marker-effects allowing for some markers to contribute 

more to genomic variance than others.  Here a family models called Bayesian Alphabet is briefly 

introduced which share the same likelihood function but differ on the prior (or else shrinking) used 

for marker effects (Lourenco 2017; de los Campos 2018): 

2.1 BayesA and BayesB (Meuwissen et al. 2001) 

BayesA uses prior on the marker effects corresponding to a student-𝑡 distribution (Gianola et al. 2009) 

which has the property of having “fat tails”. It assumes that all SNPs have effect on the traits with the 

majority of markers have small effect and very few have large effect. Thus, different variances are 

assumed for each marker. Note that Bayesian methods are non-linear and likely to be affected by 

shrinkage, that is the small effects became even smaller and the big effects even bigger. A very 

common thought at the beginning of Genomic Evaluation was that there were not many QTLs. Hence, 

it was commonly assumed that many markers do not have effect because they cannot trach QTLs. 

This originated the method known as BayesB (Legarra et al. 2014). BayesB uses priors that are 

mixtures of a spike of mass at zero of a continuous density (e.g., t, or normal). In other words, make 
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the same assumption with BayesA but for a fraction of markers. The method states that a proportion 

(𝜋) of the SNPs have no effect and 1 − 𝜋 have a non-zero effect.  

2.2 BayesC (Habier et al. 2011) 

BayesC combines properties of BayesB and SNP-BLUP but uses as a prior a normal distribution with 

unknown variance. Particularly, it assumes that markers are coming from a distribution with constant 

variance (as in SNP-BLUP) and assumes that some fraction 𝜋 of markers have no effect (as in BayesB).  

 
𝒑(𝜷𝒊|𝝈𝜷

𝟐 ) = {
𝑵(𝟎, 𝝈𝜷

𝟐 ) 𝒘𝒊𝒕𝒉 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚(𝟏 − 𝝅)

𝟎 𝒘𝒊𝒕𝒉 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝝅
                                                                                                            

(1.16) 

Where 𝛽𝑖 is the effect of each marker with variance, 𝜎𝛽
2 has a scaled inverse chi-square distribution; 

𝜎𝛽
2~𝜒−2(𝜈𝛽 , 𝑆𝛽

2) with 𝑆𝛽
2 scale and 𝜈𝛽 degrees of freedom. Note that the advantage of BayesC over 

BayesB is that is much faster. If assume 𝜋 = 1 BayesC becomes SNP-BLUP.  

1.4.2.6.2 Genomic relationship-based methods 

These methods use markers to infer relationships among individuals, quantifying the number of 

alleles shared between two individuals. Genomic relationships are identical by state (IBS) because 

they account for the probability that two alleles randomly picked from each individual are identical, 

independently of origin. On the other hand, Pedigree relationships are identical by descent (IBD) 

because they consider the shared alleles come from the same ancestor.  

1. Genomic Best Linear Unbiased Predictor (G-BLUP, VanRaden 2008) 

G-BLUP is one of the most widely used models in genomic prediction. The method is equivalent to 

SNP-BLUP but genomic breeding values (𝑍𝛼) are estimated instead of SNP effects. The basic 

assumption is that all markers explain the same amount of variance therefore the majority of SNP 

have a small effect and very few moderate to large effect. It assumes a genomic relationship matrix 

(GRM) instead of a conventional pedigree-derived numerator relationship (𝐴). Breeding values are 

more accurately estimated based on GRM.  

 𝒚 = 𝑿𝜷 + 𝒁𝒈 + 𝒆                                                              (1.17) 

where 𝑋 and 𝑍 are design matrices, 𝛽 is a vector of fixed effects, 𝑔 is a vector of additive genetic 

effects for an individual and 𝑒 is a vector of random residuals with variance 𝜎𝑒
2 . It was assumed that  

𝑔~𝑁(0, 𝐺𝜎𝑔
2) where 𝐺 is the GRM and 𝜎𝑔

2 is the additive genetic variance.  VanRaden (2008) 

suggested that the matrix G can be established as follows:                                                               

 𝑮 =
(𝑴 − 𝑷)(𝑴 − 𝑷)′

𝟐 ∑ 𝒑𝒌(𝟏 − 𝒑𝒌)
 (1.18) 

Where M is a genotypic matrix 𝑛 ×  𝑚 with 𝑛 for the number of individuals and 𝑚 for the number 

of markers, 𝑝𝑘 is the minor allele frequency (MAF) of 𝑖𝑡ℎ marker and 𝑃 is the matrix in which the 

𝑘𝑡ℎ column elements are 2𝑝𝑖. GBLUP is robust, fast and more suitable for polygenic traits.  
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2. Reproducing Kernel Hilbert Spaces (RKHS) regressions  

RKHS methods are used for semi-parametric modelling in different areas of application. Gianola et al. 

(2006) suggested using this method for semiparametric genomic enabled prediction. Since then, it 

has been widely applied in plant and animal breeding. Kernel-methods are very popular in particular 

to predict non-additive effects and to handle complex multi-environment multi-trait models (Sousa 

et al. 2017; Cuevas et al. 2018).  RKHS considers as the best method in plants by Reinoso-Pelaez et al. 

(2022). Kernel methods can apply relationship or similarity (distance) matrices. The method uses the 

Gauss kernel function to fit the following model: 

        𝒚 = 𝑿𝒃 +  𝑲𝒉𝜶 + 𝜺                                                       (1.19) 

where 𝛼 has a multivariate normal distribution with mean zero and covariance matrix 𝐾ℎ𝜎𝛼
2; 

𝜀~𝑁(0, 𝐼𝑛𝜎2); 𝐾ℎ is a kernel function that represents the correlation between individuals and is 

defined as. 

   𝑲𝒉(𝒙𝒊, 𝒙𝒋) = 𝒆𝒙𝒑(−𝒉𝒅𝒊𝒋)                                                  (1.20) 

Where 𝑑𝑖𝑗 is the squared Euclidean distance between individuals 𝑖  and 𝑗 calculated based on their 

genotypes, ℎ is defined as ℎ = 2
𝑑 ∗⁄  and 𝑑 ∗ is the mean of 𝑑𝑖𝑗. Under a Bayesian framework the 

model can be solved using a Gibbs sampler or a mixed linear model (Wang et al. 2018).   

1.4.2.7 Deep Learning  

Deep learning (DL) or artificial neural networks (ANN), is a subset of machine learning (ML) 

algorithms that are used to solve complex problems without being explicitly programmed. The ANN 

are trained in such a way to find complex relationships between traits. Usually, ML algorithms 

leverage structured labeled (or not) data to make predictions using a prior information as input data 

from the user. On the other hand, DL can be applied to unstructured data such as text, images and it 

automates feature extraction removing some of the dependency on feature engineers. The function 

of DL mimics and is inspired by the structure and function of human brain through a combination of 

data inputs, weights, and bias (Figure 1.6). In the early 1940´s Warren McCulloch a neurophysiologist 

worked together with logician Walter Pitts to create a model of how brain works. It was a simple 

linear model that produced a positive or negative output, given a set of inputs and weights: 

 𝒇(𝒙, 𝒘) = 𝒙𝟏𝒘𝟏+. . . +𝒙𝒏𝒘𝒏 (1.21) 

where 𝑓(𝑥, 𝑤) is the output, 𝑥𝑛 the inputs and 𝑤𝑛, the weights. This model of computation was called 

neuron because it tried to mimic how the core building block of the brain worked. The brain neuron 

contains dendrites which are extensions of the nerve and propagate the electrochemical stimulation 

received from other neural cells to the cell body (soma) of the from which the dendrites project. If 

the received electrical signal is enough to trigger an impulse, then it is sent along the axon and it 

passes to other neurons. Just like brain neurons, McCulloch and Pitt´s neuron received inputs and if 

these signals were strong enough, passed them on the other neurons. However, this model had a 

problem. It could not learn like the brain does. Frank Rosenblatt gave the solution to this problem 
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almost a decade later, developing an algorithm that could learn the weights to generate an output.  

That model is called perceptron which is the simplest form of an artificial neuron network (ANN).  

 

Figure 1.6: Brain neuron function Image used from Components_of_neuron.jpg (2046×1412) (wikimedia.org) 

DL are classified in different categories based on their architecture with the most famous to 

be the Multilayer Perceptron network (MLP) and the Convolutional neural network (CNN). An MLP 

(Figure 1.7, A) has at least three layers: the input, a hidden layer, and the output layer. All the neurons 

are connected to every neuron in the previous layer and then connected to every neuron in the next 

layer by a weight that is assigned to each of them. After they receive the input that might be either 

the initial inputs or the output from other neurons, they make a decision of what to pass to the next 

layer of neurons. The layers between the input and output are referred to as “hidden layers”. DL 

networks consist of multiple layers of interconnected nodes. Each layer uses as input the output of 

the previous ones to optimize the prediction or classification. Neurons mathematically transform the 

data they receive before passing them forward. All these transformations allow the network to learn 

more complex relationships between the features and make predictions which other algorithms 

cannot easily discover.  

A CNN (Figure 1.7, B) captures the spatial relationships of the data, that is the proximity and 

the position between the pixels can be taken into consideration. These networks have convolution 

layers  

https://upload.wikimedia.org/wikipedia/commons/3/36/Components_of_neuron.jpg
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Figure 1.7: Figure depicts two DL architectures, Multi-Layer Perceptron (A) and Convolutional Neural Networks 

(B). 

which are trying to capture the spatial patterns in the data. Particularly, convolution is the first layer 

to extract features from the input matrix. Convolution preserves the relationship between input 

variables by learning features using small squares of input data. It is a mathematical operation that 

takes two inputs, the input matrix and a filter or kernel. The filter or kernel is the learnable parameter 

of the network, that is the weight and is the same along the input matrix. The filter moves along 

windows of the input matrix of the same sizes consist of variables and performs a multiplication 

operation that is a dot product, until the entire matrix is transferred. The output matrix is called 

“feature map”.  After convolution is over, pooling layers are used to reduce the abundant information 

and keep the important one. The last layer of the networks is flattened out to be used as input in a 

fully connected network (MLP). Flattening is converting the data into a 1-dimensional array for 

inputting it to the next layer. We flatten the output of the convolutional layers to create a single long 

feature vector.  The performance of the networks strongly depends on the hyperparameter choice, 

the dataset, and the size of the training sizes. Many tasks can be performed today by DL networks 
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like classification, prediction, image, and face recognition, forecast prediction robotics, Natural 

language processing, healthcare, and finally genomic prediction. A more detailed description about 

DL networks can be found in Chapter 5.  

1.4.2.7.1 Deep learning in genomic prediction 

 In GP applications a genotype matrix is usually used as input in the network. Although DL has 

been applied and compared in various works seems to perform poorly under a GP framework 

(González-Recio et al. 2014; Ma et al. 2017; Bellot et al. 2018; Montesinos-López et al. 2018). 

However, Gianola et al. (2011) showed that MLP performed better than a Bayesian linear model in 

wheat. Pérez-Rodríguez et al. (2012) compared the prediction performance of Radia Basis Function 

Neural Networks and Bayesian Regularized Neural Networks against several linear models and 

semiparametric models such as (RKHS). The authors used wheat datasets and concluded that the non-

linear models (DL, RKHS) had higher prediction ability than the linear models. Ehret et al. (2015) found 

non-relevant differences between a GBLUP and a MLP model. Similarly, Zingaretti et al. (2020) did 

not observe significant advantage of DL over linear models, except when epistasis component was 

important. DL outperformed GBLUP method when used to predict phenotypes from genotypes in 

wheat (Ma et al. 2017). An extensive review of studies in GP using neural networks can be founnd in 

(Montesinos-López et al. 2021).  

The models for GP have been extensively compared. Meuwissen et al. (2001) compared four 

different statistical methods, observing that BLUP outperformed Least-square estimation (LS). Also, 

BayesA and BayesB increase prediction accuracy compared to GBLUP. Reviews of comparison of 

prediction models can be found in Heslot et al. (2012), Maltecca et al. (2012) and de los Campos 

(2013). In these comparisons was observed that when prediction is applied in close relatives and 

assuming a trait affected by many genes of small effect, the differences between the methods are 

small and methods like GBLUP, BLUP, and ridge regression are very robust. However, when traits have 

some larger QTL or when considering prediction of distant relatives, Bayesian and machine learning 

methods can be extremely effective (Robertsen et al. 2019).  

1.5 Genomic prediction in rice breeding 

Rice (Oryza sativa) was domesticated around 10,000 years ago and had developed into one of 

the most important food crops (Groen et al. 2022). Only in 2021/2022 about 509.87 million metric 

tons of rice was consumed worldwide up from 437.18 million metric tons in the 2008/2009 crop year 

(https://www.statista.com/statistics/255977/total-global-rice-consumption/). However, considering 

that the world population is increasing and at the same time we face a climate change, the 

conventional breeding techniques cannot meet the demand (Hickey et al. 2019). Conventional 

breeding needs almost ten years for a new cultivar to grow, meaning that the current pace of rice 

breeding is very slow. Consequently, we need methods that will secure nutritional requirements and 

at the same time increase the quality and quantity of yield. In addition, there is an imperative need 

for the new cultivars to have two significant traits, being disease resistant and climate smart. GP is an 

extremely important and efficient tool for achieving all the pre-mentioned  
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Table 1.3: Summary of prediction methods. 

General 
method 

Model Distribution 
of marker 
effects 

Software Main functions 

 
 
 
 
 
 
 

Parametric 
methods 

RR-BLUP 
(BLUP) 

Normal 
distribution 
Normal 
distribution 
Normal 
distribution 

 
 
R/ rrBLUP, 
R/BGLR, 
R/sommer 
 

Marker effect 
estimation, Genomic 
prediction, mixed model 
solver 

SNP-BLUP 
GBLUP 

BayesA Student (t) 
distribution 

 
 
R/PopVar 
R/BGLR 
R/BWGS 
 
 

 
Genetic variance 
prediction, 
Genomic Prediction 

BayesB Mixture of 
Student (t) 
distribution 
and spike at 
0 

BayesCPi Mixture of 
Normal 
distribution 
and spike at 
0 

 
 
R/BGLR 
R/BWGS 

Genomic Prediction 

BayesC Normal 
distribution 
with 
unknown 
variances 

GREML R/qgg Estimation of genomic 
parameters and 
genomic prediction 

Bayesian 
Lasso 

Double 
exponential 

  

Lasso  Laplace 
distribution 

R/glmnet 
R/STGS 

SSVS Mixture of a 
large and  
small  
normal  
distribution 

R/bvartools 

Elastic-net No priori R/BWGS Genomic Prediction 
 Non-

Parametric 
methods 

SVM  
 
           
 
 
           -- 

R/BWGS 
RKHS R/BGLR 
RF R/randomForest 

R/STGS 
Genomic Prediction, 
Marker effect 
estimation 

RBFNN R/rbf Prediction 
DL DeepGS Genomic Prediction 

*GREML: Restricted maximum likelihood estimation, DL: Deep Learning, SSVS:  Stochastic Search Variable 

Selection (SSVS), SVM: Support Vector Machine, RF: Random Forest 
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Table 1.4: Summary of genomic selection studies in rice adapted by Xu et al. (2021). 

Population Genotype  Model Trait (predictive ability) Reference 
110 Japanese 
cultivars 

2071 SNPs BL, EN, RF, 
GBLUP, wBSR, 
LASSO, RKHS 

Flowering date (0.7–0.85), 
panicle length (0.5–0.7), 

panicle number (0.35–0.45), 
grain length (0.35–0.45), 

grain width (0.5–0.7) 

Onogi et al. 2015 

413 diversity inbred 
lines 

36,901 SNPs GBLUP Florets per panicle (0.6), flowering time (0.6), 
plant height (0.7), 

protein content (0.45) 

Isidro et al. 2015 

386 inbred lines 1311 SNPs PLS, Kernel PLS, 
RR Kernel RR 

Grain shape (0.55–0.62) Iwata et al. 2015 

363 elite breeding 
lines 

73,147 SNPs BL, RKHS, 
RRBLUP, RF 

Grain yield (0.15–0.31), 
flowering date (0.35–0.63), 

plant height (0.15–0.34) 

Spindel et al. 2015 

343 S2:4 lines 8336 SNPs BL, BRR, GBLUP, 
LASSO, RRBLUP 

Grain yield (0.31), 
flowering date (0.30), 

plant height (0.54), 
panicle weight (0.33) 

Grenier et al. 2015 

284 inbred lines and 
97 F5-F7 lines 

43,686 SNPs GBLUP, RKHS, 
BayesB 

Flowering date (0.35), 
nitrogen balance index (0.33), 

100 panicle weight (0.38), 

Hassen et al. 2018 

128 Japanese 
cultivars 

42,508 SNPs GBLUP, PLS Grain weight distribution (0.28–0.53) Yabe et al. 2018 

161 African 
accessions and 162 
USDA accessions 

36,901 SNPs GBLUP, BayesA, 
BayesC 

Rice blast (0.15–0.72) Huang et al. 2019 

210 recombinant 
inbred lines and 278 
hybrids 

1619 bins GBLUP, LASSO, 
SSVS 

Grain yield (0.31–0.36), 
grain number (0.59–0.61), 
tiller number (0.45–0.48), 

1000 grain weight (0.82–0.83) 
 

Xu et al. 2014 

120 inbred lines and 
575 hybrids 

2,395,866 
SNPs 

GBLUP Grain yield (0.39), 
grain number (0.64), 
plant height (0.86), 

1000 grain weight (0.88) 

Wang et al. 2017 

120 inbred lines and 
575 hybrids 

116,482 
SNPs 

BayesB, GBLUP, 
PLS, LASSO, 
SVM, RKHS 

Grain yield (0.38–0.41), 
grain number (0.64–0.65), 

plant height (0.86), 
1000 grain weight (0.87–0.88) 

Xu et al. 2018 

1495 hybrids 
derived from 
incomplete NC II 
design and 100 
hybrids derived 
from half diallel 
crosses 

102,795 
SNPs 

GBLUP Grain yield (0.54), 
grain number (0.62), 
plant height (0.58), 

1000 grain weight (0.54) 

Cui et al. 2020 

738 accessions from 
five groups in rice, 
AUS/Boro, Indica, 
Aromatic, Admixed, 
Japonica 

228,871 
SNPs 
52,120 
MITE/DTX 
21,571 
RLX/RIX 

RKHS, BayesC Culm Diameter (0.26 0.40), Culm strength 
(0.28,0.16), Flag leaf angle (0.45,0.28), Grain 
length (0,69,0.66), Grain width (0.83, 0.64), 
Leaf length (0.41 0.52), Leaf senescence 
(0.47,0.54). Grain weigh (0,30,0.14), Salt 
injury (0,28,0.49), Time to flowering 
(0.65,0.73), Panicle threshability (0.29, 0.24) 

Vourlaki et al. 2022 

 

requirements, accelerating the breeding project. In rice GP can be used for inbred selection as well 

as hybrid breeding.  
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The main GP framework in rice studies includes a training population based on which the 

prediction takes place and the evaluation of the predictive ability within and between populations 

using a testing population. GP has been performed in rice for predicting various quantitative traits, 

while moderate to high predictive ability has been reported (Xu et al. 2021). Onogi et al. (2015) 

performed GP over six different rice traits using nine different methods. Using a diverse population 

of 413 rice inbred lines from 82 countries, Isidro et al. (2015) compared five different sampling 

strategies with stratified sampling resulting in highest predictive abilities over four different traits. 

 Huang et al. (2019) showed that GP was very helpful for predicting rice blast. GP is an effective 

tool, not only for the selection of pure lines in rice breeding but also in hybrid breeding, contributing 

to overcome limitations caused by the numerous potential crosses. GP can predict the performance 

of all combinations of a given set of genotyped parents. From these crosses only a small proportion 

is required to be evaluated in the field. Using GBLUP method, Xu et al. (2014) predicted hybrid 

performance of rice for first time. Particularly, they randomly paired 278 crosses from 210 

recombinant inbred lines and predicted the remaining 21,667 untested hybrids. However, compared 

to other major crops such as maize and wheat, the studies focusing on applying GP to rice breeding 

practice are still limited. Table 1.3 shows a summary of GP models and reported values of predictive 

ability in rice breeding, and Table 1.4 displays a summary of the GP studies in rice adapted by Xu et 

al. (2021). 

1.5.1 Incorporating new genetic markers into the plant breeding 

 Most studies focusing on the genetic variability at the whole-genome level in plants have been 

concentrated in SNPs as the main type of genetic variability (3KRGP 2014). However, other relevant 

sources of genetic variation can be found in the genomes. Transposable elements (TEs) and Structural 

variations (SVs) have been shown to form an important fraction of genetic variation in plant species 

playing a significant mutational role in crop domestication and breeding. Genetic difference caused 

by SVs and TEs can lead to phenotypic variations in a species.  Hence, the use of these kinds of 

variation in GP could lead to improve the predictive ability of traits of interest. Here, we analyze the 

importance of Transposable elements in plant breeding as well as of Structural variations. 

1.5.1.1 Transposable elements 

 TEs, also known as “jumping genes” or transposons, are sequences of DNA that move from 

one location in the genome to another. TEs represent the largest fraction of “junk DNA”, that is, DNA 

fragments without an obvious protein-coding or regulatory functional relevance for the organism 

(Dubin et al. 2018). They were first discovered by Barbara McClintock in the 1940s who was awarded 

a Nobel prize for this discovery. McClintock suggested that these mysterious mobile elements of the 

genome might play some kind of regulatory role, determining which genes are turned on when this 

activation takes place (McClintock 1965). Following McClintock research, scientists Roy Britten and 

Eric Davidson further proposed that TEs not only play a role in regulating gene expression but also in 

generating different cell types and different biological structures based on where in the genome they 

insert themselves (Britten and Davidson, 1969). Despite the groundbreaking research of scientists 

such as McClintock, Britten and Davidson, only recently the scientific community started to 

understand the importance of TEs as source of genetic variation (Pray 2008).  
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1.5.1.1.1 TEs come in many different forms and shapes 

 TEs come in a variety of forms and shapes because of their deep evolutionary origins and 

continuous diversification. TEs can be divided into two major classes based on their mechanism of 

transposition and each class can be further subdivided into subclasses based on the mechanism of 

chromosomal integration. The TEs belong to the Class I are known as retrotransposons, “jumping” 

through the mechanism of “copy-and-paste”, whereby an RNA intermediate is reverse-transcribed 

into a DNA copy that is integrated elsewhere in the genome (Figure 1.8, Bourque et al. 2018). For long 

terminal repeat (LTR) retrotransposons, integration occurs by means of a cleavage and strand-

transfer reaction catalyzed by an integrase much like retroviruses (Brown et al. 1987). For the case of 

non-LTR retrotransposons, including both long and short interspersed nuclear elements (LINEs and 

SINEs), chromosomal integration is coupled to the reverse transcription though a process referred to 

as target-primed reverse transcription (Luan et al. 1993). The most abundant superfamilies of Class I 

found in rice are RLX (LTR retrotransposons) and RIX (LINEs, NON—LRT retrotransposons). Class II 

elements are known as DNA transposons, and they are mobilized via the mechanism of “cut-and-

paste” or “peel-and-paste”. Particularly, CLASS II elements are jumped via a DNA intermediate, either 

directly through the mechanism of “cut-and-paste” (Figure 1.8, Greenblatt et al. 1963) or in the case 

of Helitrons, a “peel-and-paste” (Grabundzija et al. 2016) replicative mechanism involving a circular 

DNA intermediate. In rice, the most representative superfamilies of CLASS II are MITEs (Miniature 

inverted-repeat transposable elements) and the DTX (DNA TEs with terminal inverted repeats).  

 

Figure 1.8: Different classes of TEs based on mechanism of transposition. 

1.5.1.1.2 TEs are significant source of mutations and genetic polymorphisms 

 A substantial portion of the genome of a species is occupied by TEs including a large fraction 

of the DNA unique to that species. Particularly, in maize 60 to 70% of the genome is consist of LTR 
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retrotransposons, while the most of these are unique to this species or its close wild relatives being 

the most active and mutagenic in the genome (Schnable et al. 2009). In rice the percentage of TEs in 

the genome varies from 18.4% to 37.5% (Li et al. 2017) while in A. thaliana TEs make up only 10% of 

the genome (Arabidopsis Genome Initiative, 2000). The content of TIPs in the genome but also the 

proportion of TE classes depends on species and variety (Dubin et al. 2018). In rice DNA transposons 

are four times more than retrotransposons (Song et al. 2017). The vast majority of TE insertions in D. 

Melanogaster are absent at the orthologous site in its closest relative D. Simulans, while the most are 

not fixed in the population (Kofler et al. 2015). In rice, MITE insertions are present at high frequencies 

while being absent from its wild ancestor, indicating that they have been fixed at the same time with 

domestication. Also, MITE insertions present at low frequencies among rice varieties have transposed 

after domestication. Furthermore, it seems that MITE target gene-rich regions for integration 

(Castanera et al. 2021). In the same study, Castanera et al. (2021) discovered association between 

Transposable insertion polymorphisms (TIPs) that were not detected with SNPs. In melon, TEs may 

be the origin of an important fraction of the variability, in addition to the variation due to SNPs and 

SVs. Approximately 60% of the polymorphic TEs are present in only one variety, indicating that they 

have had an important activity during the recent melon evolution (Sanseverino et al. 2015). In 

humans, two haploid genomes differ by approximately a thousand TE insertions primarily from L1 or 

Alu families. It is well established that TEs account for at least 50% of the human genome (Bourque 

et al. 2018). TEs insertions rarely provide an immediate fitness advantage to their host and those 

reaching fixation are driven mainly by genetic drift while are subsequently eroded by point mutations 

that accumulate neutrally (Lynch 2007). It is interesting though that even TEs don’t bring immediate 

benefit to their host and are largely decaying neutrally once inserted, they persist in evolution. One 

explanation of this ability of TEs is the fact that not only propagate vertically but also horizontally 

between individuals and species. Many studies provide evidence of the idea that horizontal 

transposon transfer is a common phenomenon that affects virtually every major type of TE and all 

branches of the tree of life (Gilbert et al. 2018).  

1.5.1.1.3 TEs importance in plant evolution  

 The genomes of most eukaryotes as plant species are dominated by TEs which are now known 

to have a major role in driving genome evolution. The most abundant TE classes in plant genomes are 

LTRs and MITEs. Over the last years it has become known that certain TE families can experience 

bursts of activity under stress conditions and other environmental stimuli resulting in new TE 

insertions. The high transposition activity can result in altered gene expression patterns and 

phenotypes. The connections between TE- mediated increases in diversity and an accelerated rate of 

genome evolution provide powerful mechanisms for plants to adapt more rapidly to new 

environmental conditions. Considering that plants are sessile organisms with low migration capacity, 

the survival of native populations undergoing climate changes relies on evolutionary responses. Many 

TEs families are responsive to environmental cues, apparently integrate preferentially within genes 

involved in the environmental response and generate large-effect mutations, some of which are 

potentially adaptive (Baduel and Quadrana 2021). Although most TE insertions are highly deleterious, 

some can provide key adaptive variation (Baduel and Quadrana 2021). The important role of TEs as a 

source of genetic variation in plants is highlighted by the massive changes in TE abundance and 
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diversity that occurred during domestication and as a result of breeding efforts (Dubin et al. 2018). 

New TEs insertions are triggered by stress conferring new transcriptional responses to the target 

genes. This provides an additional source of variation on which selection can act quickly evolve 

phenotypes adapted to the stress. Transposition activity as constant source of new and major-effect 

mutations can be proved significantly useful for rapid adaptation. This ability to artificially boost TE 

activity supplied an extra source of variation for breeding. The fact that selection acts on TEs during 

local adaptation, speciation, domestication, and breeding (Dubin et al. 2018) highlights the essential 

adaptive role of these elements. It seems that understanding the important role of TEs as source of 

genetic variation and incorporating them in plant breeding programs could provide us a highly 

advantage on predicting new phenotypes adapted to drastic environmental changes such as ongoing 

global warming. Studies in rice and tomato have shown that TEs can reveal significant association 

with traits that are not detected with SNPs since TEs can be recent insertions and may not be in high 

LD with the surrounding SNPs. Also, the fact that TEs have been shown to mediate large phenotypic 

changes in a number of studies (Daborn et al. 2002; Butelli et al. 2012) indicates the need to apply 

then in plant breeding programs. Chapter 4 of this thesis aims to study whether the incorporation of 

Transposable insertion polymorphism (TIPs) in rice GP can increase the prediction ability compared 

to SNPs. 

1.5.1.2 Structural variation  

Genomic structural variation is the variation in structure of an organism’s chromosome that 

can lead to gene loss, gene duplication and the generation of novel genes. Particularly, structural 

variations (SVs) are genomic polymorphisms that could originate from insertion, duplication, 

deletion, translocation, or inversion (Figure 1.9, Alkan et al. 2011). SVs can lead to polymorphisms 

affecting the gene content called copy-number variations (CNVs) and presence-absence variations 

(PAVs). SVs are considered to be longer (> 50bp) and can have a greater influence on gene expression 

and protein function than SNPs (Chiang et al. 2017). These types of SVs have been shown to be 

frequent in plant species (Saxena et al. 2014). Also, it has been established that such SVs have been 

associated with a diversity of phenotypes for major traits in plants (Sutton et al. 2007; Cook et al. 

2012).  

1.5.1.2.1 SVs in plant evolution 

 In the last years, studies of structural variation in plants have been increasing, extending our 

knowledge of genomic changes during evolution, domestication and breeding. Montenegro et al. 

(2017) identified PAVs associated with important agronomic traits such as environmental stress and 

defense response from 18 wheat cultivars. Golicz et al. (2016) discovered that SVs affected the 

presence of flowering time genes such as FLOWERING LOCUS C (FLC) in Brassica oleracea. In another 

study in tomato, Gao et al. (2019) found 4873 genes demonstrating PAV and identified a rare allele 

deletion associated with the flavor of tomato. Fuentes et al. (2019) showed that rice genome regions 

with frequent SVs were enriched in stress response genes. They also demonstrated how SVs could 

help in finding causative variants in genome-wide association analysis. The important role of SVs in 

fungal evolution and adaptation was highlighted by (Gorkovskiy et al. 2021).  The majority of 
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examples of adaptive structural variation correspond to Single nucleotide variants (SNVs) but others 

can be attributed to transcriptional changes of the genes located within or near the SV event. SV plays 

an important role in genetic diversity in plants and in phenotypic variation. The limitations associated 

with the technology and methods used to analyze SVs did not improve our understanding of these 

variations. However, the current advances in DNA sequencing and optical mapping have increased 

the resolution of SVs identification. Nowadays, an increasing number of plant studies use SVs 

demonstrating the importance of SVs compared to SNPs and small indels (Wellenreuther et al. 2019). 

Furthermore, SV-specific genome-wide association study approaches are needed to associate SVs 

with phenotypes (Yuan et al. 2021). To further benefit plant breeding extensive databases of crop 

genome sequences are needed that will not be mainly restricted to SNPs.  Mining SV-related genes 

may provide a useful tool to breeders and crop researchers to produce improved varieties. In Chapter 

5 of this thesis, SVs along with TIPs are applied in a GP framework using Deep learning networks 

aiming to investigate whether this strategy can improve prediction of complex traits in rice.  

 

 

Figure 1.9: SVs are classified as a deletion, an insertion, a duplication, an inversion, or a translocation.  
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Chapter 2 

Objectives 
The general goal of this thesis is to detect signals of polygenic variability under two different 

frameworks, (i) from a population genetics perspective, trying to infer the effects of polygenic 

adaptation under domestication and (ii) from a quantitative genetics perspective, trying to predict 

the effects of polygenic variation on the phenotype using a plant breeding strategy.  

The Specific objectives are: 

1. Perform a simulation study on the effects of polygenic variability in a context of wild versus 

domestic populations and study the patterns of variability. 

2. Infer the Distribution of Fitness Effects (DFE) of the simulated wild and domestic 

populations and compare their patterns to evaluate the capacity of detection of the 

polygenic adaptation. 

3. Incorporate Transposable Insertion Polymorphisms (TIPs) and Structural Variants (SVs) in 

Genome Prediction (GP) for determining genetic potential in rice. 

4. Evaluate the performance of deep learning in genomic prediction using Single Nucleotide 

Polymorphisms (SNPS), TIPS and SVs. 
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Chapter 3 

Detection of Domestication Signals through 

the Analysis of the Full Distribution of Fitness 

Effects using Forward Simulations and 

Polygenic Adaptation 

DOI: 10.1101/2022.08.24.505198 (under revision) 
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Abstract 

As a consequence of the process of domestication, wild and domestic individuals are adapted 

to very different environmental conditions. Although the phenotypic consequences of domestication 

are observable, the genetic causes are not evident in many cases. Artificial selection could be 

modifying the selection coefficients of new and standing variation in the population under 

domestication. Here, we aim to detect a genome-wide signal of domestication under a model of 

polygenic adaptation. We use forward simulations to investigate the 1D and 2D site frequency spectra 

(SFS) of mutations in two populations (Wild and Domestic) with divergent histories (demographic and 

selective) following a domestication split. We simulate ten different scenarios, varying the strength 

of selection upon beneficial mutations and the proportion of mutations whose selection coefficients 

change after domestication. First, we describe that in domesticated populations selection at linked 

sites needs to be invoked to explain the SFS of neutral mutations and that the mode of linked selection 

affecting the neutral SFS depends on the duration of the domestication bottleneck. Second, we find 

that some aspects of the full distribution of fitness effects (DFE), such as the shape and strength of 

the deleterious DFE, are accurately estimated in both populations when using only the 1D-SFS. 

However, the detection of significant differences in the beneficial DFE between populations remains 

challenging in most, but not all simulated scenarios when only the 1D-SFS is used. Third, when 

considering the 2D-SFS and a new joint DFE model, we are able to detect more subtle differences in 

the full DFE that are hidden in the 1D-SFS analysis. In conclusion, our work highlights the strengths 

and limitations of detecting a polygenic signal of domestication under a variety of domestication 

scenarios and genetic architectures. 

Introduction 

The increase in human population size and the emergence of modern society are linked to the 

domestication of plants and animals (Purugganan and Fuller 2009; Driscoll et al. 2009; Larson and 

Burger 2013; Amills et al. 2017; Stetter et al. 2018). Human civilization as we know it was possible 

thanks to the domestication of surrounding life forms, where people started to domesticate plants 

and animals such as wheat, dogs, pigs, or chickens (Avni et al. 2017; Dayan 1994; Redding 2015; Zeder 

2012). Domestication is a process that allows humans and other species to obtain a mutualistic long-

term relationship that implies an advantage for both species (Zeder et al. 2006). The domestication 

of fauna and flora by humans started approximately 10-15 thousand years ago and is still in progress 

(Larson et al. 2014; Zeder 2015). Although human civilization relies on domestication, we still lack a 

full genomic and evolutionary understanding of domestication. Domestication is a rapid process in 

terms of its evolutionary time scale, but it is not a discrete event, and it implies the gradual 

improvement of domesticated traits. The artificial selection generated by humans during 

domestication can be considered relatively stronger and hence faster than natural selection because 

the selective pressure imposed by humans tends to be very extreme. Moreover, domestication tends 

to be associated with bottlenecks; only a small number of individuals from the wild population 

become domesticated, which is expected to decrease the efficiency of natural selection (Wright et al. 

