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“If A is success in life, then  

A = X + Y + Z . Work is X, play is Y, 

 and Z is keeping your mouth shut."  

 

Albert Einstein. 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

CONTENT 

SUMMARY ...................................................................................................................... 11 

RESUMEN ........................................................................................................................ 13 

LIST OF TABLES ............................................................................................................... 15 

LIST OF FIGURES ............................................................................................................. 17 

LIST OF PUBLICATIONS ................................................................................................... 21 

RELATED PUBLICATIONS BY THE AUTHOR ..................................................................... 23 

ABBREVIATIONS .............................................................................................................. 25 

GENERAL INTRODUCTION Chapter 1 .............................................................................. 27 

1.1. Current situation of pork production ............................................................. 29 

1.2. Main traits of interest in porcine meat production ....................................... 31 

1.3. Pig meat quality traits ......................................................................................... 32 

1.3.1 Intramuscular fat content ............................................................................. 33 

1.4. Fatty acid metabolism ......................................................................................... 35 

1.4.1 Fatty acid β-oxidation ................................................................................... 35 

1.4.2 De novo fatty acid synthesis ......................................................................... 37 

1.5. Pig Genomics ....................................................................................................... 40 

1.5.1. Gene expression studies .............................................................................. 45 

1.5.2. Regulation of gene expression ..................................................................... 48 

1.6. Genetic studies into meat quality traits in pig ................................................... 48 

1.6.1. QTLs, GWAS and candidate genes ............................................................... 48 

1.6.2 eQTL mapping ................................................................................................ 52 

1.6.3 Allelic Specific Expression Analysis ............................................................... 54 

1.7.1. QTLs identified in the IBMAP population .................................................... 59 

1.7.2. Candidate genes identified in the IBMAP population ................................ 59 

1.7.3. NGS tools in the IBMAP population ............................................................. 61 



10 
 

OBJECTIVES  Chapter 2 ................................................................................................... 63 

PAPERS AND STUDIES Chapter 3 .................................................................................... 67 

PAPER I ............................................................................................................................ 69 

PAPER II ......................................................................................................................... 103 

PAPER III ........................................................................................................................ 131 

GENERAL DISCUSSION Chapter 4 ................................................................................. 163 

4.1. Gene expression analysis in muscle of lipid-metabolism candidate genes by 

RT-qPCR ................................................................................................................. 167 

4.2. Exploring muscle transcriptome through RNA-Sequencing ........................ 173 

4.3. Future perspectives and challenges ............................................................. 179 

CONCLUSIONS Chapter 5 .............................................................................................. 181 

REFERENCES Chapter 6 ................................................................................................. 185 

ANNEXES Chapter 7 ...................................................................................................... 207 

ACKNOWLEDGEMENTS Chapter 8 ................................................................................ 261 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

SUMMARY 

Global meat consumption, with pork as a prominent choice, is on the rise. Enhancing 

meat quality is closely linked to consumer preferences for healthier and more flavourful 

meat products. Key factors influencing meat quality include fatty acid composition and 

intramuscular fat, although the underlying processes are intricate and multifaceted. This 

thesis is dedicated to uncovering the molecular mechanisms that affect lipid metabolism 

and fatty acid composition in pork. As pork stands as one of the primary source of 

human-consumed meat, the growing demand for high-quality meat highlight the 

importance of understanding the molecular processes controlling meat production and 

quality.  

We studied the longissimus dorsi mRNA expression of 45 candidate genes related to lipid 

metabolism in a total of 354 animals. The eGWAS identified 301 eSNPs located in 27 

eQTLs. Three out of 27 eQTLs corresponding to the GPAT3, RXRA and UCP3 genes were 

classified as cis-acting eQTLs, whereas the remaining 24 eQTLs presented trans-acting 

effects. In addition, the eGWAS revealed two trans-eQTL hotspots, which regulate the 

expression of various candidate genes. 

Moreover, RNA-Seq data from Backcross Iberian × Duroc pigs were used to identify 

2,146 SNPs which presented allelic imbalance in a total of 1,621 genes through allelic-

specific expression (ASE) analysis. Among the 2,146 SNPs, 69 were located in 52 genes 

involved in lipid metabolism and fatty acid composition pathways. The top ten ASE-SNPs 

located in ACADM, ECHS1, UCP3, LPIN1, PRXL2B, FDFT1, PNPLA2, ACSL1 and ETFA  genes 

were the most interesting based on the higher proportion of allele-specific expression. 

Finally, a study on muscle transcriptome of 129 pigs by RNA-Seq was carried out with 

the aim to identify candidate genes related to lipid metabolism and muscle gene 

expression regulators. The eGWAS identified a total of 2,678 eQTLs located in 854 genes, 

of which 620 were classified as cis-eQTL and 2,058 as trans-eQTLs. Among the 854 genes, 

101 were associated with lipid metabolism and fatty acid composition pathways. The 

main pathways identified for the 854 genes with significant eQTLs were metabolic 

processes, oxoacid metabolic process, and carboxylic acid metabolic process. At last, 
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ACAA1, CLN, CYP2B22, GBA and LDHD genes were proposed as candidate genes in 

modulating the levels of eight different fatty acids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

RESUMEN 

El consumo global de carne, con el cerdo como una elección destacada, está en 

aumento. Mejorar la calidad de la carne está estrechamente relacionado con las 

preferencias del consumidor por productos cárnicos más saludables y sabrosos. Factores 

clave que influyen en la calidad de la carne incluyen la composición de ácidos grasos y 

la grasa intramuscular, aunque los procesos subyacentes son complejos y diversos. El 

objetivo de la tesis es descifrar los mecanismos moleculares que afectan al metabolismo 

de lípidos y la composición de ácidos grasos en la carne de cerdo. Dado que el cerdo es 

una de las fuentes principales de carne consumida por los humanos, la creciente 

demanda de carne de alta calidad destaca la importancia de comprender los procesos 

moleculares que controlan la producción y calidad de la carne. 

Estudiamos la expresión de ARNm del músculo longissimus dorsi de 45 genes candidatos 

relacionados con el metabolismo de lípidos en un total de 354 animales. El eGWAS 

identificó 301 eSNPs ubicados en 27 eQTLs. Tres de los 27 eQTLs correspondientes a los 

genes GPAT3, RXRA y UCP3 se clasificaron como regiones cis-eQTLs, mientras que los 24 

restantes se identificaron como trans-eQTLs. Además, el eGWAS reveló dos trans-eQTL 

hotspots, que regulan la expresión de varios genes candidatos. 

Además, los datos de RNA-Seq de 129 animales del retrocruce Ibérico × Duroc se usaron 

para identificar 2,146 SNPs que presentaban expresión alélica diferencial en un total de 

1,621 genes mediante análisis de expresión alélica específica (ASE). De los 2,146 SNPs, 

69 se encontraban en 52 genes relacionados con las vías del metabolismo de lípidos y la 

composición de ácidos grasos. Los 10 ASE-SNPs ubicados en los genes ACADM, ECHS1, 

UCP3, LPIN1, PRXL2B, FDFT1, PNPLA2, ACSL1 y ETFA fueron los más interesantes debido 

a su mayor proporción de expresión alélica específica. 

Finalmente, se llevó a cabo un estudio sobre el transcriptoma de músculo en 129 cerdos 

mediante los datos de RNA-Seq con el objetivo de identificar genes candidatos 

relacionados con el metabolismo de lípidos y reguladores de la expresión génica 

muscular. El eGWAS identificó un total de 2,678 eQTLs ubicados en 854 genes, de los 

cuales 620 se clasificaron como cis-eQTL y 2,058 como trans-eQTL. Entre los 854 genes, 

101 estaban asociados con las vías del metabolismo de lípidos y la composición de ácidos 
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grasos. Los principales procesos identificados para los 854 genes con eQTLs significativos 

fueron procesos metabólicos, el proceso metabólico de oxoácidos y el proceso 

metabólico de ácidos carboxílicos. Por último, los genes ACAA1, CLN, CYP2B22, GBA y 

LDHD se propusieron como genes candidatos para modular los niveles relativos de ocho 

ácidos grasos diferentes. 
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1.1. Current situation of pork production 

 

The economic significance of pig (Sus scrofa) is undeniable, as they are one of the most 

widely consumed sources of meat worldwide, alongside with chicken and beef. Pigs 

were domesticated around 10,000 years ago, and it was during the 1960s and 1970s 

that the establishment of selection programs and the crossbreeding of different breeds 

led to significant improvements in their production. Nowadays, the pig industry is one 

of the most important sectors in meat production. The development of an intensive and 

highly technified productive system has made possible the access of consumers to 

affordable and safe pig meat and other processed products. 

In the upcoming years, China is expected to lead in contributing to the global increase 

in meat production, followed by Brazil and the United States. The increase in pork 

production is expected to remain restricted in the next three years due to the slow 

recovery from the outbreaks of Asian Swine fever (ASF) in China, the Philippines and 

Vietnam. It is hypothesized that the recovery from the above-mentioned diseases will 

culminate by the year 2023, predominantly in China, supported by the rapid 

development of large-scale production facilities that can ensure biosecurity. Based on 

current trends, it is projected that the global consumption of meat proteins will 

experience a 14% increase by 2030 relative to the average consumption levels observed 

between 2018 and 2020. Hence, pig meat production is estimated to experience an 

increase of approximately 44 Million tonnes during the next decade. This growth is 

primarily attributed to the expansion of both population and income levels (OECD-FAO 

Agricultural Outlook 2021-2030, agri-outlook.org).  
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Figure 1.1. Percentage of pig meat production in A) world, B) in Europe and C) in Spain 

(MAPA, 2022). 

 

In Europe, the two main pig meat producers are Spain (22.1 %) and Germany (21.2 %), 

followed by France (9.4 %) (Figure 1.1.A). Finally, Catalonia is leading the Spanish pig 
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meat production with 19.8 % in 2022 (MAPA: Ministerio de Agricultura, Pesca y 

Alimentación, Gobierno de España, Junio 2022) followed by Aragon and Castile and León 

with 17.7 % and 12.2 %, respectively. 

The increase in global meat consumption is a multifaceted phenomenon that varies 

across societies and it is primarily driven by income and population expansion. This trend 

carries significant economic, sanitary, and environmental implications. Recent shifts in 

meat consumption patterns, including the increased popularity of chicken and pork and 

the consumption of processed meat products, have resulted in a high impact on public 

health, with increasing evidence associating high meat consumption and meat-derived 

products with a wide range of diseases (Webb & O’Neill, 2008; Wood et al., 1999). 

Furthermore, the increase in livestock production has a negative impact on the 

environment because it is an important source of greenhouse gases (Godfray et al., 

2018). On the other hand, it is expected that the increase of emissions by the meat 

sector of 5% by 2030 will be considerably less than the increase in meat production, due 

primarily to the increased contribution of poultry production and to projected higher 

meat output from a given stock of animals. The adoption of new technologies to reduce 

methane emissions, for example feed supplements that are not widely available today, 

could further reduce future per-unit emissions (OECD-FAO Agricultural Outlook 2021-

2030, agri-outlook.org). 

 

1.2. Main traits of interest in porcine meat production 

 

Breeding programs for pigs adopt a strategic approach that involves setting measurable 

traits and achievable goals to improve the genetic characteristics of pig populations. 

These objectives are aligned with the needs of stakeholders who are involved in the 

production, processing, and consumption of pork products.  

Classical genetic evaluation methodologies have significantly influenced the 

enhancement of pork production efficiency and the quality of carcasses. Improvement 
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in genetics can be achieved by measuring the inheritable trait of interest in selection 

candidates, through rigorous assessment and selection procedures.  

In the past, swine breeding programs have primarily concentrated on the genetic 

improvement of crucial production traits that have a significant impact on profitability, 

such as growth rate, meat yield, feed efficiency, and piglet production. However, the 

intense selective pressure aimed at increasing the proportion of lean muscle tissue in 

livestock carcasses has resulted in a significant diminution of intramuscular fat (IMF) in 

certain breeds which has had an adverse impact on organoleptic properties of meat and 

consequent alterations in sensory attributes such as flavour and tenderness (Wood et 

al., 2004). Nevertheless, recently there has been a shift in consumer demands, with taste 

and nutritional composition emerging as relevant quality traits desired in meat products. 

As a result, over the past two decades, pig selection programs have incorporated the 

genetics of meat quality in order to meet the growing consumer demand for premium 

meat products (Wood & Whittemore, 2007) 

 

1.3. Pig meat quality traits 

 

Studies pertaining to the genetic basis of meat quality traits have concentrated on 

fundamental phenotypic characteristics that influence the technological and sensory 

properties of meat. These attributes include post-mortem pH, electrical conductivity, 

water-binding capacity, exudative loss, chromaticity, as well as the quantity and quality 

of IMF content. In addition, measuring meat quality traits proves challenging due to their 

complex nature, being influenced by a variety of stakeholders such as producers, 

slaughterers, processors, distributors, and consumers, each with unique quality 

requirements that may vary depending on the intended usage of the meat product. 

Multiple factors contribute to the determination of meat quality, as illustrated in Figure 

1.2. Encompassing animal welfare considerations aligned with ethical production 

practices, food safety concerns related to microbiological hazards, technological 

determinants such as pH, firmness, water-holding capacity, and cooking characteristics; 

sensorial attributes including aroma, texture, flavour, taste, juiciness, colour, and 
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marbling; and healthfulness and nutritional value as reflected by IMF content, lipid 

composition, and digestibility (Listrat et al., 2016; Webb & O’Neill, 2008). 

 

 

 

 

 

Figure 1.2. Main factors that affect pig meat quality. 

 

1.3.1 Intramuscular fat content 

 

IMF content, also known as marbling, is a crucial component of pork quality, affecting 

both sensory and technological properties of meat. IMF is found within the muscle fibers 

of pigs and is influenced by genetic and environmental factors, such as age, nutrition, 

and management practices. Higher levels of IMF in pork have been associated with 

improved juiciness, tenderness, and flavour, leading to increased consumer 
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acceptability (Wood et al., 2004). Additionally, IMF content has been linked to the 

oxidative stability and freshness of pork products. Therefore, understanding the 

mechanisms that regulate IMF deposition in pigs and its association with meat quality 

traits is essential for optimizing pig meat production and enhancing the overall quality 

of pork products. 

 

1.3.2 Fatty acid composition 

 

Fatty acids (FAs) are organic molecules composed of a hydrocarbon chain and a 

carboxylic acid group. They are essential components of many biological structures and 

play important roles in energy metabolism, signaling, and membrane structure. There 

are several categories of FAs, including saturated fatty acids (SFA), monounsaturated 

fatty acids (MUFA), and polyunsaturated fatty acids (PUFA). These categories refer to 

the number of double bonds in the hydrocarbon chain and determine the physical 

properties and biological functions of the FA. Other important types of FAs include 

omega-3 and omega-6 FA, which are PUFAs with specific structural features that are 

important for health These FAs play a key role in cell structure, brain function and 

inflammation regulation as well as supporting cardiovascular health and cognitive 

function (Djuricic & Calder, 2021). 

The FA composition of meat is an important factor that affects its quality, particularly 

the degree of unsaturation of the FAs present. MUFAs improve meat flavour and 

contribute to a better taste and lower oxidation rate of meat. Conversely, PUFAs are 

more susceptible to be oxidized, which produces rancidity and a consequent reduction 

of meat quality (Webb & O’Neill, 2008). On the other hand, the ratio of omega-6 to 

omega-3 FAs can also affect the nutritional value of the meat. Therefore, the FA profile 

of meat is an important consideration for both human health and meat quality (Wood 

et al., 2008). 

 

 



  General introduction 

 

35 
 

1.4. Fatty acid metabolism 

 

Lipids are a diverse group of organic compounds that are insoluble in water and are 

often considered membrane components whose function is to embed proteins into cell 

membranes. In the last two decades, studies on brain lipids have unequivocally 

demonstrated that many lipids have critical cell signaling functions (Bieberich, 2013). 

Some of the key functions of lipids include energy storage, insulation, protection of 

organs, cell membrane structure, and signaling. Lipids can be further classified into 

several subcategories, including FAs, phospholipids, and cholesterol, each with its own 

unique properties and functions. Overall, lipids are essential components of cells and 

tissues and are critical for maintaining proper cellular function and overall health. In 

addition, the main tissues for fat synthesis in animals are liver, adipose tissue and muscle 

(Duran-Montgé et al., 2009). As a key site of fat storage and release, adipose tissue is an 

important metabolic and endocrine organ that plays a critical role in regulating lipid 

metabolism and circulating free fatty acids (FFAs) throughout the body (Xing et al., 

2016).  

Furthermore, the metabolic pathways involved in FA metabolism, including lipolysis or 

FA β-oxidation and lipogenesis or de novo FA synthesis, are influenced by an individual's 

nutritional status and may be altered accordingly to Frühbeck et al. (2014). In the fed 

state, lipogenesis takes place where carbohydrates are converted into FAs and stored as 

triglycerides, which serve as an important energy reserve. This process is in contrast to 

the breakdown of FAs during the fasted state, and can occur via the uptake of exogenous 

FAs or through de novo lipogenesis, which is the endogenous synthesis of FAs (Ameer et 

al., 2014). 

 

1.4.1 Fatty acid β-oxidation 

 

Oxidation of FAs occurs in multiple regions of the cell within the human body; the 

mitochondria, in which only β-oxidation occurs; the peroxisome, where α- and β-

oxidation occur; and ω-oxidation, which occurs in the endoplasmic reticulum (Talley & 
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Mohiuddin, 2023). β-oxidation is a significant source of metabolic energy during inter-

prandial periods and high-energy demand states, such as exercise (Houten et al., 2016). 

Mitochondrial β-oxidation of FAs requires four steps, all of which occur in the 

mitochondrial matrix, to produce three energy storage molecules per round of 

oxidation, including one NADH+, one FADH2, and one acetyl-CoA molecule (Talley & 

Mohiuddin, 2023). 

The β-oxidation or lipolysis is a metabolic pathway (Figure 1.3) that breaks down FAs 

into acetyl-CoA, which can be used in the citric acid cycle to generate energy. The 

process involves a series of four enzymatic reactions that sequentially remove two-

carbon units from the FA chain. The first step is catalyzed by acyl-CoA dehydrogenase, 

which converts the FA to a trans-enoyl-CoA. This is followed by hydration of the double 

bond by enoyl-CoA hydratase, which converts the molecule to a hydroxy acyl-CoA. The 

third step is catalyzed by hydroxy acyl-CoA dehydrogenase, which converts the hydroxy 

acyl-CoA to a ketoacyl-CoA. Finally, thiolase cleaves the ketoacyl-CoA to produce acetyl-

CoA and a FA chain two carbons shorter than the original molecule (Talley & Mohiuddin, 

2023). This process is regulated by several factors, including the availability of FAs and 

their transport into the mitochondria, as well as the activity of the enzymes involved in 

the pathway. Defects in β-oxidation enzymes or transporters can lead to a variety of 

metabolic disorders, such as FA oxidation disorders, which can result in hypoglycaemia, 

muscle weakness, and other symptoms (Thangavelu, 2010). Therefore, the process of 

FA oxidation presents an alternate means of generating high-efficiency energy, which 

concurrently prevent muscle catabolic breakdown. 
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Figure 1.3. Schematic representation of mitochondrial FA β-oxidation pathway 

(reprinted from Kloska et al., 2020). 

 

1.4.2 De novo fatty acid synthesis 

 

Lipogenesis is a metabolic pathway involved in the synthesis of FAs from excess 

carbohydrates and then can be incorporated into triglycerides for energy storage. The 

process of storing energy from carbohydrate-derived carbon precursors occurs in the 

cytosol of cells and is performed by a series of enzymes beginning with the production 

of acetyl-CoA by ATP citrate lyase. Acetyl-CoA is then metabolized by the rate-limiting 

enzyme of FA synthesis pathway, acetyl-CoA carboxylase 1 (ACACA) to produce the 
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limiting reagent, malonyl-CoA (Figure 1.4). The polypeptide, fatty acid synthase (FAS), 

which serves multiple enzymatic functions, catalyzes the stepwise elongation of acyl 

chains by iterative addition of malonyl-CoA molecules via a series of biochemical 

reactions, ultimately producing saturated, short (C14:0) to medium (C18:0) chain FAs, 

with palmitic acid (C16:0) constituting the predominant (80-90%) end-product 

(Jayakumar et al., 1995). Various elongation and desaturase enzymes can further modify 

FAs. Mammalian organisms are equipped with a repertoire of seven different elongase 

enzymes (ELOVL1-7) that exhibit varying substrate specificities, acting as key mediators 

in the elongation of FAs through the catalysis of malonyl-CoA addition (Guillou et al., 

2010).  

Lipogenesis or synthesis de novo pathway in adipocytes is affected by several dietary 

and hormonal factors such as insulin, which is enhanced with the expression of GLUT4 

receptor. In the presence of sufficient glucose, insulin upregulates acetyl-CoA 

carboxylase and the other enzymes involved in elongation of the carbon chain, such as 

FASN and ELOVLs gene family (Ojha et al., 2014). A diet rich in carbohydrates stimulates 

lipogenesis in adipocytes, while fasting reduces it. Glucose enhances lipogenesis by 

stimulating insulin secretion and by upregulating several lipogenic genes. In contrast to 

the effects of insulin, growth hormone inhibits lipogenesis in adipocytes both directly by 

downregulating fatty acid synthase and indirectly by reducing the sensitivity of 

adipocytes to insulin action. Leptin (LEP) also affects lipogenesis in adipocytes, 

decreasing adiposity. The enzymes FAS, ELOVL1, ELOVL3, and ELOVL6 are recognized as 

strictly responsible for de novo FA metabolism; whereas ELOVL2 and ELOVL5 are 

enzymes that exclusively metabolize dietary FAs. On the other hand, desaturase genes 

are a family of genes that encode desaturase enzymes, such as FADS1, FADS2, FADS3 

and SCD genes. Desaturases are involved in the synthesis of unsaturated FAs from the 

essential FAs provided by the diet (Nakamura & Nara, 2004). These enzymes play a key 

role in introducing double bonds into the essential FAs, such as linoleic and α-linoleic, to 

synthesize other PUFAs. This process is particularly important because the human body 

cannot produce essential FAs which must be obtained through the diet.  
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Figure 1.4. Schematic representation of de novo lipogenic pathway (reprinted from 

(Ojha et al., 2014). 

 

In addition, FA metabolism is tightly regulated by transcription factors that bind to 

specific DNA sequences in the promoter regions of genes involved in this process 

(Fatehi-Hassanabad & Chan, 2005). These transcription factors act as either activators 

or repressors of gene expression, depending on the specific regulatory context. For 

example, the peroxisome proliferator-activated receptor (PPAR) family of transcription 

factors plays a central role in regulating the expression of genes involved in FA oxidation 

and storage (Christofides et al., 2022). PPARs form heterodimers with retinoid X 

receptor (RXR) and bind to PPAR response elements (PPREs) in the promoter regions of 

target genes. Other transcription factors, such as sterol regulatory element-binding 

proteins (SREBPs) and carbohydrate response element-binding protein (ChREBP), also 

play important roles in regulating FA metabolism. Overall, transcription factors serve as 

critical regulators of gene expression in the context of FA metabolism. 
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With the aim of modify the FA composition in meat, it is crucial to comprehend the 

genetic mechanisms underlying their metabolic processes. 

 

1.5. Pig Genomics 

 

The emergence of genomics has revolutionized swine genetics, allowing the utilization 

of genetic markers to selectively breed for traits that enhance feed efficiency, growth, 

meat quality, and litter size. Genomic selection relies on genotyping genetic markers 

covering the whole genome to predict the breeding values of the animals, considering  

that all quantitative trait loci (QTL) are in linkage disequilibrium with at least one maker 

(Goddard & Hayes, 2007). In this context, the sequencing of the swine genome has 

facilitated the genotyping of animals for thousands of single nucleotide polymorphisms 

(SNPs), enabling the identification of markers linked to relevant traits (Sukanta & Ram, 

2020). Furthermore, the implementation of genomic selection has provided a powerful 

tool to accurately predict the genomic breeding value. As a result, the integration of 

genomic information enables the efficient selection of desirable traits, significantly 

enhancing the precision of breeding value estimation and expediting early evaluations.  

In 2003, the Swine Genome Sequencing Consortium (SGSC) started the sequencing of 

the pig genome (Schook et al., 2005) and in 2012 the Sscrofa 10.2 assembly was 

published (Groenen et al., 2012). Different DNA sequencing methodologies were 

employed. First, automatic DNA sequencing, based on Sanger sequencing method was 

used. This method is accurate and reliable, but it is limited by its low throughput and 

high cost. It is still used today for sequencing small fragments of DNA, such as individual 

genes, and for validating results obtained from other methods. Subsequently, Next-

Generation Sequencing (NGS) method was used to finish the sequence and complete 

the gaps. NGS has some advantages:  

1. High throughput: NGS can sequence millions of DNA fragments simultaneously, 

allowing for the analysis of large amounts of data in a short period of time. 

2. Cost-effective: The cost of sequencing has decreased significantly due to NGS, 

making it more accessible for researchers. 
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3. High accuracy: NGS can produce highly accurate and reliable results due to the 

redundancy of sequencing multiple copies of the same DNA fragment. 

4. Detection of novel variants: NGS can detect rare or novel variants that may be 

missed by traditional sequencing methods. 

5. Detection of structural variants: NGS can detect large structural variants such as 

deletions, insertions, inversions, and translocations. 

6. Simultaneous analysis of multiple genes: NGS can sequence multiple genes at 

once, which is useful for analyzing complex diseases with multiple genetic 

factors. 

7. Data analysis: NGS produces vast amounts of data, but advances in 

bioinformatics have made it easier to analyze and interpret the data. 

 

From these two methodologies, the 2.70 Gigabases (Gb) sequence of the Sscrofa 10.2 

assembly was obtained from a single female Duroc animal. In 2017, an improvement of 

the previous assembly was made and Sscrofa 11.1 assembly was available. This assembly 

was constructed with data obtained through third-generation sequencing (TGS) 

technologies (PacBio RSII long reads), generating a 65x genome coverage over a total 

sequence length of 2.5 Gb. Nowadays, the genomes of several pigs from different breeds 

have been re-sequenced, and are available in open-access databases like NCBI and 

FAANG data repositories. The most recent version of the Sscrofa 11.1 reference genome 

available in the Ensembl database is release 110 (September 2023). This version 

encompasses a comprehensive annotation of 22,063 protein-coding genes and 13,154 

non-coding genes. Furthermore, a total of 60,273 transcripts have been detected to 

date. 

In addition, there is information in Ensembl database about more than 70 million short 

variants, including SNPs, insertions and deletions (Indels). NGS methodologies have 

facilitated the extensive identification of SNPs in the porcine genome, as demonstrated 

by Ramos et al. (2009), thereby enabling the creation of high-throughput genotyping 

arrays comprising a comprehensive set of SNPs that are uniformly dispersed throughout 

the entirety of the Sscrofa genome. The first whole genome genotyping array, the 

PorcineSNP60 BeadChip (Illumina), was commercialized in 2008, before the completion 
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of the pig genome sequence. This array contains 62,163 polymorphisms spread out 

along the chromosomes. A few years later, the Axiom Porcine Genotyping Array, 

manufactured by Affymetrix, was commercialized, featuring a comprehensive marker 

panel of 658,692 loci, of which 56,000 were SNPs sourced from Illumina's chip 

technology, thereby ensuring compatibility with prior investigations.  

Over the past few decades, significant advances have been made in pig breeding. The 

genomic selection of important traits can be achieved by improving the accuracy of 

breeding value predictions and obtaining early evaluations. For instance, sow prolificacy 

traits, with low heritability and expression only in mature females, present a challenge 

for traditional selection methods. In addition, genomic selection offers valuable 

opportunities for traits that cannot be measured in live animals, such as meat quality 

traits. 

 Advancements in genome mapping and sequencing have enabled extensive molecular 

measurements within cells and tissues. These technologies can be applied to study a 

biological system, providing a comprehensive view of its intricate biology at an 

unprecedented level of detail. Collectively, the scientific disciplines focused on high-

throughput measurement of biological molecules are referred to as "omics” (Micheel et 

al., 2012). Various 'omics' methodologies have been employed in pigs. These new ‘omics’ 

technologies outline the system genetics approach, which integrates different levels of 

information (Table 1.1.).  
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Table 1.1. Description of the main ‘omics’ and their technologies. Table adapted from 

(Singh et al., 2022). 

 

Type of Omics   Definition Technology 

Genomics 
Analysis of the structure and function of a 

genome 

Whole-genome sequencing 

Whole-exome sequencing 

High-density genotyping 

Epigenomics 
Analysis of chemical modifications, 

chromatin structure, conformation, and 
its interaction with proteins 

Bi-sulfite sequencing 

ChIP-Seq 

DNase-Seq 

3C and 4C 

Transcriptomics 
Study of the expression levels of all gene 

transcripts in a particular cell, at a 
particular time, and in a particular state. 

Microarrays 

RNA-Seq 

High throughput RT-qPCR 

Single-cell transcriptome 
analysis 

Proteomics 
Detection of quantitative and/or 
qualitative variation on proteins 

Tandem mass 
spectrophotometry 

Metabolomics 
Detection of quantitative and/or 

qualitative variation on metabolites 

Gas chromatography 

Mass spectrophotometry 

Nuclear magnetic resonance 

Microbiomics 
Study of the microbiota, their genomes 

and the surrounding environmental 
conditions from an entire habitat 

16S rRNA sequencing 

Whole-metagenome shotgun 
sequencing 

Phenomics 
Collection of a high number of 

phenotypic data 
Image or video analysis-based 

 

The integration of functional genomics into the study of traits of interest in pigs is made 

possible by the development of high-throughput techniques, which allow for the 

investigation of a wide range of biological systems (Figure 1.5).  
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Figure 1.5. Different biological multi-omic systems and their relation with the phenotype 

(adapted from Momeni et al. (2020)). 

 

The application of these new genomic tools has the advantage of generating information 

in parallel on multiple genes and gene products, which in turn provides the opportunity 

to identify pathways and interacting genes (Andersson & Georges, 2004). Thus, the 

aforementioned methodology is facilitating the elucidation of the interrelationships 

among genes, thereby enhancing our comprehension of the genetic underpinnings of 

complex traits. 
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1.5.1. Gene expression studies 

 

Gene expression studies involve the analysis of the activity of genes in cells, tissues, or 

organisms, and are used to investigate a wide range of biological processes. There are 

many different techniques used to study gene expression, including microarray analysis, 

RNA sequencing (RNA-Seq), and quantitative real-time PCR (qPCR). These methods were 

used to measure the abundance of different RNA molecules in a sample, and to identify 

which genes are being expressed, and at what level. Gene expression studies can also 

be used to investigate the regulation of gene expression, by identifying the transcription 

factors and other regulatory elements that control the activity of specific genes.  

During the 1990s, reverse transcription quantitative polymerase chain reaction (RT-

qPCR) was the preferred approach for assessing gene expression levels, whether for 

individual genes or multiple targets. The fundamental concept underlying RT-qPCR 

involves real-time monitoring of the DNA polymerase chain reaction process, allowing 

for the detection of PCR amplicon amplification along each amplification cycle, via 

employment of a fluorescent dye system and a thermocycler with fluorescence-

detection capabilities. In the 2010s, array platforms appeared to study gene expression 

by multiplex RT-qPCR with customized designs. Among them, are Fluidigm Dynamic 

Array (Fluidigm) (Spurgeon et al., 2008) or the TaqMan Open Array platforms (Life 

Technologies) which allow to study of numerous genes in several animals per array in a 

cost-effective way. Different studies in our group were carried out selecting different 

candidate genes for lipid metabolism in three different pig tissues and were quantified 

in a Fluidigm Dynamic array (Ballester et al., 2017b; Criado-Mesas et al., 2020; Puig-

Oliveras et al., 2016; Revilla et al., 2018).  

On the hand, we have the Microarrays, which consist in DNA molecules deposited or 

synthesized onto the surface of a microscope slide, which allows the expression analysis 

of thousands of genes simultaneously by DNA hybridization. In pigs, the first array 

commercialized was the Porcine AROS v1.0, Operon Gene-Chip Porcine microarray 

(Affymetrix) in 2003 and consisted of a set of 10,665 oligos. Latterly, these arrays were 

improved and customized and become a powerful tool for detecting differential gene 

expression. For instance, the GeneChip® Porcine Genome Array from Affymetrix 
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contains 23,937 probe sets that interrogate approximately 20,201 Sus scrofa genes was 

the most widely used, but other arrays were commercialized such as the PigOligoArray 

from Illumina, which contains 20,400 70-mer oligonucleotides and the Snowball array 

from Affymetrix comprises 1,091,987 probes (47,845 probe sets) with a mean coverage 

of 22 probes/transcript (Freeman et al., 2012; Steibel et al., 2009). Utilizing microarray 

technology, comparative analyse of muscle transcriptomes were conducted in pigs 

exhibiting differences in IMF content and composition, revealing the identification of 

differentially expressed genes (Damon et al., 2012; Hamill et al., 2013; Pena et al., 2013; 

Sun et al., 2013; Yu et al., 2013). After that, microarray technology was progressively 

replaced by sequencing methods.  

NGS can be applied to whole genome sequence or to the sequencing of transcriptomes, 

which is called RNA-Seq. Some RNA-Seq studies have reported differentially expressed 

genes in pigs associated with sex, breed, growth and meat quality traits (Cardoso et al., 

2018; Corominas et al., 2013b; Esteve-Codina et al., 2011; Ghosh et al., 2015; Jiang et 

al., 2013; Puig-Oliveras, et al., 2014; Zhao et al., 2011). While both microarray and RNA-

Seq methodologies are viable for quantifying gene expression, the application of 

microarrays is constrained by their lower sensitivity and higher background noise. In 

contrast, RNA-Seq offers the advantage of enabling the determination of transcript 

abundance across a broader spectrum of expression levels with increased dynamic 

range. The advantages and disadvantages of three transcriptomic methodologies are 

summarized in Table 1.2. 
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Table 1.2. Main advantages and disadvantages about Microarray, RNA-Seq and RT-qPCR 

methodologies. 

 

Technique Advantages Limitations 

Microarray 

 Low cost 

 Large number of samples 

 High throughput 

 Limited number of genes 

 Low sensitivity 

 High background 

RNA-Seq 

 High accuracy and specificity 

 Low background 

 High dynamic range 

 Identification of novel 

transcripts, splice junctions, 

SNPs and non-coding RNAs 

 High cost 

 Requires a NGS platform 

and high bioinformatics 

tools for data analysis 

RT-qPCR 

 Low cost 

 Speed and efficiency 

 High sensitivity and specificity 

 

 Limited dynamic range 

 Risk of contamination 

 Requirement of careful 

optimization 

 

Regarding to RT-qPCR, this method confers a faster and more cost-effective alternative 

to other RNA quantification techniques, such as RNA-Seq, facilitating accurate and 

specific high-throughput mRNA quantification across a broad dynamic range (Kuang et 

al., 2018). Although the methodology is perceived to be relatively simple, there are a 

number of steps and reagents that require optimization and validation to ensure 

reproducible data that accurately reflect the biological questions being posed (Taylor et 

al., 2019).   

Several studies have utilized RNA-Seq methodology to identify differentially expressed 

genes in skeletal muscle and adipose tissue of pigs, which are associated with meat 

quality traits and these findings were subsequently validated using RT-q-PCR (Ayuso et 

al., 2015; Gao et al., 2019; Gorni et al., 2011; Óvilo et al., 2014; Xing et al., 2019; Zhao et 

al., 2019). In addition, a few gene expression studies have been reported to study 

candidate genes in relation to lipid metabolism traits: ACSL4 (Corominas et al., 2012), 

APOA2 (Ballester et al., 2016), DGAT1 and DGAT2 (Cui et al., 2011), ELOVL6 (Corominas 
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et al., 2015), FABP4 and FABP5 (Ballester et al., 2017a), FADS2 (Gol et al., 2018), and 

IGF2 (Criado-Mesas et al., 2019) among others.  

 

1.5.2. Regulation of gene expression 

 

The gene expression regulation is a complex process that allows cells to control which 

genes are turned on or off, and to what extent. This regulation involves a series of 

molecular events that act at the transcriptional, post-transcriptional, translational, and 

post-translational levels. Key players in this process include transcription factors, 

epigenetic modifiers, RNA processing enzymes, ribosomes, and protein 

kinases/phosphatases. The overall outcome of gene expression regulation is the 

production of proteins with specific functions that are required for proper cellular 

function and development. Hence, gene expression disruption can result in alterations 

of protein functions. 

Within the context of gene expression, transcriptional regulation has been recognized 

as the foremost critical process, and its investigation has been facilitated by well 

established methodologies. At the transcriptional level, the control of gene expression 

is modulated by proteins that can be classified into two categories: sequence-specific 

DNA binding proteins, including transcription factors, and other key regulatory factors 

like TATA-binding proteins. Despite the extensive research on transcriptional regulation, 

post-transcriptional regulation has gained significance in a multitude of biological 

processes due to its capacity to obtain a quick response to various cellular and 

environmental signals.  

 

1.6. Genetic studies into meat quality traits in pig 

1.6.1. QTLs, GWAS and candidate genes 

 

Quantitative Trait Loci (QTL) is a specific region on a chromosome that is associated with 

the variation of a quantitative trait (Turner et al., 2013). In other words, a QTL is a genetic 



  General introduction 

 

49 
 

locus that influences a complex trait that is controlled by multiple genes and 

environmental factors. QTL mapping is a statistical method used to identify the location 

and effect of QTLs on a trait of interest. This method involves analyzing the genetic 

polymorphism of molecular markers in a population and associating it with the 

variations of the trait. This approach can be used to identify genes that underlie complex 

traits, which can provide insights into the genetic basis of important biological processes 

(Zargar et al., 2015). QTLs are important in understanding the genetic basis of complex 

traits, and can be used in various fields of study such as genetics, genomics, and plant 

breeding. 

The pursuit of QTLs in pigs has persisted for approximately twenty years, starting with 

the initial revelation of a QTL associated with growth rate and fatness on SSC4 

(Andersson et al., 1994). Subsequent to the initial discovery, numerous scientific 

publications have documented the existence of thousands of QTLs associated with 

diverse traits in pigs. The Pig QTLdb, established by Hu et al. (2005), currently archives a 

comprehensive collection of 23,273 QTLs/associations derived from more than 700 

publications, encompassing 681 distinct traits distributed along the Sus scrofa genome, 

as illustrated in Figure 1.6. 

 

 

Figure 1.6. Distribution of Sus scrofa QTLs throughout its genome as reported by the Pig 

QTLdb (https://www.animalgenome.org/cgi-bin/QTLdb/SS/index; accessed June 2023). 
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Recent advancements in the field of pig genotyping have led to significant 

improvements in the identification of QTLs, primarily due to the development of high-

density SNP panels. These SNP panels have been used in conducting GWAS aimed at 

identifying genomic regions associated with various traits, allowing for the selection of 

pigs with desirable genetic profiles (Zargar et al., 2015). GWAS analysis is an approach 

that analyse the whole genome to identify genetic variations, typically SNPs, which are 

associated with specific traits. This methodology has provided multitude associations for 

a wide range of traits and diseases, improving our understanding of the genetic basis of 

complex traits in pigs (Uffelmann et al., 2021). 

GWAS and QTL mapping are two common approaches used in genetic research to 

identify genetic variants associated with complex traits. While both methods aim to 

identify genetic loci that influence trait variation, they differ in their scale and resolution 

(Zargar et al., 2015). GWAS examines the association between hundreds of thousands 

to millions of genetic markers across the genome and a trait of interest in a large sample 

of individuals. On the other hand, QTL mapping focuses on identifying regions of the 

genome that have a significant effect on a trait using linkage analysis with mapped 

markers, typically microsatellites. In swine, GWAS have identified several genomic 

regions associated with various traits in different populations, encompassing a 

comprehensive catalogue of noteworthy loci regulating FA composition in pork (Crespo-

Piazuelo et al., 2020; M. Muñoz et al., 2013; Ramayo-Caldas et al., 2012b; Yang et al., 

2013; Zhang et al., 2016).  

Candidate genes to explain traits of interest have been identified through a combination 

of their physiological function and their proximity to QTLs associated with the trait. 

Although a large number of QTLs have been identified in pigs, only a limited number of 

candidate genes have been evaluated functionally to identify causal polymorphisms of 

the QTL. Some of these candidate genes are summarized in Table 1.3. 
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Table 1.3. Candidate genes identified in QTL or GWAS studies associated with traits of 

interest in swine production (adapted from Ernst & Steibel, 2013).  

 

 

Gene name Gene Trait(s) 

Calpastatin CAST Meat quality 

Carbonic anhydrase 3 CA3 Meat quality 

ELOVL fatty acid elongase 6 ELOVL6 Meat quality 

Fatty acid binding protein 4 FABP4 Meat quality 

Fatty acid binding protein 5 FABP5 Meat quality 

Insulin like growth factor 2 IGF2 Growth and carcass composition 

Leptin LEP Growth and carcass composition 

Leptin receptor LEPR Growth and carcass composition 

Melanocortin 4 receptor MC4R Growth and carcass composition 

Myopalladin MYPN Carcass composition
 

Phosphoenolpyruvate carboxykinase 1 PCK1 Meat quality 

POU class 1 homeobox 1 POU1F1 Growth and carcass composition 

Protein kinase AMP-activated non- catalytic 
subunit gamma 3 

PRKAG3 Meat quality 

Prolactin receptor PRLR Litter size 
Retinal binding protein 4 RBP4 Litter size 

Ryanodine receptor 1 RYR1 Stress susceptibility and meat quality 

Stearoyl-CoA desaturase SCD Meat quality 

Acetyl-CoA carboxylase alpha ACACA Meat quality 

Acyl-CoA synthetase long-chain 4 ACSL4 Meat quality 

Cytochrome P450 2 subfamily E1 CYP2E1 Meat quality 

Peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha 

PPARGC1
A 

Meat quality 

Fatty acid desaturase 1 FADS1 Meat quality 

Fatty acid desaturase 2 FADS2 Meat quality 

Fatty acid desaturase 3 FADS3 Meat quality 

Patatin-like phospholipase domain-
containing protein 2 

PNPLA2 Meat quality 

Hydroxyacyl-CoA dehydrogenase HADH Meat quality 

ELOVL fatty acid elongase 7 ELOVL7 Meat quality 

Phosphoinositide-3-kinase subunit 1 PIK3R1 Meat quality 

Lipin 1 LIPIN Meat quality 

Acyl-CoA synthetase short-chain 1 ACSS1 Meat quality 

Carnitine palmitoyltransferase 1A CPT1A Meat quality 

Estrogen-related receptor alpha ESRRA Meat quality 

Fatty acid synthase  FASN Growth and carcass composition 
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1.6.2 eQTL mapping 

 

Expression Genome-Wide Association Study (eGWAS), also known as expression GWAS, 

is a genetic analysis method that investigates the association between genetic 

polymorphisms, such as SNPs, and gene expression levels. The goal of eGWAS is to 

identify genetic variants that influence gene expression, elucidating the molecular 

mechanisms underlying different traits. This analysis can identify expression 

quantitative trait loci (eQTLs), which are genomic regions  associated with gene 

expression variation. eQTL identification can provide insights into the genetic basis of 

complex traits and may lead to the identification of potential candidate genes, which 

can modify these traits.  Through the utilization of mRNA transcript abundance as a 

phenotypic representation of interest, it is possible to quantitatively measure the impact 

of regulatory variations on a continuous scale (Xinghua, 2020) (Figure 1.7). 

 

 

 

Figure 1.7. Pairwise associations are made by linking genetic variants in a given 

population, as represented by the blue box on the left, to measured gene expression 

levels in the green box on the right. . This process is followed in an eQTL analysis, which 

focuses on studying the effects of genetic variants on gene expression variation (Figure 

adapted from Xinghua, 2020). 
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In addition, in eQTL analysis, it becomes possible to distinguish between the cis and 

trans-acting modes of action, which can lead to the identification of hotspot loci and 

regulators. Essentially, a cis-eQTL refers to a genetic variant that is located near or within 

the gene being studied, and directly influences its expression levels. On the other hand, 

a trans-acting eQTL refers to a genetic variant that is located in a different genomic 

location than the studied gene and may indirectly affect the target gene expression 

(Figure 1.8) 

 

A) Cis       B) Trans 

 

 

Figure 1.8. Illustration of A) Cis- and B) Trans-acting eQTL regions. In the cis-eQTL the 

expression of a gene located close to the SNP varies according to the presence of one 

allele. In contrast, a trans-eQTL occurs when the SNP that influences the expression level 

of the target gene is located at a considerable distance, even in a different chromosome. 

 

Cis-acting eQTLs, which are typically characterized by their proximity to the target gene, 

are known to explain a significant proportion of variance in gene expression and are of 

considerable interest. In contrast, trans-eQTLs, which often regulate multiple genes, 

have been identified as regulatory hotspots in previous studies (Schadt et al., 2003). 

In recent years, there has been a significant increase in the eQTL mapping studies, due 

to advances in genomic technology and computational methods. Although the first eQTL 

mapping studies were conducted in the early 2000s (Jansen & Nap, 2001; Schadt et al., 

2003), researchers have been able to perform large-scale eQTL mapping studies in a 

eQTL 

Gene eQTL Gene 
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wide range of organisms. Consequently, there is now an abundance of data on the 

genetic control of gene expression available across multiple species. Up to the present 

time in pigs, the predominant approach has been to employ transcriptomic data derived 

from skeletal muscle, with a focus on eQTL mapping studies related to production traits. 

Some of them are summarized in Table 1.4. Moreover, a few studies of our group 

analyzed muscle (Criado-Mesas et al., 2020; Puig-Oliveras et al., 2016), liver (Ballester, 

et al., 2017b), and adipose tissue (Revilla et al., 2018) eQTLs. 

Table 1.4. Summary of eQTL studies for genes associated with growth, fatness and meat 

quality production traits in pigs. 

 

Related  trait References 

Growth (Heidt et al., 2013; Ponsuksili et al., 2011; Steibel et al., 2011) 

Fatness and FA 

composition 

(Cánovas et al., 2012; Criado-Mesas et al., 2020; González-Prendes et 

al., 2019; Heidt et al., 2013; M. Muñoz et al., 2013; Ponsuksili et al., 

2011; Revilla et al., 2018; Steibel et al., 2011). 

Meat quality 

(Ballester, et al., 2017a; Criado-Mesas et al., 2020; González-Prendes et 

al., 2019; Heidt et al., 2013; M. Muñoz et al., 2013; Pena et al., 2013; 

Ponsuksili et al., 2011; Puig-Oliveras et al., 2016; Steibel et al., 2011). 

 

1.6.3 Allelic Specific Expression Analysis 

 

Allelic-specific expression (ASE) analysis is a molecular biology technique used to study 

gene expression patterns, specifically looking at the differential expression of alleles 

inherited from each parent. It is based on the fact the expression of the alleles inherited 

from the mother and the father can be measured separately. The grade of expression 

varied from complete monoallelic expression (MAE) to preferential overexpression of 

an allele from a single parent. Thus, when one of the two alleles is completely silenced 

is known as MAE (Figure 1.9). 
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Figure 1.9. Schematic representation of different types of gene expression on allele 

level. Red and blue colour represent two alleles of a gene. 

 

ASE analysis has been used in various forms since the 1980s, but it has become 

increasingly popular in the field of genetics and genomics in recent years due to 

advances in sequencing technologies. Today, ASE analysis is commonly used in a variety 

of research fields and has been used to identify genetic variants that are associated with 

different traits and to study the impact of epigenetic modifications on gene expression.  

Before the arrival of RNA-Seq, differential allelic expression analysis was conducted 

using techniques such as in situ hybridization, cloning and sequencing of RNA, and 

amplified fragment length polymorphism (AFLP). In situ hybridization involved the use 

of specific probes for maternal and paternal alleles to detect differential allele 

expression in tissue samples (Ohlsson et al., 2001). This allowed for visualization of the 

spatial distribution and relative abundance of transcribed RNA from each allele. Cloning 

and sequencing of RNA required cloning RNA transcripts into vectors and sequencing 

them individually. This enabled determination of the RNA sequence of each allele and 

quantification of their relative expression. AFLP was a technique that selectively 

amplified DNA fragments using specific primers for different alleles. Quantification of 

the amplified fragments allowed estimation of the relative expression of each allele. 

