
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Universitat Autònoma de Barcelona

Departament d’Enginyeria de la Informació i de les Comunicacions

PHD in Computer Science

A controller-driven approach for Opportunistic
Networking

MªCarmen de Toro Valdivia

Supervisor Dr. Carlos Borrego Iglesias

Bellaterra, December 2022

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by
Ricardo Langner.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

Front Cover Photograpy:

https://www.rawpixel.com/image/4021287/photo-image-green-nature-dog

Creative Commons 2022 by MªCarmen de Toro Valdivia
This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/

http://cleanthesis.der-ric.de/
https://www.rawpixel.com/image/4021287/photo-image-green-nature-dog
https://creativecommons.org/licenses/by-nc-sa/4.0/

I certify that I have read this thesis entitled “A controller-driven approach for Op-
portunistic Networking" and that, in my opinion, it is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.

Bellaterra, December 2022

Dr. Carlos Borrego Iglesias
(Advisor)

Committee:

Enrique Hernández Orallo

Guillermo Navarro Arribas

Benedetta Picano

Subtitute:

Ramon Martí Escalé

Carles Garrigues Olivella

To Joan Borrell

Abstract

OPPORTUNISTIC NETWORKS (OppNets) leverage opportunistic contacts us-
ing a device-to-device communication scheme to flow data across an
infrastructure-free network. Up to date, OppNets performance depends on

applying the most suitable forwarding strategy based on the OppNet typology. On
the other hand, Software Defined Networks (SDN) is a paradigm for wired networks
that decouples the control and data planes. The control plane oversees the network
to configure the data plane optimally. Our proposal uses SDN-like controllers to
build a partial overview of the opportunistic network. The forwarding strategy uses
this context information to achieve better network performance. As a use case of our
proposal, in the context of an OppNet using a quota-based forwarding algorithm, we
present a controller-driven architecture to tackle the congestion problem derived
from multi-copy forwarding strategies. Particularly, the controller-driven architecture
uses the context information of how congested the network is to dynamically deter-
mine the message replication limit used by the forwarding algorithm. Simulation
based on real and synthetic mobility traces shows that using context information
provided by the controller to configure the forwarding protocol increments the
delivery ratio and keeps a good latency average and a low overhead compared
with the baseline multi-copy-based forwarding protocols. These results strengthen
the benefits of using supervised context information in the forwarding strategy in
OppNets.

Resum

Les xarxes oportunistes (OppNets) aprofiten les oportunitats de contacte entre els
nodes, el quals utilitzen l’habilitat de comunicar-se directament entre ells, per fer
fluir les dades a través d’una xarxa mancada d’infraestructura. A dia d’avui, el
rendiment de les xarxes oportunistes depèn d’aplicar l’estratègia d’encaminament
que més s’escaigui al tipus de xarxa oportunista en qüestió. D’altra banda, les

vii

xarxes definides per software (SDN) és un paradigma aplicat a xarxes cablejades
a on se separa el pla de control del pla de dades. El pla de control supervisa la
xarxa per configurar, de la manera més òptima, el pla de dades. La nostra proposta
utilitza controladors semblants als de SDN per fer-se una idea parcial de la situació
de la xarxa oportunista. L’estratègia d’encaminament utilitza aquesta informació
contextual per obtenir una millora del rendiment de la xarxa. Com a cas d’ús de la
nostra proposta, en el context d’una OppNet utilitzant un algorisme d’encaminament
basat en una quota màxima de replicació, presentem una arquitectura dirigida
per controladors per abordar el problema de congestió derivat de la utilització
d’estratègies d’encaminament basades en multi-còpia de missatges. En particular,
l’arquitectura dirigida per controladors utilitza la informació contextual de com
congestionada està la xarxa per, dinàmicament, determinar quin és el límit de
replicació de l’estratègia d’encaminament. Simulacions basades en traces de mobilitat
reals i sintètiques mostren que la utilització de la informació contextual, proveïda
pel controlador, per configurar el protocol d’encaminament, incrementa la ràtio de
missatges rebuts tot mantenint una bona latència mitjana dels missatges i un cost
baix d’utilització de la xarxa en comparació amb els protocols d’encaminament marc
basats en multi-còpia. Els resultats obtinguts corroboren com de beneficiosa és la
utilització d’informació contextual supervisada en l’estratègia d’encaminament de
xarxes oportunistes.

Resumen

Las redes oportunistas (OppNets) aprovechan las oportunidades de contactos entre
los nodos, los cuales utilizan la habilidad de comunicarse directamente entre ellos,
para hacer fluir los datos a través de una red sin infraestructura. A día de hoy, el
rendimiento de las redes oportunistas depende de utilizar la estrategia de encami-
namiento más conveniente al tipo de red oportunista en cuestión. Por otro lado, las
redes definidas por software (SDN) es una paradigma aplicado a las redes cableadas
donde se separa el plano de control del plano de datos. El plano de control supervisa
la red para configurar de forma óptima el plano de datos. Nuestra propuesta utiliza
controladores parecidos a los de SDN para hacerse una idea parcial de la situación
de la red oportunista. La estrategia de encaminamiento utiliza esta información
contextual para obtener una mejora del rendimiento de la red. Como caso de uso de
nuestra propuesta, en el contexto de una OppNet que utilice un algoritmo de encami-
namiento basado en una cuota máxima de replicación, presentamos una arquitectura
dirigida por controladores para abordar el problema de la congestión derivado de la

viii

utilización de estrategias de encaminamiento basadas en multi-copia de mensajes.
En particular, la arquitectura dirigida por controladores utiliza la información con-
textual de cuán congestionada está la red para, dinámicamente, determinar cuál es
el límite de replicación de la estrategia de encaminamiento. Simulaciones basadas
en trazas de movilidad reales y sintéticas muestran que la utilización de información
contextual, proporcionada por el controlador, para configurar el protocolo de encam-
inamiento, incrementa la ratio de mensajes recibos manteniendo una buena latencia
media de los mensajes y un coste bajo en la utilización de la red en comparación
con los protocolos de encaminamiento marco basados en multi-copia. Los resultados
obtenidos corroboran los beneficios de la utilización de información contextual
supervisada en la estrategia de encaminamiento de las redes oportunistas.

ix

Acknowledgements

LUCKILY MANY people have accompanied me during this long journey. All of
them have contributed in very distinct ways to the fulfilment of this work,
and I would like to praise them all for that. Firstly, I will be forever grateful

to my parents, who worked very hard so I could complete my bachelor’s studies,
millones de gracias mama, papa.

I am very grateful to my supervisor for always believing in me and this work;
offering me his wide knowledge, know-how, and good ideas; enlightening me to
seek perfection; sharing with me all his bash scripts, R scripts, and knowledge of the
simulator. Carlos, it has been so helpful! I especially like to thank him for his support
in the last and hardest stages of this path, moltíssimes gràcies Carlos. I am also very
thankful to my last tutor Sergi Robles for believing in me and for his brilliant ideas
have been crucial to the success of this research, moltíssimes gràcies Sergi.

I would have never sailed this ship if Joan Borrell had not pushed me to it. Moltíssimes
gràcies Joan for believing I was capable of reaching this horizon when I did not. We
have sailed this ship together. Joan, you always will be in my mind and my heart.

I am immensely thankful to Ian Blanes for getting me out of the hole I was in and for
actively supervising the successful completion of the research paper that supports
this PhD. Ian, without your help, know-how, support and encouragement, I would
not be writing this dissertation right now, moltíssimes gràcies Ian.

I also want to thank my friend Cristina Fernandez for always being there for me. You
are such a bright and powerful woman. You inspire me and so many women and
men, moltíssimes gràcies Cristina. I am very grateful to JosepMª Basart for showing
me a different way of living this process and life. I commend your generosity for
sharing your knowledge and always being willing to listen to me, moltíssimes gràcies
Josep Mª. Josep Mª, Cristina, it has been life-changing and an absolute privilege to
share a mindfulness meditation session on Fridays, which has helped me in stormy
times, moltíssimes gràcies Cristina, Josep Mª.

xi

I want to thank the Deic department for procuring me a warm and inspirational
place of work and cheering me up along this journey. I especially like to thank “el
consell de savis" for those cheerful lunches. It has been an honour to share this time
with you.

Last but not least, I want to show my gratitude to my husband and two kids, who
have lived first-hand the upside-downs of this whole path, which has not been easy.
Roger, Sara, I hope you keep the good of it, that effort and resilience overcome
despair and help to keep going.

I do not know where life will drive me from now on. Wherever it will be, I will carry
all of you with me as you all have changed me for good. Gràcies.

This research has been funded by a four-year PIF grant from Universitat Autònoma
de Barcelona. I am very grateful to this institution for having supported this work
economically.

MªCarmen de Toro Valdivia

Bellaterra, December 2022

xii

Contents

I Preliminaries 1

1 Introduction 3

1.1 Contributions . 4

1.2 Thesis Structure . 5

2 State of the Art 7
2.1 Opportunistic Networks overview . 7

2.2 Routing in Opportunistic networks 10

2.3 Congestion control in Opportunistic Networks 12

2.4 Software Defined Networking . 15

II Proposal 19

3 Control layer architecture 21

3.1 Control layer overview . 21

3.2 Control metadata . 22

3.2.1 Context indicator measurement 22

3.2.2 Control directive . 23

3.3 Context measurements dissemination 23

3.4 Context measurements aggregation 24

3.5 Controller architecture . 26

3.6 Context indicator prediction . 28

3.7 Directive generation . 29

3.8 Directive dissemination . 30

4 Use of the controller-driven OppNet architecture to manage congestion 33

4.1 Control Metadata . 33
4.1.1 Context indicator measurement for congestion 34

4.1.2 Control layer data message 34

4.2 Control layer tailored for congestion control 35

4.3 Network congestion prediction . 36

4.4 Directive generation for congestion management 36

4.5 Applying a directive . 37

4.6 Buffer Management . 38

xiii

III Experimentation 39

5 Experimentation environment 41

5.1 Performance metrics . 41

5.2 Scenarios . 42

5.3 Message generation distribution . 43

5.3.1 Inverted Smoothed Top Hat distribution (ISTH) 43

5.3.2 Scenario’s message generation distribution 45

5.4 Environment setup . 46

5.4.1 Common configuration settings 46

5.4.2 Scenario and control configuration settings 48

6 Results 51

6.1 Replication limit tendency for the Control configuration 51

6.2 Buffer occupancy evaluation . 52

6.3 Performance evaluation . 55

6.3.1 Overhead ratio . 55

6.3.2 Delivery ratio . 56

6.3.3 Latency average . 57

6.4 Evaluation of the control settings impact on the delivery ratio 58

6.4.1 Number of controllers . 59

6.4.2 Optimal congestion interval (omin − omax) 60

6.4.3 Additive Increase (k2); Multiplicative Decrease (k1) 61

6.4.4 Aggregation interval (t̂) . 62

6.4.5 Number of inputs (z̆) . 63

6.4.6 Prediction time factor (ϕ) . 64

6.4.7 Reduction factor for a decay (r) 64

6.4.8 Decay threshold . 65

6.4.9 Number of aggregations weight (α) 66

6.4.10 Directive generation frequency 67

IV Conclusions and Future work 69

7 Conclusions 71

7.1 Achievements . 71

7.2 Future work . 73

7.2.1 Emerging controllers . 73

7.2.2 Approximation to a global network overview 73

7.2.3 Implementation of a connectionless SDN southbound protocol 74

xiv

V Bibliography 75

Bibliography 77

xv

List of Figures

2.1 Relationship between our proposal and the different presented concepts. 7

3.1 Node’s GAFA functionality. 22
3.2 Context measurements dissemination when two nodes are in range. . . 24
3.3 Closed-loop control system. 27
3.4 State diagram for metrics aggregation. 28
3.5 Disseminating a directive when two nodes are in range. 31

4.1 Closed-loop control system for congestion control. 35

5.1 Inverted Smoothed Top Hat function for a 24-hour working day. 44

6.1 Replication limit the Control configuration tends to 52
6.2 Buffer occupancy per configuration. 53
6.3 Percentage of dropped over relayed messages for the different policies 54
6.5 Delivery ratio percentage for the different forwarding policies per scenario. 56
6.6 Latency average for the different forwarding policies per scenario. . . . 58
6.7 Delivery ratio by number of controllers. 59
6.8 Delivery ratio depending on the optimal congestion interval per scenario. 60
6.9 Delivery ratio vs. different values for the AIMD control function. 62
6.10 Delivery ratio vs. congestion readings gathering time interval 62
6.11 Delivery ratio vs. the number of inputs the linear regression is fed with. 63
6.12 Delivery ratio depending on the prediction time factor. 64
6.13 Delivery ratio per decay weight. 65
6.14 Delivery ratio for different decay thresholds. 66
6.15 Delivery ratio for different α weights. 66
6.16 Delivery ratio for different directive generation periods. 67

xvii

List of Tables

5.1 Message generation distribution per scenario. 46
5.2 Summary of the Common simulation settings for all the scenarios. . . . 47
5.3 Summary of the Specific simulation settings per scenario. 47

xix

List of Algorithms

1 Context measurements aggregation algorithm. 26
2 Controller’s context indicator prediction. 29
3 Directive creation algorithm. 30

4 Procedure to update the buffered messages with the l set by a directive. 37

xxi

Abbreviations list
a Application layer message
φ Message’s flag alive
b Buffer size in bytes
B Buffer: a list to store messages
c Controlled variable
ct+n Congestion state prediction for time t + n
d Decay
δ Directive: δ = (Id, ϑ)
δl Directive encapsulating a replication limit
ϕ Factor to calculate tt+n

Idp Identifier of the network setting P
Idl Message’s replication limit Id setting
k1 Multiplicative decrease factor
k2 Additive increase factor
gi A message
#gd Number of delivered messages
#gc Number of created messages
#gr Number of relayed messages
l Max. message copies in the network (replication limit)
λ Latency average
λi Latency of message gi

L1 Highest message generation rate for the ISTH dist.
L2 Lowest message generation rate for the ISTH dist.
mli Node ni’s local network measurement: mli = (vli , 1, tci)
mi Aggregated received network measurements: mi = (vi, ηi, tci

)
mt+n Predicted network measure value at time t + n
Mi Aggregated network measurements list for node ni

m̆ Aggregation of the received measurements during t̂s
M̆ List of m̆ values
z̆ Max size of M̆
µ Control system’s manipulated variable
η Number of aggregated measurements
ni A specific node
oi Buffer occupancy in bytes of node ni

ot+n Buffer occupancy prediction for time t + n
omin Min. buffer occupancy rate
omax Max. buffer occupancy rate
θ Overhead ratio
r Reduction factor
r Control system’s reference input
ϱ Number of times a message has been relayed
ρ Linear regression function
σ Delivery ratio
t Current time
tt+n Time ahead when calculating the congestion prediction
tci

Creation time for either a measurement or an aggregation
t̂ Time period for aggregating received measurements
T̆ List of the timestamps of the aggregations performed
ϑ Network setting’s value
vli

Node ni’s local network measurement
vi Result value after aggregating the received measurements in Mi

xxiii

Part I

Preliminaries

1Introduction

THE INTERNET is growing fast with the ever-increasing Machine-to-Machine
communication (M2M), the expansion of micro and proximity services, the
use of cloud services, the continuous increase of connected devices, among

other reasons. Based on Cisco’s Networking Visual Index1, by 2023 there will be 29.3
billion networked devices. The fastest-growing mobile device category is M2M with
14.7 billion, followed by smartphones and other smart devices. The International
Telecommunication Union report for the years 2020 to 2030 [78] estimates 100
billion connected devices by the year 2030. The global M2M subscriptions will grow
to 97 billion, and the smartphones and smart devices will increase to 17 billion.

Improving the legacy infrastructure to cope with the overcoming demand in terms
of bandwidth, coverage, quality of service (QoS) and specific requirements for
emerging applications is costly and, therefore, not the ultimate solution. Thus,
offloading traffic from core networks is a concern. For that matter, Device-to-Device
(D2D) communication performs direct transmissions between peers in range without
the need of a base station. Precisely, 5G has implemented a D2D communication
protocol to enable such direct communication [7].

A type of network based on D2D communication is Opportunistic Networks (Opp-
Nets). OppNets are characterized by the mobility of their nodes, which leads to
an undefined network topology that hinders contemporaneous end-to-end connec-
tivity. Therefore, in OppNets, communication is led by the contact opportunity
between peers. This paradigm is very convenient in networks as Vehicular Ad
hoc Networks [73], Mobile Wireless Sensor Networks [60], Pocket-Switched [35],
People-Centric [19], and Mesh Networks [4], among others.

OppNets, due to the mobility of their nodes, are prone to frequent disconnections,
segmentation and long delay paths. Hence, traditional routing schemes based
on end-to-end connectivity are not applicable. Therefore, OppNets nodes act as
routers which use the principle of store-carry-and-forward (SCF) [24] to forward
data from source to destination on a hop-to-hop basis. The idea behind the SCF
paradigm is that nodes may temporally store data in their buffers and carry it until
there is a communication opportunity to forward the data to another node or its
destination. This scheme adds a new temporal dimension to forwarding decisions.
Moreover, in OppNets, routing efficiency directly affects the network performance

1https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

3

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

and is highly coupled with the type of application running over the OppNet [17].
In this environment, routing orchestration is a challenge. Therefore, forwarding in
OppNets has been widely studied, such as in [52, 17, 68, 53], and [44].

In this regard, Software Defined Networks (SDN) [42] is a network paradigm
applied to connected networks that programmatically orchestrates the traffic routing
and network configuration by using a program called controller. Essentially, these
network paradigms decouple the control plane (routers and switches taking high-
level routing decisions) from the data plane (packet-forwarding). This decoupling
results in a control plane driven by the aforementioned controller. The controller
proactively gathers network information by running network application services on
the underlying network elements and uses this information to overview the whole
network. With this overview, the controller fulfils the application requirements by
configuring a table with data flow rules instead of having them hardwired into a
physical device’s firmware. These rules are pushed-down to the data plane. Although
SDN protocols are based on TCP and, therefore, are not straightforwardly applicable
to OppNets, we take on board the concept of having a controller providing a dynamic
context-aware system and SDN-like agents receiving/sending information to the
controller.

Hence, the goal of this proposal consists in using the SDN building blocks to build
a context-aware system over an OppNet. This context-aware system leverages
from context information to dynamically configure the OppNet’s forwarding policy
parameters aiming to achieve better performance. In the proposed context-aware
system, some OppNet’s nodes perform as SDN-like controllers (controllers) and the
rest as SDN-like agents (nodes). The nodes gather context measurements, specifically
device measurements and send them opportunistically upon a hop-to-hop basis to
the controllers, which will use this information to tune the forwarding algorithm
parameters on the go. The nodes extend the SCF paradigm to (1) gather device
context measurements, (2) aggregate the gathered measurements, (3) forward them
to the controllers and (4) apply the received policies generated by the controllers. In
this manuscript, we name this paradigm GAFA. We refer to the OppNet extended
with the control system and the GAFA functionalities as controller-driven OppNet.

1.1 Contributions

In developing this proposal, we make the following contributions:

• Design of the architecture of a novel context-aware system for OppNets inspired
by the SDN paradigm where nodes operate based on the GAFA paradigm to feed the

4 Chapter 1 Introduction

controllers with device-context information and apply the controllers’ policies. The
controllers would use those feedings to tune the forwarding algorithm parameters
through configuration policies emitted to the nodes to obtain a better network
performance.