2005). Another important difference between natural and artificial selection is that modern breeders 

usually apply truncation selection, that is, the selection of the top percentage individuals for the 
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desired trait (Granleese et al. 2019). The prevalence of truncation selection in nature, or before the 

industrialization era, is unknown. Truncation selection is known to be an easy and efficient form of 

directional selection (Crow and Kimura 1979), and no severe accumulation of genetic load is expected 

in outcrossing species (Kondrashov 1988; Ohta 1989) if the population size remains large enough 

(Marsden et al. 2016). A recent comprehensive meta-analysis about the genetic cost of domestication 

(Moyers et al. 2018) found that harmful variants are more numerous (or segregate at higher 

frequencies) in domesticated populations compared to their wild relatives. This pattern is likely driven 

by a number of processes, which jointly decrease the efficacy of selection in domesticated 

populations as first suggested in rice genomes (Lu et al. 2006).  

Selection, both natural and artificial, can occur either through a few loci with strong effects or 

via many loci with small effects (Jain and Stephan 2017a; b), depending on the genetic architecture 

of the trait and the strength of selection on it. Different patterns of genetic diversity around the 

selected loci are expected in response to these two models of selection (Stephan and John 2020). 

Classic hard selective sweeps have been reported in few candidate loci under important domesticated 

traits (Andersson 2012), such as the IGF2 gene region associated with lean domestic pigs (van Laere 

et al. 2003), the thyroid-stimulating hormone receptor (TSHR) in domestic chickens (Rubin et al. 2010) 

or the loci sh4 and qSW5 (Li et al. 2018b; Shomura et al. 2008), which are involved in the traits of seed 

shattering and grain width in domestic rice, respectively (Huang et al. 2012). These examples are 

consistent with a simple Mendelian genetic architecture where few loci determine most of the 

variance in the domesticated trait.  

Polygenic adaptation, in contrast, describes a process in which a constellation of small changes 

in allele frequencies modifies the differences in the trait under selection. A wide range of population 

genetics models and simulations describing polygenic adaptation has been investigated (e.g., Stephan 

2016; de Vladar and Barton 2014). Some models analyze the polygenic response of a trait in the 

presence of mutation and stabilizing selection (Jain and Stephan 2015; de Vladar and Barton 2014), 

while others capture the response of a trait under mutation and stabilizing or directional selection 

after an environmental shift in a finite size population (Stephan and John 2020). The interplay 

between hard selective sweeps and polygenic adaptation has been theoretically studied by Höllinger 

et al. (2019) by measuring how selection and genetic drift favour sweeps over small allele frequency 

shifts and vice versa using a finite population size. Thornton (2019) simulated the dynamic effect of 

selected and neutral mutations at a single quantitative trait, showing that the new optimum trait in 

a population of finite size is reached before selective sweeps are completed in polygenic models with 

many involved loci. Stetter et al. (2018) showed the impact of different demographic conditions, such 

as population bottlenecks or exponential growth, on domestication in maize via polygenic adaptation 

and for traits with major effect loci. They performed an exhaustive simulation analysis using a limited 

number of QTLs under an additive model and observed the presence of selective sweeps, even for 

small effect size mutations, after sudden environmental changes in traits under stabilizing selection. 

They concluded that the effect size of new mutations, as well as demography, are the main 

parameters influencing the observed genetic architecture. In practice, polygenic adaptation is harder 

to detect than classic selective sweeps (Pritchard et al. 2010). However, polygenic adaptation has 

been detected in some particular studies in wild and domesticated populations. Genome-wide 

association studies (GWAS) combined with population genetic modelling could potentially lead to the 
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detection of signals of polygenic adaptation (Berg and Coop 2014). Combining gene association and 

multivariate (redundancy analysis) methods have contributed to the identification of polygenic 

adaptation in the threatened fish species Maccullochella peelii (Harrisson et al. 2017). In Drosophila, 

Evolve and Resequencing (E&R) experiments that modified the regime of the temperature of 

populations have detected a polygenic adaptive response that could be explained by functional 

redundancy and quantitative traits (Barghi et al. 2019). Under climate change, the coral ecological 

divergence has been explained by the polygenic adaptation of many amino acid-changing variants 

(Rose et al. 2018). Small effects of polygenic variants seem to explain most of the existing variation in 

maize domesticated traits (Xue et al. 2016). It has been suggested that in animals, the initial 

domestication process may have acted on complex behavioural traits such as taming (Trut et al. 

2009), which others have found to be affected by a large number of genes (Jasinska and Freimer 

2009). 

In this study, we wonder to what extent we are able to detect a genomic signal of 

domestication using a different approach: the comparison of the full distribution of fitness effects 

(DFE) on new and standing variation. To do that, we first compared the 1-dimensional (1D) and 2-

dimensional (2D) unfolded site frequency spectra (SFS) of synonymous and nonsynonymous variants 

between domesticated and wild in silico populations. Second, we compared the inferred full DFE of 

new nonsynonymous mutations in those populations. The DFE of new deleterious mutations has been 

previously estimated contrasting the 1D-SFS of synonymous and nonsynonymous mutations of a 

multitude of species assuming that beneficial mutations only contribute to divergence but not to 

polymorphism because of their rapid fixation in the population (Barton and Zeng 2018; Boyko et al. 

2009; Keightley and Eyre-Walker 2007; Kim et al. 2017; Tataru et al. (2017) proposed a model, 

polyDFE, for the inference of the full DFE and the proportion of adaptive substitutions (α) by using 

polymorphism data exclusively. Castellano et al. (2019) used polyDFE to compare the full DFE of new 

amino acid mutations across great apes, finding that the shape of the deleterious DFE is constant 

across this set of closely related species. Recently, using the 2D-SFS, a new method to jointly estimate 

the full DFE between two populations that have recently diverged and share many polymorphisms 

has been proposed (Huang et al. 2021). However, there are few studies comparing the DFE between 

domesticated and wild populations (Leno-Colorado et al. 2020). Here, we use forward simulations, 

considering the domestication process under different demographic and selective models. Several 

combinations of genetic architectures and selective effects have been simulated, from one 

considering a relatively small number of loci changing their selective effects to another of polygenic 

adaptation where many loci have divergent selective effects. In all cases, the selective effects of a 

proportion of existing variants can change (from deleterious to beneficial, and vice versa) in the 

domesticated population. 

Materials and Methods 

Simulation of the Domestication Process with Selection and Demographic Changes 

A simulation analysis of the domestication process is developed using the forward-in-time 

simulator SLiM2 (Haller and Messer 2016). This tool is very versatile and allows the introduction of a 

number of variable scenarios and parameters. The general model for the domestication process is 
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developed in the SLiM script in the Zenodo database (10.5281/zenodo.7017885). Ten different 

scenarios of domestication are analyzed, and the parameters for each of the scenarios are shown in 

Table 3.1. All the options (flags) used for running the SLiM script are shown in a file in Zenodo 

(10.5281/zenodo.7017885). Briefly, the constructed model starts from a single panmictic population 

of Ne = 500 diploid individuals, with a genome containing 10 independent chromosomes, each with 

1000 loci of 1500 base pairs of length, and each locus having one-third (4-fold) neutral synonymous 

positions and two-thirds of (0-fold) selected nonsynonymous positions interspersed along the locus. 

Each locus is separated from each other at different recombinational distances, following a convex 

curve in which the loci located at the telomeres are at a longer recombinational distance between 

loci (2.5e-2), while the loci near centromeres are closer in the recombinational distance (2.5e-4). The 

recombination within loci is fixed to a rate of 2.5e-7 between positions. Given the high computational 

burden of simulating entire chromosomes using variable recombination values and a considerable 

number of coding sites (1,500,000 coding sites per chromosome and 10 independent chromosomes) 

and the large number of mutations obtained, we perform a single run for each of the 10 scenarios. 

Note that the higher recombination among loci aims to mimic their real genetic distance separation 

but severely speeds down the simulation.  

The demographic parameters for each scenario (Figure 3.2) are as follows: the initial blank 

population run for 10*Ne generations to reach mutation-selection-drift equilibrium, then splits into 

two equal populations (outgroup population and the wild population), and after 10*Ne generations, 

the wild population splits again into domestic and wild populations. Hereafter we refer to the Wild 

and Domestic populations. We aim to mimic a realistic animal domestication process, such as pig, 

where ancestral Ne estimates were around 10,000 (Groenen et al. 2012) and the domestication 

process occurred around 10,000 years ago (Zeder et al. 2006). The generation time was here assumed 

at 3 years per generation (Zhang et al. 2022). Two very different conditions for the bottleneck process 

are studied. The Domestic population suffers a bottleneck, reducing its population size temporarily 

to 50 diploid individuals, to recover again to Ne diploid individuals after the bottleneck. The 

bottleneck elapsed either 2Ne*0.016 generations for scenarios with a short bottleneck or 2Ne*0.161 

generations for long bottleneck scenarios. Moreover, the simulation finished either in 2Ne*0.15 

generations after the initiation of the short bottleneck process or 2Ne*0.005 generations of the long 

bottleneck. The selective effects produced by domestication are modelled by changing the fitness 

values of a proportion of the existing and new mutations in the domestic population (at the time of 

the split). 

Most new nonsynonymous mutations occurring in ancestral and Wild populations are under 

negative selection (97.5%), and only 2.5% of the mutations have positive fitness effects. Domestic 

populations show different proportions of (new and standing) beneficial and deleterious variation 

depending on the scenario (Table 3.1). The negative effects in all scenarios and populations follow a 

gamma distribution with a shape value of 0.2 and a mean of Sd = -10 (2Nesd when homozygote), while 

variants with positive effects follow an exponential distribution with a mean Sb = 1 or Sb = 10 (2Nesb 

when homozygote) depending on the scenario (Table 3.1). 

Types of Sites 
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The sites are initially divided into seven different types (named m1 to m7), being m1 neutral 

(synonymous) and m2 to m7 functional (nonsynonymous) sites having a different selective effect 

when mutated (see Table 3.2). Mutations at m5, m6 and m7 sites generate deleterious variants in the 

Wild population, and mutations at m2, m3 and m4 sites generate beneficial mutations in the Wild 

population. The selection coefficient of mutations generated at m2 (beneficial) or at m5 (deleterious) 

sites are invariant for the Wild and Domestic populations. However, the mutations at m3, m4, m6 and 

m7 sites will change their selective effect in the Domestic populations relative to the Wild populations. 

That is, the new selective effect is drawn from the corresponding DFE section (positive or negative), 

independently of their value in the wild population. Those can be understood as sites with divergent 

selective effects. The selection coefficient of a given beneficial mutation at m3 sites will remain 

beneficial in the Domestic population, but it will be different from the original beneficial effect at 

Wild. A mutation at m4 sites will change its selection coefficient from beneficial in the Wild to 

deleterious in the Domestic population. Equivalently, the selection coefficient of a deleterious 

mutation at m6 sites will remain negative in the Domestic population but it will be different from that 

found at Wild. A mutation at m7 sites will change its selection coefficient from deleterious in the Wild 

to beneficial in the Domestic population. This hard-coding of selective effects on different sites allows 

us to gain insight into the relative importance of each mutation type for the domestication process.  

Type of variants 

The variants are classified into total (all observed variants), exclusive (variants that are present 

in a single population) and shared (variants that are present in both the Wild and Domestic 

populations). Note that exclusive and shared variants are not exactly coincident with new and 

standing variants, that is, new variants are those mutations that appear after the split between Wild 

and Domestic populations while standing variants are variants that appeared before the 

Domestication split. However, a new variant happening in the Wild population can be shared if a 

migration event transferred this variant to the Domestic population, and a standing variant can 

become exclusive if this variant disappears in one of the populations (e.g., Lee and Coop 2017). The 

proportion of the different types of sites, polymorphisms and substitutions across scenarios can be 

found at Supplementary Figure A.0 and Table A.0. 

Simulating the Domestication Process only with Demographic Changes  

To disentangle selective from demographic effects in our comparative analysis of the SFS we 

used the ms (Hudson 2001) coalescent simulator to simulate samples according to demographic 

parameters under short and long bottleneck periods, with or without migration (Figure 3.2). The 

demographic parameters used here are the same as the ones used for simulating the different 

scenarios described above with SliM2. However, the parameters are re-scaled according to software 

requirements (that is, considering Ne, see the scripts at Zenodo). Here, the size of the simulated 

coding regions is 2000 bp. ms outputs are processed using an R script (10.5281/zenodo.7017885) to 

calculate the site frequency spectrum for total, shared, and exclusive variants, divergence, and the 

estimates of genetic diversity. 

Genetic Diversity Summary Statistics and the Fraction of Adaptive Substitutions (𝞪) 
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The estimates of genetic diversity, population differentiation and divergence, and the 

parametric inference of the DFE and demographic patterns are computed in a sample of 20 diploid 

individuals (n=40 haploid chromosomes) per population. The 1D and 2D SFS are polarized using the 

simulated outgroup population. The number of mutations occurring in each population and the 

variants that become fixed and remained polymorphic in one or both populations is recorded. The 

fraction of adaptive substitutions (𝛼) is estimated per population using the estimation methods 

proposed by Smith and Eyre-Walker (2002) and by the asymptotic McDonald & Kreitman test method 

(MKT, Messer and Petrov 2013), which corrects for the underestimation of 𝛼 due to slightly 

deleterious mutations. The asymptotic MKT is computed using the web service available at 

http://benhaller.com/messerlab/asymptoticMK.html. Here, the default cutoff interval of x [0.1, 0.9] 

is used. PolyDFE (Tataru and Bataillon 2019) 𝛼 estimates are computed using only polymorphisms 

counts to estimate the negative DFE (using model f1 from Table 3.5). Then, the expected number of 

non-adaptive nonsynonymous substitutions is contrasted with the observed number of 

nonsynonymous substitutions to estimate 𝛼. We also estimated 𝛼 not using substitutions, but these 

estimates turn out to be very noisy (data not shown). Since we know the selection coefficients of 

mutations before and after the domestication split, all these summary statistics are investigated for 

different types of sites. The estimates of variability per site using shared (and exclusive) variants are 

calculated considering the total of positions under study (e.g., synonymous or m1, and 

nonsynonymous or m2…). That is, the sum of shared plus exclusive variability is equal to the total 

variability for such type of positions. 

Distribution of fitness effects (DFE): Two complementary approaches 

polyDFE: 1D-SFS 

We use the polyDFEv2.0 framework (Tataru and Bataillon 2019) to estimate and compare the 

DFE across Wild-Domestic population pairs by means of likelihood ratio tests (LRTs). We use the R 

function compareModels (from https://github.com/paula-

tataru/polyDFE/blob/master/postprocessing.R) to compare pairs of models. The inference is 

performed only on the unfolded SFS data (divergence counts to the outgroup are not fitted), and 

unfolded SFS data are fitted using a DFE model comprising both deleterious (γ-distributed) and 

beneficial (exponentially distributed) mutations. Note that in polyDFE s is defined to be the selection 

coefficient on the heterozygote (like in dadi), but the scaled selection coefficient is defined as 4Nes. 

The DFE of each Wild-Domestic population pair is inferred using the 1D-SFS of each population. 

polyDFE assumes that new mutations in a genomic region arise as a Poisson process with an intensity 

that is proportional to the length of the region and the mutation rate per nucleotide (μ). We assume 

that μ remains constant across simulations (as it is the case). Both an ancestral SNP misidentification 

error (ε) and distortion parameters (ri) are estimated. However, we notice that the exclusion of ε does 

not affect the rest of estimated parameters because under the simulation conditions few sites are 

expected to be misidentified. The ri parameters are fitted independently for each frequency bin (from 

n = 1 to n = 39), and they are able to correct any distortion that affects equally the SFS of synonymous 

and nonsynonymous variants (such as, in principle, demography or linked selection). To obtain the 

sampling variance of parameter estimates and approximate confidence intervals, we use a bootstrap 
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approach. Bootstraps are generated by resampling the SNPs in chromosomal “chunks” or segments 

100 times using an ad hoc R script (zenodo link). These segments are non-overlapping and are 100,000 

bps long. Hence, we assume that SNPs are only independent across segments but not within 

segments. Model averaging provides a way to obtain honest estimates that account for model 

uncertainty. To produce the model average estimates of the full DFE we weight each competing 

model according to their AIC following the equation 6.1 shown in the polyDFEv2 tutorial. We use the 

R function getAICweights (from https://github.com/paula-

tataru/polyDFE/blob/master/postprocessing.R to do the model averaging R) to obtain the AIC values. 

 
Figure 3.1: Joint DFE models simulated and fit. A: Illustration of the joint DFE model used in the SLiM 

simulations, with mutation types illustrated. B: Illustration of the joint DFE model used in the dadi inferences, 

in which a fixed positive selection coefficient is assumed. 

dadi: 2D-SFS 

dadi (Gutenkunst et al. 2009) is employed to infer the joint distribution of fitness effects 

(Jerison et al. 2014; Ragsdale et al. 2016; Huang et al. 2021) and the demographic history of all 

simulated population pairs. Our new model for the joint DFE between the two populations is a 

mixture of multiple components designed to mimic the selected mutation types in the simulations 

(Table 3.2; Figure 3.1). The major exception is that beneficial mutations are modelled to have a single 

fixed selection coefficient, rather than arising from a distribution. Let p+w be the fraction of mutations 

that are positively selected in the Wild population, pc be the fraction of mutations that change 

selection coefficient in the Domestic population, and pc+ be the fraction of those mutations that 

become beneficial in the Domestic population. To model mutation types m2 and m3, a proportion p+w 

(1-pc) + p+w pc pc+ of mutations are assumed to have the same fixed positive selection coefficient in 

both populations. To model m4, a proportion p+w pc (1-pc+) are assumed to have a fixed positive 

selection coefficient in the Wild population and a gamma-distributed negative selection coefficient 

in the Domestic population. To model m5, a proportion (1-p+w)(1-pc) of mutations are assumed to 

have equal negative gamma-distributed selection coefficients in the two populations. To model m6, 

a proportion (1-p+w) pc (1-pc+) are assumed to have independent gamma-distributed selection 

coefficients in the two populations. To model m7, a proportion (1-p+w) pc pc+ mutations are assumed 

to have a gamma-distributed negative selection coefficient in the Wild population and a fixed positive 
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selection coefficient in the Domestic population. All gamma distributions are assumed to have the 

same shape and scale. This model is implemented as in dadi as the function 

dadi.DFE.Vourlaki_mixture.  For inference, demographic models are first fit to neutral mutations from 

each simulation, then the new proposed joint DFE model is fit to the selected mutations. 

Demographic models (Figure 3.2) are estimated by running 100 optimizations per simulated dataset. 

Then, the 2D-SFS for selected sites are precomputed conditional on the demography for 104 values 

of γ (2𝑁𝐴 ∗ 𝑠, a population scaled selection coefficient for the heterozygote where 𝑁𝐴is the ancestral 

population size), 102 negative and 2 positives. For the negative part of the DFE, γ values were 

logarithmically equally spaced between -2000 and -10-4. The expected DFE for selected sites can then 

be computed as a weighted sum over these cached spectra (Kim et al 2017). The DFE parameters 

shape (𝛼), scale (𝛽), p+w, pc, and pc+ are then estimated by maximizing the Poisson likelihood of the 

simulated data, with the nonsynonymous rate of mutation influx 𝜃 fixed to twice that inferred for 

neutral sites in the demographic history fit. For the DFE inference, optimization is repeated until the 

best three results are within 0.5 log-likelihood units. Ancestral state misidentification is not modelled, 

because under the simulation conditions few sites are expected to be misidentified. Uncertainties of 

DFE parameter inferences are calculated by conventional bootstrapping, holding the demographic 

model fixed and dividing the simulated data into non-overlapping regions of 100,000 basepairs. Note 

that this procedure does not propagate uncertainty in demographic parameters through to the DFE 

parameters.  

 

 

Figure 3.2: Diagram of the demographic model. New: Effective population size of the Wild population. Ne1d: 

Effective population size of the Domestic population at bottleneck. Ne2d: Effective population size of the 

Domestic population after a bottleneck. t1: Number of generations from the Wild-Outgroup split to the 

Domestic-Wild split. tbot: Number of generations in the bottleneck period. t2: Number of generations from the 

bottleneck to the present. t3: Number of generations from the end of the bottleneck to the present. m: Wild 

to Domestic migration rate from the bottleneck to the present (migration occurs along t2). 
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Table 3.1: Parameters for each analyzed scenario. 

Scenario Bottleneck Positive DFE1 

(Sb) 

Domestication Positive DFE2 

(Sb) 

m W->D 

t_bot (2Ne) exp mean 

(2Nes) 

% Change % 

Positive 

exp mean 

(2Nes) 

(2Nem) 

1 0.016 10 0 2.5 10 200 

2 0.016 1 5 25.0 1 200 

3 0.016 1 25 10.0 1 200 

4 0.016 1 0 2.5 1 0 

5 0.016 1 25 25.0 1 0 

6 0.016 10 25 2.5 10 0 

7 0.161 10 0 2.5 10 0 

8 0.161 1 5 2.5 1 0 

9 0.161 1 25 25.0 1 0 

10 0.161 10 5 10.0 10 0 

Ne: Ancestral effective population size, Sb: Population selection coefficient of new beneficial mutations 2Nes 

in homozygotes, %change: percentage of sites that change their selection coefficient in the Domestic 

population, %Positive: from the percentage of sites that change their selection coefficient (% change) this is 

the percentage that change toward positive values in the Domestic population. Exp mean: Mean value of the 

exponential distribution for new positive derived variants in the Domestic population. m W->D: migration rate 

of Wild to Domestic population. 

For the purpose of this work, dadi software is downloaded and installed according to the 

instructions provided at the following link: https://bitbucket.org/gutenkunstlab/dadi/src/master/. 

Since dadi operates as a module of Python, the Anaconda3 and Spyder (Python 3.7, Rossum and Drake 

2006; Anaconda 2016, Raybaut 2009) versions are used in this study. 

Results 

Studying the effect of domestication on the DFE of natural populations can be very 

challenging, especially if the available methods for inferring and comparing the DFE have not been 

benchmarked using exactly the same dataset. Within the scope of the present work, we conduct a 

simulation study using different combinations of parameters relevant to the domestication process. 

We aim to investigate the ability to detect the effect of domestication in the SFS and the full DFE of a 

domesticated population that is experiencing a large or small change in the number and selective 

effects of loci under domestication/selection after a short or a long bottleneck period, with or without 

migration. Hereafter, we refer to the Wild and Domestic populations. The Wild populations have a 

constant DFE and constant population size. Beneficial mutations arise at Wild populations at a 

relatively low percentage (2.5%) following an exponential distribution, the rest of mutations are 

drawn from a gamma distribution with shape 0.2 and mean Sd=-10 (where Sd=2Nes, s is the selection 

coefficient in the homozygote, and Ne = 500 is the ancestral effective population size, see Material 

and Methods: Simulating the Domestication Process). All mutations, beneficial and deleterious, are 

co-dominant. The Domestic population originates from the Wild population through a bottleneck and 
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a concomitant change of the selective effects in a proportion of nonsynonymous sites (Figure 3.2; 

Table 3.1).  

The change in selective effects impacts new mutations in the Domestic population and pre-

existing variants that originated before the domestication event. In other words, not only mutations 

that were deleterious (or beneficial) before the split can become beneficial (or deleterious) in the 

Domestic population, but even when the sign of the selection coefficient remains the same, the 

strength of selection can be modified. See Table 3.2 for all the combinations of changes in selective 

effects between Wild and Domestic populations. The simulated scenarios aim to cover a variety of 

possible changes in the genetic architecture (number of loci) and the strength of selection (selection 

coefficients) of the trait/s under domestication. Two selection coefficients for beneficial mutations 

are assumed: (i) strong, with a mean population-scaled selection coefficient of Sb=10 and (ii) weak, 

with Sb=1 when homozygote. Depending on the scenario, a selective change occurs only at a few (5%) 

or at a large proportion (25%) of positions in the Domestic population (Table 3.1, “%change” column). 

We leave three scenarios (scenario 1, 4 and 7) as negative controls; the DFE in the Domestic and Wild 

populations is the same. Among those positions showing an alteration of fitness effects, we also vary 

the proportion that is beneficial (Table 3.1, “%Positive” column). In all scenarios, the fraction of 

positions (and polymorphisms) with beneficial mutations in the Domestic population is equal or larger 

than in the Wild population and varies across scenarios (Table 3.1, see Supplementary Figure A.0 for 

the exact site composition of the Domestic populations in each scenario). Moreover, demographic 

changes affect only the Domestic population. Three demographic models are simulated: (i) short 

bottleneck with migration, (ii) short bottleneck without migration and (iii) long bottleneck without 

migration. There is only migration from the Wild to the Domestic populations. Table 3.2 shows the 

different types of mutations according to their fitness in Wild and Domestic populations. 

Table 3.2: Types of mutations in simulated scenarios. 

 Wild  Domestic 

m1 Neutral No change, remain Neutral 

m2 Beneficial No change, remain Beneficial 

m3 Beneficial  Change to a different Beneficial effect 

m4 Beneficial Change to Deleterious 

m5 Deleterious No change, remain Deleterious 

m6 Deleterious Change to a different Deleterious effect 

m7 Deleterious Change to Beneficial 

Descriptive Summary Statistics of the Simulated Populations 

Approximately 120K mutations are observed under each of the scenarios in the Wild 

population, with variable numbers, between 53 to 60%, of polymorphic variants (Supplementary 

Table A.1A), while the rest are fixed (relative to the outgroup). The comparison among scenarios 

shows that those with a higher positive DFE mean (Sb=10, scenarios 1, 6, 7 and 10) exhibit a slightly 

higher proportion of fixations (~54K vs 47K) than those scenarios having an Sb=1 (first column in Table 

3.3). This excess of fixed variants affects only nonsynonymous positions, while synonymous positions 

have the same number of fixations in all scenarios as expected (~22K, Supplementary Table A.1B) 
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(Birky and Walsh 1988). Nucleotide diversity within the Wild and Domestic populations and the 

divergence (from the simulated outgroup) at nonsynonymous versus synonymous positions are 

shown in Supplementary Table A.2. The lower divergence ratio (Dn/Ds) versus polymorphism ratio 

(Pn/Ps) suggests an excess of deleterious polymorphisms at nonsynonymous sites, as expected given 

the simulated DFE parameters. The number of exclusive variants in the Domestic populations and 

shared variants between Wild and Domestic populations across all scenarios is shown in Table 3.3, as 

well as the mutations that were initially shared but that eventually got fixed in one of the populations. 

In Domestic populations, we observe that the absolute number of exclusive polymorphic (SxD) and 

fixed (SfD) variants are more affected by the demographic bottleneck than by the strength of positive 

selection. As expected, the number of shared mutations (polymorphic in both populations, Ssh) is 

very high in scenarios with migration (scenarios 1-3) and very low in models with a long bottleneck 

and no migration (scenarios 7-10). The number of fixed variants in Wild which are still polymorphic 

in Domestic (SfWxD) is very low in scenarios with long bottlenecks without migration, while the 

number of fixed variants in Domestic which are still segregating in Wild (SfDxW) is the largest in 

scenarios with long bottlenecks with no migration. 

The Fraction of Beneficial Substitutions: Comparing 𝛼 across Scenarios and Types of Sites  

Table 3.3: Number of fixed, exclusive and shared variants observed in the Domestic populations 

for each scenario. 

Scenarios SfWD SfW SfD SxW SxD Ssh SfWxD SfDxW 

1 55446 0 0 14440 16539 51081 281 211 

2 47645 0 0 25526 35707 46442 813 344 

3 47193 0 0 28436 36185 44599 765 499 

4 47377 5 24 50933 42248 20691 900 2385 

5 47785 47 132 51511 40213 16641 783 3274 

6 54503 62 139 48257 38018 13427 884 2966 

7 54909 312 4267 56671 4351 4 9 9260 

8 47221 318 4552 61805 4228 3 9 10928 

9 47582 270 4362 61077 4362 4 17 11058 

10 55340 449 4301 56019 4293 1 16 9351 

SfWD: Fixed variant in the species in relation to the outgroup. SfW: Exclusive fixed variant in Wild. SfD: 

Exclusive fixed variant in Domestic. SxW: Exclusive polymorphism in Wild, SxD: Exclusive polymorphisms in 

Domestic. Ssh: Shared polymorphic variants. SfWxD: Fixed variants in Wild and polymorphic in Domestic. 

SfDxW: Fixed in Domestic and polymorphic in Wild. 

Next, we ought to know how the strength of positive selection and the number of loci under 

positive selection affect the fraction of beneficial nonsynonymous substitutions (𝛼) across 

scenarios (Table 3.4, see also Supplementary Table A.3 for the absolute number of fixations). At 

Wild, true 𝛼 values correlate with the simulated conditions in Table 1; higher 𝛼 values can be found 

in scenarios where strong selection is assumed (scenarios 1, 6, 7 and 10). In contrast, in Domestic 

(to observe the effects of domestication, 𝛼 is calculated counting variants that are fixed in the 

Domestic and are polymorphic or absent in Wild), the highest 𝛼 values are found in scenarios 1, 3, 
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5 and 9. These scenarios (except scenario 1) have a large fraction of deleterious sites in the Wild 

population that become beneficial in the Domestic population (m7 sites, Table 3.2). We also find 

that a substantial amount of the beneficial substitutions (25-60%) in those scenarios come 

specifically from m7 sites.  

In relation to understanding the contribution of exclusive variants (mostly new mutations 

that occurred after the domestication split) to current 𝛼 estimates, we observe that exclusive 

beneficial substitutions are contributing very modestly to the total number of beneficial 

substitutions for short bottleneck scenarios (Supplementary Table A.3). This suggests that adaptive 

amino acid substitutions after short bottlenecks come mostly from standing variation that were 

present before the domestication split. In contrast, for long bottleneck scenarios, the number of 

exclusive fixed beneficial mutations is higher at the Domestic population than the Wild population 

and around 5 times larger than short bottleneck scenarios without migration (Supplementary Table 

A.3). This is because in small populations the time to fixation decreases for all mutations, neutral, 

beneficial and deleterious. For long bottleneck scenarios, exclusive beneficial substitutions, or new 

mutations, are playing an important role and they contribute substantially to the realized 𝛼 at the 

end of the simulation.  

Table 3.4: True 𝛼 for Total, Shared and Exclusive mutations in relation to all nonsynonymous 

fixations. 

 All variants  Shared Variants  Exclusive variants  

 Wild  Domestic  Wild  Domestic   Wild  Domestic  

 αtotal
*   αtotal

† αm2+m3
§ αm7

¶  αtotal
*   αtotal

† αm7
¶  αtotal

*   αtotal
† αm7

¶ 

1 0.211   0.156 0.156 0.000   0.211   0.156 0.000  .   . . 

2 0.056  0.063 0.045 0.017  0.056  0.063 0.017  .  . . 

3 0.061  0.106 0.081 0.025  0.061  0.106 0.025  .  . . 

4 0.059  0.060 0.060 0.000  0.059  0.061 0.000  .  . . 

5 0.061  0.105 0.041 0.064  0.061  0.105 0.063  0.097  0.101 0.089 

6 0.213  0.089 0.078 0.011  0.213  0.089 0.011  0.175  0.085 0.000 

7 0.208  0.055 0.055 0.000  0.208  0.070 0.000  0.219  0.026 0.000 

8 0.060  0.040 0.039 0.001  0.060  0.047 0.001  0.112  0.026 0.001 

9 0.058  0.094 0.034 0.060  0.058  0.101 0.062  0.072  0.080 0.058 

10 0.212  0.055 0.050 0.005  0.212  0.072 0.005  0.254  0.023 0.004 
* fix (m2, m3, m4)/fix(Nsyn); † fix (m2, m3, m7)/fix(Nsyn); § fix(m2,m3)/fix(Nsyn); ¶ fix(m7)/fix(Nsyn), where 

numerator and denominator belong to Total, shared or exclusive.. s: scenario.. § The variants that are fixed 

at Domestic and at Wild are not counted in the Domestic α calculation, as they are considered occurred 

before the split of the populations.  

True 𝛼 vs. estimated 𝛼 

In order to investigate if current 𝛼 estimators can be used to extract meaningful conclusions 

from natural wild and domesticated populations, we estimate 𝛼 for Wild and Domestic populations 

using different methods (Figure 3.3 and Supplementary Tables A.4-A.6 for confidence intervals).  
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As expected, the standard MK test (Smith and Eyre-Walker 2002) underestimates 𝛼 due to the 

segregation of deleterious mutations at low frequency. The estimates are improved when the 

asymptotic MK test is used (Haller and Messer 2017), which corrects for the excess of deleterious 

mutations at low frequencies. Nonetheless, the asymptotic MK test is not very accurate in scenarios 

with long bottlenecks. The asymptotic MK test detects positive selection in the Wild population only 

for scenarios with strongly beneficial mutations (scenarios 1, 6, 7 and 10). In the Domestic 

populations, significantly positive 𝛼 values are estimated only for scenarios with short bottlenecks 

and strong positive selection (scenarios 1 and 6). Finally, we also estimate 𝛼 using the polyDFE 

framework (Tataru et al. 2017). polyDFE 𝛼 estimates tends to be less noisy and slightly more accurate 

than the asymptotic MK test. However, qualitatively speaking it suffers the same weaknesses than 

the asymptotic MK test under long bottlenecks. Our list of tested 𝛼 estimators have very limited 

power to detect the subtle differences in 𝛼 between these simulated population pairs.  

 
Figure 3.3: Comparison of true and inferred 𝛼 values across different methods. Asymptotic: MKTa (Messer and 

Petrov 2013), MKT: 𝛼 calculation using Smith and Eyre-Walker (2002). polyDFE: 𝛼 inference using the algorithm 

from Tataru et al. (2017). True 𝛼 is depicted with a solid black line. Confidence intervals at 95% are obtained 

by bootstrap. 

Comparison of the Allele Frequency Distributions across Populations and Scenarios 

Figure 3.4 shows the ratio (in log2 scale) between the observed derived allele frequency and 

the expected derived allele frequency, or unfolded site frequency spectrum (uSFS), under the same 

demographic model but without selection (obtained by coalescence simulation with ms, Hudson 

2001). In the absence of (direct or indirect) selection, the observed derived allele frequency and the 

expected derived allele frequency should be the same and the log2 ratio equal to zero. The small and 

uniform log2 ratio for synonymous mutations in Wild populations suggests that there is good 

agreement between the simulated data and our naive neutral expectation in the absence of selection. 

Thus, we do not find evidence of linked selection affecting the synonymous SFS in Wild populations. 

In contrast, the nonsynonymous derived allele frequency distribution in Wild populations shows an 
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excess of low-frequency variants due to the direct effect of negative selection on those mutations 

and exhibits a considerable lack of intermediate- and high-frequency variants. However, in scenarios 

with strong positive selection (scenarios 1, 6, 7 and 10), beneficial nonsynonymous variants leave a 

signal in the SFS. Beneficial variants generate an increase of high-frequency variants that resembles 

(or matches) the neutral expectation at nonsynonymous positions (see Supplementary Figures A.4-

A.13 under these models).  