While these techniques provided insights into differential allelic expression, they had 
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limitations in terms of scalability and the ability to analyze a large number of genes and 

samples simultaneously. The emergence of RNA-Seq revolutionized the field by enabling 

comprehensive and high-throughput analysis of gene expression, including differential 

allelic expression, at a genomic level. 

In order to conduct ASE analysis using RNA-Seq, the data are derived from individuals 

who exhibit heterozygosity in one or multiple SNPs. The RNA-Seq reads are mapped to 

the reference genome, and the number of reads that correspond to each allele is 

counted. The utility of ASE analysis lies in its ability to identify genetic factors that 

contribute to phenotypic variation. For example, if a certain allele is consistently 

overexpressed compared to the other allele in a population, it may be associated with a 

particular trait. Additionally, ASE analysis can be used to study epigenetic modifications, 

such as DNA methylation and histone modifications, which can also affect allele-specific 

expression. Hence, ASE analysis is a powerful tool for studying gene expression patterns 

and understanding the genetic and epigenetic factors that contribute to phenotypic 

variation. 

So far, there have been few ASE studies detecting candidate genes associated with 

production traits in livestock animals, such as in cattle (Bruscadin et al., 2021; de Souza 

et al., 2020), broilers (Zampiga et al., 2018) and only a few in pigs (Liu et al., 2020; 

Stachowiak et al., 2018; Stachowiak & Flisikowski, 2019). In a 2020 study, Liu et al. 

identified candidate genes (PHKG1, NUDT7, FADS2, and DGAT2) associated with pig 

production traits through ASE analysis. Stachowiak et al. (2018) suggested that 

PPARGC1A is subjected to cis-regulation in pig backfat, while Stachowiak & Flisikowski 

(2019) reported allelic imbalance for ACACA, LEP, SCD and TNF genes involved in lipid 

metabolism in pig skeletal muscle. 

The ASE approach offers a valuable tool for understanding the genetic mechanisms 

underlying complex traits in pigs. The discovery of key genes through ASE analysis may 

eventually lead to the development of more effective breeding strategies for improving 

pig production. 

 

 



  General introduction 

 

57 
 

1.7. The IBMAP cross 

 

The IBMAP consortium was created in 1996 with the collaboration among the 

Universitat Autònoma de Barcelona (UAB), the Instituto Nacional de Investigación y 

Tecnología Agraria y Alimentaria (INIA), and the Institut de Recerca i Tecnologia 

Agroalimentàries (IRTA). First, a F2 cross between Guadyerbas Iberian boards and 

Landrace sows was generated for the identification of growth, carcass, and fatty acid 

composition QTLs. Later, backcrosses of Iberian boars with Landrace, Duroc, and Pietrain 

sows were obtained (Figure 1.10.) and samples for gene expression analyses were 

collected from hypothalamus, liver, adipose tissue and longissimus dorsi muscle. 

 

 

 

Figure 1.10.: Schematic representation of the three IBMAP backcrosses (BC1_LD, 

BC1_DU and BC1_PI). 
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Different swine breeds were selected based on their divergent phenotypic 

characteristics pertaining to meat quality, growth rate, fatness, productivity, and feed 

efficiency. The Iberian pig breed, local and rustic, is raised in Spain and is distinguished 

for its superior meat quality and cured products, attributed to its high levels of SFAs and 

MUFAs, primarily oleic acid. However, its productivity is comparatively lower than that 

of conventional pig breeds (Serra et al., 1998). 

In contrast, Landrace pig is a commercial breed characterized by its long, lean body type 

with a straight and narrow back, ideal for efficient meat production. Landrace sows are 

known for their exceptional reproductive performance and can produce large litters 

with high growth rates. Additionally, Landrace pigs have a high feed conversion ratio, 

indicating good feed efficiency and are well-suited for intensive commercial production 

systems. On the other hand, they are also characterized by lower IMF levels and an 

elevated proportion of PUFAs. It has undergone intense selective breeding for 

production attributes, exhibiting enhanced growth and high prolificacy.  

Concerning to the Duroc pig, it is characterized by a medium-sized and muscular body 

type. This breed is renowned for its high-quality meat, with well-marbled and its 

juiciness. Furthermore, they exhibit good growth rates, feed conversion efficiency, and 

tend to produce carcasses with high meat quality due to their increased IMF deposition, 

which makes them a highly desirable choice for commercial swine production systems 

seeking to maximize productivity and profitability. They also present excellent 

reproductive performance and can produce large litters of piglets.  Additionally, Duroc 

pigs are known for their docile temperament and adaptability to a wide range of climatic 

conditions (Yoder et al., 2011).  

In relation to Pietrain commercial pig breed, is characterized by its short and compact 

body type. This breed is well-known for its high lean meat yield and with low levels of 

IMF. Pietrain pigs are typically fast-growing and have good feed efficiency, but less 

prolific than other commercial breeds such as Landrace (Kouba & Sellier, 2011). 

Moreover, they are known to have a higher risk of developing stress-related disorders 

and require careful management.  
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1.7.1. QTLs identified in the IBMAP population 
 

The primary aim of the IBMAP consortium was to identify QTLs that are linked to both 

pork meat quality and growth traits. The initial investigations, which were carried out 

on the F2-cross between Iberian and Landrace pigs, employed microsatellite markers to 

pinpoint significant regions that are associated with carcass quality, growth, fatness, and 

the FA composition present in backfat on chromosomes SSC2, SSC3, SSC4, SSC6, SSC7, 

SSC8, SSC10, SSC12, and SSCX (Clop et al., 2002, 2003; Mercadé et al., 2005; Mercadé, 

et al., 2006b; G. Muñoz et al., 2007; Óvilo et al., 2000; Pérez-Enciso et al., 2000, 2005). 

Clop et al. (2003) carried out the first report of a genome scan for QTLs affecting FA 

composition in pigs of the IBMAP cross.  

Furthermore, novel technological advancements such as the PorcineSNP60 BeadChip 

(Illumina) were employed to genotype the animals and enhance the precision of the 

localization of the previous QTLs, as well as to identify novel genomic loci linked to the 

analysed phenotypic traits (Corominas et al., 2013a; Fernández et al., 2012; M. Muñoz 

et al., 2013; Ramayo-Caldas, et al., 2012b; Revilla et al., 2014).  

Rencently, Crespo-Piazuelo et al. (2020) have identified a multitude of potential genes 

in both backfat and skeletal muscle tissue (longissimus dorsi) among the three 

backcrosses from the IBMAP population. In this study, nine and six significant associated 

regions with different phenotypic traits were identified in backfat and longissimus dorsi 

muscle, respectively. Moreover, a comprehensive set of 52 genes has been proposed to 

account for the variability in FA composition traits within both the backfat and skeletal 

muscle tissues. 

 

1.7.2. Candidate genes identified in the IBMAP population 

 

The main objective of examining complex traits is to identify the genes implicated and 

unravel their molecular mechanisms and roles. Within the mentioned QTLs, the IBMAP 

consortium has identified numerous potential candidate genes linked to growth, 

fatness, and meat quality traits as illustrated in Table 1.5. 
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Table 1.5. Main positional candidate genes analyzed in the IBMAP population. 

Chr QTL associated traits Candidate genes Reference 

SSC2 Growth and fatness IGF2 Estellé et al., 2005 

SSC4 Growth and FA 
composition 

APOA2 Ballester et al., 2016 

DECR Clop et al., 2002 

DGAT1; FABP4 Mercadé et al., 2005, 2006b 

FABP5 Estellé et al., 2006 

PRRX1 Crespo-Piazuelo et al., 2020 

SSC6 Fatness and IMF ACADM Kim et al., 2006 

FABP3; LEPR Ovilo et al., 2002; 2005 

SSC8 FA composition CDS1 Mercadé et al., 2007 

ELOVL6 Corominas et al., 2013b 

FABP2; MTTP Estellé et al., 2005, 2009 

SETD7 Revilla et al., 2014 

HADH Crespo-Piazuelo et al., 2020 

SSC1
2 

FA composition ACACA; FASN; GIP Muñoz et al., 2007 

SSC1
3 

FA composition LIPI; NRIP1 Crespo-Piazuelo et al., 2020 

SSC1
4 

FA composition ELOVL3; SCD Crespo-Piazuelo et al., 2020 

SSC1
6 

FA composition ELOVL7; PIK3R1 Crespo-Piazuelo et al., 2020 

SSC1
7 

FA composition ABHD12; ACSS1; 
PANK2 

Crespo-Piazuelo et al., 2020 

SSCX FA composition, 
growth, fatness and 

IMF 

ACSL4 Corominas et al., 2012; Mercadé et 
al., 2006a 

 

Among the genes on this list, ELOVL6 has been among the genes that have been subject 

to more detailed investigation. The ELOVL6 gene plays a crucial role in elongating SFAs 

and MUFAs containing 12-16 carbons to C18, significantly impacting the levels of 

palmitic (C16:0) and palmitoleic (C16:1n7) FAs (Jakobsson et al., 2006). In previous 

studies conducted by Corominas et al. (2013b), the ELOVL6 gene was extensively 

investigated as the main positional candidate gene in a QTL on SSC8 for FA composition 

in both IMF and backfat. The FAs affected by this QTL were palmitic and palmitoleic , as 

well as the elongation rations of C18:0/C16:0 and C18:1n-7/C16:1n-7. Notably, the 

ELOVL6:c.-533C>T polymorphism was found to be associated with the content of 

palmitic and palmitoleic FAs, along with the elongation ratios, in muscle and backfat of 

BC1_LD animals. Furthermore, this polymorphism demonstrated an association with 
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ELOVL6 mRNA levels in adipose tissue. Therefore, the concurrence of the biological role 

of ELOVL6 with the detected QTL impact on FA composition on SSC8 reinforces the 

significance of ELOVL6 as the candidate positional gene responsible for this QTL. 

Through the characterization of both the coding and the proximal promoter regions of 

the porcine ELOVL6 gene, numerous mutations were identified (Corominas et al., 

2013b). Moreover, the SNP ELOVL6:c.-394G>A, which is in a complete linkage 

disequilibrium with ELOVL6:c533C>T SNP, was associated with differences in the 

methylation levels of the ELOVL6 gene promoter and its expression (Corominas et al., 

2015).  

 

1.7.3. NGS tools in the IBMAP population 

 

NGS technologies enable the high-throughput sequencing of genomes and 

transcriptomes, resulting in a significant abundance of genomic data being generated. 

The IBMAP consortium used these new techniques like RNA-Seq to analyse the 

transcriptome and identify differentially expressed genes in liver (Ramayo-Caldas, et al., 

2012a), adipose tissue (Corominas, et al., 2013b), muscle (Fernández et al., 2014; Puig-

Oliveras, et al., 2014) and hypothalamus (Pérez-Montarelo et al., 2014)  in BC1_LD 

animals. For liver, adipose tissue and muscle, differential expression analysis were 

conducted between two divergent groups of animals characterized by their differential 

composition of SFAs and MUFAs in one group, and a higher concentration of PUFAs in 

the other. The results obtained showed that in the group of animals with a higher 

proportion of SFAs and MUFAs there was a reduction of liver FA oxidation (Ramayo-

Caldas, et al., 2012a), an increase of de novo lipogenesis in adipose tissue (Corominas, 

et al., 2013b), and a higher FA and glucose uptake and increased lipogenesis in muscle 

tissue (Puig-Oliveras, et al., 2014). Remarkably, common pathways related to LXR/RXR 

activation, PPARs and β-oxidation were identified in the three RNA-Seq studies. 

Moreover, Puig-Oliveras, et al. (2014) also utilized this methodology to identify gene 

interactions and pathways affecting pig traits, such as growth and fatness. Three 

transcription factors were identified: the peroxisome proliferator activated receptor 

gamma (PPARG), E74 like ETS transcription factor 1 (ELF1) and PR/SET domain 16 
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(PRDM16), as key transcription factors regulating growth traits. In another study, Muñoz 

et al. (2013) also combined QTL and eQTL mapping to identify candidate genes with 

potential effect on backfat thickness and intramuscular FA composition. Accordingly, 

utilization of the RNA-Seq technique has enabled the identification of potential 

candidate genes and pathways associated with lipid metabolism pathwats and FA 

composition.  
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This PhD thesis was done under the framework of the AGL2017-82641-R and PID2020-

112677RB-C22 projects funded by the Ministerio de Economía y Competitividad 

(MINECO). The present research has been performed using the animal material 

generated by the IBMAP Consortium involving INIA, IRTA and UAB groups. 

 

The main objective was to investigate the genetic and molecular factors that influence 

the fatty acid composition in pigs.  

 

The specific objectives of this thesis were: 

1. To study the expression and regulation of a set of lipid-related genes in 

longissimus dorsi muscle of pigs from three different genetic backgrounds, to 

better understand the expression and regulation of these genes.  

 

2. To identify variants from porcine longissimus dorsi muscle through allele-

specific expression analysis with RNA-Seq data to decipher relevant genetic 

variants in candidate genes for lipid metabolism and fatty acid composition. 

 

3. To characterize the transcriptome architecture of the porcine longissimus dorsi 

muscle by RNA-Seq and to identify potential lipid metabolism candidate genes 

and regulators of muscle gene expression. 
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Abstract 

The intramuscular fat content and fatty acid composition of porcine meat have a 

significant impact on its quality and nutritional value. This research aimed to investigate 

the expression of 45 genes involved in lipid metabolism in the longissimus dorsi muscle 

of three experimental pig backcrosses, with a 25% of Iberian background. To achieve 

this objective, we conducted an expression Genome-Wide Association Study (eGWAS) 

using gene expression levels in muscle measured by high-throughput real-time qPCR for 

45 target genes and genotypes from the PorcineSNP60 BeadChip or Axiom Porcine 

Genotyping Array and 65 SNPs located in 20 genes genotyped by a custom-designed 

Taqman OpenArray in a cohort of 354 animals. The eGWAS analysis identified 301 eSNPs 

associated with 18 candidate genes (ANK2, APOE, ARNT, CIITA, CPT1A, EGF, ELOVL6, 

ELOVL7, FADS3, FASN, GPAT3, NR1D2, NR1H2, PLIN1, PPAP2A, RORA, RXRA and UCP3). 

Three cis-eQTLs (expression quantitative trait loci) were identified for GPAT3, RXRA, and 

UCP3 genes, indicating that a genetic polymorphism proximal to the same gene is 

affecting its expression. Furthermore, 24 trans-eQTLs were detected and 8 candidate 

regulatory genes were located in these genomic regions. Additionally, two trans-

regulatory hotspots in SSC13 and SSC15 were identified. Moreover, a co-expression 

analysis performed on 89 candidate genes and the fatty acid composition revealed the 

regulatory role of four genes (FABP5, PPARG, SCD, and SREBF1) in modulating the levels 

of α-linolenic, arachidonic, and oleic acids, as well as regulating the expression of other 

candidate genes associated with lipid metabolism. The findings of this study offer novel 

insights into the functional regulatory mechanism of genes involved in lipid metabolism, 

thereby enhancing our understanding of this complex biological process. 

Keywords: eGWAS, Lipid metabolism, Muscle, Pig, Regulatory genes 

Implications 

The relationships between the genes that regulate lipid metabolism and the fatty acids 

are complex. Deepening the knowledge in this field is key to have a better understanding 

of how fatty acids are produced and, therefore, how can they be modulated. 
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Introduction 

The percentage of intramuscular fat (IMF) and its fatty acid (FA) composition are 

recognized as key factors that influence meat quality and play a significant role in 

determining the nutritional value of meat (Wood et al., 2008). Moreover, IMF is directly 

related to meat flavour, juiciness, tenderness and firmness, which are relevant traits for 

consumers. Hence, in accordance with consumers, a high quantity of backfat has less 

acceptance, although meat with high IMF is considered a desirable trait. Some FAs are 

essential for humans, such as ω-3 and ω-6 polyunsaturated FAs (PUFAs), as they are not 

produced by de novo biosynthesis in the organism and must be provided through the 

diet. Therefore, the FA profile of pork is a key factor determining its quality and overall 

healthiness (Simopoulos, 2002) can also affect meat nutritional values and its sensory 

quality parameters (Chernukha et al., 2023). However, excessive fat can result in a less 

desirable texture and taste. To ensure a high-quality product, pork producers carefully 

balance genetics, nutrition, and management practices to optimize the level of IMF in 

the meat. With proper techniques, consumers can appreciate pork that is both flavourful 

and healthy, as the right amount of IMF can provide essential nutrients such as ω-3 and 

ω-6 FAs (Chernukha et al., 2023). Commercial pig breeds, such as Pietrain and Landrace 

exhibit superior efficiency in growth and leaner carcasses compared to Duroc or Iberian 

pigs. However, these carcasses have less IMF, which affects its meat quality. On the 

contrary, meat from Iberian breed is characterized by high IMF deposition and higher 

mono-unsaturated FA (MUFA) percentage, which provide more oxidative stability and 

improve meat taste and colour. Furthermore, this breed is widely used for dry-cured 

products, such as loin and ham (Lopez-Bote, 1998). A common practice involves crossing 

the Iberian pig with Duroc breed to enhance growth and feed efficiency. 

Three different backcrosses, between Iberian × Duroc (BC1_DU), Iberian × Landrace 

(BC1_LD), and Iberian × Pietrain (BC1_PI) pigs were generated (Á. M. Martínez-Montes 

et al., 2018) producing animals with large phenotypic differences in growth, carcass and 

meat quality traits, such as the IMF content and FA composition. Different studies based 

on these animals used several analytical techniques such as quantitative trait loci (QTL) 

mapping and genome-wide association studies (GWAS) to identify genes associated with 
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growth, IMF content, and FA composition (Crespo-Piazuelo et al., 2020; Puig-Oliveras, 

et al., 2014; Ramayo-Caldas et al., 2012). 

In previous studies of our group, the expression of candidate genes for lipid metabolism 

was analysed in longissimus dorsi muscle, adipose tissue, and liver of an Iberian × 

Landrace backcross (Puig-Oliveras et al., 2016; Revilla et al., 2018; Ballester et al., 2017). 

Moreover, Criado-Mesas et al. (2020) conducted an eGWAS with the same list of 

candidate genes of Puig-Oliveras et al. (2016) but including longissimus dorsi muscle 

expression data of 355 animals of the three backcrosses. These studies were specifically 

centred on the expression of candidate genes implicated in FA metabolism, aiming to 

identify eQTLs regulating gene expression. Detecting eQTLs is a valuable strategy to 

study complex trait genetics, revealing genetic variants linked to gene transcription 

levels that may contribute to phenotypic variation.  

The main goal of this research is to study the expression and regulation of a selected set 

of 45 candidate genes for lipid metabolism in the porcine longissimus dorsi (LD) muscle 

in a total of 354 animals belonging to three different backgrounds. Additionally, we 

aimed to investigate the interrelationship between the 45 candidate genes utilized in 

this study, the 44 genes employed in the study conducted by Criado-Mesas et al. (2020) 

and the FA composition derived from the same population. 

 

Material and methods 

Pig population 

The IBMAP population was obtained by crossing Iberian boars with Duroc, Landrace and 

Pietrain sows, and then F1 boars were crossed again with the respective Duroc, Landrace 

and Pietrain sows. In the present study, 354 animals were used, of which 122 belong to 

the BC1_DU (25% Iberian and 75% Duroc), 114 to the BC1_LD (25% Iberian and 75% 

Landrace) and 118 to the BC1_PI (25% Iberian and 75% Pietrain). All animals were 

maintained under the same intensive conditions and fed ad libitum with cereal-based 

commercial diet on NOVA GENÈTICA S.A. experimental farm (Lleida, Spain). Detailed 

information of generation schemes, diet, growth, and housing condition of the three 
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backcrosses is described in (Á. M. Martínez-Montes et al., 2018). Slaughtering 

procedures were conducted in a certified abattoir according to the institutional and 

national guidelines for the Good Experimental Practices and approved by the Ethical 

Committee of the Institution (IRTA – Institut de Recerca i Tecnologia Agroalimentàries). 

The longissimus dorsi muscle samples were collected, snap-frozen in liquid nitrogen, and 

stored at -80º C until further RNA isolation. Diaphragm samples were collected for DNA 

extraction. 

 

Genotyping  

Genomic DNA was isolated from diaphragm tissue by the standard method of phenol-

chloroform extraction and was quantified with a NanoDrop-2000 spectrophotometer 

(Thermo Scientific). Animals from BC1_LD and BC1_PI were genotyped using the 

PorcineSNP60 Beadchip (Illumina Inc.; San Diego, USA) (Ramos et al., 2009) and BC1_DU 

animals were genotyped using Axiom Porcine Genotyping Array (Affymetrix). PLINK 

v1.90b4.3 software (Purcell et al., 2007) was used to remove markers that showed a 

minor allele frequency (MAF) of less than 5% and SNPs with more than 5% of missing 

genotypes. For eGWAS analysis, we used 38,423 SNPs that were common between the 

two SNP-genotyping arrays and were mapped in the Sscrofa11.1 assembly. Moreover, 

65 SNPs located in positional candidate genes were genotyped in the 354 pigs using 

custom-designed Taqman OpenArray genotyping plates in a QuantStudio™ 12K flex 

Real-Time PCR System (ThermoFisher Scientific) and were also included in the eGWAS 

analysis. Of these 65 SNPs, 11 SNPs were located within the fatty acid elongase 6 

(ELOVL6) gene. Eight, nine and three were SNPs located on the fatty acid desaturase 1, 

2 and 3 (FADS1, FADS2 and FADS3) genes, respectively. Five of them were located in 

fatty acid synthase (FASN) gene, four in fatty acid elongase 1 (ELOVL1) gene, three in 

fatty acid elongase 7 (ELOVL7) gene, three in fatty acid binding protein 4 (FABP4) gene 

and three in thrombospondin 1 (THBS1) gene. The remaining 18 were located with one 

or two SNPs in the ACACA, ACSL4, ANK2, CPT1A, GPAT3, LPL, NR1D2, PLIN1, SLC27A1, 

SREBF2 and USF1 genes. The SNPs and their positions are detailed in Supplementary 

Table S1. A total of 38,488 SNPs were used for further analysis. 



Paper I 

 

75 
 

RNA isolation and gene expression 

Total RNA extraction from longissimus dorsi tissue was performed with the Ribopure kit 

(Ambion), following the manufacturer’s protocol. RNA integrity was assessed using an 

Agilent 2100 Bioanalyzer (Agilent Technologies) and purity and quantification using a 

NanoDrop-2000 spectrophotometer (Thermo Scientific). Only the RNAs with integrity 

above seven (RIN >7) were used for the analysis. One µg of RNA was converted to cDNA 

using High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) in 20 µl total 

volume, following the manufacturer’s instructions. The cDNA samples were loaded into 

a Dynamic Array 48.48 chip in a BioMark system (Fluidigm: San Francisco, CA, USA) 

through an integrated fluidic circuit controller following the manufacturer’s instructions. 

The expression of 45 target genes was analysed. After checking their stability, ACTB and 

TBP were used as reference genes. Primers used for the analyses were designed using 

PrimerExpress 2.0 software (Applied Biosystems) and are detailed in Supplementary 

Table S2. Data were collected using the Fluidigm Real-Time PCR analysis software 3.0.2 

(Fluidigm) and analysed using the DAG expression software 1.0.4.11 (Ballester et al., 

2013) applying the relative standard curve method. Samples targeted in this study were 

analysed in duplicate. The normalized quantity (NQ) values of each sample and assay 

were used to compare the gene expression among animals. Data normality was checked 

by applying the Shapiro-Wilk test in R and log2 transformation of the NQ value was 

applied when required. The sex and breed effects were also tested by using a linear 

model with the lm function in R.  

Furthermore, the gene expression data of 44 candidate genes generated by Criado-

Mesas et al. (2020) in the same 3BCs population, were used to analyse the gene co-

expression patterns and its association with FA composition. 

 

Expression Genome-wide association study 

Genomic association studies between each gene expression measure and SNPs 

genotypes (eGWAS) were performed through a linear model using GEMMA software 

(Zhou & Stephens, 2012). 
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y = Wα + xβ + u + ε; u ~ MVNn (0, λτ- 1K), ε~ MVNn (0, τ- 1In), 

in which: y is the vector of phenotypes for n individuals; W is a matrix nxc of covariables 

(fixed effects) that includes sex (2 levels), backcross (3 levels) and slaughtering batch (9 

levels); α is a c vector with corresponding coefficients, including the intercept; x is an n 

vector with the marker genotypes; β is the size of the marker effect, u is an n vector of 

random effects (additive genetic effects), ε is an n vector of errors. The random effects 

vector is assumed to follow a normal multivariate n-dimensional distribution (MVNn) 

where τ-1 is the variance of residual errors; λ is the quotient between the two 

components of variance; K is an nxn Kinship matrix calculated from the SNPs. The vector 

of errors is assumed to follow a distribution MVNn, where ln is an nxn identity matrix. 

GEMMA software calculates the p-value from the Wald statistical test for each SNP 

comparing the null hypothesis that the SNP has no effect versus the alternative 

hypothesis that the SNP effect is different from zero. 

An eGWAS using GEMMA software was conducted between 38,488 SNPs distributed 

along the genome of the animals and 45 lipid-related genes in longissimus dorsi muscle. 

The False Discovery Rate (FDR) multiple testing correction method of Benjamini and 

Hochberg (Benjamini & Hochberg, 1995) was using the p.adjust function of R. For each 

gene, SNPs were considered significant at a threshold of FDR ≤ 0.05.  

 

Identification of cis and trans eQTLs  

The cis-eQTL mapping window was defined from 1 Mb upstream of the start of the gene 

to 1 Mb downstream of the gene end and all other regions were considered as trans-

eQTLs. Significant SNPs separated less than 10 Mb apart were considered as belonging 

to the same genomic interval or eQTL. In this study, only eQTL intervals containing two 

or more SNPs were considered for further analysis. 
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Gene annotation 

The annotation of the genes contained in the eQTLs was performed with Biomart 

(Smedley et al., 2015) tool from the Ensembl project (www.ensembl.org; release 108) 

using the Sscrofa 11.1 reference assembly. Additionally, a 1 Mb extension was included 

at both ends of the genomic region.  Functional predictions of the significant SNPs 

comprised in the eQTL regions were carried out using Variant Effect Predictor (VEP) 

(McLaren et al., 2010) and the Ensembl Genes 108 Database. With these tools, the 

location of eSNPs regarding a gene can be classified as outside of the gene, in 

untranslated regions (UTR) or in the coding sequence.  

 

Co-expression and functional analysis 

For this analysis, we used the gene expression data of the 45 candidate genes mentioned 

earlier, besides to the 44 candidate genes employed by Criado-Mesas et al. (2020) 

measured in the same animals. Furthermore, this analysis incorporated the relative 

quantification data of 14 different FAs in the longissimus dorsi muscle, as previously 

obtained by Crespo-Piazuelo et al. (2020). 

Weighted gene expression networks were calculated using the PCIT algorithm (Watson-

Haigh et al., 2009), which employ first-order partial correlation coefficients and an 

information theory approach to detect primary gene interactions. Only significant 

interactions between genes were considered for further analysis. Networks were 

represented with the Cytoscape v3.9.1 (Shannon et al., 2003) program. 

 

Gene functional classification 

The ShinyGO v0.77 (Ge et al., 2020) program was used to identify the main biological 

functions and the gene ontology association from the most important pathways of the 

genes mapped within the eQTLs. Moreover, STRING v11.5 (Jensen et al., 2009) was used 

to perform the functional enrichment analysis of genes found significantly associated in 

http://www.ensembl.org/
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the eGWAS analysis, and also to integrate and cluster the genes regarding their Gene 

Ontology. 

 

Results 

Sex and Genetic background effect on gene expression 

In this study, including the three backcrosses (3BCs), 24 out of the 45 genes presented 

significant sex effect (p-value ≤ 0.05) on pig muscle gene expression: ADIPOQ, ADIPOR1, 

ADIPOR2, AGPAT2, ANK2, APOE, ARNT, CD36, CYP2U1, EGF, ELOVL5, ELOVL6, ESRRA, 

FADS2, FASN, GPAT3, HADH, LPL, ME1, NR1D2, NR1H2, PDK4, PLIN1, and USF1 (Figure 

1). We have identified more genes over-expressed in females (20), than in males (4).  

 

 

Figure 1. Comparison between females (red bars) and males (blue bars) of the mRNA 

levels (Mean NQ) of 45 lipid-related genes in animals from the 3BCs. Data are 

represented as mean ± standard error of the mean (SEM). Significant differences are 

labelled as: * p-value ≤ 0.05, ** p-value ≤ 0.01, *** p-value ≤ 0.001. 
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Furthermore, a significant backcross effect (p-value < 0.05) on gene expression levels 

was detected in 35 out of 45 analysed genes: ACACA, ACSL4, ADIPOQ, ADIPOR1, 

ADIPOR2, AGPAT2, ANK2, APOE, ARNT, CD36, CPT1A, EGF, ELOVL1, ELOVL5, ELOVL6, 

ELOVL7, ESRRA, ETFDH, FADS1, FADS2, FADS3, FASN, GPAT3, HADH, HADHA, ME1, 

NR1H2, NRF1, PDK4, PLIN1, PNPLA2, RORA, RXRA, SLC27A1, SREBF2 (Figure 2). Overall, 

24, 7 and 4 genes were over-expressed in BC1_DU, BC1_LD and BC1_PI backcrosses, 

respectively.  

 

 

Figure 2. Comparison between the three experimental backcrosses in the mRNA levels 

of 45 lipid-related genes. Data presents mean ± standard error of the mean (SEM). 

Significant differences are labelled as: * p-value ≤ 0.05. DU, LD and PI represent the 

BC1_DU, BC1_LD and BC1_PI populations, respectively. 

 

Genome-wide association studies for gene expression and eQTL identification 

An eGWAS was performed between the muscle gene expression values and the 

genotypes of 38,488 SNPs distributed along the Sus Scrofa chromosomes in 354 animals. 

The eGWAS identified 301 eSNPs located in 27 genomic Sus Scrofa chromosome regions 

associated with the expression of ANK2, APOE, ARNT, CIITA, CPT1A, EGF, ELOVL6, 
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ELOVL7, FADS3, FASN, GPAT3, NR1D2, NR1H2, PLIN1, PPAP2A, RORA, RXRA and UCP3 

(FDR<0.05) genes. Unfortunately, none of the 65 SNPs located in candidate genes and 

genotyped by Taqman OpenArray were found significant in the eGWAS analysis. 

A total of 24 eQTLs showed trans-regulatory effects on gene expression of 12 genes 

(Table 1). In addition, three were classified as cis-acting eQTLs for GPAT3, RXRA and 

UCP3 genes, which suggests that there is a mutation in the same gene or in a proximal 

genomic region affecting its expression (Table 1). Both cis and trans-eQTLs were 

represented in Figure 3. 

Table 1: Significant eQTLs for the 45-muscle gene expression study in 3BCs animals. Start 

and end positions refer to the eQTL interval and are based on Sus scrofa 11.1 assembly. 

Lengths are given in base-pairs. Gene annotation was performed considering one 

additional Mb at the start and at the end of the eQTL interval. The SNPs column indicates 

the number of SNPs within the eQTL. 

 

Inter-
val 

Gene 
Chr 

eQTL 
Start pos 

(bp) 
End pos 

(bp) 
Size 

(Mbp) 
SNPs Top SNP q-value MAF eQTL 

Candidate 
genes 

1 ANK2 6 129477727 132846185 3.36 3 rs81391604 0.0431 0.2 Trans 
 

2 ANK2 7 90911258 92399480 1.4 3 rs340169919 0.0096 0.22 Trans 
 

3 ANK2 7 105856850 105892246 0.04 2 rs81223355 0.0065 0.24 Trans 
 

4 ANK2 14 55291076 82159674 26.9 118 rs80792689 0.0065 0.18 Trans NRBF2 

5 APOE 13 77105634 82197802 5.1 14 rs80831731 0.0035 0.11 Trans 
 

            

6 APOE 15 93185092 94923471 1.74 6 rs333806503 0.0135 0.11 Trans STAT1, 
STAT4 

7 ARNT 14 56474441 58410680 1.99 5 rs80792689 0.0033 0.18 Trans 
 

8 EGF 8 131373563 131452301 0.08 2 rs81211121 0.0032 0.38 Trans 
 

9 ELOVL6 13 24228663 24253641 0.02 2 rs80853212 0.0429 0.05 Trans 
 

10 ELOVL6 13 77105634 82197802 5.1 14 rs80831731 0.0002 0.11 Trans 
 

11 FASN 5 27631915 28327581 0.7 2 rs81334652 0.0269 0.06 Trans 
 

12 FASN 8 79839602 79853747 0.02 2 rs81401770 0.0426 0.08 Trans NR3C2 

13 FASN 13 52057695 61140536 9.1 3 rs80909668 0.0374 0.41 Trans 
 

14 FASN 13 77105634 82197802 5.1 14 rs80831731 0.0065 0.11 Trans 
 

15 FASN 15 74207778 74235458 0.03 3 rs80850172 0.0040 0.11 Trans 
 

16 FASN 15 93185092 94923471 1.74 6 rs81301298 0.0183 0.09 Trans STAT1, 
STAT4 

17 GPAT3 8 134733478 135607348 0.88 8 rs81336088 0.0003 0.25 Cis 
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18 NR1D2 6 99307882 99580947 0.27 3 rs81347503 0.0246 0.29 Trans 
 

19 PLIN1 13 77105634 82197802 5.1 14 rs81447187 0.0078 0.11 Trans 
 

20 PPAP2A 6 45156998 46387903 1.23 8 rs81395741 0.0089 0.11 Trans USF2 

21 RORA 14 2722953 2758196 0.36 2 rs80785221 0.0291 0.21 Trans 
 

22 RXRA 1 29427957 31162256 1.74 2 rs80801544 0.0086 0.12 Trans 
 

23 RXRA 1 270278445 274019182 0.37 11 rs81352834 3.8E-08 0.13 Cis 
 

24 RXRA 4 111702541 119798655 8.09 2 rs80985433 0.0014 0.09 Trans 
 

25 RXRA 12 20659791 20767619 0.1 5 rs81214864 0.0383 0.07 Trans MLX, 
STAT3, 
STAT5 

26 UCP3 9 8362141 8406364 0.44 2 rs81413811 0.0228 0.3 Cis UCP2 

27 UCP3 X 96608820 96624858 0.02 2 rs81473579 0.0228 0.09 Trans 
 

 

Abbreviations: Chr = Chromosome; bp = base pairs; Mbp = Megabase pairs;  

MAF = Minor Allele Frequency 

 



Paper I 

 

82 
 

Figure 3. PhenoGram plot representing regions associated with gene expression of 45 

lipid-related genes along pig chromosomes in the 3BCs study. The shape indicates the 

type of eQTL and the colour indicates the gene name as indicated in the legend. 

 

In addition, in SSC13 we found an eQTL that affects the expression of four genes (APOE, 

ELOVL6, FASN and PLIN1). Moreover, in SSC15 there is another eQTL that regulates two 

other genes (APOE and FASN). 

From the 258 eQTL-associated SNPs, 230 were successfully annotated with VEP of 

Ensembl (Sscrofa 11.1 annotation release 108) of which 34.8% (80 SNPs) were located 

in intergenic regions. The remaining 65.2% (150) of SNPs were mapped within 93 genes: 

121 (52.6%) in intronic regions, 10 in upstream regions, five in downstream regions, four 

in non-coding transcript regions, three in 3’UTR regions and six in the coding regions of 

genes, five determining synonymous mutations and one being a missense mutation 

(Supplementary Table S3). 

 

Cis-eQTLs 

Concerning the GPAT3 gene in the eGWAS results, one of the annotated cis-SNPs (GPAT3 

g.134933342T>C) was mapped within of the GPAT3 gene. However, this SNP was not 

the most significant associated SNP (p-value = 9.00×10-8). The most significant cis-SNP 

for GPAT3 (g.135550523A>C; p-value = 1.70×10-8) was located in the SCD5 gene (Figure 

4).  
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Figure 4. GWAS plot of GPAT3 gene expression in muscle. Chromosome positions in Mb 

based on Sscrofa 11.1 assembly of the pig genome are represented in the X-axis and the 

–log10 (p-value) is on the Y-axis. The horizontal line represents the p-value for a 

genome-wide FDR  < 0.05. The SCD5 g.135550523A>C (rs81344869) and GPAT3 

g.134933342T>C (rs81269758) SNPs are circled and labelled in colour green. 

 

Regarding the RXRA cis-eQTL, the variant NCS1 g.270313674C>T (rs81352834) was the 

most significantly associated polymorphism (p-value = 9.84×10-13), and the second most 

significantly associated variant was RXRA g.273242436A>G SNP (rs80827620) (p-value = 

9.73×10-11) (Figure 5). 

 

 

Figure 5. GWAS plot of RXRA gene expression in muscle. Chromosome positions in Mb 

based on Sscrofa 11.1 assembly of the pig genome are represented in the X-axis and the 

–log10 (p-value) is on the Y-axis. The horizontal line represents the p-value for a 

genome-wide FDR < 0.05. The NCS1 g.270313674C>T (rs81352834) and RXRA 

g.273242436A>G (rs80827620) SNPs are circled and labelled in colour green. 

 

In relation to the Uncoupling Protein 3 (UCP3) gene in the eGWAS results, the SNP 

g.8362141G>A (rs81413811), located within the UCP2 gene, was the most significantly 

associated SNP with the UCP3 gene expression in muscle (p-value = 6.54×10-7) (Figure 

6). 
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Figure 6. GWAS plot of UCP3 gene expression in muscle. Chromosome positions in Mb 

based on Sscrofa 11.1 assembly of the pig genome are represented in the X-axis and the 

–log10 (p-value) is on the Y-axis. The horizontal line represents the p-value for a 

genome-wide FDR < 0.05. The UCP2 g.8362141G>A SNP is circled and labelled in colour 

green. 

 

Trans-eQTLs 

A total of 786 genes located within 24 trans-eQTL genomic regions were identified in 

our study. Among them, we detected potential lipid metabolism regulatory genes in  six 

genomic regions (Table 1). 

 

Gene expression correlations 

In order to identify co-expression patterns in the candidate genes, a co-expression 

correlation using PCIT algorithm (Watson-Haigh et al., 2009) was performed. The 

analysis included the muscle expression data of the 45 candidate genes used in this 

study, the 44 candidate genes utilized in the study of Criado-Mesas et al. (2020), and the 

composition data of 14 different FAs in the 3BCs pigs. Hence, a total of 89 candidate 

genes and 14 FAs were analyzed and a network graph was generated by Cytoscape 

software (Shannon et al., 2003) (Figure 7).  
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Figure 7. Gene co-expression network in 3BCs using the PCIT algorithm (Watson-Haigh 

et al., 2009). After filtering by significance and r ≥ |0.6| for genes and r ≥ |0.3|  for FAs, 

58 of the 90 initial genes and 10 different FAs are shown in this network. Node size 

represents the degree of a node. Green and red lines indicate the positive and negative 

correlations, respectively. 

 

Notably, the genes PDHX, HIF1AN, ACAA2, and NCOA6 exhibited the highest number of 

correlated connections with other genes. Regarding the 14 analysed FAs, only oleic acid 

(C18:1n-9), α-linolenic acid (C18:3n-3) and arachidonic acid (C20:4n-6) displayed 

significant correlations with genes. Specifically, C18:1n-9 exhibited positive correlations 

with the expression of the genes SCD (r = 0.32) and PPARG (r = 0.32). On the other hand, 

C18:3n-3 exhibited a negative correlation with the SREBF1 gene expression (r = –0.3) 
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and a positive correlation with the FABP5 gene (r = 0.3). Conversely, C20:4n-6 displayed 

a negative correlation with the PPARG gene expression. Finally, the strongest 

correlations within the entire network were observed between the genes ADIPOQ1 and 

PLIN1, with a correlation value of 0.96, between the genes SCD and PPARG, with a 

correlation value of 0.84, between the linoleic acid (C18:2n-6) and C20:4n-6, with a 

correlation value of 0.9 and between C18:2n-6 and C18:1n-9, with a correlation value of 

–0.89. 

 

Discussion 

Sex and genetic background effects 

In general terms, our results show that there are differences in muscle gene expression 

between males and females, particularly in genes associated with fat accumulation and 

storage. In females, the expression of genes related to lipid metabolism is generally 

higher, which may contribute to differences in fat distribution between the sexes 

(Varlamov et al., 2014). Hormonal differences between males and females are thought 

to play a role in the regulation of gene expression. For instance, estrogen and 

progesterone are more abundant in females and can stimulate the expression of genes 

associated with fat storage (Varlamov et al., 2014). Previously, a sexual dimorphism in 

the transcriptional regulation of genes related to lipid metabolism has been reported in 

various tissues, such as muscle, liver, and backfat (Ballester, Ramayo-Caldas, et al., 2017; 

Puig-Oliveras et al., 2016; Revilla et al., 2018). Therefore, it is relevant to comprehend 

the mechanisms underlying sexual dimorphism in gene expression. 

The genes over-expressed in females are involved in FA metabolism (APOE, CYP2U1, 

EGF, ELOVL5, ELOVL6, FADS2, FASN, HADH, PLIN1), transcriptional regulation and 

control (ANK2, ARNT, NR1D2, NR1H2, USF1), energy metabolism (ADIPOQ, ADIPOR1, 

ADIPOR2) and lipid metabolic process (AGPAT2, CD36, ME1). Conversely, some of the 

four genes showing higher expression in males (ESRRA, GPAT3, LPL and PDK4), are 

relevant regulators of lipolytic pathways (Cunningham et al., 2022). In humans, men 

exhibit higher activity in lipolytic pathways, while women tend to have higher rates of 

lipogenesis and triglyceride accumulation, putting them at a greater risk for weight gain 
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and obesity development (Varlamov et al., 2014). In a similar way, female pigs seem to 

develop obesity more readily than male pigs (Zhang & Lerman, 2016). On the other 

hand, a comparison between Iberian and Duroc pigs reported a breed effect on the 

expression of genes involved in energy balance and lipogenesis (Bahelka et al., 2007; 

Benítez et al., 2018; Font-I-Furnols et al., 2019). In summary, genes more related to 

lipogenic pathways and biosynthesis pathways were more expressed in BC1_DU 

whereas genes related to lipolytic pathways were higher expressed in BC1_LD. Finally, 4 

out of 45 genes were over-expressed in BC1_PI and were mainly related to lipogenic 

pathways and biosynthesis of unsaturated FAs. 

Altogether, these results indicated a strong effect of sex and breed on gene expression 

levels. Therefore, they were considered in association studies and included as co-factors 

in our model. 

 

Cis-eQTLs 

The Glycerol-3-Phosphate Acyltransferase 3 (GPAT3) gene is involved in pathways such 

as the triglyceride biosynthetic process through the conversion of glycerol-3-phosphate 

to lysophosphatidic acid in the synthesis of triacylglycerol, and pathways related with 

gluconeogenesis (Cao et al., 2006). In the GPTA3 eGWAS results, the most significant 

polymorphism was located on an intronic region of Stearoyl-CoA Desaturase 5 (SCD5) 

gene, at 0.57 Mb upstream from the GPAT3 gene. The associated pathways of SCD5 gene 

include lipid metabolism through stearoyl-CoA 9-desaturase and acyl-CoA desaturase 

activity, as well as biosynthesis of FAs and unsaturated FAs (Stelzer et al., 2016). On the 

other hand, the second most significant SNP was located on an intronic region of GPTA3 

gene. These results suggest the presence of another polymorphism within or near of this 

gene as a causative mutation affecting GPTA3 gene expression levels.  

Regarding Retinoid X Receptor Alpha (RXRA) in the eGWAS findings, this gene is involved 

in pathways such as hormone-mediated signalling pathway and regulation of RNA 

transcription (Stelzer et al., 2016). Furthermore, the RXRA gene forms the complex 

PPARA-RXRA, which increases lipid catabolism and FA β-oxidation. (Tontonoz et al., 

1994; Vitali et al., 2018). In the RXRA eGWAS results, the most significant SNP was 
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located on an intronic region of NCS1 gene, at 3.4 Mb downstream from the RXRA gene, 

and the second most significantly associated variant was located within an intronic 

region of RXRA gene. These findings indicate the presence of an additional 

polymorphism located within or in close proximity to this gene, which may act as a causal 

mutation influencing RXRA gene expression levels. 

The Uncoupling Protein 3 (UCP3) gene, a target of another cis-eQTL region identified, is 

implicated in pathways including β-oxidation of FAs and it has been involved in chemical 

reactions and pathways such as FA metabolism process and adaptative thermogenesis 

(Han et al., 2012; Lin et al., 2017). This cis-eQTL, located in SSC9  contains a mutation 

located in an intronic position of UCP2 gene, at 0.15 Mb downstream from the UCP3 

gene. UCP2 gene, a paralog of UCP3 gene, plays a role in non-shivering thermogenesis, 

obesity and diabetes mellitus, while its pathways include respiratory electron transport, 

ATP synthesis and heat production (Lin et al., 2017).  

In this study, the associations between gene expression and genetic markers may be 

influenced by linkage disequilibrium with the causal mutation. Nevertheless, additional 

investigations are necessary to validate the findings derived from these analyses. 

 

Trans-eQTLs 

The Ankyrin 2 (ANK2) eGWAS results unravelled a total of four trans-eQTLs, but only one 

located at 55.2 Mb – 82.1 Mb in SSC14 (spanning 26.9 Mb and with 118 significant SNPs) 

contained a candidate gene (NRBF2) that could regulate the expression of ANK2. The 

ANK2 gene belongs to the ankyrin family and has been suggested as a susceptibility gene 

for obesity, based on studies in mice with a human variant linked to type 2 diabetes 

(Lorenzo et al., 2015). Furthermore, AnkB-deficient adipocytes displayed increased 

levels of GLUT4, plasma membrane, glucose uptake, and lipid accumulation (Lorenzo & 

Bennett, 2017). Nuclear Receptor Binding Factor 2 (NRBF2) was mapped in this region 

and was associated as a lipid metabolism regulatory gene. Polymorphisms in NRBF2 

gene has been associated with specific PUFA levels in plasma in humans (Hu et al., 2015). 

Furthermore, NRBF2 has also demonstrated its ability to interact with several other 

receptors, including peroxisome proliferator-activated receptor alpha (PPARA), thyroid 
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hormone receptor beta (THRB), retinoic acid receptor alpha (RARA), and retinoid X 

receptor alpha (RXRA), which is also related to different candidate genes for lipid 

metabolism, such as FABP4, FASN, LPL and PLIN1 (Ouyang et al., 2020). 

The Fatty Acid Synthase (FASN) eGWAS results identified trans-eQTL covering the 

genomic region of 79.8 Mb to 79.85 Mb, wherein a transcription factor associated with 

lipid metabolism, the Nuclear Receptor Subfamily 3 Group C Member 2 (NR3C2), was 

identified. Polymorphisms in the NR3C2 gene have been associated with 

neuroendocrine parameters, carcass composition and meat quality traits in pigs, 

suggesting its important role in the regulation of lipidic genes (Terenina et al., 2013). 

Unfortunately, no evidence has been found linking the gene NR3C2 to the regulation of 

FASN. However, further analysis would be necessary to determine if there is any 

relationship between these genes.   

The further trans-eQTL region identified in the eGWAS results of the candidate gene 

PPAP2A was located in SSC6 at 45.1 Mb – 46.3 Mb, where Upstream Transcription Factor 

2 (USF2) was found. The USF2 gene has been identified as a transcriptional regulator of 

the human APOC3 gene which is recognized as an inhibitor of lipoprotein lipase, and as 

such, its overexpression in mice has been observed to result in a substantial increase in 

plasma triglyceride concentrations, consistent with its inhibitory function (Lai et al., 

2005). With this information, it suggests that the USF2 gene could play a regulatory role 

in genes related to lipid metabolism. 

The Retinoid X Receptor Alpha (RXRA) eGWAS unravelled a trans-eQTL, positioned at 

20.6 Mb – 20.7 Mb in SSC12. Through a comprehensive analysis of this genomic locus, 

which spans 0.1 Mb, a total of five SNPs have been identified that show significant 

associations with RXRA gene expression levels, with three candidate regulatory genes 

being mapped (MLX, STAT3, STAT5).  

The MAX Dimerization Protein (MLX) gene has been found to be correlated with the 

ChREBP transcription factor, and it has been observed that this complex is capable of 

modulating the transcriptional activity of genes involved in lipid metabolism, including 

ACC1 and FASN (Donald, 2012). According to a model proposed by Ma et al. (2005), two 
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ChREBP-Mlx heterodimers would bind to the two E boxes of the ChoRE to provide a 

transcriptional complex necessary for glucose regulation.  