• Use of the controller-driven OppNet architecture for tackling the congestion
in an OppNet characterized by a high unpredictability of the nodes’ mobility and
a multi-copy replication forwarding strategy. Specifically, the OppNet’s controllers
orchestrate the value of the replication limit of the forwarding algorithm based on
the buffer occupancy readings gathered by the nodes.

• Evaluation of the performance and benefits of the controller-driven OppNet
for the use case of congestion control: To evaluate our proposal, we have simulated
diverse network scenarios based on real and synthetic mobility traces using different
message generation distributions. We have evaluated the controller-driven OppNet
on the basis of the standard performance metrics for OppNets. Also, we have run
the aforementioned simulations over an OppNet without the control layer (context-
oblivious) using an epidemic and a quota-based forwarding protocol. We have
compared and evaluated the performance of both configurations. We have proved
that a controller-driven OppNet performs better than a context-oblivious one.

1.2 Thesis Structure

The thesis document is structured as follows:

Chapter 2

This chapter introduces the state of the art of Opportunistic Networks, focusing on
data forwarding and congestion control. Also, we accost SDNs, as our proposal
adopts the fundamental architectural building blocks of such networks.

Chapter 3

This chapter presents the controller-driven Opportunistic Network generic architec-
ture. It illustrates how the SDN structural building blocks are adapted to the OppNets
specifics to build a supervised context-aware information system that uses context
information to tune the forwarding strategy to improve the network performance.

Chapter 4

This chapter describes how the controller-driven OppNet architecture is used to
manage congestion. First, we expose an OppNet using a multi-copy forwarding
algorithm scheme facing a congestion issue as a drawback of its forwarding strategy.

1.2 Thesis Structure 5

Second, we show how to tailor the controller-driven OppNet architecture presented
in Section 3 to mitigate the congestion effects of this particular forwarding strategy.

Chapter 5

In this chapter, firstly, we present the simulation-based testbed environment for eval-
uating the aforementioned controller-driven OppNet congestion use case. Secondly,
we describe which are the different scenarios the controller-driven OppNet will be
simulated over. Next, we determine the performance metrics used to evaluate the
controller-driven OppNet against other OppNet benchmarking configurations. After,
we specify the different message generation distributions used to simulate network
traffic for all the testbed chosen scenarios. Finally, we provide the testbed-specific
configuration parameters needed for its replicability.

Chapter 6

In this chapter, we show and evaluate the performance of the controller-driven Opp-
Net compared with other OppNet benchmarking configurations. Also, we analyse the
impact of the control-layer configuration settings on the delivery ratio performance
for the testbed scenarios. Finally, we derive the default value for the aforementioned
control-driven OppNet configuration settings for maximising the messages delivery
ratio.

Chapter 7

Finally, this chapter presents the conclusions drawn from this work. Also, we envision
the natural future lines derived from this research.

6 Chapter 1 Introduction

2State of the Art

THIS CHAPTER overviews the nature of OppNets. It reviews the current po-
sitioning of Opportunistic Networks by reviewing which original OppNet
targeted applications are still a niche for the OppNets technology despite

emerging technologies aiming to provide universal connectivity. It also inspects
which is, up to date, the real-life deployment of this technology. Next, provided that
our proposal uses context information in the forwarding strategy, we review routing
in Opportunistic Networks, focusing on context-based routing. As our proposal’s
targeted OppNet uses a multi-copy forwarding strategy prone to congestion, we
inspect the congestion management strategies applied to OppNets, spotlighting the
ones using context information. Finally, as the highlight of our proposal is incorpo-
rating the main building blocks of the SDN architecture, we overview the principal
architectural elements of SDNs and explore how this architecture has been exported
beyond connected networks. Figure 2.1 depicts the relation of our proposal with the
concepts presented in this chapter.

OppNets SDNs

Routing

You
are
here

Congestion
Control

Fig. 2.1: Relationship between our proposal and the different presented concepts.

2.1 Opportunistic Networks overview

An OppNet is a structure-less multi-hop network built upon fixed and mobile nodes
via wireless links. Due to the mobility of the nodes, OppNets are prone to disruptions,
segmentation and long delay paths. Under these conditions, where there is no
guarantee of an end-to-end path between the source and destination at a specific
instant in time, the TCP/IP protocol suite is not effective. Hence, the communication

7

in an OppNet is driven by the direct contact opportunity between peers in range,
and data flow is achieved by exploiting the pair-wise contact opportunity provided
by the nodes’ mobility. OppNets have been conceived as a complement to connected
networks to provide connectivity under specific conditions. Therefore, they are
targeted to well-defined practical use case applications characterised by having a
limited or even nonexistent infrastructure [24].

Trifunovic et al. in a recent review [77], characterize the current OppNets target
applications. In their study, they review if the classical OppNets targeted applications
are currently settled by new technologies providing a more reliable solution. Indeed,
new technologies have emerged to provide a global scale Internet connectivity. They
are classified into two main groups depending on the deployed infrastructure: (i)
orbital, through low-earth orbit satellites or (ii) floating, through drones and high-
altitude balloons. The two main representatives of the orbital infrastructure are
Starlink by SpaceX [49] and OneWeb [32]. For the floating infrastructure, the main
ones are project Loon by Google [39] and Internet.org by Facebook. Nevertheless,
Trifunovic et al. state that these emerging technologies have intrinsic drawbacks
which do not convert them in the ultimate solution for the traditional OppNet target
applications, which leaves OppNets as the best solution so far.

According to [58, 52, 17] and more recently reviews, [77, 64], the beforementinoned
traditional OppNets target applications are classified in five main use cases:

Challenged networks: These are networks where infrastructure is partially or fully
unavailable. In this case, OppNets leverage their inherent instantaneous network
support providing local communication and bridging to the available infrastructure.
Challenged networks are classified in three groups:

• Emergency and extreme situations due to a natural or human-made disaster [6].

• Provision of Internet to rural or remote areas that could be inaccessible or do
not seem cost-effective for companies to invest in infrastructure [38].

• Mines, gas and oil fields or construction areas where the signal suffers from
a severe attenuation or where the geography hinders deploying an infrastruc-
ture [34].

Cellular traffic offload: During a crowded event, mobile operators can face band-
width bottlenecks by the massive use of the same antenna, and thereby users could
experience a low QoS. Mobile operators could rely on content cached in some access
points and use opportunistic communication to propagate popular content within
the attendants to decrease the load of their core network [83].

8 Chapter 2 State of the Art

Censorship avoidance: Some governments and oppressive institutions censor the
content disseminated through the Internet. Opportunistic communication favours
the circumvention of this blockage as the information is disseminated out of the core
network, and users are difficult to be tracked down [77].

Vehicular networks (VANET): In VANETs, vehicles communicate while in range
with other vehicles and roadside units and share efficient driver assistance and safety
information [75, 81].

Mobile Wireless Sensor Networks (MWSN): MWSN are an extension of Wireless
Sensor Networks(WSN) where nodes are mobile. In WSN, nodes are small low-
power sensors with low battery life, so the network lifetime is short [3]. One
example of application field for MWSN is wildlife monitoring. Wildlife monitoring
refers to studying large populations roaming vast areas without human intrusion.
These monitoring systems consist in equipping the species with a tracking device
provided with a GPS, a small wireless computing device and special tags with sensing
capabilities and having one or several mobile base stations to collect the data and
send them to the processing center. Jino et al. in [63], survey the up-to-date research
in WSN for different application areas, including wildlife monitoring.

Three more promising OppNet target applications are envisioned by Trifunovic et al.
in [77]:

Opportunistic Mobile Sensing: It exploits the handheld/wearable devices’ sen-
sors to opportunistically collect data to study human behaviour, interactions, and
relationships [29].

Opportunistic Mobile Computing: It considers the OppNets opportunistic con-
tacts to, apart from disseminating data, share computational resources [20].

Device discovery in the IoT industry: Consists in exploiting opportunistic encoun-
ters to discover IoT devices [15].

Also, Kuppusamy et al. in [44], propose a classification of targeted applications for
OppNets based on the size of the area and the number of nodes the OppNet can scale
up to. They consider applications for: group monitoring; local information/special
interest exchange between a random group of defined people, such as neighbours,
team members like firefighters, rangers, etc.; the exchange of information in a
campus; data exchange in a crowded event as a concert; a smart city; a smart
country; Industry4.0, and disaster alert.

2.1 Opportunistic Networks overview 9

Indeed, a lot of the proposed OppNet solutions for well-defined applications have
ended up with the design of a prototype. Notwithstanding, demonstrating the
feasibility of OppNets, there are deployed solutions. Trifunovic et at. in [77] point
out several companies that commercialize an OppNet solution for different sectors.
Some of the mentioned companies are Open Garden, which offers FireChat [10] that
provides a secure and private off-the-grid communication used during the Hong
Kong protests. Uepaa!1 is a safety application used in areas with no cellular coverage.
GoTenna [62] provides a device that pairs with the smartphone for sharing text and
location on a peer-to-peer basis. Guidec et al. in [28], stand out as an issue, the
computation, communication, and storage eager energy consumption of handheld
devices. They overcome the former handicap by using an external add-on hardware
called Ligo. Ligo is a middleware linked via Bluetooth to a handheld device and
establishes an OppNet with other Ligo devices. Touseaau et al. in [76], use the
infrastructure above to develop a framework to build web applications accessed
opportunistically. Furthermore, Lee et al. in [46], list up-to-date deployed prototypes
for VANETs.

2.2 Routing in Opportunistic networks

In connected networks, communication is based on end-to-end connectivity. In this
context, routing involves finding the best route to send data across multiple networks
through routers. Forwarding consists in transferring packets from the router’s incom-
ing link to the outgoing link that fulfils the determined routing path. Conversely,
OppNets are prone to long delay paths, disconnections and segmentation, hindering
end-to-end connectivity. Hence, traditional routing based on contemporaneous end-
to-end connectivity is not feasible. Therefore, in OppNets, data forwarding is driven
hop-to-hop using the Store Carry and Forward (SCF) paradigm originally designed
for DTNs [36]. This forwarding paradigm consists in the node storing the data and
carrying it along the network according to its mobility until a contact opportunity
occurs and then forwarding the data to the contacted node.

Data forwarding is principal in OppNets as the application deployment relies on
the forwarding as a guarantee of their particular QoS requirements [36]. Moreover,
these mobile wireless networks face the handicaps that nodes are usually equipped
with short-range wireless devices, which brings short contact times between nodes in
communication range, and the high battery consumption of the D2D communication
mode [28]. These characteristics should also be considered to determine which
data dissemination strategy is used to fulfil the QoS required by an application
[17]. Therefore, much research has been conducted on developing new routing and

1https://safety.uepaa.ch/. Available for download from major digital distribution services.

10 Chapter 2 State of the Art

forwarding strategies. Some surveys group the up-to-date forwarding proposals into
a proposed forwarding taxonomy such as [17, 68, 53], and the most recent up to
our knowledge, Sachdeva et al. in [64]. It is worth pointing out the importance of
having a forwarding strategy taxonomy to classify a forwarding algorithm. It also
seems reasonable to associate an OppNet that follows a specific typology with the
most suitable forwarding strategy for that specific typology [25]. Although each of
the surveys mentioned above presents different taxonomies and specificity when
determining the categories, there are correspondences. It is sensible to leave this
classification open and allow the researchers to use the most suitable taxonomy to
classify their proposed algorithm.

Seeking forwarding efficiency, Jain et al. in [36] state that context information
helps to make a more efficient forwarding. Also, Mota et al. in [52] suggest that
context information such as the state of the neighbourhood, the history of contacts,
and network attributes, along with prediction-based models, help to make a more
efficient forwarding. They also point out the overhead that implies the acquisition
and sharing of such context information, and thereby, they conclude that it is a matter
of finding a trade-off between the effectiveness of the context information and its
overhead cost. In this line, CC et al. in [68] classify the data forwarding algorithms
into two main categories depending on the context information used to make
routing decisions: social-based routing and pure opportunistic routing. Social-based
routing is applied to OppNets driven by social behaviours such as social routines,
mobility patterns, and interests, among others, where user location and application
context information is helpful to make forwarding decisions. On the other hand,
pure opportunistic routing encompasses both context-oblivious and context-aware
forwarding techniques. Although it can leverage social context information, context-
based pure opportunistic routing usually uses device context information related to
the device’s resources as energy and storage consumption from the node itself and
its neighbours. CC et al. go deeper in the pure opportunistic routing classification
tree branch and take into account (i) the forwarding algorithm’s message replicas:
single-copy or multi-copy and (ii) the message delivery type: unicast, multicast or
anycast.

Under the pure opportunistic routing category, sound forwarding strategies have
been proposed in the literature. Those proposals fit well under determined network
conditions and application requirements. In this regard, flooding-based strategies,
consisting in message replication, have proved to maximize the delivery ratio with a
low latency when the OppNet is characterized by the unpredictable nodes’ movement
[17]. Under the aegis of multi-copy forwarding, the epidemic flooding approach
proposed by Vahdat et al. in [80] is a context-oblivious strategy prone to suffer
from the congestion derived from the replication overhead. Spyropoulos et al. in
[72] address the congestion overhead by establishing a static configured replication

2.2 Routing in Opportunistic networks 11

quota. Context-aware strategies aim to reduce the effects of a naive replication by
calculating the utility of a relay based on history information. CC et al. in [68]
highlight the most relevant routing proposals under this category. A metric is usually
employed to select the best relay candidate, such as how often a candidate is seen by
the forwarder (inter-contact time) or the expected probability of a relay contacting
the destination node in the future.

The performance of a forwarding algorithm is normally measured in terms of delivery
ratio, end-to-end delay, and communication overhead [52, 22]. The delivery ratio
measures the successfully delivered messages out of the created messages. The
end-to-end delay is the average time it takes a message to be delivered. The overhead
is the rate between the number of extra messages put in the network over the
delivered messages.

Commonly, the evaluation of the forwarding algorithm performance is conducted by
simulating the forwarding algorithm and the baseline algorithms in the taxonomy
category the former belongs. Mota et al. in [52] and, more recently, Dede et
al. in [22], and Kuppusamy et al. in [44], highlight the importance of following
essential guidelines for a valuable evaluation of the forwarding proposal. Dede et
al. propose as best-practices for the forwarding protocol evaluation: to select an
appropriate mobility model according to the specific use case; to leave to testbeds
the evaluation of the physical aspects of the OppNet as battery consumption, radio
propagation, interference impact, etc.; to use a simple link-model for the simulation
unless this is important for the algorithm itself, and to document the model and the
default configuration used so the algorithm can be compared within a benchmark.
Kuppusamy et al. add to this list the importance of selecting relevant baseline
protocols to compare with, comparing the forwarding algorithm performance with
optimal solutions, and emphasizes using a scenario with a realistic number of
nodes.

2.3 Congestion control in Opportunistic Networks

Network congestion is defined as the situation when the network-wide suffers from de-
lays and a decrease in the delivery ratio due to the overload of the network resources
(buffer occupancy or bandwidth) [74]. In the Internet, TCP handles congestion
through buffer management and flow-based feedback by establishing an end-to-end
connection that negotiates the transmission rate depending on the receiver’s and
network’s capacity [5]. Nevertheless, in OppNets, traditional mechanisms based
on contemporaneous end-to-end connectivity to provide congestion feedback are
unsuitable. Also, due to the node’s mobility, congestion at a link level is very rare,

12 Chapter 2 State of the Art

thus, buffer overload is the main issue. Hence, OppNets perform the congestion
control by optimising the buffer resource by monitoring the buffer occupancy and
the drop rate.

OppNets use the SCF paradigm to forward data across the network. In this paradigm,
if a node is affected by congestion, meaning that the buffer is overloaded, the node
will need to reallocate, drop queued messages, or reject incoming ones. Either case
is highly undesirable as due to the mobility of the nodes, the short contact time
and limited bandwidth, losing messages caused by the node congestion could lead
to a delivery failure, affecting the network delivery ratio and the messages latency.
Therefore, congestion control is especially transcendent for OppNets.

Silva et al. in [66] present an interesting taxonomy of congestion control techniques
for OppNets that helps to either design or identify which strategies a congestion
control mechanism is using. This taxonomy is also helpful in comparing different
proposals. They survey congestion control mechanisms and indicate which are the
congestion strategies in the proposed taxonomy those congestion control mechanisms
are applying. One of the proposed congestion control mechanisms in this taxonomy
is the inherent OppNet’s routing algorithm. In this regard, Soelistijanto et al. in
[69] classify congestion control mechanisms depending on if the forwarding is based
on a single-copy or multiple-copy. Both studies state that some congestion control
mechanisms rely on the forwarding strategy.

Next, we go through the principal congestion control techniques for OppNets, focus-
ing on the research relevant to our proposal. First, we will tackle the main progress
in buffer management. Second, we will inspect congestion avoidance, and finally,
we will go through resource allocation.

Buffer management is a strategy for congestion control applied on the relayed
node [70]. Buffer management determines which messages must be dropped in
case an incoming one needs to be fitted in. The basic buffer management policies
are based on the local’s node information such as message priority, lifetime, size, or
delivery probability. Krifa et al. in [43] state that basic buffer management policies as
drop-tail, drop-head, drop-oldest, drop-random, etc., are suboptimal. They propose
an optimal policy associating a utility function to each queued message, producing
a marginal value for a selected optimization metric (delay or delivery ratio). They
use statistical learning about encounters to approximate the global knowledge of the
network. This global knowledge is an input for the utility function. The messages
with the lowest utility are the first ones to be discarded. Pan et al. in [57] propose a
mechanism that integrates all the aspects of buffer management: (1) a queue policy
by assigning a priority to every queued message; (2) a drop policy by assigning a
utility measure to every queued message based on the message’s remaining TTL,

2.3 Congestion control in Opportunistic Networks 13

its size, and the number of times the message has been relayed; (3) a congestion
policy based on limiting the number of copies of a message in the network; and (4)
a mechanism to delete message’s copies that have been already delivered.

Another congestion control strategy applied by the sending node is congestion
avoidance [70]. Under this category, Goudar et al. in [27] state that basic congestion
measures based on buffer management, such as message drops, are not accurate in
detecting congestion. They state that under the inherent characteristics of a Mobile
OppNet, congestion may occur before buffers are overwhelmed. They propose an
analytical model where the forwarder node calculates the instantaneous forwarding
probability of a relay out of the amount of the node’s buffered messages to be
relayed to the contacted node given a contact time and bandwidth. They experience
that this probability decreases dramatically beyond certain buffer occupancy (buffer
occupancy threshold). The node is considered to be congested when it reaches this
occupancy threshold.

Also, Lakkakorpi et al. in [45] state that an effective congestion control system should
not be based on the network conditions at the time the message was created. Instead,
the congestion control system should consider the current network conditions before
relaying the message. They propose a mechanism where each node, upon a contact,
shares its buffer availability. Nodes use this information to determine if a relay
node has enough buffer resources to custody the message. Thomson et al. in [74],
measure the congestion as the ratio of drops over message replication per node. They
use this information to adjust the replication limit of the messages. Goudar et al. in
[26] propose a probabilistic model using an estimator to predict the average buffer
occupancy of the nodes in the network. They use this information to discard relay
nodes without enough storage to hold the messages to be relayed. Similarly, Batabyal
et al. in [8] derive a steady-state probability distribution for buffer occupancy.