The Domestic populations have suffered a shift in the selection coefficients at a sizeable 

number of mutations (both shared and exclusive) together with a demographic bottleneck, with or 

without migration from the Wild population. For synonymous variants, we show that the observed 

allele frequency distribution seems to be disturbed by indirect selection on nearby nonsynonymous 

mutations in most scenarios (Figure 3.4). In scenarios with long bottlenecks (scenarios 7-10), only the 

lowest and highest frequency bin are in excess, and all other frequency bins show a remarkable lack 

of synonymous variants. We find that the allele frequency distribution for nonsynonymous mutations 

in Domestic populations under long bottlenecks is very similar to those found for synonymous 

variants but very different to the expected in the absence of selection under a purely demographic 

model (Figure 3.4 and Supplementary Figure A.1). Thus, under long bottlenecks allele frequency 

distributions seem deeply affected by (direct and indirect) selection. Similarly, synonymous variants 

also seem to be under indirect selection at scenarios with short bottlenecks having a large percentage 

(25%) of nonsynonymous mutations shifting their selection coefficients (scenarios 3, 5 and 6). 

Synonymous variants show an excess of singletons, a lack of low- to intermediate-frequency variants, 

and, again, a remarkable excess of mutations at high frequency. This result suggests that synonymous 

(and other non-beneficial nonsynonymous) mutations might be hitch-hiking with beneficial 

nonsynonymous mutations after the domestication split (Supplementary Figures A.4-A.13) (Hartfield 

and Otto 2011). 

 Interestingly, scenarios 3, 5, and 6 also show an increase of nonsynonymous variants at high 

frequency but not as strong as the one shown for synonymous variants. We show that for scenarios 

3, 5 and 6, the allele frequency distribution for nonsynonymous mutations occurring at sites m2, m3 

and m7 (which are beneficial at the Domestic population) resemble that described for synonymous 

variants. However, this pattern is much weaker for deleterious nonsynonymous mutations occurring 

at deleterious sites (m5 and m6 sites, Supplementary Figures A.4-A.13). Finally, we analyze the uSFS 

for shared and exclusive variants. Here our aim is to determine the contribution of shared and 

exclusive variants to the observed uSFS and the process of domestication, particularly for selectively 

neutral synonymous variants that later will be important to correct (or infer) the demographic 

changes suffered by nonsynonymous variants. Again, we compare the uSFS of synonymous shared 

and exclusive variants in relation to the expected neutral shared and exclusive uSFS under the same 

demographic model in the absence of selection (Supplementary Figures A.14-A.33 for all scenarios 

and Supplementary Figures A.2-A.3 for the ratio of the demographic neutral pattern versus the 

Wright-Fisher Standard Neutral Model). In general, for short bottleneck scenarios (scenarios 1-6) we 

observe a modest impact of domestication on shared synonymous variants (Supplementary Figures 

A.14-A.23), except in scenario 3. 
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Figure 3.4: Log2 ratio of the simulated SFS (with selection) versus the expected SFS (in the absence of selection) 

but under the same demographic model. 



 78 

There is an absence of intermediate frequency shared synonymous variants and an excess of 

low and high frequency shared synonymous variants in scenarios 3 relative to the expected in the 

absence of (linked) selection. Indeed, in scenario 3, the uSFS of shared synonymous variants is 

markedly disturbed, and surprisingly, all types of shared mutations, including deleterious mutations 

(m5, m6, m4 in Domestic), exhibit this excess of high frequency variants that is not explained by 

demography alone (Supplementary Figure A.16). The high proportion of sites that change their 

selective effect together with migration from Wild to Domestic populations may explain this excess 

of shared polymorphisms at high frequency in scenario 3. Other scenarios which do not share this 

parameter combination do not show this pattern. In scenarios with long bottlenecks (scenarios 7-10) 

the SFS of shared synonymous variants in Domestic populations is massively disturbed. There is a 

large excess of shared singletons and a large absence of shared variants at the rest of frequency 

classes. In relation to exclusive mutations (Supplementary Figures A.24-A.33), in scenarios with 

migration, short bottlenecks and a change in the DFE (scenario 2 and 3), there is an excess of exclusive 

synonymous variants at all frequencies (except singletons) suggesting that the contribution of 

exclusive variants to neutral diversity levels can be boosted in the presence of migration from the 

Wild population. For scenarios with short bottlenecks without migration (scenarios 4-6) there is a lack 

of exclusive synonymous variants in most frequency bins except for very low and high frequency bins 

where there is an excess. In scenarios with long bottlenecks (scenarios 7-10) the SFS of exclusive 

synonymous variants in Domestic populations is again massively disturbed. There is a large excess of 

almost fix mutations and a large absence of exclusive variants at the rest of frequency classes.  

In conclusion, our hypothetical domestication processes (in the absence of free 

recombination) tend to affect more exclusive synonymous variants than shared synonymous variants. 

In the absence of migration, domestication tends to deplete the SFS of exclusive neutral mutations 

(and under long bottlenecks this depletion also affects shared synonymous variants). In the presence 

of migration, exclusive neutral variants become more abundant than expected in the absence of 

selection (and if the change in the DFE is big, also shared synonymous variants at high frequency 

become more abundant than expected). 

Estimation of the DFE: detecting differences in DFE between Wild and Domestic populations 

In the previous section we showed the pervasive impact of linked selection on synonymous 

polymorphisms. In the Domestic populations, the neutral SFS cannot be explained by the underlying 

true demography alone. The two methods we employ to estimate the DFE of nonsynonymous 

mutations either are agnostic to the underlying demography and just aim to correct for any distorter 

that affects equally the synonymous and nonsynonymous SFSs (polyDFE, Tataru and Bataillon 2019), 

or aim to first estimate the underlying demography using the synonymous SFS and then use that 

inferred demography to estimate the DFE parameters (dadi, Gutenkunst et al. 2009). Hence, the 

question is to what extent the nuisance r parameters from polyDFE or the inferred demographic 

model from dadi will be enough to recover the true DFE parameters in our simulations. In this work 

we are not particularly interested in recovering the true demography (given the pervasiveness of 

linked selection), but in recovering the true changes in the DFE. 

polyDFE: 1D-SFS 
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We investigate whether polyDFE is able to capture differences in the DFE of Domestic and 

Wild populations across 10 possible domestication scenarios (Table 3.1). We run five nested models 

(Table 3.5) and compare them by means of likelihood ratio tests (LRTs) (Table 3.6). 

 

Table 3.5: List of nested polyDFE models and (co)estimated parameters. Independently estimated 

parameters for the domesticated and wild population (Var). Jointly estimated parameters for the 

Domestic and Wild populations (Fix). 

Model 

name 

Deleterious DFE Beneficial DFE Population 

mutation 

rate 

Nuisance 

parameters 

Polarization 

parameter 

β Sd pb Sb θ ri ε 

f1 Var Var None None Var Var Var 

f10 Fix Var None None Var Var Var 

f2 Var Var Var Var Var Var Var 

f20 Fix Var Var Var Var Var Var 

f30 Fix Var Fix Fix Var Var Var 

Under an agnostic approach (not assuming any a priori information about our datasets), LRTs 

between a number of nested models allow us to address several relevant questions related to the 

DFE. First, we compare whether the estimated shape of the deleterious DFE is the same in both 

populations and whether the inclusion of beneficial mutations affects the estimation of the shape 

parameter. When comparing models that do not consider beneficial mutations (models f1 versus f10, 

first row at Table 3.6), the model with a different shape for Domestic and Wild populations is accepted 

for scenarios 1, 3, 6 and 10. This means that an artificial change in the shape of the deleterious DFE 

between Domestic and Wild populations is invoked. Scenarios 1, 6 and 10 include strong positive 

selection (Sb = 10), and a change in fitness effects occurs at 0%, 25%, and 5% of sites, in each scenario, 

respectively. Scenario 3 involves weak positive selection (Sb = 1), but many sites change their fitness 

effects (25%). In contrast, when comparing models that consider beneficial mutations (models f2 vs 

f20, third row at Table 3.6), a shared shape of the deleterious DFE is preferred in all scenarios (this is 

expected given the simulation parameters). This result suggests that not accounting for beneficial 

mutations can generate an artefactual change in the shape of the deleterious DFE between 

populations (as first noticed by Tataru et al. 2017). Thus, we find that when assuming no beneficial 

mutations the wrong shape is estimated (f1 vs f10) in the domesticated population when positive 

selection is strong (scenarios 1, 6, and 10) or when a large fraction of mutations become weakly 

beneficial (scenario 3). 

Second, we find that including the positive DFE is only statistically significant for scenarios 

with strong positive selection (scenarios 1, 6 and 10) (Table 3.6 second and fourth row). Note, 

however, that all of our simulations include beneficial mutations. There is one scenario with strong 

positive selection that remains undetected, scenario 7. The distinct characteristic of this scenario is 

that although the domesticated population has undergone a long bottleneck, as in scenario 10, the 

fitness effects of mutations do not change between populations. Hence, our ability to detect 

beneficial mutations with polyDFE relies on the strength of positive selection but also on the 
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proportion of sites that change their fitness effects and the duration of the domestication bottleneck. 

It is also worth mentioning that the power to detect beneficial mutations in the unfolded SFS 

increases when the shape of the deleterious DFE is jointly estimated (see the decrease in the p-value 

for scenarios 1, 6 and 10 for the comparisons of models f1 vs. f2 and models f10 vs. f20). 

Table 3.6: Likelihood ratio test p-value for each scenario. Significant and marginally significant 

comparisons (< 0.1) are highlighted in bold. 

Models 
Domestication Scenarios 

1 2 3 4 5 6 7 8 9 10 

f1 vs. f10 

0.007 0.533 0.018 0.167 0.239 0.000 0.592 0.308 0.252 0.008 
(constant vs. variable 

shape in deleterious DFE 

models) 

f1 vs. f2 

0.095 0.990 0.996 0.649 0.969 0.007 0.816 0.902 0.846 0.147 
(variable shape while 

comparing deleterious 

DFE vs. full DFE) 

f2 vs. f20 

0.442 0.539 0.380 0.423 0.351 0.317 0.321 0.550 0.398 0.137 
(constant vs. variable 

shape under full DFE 

model) 

f10 vs. f20 

0.002 0.987 0.246 0.334 0.900 0.000 0.844 0.730 0.775 0.030 
(constant shape while 

comparing deleterious 

DFE vs. full DFE) 

f30 vs. f20 

0.597 0.919 0.064 0.342 0.826 0.011 0.823 0.846 0.466 0.658 
(constant shape while 

comparing constant 

positive DFE vs. variable 

positive DFE) 

Finally, we wonder whether the differences in the beneficial DFE between Domestic and Wild 

populations are detectable or not. Interestingly, when comparing models f20 and f30 (last row at 

Table 3.6), our ability to detect differences in the beneficial DFE between Domestic and Wild 

populations is very limited in most scenarios. With the exception of scenario 6, where there is both a 

large proportion of mutations that show a change in fitness (25%) and strong positive selection (Sb = 

10). The short domestication bottleneck in scenario 6 might also increase the power to detect this 

change in the positive DFE.  

DFE parameter estimates with polyDFE 
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Figure 3.5: Sampling distributions of estimated DFE parameters from polyDFE obtained by 100 

bootstrap replicates. Dashed vertical lines show the true simulated values of the parameters and the 

coloured vertical lines show the median inferred value across replicates. For sb we show two dashed 

lines; one in grey when Sb = 10, and the other in black when Sb = 1. We show the true pb found in Wild 

populations, which is the lower bound of what can be found in Domestic populations. To obtain sd 

and sb from Sd and Sb values we use π at synonymous sites and the true simulated mutation rate (1e-

6) to get the realized Ne after the bottleneck and/or the action of linked selection. Note that in 

polyDFE s is defined to be the selection coefficient on the heterozygote (like in dadi), but the scaled 

selection coefficient is defined as 4Nes. 

Since the true model generating the data in natural wild and domesticated populations is 

unknown, we first extract the AIC of each model and then compute the AIC-weighted parameters for 

all models (Supplementary Table A.7) (Tataru and Bataillon 2019; Castellano et al. 2019). Figure 3.5 

shows the distribution of parameters estimated by polyDFE using bootstrap analysis. The mean 

deleterious coefficient (sd) of the DFE is accurately estimated for both populations and all scenarios, 

except when there are long bottlenecks in Domestic populations, where the mean sd is generally 

underestimated (except for scenario 9 which is slightly overestimated). Similarly, the shape of the 

negative DFE is generally well estimated except in scenario 6 and long-bottleneck scenarios, where 

the shape is overestimated. The estimation of the parameters of the positive DFE is more challenging, 

and for all scenarios, the estimates include high variance and, thus, a wide range of possible values.    
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Moreover, in our particular case the true probability that a new mutation is beneficial (pb) in 

Domestic populations is not easily defined because there are beneficial mutations in Domestic 

populations that were already segregating as effectively neutral or deleterious mutations just before 

the start of the domestication process. This violates the implicit model assumption of constant 

selection coefficients along generations. Plus, in some scenarios there is migration from the Wild to 

the Domestic population that will be re-introducing beneficial alleles. Supplementary Figure A.0 

shows the true composition of beneficial sites and segregating sites (m2, m3 and m7) after the 

domestication split which we believe is the best proxy of the current pb in Domestic populations. 

However, for Wild populations pb is well defined (due to the constant population size and DFE, and 

the lack of migration) but the estimates, as expected, tend to be noisy with very wide confidence 

intervals. 

 
Figure 3.6: Discretized full DFE inferred by polyDFE, showing the Wild and Domestic populations 

under each scenario. 

Figure 3.6 shows the inferred distribution of the AIC weighted DFE. Discrete DFE ranges tend 

to be less noisy than individual DFE parameters (Keightley and Eyre-Walker 2007; Eyre-Walker and 

Keightley 2009). The discrete ranges for the deleterious DFE show an excellent agreement between 

the inferred and the simulated values especially for the fraction of effectively neutral mutations and 

for scenarios with short bottlenecks (scenarios 1-6), while for scenarios with long bottlenecks 

(scenarios 7-10) the inferred fraction of weakly and strongly deleterious mutations becomes noisy 

and sometimes inaccurate. The confidence intervals for the number of effectively beneficial 

mutations seem to capture the real values indicating a lack of power and not a bias. However, there 
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are slight underestimations for scenarios 3 for both populations, scenario 5 for the Domestic 

population and scenario 7 and 9 for Wild populations.   

dadi: 2D-SFS 

Demography inference  

A joint DFE between two diverged populations can be inferred with the dadi software using 

the 2D-SFS (Huang et al. 2021). This provides us with a potential advantage relative to the 1D-SFS 

approach because the joint DFE can quantify the fraction of mutations with divergent selective effects 

even when the underlying parameters describing the full DFE remain the same between populations. 

In contrast to polyDFE, dadi estimates first the demographic parameters to then estimate the DFE. 

The parameters of a demographic scenario describing two recent divergent populations are 

estimated by fitting a demographic model to the 2D-SFS of synonymous sites (Huang et al. 2021). 

Those parameters are estimated by maximizing a Poisson composite likelihood and contrasted with 

the corresponding expected SFS. Supplementary Tables A.8-A.9 show the estimated demographic 

parameters and their confidence intervals respectively. Here we describe the inferred parameters 

one by one: 

• The population size of the wild (New) before the domestication split is slightly but significantly 
underestimated in all scenarios, except for scenarios 1, 4 and 8 where it is well-recovered.  

• The time of the domestication split (t1) is in general well-recovered but in scenario 2 is slightly 
underestimated and in scenario 3 is slightly overestimated.  

• The population size of the Domestic populations under the bottleneck (Ne1d) is overestimated 
only for scenario 2 and significantly underestimated for scenarios with long bottlenecks 
(scenarios 7-10). For the rest of scenarios Ne1d is well-recovered.  

• The duration of the bottleneck (tbot) is well-recovered in all scenarios except in scenarios with 
migration. In scenario 1 (no change in the DFE) the duration of the bottleneck is significantly 
underestimated and very close to zero, this is expected given the high migration rate. In the 
scenarios with migration and a change in the DFE (scenarios 2 and 3) the duration of the 
bottleneck is substantially overestimated and in fact they are similar to the long bottleneck 
scenarios.  

• The estimates of the population size after the bottleneck in Domestic populations (Ne2d) are 
noisier and they are significantly overestimated in scenarios 2, 3 and 10, and significantly 
underestimated in scenarios 5 and 6.  

• The time of the population size recovery (t3), or the time since the end of the bottleneck, is 
well-recovered except in scenarios with migration and a change in the DFE. For scenarios 2 
and 3 t3 is significantly underestimated. The recovery time seems again affected by the 
migration parameter and the change in the DFE.  

• Finally, for scenarios without migration from the Wild to the Domestic population the 
migration parameter (m) is consistently low and in all cases not significantly different from 0. 
In scenarios with migration (scenarios 1-3), there seems to be an interaction between the 
change in the DFE and the migration parameter. Scenario 1 which is a negative control (there 
is no change in the DFE between Domestic and Wild populations) the migration rate is 
significantly underestimated and half of its true value. However, in scenarios 2 and 3 which 
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show a change of fitness effects in 5% and 25% of the sites, respectively, there is a large 
underestimation of the migration rate (13X lower than expected).   
The previous comparison between the expected number of exclusive mutations in the 

absence of selection and the observed number of exclusive mutations in the presence of (indirect) 

selection showed a substantial excess of exclusive variants in scenarios 2 and 3. This emergent excess 

of exclusive variants might be “interpreted” by dadi as a low migration rate and a long but very mild 

bottleneck. Note that Ne estimates from levels of neutral diversity in these two scenarios are larger 

than Ne estimates from their paired Wild populations (Supplementary Table A.7). These results 

suggest that the linkage effects produced in the domestication process can bias some aspects of the 

inferred demographic model, especially in the presence of migration and when many sites change 

their fitness effect in the domesticated population.  

 
Figure 3.7: Estimation of demographic parameters from synonymous mutations under each scenario. Each 

plot includes four subfigures or panels. The one entitled “data” (top left panels) represents the two-

dimensional simulated SFS for both populations, while the right one labeled “model” (top right panels) depicts 

the expected 2D-SFS for the inferred dadi model. The two plots at the bottom illustrate the residual 

performance (bottom left panels) and the residual histogram (bottom right panels) of the model. 

 

Figure 3.7 reports the validation plots of the fitted model using the dadi framework. The 

narrow ranges of the distribution in the residual histogram plot (Figure 3.7, bottom right panels) 

reveals a good fit of the model under each distinct scenario (even in the absence of shared 

polymorphisms as in long bottleneck scenarios 7-10). Note that although scenarios 2 and 3 have the 

same demographic model than scenario 1, the 2D-SFS fills almost all the cell combinations (Figure 
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3.7, top left panels), while in scenario 1 (no change in the DFE) the 2D-SFS is concentrated in the 

diagonal. This spread of the synonymous 2D-SFS in scenarios 2 and 3 must be driven by the change in 

the DFE and selection at linked sites. This spread of the 2D-SFS is also observed in scenarios with short 

bottlenecks but without migration (scenarios 4-6). Scenarios with long bottlenecks show no shared 

polymorphisms (scenarios 7-10) and all observed 2D-SFS cell combinations are in the margins. 

Particularly revealing for scenarios 2 and 3 are the model residuals of each 2D-SFS cell combination 

(Figure 3.7, bottom left panels). Here model residuals are computed as the expected counts derived 

from the model minus the observed counts in the (simulated) data. Cell combinations with more 

observed variants than expected are in blue, while cell combinations with less observed variants than 

expected are in red. In scenarios 2 and 3 there are less observed counts in the diagonal of the 2D-SFS 

than those expected by the model. In contrast, particularly evident for scenario 3, there are two blue 

coloured vertical “stripes”.  

Figure 3.8: Estimation of the DFE from nonsynonymous mutations under each scenario. Each plot includes four 

subfigures or panels. The one entitled “data” (top left panels) represents the two-dimensional simulated SFS 

for both populations, while the right one labeled “model” (top right panels) depicts the expected 2D-SFS. The 

two plots at the bottom illustrate the residual performance (bottom left panels) and the residual histogram 

(bottom right panels) of the model. 

The left stripe indicates an excess of observed mutations at low frequency in the Domestic 

population that can be at any frequency in the Wild population (this could correspond to synonymous 

variants in linkage with nonsynonymous mutations that were effectively neutral in Wild but that 

became more deleterious in Domestic). The second stripe indicate an excess of observed mutations 

at high frequency in the Domestic population that can be at any frequency in the Wild population 
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(this could correspond to synonymous variants in linkage with nonsynonymous mutations that were 

effectively neutral in Wild but that became more beneficial in Domestic). In the rest of scenarios, the 

2D-SFS model residuals show a random distribution of colours across cell combinations which is 

indicative of the absence of systematic biases.  
 

 
Figure 3.9: Confidence intervals and values for the inferred parameters versus the real ones (vertical dashed 

lines and crosses) for each population and scenario for sd (A), the shape parameter b (B) and the DFE 

parameters describing divergent selective effects (C). To obtain sd from Sd values we use π at synonymous sites 

in the inferred ancestral population size and the true simulated mutation rate (1e-6) to get the realized Ne after 

the bottleneck and/or the action of linked selection. Note that in dadi s is defined to be the selection coefficient 

on the heterozygote (like in polyDFE), but the scaled selection coefficient is defined as 2Nes.  
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DFE parameter estimates with ∂a∂i 

The estimated demographic parameters above are used for the inference of the DFE of 

nonsynonymous mutations using the 2D-SFS. Figure 3.8 shows a comparison between the 2D-SFS 

inferred by the most likely model vs. the observed 2D-SFS and the residuals of the model for each 2D-

SFS cell combination. The residual histograms for nonsynonymous mutations (Figure 3.8, bottom right 

panels) show a nicely distributed residuals with a mean around zero for all scenarios with the 

exception of few very negative outliers in scenarios with long bottlenecks. We observe again the blue 

coloured vertical “stripes” pattern found before for synonymous mutations at scenario 3. The left 

stripe could be generated by nonsynonymous mutations that have become more deleterious in the 

Domestic population (mutations at m4 sites plus some mutations at m6 sites). While the right stripe 

can be interpreted as nonsynonymous mutations that have become more beneficial in the Domestic 

populations (mutations at m7 sites plus some mutations at m3 sites). Both of these stripes are likely 

driven by direct selection on selectively divergent mutations falling at m3, m4, m6 and m7 sites, and 

also by other nonsynonymous mutations that might have a constant selection coefficient but turn 

out to be in linkage with those selectively divergent mutations. 

Table 3.7: Comparing models with and without positive selection from dadi likelihoods. 

AIC0:  Akaike Information Criteria (2k-2lnLS0) for a model 0, considering Sb = 0. k=5 after fixing demographic 

parameters. 

AIC1:  Akaike Information Criteria (2k-2lnLS1) for a model 1, considering Sb = 1. k=5 after fixing demographic 

parameters. 

AIC10: Akaike Information Criteria (2k-2lnLS10) for a model 10, considering Sb =10. k=5 after fixing demographic 

parameters. 

Figure 3.9 and Supplementary Tables A.10-A.11 show the inferred DFE parameters under the 

new joint DFE model. The inferred strength of negative selection (sd) is overestimated between 1.5X 

to 3X times. For the shape parameter (b) there is also a general overestimation of this parameter, 

especially in scenario 3. Regarding the inference of the strength of positive selection note that with 

dadi the positive DFE is precomputed with a unique point mass distribution of positive selection, or 

no beneficial mutations at all. Under the polyDFE framework beneficial mutations are drawn from an 

exponential distribution mimicking our forward simulations. However, with dadi we assume either 

Scenario True Sb AIC0 AIC1 AIC10 Lower AIC Model 

1 10 5514.9 5360.1 5325.4 Sb = 10 

2 1 8277.9 8221.5 8208.1 Sb = 10 

3 1 13578 13456 13517 Sb = 1 

4 1 8866.7 8810.3 8833.6 Sb = 1 

5 1 8540.8 8520.1 8475.3 Sb = 10 

6 10 8513.0 8368.4 8264.4 Sb = 10 

7 10 1125.8 1076.4 1073.7 Sb = 10 

8 1 1081.9 1053.1 1065.5 Sb = 1 

9 1 1192.5 1183.1 1182.9 Sb = 10 

10 10 1236.4 1125.2 1121.5 Sb = 10 
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no beneficial mutations or a given proportion of beneficial mutations with Sb = 1 or Sb = 10 when 

homozygote. Model comparison shows that dadi can distinguish between weak and strong positive 

selection in most cases (Table 3.7). However, for scenarios 2, 5 and 9 which show a high proportion 

of positive change on Domestic populations (25%), the likelihood is somewhat better considering a 

strongest selection coefficient (Sb = 10).  

As we shown before with polyDFE, the estimation of the positive DFE and its changes between 

populations is very challenging mainly because beneficial mutations tend to be rare, and the true pb 

in Domestic populations is not well defined due to the action of positive selection on standing 

variation and the re-introduction of beneficial mutations due to migration. Two violations that we 

believe might be commonplace in nature. This is the reason why we propose a new joint DFE model 

which might be able to tackle some of this complexity (Figure 3.1 and Materials and Methods for a 

full description). Under this new joint DFE model, we can measure the fraction of mutations that 

change their selection coefficient (pc). This fraction pc is accurately estimated in scenarios with shared 

polymorphisms (scenarios 2, 3, 5 & 6), and it is not statistically different from zero for scenarios 1, 4, 

and all the long bottleneck scenarios (scenarios from 7 to 10). Scenarios 1, 4 and 7 are negative 

controls without a change in the DFE between Wild and Domestic populations. However, scenarios 

8, 9 and 10 do suffer a change in the DFE but remain undetected very likely due to the lack of shared 

polymorphisms. Even in long bottleneck scenarios where pc seems to be poorly estimated, confidence 

intervals seem to capture the real values indicating a lack of power and not a bias. The estimated 

proportion of positive mutations in Wild populations (p+w) is very close to the true value in scenarios 

where strong positive selection is driven these mutations (scenarios 1, 6, 7 and 10). In scenarios with 

weak positive selection, p+w tends to be overestimated, particularly in scenarios with migration and a 

change in the DFE (scenarios 2 and 3). Note that in Figure 3.9 is illustrated the proportion of 

nonsynonymous mutations that change their selection coefficient toward positive values in the 

Domestic populations as the product of pc * pc+. Unfortunately, this product, which aims to estimate 

the fraction of m7 sites in our simulations, is always not significantly different from zero. Overall, the 

new joint DFE model seems able to capture the fraction of mutations that change their selection 

coefficient in the presence of shared polymorphisms, but it is not able to discern how many 

deleterious mutations have become beneficial. We believe pc could be used in future studies to 

quantify the number of mutations with divergent fitness effects between natural wild and 

domesticated populations.  

Discussion  

The literature about the genomic basis of domestication (e.g., Ross-Ibarra et al. 2007, Flood 

and Hancock 2017; Moyers et al. 2018; Flori et al. 2019; Frantz et al. 2020; Leno-Colorado et al. 2020) 

revolves around three main questions: (1) Is domestication driven by few loci of large effect or by 

many loci of weak effect (polygenic adaptation)? (2) Is domestication dominated by standing variation 

(variation that was present before the start of domestication) or by new exclusive mutations in the 

domesticated populations? (3) Does domestication have a genetic cost due to the bottleneck and 

inbreeding (reviewed by Moyers et al. 2018)? In this work, we ask an intimately related question: Can 

we investigate domestication as a change in the full distribution of fitness effects comparing the SFS 

of wild and domesticated populations? This question is motivated by empirical results. For example, 
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a small number of fixed functional variants have been detected in domestic pig populations in relation 

to wild populations (Leno-Colorado et al. 2020 but see Groenen et al. 2012; Rubin et al. 2010). 

Although frequent introgression has been described between pig populations (Frantz et al. 2015; 

Ramírez et al. 2015), there are clear phenotypic features that distinguish wild from domestic 

populations. The absence of major genetic signals to explain most traits under domestication makes 

us think that polygenic adaptation might be a plausible hypothesis. We have simulated potential 

domestication scenarios involving both a population bottleneck and a change in the selection 

coefficients in new and standing variation in the domesticated population. Thus, in our simulations, 

we consider that a hypothetical environmental change (i.e., domestication), makes a number of 

deleterious mutations (and effectively neutral mutations) in the wild populations to become 

beneficial in the domesticated populations. Also, beneficial mutations in the wild populations can 

become deleterious or effectively neutral in the domesticated populations. However, since the rate 

of new beneficial mutations in the wild populations is relatively small (2.5% of all new mutations), 

then beneficial variants that become deleterious are a minority of the minority and we expect a 

second-order effect of those mutations in our simulations. We also investigate the impact of 

migration from the wild to the domesticated population on our ability to measure a change in the full 

distribution of fitness effects. 

First, we start describing the fraction of adaptive substitutions (𝛼) across scenarios and 

populations. We wonder which is the contribution of new beneficial mutations and mutations that 

were already segregating at the beginning of domestication to 𝛼. We are also interested in 

quantifying the contribution of deleterious polymorphisms in the wild populations that become 

beneficial in the domesticated populations. Most contemporary adaptive fixations came from 

variation that predates the initiation of domestication. In other words, we find that in all scenarios, 

the largest proportion of adaptive substitutions came from polymorphisms that were already 

beneficial before the domestication split. However, in some scenarios, deleterious polymorphisms 

that became beneficial in domesticated populations can also explain a large fraction of all adaptive 

substitutions (Table 3.4, Supplementary Table A.3). Interestingly, we find that the contribution of new 

beneficial variants (exclusive of the domesticated populations) on 𝛼 depends on the duration of the 

bottleneck. Most beneficial mutations that have occurred after the domestication split, and only in 

the domesticated population, have not reached fixation in scenarios with short bottlenecks, and 

hence their exclusion from the computation of 𝛼 affects very little the realized 𝛼 values. In contrast, 

new exclusive beneficial mutations in scenarios with long bottlenecks contribute substantially to the 

current fraction of adaptive substitutions in domesticated populations. We hypothesize this is due to 

the reduction in the time to fixation expected in small populations. It is also important to note that 𝛼 

in domesticated populations is not much larger than in wild populations even when around 5%-10% 

of the mutations are beneficial in the domesticated population (as in scenarios 3, 5 and 9, see 

Supplementary Figure A.0) compared to the 2.5% in the wild populations. In fact, in many scenarios, 

𝛼 in domesticated populations can be smaller than in wild populations. These modest 𝛼 values in 

domesticated populations may be due to the bottleneck associated with the domestication process, 

but also to the short time since the initiation of domestication. The small effective population size, 

on one hand, reduces the efficacy of positive and negative selection (and 𝛼) in domesticated 

populations but on the other hand, accelerates the fixation of mutations (neutral, deleterious, and 
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beneficial). Unfortunately, we find that our list of 𝛼 estimators (MKT, MKTa, polyDFE), when applied 

to our simulations, have little power to detect statistically different 𝛼 values between populations. 

We do not recommend extracting strong conclusions from applying 𝛼 estimators alone to natural 

wild and domesticated populations.  

Second, we study the impact of direct and indirect selection and demography on the 1D-SFS. 

We compare the 1D-SFS of synonymous (neutral) and nonsynonymous (selected) variants in our 

simulated scenarios against the expected 1D-SFS for (only) neutral mutations under the same 

demographic model. We show that in domesticated populations selection at linked sites needs to be 

invoked to explain the 1D-SFS of synonymous mutations. We hypothesize that the mode of linked 

selection affecting the 1D-SFS depends on the duration of the bottleneck. For those scenarios with 

long bottlenecks, we think that background selection is the main distorter of the synonymous 1D-SFS. 

Under long bottlenecks, haplotypes carrying deleterious variants (and neutral variants in linkage) can 

raise in frequency (Hartfield and Otto 2011). After the bottleneck these haplotypes will decrease in 

frequency dragging with them neutral variation. These anti-sweeps (or sweeps toward extinction) 

might produce the observed synonymous 1D-SFS in our simulations which show an excess at low 

frequency variants and a lack of variation in the rest of frequency classes (Figure 3.4). The 1D-SFS of 

synonymous and nonsynonymous mutations is very similar in our simulations with long bottlenecks 

but very different from that expected in the absence of selection (Supplementary Figures A.1-A.3). 

This makes us think that a particularly strong form of background selection might be taking place. 

Surprisingly, the synonymous 1D-SFS also seems affected by indirect selection, or selection at linked 

sites, in short bottleneck scenarios when a substantial fraction of standing deleterious (and effectively 

neutral) variation become beneficial (Figure 3.4, scenarios 2, 3, 5, 6). Short bottlenecks are expected 

to have a modest impact on the population frequencies of standing variation, particularly in the 

presence of migration from the wild population to the domesticated population. In these scenarios, 

we think that the shift in the selection coefficients in the domesticated populations is setting the ideal 

conditions for the emergence of soft sweeps (Hermisson and Pennings 2005; Stetter et al. 2018). This 

multitude of soft sweeps could explain the excess of synonymous variants at a high frequency that 

we observe in our simulations (Figure 3.4). Note that in scenarios 3, 5 or 6 the excess of (neutral) 

synonymous variants at high frequency is even larger than the excess found for (selected) 

nonsynonymous variants. We hypothesize that soft sweeps might be behind this distortion of the 

synonymous 1D-SFS in our short bottleneck simulations. This detailed analysis of the 1D-SFS is a 

prerequisite to interpret the comparison of the full DFE using polyDFE and dadi, because both 

methods contrast the (1D or 2D) SFS of synonymous and nonsynonymous mutations to infer the DFE 

parameters. 

Third, the comparison of the full DFE for domesticated and wild in silico populations finds that 

polyDFE seems to provide more accurate estimates of the deleterious DFE than the new joint DFE 

model build on dadi. The discretized DFE analysis with polyDFE shows that the confidence intervals 

for the number of effectively beneficial mutations seem to capture the real values in most scenarios 

indicating a lack of power and not a bias. However, due to the lack of power with polyDFE is not 

possible to detect statistically significant differences between populations for the beneficial DFE, 

except when selection is strong, and many sites change their selection coefficients (as in scenario 6). 