The Signal Transducer and Activator of Transcription 3 (STAT3) gene has also been 

identified in the RXRA eQTL. According to Wu et al. (2018), STAT3 gene plays a crucial 

role in regulating the FAS and CPT1α1b lipid metabolism genes, as their promoter 

regions are associated with the binding locus of STAT3 in yellow catfishes. 

Unfortunately, we were unable to locate any relevant literature concerning this 

transcription factor's association with the RXRA gene or its involvement with lipid 

metabolism genes in pigs. 

On the other hand, the STAT5A/B family was also mapped at RXRA trans-eQTL. 

According to  Kliewer et al. (1999), the PPARγ is a key member of the nuclear hormone 

receptor superfamily. It collaborates with RXRA to effectively regulate specific genes 

associated with adipocyte differentiation and insulin sensitization.  In relation with this, 

Meirhaeghe et al. (2003) indicated that PPARγ3 could play a role in maintaining lipid 

balance in humans by influencing the Growth Hormone/STAT5B pathway. Hence, it 

suggests that the STAT proteins not only control the expression of genes specific to fat 

tissue but also serve as targets of regulation by transcriptional factors such as PPARγ. In 

addition, an study conducted by Si & Collins (2002) on the regulation of haematopoiesis 

in humans and its association with transcription factors, it was discovered that the 

JAK2/STAT pathway, specifically the activation of STAT5, plays a crucial role in enhancing 

RAR transcriptional activity in cultured hematopoietic cells. 

 

Trans-eQTL hotspot regions 

Furthermore, we have detected two hotspot regions that modulate the expression of 

several genes. A trans-eQTL hotspot located on SSC13 and spanning 5.1 Mb (77.1 – 82.2 

Mb) was associated with the expression of four genes: APOE, ELOVL6, FASN and PLIN1. 

The Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Beta (PIK3CB) 

gene was mapped in this region. PIK3CB participates in the PI3K-Akt signalling pathway 

and mTOR signalling pathway, and the regulation of the PI3K-Akt-mTOR signalling 

pathway on lipid metabolism has been mentioned by different studies (Dibble, 2013; D. 
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Liu et al., 2016). Furthermore, inhibition of the PI3K-Akt-mTOR pathway leads to a 

decrease in intracellular lipid accumulation along with a reduction in mRNA expression 

and protein content of genes involved in de novo FA synthesis (Y. Zhao et al., 2023). 

Hence, we can suggest that PIK3CB is involved in muscle lipid metabolism, being an 

interesting candidate gene to explain the differences in the expression of four genes 

associated with the SSC13 hotspot. Other potential genes related to lipid metabolism 

(ESYT3, RBP1 and RBP2) were detected, but no evidence was found for their possible 

regulation of the four genes in the mentioned hotspot. 

The second trans-hotspot region covering 1.74 Mb on SSC15 (93.1 – 94.9 Mb) was 

associated with the expression of APOE and FASN genes. In this region, we detected two 

candidate regulatory elements, STAT1 and STAT4, which have been associated with lipid 

metabolism pathways. Zhang et al. (2019), suggested that STAT1 may regulate the 

expression of genes associated with lipid metabolism and FA synthases (FAS), such as 

FASN, the key enzymes in de novo lipogenesis, which promotes the synthesis of long-

chain FAs. A previous study has indicated that STAT1 regulates adipogenesis and 

adipolysis (Stephens et al., 1996). In addition, the Myostatin (MSTN) gene was also 

mapped in this hotspot region. The MSTN gene has been described by Xin et al. (2020) 

as being involved as a regulator of AMP kinase activity in cattle. The down-regulation of 

MSTN triggers the activation of AMPK signalling pathways to regulate glucose and lipid 

metabolism, which highlights its possible role in lipid metabolism. Moreover, based on 

their findings, Pan et al. (2021) propose that MSTN exerts an inhibitory effect on 

adipogenesis and promotes lipolysis in the subcutaneous adipose tissue of pigs, 

primarily through the activation of ERK1/2 and PKA signalling pathways. These results 

indicate that MSTN may act as a powerful regulator of genes involved in lipid 

metabolism pathways. 

The two trans hotspots detected in this study are associated with APOE and FASN gene 

expression, suggesting that different genetic variants are regulating the muscle 

expression of these genes, but further studies are required to identiy these variants. 
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Muscle gene expression and FA composition correlation networks 

Our study investigates the relationship between specific gene expression and the 

quantities of different FAs in the porcine longissimus dorsi muscle. SCD and PPARG genes 

are found to play a crucial role in regulating C18:1n-9 levels, with a positive correlation 

observed between their expression and the abundance of this FA. Similarly, the genes 

FABP5 and SREBF1 are implicated in controlling C18:3n-3 levels, with a positive 

correlation for FABP5 and a negative correlation for SREBF1. Furthermore, the study 

explores the association between C20:4n-6 and the PPARG gene, revealing a negative 

correlation and suggesting a regulatory role of PPARG in C20:4n-6 metabolism. 

Moreover, we want to highlight the importance of the PPARG gene due to its substantial 

number of connections with other genes and its association with FAs, suggesting a 

significant role of this gene in FA metabolism and with potential implications in pork 

quality. In addition, the genes PDHX, HIF1AN, ACAA2, and NCOA6 display significant 

correlations with multiple genes, indicating their role as central regulators. The positive 

and negative correlations between the genes and the FAs are shown in Figure 7. 

 

Conclusions 

In the present work, we identified genetic variants associated with the expression of 

lipid-related genes in muscle. These genetic variants were grouped in 27 eQTLs from 

which three were described as cis-acting major regulators of GPAT3, RXRA and UCP3 

gene expression levels. The other 24 regions were trans-eQTLs, which affect different 

lipid-related genes along the chromosomes. In addition, two trans-regulatory hotspots 

regulating the expression of several genes were identified in SSC13 and SSC15. 

Furthermore, the co-expression analysis identified four regulatory genes modulating the 

levels of different FAs in the 3BCs, as well as the expression of other lipid metabolism 

genes. Our results increase the knowledge of the genetic basis of gene expression 

regulation in muscle lipid metabolism. Overall, the expression of genes related to lipid 

metabolism is regulated in a complex way and further validations are needed to 

corroborate our findings. 

 



Paper I 

 

93 
 

Ethics approval 

Animal care and procedures were carried out following the Spanish Policy for Animal 

Protection RD1201/05 and the European Union Directive 86/609 about the protection 

of animals used in experimentation. 

 

Data and model availability statement 

All relevant data produced or evaluated in this research are disclosed in the paper as 

well as its supplementary information files. Additional materials can be requested to 

JMF. 

 

Declaration of Generative AI and AI-assisted technologies in the writing 

process 

During the preparation of this work, the author used the ChatGPT tool in order to 

correct potential grammatical errors, search for synonyms, enhance the author's 

written sentences, as well as to translate different words related to this field. 

 

Author ORCIDs 

M. Passols: https://orcid.org/0000-0002-6853-4119 

F. Llobet-Cabau: https://orcid.org/0000-0002-2769-5741 

C. Sebastià: https://orcid.org/0000-0003-2250-6451 

J. Valdés: https://orcid.org/0000-0001-5314-0988 

A. Castelló: https://orcid.org/0000-0001-8497-6251 

L. Criado-Mesas: https://orcid.org/0000-0002-1115-4131 

J.M. Folch: https://orcid.org/0000-0003-3689-1303 



Paper I 

 

94 
 

A. Sánchez: https://orcid.org/0000-0001-9160-1124 

 

Author contributions 

JMF conceived the study and was the principal investigator of the project with the 

participation of AS. JMF collected the animal samples. MP, FLC and LCM performed the 

total RNA isolation. Real-time qPCR expression analyis was performed by MP, FLC, AC 

and LCM. MP, FLC and LCM performed the bioinformatic analysis to generate the gene 

expression data. MP, FLC, CS and JVH participated in data processing and bioinformatic 

methods. JMF, CS and MP proposed the statistical methodology and performed the 

global association study and gene functional analysis. JMF reviewed the statistical 

methodology and conceived the structure of the paper. MP and JMF wrote the paper. 

All authors critically revised and approved the final manuscript. 

 

Declaration of interest 

The authors declare no conflict of interest 

 

Acknowledgements 

We want to thank all of the members of the INIA, IRTA, and UAB institutions which 

contributed to the generation of the animal material used in the current study.  

 

Financial support statement 

This work was supported by the Spanish Ministerio de Economia y Competitividad 

(MINECO), the Ministerio de Ciencia e Innovación (MICINN) and the Fondo Europeo de 

Desarrollo Regional (FEDER) with project references AGL2017-82641-R and PID2020-

112677RB-C22. We acknowledge MINECO for the “Severo Ochoa” Programme for 

Centres of Excellence in R&D (Project No. CEX2019-000902-S) to 



Paper I 

 

95 
 

the Centre for Research in Agricultural Genomics (CRAG) and to the programmes of 

Centres de Recerca de Catalunya (CERCA). M. Passols was funded with an FPI felowship 

from MINECO (PRE2018-085350), L. Criado-Mesas with a FPI (BES-2015-075403), J. 

Valdés-Hernández with a FI PhD grant from “Agència de Gestió d’Ajuts Universitaris i de 

Recerca (AGAUR)” from Generalitat de Catalunya (2019 FI B_00787), and C. Sebastià 

with a FI from AGAUR (2020 FI_B 00225).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Paper I 

 

96 
 

References 

Bahelka, I., Hanusová, E., Peškovičová, D., & Demo, P. (2007). The effect of sex and 

slaughter weight on intramuscular fat content and its relationship to carcass 

traits of pigs. Czech Journal of Animal Science, 52(5), 122–129. 

https://doi.org/10.17221/2233-cjas 

Ballester, M., Cordón, R., & Folch, J. M. (2013). DAG expression: High-throughput gene 

expression analysis of real-time PCR data using standard curves for relative 

quantification. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0080385 

Ballester, M., Ramayo-Caldas, Y., Revilla, M., Corominas, J., Castelló, A., Estellé, J., 

Fernández, A. I., & Folch, J. M. (2017). Integration of liver gene co-expression 

networks and eGWAs analyses highlighted candidate regulators implicated in 

lipid metabolism in pigs. Scientific Reports, 7(April). 

https://doi.org/10.1038/srep46539 

Benítez, R., Fernández, A., Isabel, B., Núñez, Y., De Mercado, E., Gómez-Izquierdo, E., 

García-Casco, J., López-Bote, C., & Óvilo, C. (2018). Modulatory effects of breed, 

feeding status, and diet on adipogenic, lipogenic, and lipolytic gene expression in 

growing iberian and duroc pigs. International Journal of Molecular Sciences, 

19(1). https://doi.org/10.3390/ijms19010022 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: a Practical 

and Powerful Approach to Multiple Testing. In J. R. Statist. Soc. B (Vol. 57, Issue 

I). 

Cao, J., Li, J. A., Li, D., Tobin, J. F., & Gimeno, R. E. (2006). Molecular identification of 

microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de 

novo triacylglycerol synthesis. Proceedings of the National Academy of Sciences 

of the United States of America, 103(52), 19695–19700. 

https://doi.org/10.1073/pnas.0609140103 

Chernukha, I., Kotenkova, E., Pchelkina, V., Kasimova, T., Surzhik, A., & Fedulova, L. 

(2023). Pork Fat and Meat : A Balance between Consumer Expectations and 

Nutrient Composition of Four Pig Breeds. 

Crespo-Piazuelo, D., Criado-Mesas, L., Revilla, M., Castelló, A., Noguera, J. L., Fernández, 

A. I., Ballester, M., & Folch, J. M. (2020). Identification of strong candidate genes 

for backfat and intramuscular fatty acid composition in three crosses based on 

the Iberian pig. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-

70894-2 

Criado-Mesas, L., Ballester, M., Crespo-Piazuelo, D., Castelló, A., Fernández, A. I., & 

Folch, J. M. (2020). Identification of eQTLs associated with lipid metabolism in 



Paper I 

 

97 
 

Longissimus dorsi muscle of pigs with different genetic backgrounds. Scientific 

Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-67015-4 

Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., 

Austine-Orimoloye, O., Azov, A. G., Barnes, I., Bennett, R., Berry, A., Bhai, J., 

Bignell, A., Billis, K., Boddu, S., Brooks, L., Charkhchi, M., Cummins, C., Da Rin 

Fioretto, L., … Flicek, P. (2022). Ensembl 2022. Nucleic Acids Research, 50(D1), 

D988–D995. https://doi.org/10.1093/nar/gkab1049 

Dibble, C. (2013). Nat Cell Biol. Nat Cell Biol, 15(6), 555–564. 

https://doi.org/10.1038/ncb2763.Signal 

Donald, B. J. (2012). Fatty acid regulation of hepatic lipid metabolism. Current Opinion 

in Clinical Nutrition and Metabolic Care, 14(2), 115–120. 

https://doi.org/10.1097/MCO.0b013e328342991c.Fatty 

Font-I-Furnols, M., Brun, A., & Gispert, M. (2019). Intramuscular fat content in different 

muscles, locations, weights and genotype-sexes and its prediction in live pigs 

with computed tomography. Animal, 13(3), 666–674. 

https://doi.org/10.1017/S1751731118002021 

Ge, S. X., Jung, D., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene-set enrichment 

tool for animals and plants. Bioinformatics, 36(8), 2628–2629. 

https://doi.org/10.1093/bioinformatics/btz931 

Han, X., Jiang, T., Yang, H., Zhang, Q., Wang, W., Fan, B., & Liu, B. (2012). Investigation 

of four porcine candidate genes (H-FABP, MYOD1, UCP3 and MASTR) for meat 

quality traits in Large White pigs. Molecular Biology Reports, 39(6), 6599–6605. 

https://doi.org/10.1007/s11033-012-1490-6 

Hu, Y., Li, H., Lu, L., Manichaikul, A., Zhu, J., Chen, I. Y. der, Sun, L., Liang, S., Siscovick, D. 

S., Steffen, L. M., Tsai, M. Y., Rich, S. S., Lemaitre, R. N., & Lin, X. (2015). Genome-

wide meta-analyses identify novel loci associated with n-3 and n-6 

polyunsaturated fatty acid levels in chinese and european-ancestry populations. 

Human Molecular Genetics, 25(6), 1215–1224. 

https://doi.org/10.1093/hmg/ddw002 

Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, 

P., Roth, A., Simonovic, M., Bork, P., & von Mering, C. (2009). STRING 8 - A global 

view on proteins and their functional interactions in 630 organisms. Nucleic Acids 

Research, 37(SUPPL. 1). https://doi.org/10.1093/nar/gkn760 

Kliewer, S. A., Lehmann, J. M., & Willson, T. M. (1999). Orphan nuclear receptors: Shifting 

endocrinology into reverse. Science, 284(5415), 757–760. 

https://doi.org/10.1126/science.284.5415.757 



Paper I 

 

98 
 

Lai, C. Q., Parnell, L. D., & Ordovas, J. M. (2005). The APOA1/C3/A4/A5 gene cluster, lipid 

metabolism and cardiovascular disease risk. Current Opinion in Lipidology, 16(2), 

153–166. https://doi.org/10.1097/01.mol.0000162320.54795.68 

Lin, J., Cao, C., Tao, C., Ye, R., Dong, M., Zheng, Q., Wang, C., Jiang, X., Qin, G., Yan, C., Li, 

K., Speakman, J. R., Wang, Y., Jin, W., & Zhao, J. (2017). Cold adaptation in pigs 

depends on UCP3 in beige adipocytes. Journal of Molecular Cell Biology, 9(5), 

364–375. https://doi.org/10.1093/jmcb/mjx018 

Liu, D. D., Han, C. C., Wan, H. F., He, F., Xu, H. Y., Wei, S. H., Du, X. H., & Xu, F. (2016). 

Effects of inhibiting PI3K-Akt-mTOR pathway on lipid metabolism homeostasis in 

goose primary hepatocytes. Animal, 10(8), 1319–1327. 

https://doi.org/10.1017/S1751731116000380 

Lopez-Bote, C. J. (1998). Sustained utilization of the Iberian pig breed. Meat Science, 49, 

S17–S27. https://doi.org/10.1016/S0309-1740(98)90036-5 

Ma, L., Tsatsos, N. G., & Towle, H. C. (2005). Direct role of ChREBP·Mlx in regulating 

hepatic glucose-responsive genes. Journal of Biological Chemistry, 280(12), 

12019–12027. https://doi.org/10.1074/jbc.M413063200 

Martínez-Montes, Á. M., Fernández, A., Muñoz, M., Noguera, J. L., Folch, J. M., & 

Fernández, A. I. (2018). Using genome wide association studies to identify 

common QTL regions in three different genetic backgrounds based on Iberian pig 

breed. PLoS ONE, 13(3). https://doi.org/10.1371/journal.pone.0190184 

McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P., & Cunningham, F. (2010). 

Deriving the consequences of genomic variants with the Ensembl API and SNP 

Effect Predictor. Bioinformatics, 26(16), 2069–2070. 

https://doi.org/10.1093/bioinformatics/btq330 

Meirhaeghe, A., Fajas, L., Gouilleux, F., Cottel, D., Helbecque, N., Auwerx, J., & Amouyel, 

P. (2003). A functional polymorphism in a STAT5B site of the human PPARγ3 gene 

promoter affects height and lipid metabolism in a French population. 

Arteriosclerosis, Thrombosis, and Vascular Biology, 23(2), 289–294. 

https://doi.org/10.1161/01.ATV.0000051382.28752.FE 

Ouyang, X., Ahmad, I., Johnson, M. S., Redmann, M., Craver, J., Wani, W. Y., Benavides, 

G. A., Chacko, B., Li, P., Young, M., Jegga, A. G., Darley-Usmar, V., & Zhang, J. 

(2020). Nuclear receptor binding factor 2 (NRBF2) is required for learning and 

memory. Laboratory Investigation, 100(9), 1238–1251. 

https://doi.org/10.1038/s41374-020-0433-4 

Pan, S., Zhang, L., Liu, Z., & Xing, H. (2021). Myostatin suppresses adipogenic 

differentiation and lipid accumulation by activating crosstalk between ERK1/2 



Paper I 

 

99 
 

and PKA signaling pathways in porcine subcutaneous preadipocytes. Journal of 

Animal Science, 99(12), 1–15. https://doi.org/10.1093/jas/skab287 

Puig-Oliveras, A., Ballester, M., Corominas, J., Revilla, M., Estellé, J., Fernández, A. I., 

Ramayo-Caldas, Y., & Folch, J. M. (2014). A co-association network analysis of the 

genetic determination of pig conformation, growth and fatness. PLoS ONE, 9(12). 

https://doi.org/10.1371/journal.pone.0114862 

Puig-Oliveras, A., Ramayo-Caldas, Y., Corominas, J., Estellé, J., Pérez-Montarelo, D., 

Hudson, N. J., Casellas, J., & Ballester, J. M. F. M. (2014). Differences in muscle 

transcriptome among pigs phenotypically extreme for fatty acid composition. 

PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099720 

Puig-Oliveras, A., Revilla, M., Castelló, A., Fernández, A. I., Folch, J. M., & Ballester, M. 

(2016). Expression-based GWAS identifies variants, gene interactions and key 

regulators affecting intramuscular fatty acid content and composition in porcine 

meat. Scientific Reports, 6. https://doi.org/10.1038/srep31803 

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, 

J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set 

for whole-genome association and population-based linkage analyses. American 

Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795 

Ramayo-Caldas, Y., Mercadé, A., Castelló, A., Yang, B., Rodríguez, C., Alves, E., Díaz, I., 

Ibáñez-Escriche, # N, Noguera, J. L., Pérez-Enciso, M., Fernández, †║ A I, & Folch, 

J. M. (2012). Genome-wide association study for intramuscular fatty acid 

composition in an Iberian × Landrace cross 1. https://doi.org/10.2527/jas2011-

4900 

Ramos, A. M., Crooijmans, R. P. M. A., Affara, N. A., Amaral, A. J., Archibald, A. L., Beever, 

J. E., Bendixen, C., Churcher, C., Clark, R., Dehais, P., Hansen, M. S., Hedegaard, 

J., Hu, Z. L., Kerstens, H. H., Law, A. S., Megens, H. J., Milan, D., Nonneman, D. J., 

Rohrer, G. A., … Groenen, M. A. M. (2009). Design of a high density SNP 

genotyping assay in the pig using SNPs identified and characterized by next 

generation sequencing technology. PLoS ONE, 4(8). 

https://doi.org/10.1371/journal.pone.0006524 

Revilla, M., Puig-Oliveras, A., Crespo-Piazuelo, D., Criado-Mesas, L., Castelló, A., 

Fernández, A. I., Ballester, M., & Folch, J. M. (2018). Expression analysis of 

candidate genes for fatty acid composition in adipose tissue and identification of 

regulatory regions. Scientific Reports, 8(1), 1–14. 

https://doi.org/10.1038/s41598-018-20473-3 

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., 

Schwikowski, B., & Ideker, T. (2003). Cytoscape: A Software Environment for 



Paper I 

 

100 
 

Integrated Models. Genome Research, 13(22), 426. 

https://doi.org/10.1101/gr.1239303.metabolite 

Si, J., & Collins, S. J. (2002). IL-3-induced enhancement of retinoic acid receptor activity 

is mediated through Stat5, which physically associates with retinoic acid 

receptors in an IL-3-dependent manner. Blood, 100(13), 4401–4409. 

https://doi.org/10.1182/blood-2001-12-0374 

Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential 

fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365–379. 

https://doi.org/10.1016/S0753-3322(02)00253-6 

Smedley, D., Haider, S., Durinck, S., Pandini, L., Provero, P., Allen, J., Arnaiz, O., Awedh, 

M. H., Baldock, R., Barbiera, G., Bardou, P., Beck, T., Blake, A., Bonierbale, M., 

Brookes, A. J., Bucci, G., Buetti, I., Burge, S., Cabau, C., … Kasprzyk, A. (2015). The 

BioMart community portal: An innovative alternative to large, centralized data 

repositories. Nucleic Acids Research, 43(W1), W589–W598. 

https://doi.org/10.1093/nar/gkv350 

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Iny Stein, T., 

Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan-

Golan, Y., Kohn, A., Rappaport, N., Safran, M., & Lancet, D. (2016). The GeneCards 

suite: From gene data mining to disease genome sequence analyses. Current 

Protocols in Bioinformatics, 2016(June), 1.30.1-1.30.33. 

https://doi.org/10.1002/cpbi.5 

Stephens, J. M., Morrison, R. F., & Pilch, P. F. (1996). The expression and regulation of 

STATs during 3T3-L1 adipocyte differentiation. Journal of Biological Chemistry, 

271(18), 10441–10444. https://doi.org/10.1074/jbc.271.18.10441 

Terenina, E., Babigumira, B. M., le Mignon, G., Bazovkina, D., Rousseau, S., Salin, F., 

Bendixen, C., & Mormede, P. (2013). Association study of molecular 

polymorphisms in candidate genes related to stress responses with production 

and meat quality traits in pigs. Domestic Animal Endocrinology, 44(2), 81–97. 

https://doi.org/10.1016/j.domaniend.2012.09.004 

Varlamov, O., Bethea, C. L., & Roberts, C. T. (2014). Sex-specific differences in lipid and 

glucose metabolism. Frontiers in Endocrinology, 5(DEC). 

https://doi.org/10.3389/fendo.2014.00241 

Watson-Haigh, N. S., Kadarmideen, H. N., & Reverter, A. (2009). PCIT: An R package for 

weighted gene co-expression networks based on partial correlation and 

information theory approaches. Bioinformatics, 26(3), 411–413. 

https://doi.org/10.1093/bioinformatics/btp674 



Paper I 

 

101 
 

Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, 

S. I., & Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat 

quality: A review. In Meat Science (Vol. 78, Issue 4, pp. 343–358). 

https://doi.org/10.1016/j.meatsci.2007.07.019 

Wu, K., Tan, X. Y., Xu, Y. H., Chen, G. H., & Zhuo, M. Q. (2018). Functional analysis of 

promoters of genes in lipid metabolism and their transcriptional response to 

STAT3 under leptin signals. Genes, 9(7). https://doi.org/10.3390/genes9070334 

Xin, X. B., Yang, S. P., Li, X., Liu, X. F., Zhang, L. L., Ding, X. Bin, Zhang, S., Li, G. P., & Guo, 

H. (2020). Proteomics insights into the effects of MSTN on muscle glucose and 

lipid metabolism in genetically edited cattle. General and Comparative 

Endocrinology, 291, 113237. https://doi.org/10.1016/j.ygcen.2019.113237 

Zhang, X., & Lerman, L. O. (2016). Investigating the Metabolic Syndrome. In Toxicologic 

Pathology (Vol. 44, Issue 3, pp. 358–366). SAGE Publications Inc. 

https://doi.org/10.1177/0192623316630835 

ZHANG, Y. Z., ZHANG, Z. M., ZHOU, L. T., ZHU, J., ZHANG, X. H., QI, W., DING, S., XU, Q., 

HAN, X., ZHAO, Y. M., SONG, X. Y., ZHAO, T. Y., & YE, L. (2019). Di (2-ethylhexyl) 

phthalate Disorders Lipid Metabolism via TYK2/STAT1 and Autophagy in Rats. 

Biomedical and Environmental Sciences, 32(6), 406–418. 

https://doi.org/10.3967/bes2019.055 

Zhao, Y., Chen, S., Yuan, J., Shi, Y., Wang, Y., Xi, Y., Qi, X., Guo, Y., Sheng, X., Liu, J., Zhou, 

L., Wang, C., & Xing, K. (2023). Comprehensive Analysis of the lncRNA–miRNA–

mRNA Regulatory Network for Intramuscular Fat in Pigs. Genes, 14(1). 

https://doi.org/10.3390/genes14010168 

Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for 

association studies. Nature Genetics, 44(7), 821–824. 

https://doi.org/10.1038/ng.2310 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PAPER II 

 

 

 

Expression quantitative trait loci (eQTL) identification 

and its relationship with lipid metabolism in pig muscle 

 

Passols1, M., Sebastià1,2, C., Criado-Mesas1,2, L., Estellé3, J., Crespo-Piazuelo5, D., 

Castelló1,2, A., González-Prendes4, R., Vos de4, J., Madsen4, O., Valdés-Hernández1,2, J., 

Ramayo-Caldas5, Y., Sánchez1,2, A., Folch1,2, J.M. 

 

1Plant and Animal Genomics, Centre de Recerca Agrigenòmica (CRAG), Consorcio CSIC-

IRTA-UAB-UB, Campus UAB, Bellaterra, España. 2Departamento de Ciencia Animal y de 

los Alimentos, Facultad de Veterinaria, Universidad Autónoma de Barcelona (UAB), 

Bellaterra, España. 3Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-

en-Josas, France. 4Animal Breeding and Genomics, Wageningen University & Research, 

6708PB, Wageningen, The Netherlands. 5Genética y Mejora Animal, Institut de Recerca 

i Tecnologia Agroalimentària (IRTA), Torre Marimon, Caldes de Montbui, España. 

 

Corresponding author: Magí Passols 

 

Manuscript in preparation 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Paper II 

 

105 
 

Abstract 

Pig is one of the main sources of meat in the world, so the quality of its meat and its 

nutritional values are gaining more interest. Genetic dissection of gene expression could 

help us to understand the genetic architecture of complex phenotypes such as meat 

quality in pigs. This work aimed to identify expression quantitative trait loci (eQTLs) 

within the transcriptome of the longissimus dorsi muscle from a crossbreed of 129 

Iberian x Duroc pigs using RNA-Seq data and analyse its relationship with lipid 

metabolism and FA composition. The muscle gene expression data and the SNP 

genotypes obtained from the Axiom Porcine Genotyping Array (Affymetrix) were used 

to carry out the expression genome-wide association studies (eGWAS) and the eQTL 

mapping. A total of 2,678 eQTLs were identified, of which 620 were cis-eQTLs 

corresponding to 598 cis-genes and 2,058 trans-eQTLs corresponding to 604 trans-

genes. A total of 854 genes presented significant associations with the expression-SNPs 

(eSNPs), among them 101 genes were associated with lipid metabolism pathways. In 

addition, a co-expression analysis performed on 75 cis-genes and 71 trans-genes related 

to lipid metabolism and fatty acid (FA) composition revealed the regulatory role of five 

genes (ACAA1, CLN, CYP2B22, GBA and LDHD) in modulating the levels of eight different 

FAs, as well as regulating the expression of other candidate genes associated with lipid 

metabolism. Our results increase the knowledge of the genomic basis of gene expression 

regulation in pig skeletal muscle.  
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Introduction 

The pig is an important livestock animal because it is one of the main sources of meat in 

the world. Meat is considered an important source of nutrients, although a high 

consumption can increase the risk of some types of chronic diseases (Godfray et al., 

2018). In the last few years, consumers are more concerned about healthy and high-

quality food. The relationship between muscle growth, fat deposition, and the content 

of intramuscular fat (IMF) and fatty acid (FA) composition are significant determinants 

of porcine meat quality characteristics, including its sensory attributes and nutritional 

value (Wood et al., 2004, 2008b). According to Wood et al. (2008a), a high backfat 

content is considered a less desirable trait, whereas meat with high IMF is known for its 

enhanced taste and juiciness. Furthermore, the FA composition of IMF plays a crucial 

role in meat quality parameters. A previous study conducted by Wood et al. (2008b) 

reported that monounsaturated FAs (MUFAs) provide greater oxidative stability 

compared to polyunsaturated FAs (PUFAs), resulting in improved meat taste and colour. 

On the other hand, PUFA consumption decreases the risk of suffering cardiovascular 

diseases, being healthier than saturated FAs (SFA) (Michas et al., 2014). In pork, the SFA 

and MUFA are positively correlated to tenderness, whereas PUFA are negatively 

correlated (Cameron & Enser, 1991). 

Investigating the gene expression patterns in metabolic tissues offers a potential 

pathway to elucidate the molecular mechanisms influencing the phenotypic variation 

observed in IMF content and FA composition in animals. Next-generation sequencing 

(NGS) technologies have provided new tools for both gene-expression profiling and 

transcriptome characterization. The RNA sequencing (RNA-Seq) method is based on the 

sequencing of RNA molecules present in a given sample. The obtained counts 

corresponding to each transcript can be used for quantification and the sequences can 

be mapped to the genome for their annotation. The transcriptome analyses allow not 

only to study the gene expression variation, but also the identification of new isoforms, 

splicing events, and different promoter signals. Previous studies on the porcine skeletal 

muscle identified genes affecting IMF content and FA composition (Cardoso et al., 2017; 

Crespo-Piazuelo et al., 2020; Criado-Mesas et al., 2020; González-Prendes et al., 2019; 

Muñoz et al., 2018; Puig-Oliveras et al., 2016), drip loss (Heidt et al., 2013), and lipid 
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metabolism (Steibel et al., 2011a) among other traits. Moreover, several studies 

identified candidate genes for FA composition in muscle through RNA-Seq analysis 

(Crespo-Piazuelo et al., 2020; Huang et al., 2018; Jin et al., 2021; Y. Liu et al., 2020; Puig-

Oliveras et al., 2014). 

The detection of expression Quantitative Trait Loci (eQTL) has been proposed as a good 

strategy to deepen the study of the genetic architecture of complex traits (Gilad et al., 

2008). This technique allows for the identification of candidate genes, causal variants, 

and molecular pathways associated with phenotypic differences in complex traits. 

Several studies have been published using the eGWAS-based eQTL detection 

methodology to identify various traits, some of which are related to productive 

characteristics and meat quality traits. Furthermore, different analyses have been 

performed using eQTL detection methodology and meat quality traits, such as meat 

colour, muscle size, IMF deposition, drip loss, FA composition and pH (Leal-Gutiérrez et 

al., 2020; Y. Liu et al., 2020; Ponsuksili et al., 2010; Steibel et al., 2011b). In addition, 

several studies have been carried out in our group to identify eQTLs for lipid metabolism 

candidate genes across different pig tissues and crosses (Ballester et al., 2017; Criado-

Mesas et al., 2020; Puig-Oliveras et al., 2016; Revilla et al., 2018) and using real-time 

qPCR expression data. 

The aim of this work was to study the porcine longissimus dorsi muscle transcriptome 

profile by RNA-Seq, to identify eQTL associated with lipid metabolism and FA 

composition pathways. 

 

Material and methods 

Pig population 

In the present study, 129 pigs were used (59 females and 70 males) belonging to an 

experimental backcross (25% Iberian and 75% Duroc, BC1_DU). Animal care and 

procedures were carried out following the Spanish Policy for Animal Protection 

RD1201/05 and the European Union Directive 86/609 about the protection of animals 

used in experimentation. All animals were maintained under the same intensive 
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conditions and fed ad libitum with a cereal-based commercial diet on NOVA GENÈTICA 

S.A. experimental farm (Lleida, Spain). Detailed information of generation schemes, diet, 

growth, and housing conditions was described in (Martínez-Montes et al., 2018). 

Slaughtering procedures were conducted in a certified abattoir according to the 

institutional and national guidelines for the Good Experimental Practices and approved 

by the Ethical Committee of the Institution (IRTA – Institut de Recerca i Tecnologia 

Agroalimentàries). The longissimus dorsi muscle samples were collected, snap-frozen in 

liquid nitrogen, and stored at -80º C until further RNA isolation. Diaphragm samples 

were collected for DNA extraction. 

 

Genotyping  

Genomic DNA was isolated from diaphragm tissue by the standard method of phenol-

chloroform extraction and was quantified with a NanoDrop-2000 spectrophotometer 

(Thermo Scientific). The 129 animals were then genotyped using the Axiom Porcine 

Genotyping Array 660K (Affymetrix) according to the manufacturer’s protocol and only 

SNPs mapping against the Sscrofa 11.1 assembly were used. Quality Control (QC) was 

done using PLINK v1.90b4.3 software  (Purcell et al., 2007) filtering out SNPs with a 

minor allele frequency (MAF) of ≤ 5%, missing genotype call rate per SNP ≥ 1% and 

linkage disequilibrium (R2) ≥ 0.7. Then, the missing genotypes were imputed using 

Beagle v5.1 software (Browning et al., 2018). Finally, 76,318 SNPs distributed along all 

autosomes and X chromosomes passed the criteria and were used for further analysis. 

 

RNA isolation and sequencing 

Total RNA was isolated from the longissimus dorsi tissue of 129 animals using the 

RiboPure kit (Ambion, Austin, TX) following the manufacturer’s protocol. RNA integrity 

was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies) and purity and 

quantification using a NanoDrop-2000 spectrophotometer (Thermo Scientific). Only the 

RNAs with integrity above seven (RIN >7) were used for the RNA-Seq experiment. Library 

preparation and sequencing were performed at CNAG Institute (Centro Nacional de 

Análisis Genómico, Barcelona, Spain). For each sample, one paired-end library was 
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prepared using TruSeq Stranded mRNA kit (Illumina, Inc.; San Diego CA, USA). To 

discriminate among samples, libraries were labelled by barcoding and pooled to be run 

in Illumina HiSeq 3000/4000 instruments (Illumina, San Diego CA). In brief, in this study 

2 × 75 bp reads, a mean of 45.09 million of paired-reads per sample, and an average of 

90.06% (ranging from 80.51 to 96.09%) of uniquely mapped reads were generated. 

 

Bioinformatic analyses 

We ran MultiQC v0.7 (Ewels et al., 2016) and FastQC v0.11.9 (Andrews, 2010) for the 

quality control and basic statistics of reads. RNA-Seq reads were mapped by using the 

STAR software v2.7.9a (Dobin et al., 2013) with default parameters to the pig reference 

genome assembly Sscrofa 11.1 and to the annotation from Ensembl Genes 107 

Database. Transcripts were assembled and quantified by HTSeq v0.10.0 (Anders et al., 

2015). Data pre-processing and quality control were performed with the EdgeR v3.10.5 

(Robinson et al., 2009) and Limma v3.26.0 (Ritchie et al., 2015) R packages. First, 

unexpressed genes were filtered out retaining genes having more than one read per 

million in at least 25% of the samples. Finally, a total of 11,054 genes were considered 

to be expressed in the muscle samples and further analysed. Expressed gene counts 

were normalized using the log counts per million (logCPM) with the Limma-trend 

approach (Law et al., 2014). 

 

Expression Genome-wide association studies 

Genomic association studies between each gene expression measure and SNPs 

genotypes (eGWAS) were performed through a linear model using GEMMA v0.98.1 

software (X. Zhou & Stephens, 2012). 

y = Wα + xβ+ u + ε; u ~ MVNn(0, λτ-1K), ε~ MVNn(0, τ-1In), 

in which: y was the vector of phenotypes for n individuals; W is a matrix nxc of 

covariables (fixed effects) that includes a column of ones, sex (2 levels) and slaughtering 

batch (5 levels); α is a c vector with corresponding coefficients, including the intercept; 

x is an n vector with the marker genotypes; β is the size of the marker effect, u is an n 
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vector of random effects (additive genetic effects), ε is an n vector of errors. The random 

effects vector is assumed to follow a normal multivariate n-dimensional distribution 

(MVNn) where τ-1 is the variance of residual errors; λ is the quotient between the two 

components of variance; K is an nxn Kinship matrix calculated from the SNPs. The vector 

of errors is assumed to follow a distribution MVNn, where ln is an nxn identity matrix. 

GEMMA software calculates the p-value from the Wald statistical test for each SNP 

comparing the null hypothesis that the SNP has no effect versus the alternative 

hypothesis that the SNP effect is different from zero. 

An eGWAS using GEMMA software were conducted between 76,318 SNPs distributed 

along the genome of the animals and 11,054 genes expressed in muscle. An FDR (False 

Discovery Rate) filtering method of Benjamini and Hochberg (Benjamini & Hochberg, 

1995) with the function p.adjust of R was applied for each gene with a cut-off threshold 

of FDR ≤ 0.01. Only associations with a p-value lower than this established threshold 

were considered significant.  

 

Identification of cis- and trans-eQTLs  

In order to define the regions, chromosomes were divided into windows of 10 Mb long. 

Within these windows, the first and the last SNPs were taken as the start and the end of 

the eQTL. Subsequently, we categorized the eQTLs as either cis or trans, depending on 

their distance from the target gene. The cis-eQTL mapping window was defined from 

0.5 Mb upstream of the start of the gene to 0.5 Mb downstream of the gene end; all 

other regions were defined as trans-eQTLs. Additionally, we filtered-out the eQTLs with 

less than three significant SNPs. 

 

Gene annotation 

The extraction of the genes contained in the eQTLs was performed with Biomart 

(Smedley et al., 2015) tool from the Ensembl project (www.ensembl.org; release 107) 

using the Sscrofa 11.1 reference assembly. Additionally, a 1 Mb extension was included 

at both ends of the genomic region. Functional predictions of the significant SNPs 

http://www.ensembl.org/
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comprised in the eQTLs were carried out using Variant Effect Predictor tool (McLaren et 

al., 2016) and the Ensembl Genes 107 Database. With these tools, the location of 

expression SNPs (eSNPs) in relation to a gene can be defined as outside of the gene, in 

untranslated regions (UTR) or in the coding sequence.  

 

Gene functional classification 

The ShinyGO (v0.77) (Ge et al., 2020) program was used to identify the main biological 

functions and the gene ontology association from the most important pathways of the 

genes mapped within the eQTLs. Moreover, the STRING (v11.5) (Jensen et al., 2009) 

program was used to perform the functional enrichment analysis of genes found 

significantly associated in the eGWAS studies and also to integrate and cluster the genes 

regarding their Gene Ontology. 

 

Co-expression and functional analysis  

In order to prioritize eQTLs influencing the expression of genes associated with lipid 

metabolism and FA metabolism, we employed a filtering approach based on gene 

ontology utilizing the Biomart tool (Smedley et al., 2015) from the Ensembl project 

(www.ensembl.org; release 107).  

Furthermore, we performed a co-expression analysis with the gene expression data of 

lipid metabolism-related genes associated with eQTLs and the relative quantification 

data of 14 different FAs in the longissimus dorsi muscle, as previously obtained by 

Crespo-Piazuelo et al. (2020). Weighted gene expression networks were calculated using 

the PCIT algorithm (Watson-Haigh et al., 2009), which employs first-order partial 

correlation coefficients and an information theory approach to detect primary gene 

interactions. Only significant interactions between genes were considered for further 

analysis. Networks were represented with the Cytoscape v3.9.1 (Shannon et al., 2003) 

program. 

 

http://www.ensembl.org/
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Results 

Identification of eQTL regions 

An eGWAS was performed by combining the pig muscle gene expression values 

measured by RNA-Seq, and the genotypes of 76,318 distributed along the Sus Scrofa 

chromosomes in 129 BC1_DU animals. The eGWAS identified a total of 34,003 

significantly associated eSNPs located in 2,678 Sus scrofa chromosome regions 

associated with the expression of 854 genes (FDR<0.01). Chromosomes SSC6, SSC14, 

SSC2, SSC7 and SSC13 presented a higher number of significantly associated eSNPs, 

while SSC18, SSC11, and SSC5 showed a lower number of significantly associated eSNPs.  

A total of 2,058 eQTLs showed trans-regulatory effects on gene expression of 604 genes. 

On the other hand, 620 eQTLs were classified as cis-acting eQTLs for 598 genes. The 

analysis of eQTL genomic regions revealed that cis- and trans-eQTLs were widely 

distributed on all autosomes. Both cis- and trans-eQTLs are represented in Figure 1A. 

Furthermore, from the 854 significantly associated genes, we identified 250 with only 

cis-eQTLs, 256 only with trans-eQTLs and 348 genes that presented both cis- and trans-

regions (Figure 1B). 
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Figure 1. A. Distribution of cis- and trans-eQTLs along the autosomes. The green group 

represents the cis-eQTLs (CIS). The blue group represents the trans-eQTLs (TRANS). B. 

Venn diagram of cis-genes and trans-genes significantly associated in the eGWAS 

analysis. 

Furthermore, we analysed the eSNPs associated to the eQTLs, and the predictions of 

their impact were performed using Variant Effect Predictor from Ensembl tools. We 

observed that a higher proportion of eSNPs were located in intronic (50.25%), intergenic 

(27.5%) or upstream (9.8%) regions. The less-represented SNP positions were in 

downstream (6.1%), coding regions (3.2%) and 3’ UTR (2.1%) regions. A 0.71% of eSNPs 

are missense, thus producing an amino-acid change in the corresponding protein. In 

addition, we performed an eQTL mapping with the significantly associated eSNPs. 

Among the 34,003 eSNPs (Figure 2), 3,846 corresponded to eSNPs located in cis-eQTLs 

(blue line on the diagonal in Figure 3) and the other 30,083 eSNPs were associated to 

trans-eQTLs. 
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Figure 2. Scatter plot of all characterized eQTL. Each dot represents an eSNP-gene pair, 

with the vertical direction linking to the eSNP and the horizontal direction linking to the 

gene. The blue line represents the cis-acting eSNPs. 

 

Functional analysis of the eQTL-associated genes 

To understand biological processes that could be affected by significantly associated 

genes in the eGWAS studies, a total of 854 genes were analysed with ShinyGO software. 

A total of 76 clusters of overrepresented GO biological processes were identified, being 

the top three related to metabolic processes: small molecule metabolic process, oxoacid 

metabolic process and carboxylic acid metabolic process. All the GO biological terms and 

genes are described in Supplementary Table S1. 

 

Selection and functional analysis of lipid and FA metabolism genes 

Out of the 2,678 eQTLs associated with the 854 genes significantly associated in the 

eGWAS study, we filtered the genes based on their ontology related to lipid and FA 

metabolism pathways. A total of 275 eQTLs identified in 101 candidate genes were 

selected for further analysis (Supplementary Table S2). Among these, 78 eQTLs located 

in 75 genes were identified in cis-regions, while 197 eQTLs located in 71 genes were 

found in trans-regions. In addition, we observed 30 genes with only cis-regulatory 

regions, 26 genes with trans-regions, and 45 genes with both cis- and trans-eQTLs. 

In addition, we performed a functional analysis with ShinyGO software for the 101 

candidate genes for lipid and FA metabolism. These genes were divided into 10 different 

sub-processes based on their function (Supplementary Table S3). We want to highlight 

six genes (ACOX3, BDH2, HACL1, PEX7, PEX13 and SLC25A17) involved in at least seven 

lipid metabolism processes (FA metabolism, carboxylic acid metabolism, oxoacid 

metabolic, lipid oxidation, FA oxidation, FA catabolism and FA β-oxidation). All the sub-

processes for the 101 lipid metabolism genes are described in Supplementary Table S3. 
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Gene expression and fatty acid composition correlations 

In order to identify co-expression patterns in the lipid-related genes and muscle FA 

composition, a co-expression correlation using the PCIT algorithm (Watson-Haigh et al., 

2009) was performed. The analysis included the muscle gene expression data of the 75-

lipid metabolism candidate genes containing 78 cis-eQTLs and the relative abundance 

of 14 different FAs present in longissimus dorsi muscle in the 129 BC1_DU pigs. 

On the other hand, a second correlation analysis was performed between the gene 

expression data of 71 candidate genes involved in lipid metabolism containing 197 trans-

eQTLs and the relative abundance of 14 FAs present in the longissimus dorsi muscle of 

the 129 animals in the BC1_DU population. A network graph was constructed using the 

Cytoscape software (Shannon et al., 2003) (Figure 3 and 4). 
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Figure 3: Gene co-expression network in 129 animals using the PCIT algorithm (Watson-

Haigh et al., 2009). After filtering by significant r ≥ |0.3| for genes and r ≥ |0.6| for FAs, 

39 of the 75 cis-lipid initial genes and 12 different FAs are shown in this network. The 

node size represents the number of connections with other nodes. Green and red lines 

indicate positive and negative correlations, respectively. 

 

Notably, the genes LPGAT3, ACAA1, LDHD, and ACSM5 exhibited the highest number of 

correlated connections with other genes. Regarding the analysed FAs, 8 out of 14 FAs 

displayed significant correlations with five genes (ACAA1, CLN, CYP2B22, GBA and 

LDHD). ACAA1 gene expression exhibited negative correlations with the linoleic 

(C18:2(n-6)) (r = –0.32) and eicosadienoic (C20:2(n-6)) (r = –0.3) acids and positive 

correlations with the eicosanoid (C20:1(n-9)) (r = 0.33) acid. CLN6 gene expression 

presented positive correlations with stearic acid (C18:0) (r = 0.32) and C20:1(n-9)) (r = 

0.32). CYP2B22 gene expression showed positive correlations with palmitoleic (C16:1(n-

7) (r = 0.35), oleic (C18:1(n-9) (r = 0.34) and myristic (C14:0) (r = 0.3) acids. Moreover, 

GBA gene expression exhibited positive correlations with C18:0 (r = 0.32) and C20:1(n-

9) (r = 0.3). Conversely, LDHD gene expression showed negative correlations with the 

relative amount of C20:1(n-9) (r = –0.31), C20:2(n-6) (r = –0.35) and C20:3(n-6) (r = –

0.31). Finally, the strongest correlations within the entire network were observed 

between the genes CBR4 and ACSM5, with a correlation value of 0.52 and between the 

C20:4(n-6) and C20:3(n-6), with a correlation value of 0.97. 
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Figure 4: Gene co-expression network in 129 animals using the PCIT algorithm (Watson-

Haigh et al., 2009). After filtering by significant r ≥ |0.3| for genes and r ≥ |0.6| for FAs, 

40 of the 71 trans-lipid initial genes and 12 different FAs are shown in this network. The 

node size represents the number of connections with other nodes. Green and red lines 

indicate positive and negative correlations, respectively. 

 

Regarding the genes associated to the trans-eQTLs, the IPMK, ACAA1, COQ2 and CBR4 

genes showed the highest number of connections within the entire network. In relation 

to the FAs, a total of 7 out of 14 presented significant correlations with a set of four 

genes. ACAA1 gene expressions values showed two negative correlations with C18:2(n-

6) (r = –0.32) and C20:2(n-6) (r = –0.3) and positive correlations with C20:1(n-9) (r = 0.33). 
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Moreover, CYP2B22 gene expression presented three positive correlations with C14:0 (r 

= 0.3), C16:1(n-7) (r = 0.35) and C18:1(n-9) (r = 0.34). On the other hand, ECI gene 

expression exhibited a negative correlation (r = –0.3) with the C18:1(n-9). Conversely 

presented positive correlations with the C18:0 (r = 0.32) and C20:1(n-9) levels. Lastly, 

the strongest correlations within the network were between the genes CBR4 and ACSM5 

(r = 0.52) and between C20:4(n-6) and C20:3(n-6), exhibiting a correlation coefficient of 

0.96. 