Another congestion control strategy is the resource allocation technique. This ap-
proach decouples the routing protocol from congestion control. Resource allocation
involves moving stored messages from a congested node to nodes with available
resources to prevent message loss. For that matter, Seligman et al. in [65] propose
a distributed reallocation between different nodes for achieving a load-balanced
storage. Using the principle of resource allocation, Son in [71] performs an early
congestion detection by monitoring the increasing occupancy rate and predicting
the congestion through an exponential weighted moving average (EWMA). In the
case of predicting a buffer overflow, the system unloads the node’s buffer by sending
the unloaded message to another node. The drawback of the resource allocation
technique is that the network link disruption may preclude contacting other nodes.
Overall, as Silva et al. in [66] proclaim, in OppNets is better to take early measures
to prevent congestion.

14 Chapter 2 State of the Art

2.4 Software Defined Networking

The present-day Internet faces high throughput, speed and reliability requirements
derived from cloud computing, extensive multimedia streaming, and pervasive IoT,
among others. IP networks are based on predefined built policies. Configuring IP
networks to be dynamically adaptive to changes is very difficult. Software-Defined
Networking (SDN) [33, 42] is a new architecture that offers flexibility, scalability
and adaptability for high-throughput internet applications at a very effective cost
by using simplified hardware, software, and management. Signh et al. in [67]
define SDNs as a programmable network that provides services on the fly. The
fundamental principle of the SDN paradigm is that applications’ or services’ network
requirements define the optimal network settings in terms of routing, bandwidth,
lifetime, priorities and policies.

Current IP networks are vertically integrated as the control and data planes are bun-
dled. The Control plane manages setting up routing flows, making routing decisions
and applying network policies. Once the control plane has configured data flows,
they are pushed down to the data plane. The Data plane handles data forwarding
and data processing from the underlying routers and switches at a physical level.
Conversely, SDN architecture entirely separates the data and the control planes in a
horizontal integration way. It promotes the use of a software, referred to as “con-
troller", which runs network services to gather network information from the data
plane, out of which builds a perception of the global state of the network. Thereby,
the controller sees the network as a single logical switch. The controller uses this
global perception of the network to define high-level data flow rules, which pushes
down to the data plane. It also can configure the data plane hardware’s physical
settings. It behaves as a single software component despite its possible distributed
implementation. It programs the network, i.e. sets up the control plane dynamically,
based on the network state and the application’s network requirements. The control
plane communicates with the data plane through a vendor-neutral well-defined API
as OpenFlow [50].

OpenFlow is an open protocol that programs the data plane’s flow tables (packet
forwarding tables). The Data plane’s switches/routers must be compliant with
OpenFlow (or similar). OpenFlow switches no longer have the capacity to make
packet-forwarding decisions, as such functionality has moved to the controller. The
OpenFlow switch has a flow table containing rules which define actions. Those
actions consist in forwarding or dropping packets based on the rule’s defined policy.
The controller communicates with the switch to update the switch’s flow table
through a secure channel.

2.4 Software Defined Networking 15

Nevertheless, decoupling the control and data planes adds overhead to communi-
cations as control information is generated between the controller and the data
plane (southbound communication). In return, programming the controller makes
network management easier and more flexible than configuring the network at the
interface level. With this decoupling between data and control plane, changes in the
network’s underlying infrastructure have a low impact on the applications.

SDN has been widely investigated for wired networks in the context of network
providers, enterprise networks and data centres [31]. Several surveys explore the
SDN architecture’s feasibility and effectiveness, its protocols, services, applications,
standards and design progress [42, 82, 56, 82, 33], and more recently [67, 84]. The
demonstrated benefits of the SDN architecture have brought out the possibility of
extending this architecture to wireless or hybrid networks. In this regard, Hacke
et al. in [31] evaluate the adoption of the SDN paradigm to wireless, cellular,
mesh, local and sensor networks. Kobo et al. in [41] conduct a study about
Wireless Sensor Defined Networks (WSDN). They present the benefits of the SDN
architecture over wireless networks and the latest WSDN architectures, protocols
and implementations.

SDN are also present in Vehicular Ad hoc Networks (SDNVN). As examples, Chahal
et al. in [16] present the insights of an SDNVN and the up-to-date deployed
applications. Nkenyereye et al. in [54] present a classification of the existing SDNVN
proposals based on their modelling and implementation to help decide which is the
most suitable approach for a Vehicular Ad hoc Network service. Nobre et al. in [55]
explore using fog computing in a software-defined vehicular network to improve the
delay in disseminating emergency alerts.

SDN architecture has also been exported to IoT. As an example, Bera et al. in [9]
explore different SDN-based technologies that can be adapted to IoT to provide a
centralized controller to overview, monitor and coordinate IoT devices. Qin et al. in
[59] develop an IoT SDN controller on top of the MINA (Multinetwork Information
Architecture) middleware. This IoT SDN controller helps to give certain quality
levels for differentiated tasks running over the IoT multinetwork. Rafique et al. in
[61] goes through the state of the art on integrating an SDN controller to orchestrate
an IoT multinetwork powered by edge computing.

5G enables device-to-device communication (D2D) to offload traffic from the core
network to out-of-band technologies such as WiFi, Bluetooth, and ZigBee [79]. In
this regard, as an example, Usman et al. in [79] propose an SDN architecture to
deploy public safety applications, which have stringent requirements in terms of
very low latency and high reliability. They use SDN controllers to orchestrate what
they call mobile cloud devices, which use D2D communication. Those controllers

16 Chapter 2 State of the Art

coordinate with a central SDN controller in the core network. Other examples of
how to use SDN and D2D communication are available at [48, 13, 30, 1].

Finally, to our knowledge, SDN and OppNets have converged by Li et al. in [47].
The authors apply the SDN paradigm in OppNets, introduced as Software Defined
Opportunistic Networks (SDON), to implement a mobile crowdsensing system. In
the proposed SDON, data are sent opportunistically, off-the-grid. However, SDN
architecture has been conceived to be applied to a wired infrastructure to ensure
reliable communication between the data plane and the controller. Therefore, the
authors use a cellular network to send the control messages to guarantee southbound
communication reliability. This hybrid approach has some privacy drawbacks. Using
a cellular network lets the infrastructure provider know the node’s position and,
thus, the node’s owner. With these premises, the presented research proposes an
SDN-like architecture entirely opportunistic.

Finally, the proposed controller-driven OppNet architecture combines the concepts
described in this chapter through a specific use case. This use case consists in a
controller-driven OppNet using a multi-copy-based forwarding algorithm where the
congestion control is driven by SDN-like controllers that manage a context-aware
system based on the buffer occupancy of the nodes. More specifically, according to
the congestion control mechanisms taxonomy proposed by Silva et al. in [66], the
SDN-like controllers apply a threshold-based-hybrid-loop approach by combining
the neighbourhood congestion information with a local perception of it to dynami-
cally determine the replication limit used by the quota-based forwarding algorithm.
Overall, the resulting congestion control mechanism applied by the controller-driven
use case is proactive, as it works with a prediction of the congestion to avoid this
congestion from happening beforehand, and it is also reactive as, if a message can
not be allocated in the buffer, it locally applies basic drop policies.

2.4 Software Defined Networking 17

Part II

Proposal

3Control layer architecture

IN THIS chapter, we propose a context-aware architecture inspired by the building
blocks of the SDN architecture: controllers and agents. First, we present
an overview of the proposed architecture. After, we go through the insights

of the proposed architecture. For that matter, initially, we describe the context-
information entities the control layer works with. Then, we describe how the SDN-
like agents (nodes) retrieve, process and disseminate this context information. Next,
we describe the proposed SDN-like controller (controller) functionality regarding
how it uses the information provided by the nodes to predict the future value
of the context indicators. We describe how the controller uses this prediction to
tailor the parameters of the forwarding strategy aiming to achieve a better network
performance. Finally, we present how the controller disseminates the aforementioned
forwarding algorithm setting value across the OppNet for the nodes to apply it.

3.1 Control layer overview

This proposal takes on board the controller concept from the SDN architecture. We
have designed a control layer running on top of the convergence layer of the nodes
as a context-aware system. Some of these nodes, the ones selected to be controllers,
run the controller module of the control layer. Like the SDN controller, the proposed
controllers keep an overview of the network by gathering network measurements
from the data plane. On the other hand, in OppNets, the control and data planes are
coupled in the node. Thereby, the controller-driven OppNet nodes perform the GAFA
functionality introduced in Section 1 for gathering, aggregating and disseminating
network measurements.

As mentioned before, a controller is a node running the controller module over
the control layer. Any node could potentially be a controller. Which nodes act as
controllers depend on the nature of the network. In a vehicular network (VANET),
the controllers could be the roadside units; in an information-centric network, they
could be well-connected nodes. For this particular research, it is considered a generic
OppNet. Thus, the generic criteria of selecting the more central nodes, i.e. the ones
with more contacts, has been applied.

Figure 3.1 shows the big picture of how the control layer implements the node’s
GAFA and the controller functionalities. Firstly, the nodes in the OppNet sense

21

m

Node1

m

1

l1

l2

ml3Node2Node2

Node3

(a) Taking network measure-
ments.

ml3
3

m1ml3mlml3

Node2

m3

Controller

m3

Node3

Node1
m1

m3
m2

m3 =f(,)

(b) Measurements aggregation and dissemi-
nation.

Node2

Controller

Node3

Node1

d

d

d

d =f(, ,)m2 m3mlC

(c) Directive creation and dissemi-
nation.

Fig. 3.1: Node’s GAFA functionality: (a) gathering measurements; (b) aggregating and
forwarding them; (c) applying the directive created by the controller.

local context measurements (Figure 3.1a). Detailed information can be found in
Section 3.2. The nodes disseminate an aggregation of context measurements upon
a contact (Figure 3.1b). Section 3.4 develops the aggregation methodology and
Section 3.3 shows how the dissemination of context information is performed. Finally,
nodes acting as controllers come into action (Figure 3.1c). Section 3.5 presents
the logic of the controllers. Section 3.6 develops how the controller processes
the received context information to get a prediction of a network indicator in a
future time. Out of this prediction, the controller determines an action to be done
by the nodes consisting in the modification of a forwarding algorithm parameter.
Section 3.7 details how the controller creates this action. The controller disseminates
this action upon a contact with another node (see Section 3.8).

3.2 Control metadata

The control metadata used in the control layer is context measurements and control
directives. When two nodes come into range, they disseminate control metadata
before delivering or relaying buffered messages. The following two sections describe
the beforementioned concepts.

3.2.1 Context indicator measurement

A Context indicator measurement is the local reading of a context indicator taken at a
time by the nodes and the controllers (Figure 3.1a). The controller receives those
measurements upon opportunistic contacts with nodes (Figure 3.1b) and builds an
overview of the network based on this information (Figure 3.1c). In an OppNet,
the contact time, bandwidth, and nodes’ energy are limited resources, so we have
opted to aggregate those measurements (see Section 3.4). Therefore, the context
information we consider is this aggregation.

22 Chapter 3 Control layer architecture

3.2.2 Control directive

A control directive is an action to be performed by the contacted node to modify
a forwarding algorithm parameter. A directive is represented as the tuple: δs =
(Ids, ϑs), where Ids identifies a forwarding algorithm setting from the list of settings
managed by the controller, and ϑs is the value for this setting. The controller
generates the directive based on context information (Figure 3.1c) aiming to improve
the forwarding performance. The controller disseminates this directive to the
nodes. When a node receives the directive, applies it by modifying the node’s
forwarding setting Ids, with the new value ϑs. As examples of forwarding settings, we
could consider the message TTL, weights and thresholds intrinsic to the forwarding
algorithm, among others.

3.3 Context measurements dissemination

In this section, we describe how the node processes and disseminates the local
context indicator measurement and the context indicator measurements received
from contacted nodes.

The node that receives a context measurement stores it in an indexed list. Con-
sidering {n1, · · · , nz} the set of nodes in the network at time t, the indexed list
of received context measurements for the node ni for 1 < i ≤ z is represented as
Mi = [mj | 1 ≤ j ≤ z] where Mi(j) = mj .

Figure 3.2 shows how a node (n1) disseminates its context measurement when comes
into range with another node (n2). The control metadata is shared bidirectionally,
hence, n2 will follow the same flow when it is its turn to do the dissemination.

In Figure 3.2, step s1, when node n1 contacts node n2, n1 takes a local context
indicator reading, ml. In step s2, n1 aggregates this context reading along with
all the context measurements received by contacted nodes stored in the list M1.
The aggregation process is described in Section 3.4. In step s3, the aggregated
measurement, m1, is shared with the contacted node n2 which stores it in its context
measurements list M2 (steps s4 and s5). At this point, n2 follows the same flow to
calculate m2 with the slight difference that it will not use the the entry M2[n1]. This
entry contains the received measurement m1 built out of the information provided
by n1. Using m1 would interfere with the network perception n2 is about to share
with n1.

3.3 Context measurements dissemination 23

m1=aggregate(M1, ml)

Transfer m1 to node n2

node n1 node n2

m1 fits in M2
Delete M2 's
oldest entry

No

Yes

s1:

s2:

s3:

ml=Take a local context
reading

s4:

Store m1 in M2 lists5:

Received
measurements (M1)

Received
measurements(M2)

Fig. 3.2: Context measurements dissemination when two nodes are in range.

3.4 Context measurements aggregation

As we have mentioned in Section 3.2.1, due to the resources constrain in an OppNet,
instead of sharing with the contacted node the context measurements list, the
node aggregates this information along with its context indicator reading (vl).
Considering {n1, · · · , nz} the set of nodes in the network at time t, we represent the
aggregated context measurement generated by node ni, for 1 ≤ i ≤ z, as the tuple
mi = (vi, ηi, tci), where vi is the aggregated result; ηi is the number of measurements
used for the calculation of vi, and tci is the time at what the calculation was made.
The node ni’s local context measurement is represented as mli = (vli , 1, tci), where
ηi = 1 as vli is a straight reading, not the result of an aggregation.

Algorithm 1 shows how the context measurements are aggregated. Specifically,
the process that performs the aggregation is getAggregatedContextMeasurement()
(line 28). First, the node ni gets the local context reading, vl (line 29). The node
uses equation 3.3 as a two-factor weighted average to aggregate all the context
measurements stored in Mi and its context reading vl. Each one of the context
measurements (mj) stored in Mi, for 1 ≤ j ≤ z, is weighted by two factors: (1) the
number of aggregations used to create it (ηj), in the case of the local measurement
would be 1, and (2) its decay (dj) at the current time t. In the case of the local
measurement, the decay would be 1 (no decay).

The following logistic function calculates the decay of a measurement at time t:

d(t) = 1
1 + r2t

(3.1)

24 Chapter 3 Control layer architecture

where r is the reduction factor, or decay degree, to apply to get a certain decay. By
isolating this variable we obtain:

r(t) =
(1 − d

td

) 1
2

. (3.2)

This resulting equation is used to get the necessary decay degree (r) to be used
in (3.1) to get the desired decay at a particular time t. The decay is inversely
proportional to time (t), and it goes from 0 to 1, where the decay of 1 means no
decay. With a decay of 1, the congestion reading is not lowered when aggregated.
In contrast, the older the reading is, the higher the decay (lower value), hence the
more diminished the reading is when the controller aggregates it along with the
other readings received during the aggregation interval.

The aforementioned two-factor weighted average used to aggregate the context
measurements in Mi along with the perceived local context reading vl (lines 32-39)
in Algorithm 1 is:

vi =
k∑

j=1
vj(α ηj∑k

p=1 ηp

+ (1 − α) dj∑k
p=1 dp

) (3.3)

where vi is the value resulting from this aggregation; k is the size of Mi plus one
(to include the local context reading); vj is the value of the measurement being
aggregated (mj = Mi[j] = (vj , ηj , tcj)); ηj is the number of aggregations used
to generate mj; dj is the decay of mj at the current time; and α is the weight
factor, specified as a control setting (see Section 5.4.2), used to weigh the two
factors of the weighted average. The function getSumOfNrofAggrs() at line 17,
calculates the normalizing factor applied in (3.3) over the number of aggregations
the context measurement being processed is formed by (

∑k
p=1 ηp). Similarly, the

function getSumOfDecays() (line 1) calculates the normalization factor to be applied
over the decay of a measurement (

∑k
p=1 dp).

Finally, the node ni creates the aggregated measurement mi = (vi, ηi, tci) where
vi is the calculated aggregation value; ηi is the number of entries in Mi that have
been aggregated plus the node’s own reading (lines 32,39); and tci is the current
time. At this point, step 3 in the flowchart in Figure 3.2, the calculated aggregated
measurement mi is transferred to the contacted node.

3.4 Context measurements aggregation 25

Algorithm 1 Context measurements aggregation algorithm.
▷ Mi: List of context measurements received from contacted nodes.
▷ hostID: Identifier of a host.
▷ excludeHost: Id of the host whose measurement in Mi will not be used.
▷ sumDecays: Sum of the decays of all the measurements in Mi.
▷ Mi_keys: Measurement list indexes.
▷ m: A received context measurement represented by the tuple (v, η, t)
▷ threshold: Decay threshold to determine that a measurement is expired
▷ sumNrAggr: Sum of the # aggregations a measurement is made of.
▷ #aggrEntries: # of elements in Mi that have been aggregated.
▷ aContextReading: A local context measurement.
▷ vi: Aggregated measurement value.

1: function GETSUMOFDECAYS(Mi,excludeHost)
2: sumDecays← 0
3: for all hostID ∈Mi_keys do
4: if hostID != excludeHost then
5: m←Mi[hostID]
6: d← decay(current_time−m[t])
7: if d < threshold then
8: Mi.remove(hostID)
9: else
10: sumDecays += d
11: end if
12: end if
13: end for
14: sumDecays ++ ▷ Adding the decay of my own reading.
15: return sumDecays
16: end function
17: function GETSUMOFNROFAGGRS(Mi, excludeHost)
18: sumNrAggr ← 0
19: for all hostID ∈Mi_keys do
20: if hostID != excludeHost then
21: m←Mi[hostID]
22: sumNrAggr += m[η]
23: end if
24: end for
25: sumNrAggr ++ ▷ Considering its own reading.
26: return sumNrAggr
27: end function
28: function GETAGGREGATEDCONTEXTMEASUREMENT(Mi, excludeHost)
29: vl ← aContextReading
30: decays← getSumOfDecays(Mi, excludeHost)
31: aggrs← getSumOfNrofAggrs(Mi, excludeHost)
32: #aggrEntries← 1 ▷ Considering its own reading.
33: vi ← vl((α 1

aggrs
) + ((1− α) 1

decays
))

34: for all hostID ∈Mi_keys do
35: if hostID != excludeHost then
36: m←Mi[hostID]
37: d← decay(current_time−m[t])
38: vi += m[v]((α m[η]

aggrs
) + ((1− α) d

decays
))

39: #aggrEntries ++
40: end if
41: end for
42: return mi = (vi, #aggrEntries, t)
43: end function

3.5 Controller architecture

As we have mentioned before, the controller is a software service that runs over a
subset of network nodes. The way to decide which nodes are running as controllers
can be diverse and mainly depends on the nature of the network.

26 Chapter 3 Control layer architecture

Controller Controlled
Process

Reference Input Error
Manipulated variable

System output

Controlled
variable

Fig. 3.3: Closed-loop control system.