The new joint DFE model seems to accurately estimate the strength of positive selection across most 
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scenarios, but when a very large fraction of mutations become beneficial it tends to invoke stronger 

positive selection. We find that, even in the demographically and selectively “stable” wild 

populations, the inference of the probability that a new mutation is beneficial (called pb in polyDFE 

and p+w in dadi) can be extremely challenging with both methods. More importantly, for 

domesticated populations, the meaning of this probability is unclear because the selection 

coefficients of new and standing variation are not static, migration from the wild to the domesticated 

population can re-introduce beneficial mutations and our domesticated populations are far from 

demographic equilibrium. We find that joint DFE models offer one key advantage in the study of 

domestication. This is the computation of the fraction of mutations that changed their selection 

coefficient in the domesticated population relative to the wild population (pc) and from those how 

many became beneficial during domestication (pc+). We find that in the presence of shared 

polymorphisms pc is well estimated, but pc+ turned out to be very noisy. Thus, our new joint DFE model 

contrasting the 2D-SFSs is able to quantify a signal of domestication, understood as the fraction of 

mutations with divergent selective effects, when two populations have diverged recently enough to 

share many polymorphisms. Given the strong distortion of the synonymous SFS that we described 

before it is not surprising that polyDFE only detects a significant difference in the positive DFE in one 

scenario or that dadi’s deleterious DFE and pc+ estimates are inaccurate and noisy. polyDFE does not 

estimate the underlying demography, but it corrects for the potential impact of demographic changes 

on the estimation of the DFE. The way polyDFE corrects for demographic changes, and/or linked 

selection, is through the nuisance parameters ri which contrast the relative observed synonymous 

SFS to the relative expected neutral SFS under the Wright-Fisher model and then uses these inferred 

ri parameters to correct the nonsynonymous SFS and estimate the DFE (Eyre-Walker et al. 2006; 

Tataru et al. 2017). It is likely that the strong impact of selection at linked sites in our simulations is 

making the ri parameters overcorrect the nonsynonymous SFS. This might be hampering our ability 

to detect differences in the positive DFE between populations. In contrast, dadi infers first the 

demographic parameters with synonymous mutations. The inference of the demographic model with 

dadi shows that under some domestication scenarios, even in the presence of realistic recombination 

rates, important aspects of the inferred demographic model, such as the migration rate or the 

duration of the bottleneck, can be substantially biased.  

Finally, we want to discuss the limitations and future directions of this work. This work is not 

an exhaustive benchmarking across all one hundred and twenty-eight possible domestication 

scenarios that we could have been simulated given the value of the different parameters that we play 

with at Table 3.1. We do not investigate the prevalence of hard and soft sweeps in our simulated 

scenarios, but this could certainly enrich the study of domestication under polygenic adaptation. Our 

work also posits the question of how we can infer (or at least correct) the demographic changes in 

the presence of pervasive selection at linked sites and changes in the selection coefficients of standing 

variation. Machine learning approaches might be a natural choice for such complex scenarios 

involving rich non-equilibrium dynamics. But perhaps methods that first estimate demography using 

patterns of linkage disequilibrium, which seem more robust to linked selection than SFS statistics 

(Ragsdale and Gutenkunst 2017; Novo et al. 2022), in combination with SFS methods can provide 

more general, accurate enough, and faster estimates than machine learning tools. We have not even 

incorporated the complexity introduced by the distribution of dominance (but see Arunkumar et al. 
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2015) or the impact of population size changes in the wild populations. Nonetheless, the limits to 

comprehend the domestication process by comparing the DFE between wild and domesticated 

populations has become more evident.  
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Abstract 

 

Transposon Insertion Polymorphisms (TIPs) are significant sources of genetic variation. 

Previous work has shown that TIPs can improve detection of causative loci on agronomic traits in rice. 

Here, we quantify the fraction of variance explained by Single Nucleotide Polymorphisms (SNPs) 

compared to TIPs, and we explore whether TIPs can improve prediction of traits when compared to 

using only SNPs. We used eleven traits of agronomic relevance from five different rice population 

groups (Aus, Indica, Aromatic, Japonica and Admixed), 738 accessions in total. We assess prediction 

by applying data split validation in two scenarios. In the within population scenario, we predicted 

performance of improved Indica varieties using the rest of Indica accessions. In the across population 

scenario, we predicted all Aromatic and Admixed accessions using the rest of populations. In each 

scenario, BayesC and a Bayesian reproducible kernel Hilbert space regression were compared. We 

find that TIPs can explain an important fraction of total genetic variance and that they also improve 

genomic prediction. In the across population prediction scenario, TIPs outperformed SNPs in nine out 

of the eleven traits analyzed. In some traits like leaf senescence or grain width, using TIPs increased 

predictive correlation by 30 – 50%. Our results evidence, for the first time, that TIPs genotyping can 

improve prediction on complex agronomic traits in rice, especially when accessions to be predicted 

are less related to training accessions.  

Introduction 

More than half of the world population consumes rice (Oryza sativa) in their daily diet. To 

secure nutritional requirements of a growing human population, the improvement of grain yield, both 

in quantity and in nutritional quality, is imperative. This is a significant challenge in the face of climate 

change and limited cultivable land. Current pace of rice genetic improvement may be too slow to 

meet these demands (Rosegrant and Cline 2003; Zhao et al. 2018). Genomic selection can be a useful 

tool to accelerate genetic progress (Meuwissen et al. 2001). Numerous studies in rice and in other 

plant species (Jighly et al. 2019; Tessema et al. 2020; Xu et al. 2020; Krishnappa et al. 2021) have 

already shown that genomic prediction (GP) can increase breeding speed. GP is particularly effective 

when traits are controlled by numerous loci which are difficult to map individually, such as yield and 

other traits of agronomic interest. For a recent review in rice, see Xu et al. (2021). 

Conceptually, genomic prediction (GP) is a ‘large p, small n’ scenario where the number of 

variables p (molecular markers) is typically far larger than the number of observations n. In this 

setting, either variables must be selected or restrictions on the solutions must be imposed, or a 

combination of both. Methods such as LASSO (Tibshirani 2011) or BayesC (Meuwissen et al. 2001) are 

examples of the first choice, whereas ridge regression or GBLUP (VanRaden 2008) involve restrictions 

on the square of solutions (L2 norm). Numerous metrics exist for measuring predictive ability. Among 

others, it can be measured as the correlation between predicted and observed phenotypes by 

splitting the data in training and test sets. Prediction accuracy is affected by different factors such as 

the size of the training data, heritability, similarity between training and testing populations, or choice 

of marker sets (Robertsen et al. 2019; Xu et al. 2021; Goddard and Hayes 2007). 

In general, there is no consensus on which GP method is best. A recent review by Reinoso-

Peláez et al. (2022) point at Reproducible Kernel Hilbert Space (RKHS) as the best overall method in 
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plants. But there is variability. For instance, Tehseen et al. (2021) compared GBLUP, Ridge Regression 

(RR), LASSO, Elastic Net (EN), Bayesian Ridge Regression (BRR), Bayesian alphabet (A, B, C, …), RKHS 

for different traits, observing that no single method outperformed the rest for all traits. Kaler et al. 

(2022) conducted a comparative study among 11 different methods for two traits in soybean, rice, 

and maize, reporting better predictive abilities using Bayes B. Xu et al. (2018) found that GBLUP and 

LASSO performed best in hybrid breeding. Other authors have suggested integrating genomic 

prediction with crop growth models to evaluate the efficiency of phenotypic strategies and the impact 

of the different yield components on the prediction accuracy (Bustos-Korts et al. 2019; Cooper et al. 

2016). Selecting SNPs based on genome wide association studies (GWAS) has also been proposed, 

e.g., Spindel et al. (2016).  

Irrespective of the algorithm chosen, single nucleotide polymorphisms (SNPs) are the main 

class of markers used so far in GP due to their genome wide abundance and genotyping 

automatization. SNPs are not, however, the only source of phenotypic variability in the genome. In 

the last few years, data has accumulated on the importance of presence-absence variation and 

structural variation as a source of phenotypic variability in plants, including in rice (e.g., Fuentes et al. 

2019). Transposon Insertion Polymorphisms (TIPs) can account for a major fraction of intraspecific 

structural variation, as it has been recently found in maize (Haberer et al. 2020). In fact, transposable 

elements are considered as one of the main drivers for plant genome variability, impacting on 

genome coding capacity and regulation in numerous ways (Lisch 2013). However, until the recent 

development and evaluation of reliable methods for calling TIPs from short-read resequencing data 

(Vendrell-Mir et al. 2019), it was not possible to use TIPs for GWAS approaches. 

Importantly, recent studies in rice and in tomato have shown that the use of TIPs as genetic 

information can result in an increase of association signals as compared to SNPs in GWAS (Akakpo et 

al. 2020; Carpentier et al. 2019; Domínguez et al. 2020; Castanera et al. 2021). These results prompt 

us to investigate whether transposons can also improve prediction accuracy. For this purpose, we 

used the TIP genotypes from Castanera et al. (2021) and the phenotype database hosted in IRRI 

(Jackson 1997; Mansueto et al. 2017). Note that a better model fit, as observed in GWAS, does not 

necessarily imply a more accurate prediction and thus the question posed here is pertinent. Further, 

any improvement in prediction albeit small can translate into large genetic gains when accumulated 

through generations. 

Materials and Methods 

Rice accessions and traits 

The 738 accessions used in this study (Supplementary Table B.1) are from the collection 

conserved at IRRI used for the 3,000-rice genome project (Jackson 1997; Li et al. 2014) and were 

chosen because they were sequenced at least at 15x depth. The 738 accessions retained pertain to 

all main rice population groups: Aus/Boro (AUS, N=75), Indica (IND, N=451), Japonica (JAP, N=166), 

Aromatic (ARO, N=17). The accessions that cannot be assigned to a specific rice group are categorized 

as Admixed (ADM, N=29). We used the SNP-based group assignment from Sun et al. (2017) to identify 

the different subsets of this study.  
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Out of the 56 traits originally available at IRRI SNP-Seek database (https://snp-seek.irri.org/), 

we chose the 11 traits for which data was available in the 738 accessions selected. Some discrete 

traits were binned to balance the number of observations per class and time to flowering was log-

transformed. Supplementary Table B.2 shows basic statistics and transformations applied. Principal 

Component Analysis (PCA) for the 11 phenotypes was obtained with the “prcomp” function available 

in R.4.1.0 (Team 2021) environment. For plotting loading variables of PCA, package “factorextra” 

(Kassambara and Mundt 2020) and packages “ggrepel” (Slowikowski 2020) and “ggbiplot” (Vu 2011) 

for the biplot were used.  

Markers 

A binary ped file format with the Core SNP dataset for all chromosomes was downloaded from 

the SNP-Seek database. The original dataset consisted of 404,388 bi-allelic SNPs from 3,034 rice 

accessions, including the 738 accessions selected. Markers with minor allele frequency ≤ 0.01 and 

missing rate > 1% were filtered out using plink2 (Purcell et al. 2007; Chang et al. 2015). Missing 

genotypes were imputed using Beagle 5.2 with default parameters (Browning et al. 2018). The final 

dataset consisted of 228,871 SNPs, which were used for the analyses reported here. Of those, 50,485 

SNPs were in gene regions. 

Transposable Elements (TEs) are divided into two main classes “copy and paste” (Class I TEs) 

or “cut and paste” Class II TEs. In rice, the most abundant Class I elements are RLX (LTR 

retrotransposons) and RIX (Non-LTR retrotransposons), whereas DTX (DNA TEs with terminal inverted 

repeats) and MITEs (Miniature Inverted-repeat Transposable Elements) are the most prevalent (Mao 

et al. 2000). Here we used markers from both classes, accounting for 94 % of the TIPs described in 

Castanera et al. (2021). Class I TIPs were represented by 21,571 RLX and RIX markers. Class II consisted 

of 52,120 MITE and DTX markers. In contrast to SNPs, TIPs can only be genotyped as presence / 

absence, recoded consequently as 0/1, and defined as genomic windows with an average size of 1.2 

kb. TIP windows were taken from Castanera et al. (2021), and are based on the intersection of the 

individual TE insertion regions predicted for each accession with genome-wide windows of a fixed 

size (1kb, merging adjacent windows). These TIPs were further classified as genic or intergenic by 

intersecting the windows with MSU7 non-TE gene annotation (Kawahara et al. 2013). A TIP was 

considered genic if the window overlapped at least 1bp with the gene feature. There were 17,034 

genic MITE/DTX and 5,024 genic RLX/RIX TIPS. The remaining TIPs were considered intergenic.  

MITEs amplify by bursts from individual elements creating highly homogeneous families, as 

previously reported in Arabidopsis (Santiago et al. 2002) and rice (Lu et al. 2017). Different bursts of 

amplification at different evolutionary times may have different prediction potential for particular 

phenotypes. In an attempt to study the potential predictive capacity of individual families, we created 

individual TIP genotype matrices for each of the 18 largest MITE families described in Castanera et al. 

(2021) (Supplementary Table B.3). Each of these matrices included only TIPs originated from a single 

transposon, in this case MITE, family. 

Genetic variance inference 

https://snp-seek.irri.org/
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We fitted the following linear model in order to estimate genetic variance components 

explained by each marker set: 

 
 y = µ + Z u1 + Z u2 + Z u3 + e          (4.1a) 

                                                                  
where µ is the general mean, y is the phenotype vector of size n, the number of accessions, Z is an 

identity incidence matrix, u1, u2, u3 are random effects representing each of the marker groups and e 

is the residual. We assume u1 ~ N(0, KS 𝜎𝑆
2), u2 ~ N(0, KM 𝜎𝑀

2 ), and u3 ~ N(0, KR 𝜎𝑅
2), where KS, KM, KR 

are genomic relationship matrices obtained from SNPs, MITE/DTX and RLX/RIX markers, respectively. 

These matrices were calculated using AGHMatrix (Amadeu et al. 2016). Model 1a was fitted with a 

Bayesian Reproducible Kernel Hilbert Space (RKHS, Herbrich et al. 1999) as implemented in BGLR 

package (Pérez and de los Campos 2014) using default priors to estimate 𝜎𝑆
2, 𝜎𝑀

2  and 𝜎𝑅
2. 

Genomic prediction 

Plant breeding is primarily based on trials of new crosses, which can be lengthy and costly. 

The speed of development for new improved varieties depends largely on accuracy of prediction for 

new genotypes. We evaluated two distinct validation scenarios that cover two important issues: 

prediction of performance within population (rice group in this case) and prediction of individuals 

from different groups. In the first scenario, we measured accuracy when predicting performance of 

improved Indica varieties (N = 48) using the rest of accessions, including non-improved Indica 

accessions. Accessions from IRRI core collection are classified as “improved”, “breeding and inbred 

lines” and “traditional” varieties. We used this passport information to identify this subset of 

improved varieties. ‘Improved’ Indica varieties correspond to most modern and commercial lines 

available at IRRI collection. In this scenario, performance to be predicted is from highly related 

accessions to those in the training set. In the second scenario, we predicted performance of all 

admixed (ADM, N = 29) and aromatic (ARO, N = 17) accessions using the rest of groups. In this case, 

performance to be predicted is from accessions that may not be too related to accessions in the 

training set, and we expect prediction to be worse than in the former scenario. For instance, the ADM 

group is a small, highly heterogeneous collection of accessions. 

The rationale for the first scenario is that new selected accessions can be crosses within the 

same population, and the breeder can be interested in designing new better performing crosses out 

of traditional varieties. The second scenario is more challenging, since we do not use any sample of 

the population to be predicted. These two scenarios, within and across populations, resemble main 

challenges faced in a breeding program. Note there are infinite designs for assessing predictive 

accuracy. For instance, we did not study prediction in Japonica because we preferred to focus on a 

larger number of traits, since genetic architecture is a main factor influencing predictive performance 

(Daetwyler et al. 2010).  

Ample literature shows that no single method performs best for all traits and scenarios. Here, 

we compared two alternative modelling strategies: Bayesian RKHS as described above, and BayesC. 

RKHS is equivalent to ridge regression and GBLUP, whereas BayesC is a variable selection method. 

The two methods were applied to both predictive scenarios. For RKHS, we compared predictive 

performance using all markers (model 4.1a above) with sub models 
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 y = µ + Z u1 + e, (4.1b)           
 
 y = µ + Z u2 + e,   (4.1c)       

                                           
and 

 
 y = µ + Z u3 + e,    (4.1d)          

                                          
i.e., when using only SNPs (model 4.1b), only MITE/DTX (model 4.1c) or only RLX/RIX (model 4.1d) 

markers. For BayesC, the complete model was: 

                  
 y = µ + XS β1 + XM β2 + XR β3 + e,    (4.2a)    

 
where XS, XM and XR are the standardized genotypic values of each marker class, β1, β2 and β3 are the 

corresponding vectors of effects for SNPs, MITE/DTX and RLX/RIX markers, respectively. As with 

RKHS, three partial models were also evaluated: 

   

 y = µ + XS β1 + e,    (4.2b)           
 
 y = µ + XM β2 + e,                (4.2c)  

                                            
and                           

 y = µ + XR β3 + e (4.2d)   
                     

In BayesC, a probability π of presence / absence of a SNP in the model is sampled from π ∼ 

Beta(p0, π0). Following Pérez and de Los Campos (2014, see their Tables 1 and S1), ‘the beta prior is 

parameterized in a way that the expected value by E(π) = π0; on the other hand, p0 can be interpreted 

as the number of prior counts (prior “successes” plus prior “failures”)’. Here we chose 𝑝0 = 5 and π0 

= 0.01.  

In a subset of cases, we evaluated whether using only genic SNPs improved prediction 

compared to using all available markers. Similarly, we conjectured that not all transposable elements 

are equally likely to cause phenotypic changes. We analyzed predictive performance of models 

containing TIPs from each of the largest 18 MITE families present in the rice genome (Supplementary 

Table B.3). To avoid repetitive, lengthy results we make the additional analysis using two agronomic 

traits of high importance on rice breeding, time to flowering and grain length. An earlier or later 

growing can determine seed production. Grain size related traits such as grain length/width are 

important breeding targets since they affect the quality of the crop yield. These two traits may also 

represent alternative genetic architecture (Begum et al. 2015; Xu et al. 2015; and Chen et al. 2021). 

Using either RKHS or BayesC, phenotypes to be predicted were removed from the dataset, 

the model fitted using the remaining phenotypes and the correlation between predicted and 

observed phenotypes computed as a measure of predictive accuracy. From a practical point of view, 

it is important to assess whether predictions using TIPs, or all markers are better than the state-of-

the-art method, i.e., with SNPs only. To assess variability of results, we generated 10,000 bootstrap 

sampling with replacement from the corresponding pairs of phenotypes observed and predicted with 
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each method and marker set. We then computed the correlation observed-predicted samples within 

each bootstrap sample, and we counted how many times correlation using SNPs only was lower than 

with each alternative strategy. Phenotypic measurements and variables were centered and scaled to 

mean 0 and variance 1. BGLR was run for 100,000 iterations using default priors for RKHS. This 

number of iterations seemed enough to attain convergence (Supplementary Figure B.1).  

Results 

Descriptive analysis 

Figure 4.1A shows the loadings, i.e., the projections of variables into the lower dimensional 

space, of each trait to the principal components. In the figure, the length of the arrow is proportional 

to trait contribution and the angle between arrows, to their correlation. An analysis in two principal 

components shows that the first component depends on grain width and grain weight whereas culm 

diameter, time to flowering and leaf length are the main contributors to the second component. The 

rest of traits contribute more modestly to total phenotypic variation. A sample projection (Figure 

4.1B) shows graphically how accessions differed in the traits studied. Supplementary Figure B.2 shows 

the differences in trait distributions across accessions. In general, populations differed for most traits 

although to varying extent. Figure 4.1 does indicate, e.g., that Japonica accessions tend to have higher 

grain weights and widths, as they are projected in the lower part of the figure, and as shown in 

Supplementary Figure B.2. 

 

Figure 4.1: A: PC loadings of each trait for the two first standardized principal components. B: Plot showing the 

accessions projected. The first (x-axis) and second (y-axis) PCs explained 19% and 15.8% of variance, 

respectively. 

Genetic variance estimates 

The genetic variance explained by each marker set measures its relative importance in 

determining the observed phenotypes. Here we prefer not to use the classical term ‘heritability’ 
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because a proper interpretation assumes panmixia, a condition not fulfilled here. Having these 

cautionary remarks in mind, Table 4.1 does show that transposons can explain a sizeable fraction of 

genetic variance, which was larger than that explained by SNPs in five out of 11 traits. In seven traits, 

𝜎𝑆
2 was smaller than the sum of 𝜎𝑀

2  and 𝜎𝑅
2. Results are presented when all accessions were analyzed 

together and when using only data from Indica, the largest group (N = 451). Note model 1a assumes 

constant genetic variances across accessions, i.e., 𝜎𝑆
2, 𝜎𝑀

2 , and 𝜎𝑅
2 are the same in all rice groups. This 

is not necessarily the case. Nevertheless, variances were similar within Indica and across population 

groups. 

 

Table 4.1: Means of posterior distributions of genetic variances explained by each marker set.  

  All accessions(N=738) Indica accessions(N=451) 

Traits 𝝈𝑺
𝟐 𝝈𝑴

𝟐  𝝈𝑹
𝟐  𝝈𝑺

𝟐 𝝈𝑴
𝟐  𝝈𝑹

𝟐  
Culm Diameter 0.16 0.17* 0.16 0.13 0.17* 0.15 
Culm strength 0.10 0.25* 0.16 0.11 0.19* 0.14 
Flag leaf angle 0.22* 0.14 0.15 0.24* 0.14 0.14 
Grain length 0.48* 0.11 0.11 0.41* 0.11 0.13 
Grain width 0.49* 0.11 0.12 0.42* 0.11 0.14 
Leaf length 0.26* 0.16 0.19 0.22* 0.16 0.19 
Leaf senescence 0.12 0.25* 0.18 0.14 0.21* 0.16 
Grain weight 0.40* 0.11 0.13 0.31* 0.12 0.13 
Salt injury  0.10 0.11 0.12* 0.09 0.11* 0.11* 
Time to flowering 0.45* 0.12 0.13 0.39* 0.13 0.13 
Pan. threshability 0.11 0.13* 0.10 0.11 0.15* 0.11 

𝜎𝑆
2: genetic variance explained by SNPs. 

𝜎𝑀
2 : genetic variance explained by DNA transposon markers (MITE/DTX). 

𝜎𝑅
2: genetic variance explained by retrotransposons (RLX/RIX). 

Traits are scaled such that phenotypic variances are 1. 

* Best strategy 

Genomic prediction 

We assess prediction in two validation scenarios that represent some of the main challenges 

in breeding, prediction within and across populations (see methods). In the first one, Indica improved 

varieties were predicted using the rest of accessions, including traditional Indica varieties. In this 

scenario, using TIPs increased prediction accuracy compared to using SNPs in six traits: culm 

diameter, grain length, leaf length, leaf senescence, grain weight and time to flowering (Figure 4.2). 

In the second scenario, phenotypes of all ADM and ARO accessions were predicted given the rest of 

the accessions. TIPs were especially beneficial in this case: TIPs improved prediction upon using only 

SNPs in nine out of the 11 traits analyzed (Figure 4.3). In some traits, such as grain width or leaf 

senescence, improvement in correlation using TIPs was remarkable, over 30%. In other traits, such as 

time to flowering, improvement was marginal. For some traits, notably grain weight and panicle 

threshability, prediction across populations was successful neither with SNPs nor with TIPs. We 

computed the bootstrap probability that using TIPs, or all markers resulted in better predictions than 

using only SNPs (see methods). Results are in Supplementary Tables B.4 and B.5 for the within and 
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across population scenarios, respectively. Even if gains in accuracy shown in Figures 4.2 and 4.3 may 

seem small in some cases, results are consistent. For instance, increase in correlation for leaf length 

is ~15% when using MITE/DTX compared to SNPs in the within population scenario, a somewhat 

modest figure. But this result is confirmed in 80% of the bootstrap samples. In contrast, SNPs are far 

better than TIPs for culm strength and this is also confirmed in bootstrap samples (Supplementary 

Table B.4, Figure 4.2).  

On average, prediction across populations was less accurate than within Indica in seven out 

of 11 traits and irrespective of marker set used (Figures 4.2, 4.3). Importantly, gain using TIPs was 

larger in this scenario than in the within population scenario. Time to flowering and grain width were 

the traits for which prediction was most accurate. Nevertheless, prediction across populations for 

grain width was far less precise than within Indica. It is interesting to note that grain width and time 

to flowering are basically uncorrelated, but both contribute largely to total phenotypic variation 

(Figure 4.1). This suggests that genomic prediction combined with  

 
Figure 4.2: Correlation between observed and predicted phenotypes of Indica improved varieties. In each plot, 

the first four columns represent the correlation values using BayesC, while the last four values correspond to 

RKHS method. Colors represent marker information utilized: Green, SNPs; Magenta, MITE/DTX; Blue, RLX/RIX; 

Brown, all markers. The asterisc shows the best option for each trait. 

 

transposable elements can be an effective tool for overall rice genetic improvement as it would 

enhance genetic progress in important agronomic traits. Note that using all markers is not necessarily 

the best option for predictive purposes: it only outperformed the rest of approaches in three out of 

the 44 (= 11 traits x 2 methods x 2 predictive scenarios) analyses. This indicates that adding additional 

markers may contribute to overfitting and reduce model performance in prediction. Overfitting is a 

well-known phenomenon in the machine learning literature when the model is not properly 
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regularized. This has been clearly observed with simulated data in a genomic prediction scenario (e.g., 

Pérez-Enciso et al. 2015). 

 

 
Figure 4.3: Correlation between observed and predicted phenotypes across accessions. All ADM and ADM 

accessions were predicted using the rest of groups. In each plot, the first four columns represent the 

correlation values using BayesC, while the last four values correspond to RKHS method. Colors represent 

marker information utilized: Green, SNPs; Magenta, MITE/DTX; Blue, RLX/RIX; Brown, all markers. The asterisc 

shows the best option for each trait. 

Next, we wished to study how the different genetic architectures influence the statistical 

behavior of the three sets of markers. BayesC is a variable selection method and so we reasoned that 

the number of markers entering the model and their effects would differ between traits. Broadly, 

estimates of marker effects were quite similar across traits (for the same type of marker) as can be 

seen in Supplementary Figure B.3. The only exception was grain width and grain length, where we 

observed much larger estimated effects for MITE/DTX and SNPs respectively, in agreement with 

results in Figure 4.3. In turn, there were larger differences between the probabilities (d) of entering 

the model for each marker type (Supplementary Figure B.4). This occurred despite setting equal priors 

for all types of markers (p = 0.01). This was not due only to the priors or different number of TIPs 

compared to SNPs, because the pattern differed between traits. Using a subset of all markers 

available can improve prediction. For instance, the accuracy of a model which contains only the 

causative SNPs can approach one (Pérez-Enciso et al. 2015). The problem, of course, is that causative 

mutations cannot be identified in most cases. Several indirect approaches have been suggested 

instead. 
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Figure 4.4: Predictive accuracy across populations using TIPS from each of 18 recognized MITE families. Each 

column corresponds to accuracy with one MITE family. Model included only MITEs or MITEs and all SNPs. The 

asterisc shows the best option. 

For instance, Spindel et al. (2016) proposed to perform prediction using the most associated 

markers, e.g., selected via a GWAS P-values. We did not evaluate this strategy here, although we did 

consider two alternative approaches for preselecting markers. In a first attempt, we examined 

whether using only gene-based markers improved prediction performance. To avoid multiplying 

analyses, we selected grain length and time to flowering. As can be seen in Table 4.2, gene – based 

markers outperform all markers across population but minimally. The opposite was observed in the 

within population scenario.  

We also studied performance of TIPs pertaining to each of the 18 largest MITE families 

(Supplementary Table B.3, see Material and Methods). Again, for brevity, we considered only 

prediction across accessions in grain length and time to flowering using RKHS (Figure 4.4). The most 

relevant conclusion is that predictive performance can vary largely according to MITE family and that 

using SNPs on top of MITEs may not improve prediction. Prediction of time to flowering improved 

using MITE family MH63fam47_235 (MITE-adh type B-like superfamily) TIPs compared to using the 

full MITE/DTX set (Figures 4.3, 4.4). Although it is tempting to conclude that a specific MITE family is 

enriched in genes affecting a given trait, one should be careful as disequilibrium can extend over long 

genome regions (Mather et al. 2017; Nachimuthu et al. 2015).  
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Table 4.2: Predictive accuracy when using all or only gene-based markers. 

 BayesC RKHS 

Predicti

on 

scenari

o 

Traita Markers SNPS MITE/

DTX 

RLX/R

IX  

ALL SNPS MITE/

DTX 

RLX/R

IX 

ALL 

A
cr

o
ss

 

  

 

GL Genic 0.57 0.51 0.41 0.67* 0.47 0.54 0.26 0.48 

All 0.65 0.42 0.42 0.66 0.45 0.50 0.35 0.48 

TF Genic 0.71 0.58 0.50 0.68 0.71 0.65 0.69 0.75* 

All 0.71 0.66 0.56 0.71 0.68 0.72 0.67 0.73 

W
it

h
in

 

 

GL Genic 0.56 0.55 0.43 0.57 0.56 0.38 0.36 0.55 

All 0.61 0.69* 0.43 0.63 0.59 0.50 0.45 0.59 

TF Genic 0.59 0.55 0.51 0.62 0.57 0.61 0.56 0.57 

All 0.59 0.63* 0.62 0.60 0.59 0.65 0.59 0.60 

* Best strategy 
a GL: Grain Length; TF: Time to Flowering  

Discussion 

We have shown, for the first time to our knowledge, that transposable element 

polymorphisms can improve predictive accuracy for important agronomic traits in rice. The impact of 

using TIPs varied; here we found that they improved predictive performance in ~ 60% of the traits 

and scenarios considered. Table 4.3 presents a summary. The increase in accuracy also varied. 

Although the added benefit of using TIPs was sometimes modest, TIPs improved correlation by more 

than 30% in traits like grain width or leaf senescence.  

All traits analyzed here have an economic impact in rice production. Unfortunately though, 

grain yield phenotypic data is not available for the 3k rice panel, and how grain yield is affected by 

TIPs remains to be studied. This trait is largely affected by genotype x environment interaction and 

so the relevance of TIPs may be harder to characterize. Among the traits studied, time to flowering is 

particularly important (Wang and Li 2019). Rice plants need approximately, 3-6 months to grow, 

meaning that earlier or later growing can strongly affect the yield. Productivity is also determined by 

morphological trait such as grain weight (Chen et al. 2021). Grain weight in turn correlates with grain 

width Figure 4.1 (Li et al. 2021). Most of these traits are polygenic. Some traits like time to flowering, 

grain weight, grain width and grain length seem controlled by large effect quantitative trait loci 

(Begum et al. 2015; Xu et al. 2015; Chen et al. 2021). For some traits, e.g., grain width, GP was quite 

accurate, and we confirm that GP can largely enhance rice genetic progress, in agreement with 

previous results (Xu et al. 2021). For other traits, e.g., leaf length, GP accuracy was lower, although it 

is interesting to note that bootstrap sampling suggests that results are repeatable (Supplementary 

Tables B.4, B.5). Since plant breeding builds on cumulative progress over generations, even a small 

advantage can be highly relevant in the medium to long term. 

The reasons behind the high capacity of TIPs to predict phenotypes, which in some cases is far 

better than SNPs, could be manifold. Transposable element insertions can have stronger effects than 

SNPs as some transposon types tend to localize near genes. 
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Table 4.3: Maximum predictive accuracy and corresponding marker set. 

 Scenario 

Trait Indica improved varieties ARO/ADM accessions 

Culm Diameter 0.40 (MITE/DTX) 0.26 (MITE/DTX) 
Culm strength 0.28 (SNPs) 0.16 (RLX/RIX) 
Flag leaf angle 0.45 (SNPs) 0.28 (RLX/RIX) 
Grain length 0.69 (MITE/DTX) 0.66 (ALL) 
Grain width 0.83 (SNPs, ALL) 0.64 (MITE/DTX) 
Leaf length 0.41 (MITE/DTX) 0.52 (RLX/RIX) 
Leaf senescence 0.47 (RLX/RIX) 0.54 (MITE/DTX, RLX/RIX) 
Grain weight 0.30 (MITE/DTX) 0.14 (MITE/DTX) 
Salt injury  0.28 (SNPs) 0.49 (SNPs, MITE/DTX) 
Time to flowering 0.65 (MITE/DTX) 0.73 (ALL) 
Panicle threshability 0.29 (SNPs) 0.24 (SNPs) 

Therefore, TIPs could be in some cases causative mutations linked to a specific trait. Indeed, 

transposable element insertions are known to have played a major role in plant genome evolution 

both in the wild and under breeding settings, and examples of TIP causative mutations for many 

agricultural important traits have been reported (Lisch 2013; Dubin et al. 2018). In some cases, the 

TIPs linked to the trait may be recent insertions and may not be in high LD with surrounding SNPs. 

This is what was shown in recent GWAS analyses performed with TIPs and SNPs in tomato and rice, 

where TIPs revealed associations with traits that are not detected with SNPs (Domínguez et al. 2020; 

Akakpo et al. 2020; Castanera et al. 2021). In contrast to SNP mutation rate, transposon activity is not 

constant over time, with bursts of transposition associated with stress situations or environmental 

stimuli (Dubin et al. 2018). Therefore, it can be hypothesized that the adaptation of a crop to a new 

environment, say as part of the breeding process, could be a period particularly prone to 

transposition activity (Baduel and Quadrana 2021). On the other hand, while SNPs accumulate 

relatively homogeneously throughout the genome, some TEs target gene-rich regions for integration, 

particularly RLXs and MITEs in rice (Castanera et al. 2021). Therefore, the potential for TEs to produce 

causal mutations and TIP associations with traits could be particularly high for some agronomic traits. 

Importantly, we found TIPs are especially helpful when prediction was across populations. These 

issues merit further research. 

The main families of class I in rice are LTR-retrotransposons (RLX) and LINEs (RIX), whereas 

DNA transposons (DTX) and MITEs are the main components of rice class II TEs (Matsumoto et al. 

2005). There are important structural and mechanistic differences between class I, or 

retrotransposons, and class II, or DNA transposons. Although both RLX and MITEs target genic regions 

for integration, their dynamics are very different. While RLXs have a high turnover and RLX TIPs are 

usually present at a very low frequency in the population, MITEs are maintained in the genome for 

longer evolutionary periods (Castanera et al. 2021). This suggests that, although both types of TEs can 

be associated with traits in rice (Akakpo et al. 2020; Castanera et al. 2021), their capacity to predict 

phenotypes may differ. Certainly, our results show that MITE/DTX are more relevant than RLX/RIX for 

improving prediction (Table 4.3, Figures 4.2, 4.3). It is finally interesting to note that a single MITE 

family of ~ 3k TIPs can predict equally well a phenotype as well as 200k SNPs (Figure 4.4). In contrast, 
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we did not find a consistent or large improvement in prediction when using only gene markers as 

compared to using all available polymorphisms, as reported also in humans (Visscher et al. 2021). 

Some technical considerations should be borne in mind regarding our analyses. Ordinal traits 

(Supplementary Figure B.2) were treated as continuous. It has been known for decades that a 

threshold (logistic model) is theoretically a better choice for binary traits than standard linear models 

(Gianola and Foulley 1983). The logistic model is a class of the so called generalized linear models, 

where the non-linear relationship between parameters and observations becomes linear after 

applying a transformation, e.g., logit for binary traits. Despite their theoretical appeal, these models 

are more difficult to run than linear counterparts and may converge poorly. Empirical evidence 

generally shows small differences only (Matos et al. 1997; Olesen et al. 1994). Here, we observed 

(Supplementary Table B.4) that a threshold model may have a small advantage over linear ones but 

not always. A second issue is the metrics to assess prediction. Here we chose correlation as it has a 

direct interpretation in terms of response to selection (Falconer and Mackay 1996) and has been 

widely used, but numerous other metrics exist. For instance, mean square error (RMSE) of prediction 

is also widely used. We computed RMSE (Supplementary Table B.7, B.8) and we found concordant 

results regarding the best marker set in 9 (within scenario) or 10 traits (across scenario) out of the 11 

traits studied. These issues do not question our main, and most important conclusion regarding that 

TIPs can improve genomic prediction. 