 

Discussion 

eQTL analysis 

A cis-eQTL region, which modulates the expression of the analyzed gene in the eGWAS, 

is characterized by its proximity to the analyzed gene. We observed that 23.16% of the 

detected eQTLs (620) were located in cis-regions, associated with a total of 598 genes. 

These findings imply the presence of genetic variants regulating its expression either 

within the same gene or in its proximal genomic region. On the other hand, trans-eQTLs 

are associated with the expression of distant genes and frequently are located on 

different chromosomes (Cheung & Spielman, 2009). Trans-acting effects are often 

weaker than cis effects, hence trans-eQTLs are indeed more difficult to detect than cis-

eQTLs. However, we observed that 76.84% of the eQTLs were located in trans-regions 

and were associated with the expression of 604 genes. It should be noted that the 

classification of cis- and trans-eQTL depends on the chosen window cis-regions 

(Ponsuksili et al., 2010), defined as 0.5 Mb on either side of the associated gene in our 

study, which influences the number of regions categorized as cis or trans.  

Furthermore, in 348 genes both cis- and trans-eQTLs were detected, suggesting that 

various factors are regulating gene expression.  

 

Functional analysis of the eQTL-associated genes 

In order to explore the pathways associated with the genes significantly associated in 

the eGWAS analysis, we performed a gene ontology analysis using ShinyGO software. A 
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total of 76 clusters of overrepresented gene ontology biological processes were 

identified, where the top three overrepresented pathways were related to metabolic 

processes, in accordance with the analyzed tissue, which is longissimus dorsi. Skeletal 

muscle is a metabolic tissue due to its role in energy production, glucose regulation, and 

FA utilization (Merz & Thurmond, 2021).  

Out of the 76 biological processes identified in the functional analysis, seven were found 

to be associated with lipid and FA metabolism pathways, while eight were related to 

both positive and negative regulatory processes. Interestingly, the metabolic processes 

of oxoacids and carboxylic acid, which are among the top three identified metabolic 

processes in the functional analysis, are connected to important metabolic pathways. 

These processes are closely linked the Krebs cycle, lipid and FA metabolism, among 

others, demonstrating their importance in cellular activities and homeostasis (Smedley 

et al., 2015). 

 

Candidate genes for lipid metabolism  

This study focused on investigating the genetic underpinnings of lipid and FA 

metabolism pathways by employing an extensive approach. From the 854 genes that 

showed significant associations in the eGWAS study, a total of 101 genes with 275 eQTLs 

were linked to lipid and FA metabolism based on gene ontology annotations.  

Within this subset, a comprehensive analysis identified 78 cis-eQTLs, affecting 75 genes, 

eight of which were categorized as novel genes. On the other hand, 197 eQTLs located 

in trans-regions regulate the expression of 71 genes, including nine novel genes. 

Furthermore, we compared both results to identify common genes. We identified a total 

of 30 genes with cis-eQTLs, 26 genes with trans-eQTLs, and 45 genes with both cis- and 

trans-eQTLs. In relation to the 45 common genes, the modulation of gene expression is 

influenced by genetic factors located in both proximal and distal regions relative to the 

target gene, suggesting a complex genetic regulation landscape involving several 

mechanisms and regulatory factors.  

In addition, a detailed investigation of the 101 lipid-metabolism genes was performed 

using ShinyGO software. Through this analysis, these genes were divided into ten 
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distinct sub-processes, each aligning with a specific functional aspect. Particularly 

noteworthy were six genes (ACOX3, BDH2, HACL1, PEX7, PEX13, and SLC25A17) that 

exhibited involvement in seven lipid and FA metabolism pathways. Interestingly, the 

genes ACOX3, BDH2 and SLC25A17 have been identified as candidate genes related to 

meat quality traits. The Acyl-CoA oxidase 3 (ACOX3) gene is involved in peroxisomal lipid 

and FA metabolism (Stelzer et al., 2016). In a recent study published by Yu et al. (2023), 

it is proposed that the gene ACOX3 plays a role in regulating IMF deposition in the 

skeletal muscle of Qinchuan beef cattle. Furthermore, Ropka-Molik et al. (2020) 

examined molecular mechanisms linked to fat accumulation in Large White and Pietrain 

pigs through transcriptome analysis of skeletal muscle, identifying the involvement of 

the ACOX3 gene in fat deposition. Other investigations have demonstrated a clear 

correlation between ACOX3 gene expression and the regulation of IMF in broilers (Liu et 

al., 2017). 

Regarding the 3-Hydroxybutyrate dehydrogenase 2 (BDH2) gene, it functions differently 

from mitochondrial type-BDH1, as it participates in cytosolic ketone body utilization and 

contributes to auxiliary energy supply mechanisms during periods of starvation (Guo et 

al., 2006). In terms of lipid deposition, BDH2 gene expression has been noted to exhibit 

a positive correlation with adiposity, contributing to the production of precursors 

essential for lipid and sterol synthesis (Bonnet et al., 2008; Drew et al., 2015). In 

addition, Wang et al. (2021) demonstrated significant downregulation in both mRNA 

and protein levels of BDH2 within the high lipid deposition group in Nanyang black pigs, 

presenting it as a prospective candidate gene for meat quality traits. 

The solute carrier family 25 member 17 (SLC25A17) gene encodes a peroxisomal 

transporter of coenzyme-A, FAD and NAD+ cofactors (Agrimi et al., 2012) and it could 

have a role in the α-oxidation of FAs (Van Veldhoven, 2010). Furthermore, in a study 

performed by González-Prendes et al. (2017), discovered both cis- and trans-eQTLs that 

regulate the expression of the lipid-metabolism gene SLC25A17 in porcine skeletal 

muscle. 
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Gene expression and fatty acid composition correlations 

In this study, we investigated the relationship between the genes containing cis-eQTLs 

and the FAs composition in the porcine longissimus dorsi muscle. The ACAA1 gene 

expression appears to be linked to specific FAs (C20:1(n-9), C18:2(n-6) and C20:2(n-6)), 

indicating a potential role in FA metabolism and the processing or regulation of omega-

6 PUFAs. The positive correlations displayed between the C18:0 and C20:1(n-9) and the 

CLN6 gene expression, suggests that it is involved in lipid metabolic processes of this two 

FAs. On the other hand, the positive correlations between the CYP2B22 gene expression 

and C16:1(n-7), C18:1(n-9), and C14:0 FA composition, may indicate a role of this gene 

in regulating these FAs.  Interestingly, the LDHD gene expression showed a negative 

correlation with the relative levels of C20:1(n-9), C20:2(n-6), and C20:3(n-6), suggesting 

that it is involved in the processing or regulation of omega-6 and omega-9 PUFAs and its 

probable role in meat quality traits.  Finally, the role of LPGAT3, ACAA1, LDHD, and 

ACSM5 genes in this study is notable. These genes exhibit several connections with other 

genes and demonstrate associations with numerous FAs. These findings suggest that 

these genes could play a pivotal role in the metabolism of FAs, with potential 

implications for pork quality. Nevertheless, further investigations are needed to validate 

our findings and the mechanisms by which these genes influence FA composition. The 

positive and negative correlations between the genes and the FAs are shown in Figure 

3. 

Regarding the genes containing trans-eQTLs, the IPMK, ACAA1, COQ2, and CBR4 genes 

displayed the highest number of connections within the entire network, indicating their 

role as central regulators. Concerning the FAs, 7 out of 14 FAs exhibit correlations with 

a specific set of four genes (ACAA1, CYP2B22, ECI2 and GBA). Notably, ACAA1 gene 

expression revealed dual negative correlations with C18:2(n-6) and C20:2(n-6), 

alongside a positive correlation with C20:1(n-9), suggesting an important role in FA 

regulation. Furthermore, CYP2B22 gene expression displayed three positive correlations 

with C14:0, C16:1(n-7), and C18:1(n-9), potentially playing a significant role in the 

regulation of these FAs. In contrast, ECI gene expression showed a negative correlation 

with C18:1(n-9) and positive correlations with C18:0 and C20:1(n-9).  
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The aforementioned genes, which exhibit correlations with various FAs, may affect meat 

quality traits and further investigations are required to understand the regulation and 

function of these genes. 

 

Conclusions 

In the present work, we identified significant eQTLs associated with the expression of 

genes in muscle, including both cis- and trans-eQTLs, offering insights into the genetic 

control of gene expression. Among the 854 genes significantly associated in the eGWAS 

study, 101 genes were linked to lipid metabolism pathways. Furthermore, the co-

expression analysis of genes related to lipid metabolism and FA composition highlighted 

the regulatory influence of specific genes (ACAA1, CLN, CYP2B22, GBA, and LDHD) in 

modulating FA levels and interacting with other genes involved in lipid metabolism. Our 

results increase the knowledge of the genetic basis of gene expression regulation in pig 

skeletal muscle. 
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Abstract 

Analysis of gene expression is a promising method to increase our knowledge on 

candidate genes involved in economically relevant traits in livestock, such as meat 

quality. Allele-specific expression (ASE), referring to the differences observed between 

the expression of the two alleles of a locus, is a frequent occurrence in mammalian 

transcriptomes. The aim of this work was to study the porcine longissimus dorsi muscle 

transcriptome using the ASE analysis with RNA-Seq data to decipher relevant genetic 

variants in candidate genes for lipid metabolism and fatty acid composition. In our study, 

muscle RNA-Seq data from 129 pigs genotyped with the Axiom Porcine Genotyping 

Array 660K (Affymetrix) were analysed. We identified 13,113 SNP variants that were 

common between DNA chip genotyping positions and RNA-Seq data. After quality 

control, a total of 2,146 SNPs associated to 1,621 genes showed at least three samples 

with ASE. These SNPs were widespread along the chromosomes, being 35.6% located in 

coding regions and 24.6% in 3’UTR. Among these 1,621 genes, 52 have been detected 

to be involved in lipid and fatty acid metabolism pathways, suggesting their potential 

contribution to meat quality traits. Some of the potential regulatory variants described 

here were found to be associated with the expression patterns of genes that are related 

to meat quality traits in livestock. Consequently, these variants may contribute to our 

understanding of the genetic control underlying these phenotypes. 
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Introduction 

In the last decade, NGS has been used in human, livestock and plant research (Gholami 

et al., 2014; L. Liu et al., 2018; Rochus et al., 2018; Wang et al., 2011). RNA-Seq, an NGS-

derived method, is a powerful technique to study the transcriptome. Gene expression is 

the link between the genotype and the phenotype, and gene expression differences are 

one of the main causes of phenotypic variation among individuals. The RNA-Seq 

approach provides sequencing data for the detection of both transcript expression levels 

and single-nucleotide polymorphisms (SNPs). While a gene typically consists of two 

alleles within a diploid genome, regulatory factors can cause one allele to be 

preferentially expressed over the other, a phenomenon known as allele-specific 

expression (ASE) (Wu et al., 2015). By integrating genetic and expression data, ASE 

analyses provide detailed information on the relative expression levels of the two alleles 

of a gene from the same individual, allowing for the identification and quantification of 

each allele's contribution to gene expression (Pastinen, 2010). The procedure to detect 

ASE using RNA-Seq data includes aligning reads to a reference genome and counting the 

reads of each allele in the heterozygous variant locus. Is expected that the two alleles of 

a genein an individual, one from each parent, are expressed at similar levels, a 

phenomenon referred to as bi-allelic expression. Nonetheless, for a few genes, alleles 

can show variation in their expression due to genetic or epigenetic factors (Hasin-

Brumshtein et al., 2014; Knight, 2004). The grade of expression varied from complete 

monoallelic expression (MAE) (Metsalu et al., 2014) to preferential overexpression of 

the allele inherited from on parent. Describing ASE for genes affecting complex traits of 

economic relevance in animal production may help to understand the molecular 

mechanisms underlying these traits and, hence can contribute to increasing the 

accuracy of animal breeding programs. There are many causes of ASE; however, one of 

the most common is the presence of polymorphisms at regulatory sites acting in cis, 

such as cis-expression quantitative trait loci (cis-eQTLs). These polymorphisms, for 

instance, may lie on target sites of transcription factors (TFs), compromising the affinity 

to its binding site, and leading to changes in the transcription rate for the allele (de Souza 

et al., 2020; Jaenisch & Bird, 2003). Additionally, the pattern of ASE can be parent-of-

origin dependent, namely, genomic imprinting (Latham et al., 1995). Genomic 
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imprinting is considered a significant factor in determining the phenotypic effects of 

genetic selection, particularly with respect to economically important traits such as 

intramuscular fat (IMF) and lipid metabolism pathways (de Souza et al., 2020). 

Moreover, multiple studies with high throughput technologies for genome and 

transcriptome analyses were successfully employed to better understand ASE at the 

genome level (Gregg et al., 2010; Pinter et al., 2015) and several studies have employed 

RNA-Seq data for transcriptome analysis in pigs to enhance our comprehension of ASE 

and its association with candidate genes implicated with economically important traits 

(de Souza et al., 2020; Y. Liu et al., 2020; Stachowiak et al., 2018; Stachowiak & 

Flisikowski, 2019).  

In this study, we conducted a genome-wide analysis of ASE in skeletal muscle samples 

from 129 backcross Duroc pigs (BC1_DU) with the aim to describe the variation among 

individuals and the presence of ASE patterns on genes associated with lipid metabolism 

and fatty acid (FA) composition. After detecting ASE, we performed in silico analysis to 

identify the main functions of the candidate genes. 

 

Materials and methods 

Pig population 

In the present study, 129 pigs (59 females and 70 males) belonging to an experimental 

backcross (25% Iberian and 75% Duroc, BC1_DU) were used. Animal care and 

procedures were carried out following the Spanish Policy for Animal Protection 

RD1201/05 and the European Union Directive 86/609 about the protection of animals 

used in experimentation. All animals were maintained under the same intensive 

conditions and fed ad libitum with a cereal-based commercial diet on NOVA GENÈTICA 

S.A. experimental farm (Lleida, Spain). Detailed information of generation schemes, diet, 

growth, and housing condition of the three backcrosses is described in Martínez-Montes 

et al. (2018). Slaughtering procedures were conducted in a certified abattoir according 

to the institutional and national guidelines for the Good Experimental Practices and 

approved by the Ethical Committee of the Institution (IRTA – Institut de Recerca I 

Tecnologia Agroalimentàries). The longissimus dorsi muscle samples were collected, 
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snap-frozen in liquid nitrogen, and stored at -80ºC until further RNA isolation. 

Diaphragm samples were collected for DNA extraction. 

 

DNA extraction, genotyping, and quality control (QC) 

Genomic DNA was extracted from diaphragm tissue by the standard phenol-chloroform 

extraction method and quantified with a NanoDrop-2000 spectrophotometer (Thermo 

Scientific). The 129 animals were genotyped using the Axiom Porcine Genotyping Array 

660K (Affymetrix) according to the manufacturer’s protocol. Quality control (QC) was 

carried out with PLINK v1.90b4.3 software (Purcell et al., 2007) filtering out SNPs with 

minor allele frequency (MAF) < 5%, missing genotypes < 1% and Hardy-Weinberg 

equilibrium < 1x10-6. Missing genotypes were imputed with Beagle v5.1 software 

(Browning et al., 2018) by setting default parameters. Only the SNPs on the autosomes 

and the X chromosome were used. Finally, 405,194 SNPs passed all criteria and were 

kept for further analysis. 

 

RNA isolation and sequencing 

Total RNA extraction from longissimus dorsi tissue was performed with the Ribopure kit 

(Ambion), following the manufacturer’s protocol. RNA integrity was assessed using an 

Agilent 2100 Bioanalyzer (Agilent Technologies) and quantification using a NanoDrop-

2000 spectrophotometer (Thermo Scientific). Only the RNAs with integrity above seven 

(RIN >7) were used for the analysis. Sequencing was performed at the CNAG institute 

(Centro Nacional de Análisis Genómico, Barcelona, España). Libraries for 129 samples 

were generated using the TruSeq Stranded mRNA kit (Illumina), following the 

manufacturer’s recommendations, and sequenced on the Illumina HiSeq 3000/4000 

instrument, generating an average of 44.2 million of 75 bp paired-end reads per sample. 
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Read mapping, annotation and variant calling 

We ran MultiQC v1.14 (Ewels et al., 2016) for quality control. RNA-Seq reads were 

mapped by using the STAR v2.5.2a software (Dobin et al., 2013) with default parameters 

to the reference genome assembly Sscrofa 11.1 and to the annotation database Ensembl 

Genes 105. Transcripts were assembled and quantified by HTSeq v2.0.3 (Anders et al., 

2015). In order to prevent false positive ASE signals due to allelic mapping biases that 

could influence allele counts, Picard Toolkit 2019 v2.27.4 (Broad Institute) was used to 

mark the duplicates and to add unique read groups to each bam file. Finally, SAMtools 

Stats v1.9 (Danecek et al., 2021) was used to check the quality of the mapping results 

obtained.  

Variant calling was carried out in the 129 animals using Freebayes software v1.3.2. 

Freebayes is a Bayesian genetic variant caller designed to find SNPs, Indels and 

multinucleotide polymorphisms (Garrison & Marth, 2012). Moreover, Freebayes uses 

short-read alignments for any number of individuals from a population and uses a 

reference genome to determine the most likely combination of genotypes at each 

position in the population (Garrison & Marth, 2012). The variant calling analysis 

identified a total of 3.49 million variants in the genome of 129 animals from the BC1_DU 

population. Finally, variant filtration and quality control were performed with SNPEff 

and SNPSift software v5.1 (Cingolani et al., 2012). 

 

Allele-specific expression analysis 

We carried out an overlapping between the variants obtained from DNA genotyping chip 

(Affymetrix) and the variants detected with Freebayes software in muscle RNA-Seq data. 

Therefore, we detected 13,113 SNPs that were common between them and were used 

for further analysis. In addition, we filtered out variants that did not pass the following 

criteria: genotype quality < 30 and SNP-loci with < 10 reads mapped. Additionally, SNP-

loci with < 3 reads, or with < 1% of the total reads of the least frequent of the alleles 

were removed. Moreover, variants found in less than three animals were discarded, as 

well as Insertion/Deletion variants. Furthermore, an exact binomial test was used to 

assess the deviation from the expected 0.5 reference/alternate ratio. Finally, the False 
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Discovery Rate (FDR) filtering method of Benjamini and Hochberg (Benjamini & 

Hochberg, 1995) with the p. adjust function of R was applied in order to remove the 

false positives. Variants with p.adjust ≤ 0.05 were kept for further analysis, thus 2,146 

SNP variants were considered allele-specific variants. 

 

Variant and gene annotation 

Functional predictions of the significant ASE-SNPs were carried out using Variant Effect 

Predictor (VEP) (McLaren et al., 2010) and the Ensembl Genes 108 Database. The 

candidate genes associated with ASE and the Gene Ontology (GO) terms related to 

biological processes and molecular functions were obtained using Biomart (Smedley et 

al., 2015) tool from the Ensembl project (www.ensembl.org; release 108) using the 

Sscrofa 11.1 reference assembly.  

 

Gene functional classification 

The ShinyGO v0.77 program (Ge et al., 2020) was used to identify the main biological 

functions of the most important pathways of the genes associated with the ASE variants. 

Moreover, the STRING v11.5 (Jensen et al., 2009) program was used to carry out a 

functional enrichment analysis of genes found significantly associated in ASE analysis.  

 

Lipid metabolism candidate genes 

The Gene Ontology (GO) terms obtained using Biomart (Smedley, et al., 2015) tool from 

the Ensembl project (www.ensembl.org; release 108) were used to identify genes 

associated in ASE analysis related to lipid metabolism and fatty acid composition 

pathways.  

 

Co-expression and functional analysis 

Weighted gene expression networks were calculated using the PCIT algorithm (Watson-

Haigh et al., 2009) which employed first-order partial correlation coefficients and an 

http://www.ensembl.org/
http://www.ensembl.org/
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information theory approach to detect primary gene and FA interactions. Only 

significant interactions between genes were considered for further analysis. Networks 

were represented with the Cytoscape v3.9.1 (Shannon et al., 2003) program. 

Furthermore, for this analysis, we used the relative quantification data of 14 different 

FAs in the longissimus dorsi muscle, as previously described by Crespo-Piazuelo et al. 

(2020). 

 

Results  

Filtered genotypes from Affymetrix SNP chip and muscle RNA-Seq SNPs from Freebayes 

were compared to identify 13,113 common variants. Among them, 8,092 SNPs passed 

the filtering for genotype quality and minimum number of reads and were used to 

perform the ASE analysis. It means that only 1.22 % of the 658,652 SNPs present in the 

genotyping chip from Affymetrix were tested for ASE analysis. Moreover, to identify ASE 

variants with reference/alternate alleles ratio different from 0.5, an exact binomial test 

was applied.  Overall, 2,146 SNPs associated to 1,621 unique genes were expressed and 

overlapped with at least one heterozygous SNP in three individuals and were thus 

detectable as affected by ASE.  

 

Distribution of ASE variants 

The ASE variants were observed to be spread throughout the genome (Figure 1). The 

percentage of tested SNPs showing ASE per chromosome ranged from 9.2 % (SSC6) to 

1.16 (SSCX). The variants that exhibit allelic imbalance biased towards the alternate 

allele account for 70.65%, whereas the remaining 29.35% are predominantly comprised 

of the reference allele. 
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Figure 1: Distribution of ASE-SNPs along the chromosomes. The green group represents 

the ASE variants with a high proportion of alternative alleles (HeteroALT). The blue 

group represents the ASE variants with a high proportion of reference alleles 

(HeteroREF). 

 

Annotation of SNPs and genes showing ASE 

The effect of ASE-SNPs were predicted using VEP from Ensembl tools. We observed that 

a higher proportion of ASE-SNPs consisted of synonymous (28.8%), 3’UTR (24.6%), or 

Intron (17.1%) variants. The less-represented SNP positions were in intergenic regions 

(1.6%) and non-coding transcripts or within splicing regions (less than 1.3%) (Figure 2). 

A 6.8% of ASE-SNPs are missense, thus producing an amino-acid change in the 

corresponding protein. The number of ASE variants identified in each gene varied 

between 1 and 13.  

The number of animals showing ASE for each ASE-SNP varied between 3 and 96. In 860 

SNPs (40.01 %) ASE was identified in more than 50 individuals, while only 26 SNPs (1.21 

%) showed ASE in 3 individuals.  
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Figure 2: Distribution of ASE-SNPs according to their annotation. 

 

Among the 1621 genes affected by 2146 ASE-SNPs, a total of 337 genes were identified 

to be affected by more than one ASE-SNP. Out of these 337 genes, 243 exhibited 2 ASE-

SNPs, 65 showed 3 ASE-SNPs, 19 displayed 4 ASE-SNPs, and 9 genes were affected by 5 

ASE-SNPs. Additionally, two genes showed 6 ASE-SNPs, while the genes MYPN, NEXN, 

and NEB were found to be affected by 7, 9, and 13 ASE-SNPs, respectively. 

For the gene MYPN, located on chromosome 14, the SNPs rs321819726 and 

rs327360999 were found in a total of 78 and 77 animals, respectively. In both cases, all 

animals exhibited allelic imbalance (100%). Interestingly, both variants were located in 

the downstream region of the MYPN gene. On the other hand, for the gene NEXN, 

located on chromosome 6, the SNP rs81217583 was found in a total of 20 animals, of 

which 19 showed allelic imbalance (95%). This polymorphism is located in the 5' UTR 

region of the NEXN gene. Finally, for the NEB gene, located on chromosome 15, the SNP 

rs323475128 was identified in a total of 68 animals, all of which displayed allelic 

imbalance at this position (100%). This SNP is situated in the protein-coding region of 

the NEB gene, causing a synonymous mutation. 
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Functional analysis of ASE lipid metabolism genes  

To understand biological processes underpinning production traits that could be 

affected by genes showing ASE, a selection of 1,621 genes showing ASE in at least three 

animals were analysed with ShinyGO software, which recognized 1,537 genes based on 

its pig gene database. Twenty clusters of overrepresented GO biological processes were 

identified, being the top three related to muscle biology: muscle system process, actin 

cytoskeleton organization, and actin filament process. All the GO biological terms and 

genes are described in Supplementary Table S1. 

In addition, we conducted a gene ontology filtering aiming to select those genes affected 

by ASE that are associated with lipid and fatty acid metabolism. To achieve this, among 

the 2,146 ASE-SNPs, 69 SNPs (supplementary Table S2) were located in 52 potential lipid 

metabolism regulatory genes according to gene ontology descriptions. These genes can 

be divided into 8 different sub-processes based on their function (Table 1). We want to 

highlight eight genes (ABCD3, ACAD11, ACADM7, CPT2, ECHS1, ETFA, and IRS) involved 

in at least seven lipid metabolism pathways.  
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Table 1: Different sub-processes for the 52 lipid metabolism regulatory genes. The FDR 

column indicates the FDR (B&H) correction (Benjamini & Hochberg, 1995) of the 

enrichment analysis. 

 

Pathway FDR Nº genes Genes 

Fatty acid 
metabolic 
process 

5,76×10-27 21 

PPARA  MAPK14  ETFA  WDTC1  ACADM  CPT2  
QKI  CRAT  GPAT4  LPIN1  CBR4  ACAD11  UCP3  
PDK4  ACSL1  PRKAG2  ACAD9  IRS1  PRXL2B  
ABCD3  ECHS1 

Oxoacid 
metabolic 
process 

1,31×10-19 22 

PPARA  MAPK14  ETFA  WDTC1  ACADM  CPT2  
QKI  CRAT  GPAT4  LPIN1  CBR4  ACAD11  UCP3  
PDK4  ACSL1  PRKAG3  PRKAG2  ACAD9  IRS1  
PRXL2B  ABCD3  ECHS1 

Lipid  
modification 

4,90×10-18 14 
PPARA  MAPK14  ETFA  ACADM  CPT2  CRAT  
EPHX2  AGT  CYP2E1  ACAD11  PDK4  IRS1  
ABCD3  ECHS1 

Fatty acid 
oxidation 

2,92×10-16 11 
PPARA  MAPK14  ETFA  ACADM  CPT2  CRAT  
ACAD11  PDK4  IRS1  ABCD3  ECHS1 

Lipid biosynthetic 
process 

1,47×10-13 16 
PPARA  MTOR  WDTC1  QKI  GPAT4  LPIN1  CBR4  
ABHD5  PNPLA2  SLC27A1  PDK4  ACSL1  DEGS1  
FDFT1  PRXL2B  ABCD3 

Fatty acid 
catabolic process 

1,24×10-12 9 
ETFA  ACADM  CPT2  CRAT  LPIN1  ACAD11  IRS1  
ABCD3  ECHS1 

Lipid catabolic 
process 

2,50×10-12 12 
ETFA  LIPE  ACADM  CPT2  CRAT  LPIN1  ABHD5  
ACAD11  PNPLA2  IRS1  ABCD3  ECHS1 

Fatty acid β-
oxidation 

8,50×10-12 8 
ETFA  ACADM  CPT2  CRAT  ACAD11 IRS1  
ABCD3  ECHS1 

 

 

Comparison of ASE-SNP location with QTL and eQTL studies 

We compared our ASE-SNPs with a recently published study that used 189 Duroc x 

Luchuan to identify candidate genes for meat quality traits through ASE analysis (Liu et 

al., 2020). A total of 138 SNPs were common between both studies (Supplementary 

Table S3), which represented 6.33% of all ASE identified here. Furthermore, we observed 

181 common genes, with at least one SNP showing ASE between both studies. Twelve 

of these were identified as novel genes.  

In addition, we verified whether these ASE-SNP-containing genes were associated with 

meat quality traits in previous studies in the same population by GWAS (Crespo-Piazuelo 



Paper III 

 

144 
 

et al., 2020). We identified 19 ASE genes located in Quantitative Trait Loci (QTL) regions 

associated with FA composition in muscle: the amount of arachidic acid (C20:0) and 

eicosatrienoic acid (C20:3n-3) and the ratio of oleic/stearic acids (C18:1n-9/C18:0). 

Supplementary Table S4 describes all ASE genes associated with these traits.  

 

Gene expression and fatty acids composition correlations 

In order to identify co-expression patterns between we use the gene expression of the 

52 genes affected by ASE-SNPs muscle FA compositions, a co-expression network using 

the PCIT algorithm (Watson-Haigh et al., 2009) was performed. The expression data of 

those 52 genes in muscle and the relative abundance of 14 different FAs present in 

longissimus dorsi muscle in the 129 BC1_DU pigs were analysed. Figure 3 shows the main 

relationships between genes related to lipid metabolism and the aforementioned FAs.  

 

 

Figure 3: Gene co-expression network in 129 animals using the PCIT algorithm (Watson-

Haigh et al., 2009). After filtering by significant r ≥ |0.6| for genes and r ≥ |0.3| for FAs, 
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29 of the 52 initial genes and 12 different FAs are shown in this network. The node size 

represents the number of connections with other nodes. Green and red lines indicate 

positive and negative correlations, respectively. 

 

Notably, the genes ABHD5, ACSL1, and RNPEPL1 exhibited the highest number of 

correlated connections with other genes and FAs. Regarding the FAs, 6 out of 12 

displayed significant correlations with genes. Specifically, oleic acid (C18:1n-9) exhibited 

negative correlations with four genes (ABHD5, ACSL1, ECI2 and ETFA) and five FAs 

(linoleic (C18:2n-6), α-linolenic (C18:3n-3), eicosatrienoic (C20:3n-3), dihomo-ɣ-linolenic 

(C20:3n-6) and arachidonic (C20:4n-6) acids). On the other hand, this FA presented a 

positive correlation with myristic acid (C14:0). Furthermore, C20:3n-6 exhibited positive 

correlations with three genes (ACSL1, ABHD5 and NUDT19) and with five FAs (C18:3n-3, 

C18:2n-6, eicosadienoic (C20:2n-6), C20:3n-3 and C20:4n-6). Conversely, this FA 

presented negative correlations with two FAs (palmitic acid (C16:0) and C18:1n-9). 

Interestingly, the strongest positive correlations within the entire network were 

observed between C20:4n-6 and C20:3n-6 FAs, with a correlation value of 0.97. For 

genes, the highest positive correlation was found for STAT5B and FDFT1 with a value of 

0.75. On the other hand, the strongest negative correlation was observed between 

C18:2n-6 and C18:1n-9 FAs, with a correlation value of –0.92. Similarly, the correlation 

between the genes PRKAG3 and MED15 was –0.67. 

 

Top ASE-SNPs in lipid metabolism genes 

From the 69 ASE-SNPs located in the 52 lipid metabolism genes, we selected those 

variants that exhibited a higher proportion of allele-specific expression. The top 10 ASE-

SNPs are summarized in Table 2.  
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Table 2: Top 10 ASE-SNPs showing a higher proportion of ASE. 

Gene 
Symbol 

SNP 
ASE 

Individuals 
(p ≤ 0,05) 

Total 
tested 

ASE 
proportion 

(%) 
Gene Location 

ACADM rs81211675 74 74 100,00 Synonymous 

ECHS1 rs80915078 21 21 100,00 Synonymous 

UCP3 rs326806805 18 18 100,00 Downstream 

UCP3 rs321574540 3 3 100,00 Downstream 

LPIN1 rs345575817 64 65 98,46 3' UTR 

PRXL2B rs322383150 64 65 98,46 3' UTR 

FDFT1 rs81215802 57 58 98,28 Synonymous 

PNPLA2 rs339524839 58 60 96,67 3' UTR 

ACSL1 rs55618935 20 21 95,24 3' UTR 

ETFA rs80813406 30 33 90,91 Synonymous 

 

 

Discussion 

ASE-SNP location and effect prediction 

After performing functional predictions using the VEP (McLaren et al., 2016) from the 

Ensembl Genes 108 Database, we observed that 35.6% of the variants were located in 

the protein-coding regions, some of which caused non-synonymous mutations that may 

result in amino acid change and potential alteration of protein function. Furthermore, 

we also observed that 26.2% of the ASE-SNPs were located in 3' and 5' UTR regions, with 

a higher prevalence in 3' UTR regions.  

Furthermore, this study analyzed those genes that were affected by more than one ASE-

SNP. Notably, the genes MYPN, NEXN, and NEB were significantly influenced by several 

ASE-SNPs. In the specific case of gene Myopalladin (MYPN) gene, we found seven ASE-

SNPs, two of them (rs321819726 and rs327360999) in a high number of animals (78). 

Intriguingly, both SNPs caused an allelic imbalance in all animals. These SNPs, positioned 

downstream of the gene, could influence post-transcriptional regulation. The MYPN 

gene is involved in integrin-mediated cell adhesion, as well as actin binding and 

cytoskeletal protein binding (Stelzer et al., 2016).  
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On the other hand, Nexilin F-Actin Binding Protein (NEXN) gene showed a total of nine 

ASE-SNPs, with rs81217583 being the most prevalent SNP affecting a subset of 20 

animals, with the majority of these animals exhibiting allelic imbalance (95 %). This SNP 

was located in the 5' UTR region of the NEXN gene, potentially affecting the 

transcriptional regulation. The related pathways related to NEXN gene include actin 

filament binding and calmodulin-dependent protein kinase activity (Stelzer et al., 2016).  

Finally, the Nebulin (NEB) gene was influenced by 13 ASE-SNPs, including the SNP 

rs323475128, which is located in a protein-coding region, causing a synonymous 

mutation in 68 animals, all displaying allelic imbalance (100 %). This gene is associated 

with specific pathways, including the striated muscle contraction pathway. Moreover, 

the ontology for this gene is linked to actin binding and the structural constituent of 

muscle (Stelzer et al., 2016). 

The analysis of the top 3 genes with the highest number of ASE-SNPs is directly related 

to the structure and function of the muscle.  

 

Functional analysis 

In order to explore if the ASE may affect FA composition traits recorded in the BC1_DU 

pigs, we performed a gene ontology analysis using ShinyGO software. Twenty clusters 

of overrepresented biological processes were identified, being the top three related to 

muscle biology, in accordance to the RNA-Seq analyzed tissue, which is the longissimus 

dorsi. Furthermore, a gene ontology filtering was conducted to focus on genes affected 

by ASE that are associated with lipid and fatty acid metabolism. Among the 2,146 ASE-

SNPs, 69 were identified in 52 potential lipid metabolism genes and were categorized 

into eight distinct sub-processes according to their functions. Notably, the genes ABCD3, 

ACAD11, ACADM7, CPT2, ECHS1, ETFA, and IRS were found to be involved in at least 

seven lipid metabolism pathways, suggesting their crucial roles in lipid metabolism 

processes. 

Moreover, the comparison of our ASE-SNPs with the findings of a recently published 

study by Y. Liu et al. (2020) revealed 181 common genes between both studies, where 

12 of them were identified as novel genes, suggesting that these genes may have 
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implications for production traits, but further investigations are needed to validate 

these results. Notably, our study corroborated the findings of the previous research, as 

several genes affected by ASE in both studies were previously reported by our group. 

These genes, including ACSL1 (Valdés-Hernández et al., 2023), ACSM5 (Criado-Mesas et 

al., 2020; Puig-Oliveras et al., 2016), ATF3 (Criado-Mesas et al., 2020), EGF (Ballester et 

al., 2017), FABP3 (Puig-Oliveras et al., 2016), FADS2 (Crespo-Piazuelo et al., 2020; Revilla 

et al., 2018), MFN2 (Martínez-Montes et al., 2018) and RETSAT (Martínez-Montes et al., 

2017), appear to be associated with meat quality traits. The shared genes and SNPs offer 

promising targets for further investigations to better understand the molecular 

mechanisms influencing lipid metabolism pathways and their potential influence on 

fatty acid composition in pigs. 

Furthermore, we extended our investigation to assess whether the genes containing 

ASE-SNPs were linked to meat quality traits in previous studies within the same 

population through GWAS (Crespo-Piazuelo et al., 2020). Notably, we identified 19 ASE 

genes situated in QTL regions that were associated with FA composition in muscle. 

Specifically, these QTL regions were linked to the amount of different and important FAs 

(C20:0, C20:3n-3, ratio C18:1n-9/C18:0) that may influence meat quality traits.  

This exploration of GWAS data reinforces the relevance of the identified ASE genes in 

relation to FA composition in muscle. The presence of ASE-SNPs within these QTL 

regions suggests a molecular mechanisms determining the observed FA composition 

variation.  

 

Gene expression and FA composition correlations 

PNPLA2 and PRKAB2 genes were found to exhibit significant correlations with the levels 

of C18:0 and C20:1n-9, suggesting their potential involvement in the regulation of these 

fatty acids..  PNPLA2 gene expression has a positive correlation with the abundance of 

both FAs in muscle. On the other hand, the expression level of the PRKAB2 gene exhibits 

an inverse relationship with the abundance of C18:0 and C20:1n-9 FAs. PNPLA2 gene is 

related to glycerophospholipid biosynthesis and regulation of Insulin-like Growth Factor 

(IGF). On the other hand, PRKAB2 gene is a regulatory subunit of the AMP-activated 
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protein kinase (AMPK). AMPK control the activity of key enzymes involved in regulating 

de novo biosynthesis of FA and cholesterol (Stelzer et al., 2016). Furthermore, the 

abundance of C20:1n-9 shows a positive correlation with the expression of PPARGC1B 

and ECHS1 genes, while exhibiting a negative correlation with the expression of the 

ABHD5 gene. PPARGC1B gene is related to fat oxidation and non-oxidative glucose 

metabolism. Moreover, ECHS1 gene is associated to mitochondrial FA β-oxidation and 

to leucine, isoleucine and valine metabolism. On the other hand, ABDH5 gene is related 

to triglyceride metabolism pathway (Stelzer et al., 2016). The NUDT19 gene expression 

has shown a positive correlation with C20:4n-6 and C20:3n-6. However, the allelic 

imbalance was observed in only 9 out of 34 heterozygous individuals at the SNP locus 

within the gene, suggesting that it is not the cause of the observed correlation. NUDT19 

gene participates in the peroxisomal lipid metabolism pathway mediating the hydrolysis 

of a wide range of CoA esters (Stelzer et al., 2016).  Additionally, the expression of ACSL1 

gene has been found to be correlated with the levels of C20:4n-6 and C20:3n-6 

(positively correlated) and C18:1n-9 (negatively correlated), suggesting its role in 

modulating the abundance of these FAs. Moreover, ACSL1 expression has also been 

positively correlated with the expression of three genes: ABHD5, ECI2 and PPARA. In our 

study, we found an SNP (rs55618935) located in the 3’ UTR region of ACSL1 gene that 

exhibited ASE in 20 out of 21 heterozygous individuals. This finding suggests a direct 

influence of the SNP on allelic imbalance at the locus. ACSL1 encodes for an isozyme of 

the long-chain-fatty-acid-coenzyme A ligase family and is related to long-chain fatty 

acid-CoA ligase activity (Stelzer et al., 2016). Concerning to PPARA gene expression, it 

displays significant correlations, ranging from 0.61 to 0.66, with several genes, indicating 

its role as central regulating the expression of lipid metabolism genes. PPARA gene is 

associated with regulation of the gene expression and to the signalling receptor activity 

pathway (Stelzer et al., 2016). Another interesting gene is the ETFA gene, which 

expression has a negative correlation with C18:1n-9 content. Additionally, ETFA and 

ACADM gene expression are positively correlated, while EFTA and RNPEPL1 gene 

expressions are negatively correlated. ETFA gene participates in catalyzing the initial 

step of FA β-oxidation (Stelzer et al., 2016). Therefore, ETFA gene is associated with 

electron transport in mitochondrial β-oxidation, which is involved in the metabolism of 

FAs found in meat, such as C18:1n-9. Its potential connection with FAs and their impact 
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on lipid metabolism is under investigation. On the other hand, ACADM gene is 

associated to acyl CoA dehydrogenase activity and catalyzes the first step of the 

mitochondrial FA β-oxidation (Stelzer et al., 2016). 

 

Top ASE-SNPs in lipid metabolism genes 

Among these 52 ASE-genes associated to 69 ASE-SNPs, we selected the top 10 ASE-SNPs 

located in ACADM, ECHS1, UCP3, LPIN1, PRXL2B, FDFT1, PNPLA2, ACSL1 and ETFA as the 

most interesting based on the higher proportion of allele-specific expression. 

Regarding the Acyl-CoA Dehydrogenase Medium Chain (ACADM) gene, it catalyses the 

first step of mitochondrial FA β-oxidation, allowing the production of energy from fats 

(Wipt & George, 2008). Bruun et al. (2013)  reported a synonymous polymorphism in 

ACADM gene that have significant effects on pre-mRNA splicing and thus protein 

function and may affect the FA β-oxidation in humans. Interestingly, we identified a 

polymorphism in a total of 74 animals, and all of them exhibited allelic imbalance at this 

position. This SNP is located in a protein-coding region of this gene, resulting in a 

synonymous mutation. Hence, the genotyped SNP may be in strong linkage 

disequilibrium with the causal mutation producing ASE.  

The Enoyl-CoA Hydratase, Short Chain 1 (ECHS1) gene encodes the protein responsible 

for carrying out the second step of β-oxidation of FAs in the mitochondria. Moreover, it 

plays a role specifically for short- and medium-chain fatty acids (Stelzer et al., 2016). In 

the study published by Chen et al. (2019), observed that the ECHS1 gene was 

differentially expressed in finishing pigs, thereby improving meat quality traits. 

Additionally, Peng et al. (2016) demonstrated that the suppression of the ECHS1 gene 

led to a decrease in fat deposition in the liver of broiler chickens. Notably, we identified 

a polymorphism in a total of 21 animals, and all of them exhibited allelic imbalance at 

this position. This genetic variant is positioned within a protein-coding region of the 

gene, causing a synonymous mutation. Therefore, the genotyped SNP could be in 

significant linkage disequilibrium with the causal mutation responsible of ASE. 

The Uncoupling Protein 3 (UCP3) gene is implicated in pathways including β-oxidation 

of FAs and it has been involved in chemical reactions and pathways such as FA 
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metabolism process and adaptative thermogenesis (Han et al., 2012; Lin et al., 2017). 

This gene encodes a proton transport carrier that is distributed in the inner 

mitochondrial membrane, leading to the uncoupling of oxidation and ADP 

phosphorylation processes by reducing the H+ electrochemical gradient on both sides 

of the membrane. Consequently, this mechanism plays a crucial role in energy and heat 

production (Stelzer et al., 2016). In pigs, the 5' and 3' sequence control regions of the 

UCP3 gene, along with the AvaI enzyme loci, have been significantly associated with fat 

metabolism (Knoll et al., 2008). In addition, a study conducted by Xing et al. (2021) found 

significant correlations between UCP3 gene expression levels and fat deposition 

between two extreme groups of a Landrace pig cross. In our study, we identified two 

polymorphisms in a total of 21 and 3 animals, respectively. Notably, both SNPs exhibited 

allelic imbalance in all the animals at this position. . These SNPs, positioned downstream 

of the gene, could influence post-transcriptional regulation. The genotyped SNPs are 

likely to be in strong linkage disequilibrium with the causal mutation contributing to ASE. 

The Lipin 1 (LPIN1) gene is an essential contributor to adipogenesis and additionally 

serves as a potent transcriptional co-activator of peroxisome-proliferator-activated 

receptors (PPARs), modulating lipid metabolism-related gene expression (Phan et al., 

2004). The deficiency of LPIN1 gene has been reported to prevent normal adipose tissue 

development and to reduce adipose tissue mass, while overexpression of this gene in 

either skeletal muscle or adipose tissue promotes adiposity in mice (He et al., 2009). 

Furthermore, a synonymous mutation in this gene was associated with the percentage 

of leaf fat and IMF in pigs (He et al., 2009). Additionally, Wang et al. (2011) demonstrated 

an upregulated expression of LPIN1 in the longissimus dorsi (LD) muscle of Rongchang 

pigs compared to lean PIC pigs (PIC Swine Improvement Group, England, UK), and a 

higher expression of LPIN1 expression in the LD muscle of Rongchang pigs displaying 

high IMF content relative to those exhibiting low IMF content. Another research in 

chickens established that miRNA-429 exerts suppressive effects on LPIN1 via targeted 

binding, thereby disrupting the proper functioning of the PPAR signalling cascade (Chao 

et al., 2020). In previous studies of our group, we found that LPIN1 gene expression in 

muscle is positively correlated with the ω6/ω3 ratio (Valdés-Hernández et al., 2023). 

Moreover, Criado-Mesas et al. (2020) detected three trans-eQTLs on SSC4, SSC7, and 
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SSC15, which influence the expression of LPIN1 in the same population of this study 

(BC1_DU). Remarkably, we detected an SNP showing ASE, located in 3’UTR region, that 

was present in a total of 65 animals, with 64 of them (98.46%) displaying allelic 

imbalance. This result suggests that the genotyped SNP may exhibit strong linkage 

disequilibrium with the causal mutation responsible for ASE. 

The Peroxiredoxin Like 2B (PRXL2B) gene has been involved in FA metabolism and 

prostaglandin biosynthesis (Stelzer et al., 2016). However, no studies in pigs and lipid 

metabolism pathways have been reported for this gene. We identified an SNP located 

in a 3’UTR region that exhibited ASE in 64 of 65 heterozygous animals (98.46%). 

Regarding the Farnesyl-Diphosphate Farnesyl-transferase 1 (FDFT1), despite its 

association with cholesterol and lipid metabolism pathways (Stelzer et al., 2016), studies 

on this gene in pigs were not found. On the other hand, we observed a polymorphism 

located in a protein-coding region of the gene, resulting in a synonymous mutation 

associated with ASE in 57 of the 58 (98.3%) heterozygous animals. Thus, there is likely 

another causal mutation in strong linkage disequilibrium with the causal mutation 

responsible for ASE. 

Another interesting candidate gene is the Patatin Like Phospholipase Domain Containing 

2 (PNPLA2), which predominantly performs the first step in triglyceride hydrolysis 

(Stelzer et al., 2016). The PNPLA2 gene is located in SSC2 and has been associated with 

a QTL region related to backfat thickness (Rattink et al., 2001). Moreover, a previous 

study performed in pigs have identified a polymorphism that was significantly associated 

with several economic traits such as subcutaneous fat thickness, visceral adipose tissue 

weight, lean meat percentage and loin eye traits (Dai et al., 2011). Furthermore, Dai et 

al. (2016) identified a total of four polymorphisms located in the promotor region of 

PNPLA2 gene that were associated with growth and fat deposition traits in pigs, as well 

as Fu et al. (2020), who found a strong association between a high expression of PNPLA2 

gene and fat-related traits. Interestingly, this gene has been suggested as a candidate 

gene for a QTL detected in SSC2 with the abundance of C16:1n-9, C18:1n-9, and C18:2n-

6, and four metabolic ratios, monounsaturated FAs (MUFA), polyunsaturated FAs 

(PUFA), MUFA/PUFA, and PUFA/SFA (saturated FAs) in a previous study conducted by 

Crespo-Piazuelo et al. (2020) in a 439 Iberian backcrossed pigs. Remarkably, we detected 
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a polymorphism located in the 3’UTR region in a total of 60 animals, of which 58 

(96.67%) exhibited ASE. This result suggests that this SNP may be in strong linkage 

disequilibrium with the causal mutation contributing to ASE. 

The Acyl-CoA Synthetase Long-Chain Family Member 1 (ACSL1) gene is involved in the 

long-chain FA import and signal transduction biological processes. Moreover, it plays a 

key role in the synthesis of long-chain acyl-CoA esters, FA degradation, and phospholipid 

remodelling (Widmann et al., 2011). Additionally, this gene has been associated with 

lipid metabolism and mitochondrial oxidation of FAs in pigs (X. Liu et al., 2015). Recently, 

Valdés-Hernández et al. (2023) reported an association between the ACSL1 gene 

expression and the C18:2n-6/C18:3n-3 and ω6/ω3 ratios in the same population of this 

study (BC1_DU). Moreover, Zhao et al. (2023) suggested that the ACSL1 gene plays a key 

role in affecting IMF deposition in Landrace cross populations, as well as Xu et al. (2018) 

found a differential gene expression of the ACSL1 gene for IMF in Yorkshire pigs. 