The goal of a controller is to have an overview of its nearby part of the network,
considering that the mobility nature of the nodes keeps changing the network’s
topology. This mobility brings on a network "segmentation" in terms of groups of
nodes that eventually are connected between them. Ideally, some controllers would
be required to cover all the possible network "segments".

The controller operates opportunistically, i.e. its actuation is triggered by contacting
another node or controller. When that happens, the controller shares an aggregated
context measurement and a directive with the contacted node.

The controller calculates an aggregated context measurement to be shared as a node
does. To generate a directive, the control layer implements the closed-loop control
system in Figure 3.3, also known as feedback control system [23]. A closed-loop
control system is a control system that maintains a constant relation between the
output of the system (c: controlled variable) and the desired value (r: the reference
input) by subtracting one from the other as a measure of control.

In the proposed control system, the controller feeds from incoming context aggre-
gated measurements (mi) and determines the value of the manipulated variable
µ out of those measurements and the system’s reference input r. The resulting
manipulated variable µ is encapsulated in an outgoing directive and shared with any
node that might come into contact.

Besides, Goudar et al. in [26] state that considering the OppNet current conditions
to trigger an actuation is not effective as it would be too late, given the variability of
the network. Following their considerations, proactively, we decide the actions to be
taken based on predicting the network situation. By this time ahead, presumably, the
directive would have been propagated and applied throughout the network. Indeed,
if the control system would directly inject the raw aggregated context measurements
received from other nodes to the controller for generating a directive containing
µ, when eventually this directive would reach the nodes, the network situation
might have changed and, possibly, the directive would be no longer adequate for the
current situation. The following section shows how we predict the value of a context
indicator.

3.5 Controller architecture 27

s1: Receive measurement

s2: Calculate aggregation

s3: Calculate prediction

entries

Fig. 3.4: State diagram for metrics aggregation.

3.6 Context indicator prediction

The controller anticipates the context indicator value using a two-step strategy. Firstly,
instead of directly considering the received context measurements, the controller
aggregates them for a configurable time (t̂) using (3.3). This step results in two lists:
M̆ and T̆ . M̆ contains the aggregation of the measurements received for periods of t̂

seconds. This list is represented as M̆ = [m̆j | 1 ≤ j ≤ z̆], where z̆ is the max size of
M̆ . T̆ contains the time when each entry in M̆ was calculated, and is represented
as T̆ = [t̆j | 1 ≤ j ≤ z̆]. Secondly, once several aggregated samples of context
measurements are available, these are used as an input of a linear regression (ρ) to
calculate the prediction of this context indicator value for time tt+n:

mt+n = ρ(tt+n, M̆ , T̆) (3.4)

where M̆ and T̆ are sliding lists of size z̆; tt+n is the time ahead for the context
indicator prediction and it is calculated as t = t + n where n is an offset; and mt+n

is the resulting predicted value of the context indicator value at time tt+n.

Algorithm 2 and the state diagram in Figure 3.4 show how the controller calculates
the prediction of a context indicator. The addContextMeasurement() procedure is
executed by the controller when a contacted node shares its aggregated context
measurement (m). This measurement is stored in the controller’s received measure-
ments list Mi (line 2) (state s1 in the state diagram). If the window time for receiving
measurements from contacted nodes has expired (line 3), the controller aggregates
all the received aggregated context measurements in the list Mi and its local context
measurement, by using the procedure getAggregatedContextMeasurement() (line 5)
defined in Algorithm 1. This aggregation result (m̆) is stored in the list M̆ along
with the current time (lines 6-7 of Algorithm 2) (state s2). The controller uses the
entries in the above lists to calculate a prediction of the value of the context indicator
(mt+m) using a linear regression function ρ (line 10) (state s3). The controller keeps
the size of the aggregation calculations list M̆ to the constant value z̆ by using a

28 Chapter 3 Control layer architecture

Algorithm 2 Controller’s context indicator prediction.
▷ Mi: List of context measurements received from contacted nodes.
▷ m: Received context measurement (controlled variable).
▷ t: Current time.
▷ aggrT imeout: Timeout for aggregating incoming context measurements.
▷ t̂: Time period for aggregating incoming context measurements.
▷ m̆: Aggregation of the received context measurements during t̂ s.
▷ M̆ : Sliding list of the aggregations so far.
▷ T̆ : Sliding list of the times when the aggregations were performed.
▷ tt+n: Prediction time.
▷ mt+n Predicted value of the context indicator at tt+n.
▷ directive: Manipulated variable (µ) encapsulated in a directive

1: function ADDCONTEXTMEASUREMENT(m)
2: Mi.add(m)
3: if t >= aggrT imeout then
4: //The window time for receiving context measurements has finished.
5: m̆← getAggregatedContextMeasurement(Mi, NULL)
6: M̆.add(m̆)
7: T̆ .add(t)
8: if M̆.size() > 0 then
9: if M̆.size() > 1 then
10: mt+n = ρ(tt+n, M̆ , T̆)
11: //Just keep z̆ values.
12: M̆.removeEldestN() ▷ Sliding the list.
13: T̆ .removeEldestN()
14: else
15: mt+n = m̆
16: end if
17: directive← createDirective(mt+n)
18: end if
19: Mi.clear()
20: aggrT imeout← t + t̂
21: end if
22: end function

FIFO discarding policy (lines 12 - 13). Notice that at least two inputs are needed to
use the linear regression function ρ (lines 8 and 9). If this condition does not fulfill,
the predicted measurement (mt+n) gets as value the m̆ calculated at line 5 (line 15).
Once mt+n is calculated, Mi is emptied, ready to receive new context measurements
from other contacts (line 19). A new aggregation window period (aggrT imeout) is
configured, so all the measurements gathering and the prediction process starts over
(line 20).

3.7 Directive generation

As mentioned in Section 3.5, the controller operates opportunistically upon a contact
with a node/controller. So far, when a node comes into contact with a controller, the
controller’s function addContextMeasurement(m) from the prediction algorithm
(Algorithm 2) is executed. From this algorithm, at the end of the window time for
collecting context measurements from contacted nodes, the controller generates a
context indicator prediction (mt+n) out of those measurements and its local one.
The function createDirective(mt+n) (line 17, Algorithm 2) is called to generate a

3.7 Directive generation 29

Algorithm 3 Directive creation algorithm.
▷ mt+n: Predicted measurement.
▷ opp: Execution mode’s flag.
▷ µ: Manipulated variable’s current value.
▷ µ’: Manipulated variable’s new value.
▷ r Controller system’s reference input.

1: function CREATEDIRECTIVE(mt+n, opp = FALSE)
2: µ’ = µ
3: if opp == false then
4: µ’← apply controller_adjustment(r, mt+n)
5: end if
6: return new Directive(µ’)
7: end function

directive encapsulating the calculated context indicator prediction (mt+n). The
former function, defined in Algorithm 3, calculates the manipulated variable’s value
(µ′) out of the context indicator prediction and the reference value (line 4). Next, µ′

is encapsulated in a directive: δs = (Ids, µ′) (line 6).

As aforementioned, the reception of a context measurement after contacting a node
triggers the generation of a directive. Nevertheless, if the window time for receiving
context measurements is set to a high value, it would take a controller a long time to
generate a directive. Hence, the nodes would not receive any directive to adjust their
initial configured manipulated variable (µ) based on the current network condition,
and they would have the perception that there is no controller nearby. Therefore, to
prevent this situation, the controller is configured to generate a directive periodically,
provided no directive has been generated opportunistically during this period. This
directive encapsulates the last calculated manipulated variable (µ), and it acts as a
beacon announcing the presence of a nearby controller. Algorithm 3 describes the
above behaviour.

Notice that the function createDirective() in Algorithm 3, receives the parameter opp
which indicates whether the function is executed periodically, as described above or
opportunistically after receiving a context measurement from a contacted node (see
Algorithm 2). In the case of a periodic execution of the function createDirective(),
the new value for the manipulated variable (µ’) is directly the current one (µ) (lines
2 and 6 in Algorithm 3). In the case of an opportunistic execution (line 3), the
controller calculates the new value for the manipulated variable (line 4).

3.8 Directive dissemination

Although it is a controller that generates a directive, it is stored, carried and for-
warded by any node in the network that receives it. Figure 3.5 shows this behaviour.
When a node receives a directive (dirn1) (step s4), if the directive is newer than

30 Chapter 3 Control layer architecture

n1 carries a

directive?

n2 is a controller?

discad
dirn1

n2 carries a directive?

Yes

No

No

Yes

Yes

Yes

node n1 node n2

No

dir is older than dirn1?

dir = dirn1

Apply dir

Store Carry &
Forward dir

Transfer dirn1 to n2

s2:

s3:

s4:

s5:

s6:

s7:

s8:

s9:

dirn1

dirn1

dir

received dirn1n1 contacts n2s1:

Fig. 3.5: Disseminating a directive when two nodes are in range.

the one the node might be carrying (steps s5 − s6), the node discards the old one
(step s7), executes the action encapsulated in the new directive (step s8), and stores,
carries and forwards the new directive (step s9).

Discarding the older directive is a measure to deal with possible inconsistent direc-
tives since several controllers are allowed in the network. The fresher a directive
is, the closer the node is to the controller and, therefore, the more appropriate the
directive is. If a node receives several directives, if they are consistent, it means
that the controllers are also nearby and are mainly sensing the same. Conversely, if
the received directives are inconsistent, it glimpses that the controllers are sensing
different parts of the network. In this case, the node likely belongs to the network
"segment" controlled by the controller generating the fresher directive.

3.8 Directive dissemination 31

4Use of the
controller-driven OppNet
architecture to manage
congestion

THIS CHAPTER describes how the control layer, presented in Chapter 3, is
applied to control the network congestion. As pointed out in Chapter 1, we
focus on forwarding algorithms based on message replication, as they have

demonstrated to be an efficient forwarding strategy for OppNets characterized by
the unpredictability of the nodes’ movement. Nevertheless, the message replication
drawback is congestion [70]. Precisely, to mitigate the potential congestion caused
by replication, this proposal considers approximating how congested the network is
so that the forwarding algorithm adjusts the replication limit of the newly created
messages and the ones being forwarded.

In the following sections, for the use case of congestion control, we specialize: (1)
the control metadata required by the control layer for the specific case of congestion
control (Section 4.1); (2) the adaptation of the controller architecture for this
particular use case (Section 4.2); (3) the context indicator prediction (Section 4.3);
(4) the directive generation (Section 4.4); and the directive execution (Section 4.5).
Finally, we summarize the buffer management techniques used by the control layer
as a congestion control strategy (Section 4.6).

4.1 Control Metadata

In this section, we present the control metadata used by the control layer (introduced
in Section 3.2) for the specific use case of using the control layer for congestion con-
trol. First, Section 4.1.1 presents the context measurements to represent congestion.
Secondly, Section 4.1.2 indicates the metadata used by the proposed congestion
control mechanism.

33

4.1.1 Context indicator measurement for congestion

As a network congestion measure, we use the node’s buffer occupancy rate (o):

o =
∑n

i=1 sizeof(gi)
b

(4.1)

where n is the number of buffered data messages; sizeof is the function that returns
a message size in bytes; gi is a buffered message, and b is the buffer capacity in
bytes.

Each node aggregates its local congestion measurement and the received ones
following the guidelines in Section 3.4. Next, this aggregation is disseminated
through opportunistic contacts as presented in Section 3.3. This way, the control
layer is fed with the context information regarding congestion. Section 3.6 shows
how the controller infers a prediction of the buffer occupancy out of the received
congestion readings for the network "segment" in its reach.

4.1.2 Control layer data message

This section describes the data message representation used by the control layer for
the use case of congestion control.

Before representing a data message, we will introduce the concept of message
replication limit, which is a part of the message representation. In the scope of
forwarding algorithms based on message replication, one of the forwarding algorithm
parameters is the replication limit of the message. The replication limit determines
the total number of copies of the message allowed to be in the network. As seen
in Section 2.2, multiple replication strategies exist. For this particular use case, we
consider a forwarding algorithm that uses a binary replication scheme consisting
in relaying a copy of the message to the contacted node and reducing by half the
replication limit of both the node’s message and the relayed copy of it.

The control layer encapsulates the data messages generated by the application layer
in the tuple g = (a, l, ϱ, φ). From this tuple, a is the data message generated at the
application layer. l is the replication limit of the message (in the case of a binary
replication scheme, the message can be relayed ⌈l/2⌉ times). ϱ is the number of
times this particularly message copy has been relayed. This field is incremented each
time the message is relayed to the next hop. φ is the alive flag. This flag is set to
false to indicate that this message is marked to be deleted in case buffer space is
required. This message is not deleted straightforwardly as it could happen that the
next contact could be the message destination. Also, it could occur that applying

34 Chapter 4 Use of the controller-driven OppNet architecture to manage congestion

Controller

Reference Input Manipulated variable System output

Controlled variable

[O_min, O_max] Replication Limit Buffer Occupancy

OppNet

Fig. 4.1: Closed-loop control system for congestion control.

another directive would update this message’s replication limit to a value equal to or
higher than one, providing the message with more chances to be delivered. With this
congestion measure, the messages with the field φ set to false are reactively removed
in case of need, but also, in a proactively way, the message is given a chance to be
carried along the network while there is no need for buffer space. This strategy
requires the node not to consider the messages with the φ field set to false when
calculating its buffer occupancy measurement.

4.2 Control layer tailored for congestion control

The control layer proposed in Section 3.5 has been adapted to use a congestion
policy to efficiently limit the number of messages in the network to keep congestion
at bay. This congestion policy dynamically determines the replication limit for newly
created and buffered messages based on the network congestion perception of a
controller.

Thereby, the generic closed-loop control system in Figure 3.3, for the use case
of congestion control, is specialized in Figure 4.1 with the slight difference that
the controller assumes calculating the difference between the reference input (r)
and the controlled variable (c). As we can see in Figure 4.1, the controller feeds
from the buffer occupancy (o) measurements received from contacted nodes. The
controller, following Algorithm 2, uses the received buffer occupancy measurements
(o) to calculate a buffer occupancy prediction (ot+n) used to adjust the messages
replication limit. Also, Figure 4.1 shows that the controller’s reference input (r) is
an optimal buffer occupancy congestion interval. This interval consists of a range
of buffer occupancy rates, defined by a lower and upper bound, omin and omax,
respectively. The buffer occupancy is considered optimal when the buffer is neither
under-used nor close to its maximum capacity.

4.2 Control layer tailored for congestion control 35

4.3 Network congestion prediction

This section shows how the context indicator prediction proposed in Section 3.6 is
applied for forecasting congestion. For that matter, the controller uses the optimal
congestion interval along with the calculated ot+n to determine its prediction of
the network’s congestion. The network’s congestion status falls into three states:
UNDER_USED, OPTIMAL, and CONGESTED. The controller uses the following function
to sentence which is its prediction of the network’s congestion state (ct+n):

ct+n(ot+n) =

UNDER_USED if ot+n < omin

OPTIMAL if omin ≤ ot+n < omax

CONGESTED if ot+n ≥ omax.

(4.2)

Next section shows how the controller uses this congestion prediction to determine
the message replication limit.

4.4 Directive generation for congestion
management

Based on its congestion prediction (ct+n), the controller calculates which should
be the maximum number of copies of a message allowed to be in the network (l).
For that matter, this proposal considers a proportional controller (P-controller) [37]
using an additive increase and multiplicative decrease (AIMD) factor to adjust the
manipulated variable (l). The considered AIMD factor uses k1 as a multiplicative
decrease factor and k2 as an additive increase factor. Out of the predicted network
congestion, the P-controller calculates the new replication limit l′.

l’(ct+n) =

l if ct+n = OPTIMAL

l · k1 if ct+n = CONGESTED

l + k2 if ct+n = UNDER_USED

(4.3)

With this control function, if the predicted network’s congestion state is OPTIMAL,
it is not necessary neither increase nor decrease the replication limit of a message.
When the predicted network’s congestion state is CONGESTED or UNDER_USED, the
controller decreases or increases, respectively, the message’s replication limit.

36 Chapter 4 Use of the controller-driven OppNet architecture to manage congestion

Algorithm 4 Procedure to update the buffered messages with the l set by a directive.
▷ δl, Received directive (δl = (Idl, l′))
▷ l′: The replication limit in the received directive (δl = (Idl, l′)).
▷ g: A message (g = (a, l, ϱ, φ)).
▷ B: A buffer to store messages.

1: function APPLYDIRECTIVETOBUFFEREDMESSAGES(δl)
2: for all g ∈ B do
3: l′′ = l′

2ϱ

4: g[l]← l′′ ▷ Setting the new rep. limit in the message’s field l
5: g[φ]← (l′′ < 1) ? false : true
6: end for
7: end function

The controller encapsulates the calculated l’ in a directive: δl = (Idl, l’), where Idl is
the identifier of the message replication limit setting and l’ is the calculated repli-
cation limit. Following the flow-chart described in Figure 3.5, when the controller
contacts a node, it forwards the former directive along with the calculation of its
buffer occupancy.

4.5 Applying a directive

In Section 3.8, we have seen that when a node gets a directive (δl = (Idl, l)) from a
contacted controller or a node carrying it, the node applies δl (Figure 3.5, step s8).
Applying a directive δl = (Idl, l) entails two actions: (1) using the encapsulated
replication limit l’ when creating new data messages, and (2) updating all the
buffered messages according to the new l’. The first action consists in when an
application creates a message a, the node encapsulates it in a message represented
as g = (a, l, ϱ, φ), specified in Section 4.1.2, where the field l is set to the new
replication limit l’ from δl. The second action consists in updating the message’s field
l of the buffered messages, considering that some are already copies.

Indeed, it would not be accurate to update the buffered messages with the new
replication limit l′ received through δl, as some of these messages are already copies.
Therefore, the number of times this message has been relayed (message’s ϱ field)
is considered. This information is used to calculate the current replication limit
of the buffered message, considering that: (1) the message was created with the
replication limit set by the last received δl, and (2) ⌈l/2⌉ copies of the message are
forwarded at each encounter:

l′′ = l′

2ϱ
(4.4)

where l′′ is the remaining replication limit after relaying the message ϱ times.

4.5 Applying a directive 37

Algorithm 4 shows how to modify the buffered messages’ replication limit. For
each one of the buffered messages (line 2), provided the replication limit it was
assigned when created was l′ (from the received directive δl = (Idl, l′)) and taking
into account the times the message has been relayed (ϱ), the remaining replication
limit (l′′) is calculated using (4.4) (line 3). If the calculated l′′ were less than one, it
would mean that by starting with the replication limit specified in δl, the message
would not have any copies left to disseminate at this point, and, therefore, the
message would not have reached the current node. If this is the case, the message’s
field φ is set to false (line 5), indicating that this message is marked to be deleted in
case buffer resources are required.

4.6 Buffer Management

The control layer applies a congestion control mechanism based on buffer manage-
ment. Besides the congestion policy limiting the number of message copies in the
network, the control layer applies a hybrid drop policy.

The control layer foresees the network congestion (Section 4.3). Based on the
predicted congestion, it limits the number of message copies (Section 4.4) and
updates the copies left of the queued messages (Section 4.5). Proactively, if this
update results in the message having no copies left, the message is marked to be
deleted by setting the message’s flag φ to false. Reactively, in case of buffer overflow,
the messages marked to be deleted are dropped. The control layer applies basic drop
policies if more buffer space is required. It first applies a drop-oldest policy based
on the message’s remaining TTL. Next, if necessary, it applies a drop-head policy
removing the oldest ones.