A prerequisite for the inclusion of TIPs in practical breeding programs is to automatize their 

genotyping. TIP genotyping should primarily target high frequency TIPs in order to be as informative 

as possible, as it is usually done for SNPs as well.  The application of TIP-Chip (Wheelan et al. 2006) or 

Transposon Insertion Profiling (TIP-seq, Steranka et al. 2019), and TE-sequence capture (Quadrana et 

al. 2021) to hundreds or thousands of varieties should be cheap, as the sequencing coverage needed 

per sample is very small. Finally, given the dropping costs of genome sequencing, thousands of rice 

accessions are being re-sequenced and made public. TIPs could also be included in standard 

genotyping arrays (Wheelan et al. 2006) as a complement to SNPs. Given that TIPs from a single MITE 

family can be as efficient as 200k SNPs in some traits (Figure 4.4), perhaps only a small number of 

TIPs need to be included in the genotyping protocol. 

In conclusion, we consistently observed that TIPs can increase predictive accuracy of 

agronomic traits in rice and do explain a non-negligible fraction of phenotypic variance. Notably, this 

improvement was larger when prediction was across populations than within Indica. Using markers 

positioned within genes did not seem to matter too much, although perhaps a more thorough 

analysis would be needed. In contrast, selecting TIPs from some transposon families did improve 

prediction. These are important results from a practical point of view and warrants developments to 

automatize TIP genotyping. From a biological point of view, new studies are needed to understand 

how TIPs affect complex trait variation. Improving predictive accuracy from molecular data is an 

important task since even small gains add up over generations and can make a big long-term 

difference. Assessing the importance of TIPs in other agronomic traits, such as grain yield across 

different environments, remains also to be studied. Once a plausible set of parameters linking TIPs, 

SNPs and yield are estimated from real data, simulations can be used to optimize marker genotyping 

with SNPs and/or TIPs. 
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Chapter 5 

Merging structural and nucleotide genome-

wide variation for genomic prediction in rice 
(in preparation) 
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Abstract 

Using Bayesian linear models, we have shown that Transposable Insertion Polymorphisms 

(TIPs) can improve prediction ability in genomic prediction of complex agronomic traits in rice over 

standard approaches based exclusively on Single Nucleotide Polymorphisms (SNPs). However, TIPs 

are not the only structural variation in the genome. Structural variations (SVs) such as deletions, 

inversions, and duplications are prevalent in the genome and they play an important role in plant 

evolution. Here, we determine the proportion of genetic variance explained by different types of 

structural variation. Then, we investigate whether merging the structural and nucleotide genome-

wide variation can improve prediction ability of traits when compared to using only SNPs. For the 

purposes of the study, four important agronomic traits were used from 738 rice accessions in total, 

originated by five different rice population groups (Aus/Boro, Indica, Aromatic, Japonica and 

Admixed). We assess prediction accuracy by applying cross validation under two different strategies. 

In the first strategy, we used a k-fold cross validation producing ten partitions from the whole 

population. In the second strategy, we followed an across population scenarios predicted Aromatic 

and Admixed accessions from the rest of populations. In each scenario, the performance of BayesC 

and a Bayesian Reproducible Kernel Hilbert space regressions are compared to Deep Learning 

networks (DL). We investigated the prediction ability of DL using two different widely used 

architectures, a Multilayer Perceptron (MLP) and a Convolution Neural Network (CNN). Then we 

further explored their performance by using various marker input strategies. We found that merging 

structural and nucleotide variation improves prediction ability on complex traits in rice. Also, our 

results suggested that DL models outperform in 50% of the studied cases. Finally, DL seems to 

significantly improve prediction ability of continuous traits against the Bayesian models when training 

and dataset are distantly related. 

Introduction 

 Rice (Oryza sativa) provides a staple food for more than half the word population. However, 

following the conventional breeding techniques, rice yield cannot meet the high demand caused by 

the increasing word population and the climate change. Therefore, we need methods that will secure 

nutritional requirements increasing at the same time the quality and quantity of rice yield. Moreover, 

the new cultivars must have two important traits: disease resistant and climate resilient. Genomic 

Prediction (GP) can help achieving all the pre-mentioned requirements, accelerating the breeding 

progress (Meuwissen et al. 2001). Various studies in plants have shown the effectiveness of GP in 

increasing breeding speed (Jighly et al. 2019, Tessema et al. 2020, Xu et al. 2020, Krishnappa et al. 

2021). GP framework has widely used in rice studies for predicting various quantitative traits, 

reporting moderate to high predictive performance (Xu et al. 2021). Complex traits are controlled by 

numerous loci that are difficult to be detected with genetic mapping. GP assumes that quantitative 

trait loci (QTL) will be in linkage disequilibrium (LD) with at least one molecular marker. Thus, instead 

of detecting all the QTL associated with a trait an indirect association between marker and trait can 

be utilized.  

Conceptually, since the number of genotyped individuals n, is typically smaller than the 

number of molecular markers p, GP faces statistical challenges such as large sampling variance and 
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increase mean-square error. To overcome this limitation, variables must be selected or restrictions 

on the solutions must be applied or sometimes both. The main classes of GP methods are the genomic 

relationship-based method such as Genomic Best Linear Unbiased Prediction (GBLUP, VanRaden 

2008) and the SNP effect-based methods such as the Bayesian family (Meuwissen et al. 2001; Habier 

et al. 2011; Pérez and De Los Campos 2014) and LASSO (Tibshirani 2011). Particularly, Bayesian 

models don’t assume necessarily homogenous across marker effects. They perform variable selection 

and shrinkage on the effects simultaneously using priors other than Gaussian. BayesC is an example 

of this category assuming as a prior a normal distribution with constant variance while a fraction of 

marker has no effect (Habier et al. 2011). On the other hand, methods such as GBLUP involve 

restriction on the square of solutions (L2 norm), with the effect of the markers assuming to be 

normally distributed with equal variance.  

Deep Learning (DL) networks are a collection of machine learning algorithms that have 

exhibited excellent performance in some prediction tasks (Min et al. 2017; Pattanayak 2017). The DL 

models are trained in such a way to find complex relationships between traits. DL networks consist 

of multiple layers and interconnected nodes. Each layer uses as input the output of the previous layer 

in order to optimize the prediction or classification. Numerous DL architectures have been proposed 

such as Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Convolutional Neural 

Network (CNN, Lecun et al. 2015). DL has been around for decades but only recently started to widely 

be implemented because of the easy implementation framework provided by various online libraries 

(e.g https://keras.io/; https://pytorch.org/). The performance of the DL networks depends on the 

accurate hyperparameter choice, which is not an easy task and requires abundant computation 

resources (Young et al. 2015; Chan et al. 2018).  

Despite their features, various works have shown a performance of DL in genomic prediction 

comparable to linear models (González-Recio et al. 2014; Ma et al. 2017; Bellot et al. 2018; 

Montesinos-López et al. 2018). Zingaretti et al. (2020) did not find a considerable advantage of DL 

over linear models, except when epistasis component was important. Note that DL can be used to 

estimate non-additive effects without the need to partition the effects as in standard linear models. 

Ehret et al. (2015) found non-relevant differences between a GBLUP and a MLP model. In a wheat 

study (Ma et al. 2017), DL performed better than GBLUP when used to predict phenotypes from 

genotypes. Similarly, Gianola et al. (2011) found that MLP performed better than a Bayesian linear 

model in wheat. In another study in wheat, Pérez-Rodríguez et al. (2012) extensively compared the 

prediction performance of Radial Basis Function Neural Networks and Bayesian Regularizes Neural 

Networks against several linear models and semiparametric models such as Reproducible Kernel 

Hilbert Space.  The authors concluded that the non-linear models, such as DL, demonstrated a higher 

prediction ability than the linear models. For an extensive review in GP using DL models see 

Montesinos-López et al. 2021.  

Most of the studies in GP assume that SNPs are the main source of genetic variability at the 

whole-genome level in plants. In Vourlaki et al. (2022) we showed that Transposable Insertions 

Polymorphisms (TIPs) explain a sizable fraction of the genetic variance in the agronomic traits in rice 

and significantly improved the prediction of phenotypic traits of interest. TIPs account for a major 

fraction of intraspecific structural variation, as a study in maize recently showed (Haberer et al. 2020). 

Studies in tomato and in rice found that the use of TIPs can increase association signals compared to 

https://keras.io/
https://pytorch.org/
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SNPs (Akakpo et al. 2020; Carpentier et al. 2019; Domínguez et al. 2020; Castanera et al. 2021). TIPs 

play a key role in plant evolution since selection acts on them during local adaptation, speciation, 

domestication, and breeding (Dublin et al. 2019). 

In all, transposable elements (TEs) are not the only type of structural variation in the genome. 

Structural variations (SVs) such as deletions, inversions, and duplications form an important fraction 

of genetic variation in plant species. Over the last few years, studies have been focusing on the 

importance of presence-absence variation and structural variation as a source of phenotypic 

variability in plants, including in rice. In rice a total of 63 million individual SV calls that grouped into 

1.5 million allelic variants, have been identified across the 3,000 Rice Genomes dataset (Fuentes et 

al. 2019). Fuentes et al. (2019) showed that rice genome regions with frequent SVs were enriched in 

stress response genes. Here we investigate whether merging all the structural and nucleotide 

genome-wide variation can improve phenotypic prediction comparing only to SNPs in rice. Finally, we 

further explore the performance of DL in GP by (i) using multiple marker input strategies, (ii) 

proposing several approaches to accommodate large scale marker information, (iii) optimizing 

network architectures. We also provide and document python code based in tensorflow 2 and keras. 

Materials and Methods 

Rice accessions and traits 

In this study we used 738 accessions from the collection conserved at IRRI used for the 3,000-

rice genome project (Jackson 1997; Li et al. 2014). Chosen accessions were sequenced at least at 15x 

depth. The 738 accessions originated by all main rice population groups: Aus/Boro (AUS, N=75), Indica 

(IND, N=451), Japonica (Jap,N=166), Aromatic (ARO, N=17). The final group is the Admixed (ADM, 

N=29) consists of accessions that cannot be assigned to a specific rice group. SNP-based group 

assignment from Sun et al. (2017) was used to identity the different subsets of this study. Studied 

traits were originally available at IRRI SNP-Seek database (https://snp-seek.irri.org/). From the eleven 

traits analyzed in Vourlaki et al. (2022) we selected four that span a range of distinct distributions 

between SNPs and SVs and are either continuous or binary. For continuous traits, grain weight and 

time to flowering were used, whereas for binary traits, we chose culm diameter and leaf senescence. 

Binary traits were binned to balance the number of observations per class and time to flowering was 

log-transformed.  

Markers 

We used the filtered SNP dataset in Vourlaki et al. (2022). Specifically, a binary ped file format 

with Core SNP dataset for all chromosomes was downloaded from the SNP-Seek database. The 

original dataset consisted of 404,399 bi-allelic SNPs from 3,034 rice accessions, including the 739 

accessions selected. After filtering (Vourlaki et al. 2022), the final dataset consisted of 228,871 SNPs.  

 Transposable Elements (TEs) are divided into two main classes, Class I and Class II, based on 

the mechanism of transposition. In rice, we can find TEs from both classes. Specifically, in rice the 

most prevalent elements from Class I are RLX (LTR retrotransposons) and RIX (Non-LTR 

retrotransposons) whereas the most representative superfamilies of Class II are MITEs (Miniature 

inverted-repeat transposable elements) and the DTX (DNA TEs with terminal inverted repeats) (Mao 

https://snp-seek.irri.org/
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et al. 2020). Here we used markers from both classes, making 94% of the TIPs described in Castanera 

et al. (2021). Class I TIPs were represented by 21,571 RLX and RIX markers. Class II consisted of 52,120 

MITE and DTX markers. In contrast to SNPs, TIPs can only be genotyped as presence / absence, 

recoded consequently as 0/1, and defined as genomic windows with an average size of 1.2 kb. TIP 

windows were taken from Castanera et al. (2021) and are based on the intersection of the individual 

TE insertion regions predicted for each accession with genome-wide windows of a fixed size (1kb, 

merging adjacent windows).  

SVs such as insertions (INS), deletions (DEL), tandem duplications (DUP), inversions (INV) and 

copy number variants (CNVs) were also obtained by Rice SNP-Seek database.  SVs genotypes are also 

recoded as 0/1 and defined as various genomic windows depending on the type. Particularly, 

minimum window size for INS was 5 bp, for DEL, DUP and INV was 10 bp. CNVs were discarded 

because of the high missing rate (58 % on average) and INS because of the low accessions availability 

(present in 390 accessions). Markers with minor allele frequency ≤ 0.01 were filtered out using plink2 

(Purcell et al. 2007; Chang et al. 2015). Finally, the dataset used in our analysis consists of 139,229 

DEL, 14,638 DUP and 6,083 INV. 

Genetic variance inference 

 To estimate the genetic variance components explained by each marker set, we fitted the 

following linear model using RKHS (Gianola et al. 2006): 

 𝒚 = 𝝁 +  𝒁 𝒖𝟏  +  𝒁𝒖𝟐  +  𝒆 (5.1) 
 

where 𝜇 is the general mean, 𝑦 is the phenotype vector of size n (the number of accessions), 𝑍 is an 

identity incidence matrix, 𝑢1 and 𝑢2 are random effects of each of the marker groups and e is the 

residual. Random effects are assumed to be normally distributed 𝑢1~𝑁(0, 𝐾1𝜎1
2), 𝑢2~𝑁(0, 𝐾2𝜎2

2), 

with constant variance  𝐾1𝜎1
2 and 𝐾2𝜎2

2. Where 𝐾1, 𝐾2 are genomic relationship matrices (GRM) 

obtained from the markers used in the corresponding model. We fitted the model five times using as  

𝐾1 the GRM form SNPs while as 𝐾2, GRM was obtained from MITE-DTX, RLX-RIX, DEL, DUP, INV, 

successively. The GRM were calculated using AGHMatrix (Amadeu et al. 2016). Model was 

implemented in BGLR package (Pérez and de Los Campos 2014) using default priors to estimate 

𝜎1
2, 𝜎2

2.  

Genomic Prediction Models 

Bayesian Regression Models 

Two Bayesian methods are employed in this study: Bayesian RKHS and BayesC. RKHS is a 

method that does not directly estimate the effect of the markers while using a ridge regression L2 

regularization technique like GBLUP. BayesC is a variable selection method that estimates the effect 

of the markers. Both methods applied to each trait separately. Particularly, for each method, two 

different models were designed and applied comparing the predictive performance of using all the 

markers together versus using only SNPs. For RKHS, the models are described as follows:  

 𝒚 = 𝝁 +  𝒁 𝒖𝟏  +  𝒁𝒖𝟐  +  𝒁𝒖𝟑  +  𝒁𝒖𝟒  +  𝒁𝒖𝟓  +  𝒁𝒖𝟔  +  𝒆, (5.2) 
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 𝒚 = 𝝁 +  𝒁 𝒖𝟏  +  𝒆 (5.3) 

 

Where 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6 the six GRM matrices for each marker, SNPs, MITE-DTX, RLX-RIX, DEL, 

DUP, INV, respectively. For BayesC the complete models were: 

  𝒚 = 𝝁 +  𝑿𝟏𝟎𝒌 𝜷𝟏  + 𝒆  (5.4) 

 

 𝒚 = 𝝁 +  𝑿𝑺𝑵𝑷𝒔 𝜷𝟏  +  𝒆      (5.5) 
 

Where 𝑋10𝑘 are the standardized genotypic values for the 10,000 most associated markers among 

SNPs, MITE-DTX, RLX-RIX, DEL, DUP, INV, 𝑋𝑆𝑁𝑃𝑠 is the standardized genotypic matrix for the 10,000 

most associated SNPs, 𝛽1, is the vector of effects for the corresponding matrix. The method based on 

which the 10,000 most associated markers are selected, is described in more detail in the following 

sections.  

Using either RKHS or BayesC, phenotypes to be predicted were removed from the dataset and 

the model fitted using the remaining phenotypes. Prediction ability was assessed by computing two 

different metrics related to the type of the trait. We computed the mean squared error (MSE) 

between predicted and observed phenotypes for the quantitative traits, whereas the binary cross-

entropy was employed for the binary traits. Both models were implemented using BGLR package. 

BayesC assumes that a proportion of markers will have zero effect with probability sampled from a 

beta distribution, 𝜋~𝐵𝑒𝑡𝑎(𝑝0, 𝜋0). The beta prior is parameterized in a way that the expected value 

by E(π) = π0; on the other hand, p0 can be interpreted as the number of prior counts (prior “successes” 

plus prior “failures”) (Pérez and de Los Campos 2014). Here we chose 𝑝0 = 5 and π0 = 0.01. For the 

case of binary traits option “response_type=ordinal” was applied in both methods (RKHS, BayesC). 

Finally, BGLR was run for 100,000 iterations using default priors for RKHS.  

Multilayer Perceptron 

 One of the most popular DL architectures is the Multilayer Perceptron (MLP). MLP is a fully 

connected feedforward artificial neural network which transforms any input dimension to the desired 

dimension. The basic structure consists of an input layer, multiple hidden layers, and an output layer. 

Each layer consists of neurons, that is, a mathematical function that transforms the data received 

before passing them forward. Each neuron connects with a weight to every weight to the next layer. 

All the neurons are connected to every neuron in the previous layer and then connected to every 

neuron in the next layer. Particularly, let us consider the first hidden layer. Each neuron of this first 

hidden layer receives the initial inputs multiplied by a corresponding weight coefficient. Then the sum 

of all inputs multiplied by weight plus a bias, is passed to an activation function which introduces the 

non-linearity to the network transforming the inputs accordingly. The product of the activation 
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function is the output of the neuron. We can represent the output of the first hidden layer as (note 

the transposes): 

 𝒁𝟏 = 𝒇(𝑿𝑾(𝟎)𝑻 + 𝒃(𝟎)𝑻) (5.6) 

Where 𝑍1is the output of the first layer, 𝑏(0)𝑇 is the bias vector of the first layer, 𝑋 is a single matrix 

of all training examples so that we could compute all the prediction using a single matrix 

multiplication, 𝑊(0)𝑇 is the weight matrix and 𝑓 is a nonlinear activation function. The model is 

trained successively, that is, the output of neurons from the previous layer will be the input for the 

next layer. The output of each layer is then formed as follows: 

 𝒁𝒍 = 𝒇(𝑿𝑾(𝒍−𝟏)𝑻 + 𝒃(𝒍−𝟏)𝑻) (5.7) 

Where 𝒁𝒍 is the output of layer 𝑙. Figure 5.1 shows a basic workflow of MLP network.  

 

 

 
Figure 5.1: Multilayer perceptron (MLP) representation with markers (A) and Principal Component (PC) (B) as 

input layers; bottom center shows the basic workflow of a perceptron or else neuron (C).   

Convolutional Neural Networks  

Convolutional neural networks (CNNs) can utilize spatial relationships between nearby 

variables (e.g., pixels) of the input matrix. In general, CNNs work well with data that has a spatial 

relationship. This architecture can accommodate situations where input variables are distributed 
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along a space and are associated with each other such as linkage disequilibrium between nearby 

markers (Pérez-Enciso and Zingaretti 2019).  A CNN is a special case of neural networks which uses 

convolution instead of a full matrix multiplication in the hidden layers. A CNN has hidden layers which 

typically consist of convolutional layers, pooling layers, flatten layers and fully connected dense 

layers. In each convolutional layer, CNN automatically performs a convolution that is a linear 

operation performed along the input of predefined width and strides by applying kernels or filters. 

The weights used are the same for all marker windows. The filter moves along windows of same sizes 

consist of markers performing a multiplication operation (dot product) until the entire matrix is 

traversed.   The filters for CNN are the equivalent of the neurons in a MLP network and they are the 

learnable parameters of our network representing weights. The output of the convolutional function 

can be described as an integral transformation (Widder 1954), as follows: 

 𝒔(𝒕) = (𝒇 ∗ 𝒌)(𝒕) = ∑ 𝒌(𝒕 − 𝒙)𝒇(𝒙)
𝒙

 (5.8) 

where 𝑘 represents the kernel, convolution is the transformation of 𝑓 into 𝑠(𝑡). The operation is 

performed over an infinite number of copies 𝑓 resulting in the weighted sum shifting over the kernel. 

An activation function is applied after each convolution to produce the output layer. After 

nonlinearity has been applied to the feature map produced by the first layer, a pooling layer usually 

follows, aiming to reduce the dimensionality and smoothen the representation. Particularly, it merges 

kernel outputs calculating their mean, maximum or minimum (Figure 5.2). The benefit of using CNN 

is their ability to develop an internal representation of a two-dimensional matrix extracting the most 

important features. CNN leverages the fact that nearby inputs variables are more strongly related 

than the distant ones. The layers in a CNN network are more sparsely than in fully connected MLP. 

Thus, CNN estimates a smaller number of hyperparameters than MLP which requires too many 

parameters forming a dense web.  

 

Figure 5.2: Convolutional Neural Network (CNN) representation used in study.  

Cross-validation and Independent Prediction  

Conventional plant breeding makes trials of new crosses whereas the long growing time of a 

new cultivar in rice, almost 10 years, results in a very low yield pace. GP can accelerate the breeding 
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process by predicting new improved varieties from the available genotypes. The prediction accuracy 

depends on many different genetic factors such as the marker density, LD between markers and QTL, 

sample size, the relationship between the training and test population and the heritability (Xu et al. 

2021). Here we evaluate the prediction accuracy by following two challenging validation scenarios 

both of high importance in a breeding program: prediction of individuals from two different groups 

and prediction of randomly selected individuals from the rest ones. For the first strategy, we 

predicted performance of two distantly related groups, the admixed (ADM, N=29) and aromatic (ARO, 

N=17) using the rest accessions. Since, accessions to be predicted are not related to the accessions in 

the training set, it would be expected a low prediction ability from the models for this scenario.  

In the second strategy, prediction accuracy was evaluated by implementing a 10-fold CV 

where training population consisted of 90% of the data and testing set included the 10% of the 

remaining data. Analysis performed to each of the ten training sets separately assuming ten different 

breeding scenarios. Since accessions are randomly selected and not based on their origin, samples in 

the training set might be related to the predicted ones. Note that, in the case of DL application, 

training population was further split in a validation dataset which included 20% of the training dataset 

(Figure 5.3). Validation dataset is used during the training process of our network to provide an 

unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters. It is 

important to mention that the model “sees” the data and used them for an evaluation of the process 

but never “learn from these”. After the model is trained, we can retrieve the best hyperparameters 

and perform prediction using the test dataset. The test dataset provides the gold standard used to 

make an unbiased final evaluation of the model. It is used only once a model is completely trained 

using the train and validation sets.  

 

Figure 5.3: A visualization of how the three datasets, training, validation and test are divided.  

DL input strategies 

 

In the DL, the input layer consists of a fixed number of neurons where each neuron represents a 

marker in the training set. Here we explore different marker input strategies aiming to enhance 

network flexibility and thus improve prediction ability. Three strategies were designed as follows: 

 

1. Most associated markers: In the first input strategy, we merged the structural and nucleotide 
genomic-wide variation to test whether prediction accuracy can be improved. However, using the 
whole six genotype matrices (SNPs, MITE-DTX, RLX-RIX, DEL, DUP, INV) would add a high 
complexity in our network that might cause an overfitting. Thus, from the 462,512 molecular 
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markers we selected the 10,000 most associated to the traits of interest. Specifically, we 
performed a genome wide association study (GWAS) fitting a linear model to find associations 
between each of the six-marker set and each of the four traits (4x6). For each fitted model, a p-
value corresponding to each marker was collected. From the collection of the p-values the 10,000 
most associated was selected. Note that, since we followed two different cross-validation 
strategies the process was repeating for each of those, that is for the across population training 
set and for the ten partitions training sets. This strategy was applied to DL and BayesC models. 

2.  PCs single matrix: In the second strategy, we exploited the advantages of principal components 
analysis (PCA) trying to incorporate it in neural networks. Studies have shown that using PCA in 
DL framework can be particularly advantageous (Seuret et al. 2017). In our study, principal 
components (PCs) were computed based on eigenvectors for each of the obtained GRM with 
dimensions [n x n], where n the number of observations. We run the analysis by merging in a 
single matrix all the six PCs sets introducing as a single layer to the network (Figure 5.1 (B)) testing 
whether this strategy will enhance the performance.     

3. Multiple inputs: Here, we tested whether multiple inputs strategy could improve the prediction 
of traits. Other works have shown that a multiple inputs strategy can reduce overfitting and 
computational cost while at the same time exploits mixed data improving prediction (Livieris et 
al. 2020). Xiong et al. (2021) showed the outperformance of a multiple inputs strategy over the 
conventional ones, reporting an overall prediction accuracy 79%. Here, we use the six matrix PCs 
as six inputs feeding to the network in different layers. Thus, the network accepted six different 
input layers which independently forwards in six different hidden dense layers. Next the six layers 
are merged by a concatenate layer (Figure 5.4).  
 

 
Figure 5.4: Representation of Multiple inputs strategy employed in the present study.  

Optimization of Hyperparameters  
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CNNs, MLP and BayesC were implemented using the 10,000 most associated markers as 

inputs as well as only SNPs. Additionally, MLP network was employed for using the six PCs as a single 

input matrix, as six different input layers and for PCs produced by GRM of SNPs. RKHS method was 

performed under two models, one using as inputs the six GRM from each marker set and the other 

using the GRM from SNPs. All the models were applied separately to each trait. Table 5.1 shows the 

different models implemented in our analysis.  

Table 5.1: Summary of the analysis. 

MLP, CNN, BayesC RKHS MLP 

 10,000 most 
associated 

SNPs SIX 
GRM 

SNPs 
GRM 

PCs single 
matrix 

PCs six 
matrices 

PCs SNPs 

Culm 
diameter 

x x x x x x x 

Leaf 
senescence 

x x x x x x x 

Grain weight x x x x x x x 
Time to 
flowering 

x x x x x x x 

        
Apply for 11 
scenarios 

x x x x x x x 

Note that we run the analysis for each of the eleven training sets (10-fold, ARO/ADM). In total 

we implemented 11 (4 models + different input strategies) x 4 (traits) x 11 (scenarios) runs in our 

analysis including the Bayesian models. For each of the eleven runs, hyperparameter tuning was 

performed obtaining the best hyperparameters and then retrained the model with the 

hyperparameters obtained by the search. Here Keras Tuner 

(https://www.tensorflow.org/tutorials/keras/keras_tuner) library was used to pick the optimal set. 

Hyperparameters are the variables that control the training process and the topology of our model. 

When the model is built for hyperparameter tuning, the search space is also defined in addition to 

the model architecture. Then a tuner must be selected to determine which hyperparameter 

combinations should be tested. In our analysis we used the Hyperband tuner. The Hyperband tuning 

algorithm uses adaptive resource allocation and early stopping to quickly converge on a high-

performing model. The algorithm trains a large number of configurations for a few epochs and carries 

forward only the top-performing half of models to the next round (Li et al. 2018a) evaluating the 

performance by computing the MSE (for quantitative traits) or the binary cross-entropy (for binary 

traits) on a held-out validation set. The best model is the one that minimizes the error.  After the 

hyperparameter search was finished, we evaluated the model on the test data and performed 

prediction computing the pre-mentioned evaluation metrics of interest on the test dataset. Figure 

5.5 displays the suggested scheme. 
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Figure 5.5: Figure depicts the basic scheme performing from hyperband tuner to determine the best 

configuration towards to the final evaluation of the model.   

DL performance is controlled by various parameters and thus the optimization of the 

hyperparameters is not a trivial step. Here, we designed the tuner search space based on the available 

literature (Sandhu et al. 2021; Zingaretti et al. 2020). There are two types of hyperparameters, the 

model hyperparameters and the algorithm parameters. The first ones influence model selection such 

as the number and width of hidden layers whereas the second ones influence the speed and quality 

of the learning algorithm as the learning rate for optimizer (e.g., Stochastic Gradient Descent). The 

hyperparameters chosen to be optimized were: activation function (relu, tanh, linear), number of 

hidden dense layers (1,2,3,4,5), number of neurons for each hidden layer 

(10,16,38,50,62,98,112,150), number of filters in CNN (16,32,64,128), optimizers (Adam, RMSprop, 

SGD), dropout rate (0,0.05,0.1,0.15,0.2,0.25,0.3), L1 and L2 regularizers with optimized weight decay 

parameter (0.001, 0.01, 0.05,0.1). For the hyperparameter optimization 80% of the training set was 

used and the remaining 20% used as the validation dataset and applied for inner testing.  Training a 

DL network that can generalize well new dataset is a challenging issue. A model with too little capacity 

cannot learn from the data, a problem known as underfitting, whereas a model with a large capacity 

can learn and fit too well to the training dataset results in overfitting. For avoiding and reducing the 

effects of these two phenomena there are techniques that can be adjusted to a DL network. An 

approach to reducing generalization error is to use a large model with 

 

 

Figure 5.6: PCA loadings of each trait for the two first standardized principal components. 
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regularization during training that keeps the weights of the model small. These techniques reduce 

overfitting while at the same time contribute to a faster optimization and overall performance of the 

model. Here we used two regularization techniques such as L1 and L2 with a weight decay parameter.  

These techniques penalize the weight values of the network making values tend to zero, 

negative values equal to 0 avoiding a parsimonious model. L1 adds “squared absolute value of 

magnitude” of coefficient as penalty term to the loss function while L2 adds “squared magnitude” of 

coefficient as penalty term to the loss function. We added L1 and L2 regularizers in the first 

convolutional layer of CNN model and in the first hidden layer in MLP. Additional to the regularization, 

dropout and early stopping were applied to reduce the effect of overfitting and underfitting on our 

models. Dropout is a technique where randomly selected neurons are ignored during the training 

whereas early stopping is a method that stops the training once the model performance stops 

improving on the validation set for a number of training epochs. Our analysis was implemented using 

Tensor Flow 2.8.0 library with Keras 2.8.0 interface and Keras Tuner 1.1.2. 

RESULTS 

Phenotypic Structure and Genetic Inference 

 

 

Figure 5.7: Means of posterior distributions of genetic variances explained by each marker set.  
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PCA gives us the underlying structure of our data and the direction of the maximum variation 

if we project them in a lower dimension space. Figure 5.6 shows the projections of variables of each 

trait onto the principal components.  The length of the arrow is proportional to trait contribution, 

whereas the angle between arrows shows whether traits are correlated (pointed out in the same 

direction) or not. An analysis in two principal components displays that the first component depends 

on grain weight which contributes the most to the total phenotypic variation. The main contributors 

to the second component in descending sequence are, the Time to flowering, Culm Diameter and 

Leaf Senescence.  

Genetic variance estimates were obtained for each trait (Figure 5.7). Particularly, we 

estimated the genetic variance explained by each SVs marker set in comparison to SNPs, in order to 

understand the relative importance of each set to determine the observed phenotype. As Vourlaki et 

al. (2022), we chose not to use the term “heritability” since assumes panmixia, a condition not fulfilled 

here. Figure 5.7 shows that five out of six SVs (MITE-DTX, RLX-RIX, DEL, DUP) can explain a significant 

fraction of genetic variance, larger than that explained by SNPs in two out of four traits, the Culm 

diameter and Leaf Senescence.   

Comparison of Model performances 

The prediction ability of DL implementations is compared to those of Bayesian regression 

applications using RKHS and BayesC for each trait and under eleven scenarios. Particularly, we assess 

prediction by following two different validation strategies, prediction using ten randomly selected 

training sets produced by a 10-fold cross validation strategy and prediction across populations. All 

the models were applied separately to each of the eleven in total validation scenarios (see Materials 

and Methods). Figure 5.8 shows the performance of each of the models in terms of an evaluation 

metric which for binary traits is the binary-cross entropy whereas for quantitative traits is the MSE. 

The points in each box plot of Figure 5.8 represent the values of the evaluation metric for the 10-fold 

cross validation strategy whereas the boxplot shows the distribution of the numerical values 

displaying the data quartiles and average. The value that appears in bold is the median value of each 

model.  The highest prediction ability for culm diameter was obtained using MLP network with 

multiple PCs inputs strategy. For leaf senescence the optimal prediction ability was reported using 

MLP with 10,000 most associated markers. Overall, for the binary traits MLP seems to outperform 

CNN and Bayesian regression models. Note that even a slight improvement in prediction of 

phenotypes can result in a high genetic gain when accumulated through generations.  For the case of 

quantitative traits, Bayesian Regression models reported higher prediction ability values than those 

with DL models. Particularly, grain weight was better predicted under RKHS model using SNPs GRM 

whereas Time to flowering using GRM form 10,000 most associated markers. In addition, the lowest 

loss values observed in Time to flowering.  

In the second cross validation strategy, phenotypes of all ADM and ARO accessions were 

predicted given the rest of the accessions. Figure 5.9 shows the prediction ability for across 

population strategy under eleven different models. Here, culm diameter and leaf senescence were 

better predicted by RKHS using the six GRM as a single input. 
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Figure 5.8: Figure shows the performance of each of the eleven tested models under the 10-fold cross 

validation strategy. Each model was applied separately to each of the ten partitions. Points represent the 

evaluation metric for each of the ten partitions whereas the displayed numerical value represents the median 

value. The y-axis shows the loss metric values which for binary traits is the binary-cross entropy and for 

quantitative traits the MSE. Regarding the legend, where ALL represents the genotype matrix of the 10,000 

most associated markers, SNPs is the genotype matrix of 10,000 most associated SNPs, SIX_GRM represents 

the GRM produced by each of the six marker sets, SNP_GRM, is the GRM produced by SNPs, PCA_SNPS is the 

PCs produced by only SNPs markers, SIX_PCAs_ONE_INPUT represents the six PCs matrices used as a merged 

matrix and PCAS_SIX_INPUTS is the six PCs matrices used as six separated layers.  
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Figure 5.9: Figure shows the performance of each of the eleven tested models under the across population 

strategy. Points represent the evaluation metric and the corresponding numerical value. The y-axis shows the 

loss metric values which for binary traits is the binary-cross entropy and for quantitative traits the MSE. 