The Electron Transfer Flavoprotein Subunit Alpha (ETFA) gene is involved in catalyzing 

the first step of mitochondrial FA β-oxidation (Stelzer et al., 2016). Laforêt & Vianey-

Saban (2010) established a connection between multiple acyl-CoA dehydrogenase 

deficiency and disorders in the ETFA gene expression. Unfortunately, no studies linking 

the ETFA gene to pig lipid metabolism have been reported. Nevertheless, further 

analysis are needed to investigate and determine if there is any relationship between 

this gene and lipid metabolism, as well as fatty acid composition, in pigs. 

The investigation of allelic imbalance in genes associated with the regulation of porcine 

lipid metabolism and different production traits has not been extensively explored thus 

far. Only a limited number of studies have reported the correlation between ASE based 

on transcriptome analysis and lipid metabolism or meat quality traits. Our analysis 

revealed widespread ASE throughout the pig muscle transcriptome, similar to findings 

in previous studies in pigs (Liu et al., 2020; Stachowiak et al., 2018; Stachowiak & 

Flisikowski, 2019) and in other species such as mice (Crowley et al., 2015) and bovine 

(de Souza et al., 2020; Guillocheau et al., 2019).  

Although other studies have used SNP calling from RNA-Seq data to detect ASE, which 

could potentially involve a larger number of studied SNPs, we opted to use the common 
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variants  between the Axiom Porcine Genotyping Array 660K (Affymetrix) and the RNA-

Seq data because this methodology ensures reduced errors in genotyping heterozygous 

individuals. For future studies, we believe that exploring epigenetic mechanisms, such 

as parental origin effects and DNA methylation, may provide additional insights into the 

regulation of ASE gene expression, which in turn affects economically significant traits. 

To gain a more comprehensive understanding of ASE patterns through pig 

transcriptome, it will be crucial to obtain supplementary data from various tissues and 

developmental stages. Additionally, in order to ascertain the presence of cis-regulatory 

elements in our findings, further investigation will be required through different 

approaches to mapping the causative cis-acting variants. These findings emphasize the 

importance of allelic expression patterns and underlying mechanisms, as several genes 

with crucial roles in diverse biological processes exhibited allelic imbalance.  

 

Conclusions 

We conducted an analysis of the global genetic regulation of gene expression in the 

longissimus dorsi muscle via ASE analysis. This research highlighted that allelic 

expression can affect genes associated with lipid metabolism and FA composition traits 

and may affect meat quality traits, but further research is needed to fully understand 

the underlying molecular mechanisms. Moreover, this study revealed the prevalence of 

ASE in several genes affected by multiple SNPs, with specific genes showing extensive 

variation in ASE patterns.  In addition, the comparison of our results with the published 

study strengthens the evidence for the relevance of ASE analysis in identifying candidate 

genes linked to meat quality traits. In conclusion, the study of ASE could provide valuable 

insights into the genetic regulation of production traits in livestock. The identification of 

variants and genes associated with ASE sheds light on the molecular mechanisms 

influencing important production traits. 
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Traditional and pure pig breeds are valuable reservoirs for meat production, as well as 

for their cultural, historical, and environmental significance. Nevertheless, modern 

intensive livestock production systems are predominantly dependent on highly 

productive global breeds, leading to concern among breeding companies due to the loss 

of genetic diversity (Hulsegge et al., 2019). To enhance growth, fatness, and meat quality 

traits, among other economically impactful characteristics, the development of 

improved strategies for genetic selection is crucial. Animal breeding emerged in the 18th 

century, involving a systematic selection of animals as progenitors to establish 

predetermined traits within populations (Kor & Waaij, 2014).  

Meat quality, a complex trait shaped by consumer preferences, includes factors like food 

safety, animal welfare, FA composition, and sensory attributes (Webb & O’Neill, 2008; 

Wood et al., 1999). The genetic basis of meat quality traits is complex, influenced by 

several loci with small effects and a small number of genes with moderate impacts 

(Hayes & Goddard, 2001). Recent genetic researches have led to the characterization of 

several QTLs in pork complex traits, providing insights into their genetic architecture. 

The advent of high-throughput SNP genotyping arrays and NGS technologies has 

facilitated the discovery of causal genes and mutations linked to monogenic Mendelian 

traits, as well as the identification of genes associated with complex traits, although this 

remains a challenging task (Andersson & Georges, 2004). On the other hand, the 

integration of gene expression levels and epigenetic variations can improve predictive 

models for animal breeding, potentially enhancing overall model accuracy (MacKay et 

al., 2009). In recent years, the relationship between gene expression and the profile of 

FAs in muscle has shown increased attention. This attention is primarily attributed to 

the significant impact this relationship has on both meat quality parameters and human 

health considerations (Geiker et al., 2021; Huang & Ahn, 2019). Notably, muscle, being 

an important metabolically active tissue, serves as both an energy reservoir and a 

consumer of energy (Liu et al., 2015). Muscle is a tissue containing various components 

that significantly contribute to the overall quality and characteristics of meat (Listrat et 

al., 2016; Maltin et al., 2003), including proteins, fats, carbohydrates, vitamins, minerals, 

and water. Moreover, skeletal muscle assumes a key role in controlling lipid and glucose 

metabolism; it remains highly responsive to changes in the availability of glucose and 
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FAs (Morales et al., 2017). On the other hand, the lipid content and FA composition 

influence the tenderness, juiciness, and flavour of the meat (Maltin et al., 2003). 

Understanding and optimizing the composition of muscle is essential for producing meat 

products according to the consumer preferences and dietary requirements. Therefore, 

meat quality is a current topic of significant interest. Hence, the muscle FA composition 

is determined by a combination of dietary and genetic factors (Wood et al., 2008). 

The identification of the causal genes within QTLs and their allelic variations remains 

challenging for complex traits. The success of QTL mapping depends on factors like 

recombination frequency and sample size (MacKay et al., 2009). Moreover, accurate 

gene mapping is essential for identifying candidate genes within QTLs and the causal 

polymorphisms of QTLs, which is crucial for understanding the molecular mechanisms 

underlying relevant phenotypic variations. Andersson et al. (1994), identified the firsts 

QTLs in domestic animals, including a QTL on SSC4 affecting fat deposition in pigs. 

Subsequently, several investigations with different breeds have been conducted to 

identify numerous QTLs distributed along the chromosomes and associated with 

important economic traits (Marklund et al., 1999). 

In the IBMAP experimental population, several loci associated with growth, fatness, and 

meat quality traits have been identified through QTL mapping, GWAS approaches, 

microarrays, RNA-Seq, and systems genetics approaches, among other methodologies. 

In previous studies in the IBMAP population, our group evaluated FABP4 and FABP5 

genes as candidate genes for the QTL for growth and fatness (Estellé et al., 2006; 

Mercadé et al., 2006). Additionally, a GWAS study in the IBMAP BC1_LD identified eight 

regions associated with IMF composition (Ramayo-Caldas et al., 2012b). Furthermore, 

in a recent study performed by Crespo-Piazuelo et al. (2020), several QTLs related to FA 

composition and IMF were identified in 439 pigs having the Iberian breed in common. 

These QTLs were located in regions where ELOVL6, ELOVL7, FADS2, FASN, and SCD genes 

were mapped. 

This PhD thesis aimed to identify genes and genetic variants regulating lipid metabolism 

and FA composition, and consequently influencing meat quality. Several molecular 

genetics and genomic technologies were utilized to reach this objective.  
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We conducted gene expression analysis of 45 lipid-related genes, previously identified 

in the IBMAP population, in pig muscle samples of animals from three experimental 

backcrosses. Furthermore, an allelic-specific expression analysis was conducted in the 

muscle transcriptome of the BC1_DU population to identify lipid-related genes 

exhibiting allelic imbalance. Finally, eGWAS using muscle RNA-Seq data of 129 animals 

from the BC1_DU population was performed with the aim of identifying eQTLs and 

exploring their relationship with lipid and FA metabolism pathways. In the next sections, 

the main results obtained are discussed. 

 

4.1. Gene expression analysis in muscle of lipid-metabolism candidate 

genes by RT-qPCR  

 

In eGWAS studies, the detection of significant associations between gene expression 

and genetic markers is possible due to linkage disequilibrium between the genotyped 

SNPs and the causal mutation (Teo et al., 2009). In addition, if the molecular variant is 

located close to the gene region of the transcript under investigation, the regulation is 

called cis, proximal or local eQTL, but if the polymorphisms associated with the variation 

in the transcript are elsewhere, it is called trans or distal eQTL (Rockman & Kruglyak, 

2006). In relation to this, cis-eQTLs tend to have larger effects than trans-eQTLs. 

Moreover, some genomic regions are associated with the variation in the expression 

levels of many transcripts (eQTL hotspots); and the expression levels of many transcripts 

are usually highly correlated (Sieberts & Schadt, 2007). Moreover, eQTL identification 

can offer valuable insights into gene expression regulatory mechanisms, including gene 

network interactions. Therefore, accurate gene mapping and annotation are crucial for 

identifying candidate genes within eQTL regions.  

In general, transcriptional regulation plays a key role in the regulation of genes 

associated with lipid metabolism, and unravelling the molecular mechanisms regulating 

their expression could enhance our comprehension of the genetic architecture of the FA 

composition in muscle (Hausman et al., 2009). 
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In the past few years, RNA-Seq analysis of adipose, muscle, and liver tissue 

transcriptomes in the BC1_LD population led to the identification of differentially 

expressed genes in animals with different FA composition (Corominas, et al., 2013a; 

Puig-Oliveras et al., 2014b, 2016; Ramayo-Caldas, et al., 2012a). In the functional 

analysis of the three tissues analyzed, the PPAR signalling pathway was identified among 

the overrepresented pathways, with observed differential expression of target genes for 

PPARs. These findings supported the significant role of gene expression variation and its 

genetic basis in influencing the genetic determinism of these traits.  

RT-qPCR analysis was further used to analyse the gene expression levels in a large 

number of animals. Gene-specific eQTL analyses for various candidate genes were 

conducted within the IBMAP population, including ACSL4, APOA2, ELOVL6, FABP4, 

FABP5, and IGF2 genes (Ballester et al., 2016; Ballester, et al., 2017a; Corominas et al., 

2012; Corominas et al., 2013a; Puig-Oliveras et al., 2016; Revilla et al., 2018;  Criado-

Mesas et al., 2019, 2020).  

Fluidigm microfluidic technology (Fluidigm; San Francisco, CA, USA) is an RT-qPCR-based 

method that uses integrated fluidic circuits (IFCs) comprising thousands of microfluidic 

valves and interconnected channels (Melin & Quake, 2007). By scaling down qPCR 

reactions from the typical 10-20 microliter range to a 10 nanoliter scale, Fluidigm 

microfluidic technology facilitates the execution of thousands of qPCR analyses in a 

single run, ensuring efficiency, high sensitivity and reproducibility (Melin & Quake, 2007; 

Spurgeon et al., 2008). Consequently, Fluidigm provides cost-effective and customizable 

arrays for gene expression profiling across a moderate number of animals. Furthermore, 

our group conducted similar investigations using the Fluidigm platform to assess mRNA 

expression levels of candidate genes involved in lipid metabolism in liver and adipose 

tissue of 111 and 115 BC1_LD animals, respectively (Ballester, et al., 2017; Revilla et al., 

2018). Finally, Criado-Mesas et al. (2020) conducted a gene expression analysis of 45 

candidate genes involved in lipid metabolism in skeletal muscle using data from Puig-

Oliveras et al. (2016) for BC1_LD and new data from BC1_DU and BC1_PI populations. 

In our study, the eGWAS was performed using a total of 38,488 SNPs mapped on the 

Sscrofa 11.1 assembly and the expression values of 45 additional candidate genes 

involved in lipid metabolism in porcine longissimus dorsi muscle in the animals that 
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Criado-Mesas et al. (2020) used.  This study analysed the gene expression of candidate 

genes related to lipid metabolism that were previously identified in different works of 

our research group. In addition, a correlation analysis was performed including the FA 

composition of the same population, which enables the detection of co-expression 

patterns that enhance the identification of associations between candidate genes and 

FA composition.  

In this study, we observed that trans-eQTLs (88.8%) were more prevalent than cis-eQTLs 

(11.2%) (Table 4.1). In previous gene expression studies conducted using the same 

technology for the analysis of different candidate genes in lipid metabolism, a similar 

pattern was observed regarding the proportion of cis- and trans-eQTLs in skeletal 

muscle. For example, Puig-Oliveras et al. (2016) identified a total of 19 eQTLs, of which 

three were located in cis-acting regions (15.8%) while 16 were in trans-acting regions 

(84.2%). Meanwhile, Criado-Mesas et al. (2020) found a total of 12 eQTLs, where two 

were located in cis-acting regions (16.7%) and 10 were in trans-acting regions (83.3%).  

Comparing the results with other studies conducted within our group using the same 

technology but different tissues, the following outcomes were observed. Ballester, et al. 

(2017) analyzed candidate genes for lipid metabolism in the liver and identified a total 

of 7 eQTLs, with two located in cis-acting regions (21.4%) and five in trans-eQTL regions 

(78.6%). On the other hand, Revilla et al. (2018) conducted a similar analysis with 

different candidate genes using adipose tissue. In this case, they identified a total of 20 

eQTLs, where three were located in cis-acting regions (10.5%) and 17 in trans-acting 

regions (89.5%). 

Interestingly, in all the studies, the number of cis-eQTLs is consistently lower than that 

of trans-eQTLs. As we explained above, cis-eQTLs are defined as regions located near 

the regulated gene, while trans-eQTLs are usually situated farther away, which implies 

an extensive search area that leads to an increased likelihood of discovering significant 

associations. Furthermore, gene regulation is complex and many trans-acting factors 

may modulate gene expression.  It is important to note that the prevalence of cis and 

trans-eQTLs can vary depending on factors such as tissue, population or specific genetic 

variants, which can be in linkage disequilibrium with the causal mutation (Kvamme et 

al., 2022). 
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Table 4.1. Summary of the articles published by our group using the Fluidigm platform, 

highlighting the number of chromosomal regions associated with gene expression 

phenotypes in different tissues and populations. 

 

Reference 

Puig-

Oliveras et 

al. 2016 

Ballester 

et al. 2017 

Revilla 

et al. 

2018 

Criado-

Mesas et al. 

2020 

Passols et al. In 

revision 

Tissue Muscle Liver Adipose 

tissue 

Muscle Muscle 

Population BC1_LD BC1_LD BC1_LD BC1_DU, 

BC1_LD, 

BC1_PI 

BC1_DU, BC1_LD, 

BC1_PI 

Associated 

genes 

ACSM5, 

CROT, 

FABP3, FOS, 

HIF1AN, 

IGF2, MGLL, 

NCOA1, 

PIK3R1, 

PLA2G12A 

and PPARA 

CROT, 

CYP2U1,DG

AT2, EGF, 

FABP1, 

FABP5, 

PLA2G12A 

and PPARA 

ACSM5, 

ELOVL5 

FABP4, 

FADS2 

and 

SLC27A4 

ACSM5, 

ACSS2, ATF3, 

DGAT2, FOS 

and IGF2 

ANK2, APOE, 

ARNT, EGF, 

ELOVL6, FASN, 

GPAT3, NR1D2, 

PLIN1, PPAP2A, 

RORA, RXRA, 

UCP3 

Total genes 

with eQTLs 

18 7 19 10 27 

Cis-eQTLs 3 2 3 2 3 

Trans-eQTLs 16 5 17 10 24 

 

In the present work, the eGWAS identified 301 expression-SNPs located in 27 SSC 

regions and were associated with the expression of 18 candidate genes. The three cis-

eQTLs identified were for the gene expression of GPAT3, RXRA and UCP3, none of which 

had been previously reported in the IBMAP population. Conversely, recent studies 

identified two polymorphisms located in the promoter region of GPAT3 gene affecting 

the IMF content in Laiwu pigs (Ma et al., 2022) and growth traits in Duroc pigs (K. Wang 



General Discussion 

 

171 
 

et al., 2017). On the other hand, a cis-eQTL was reported for the expression of RXRA 

gene in human adipose tissue (Orozco et al., 2018). In turn, UCP3 has been studied using 

various methodologies in different tissues and traits, but no study has reported a cis-

eQTL for this gene. 

Interestingly, the strongest signal associated with GPAT3 gene expression in our study 

was detected for the polymorphism rs81336088, which was located in a 134.73 – 135.60 

Mb genomic region on SSC8 and containing eight SNPs with similar significance. This 

gene belongs to the lysophosphatidic acid acyltransferase protein family and is involved 

in pathways such as the triglyceride biosynthetic process through the conversion of 

glycerol-3-phosphate to lysophosphatidic acid in the synthesis of triacylglycerol, and 

pathways related with gluconeogenesis (Cao et al., 2006). 

Concerning the cis-eQTL detected in the RXRA eGWAS results, the strongest signal was 

detected for the polymorphism rs81352834, which was located in a 270.27 – 274.01 Mb 

genomic region on SSC1 and contained a total of 11 SNPs. This gene is a nuclear receptor 

that mediates the biological effects of retinoids by their involvement in retinoic acid-

mediated gene activation and is involved in the hormone-mediated signalling pathway, 

as well as the regulation of RNA transcription (Stelzer et al., 2016). Furthermore, this 

gene has been associated with the PPARA gene, forming the complex PPARA-RXRA, 

which increases FA β-oxidation in pigs (Vitali et al., 2018). 

Finally, the third cis-eQTL identified in the current study is for the UCP3 gene expression, 

where the polymorphism rs81413811, which was located in a 8.36 – 8.40 Mb genomic 

region on SSC9 and containing two SNPs. This gene belongs to the mitochondrial 

uncoupling proteins family and is implicated in pathways such as β-oxidation of FAs and 

adaptative thermogenesis (Han et al., 2012; Lin et al., 2017). In the present study, it is 

important to consider that the observed associations between gene expression and 

genetic markers might be influenced by the presence of linkage disequilibrium with the 

underlying causal mutation. However, it is important to conduct further investigations 

to validate and corroborate these findings. 

On the other, a total of 24 trans-eQTLs affecting the expression of different target genes 

were detected, but we only identified candidate regulatory genes (MLX, NRBF2, STAT1, 
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STAT3, STAT4, STAT5 and USF2) that may affect the expression of the target genes in six 

of these trans eQTLs. 

Furthermore, two trans-regulatory hotspots on SSC13 and SSC15 were detected. The 

trans-hotspot located in a 77.10 – 82.19 Mb genomic region on SSC13 containing 14 

SNPs affects the expression of APOE, ELOVL6, FASN and PLIN1 genes. In this region, the 

PIK3CB gene was mapped and could be a potential regulatory gene modulating the 

expression of several genes. PIK3CB was described to be involved in the PI3K-Akt-mTOR 

signalling pathway, which has been studied in different researches (Dibble, 2013; Liu et 

al., 2016). Moreover, the PI3K-Akt-mTOR signalling pathway participates in the decrease 

of intracellular lipid accumulation, along with a reduction in mRNA expression and 

protein content of genes involved in de novo FA synthesis in pigs (Y. Zhao et al., 2023), 

such as FASN gene. Hence, the PIK3CB gene emerge as a promising regulator to explain 

the differences in gene expression variations of APOE, ELOVL6, FASN and PLIN1 

associated with the SSC13 hotspot. 

On the other hand, the second trans-regulatory hotspot located in a 93.18 – 94.92 Mb 

genomic region on SSC15 and containing six SNPs affects the expression of  APOE and 

FASN genes. The STAT1 and STAT4 genes were mapped within this region. STAT1 and 

STAT4 genes belong to the STAT family and they could act as transcription activators 

(Stelzer et al., 2016). Interestingly, Zhang et al. (2019) found a relationship between the 

transcription factor STAT1 and the regulation of genes associated with lipid metabolism 

and FA synthase genes in rats, such as FASN. Furthermore, Stephens et al. (1996) suggest 

that the STAT1 gene can regulate adipogenesis and adipolysis in the adipocytes of 

different tissues. Therefore, the presence of trans-hotspots concurrently affecting the 

expression of both FASN and APOE genes suggests the influence of distinct genetic 

variants on their muscle-specific regulation. However, additional investigations are 

necessary to corroborate this hypothesis and validate the observed associations. 

Gene expression and FA composition correlation network was performed using gene 

expression data from 89 genes (45 from this study and 44 from Criado-Mesas et al. 

(2020)), along with the relative amount of FA composition in the same animals. We want 

to highlight the significant role of SCD and PPARG genes, which exhibit numerous 

connections with other genes and are associated with FAs, particularly in the regulation 
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of oleic acid levels. In relation to this, in a study conducted by Shi et al. (2013) it was 

demonstrated that PPARG plays a crucial role in FA metabolism by regulating gene 

expression, including the SCD gene, which serves as the rate-limiting enzyme for MUFA 

synthesis in rodents. Additionally, SCD expression can be indirectly regulated in adipose 

tissue through PPARG activation (Walkey & Spiegelman, 2008). Conversely, Kadegowda 

et al. (2009) demonstrated that the activation of the PPARG gene in bovine mammary 

epithelial cells increases SCD gene expression. Moreover, SCD gene encodes a key rate-

limiting enzyme in lipogenesis, which transform palmitic acid and stearic acid into 

palmitoleic and oleic (Meng et al., 2018). 

 

4.2. Exploring muscle transcriptome through RNA-Sequencing 

 

Using RNA-Seq data, our research group previously examined the transcriptomes of 

liver, adipose tissue, hypothalamus and muscle in two groups of BC1_LD animals with 

extreme muscle FA composition differences. These studies revealed that pigs with 

higher MUFA and SFA levels exhibited decreased FA oxidation in liver, increased de novo 

lipogenesis in adipose tissue, and may enhance uptake of FAs and glucose and increase 

the lipogenesis in muscle (Corominas, et al., 2013; Pérez-Montarelo et al., 2014; Puig-

Oliveras et al., 2014; Ramayo-Caldas, et al., 2012). In this thesis, we studied the 

longissimus dorsi transcriptome in 129 BC1_DU animals. Using the power of RNA-Seq, 

two different protocols were employed to unravel the genetic basis of muscle 

transcriptome and its association with lipid metabolism and FA composition.  

 

The first study involved the ASE analysis, which identified genetic variants showing allelic 

imbalance within candidate genes associated with lipid metabolism and FA composition. 

Concurrently, the eGWAS analysis was conducted, aiming to identify eQTLs and unravel 

their complex role in lipid metabolism and FA composition pathways. The eQTL 

identification can deep also into the gene expression regulation mechanisms through 

gene network interactions. In general, genes involved in lipid metabolism are regulated 

at transcriptional level, and the study of the molecular mechanisms controlling its 
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expression will help to understand the genetic basis of FA composition in muscle tissue 

(Hausman et al., 2009). 

To identify relevant genetic variants in genes that present allelic imbalance, an ASE 

analysis was performed and a total of 2,146 SNPs associated to 1,621 genes were 

detected in at least three animals. Furthermore, gene ontology filtering was applied to 

keep those variants affecting genes related to lipid and FA metabolism pathways. Finally, 

a total of 52 genes related to these pathways remained for further analysis. As 

previously mentioned, among several contributing factors to ASE, one of the most 

common causes is the presence of polymorphisms at regulatory sites within the same 

genetic region, commonly known as cis-eQTLs. These polymorphisms can potentially 

affect specific transcription factor binding sites, resulting in alterations to the binding 

affinity and subsequently influencing the transcription rate of the respective allele (de 

Souza et al., 2020; Jaenisch & Bird, 2003). In recent years, numerous studies have 

employed RNA-Seq data from various tissues to enhance our comprehension of ASE 

(Bruscadin et al., 2021; de Souza et al., 2020; Gregg et al., 2010; Liu et al., 2020; Pinter 

et al., 2015; Stachowiak et al., 2018; Stachowiak & Flisikowski, 2019; Wu et al., 2015). 

On the other hand, eGWAS studies were performed and a total of 2,678 eQTLs for the 

expression of 854 genes were identified. Among the 854 significantly associated genes, 

101 were associated with lipid and FA metabolism pathways. The majority of the eQTLs 

were categorized as trans-eQTLs, comprising 2,058 regions, whereas 620 regions 

exhibited a cis-effect. In accordance with the study of candidate genes via qPCR, the 

number of eQTLs located in trans is higher than the eQTLs found in cis. As previously 

mentioned, it is important to emphasize that the classification of cis- and trans-eQTLs 

depends on the selected cis-regions window (Ponsuksili et al., 2010), which affects the 

categorization of regions as either cis or trans. Moreover, these findings align with 

numerous studies, as research involving model organisms has consistently identified a 

higher number of trans-eQTLs compared to cis-eQTLs (Cánovas et al., 2012; Cheung & 

Spielman, 2009; Gilad et al., 2008; Hasin-Brumshtein et al., 2014; Leal-Gutiérrez et al., 

2020; Liu et al., 2020; Ponsuksili et al., 2008, 2010).  
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After applying two different protocols for gene expression studies to the same set of 

animals and RNA-Seq data, we proceeded to identify those genes that were detected by 

both methodologies across the two studies. 

Overlap analysis between ASE-associated genes and cis-eQTL genes identified 135 

common genes (Figure 4.1). This limited overlap between the two approaches can be 

attributed to different factors. First, the number of markers involved in both studies is 

very different. In eGWAS, 405K SNPs from the Affymetrix DNA chip were employed, 

while in the ASE analysis only 13,113 common SNPs between RNA-Seq variant calling 

and the DNA chip were used. Secondly, the variants used in the eGWAS were located 

mostly within intronic and intergenic regions, whereas the variants employed in the ASE 

analysis were situated mainly in coding regions because belong to the muscle 

transcriptome. Third, some low-expressed genes were excluded from the ASE analysis 

but kept for eQTL analysis. Fourth, both approaches may be prone to detecting different 

signals not caused by cis-regulatory variants. For example, spurious cis-eQTL signals can 

result from copy number variations (Christopher et al., 2013) or splicing mutations 

(Lalonde et al., 2011), while spurious ASE signals can result from imprinting (Maroilley 

et al., 2017) or from allelic mapping bias.  

 

 

 

Figure 4.1. Venn diagram of cis-eQTL genes and ASE genes. 
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Fifth, while the eGWAS approach uses the gene expression information from all the 

animals, the ASE analysis is focused only on the heterozygous animals, comparing the 

expression of the two alleles within the same individual and ensuring a higher accuracy 

of the results (Kang et al., 2016).  

Hence, ASE analysis can provide complementary and more precise mapping results than 

cis-eQTL analysis, and combining these two approaches can provide more reliable 

results. The expression level of genes acts as a molecular phenotype, bridging the 

connection between genes and phenotypes. In these studies, we observed significantly 

expressed genes belonging to pathways of lipid and FA composition metabolism. 

Specifically, the ASE study highlighted 52 genes and the eGWAS approach identified 75 

cis-regulatory genes associated with lipid and FA composition metabolism pathways. 

These genes may be involved in meat quality trait variations and could be used in future 

studies, although further work is needed to validate our hypothesis.  

Interestingly, we detected six candidate genes (ACSM5, CBR4, ECHDC3, EPHX2, LIPE and 

PDPN) that were identified by the two approaches and that were associated with lipid 

and FA composition metabolism pathways (Figure 4.2). The common genes identified by 

ASE and eGWAS analysis are discussed below. 

 

 

 

Figure 4.2. Venn diagram of cis-eQTL and ASE lipid genes. 
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The Acyl-CoA Synthetase Medium-Chain Family Member 5 (ACSM5) gene is an acyl-CoA 

synthase involved in a preliminary step of the FA β-oxidation pathway. This enzyme 

catalyses the activation of FAs by CoA to produce an acyl-CoA, and is then introduced in 

the mitochondria through the CPT system (Stelzer et al., 2016). This gene was reported 

in previous studies of our group (Puig-Oliveras et al., 2016; Revilla et al., 2018; Criado-

Mesas et al., 2020). Puig-Oliveras et al. (2016) identified a cis-eQTL region in muscle, 

where the ACSM5 proximal promoter region was amplified and sequenced in a subset 

of ten BC1_LD animals and three polymorphisms were identified (rs323520560, 

rs339587799, rs331702081). Furthermore, Criado-Mesas et al. (2020) genotyped the 

most significant SNP for ACSM5 gene expression (rs331702081) in the muscle tissue of 

BC1_DU and BC1_PI animals. As a result, the rs331702081 was the most significantly 

associated SNP with the muscle ACSM5 gene expression in the BC1_DU and BC1_PI 

populations and explained approximately 40% of the phenotypic variance. On the other 

hand, Revilla et al. (2018) reported that the rs331702081 was also the most significantly 

associated SNP with the ACSM5 gene expression in adipose tissue in BC1_LD animals. 

They also identified two transcription factors (ARNT and STAT6) that bind only when the 

A allele is present were identified. On the other hand, in our eGWAS study, we identified 

six significant SNPs within the same eQTL, with one SNP located at position 25279054 

on SSC3 being the most significant for ACSM5 expression. Furthermore, through ASE 

analysis, we identified only one significantly associated SNP (rs322578425). 

Unfortunately, the eGWAS and ASE studies did not identify common SNPs between 

them. Nevertheless, we could suggest that the detected polymorphisms may be in 

linkage disequilibrium with the causal mutation. 

The gene encoding Carbonyl reductase type-4 (CBR4) has been reported as the factor 

responsible for the final two enzymatic reactions following the formation of 3-Oxoacyl-

acp, in the pathway of de novo FA synthesis leading to IMF deposition, in pig longissimus 

thoracis muscle (Cai et al., 2020). In our eGWAS investigation, we detected a total of 17 

SNPs situated within the same region. Notably, the SNP located at position 21052693 on 

SSC14 exhibited the highest significance concerning CBR4 expression. Additionally, in 

our ASE analysis, we identified the SNP rs343238244, which displays allelic-specific 

expression for the CBR4 gene. However, there was no overlap in SNPs discovered 
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between the eGWAS and ASE studies. Thus, the identified polymorphisms may be in 

linkage disequilibrium with the causal mutation. 

ECHDC3 gene encodes the enoyl-CoA hydratase domain containing 3, a mitochondrial 

enzyme that has a crotonase-like domain similar to enoyl-CoA hydratase (Rahul et al., 

2015). Furthermore, ECHDC3 is assumed to be involved in β-oxidation, the most 

important and well-known pathway for FA oxidation (Linster et al., 2011; Miura, 2013).  

In this study, a total of 17 significant SNPs were detected within the same eQTL in the 

eGWAS, with an SNP located at position 60383846 on SSC10 being the most significant 

in relation to ECHDC3 gene expression. Concerning the ASE analysis, two significantly 

associated SNPs (rs346355799 and rs81477697) were identified. Interestingly, both 

studies identified the same polymorphism (rs81477697), located in a protein-coding 

region and causing a synonymous mutation. It would be of interest to further investigate 

this SNP as a potential candidate to elucidate the molecular mechanisms of ECHDC3 

gene expression. 

The Epoxide Hydrolase 2 (EPHX2) gene is involved in FA metabolism (Stelzer et al., 2016). 

In a study conducted by Gondret et al. (2012), a gene expression analysis was performed 

between juvenile pre-obese pigs compared with Large White lean pigs. In this study, 

they observed an overexpression of the EPHX2 gene in juvenile pre-obese pigs, in 

accordance with increased expression and greater total activity of EPHX2 in adipose 

tissue that were observed during obesity development in humans (Taeye et al., 2010). 

Moreover, Piórkowska et al. (2018) identified differential expression of the EPHX2 gene 

between Polish Landrace and Pulawska pigs using RNA-Seq analysis. In our eGWAS 

study, we identified six significant SNPs located within the same eQTL, with an SNP 

located at 11211355 on SSC14 being the most significant for EPHX2 gene expression. On 

the other hand, through the ASE study, we identified only one significant SNP 

(rs322829130), but the eGWAS and ASE studies did not find any common SNPs. Hence, 

the detected polymorphisms could be in linkage disequilibrium with the causal 

mutation. 

Finally, the Lipase E (LIPE) gene it is involved in the hydrolysis of triglycerides and 

diglycerides stored in muscle to free FAs. LIPE gene is located in a QTL region linked to 

meat sensory quality in pigs (Pena et al., 2013). A previous study conducted by Puig-
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Oliveras et al. (2014) found a differential gene expression of LIPE gene among pigs 

phenotypically extreme for FA composition. In addition, an investigation performed on 

Laiwu pigs has demonstrated a negative association between LIPE expression and IMF 

content (H. Wang et al., 2020). Zappaterra et al. (2016) identified a key role of LIPE 

enzyme in IMF hydrolysis in pig skeletal muscle. Furthermore, a differential gene 

expression in LIPE gene was observed between a cohort of 12 Wujin pigs characterized 

by high IMF deposition and a group of 12 Landrace pigs that displayed low IMF 

deposition (Zhao et al., 2009). In this study, the eGWAS identified two significant SNPs 

located within the same region. Notably, the SNP located at 49382024 on SSC6 exhibited 

the highest significance concerning LIPE expression. On the other hand, the ASE analysis 

identified the SNP rs328830166 as the most significant SNP displaying allelic-specific 

expression. However, there was no overlap in SNPs identified through the eGWAS and 

ASE studies.  

The ASE and eGWAS protocols performed in these researches converged with a principal 

purpose: to elucidate the genetic variants and genomic regions that regulate the key 

pathways of lipid metabolism and FA composition. Therefore, the combination of ASE 

and eGWAS protocols forms a strong base for upcoming research endeavours, 

facilitating deeper exploration into the complex genetic landscape that influences lipid 

metabolism and FA composition.  

 

4.3. Future perspectives and challenges 

 

Over the years, the advance of NGS technologies has been remarkable, leading to a 

substantial reduction in sequencing costs and making it achievable to sequence the 

complete genome of selected animals and to initiate large-scale sequencing projects to 

deepen our understanding of genetic variations across different populations.  

Furthermore, the transcriptome analysis was extended to a broader range of animals, 

diverse tissues within each animal and to single cells. Conversely, there has been a 

remarkable surge of interest in high-throughput “omics” technologies, encompassing 

genomics, transcriptomics, epigenomics, proteomics, metagenomics and metabolomics, 
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among others. These technologies are being increasingly applied within the domain of 

animal production, as highlighted by MacKay et al. (2009). Enhancing the analysis of 

complex traits requires integrating data from different "omics" and animal phenotypes 

using systems biology methods. Our group is working on a new investigation into the 

interrelation between pig growth, fatness, microbiome and immunity. Additionally, 

proteomics sheds light on disease mechanisms and protein applications, and the study 

of epigenomics could help us to understand the gene expression regulation. 

In the current study, we conducted a muscle gene expression analysis using qPCR for 45 

candidate lipid metabolism genes. Multiple polymorphisms located in cis-eQTL regions 

associated with the expression of GPAT3, RXRA, and UCP3 were identified. Nevertheless, 

further validations are necessary to confirm whether these polymorphisms are indeed 

the causal mutations. Moreover, a comprehensive investigation into the transcription 

factors PIK3CB, STAT1 and STAT4 mapped within the hotspot regions of the 3BCs would 

be crucial to confirm if these regulatory genes have the potential to modulate the 

expression of several genes.  

In the context of the RNA-Seq analysis, we have identified several eQTLs as well as 

genetic variants associated with candidate genes related to FA composition and lipid 

metabolism pathways. However, further analyses are necessary to confirm our 

hypothesis and validate the potential causal mutations identified through the eGWAS 

and ASE analyses. In future research, it would be interesting to delve deeper into the 

genes that are common between ASE and eGWAS analysis. Moreover, genotype 

polymorphisms significantly linked to the expression of candidate genes involved in lipid 

metabolism and FA composition, as well as exploring their potential connection to meat 

quality traits, could help to improve animal breeding programs. In addition, 

investigations focusing on the study of epigenetics may aid in understanding the 

molecular mechanisms of gene regulation. Interestingly, emerging technologies like cell 

cultures and luciferase reporter assays, protein binding assays, transcription factor 

binding studies or the CRISPR-Cas9 system may facilitate the validation of causal 

mutations associated with eQTLs and ASE studies.  
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1. The skeletal muscle expression profile of 45 candidate genes for lipid metabolism 

and fatty acid composition were investigated using microfluidic arrays and real-

time qPCR in 354 pigs representing three different genetic backgrounds. The 

eGWAS analysis identified 24 trans-acting eQTLs affecting the genes ANK2, 

APOE, ARNT, EGF, ELOVL6, FASN, GPAT3, NR1D2, PLIN1, PPAP2A, RORA, RXRA 

and UCP3, as well as three cis-acting eQTLs influencing the expression of GPAT3, 

RXRA and UCP3 genes. 

 

2. A trans-eQTL hotspot located in SSC13 is regulating the expression of APOE, 

ELOVL6, FASN and PLIN1 genes, where a potential regulatory gene (PIK3CB) was 

mapped. On the other hand, a trans-eQTL located in SSC15 is controlling the 

APOE and FASN gene expression, where the transcription activators STAT1 and 

STAT4 were mapped. 

 

3. A co-expression analysis of 89 lipid metabolism candidate genes in muscle and 

the correlation between gene expression and FA composition revealed the 

regulatory role of FABP5, PPARG, SCD and SREBF1 genes in modulating the levels 

of α-linolenic, arachidonic, and oleic acids. 

 

4. The muscle transcriptome of 129 Iberian × Duroc crossbreed pigs was studied by 

RNA-Seq. An ASE analysis identified 2,146 ASE-SNPs associated with the 

expression of 1,621 genes. Fifty-two of these genes were involved in lipid 

metabolism and FA composition pathways and may be associated with meat 

quality traits.  

 

5. The correlation analysis between the expression of 52 lipid metabolism 

candidate genes with ASE and the FA composition in muscle suggested a role of 

ABHD5, ACSL1 and NUDT19 genes in regulating the levels of arachidonic, 

dihomo-ɣ-linolenic, gondoic and oleic acids. 
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6. An eGWAS performed with the muscle RNA-Seq data of 129 Iberian × Duroc 

crossbreed pigs identified 620 cis-eQTLs associated with the expression of 598 

genes and 2,058 trans-eQTLs linked with the expression of 604 genes.  

 

7. In the eGWAS analysis, 101 genes with eQTLs were linked to lipid metabolism 

pathways, 30 genes displayed cis-eQTLs, 26 exhibited trans-eQTLs, and 45 had 

both cis- and trans-eQTLs. 
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7.1. Supplementary material Paper I: “Identification of genomic regions, genetic 

variants and gene networks regulating candidate genes for lipid metabolism in pig 

muscle” 

 

Table S1: SNPs genotyped by Taqman OpenArray and their chromosomal positions 

 

SNP ID Gene name Chr position ref alt position Sscrofa 11,1 

ACACA.I23 ACACA 12 38724977 G A 12:38724977-38724977 

ACSL4 ACSL4 23 89763094 A G 23:89763094-89763094 

ACSL4.3UTR ACSL4 23 89760895 G A 23:89760895-89760895 

ANK2 ANK2 8 109335876 A G 8:109335876-109335876 

CPT1A.2.4268130.AG CPT1A 2 4268130 A G 2:4268130-4268130 

CPT1A.2.4279213.AG CPT1A 2 4279213 G A 2:4279213-4279213 

ELOVL1.3UTR ELOVL1 6 167885980 C T 6:167885980-167885980 

ELOVL1.6.167880944.CT ELOVL1 6 167880944 C T 6:167880944-167880944 

ELOVL1.I ELOVL1 6 167884207 C T 6:167884207-167884207 

ELOVL1.P ELOVL1 6 167880497 T C 6:167880497-167880497 

ELOVL6.1408CT ELOVL6 8 112186423 G A 8:112186423-112186423 

ELOVL6.1922CT ELOVL6 8 112186937 A G 8:112186937-112186937 

ELOVL6.394GA ELOVL6 8 112038663 A G 8:112038663-112038663 

ELOVL6.480 ELOVL6 8 112038577 T C 8:112038577-112038577 

ELOVL6.533 ELOVL6 8 112038523 T C 8:112038523-112038523 

ELOVL6.574 ELOVL6 8 112038483 C T 8:112038483-112038483 

ELOVL6.8.112038338.CT ELOVL6 8 112038338 T C 8:112038338-112038338 

ELOVL6.8.112038405.AG ELOVL6 8 112038405 G A 8:112038405-112038405 

ELOVL6.8.112039363.AG ELOVL6 8 112039363 G A 8:112039363-112039363 

ELOVL6.8.112187085.CG ELOVL6 8 112187085 C G 8:112187085-112187085 

ELOVL6.E4 ELOVL6 8 112180004 C T 8:112180004-112180004 

ELOVL7.629AG ELOVL7 16 39680655 G A 16:39680655-39680655 

ELOVL7.E10 ELOVL7 16 39589566 G A 16:39589566-39589566 

ELOVL7.P ELOVL7 16 39680072 A G 16:39680072-39680072 

FABP4.3UTR FABP4 4 55100821 G A 4:55100821-55100821 

FABP4.4.55100943.GA FABP4 4 55100943 A G 4:55100943-55100943 

FABP4insC FABP4insC 4 55096733 I D 4:55096733-55096733 

FADS1 FADS1 2 9747629 C T 2:9747629-9747629 

FADS1.2.9733962.AG FADS1 2 9733962 A G 2:9733962-9733962 

FADS1.2.9733986.AC FADS1 2 9733986 A C 2:9733986-9733986 

FADS1.2.9734036.AG FADS1 2 9734036 A G 2:9734036-9734036 

FADS1.2.9734294.AG FADS1 2 9734294 A G 2:9734294-9734294 

FADS1.2.9747858.CT FADS1 2 9747858 T C 2:9747858-9747858 

FADS1.3UTR FADS1 2 9749025 T C 2:9749025-9749025 

FADS1.P FADS1 2 9734553 T C 2:9734553-9734553 

FADS2.2.9633104.AT FADS2 2 9633104 A T 2:9633104-9633104 

FADS2.2.9633749.CG FADS2 2 9633749 G C 2:9633749-9633749 

FADS2.2.9654959.AC FADS2 2 9654959 A C 2:9654959-9654959 

FADS2.2.9667336.CT FADS2 2 9667336 C T 2:9667336-9667336 

FADS2.E6 FADS2 2 9642011 G T 2:9642011-9642011 

FADS2.E8 FADS2 2 9635779 T C 2:9635779-9635779 

FADS2.P FADS2 2 9667306 C T 2:9667306-9667306 

FADS2.P2 FADS2 2 9667513 T C 2:9667513-9667513 

FADS2.P3 FADS2 2 9667427 G A 2:9667427-9667427  
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FADS3 FADS3 2 9621709 A G 2:9621709-9621709 

FADS3.2.9606685.AC FADS3 2 9606685 C A 2:9606685-9606685 

FADS3.2.9607176.AG FADS3 2 9607176 A G 2:9607176-9607176 

FASN.12.923305.TC FASN 12 923305 T C 12:923305-923305 

FASN.12.924947.CT FASN 12 924947 C T 12:924947-924947 

FASN.12.935308.GA FASN 12 935308 A G 12:935308-935308 

FASN.12.937358.GA FASN 12 937358 G A 12:937358-937358 

FASN.P FASN 12 919403 T C 12:919403-919403 

GPAT3.3UTR GPAT3 8 134913000 A G 8:134913000-134913000 

GPAT3.P GPAT3 8 134976964 C T 8:134976964-134976964 

LPL.14.4122395.AG LPL 14 4122395 G A 14:4122395-4122395 

NR1D2.3UTR NR1D2 13 10789348 T C 13:10789348-10789348 

NR1D2.E3 NR1D2 13 10770067 A G 13:10770067-10770067 

PLIN1.7.55237057.AG PLIN1 7 55237057 G A 7:55237057-55237057 

SLC27A1.2.60205069.CT SLC27A1 2 60205069 T C 2:60205069-60205069 

SREBF2.5.6758255.CA SREBF2 5 6758255 A C 5:6758255-6758255 

THBS1.E6 THBS1 1 131742930 C T 1:131742930-131742930 

THBS1.E9 THBS1 1 131739520 C T 1:131739520-131739520 

THBS1.P THBS1 1 131746388 G T 1:131746388-131746388 

USF1 USF1 4 89395154 D I 4:89395154-89395154 

USF1.P2 USF1 4 89394426 C G 4:89394426-89394426 
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Table S2: Primer sequences of the 45 candidate genes. 

 

Gene Orientation Primer 

ACACA fw TCTCATCCAAACAGAGGGAACA 

ACACA rv ATGAGTCATGCCATAGTGGTTGA 

ACLY fw TATCTCCGGCCTCTTCAATTTCTA 

ACLY rv CGCCGTCTTTGGTCACTACAA 

ACSL4 fw CCCACTTTGCAATCTGCTACTG 

ACSL4 rv CTCCACCAGACAGCATCATACG 

ADIPOQ fw GTACCCCAGGCCGTGATG 

ADIPOQ rv CCCTTAGGACCAGTAAGACCTGTATCT 

ADIPOR1 rv GCAATCCCTGAATAATCCAGTTTG 

ADIPOR1 fw GAAGGTGGTGTTTGGGATGTTCT 

ADIPOR2 rv GTCAGGCAGCACATCGTGAG 

ADIPOR2 fw GGAAAGAATGGAAGAGTTCGTTTGT 

AGPAT2 fw CATGGTCAGGGAGAAGCTCAA 

AGPAT2 rv GCCAGGTAGAAGGCACCTTTC 

ANK2 fw GTGGATTCTGCTACGAAGAAAGG 

ANK2 rv AAGGACTTTGACAACTTCTGCTTGT 

APOE fw GGGTGCAGTCCCTGTCTGAC 

APOE rv CTCTCCTCTATCAGCTCCGTCAG 

ARNT fw TCTAATGATAAGGAGCGGTTTGC 

ARNT rv TATGATTTTCCCTGGCGAGTCT 

CD36 fw GGTCCTTACACGTACAGAGTTCGTT 

CD36 rv CCATTGGGCTGTAGGAAAGAGA 

CIITA fw GCAGGCTGTTGTGCGACAT 

CIITA rv TGGTCCAGTTCCGCGATAC 

CPT1A fw CCTGAAGGTGCTGCTCTCCTA 

CPT1A rv CTCACCATCATCATCCAGATCTTG 

CYP2U1 fw AGAGAAAACAGTGCTCCAAGGGTAT 

CYP2U1 rv TGGCTGGGTCTCTGTGTACTGA 

EGF fw AACGGGAATGCCACTTGTGT 

EGF rv CCTTCCAAGTCAATCCTAAAGATACTG 

ELOVL1 fw CATTGAGCTGATGGACACAGTGA 

ELOVL1 rv GCGTGGAAAGAGCCCATTC 

ELOVL5 fw CCTCTCGGCTGGCTGTACTT 

ELOVL5 rv CCTTCTTGTTGTAGGTCTGGATGTAG 

ELOVL6 fw AGCAGTTCAACGAGAACGAAGCC 

ELOVL6 rv TGCCGACCGCCAAAGATAAAG 

ELOVL7 fw GTACAGGTTATTCGTTTCGATGTGA 

ELOVL7 rv CAGGTGCGTACCATCCTCAGT 

ESRRA fw CAAGAGCATCCCAGGCTTCTC 

ESRRA rv CACCCAACACCAATACCTCCAT 

ETFDH fw AGTGGAATTTTGGCAGCAGAA 
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ETFDH rv GTTACATGGAGTCCTATTGTCTTCGA 

FABP4 fw TAAGTTGGTGGTGGAATGTATCATG 

FABP4 rv AGAGTGTTGTAGAGTTCGATCCAAAC 

FADS1 fw CCTTGTGAGGAAGTATATGAGCTCTCT 

FADS1 rv TCATCTGTCAGCTCTTTATTCTTAGTCG 

FADS2 fw TCCACCGCGACCTTGATTTA 

FADS2 rv TCGGTGATCTCAGAGTTCTTGGT 

FADS3 fw CCAGCACCTCTACTTCTTCCTGAT 

FADS3 rv CATGTATGCCAGATTTTCCACTTC 

FASN fw CGTGGGCTACAGCATGATAGG 

FASN rv CTGGGCCCCTTGAAGTCA 

GPAT3 fw TCCTGCCTCTCAGGGTTACCT 

GPAT3 rv AACTGTCCAACCAGGGTGGTT 

HADH fw AGCTCTTCAAGAGGCTGGACAA 

HADH rv TTGTGATCTGCAAAGAGGAAGTG 

HADHA fw CTTTGCTGACCAGAACCCATATT 

HADHA rv GAGTATTTACCTTTGAATTGGGTGAGT 

LPL fw GTGCTCAGATGCCCTACAAAGTC 

LPL rv GGTTGGTGTGGGTATCACTCTCA 

ME1 fw ATGATCGAGGGCATGTTGCT 

ME1 rv AGTCACCACGACAGCCTTGAT 

NR1D2 fw GCTTGTGAAGGCTGTAAGGGT 

NR1D2 rv CTGACATCTGTTCCTATTCATTCTCATT 

NR1H2 fw CATCCACCATTGAGATCATGCT 

NR1H2 rv CATCCTTGCTGTAGGTGAAGTCTTT 

NRF1 fw CACGTTTGCTTAGGAAACTTCGA 

NRF1 rv GGGTTTGGAGGGTGAGATACAA 

PDK4 fw AGCTGCTGGACTTCGGTTCA 

PDK4 rv GCTAGCCTCACAGGCAACTCTT 

PLIN1 fw CCTCCAGTATCCTCCTGAAAAGATC 

PLIN1 rv GAGCTCGCAGCCAGCTAGAG 

PNPLA2 fw CTTCACCGTCCGCTTGCT 

PNPLA2 rv GCATCACCAGGTACTGGCAGAT 

PPAP2A fw GGCCACTCTTCATTCTCCATGTAC 

PPAP2A rv AGGCCCACGTAAATGGATACAG 

RORA fw TCAGAACAATACCGTGTACTTTGATG 

RORA rv AAAGTCTTCACAACCTAAGGATTTGAAG 

RXRA fw CAACAAGGACTGCCTGATCGA 

RXRA rv TCCTCCTGCACGGCTTCA 

SLC27A1 fw TCACTCGGCAGGGAACATC 

SLC27A1 rv CGGCTGGCTGAAAACTTCTT 

SREBF2 fw GTACCGCTCCTCCATCAATGA 

SREBF2 rv AAAACACCAGACTTGTGCATCTTG 

THBS1 fw CATCCGCAAAGTGACTGAAGAG 

THBS1 rv TGGACTCCGTTGTGGTAGCA 
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UCP3 fw AAGTACAGCGGGACGATGGA 

UCP3 rv TGTTGGGCAGAATTCCTTTCC 

USF1 fw CCCTTATTCCCCGAAGTCAGA 

USF1 rv GCGGCGTTCCACTTCATTAT 
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Table S3: Variant Effect Predictor of the 258 significant eSNPs found in the eGWAS results for 18 candidate genes. 