38 Chapter 4 Use of the controller-driven OppNet architecture to manage congestion

Part III

Experimentation

5Experimentation
environment

THE CONTROLLER-DRIVEN OppNet, which uses a quota-based multi-copy for-
warding with a dynamic message replication limit, is named Control configu-
ration (Control). The Control configuration is compared with two No-Control

multi-copy baseline forwarding algorithms: the Epidemic (EP) and a quota-based
one (Static), both presented in Section 2.2. In Epidemic routing, nodes forward
messages to every encountered node to achieve maximum network coverage. The
Static routing sets a static upper bound of the number of message replicas in the
network. It distributes half of these copies to each contact (provided the contact
does not carry copies of the message yet) until the node has just one copy left, which
will carry up to the destination. Both No-Control approaches are multi-copy baseline
forwarding algorithms considered for benchmarking in Opportunistic Networking
research [21].

This chapter describes the testbed setting up we will use to evaluate and compare
the performance of the Control and No-Control configurations. The experimentation
methodology follows the guidelines pointed out by Dede et al. in [22], and Kup-
pusamy et al. in [44]: (1) appropriate mobility models to favour different congestion
degree situations have been designed; (2) our proposal is compared with benchmark
multi-copy forwarding algorithms; (3) several performance metrics, listed in Sec-
tion 5.1, are evaluated over the Control and No-Control configurations; moreover, the
network performance is also evaluated for the Control configuration for different val-
ues of its configuration settings listed in Section 5.4.2; (4) the experimentation setup
is detailed and well documented to be reproduced for benchmark purposes; and
(5) the simulator provides the link model and the physical aspects are not considered.

5.1 Performance metrics

We use the standard metrics to measure the performance of the Control and No-
Control configurations [52]:

41

• Delivery Ratio (σ): It measures the ratio of created messages that are delivered
to the final destination:

σ = #gd

#gc
(5.1)

where #gd is the number of delivered messages, and #gc is the number of
created messages.

• Latency average (λ): It is the average time it takes for the created messages
to get delivered to their final destination:

λ =
∑w

i=1 λi

w
(5.2)

where w is the number of messages delivered to the destination, and λi is the
elapsed time from the message creation to its delivery.

• Overhead ratio (θ): Measures the average of the message copies needed to
deliver the message to its final destination:

θ = #gr − #gd

#gd
(5.3)

where #gr is the number of relayed copies, and #gd is the number of delivered
messages.

5.2 Scenarios

We use four scenarios which use different mobility patterns representing different
network conditions. These scenarios are classified into two groups: 1) the ones
based on real-world mobility traces, available at the Crawdad database [18], and 2)
the synthetic ones generated by a Random Waypoint model (RWP) in a grid with
reflective barriers where the nodes move at a configured speed for a configured
distance. The nodes keep changing the direction each time they cover that distance.
The scenarios based on real mobility traces are very convenient for evaluating this
proposal under real network conditions. In contrast, the synthetic ones help us to
recreate particular network conditions as emergencies, not covered yet with real
mobility traces samples. The considered scenarios are:

42 Chapter 5 Experimentation environment

• Taxis: Tracks 304 Yellow Cab taxis in the San Francisco Bay area for one week.
The traces are available at [51].

• Info5: Tracks the movement activity of 41 students attending the Infocom
conference in 2005 during three days [2].

• Campus: Is a synthetic map-based scenario that simulates the mobility activity
of 80 students at Autonomous University of Barcelona campus, covering an
area of 4.5 Km x 3.4 Km with defined points of interest (POI) corresponding
to eight faculties and the railway station. The students walk throughout the
Campus arriving/leaving their faculty and the railway station with a certain
probability.

• Emergency: It is a synthetic RWP-based scenario with 100 nodes randomly
walking in an area of one square kilometre. In this scenario, the pattern of
message generation changes abruptly in the second half of the simulation,
aiming to roughly simulate the network condition under the disrupting events
of an emergency.

Each scenario has different nodes densities. The sparsity nature of a scenario entails
fewer contact opportunities amongst the nodes, whereas dense ones are prone to
more contacts between nodes. The Taxis is a sparse scenario, and the Campus is a
sparse one with POI promoting a temporary high density of nodes, whereas Info5
and Emergency are both dense scenarios.

5.3 Message generation distribution

Depending on the scenario, for the data message generation, we will be using either
a Constant Bit Rate (CBR) distribution or an Inverted Smoothed Top Hat distribution
(ISTH) [11]. Next, we formalize the ISTH for the specific case of a 24-hour working
day.

5.3.1 Inverted Smoothed Top Hat distribution (ISTH)

We aim to mimic the network traffic in a working day with the ISTH distribution
(Figure 5.1). The Flat Region (FR) of the ISTH represents the working hours where
the network traffic is the heaviest, i.e. messages will be generated at a higher
rate. The Transient Regions (TR) are shaped in two ways: 1) to logarithmically
increase the rate of message generation up to reach the peak rate of the FR, and 2)

5.3 Message generation distribution 43

M
SG

 g
en

er
at

io
n

fr
eq

ue
nc

y

9h 17h 24h

24-hours working day

Lowest freq
(L2)

(L1)
Highest freq

0h

TR TRFR

Fig. 5.1: Inverted Smoothed Top Hat function for a 24-hour working day.

to logarithmically decrease the rate of the message creation from the peak rate in
the FR to a shallow rate when approaching the 24th hour of the day.

The ISTH function is built as a composition of a descendant and an ascendant
logistics functions and a linear function. Both logistic functions determine the
message generation frequency for a time:

• Descendant logistic function (exponential growth rate(k) > 0):

f(x) = L2

1 + aek(x−x0) (5.4)

• Ascendant logistic function (k < 0):

g(x) = L2

1 + ae−k(x−x0) . (5.5)

These functions are bounded by two limits: L2 and L1. L2 corresponds to the
lowest message generation rate (highest value) used to generate very low traffic. L1

corresponds to the highest message generation rate (lowest value) used to generate
the highest network traffic. x−x0 is the flexible horizontal translation. No horizontal
translation is considered: x0 = 0. k is the exponential growth rate.

From time 00:00 a.m. to 09:00 a.m., the descendant function defined in (5.4) needs
to descend from L2 down to L1, i.e. f(0) = L2 and f(9) = L1. Both L2 and L1 limits
are specified through the control configuration settings depending on the scenario.
Hence, from (5.4) the only unknown variable (a) is isolated:

a = (L2 − L1)
L1ek9 .

44 Chapter 5 Experimentation environment

The ascendant logistic function in (5.5) follows the same process to ascend from
L1, at the end of the working hours of the day (17:00h), up to L2 at (00:00h):
g(17) = L1 and g(0) = L2.

Finally, to build the ISTH function it is necessary to combine the descendant and
ascendant logistic functions with a flat linear function that covers the eight working
hours of the day (from 09:00 a.m. to 17:00 p.m.). During this window time,
messages are generated at L1 rate:

h(x) =

0 ≤ x < 9 : f(x)

9 ≤ x < 17 : L1

17 ≤ x < 24 : g(x)

. (5.6)

5.3.2 Scenario’s message generation distribution

Table 5.1 summarizes the message creation distribution for the different scenarios.
The Taxis scenario uses an ISTH distribution that replicates two working days, where
the messages are generated each 10 to 60 seconds uniformly distributed for each
working day during eight peak hours. With all the scenario specifics, it is considered
a low to medium congested scenario.

The Info5 scenario uses the aforesaid message generation distribution. Given the
message generation distribution and the fact that the nodes congregate around the
events of the congress, it is considered a medium to high congested scenario.

The Campus scenario uses an ISTH distribution resembling a workday where, during
the peak hours, messages are created every 10 seconds. Hence, this scenario is
considered a high congested one.

For the Emergency scenario, during the first eight hours, messages are generated at
the high rate of each 10 seconds using a CBR distribution followed by eight hours of
low rate message generation (every 80 seconds). Therefore, Emergency is a variable
congested scenario.

5.3 Message generation distribution 45

Tab. 5.1: Message generation distribution per scenario.

Settings Taxis Info5 Campus Emergency

Simulation time 69h 70h 34h 23h

Message distribution ISTH ISTH ISTH CBR

Message generation
frequency

FR:[10 - 60]s;
TR:1800s

FR:[10 - 60]s;
TR:900s

FR:10s;
TR:1800s

0-8h:10s;
8h-16h:80s

Congestion level Low-Medium Medium-High High Medium-High

5.4 Environment setup

For the experimentation, it has been used the Opportunistic Network Environment
(ONE) simulator [40] designed specifically to simulate OppNets. Recent works show
that it is the most used simulator for OppNets [44]. The ONE has proven easy to
configure and provides an extensive set of mobility, traffic models, and propagation
protocols [22]. The control layer has been developed on top of the simulator’s
network layer and is available through a public repository1.

The simulations over the synthetic scenarios use a traces file with node contacts
generated with the built-in RWP model of the simulator to preserve the same scenario
over the different simulation rounds. Next, we will describe the configuration settings
common to all the scenarios and the specific settings by scenario.

5.4.1 Common configuration settings

Table 5.2 lists the common simulation configuration settings. For all the scenarios,
the nodes are configured with a Wi-Fi interface with a transmission speed of 100
Mbps and a transmission range of 60 meters as an approximation of the Wi-Fi 5
(802.11ac) standard.

In each simulation cycle, any random node in the network creates a message to a
randomly selected node to approximate a real-world communication model. For the
simulations, it is considered that when two nodes are in range, they have enough
time to exchange the control protocol data, the messages to be delivered to the
contacted node, and the messages to be relayed.

1https://github.com/MCarmen/the-one/tree/control

46 Chapter 5 Experimentation environment

https://github.com/MCarmen/the-one/tree/control

Tab. 5.2: Summary of the Common simulation settings for all the scenarios.

Setting Value Setting Value

Network interface Wi-Fi Battery none

Transmission speed 100Mbps Type of nodes pedestrians

Transmission range 60 meters User behaviour none

Interference none Application Single destination

Power consumption none

Tab. 5.3: Summary of the Specific simulation settings per scenario.

Scenario setting Taxis Info5 Campus Emergency

Simulation Time 69h 70h 34h 23h

Simulation Area
San Francisco
Bay

hotel 4.5km x 3.4km 1km2

Mobility model
Contact
Traces

Contact
Traces

Map-Based
+ POI

RWP

Nodes 304 41 80 100

Contacts 69412 22459 168442 38013

TTL (sec) 10000 10000 10000 4000

Buffer size 10M 10M 10M 10M

Message generation
distribution

ISTH ISTH ISTH CBR

Message generation
frequency (s)

FR:[10 - 60]s;
TR:1800s

FR:[10 - 60]s;
TR:900s

FR:10s;
TR:1800s

0-8h:10s;
8h-end:80s

Message size [10 - 500]k [10 - 500]k [10 - 500]k
0-8h:500k;
8h-end:10k

Walk speed N/A N/A 0.5m/s [0.5 - 1]m/s

Control settings Taxis Info5 Campus Emergency

Nrof controllers 10 2 4 20

[omin − omax] [0.6-0.7]% [0.3 - 0.5]% [0.6-0.7]% [0.7 - 0.9]%

Additive increase (k2) 1 1 1 1

Multiplicative decrease (k1) 0.25 0.25 0.25 0.25

LR nrof inputs (z̆) 6 10 6 6

LR aggregation interval (t̂) 60s 30s 300s 120s

Prediction time factor (ϕ) 2 5 2 2

Directive generation frequency 900s 900s 900s 900s

Reduction factor for a Decay (r)
0.103 (d of
5% at 1800s)

0.3 (d of
1% at 300s)

0.058 (d of
5% at 300s)

0.3 (d of
1% at 300s)

Decay Threshold 0.1 0.1 0.1 0.1

nrofAggregations weight (α) 0.2 0.2 0.2 0.2

5.4 Environment setup 47

5.4.2 Scenario and control configuration settings

The nodes’ buffer size, the messages’ TTL, size and generation frequency, which
directly affect the network congestion, also vary for each scenario to create different
congestion conditions. Table 5.3’s first half lists the values for the above scenarios’
settings. In this table, the intervals specifying the value for the settings: message
generation frequency, message size, and walk speed, denote a uniform distribution
between the two interval limits. Notice that for all the scenarios, the nodes’ buffer size
is set to 10M to favour congested situations, mainly when messages are generated at
a high rate.

Also, the control layer can be customised through the settings listed in Table 5.3’s
second half. Following, we describe the customisable control settings:

• Number of Controllers: Indicates the number of nodes that will act as con-
trollers in the network.

• Optimal congestion interval (omin − omax):] As presented in Section 4.2,
this setting specifies the optimal range of the node’s buffer occupancy. If the
buffer’s occupancy of a node fits in this range indicates that the buffer is neither
under-used nor reaching its full capacity. This interval along with the buffer
occupancy’s prediction (ot+n) are used in (4.3) to determine a prediction of
the network’s congestion state.

• Additive increase (k2), Multiplicative decrease (k1) (AIMD): Denote the
factor to be added to (k2) and the factor to multiply by (k1) the current
replication limit (l) to update l’s value based on the network congestion status
through (4.3).

• Aggregation interval (t̂): Time while the controller gathers congestion mea-
surements (see Section 3.6). After this time, the gathered measurements are
aggregated, and the aggregated value is stored in the list M̆ (see Algorithm
2). The M̆ entries are used by the linear regression (LR) function in (3.4) to
predict the network congestion.

• LR nrof inputs (z̆): Max size of the congestion readings aggregation list M̆ .
This list is used as an input for the congestion prediction function. M̆ works as
a sliding list of size z̆ to consider a recent history of readings for the prediction.

48 Chapter 5 Experimentation environment

• Prediction time factor (ϕ): It is the multiplicative factor applied over the
aggregation interval setting (t̂) to determine the time (tn+t) for a congestion
prediction (Section 3.6, Algorithm 2, line 10). ϕ is calculated by the equation:

tt+n = t + t̂ϕ (5.7)

where t is the current time, and t̂ is the time interval for aggregating congestion
readings.

• Directive generation frequency: Determines the periodicity of the automatic
directive generation (see Section 3.7) triggered in case the controller does not
receive any congestion reading for this period of time.

• Reduction factor for a specific decay (r): It is the reduction factor to apply
to get a certain decay. Used in (3.1) (Section 3.4).

• Decay threshold: When a controller receives a congestion measurement with
a decay lower than Decay threshold, it is discarded, and hence, it is not used to
estimate the congestion.

• Number of Aggregations weight (α): Weight factor applied over the num-
ber of aggregations a congestion measurement is built on. Used in (3.3)
(Section 3.4).

5.4 Environment setup 49

6Results

THIS SECTION shows and evaluates our proposal (Control) and the No-Control
configurations, introduced in Chapter 5, for different scenarios, in terms of
(1) the buffer occupancy, (2) the performance metrics listed in Section 5.1,

and (3) the delivery ratio for different values of the controller settings listed in
Section 5.4.2. Before delving into the comparison between Control and No-Control
configurations, for the Control one, we analyse the replication limit (l) it tends to.
The Control configuration will be compared with the Static one with the same l the
Control tends to along this section (Static*).

For the No-Control Static routing policy, simulations have been run with different
replication limits to show the tendency of the metric’s value. We have narrowed
the replication limit to the scenario’s number of nodes. We consider that having
as many copies of the message as nodes are in the network is an approximation of
epidemically flooding the network.

Finally, we provide all the obtained results, the ONE configuration files for all
the scenarios, the script files to run the simulations, and the data traces, for the
reproducibility of these results1.

6.1 Replication limit tendency for the Control
configuration

Figure 6.1 depicts the tendency of the calculated Control replication limit along the
simulation. We observe that the calculated l tendency is inverse to the filling up of
the buffer for each scenario (Figure 6.2), i.e. the calculated l values are initially
high, corresponding to the period where buffers are still not overwhelmed, but tend
to decrease along the simulation depending on the congestion readings. Specifically,
the l for Taxis tends to 8, Info5 to 2, Campus to 2, and Emergency to 4.

The controller’s goal is keeping a high l aiming for a higher delivery ratio and lower
latency while the buffers are not stressed, and lowering l to prevent this stress from
happening. Following this behaviour, for the less congested scenario (Taxis), where
the controller can keep a higher l value, we observe that the controller decreases the

1https://deic.uab.cat/~mcdetoro/controller-driven_OppNet_results.zip

51

https://deic.uab.cat/~mcdetoro/controller-driven_OppNet_results.zip

0

50

100

0

50

100

0e+00 1e+05 2e+05 3e+05

Taxis

0e+00 1e+05 2e+05

Info5

0

50

100

0 25000 50000 75000 100000 125000

Campus

0 20000 40000 60000

Emergency

Simulation time (s)

M
ax

.
nu

m
be

r
of

 m
es

sa
ge

 c
op

ie
s

pe
r

no
de

0

50

100

0

10

20

30

0e+00 1e+05 2e+05

5

10

15

20

0 20000 40000 60000

0

20

40

60

80

0 25000 50000 75000 100000 125000

Fig. 6.1: For the Control configuration, progression of the replication limit used by each
node at each time unit when a new message is created. In blue, we show the
tendency of the replication limit over time (for Taxis is 8, for Info5 is 2, for Campus
is 2, and for Emergency is 4). For the scenarios Info5, Campus and Emergency, a
zoomed plot with a different scale has been embedded in the main plot.

l slowly. Conversely, for higher congested scenarios (Info5 and Campus), where high
l values would rapidly overwhelm the buffers, we see that the controller decreases l

much faster. Specifically, we observe that the controller reduces the l in the Info5
scenario faster than in the Campus one. Indeed, for the Info5 scenario for all the
No-Control configurations, the buffer is overwhelmed similarly, whereas, for the
Campus one, it depends on the No-Control replication limit configuration. More
precisely, we can observe the controller’s capacity to adjust the l in the Emergency
scenario, where in the first half part of the simulation, the more congested one, the
controller decreases the l and increases it in the second half of the simulation, the
less congested one.

6.2 Buffer occupancy evaluation

Figure 6.2 shows that, for all the scenarios and for all the configurations except for
the Control one, the buffer fills in a logarithmic way up to the buffer’s total capacity.
For the Emergency scenario, we can see an inflexion point that derives to a lower

52 Chapter 6 Results

0

25

50

75

100

0e
+0

0

5e
+0

4

1e
+0

5

2e
+0

5

2e
+0

5

2e
+0

5

Taxis

0

25

50

75

100

0e
+0

0

5e
+0

4

1e
+0

5

2e
+0

5

2e
+0

5

2e
+0

5

Info5

0

25

50

75

100

0e
+0

0

2e
+0

4

5e
+0

4

8e
+0

4

1e
+0

5

1e
+0

5

Campus

25

50

75

100

0e
+0

0

2e
+0

4

4e
+0

4

6e
+0

4

Emergency

Simulation time (s)

Bu
ff

er
 o

cc
up

an
cy

 (
%

)

Configuration
Control
EP
Static
Static*

Fig. 6.2: Percentage of the buffer occupancy for the different policies, for each scenario,
along the simulation time. In the legend, the configuration named Static* corre-
sponds to the Static one with the replication limit the Control tends to.

buffer occupancy at the simulation time when the message generation distribution
changes from high frequency to low frequency.