Regarding the legend where ALL represents the genotype matrix of the 10,000 most associated markers, SNPs 

is the genotype matrix of 10,000 most associated SNPs, SIX_GRM represents the GRM produced by each of the 

six marker sets, SNP_GRM, is the GRM produced by SNPs, PCA_SNPS is the PCs produced by only SNPs markers, 

SIX_PCAs_ONE_INPUT represents the six PCs matrices used as a merged matrix and PCAS_SIX_INPUTs is the 

six PCs matrices used as six separated layers.  
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Table 5.2: Optimized hyperparameters for culm diameter. 
Hyperparameter MLP CNN MLP PCs MLP MULTIPLE 
Activation Tanh Relu Relu Linear 
No of hidden 
layers 

3 4 2 3 

No of neurons (16,98,98) (16,38,112,98) (98,10) (150,17,32) 
No of filters - 16 - - 
Optimizer Adam Adam RMSprop RMSprop 
Dropout rate 0.25 0.2 0.1 0.05 
Regularization 0.001 0.1 0.001 0.01 

 
Table 5.3: Optimized hyperparameters for leaf senescence. 
Hyperparameter MLP CNN MLP PCs MLP MULTIPLE 
Activation Linear Relu Relu Linear 
No of hidden 
layers 

2 2 4 3 

No of neurons (50,62) (62,62) (150,62,38,16) (98,64,64) 
No of filters - 16 - - 
Optimizer Adam Adam RMSprop RMSprop 
Dropout rate 0.2 0 0.1 0.1 
Regularization 0.001 0.001 0.01 0.01 

 

Table 5.4: Optimized hyperparameters for grain weight. 
Hyperparameter MLP CNN MLP PCs MLP MULTIPLE 
Activation Tanh Relu Tanh Tanh 
No of hidden 
layers 

3 2 3 3 

No of neurons (16,112,150) (62,50) (16,112,150) (10,64,16) 
No of filters - 63 - - 
Optimizer RMSprop Adam RMSprop RMSprop 
Dropout rate 0.1 0 0.1 0.25 
Regularization 0.05 0.01 0.05 0.1 

 

Table 5.5: Optimized hyperparameters for time to flowering. 
Hyperparameter MLP CNN MLP PCs MLP 

MULTIPLE 
Activation Tanh Tanh Tanh Linear 
No of hidden 
layers 

4 3 5 3 

No of neurons (112,10,10,62) (38,10,62,112) (10,98,112,62,112) (38,16,16) 
No of filters - 128 - - 
Optimizer Adam RMSprop SGD RMSprop 
Dropout rate 0.05 0.3 0 0.1 
Regularization 0.05 0.001 0.05 0.1 

 

It is interesting though that DL models seem to outperform the Bayesian ones in both 

quantitative traits. More specifically, grain weight is better predicted using MLP with six PCs as single 

input. The highest prediction ability for time to flowering is reported under a CNN model using all 

SNPs. In general, time to flowering seems to be better predicted compared to the rest traits since in 

both cross-validation strategies, the lowest loss values are reported by the best model. On average, 

prediction across populations was less accurate than in 10-fold scenarios as it was expected because 

of the distantly related training and test datasets. Note that using all markers instead of only SNPs 
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improved prediction in six out of eight cases based on results displayed in Figure 5.8 and 5.9. Overall, 

DL models outperformed Bayesian models four out of eight times. In addition, the improvement in 

prediction ability of quantitative traits in the across scenario was remarkable using DL models. 

Specifically, the loss in grain weight was 54% less than in Bayesian models whereas in time to 

flowering 74% (Figure 5.9).  From the four cases where DL models outperformed Bayesian models, 

MLP was the optimal architecture whereas in the two cases using the PCs as input was the best 

strategy.  

Best Hyperparameters for each trait 

The performance of DL models depends on the optimization of hyperparameters with 

different combinations being essential for particular phenotypic traits as many studies have shown 

(Cuevas et al. 2019; Montesinos-López et al. 2019; Zingaretti et al. 2020; Sandhu et al. 2021). In this 

study, we implemented an analysis of 11 (models) x 11 (scenarios) x 4 (traits) runs for each of the four 

different traits. In each run of the analysis a different set of hyperparameters was optimized but 

demonstrating all these sets would be extremely complicated. The most frequently selected 

hyperparameters over four model categories, MLP, CNN, MLP with PCs and MLP with multiple inputs 

for each of the studied traits are summarized in Tables 5.2-5.5. As Tables 5.2-5.5 depict, the optimal 

number of layers was three in the 50% of the studied cases, followed by four number of layers in 19% 

of the cases. In the case of activation function, hyperbolic tangent activation function also knows as 

Tanh function was the dominant in 44% of the summarized cases. Rectified Linear Unit (Relu) was the 

second optimal activation function with percentage around 31%. Among the available optimizers, 

Root Mean Square Propagation (RMSprop), Stochastic Gradient Descent (SGD) and Adaptive Moment 

Estimation (Adam), the most selected was the first one with percentage 56%. Adam was the second 

most frequently chosen during the hypertuning in 31% of the studied cases. In the case of dropout 

rate, the most selected value to reduce overfitting in the model was the 0.1 in 37.5 % of the cases. 

We observed that for regularization parameter it was harder to point out one value since various 

numbers seem to be selected under different conditions with two be equally frequent, 0.001 and 

0.01 in 25% of the cases each. Finally, focusing on different selected parameters between binary and 

quantitative traits, it is observed that Relu was most selected in binary traits while Tanh in 

quantitative traits.  

Discussion 

This study shows that merging structural and nucleotide genome-wide variation for genomic 

prediction can enhance prediction ability for important agronomic traits in rice. SVs such as MITE-

DTX, RLX-RIX, DEL, DUP and INV merged with SNPs improved prediction performance in 75% of the 

studied cases according to Table 5.6. We found that most of the used SVs sets explain a significant 

fraction of the phenotypic variation in rice (Figure 5.7).  

Studies on plants have shown the association between structural variants and phenotypic 

traits (Żmieńko et al. 2014). Moreover, SVs are responsible for a diversity of phenotypes across major 

traits in plants (Sutton et al. 2007; Cook et al. 2012). Late or early flowering on wheat depends on the 

increase copy number of Vrn-A1 and Ppd-B1 genes respectively (Würschum et al. 2015). In addition, 

plant height in wheat is associated to a specific tandem duplication (Li et al. 2012). Studies in rice and 
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tomato have shown that TIPs can reveal association with traits that are not detected with SNPs 

(Dominguez et al. 2020; Akakpo et al. 2020; Castanera et al. 2021). Transposition activity is not 

constant over time, and it seems to be strongly associated to stress situation and environmental 

stimuli (Dubin et al. 2018). The strong association of transposition activity of SVs to stress situations 

as the adaptation of a crop to a new environment, as in a breeding program, could be an explanation 

of the high capacity of SVs in the prediction of phenotypic traits. Here we chose to analyze four traits 

with an economic impact in rice production. Culm diameter, leaf senescence and time to flowering 

are correlated as Figure 5.6 indicated, whereas grain weight is uncorrelated to them with the highest 

contribution to the total phenotypic variation yet. Traits such as time to flowering and grain weight 

are polygenic, controlled by many quantitative trait loci of large effects (Begum et al. 2015; Xu et al. 

2015; Chen et al. 2021). Studies in culm diameter have shown that it is controlled by twelve QTLs 

associated with lodging resistance in dry direct-seeded rice (Yadav et al. 2017).  In addition, delayed 

leaf senescence or stay-green is associated to forty-six QTLs made up the genetic basis of this 

important trait in rice (Jiang et al. 2004).  Genomic prediction of traits such as time to flowering was 

quite accurate with the loss metrics reported the lowest values across all the study. For leaf 

senescence the GP ability was lower than that in time to flowering yet accurate.  

Table 5.6: Minimum prediction loss and corresponding model with input strategy. 

 Scenario 

Traits 10-folds partitions  ARO/ADM accessions 

Culm diameter 0.614 (MLP with multiple PCs) 0.633 (RKHS with GRM from all 
markers) 

Leaf senescence 0.575 (MLP with 10,000 most 
associated markers) 

0.652 (RKHS with GRM from all 
markers) 

Grain weight 0.69 (RKHS with GRM from 
SNPs) 

0.637 (MLP with PCs as single 
input) 

Time to flowering 0.311 (RKHS with GRM from all 
markers) 

0.313 (CNN with SNPs) 

 

Increasing the prediction accuracy of traits in plant breeding is challenging but at the same 

time of highly importance taking into consideration the constant climate change. New methods 

attempt to improve prediction of agronomic traits promising lower computational cost and better 

results. DL is a state-of-the-art method applied in many different fields. Many studies have compared 

DL with standard linear models for genomic prediction (González-Recio et al. 2014; Ma et al. 2017; 

Bellot et al. 2018; Montesinos-López et al. 2018; Zingaretti et al. 2020).  In this study we investigated 

the performance of DL models for predicting complex traits in rice comparing them to Bayesian 

regression methods under different input strategies and scenarios.  Our results showed that DL can 

increase prediction accuracy compared to Bayesian methods in about half of the studied cases. Table 

5.6 depicts a summary of the study reporting the best models and the lowest values of evaluation 

error metrics such as MSE and binary-cross entropy. Across DL architectures, MLP was the best one, 

a result consistent with other studies in plants (Sandhu et al. 2021) but in contrast to previous 

experience in our group (Bellot et al. 2018; Zingaretti et al. 2020). For the case of Bayesian regression 

models, RKHS clearly outperformed BayesC.  
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Another critical and challenging issue in DL models is the optimization of hyperparameters, 

mainly due to the high computational cost. The tuning of the hyperparameters for each trait depends 

on the genetic basis and architecture of the trait. As we showed in Tables 5.2,5.3,5.4 and 5.5, different 

combinations of hyperparameters were selected for the various traits as the prediction ability is 

highly associated with the interaction of these factors (Bellot et al. 2018; Montesinos-Lopez et al. 

2018).  We observed that Tanh activation function was the most useful across the analysis. However, 

for binary traits Relu was best. Different layers in MLP and CNN were selected as well as various 

number of neurons and filters respectively were chosed to analyze the complex biological 

connections. DL models can capture interactions of large orders because of the presence of hidden 

layers (Goodfellow et al. 2016; Lecun et al. 2015). However, RKHS models are also able to capture 

complex interaction patterns. This ability of both methods can be reflected in our results 

demonstrating that both are equivalent and can capture complex interactions. Incorporating PCs in 

the MLP models proved beneficial since in 50% of the studies with DL as the best model, it was the 

optimal strategy. Using multiple input layers as input strategy was the optimal strategy for culm 

diameter under the 10-fold scenarios. 

It is commonly believed that DL requires a large dataset to be used in order the training of the 

model to be effective (Min et al. 2017; Alipanahi et al. 2015; Xiong et al. 2015). However, our current 

results and some of related works (Ma et al. 2017; Sandhu et al. 2021; Zingaretti et al. 2020) support 

that DL models can be effective even with a smaller dataset for training. Bellot et al. 2018 found that 

using 100k individuals for prediction did not result in a consistent advantage in DL models. Thus, the 

training population size can be less important compared to the studied trait (Sandhu et al. 2021). To 

avoid overfitting that is the biggest issue in a small dataset, regularization and dropout techniques 

were applied. It is worth mentioning that even though Table 5.6 indicates equivalent prediction values 

between the two validation scenarios followed here, in across scenario the prediction ability of 

quantitative traits was improved by DL for 54% in grain weight and 74% in time to flowering. These 

results might suggest that the association of genetic basis of the studied trait to the accessions used 

for training can be critical in GP. The fact that training and test dataset were distantly related in 

ADM/ARO scenario, makes the results even more interesting.  

Finally, we would like to mention the challenges and limitations of DL models.  Firstly, DL 

models do not provide clear insights into the genetic architecture of the traits, nor do they give 

information about the effects of specific markers in the studied traits. Different hyperparameters act 

on different parts of the data, making it hard to interpret the biological significance and importance 

of each marker in the model (Bellot et al. 2018; Cuevas et al. 2019).  Also, the high computational cost 

of training models is a significant drawback, especially when multiple hyperparameters must be 

optimized for each trait separately (Gulli and Pal et al. 2017).  It is clear that the outperformance of 

DL over linear models is not always the case. The prediction ability depends on the studied traits and 

can be influenced by many factors. There is not a single algorithm that perform better in all species 

and traits (Perez-Enciso and Zingaretti 2019) since its performance depends on various factors. 

Therefore, even though the advantage of DL networks against linear methods has not been 

established yet, their incorporation into plant breeding can be important to improve genetic merit 

for complex traits.  
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Chapter 6  

Discussion 

Many complex traits of interest are highly heritable and yet genetically complex, meaning that 

their variation arises from differences at numerous loci in the genome. Genetic architecture describes 

the characteristics of genetic variation that are responsible for heritable phenotypic variability. It 

refers to the number of genetic variants affecting a trait (or fitness), their frequencies in the 

population, the magnitude of their effects and their interactions with each other and the 

environment (Timpson et al. 2018).  

This thesis tries to understand and explore the consequences of polygenic variability through 

two different approaches, the population genetics using inference, and the quantitative genetics 

using prediction. Two different frameworks, that of domestication and that of plant breeding are used 

to address the objectives posed by this thesis. While selective breeding is the intentional selection by 

humans to change the gene pool of population, usually applying truncation selection, domestication 

is the consequence of all selection pressures coming from selective breeding and from natural 

selection in a given environment, which modifies the gene pool of a population for life (Kincaid 1993). 

In both frameworks, humans are interested in reproducing desired traits bearded by the selected or 

domesticated individuals. However, the way the phenotypic traits vary across a population is still to 

be determined since their underlying genetic architecture is not easily defined and controlled. The 

vast majority of the complex traits is controlled by many loci with small effects that experience only 

subtle changes in their frequency. Because of this complexity, to identify signals of polygenic 

variability is not a trivial procedure. Nevertheless, studying the way that variability patterns changed 

under different selective and demographic effects can give us a new insight into the genome of 

species. At the same time, current studies in GWAS allow us to detect association between 

phenotypic traits and causative variants that are not only restricted to nucleotide but even structural 

variation. Accordingly, this thesis was divided into two parts. The first part focuses on the study by 

simulation of the patterns of variability affected by polygenic adaptation and methodologies for 

detecting signals of genome variability controlling the polygenic adaptive traits under a domestication 

process.  The second part aims to examine whether the use of different sources of genomic variability 

can improve the prediction of complex traits under a rice breeding process and evaluating different 

methodologies.  

  Many studies in population genetics (e.g., Kim and Stephan 2002; Nielsen 2005) have tried 

to find signatures of positive directional selection in the genomes of natural (sexually recombining) 

populations. The final aim has been to find the loci favored by selection and define their associated 

functions and phenotypes. The predictions of the Neutral Theory (Kimura 1968) have been widely 

used as a null model in population genetics, which assumes a few loci at which positive selection acts 

with some occasional extensions to multiloci models. Gillespie (1994) contrasted the Neutral theory 

with other where the action of natural selection predominates but it is affected by fluctuating 

environmental changes in the direction of selection, arriving to similar predictions. However, 

recently, thanks to the effort and advances at genome level sequencing in the last two decades, 
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polygenic selection has been studied using quantitative genetic theory, which is formulated in terms 

of allele frequencies. In the quantitative genetic models of adaptation, selection acts on one or more 

phenotypic traits such that a genotype-phenotype map is assumed to bridge the gap to population 

genetics theory (de Vladar and Bardon 2014; Stephan 2016). Pritchard et al. 2010 argued that 

adaptation in natural populations occurs not by sweeps alone, but by subtle allele frequency shifts as 

well, in many loci controlling polygenic traits. That raises questions around the genomic basis of 

environmental changes such as domestication.  

In Chapter 3 of this thesis, we simulated domestication process under different selective and 

demographic conditions trying to infer their effect on the genome. We investigated the patterns of 

variation and the capacity to detect the effect of positive selection when domestication is driven by 

different scenarios having many loci of medium to weak effects following a polygenic adaptation 

model. Even though many studies have explored the genomic basis of domestication and the genetic 

cost of the process (e.g., Ross-Ibarra et al. 2007; Flood and Hancock 2017; Moyers et al. 2018; Flori et 

al. 2019; Frantz et al. 2020; Leno-Colorado et al. 2020), the genetic architecture that controls the 

adaptive traits is yet to be revealed. In our study we didn’t simulate domestication as a single 

polygenic trait but as an environmental process that modifies the selective effects of many different 

loci aiming to study not how genes influence phenotype, but rather to know what evolutionary forces 

maintain genetic variability. Specifically, we assumed two populations diverged after a hypothetical 

environmental change. The environmental change is simulated assuming a number of deleterious 

mutations including effectively neutral ones in the wild population to become beneficial in the 

domesticated population. Conversely, mutations with beneficial effect in the wild population become 

deleterious or effectively neural in the domesticated population. The impact of migration is also 

investigated from the wild to the domesticated populations. Firstly, we conducted a comparative 

study of the patterns of genetic diversity between the two populations.  

The age of adaptive mutations depends on demographic events 

Table 6.1: Description of the ten simulated scenarios. 

Scenarios Bottleneck 
Duration 

Migration Strength of 
Positive 

Selection (Sb) 

Domestication 
 
% Change       %Positive 

1 Short Yes 10 0 2.5 
2 Short Yes 1 5 25.0 
3 Short Yes 1 25 10.0 
4 Short No 1 0 2.5 
5 Short No 1 25 25.0 
6 Short No 10 25 2.5 
7 Long No 10 0 2.5 
8 Long No 1 5 2.5 
9 Long No 1 25 25.0 
10 Long No 10 5 10.0 

 

In Chapter 3, we simulated ten different scenarios (Table 6.1). We quantified the fraction of 

adaptive substitutions (𝛼) across scenarios and populations, observing that for wild population the 



 132 

highest values of 𝛼 are seen in scenarios with strong selection (scenarios 1, 6, 7 and 10, Figure 6.1) 

whereas for domesticated population, the largest 𝛼 values are observed in scenarios 1,3, 5 and 9 

(Figure 6.1).  These scenarios (except scenario 1) assumed a high fraction of deleterious mutations in 

wild population that become beneficial in domesticated population (Table 6.1). A large fraction of 

adaptive amino acid substitutions (25-60%) in these scenarios can be explained by initially deleterious 

polymorphisms that become beneficial (m7 sites) in the process of domestication (Figure 6.2, Table 

3.4, Supplementary Table A.3). 

 
Figure 6.1: Figure shows the true alpha for total mutations in relation to all nonsynonymous fixations per 

scenario and for each population. S number refers to scenarios in Table 6.1. 

In all simulated scenarios the largest proportion of adaptive substitutions came from 

polymorphisms that have been beneficial before domestication started (Figure 6.2, Supplementary 

Table A.3). We observed that there is an association between the bottleneck duration and the 

number of beneficial variants that are exclusive in domesticated population. Under a short 

bottleneck, new beneficial variants segregating in domesticated population don’t have the time to 

reach fixation whereas the opposite is noticed when a long bottleneck is simulated. In fact, for longer 

bottlenecks, “de novo” adaptive amino acid substitutions reach fixation in higher proportion than 

other scenarios, but at the same time a high proportion of fixed deleterious mutations increase as 

well (Figure 6.2. Supplementary Table A.3). 
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Figure 6.2: Figure shows the absolute number of shared and exclusive beneficial variants per each scenario for 

the domesticated population. Red color indicates variants that change their effect from deleterious to 

beneficial after domestication split (m7). Blue color shows the variants that change their effect after 

domestication split but remain beneficial (m2, m3).  S number refers to scenarios in Table 6.1. 

Distortion of the site frequency spectrum (SFS) caused by demography and linked selection 

Comparing the 1D-SFS of synonymous and nonsynonymous variants against the expected 1D-

SFS for only neutral mutations under the same demographic model revealed the action of linked 

selection in the domesticated populations (Figure 3.4). During a long bottleneck (scenarios 7, 8, 9 and 

10, Table 6.1), haplotypes with deleterious variants can increase in frequency under the effect of a 

small effective population size as well. These deleterious variants will drag with them neutral variants 

which are in linkage resulting in an excess at low frequency variants and a lack of variation in the rest 

frequency classes as observed in Figure 3.4. Linked selection seems to be taking place also in short 

bottleneck scenarios and particularly in scenarios where a high fraction of deleterious segregating 

mutations become beneficial (Figure 3.4, scenarios 2, 3, 5, 6, reflected as a subtle increase in the 

number of synonymous variants at higher frequencies). It is interesting though to study more in depth 

if linked beneficial selection is affecting the 1D-SFS in short bottleneck scenarios. We found that in 

scenarios 3, 5 and 6 (Figure 3.4) the excess of synonymous variants at high frequency is larger than 

the excess of nonsynonymous variants. We assume that the shift in the selection coefficients in the 

domesticated population is setting the ideal conditions for the emergence of soft sweeps (Hermisson 
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and Pennings 2005; Stetter et al. 2018). Therefore, soft sweeps might be the reason that caused this 

distortion of the synonymous 1D-SFS in short bottleneck scenarios.  

Quantifying the signal of domestication 

Two algorithms were employed in this study for inferring the distribution of fitness effects 

(DFE) parameters under domestication: polyDFE and dadi. Using polyDFE, the DFE of each population 

is compared individually, whereas with dadi a new joint DFE model is inferred. We found that polyDFE 

provides more precise estimates of the deleterious section of the distribution than the new joint DFE 

algorithm from dadi (Figure 3.5). On the other hand, the new joint DFE model can distinguish the 

strength of positive selection between weak and strong even though tends to overestimate the 

strength for scenarios with a high proportion of positive change (Table 3.7). However, the new dadi 

algorithm is able to estimate the fraction of mutations that changed their selective effect in the 

domesticated population (pc, see Figure 3.9). Nevertheless, we were not able to infer accurately the 

deleterious mutations that have become beneficial (pc+) since our estimates were not significantly 

different from zero.  

 The process of adaptation is of fundamental importance in evolutionary biology. Advancing 

our understanding of the genomic basis of domestication is essential not only to understand this 

phenomenon but overall to understand how evolutionary forces act and shape the genetic diversity 

of populations. The knowledge of the full DFE can give us an insight into how these evolutionary 

forces interact and change the effect of mutations on fitness under an environmental change. Finally, 

despite the limitations encountered in this study for detecting a polygenic signal of domestication, 

we were able to quantify it through the analysis of a joint DFE. 

Genome-wide variation and association with traits 

 Modern genotyping technologies has made it possible to identify quantitative trait loci (QTL), 

the regions of a chromosome or individual sequence variants that are responsible for trait variation 

(Barton and Keightley, 2002). This has accelerated the delivery of new crop varieties with improved 

yield and quality. Genomic prediction (GP) methods can increase breeding speed as they are 

particularly effective to predict complex traits affected by many genes, overcoming the Marker- 

assisted selection (MAS) limitations. Most studies in plant breeding assume that the genetic variability 

at the whole-genome level is due to SNPs. In Chapter 4 we incorporated TIPs as genetic markers in 

GP models to study whether they can improve prediction of traits in rice compared to using only 

SNPs. However, TIPs are not the only structural variation in the genome. Structural variation such as 

deletions, inversions, and duplications are prevalent in the genome and they play an important role 

in plant evolution. In Chapter 5, we investigated if merging the structural and nucleotide genome-

wide variation can improve prediction ability of traits. It is important to note that genetic differences 

caused by SVs and TIPs can lead to phenotypic variations in a species.  

SVs explain a significant fraction of total genetic variation  

 The prediction ability of GP methods depends on the proportion of phenotypic variance 

explained by the markers. In Chapters 4 and 5 we showed that SVs can explain a high fraction of 
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genetic variance, even larger than that explained by SNPs (Table 4.1, Figure 5.7). Overall, SVs 

contributed more to the phenotypic variation in traits such as culm diameter, culm strength, leaf 

senescence, salt injury and panicle threshability. Figure 6.3 shows a summary of the results (Table 

4.1, Figure 5.7) found in Chapters 4 and 5, indicating which type or variation explains the largest 

fraction of genetic variance in each phenotypic trait.  

 
Figure 6.3: Bar plot displays the type of variation explains the highest fraction of genetic variance for each 

phenotypic trait. Plot is summarized by results demonstrated in Table 4.1 and Figure 5.7.  

SVs improve prediction of phenotypic traits 

Our results suggested that SVs improve prediction ability for important agronomic traits in 

rice (Figure 4.2, 4.3, 5.8, 5.9). Table 6.2 indicates which type of variation resulted in the best 

predictions. Summarized results were extracted by Table 4.3 and Table 5.6 evaluating only the highest 

value per each trait for each Table, independently of the cross-validation strategy. Based on the 

results it is interesting to examine the reasons behind the high capacity of TIPs and SVs to predict 

phenotypes better than SNPs.  

Studies on plants have shown that SVs are responsible for phenotypic variation in many 

important traits in plants whereas they demonstrate associations with traits that are not detected 

with SNPs (Dominguez et al. 2010; Akakpo et al. 2020; Castanera et al. 2021; Żmieńko et al. 2014; 

Sutton et al. 2007; Cook et al. 2012; Fuentes et al. 2019). TEs have been proposed as an agent of rapid 

adaptation because they can produce abundant genetic variation in a limited time whereas they 

affect phenotypic variation (Stapley et al. 2015; Schrader et al. 2014; Casacuberta et al. 2013; Chuong 
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et al. 2017; Barrón et al. 2014). Nevertheless, the extent to which TEs contribute to rapid phenotypic 

variation and the mechanisms by which they influence phenotypes are unknown (Niu et al. 2019). 

Fuentes et al. (2019) showed that rice genome regions with frequent SVs were enriched in stress 

response genes. In contrast to SNP mutation rate, transposition activity is not constant over time with 

bursts of transposition associated with stress situation or environmental stimuli. Hence, the 

adaptation of a crop to a new environment, as in breeding could be a period particularly prone to 

transposition activity (Dubin et al. 2018; Baduel and Quadrana 2021).  

Table 6.2: Type of variation results in the highest prediction ability for each phenotypic trait.  

Trait Type of Variation  

Culm Diameter MITE-DTX, ALL 

Culm strength SNPs 

Flag leaf angle SNPs 

Grain length MITE-DTX 

Grain width SNPs, ALL 

Leaf length RLX-RIX 

Leaf senescence MITE-DTX, RLX-RIX, ALL 

Grain weight MITE-DTX, ALL 

Salt injury  SNPs, MITE-DTX 

Time to flowering ALL 

Panicle threshability SNPs 

*ALL: Structural and nucleotide variation applied together.   

 

TE insertions are highly deleterious with the strongly ones rapidly removed from the 

population. Insertions that have little or no effects on genome function and host fitness may reach 

fixation according to the efficiency of selection and drift at purging these insertions from the 

population, which vary among species (Lynch 2007).  Also, TE insertions mostly segregate in small 

frequencies whereas the fitness effect varies across the different superfamilies. Natural selection and 

genetic drift seem to shape the distribution and accumulation of TEs (Lynch 2007). The action of 

evolutionary forces can explain why some elements are maintained in certain genomic location than 

others (Campos et al. 2016). Moreover, SVs can demonstrate stronger effects than SNPs as some 

transposon types tend to localize near genes. Unlike SNPs that are randomly distributed along the 

genome, most TE families show strong insertion preferences towards genes. However, because TE 

typically have major functional impacts, they are more rapidly purged by natural selection than SNPs 

(Baduel and Quadrana 2021). Particularly, TEs families associated to environmental cues, often 

integrate within genes involved in the environmental response generating large-effect mutations, 

some of which are potentially adaptive (Baduel and Quadrana 2021). 
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Therefore, SVs could be causative mutations linked to a specific phenotypic trait. Indeed, SVs 

seem to play a major role in plant genome evolution both in wild and under a breeding framework 

with examples of SVs as causative mutations have been reported for various agricultural traits (Lisch 

2013; Dubin et al 2018). Given the fact that climate change has already shown its consequences, 

understanding how organisms adapt to new environments is of major importance. Since standing 

genetic variation is generally considered as the main source of rapid adaptation to environmental 

changes, the majority of genomic studies mostly focused on SNPs. However, SVs seems to contribute 

with rare and typically large-effect alleles supplying species with adaptive de novo variants in 

response to the environment (Capblancq et al. 2020; Baduel and Quadrana 2021). Understanding this 

major role of SVs as a source of genetic variation and incorporating them in plant breeding programs 

could provide us with a high advantage on predicting new phenotypes adapted to drastic 

environmental changes. Hence, we will be able to sustain and improve the crop yield for global 

population in response to new environmental conditions.  

Polygenic traits  

All the traits studied were of particular importance for a rice breeding program. Among them, 

time to flowering is a highly critical trait since an early or late growing can affect the yield (Wang and 

Li 2019). Morphological traits such as grain weight, grain length and grain width as well as stay-green 

traits as leaf senescence, are of great importance for crop production. It was interesting to observe 

that using GP either with Bayesian methods or DL networks, the highest and more accurate prediction 

ability values were reported for time to flowering, grain length, grain width and leaf senescence 

(Table 4.3 & 5.6). Some of those traits are uncorrelated as time to flowering with grain width (Figure 

4.1). However, all these pre-mentioned traits are polygenic. Traits such as time to flowering, grain 

length and grain width are controlled by large effect quantitative trait loci (Begum et al. 2015; Xu et 

al. 2015; Chen et al. 2021). Numerous QTL have been detected in leaf senescence (Jiang et al. 2004). 

 We found that GP was quite accurate for these traits, with SVs often outperforming SNPs. As 

we have already mentioned, TE insertions have a major impact on phenotypes associated with rapid 

adaptation. Thus, a question arises in our study is whether there is an association between specific 

studied traits in rice and SVs. The role of SVs in producing major effect alleles and causative variants 

associated with phenotypic traits, could be a potential reason of the precise prediction of these traits 

in our study. Since plant breeding is a cumulative progress acts over generation, even a small 

improvement on the prediction of a trait will be of high importance in medium to long term.  

From domestication to breeding  

Andersson and Purugganan (2022) reviewed the progress that has been made in the last years 

for revealing the underlying genetic variation controls for the phenotypic diversity in crops and 

domesticated animals. Their study suggested that no obvious domesticated genes are involved in 

animal domestication. Particularly, a polygenic background is observed. The domestication of plant 

and animal species causes genetic differentiation between the domesticated populations and their 

wild ancestors, but also increases the phenotypic variation within species as new traits appeared to 

be selected. The selection pressure acts adapting species associated to a given environment, 
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increasing the fitness of the species, and consequently modifying the phenotypic diversity by 

selecting adaptive traits. Therefore, selection by domestication can be classified in different types. 

Usually, when variation in the selected traits of the domesticated population decreases, directional 

selection is on action. If the variation in selected traits is increased, then diversifying selection that 

can lead to speciation is driving the process (Meyer and Puruggannan 2013). However, domestication 

process can be defined as a coevolutionary mutualistic relationship between humans and plants or 

animals (Zeder et al. 2006). In some domestication pathways the process was unconscious at first 

followed by human acting in an intentional manner and apply conscious (artificial) selection to the 

plants or animals they interacted with. Assuming that conscious directional selection has occurred 

later in the domestication process, it could result in genes underlying traits that show a reduction in 

diversity due to the fixation of a favored allele (Ross-Ibarra et al. 2007).  

Strong selection can lead to the fast fixation of advantageous variants in domesticated 

population as studies in plants have shown (Andersson and Purugganan 2022). In contrast to animal 

domestication, various genes important to the domestication process have been detected in plants. 

It is assumed that animal domestication occurred by a gradual stage at many loci affecting tameness. 

That could explain why no specific domestication genes have been revealed. On the other hand, in 

plants, few genes with major effect have been identified. Among the numerous plant loci that have 

been identified and linked to specific crop domesticated phenotypes, structural variation seems to 

underlie a high fraction of variation. More specifically, in a study of 60 known crop genes validated or 

putative as causative mutations, 41% were SNPs, 38% were insertions/deletions, 15% are TE 

insertions and 5% duplications or chromosomal rearrangements (Meyer and Puruggannan 2013). In 

animals, various large-scale deletions, inversions, and translocations have been linked to alleles with 

major phenotypic effects (Andersson and Puragganan 2022). The role of TE insertions in the evolution 

of domesticated species is of great importance. Studies have reported how TE insertions have been 

affected the phenotypic variation. For example, allelic variation has been derived as result of coding 

region transposon insertions in wrinkled R phenotype in Mendel´s peas and in color polymorphism of 

date palm (Bhattacharyya et al. 1990; Hazzouri et al. 2015). In general, the activity of TEs in plant 

evolution has been demonstrated more broadly than in animal genomes. However, TIPs associated 

with phenotypic traits of domesticated animal have been reported as in case of henny feathering trait 

in chicken (Matsumine et al. 1991; Li et al. 2019) and in short-legged phenotype in several dog breeds 

(Parker et al. 2009). As we showed in Chapters 4 and 5 of this thesis, SVs and TIPs can explain a high 

fraction of phenotypic variation in rice agronomic traits (Table 4.1, Figure 5.7). At the same time, the 

remarkable performance of the prediction of particular phenotypic traits and the outperformance 

over SNPs in many cases (Tables 4.3 & 5.6), makes the incorporation of them in a breeding program 

imperative. The incorporation of SVs and TIPs in breeding programs could be a key factor for achieving 

the high production challenges. To further benefit breeding, SVs and TIPs genotyping automatization 

is needed along with extensive databases of crop genome sequences. To sum up, it has been shown 

that polygenic adaptation, strong selection, deleterious mutations, large effect loci alleles and 

structural variation are some of the reasons genetic architecture underlies phenotypic variation 

varies so much across forms of life.  

The study of the genetic basis of diversity in domesticated species is inextricably linked to the 

improvement achieved during the last century in food and nutritional security. In this direction, 
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quantitative genetics theory has been the main tool for developing new and effective breeding 

strategies in crops and animals. Sustainable food production along with the development of disease 

resistant and climate resilient crops are some of the requirements for food security. However, the 

constantly increasing word population and the climate change, have made extremely challenging to 

meet the high demands in rice yield. It has been projected that production has to be increased by 

60% by 2050 amid climate change consequences (Budhlakoti et al. 2022), such as increased heat, 

drought, and insect outbreaks. The conventional breeding strategies of hybridization and phenotypic 

selection don’t satisfy the demanded genetic gain. The improvement in the genetic gain based on the 

Lush equation (Lush 1943) can be secured through i) better phenotypic selection via high-throughput 

phenotypic and ii) exploiting a broad genetic information representing a diverse eco-geography in 

breeding program. The progress in genomics approaches leads to the availability of huge resources 

like genome sequence information. This information has been extensively used for the identification 

of loci associated with complex and important traits. Genomic prediction has emerged as a significant 

tool which can exploit genetic information for modeling the crop yield, accelerating the breeding 

progress under different environmental conditions. Various GP models such as Bayesian models and 

Deep Learning networks can be implemented to achieve a better prediction ability in breeding 

programs. However, our results (Figures 5.8 & 5.9) suggested that there is not a single method that 

performs better in all species and traits. Finally, genetics studies of crops and livestock species are 

important to highlight the genetic architecture of phenotypic variation, and to help us understand 

better how species are adapted and how to secure global food production.  
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Chapter 7 

Conclusions 

1. Weak beneficial polygenic effects are usually difficult to detect. Nevertheless, these can be 

detectable if they are affecting a large proportion of the genome, say >10%. 

 

2. Some aspects of the full distribution of fitness effects (DFE), such as the shape and strength 

of the deleterious DFE, are accurately estimated in both wild and domestic populations when 

using only the 1D-SFS. However, using the new joint DFE model contrasting the 2D-SFS we 

were able to quantify a signal of domestication, expressed as the fraction of mutations with 

divergent selective effects. 

 

3. In highly polygenic models of domestication, the main source of adaptive mutations (i.e., 

shared ancestral versus new exclusive variants) is highly dependent on the demographic 

patterns, such as the strength of the bottleneck.  

 

4. In scenarios of polygenic domestication, the SFS of neutral sites deviated from the expected 

neutral pattern, which points to the action of linked selection as the process to explain the 

deviation from neutrality in the SFS of neutral sites.  

 

5. Structural variation explains a sizable fraction of the total genetic variation in agronomic traits 

in rice. 