 

chr position rs Allele Consequence IMPACT SYMBOL Gene ID 

1 29427957 rs80824504 A intergenic_variant MODIFIER - - 

1 31162256 rs80801544 G synonymous_variant LOW TAAR9 ENSSSCG00000004189 

1 39158009 rs81312346 A intergenic_variant MODIFIER - - 

1 270278445 rs81352831 A intron_variant MODIFIER NCS1 ENSSSCG00000039311 

1 270313674 rs81352834 G intron_variant MODIFIER NCS1 ENSSSCG00000039311 

1 270868251 rs81319709 G intron_variant MODIFIER ABL1 ENSSSCG00000005706 

1 270888682 rs81334938 A intron_variant MODIFIER ABL1 ENSSSCG00000005706 

1 270920337 rs81474173 A 3_UTR_variant MODIFIER FIBCD1 ENSSSCG00000005707 

1 271413237 rs81353004 A intron_variant MODIFIER PRRC2B ENSSSCG00000005715 

1 271626303 rs81353058 G intergenic_variant MODIFIER - - 

1 271944489 rs80812614 A intergenic_variant MODIFIER - - 

1 273032673 rs81311731 A intron_variant MODIFIER ADAMTS13 ENSSSCG00000021241 

1 273242436 rs80827620 G intron_variant MODIFIER SARDH ENSSSCG00000005740 

1 274019182 rs81319360 G intron_variant MODIFIER COL5A1 ENSSSCG00000005751 

10 5508391 rs81428136 G intergenic_variant MODIFIER - - 

11 25626653 rs80965301 A intron_variant MODIFIER MTRF1 ENSSSCG00000009436 

12 20659791 rs81432406 A intron_variant MODIFIER ZNF385C ENSSSCG00000028051 

12 20697851 rs81432416 A intron_variant MODIFIER ZNF385C ENSSSCG00000028051 

12 20727551 rs81300859 A upstream_variant MODIFIER NKIRAS2 ENSSSCG00000017418 

12 20752782 rs81214864 A synonymous_variant LOW DNAJC7 ENSSSCG00000017419 

12 20767619 rs81260973 A synonymous_variant LOW ODAD4 ENSSSCG00000017415 

12 38329499 rs81305582 G intergenic_variant MODIFIER - - 

12 53995960 rs81437196 G intron_variant MODIFIER PIK3R5 ENSSSCG00000017991 
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13 24228663 rs80853212 G intergenic_variant MODIFIER - - 

13 24253641 rs81443771 G intergenic_variant MODIFIER - - 

13 52057695 rs80909668 G intergenic_variant MODIFIER - - 

13 58821305 rs80909709 G intron_variant MODIFIER - ENSSSCG00000045742 

13 61140536 rs81446211 A intron_variant MODIFIER ITPR1 ENSSSCG00000023437 

13 77105634 rs80831731 G intron_variant MODIFIER PPP2R3A ENSSSCG00000033185 

13 77509075 rs81446940 A intron_variant MODIFIER STAG1 ENSSSCG00000011652 

13 77618140 rs81309969 A intron_variant MODIFIER STAG1 ENSSSCG00000011652 

13 77708756 rs81446946 A intron_variant MODIFIER STAG1 ENSSSCG00000011652 

13 78889869 rs81280406 G intron_variant MODIFIER DZIP1L ENSSSCG00000027467 

13 78891871 rs81478270 G intron_variant MODIFIER DZIP1L ENSSSCG00000027467 

13 80847255 rs81242540 A intron_variant MODIFIER CLSTN2 ENSSSCG00000011666 

13 81420530 rs322937606 A intron_variant MODIFIER CLSTN2 ENSSSCG00000011666 

13 81440526 rs80946349 A intron_variant MODIFIER CLSTN2 ENSSSCG00000011666 

13 81488325 rs80916261 G intergenic_variant MODIFIER - - 

13 81561592 rs80942072 G intron_variant MODIFIER TRIM42 ENSSSCG00000011668 

13 81604531 rs81316562 G intron_variant MODIFIER - ENSSSCG00000050095 

13 81965754 rs81447187 A upstream_variant MODIFIER PXYLP1 ENSSSCG00000011670 

13 82197802 rs80959349 C downstrea_variant MODIFIER ZBTB38 ENSSSCG00000022073 

13 178001286 rs80815933 A intron_variant MODIFIER ROBO2 ENSSSCG00000012002 

13 200778735 rs80961068 G intron_variant MODIFIER TTC3 ENSSSCG00000012062 

14 2722953 rs80785221 G intergenic_variant MODIFIER - - 

14 2758196 rs80929308 G intergenic_variant MODIFIER - - 

14 53689369 rs80920722 G intron_variant MODIFIER RYR2 ENSSSCG00000010142 

14 55291076 rs81450834 C intron_variant MODIFIER NID1 ENSSSCG00000026819 

14 56474441 rs80792689 A intergenic_variant MODIFIER - - 

14 56910185 rs80811825 A intron_variant MODIFIER SLC35F3 ENSSSCG00000010162 
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14 57880301 rs80967642 A upstream_variant MODIFIER - ENSSSCG00000052826 

14 58293291 rs80912739 A intron_variant MODIFIER SIPA1L2 ENSSSCG00000010169 

14 58329122 rs80912264 A intron_variant MODIFIER SIPA1L2 ENSSSCG00000010169 

14 58410680 rs80966169 G intergenic_variant MODIFIER - - 

14 59497467 rs80909629 A intron_variant MODIFIER TTC13 ENSSSCG00000010180 

14 61288545 rs80881665 A intergenic_variant MODIFIER - - 

14 61318065 rs80837939 A intron_variant MODIFIER RET ENSSSCG00000010199 

14 61429021 rs80810391 G intron_variant MODIFIER RASGEF1A ENSSSCG00000010201 

14 61453852 rs80788284 A intron_variant MODIFIER RASGEF1A ENSSSCG00000010201 

14 61489779 rs80941880 C intron_variant MODIFIER RASGEF1A ENSSSCG00000010201 

14 61501367 rs80830365 A intron_variant MODIFIER RASGEF1A ENSSSCG00000010201 

14 63488234 rs80815692 C intron_variant MODIFIER - ENSSSCG00000010212 

14 63515463 rs80845884 A intron_variant MODIFIER - ENSSSCG00000010212 

14 63574363 rs80860167 G intron_variant MODIFIER - ENSSSCG00000010212 

14 63629712 rs80827664 G intron_variant MODIFIER - ENSSSCG00000010212 

14 63687970 rs80892476 A intron_variant MODIFIER - ENSSSCG00000010212 

14 63934099 rs80806131 G intron_variant MODIFIER - ENSSSCG00000010212 

14 63957872 rs80991169 A intron_variant MODIFIER - ENSSSCG00000010212 

14 64067892 rs80862647 G intron_variant MODIFIER - ENSSSCG00000010212 

14 64162795 rs80874321 G intron_variant MODIFIER - ENSSSCG00000010212 

14 64191356 rs326097302 C intron_variant MODIFIER - ENSSSCG00000010212 

14 64593845 rs80863241 A intergenic_variant MODIFIER - - 

14 64606897 rs80998583 A intergenic_variant MODIFIER - - 

14 64714395 rs80943509 G intergenic_variant MODIFIER - - 

14 64797427 rs80998166 A intergenic_variant MODIFIER - - 

14 64823635 rs80909042 G intergenic_variant MODIFIER - - 

14 64856186 rs80911891 A intergenic_variant MODIFIER - - 
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14 64944114 rs81450907 G intergenic_variant MODIFIER - - 

14 64977875 rs81450909 C intergenic_variant MODIFIER - - 

14 65293748 rs344057444 G intergenic_variant MODIFIER - - 

14 65330288 rs80893603 G non_coding MODIFIER - ENSSSCG00000059800 

14 65416111 rs80783805 C intron_variant MODIFIER ARID5B ENSSSCG00000010219 

14 65594891 rs80927833 G 3_UTR_variant MODIFIER ARID5B ENSSSCG00000010219 

14 65622385 rs80844711 A intergenic_variant MODIFIER - - 

14 65655137 rs80855882 A upstream_variant MODIFIER - ENSSSCG00000045063 

14 65812365 rs80823092 A intergenic_variant MODIFIER - - 

14 65849180 rs80825364 A upstream_variant MODIFIER - ENSSSCG00000010221 

14 66131302 rs80919409 G intron_variant MODIFIER - ENSSSCG00000045125 

14 66164114 rs80823440 A intron_variant MODIFIER - ENSSSCG00000045125 

14 66217364 rs80790504 A intron_variant MODIFIER - ENSSSCG00000045125 

14 66346934 rs80857308 G intergenic_variant MODIFIER - - 

14 66411511 rs332630058 G intergenic_variant MODIFIER - - 

14 66463802 rs80992681 A intron_variant MODIFIER - ENSSSCG00000050044 

14 66511894 rs80790167 A intergenic_variant MODIFIER - - 

14 66601592 rs80892283 G intron_variant MODIFIER NRBF2 ENSSSCG00000024081 

14 66650724 rs80806783 A synonymous_variant LOW JMJD1C ENSSSCG00000010226 

14 66774513 rs80784829 G intron_variant MODIFIER JMJD1C ENSSSCG00000010226 

14 67039033 rs80929206 A intron_variant MODIFIER REEP3 ENSSSCG00000036476 

14 67093823 rs80883807 A intergenic_variant MODIFIER - - 

14 67147012 rs80917091 A intergenic_variant MODIFIER - - 

14 67179643 rs80953180 A intergenic_variant MODIFIER - - 

14 67221608 rs80855993 G intergenic_variant MODIFIER - - 

14 67243311 rs80842796 A intergenic_variant MODIFIER - - 

14 67269867 rs80958297 A intergenic_variant MODIFIER - - 
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14 67334411 rs80955072 A intergenic_variant MODIFIER - - 

14 67342053 rs80935088 A intergenic_variant MODIFIER - - 

14 67409551 rs80993577 A non_coding MODIFIER - ENSSSCG00000055826 

14 67429030 rs81001094 G intergenic_variant MODIFIER - - 

14 67443330 rs80867759 A upstream_variant MODIFIER - ENSSSCG00000057010 

14 67864215 rs80782492 A intergenic_variant MODIFIER - - 

14 67985525 rs80898366 G intergenic_variant MODIFIER - - 

14 68132098 rs343967944 A intergenic_variant MODIFIER - - 

14 68569202 rs80836807 G intergenic_variant MODIFIER - - 

14 68649520 rs80910560 C intergenic_variant MODIFIER - - 

14 68668578 rs80941150 A intergenic_variant MODIFIER - - 

14 68712952 rs80869833 C intergenic_variant MODIFIER - - 

14 68966102 rs329548237 G intergenic_variant MODIFIER - - 

14 69037864 rs80791549 G intergenic_variant MODIFIER - - 

14 69076616 rs327510211 G intergenic_variant MODIFIER - - 

14 69112868 rs80927258 G intergenic_variant MODIFIER - - 

14 69290179 rs80882860 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 69302116 rs324206983 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 69555273 rs81450994 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 69576192 rs81450997 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 69589926 rs81451001 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 69672751 rs80906784 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 69721367 rs80980794 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 69743473 rs80968726 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 69814326 rs80912747 C intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 69865089 rs80782356 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 69888948 rs80916352 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 
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14 69965414 rs80901895 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70036197 rs80909540 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70068946 rs80934118 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70099607 rs80878343 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70113426 rs80997255 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70175904 rs80858025 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70216594 rs80798857 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70250940 rs80974369 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70268234 rs320089046 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70282756 rs80954290 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70304464 rs80826444 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70316991 rs80991185 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70334131 rs80943996 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70360906 rs80943789 G intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 70394534 rs81320173 A intron_variant MODIFIER CTNNA3 ENSSSCG00000036480 

14 71463045 rs81267540 G intron_variant MODIFIER PBLD ENSSSCG00000025876 

14 71530810 rs80964645 A intron_variant MODIFIER RUFY2 ENSSSCG00000010239 

14 71578222 rs80905037 A intron_variant MODIFIER DNA2 ENSSSCG00000010240 

14 71651905 rs80961472 A upstream_variant MODIFIER SLC25A16 ENSSSCG00000022303 

14 71926501 rs81451202 G upstream_variant MODIFIER STOX1 ENSSSCG00000010245 

14 71996220 rs80956623 G intron_variant MODIFIER DDX50 ENSSSCG00000010246 

14 72025065 rs330051345 A synonymous_variant LOW DDX50 ENSSSCG00000010246 

14 72086975 rs80850507 A intron_variant MODIFIER KIFBP ENSSSCG00000010248 

14 72160465 rs80970697 G intergenic_variant MODIFIER - - 

14 72304198 rs80895291 A intron_variant MODIFIER HKDC1 ENSSSCG00000010252 

14 72454977 rs80984932 A intron_variant MODIFIER HK1 ENSSSCG00000010253 

14 72657517 rs81322238 C intergenic_variant MODIFIER - - 
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14 72681841 rs81306475 A intergenic_variant MODIFIER - - 

14 73455311 rs80998089 A intron_variant MODIFIER PALD1 ENSSSCG00000036446 

14 73549191 rs80952995 C intron_variant MODIFIER ADAMTS14 ENSSSCG00000010272 

14 73915912 rs80972489 C upstream_variant MODIFIER U6 ENSSSCG00000063002 

14 73938018 rs80858413 A intergenic_variant MODIFIER - - 

14 74005557 rs80916750 G intergenic_variant MODIFIER - - 

14 82129423 rs80799556 A upstream_variant MODIFIER MAT1A ENSSSCG00000010337 

14 82159674 rs80890286 G intron_variant MODIFIER DYDC1 ENSSSCG00000061214 

14 102414475 rs80856108 C intergenic_variant MODIFIER - - 

15 74207778 rs80874418 G intergenic_variant MODIFIER - - 

15 74223043 rs80875726 C downstream_variant MODIFIER - ENSSSCG00000048880 

15 74235458 rs80850172 A intergenic_variant MODIFIER - - 

15 93185092 rs81301298 G intron_variant MODIFIER GULP1 ENSSSCG00000016033 

15 94478426 rs333806503 G intron_variant MODIFIER C2orf88 ENSSSCG00000033941 

15 94737785 rs81478831 G intron_variant MODIFIER - ENSSSCG00000041649 

15 94765099 rs81478871 C intron_variant MODIFIER - ENSSSCG00000041649 

15 94839330 rs337294454 G intron_variant MODIFIER - ENSSSCG00000041649 

15 94923471 rs80816554 G intron_variant MODIFIER HIBCH ENSSSCG00000016049 

16 21884754 rs81457035 G intron_variant MODIFIER SLC1A3 ENSSSCG00000016841 

16 22998327 rs81345264 G intergenic_variant MODIFIER - - 

17 33547292 rs80956481 G intergenic_variant MODIFIER - - 

18 8938737 rs81477067 A downstream_variant MODIFIER - ENSSSCG00000041343 

2 113333168 rs81362780 C intron_variant MODIFIER FBXL17 ENSSSCG00000014190 

2 145424076 rs81366970 A intergenic_variant MODIFIER - - 

3 126863515 rs81224446 A intron_variant MODIFIER IAH1 ENSSSCG00000008640 

4 111702541 rs81380400 G intron_variant MODIFIER - ENSSSCG00000041066 

4 119798655 rs80985433 G non_coding MODIFIER - ENSSSCG00000045465 
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5 27631915 rs81334652 G intergenic_variant MODIFIER - - 

5 28327581 rs80819392 G intron_variant MODIFIER SRGAP1 ENSSSCG00000029815 

6 17459517 rs81391557 C intergenic_variant MODIFIER - - 

6 45156998 rs337498531 G synonymous_variant LOW KMT2B ENSSSCG00000002895 

6 45447973 rs81395741 A intron_variant MODIFIER WDR62 ENSSSCG00000002923 

6 45460146 rs329941598 A splice_donor_variant LOW WDR62 ENSSSCG00000002923 

6 45595002 rs81325388 G intron_variant MODIFIER ZNF146 ENSSSCG00000025355 

6 45671421 rs81395814 A intergenic_variant MODIFIER - - 

6 45923403 rs81226690 A intron_variant MODIFIER ZNF566 ENSSSCG00000029170 

6 46126442 rs81250717 A intron_variant MODIFIER ZNF829 ENSSSCG00000063057 

6 46387903 rs81476008 G intron_variant MODIFIER ZNF569 ENSSSCG00000029420 

6 99307882 rs81347503 A intergenic_variant MODIFIER - - 

6 99339946 rs81337232 G intergenic_variant MODIFIER - - 

6 99580947 rs81277378 A intron_variant MODIFIER PTPRM ENSSSCG00000028805 

6 129477727 rs81476249 A intergenic_variant MODIFIER - - 

6 129734771 rs81391421 G intron_variant MODIFIER TTLL7 ENSSSCG00000003760 

6 132846185 rs81391604 A intergenic_variant MODIFIER - - 

7 10724105 rs81000135 G downstream_variant MODIFIER - ENSSSCG00000052083 

7 90911258 rs340169919 A intron_variant MODIFIER GPHN ENSSSCG00000002285 

7 91673905 rs80940210 A intron_variant MODIFIER RAD51B ENSSSCG00000028877 

7 92399480 rs80896235 G intergenic_variant MODIFIER - - 

7 105856850 rs81223355 G intergenic_variant MODIFIER - - 

7 105892246 rs80823303 A downstream_variant MODIFIER - ENSSSCG00000060880 

8 22813218 rs81301715 C intergenic_variant MODIFIER - - 

8 25554848 rs80812211 A intergenic_variant MODIFIER - - 

8 39669734 rs81477007 A intergenic_variant MODIFIER - - 

8 79507941 rs80840907 A non_coding MODIFIER - ENSSSCG00000055701 
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 8 79839602 rs81401770 A intergenic_variant MODIFIER - - 

8 79853747 rs81401771 G intergenic_variant MODIFIER - - 

8 124785626 rs81404194 G intergenic_variant MODIFIER - - 

8 131373563 rs81247816 C intergenic_variant MODIFIER - - 

8 131452301 rs81211121 G missense_variant MODERATE NUDT9 ENSSSCG00000053724 

8 134933342 rs81269758 A intron_variant MODIFIER GPAT3 ENSSSCG00000009233 

9 8362141 rs81413811 G intron_variant MODIFIER UCP2 ENSSSCG00000014833 

9 8406364 rs81413868 A intron_variant MODIFIER C2CD3 ENSSSCG00000014835 

9 28657220 rs81259127 A intergenic_variant MODIFIER - - 

9 138952691 rs81419738 G intergenic_variant MODIFIER - - 

8 134733478 rs81339371 A intergenic_variant MODIFIER - - 

8 134763128 rs81331248 A intergenic_variant MODIFIER - - 

8 134933342 rs81269758 A intron_variant MODIFIER GPAT3 ENSSSCG00000009233 

8 135212871 rs81405675 A intron_variant MODIFIER - ENSSSCG00000009239 

8 135491186 rs81336088 G intron_variant MODIFIER SEC31A ENSSSCG00000009244 

8 135550523 rs81344869 A intron_variant MODIFIER SCD5 ENSSSCG00000009245 

8 135604963 rs81328785 A intron_variant MODIFIER SCD5 ENSSSCG00000009245 

8 135607348 rs81339189 G intron_variant MODIFIER SCD5 ENSSSCG00000009245 
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7.2. Supplementary material Paper II: “Expression quantitative trait loci (eQTL) identification and its relationship with lipid metabolism in 

pig muscle” 

 

Table S1: Gene ontology biological terms of eQTL–associated genes. 

 

FDR nGenes Assoc.  Pathway Genes 

1,50E-08 92 1079 
Small molecule 
metabolic process  

 MCAT  ACO2  SLC25A17  ADSL  ALDH5A1  AARS2  PLA2G7  FAH  EFL1  ARG2  RDH11  APRT  LDHD  LIPE  APOE  
NMNAT1  PEX7  GATM  CLN6  NAXE  GBA  SARS1  PEX13  GALM  ACOX3  NAAA  COQ2  PTK2B  EPHX2  CBR4  ACADS  
AIFM2  PCBD1  ADK  MTARC2  EPHX1  PYCR2  HACL1  OXSM  ACAA1  NME6  NIT2  BAD  ASRGL1  LARS1  RRM1  
ASNS  LPGAT1  ATIC  CYP27A1  FARSB  AASS  FAM3C  PRPSAP2  DHCR7  PTGR1  BDH2  ACO1  ALDH4A1  THNSL2  
COQ9  ALDH1A2  TARS2  ADCY5  FH  ADI1  GDE1  AKR1A1  PON3  DHFR  MLYCD  MGST2  LOC110261142  AK2  
NUDT16  SLC39A14  PNPO  GPX1  LOC110255953  ATP5F1C  COQ7  ATP5F1D  ITPA  INSIG2  ATPSCKMT  RBKS  PHYH  
ERLIN2  GCSH  LRP2  CBS  IPMK 

7,05E-06 52 536 
Oxoacid 
metabolic process  

 MCAT  ACO2  SLC25A17  ALDH5A1  AARS2  FAH  ARG2  LDHD  PEX7  GATM  SARS1  PEX13  ACOX3  NAAA  CBR4  
ACADS  MTARC2  EPHX1  PYCR2  HACL1  OXSM  ACAA1  NIT2  ASRGL1  LARS1  ASNS  LPGAT1  CYP27A1  FARSB  
AASS  PTGR1  BDH2  ACO1  ALDH4A1  THNSL2  ALDH1A2  TARS2  FH  ADI1  AKR1A1  PON3  DHFR  MLYCD  MGST2  
LOC110261142  GPX1  LOC110255953  INSIG2  PHYH   

7,28E-06 51 527 
Carboxylic acid 
metabolic process  

 MCAT  ACO2  SLC25A17  ALDH5A1  AARS2  FAH  ARG2  LDHD  PEX7  GATM  SARS1  PEX13  ACOX3  NAAA  CBR4  
ACADS  EPHX1  PYCR2  HACL1  OXSM  ACAA1  NIT2  ASRGL1  LARS1  ASNS  LPGAT1  CYP27A1  FARSB  AASS  PTGR1  
BDH2  ACO1  ALDH4A1  THNSL2  ALDH1A2  TARS2  FH  ADI1  AKR1A1  PON3  DHFR  MLYCD  MGST2  
LOC110261142  GPX1  LOC110255953  INSIG2  PHYH  ERLIN2   

1,15E-05 52 555 
Organic acid 
metabolic process  

 MCAT  ACO2  SLC25A17  ALDH5A1  AARS2  FAH  ARG2  LDHD  PEX7  GATM  SARS1  PEX13  ACOX3  NAAA  CBR4  
ACADS  MTARC2  EPHX1  PYCR2  HACL1  OXSM  ACAA1  NIT2  ASRGL1  LARS1  ASNS  LPGAT1  CYP27A1  FARSB  
AASS  PTGR1  BDH2  ACO1  ALDH4A1  THNSL2  ALDH1A2  TARS2  FH  ADI1  AKR1A1  PON3  DHFR  MLYCD  MGST2  
LOC110261142  GPX1  LOC110255953  INSIG2  PHYH  ERLIN2  GCSH   

0,000634 79 1134 

Organonitrogen 
compound 
biosynthetic 
process  

 ADSL  RXYLT1  MOCS1  MRPL14  AARS2  GALNT16  APRT  LSM14A  APOE  NMNAT1  ZDHHC18  RMND1  GATM  
ALG2  ST6GALNAC4  PTDSS1  PRKDC  GBA  SARS1  PLCB1  TUFM    PCBD1  ADK  COX15  PYCR2  DAPK1  NME6  ATG7  
PIGP  LTO1  LARS1  ASNS  EIF2D  ATIC  FARSB  MOCS2  MRPL22  MPDU1  B3GAT3  KHDRBS1  ACO1  LOC100738836  
TARS2  PIGX  ADCY5  SECISBP2  MRPL9  LOC100739087  ADI1  EXTL1  RPS9  DHFR  MLYCD  MGST2  LOC110261142  
AK2  MRPL37  EIF1AX  POGLUT1  B3GNT8  CERS6  PNPO  MRPL12  DHDDS  ATP5F1C  RPL13A  ZDHHC14  ATP5F1D  
ATPSCKMT  DPH2  MTIF3  DHX33  PIGH  PIGG  LOC100519675  CBS 
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0,000634 32 310 
Small molecule 
biosynthetic  

 MCAT  APRT  APOE  GATM  GBA  COQ2  PTK2B  CBR4  PCBD1  ADK  PYCR2  OXSM  ASNS  LPGAT1  CYP27A1  
FAM3C  DHCR7  THNSL2  COQ9  ALDH1A2  ADI1  AKR1A1  DHFR  MLYCD  MGST2  SLC39A14  PNPO  COQ7  INSIG2  
ERLIN2  CBS  IPMK 

0,000634 19 130 
Organic acid 
catabolic process  

 SLC25A17  ALDH5A1  FAH  LDHD  PEX7  PEX13  ACOX3  ACADS  HACL1  ACAA1  ASRGL1  AASS  BDH2  ALDH4A1  
THNSL2  AKR1A1  PON3  PHYH   

0,00079 51 631 
Cellular lipid 
metabolic process  

 MCAT  NAGA  SLC25A17  PLA2G7  RDH11  APOE  PEX7  SMPD2  CLN6  ALG2  PTDSS1  GBA  PLCB1  PEX13  ACOX3  
NAAA    COQ2  EPHX2  CBR4  ACADS  PSAP  EPHX1  PIP4K2A  HACL1  OXSM  ACAA1  PIGP  LPGAT1  MPDU1  PTGR1  
BDH2  SERINC2  THNSL2  ALDH1A2  PIGX  PLCD1  GDE1  MLYCD  MGST2  SOCS6  CERS6  DHDDS  GPX1  D2HGDH  
INSIG2  PHYH  PIGH  ERLIN2  PIGG  CAV3 

0,00136 62 849 
Lipid metabolic 
process  

 MCAT  NAGA  SLC25A17  LOC100626199  PLA2G7  RDH11  MBTPS1  LIPE  APOE  PEX7  SMPD2  CLN6  ALG2  
PTDSS1  LYN  GBA  PLCB1  PEX13  ACOX3  NAAA    COQ2  PTK2B  EPHX2  CBR4  ACADS  PSAP  EPHX1  PIP4K2A  
HACL1  OXSM  ACAA1  PIGP  GDPD5  LPGAT1  CYP27A1  FAXDC2  MPDU1  DHCR7  PTGR1  BDH2  SERINC2  FADS1  
THNSL2  ALDH1A2  PIGX  PLCD1  GDE1  MLYCD  MGST2  SOCS6  CERS6  DHDDS  GPX1  D2HGDH  INSIG2  ERG28  
PHYH  PIGH  ERLIN2  PIGG   

0,00136 18 128 
Carboxylic acid 
catabolic process  

 SLC25A17  ALDH5A1  FAH  LDHD  PEX7  PEX13  ACOX3  ACADS  HACL1  ACAA1  ASRGL1  AASS  BDH2  ALDH4A1  
AKR1A1  PON3  PHYH  GCSH 

0,00136 6 12 
Antigen 
processing and 
presentation  

 TAPBPL  ZBTB22  B2M  IDE  ERAP1  ERAP2 

0,002542
252 

23 203 
Small molecule 
catabolic process  

 SLC25A17  ALDH5A1  FAH  LDHD  APOE  PEX7  PEX13  ACOX3  ACADS  HACL1  ACAA1  BAD  ASRGL1  CYP27A1  
AASS  BDH2  ALDH4A1  THNSL2  AKR1A1  PON3  RBKS  PHYH  GCSH 

0,003968 5 9 
Antigen 
processing MHC 
class I  

 ZBTB22  B2M  IDE  ERAP1  ERAP2 

0,004109 21 182 
Cellular amino 
acid metabolic  

 ALDH5A1  AARS2  FAH  ARG2  SARS1  PYCR2  NIT2  ASRGL1  LARS1  ASNS  FARSB  AASS  ALDH4A1  THNSL2  TARS2  
ADI1  DHFR  LOC110261142  LOC110255953  GCSH  CBS 

0,004900 76 1168 
Regulation of 
catalytic activity  

 CD4  DDX11  APAF1  TBC1D7  RGMA  SIPA1L1  APOE  PIH1D1  DVL1  DFFA  MAP3K4  GNB5  LYN  GBA  SORT1  
BCAR3  TPX2  SRC  MSH2  RASGRP3  SCARB2  SFRP2  ABCE1  PTK2B  PSAP  BCCIP  AIDA  DAPK1  PIP4K2A  CCNY  
RFC4  BAD  TRPT1  ECSIT  DNAJB1  AP3B1  SH3RF2  LARS1  SIRT3  PAK1  HDAC9  WRN  COPS8  SSBP1  ZNF622  
CCDC125  STRADA  TOM1L1  RABEP1  B3GAT3  MSH6  NET1  UBXN1  RIPK2  DVL2  MON1A  EPHB3    RASIP1  DHFR  
PSENEN  PLAUR  SLC39A14  BOK  BAG2  GPX1  SH3BP4  CHP2  ATPSCKMT  EREG  SERPINB6  PPP1R2  SLPI 

0,005313 11 59 
Antigen 
processing and 
presentation  

 TAPBPL  SLA-8  SLA-DRB1  ZBTB22  B2M  GBA  IDE  AP3B1  ERAP1  ERAP2  RAB4A 
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0,005905 82 1299 
Cellular catabolic 
process  

 NAGA  SLC25A17  ALDH5A1  PLA2G7  FAH  RGMA  LDHD  APOE  DVL1  DFFA  MFN2  PEX7  SMPD2  CLN6  RNF20  
VPS28  GBA  VPS16  RBCK1  WDR24  AUP1  PEX13  ACOX3  SCARB2  USP12  PTK2B  EPHX2  ACADS  LGALS8  IDE  
XPNPEP1  ZRANB1  DAPK1  AGTPBP1  PIP4K2A  HACL1  NGLY1  ACAA1  TEX264  ATG7  ASRGL1  SH3RF2  ZFAND2B  
AASS  GAA  BDH2  UBXN1  PNRC2  RIPK2  FASTK  ALDH4A1  THNSL2  CARHSP1  TMEM259  SECISBP2  FBXL7  RASIP1  
AKR1A1  PON3  ACHE  DDA1  MLYCD  MGST2  SOCS6  NUDT16  GNA12  BOK  VTI1A  PSMA7  BAG2  GPX1  SH3BP4  
HNMT  ITPA  DNASE1  SIAH1  RNF34  PHYH  ERLIN2   

0,00769 11 62 Lipid oxidation   SLC25A17  PLA2G7  PEX7  PEX13  ACOX3  ACADS  HACL1  ACAA1  BDH2  MLYCD  PHYH 

0,009315 5 11 
Antigen 
processing  

 ZBTB22  B2M  IDE  ERAP1  ERAP2 

0,010277 21 198 
Fatty acid 
metabolic process  

 MCAT  SLC25A17  PEX7  PEX13  ACOX3  NAAA  CBR4  ACADS  EPHX1  HACL1  OXSM  ACAA1  LPGAT1  PTGR1  BDH2  
THNSL2  MLYCD  GPX1  INSIG2  PHYH  ERLIN2 

0,010309 14 101 
Aerobic 
respiration  

 ACO2  NDUFB9  MSH2  IDE  UQCRC1  SIRT3  SDHA  COQ9  FH  ATP5F1C  ATP5F1D  SURF1  ATPSCKMT  NDUFS8 

0,011516 11 66 
Monocarboxylic 
acid catabolic  

 SLC25A17  LDHD  PEX7  PEX13  ACOX3  ACADS  HACL1  ACAA1  BDH2  AKR1A1  PHYH 

0,012550 76 1220 
Cellular response 
to stress  

 DDX11  DEK  TDP2  GNL1  CMTR1  SRF  RGMA  ARG2  MFN2  TXNDC12  MAP3K4  B2M  LYN  PRKDC  GBA  CHD1L  
SLC25A24  MCM8  PLCB1  SRC  NFATC2  WDR24  AUP1  MSH2  SFRP2  PTK2B  AIFM2  ANKRD1  BCCIP  MTARC2  
AIDA  DAPK1  TEX264  NEK4  FANCD2  ATG7  BAD  DNAJB1  PIK3R2  HDAC3  SH3RF2  LARS1  PAK1  SDHD  ASNS  
INTS7  PRIMPOL  WRN  ZNF622  RAD1  ERCC8  MSH6  NET1  UBXN1  RSL1D1  SCARF1  RIPK2  BDKRB2  TMEM259  
HUS1  PTPRS  NDNF  DHFR  BOK  GPX1  SMARCAL1  INSIG2  RWDD3  PPP4R2  RNF34  SERPINB6   

0,012550 18 159 
Carboxylic acid 
biosynthetic 
process  

 MCAT  GATM  CBR4  PYCR2  OXSM  ASNS  LPGAT1  CYP27A1  THNSL2  ALDH1A2  ADI1  AKR1A1  DHFR  MLYCD  
MGST2  INSIG2  ERLIN2  CBS 

0,012550 3 3 
Positive 
regulation of 
transcription  

 MRTFA  SRF  MICAL2 

0,012725 18 160 
Organic acid 
biosynthetic 
process  

 MCAT  GATM  CBR4  PYCR2  OXSM  ASNS  LPGAT1  CYP27A1  THNSL2  ALDH1A2  ADI1  AKR1A1  DHFR  MLYCD  
MGST2  INSIG2  ERLIN2  CBS 

0,014881 97 1671 
Intracellular 
signal 
transduction  

 CD4  TBC1D7  NFKBIL1  SIPA1L1  CDH13  LSM14A  APOE  PIH1D1  DVL1  MFN2  PDPN  SSX2IP  TXNDC12  RPS6KA2  
MAP3K4  ARHGAP18  ZWILCH  LYN  PRKDC  GBA  BCAR3  PLCB1  RBCK1  SRC  NFATC2  WDR24  MSH2  RASGRP3  
SFRP2  EDNRB  DOCK5  KCTD9  PTK2B  DUSP29  ANKRD1  SHOC2  AIDA  CDC42BPA  DAPK1  BRK1  BAD  TRIM44  
WDR83  TMEM38A  HBEGF  HDAC3  SH3RF2  LARS1  ANAPC15  PAK1  ZW10  INTS7  COPS8  ASB1  ZNF622  RAD1  
CCDC125  SEC14L1  NEK8  MSH6  LOC100513863  NOC2L  RIPK2  SH3BP5  TEAD2  DVL2  LOC100738836  BDKRB2  
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PLCD1  ADCY5  HUS1  RASIP1  NDNF  CD2AP  PRKCZ  CHML  SOCS6  PLAUR  GNA12  SLC39A14  BOK  AKIP1  GPX1  
TBXA2R  SH3BP4  CHP2  C1QBP  RAC1  RAB4A  RFXANK  SIAH1  AXL  DHX33  CAV3  HERPUD1  LRP2  CBS 

0,014881 53 775 Protein transport  

 PICK1  CAPRIN2  MBTPS1  APOE  MFN2  PEX7  VPS28  SORT1  VPS16  TOMM34  AUP1  PEX13  SCARB2  COG2  
ANKRD1  GGA2  MIA3  HACL1  ATG7  COPB2  BAD  PIK3R2  CLTB  AP3B1  HDAC3  SYTL2  ICA1  ZFAND2B  STRADA  
SNX11  TOM1L1  C12H17orf75  RABEP1  B3GAT3  ZFAND1  MON1A  LMAN2L  ADCY5  COG4  SLC9B2  SAMM50  
ARCN1  CD2AP  CHML  VTI1A  CHP2  RAB4A  RPH3AL    E2F3  HERPUD1  LRP2   

0,014881 35 441 
Regulation of 
cellular response 
to stress  

 DDX11  DEK  RGMA  ARG2  TXNDC12  MAP3K4  B2M  LYN  PRKDC  PLCB1  SFRP2  PTK2B  AIFM2  ANKRD1  AIDA  
NEK4  BAD  HDAC3  SH3RF2  ZNF622  UBXN1  RSL1D1  SCARF1  RIPK2  BDKRB2  TMEM259  PTPRS  DHFR  BOK  
GPX1  INSIG2  PPP4R2  SPIRE1  CAV3  HERPUD1 

0,014881 6 20 
Quinone 
metabolic process  

 COQ2  CBR4  AIFM2  COQ9  AKR1A1  COQ7 

0,014881 5 13 
Antigen 
processing 

 ZBTB22  B2M  IDE  ERAP1  ERAP2 

0,015780 14 109 
Alpha-amino acid 
metabolic  

 ALDH5A1  FAH  ARG2  PYCR2  NIT2  ASRGL1  ASNS  AASS  ALDH4A1  THNSL2  ADI1  DHFR  GCSH  CBS 

0,016599 89 1512 Catabolic process  

 NAGA  SLC25A17  ALDH5A1  NEU1  PLA2G7  FAH  RGMA  LDHD  LIPE  APOE  DVL1  DFFA  MFN2  PEX7  SMPD2  
CLN6  RNF20  VPS28  GBA  PLCB1  VPS16  RBCK1  WDR24  AUP1  PEX13  ACOX3  SCARB2  USP12  PTK2B  EPHX2  
ACADS  LGALS8  IDE  XPNPEP1  ZRANB1  DAPK1  AGTPBP1  PIP4K2A  HACL1  NGLY1  ACAA1  TEX264  ATG7  BAD  
ASRGL1  SH3RF2  CYP27A1  ZFAND2B  AASS  GAA  BDH2  PTER  UBXN1  PNRC2  RIPK2  FASTK  ALDH4A1  THNSL2  
CARHSP1  TMEM259  SECISBP2  FBXL7  RASIP1  AKR1A1  PON3  ACHE  DDA1  MLYCD  MGST2  SOCS6  NUDT16  
GNA12  BOK  VTI1A  PSMA7  BAG2  GPX1  SH3BP4  HNMT  ITPA  DNASE1  SIAH1  RNF34  RBKS  PHYH  ERLIN2  
GCSH   

0,016599 10 60 
Fatty acid 
oxidation  

 SLC25A17  PEX7  PEX13  ACOX3  ACADS  HACL1  ACAA1  BDH2  MLYCD  PHYH 

0,019242 21 215 
Positive 
regulation of 
proteolysis  

 APAF1  RGMA  APOE  DVL1  CLN6  LYN  GBA  SRC  SFRP2  PTK2B  DAPK1  AGTPBP1  BAD  SPON1  SH3RF2  RIPK2  
TMEM259  PSENEN  BOK  BAG2  HERPUD1 

0,019485 40 544 
Response to 
nitrogen 
compound  

 ITPR2  DDX11  CIB2  CDH13  APLP1  APOE  GNB5  PRKDC  SORT1  BCAR3  PLCB1  SRC  AUP1  PPP2R2A  MTARC2  
MIA3  ZEB1  PIP4K2A  ECHDC3  TMEM38A  PIK3R2  DIAPH1  LARS1  HDAC9  P2RX5  UBXN1  RIPK2  LOC100738836  
TMEM259  ATP2B1  ADCY5  ACHE  PRKCZ  SLC39A14  TRIM16  SH3BP4  ERLIN2  HERPUD1  CBS  SNX6 

0,020440 27 315 
Monocarboxylic 
acid metabolic 
process  

 MCAT  SLC25A17  ALDH5A1  LDHD  PEX7  GATM  PEX13  ACOX3  NAAA  CBR4  ACADS  EPHX1  HACL1  OXSM  
ACAA1  LPGAT1  CYP27A1  PTGR1  BDH2  THNSL2  ALDH1A2  AKR1A1  MLYCD  GPX1  INSIG2  PHYH  
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0,020772 44 622 
Regulation of 
hydrolase activity  

 DDX11  APAF1  TBC1D7  RGMA  SIPA1L1  PIH1D1  DFFA  GNB5  LYN  SORT1  BCAR3  SRC  RASGRP3  SCARB2  SFRP2  
ABCE1  PSAP  DAPK1  BAD  DNAJB1  SH3RF2  LARS1  HDAC9  WRN  CCDC125  RABEP1  NET1  UBXN1  RIPK2  DVL2  
EPHB3    RASIP1  PSENEN  PLAUR  SLC39A14  BOK  GPX1  SH3BP4  CHP2  SERPINB6  PPP1R2  SLPI 

0,020772 41 567 
Protein 
localization to 
organelle  

 MBTPS1  RUVBL2  PIH1D1  DVL1  MFN2  PEX7  ZWILCH  VPS28  SORT1  SRC  TOMM34  SUN1  AUP1  PEX13  MSH2  
SCARB2  MIA3  HACL1  PACS1  PIK3R2  AP3B1  DIAPH1  HDAC3  C2CD3  ZW10  WRN  ZFAND2B  TMEM98  RABEP1  
DLG4  MON1A  FAM149B1  ARL6  SAMM50  CD2AP  SH3BP4  CHP2  INSIG2  MARCHF5  E2F3  HERPUD1 

0,020772 37 493 
Response to 
organonitrogen 
compound  

 ITPR2  DDX11  CIB2  CDH13  APLP1  APOE  GNB5  PRKDC  SORT1  BCAR3  SRC  AUP1  PPP2R2A  MIA3  ZEB1  
PIP4K2A  ECHDC3  TMEM38A  PIK3R2  DIAPH1  LARS1  HDAC9  P2RX5  UBXN1  RIPK2  LOC100738836  TMEM259  
ATP2B1  ADCY5  PRKCZ  SLC39A14  TRIM16  SH3BP4  ERLIN2  HERPUD1  CBS  SNX6 

0,024476 56 862 
Protein 
localization  

 PICK1  CAPRIN2  MBTPS1  APOE  RUVBL2  PIH1D1  MFN2  PEX7  VPS28  SORT1  VPS16  TOMM34  AUP1  PEX13  
SCARB2  COG2  ANKRD1  GGA2  MIA3  HACL1  ATG7  COPB2  BAD  PIK3R2  CLTB  AP3B1  HDAC3  SYTL2  ICA1  
ZFAND2B  STRADA  SNX11  TOM1L1  C12H17orf75  RABEP1  B3GAT3  DLG4  ZFAND1  MON1A  LMAN2L  ADCY5  
COG4  SLC9B2  SAMM50  ARCN1  CD2AP  CHML  VTI1A  CHP2  RAB4A  RPH3AL    E2F3  HERPUD1  LRP2  SNX6 

0,024476 32 408 
Regulation of 
proteolysis  

 APAF1  RGMA  APOE  PIH1D1  DVL1  CLN6  LYN  GBA  SRC  SFRP2  PTK2B  DAPK1  AGTPBP1  BAD  SPON1  SH3RF2  
C2CD3  TMEM98  UBXN1  RIPK2  TMEM259  DDA1    PSENEN  PLAUR  GNA12  BOK  BAG2   

0,025131 27 322 
Organophosphate 
biosynthetic 
process  

 ADSL  MOCS1  NMNAT1  PTDSS1    PTK2B  ADK  PIP4K2A  NME6  PIGP  RRM1  ATIC  MOCS2  PRPSAP2  PIGX  
ADCY5  MLYCD  AK2  SOCS6  PNPO  DHDDS  ATP5F1C  ATP5F1D  ATPSCKMT  PIGH  PIGG  IPMK 

0,025245 100 1778 
Cellular 
component 
assembly  

 PARVB  TTLL1  TAPBPL  AMIGO2  POC1B  TBC1D7  SRF  EFL1  CDH13  TMEM231  IRX3  LSM14A  APOE  PIH1D1  FUZ  
DVL1  WRAP73  MFN2  SF3A3  SSX2IP  EPS15  ARHGAP18  B2M  POLR1E  PSMD5  NDUFB9  NDUFAF6  PRKDC  GBA  
TPX2  SRC  CIAO1  AUP1  FAM161A  FAM98A  TAF1B  REEP4  KCTD9  PTK2B  CBR4  LOC100512926  HPS1  BCCIP  
AIDA  MSRB2  PIP4K2A  ARPC4  BRK1  IQCB1  CDKL5  BAD  CKAP5  DNAJB1  PIK3R2  NDUFA2  DIAPH1  HDAC3  RIC3  
RRM1  C2CD3  PAK1  ZW10  EIF2D  COPS8  ZYX  ABCA7  NOC2L  DLG4  SNRPG  BBS2  TEAD2  ALDH1A2  EPHB3  
FAM149B1  ARL6  NDUFA11  FHOD3  SAMM50  PTPRS  RASIP1  SCLT1  PRKCZ  CCDC28B  BOK  C1QBP  RAC1  
JCHAIN  ATP5F1D  SURF1  MFAP4  DNAH17  NDUFS8  EML2  LRRC8D  DHX33  SSBP3  COX20  SPIRE1  CAV3  
TMEM199 

0,025245 3 4 
Negative 
regulation of 
membrane 

 SRC  BOK  CAV3 

0,025245 3 4 
Asparagine 
metabolic process  

 NIT2  ASRGL1  ASNS 

0,027570 109 1979 
Phosphate-
containing 

 ADSL  TAB1  CD4  MOCS1  PLA2G7  EFL1  APOE  PIH1D1  DVL1  CDK11B  NMNAT1  RPS6KA2  MAP3K4  SMPD2  
MUSK  PTDSS1  LYN  PRKDC  NAXE  GBA  CDC14A  BCAR3  RPAP2  PLCB1  TPX2  SRC  TOP1  EEF2K  RPIA  NAAA  
SFRP2    CDK20  PPP2R2A  PTK2B  EPHX2  ADK  DUSP29  BCCIP  AIDA  CDC42BPA  DAPK1  PIP4K2A  CCNY  OXSM  
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compound 
process  

NME6  NEK4  PIGP  CDKL5  GRK2  BAD  TRPT1  HTATIP2  PGLS  HBEGF  HDAC3  SH3RF2  RRM1  PAK1  ATIC  COPS8  
ZNF622  MOCS2  FAXDC2  STRADA  TOM1L1  NEK8  PRPSAP2  PPA2  SERINC2  RIPK2  FASTK  THNSL2  DVL2  EPHB3  
PIGX  BDKRB2  PLCD1  ADCY5  PTPRS  RASIP1  GDE1  PRKCZ  MLYCD  AK2  SOCS6  NUDT16  PLAUR  PNPO  DHDDS  
DUSP23  ATP5F1C  CHP2  RAC1  ATP5F1D  ITPA  ATPSCKMT  RBKS  EREG  AXL  PPP1R2  PIGH  TWSG1  PIGG  CAV3  
CBS  IPMK 