Without any replication limit (l), the EP policy fills up the buffer faster than the other
policies. The Static policy’s static l determines the speed at which the buffer fills up.
For the Control configuration, as the control system regulates the replication limit
based on congestion information readings from the nodes, the buffer occupancy
fluctuates based on the effects of the new replication limit values.

Overall, the buffer occupancy is lower with the Control configuration. For all
the scenarios, after a transient period, the buffer utilization by the Control policy
tends toward 21% for the Taxis scenario, 87% for the Info5 scenario, 32% for
the Campus scenario and 22% for the Emergency scenario. Nevertheless, this
remarkable difference between the buffer utilization by the Control configuration
and the No-Control ones is due to how we measure the buffer occupancy for the
Control configuration. For Control, the buffer occupancy measure does not count
the messages that are still buffered but have the flag φ to false so that if buffer space
is required, those will be the first messages to be discarded.

6.2 Buffer occupancy evaluation 53

0.00

0.25

0.50

0.75

1.00

EP S_
2

S_
4

S_
8

S_
10

S_
20

S_
30

S_
40

S_
70

S_
15

0

S_
30

4

Co
nt

ro
l

Taxis

0.00

0.25

0.50

0.75

1.00

EP S_
2

S_
4

S_
8

S_
10

S_
20

S_
30

S_
40

Co
nt

ro
l

Info5

0.00

0.25

0.50

0.75

1.00

EP S_
2

S_
4

S_
10

S_
30

S_
50

S_
80

Co
nt

ro
l

Campus

0.00

0.25

0.50

0.75

1.00

EP S_
2

S_
4

S_
6

S_
8

S_
10

S_
20

S_
30

S_
50

S_
60

S_
80

S_
90

S_
10

0
Co

nt
ro

l

Emergency

Policy

D
ro

pp
ed

 o
ve

r
re

la
ye

d
m

es
sa

ge
s

Configuration
Control
EP
Static
Static*

Fig. 6.3: Percentage of dropped over relayed messages for the different policies. The Static
suffix denotes the replication limit. In the legend, the configuration named Static*
corresponds to the Static one with the replication limit the Control tends to.

Figure 6.3 shows the percentage of dropped over relayed messages. As expected, for
the No-Control configurations, the faster the buffer fills up (Figure 6.2), the more
messages are dropped. Nevertheless, the Control configuration does not have a
lesser drop rate despite its lesser buffer occupation. That is, precisely, because of the
aforementioned detail of how Control measures the occupancy of the buffer so that,
despite a message with the flag φ set to false will not be counted when calculating
the buffer occupancy, when the buffer needs the space it will be dropped. Moreover,
as expected, for the more congested scenarios (Info5, Campus and Emergency), the
Control drop rate is slightly higher than the Static* configuration one. This difference
is caused by the changes in the replication limit adjusted by the controller.

More precisely, as expected, for the less congested scenario (Taxis), for all configura-
tions, dropped messages rate correspond to the buffer occupancy, as the buffers are
not stressed along the simulation. Also, the relation between the buffer occupancy
and the dropped messages rate remains for the Info5 scenario, a medium-high con-
gested one, where buffers are more stressed. Nevertheless, for the Campus scenario,
a highly congested one, and for the Emergency scenario, which has a high congestion
phase, for the Control configuration, the high buffer occupancy ends up dropping the

54 Chapter 6 Results

1

10

100

1000

10000

EP S_
2

S_
4

S_
8

S_
10

S_
20

S_
30

S_
40

S_
70

S_
15

0

S_
30

4

Co
nt

ro
l

Taxis

1

10

100

1000

EP S_
2

S_
4

S_
8

S_
10

S_
20

S_
30

S_
40

Co
nt

ro
l

Info5

1

10

100

1000

10000

EP S_
2

S_
4

S_
10

S_
30

S_
50

S_
80

Co
nt

ro
l

Campus

1

10

100

1000

10000

EP S_
2

S_
4

S_
6

S_
8

S_
10

S_
20

S_
30

S_
50

S_
60

S_
80

S_
90

S_
10

0
Co

nt
ro

l

Emergency

Policy

O
ve

rh
ea

d
ra

ti
o

Configuration
Control
EP
Static
Static*

Fig. 6.4: The overhead percentage for the different forwarding policies in a logarithmic
scale per scenario.

buffered messages with the flag φ set to false, and, therefore, the dropped messages
rate is at par with the Static* configuration one, with slight differences caused by
the changes on the replication limit adjusted by the controller.

6.3 Performance evaluation

This section presents and evaluates the results for the performance metrics listed in
Section 5.1: overhead ratio, delivery ratio and latency average, for the Control and
No-Control configurations for different scenarios.

6.3.1 Overhead ratio

Figure 6.4 shows that the overhead derived from the relay of the message copies
depends on the l. EP’s overhead surpasses Static and Control between two to three
magnitude orders, whilst Statics’s overhead increases for higher ls. The Control’s
overhead ratio is similar to the Static* one. The slight difference between the two
configurations is due to the on-the-fly Control’s recalculations of l.

6.3 Performance evaluation 55

0.00

0.25

0.50

0.75

1.00

EP S_
2

S_
4

S_
8

S_
10

S_
20

S_
30

S_
40

S_
70

S_
15

0

S_
30

4

Co
nt

ro
l

Taxis

0.00

0.25

0.50

0.75

1.00

EP S_
2

S_
4

S_
8

S_
10

S_
20

S_
30

S_
40

Co
nt

ro
l

Info5

0.00

0.25

0.50

0.75

1.00

EP S_
2

S_
4

S_
10

S_
30

S_
50

S_
80

Co
nt

ro
l

Campus

0.00

0.25

0.50

0.75

1.00

EP S_
2

S_
4

S_
6

S_
8

S_
10

S_
20

S_
30

S_
50

S_
60

S_
80

S_
90

S_
10

0
Co

nt
ro

l

Emergency

Policy

D
el

iv
er

y
ra

ti
o

Configuration
Control
EP
Static
Static*

Fig. 6.5: Delivery ratio percentage for the different forwarding policies per scenario.

6.3.2 Delivery ratio

The dropped messages and the overhead directly affect the delivery ratio perfor-
mance. As we can see in Figure 6.5, a high replication limit takes its toll on the
delivery ratio performance.

With the highest replication limit, the EP policy floods the network, triggering a
significant amount of drops and, therefore, getting the worst delivery ratio. The
behaviour above also applies to the Static policy. The higher the l is, the poorer the
delivery ratio we obtain.

Indeed, Info5 and Campus scenarios, the more congested ones, obtain the highest
delivery ratio with a Static policy with a low l, 2 in both cases. As the l increases, the
delivery ratio performance decreases. However, for the Emergency scenario, which
combines a high message generation frequency with a low one, and for the Taxis
scenario, with a low-medium congestion level, the delivery ratio is ascendant for
the values of l up to the inflexion point of the Static’s l with the best delivery ratio.
This behaviour is coherent with the fact that high values of l strike the congested

56 Chapter 6 Results

scenarios. In contrast, the low-medium congested scenarios admit higher values of l,
favouring a higher delivery ratio.

Overall, the Control policy gets the best delivery ratio for all the scenarios. We
obtain the best increase ratio in the scenarios with low-medium congestion levels.
We specifically get a 14% and an 11% increment in the delivery ratio for Taxis and
Emergency, respectively, over the Static configuration with the l performing the best.
As we have previously seen, these scenarios admit higher l values, bringing on a
higher delivery ratio. The ability of the Control policy to dynamically adapt the l

provides the optimal l value depending on the current congestion situation. This
flexibility makes the Control policy to outstand in low-medium congestion scenarios
over the other configurations. On the other hand, for highly congested scenarios,
where the best option is to keep a very low l close to direct delivery, the Control
policy comes out also with a low l. It also benefits from the dynamism and slightly
outperforms the Static policy with the l that performs the best, by 4% and 9% for
Info5 and Campus scenarios, respectively.

6.3.3 Latency average

Figure 6.6 shows that, despite the crushing effects of the message flooding strategy
over the buffer occupancy, delivery ratio and overhead, when it comes to the latency,
message flooding benefits the arrival of the messages to their destination and,
therefore, it obtains a good performance. Indeed, as pointed out by Krifa et al.
in [43], a flooding-based replication benefits the latency of the messages at the
expense of the delivery ratio in case of congestion. That is so because dropped
messages will not get to the destination, undermining the delivery ratio. In contrast,
a high message dissemination will favour that non dropped messages will have more
chances to get to their destination upon an opportunistic contact resulting in a lower
latency for those messages. With this premise, we can see that the configurations
that fill up the buffer faster (Figure 6.2) as EP and the Static ones with the highest
replication limit perform worst in terms of delivery ratio (Figure 6.5) but better in
terms of latency (Figure 6.6).

As for the Control configuration, the premise above applies. More specifically,
the Control configuration for the less congested scenario (Taxis) achieves a better
performance than EP and Static* due to its low buffer occupancy, backed by a
low dropped messages rate. Nevertheless, the configurations with a Static high
replication limit leverage from high replication to have lower latency than the
Control one. For the medium-to-high congested scenario Info5, where the buffer
occupancy and dropped messages ratio are close to the No-Control configurations,
a high replication benefits a lower latency. Also, for the most congested scenarios

6.3 Performance evaluation 57

0

25000

50000

75000

100000

125000

EP S_
2

S_
4

S_
8

S_
10

S_
20

S_
30

S_
40

S_
70

S_
15

0
S_

30
4

Co
nt

ro
l

Taxis

0

10000

20000

30000

40000

EP S_
2

S_
4

S_
8

S_
10

S_
20

S_
30

S_
40

Co
nt

ro
l

Info5

-5000

0

5000

10000

EP S_
2

S_
4

S_
10

S_
30

S_
50

S_
80

Co
nt

ro
l

Campus

0

4000

8000

EP S_
2

S_
4

S_
6

S_
8

S_
10

S_
20

S_
30

S_
50

S_
60

S_
80

S_
90

S_
10

0
Co

nt
ro

l

Emergency

Policy

La
te

nc
y

av
er

ag
e

(s
)

Configuration
Control
EP
Static
Static*

Fig. 6.6: Latency average for the different forwarding policies per scenario.

(Campus and Emergency), where the Control configuration ends up with a high
dropped messages rate, the highest replication configurations obtain a better latency
performance. Finally, Figure 6.6 includes the standard deviation of the latencies,
showing up for all scenarios and configurations that there is a high variance between
the messages’ latencies.

6.4 Evaluation of the control settings impact on the
delivery ratio

The control layer is configurable through the settings listed in Section 5.4.2. We
have run simulations over the four selected representative scenarios to analyse
the impact of the Control configuration settings on the delivery ratio over diverse
scenarios and to find a general configuration that fits all of them. The following nine
sections present our analysis.

58 Chapter 6 Results

Campus

Emergency

Taxis

Info50.6

0.7

0.8

0.9

0 10 20 30 40 50

Number of controllers

D
el

iv
er

y
ra

ti
o

Fig. 6.7: Delivery ratio by number of controllers.

6.4.1 Number of controllers

Figure 6.7 shows the delivery ratio depending on the number of controllers used per
scenario. In this plot, the max number of considered controllers is 50. Not all the
scenarios have been simulated for all the considered number of controllers as, for
example, the Info5 scenario has just 41 nodes.

Certainly, as pointed out in section 3.5, the number of controllers needed to orches-
trate the OppNet depends on the nature of the network. Besides, the characteristics
of the four simulated scenarios, including the number of nodes, are very different.
Therefore, for each scenario, we did stop simulating as soon as the simulation results
showed a clear descendant slope for an increasing number of controllers. Specifically,
Figure 6.7 shows that for all the scenarios, a small number of controllers perform bet-
ter in terms of delivery ratio. For the most connected scenarios, Campus and Info5,
the best performance is achieved with just four and two controllers, respectively.

As the controller receives the congestion readings from the nearby nodes, it has
an overview of the congestion of a part of the network, its nearest part. We can
elaborate on this idea by considering that the network is kind of “segmented" by
the number of controllers used. Each network “segment" consists of the number of
nodes that can be reached by a controller directly or through short-time relays.

Having said that, in a highly connected network, using a high number of controllers
results in overlapping the different network segments, as each controller can reach
several of these segments. This overlapping effect results in the nodes receiving
directives from different controllers. Of course, a directive emitted from a controller
from a segment the node does not belong to has congestion information that is not
entirely accurate for the node. This overlapping effect is why using many controllers
decreases the network performance.

6.4 Evaluation of the control settings impact on the delivery ratio 59

On the other hand, for the more sparse scenario (Taxis) and the scenario with
an abrupt change in the communication conditions (Emergency), the implicit seg-
mentation derived by the different controllers gets disjoint segments. Under these
circumstances, having a higher number of controllers (10 for Taxis and 20 for Emer-
gency) helps cover a broader network range, translating to better performance.

6.4.2 Optimal congestion interval (omin − omax)

0.880.89 0.890.89 0.890.91 0.91 0.910.910.92 0.93

0.570.59 0.59
0.65 0.65 0.65 0.650.66 0.66 0.66 0.68

0.72
0.76 0.76 0.760.77 0.77 0.770.77 0.780.81

0.61

0.720.73 0.730.740.740.750.76 0.790.79 0.8

Info5 Taxis

Campus Emergency

0.
3-

0.
5

0.
5-

0.
6

0.
5-

0.
7

0.
5-

0.
8

0.
5-

0.
9

0.
6-

0.
7

0.
6-

0.
8

0.
6-

0.
9

0.
7-

0.
8

0.
7-

0.
9

0.
8-

0.
9

0.
3-

0.
5

0.
5-

0.
6

0.
5-

0.
7

0.
5-

0.
8

0.
5-

0.
9

0.
6-

0.
7

0.
6-

0.
8

0.
6-

0.
9

0.
7-

0.
8

0.
7-

0.
9

0.
8-

0.
9

0.
3-

0.
5

0.
5-

0.
6

0.
5-

0.
7

0.
5-

0.
8

0.
5-

0.
9

0.
6-

0.
7

0.
6-

0.
8

0.
6-

0.
9

0.
7-

0.
8

0.
7-

0.
9

0.
8-

0.
9

0.
3-

0.
5

0.
5-

0.
6

0.
5-

0.
7

0.
5-

0.
8

0.
5-

0.
9

0.
6-

0.
7

0.
6-

0.
8

0.
6-

0.
9

0.
7-

0.
9

0.
8-

0.
9

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Optimal congestion interval

D
el

iv
er

y
ra

ti
o

Fig. 6.8: Delivery ratio depending on the optimal congestion interval per scenario.

As presented in Section 4.4, the current replication limit is not modified when the
congestion calculated by a controller falls in the optimal congestion interval.

Figure 6.8 shows that for the most congested scenario (Campus), there is a similar
delivery ratio for all the optimal congestion intervals. The variance between the
performance results for the different intervals is just 0.0002. Nevertheless, we get
the best result for the interval [0.5-0.8].

These homogeneous results infer that in a congested scenario, if the congestion
predictions fit in the configured optimal congestion interval setting for the current
replication limit, the best strategy is to keep the current replication limit steady.

60 Chapter 6 Results

The medium-to-high congested scenario (Info5) shows a little more variance in the
delivery ratio than the previous scenario (0.001). This variance can be appreciated
mainly when the interval upper bound (omax) is 0.8 and 0.9. Therefore, when
the optimal congestion interval upper bound is set close to the maximum buffer
occupation, the replication limit set by the controller is too high. Thus, a more
conservative optimal congestion range gives better results which, in this case, is
[0.6-0.7].

For the Taxis scenario, the most sparse one with fewer contact opportunities, it can
be seen that the most conservative interval configuration, [0.3-0.5], performs by
far the worst (24% less than the best interval). In contrast, the intervals with a
high omax have a good performance. This is because using a high level of message
replication promotes a higher message delivery in a sparse scenario.

Finally, the Emergency scenario behaves similarly to the Taxis one. The performance
of the most conservative interval is the worst (11% less than the best range). Never-
theless, the performance variance by the different intervals is 0.0004, whereas for
the Taxis case is a bit higher: 0.002. For this unpredictable scenario, like for the
Taxis one, the best strategy is to use an interval with a high omax to keep a high
replication limit and, therefore, to have more chances of message delivery.

Altogether, we have seen that in a congested scenario, the key is to keep a steady
replication limit if it keeps the congestion within the configured optimal congestion
interval. It is better to set a conservative optimal replication limit for a medium-
to-high congested scenario to avoid high replication that could yield in a future
congested scenario. On the contrary, for low-congested scenarios, setting an optimal
congestion interval with a high upper bound leads to a higher replication limit
favouring message replication, which increases the delivery ratio.

6.4.3 Additive Increase (k2); Multiplicative Decrease (k1)

The left plot in Figure 6.9 shows that for the additive increase factor used in (4.3),
the value that gives the best performance in all the scenarios is, undoubtedly, 1.
From this result, it can be stated that it is essential that the replication limit grows
slowly to mitigate as much as possible the adverse effects of high replication. As for
the multiplicative decrease factor (MD), for all the scenarios except for the Campus
one, the best option is to reduce 75% the replication limit as a drastic measure to
decrease the congestion caused by replication.

For all the scenarios except for the Taxis one, the delivery ratio keeps decreasing
for higher MD values (implying less replication reduction). For the particular case

6.4 Evaluation of the control settings impact on the delivery ratio 61

Campus

Emergency
Taxis

Info50.6

0.7

0.8

0.9

605545 504025 3015 351084 20621 2015 258106 30 502 5540 45 603541 25 40 5520 60456 30 504 108 1521 30 35 40 45 6050 5515 20 251086421

Additive increase value

D
el

iv
er

y
ra

ti
o

Campus

Emergency Taxis

Info5

0.7

0.8

0.9

0.90.4 0.80.60.1 0.5 0.750.25 0.80.75 0.90.5 0.60.40.1 0.250.1 0.90.6 0.80.750.25 0.4 0.5 0.90.750.80.5 0.60.1 0.40.25

Multiplicative decrease factor

Fig. 6.9: Delivery ratio vs. different values for the AIMD control function.

of the Taxis scenario, its sparse condition results in more fluctuating delivery ratios
depending on the MD factor, but none overcome the ceiling achieved with the 75%
of reduction.

Going back to analysing the results, for the Campus scenario, which is highly
connected and the most congested, we can see that we obtain the best result by
applying a reduction factor of 50%, keeping a higher replication level. These results
are consistent with those in the previous section, where it was stated that once the
congestion status fitted in the congestion range thresholds, the best strategy was to
keep the replication limit within the range. Precisely, reducing the replication limit
to half is a good way to keep the congestion steady within the optimal congestion
interval.

6.4.4 Aggregation interval (t̂)

Campus

Emergency

Taxis

Info5
0.7

0.8

0.9

1030 60030012060 30010 60 120 6003010 60012030 3006010 6030 600300120

Aggregation interval (s)

D
el

iv
er

y
ra

ti
o

Fig. 6.10: Delivery ratio vs. the time interval while the controller is gathering congestion
readings.

In Section 3.6 was presented how the controller foresaw the network congestion
ahead through (3.4) based on a list of aggregated congestion readings (M̆). The

62 Chapter 6 Results

aggregation interval setting (t̂) determines the time while gathering the readings
to generate an M̆ ’s entry. Indirectly, it determines the rate at which the controller
emits a directive.