 

6. Structural variation can improve significantly genomic prediction of complex polygenic traits. 

 

7. There is not a single genomic prediction method that performs better in all species and traits.  

However, Deep learning methods could be beneficial for plant breeding programs.  
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Żmieńko A., Samelak A., Kozłowski P., Figlerowicz M. (2014) Copy number polymorphism in plant genomes. 

Theor Appl Genet. 127(1):1-18. doi:10.1007/s00122-013-2177-7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1073/pnas.1501711112


 163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 164 

 

 

 

 

Appendices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 165 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 166 

Appendix A 

Detection of domestication signals through the 

analysis of the full distribution of fitness 

effects using forward simulations and 

polygenic adaptation 
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SUPPLEMENTARY INFORMATION 
 

 
Results 

A. Summary statistics of the simulated populations 

 

DOMESTIC POPULATION   
Table A.0: Proportion of type of nonsynonymous mutations (m2-m7) per site and Observed number of fixed and 
polymorphic mutations per  scenario (s1-s10)  

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

SITE PROPORTION 
          

m2 0.0250 0.0238 0.0188 0.0250 0.0188 0.0188 0.0250 0.0238 0.0188 0.0238 

m3 0.0000 0.0003 0.0006 0.0000 0.0016 0.0002 0.0000 0.0000 0.0016 0.0001 

m7 0.0000 0.0122 0.0244 0.0000 0.0609 0.0061 0.0000 0.0013 0.0609 0.0049 

m4 0.0000 0.0009 0.0056 0.0000 0.0047 0.0061 0.0000 0.0012 0.0047 0.0011 

m6 0.0000 0.0366 0.2194 0.0000 0.1828 0.2377 0.0000 0.0475 0.1828 0.0439 

m5 0.9750 0.9262 0.7312 0.9750 0.7312 0.7312 0.9750 0.9262 0.7312 0.9262 
           

NUMBER FIXATIONS 
          

m2 6905 1352 1191 1553 1259 5333 7180 1807 1390 7018 

m3 0 13 43 0 106 35 0 3 120 39 

m7 0 288 614 0 1642 193 0 37 2017 180 

m4 0 59 325 0 283 1686 0 80 317 296 

m6 0 894 5282 0 4746 6540 0 1593 6127 1483 

m5 25825 23013 17856 25019 19334 20260 33222 30906 24276 31765 
           

NUMBER POLYMORPHISMS 
         

m2 1843 1714 1286 1331 891 1021 63 68 49 81 

m3 0 29 46 0 84 10 0 1 6 1 

m7 0 627 1233 0 2419 244 0 4 162 13 

m4 0 57 353 0 183 265 0 3 16 0 

m6 0 1851 10664 0 6200 7422 0 120 511 123 

m5 39822 46254 35925 37619 25604 23661 2877 2616 2113 2634 
           

FIXED SUBSTITUTIONS IN DOMESTIC / POLYMORPHIC OR 
ABSENT IN WILD 

      

m2 21 8 18 81 67 135 437 348 283 407 

m3 0 0 1 0 8 0 0 1 21 5 

m7 0 3 6 0 117 19 0 11 540 39 

m4 0 0 1 0 18 21 0 17 65 26 

m6 0 3 43 0 314 349 0 447 1574 321 

m5 114 162 167 1264 1303 1212 7525 8169 6462 7370 
           

NUMBER  OF EXCLUSIVE POLYMORPHISMS 
        

m2 276 652 482 780 559 629 59 68 48 80 

m3 0 13 20 0 53 3 0 1 6 1 

m7 0 307 606 0 1766 204 0 4 162 13 

m4 0 14 122 0 115 141 0 3 16 0 

m6 0 843 4967 0 4561 5728 0 120 510 123 

m5 10415 21003 16824 25984 18609 17845 2874 2610 2104 2628 
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Table A.1A: Number of fixed and polymorphic mutations at Wild, Domestic and both 

Scenario FW FD FBoth PW PD PBoth 

1 55727 55657 55446 65732 67901 82552 

2 48458 47989 47645 72312 82962 108832 

3 47958 47692 47193 73534 81549 110484 

4 48282 49786 47377 74009 63839 117157 

5 48615 51191 47785 71426 57637 112422 

6 55449 57608 54503 64650 52329 103552 

7 55230 68436 54909 65935 4364 70295 

8 47548 62701 47221 72736 4240 76973 

9 47869 63002 47582 72139 4383 76518 

10 55805 68992 55340 65371 4310 69680 

FW: Fixed variants at Wild. FD: Fixed variants at Domestic. FBoth: Fixed variants at the species. PW: Polymorphic variants at 
Wild. PD: Polymorphic variants at Domestic. PBoth: Polymorphic variants in the species 
 
 
 

 
Table A.1B: Number of fixed, exclusive and shared synonymous variants observed in the Domestic populations for each 
scenario 

Scenarios SfWD SfW SfD SxW SxD Ssh SfWxD SfDxW 

1 22851 0 0 5018 5848 20269 119 76 

2 22202 0 0 9091 12875 19178 377 168 

3 22118 0 0 10220 13164 18545 333 263 

4 22150 3 8 19082 15484 8983 422 1056 

5 22242 16 53 19452 14550 7355 351 1526 

6 22192 22 57 17868 13468 5847 391 1312 

7 22469 125 1547 21571 1418 3 3 4018 

8 21788 149 1704 23724 1422 3 3 4783 

9 22280 131 1586 23554 1516 2 8 4889 

10 22727 181 1519 21278 1448 1 9 3965 
SfWD: Fixed variant in the species in relation to the outgroup. SfW: Exclusive fixed variant in Wild. SfD: Exclusive fixed 
variant in Domestic. SxW: Exclusive polymorphism in Wild, SxD: Exclusive polymorphisms in Domestic. Ssh: Shared 
polymorphic variants. SfWxD: Fixed variants in Wild and polymorphic in Domestic. SfDxW: Fixed in Domestic and 
polymorphic in Wild. S: Scenarios. 
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Table A.2: Ratios of Polymorphisms and Divergence at functional versus neutral positions per population 

Scenarios Pisyn Ksyn Pinsyn/Pisyn Knsyn/Ksyn 

  WILD DOM WILD DOM WILD DOM WILD DOM 

1 0.00114 0.00114 0.01032 0.01032 0.720 0.720 0.706 0.706 

2 0.00129 0.00136 0.01028 0.01028 0.703 0.705 0.581 0.582 

3 0.00132 0.00124 0.01028 0.01027 0.693 0.698 0.581 0.580 

4 0.00132 0.00113 0.01027 0.01028 0.701 0.710 0.584 0.584 

5 0.00130 0.00098 0.01030 0.01030 0.688 0.713 0.585 0.585 

6 0.00113 0.00084 0.01021 0.01019 0.716 0.744 0.716 0.715 

7 0.00114 0.00003 0.01021 0.01021 0.722 1.012 0.715 0.719 

8 0.00130 0.00003 0.01011 0.01012 0.703 0.985 0.593 0.598 

9 0.00131 0.00003 0.01024 0.01024 0.699 0.890 0.583 0.589 

10 0.00113 0.00003 0.01029 0.01027 0.726 1.057 0.707 0.713 

Pisyn: Nucleotide diversity at neutral positions 

Ksyn: Nucleotide divergence at neutral positions 

Pinsyn/Pisyn: Ratio of nonsynonymous to synonymous polymorphisms 

Knsyn/Ksyn: Ratio of nonsynonymous to synonymous divergence 
 

 
 

B.  True alpha 
 
Table A.3: Number of Total, Shared and Exclusive beneficial fixations and Nonsynonymous fixed mutations 

 All Variants Shared Variants Exclusive Variants 

 Wild        Domestic Wild Domest
ic 

Wild Domestic Wild Domest
ic 

Wil
d 

Domestic Wil
d 

Domest
ic 

s Nben

* 
Nben

† 
Nm2+m

3
§ 

Nm7

¶ 
Nsyn

ß Nsyn
ß Nben

* 
Nben

† 
Nm7

¶ 
Nsyn

ß Nsyn
ß Nben

* 
Nben

† 
Nm7

¶ 
Nsyn

ß 
Nsyn

ß 

1 691
5 

21 21 0 3275
7 

135 691
5 

21 0 3275
7 

135 0 0 0 0 0 

2 144
2 

11 8 3 2587
9 

176 144
2 

11 3 2587
9 

176 0 0 0 0 0 

3 156
3 

25 19 6 2550
7 

236 156
3 

25 6 2550
7 

236 0 0 0 0 0 

4 150
4 

81 81 0 2570
7 

1345 150
4 

81 0 2570
5 

1329 0 0 0 0 0 

5 158
9 

192 75 117 2600
6 

1827 158
6 

184 110 2597
5 

1748 3 8 7 31 79 

6 699
6 

154 135 19 3284
4 

1736 698
9 

147 19 3280
4 

1654 7 7 0 40 82 

7 678
8 

437 437 0 3263
3 

7962 674
7 

367 0 3244
6 

5242 41 70 0 187 2720 

8 154
3 

360 349 11 2560
8 

8993 152
4 

287 8 2543
9 

6145 19 73 3 169 2848 

9 146
9 

844 304 540 2545
0 

8945 145
9 

622 380 2531
1 

6169 10 222 160 139 2776 

1
0 

698
4 

451 412 39 3288
8 

8168 691
6 

386 28 3262
0 

5386 68 65 11 268 2782 

* Nben = Number of fix (m2, m3, m4)); † Nben = Number of fix (m2, m3, m7); § Number of fix(m2,m3)); ¶ Number of fix(m7), ß Nsyn 
= Number of fix (nonsynonmous).  s: scenario. 
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C. Estimation of the proportion of adaptive substitutions (alpha) 

 

Table A.4: Proportion of adaptive variants with 95% confidence intervals (CI) using Asymptotic McDonald-Kreitman Test by 100 
bootstraps sets with replacement 

  Wild  Domestic 

Scenario  obs CI05 CI95   obs CI05 CI95 

s1  0.090 0.040 0.149  0.112 0.081 0.173 

s2  -0.068 -0.116 0.019  -0.048 -0.108 0.040 

s3  -0.034 -0.093 0.087  -0.032 -0.087 0.088 

s4  -0.104 -0.118 0.025  -0.085 -0.107 0.051 

s5  0.039 -0.042 0.069  0.053 -0.046 0.137 

s6  0.122 0.082 0.146  0.092 0.083 0.226 

s7  0.211 0.141 0.248  -0.898 -2.932 -0.941 

s8  -0.061 -0.086 0.084  -0.506 -1.400 0.434 

s9  -0.016 -0.020 0.123  -1.404 -2.601 -0.736 

s10   0.163 0.062 0.170   -0.883 -2.234 -0.514 

CI05: 5% distribution from bootstrap analysis. CI95: 95% distribution from bootstrap analysis 
 

 

 

Table A.5: Proportion of adaptive variants with 95% confidence intervals (CI) using standard McDonald-Kreitman Test by 100 
bootstraps sets with replacement 

  Wild  Domestic 

Scenario  obs CI05 CI95   obs CI05 CI95 

s1  0.013 0.001 0.052  0.008 0.009 0.054 

s2  -0.209 -0.218 -0.152  -0.196 -0.212 -0.156 

s3  -0.198 -0.206 -0.148  -0.194 -0.198 -0.145 

s4  -0.203 -0.199 -0.148  -0.209 -0.217 -0.172 

s5  -0.174 -0.179 -0.133  -0.202 -0.208 -0.145 

s6  0.030 0.022 0.067  -0.003 -0.004 0.045 

s7  0.023 0.026 0.072  -0.372 -0.550 -0.206 

s8  -0.187 -0.183 -0.135  -0.638 -0.850 -0.450 

s9  -0.210 -0.212 -0.153  -0.380 -0.600 -0.263 

s10   0.010 0.002 0.046   -0.647 -0.869 -0.338 

CI05: 5% distribution from bootstrap analysis. CI95: 95% distribution from bootstrap analysis 
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Table A.6: Proportion of adaptive variants with 95% confidence intervals (CI) inferred by polyDFE 

  Wild  Domestic 

Scenario  obs CI05 CI95   obs CI05 CI95 

s1  0.165 0.122 0.203  0.167 0.136 0.207 

s2  -0.008 -0.049 0.030  -0.008 -0.043 0.020 

s3  0.031 -0.005 0.074  -0.011 -0.049 0.021 

s4  -0.024 -0.053 0.014  -0.012 -0.053 0.021 

s5  0.043 0.010 0.087  0.023 -0.023 0.065 

s6  0.189 0.162 0.217  0.173 0.145 0.208 

s7  0.176 0.149 0.205  -0.371 -0.396 -0.099 

s8  0.021 -0.009 0.047  -0.313 -0.643 -0.056 

s9  0.001 -0.035 0.046  -0.307 -0.524 -0.110 

s10   0.147 0.118 0.181   -0.375 -0.399 -0.166 

CI05: 5% distribution from bootstrap analysis. CI95: 95% distribution from bootstrap analysis 
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D. Estimation of the DFE and the detecting the differences in DFE between Wild and Domestic  

PolyDFE 

 

 

Table A.7: AIC weighted parameters and 95% confidence intervals  

  Wild                              

Scenario  b CI05 CI95  pb CI05 CI95  Sb CI05 CI95  Sd CI05 CI95 Ne 

1  0.28 0.15 0.96  0.05 0.00 0.35  2.99 0.62 8.34  -5.44 -8.17 -4.17 335 

2  0.17 0.15 0.22  0.00 0.00 0.05  0.21 0.06 2.75  -7.44 -9.05 -6.07 360 

3  0.20 0.16 0.26  0.00 0.00 0.01  0.06 0.01 0.24  -6.42 -8.25 -4.91 358 

4  0.20 0.15 0.96  0.03 0.00 0.37  0.16 0.05 0.67  -8.66 -11.79 -6.31 375 

5  0.21 0.18 0.24  0.00 0.00 0.01  0.18 0.03 2.40  -6.26 -8.41 -5.25 345 

6  0.37 0.22 1.28  0.07 0.02 0.24  5.22 1.41 12.21  -4.78 -6.32 -3.85 327 

7  0.16 0.14 0.28  0.00 0.00 0.11  0.21 0.08 4.38  -6.76 -9.27 -5.17 340 

8  0.20 0.16 0.64  0.01 0.00 0.26  0.22 0.04 1.92  -6.70 -8.30 -5.42 358 

9  0.19 0.16 0.22  0.00 0.00 0.02  0.10 0.03 2.43  -6.79 -8.32 -5.53 349 

10  0.18 0.13 1.32   0.02 0.00 0.48   5.14 0.24 18.62   -7.35 -9.75 -5.52 328 

  Domestic                              

Scenario  b CI05 CI95  pb CI05 CI95  Sb CI05 CI95  Sd CI05 CI95 Ne 

1  0.26 0.16 0.78  0.05 0.00 0.33  3.39 0.53 9.61  -5.49 -7.90 -4.06 373 

2  0.17 0.15 0.22  0.00 0.00 0.04  0.18 0.04 2.20  -7.92 -10.44 -6.43 479 

3  0.16 0.13 0.18  0.00 0.00 0.01  0.04 0.01 0.20  -10.00 -13.64 -8.10 535 

4  0.22 0.16 0.76  0.01 0.00 0.33  0.13 0.03 0.30  -6.76 -9.87 -4.76 327 

5  0.24 0.20 0.34  0.00 0.00 0.02  0.17 0.03 2.06  -4.46 -5.41 -3.46 313 

6  0.58 0.26 2.78  0.18 0.01 0.43  2.06 0.22 7.08  -3.94 -5.47 -2.88 292 

7  1.46 0.55 3.59  0.00 0.00 0.17  0.57 0.09 10.12  -0.04 -0.87 0.00 54 

8  2.03 0.66 4.96  0.01 0.00 0.21  0.35 0.07 2.76  -0.52 -1.09 -0.02 56 

9  0.24 0.10 1.53  0.01 0.00 0.09  0.25 0.07 3.05  -3.15 -27.00 -0.53 57 

10   1.96 0.77 4.66   0.06 0.00 0.58   4.12 0.33 30.58   -0.02 -0.45 -0.01 55 
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E. Demography and Joint DFE Inference Using dadi 

Table A.8: Estimated demographic parameters 

Scenario Na 𝑁𝑒𝑤  𝑁𝑒1𝑑  𝑁𝑒2𝑑  𝑚 𝑡1 𝑡𝑏𝑜𝑡 

 

𝑡3 

1 301.4 0.99 0.08 1.39 94.6 8.62 0.00 0.14 

2 671.3 0.50 0.28 3.24 15.0 4.71 0.12 0.01 

3 490.4 0.69 0.11 1.88 6.73 17.9 0.24 0.04 

4 268.7 1.27 0.07 1.32 0.00 6.24 0.01 0.29 

5 389.3 0.86 0.08 0.89 0.00 9.81 0.03 0.18 

6 470.1 0.62 0.10 0.69 0.00 6.26 0.05 0.13 

7 511.5 0.65 0.01 2.30 0.00 13.5 0.17 0.00 

8 405.3 0.83 0.01 3.37 0.00 12.9 0.21 0.00 

9 572.8 0.58 0.01 1.85 0.00 16.5 0.14 0.00 

10 463.1 0.64 0.01 3.55 0.00 7.60 0.17 0.01 

S: Scenarios. Expected New = 1. Expected Ne1d = 0.1, Expected Ne2d = 1, Expected m = 200 for scenarios 1-3, and m=0 for scenarios 4-10. 
Expected t1 = 10, Expected tbot = 2Ne*0.016 for scenarios 1-6 and tbot = 2Ne*0.161 for scenarios 7-10, Expected t3 =2Ne* 0.15 for 
scenarios 1-6 and t3 = 2Ne*0.005 for scenarios 7-10. 
 
Table A.9: Confidence Intervals of estimated demographic parameters in relation to ancestral Ne 

 
 

95%CI 

 (𝑁𝑒𝑤) 

95%CI  

(𝑁𝑒1𝑑) 

95%CI 

 (𝑁𝑒2𝑑) 

95%CI  

(𝑚) 

95%CI  

(𝑡1) 

95%CI 

 (𝑡𝑏𝑜𝑡) 

 

95%CI  

(𝑡3) 

1 [0.924,1.052] [0.054,0.098] [0.669,2.125] [67.97,121.2] [4.444,12.789] [0.001,0.002] [0.139,0.140] 

2 [0.412,0.587]  [0.228,0.331] [1.000,6.000] [12.67,17.32] [3.252, 6.176] [0.080,0.148]  [0.001,0.001] 

3 [0.673,0.727] [0.099,0.112] [1.638,2.115] [6.619,6.834] [17.248,18.61] [0.206,0.268] [0.038,0.039] 

4 [0.808,2.025] [0.057,0.081] [0.529,2.116] [0.000,0.040] [1.000,14.402] [0.013,0.016] [0.122,0.456] 

5 [0.802,0.909] [0.030,0.119] [0.822,0.951] [0.000,0.023] [8.617,10.996] [0.0116,0.05] [0.169,0.200] 

6 [0.519,0.725] [0.063,0.137] [0.571,0.809] [0.000,0.039] [4.439,8.0820] [0.027,0.067] [0.108,0.155] 

7 [0.623,0.665] [0.009,0.011] [0.000,3.933] [0.000,0.004] [0.000,18.339] [0.127,0.188] [0.004,0.007] 

8 [0.034,1.621] [0.000,0.019] [0.000,7.691] [0.000,0.008] [7.310,18.608] [0.009,0.412] [0.005,0.013] 

9 [0.564,0.606] [0.008,0.012] [0.787,2.929] [0.000,0.002] [3.752,20.281] [0.132,0.154] [0.003,0.005] 

10 [0.428,0.740] [0.001,0.019] [1.178,3.658] [0.000,0.004] [6.876,11.158] [0.134,0.172] [0.000,0.010] 

S: Scenarios. Expected New = 1. Expected Ne1d = 0.1, Expected Ne2d = 1, Expected m = 200 for scenarios 1-3, and m=0 for scenarios 4-10. 
Expected t1 = 10, Expected tbot = 2Ne*0.016 for scenarios 1-6 and tbot = 2Ne*0.161 for scenarios 7-10, Expected t3 = 2Ne*0.15 for 
scenarios 1-6 and t3 = 2Ne*0.005 for scenarios 7-10. 
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Table A.10: Estimated selective parameters 

 Negative DFE parameters  Positive DFE parameters 

S shape scale  sd  p+W pc  pc+ pc * pc+. 

1 0.464 4.884 0.015  0.031 0.000 0.000 0.000 

2 0.828 8.257 0.020  0.281 0.202 0.587 0.118 

3 4.116 0.882 0.015  0.292 0.235 0.000 0.000 

4 0.409 6.110 0.019  0.095 0.001 0.000 0.000 

5 0.380 9.981 0.019  0.103 0.198 0.124 0.024 

6 0.462 7.723 0.015  0.036 0.157 0.020 0.003 

7 0.282 26.99 0.030  0.017 0.000 0.000 0.000 

8 0.553 6.498 0.018  0.163 0.034 0.000 0.000 

9 0.364 16.27 0.021  0.138 0.000 0.000 0.000 

10 0.408 8.313 0.014  0.029 0.000 0.000 0.000 

S: Scenarios. 
The real shape of the negative gamma distribution is equal in all scenarios and populations and is fixed to 0.2. The real negative scale 
of the gamma distribution is equal for all simulated scenarios and populations and is fixed to 10. The real selection coefficient sd is 0.01 
in the homozygote. Let p+w be the fraction of mutations that are positively selected in the Wild population, pc be the fraction of 
mutations that change selection coefficient in the Domestic population, and pc+ be the fraction of those mutations that become 
beneficial in the Domestic population.  

 

Table A.11: Confidence Intervals for estimated selective parameters 

 Negative DFE parameters Positive DFE parameters 

S 95%CI 
shape 

95%CI 
scale  

95%CI 
sd 

 95%CI 
p+W 

95%CI 
pc  

95%CI 
pc * pc+. 

1 [0.378,0.587] [3.534,6.831] [0.013,0.017]  [0.025,0.037] [0.000, 0.118] [0.000,0.000] 

2 [0.481,1.668] [3.804,14.79] [0.018,0.023]  [0.199,0.348] [0.025,0.385] [0.000,0.251] 

3 [1.634,8.548] [0.438,2.233] [0.014,0.016]  [0.243,0.321] [0.169,0.309] [0.0,0.00008] 

4 [0.329,0.517] [4.552,8.077] [0.017,0.020]  [0.066,0.119] [0.000,0.078] [0.00,0.0098] 

5 [0.277,0.634] [5.487,14.96] [0.017,0.022]  [0.047,0.161] [0.082,0.365] [0.00,0.1055] 

6 [0.397,0.536] [6.158,9.690] [0.014,0.017]  [0.030,0.042] [0.071,0.284] [0.000,0.224] 

7 [0.242,0.325] [21.36,36.22] [0.026,0.034]  [0.011,0.021] [0.000,0.053] [0.000,0.000] 

8 [0.336,0.899] [3.943,11.73] [0.016,0.021]  [0.093,0.224] [0.000,0.731] [0.00,0.0174] 

9 [0.190,0.888] [6.061,34.09] [0.018,0.025]  [0.000,0.265] [0.000,0.362] [0.000,0.002] 

10 [0.354,0.481] [6.791,10.55] [0.013,0.016]  [0.023,0.036] [0.000,0.602] [0.000,0.217] 

S: Scenarios. 
The real shape of the negative gamma distribution is equal in all scenarios and populations and is fixed to 0.2. The real negative scale 
of the gamma distribution is equal for all simulated scenarios and populations and is fixed to 10. The real selection coefficient sd is 0.01 
in the homozygote. Let p+w be the fraction of mutations that are positively selected in the Wild population, pc be the fraction of 
mutations that change selection coefficient in the Domestic population, and pc+ be the fraction of those mutations that become 
beneficial in the Domestic population.  
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F. Description of the types of mutations and allele frequency distributions across populations and scenarios 

 

Figure A.0: Proportion of the different types of nonsynonymous sites, polymorphisms and fixed variants at the Domestic population. 
The y axis is shown in log10 scale. The x-axis indicates in each of the ten scenarios. 
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Figure A.1: log2 ratio of the expected SFS under Standard Neutral Models vs the simulated one under three scenarios: Short 
bottleneck with migration (first row), short bottleneck without migration (second row) and long bottleneck without migration (third 
row). 
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Figure A.2: log2 ratio of the expected SFS under Standard Neutral Models vs the simulated one using shared variants under three 
scenarios: Short bottleneck with migration (first row), short bottleneck without migration (second row) and long bottleneck without 
migration (third row). 
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Figure A.3: log2 ratio of the expected SFS under Standard Neutral Models vs the simulated one using exclusive variants under three 
scenarios: Short bottleneck with migration (first row), short bottleneck without migration (second row) and long bottleneck without 
migration (third row). 
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Figure A.4: log2 ratio of the simulated SFS for scenario 1 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 variants, 
respectively.  
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Figure A.5: log2 ratio of the simulated SFS for scenario 2 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 variants, 
respectively.  
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Figure A.6: log2 ratio of the simulated SFS for scenario 3 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 variants, 
respectively.  
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Figure A.7: log2 ratio of the simulated SFS for scenario 4 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 variants, 
respectively.  
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Figure A.8: log2 ratio of the simulated SFS for scenario 5 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 variants, 
respectively.  
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Figure A.9: log2 ratio of the simulated SFS for scenario 6 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 variants, 
respectively.  
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Figure A.10: log2 ratio of the simulated SFS for scenario 7 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 variants, 
respectively.  
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Figure A.11: log2 ratio of the simulated SFS for scenario 8 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 variants, 
respectively.  
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Figure A.12: log2 ratio of the simulated SFS for scenario 9 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 variants, 
respectively.  
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Figure A.13: log2 ratio of the simulated SFS for scenario 10 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 variants, 
respectively 
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Figure A.14: log2 ratio of the simulated SFS for scenario 1 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 shared 
variants, respectively.  
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Figure A.15: log2 ratio of the simulated SFS for scenario 2 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 shared 
variants, respectively.  
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Figure A.16: log2 ratio of the simulated SFS for scenario 3 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 shared 
variants, respectively.  
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Figure A.17: log2 ratio of the simulated SFS for scenario 4 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 shared 
variants, respectively.  
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Figure A.18: log2 ratio of the simulated SFS for scenario 5 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 shared 
variants, respectively.  
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Figure A.19: log2 ratio of the simulated SFS for scenario 6 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 shared 
variants, respectively.  
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Figure A.20: log2 ratio of the simulated SFS for scenario 7 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 shared 
variants, respectively.  
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Figure A.21: log2 ratio of the simulated SFS for scenario 8 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 shared 
variants, respectively.  
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Figure A.22: log2 ratio of the simulated SFS for scenario 9 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 shared 
variants, respectively.  
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Figure A.23: log2 ratio of the simulated SFS for scenario 10 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 shared 
variants, respectively 
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Figure A.24: log2 ratio of the simulated SFS for scenario 1 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 exclusive 
variants, respectively.  
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Figure A.25: log2 ratio of the simulated SFS for scenario 2 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 exclusive 
variants, respectively.  
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Figure A.26: log2 ratio of the simulated SFS for scenario 3 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 exclusive 
variants, respectively.  
 
 
.  
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Figure A.27: log2 ratio of the simulated SFS for scenario 4 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 exclusive 
variants, respectively.  
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Figure A.28: log2 ratio of the simulated SFS for scenario 5 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 exclusive 
variants, respectively.  
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Figure A.29: log2 ratio of the simulated SFS for scenario 6 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 exclusive 
variants, respectively.  
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Figure A.30: log2 ratio of the simulated SFS for scenario 7 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 exclusive 
variants, respectively.  
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Figure A.31: log2 ratio of the simulated SFS for scenario 8 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 exclusive 
variants, respectively.  
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Figure A.32: log2 ratio of the simulated SFS for scenario 9 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 exclusive 
variants, respectively 
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Figure A.33: log2 ratio of the simulated SFS for scenario 10 versus the expected SFS under the same demographic scenario (without 
selection) and per each type of variants. The seven rows correspond to nonsynonymous, m2, m3, m4, m5, m6 and m7 exclusive 
variants, respectively. 
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Appendix B 

Transposable element polymorphisms improve 

prediction of complex agronomic traits in rice 
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Supplementary Information 

Transposable element polymorphisms improve prediction of 

complex agronomic traits in rice 

 
 

 
Table B.1: Accessions used in this study. 
 

 
ACCESSION GROUP STATUS* COUNTRY ACCESSION GROUP STATUS* COUNTRY 

 