0,028350 76 1279 
Organic 
substance 
catabolic  

 NAGA  SLC25A17  ALDH5A1  NEU1  PLA2G7  FAH  RGMA  LDHD  LIPE  APOE  DVL1  DFFA  PEX7  SMPD2  CLN6  
RNF20  VPS28  GBA  PLCB1  RBCK1  AUP1  PEX13  ACOX3  SCARB2  USP12  PTK2B  EPHX2  ACADS  IDE  XPNPEP1  
ZRANB1  AGTPBP1  HACL1  NGLY1  ACAA1  ATG7  BAD  ASRGL1  SH3RF2  CYP27A1  ZFAND2B  AASS  GAA  BDH2  
UBXN1  PNRC2  FASTK  ALDH4A1  THNSL2  CARHSP1  TMEM259  SECISBP2  FBXL7  AKR1A1  PON3  ACHE  DDA1  
MLYCD  MGST2  SOCS6  NUDT16  GNA12  PSMA7  BAG2  GPX1  HNMT  ITPA  DNASE1  SIAH1  RNF34  RBKS  PHYH  
ERLIN2  GCSH  HERPUD1  TMEM199 

0,030171 44 640 
Cellular response 
to oxygen-  

 ITPR2  DDX11  NFKBIL1  CIB2  RDH11  GRAMD1A  APLP1  RUVBL2  PIH1D1  GNB5  LYN  PRKDC  BCAR3  PLCB1  SRC  
PTK2B  ANKRD1  DAPK1  ZEB1  PIP4K2A  ECHDC3  BAD  PIK3R2  LARS1  HDAC9  NET1  RIPK2  ZFAND1  TEAD2  
ALDH1A2  LOC100738836  NFKBIB  ATP2B1  ADCY5  SLC9B2  AKR1A1  ACHE  PRKCZ  DHFR  SLC39A14  SH3BP4   

0,031177 109 1991 
Phosphorus 
metabolic process  

 ADSL  TAB1  CD4  MOCS1  PLA2G7  EFL1  APOE  PIH1D1  DVL1  CDK11B  NMNAT1  RPS6KA2  MAP3K4  SMPD2  
MUSK  PTDSS1  LYN  PRKDC  NAXE  GBA  CDC14A  BCAR3  RPAP2  PLCB1  TPX2  SRC  TOP1  EEF2K  RPIA  NAAA  
SFRP2    CDK20  PPP2R2A  PTK2B  EPHX2  ADK  DUSP29  BCCIP  AIDA  CDC42BPA  DAPK1  PIP4K2A  CCNY  OXSM  
NME6  NEK4  PIGP  CDKL5  GRK2  BAD  TRPT1  HTATIP2  PGLS  HBEGF  HDAC3  SH3RF2  RRM1  PAK1  ATIC  COPS8  
ZNF622  MOCS2  FAXDC2  STRADA  TOM1L1  NEK8  PRPSAP2  PPA2  SERINC2  RIPK2  FASTK  THNSL2  DVL2  EPHB3  
PIGX  BDKRB2  PLCD1  ADCY5  PTPRS  RASIP1  GDE1  PRKCZ  MLYCD  AK2  SOCS6  NUDT16  PLAUR  PNPO  DHDDS  
DUSP23  ATP5F1C  CHP2  RAC1  ATP5F1D  ITPA  ATPSCKMT  RBKS  EREG  AXL  PPP1R2  PIGH  TWSG1  PIGG  CAV3  
CBS  IPMK 

0,031177 26 313 
Mitochondrion 
organization  

 MFN2  NDUFB9  NDUFAF6  GBA  MGME1  TOMM34  AIFM2  AGTPBP1  ATG7  BAD  AP3B1  NDUFA2  PRIMPOL  
SSBP1  CHCHD3  NDUFA11  SAMM50  PLAUR  BOK  GPX1  ATP5F1D  SURF1  NDUFS8  COX20 

0,031177 9 56 
Fatty acid 
catabolic process  

 SLC25A17  PEX7  PEX13  ACOX3  ACADS  HACL1  ACAA1  BDH2  PHYH 

0,031615 14 122 Lipid modification   SLC25A17  PLA2G7  APOE  PEX7  GBA  PEX13  ACOX3  EPHX2  ACADS  HACL1  ACAA1  BDH2  MLYCD  PHYH 

0,031666 6 25 
Antigen 
processing 

 TAPBPL  ZBTB22  B2M  IDE  ERAP1  ERAP2 

0,033606 59 943 
Protein-
containing 
complex  

 TAPBPL  APOE  PIH1D1  SF3A3  EPS15  ARHGAP18  B2M  POLR1E  PSMD5  NDUFB9  NDUFAF6  PRKDC  GBA  TPX2  
SRC  TAF1B  KCTD9  PTK2B  CBR4  LOC100512926  AIDA  MSRB2  ARPC4  BRK1  BAD  CKAP5  PIK3R2  NDUFA2  
DIAPH1  RIC3  RRM1  PAK1  ZW10  EIF2D  COPS8  ABCA7  DLG4  SNRPG  TEAD2  ALDH1A2  NDUFA11  FHOD3  
SAMM50  RASIP1  PRKCZ  BOK  RAC1  JCHAIN  ATP5F1D  SURF1  DNAH17  NDUFS8  EML2  LRRC8D  DHX33  SSBP3  
COX20  SPIRE1  TMEM199 
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0,033606 42 610 
Organophosphate 
metabolic  

 ADSL  MOCS1  PLA2G7  EFL1  NMNAT1  SMPD2  PTDSS1  NAXE  PLCB1  RPIA  NAAA    PTK2B  ADK  PIP4K2A  OXSM  
NME6  PIGP  BAD  PGLS  RRM1  ATIC  MOCS2  PRPSAP2  SERINC2  PIGX  PLCD1  ADCY5  GDE1  MLYCD  AK2  SOCS6  
NUDT16  PNPO  DHDDS  ATP5F1C  ATP5F1D  ITPA  

0,033606 18 184 
Alcohol metabolic 
process  

 RDH11  LIPE  APOE  CLN6  GBA  NAAA  PTK2B  EPHX2  CBR4  PCBD1  CYP27A1  DHCR7  GDE1  AKR1A1  DHFR  
INSIG2  ERLIN2  IPMK 

0,033606 15 138 
Membrane lipid 
metabolic  

 NAGA  SMPD2  CLN6  GBA  NAAA    PSAP  PIGP  SERINC2  PIGX  MGST2  CERS6  D2HGDH  PIGH  PIGG 

0,036301 105 1919 
Cellular 
component 
biogenesis  

 PARVB  TTLL1  TAPBPL  AMIGO2  POC1B  TBC1D7  SRF  EFL1  CDH13  TMEM231  IRX3  LSM14A  APOE  PIH1D1  FUZ  
DVL1  WRAP73  MFN2  SF3A3  SSX2IP  EPS15  ARHGAP18  B2M  POLR1E  PSMD5  NDUFB9  NDUFAF6  PRKDC  GBA  
TPX2  SRC  CIAO1  AUP1  FAM161A  FAM98A  TAF1B  SDAD1  GTF3A  REEP4  KCTD9  PTK2B  CBR4  LOC100512926  
HPS1  BCCIP  AIDA  MSRB2  PIP4K2A  ARPC4  BRK1  IQCB1  CDKL5  LTO1  BAD  CKAP5  DNAJB1  PIK3R2  NDUFA2  
DIAPH1  HDAC3  RIC3  RRM1  C2CD3  PAK1  ZW10  EIF2D  COPS8  ZYX    ABCA7  NOC2L  DLG4  SNRPG  BBS2  TEAD2  
ALDH1A2  EPHB3  EMG1  FAM149B1  ARL6  NDUFA11  FHOD3  SAMM50  PTPRS  RASIP1  SCLT1  PRKCZ  CCDC28B  
BOK  C1QBP  RAC1  JCHAIN  ATP5F1D  SURF1  MFAP4  DNAH17  NDUFS8  EML2  LRRC8D  DHX33  SSBP3  COX20  
SPIRE1  CAV3   

0,040149 44 655 
Carbohydrate 
derivative 
metabolic process  

 NAGA  ADSL  RXYLT1  EFL1  GALNT16  APRT  NMNAT1  CLN6  ALG2  ST6GALNAC4  GBA  PLCB1  RPIA    CBR4  ADK  
NGLY1  OXSM  NME6  PIGP  BAD  PGLS  RRM1  MPDU1  PRPSAP2  B3GAT3  PIGX  ADCY5  AKR1A1  NDNF  EXTL1  
MLYCD  AK2  POGLUT1  NUDT16  B3GNT8  DHDDS  ATP5F1C  D2HGDH  ATP5F1D  ITPA  ATPSCKMT  PIGH  PIGG 

0,040938 18 188 
Lipid catabolic 
process  

 NAGA  SLC25A17  PLA2G7  LIPE  APOE  PEX7  SMPD2  GBA  PLCB1  PEX13  ACOX3  ACADS  HACL1  ACAA1  CYP27A1  
BDH2  MGST2  PHYH 

0,041389 44 657 
Positive 
regulation of 
catalytic activity  

 CD4  DDX11  APAF1  TBC1D7  RGMA  APOE  PIH1D1  MAP3K4  GNB5  LYN  BCAR3  TPX2  SRC  MSH2  SFRP2  PTK2B  
PSAP  DAPK1  CCNY  RFC4  BAD  DNAJB1  LARS1  SIRT3  PAK1  WRN  COPS8  SSBP1  ZNF622  CCDC125  STRADA  
TOM1L1  RABEP1  B3GAT3  MSH6  NET1  RIPK2  DVL2  DHFR  PSENEN  BOK  CHP2  ATPSCKMT  EREG 

0,042061 64 1062 
Nitrogen 
compound 
transport  

 SLC25A17  PICK1  CAPRIN2  MBTPS1  APOE  MFN2  PEX7  VPS28  SLC25A32  SORT1  SLC25A24  VPS16  TOMM34  
AUP1  PEX13  SCARB2  COG2  PSAP  ANKRD1  GGA2  MIA3  HACL1  ATG7  COPB2  BAD  PIK3R2  CLTB  AP3B1  
HDAC3  SYTL2  SDHD  ICA1  ZFAND2B  SEC14L1  STRADA  SNX11  TOM1L1  C12H17orf75  RABEP1  B3GAT3  
KHDRBS1  ZFAND1  SLC36A4  MON1A  LMAN2L  ADCY5  COG4  SLC9B2  SLC1A4  SAMM50  ARCN1  CD2AP  CHML  
VTI1A  SLC47A1  CHP2  RAB4A  RPH3AL    LRRC8D  E2F3  HERPUD1  LRP2  SNX6 

0,042068 14 128 
Cellular 
respiration  

 ACO2  NDUFB9  MSH2  IDE  UQCRC1  SIRT3  SDHA  COQ9  FH  ATP5F1C  ATP5F1D  SURF1  ATPSCKMT  NDUFS8 

0,042061 10 73 
Lipoprotein 
biosynthetic 
process  

 APOE  ZDHHC18  GBA    ATG7  PIGP  PIGX  ZDHHC14  PIGH  PIGG 
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0,042068 10 73 
Alcohol 
biosynthetic 
process  

 APOE  GBA  PTK2B  PCBD1  CYP27A1  DHCR7  DHFR  INSIG2  ERLIN2  IPMK 

0,042061 3 5 
Modulation by 
virus of host 
cellular process  

 CD4  ATG7  BAD 

0,04206 3 5 
Neurotransmitter 
catabolic process  

 ALDH5A1  ACHE  HNMT 

0,043987 98 1787 
Cellular 
localization  

 CAPRIN2  CD4  EXOC2  MBTPS1  CDH13  APOE  RUVBL2  PIH1D1  DVL1  MFN2  ZDHHC18  SSX2IP  EPS15  KIF2C  
PEX7  ZWILCH  VPS28  SEC31B  LYN  NAXE  SORT1  VPS16  SRC  TOMM34  SUN1  AUP1  PEX13  MSH2  FAM98A  
SDAD1  SCARB2  PTK2B  PSAP  GGA2  MIA3  AGTPBP1  PIP4K2A  HACL1  COPB2  LSG1  PACS1  AP5B1  BAD  
HTATIP2  TMEM38A  PIK3R2  CLTB  AP3B1  DIAPH1  HDAC3  RIC3  C2CD3  SYTL2  ZW10  WRN  ZFAND2B  GAA  
STRADA  SNX11  TOM1L1  TMEM98  C12H17orf75  VPS53  RABEP1  B3GAT3  KHDRBS1  DLG4  ZFAND1  DVL2  
MON1A  FAM149B1  ARL6  ADCY5  SLC9B2  SAMM50  UBE2O  CD2AP  PRKCZ  CHML  DNAJC5  SLC39A14  VTI1A  
ATP5F1C  SH3BP4  CHP2  RAC1  BTBD8  ATP5F1D  INSIG2  ATPSCKMT  RPH3AL    SPIRE1  MARCHF5  E2F3  CAV3  
HERPUD1  SNX6 

0,043987 55 881 
Intracellular 
transport  

 CAPRIN2  MBTPS1  MFN2  SSX2IP  EPS15  PEX7  VPS28  SEC31B  SORT1  VPS16  SRC  TOMM34  SUN1  AUP1  PEX13  
SDAD1  SCARB2  GGA2  MIA3  AGTPBP1  PIP4K2A  HACL1  COPB2  LSG1  AP5B1  HTATIP2  PIK3R2  CLTB  AP3B1  
HDAC3  SYTL2  ZW10  ZFAND2B  STRADA  SNX11  TOM1L1  C12H17orf75  VPS53  B3GAT3  KHDRBS1  ZFAND1  
MON1A  SAMM50  UBE2O  CHML  VTI1A  ATP5F1C  CHP2  BTBD8  ATP5F1D  ATPSCKMT  RPH3AL  E2F3  HERPUD1  
SNX6 

0,043987 4 11 
Neurotransmitter 
metabolic process  

 ALDH5A1  AGTPBP1  ACHE  HNMT 

0,046420 43 646 
Peptide metabolic 
process  

 MRPL14  AARS2  GSTA4  LSM14A  APOE  RMND1  PRKDC  SARS1  TUFM  IDE  XPNPEP1  DAPK1    LTO1  SPON1  
LARS1  EIF2D  FARSB  MRPL22  ABCA7  KHDRBS1  ACO1  LOC100738836  TARS2  SECISBP2  MRPL9  LOC100739087  
RPS9  MGST2  LOC110261142  MRPL37  EIF1AX  MRPL12  GPX1  RPL13A  LOC100153094  DPH2  MTIF3  CLIC5   

0,047184 65 1091 
Cellular protein 
localization  

 CAPRIN2  CD4  MBTPS1  APOE  RUVBL2  PIH1D1  DVL1  MFN2  ZDHHC18  PEX7  ZWILCH  VPS28  SORT1  VPS16  
SRC  TOMM34  SUN1  AUP1  PEX13  MSH2  SCARB2  GGA2  MIA3  HACL1  COPB2  PACS1  PIK3R2  CLTB  AP3B1  
DIAPH1  HDAC3  RIC3  C2CD3  SYTL2  ZW10  WRN  ZFAND2B  STRADA  SNX11  TOM1L1  TMEM98  C12H17orf75  
RABEP1  B3GAT3  DLG4  ZFAND1  DVL2  MON1A  FAM149B1  ARL6  SAMM50  CD2AP  PRKCZ  CHML  VTI1A  
SH3BP4  CHP2  INSIG2  RPH3AL    MARCHF5  E2F3  CAV3  HERPUD1  SNX6 

0,047184 64 1070 
Protein-
containing 
complex subunit  

 TAPBPL  PLA2G7  APOE  PIH1D1  SF3A3  EPS15  KIF2C  ARHGAP18  B2M  POLR1E  PSMD5  NDUFB9  NDUFAF6  
PRKDC  GBA  VPS16  TPX2  SRC  TAF1B  KCTD9  PTK2B  CBR4  LOC100512926  AIDA  MSRB2  ARPC4  BRK1  BAD  
CKAP5  MICAL2  PIK3R2  NDUFA2  DIAPH1  RIC3  RRM1  PAK1  ZW10  EIF2D  COPS8  ABCA7  DLG4  SNRPG  ZFAND1  
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TEAD2  ALDH1A2  NDUFA11  FHOD3  SAMM50  RASIP1  PRKCZ  BOK  RAC1  JCHAIN  ATP5F1D  SURF1  DNAH17  
NDUFS8  EML2  LRRC8D  DHX33  SSBP3  COX20  SPIRE1  TMEM199 

0,049797 50 788 
Cellular amide 
metabolic process  

 MRPL14  AARS2  GSTA4  LSM14A  APOE  RMND1  SMPD2  CLN6  PRKDC  GBA  SARS1  TUFM  NAAA  IDE  XPNPEP1  
DAPK1  OXSM    LTO1  SPON1  LARS1  EIF2D  FARSB  MRPL22  ABCA7  KHDRBS1  ACO1  LOC100738836  TARS2  
SECISBP2  MRPL9  LOC100739087  RPS9  MLYCD  MGST2  LOC110261142  MRPL37  EIF1AX  CERS6  MRPL12  GPX1  
RPL13A  LOC100153094  DPH2  MTIF3  CLIC5  DHX33   

 

 

  



Annexes 

 

232 
 

Table S2: eQTLs associated to genes related to lipid metabolism pathways. 

 

Gene ID Gene 
Name 

Chr Ch 
eQTL 

Start eQTL Stop eQTL eQTL size 
(Mb) 

Nº SNPs  p. adjust Location 

ENSSSCG00000023121 ABCA7 2 2 60589918 69102367 8,5124 4 0,00029353 trans 

ENSSSCG00000023121 ABCA7 2 2 73453753 74827486 1,3737 4 5,11E-05 trans 

ENSSSCG00000011250 ACAA1 13 13 15848476 18414160 2,5656 4 0,00131419 trans 

ENSSSCG00000011250 ACAA1 13 13 20033485 24337792 4,3043 26 0,00125889 cis 

ENSSSCG00000009916 ACADS 14 14 40864510 44398797 3,5342 4 0,00041694 cis 

ENSSSCG00000038184 ACBD7 10 10 40462382 49903571 9,4411 47 2,74E-16 cis 

ENSSSCG00000038184 ACBD7 10 10 50576866 51445177 0,8683 5 6,37E-06 trans 

ENSSSCG00000030303 ACHE 3 14 432200 9195207 8,7630 18 0,00224071 trans 

ENSSSCG00000030303 ACHE 3 9 3159142 4771690 1,6125 3 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 1 6611958 7598242 0,9862 3 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 14 10656366 19718046 9,06168 7 0,00343177 trans 

ENSSSCG00000030303 ACHE 3 3 11587100 16958979 5,3718 3 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 7 21421263 26195369 4,7741 8 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 14 21634659 23452185 1,8175 4 0,00343177 trans 

ENSSSCG00000030303 ACHE 3 15 25005982 27162434 2,1564 3 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 18 41012551 49476286 8,4637 5 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 13 41650270 45990306 4,3400 4 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 17 61220172 62669040 1,4488 3 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 6 73024568 74738668 1,7141 3 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 8 86047751 88866381 2,818 3 0,00224071 trans 

ENSSSCG00000030303 ACHE 3 2 97835035 99949356 2,1143 3 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 6 112516434 118833836 6,3174 6 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 3 123785748 126603096 2,8173 4 5,73E-05 trans 
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ENSSSCG00000030303 ACHE 3 6 134456535 139944576 5,4880 4 0,00343177 trans 

ENSSSCG00000030303 ACHE 3 1 224595193 227687180 3,0919 3 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 1 235415859 239098038 3,6821 4 0,00446804 trans 

ENSSSCG00000030303 ACHE 3 1 270825814 273317908 2,4920 3 0,00389503 trans 

ENSSSCG00000008724 ACOX3 8 8 1763716 2523676 0,7599 3 0,00257145 cis 

ENSSSCG00000026453 ACSM5 3 3 2795124 7031147 4,2360 4 7,45E-07 trans 

ENSSSCG00000026453 ACSM5 3 3 16974611 19563865 2,5892 6 1,37E-05 trans 

ENSSSCG00000026453 ACSM5 3 3 30021463 33333074 3,3116 11 6,47E-08 trans 

ENSSSCG00000026453 ACSM5 3 3 20313793 29533135 9,2193 33 4,09E-11 cis 

ENSSSCG00000026453 ACSM5 3 3 47145545 48929412 1,7838 4 1,95E-10 trans 

ENSSSCG00000026453 ACSM5 3 3 56243978 59043269 2,7992 4 0,00040872 trans 

ENSSSCG00000026453 ACSM5 3 3 60335995 64491165 4,155 8 4,02E-07 trans 

ENSSSCG00000027952 ADCY5 13 6 102133603 109302717 7,1691 4 0,00883741 trans 

ENSSSCG00000025578 ALDH1A2 1 2 130367 9705128 9,5747 32 1,37E-07 trans 

ENSSSCG00000025578 ALDH1A2 1 2 10105523 13693405 3,5878 15 4,99E-05 trans 

ENSSSCG00000001090 ALDH5A1 7 7 20180481 23045761 2,865 4 6,74E-05 trans 

ENSSSCG00000001090 ALDH5A1 7 7 19231980 19998274 0,7662 4 2,19E-06 cis 

ENSSSCG00000005383 ALG2 1 1 240493437 248808890 8,3154 22 4,66E-06 cis 

ENSSSCG00000010461 ANKRD1 14 1 200615239 203534334 2,9190 4 0,00619948 trans 

ENSSSCG00000003088 APOE 6 2 31021 9705128 9,6741 33 2,55E-07 trans 

ENSSSCG00000003088 APOE 6 2 10780223 12817790 2,0375 11 0,00011518 trans 

ENSSSCG00000022282 BDH2 8 8 112093530 118791546 6,6980 32 9,79E-10 cis 

ENSSSCG00000040643 CAV3 13 13 21109158 22987068 1,877 5 0,00482237 trans 

ENSSSCG00000040643 CAV3 13 13 60254113 68613104 8,3589 34 0,00020311 cis 

ENSSSCG00000040643 CAV3 13 13 53261312 59955569 6,6942 12 0,00020311 trans 

ENSSSCG00000040643 CAV3 13 13 70407839 79483278 9,0754 8 0,00045073 trans 

ENSSSCG00000009717 CBR4 14 14 20005183 28879459 8,8742 91 4,19E-10 cis 
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ENSSSCG00000009717 CBR4 14 14 6565596 9910644 3,3450 12 9,48E-05 trans 

ENSSSCG00000009717 CBR4 14 14 10709166 19909136 9,199 30 1,42E-06 trans 

ENSSSCG00000009717 CBR4 14 14 30692558 39593724 8,9011 39 6,34E-06 trans 

ENSSSCG00000009717 CBR4 14 14 40699456 48819666 8,120 26 2,69E-06 trans 

ENSSSCG00000009717 CBR4 14 14 50086705 59710483 9,6237 17 0,00041411 trans 

ENSSSCG00000009717 CBR4 14 14 60047761 67830352 7,7825 17 0,00086539 trans 

ENSSSCG00000009717 CBR4 14 14 72896281 79737901 6,841 4 0,00206381 trans 

ENSSSCG00000009717 CBR4 14 14 80445521 89980342 9,5348 7 0,00110651 trans 

ENSSSCG00000032715 CERS6 15 15 71219292 79731723 8,5124 46 2,60E-13 cis 

ENSSSCG00000032715 CERS6 15 15 46410413 47916445 1,5060 5 5,61E-05 trans 

ENSSSCG00000032715 CERS6 15 15 53092200 59381909 6,2897 16 2,56E-05 trans 

ENSSSCG00000032715 CERS6 15 15 60064644 69733377 9,6687 20 1,56E-11 trans 

ENSSSCG00000032715 CERS6 15 15 80451217 89957332 9,5061 16 8,84E-10 trans 

ENSSSCG00000032715 CERS6 15 15 90291366 99534160 9,2427 27 1,13E-06 trans 

ENSSSCG00000032715 CERS6 15 15 100320220 100959088 0,6388 4 1,89E-05 trans 

ENSSSCG00000004957 CLN6 1 1 166280392 168100452 1,820 3 0,00111986 cis 

ENSSSCG00000009238 COQ2 8 9 3159142 4771690 1,6125 3 0,00836854 trans 

ENSSSCG00000009238 COQ2 8 3 11587100 16958979 5,3718 3 0,00836854 trans 

ENSSSCG00000009238 COQ2 8 7 21421263 26195369 4,7741 4 0,00836854 trans 

ENSSSCG00000009238 COQ2 8 14 23177233 24087811 0,9105 3 0,00825467 trans 

ENSSSCG00000009238 COQ2 8 15 25005982 27162434 2,1552 3 0,00836854 trans 

ENSSSCG00000009238 COQ2 8 18 41012551 49476286 8,4635 4 0,00836854 trans 

ENSSSCG00000009238 COQ2 8 13 41650270 45990306 4,3436 4 0,00836854 trans 

ENSSSCG00000009238 COQ2 8 13 72253216 79769186 7,517 3 0,00836854 trans 

ENSSSCG00000009238 COQ2 8 6 72568258 73753725 1,1467 4 0,00825467 trans 

ENSSSCG00000009238 COQ2 8 2 97835035 99949356 2,1321 3 0,00836854 trans 

ENSSSCG00000009238 COQ2 8 6 112516434 118833836 6,3402 6 0,00836854 trans 
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ENSSSCG00000009238 COQ2 8 6 134456535 139944576 5,4041 5 0,00548151 trans 

ENSSSCG00000009238 COQ2 8 6 140617232 144961195 4,3963 4 0,00548151 trans 

ENSSSCG00000009238 COQ2 8 1 224595193 228744721 4,1528 4 0,00836854 trans 

ENSSSCG00000009238 COQ2 8 1 235415859 239098038 3,6179 4 0,00836854 trans 

ENSSSCG00000034655 COQ7 3 3 20455934 29682113 9,2179 61 4,31E-07 cis 

ENSSSCG00000034655 COQ7 3 3 30484700 37152428 6,6628 42 7,66E-08 trans 

ENSSSCG00000034655 COQ7 3 3 42898823 46127196 3,2373 10 0,00017333 trans 

ENSSSCG00000034655 COQ7 3 3 50252339 57727116 7,4777 4 0,00650657 trans 

ENSSSCG00000025284 COQ9 6 4 122208096 128901152 6,6056 3 0,00851586 trans 

ENSSSCG00000016199 CYP27A1 15 15 120104268 126883889 6,7621 13 5,00E-08 cis 

ENSSSCG00000003006 CYP2B22 6 6 21478949 28045497 6,5548 16 1,93E-07 trans 

ENSSSCG00000003006 CYP2B22 6 6 30116182 39488584 9,3402 29 6,04E-09 trans 

ENSSSCG00000003006 CYP2B22 6 6 40021993 49502086 9,4093 32 1,92E-11 cis 

ENSSSCG00000003006 CYP2B22 6 6 50527170 59837138 9,3968 12 1,92E-11 trans 

ENSSSCG00000003006 CYP2B22 6 6 60315681 69943201 9,652 26 1,04E-10 trans 

ENSSSCG00000003006 CYP2B22 6 6 70163903 78299598 8,1395 36 4,71E-10 trans 

ENSSSCG00000003006 CYP2B22 6 6 80309424 88476975 8,1651 25 1,80E-06 trans 

ENSSSCG00000003006 CYP2B22 6 6 90703532 97779354 7,0722 25 1,96E-05 trans 

ENSSSCG00000003006 CYP2B22 6 6 100489838 109221647 8,7309 5 0,00050501 trans 

ENSSSCG00000021181 DHCR7 2 2 2248563 9277022 7,0459 7 0,0014364 cis 

ENSSSCG00000033516 DHDDS 6 6 90613843 93719999 3,1056 6 0,00106958 trans 

ENSSSCG00000004216 ECHDC1 1 1 35632737 39310966 3,6729 4 0,00011116 cis 

ENSSSCG00000011119 ECHDC3 10 10 60057927 69358131 9,3204 94 3,38E-13 cis 

ENSSSCG00000011119 ECHDC3 10 11 23964222 24228339 0,2117 3 6,59E-06 trans 

ENSSSCG00000011119 ECHDC3 10 10 50711436 59910972 9,1996 95 1,92E-11 cis 

ENSSSCG00000001000 ECI2 7 17 10392395 13779280 3,3865 4 0,00640175 trans 

ENSSSCG00000009666 EPHX2 14 14 10060923 19892646 9,8313 96 4,14E-25 cis 
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ENSSSCG00000009666 EPHX2 14 14 3990532 9921904 5,9312 66 5,82E-13 trans 

ENSSSCG00000009666 EPHX2 14 14 20034521 29032159 8,9978 56 4,31E-10 trans 

ENSSSCG00000038185 EREG 8 8 70009168 79312596 9,3038 104 1,36E-18 cis 

ENSSSCG00000038185 EREG 8 8 60137650 69933436 9,7986 81 1,92E-15 cis 

ENSSSCG00000038185 EREG 8 8 30107874 39913677 9,8053 34 2,43E-08 trans 

ENSSSCG00000038185 EREG 8 8 40311619 49102510 8,7901 29 2,53E-12 trans 

ENSSSCG00000038185 EREG 8 8 50859088 59871066 9,0118 24 1,25E-11 trans 

ENSSSCG00000036494 ERG28 7 7 90122140 99611741 9,4801 28 5,41E-09 cis 

ENSSSCG00000036494 ERG28 7 7 89239806 89995039 0,7553 4 0,00012413 trans 

ENSSSCG00000036494 ERG28 7 7 101496790 107798274 6,3014 4 0,00108283 trans 

ENSSSCG00000039480 ERLIN2 15 15 53315375 58916239 5,6064 3 0,00070986 trans 

ENSSSCG00000024015 FADS1 2 2 10638551 12412070 1,7719 8 1,26E-05 trans 

ENSSSCG00000024015 FADS1 2 2 2250135 9990081 7,7346 27 2,89E-10 cis 

ENSSSCG00000017068 FAXDC2 16 16 60179062 69744783 9,5621 44 1,32E-08 cis 

ENSSSCG00000017068 FAXDC2 16 16 57547564 59282387 1,7323 3 0,00838209 trans 

ENSSSCG00000017068 FAXDC2 16 16 70061020 78773660 8,764 43 4,93E-06 trans 

ENSSSCG00000006522 GBA 4 4 90685994 99951603 9,2609 42 2,43E-07 cis 

ENSSSCG00000006522 GBA 4 4 80073050 89938421 9,8671 6 0,00157315 trans 

ENSSSCG00000006522 GBA 4 4 100099034 107654595 7,5561 14 8,57E-06 trans 

ENSSSCG00000033727 GPX1 13 13 23970077 29909827 5,935 15 1,01E-10 trans 

ENSSSCG00000033727 GPX1 13 13 30074120 39466034 9,3914 23 5,80E-17 cis 

ENSSSCG00000002279 GPX2 7 7 80469999 89995039 9,524 67 5,07E-12 cis 

ENSSSCG00000002279 GPX2 7 7 67661072 69784027 2,1255 10 9,74E-08 trans 

ENSSSCG00000002279 GPX2 7 7 70005048 79574171 9,5623 7 0,00013808 trans 

ENSSSCG00000002279 GPX2 7 7 90010642 94955808 4,9466 51 3,72E-14 trans 

ENSSSCG00000021973 GPX8 16 16 32792270 39439991 6,6721 15 0,00038598 cis 

ENSSSCG00000009305 GTF3A 11 11 4454263 5073761 0,6498 5 8,19E-05 cis 
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ENSSSCG00000011192 HACL1 13 13 1192168 3840014 2,6846 25 1,18E-09 cis 

ENSSSCG00000014362 HBEGF 2 1 200615239 203534334 2,9095 4 0,00394618 trans 

ENSSSCG00000014388 HDAC3 2 2 140112767 149932954 9,87 56 9,00E-19 cis 

ENSSSCG00000014388 HDAC3 2 2 124373882 129794043 5,4201 23 1,80E-07 trans 

ENSSSCG00000014388 HDAC3 2 2 130010906 139969310 9,9584 76 3,32E-14 trans 

ENSSSCG00000014388 HDAC3 2 2 150453670 151069847 0,6177 4 0,00481912 trans 

ENSSSCG00000008700 HGFAC 8 8 94954 9879388 9,7834 104 6,27E-54 cis 

ENSSSCG00000040863 IPMK 14 15 131509060 135576599 4,0639 3 0,00471972 trans 

ENSSSCG00000000555 ITPR2 5 2 150429223 150787156 0,3533 3 0,0008121 trans 

ENSSSCG00000002712 LDHD 6 6 12017393 13391574 1,3781 4 0,00221513 cis 

ENSSSCG00000003018 LIPE 6 6 34068719 37673437 3,6018 4 0,00234119 trans 

ENSSSCG00000003018 LIPE 6 6 50225490 59162423 8,9333 12 2,38E-05 trans 

ENSSSCG00000003018 LIPE 6 6 41081581 49683839 8,6058 22 1,55E-06 cis 

ENSSSCG00000003018 LIPE 6 6 65162482 67059160 1,8968 5 0,00158894 trans 

ENSSSCG00000003018 LIPE 6 6 129013882 129734771 0,7209 3 0,00548377 trans 

ENSSSCG00000015603 LPGAT1 9 9 130496818 131223186 0,7268 3 0,00627658 cis 

ENSSSCG00000040746 LRP2 15 15 53771172 58204639 4,4367 6 0,00180194 trans 

ENSSSCG00000040746 LRP2 15 15 60064644 69733377 9,6683 13 3,73E-05 trans 

ENSSSCG00000040746 LRP2 15 15 71219292 79989640 8,7708 18 8,65E-05 cis 

ENSSSCG00000040746 LRP2 15 15 80548747 89957332 9,4085 8 3,73E-05 trans 

ENSSSCG00000040746 LRP2 15 15 90897104 99004182 8,1078 14 0,00020059 trans 

ENSSSCG00000006250 LYN 4 6 112652485 116074407 3,4222 9 0,00833259 trans 

ENSSSCG00000002682 MBTPS1 6 6 144582 8563612 8,403 34 0,00012684 cis 

ENSSSCG00000000031 MCAT 5 5 1981418 9918532 7,9314 13 1,11E-05 cis 

ENSSSCG00000005720 MED27 1 1 271192849 272001272 0,8023 3 0,00035304 cis 

ENSSSCG00000035098 MED4 11 11 2433514 9253861 6,8247 11 0,00029236 trans 

ENSSSCG00000031736 MGST2 8 8 81182315 89576800 8,3985 26 4,93E-07 cis 
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ENSSSCG00000031736 MGST2 8 8 90014762 99770507 9,7545 42 1,98E-07 trans 

ENSSSCG00000031736 MGST2 8 8 100109142 109892961 9,7819 42 1,98E-07 trans 

ENSSSCG00000031450 MLYCD 6 6 220075 3455626 3,2351 3 0,0067229 trans 

ENSSSCG00000017955 MPDU1 12 12 50653261 54595235 3,9474 4 3,78E-05 cis 

ENSSSCG00000025106 NA 3 3 53934692 59613342 5,665 7 1,19E-08 cis 

ENSSSCG00000009489 NA 11 4 110635436 111307734 0,6798 3 0,00366284 trans 

ENSSSCG00000027013 NA 2 2 31408370 39977173 8,5603 10 1,99E-06 trans 

ENSSSCG00000027013 NA 2 2 60117952 69717346 9,5994 28 2,35E-08 cis 

ENSSSCG00000027013 NA 2 2 40202282 49691674 9,4892 28 2,88E-07 trans 

ENSSSCG00000027013 NA 2 2 50111296 59568130 9,4534 14 2,35E-08 trans 

ENSSSCG00000027013 NA 2 2 70220543 79992453 9,791 22 2,35E-08 trans 

ENSSSCG00000027013 NA 2 2 80200688 89168756 8,9688 13 6,62E-07 trans 

ENSSSCG00000027013 NA 2 2 100452179 105402679 4,905 3 0,00998969 trans 

ENSSSCG00000017608 NA 12 12 30020452 39814922 9,447 52 7,28E-09 cis 

ENSSSCG00000017608 NA 12 12 22565138 29828287 7,2649 47 7,72E-09 trans 

ENSSSCG00000017608 NA 12 12 50653261 52088566 1,4305 4 0,00486292 trans 

ENSSSCG00000003909 NA 6 8 70726141 72055494 1,3353 3 0,00077883 trans 

ENSSSCG00000013900 NA 2 2 31408370 39791103 8,3733 7 0,00046702 trans 

ENSSSCG00000013900 NA 2 2 40202282 49402057 9,1975 13 8,34E-05 trans 

ENSSSCG00000013900 NA 2 2 60438014 69717346 9,2732 18 8,34E-05 trans 

ENSSSCG00000013900 NA 2 2 81345790 82567688 1,2298 3 0,00243 trans 

ENSSSCG00000013900 NA 2 2 50111296 59167984 9,0588 7 8,34E-05 cis 

ENSSSCG00000035293 NA 2 2 31021 9909640 9,8719 137 3,13E-24 cis 

ENSSSCG00000035293 NA 2 2 10004690 16899791 6,8901 55 6,72E-11 trans 

ENSSSCG00000003451 NA 6 6 73007048 74191500 1,1852 3 0,000145 cis 

ENSSSCG00000034049 NA 12 12 51766735 59981770 8,2135 56 5,51E-15 cis 

ENSSSCG00000034049 NA 12 12 60011199 61406036 1,3937 11 3,08E-14 trans 
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ENSSSCG00000036224 NA 3 3 50089886 59343289 9,2503 52 6,95E-15 cis 

ENSSSCG00000036224 NA 3 3 21792771 27496564 5,7793 6 0,0002239 trans 

ENSSSCG00000036224 NA 3 3 48023480 49795973 1,7493 3 0,00320056 trans 

ENSSSCG00000036224 NA 3 3 60040017 63004901 2,9884 4 2,09E-06 trans 

ENSSSCG00000036229 NA 15 15 132514678 136079026 3,5648 3 0,00089357 trans 

ENSSSCG00000008973 NAAA 8 8 70068935 79995913 9,9278 73 7,01E-15 cis 

ENSSSCG00000008973 NAAA 8 8 20196669 29946585 9,7496 15 3,62E-05 trans 

ENSSSCG00000008973 NAAA 8 8 30030826 39836160 9,8054 40 4,79E-08 trans 

ENSSSCG00000008973 NAAA 8 8 40001725 48516038 8,5113 28 1,03E-07 trans 

ENSSSCG00000008973 NAAA 8 8 52127966 59871066 7,71 16 3,13E-08 trans 

ENSSSCG00000008973 NAAA 8 8 60137650 69838204 9,7054 43 1,30E-09 trans 

ENSSSCG00000000050 NAGA 5 5 5258684 8610495 3,3511 8 7,00E-05 cis 

ENSSSCG00000001418 NEU1 7 7 20139894 28847227 8,7033 25 2,77E-13 cis 

ENSSSCG00000001418 NEU1 7 7 31996106 32376442 0,3836 3 0,00122529 cis 

ENSSSCG00000014157 NR2F1 2 2 85778573 89821405 4,0432 8 0,00088318 trans 

ENSSSCG00000014157 NR2F1 2 2 90978857 99745941 8,7684 6 0,00160622 trans 

ENSSSCG00000014157 NR2F1 2 2 100316206 101426587 1,1181 6 0,00088318 cis 

ENSSSCG00000016715 OSBPL3 18 18 40436598 49973261 9,5363 28 2,89E-05 cis 

ENSSSCG00000016715 OSBPL3 18 18 50568550 52713756 2,1406 6 0,00086557 trans 

ENSSSCG00000011215 OXSM 13 13 12045596 13103797 1,0501 7 1,31E-06 cis 

ENSSSCG00000029070 PAFAH1B3 6 6 42291460 49731358 7,4398 10 7,40E-12 cis 

ENSSSCG00000008387 PEX13 3 15 131509060 136079026 4,5666 4 1,44E-05 trans 

ENSSSCG00000004160 PEX7 1 1 18266607 19239794 0,9737 3 0,00039888 trans 

ENSSSCG00000004160 PEX7 1 1 20875482 28160470 7,2848 14 0,00021955 cis 

ENSSSCG00000039244 PHYH 10 10 37332232 39613493 2,281261 3 0,00313804 trans 

ENSSSCG00000039244 PHYH 10 10 41620166 48686436 7,027 4 2,47E-07 cis 

ENSSSCG00000039991 PIGG 8 8 94954 2933071 2,8117 4 4,02E-07 cis 
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ENSSSCG00000039351 PIGH 7 7 90010642 99694015 9,6873 29 7,31E-09 cis 

ENSSSCG00000039351 PIGH 7 7 84255797 89995039 5,7342 13 7,31E-09 trans 

ENSSSCG00000012061 PIGP 13 2 42180092 46036027 3,8535 3 0,00328345 trans 

ENSSSCG00000026934 PIGX 13 13 133264172 137918150 4,6538 6 4,12E-06 cis 

ENSSSCG00000026934 PIGX 13 13 125143843 125244490 0,1047 3 0,00070633 trans 

ENSSSCG00000026934 PIGX 13 13 140676615 148426734 7,7519 3 0,00312343 trans 

ENSSSCG00000011079 PIP4K2A 10 10 44552304 48612344 4,060 6 0,00010627 trans 

ENSSSCG00000011079 PIP4K2A 10 10 61628730 63383491 1,7541 4 2,20E-07 trans 

ENSSSCG00000011079 PIP4K2A 10 10 51216665 59163109 7,9464 19 2,20E-07 cis 

ENSSSCG00000001723 PLA2G7 7 7 40334301 42007620 1,6739 4 2,23E-06 cis 

ENSSSCG00000032434 PLAUR 6 6 41610731 49634384 8,0233 6 6,42E-12 trans 

ENSSSCG00000032434 PLAUR 6 6 51113588 51245746 0,1328 3 2,49E-05 trans 

ENSSSCG00000032434 PLAUR 6 6 64775780 66491010 1,715 5 1,88E-12 trans 

ENSSSCG00000007056 PLCB1 17 17 13301787 18240168 4,9381 11 8,96E-05 cis 

ENSSSCG00000027550 PLCD1 13 13 20033485 29969767 9,9362 159 4,65E-25 cis 

ENSSSCG00000027550 PLCD1 13 13 10021776 19973632 9,9516 125 3,63E-21 trans 

ENSSSCG00000027550 PLCD1 13 13 30163762 39508051 9,3449 23 4,92E-06 trans 

ENSSSCG00000027550 PLCD1 13 13 40328305 41350386 1,0221 3 0,00038289 trans 

ENSSSCG00000027550 PLCD1 13 13 50924481 58467874 7,5433 8 0,00096663 trans 

ENSSSCG00000027550 PLCD1 13 13 60992646 68337650 7,3454 21 5,73E-05 trans 

ENSSSCG00000027550 PLCD1 13 13 70386551 76414124 6,0273 7 0,00037447 trans 

ENSSSCG00000027550 PLCD1 13 13 81033862 85030228 3,996366 5 0,00142343 trans 

ENSSSCG00000032313 POGLUT1 13 13 82225347 89912139 7,6792 14 4,96E-06 trans 

ENSSSCG00000032313 POGLUT1 13 13 90063046 99323417 9,2671 25 5,29E-06 trans 

ENSSSCG00000032313 POGLUT1 13 13 140802462 148030316 7,2274 15 1,34E-06 cis 

ENSSSCG00000032313 POGLUT1 13 13 122565180 129052123 6,6943 8 2,26E-05 trans 

ENSSSCG00000032313 POGLUT1 13 13 130394931 138906814 8,5883 20 1,87E-06 trans 
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ENSSSCG00000032313 POGLUT1 13 13 150709829 159490085 8,7856 9 8,39E-05 trans 

ENSSSCG00000032313 POGLUT1 13 13 161439503 167507958 6,0685 4 0,00026133 trans 

ENSSSCG00000029515 PON3 9 9 70027518 79609079 9,5815 52 9,64E-38 cis 

ENSSSCG00000029515 PON3 9 9 21101886 28426018 7,3232 25 1,19E-06 trans 

ENSSSCG00000029515 PON3 9 9 30748549 39872533 9,1284 28 1,00E-06 trans 

ENSSSCG00000029515 PON3 9 9 40115762 49797975 9,6813 59 2,29E-08 trans 

ENSSSCG00000029515 PON3 9 9 50180939 59782190 9,6051 57 6,96E-14 trans 

ENSSSCG00000029515 PON3 9 9 60331043 69948308 9,6175 49 3,25E-14 trans 

ENSSSCG00000029515 PON3 9 9 80784102 88155132 7,373 6 2,99E-09 trans 

ENSSSCG00000029515 PON3 9 9 90956417 99995397 9,098 37 3,12E-25 trans 

ENSSSCG00000029515 PON3 9 9 100356931 109214318 8,8587 35 3,59E-10 trans 

ENSSSCG00000029515 PON3 9 9 110028935 117693067 7,6132 13 8,80E-05 trans 

ENSSSCG00000010281 PSAP 14 14 73900332 79567277 5,6945 16 0,0007832 cis 

ENSSSCG00000006089 PTDSS1 4 11 22583147 25959904 3,3757 4 0,00513309 trans 

ENSSSCG00000006089 PTDSS1 4 1 261347674 266716391 5,3617 3 0,00221455 trans 

ENSSSCG00000021386 PTGR1 1 1 251386126 253752980 2,3664 12 1,32E-06 cis 

ENSSSCG00000036039 RAB4A 14 14 53980065 59558918 5,5853 21 0,00031527 trans 

ENSSSCG00000036039 RAB4A 14 14 60028498 69236370 9,2872 21 0,00031527 cis 

ENSSSCG00000036039 RAB4A 14 14 71387515 73900332 2,5117 8 0,00045335 trans 

ENSSSCG00000035090 RAC1 3 3 1813273 5507280 3,6907 15 6,40E-05 cis 

ENSSSCG00000002296 RDH11 7 7 90243662 99936352 9,699 43 2,03E-08 cis 

ENSSSCG00000002296 RDH11 7 7 83211722 89991274 6,7952 17 2,33E-06 trans 

ENSSSCG00000002296 RDH11 7 7 100027071 106933131 6,606 17 7,82E-06 trans 

ENSSSCG00000023585 SERINC2 6 6 80764182 89896435 9,1253 19 8,78E-05 cis 

ENSSSCG00000023585 SERINC2 6 6 90587791 97931290 7,3499 14 8,70E-05 trans 

ENSSSCG00000017818 SERPINF1 12 4 105127069 107790356 2,6637 3 7,72E-05 trans 

ENSSSCG00000000072 SLC25A17 5 5 10347960 10976362 0,8402 3 0,00411791 trans 
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ENSSSCG00000000072 SLC25A17 5 5 3354087 8379751 5,0664 12 6,20E-11 cis 

ENSSSCG00000004408 SMPD2 1 2 22468845 25369747 2,9002 3 0,00497716 trans 

ENSSSCG00000004408 SMPD2 1 1 72714511 79943446 7,2235 19 0,00021677 cis 

ENSSSCG00000004408 SMPD2 1 1 80224111 86673286 6,4475 12 0,0001807 trans 

ENSSSCG00000004408 SMPD2 1 1 95066737 99720951 4,6214 6 0,00029956 trans 

ENSSSCG00000004408 SMPD2 1 1 100630729 103352719 2,799 5 0,00186306 trans 

ENSSSCG00000005628 ST6GAAC4 1 10 42291757 45104014 2,8157 3 0,00660646 trans 

ENSSSCG00000025568 TEAD2 6 6 60080423 64472806 4,3983 6 0,00107441 trans 

ENSSSCG00000025568 TEAD2 6 6 53269495 59058869 5,7874 13 0,00054513 cis 
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Table S3: eQTLs associated to genes related to lipid metabolism pathways. 