Figure 6.10 shows that gathering congestion readings during a short time interval
(t̂) results in obtaining the best performance for all the scenarios. Hence, we can say
that when the controller generates directives at a higher rate obtains the best results.
There are minor differences between the suitable intervals for each scenario.

The best performance for the Taxis and the Campus scenarios is at a 60 s interval,
and for the Info5 scenario (the one with the fewest nodes) is 30 s. Thus, it can
be said that the fewer nodes there are, the higher rate of directives emitted by the
controller is required. For the Info5 scenario, even though in the plot it seems that
from the interval of 600 s the function is increasing, simulations up to an interval of
10.800 s with samples every 1800 s have been run, and the delivery ratio remains
constant to the value obtained at the 600 s interval.

Finally, the best interval time for the Emergency scenario is 120 s. This scenario
drastically changes the message generation in the middle of the simulation. In
that variable situation, it is understandable to have a wider time interval range for
gathering congestion readings to soothe the effects of the changes.

6.4.5 Number of inputs (z̆)

Campus

Emergency

Taxis

Info5

0.7

0.8

0.9

60 7035 5540 655030 451510 208 252 4 6 55 706560503015 4540204 25 356 82 10 50454010 358 15 5525 302 4 6020 70656 15 20 503010 352 40 5545 6525 6084 706

Number of linear regression inputs

D
el

iv
er

y
ra

ti
o

Fig. 6.11: Delivery ratio vs. the number of inputs the linear regression is fed with.

The number of inputs setting (z̆) is the max size of M̆ (max number of elements). As
defined in Section 3.6, M̆ behaves as an sliding list of size z̆ to keep the congestion
readings’ recent history on-board. Figure 6.11 shows that, for all the scenarios,

6.4 Evaluation of the control settings impact on the delivery ratio 63

clearly, it is better to have a small z̆. That is fully understandable, as the fewer inputs
we use, the fresher the information is.

6.4.6 Prediction time factor (ϕ)

Campus

Emergency

Taxis

Info5

0.6

0.7

0.8

0.9

1 203 158 10954 62 7 98 10 20156 71 432 51 2054 86 73 15102 9 20158 106 974 531 2

Prediction time factor

D
el

iv
er

y
ra

ti
o

Fig. 6.12: Delivery ratio depending on the prediction time factor.

As shown in Figure 6.12, a minor factor, i.e. predicting the congestion-to-be in the
short term, gives the best performance for all the scenarios. For all of them, the
factor is 2 except for the Info5 one, which is 5. Hence, we can tell that we can
predict the incoming future more accurately than a faraway one. This assertion
implies that we need a small factor combined with a small aggregation interval (t̂).
This combination is feasible as, in the previous section, we have seen that a small t̂

leads to better performance.

6.4.7 Reduction factor for a decay (r)

The decay Equation (3.1) is used to calculate the decay of a received congestion
reading. Decay is used as a weight factor over the congestion reading in (3.3).

In Figure 6.13, we consider different decay at different times (300s, 600s, 1800s,
3600s). The decay goes from 1 (no decay) to (0.01) at each considered time. For
all the scenarios, we can see that the delivery ratio overwhelmingly drops when
the congestion reading is not “penalized" by a decay (decay weight close to 1) after
an elapsed time. Hence, we conclude that considering a decay for the congestion
readings is crucial.

From the transient of the results, for each scenario, it can be seen that the decay at t

heavily affects the performance. Nevertheless, it can be observed that for high decay
“penalties" (small decay weight values), better results are obtained at any time than
with lesser decay (high values).

64 Chapter 6 Results

0.65

0.70

0.75

0.80

0.00 0.25 0.50 0.75 1.00

Taxis

0.50

0.55

0.60

0.65

0.00 0.25 0.50 0.75 1.00

Info5

0.84

0.88

0.92

0.00 0.25 0.50 0.75 1.00

Campus

0.70

0.75

0.80

0.00 0.25 0.50 0.75 1.00

Emergency

Decay weight

D
el

iv
er

y
ra

ti
o

Time

1800
300
3600
600

Fig. 6.13: Tendency of the delivery ratio when combining different decay percentages at
different times per scenario.

In conclusion, the best strategy is to apply a high decay (small weight factor value),
which implies a big diminish of the effect of the congestion measurement after a
short elapsed time from its creation up to its reception by any node/controller.

6.4.8 Decay threshold

Section 3.4 shows how the received measurements are aggregated through (3.3).
This equation double weights the congestion reading by the number of aggregations
it is formed of and by its decay, which is calculated with (3.1). Consequently,
a congestion measurement formed of a high number of aggregated congestion
measurements would have a high impact despite its decay in the overall process
of the congestion measurements aggregation. Hence, several of these congestion
readings in the control’s current aggregation process can lead to a long tail effect
[12], where almost negligible old congestion readings would highly affect the whole
aggregation result. In this case, we would have a congestion reading calculation
based on, very likely, expired information. To avoid this undesirable situation, a
decay threshold is specified so that the congestion readings with a decay lesser than
decay threshold are not considered in the controller’s congestion calculation.

6.4 Evaluation of the control settings impact on the delivery ratio 65

Campus

Emergency

Taxis

Info5
0.7

0.8

0.9

0.
03

0.
01

0.
05

0.
6

0.
3

0.
8

0.
4

0.
08

0.
2

0.
1

0.
03

0.
8

0.
2

0.
3

0.
01

0.
6

0.
05

0.
4

0.
08

0.
1

0.
03

0.
05

0.
2

0.
8

0.
08

0.
01

0.
3

0.
4

0.
6

0.
1

0.
01

0.
03

0.
05

0.
4

0.
8

0.
6

0.
08

0.
3

0.
2

0.
1

Decay threshold

D
el

iv
er

y
ra

ti
o

Fig. 6.14: Delivery ratio for different decay thresholds.

From Figure 6.14 it can be stated that, for all the scenarios, the best decay threshold
is 10% of decay. As expected, either aggregating old readings (small decay threshold)
or discarding new readings (high decay threshold) worsens the performance consis-
tently for all the scenarios. Nevertheless, although small decay thresholds diminish
the performance for the Emergency scenario, high decay thresholds don’t signifi-
cantly affect such performance. This behaviour is due to the high variance in the
latency of this scenario, so considering old readings does not affect the performance
much.

6.4.9 Number of aggregations weight (α)

Campus

Emergency

Taxis

Info5
0.6

0.7

0.8

0.9

0.80.50.40.20.1 0.80.50.40.20.1 0.80.50.40.20.1 0.80.50.40.20.1

Weight applied to the number of aggregations of a metric

D
el

iv
er

y
ra

ti
o

Fig. 6.15: Delivery ratio for different α weights.

The number of aggregation’s weight setting (α) used in (3.3) is the weight applied
to the number of aggregations an aggregated congestion measurement is formed of.
As it is a two-factor weighted average, the weight related to the decay is the alpha’s
complementary (1 − α).

66 Chapter 6 Results

As we can see in Figure 6.15, for all the scenarios, we obtain the best performance
with an alpha of 0.2. This result concludes that the decay of a congestion measure-
ment is more relevant than the number of aggregations this aggregated measurement
is formed of.

6.4.10 Directive generation frequency

Campus

Emergency

Taxis

Info5
0.7

0.8

0.9

12
00

36
00

54
00

12
0

72
00

18
00

60
0

90
0

30
0

30
0

12
00

18
00

60
0

54
00

72
00

12
0

36
00

90
0

12
00

36
00

18
00

30
0

72
00

12
0

60
0

54
00

90
0

30
0

12
00

18
00

72
00

36
00

54
00

12
0

60
0

90
0

Directive period (s)

D
el

iv
er

y
ra

ti
o

Fig. 6.16: Delivery ratio for different directive generation periods.

As we have seen in Section 3.5, the control system is opportunistic. Nevertheless,
each directive frequency seconds, the controller re-sends the last generated directive
for control beckoning purposes.

As we can see in Figure 6.16, for all the scenarios except for the Taxis one, we
obtain the best performance by re-sending the last directive each 900s, provided
no contact has happened before. Nevertheless, For the Taxis scenario, we get the
optimal performance with a directive frequency of 300s. We can understand this
slight difference as the Taxis scenario is the most sparse one, which implies fewer
contacts between nodes. Hence, a more frequent directive beckoning gives the nodes
more chances to receive a directive, and consequently, we get better performance.

6.4 Evaluation of the control settings impact on the delivery ratio 67

Part IV

Conclusions and Future work

7Conclusions

THE MOTIVATION for this work was bringing into OppNets the benefits of the
SDN architecture by having an SDN-like controller managing a context-
aware system fed with network information provided by the SDN-like agents

and using this supervised context information to tune the forwarding strategy to
achieve a better network performance. More precisely, we envisioned a controller-
driven OppNet using a multi-copy forwarding algorithm where an SDN-like controller
overviewed this OppNet (possibly a part of it) to determine on the fly the replication
limit of the forwarding algorithm.

Next, in this chapter, we go through a summary of the achievements of this research.
Also, we point out the immediate future lines derived from this study.

7.1 Achievements

A control layer has been devised. This control layer implements the node’s functional-
ities of gathering, aggregating and forwarding network measurements, and applying
the received directives (GAFA). The control layer also implements the controller
functionalities. The control layer is executed by the nodes in the OppNet, becoming
a controller-driven OppNet.

To state the soundness of the proposal, the control layer has been applied to man-
age the congestion derived from multi-copy-based forwarding algorithms. This
controller-driven OppNet has been tested over four scenarios characterised by dif-
ferent mobility patterns and node densities against baseline forwarding strategies
based on message replication. The scenarios have been simulated for the Control
and No-Control (Epidemic and Static quota-based) configurations to evaluate the
network’s performance based on the indicators listed in Section 5.1.

For the scenarios with a message distribution following the ISTH function, the
simulations show that for the Control configuration, the replication limit tends to
an asymptote proximal to the replication limit of the Static policy performing the
best in terms of delivery ratio (optimal). Therefore, it can be stated that under blind
network knowledge, the Control configuration approaches the optimal replication
limit.

71

Moreover, the Control configuration adapts to changes in the pattern of message
generation distribution. It is precisely under these unpredictable conditions that
the Control configuration stands out over the other configurations by leveraging
its dynamic adaptability to the network conditions. This adaptability brings out a
significantly lesser occupancy of the node’s buffer and an important reduction of the
overhead intrinsic to replication.

Besides, the Control configuration improves the delivery ratio for all the scenarios.
Its goodness is accentuated for scenarios with medium-low congestion, as a wider
replication limit range can be considered. In contrast, a high congested scenario is
stuck to a low replication limit. Undoubtedly, latency benefits from a replication that
does not overwhelm the nodes’ cache system. The fact that the Control configuration
keeps at bay the replication limit to avoid congestion to achieve a better delivery
ratio affects the latency. Therefore, the application layer should determine whether
maximise the delivery ratio or minimise the latency, so the control layer could apply
forwarding strategies to optimise one or the other.

Furthermore, the control layer is highly configurable to provide the best performance
depending on the Oppnet’s nature. Nevertheless, generic values providing a good
performance have been determined from simulations over the aforementioned
scenarios. In this regard, simulations show that the controller must be fed fresh
congestion readings from contacts. Therefore, applying a decay weight over the
measurements used to predict the network conditions is decisive. In this regard, it is
more effective a short-term than a long-term prediction.

Also, the simulation evinces that the more sparse the network is (fewer contacts
between nodes), the more directives are needed. For the use case of congestion
control, the replication limit needs to grow slowly, whereas, in a congestion state, a
sharp reduction is required. The optimal congestion interval is highly coupled with
the characteristics of the scenario.

Finally, simulations depict that, despite the disconnections, network partitioning and
long delay paths prone to OppNets, a small number of controllers suffice.

Overall, this study asserts that (i) a context-aware system built upon the SDN pillar
principles is a good approach for context-management in OppNets, and (ii) using
this context-aware system to regulate the replication in an OppNet driven by a
multi-copy forwarding strategy leads to better network performance.

72 Chapter 7 Conclusions

7.2 Future work

Out of this research, we envision three possible lines of future work. The first pro-
posal consists in nodes positing as controllers in an emerging role basis. The second
one comprises sharing the context information each controller manages amongst
the other controllers aiming to build a more global network context knowledge.
Finally, we consider implementing the southbound SDN protocols over the nodes
to achieve an SDN-compliant OppNet. The three proposals are expanded in the
following sections.

7.2.1 Emerging controllers

Undoubtedly, as we have mentioned in Section 7.1, the most significant achievement
of this research has been designing a context-aware system managed by SDN-like
controllers. Also, in the introduction of Chapter 3, we point out that we have selected
the most central nodes to perform as controllers. We have measured the centrality
in terms of the number of different contacts per time unit a node has. Hence, the
selection of controllers has been hand-picked. As the SDN-like controller is a crucial
building block of this research, we devised different methodologies to determine
the identity of the controllers. Selecting the central ones was the first approach.
Following, we envision a dynamic way inspired by the Internet Group Management
Protocol [14] named as emerging controller.

The idea behind the emerging controller is implementing a protocol where initially,
there would be no controller. After a timeout without receiving control directives,
a node would adopt the controller role. Likewise, when a controller would receive
control directives from other nodes, it should decide whether to keep the role or
withdraw it. We believe that this is the natural evolution of the proposed controller-
driven OppNet.

7.2.2 Approximation to a global network overview

As we have mentioned in Section 3.5, under the ever-changing topology of an
OppNet, the controller has an overview of the network “segment" within its reach.
Nevertheless, opportunistic contacts also favour receiving control information from
other controllers in the network. The controllers could use the control information
received from other controllers to build a more extensive network overview. It would
be interesting to evaluate if working with more global context information would be
more beneficial than using nearby information.

7.2 Future work 73

Moreover, upon the control information received from other controllers, they could
build a dynamic graph of the controllers’ influence range, indicating which nodes are
under the range of a particular controller. This information could be disseminated
along the OppNet so the nodes could use it to decide whether a node is a good relay
candidate based on the congestion perception of the controller influencing the relay
candidate node.

7.2.3 Implementation of a connectionless SDN southbound
protocol

Finally, as we have mentioned in Section 1, up to our knowledge, SDN protocols are
based on TCP and, therefore, do not apply to OppNets. In SDN, the Control and
the data planes communicate through a southbound protocol such as OpenFlow or
P4Runtime, among others. We propose checking the feasibility of developing a con-
nectionless southbound protocol to communicate the OppNet nodes (data plane) and
the controllers (control plane) to achieve a Software Defined Opportunistic Network
(SDON) fully compliant with the SDN southbound communication specifications.

74 Chapter 7 Conclusions

Part V

Bibliography

Bibliography

[1] Mehran Abolhasan, Mahrokh Abdollahi, Wei Ni, et al. “A routing framework for
offloading traffic from cellular networks to SDN-based multi-hop device-to-device
networks”. In: IEEE Transactions on Network and Service Management 15.4 (2018),
pp. 1516–1531 (cit. on p. 17).

[2] Dimitrios-Georgios Akestoridis. CRAWDAD dataset uoi/haggle (v. 2016-08-28): derived
from cambridge/haggle (v. 2009-05-29). Downloaded from http://crawdad.org/
uoi/haggle/20160828/one. Aug. 2016 (cit. on p. 43).

[3] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. “Wireless sensor networks:
a survey”. In: Computer Networks 38.4 (2002), pp. 393–422 (cit. on p. 9).

[4] Ian F Akyildiz, Xudong Wang, and Weilin Wang. “Wireless mesh networks: a survey”.
In: Computer networks 47.4 (2005), pp. 445–487 (cit. on p. 3).

[5] Mark Allman, Vern Paxson, and Ethan Blanton. TCP congestion control. Tech. rep. 2009
(cit. on p. 12).

[6] Flor Álvarez, Lars Almon, Patrick Lieser, et al. “Conducting a large-scale field test of a
smartphone-based communication network for emergency response”. In: Proceedings
of the 13th Workshop on Challenged Networks. 2018, pp. 3–10 (cit. on p. 8).

[7] Rafay Iqbal Ansari, Chrysostomos Chrysostomou, Syed Ali Hassan, et al. “5G D2D
networks: Techniques, challenges, and future prospects”. In: IEEE Systems Journal
12.4 (2017), pp. 3970–3984 (cit. on p. 3).

[8] Suvadip Batabyal, Parama Bhaumik, Samiran Chattopadhyay, and Sudip Misra. “Steady-
state analysis of buffer occupancy for different forwarding strategies in mobile oppor-
tunistic network”. In: IEEE Transactions on Vehicular Technology 68.7 (2019), pp. 6951–
6963 (cit. on p. 14).

[9] Samaresh Bera, Sudip Misra, and Athanasios V Vasilakos. “Software-defined network-
ing for internet of things: A survey”. In: IEEE Internet of Things Journal 4.6 (2017),
pp. 1994–2008 (cit. on p. 16).

[10] Archie Bland. “FireChat–the messaging app that’s powering the Hong Kong protests”.
In: The Guardian 29 (2014) (cit. on p. 10).

[11] John P Boyd. “Asymptotic Fourier coefficients for a C∞ bell (smoothed-“top-hat”)
& the Fourier extension problem”. In: Journal of Scientific Computing 29.1 (2006),
pp. 1–24 (cit. on p. 43).

77

http://crawdad.org/uoi/haggle/20160828/one
http://crawdad.org/uoi/haggle/20160828/one

[12] George W. Brown and John W. Tukey. “Some Distributions of Sample Means”. In: The
Annals of Mathematical Statistics 17.1 (1946), pp. 1–12 (cit. on p. 65).

[13] Yegui Cai, F Richard Yu, Chengchao Liang, Bo Sun, and Qiao Yan. “Software-defined
device-to-device (D2D) communications in virtual wireless networks with imperfect
network state information (NSI)”. In: IEEE Transactions on Vehicular Technology 65.9
(2016) (cit. on p. 17).

[14] B Cain, S Deering, I Kouvelas, B Fenner, and A Thyagarajan. RFC3376: internet group
management protocol, version 3. 2002 (cit. on p. 73).

[15] Pablo Calcina Ccori, Laisa Caroline Costa De Biase, Marcelo Knorich Zuffo, and
Flávio Soares Corrêa da Silva. “Device discovery strategies for the IoT”. In: 2016
IEEE International Symposium on Consumer Electronics (ISCE). IEEE. 2016, pp. 97–98
(cit. on p. 9).

[16] Manisha Chahal, Sandeep Harit, Krishn K Mishra, Arun Kumar Sangaiah, and Zhigao
Zheng. “A survey on software-defined networking in vehicular ad hoc networks:
Challenges, applications and use cases”. In: Sustainable cities and society 35 (2017),
pp. 830–840 (cit. on p. 16).

[17] Nessrine Chakchouk. “A survey on opportunistic routing in wireless communication
networks”. In: IEEE Communications Surveys & Tutorials 17.4 (2015), pp. 2214–2241
(cit. on pp. 4, 8, 10, 11).

[18] Community Resource for Archiving Wireless Data At Dartmouth. url= https://crawdad.org/.
Accessed on 04.11.2021 (cit. on p. 42).

[19] Marco Conti, Chiara Boldrini, Salil S Kanhere, et al. “From MANET to people-centric
networking: Milestones and open research challenges”. In: Computer Communications
71 (2015), pp. 1–21 (cit. on p. 3).