IRIS 313-10000 IND I South_Korea IRIS 313-11684 IND T Thailand 
IRIS 313-10010 IND T Fiji IRIS 313-11685 IND T Thailand 
IRIS 313-10020 AUS T Sri_Lanka IRIS 313-11686 IND T Thailand 
IRIS 313-10026 IND NA Madagascar IRIS 313-11687 IND T Thailand 
IRIS 313-10059 JAP NA South_Korea IRIS 313-11689 JAP NA South_Korea 
IRIS 313-10078 JAP T Japan IRIS 313-11691 JAP T Bhutan 
IRIS 313-10097 JAP T South_Korea IRIS 313-11692 IND T Taiwan 
IRIS 313-10109 IND T Nigeria IRIS 313-11693 IND T Taiwan 
IRIS 313-10114 IND I Burundi IRIS 313-11700 IND T Thailand 
IRIS 313-10134 IND NA Thailand IRIS 313-11704 IND T Thailand 
IRIS 313-10158 IND NA Ecuador IRIS 313-11705 IND T Thailand 
IRIS 313-10171 IND NA China IRIS 313-11706 IND T Thailand 
IRIS 313-10177 IND NA China IRIS 313-11707 IND T Thailand 
IRIS 313-10179 IND NA China IRIS 313-11708 IND T Thailand 
IRIS 313-10189 IND NA China IRIS 313-11709 IND T Thailand 
IRIS 313-10221 IND NA China IRIS 313-11710 IND T Thailand 
IRIS 313-10228 JAP NA China IRIS 313-11711 IND T Thailand 
IRIS 313-10235 IND I Philippines IRIS 313-11712 AUS NA India 
IRIS 313-10237 IND I Philippines IRIS 313-11716 IND T Guinea 
IRIS 313-10260 IND NA Paraguay IRIS 313-11717 IND T Indonesia 
IRIS 313-10301 IND I Brazil IRIS 313-11719 IND NA Thailand 
IRIS 313-10327 JAP NA Peru IRIS 313-11720 IND NA Thailand 
IRIS 313-10332 IND I Indonesia IRIS 313-11721 IND NA Thailand 
IRIS 313-10333 IND I Indonesia IRIS 313-11722 IND T Bangladesh 
IRIS 313-10337 IND I Indonesia IRIS 313-11723 IND T Guinea 
IRIS 313-10352 IND I Colombia IRIS 313-11724 IND T Guinea 
IRIS 313-10392 IND I Philippines IRIS 313-11725 JAP I Japan 
IRIS 313-10394 IND I Philippines IRIS 313-11727 IND NA China 
IRIS 313-10397 IND I Colombia IRIS 313-11728 IND NA China 
IRIS 313-10423 IND NA Myanmar IRIS 313-11730 IND NA China 
IRIS 313-10440 JAP NA Philippines IRIS 313-11731 IND NA China 
IRIS 313-10458 IND P China IRIS 313-11732 IND NA China 
IRIS 313-10469 JAP I Japan IRIS 313-11733 IND NA China 
IRIS 313-10477 IND NA China IRIS 313-11734 IND NA China 
IRIS 313-10503 IND NA China IRIS 313-11736 JAP T Philippines 
IRIS 313-10509 IND NA Africa IRIS 313-11737 AUS T India 
IRIS 313-10511 IND T Philippines IRIS 313-11738 IND T India 
IRIS 313-10515 IND I Taiwan IRIS 313-11739 JAP T Ghana 
IRIS 313-10518 IND NA Myanmar IRIS 313-11740 IND I Ghana 
IRIS 313-10519 IND P India IRIS 313-11741 IND T Sri_Lanka 
IRIS 313-10524 IND NA na IRIS 313-11742 AUS NA India 
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IRIS 313-10526 IND NA India IRIS 313-11744 IND NA China 
IRIS 313-10534 AUS P India IRIS 313-11745 IND NA China 
IRIS 313-10541 JAP P Guinea-Bissau IRIS 313-11746 IND NA China 
IRIS 313-10542 IND NA India IRIS 313-11747 IND NA China 
IRIS 313-10544 IND NA India IRIS 313-11748 IND NA China 
IRIS 313-10547 IND P Myanmar IRIS 313-11750 IND NA China 
IRIS 313-10550 IND i Indonesia IRIS 313-11751 IND NA China 
IRIS 313-10560 IND NA China IRIS 313-11752 IND NA China 
IRIS 313-10561 IND NA China IRIS 313-11753 IND NA China 
IRIS 313-10563 JAP P na IRIS 313-11754 ADM NA Madagascar 
IRIS 313-10564 JAP P Japan IRIS 313-11755 JAP NA Liberia 
IRIS 313-10570 JAP NA Japan IRIS 313-11756 JAP NA Madagascar 
IRIS 313-10576 IND NA Sierra_Leone IRIS 313-11757 IND NA Madagascar 
IRIS 313-10577 JAP T Philippines IRIS 313-11758 IND NA Ivory_Coast 
IRIS 313-10578 JAP T Philippines IRIS 313-11759 JAP NA Ivory_Coast 
IRIS 313-10582 JAP T Philippines IRIS 313-11760 ADM NA Madagascar 
IRIS 313-10602 AUS P Bangladesh IRIS 313-11761 ADM NA Ivory_Coast 
IRIS 313-10603 AUS P Bangladesh IRIS 313-11762 IND NA Madagascar 
IRIS 313-10605 AUS P Bangladesh IRIS 313-11763 IND I Cameroon 
IRIS 313-10609 IND T Sri_Lanka IRIS 313-11764 IND I Liberia 
IRIS 313-10614 IND NA Hong_Kong IRIS 313-11767 ADM NA Madagascar 
IRIS 313-10617 JAP NA na IRIS 313-11772 IND T Madagascar 
IRIS 313-10623 AUS NA Nepal IRIS 313-11773 IND NA Gambia 
IRIS 313-10628 IND T India IRIS 313-11784 IND T Sierra_Leone 
IRIS 313-10642 JAP P Japan IRIS 313-11786 IND T Gambia 
IRIS 313-10652 IND T Laos IRIS 313-11787 IND T Gambia 
IRIS 313-10654 IND P Laos IRIS 313-11788 JAP T Philippines 
IRIS 313-10657 JAP NA Laos IRIS 313-11789 ADM T Madagascar 
IRIS 313-10664 IND NA India IRIS 313-11790 JAP T Madagascar 
IRIS 313-10666 IND NA India IRIS 313-11791 IND T Madagascar 
IRIS 313-10671 AUS NA India IRIS 313-11792 JAP T Madagascar 
IRIS 313-10675 AUS T India IRIS 313-11794 ADM NA Madagascar 
IRIS 313-10677 JAP P Japan IRIS 313-11795 IND NA China 
IRIS 313-10682 IND T Laos IRIS 313-11796 IND NA China 
IRIS 313-10687 IND T Malaysia IRIS 313-11797 IND NA China 
IRIS 313-10688 IND T Malaysia IRIS 313-11798 IND NA China 
IRIS 313-10693 JAP T Indonesia IRIS 313-11799 IND NA China 
IRIS 313-10697 IND T Malaysia IRIS 313-11800 JAP NA China 
IRIS 313-10703 JAP T Malaysia IRIS 313-11801 IND NA China 
IRIS 313-10706 IND T Malaysia IRIS 313-11802 IND NA China 
IRIS 313-10707 IND T Malaysia IRIS 313-11804 IND NA China 
IRIS 313-10710 JAP T Surinam IRIS 313-11805 IND NA China 
IRIS 313-10712 JAP NA Ivory_Coast IRIS 313-11806 IND NA China 
IRIS 313-10718 AUS T Sri_Lanka IRIS 313-11807 IND I Colombia 
IRIS 313-10723 IND NA Senegal IRIS 313-11809 AUS T Kenya 
IRIS 313-10725 IND NA Senegal IRIS 313-11810 IND T Kenya 
IRIS 313-10726 IND NA Senegal IRIS 313-11811 ADM T Kenya 
IRIS 313-10727 IND NA Senegal IRIS 313-11812 IND T Kenya 
IRIS 313-10728 IND NA Senegal IRIS 313-11813 IND T Kenya 
IRIS 313-10733 IND NA Nepal IRIS 313-11814 IND T Kenya 
IRIS 313-10744 JAP T Indonesia IRIS 313-11815 IND T Kenya 
IRIS 313-10748 IND T Vietnam IRIS 313-11816 IND T Myanmar 
IRIS 313-10756 IND I India IRIS 313-11817 IND T Myanmar 
IRIS 313-10762 IND T Indonesia IRIS 313-11819 IND T Myanmar 
IRIS 313-10771 ADM T Indonesia IRIS 313-11820 IND T Myanmar 
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IRIS 313-10774 IND T Indonesia IRIS 313-11821 IND T India 
IRIS 313-10778 IND T Indonesia IRIS 313-11822 IND T India 
IRIS 313-10779 IND T Indonesia IRIS 313-11823 IND T India 
IRIS 313-10786 ADM T Indonesia IRIS 313-11824 IND T India 
IRIS 313-10787 ADM T Indonesia IRIS 313-11825 ARO T India 
IRIS 313-10789 JAP T Indonesia IRIS 313-11829 JAP T Pakistan 
IRIS 313-10793 JAP T Indonesia IRIS 313-11832 JAP T Thailand 
IRIS 313-10794 JAP T Indonesia IRIS 313-11833 IND T Thailand 
IRIS 313-10797 IND T Indonesia IRIS 313-11835 IND T Thailand 
IRIS 313-10798 JAP T Indonesia IRIS 313-11836 IND T Thailand 
IRIS 313-10802 JAP T Indonesia IRIS 313-11840 IND T Thailand 
IRIS 313-10805 JAP T Indonesia IRIS 313-11842 IND T Thailand 
IRIS 313-10806 IND T Indonesia IRIS 313-11848 IND T Malaysia 
IRIS 313-10810 IND T Indonesia IRIS 313-11854 IND NA China 
IRIS 313-10813 IND T Indonesia IRIS 313-11866 IND NA China 
IRIS 313-10814 IND T Indonesia IRIS 313-11867 IND NA China 
IRIS 313-10816 JAP T Indonesia IRIS 313-11870 IND NA China 
IRIS 313-10820 IND T Indonesia IRIS 313-11877 IND NA China 
IRIS 313-10822 IND T Indonesia IRIS 313-11878 IND NA China 
IRIS 313-10824 IND T Indonesia IRIS 313-11882 IND NA China 
IRIS 313-10825 IND NA NA IRIS 313-11887 IND I Philippines 
IRIS 313-10827 JAP T Philippines IRIS 313-11897 JAP T Thailand 
IRIS 313-10834 JAP I India IRIS 313-11900 JAP NA Thailand 
IRIS 313-10835 IND I India IRIS 313-11902 IND NA Indonesia 
IRIS 313-10840 JAP T South_Korea IRIS 313-11909 IND NA China 
IRIS 313-10845 AUS NA India IRIS 313-11916 IND T Sri_Lanka 
IRIS 313-10847 IND NA India IRIS 313-11919 IND T India 
IRIS 313-10850 ADM NA India IRIS 313-11920 IND NA Thailand 
IRIS 313-10851 ARO NA India IRIS 313-11924 JAP NA Thailand 
IRIS 313-10852 AUS NA India IRIS 313-11927 IND NA Thailand 
IRIS 313-10857 AUS NA India IRIS 313-11929 JAP T Philippines 
IRIS 313-10858 AUS NA India IRIS 313-11930 ADM P Nigeria 
IRIS 313-10859 AUS NA India IRIS 313-11935 IND T Cambodia 
IRIS 313-10861 AUS NA India IRIS 313-11939 IND T Burkina_Faso 
IRIS 313-10863 IND NA India IRIS 313-11940 IND T Burkina_Faso 
IRIS 313-10870 JAP NA India IRIS 313-11941 IND T Burkina_Faso 
IRIS 313-10871 AUS NA India IRIS 313-11945 IND T Bangladesh 
IRIS 313-10872 ADM NA India IRIS 313-11949 IND NA China 
IRIS 313-10883 ARO NA India IRIS 313-11950 IND NA China 
IRIS 313-10888 JAP NA India IRIS 313-11953 IND NA China 
IRIS 313-10889 JAP NA India IRIS 313-11955 IND NA China 
IRIS 313-10891 AUS NA India IRIS 313-11959 IND T Philippines 
IRIS 313-10892 AUS NA India IRIS 313-11962 IND NA Thailand 
IRIS 313-10894 AUS NA India IRIS 313-11966 IND T China 
IRIS 313-10895 JAP NA India IRIS 313-11978 IND I Philippines 
IRIS 313-10900 IND T Cambodia IRIS 313-11979 IND I Philippines 
IRIS 313-10912 IND T Cambodia IRIS 313-11988 IND T Sierra_Leone 
IRIS 313-10916 JAP T Cambodia IRIS 313-11989 IND T Brunei_Darussalam 
IRIS 313-10918 ADM T Philippines IRIS 313-11994 JAP T Philippines 
IRIS 313-10921 IND NA Laos IRIS 313-11999 IND T Cambodia 
IRIS 313-10922 JAP NA Laos IRIS 313-12000 IND T Cambodia 
IRIS 313-10923 JAP T Thailand IRIS 313-12010 IND NA China 
IRIS 313-10927 AUS T Nepal IRIS 313-12024 IND NA na 
IRIS 313-10928 IND T Thailand IRIS 313-12033 IND NA China 
IRIS 313-10930 AUS P Bangladesh IRIS 313-12040 IND T Cambodia 
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IRIS 313-10936 JAP NA Indonesia IRIS 313-12041 IND T Cambodia 
IRIS 313-10937 IND T Indonesia IRIS 313-12044 IND T Cambodia 
IRIS 313-10938 IND T Indonesia IRIS 313-12045 JAP T Indonesia 
IRIS 313-10941 IND NA Indonesia IRIS 313-12048 IND T Indonesia 
IRIS 313-10942 IND T Indonesia IRIS 313-12052 IND T India 
IRIS 313-10944 IND T Indonesia IRIS 313-12054 JAP I China 
IRIS 313-10948 ADM NA Indonesia IRIS 313-12058 IND T Cambodia 
IRIS 313-10949 JAP NA Indonesia IRIS 313-12060 JAP NA China 
IRIS 313-10954 IND T Indonesia IRIS 313-12061 JAP NA China 
IRIS 313-10960 JAP T Indonesia IRIS 313-12068 JAP T Indonesia 
IRIS 313-10961 IND T Indonesia IRIS 313-12071 JAP NA Laos 
IRIS 313-10965 AUS T Bangladesh IRIS 313-12094 ARO T Bangladesh 
IRIS 313-10968 IND NA Brazil IRIS 313-12097 IND T Cambodia 
IRIS 313-10975 IND T Bangladesh IRIS 313-12101 IND T Cambodia 
IRIS 313-10980 IND T Bangladesh IRIS 313-12108 JAP NA Malaysia 
IRIS 313-10984 IND T Bangladesh IRIS 313-12118 ADM NA Madagascar 
IRIS 313-10986 IND T Bangladesh IRIS 313-12121 IND T Laos 
IRIS 313-10988 IND P India IRIS 313-12127 IND T Laos 
IRIS 313-10990 IND T Philippines IRIS 313-12128 IND T Laos 
IRIS 313-10994 JAP T Philippines IRIS 313-12129 JAP T Laos 
IRIS 313-10995 IND T Indonesia IRIS 313-12131 IND NA Laos 
IRIS 313-10997 IND T Indonesia IRIS 313-12134 JAP T Laos 
IRIS 313-10999 JAP T Indonesia IRIS 313-12135 IND NA Malaysia 
IRIS 313-11005 JAP T Indonesia IRIS 313-12141 AUS T Bangladesh 
IRIS 313-11007 JAP T Indonesia IRIS 313-12146 IND T Cambodia 
IRIS 313-11016 AUS T Bangladesh IRIS 313-12164 JAP T Cambodia 
IRIS 313-11024 AUS T Pakistan IRIS 313-12183 AUS T Nepal 
IRIS 313-11027 AUS T Pakistan IRIS 313-12188 IND NA Laos 
IRIS 313-11032 ARO T Pakistan IRIS 313-12190 IND T Laos 
IRIS 313-11033 IND NA Pakistan IRIS 313-12193 IND T Laos 
IRIS 313-11034 AUS NA Pakistan IRIS 313-12228 JAP T Laos 
IRIS 313-11035 AUS NA Pakistan IRIS 313-12234 IND NA China 
IRIS 313-11037 AUS T Pakistan IRIS 313-12258 JAP T Laos 
IRIS 313-11038 IND P China IRIS 313-12259 IND NA Laos 
IRIS 313-11039 IND I China IRIS 313-12262 JAP NA Laos 
IRIS 313-11040 IND NA India IRIS 313-12268 IND T Myanmar 
IRIS 313-11042 IND NA India IRIS 313-12275 IND NA China 
IRIS 313-11043 IND NA Malaysia IRIS 313-12281 JAP NA Madagascar 
IRIS 313-11044 JAP NA Malaysia IRIS 313-12287 IND T Myanmar 
IRIS 313-11045 JAP NA Malaysia IRIS 313-12289 JAP T Myanmar 
IRIS 313-11046 JAP NA Malaysia IRIS 313-12291 IND T Myanmar 
IRIS 313-11047 AUS P Bangladesh IRIS 313-12300 IND T Laos 
IRIS 313-11048 AUS P Bangladesh IRIS 313-12303 IND T Laos 
IRIS 313-11049 AUS P Bangladesh IRIS 313-12305 IND T Laos 
IRIS 313-11050 AUS P Bangladesh IRIS 313-12307 JAP NA Laos 
IRIS 313-11051 AUS P Bangladesh IRIS 313-12312 JAP NA Laos 
IRIS 313-11052 AUS P Bangladesh IRIS 313-12321 JAP T Laos 
IRIS 313-11053 AUS P Bangladesh IRIS 313-12323 JAP T Laos 
IRIS 313-11054 AUS P Bangladesh IRIS 313-12334 IND T Laos 
IRIS 313-11055 AUS P Bangladesh IRIS 313-12349 JAP NA Laos 
IRIS 313-11056 AUS P Bangladesh IRIS 313-12350 JAP T Laos 
IRIS 313-11057 AUS P Bangladesh IRIS 313-12351 JAP T Laos 
IRIS 313-11058 AUS P Bangladesh IRIS 313-12354 IND T Laos 
IRIS 313-11059 AUS P Bangladesh IRIS 313-12355 IND T Laos 
IRIS 313-11062 ARO P Bangladesh IRIS 313-15900 IND I Philippines 
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IRIS 313-11063 AUS P Bangladesh IRIS 313-15908 AUS I Colombia 
IRIS 313-11064 AUS P Bangladesh IRIS 313-15910 JAP I United_States 
IRIS 313-11066 ARO P Bangladesh IRIS 313-7638 IND NA Madagascar 
IRIS 313-11079 IND T Laos IRIS 313-7646 ADM NA Madagascar 
IRIS 313-11081 IND T Laos IRIS 313-7650 IND NA Madagascar 
IRIS 313-11083 IND T Laos IRIS 313-7685 IND I Philippines 
IRIS 313-11085 IND NA Laos IRIS 313-7688 IND I Philippines 
IRIS 313-11089 IND NA Cambodia IRIS 313-7689 IND I Philippines 
IRIS 313-11094 JAP T Laos IRIS 313-7719 IND NA Mali 
IRIS 313-11095 IND T Laos IRIS 313-7722 ADM NA Madagascar 
IRIS 313-11097 IND T Philippines IRIS 313-7725 ADM T Madagascar 
IRIS 313-11098 IND NA Sierra_Leone IRIS 313-7795 ADM T Madagascar 
IRIS 313-11102 JAP NA Liberia IRIS 313-7797 IND I Philippines 
IRIS 313-11103 JAP NA Liberia IRIS 313-7799 IND NA Madagascar 
IRIS 313-11104 JAP NA Liberia IRIS 313-7808 IND I Senegal 
IRIS 313-11112 AUS T Bangladesh IRIS 313-7816 IND I Senegal 
IRIS 313-11113 IND T Bangladesh IRIS 313-7850 JAP NA Madagascar 
IRIS 313-11118 IND T Vietnam IRIS 313-7866 ADM I Colombia 
IRIS 313-11129 IND NA Myanmar IRIS 313-7876 JAP T Philippines 
IRIS 313-11151 IND I Myanmar IRIS 313-7883 JAP T Indonesia 
IRIS 313-11160 IND NA Liberia IRIS 313-7902 JAP I Philippines 
IRIS 313-11189 ARO NA Soviet_Union IRIS 313-7909 ADM I Philippines 
IRIS 313-11191 AUS T Sri_Lanka IRIS 313-7911 IND I Philippines 
IRIS 313-11194 IND NA Thailand IRIS 313-7914 JAP I Ivory_Coast 
IRIS 313-11202 JAP I China IRIS 313-7924 ADM I Bolivia 
IRIS 313-11205 IND T Bangladesh IRIS 313-7933 ADM T Nepal 
IRIS 313-11221 IND P Bangladesh IRIS 313-7994 JAP T Madagascar 
IRIS 313-11224 IND P Bangladesh IRIS 313-8010 JAP I Philippines 
IRIS 313-11226 IND P Bangladesh IRIS 313-8024 JAP NA Italy 
IRIS 313-11228 IND P Bangladesh IRIS 313-8037 JAP NA Italy 
IRIS 313-11229 IND P Bangladesh IRIS 313-8064 JAP I Argentina 
IRIS 313-11231 IND P Bangladesh IRIS 313-8066 JAP NA Italy 
IRIS 313-11234 IND T Philippines IRIS 313-8074 JAP I Australia 
IRIS 313-11238 JAP NA Brazil IRIS 313-8085 JAP NA Spain 
IRIS 313-11239 IND I Indonesia IRIS 313-8115 JAP NA Portugal 
IRIS 313-11240 IND I India IRIS 313-8118 JAP NA Portugal 
IRIS 313-11241 IND I Bangladesh IRIS 313-8119 JAP NA Bulgaria 
IRIS 313-11242 IND I India IRIS 313-8123 JAP NA Portugal 
IRIS 313-11244 IND NA India IRIS 313-8125 JAP NA Bulgaria 
IRIS 313-11245 IND P India IRIS 313-8127 JAP NA Bulgaria 
IRIS 313-11247 IND I India IRIS 313-8129 JAP NA Bulgaria 
IRIS 313-11249 IND I Philippines IRIS 313-8140 JAP NA China 
IRIS 313-11251 IND I Philippines IRIS 313-8151 JAP P Portugal 
IRIS 313-11252 IND NA India IRIS 313-8166 JAP NA France 
IRIS 313-11253 IND I Surinam IRIS 313-8167 JAP I France 
IRIS 313-11256 IND NA India IRIS 313-8168 JAP NA France 
IRIS 313-11257 ADM NA India IRIS 313-8172 ADM NA Philippines 
IRIS 313-11258 ARO NA India IRIS 313-8173 JAP I United_States 
IRIS 313-11260 IND NA India IRIS 313-8177 JAP NA Italy 
IRIS 313-11262 IND NA India IRIS 313-8185 JAP NA Italy 
IRIS 313-11263 ADM NA India IRIS 313-8204 JAP I United_States 
IRIS 313-11264 IND NA India IRIS 313-8208 JAP NA Portugal 
IRIS 313-11265 AUS NA India IRIS 313-8293 IND NA Senegal 
IRIS 313-11266 IND NA India IRIS 313-8305 IND T India 
IRIS 313-11267 IND NA India IRIS 313-8312 IND T Malaysia 
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IRIS 313-11269 IND NA India IRIS 313-8321 AUS P Bangladesh 
IRIS 313-11270 ARO NA India IRIS 313-8323 JAP I United_States 
IRIS 313-11271 IND NA India IRIS 313-8326 ARO NA India 
IRIS 313-11273 IND NA India IRIS 313-8332 IND NA India 
IRIS 313-11274 AUS NA India IRIS 313-8341 IND NA Vietnam 
IRIS 313-11275 IND NA India IRIS 313-8349 IND T Bangladesh 
IRIS 313-11277 AUS NA India IRIS 313-8356 JAP T Philippines 
IRIS 313-11278 IND NA India IRIS 313-8381 JAP T Malaysia 
IRIS 313-11279 IND NA India IRIS 313-8386 IND NA India 
IRIS 313-11280 IND NA India IRIS 313-8391 IND NA Burkina_Faso 
IRIS 313-11281 IND NA India IRIS 313-8407 IND T Malaysia 
IRIS 313-11285 IND NA India IRIS 313-8436 JAP T Indonesia 
IRIS 313-11286 IND NA India IRIS 313-8453 IND NA India 
IRIS 313-11287 IND NA India IRIS 313-8454 IND NA Taiwan 
IRIS 313-11289 ARO NA India IRIS 313-8493 IND T Indonesia 
IRIS 313-11295 AUS NA India IRIS 313-8530 IND T India 
IRIS 313-11297 ADM NA India IRIS 313-8557 IND T Malaysia 
IRIS 313-11298 AUS NA India IRIS 313-8568 IND T India 
IRIS 313-11301 IND NA India IRIS 313-8571 IND T Tanzania 
IRIS 313-11302 IND NA India IRIS 313-8585 IND NA India 
IRIS 313-11303 IND NA India IRIS 313-8586 IND T Thailand 
IRIS 313-11316 IND T Indonesia IRIS 313-8595 IND NA Madagascar 
IRIS 313-11321 IND T Bangladesh IRIS 313-8606 IND P na 
IRIS 313-11324 AUS T Bangladesh IRIS 313-8627 JAP I United_States 
IRIS 313-11338 IND T Philippines IRIS 313-8641 AUS P Bangladesh 
IRIS 313-11345 IND T Philippines IRIS 313-8658 JAP I United_States 
IRIS 313-11350 ARO NA India IRIS 313-8659 IND NA Myanmar 
IRIS 313-11351 IND NA India IRIS 313-8660 IND T Sri_Lanka 
IRIS 313-11358 IND NA India IRIS 313-8665 JAP I United_States 
IRIS 313-11370 IND NA India IRIS 313-8681 IND T Guinea 
IRIS 313-11372 IND NA India IRIS 313-8687 JAP T Guinea-Bissau 
IRIS 313-11386 IND T Thailand IRIS 313-8690 JAP NA Vietnam 
IRIS 313-11394 IND T Indonesia IRIS 313-8703 IND P Bangladesh 
IRIS 313-11395 IND T Indonesia IRIS 313-8725 IND T Indonesia 
IRIS 313-11416 IND NA India IRIS 313-8745 JAP NA Haiti 
IRIS 313-11431 IND I Philippines IRIS 313-8751 IND NA Myanmar 
IRIS 313-11435 JAP T Ivory_Coast IRIS 313-8755 JAP I Japan 
IRIS 313-11436 JAP T Ivory_Coast IRIS 313-8768 JAP T Ivory_Coast 
IRIS 313-11443 IND T India IRIS 313-8803 JAP I United_States 
IRIS 313-11453 IND T India IRIS 313-8864 AUS T Bangladesh 
IRIS 313-11460 IND T India IRIS 313-8883 JAP T Malaysia 
IRIS 313-11461 IND T India IRIS 313-8909 IND T Tanzania 
IRIS 313-11467 IND T Philippines IRIS 313-8911 ARO T Thailand 
IRIS 313-11472 IND T Philippines IRIS 313-8923 JAP I United_States 
IRIS 313-11477 AUS NA India IRIS 313-8924 IND T India 
IRIS 313-11483 AUS T Bangladesh IRIS 313-8925 IND T Sri_Lanka 
IRIS 313-11484 AUS T Bangladesh IRIS 313-8930 IND T Bangladesh 
IRIS 313-11489 AUS NA India IRIS 313-8935 IND NA India 
IRIS 313-11493 IND T India IRIS 313-8940 IND NA China 
IRIS 313-11513 IND NA Ecuador IRIS 313-8948 IND T Philippines 
IRIS 313-11515 IND I na IRIS 313-8967 IND NA India 
IRIS 313-11516 IND I Philippines IRIS 313-8982 AUS NA India 
IRIS 313-11521 IND T Vietnam IRIS 313-8985 IND T Thailand 
IRIS 313-11522 JAP NA China IRIS 313-8986 AUS T India 
IRIS 313-11528 IND T Ivory_Coast IRIS 313-8988 IND T India 
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IRIS 313-11530 IND T Thailand IRIS 313-9020 IND T Thailand 
IRIS 313-11543 IND NA Myanmar IRIS 313-9023 IND P India 
IRIS 313-11546 IND NA Myanmar IRIS 313-9039 IND T Sri_Lanka 
IRIS 313-11547 IND NA Myanmar IRIS 313-9048 JAP T Bhutan 
IRIS 313-11555 IND T Sierra_Leone IRIS 313-9066 IND P Bangladesh 
IRIS 313-11567 ARO T Nepal IRIS 313-9067 IND T Bangladesh 
IRIS 313-11575 JAP NA China IRIS 313-9112 IND NA Thailand 
IRIS 313-11582 JAP NA China IRIS 313-9116 IND NA Thailand 
IRIS 313-11591 ADM NA Malaysia IRIS 313-9117 IND T Indonesia 
IRIS 313-11596 IND NA India IRIS 313-9121 IND T Thailand 
IRIS 313-11602 AUS NA India IRIS 313-9131 IND NA Vietnam 
IRIS 313-11604 AUS NA India IRIS 313-9148 IND P Bangladesh 
IRIS 313-11607 IND NA India IRIS 313-9156 IND I Bangladesh 
IRIS 313-11615 IND T Guinea IRIS 313-9160 IND NA Senegal 
IRIS 313-11617 AUS T India IRIS 313-9182 IND NA Myanmar 
IRIS 313-11618 AUS T India IRIS 313-9198 IND NA Laos 
IRIS 313-11622 IND NA China IRIS 313-9228 JAP P Japan 
IRIS 313-11624 IND T Nepal IRIS 313-9262 IND T Bangladesh 
IRIS 313-11626 ARO T Nepal IRIS 313-9294 IND NA Gambia 
IRIS 313-11630 ARO T Nepal IRIS 313-9320 IND T Indonesia 
IRIS 313-11635 IND T Thailand IRIS 313-9324 IND T China 
IRIS 313-11638 IND NA India IRIS 313-9372 IND NA China 
IRIS 313-11642 IND NA India IRIS 313-9379 JAP T South_Korea 
IRIS 313-11643 IND NA India IRIS 313-9384 IND T India 
IRIS 313-11644 IND NA India IRIS 313-9406 IND T Thailand 
IRIS 313-11645 IND NA India IRIS 313-9409 IND T Malaysia 
IRIS 313-11646 IND NA India IRIS 313-9422 AUS T Bangladesh 
IRIS 313-11647 IND NA India IRIS 313-9427 IND NA India 
IRIS 313-11648 IND NA India IRIS 313-9449 AUS T Pakistan 
IRIS 313-11651 JAP NA China IRIS 313-9464 IND I Surinam 
IRIS 313-11652 JAP NA China IRIS 313-9469 IND T China 
IRIS 313-11654 JAP NA China IRIS 313-9470 JAP T Indonesia 
IRIS 313-11655 JAP NA China IRIS 313-9472 IND NA Sri_Lanka 
IRIS 313-11656 IND I Indonesia IRIS 313-9523 JAP I Japan 
IRIS 313-11657 IND NA Nigeria IRIS 313-9570 IND NA China 
IRIS 313-11658 JAP T Sierra_Leone IRIS 313-9590 IND T Indonesia 
IRIS 313-11659 JAP T Sierra_Leone IRIS 313-9594 IND T Bangladesh 
IRIS 313-11661 JAP T Bhutan IRIS 313-9602 IND NA Thailand 
IRIS 313-11663 IND T Zimbabwe IRIS 313-9605 IND T India 
IRIS 313-11664 IND NA China IRIS 313-9626 AUS T Bangladesh 
IRIS 313-11665 IND NA China IRIS 313-9701 JAP I Taiwan 
IRIS 313-11666 IND NA China IRIS 313-9790 JAP NA Uruguay 
IRIS 313-11667 IND NA China IRIS 313-9917 IND T Sri_Lanka 
IRIS 313-11668 IND NA China IRIS 313-9922 IND I South_Korea 
IRIS 313-11669 IND I China IRIS 313-9935 IND NA Guyana 
IRIS 313-11671 IND T Nepal IRIS 313-9936 IND NA Sri_Lanka 
IRIS 313-11673 JAP T Philippines IRIS 313-9937 JAP NA Italy 
IRIS 313-11674 IND T Thailand IRIS 313-9944 IND NA Solomon_Islands 
IRIS 313-11677 IND T Thailand IRIS 313-9961 JAP NA Norway 
IRIS 313-11678 IND T Thailand IRIS 313-9963 AUS NA Sri_Lanka 
IRIS 313-11679 IND T Thailand IRIS 313-9966 IND P Colombia 
IRIS 313-11681 IND T Thailand IRIS 313-9968 IND T Sri_Lanka 
IRIS 313-11683 IND T Thailand IRIS 313-9996 JAP I South_Korea 

 
* Status: I, improved; T, traditional; P, breeding and inbred lines (promising line). 
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Table B.2: Traits used in this study. 
 

Phenotype Recoding                                           N     Mean           SD   

Culm Diameter None 608 1.62 0.49  

Culm strength Classes {1,2,3} recoded as 
{1}, classes {4:9} as {2} 

642 1.39 0.49  

Flag leaf angle None 639 3.89 1.68  

Grain length None 641 8.62 1.02  

Grain width None 641 3.01 0.39  

Leaf length None 606 3.17 0.68  

Leaf senescence Classes {2:9} recoded as 
{2} 

640 1.56 0.49  

Grain weight None 641 2.47 0.49  

Salt injury Classes {1:7} recoded as 
{1}, class {9} as {2} 
 

602 1.46 0.49  

Time to flowering Log transformation 642 4.59 0.23  

Panicle threshability Classes {1:5} recoded as 
{1}, classes {6:9} as {2} 

639 1.43 0.49 
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Table B.3: MITE family IDs from Castanera et al. (2021). 
 

MITE family* MITE type** # TIPS # Genic 
TIPs 

Percentage 
of genic TIPs 

MH63fam6_341 Tourist-like 3058 942 30.8 
MH63fam8_344 Tourist-like 2087 657 31.5 
MH63fam13_234 MITE-adh B-like 1166 475 40.7 
MH63fam14_237 MITE-adh B-like 1771 603 34.0 
MH63fam29_244 unclassified 1850 585 31.6 
MH63fam32_236 MITE-adh B-like 2185 624 28.6 
MH63fam47_235 MITE-adh B-like 3627 1312 36.2 
MH63fam50_219 MITE-adh M-like 1207 471 39.0 
MH63fam51_257 unclassified 696 238 34.2 
MH63fam72_365 Amy/LTP-like 971 354 36.5 
MH63fam73_259 unclassified 1003 292 29.1 
MH63fam106_364 Castaway-like 1067 314 29.4 
N22fam5_230 MITE-adh I-like 1093 354 32.4 
N22fam30_347 Tourist-like 767 223 29.1 
N22fam34_480 Ditto-like 2615 742 28.4 
Oryza1fam20_279 Gaijin/Gaigin-like 2170 690 31.8 
SE260500111fam211_334 Tourist-like 1019 301 29.5 
SE260500112fam219_340 Tourist-like 2357 696 29.5 

* Family IDs from Castanera et al., (2021) 

** Classification based on best BLAST hit to Oryza Repeat Database   
(http://rice.uga.edu/annotation_oryza.shtml) 
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Table B.4: Percentage of bootstrap samples where prediction correlation is larger with a given 
marker set than with SNPs only. Within Population Scenario. 

 

Marker set MITE/DTX > SNP RLX/RIX > SNP ALL > SNP 

 BayesC RKHS BayesC RKHS BayesC RKHS 

Culm Diameter 0.90 0.92 0.63 0.83 0.99 0.99 

Culm strength 0.28 0.12 0 0.08 0.22 0.12 

Flag leaf angle 0.05 0.07 0 0.09 0.06 0.09 

Grain length 0.82 0.20 0 0.10 0.90 0.57 

Grain width 0.36 0.05 0 0.05 0.64 0.36 

Leaf length 0.67 0.82 0 0.69 0.50 0.85 

Leaf senescence 0.52 0.52 0 0.79 0.64 0.69 

Grain weight 0.70 0.81 0 0.55 0.76 0.59 

Salt injury  0.53 0.32 0 0.34 0.34 0.41 

Time to flowering 0.78 0.89 0 0.48 0.59 0.59 

Pan. threshability 0.24 0.18 0 0.29 0.28 0.21 

ALL: All marker model 
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Table B.5: Percentage of bootstrap samples where prediction correlation is larger with a given 
marker set than with SNPs only. Across Population Scenario. 

 

Marker MITE/DTX > SNP RLX/RIX > SNP ALL > SNP 

 BayesC RKHS BayesC RKHS BayesC RKHS 

Culm Diameter 0.83 0.92 0.18 0.37 0.95 0.81 

Culm strength 0.79 0.82 0.83 0.89 0.81 0.81 

Flag leaf angle 0.39 0.67 0.83 0.92 0.14 0.67 

Grain length 0.02 0.67 0.02 0.22 0.68 0.84 

Grain width 0.93 0.99 0.04 0.99 0.27 0.99 

Leaf length 0.62 0.62 0.70 0.91 0.96 0.89 

Leaf senescence 0.98 0.97 0.97 0.98 0.99 0.98 

Grain weight 0.74 0.58 0.30 0.37 0.95 0.83 

Salt injury 0.00 0.01 0.52 0.13 0.22 0.04 

Time to flowering 0.19 0.73 0.09 0.41 0.83 0.94 

Pan. threshability 0.06 0.15 0.02 0.01 0.23 0.18 

ALL: All marker model 
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Table B.6: Correlation between observed and predicted phenotypes under a linear and threshold 
model. 
 

Model Linear Threshold 

 SNPs MITE /DTX RLX/ RIX SNPs MITE/ DTX RLX/ RIX 

Culm 
Diameter 

-0.07 0.26* 0.09 0.13 0.26* 0.06 

Culm 
Strength 

0.05 0.20* 0.18 -0.04 0.11 0.15 

Flag Leaf 
Angle 

0.00 0.11 0.14 0.10 0.13 0.26* 

* Best strategy 
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Table B.7: Root Mean Squared Error Value (RMSE): Within Population Scenario 

 

Marker SNPs MITE/DTX RLX/RIX ALL 

Method BayesC RKHS BayesC RKHS BayesC RKHS BayesC RKHS 

Culm Diameter 1.05 1.04 1.03 1.01* 1.06 1.04 1.03 1.02 

Culm strength 0.99* 1.00 1.01 1.04 1.04 1.06 1.01 1.04 

Flag leaf angle 1.04* 1.05 1.14 1.14 1.14 1.13 1.06 1.08 

Grain length 0.79 0.82 0.76* 0.85 0.87 0.86 0.77 0.82 

Grain width 0.43* 0.51 0.49 0.63 0.60 0.63 0.43* 0.53 

Leaf length 0.97 0.98 0.97 0.97 1.00 0.97 0.97 0.96* 

Leaf senescence 0.89 0.90 0.89 0.90 0.89 0.86* 0.88 0.88 

Grain weight 0.82 0.81 0.79 0.78* 0.81 0.79 0.81 0.80 

Salt injury  0.95* 0.96 0.96 0.96 0.97 0.96 0.96 0.95* 

Time to flowering 0.61* 0.61* 0.69 0.65 0.66 0.68 0.61* 0.62 

Pan. threshability 0.96 0.95* 0.98 0.97 0.97 0.95* 0.97 0.96 

Asterisk * indicates the lowest value 
ALL: All marker model 
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Table B.8: Root Mean Squared Error Value (RMSE): Across Population Scenario 

 

Marker SNPs MITE/DTX RLX/RIX ALL 

Method BayesC RKHS BayesC RKHS BayesC RKHS BayesC RKHS 

Culm Diameter 0.96 0.97 0.94* 0.95 0.98 0.98 0.95 0.96 

Culm strength 1.00 1.01 0.98* 0.99 0.98* 0.98* 0.98 1.01 

Flag leaf angle 0.96 0.98 0.95 0.96 0.92* 0.93 0.96 0.97 

Grain length 1.17* 1.41 1.40 1.39 1.42 1.46 1.17* 1.38 

Grain width 1.24 1.29 0.99* 1.14 1.32 1.18 1.28 1.23 

Leaf length 0.89 0.89 0.88 0.89 0.87 0.84* 0.86 0.86 

Leaf senescence 1.02 0.99 0.88* 0.88* 0.91 0.88* 0.89 0.89 

Grain weight 1.12 1.23 1.10* 1.11 1.17 1.14 1.11 1.11 

Salt injury  0.96 0.97 1.00 0.99 0.95* 0.97 0.96 0.98 

Time to flowering 0.79 0.78 0.76 0.77 0.79 0.76 0.78 0.75* 

Pan. threshability 0.96* 0.98 0.99 0.99 0.99 1.02 0.97 0.99 

Asterisk * indicates the lowest value 
ALL: All marker model 
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Figure B.1: Plot of variances across iterations to show convergence. Results correspond to “Grain width” 
under models 1a and 2a. Variances with Bayes C were computed as in https://github.com/gdlc/BGLR-
R/blob/master/inst/md/heritability.md. 

 

https://github.com/gdlc/BGLR-R/blob/master/inst/md/heritability.md
https://github.com/gdlc/BGLR-R/blob/master/inst/md/heritability.md
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Figure B.2: Raw phenotypic distributions by populations, each shown in a different color. 
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Figure B.3: Distributions of estimated marker effects from Bayes C using model 2a in the across population 
prediction scenario. 
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Figure B.4: Distributions of marker probabilities entering the model (d) in Bayes C using model 2a in 
the across population prediction scenario. 
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