[20] Marco Conti and Mohan Kumar. “Opportunities in opportunistic computing”. In:
Computer 43.01 (2010), pp. 42–50 (cit. on p. 9).

[21] Renu Dalal, Manju Khari, John Petearson Anzola, and Vicente García-Díaz. “Prolifera-
tion of Opportunistic Routing: A Systematic Review”. In: IEEE Access (2021) (cit. on
p. 41).

[22] Jens Dede, Anna Förster, Enrique Hernández-Orallo, et al. “Simulating opportunistic
networks: Survey and future directions”. In: IEEE Communications Surveys & Tutorials
20.2 (2017), pp. 1547–1573 (cit. on pp. 12, 41, 46).

[23] Richard C Dorf and Robert H Bishop. Modern control systems. Pearson, 2011 (cit. on
p. 27).

[24] Kevin Fall. “A delay-tolerant network architecture for challenged internets”. In: Pro-
ceedings of the 2003 conference on Applications, technologies, architectures, and protocols
for computer communications. 2003, pp. 27–34 (cit. on pp. 3, 8).

[25] Diego Freire, Sergi Robles, and Carlos Borrego. “Towards a Methodology for the
Development of Routing Algorithms in Opportunistic Networks”. In: arXiv preprint
arXiv:2009.01532 (2020) (cit. on p. 11).

[26] Gourish Goudar and Suvadip Batabyal. “Estimating Buffer Occupancy sans Message
Exchange in Mobile Opportunistic Networks”. In: IEEE Networking Letters (2022)
(cit. on pp. 14, 27).

78 Bibliography

[27] Gourish Goudar and Suvadip Batabyal. “Point of congestion in large buffer mobile
opportunistic networks”. In: IEEE Communications Letters 24.7 (2020), pp. 1586–1590
(cit. on p. 14).

[28] Frédéric Guidec, Yves Mahéo, Pascale Launay, Lionel Touseau, and Camille Noûs.
“Bringing Opportunistic Networking to Smartphones: a Pragmatic Approach”. In: 2021
IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE.
2021, pp. 574–579 (cit. on p. 10).

[29] Bin Guo, Zhu Wang, Zhiwen Yu, et al. “Mobile crowd sensing and computing: The
review of an emerging human-powered sensing paradigm”. In: ACM computing surveys
(CSUR) 48.1 (2015), pp. 1–31 (cit. on p. 9).

[30] C Yu Hans, Giorgio Quer, and Ramesh R Rao. “Wireless SDN mobile ad hoc network:
From theory to practice”. In: 2017 IEEE International Conference on Communications
(ICC). IEEE. 2017, pp. 1–7 (cit. on p. 17).

[31] Israat Tanzeena Haque and Nael Abu-Ghazaleh. “Wireless software defined network-
ing: A survey and taxonomy”. In: IEEE Communications Surveys & Tutorials 18.4
(2016), pp. 2713–2737 (cit. on p. 16).

[32] Yvon Henri. “The OneWeb satellite system”. In: Handbook of Small Satellites: Technol-
ogy, Design, Manufacture, Applications, Economics and Regulation (2020), pp. 1–10
(cit. on p. 8).

[33] Fei Hu, Qi Hao, and Ke Bao. “A survey on software-defined network and openflow:
From concept to implementation”. In: IEEE Communications Surveys & Tutorials 16.4
(2014), pp. 2181–2206 (cit. on pp. 15, 16).

[34] Qingsong Hu, Juan Ding, and Shiyin Li. “A novel cognitive opportunistic communica-
tion framework for coal mines”. In: Mathematical Problems in Engineering 2019 (2019)
(cit. on p. 8).

[35] Pan Hui, Augustin Chaintreau, James Scott, et al. “Pocket switched networks and hu-
man mobility in conference environments”. In: Proceedings of the 2005 ACM SIGCOMM
workshop on Delay-tolerant networking. 2005, pp. 244–251 (cit. on p. 3).

[36] Sushant Jain, Kevin Fall, and Rabin Patra. “Routing in a delay tolerant network”. In:
Proceedings of the 2004 conference on Applications, technologies, architectures, and
protocols for computer communications. 2004, pp. 145–158 (cit. on pp. 10, 11).

[37] P.K. Janert. Feedback Control for Computer Systems: Introducing Control Theory to
Enterprise Programmers. O’Reilly Media, 2013 (cit. on p. 36).

[38] Manuel Jesús-Azabal, Juan Luis Herrera, Sergio Laso, and Jaime Galán-Jiménez.
“OPPNets and rural areas: an opportunistic solution for remote communications”. In:
Wireless Communications and Mobile Computing 2021 (2021) (cit. on p. 8).

[39] Soujanya Katikala. “Google project loon”. In: InSight: Rivier Academic Journal 10.2
(2014), pp. 1–6 (cit. on p. 8).

[40] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. “The ONE simulator for DTN pro-
tocol evaluation”. In: Proceedings of the 2nd international conference on simulation
tools and techniques. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering). 2009, p. 55 (cit. on p. 46).

Bibliography 79

[41] Hlabishi I Kobo, Adnan M Abu-Mahfouz, and Gerhard P Hancke. “A survey on software-
defined wireless sensor networks: Challenges and design requirements”. In: IEEE access
5 (2017), pp. 1872–1899 (cit. on p. 16).

[42] Diego Kreutz, Fernando Ramos, Paulo Verissimo, et al. “Software-defined networking:
A comprehensive survey”. In: arXiv preprint arXiv:1406.0440 (2014) (cit. on pp. 4, 15,
16).

[43] Amir Krifa, Chadi Barakat, and Thrasyvoulos Spyropoulos. “Optimal buffer manage-
ment policies for delay tolerant networks”. In: 2008 5th annual IEEE communications
society conference on sensor, mesh and ad hoc communications and networks. IEEE. 2008,
pp. 260–268 (cit. on pp. 13, 57).

[44] Vishnupriya Kuppusamy, Udaya Miriya Thanthrige, Asanga Udugama, and Anna
Förster. “Evaluating Forwarding Protocols in Opportunistic Networks: Trends, Ad-
vances, Challenges and Best Practices”. In: Future Internet 11.5 (2019) (cit. on pp. 4,
9, 12, 41, 46).

[45] Jani Lakkakorpi, Mikko Pitkänen, and Jörg Ott. “Using buffer space advertisements
to avoid congestion in mobile opportunistic DTNs”. In: International Conference on
Wired/Wireless Internet Communications. Springer. 2011, pp. 386–397 (cit. on p. 14).

[46] Michael Lee and Travis Atkison. “Vanet applications: Past, present, and future”. In:
Vehicular Communications 28 (2021), p. 100310 (cit. on p. 10).

[47] He Li, Kaoru Ota, Mianxiong Dong, and Minyi Guo. “Mobile Crowdsensing in Software
Defined Opportunistic Networks”. In: IEEE Communications Magazine 55.6 (2017),
pp. 140–145 (cit. on p. 17).

[48] Jiajia Liu, Shangwei Zhang, Nei Kato, Hirotaka Ujikawa, and Kenichi Suzuki. “Device-
to-device communications for enhancing quality of experience in software defined
multi-tier LTE-A networks”. In: IEEE Network 29.4 (2015), pp. 46–52 (cit. on p. 17).

[49] Jonathan C McDowell. “The low earth orbit satellite population and impacts of the
SpaceX Starlink constellation”. In: The Astrophysical Journal Letters 892.2 (2020),
p. L36 (cit. on p. 8).

[50] Nick McKeown, Tom Anderson, Hari Balakrishnan, et al. “OpenFlow: enabling innova-
tion in campus networks”. In: ACM SIGCOMM Computer Communication Review 38.2
(2008), pp. 69–74 (cit. on p. 15).

[51] Matthias Grossglauser Michal Piorkowski Natasa Sarafijanovic-Djukic. Dataset of
mobility traces of taxi cabs in San Francisco, USA (v. 2009-02-24). Feb. 2009 (cit.
on p. 43).

[52] Vinicius FS Mota, Felipe D Cunha, Daniel F Macedo, José MS Nogueira, and Antonio AF
Loureiro. “Protocols, mobility models and tools in opportunistic networks: A survey”.
In: Computer Communications 48 (2014), pp. 5–19 (cit. on pp. 4, 8, 11, 12, 41).

[53] Anand Nayyar, Ranbir Singh Batth, Dac Binh Ha, and G Sussendran. “Opportunistic
networks: present scenario-a mirror review”. In: International Journal of Communi-
cation Networks and Information Security 10.1 (2018), pp. 223–241 (cit. on pp. 4,
11).

[54] Lionel Nkenyereye, Lewis Nkenyereye, SM Islam, et al. “Software-defined network-
based vehicular networks: A position paper on their modeling and implementation”.
In: Sensors 19.17 (2019), p. 3788 (cit. on p. 16).

80 Bibliography

[55] Jéferson Campos Nobre, Allan M. de Souza, Denis Rosário, et al. “Vehicular software-
defined networking and fog computing: Integration and design principles”. In: Ad Hoc
Networks 82 (2019), pp. 172–181 (cit. on p. 16).

[56] Bruno Astuto A Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and
Thierry Turletti. “A survey of software-defined networking: Past, present, and future
of programmable networks”. In: IEEE Communications surveys & tutorials 16.3 (2014),
pp. 1617–1634 (cit. on p. 16).

[57] Daru Pan, Zhaohua Ruan, Nian Zhou, Xiong Liu, and Zhaohui Song. “A comprehensive-
integrated buffer management strategy for opportunistic networks”. In: EURASIP
Journal on Wireless Communications and Networking 2013.1 (2013), pp. 1–10 (cit. on
p. 13).

[58] Luciana Pelusi, Andrea Passarella, and Marco Conti. “Opportunistic networking: data
forwarding in disconnected mobile ad hoc networks”. In: IEEE Communications Maga-
zine 44.11 (2006), pp. 134–141 (cit. on p. 8).

[59] Zhijing Qin, Grit Denker, Carlo Giannelli, Paolo Bellavista, and Nalini Venkatasubra-
manian. “A Software Defined Networking architecture for the Internet-of-Things”. In:
2014 IEEE Network Operations and Management Symposium (NOMS). 2014, pp. 1–9
(cit. on p. 16).

[60] Asmaa Rady, EL-Sayed M El-Rabaie, Mona Shokair, and Nariman Abdel-Salam. “Com-
prehensive survey of routing protocols for Mobile Wireless Sensor Networks”. In:
International Journal of Communication Systems 34.15 (2021), e4942 (cit. on p. 3).

[61] Wajid Rafique, Lianyong Qi, Ibrar Yaqoob, et al. “Complementing IoT Services Through
Software Defined Networking and Edge Computing: A Comprehensive Survey”. In:
IEEE Communications Surveys Tutorials 22.3 (2020), pp. 1761–1804 (cit. on p. 16).

[62] Ram Ramanathan, Christophe Servaes, Warren Ramanathan, Ayush Dusia, and Adarsh-
pal S Sethi. “Long-range short-burst mobile mesh networking: Architecture and evalu-
ation”. In: 2019 16th Annual IEEE International Conference on Sensing, Communication,
and Networking (SECON). IEEE. 2019, pp. 1–2 (cit. on p. 10).

[63] SR Jino Ramson and D Jackuline Moni. “Applications of wireless sensor networks—A
survey”. In: 2017 international conference on innovations in electrical, electronics,
instrumentation and media technology (ICEEIMT). IEEE. 2017, pp. 325–329 (cit. on
p. 9).

[64] Rahul Sachdeva and Amita Dev. “Review of opportunistic network: assessing past,
present, and future”. In: International Journal of Communication Systems 34.11 (2021),
e4860 (cit. on pp. 8, 11).

[65] Matthew Seligman, Kevin Fall, and Padma Mundur. “Alternative custodians for con-
gestion control in delay tolerant networks”. In: Proceedings of the 2006 SIGCOMM
workshop on Challenged networks. 2006, pp. 229–236 (cit. on p. 14).

[66] Aloizio P Silva, Scott Burleigh, Celso M Hirata, and Katia Obraczka. “A survey on
congestion control for delay and disruption tolerant networks”. In: Ad Hoc Networks
25 (2015), pp. 480–494 (cit. on pp. 13, 14, 17).

[67] Sanjeev Singh and Rakesh Kumar Jha. “A survey on software defined networking:
Architecture for next generation network”. In: Journal of Network and Systems Man-
agement 25.2 (2017), pp. 321–374 (cit. on pp. 15, 16).

Bibliography 81

[68] CC Sobin, Vaskar Raychoudhury, Gustavo Marfia, and Ankita Singla. “A survey of
routing and data dissemination in delay tolerant networks”. In: Journal of Network
and Computer Applications 67 (2016), pp. 128–146 (cit. on pp. 4, 11, 12).

[69] Bambang Soelistijanto and Michael P Howarth. “Transfer reliability and congestion
control strategies in opportunistic networks: A survey”. In: IEEE communications
surveys & tutorials 16.1 (2013), pp. 538–555 (cit. on p. 13).

[70] Bambang Soelistijanto and Michael P. Howarth. “Transfer Reliability and Congestion
Control Strategies in Opportunistic Networks: A Survey”. In: IEEE Communications
Surveys Tutorials 16.1 (2014), pp. 538–555 (cit. on pp. 13, 14, 33).

[71] Sanhua Song. “An effective congestion control scheme based on early offload for space
delay/disruption tolerant network”. In: International Journal of Security and Networks
16.1 (2021), pp. 28–36 (cit. on p. 14).

[72] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghavendra. “Spray
and wait: an efficient routing scheme for intermittently connected mobile networks”.
In: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking.
ACM. 2005, pp. 252–259 (cit. on p. 11).

[73] Saif Al-Sultan, Moath M Al-Doori, Ali H Al-Bayatti, and Hussien Zedan. “A compre-
hensive survey on vehicular ad hoc network”. In: Journal of network and computer
applications 37 (2014), pp. 380–392 (cit. on p. 3).

[74] Nathanael Thompson, Samuel C Nelson, Mehedi Bakht, Tarek Abdelzaher, and Robin
Kravets. “Retiring replicants: congestion control for intermittently-connected net-
works”. In: 2010 Proceedings IEEE INFOCOM. IEEE. 2010, pp. 1–9 (cit. on pp. 12,
14).

[75] Ozan Tonguz, Nawapom Wisitpongphan, Fan Bai, Priyantha Mudalige, and Varsha
Sadekar. “Broadcasting in VANET”. In: 2007 mobile networking for vehicular environ-
ments. IEEE. 2007, pp. 7–12 (cit. on p. 9).

[76] Lionel Touseau, Yves Mahéo, and Camille Noûs. “A Smartphone-Targeted Opportunis-
tic Computing Environment for Decentralized Web Applications”. In: 2021 IEEE 46th
Conference on Local Computer Networks (LCN). IEEE. 2021, pp. 363–366 (cit. on p. 10).

[77] Sacha Trifunovic, Sylvia T. Kouyoumdjieva, Bernhard Distl, et al. “A Decade of Research
in Opportunistic Networks: Challenges, Relevance, and Future Directions”. In: IEEE
Communications Magazine 55.1 (2017), pp. 168–173 (cit. on pp. 8–10).

[78] I Union. “IMT traffic estimates for the years 2020 to 2030”. In: Report ITU 2370 (2015).
Available at https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-
PDF-E.pdf (cit. on p. 3).

[79] Muhammad Usman, Anteneh A Gebremariam, Usman Raza, and Fabrizio Granelli.
“A software-defined device-to-device communication architecture for public safety
applications in 5G networks”. In: IEEE Access 3 (2015), pp. 1649–1654 (cit. on p. 16).

[80] Amin Vahdat, David Becker, et al. Epidemic routing for partially connected ad hoc
networks. Tech. rep. Duke University, 2000 (cit. on p. 11).

[81] Anna Maria Vegni, Carlos Borrego Iglesias, and Valeria Loscri. “MOVES: A MemOry-
based VEhicular Social forwarding technique”. In: Computer Networks 197 (2021),
p. 108324 (cit. on p. 9).

82 Bibliography

https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf

[82] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiyong Xie. “A
survey on software-defined networking”. In: IEEE Communications Surveys & Tutorials
17.1 (2014), pp. 27–51 (cit. on p. 16).

[83] Dianlei Xu, Yong Li, Xinlei Chen, et al. “A survey of opportunistic offloading”. In: IEEE
Communications Surveys & Tutorials 20.3 (2018), pp. 2198–2236 (cit. on p. 8).

[84] Yuan Zhang, Lin Cui, Wei Wang, and Yuxiang Zhang. “A survey on software defined net-
working with multiple controllers”. In: Journal of Network and Computer Applications
103 (2018), pp. 101–118 (cit. on p. 16).

Bibliography 83

MªCarmen de Toro Valdivia
Bellaterra, December 2022

	Titlepage
	Certification
	Dedication
	Abstract
	Acknowledgements
	Abbreviations list
	I Preliminaries
	1 Introduction
	1.1 Contributions
	1.2 Thesis Structure

	2 State of the Art
	2.1 Opportunistic Networks overview
	2.2 Routing in Opportunistic networks
	2.3 Congestion control in Opportunistic Networks
	2.4 Software Defined Networking

	II Proposal
	3 Control layer architecture
	3.1 Control layer overview
	3.2 Control metadata
	3.2.1 Context indicator measurement
	3.2.2 Control directive

	3.3 Context measurements dissemination
	3.4 Context measurements aggregation
	3.5 Controller architecture
	3.6 Context indicator prediction
	3.7 Directive generation
	3.8 Directive dissemination

	4 Use of the controller-driven OppNet architecture to manage congestion
	4.1 Control Metadata
	4.1.1 Context indicator measurement for congestion
	4.1.2 Control layer data message

	4.2 Control layer tailored for congestion control
	4.3 Network congestion prediction
	4.4 Directive generation for congestion management
	4.5 Applying a directive
	4.6 Buffer Management

	III Experimentation
	5 Experimentation environment
	5.1 Performance metrics
	5.2 Scenarios
	5.3 Message generation distribution
	5.3.1 Inverted Smoothed Top Hat distribution (ISTH)
	5.3.2 Scenario's message generation distribution

	5.4 Environment setup
	5.4.1 Common configuration settings
	5.4.2 Scenario and control configuration settings

	6 Results
	6.1 Replication limit tendency for the Control configuration
	6.2 Buffer occupancy evaluation
	6.3 Performance evaluation
	6.3.1 Overhead ratio
	6.3.2 Delivery ratio
	6.3.3 Latency average

	6.4 Evaluation of the control settings impact on the delivery ratio
	6.4.1 Number of controllers
	6.4.2 Optimal congestion interval TEXT
	6.4.3 Additive Increase TEXT; Multiplicative Decrease TEXT
	6.4.4 Aggregation interval TEXT
	6.4.5 Number of inputs TEXT
	6.4.6 Prediction time factor TEXT
	6.4.7 Reduction factor for a decay TEXT
	6.4.8 Decay threshold
	6.4.9 Number of aggregations weight TEXT
	6.4.10 Directive generation frequency

	IV Conclusions and Future work
	7 Conclusions
	7.1 Achievements
	7.2 Future work
	7.2.1 Emerging controllers
	7.2.2 Approximation to a global network overview
	7.2.3 Implementation of a connectionless SDN southbound protocol

	V Bibliography
	Bibliography
	Declaration

	Títol de la tesi: A controller-driven approach for OpportunisticNetworking
	Nom autor/a: MªCarmen de Toro Valdivia