 

FDR nGenes Pathway 
Genes 

Pathway Genes 

3,25E-45 54 849 Lipid metabolic 
process  

MCAT  NAGA  SLC25A17  PLA2G7  RDH11  MBTPS1  LIPE  APOE  PEX7  SMPD2  CLN6  ALG2  
PTDSS1  LYN  GBA  PLCB1  PEX13  ACOX3  NAAA  COQ2  EPHX2  CBR4  ACADS  PSAP  PIP4K2A  
HACL1  OXSM  ACAA1  PIGP  LPGAT1  CYP27A1  FAXDC2  MPDU1  DHCR7  PTGR1  BDH2  
SERINC2  FADS1  THNSL2  ALDH1A2  PIGX  PLCD1  MLYCD  MGST2  CERS6  DHDDS  GPX1  
INSIG2  ERG28  PHYH  PIGH  ERLIN2  PIGG  CAV3 

1,37E-18 20 198 Fatty acid 
metabolic process  

 MCAT  SLC25A17  PEX7  PEX13  ACOX3  NAAA  CBR4  ACADS  HACL1  OXSM  ACAA1  LPGAT1  
PTGR1  BDH2  THNSL2  MLYCD  GPX1  INSIG2  PHYH  ERLIN2 

5,04E-17 26 527 Carboxylic acid 
metabolic process  

 MCAT  SLC25A17  ALDH5A1  LDHD  PEX7  PEX13  ACOX3  NAAA  CBR4  ACADS  HACL1  OXSM  
ACAA1  LPGAT1  CYP27A1  PTGR1  BDH2  THNSL2  ALDH1A2  PON3  MLYCD  MGST2  GPX1  
INSIG2  PHYH  ERLIN2 

6,71E-17 26 536 Oxoacid 
metabolic process  

 MCAT  SLC25A17  ALDH5A1  LDHD  PEX7  PEX13  ACOX3  NAAA  CBR4  ACADS  HACL1  OXSM  
ACAA1  LPGAT1  CYP27A1  PTGR1  BDH2  THNSL2  ALDH1A2  PON3  MLYCD  MGST2  GPX1  
INSIG2  PHYH  ERLIN2 

1,06E-12 11 62 Lipid oxidation   SLC25A17  PLA2G7  PEX7  PEX13  ACOX3  ACADS  HACL1  ACAA1  BDH2  MLYCD  PHYH 

2,82E-11 10 60 Fatty acid 
oxidation  

 SLC25A17  PEX7  PEX13  ACOX3  ACADS  HACL1  ACAA1  BDH2  MLYCD  PHYH 

4,96E-10 9 56 Fatty acid 
catabolic process  

 SLC25A17  PEX7  PEX13  ACOX3  ACADS  HACL1  ACAA1  BDH2  PHYH 

4,66E-09 9 72 Cholesterol 
metabolic process  

 LIPE  APOE  CLN6  GBA  EPHX2  CYP27A1  DHCR7  INSIG2  ERLIN2 

2,63E-06 6 43 Fatty acid beta-
oxidation  

 SLC25A17  PEX7  ACOX3  ACADS  ACAA1  BDH2 

0,004620501 4 62 Triglyceride 
metabolic process  

 APOE  GPX1  INSIG2  CAV3 
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7.3. Supplementary material Paper III: “Deciphering allele-specific expression in muscle transcriptome of Duroc crossbreed pigs from RNA-

Seq data” 

 

Table S1: Gene ontology biological terms of genes affected by allele-specific expression. 

 

Enrichment 
FDR 

 Nº Genes Pathway 
Genes 

Enrichment Pathway Genes 

6,01E-08 45 220 2,880843 Muscle system 
proc,  

 MYBPC1  PI16  SLC8A3  SETD3  MTOR  MYOM1  SMAD4  TPM1  FBXO32  ATP1B1  CASQ1  
LMNA  GJA5  MKKS  TNNC2  SULF2  ATP2A1  ACTN2  MYOZ1  PRKG1  LMCD1  CSRP3  
MYOD1  SMAD5  ATP2B4  BIN1  PRKAG3  ANXA6  SCN4A  CAMTA2  MYH3  ENO1  TRPM4  
SCN1B  TNNI1  CACNA1S  TNNT1  LOC100620992  KCNE3  MAP2K3  GSN   

7,15E-08 71 447 2,230227 Actin 
cytoskeleton 
organization  

 PARVB  PACSIN2  MICAL3  WHAMM  SETD3  ARHGAP35  MTOR  MAD2L2  LATS1  
ARHGAP18  SMAD4  TPM1  ARPC5L  SDCBP  F11R  CASQ1  STRIP1  DLC1  MKKS  ACTR2  
CYRIA  LIMCH1  PDGFRA  GAB1  AKAP11  RGCC  SORBS3  ARPC3  ACTN2  MYOZ1  LDB3  
CDC42BPA  ITGB1  NRP1  ATP2C1  NISCH  BCL6  AMOT  CSRP3  JMY  RASA1  CTNNA1  
DIAPH1  ABLIM3  PPARGC1B  INPPL1  ARAP1  PAK1  JAM3  BIN1  XIRP2  NCKAP1  ARPC2  
MKLN1  LMOD2  BAIAP2  FOXJ1  GRB2  ITGB3  TNNT1  FHOD1  FHOD3  SSH3  MYPN  PALLD  
AVIL  ACTN1  EMP2  GSN  RFLNB   

3,30E-08 77 490 2,214536 Actin filament-
based proc,  

 PARVB  PACSIN2  MICAL3  WHAMM  CCDC88C  SETD3  ARHGAP35  MTOR  MAD2L2  LATS1  
ARHGAP18  SMAD4  TPM1  ARPC5L  SDCBP  F11R  CASQ1  GJA5  STRIP1  DLC1  MKKS  ACTR2  
CYRIA  LIMCH1  PDGFRA  GAB1  AKAP11  RGCC  SORBS3  ARPC3  ACTN2  MYOZ1  LDB3  
CDC42BPA  ITGB1  NRP1  ATP2C1  NISCH  BCL6  AMOT  CSRP3  JMY  RASA1  CTNNA1  
DIAPH1  ABLIM3  PPARGC1B  INPPL1  ARAP1  PAK1  JAM3  BIN1  XIRP2  NCKAP1  ARPC2  
MKLN1  LMOD2  BAIAP2  FOXJ1  GRB2  ITGB3  TRPM4  SCN1B  TNNT1  FHOD1  FHOD3  SSH3  
MYPN  KCNE3  PALLD  AVIL  ACTN1  EMP2  GSN   

2,16E-07 86 607 1,961466 Protein 
modification by 
small protein 
conjugation or 
removal  

 HECTD1  ASB2  AMFR  MIB2  UBE4B  MAD2L2  PINK1  UFL1  HSPA5  VPS28  FBXO32  
OTUD6B  WWP1  VCPIP1  USP7  EPAS1  OTUD4  UCHL3  MYCBP2  CUL4A  ANAPC5  KLHL22  
TNKS2  UCHL5  NFX1  BMI1  KLHL40  DCAF1  GNL3  PDZRN3  USP13  ATG3  UBE2A  BRCC3  
DDB1  PRPF19  DDB2  PRMT3  USP47  FBXL17  CDC23  RNF14  RPS3  USP28  USP2  
IVNS1ABP  NFE2L2  USP40  COPS8  ASB1  UBE3C  UBE2D4  RNF216  CNOT4  FEM1B  UBR5  
TRPM4  PJA2  RNF6  AIMP2  USP20  TRIP12  USP25  RNF19B  SPSB2  USPL1  NXN  ASB10  
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USP24  ANAPC7  LTN1  PTTG1IP  ANAPC13  COPS7B  UBE2K  TOR1A  UBE2R2  U2AF2  
MAD2L1  NSMCE1  UBE2B  PCGF2  MARCHF5  CYLD  ISG15   

1,20E-07 100 736 1,914091 Reg, of organelle 
organization  

 PPP1R10  WHAMM  TERF2IP  ARHGAP35  EXOSC10  MTOR  PINK1  NEXN  MAP3K4  LATS1  
ARHGAP18  SMAD4  ARPC5L  NBN  SDCBP  F11R  LMNA  SETDB1  SH3GLB1  ODF2L  DLC1  
MKKS  ERCC4  ACTR2  FEZ2  CYRIA  RNF4  EGF  RGCC  MYCBP2  SORBS3  BNIP3L  ARPC3  
MTMR3  ACTN2  PPIF  TNKS2  ARMH3  STN1  HNRNPU  NRP1  DYNC1LI1  PDCD6IP  GNL3  
ATG3  NAT10  JMY  RASA1  DCP2  APC  CDC23  DIAPH1  ARAP1  RPS3  PAK1  CEP295  JAM3  
BIN1  NCKAP1  XRCC5  ARPC2  MAD2L1BP  LMOD2  BAIAP2  GRB2  ITGB3  CALCOCO2  
TOM1L1  ZNF207  TAOK1  GPSM2  CEP135  CCSAP  LOC100624559  PHLDB1  DHX36  RALB  
FHOD1  STX5  FHOD3  SSH3    MFF  SMG1  PIP4K2B  PARL  SDCCAG8  G3BP1  MAD2L1  
TMEM33  GSN  SMCR8  RANGRF  FIS1  UBE2B  MARCHF5  NUPR1  CYLD  NUP62  TSC1 

6,05E-12 170 1299 1,844232 Cellular catabolic 
proc,  

 DERA  FAH  FURIN  ABHD2  ETFA  LGMN  ATG2B  CSNK2A2  AMFR  BCAT2  UBE4B  DFFA  
EXOSC10  MTOR  MFN2  UBR4  PINK1  ECE1  AGO1  NT5C1A  NPC1  ACADM  CPT2  ZYG11B  
NRDC  FAF1  LATS1  UFL1  HERC1  RAD23B  HSPA5  ZER1  CRAT  VPS28  AGO2  EIF3E  MTDH  
WWP1  SDCBP  ATF6  CSDE1  AGL  SH3GLB1  VPS16  HM13  WIPI2  ERCC4  USP7  RAB1A  
PSME4  ERLEC1  FEZ2  LPIN1  RNF4  LNX1  GRSF1  SCARB2  CNOT6L  EGF  TET2  WDFY3  
PAN3  ESD  UCHL3  CUL4A  BNIP3L  EPHX2  CLU  HSPB8  MTMR3  LGALS8  ZSWIM8  IDE  
ATE1  UCHL5  HNRNPU  AGTPBP1  CUL2  UPF2  NGLY1  STT3B  PDCD6IP  ABHD5  ARL8B  
ACAD11  USP13  ATG3  LAMP2  PNPLA2  MUS81  CAPN1  DDB1  PRPF19  CAT  USP47  
EIF4G2  FBXL17  DCP2  HINT1  TMEM41B  SMPD1  USP28  USP2  ATP2B4  SSB  NFE2L2  
USP40  HIBADH  RETREG1  MTREX  FOXK2  PSMC5  PLEKHM1  OSBPL7  CALCOCO2  TAF15  
EPG5  PFKM  RNF216  CNOT4  ZHX2  NEU3  DCP1A  OPTN  USP20  USP25  ALDH4A1  RCN3  
DHX36  STX12  RALB  SPSB2  UBE2Z  IRS1  ENPP4  DNAJC3  CARHSP1  NUDT15  ABCD3  
RB1CC1    CUL5  PDE2A  USP24  PCYOX1  LTN1  PTTG1IP  CDADC1  SMG1  PIP4K2B  PARL  
UBE2K  ATG12  TOR1A  MTMR9  PDE4C  CST3  FITM2  ECHS1  SMCR8  CACUL1  TRIB1  FIS1  
UBE2B  ERLIN2  PSMA2  NUPR1  CYLD  ISG15   

1,20E-07 114 881 1,823956 Intracellular 
transport  

 NUP50  POLDIP3  SCYL2  ATXN1  MAPK14  WHAMM  VIPAS39  CCDC88C  CILK1  AP2A1  
MFN2  PINK1  NPC1  STX7  BACH2  HSPA5  VPS28  SNX16  SEC31B  COPA  LMNA  RAB13  
SNX27  SORT1  VPS16  HM13  KCNB1  SUN1  STX4  TBC1D10B  USP7  TEX261  ACTR2  RAB1A  
ERLEC1  SCARB2  ARFIP1  SEC24B  BNIP3L  ACTN2  TOMM20  SEC23IP  MIA3  HNRNPU  
DENND1B  AGTPBP1  KIF5B  ARL8B  SEC13  COPG1  SEC61A1  DNAJC13  LSG1  LAMP2  
THOC2  CRY2  HTATIP2  CLTB  HSPA4  SAR1B  FAM160A2  NUP98  RAB6A  PTPN14  BIN1  SSB  
INSIG1  CREB3L2  TNPO3  VPS41  GGA3  TOM1L1  AP2B1  VPS53  UBE2G1  KIF13A  EPG5  
UBR5  SLC25A30  KPNA3  HOOK3  STX12  SNX17  CSE1L  FHOD1  SRP19  STX5  FYTTD1  
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TUBA8  KPNA1  ABCD3  IPO7  GOSR1  IPO13  RHOBTB3  SSR3  PTTG1IP  TXNIP  MFF  ABRA  
KPNA6  SEC22C  SRSF10  HNRNPA2B1  EMP2  ATP5PB  VAPA  RANGRF  FIS1  YIPF5  NUP62  
NDE1  HERPUD1  TSC1 

1,55E-12 193 1512 1,798719 Catabolic proc,   PPARA  DERA  NEU1  FAH  FURIN  ABHD2  ETFA  PKM  LGMN  ATG2B  CSNK2A2  AMFR  
MMP2  LIPE  BCAT2  UBE4B  DFFA  EXOSC10  MTOR  MAD2L2  MFN2  UBR4  PINK1  ECE1  
AGO1  NT5C1A  NPC1  ACADM  CPT2  ZYG11B  NRDC  FAF1  LATS1  UFL1  HERC1  RAD23B  
HSPA5  ZER1  CRAT  VPS28  AGO2  OC90  EIF3E  MTDH  WWP1  SDCBP  ATF6  CSDE1  AGL  
SH3GLB1  VPS16  HM13  WIPI2  ERCC4  USP7  RAB1A  PSME4  ERLEC1  FEZ2  LPIN1  RNF4  
LNX1  GRSF1  SCARB2  CNOT6L  EGF  TET2  WDFY3  PAN3  ESD  UCHL3  MYCBP2  CUL4A  
BNIP3L  EPHX2  CLU  HSPB8  MTMR3  LGALS8  ZSWIM8  IDE  ATE1  UCHL5  BPNT1  HNRNPU  
AGTPBP1  ITGB1  CUL2  UPF2  NGLY1  STT3B  PDCD6IP  ABHD5  ARL8B  ACAD11  USP13  
ATG3  LAMP2  PNPLA2  MUS81  CAPN1  DDB1  PRPF19  CAT  USP47  EIF4G2  FBXL17  DCP2  
APC  HINT1  TMEM41B  SMPD1  MTMR2  USP28  USP2  ATP2B4  SSB  NFE2L2  CYP27A1  
PRKAG3  USP40  PRKAG2  HIBADH  RETREG1  MTREX  FOXK2  PSMC5  PLEKHM1  PSMD3  
FBXL20  OSBPL7  CALCOCO2  TAF15  EPG5  PFKM  RNF216  CNOT4  ZHX2  NEU3  EGFR  
ENO1  DCP1A  OPTN  USP20  USP25  ALDH4A1  RCN3  DHX36  STX12  RALB  SPSB2  UBE2Z  
IRS1  ENPP4  DNAJC3  STX5  CARHSP1  NUDT15  TIPARP  ABCD3  RB1CC1    CUL5  PDE2A  
USP24  PCYOX1  LTN1  PTTG1IP  CDADC1  SMG1  BPNT2  PIP4K2B  PARL  UBE2K  ATG12  
TOR1A  MTMR9  MAD2L1  PDE4C  CST3  FITM2  ECHS1  SMCR8  CACUL1  TRIB1  FIS1  UBE2B  
ERLIN2  PSMA2  NUPR1  CYLD  ISG15  HERPUD1 

4,03E-07 110 863 1,79047 Macromolecule 
catabolic proc,  

 FURIN  LGMN  CSNK2A2  AMFR  UBE4B  DFFA  EXOSC10  MAD2L2  UBR4  AGO1  ZYG11B  
NRDC  FAF1  LATS1  UFL1  RAD23B  HSPA5  ZER1  VPS28  AGO2  EIF3E  WWP1  SDCBP  
CSDE1  AGL  SH3GLB1  HM13  USP7  PSME4  ERLEC1  RNF4  LNX1  GRSF1  CNOT6L  EGF  
PAN3  UCHL3  MYCBP2  CUL4A  BNIP3L  CLU  ZSWIM8  IDE  ATE1  UCHL5  HNRNPU  
AGTPBP1  CUL2  UPF2  NGLY1  STT3B  PDCD6IP  USP13  LAMP2  MUS81  CAPN1  DDB1  
PRPF19  USP47  FBXL17  DCP2  APC  USP28  USP2  SSB  NFE2L2  USP40  MTREX  PSMC5  
PSMD3  FBXL20  OSBPL7  TAF15  PFKM  RNF216  CNOT4  ZHX2  EGFR  DCP1A  USP20  USP25  
RCN3  DHX36  SPSB2  UBE2Z  DNAJC3  STX5  CARHSP1  NUDT15  TIPARP    CUL5  USP24  
PCYOX1  LTN1  PTTG1IP  SMG1  UBE2K  TOR1A  MAD2L1  CST3  CACUL1  TRIB1  UBE2B  
ERLIN2  PSMA2  NUPR1  CYLD  ISG15  HERPUD1 

2,02E-07 118 933 1,782311 Cytoskeleton 
organization  

 PARVB  PACSIN2  MICAL3  DST  WHAMM  SETD3  ARHGAP35  MTOR  MAD2L2  MACF1  
NEXN  LATS1  ARHGAP18  SMAD4  TPM1  ARPC5L  SDCBP  F11R  CASQ1  LMNA  STRIP1  
DLC1  MKKS  SUN1  SBDS  SEPTIN1  ACTR2  CEP68  CYRIA  RNF4  LIMCH1  PDGFRA  
ARHGAP10  GAB1  AKAP11  RGCC  MYCBP2  SORBS3  ARPC3  ACTN2  MYOZ1  LDB3  SLK  
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ABLIM1  CDC42BPA  HNRNPU  KIF24  SVIL  ITGB1  NRP1  ATP2C1  PDCD6IP  NISCH  BCL6  
AMOT  NAT10  CSRP3  JMY  RASA1  APC  CTNNA1  DIAPH1  ABLIM3  PPARGC1B  INPPL1  
ARAP1  C2CD3  RPS3  PAK1  CHORDC1  CEP295  JAM3  BIN1  XIRP2  MAP3K20  NCKAP1  
ARPC2  MKLN1  LMOD2  BAIAP2  FOXJ1  GRB2  ITGB3  ZNF207  TAOK1  DES  GPSM2  CEP135  
CCSAP  RHOU  RAF1  HOOK3  PHLDB1  TNNT1  FHOD1  FHOD3  SSH3    MYPN  PALLD  AVIL  
DAG1  TOR1A  SDCCAG8  MAD2L1  ACTN1  EMP2  GSN  TACC2  FITM2  TTLL11  RFLNB  
RANGRF  UBE2B   

1,13E-08 151 1220 1,744295 Cellular response 
to stress  

 PPARA  YBX3  SLC38A2  PPP1R10  KLHL31  MAPK14  ZFYVE26  SUSD6  SLC8A3  FOXN3  
CCDC88C  TERF2IP  AMFR  MMP2  PPP1R15A  MTOR  MAD2L2  MFN2  PINK1  MAP3K4  
BCLAF1  RRAGD  UFL1  TPM1  FAN1  RAD23B  HSPA5  SETX  OXR1  NBN  VCPIP1  PRKDC  
RCSD1  ATF6  LMNA  SLC25A24  SH3GLB1  HM13  RBL1  WIPI2  STX4  ATP2A1  ERCC4  USP7  
CDIP1  ACTR2  VRK2  PSME4  ERLEC1  EPAS1  DDX1  LETM1  RELL1  PDGFRA  ABRAXAS1  
RGCC  TMTC4  CUL4A  BNIP3L  CLU  HSPB8  MTMR3  PPIF  TGFB2  STT3B  OXSR1  LAMB2  
NEK4  USP13  BCL6  BACH1  PDK3  UBE2A  BRCC3  MUS81  DDB1  PRPF19  DDB2  MYOD1  
USP47  THBS4  APC  RAD50  LARS1  PPARGC1B  RPS3  PAK1  CHORDC1  USP28  PDK4  ATF3  
WRN  PDK1  MAP3K20  NFE2L2  XRCC5  INSIG1  CREB3L2  CBX3  MTREX  GRB2  NFE2L1  
CBX1  TAOK1  EGFR  ENO1  FEM1B  UBR5  PJA2  NET1  OPTN  SCARF1  MLH1  TRIP12  USP25  
RCN3  DHX36  FGF1  RALB  DNAJC3  INIP  PDK2  LPCAT3  NUDT15  HUS1  RB1CC1    TMBIM6  
PTTG1IP  PRRX1  CHCHD6  SMG1  SWI5  KIN  ARL6IP5  MAP2K3  TOR1A  CXCL12  NSMCE1  
TMEM33  LRRC8D  TRIB1  UBE2B  PCGF2  ERLIN2  CD34  NUPR1  CYLD  SOD2   

2,38E-08 155 1279 1,707874 Organic 
substance 
catabolic proc,  

 PPARA  DERA  NEU1  FAH  FURIN  ABHD2  ETFA  PKM  LGMN  CSNK2A2  AMFR  LIPE  BCAT2  
UBE4B  DFFA  EXOSC10  MAD2L2  UBR4  ECE1  AGO1  NT5C1A  ACADM  CPT2  ZYG11B  
NRDC  FAF1  LATS1  UFL1  RAD23B  HSPA5  ZER1  CRAT  VPS28  AGO2  OC90  EIF3E  WWP1  
SDCBP  CSDE1  AGL  SH3GLB1  HM13  USP7  PSME4  ERLEC1  LPIN1  RNF4  LNX1  GRSF1  
SCARB2  CNOT6L  EGF  TET2  PAN3  ESD  UCHL3  MYCBP2  CUL4A  BNIP3L  EPHX2  CLU  
ZSWIM8  IDE  ATE1  UCHL5  BPNT1  HNRNPU  AGTPBP1  CUL2  UPF2  NGLY1  STT3B  
PDCD6IP  ABHD5  ACAD11  USP13  LAMP2  PNPLA2  MUS81  CAPN1  DDB1  PRPF19  USP47  
FBXL17  DCP2  APC  HINT1  SMPD1  MTMR2  USP28  USP2  ATP2B4  SSB  NFE2L2  CYP27A1  
PRKAG3  USP40  PRKAG2  HIBADH  MTREX  FOXK2  PSMC5  PSMD3  FBXL20  OSBPL7  TAF15  
PFKM  RNF216  CNOT4  ZHX2  NEU3  EGFR  ENO1  DCP1A  USP20  USP25  ALDH4A1  RCN3  
DHX36  SPSB2  UBE2Z  IRS1  ENPP4  DNAJC3  STX5  CARHSP1  NUDT15  TIPARP  ABCD3    
CUL5  PDE2A  USP24  PCYOX1  LTN1  PTTG1IP  CDADC1  SMG1  BPNT2  UBE2K  TOR1A  
MAD2L1  PDE4C  CST3  FITM2  ECHS1  CACUL1  TRIB1  UBE2B  ERLIN2  PSMA2  NUPR1  CYLD  
ISG15  HERPUD1 
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3,92E-07 132 1097 1,690602 Cellular 
macromolecule 
localization  

 PACSIN2  ILRUN  MAPK14  HECTD1  MMP14  MPP5  VIPAS39  TTC7B  TERF2IP  PPP1R15A  
AP2A1  EXOSC10  MFN2  PINK1  NPC1  LATS1  STX7  PYGO1  HSPA5  VPS28  SNX16  VCPIP1  
ATP1B1  F11R  COPA  LMNA  RAB13  SNX27  RAP1A  SORT1  SH3GLB1  VPS16  HM13  KCNB1  
SUN1  WIPI2  STX4  POLR1A  CEP68  ERLEC1  DDX1  SCARB2  ARFIP1  EGF  SEC24B  PAQR3  
AKAP11  BNIP3L  ACTN2  TOMM20  VCL  TNKS2  ZFYVE27  MIA3  HNRNPU  KIF5B  ITGB1  
NRP1  ATP2C1  GNL3  SEC13  COPG1  SEC61A1  AMOT  LAMP2  PACS1  PRPF19  CRY2  CSRP3  
CLTB  APC  HSPA4  SAR1B  CTNNA1  DIAPH1  RAB6A  C2CD3  JAM3  ATP2B4  FAM126A  
PTPN14  WRN  SSB  INSIG1  TNPO3  VPS41  FOXJ1  GGA3  TOM1L1  AP2B1  KIF13A  GPSM2  
EGFR  UBR5  DCP1A  OPTN  SLC25A30  KPNA3  CTCF  HOOK3  STX12  SNX17  CSE1L  DVL2  
MFSD1  SRP19  NVL  FAM149B1  TUBA8  KPNA1  IPO7  IPO13  SSR3  PTTG1IP  TXNIP  ARL5B  
MFF  ABRA  RTN4  TOR1AIP1  ARL6IP5  DCLK1  KPNA6  DAG1  TOR1A  EMP2  VAPA  RANGRF  
FIS1  MARCHF5  NUP62  HERPUD1 

5,55E-09 204 1787 1,608797 Cellular 
localization  

 NUP50  PACSIN2  POLDIP3  SCYL2  ATXN1  ITPR3  ILRUN  MAPK14  WHAMM  HECTD1  
MMP14  MPP5  VIPAS39  TTC7B  CCDC88C  TRIP11  CILK1  TERF2IP  PPP1R15A  AP2A1  
EXOSC10  MTOR  MFN2  PLEKHM2  PINK1  NPC1  LATS1  STX7  BACH2  PYGO1  HSPA5  
VPS28  SNX16  SEC31B  VCPIP1  ATP1B1  MPC2  F11R  COPA  CASQ1  LMNA  RAB13  SNX27  
RAP1A  SORT1  SH3GLB1  VPS16  HM13  KCNB1  SUN1  WIPI2  RABGEF1  STX4  TBC1D10B  
SEPTIN1  ATP2A1  USP7  POLR1A  DCTN1  EXOC6B  TEX261  ACTR2  RAB1A  CEP68  ERLEC1  
FAM98A  DDX1  LETM1  SCARB2  ARFIP1  EGF  SEC24B  PAQR3  AKAP11  BNIP3L  ACTN2  
TOMM20  VCL  TNKS2  ZFYVE27  SEC23IP  MIA3  HNRNPU  DENND1B  AGTPBP1  KIF5B  
ITGB1  NRP1  ATP2C1  GNL3  ARL8B  SEC13  COPG1  SEC61A1  DNAJC13  LSG1  CDK16  
AMOT  LAMP2  THOC2  PACS1  PRPF19  CRY2  HTATIP2  CSRP3  CLTB  APC  HSPA4  SAR1B  
CDC23  CTNNA1  DIAPH1  FAM160A2  NUP98  RAB6A  C2CD3  JAM3  ATP2B4  FAM126A  
PTPN14  BIN1  WRN  SSB  INSIG1  CREB3L2  TNPO3  VPS41  FOXJ1  UNC13D  GGA3  ITGB3  
PLEKHM1  FBXL20  TOM1L1  AP2B1  VPS53  UBE2G1  DHRS7C  KIF13A  EPG5  GPSM2  EGFR  
UBR5  DCP1A  OPTN  SCN1B  SLC25A30  KPNA3  CTCF  RAF1  HOOK3  STX12  SNX17  CSE1L  
DVL2  MFSD1  FHOD1  SRP19  STX5  NVL  SNCG  FAM149B1  FYTTD1  TUBA8  TRDN  KPNA1  
ABCD3  IPO7  GOSR1  KCNE3  IPO13  TMBIM6  RHOBTB3  SSR3  PTTG1IP  TXNIP  ARL5B  MFF  
ABRA  RTN4  TOR1AIP1  ARL6IP5  DCLK1  KPNA6  SEC22C  DAG1  TOR1A  MAD2L1  SRSF10  
HNRNPA2B1  EMP2  ATP5PB  VAPA  RANGRF  FIS1  UBE2B  YIPF5  MARCHF5  TMEM38B  
NUP62  NDE1  HERPUD1  TSC1  P2RX4 

1,91E-07 166 1455 1,608679 Reg, of cellular 
component 
organization  

 PACSIN2  ACVR1B  SCYL2  PPP1R10  MAPK14  PI16  WHAMM  MMP14  TERF2IP  ARHGAP35  
PPP1R15A  EXOSC10  MTOR  MAD2L2  PDPN  PLEKHM2  PINK1  ADGRL2  NEXN  FAF1  
MAP3K4  LATS1  ARHGAP18  SMAP1  SMAD4  VLDLR  ARPC5L  SETX  VPS28  NBN  SDCBP  
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F11R  LMNA  ADAM15  SETDB1  RAP1A  SH3GLB1  ODF2L  DLC1  MKKS  PFDN4  RABGEF1  
ERCC4  ACTR2  FEZ2  FAM98A  CYRIA  RNF4  ADD1  ATP8A1  EGF  PAQR3  RGCC  MYCBP2  
SEMA4D  SORBS3  BNIP3L  CLU  ARPC3  MTMR3  ACTN2  AGT  VCL  PPIF  TNKS2  ZFYVE27  
ARMH3  STN1  SLK  TGFB2  HNRNPU  NRP1  DYNC1LI1  PDCD6IP  SEMA3G  GNL3  BCL6  
ATG3  NAT10  CAPRIN1  MYOD1  USP47  EIF4G2  NCLN  SMARCA4  JMY  RASA1  DCP2  APC  
CDC23  ETF1  DIAPH1  SMPD1  ARAP1  RPS3  PAK1  FZD4  CHORDC1  CEP295  JAM3  BIN1  
NCKAP1  ITGAV  FN1  XRCC5  ARPC2  MAD2L1BP  LMOD2  IFRD1  MYO10  BAIAP2  GRB2  
ITGB3  PLEKHM1  CALCOCO2  TOM1L1  ZNF207  TAOK1  ANKRD13B  UBE2G1  GSPT1  
GPSM2  NEU3  EGFR  CEP135  ENO1  SEMA7A  SCN1B  CCSAP  SCARF1  RAF1  
LOC100624559  PHLDB1  SPART  DHX36  RALB  FHOD1  STX5  FHOD3  SSH3    AVIL  MFF  
RTN4  SMG1  PIP4K2B  PARL  DAG1  TOR1A  SDCCAG8  SACS  G3BP1  MAD2L1  TMEM33  
CST3  GSN  SLC25A33  SMCR8  RANGRF  FIS1  UBE2B  MARCHF5  NUPR1  CYLD  NUP62  TSC1 

2,17E-07 164 1439 1,606104 Protein 
localization  

 PACSIN2  ARFGAP3  PICK1  ILRUN  MAPK14  HECTD1  MMP14  MPP5  VIPAS39  TTC7B  
TERF2IP  PPP1R15A  AP2A1  MFN2  PLEKHM2  PINK1  MYOM1  NPC1  JAK1  FAF1  LATS1  
STX7  UFL1  PYGO1  KTN1  VLDLR  HSPA5  VPS28  SNX16  VCPIP1  ATP1B1  MPC2  F11R  
COPA  LMNA  RAB13  SNX27  RAP1A  SORT1  SH3GLB1  VPS16  HM13  KCNB1  SUN1  WIPI2  
STX4  POLR1A  CEP68  ERLEC1  DDX1  SCARB2  ARFIP1  EGF  SEC24B  PAQR3  AKAP11  
MYCBP2  BNIP3L  CLU  ACTN2  TOMM20  VCL  TNKS2  ZFYVE27  TGFB2  MIA3  HNRNPU  
KIF5B  ITGB1  NRP1  ATP2C1  GNL3  ARL8B  SEC13  COPG1  SEC61A1  BCL6  CDK16  AMOT  
LAMP2  PACS1  PRPF19  CRY2  CSRP3  CLTB  MCC  APC  HSPA4  SAR1B  CTNNA1  DIAPH1  
FAM160A2  RAB6A  C2CD3  CEP295  SNX19  JAM3  ATP2B4  FAM126A  PTPN14  WRN  SSB  
INSIG1  TNPO3  VPS41  FOXJ1  GGA3  PECAM1  ITGB3  TOM1L1  AP2B1  KIF13A  PFKM  
GPSM2  EGFR  CEP135  UBR5  DCP1A  OPTN  SLC25A30  KPNA3  CTCF  RAF1  HOOK3  RCN3  
STX12  SNX17  CSE1L  DVL2  IRS1  MFSD1  SRP19  TIMM50  NVL  SNCG  FAM149B1  LMAN2L  
TUBA8  KPNA1  IPO7  IPO13  SSR3  PTTG1IP  TXNIP  ARL5B  MFF  ABRA  RTN4  TOR1AIP1  
ARL6IP5  DCLK1  KPNA6  DAG1  TOR1A  EMP2  VAPA  RANGRF  NPNT  FIS1  MARCHF5  
NUP62  HERPUD1    KCNJ11 

5,99E-08 188 1671 1,585885 Intracellular 
signal 
transduction  

 PPARA  TNS2  YBX3  WNK1  PPP1R10  KLHL31  MAPK14  HOMER2  IQGAP1  AKAP13  FOXN3  
CCDC88C  TERF2IP  NFAT5  ARHGAP35  MTOR  MAD2L2  MFN2  PDPN  PINK1  RALBP1  
MYOM1  JAK1  RPS6KA2  MAP3K4  LATS1  BCLAF1  ARHGAP18  RRAGD  SMAD4  CTNNAL1  
SETX  MTDH  NBN  SDCBP  PRKDC  ATP1B1  F11R  CASQ1  SETDB1  RAP1A  VCAM1  TGFBR3  
CCN1  DLC1  TTI1  RALGAPB  DOK5  RABGEF1  ATP2A1  CDIP1  VRK2  RASGRP3  DDX1  RELL1  
PDGFRA  EGF  PAQR3  CUL4A  RASA3  SEMA4D  SORBS3  KCTD9  CLU  PITPNM2  MAPK1  
KLHL22  SIPA1L2  AGT  MYOZ1  DUSP29  PPIF  PRKG1  DNMBP  TGFB2  RGS7  CDC42BPA  
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ITGB1  NRP1  DYNC1LI1  OXSR1  NISCH  LMCD1  SEC13  BCL6  AMOT  CAT  CSRP3  TEAD1  
USP47  RASA1  MEF2C  APC  HINT1  LARS1  SMPD1  RPS3  PAK1  FZD4  USP28  ATP2B4  
IVNS1ABP  ATF3  GRB10  PDK1  MAP3K20  GPR155  NFE2L2  NCKAP1  ITGAV  FN1  PLCD4  
COPS8  ASB1  MAD2L1BP  PRKAG2  ASB15  GRB2  PRKCA  PLEKHM1  ZNF207  KSR1  TAOK1  
ASB8  GPSM2  DAPK2  DOCK9  EGFR  ENO1  FEM1B  KBTBD2  TRPM4  PDGFRB  PJA2  
SEMA7A  CASTOR2  NKIRAS1  RHOU  RAF1  DHX36  FGF1  RALB  SPSB2  DVL2  IRS1  SLC15A4  
TMEM106A  SH3BP5L  PDK2  HDAC7  HUS1  RB1CC1  ASB10  PDE2A  RASGEF1B  TMBIM6  
NDRG2  ARHGEF6  PTTG1IP  ABRA  CDC42SE1  RTN4  SIK2  ARL6IP5  PARL  DCLK1  DAG1  
MAP2K3  EIF4EBP2  CXCL12  MAD2L1  NSMCE1  CAVIN4  SMCR8  PERP  TRIB1  RANGRF  
NPNT  FIS1  UBE2B  TMEM38B  NUPR1  CYLD  NUP62  RND3  HERPUD1  TSC1  P2RX4 

5,99E-08 193 1728 1,574754 Macromolecule 
localization  

 PPARA  PACSIN2  ARFGAP3  POLDIP3  PICK1  ILRUN  MAPK14  FURIN  HECTD1  MMP14  
MPP5  VIPAS39  TTC7B  TERF2IP  PPP1R15A  AP2A1  EXOSC10  MFN2  PLEKHM2  PINK1  
MYOM1  NPC1  JAK1  FAF1  LATS1  STX7  UFL1  PYGO1  KTN1  VLDLR  HSPA5  VPS28  OC90  
SNX16  VCPIP1  ATP1B1  MPC2  F11R  COPA  LMNA  RAB13  SNX27  RAP1A  SORT1  SH3GLB1  
VPS16  HM13  KCNB1  SUN1  WIPI2  STX4  POLR1A  CEP68  ERLEC1  MFSD2B  DDX1  ATP8A1  
SCARB2  ARFIP1  EGF  SEC24B  PAQR3  AKAP11  MYCBP2  BNIP3L  CLU  PITPNM2  ACTN2  
TOMM20  VCL  TNKS2  ZFYVE27  TGFB2  EPRS1  MIA3  HNRNPU  KIF5B  ITGB1  NRP1  
ATP2C1  ABHD5  GNL3  ARL8B  SEC13  COPG1  SEC61A1  BCL6  CDK16  AMOT  LAMP2  
THOC2  PNPLA2  PACS1  PRPF19  CRY2  CSRP3  SLC27A1  CLTB  MCC  DCP2  APC  HSPA4  
SAR1B  CTNNA1  DIAPH1  FAM160A2  RAB6A  C2CD3  FZD4  CEP295  SNX19  JAM3  ATP2B4  
FAM126A  PTPN14  ACSL1  WRN  SSB  ITGAV  INSIG1  TNPO3  VPS41  FOXJ1  GGA3  ABCA5  
ABCA6  PECAM1  ITGB3  STAT5B  TOM1L1  AP2B1  KIF13A  NRIP1  PFKM  GPSM2  EGFR  
CEP135  UBR5  DCP1A  OPTN  SLC25A30  KPNA3  CTCF  RAF1  HOOK3  RCN3  STX12  SNX17  
CSE1L  DVL2  IRS1  MFSD1  SRP19  TIMM50  NVL  SNCG  FAM149B1  LMAN2L  FYTTD1  
TUBA8  LPCAT3  KPNA1  ABCD3  IPO7  PRPF6  IPO13  SSR3  PTTG1IP  TXNIP  ARL5B  MFF  
ABRA  TMEM159  RTN4  TOR1AIP1  ARL6IP5  DCLK1  KPNA6  DAG1  TOR1A  HNRNPA2B1  
EMP2  FITM2  VAPA  RANGRF  NPNT  FIS1  MARCHF5  NUP62  HERPUD1    KCNJ11  TSC1 

4,56E-07 209 1979 1,488316 Phosphate-
containing 
compound 
metabolic proc,  

 PPARA  PWP1  ACVR1B  TNS2  DERA  WNK1  SCYL2  KLHL31  MAPK14  KCTD20  MOCS1  
ADGRF5  IQGAP1  PEAK1  PKM  THTPA  SLC8A3  PTPN21  TTC7B  CCDC88C  CILK1  TERF2IP  
VAC14  CSNK2A2  PPP1R15A  MTOR  MAD2L2  PINK1  NT5C1A  JAK1  CMPK1  TESK2  
RPS6KA2  MAP3K4  LATS1  PGM3  SMAD4  ALPK2  VLDLR  PIGO  AK1  ST3GAL1  OC90  NBN  
PKIA  SDCBP  PRKDC  MPC2  AMPD1  CDC14A  TGFBR3  CCN1  DLC1  GPAT4  RBL1  RABGEF1  
PHKG1  EEF2K  RPIA  DUSP11  VRK2  EFEMP1  PDGFRA  EGF  PAQR3  PAN3  RGCC  SEMA4D  
EPHX2  CLU  GRK3  MTMR3  MAPK1  AGT  DUSP29  SAMD8  PRKG1  SLK  TGFB2  BPNT1  
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COQ8A  CDC42BPA  HNRNPU  NRP1  PFKFB3  OXSR1  ACVR2B  ABHD5  PFKFB4  NEK4  UMPS  
ATP5PO  ADARB1  PDK3  CDK16  OCRL  PPP6R3  TRPT1  CRY2  HTATIP2  SLC27A1  MAML1  
THBS4  SERINC5  CKMT2  APC  HINT1  SMAD5  PPARGC1B  CAMK2A  SMPD1  INPPL1  RPS3  
PAK1  FZD4  CHORDC1  MTMR2  ATP2B4  CDK18  PDK4  FAM126A  NAMPT  PTPN14  
RPS6KC1  GRB10  DCTD  ACSL1  PDK1  MAP3K20  FZD7  ATIC  FN1  XRCC5  PLCD4  PRKAG3  
COPS8  ILKAP  PRKAG2  NADK2  NDUFS4  PLPP1  FOXK2  PRKCA  PECAM1  ITGB3  NME2  
TOM1L1  KSR1  KIAA0100  TAOK1  PFKM  DAPK2  EGFR  ENO1  AMPD3  PDGFRB  SEMA7A  
SERINC2  RAF1  FGF1  RALB  DVL2  DNAJC3  TIMM50  PIGS  FARP1  PDK2  LPCAT3  NUDT15  
IL6R  BMP2K  SSH3  TAF7  RB1CC1  GDE1  PDE2A  PGAP4    SMG1  BPNT2  SIK2  PIP4K2B  
DBNDD2  UBE2K  DCLK1  MAP2K3  PIGL  DUSP13  MTMR6  MTMR9  CKM  PDE4C  EMP2  
PTDSS2  ATP5PB  FITM2  SMCR8  CACUL1  TRIB1  NPNT  UBE2B  IP6K3  CAMK2B  TMEM38B  
NUPR1  NUP62   

4,56E-07 210 1991 1,486407 Phosphorus 
metabolic proc,  

 PPARA  PWP1  ACVR1B  TNS2  DERA  WNK1  SCYL2  KLHL31  MAPK14  KCTD20  MOCS1  
ADGRF5  IQGAP1  PEAK1  PKM  THTPA  SLC8A3  PTPN21  TTC7B  CCDC88C  CILK1  TERF2IP  
VAC14  CSNK2A2  PPP1R15A  MTOR  MAD2L2  PINK1  NT5C1A  JAK1  CMPK1  TESK2  
RPS6KA2  MAP3K4  LATS1  PGM3  SMAD4  ALPK2  VLDLR  PIGO  AK1  ST3GAL1  OC90  NBN  
PKIA  SDCBP  PRKDC  MPC2  AMPD1  CDC14A  TGFBR3  CCN1  DLC1  GPAT4  RBL1  RABGEF1  
PHKG1  EEF2K  RPIA  DUSP11  UGP2  VRK2  EFEMP1  PDGFRA  EGF  PAQR3  PAN3  RGCC  
SEMA4D  EPHX2  CLU  GRK3  MTMR3  MAPK1  AGT  DUSP29  SAMD8  PRKG1  SLK  TGFB2  
BPNT1  COQ8A  CDC42BPA  HNRNPU  NRP1  PFKFB3  OXSR1  ACVR2B  ABHD5  PFKFB4  
NEK4  UMPS  ATP5PO  ADARB1  PDK3  CDK16  OCRL  PPP6R3  TRPT1  CRY2  HTATIP2  
SLC27A1  MAML1  THBS4  SERINC5  CKMT2  APC  HINT1  SMAD5  PPARGC1B  CAMK2A  
SMPD1  INPPL1  RPS3  PAK1  FZD4  CHORDC1  MTMR2  ATP2B4  CDK18  PDK4  FAM126A  
NAMPT  PTPN14  RPS6KC1  GRB10  DCTD  ACSL1  PDK1  MAP3K20  FZD7  ATIC  FN1  XRCC5  
PLCD4  PRKAG3  COPS8  ILKAP  PRKAG2  NADK2  NDUFS4  PLPP1  FOXK2  PRKCA  PECAM1  
ITGB3  NME2  TOM1L1  KSR1  KIAA0100  TAOK1  PFKM  DAPK2  EGFR  ENO1  AMPD3  
PDGFRB  SEMA7A  SERINC2  RAF1  FGF1  RALB  DVL2  DNAJC3  TIMM50  PIGS  FARP1  PDK2  
LPCAT3  NUDT15  IL6R  BMP2K  SSH3  TAF7  RB1CC1  GDE1  PDE2A  PGAP4    SMG1  BPNT2  
SIK2  PIP4K2B  DBNDD2  UBE2K  DCLK1  MAP2K3  PIGL  DUSP13  MTMR6  MTMR9  CKM  
PDE4C  EMP2  PTDSS2  ATP5PB  FITM2  SMCR8  CACUL1  TRIB1  NPNT  UBE2B  IP6K3  
CAMK2B  TMEM38B  NUPR1  NUP62   
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Table S2: ASE-SNPs affecting candidate lipid genes. The ASE proportion is the percentage of heterozygous that present allelic imbalance for a 

given SNP. 

 

SNP rs Gene ID Gene Name ASE Individuals 
(p.value < 0,05) 

Total heterozygous 
tested 

ASE proportion (%) Consequence 

rs328486316 ENSSSCG00000028620 ABCD3 9 25 36 Downstream 

rs81217189 ENSSSCG00000011297 ABHD5 5 32 15,63 Synonymous 

rs196959825 ENSSSCG00000011629 ACAD11 15 58 25,86 3' UTR 

rs323056426 ENSSSCG00000023354 ACAD9 13 74 17,57 Synonymous 

rs81211675 ENSSSCG00000003776 ACADM 74 74 100 Synonymous 

rs345294790 ENSSSCG00000017337 ACBD4 3 40 7,5 5' UTR 

rs55618935 ENSSSCG00000015784 ACSL1 20 21 95,24 3' UTR 

rs322578425 ENSSSCG00000026453 ACSM5 5 10 50 3' UTR 

rs196952262 ENSSSCG00000015755 AGPAT5 9 70 12,86 Missense 

rs346053510 ENSSSCG00000015755 AGPAT5 15 70 21,43 3' UTR 

rs80997895 ENSSSCG00000010184 AGT 55 83 66,27 Synonymous 

rs343238244 ENSSSCG00000009717 CBR4 27 36 75 Downstream 

rs345224133 ENSSSCG00000003851 CPT2 8 36 22,22 Synonymous 

rs322980308 ENSSSCG00000005671 CRAT 6 34 17,65 Intron 

rs332617618 ENSSSCG00000010780 CYP2E1 29 62 46,77 Synonymous 

rs55618570 ENSSSCG00000024484 DEGS1 11 63 17,46 Synonymous 

rs346355799 ENSSSCG00000011119 ECHDC3 32 47 68,09 3' UTR 

rs81477697 ENSSSCG00000011119 ECHDC3 35 56 62,5 Synonymous 

rs80915078 ENSSSCG00000038086 ECHS1 21 21 100 Synonymous 

rs332100640 ENSSSCG00000001000 ECI2 3 12 25 Intron 

rs322829130 ENSSSCG00000009666 EPHX2 35 42 83,33 Synonymous 
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rs80813406 ENSSSCG00000001862 ETFA 30 33 90,91 Synonymous 

rs333455646 ENSSSCG00000013072 FADS2 6 49 12,24 3' UTR 

rs81215802 ENSSSCG00000026044 FDFT1 57 58 98,28 Synonymous 

rs343615786 ENSSSCG00000007019 GPAT4 23 42 54,76 3' UTR 

rs335455698 ENSSSCG00000025729 IRS1 38 69 55,07 Synonymous 

rs328830166 ENSSSCG00000003018 LIPE 42 54 77,78 Missense 

rs324455395 ENSSSCG00000008624 LPIN1 2 5 40 Intron 

rs81378004 ENSSSCG00000008624 LPIN1 11 22 50 Intron 

rs338458270 ENSSSCG00000008624 LPIN1 18 26 69,23 Synonymous 

rs326383148 ENSSSCG00000008624 LPIN1 4 28 14,29 Intron 

rs345575817 ENSSSCG00000008624 LPIN1 64 65 98,46 3' UTR 

rs341613198 ENSSSCG00000001556 MAPK14 18 32 56,25 3' UTR 

rs322149848 ENSSSCG00000010107 MED15 15 60 25 3' UTR 

rs330721142 ENSSSCG00000029989 MED28 35 60 58,33 3' UTR 

rs345605839 ENSSSCG00000035098 MED4 56 66 84,85 Synonymous 

rs196956362 ENSSSCG00000035098 MED4 56 83 67,47 3' UTR 

rs80901314 ENSSSCG00000034290 MED6 30 86 34,88 Missense 

rs330731389 ENSSSCG00000003413 MTOR 16 80 20 3' UTR 

rs81219366 ENSSSCG00000036294 NUDT19 9 34 26,47 Downstream 

rs335350933 ENSSSCG00000015334 PDK4 22 55 40 Intron 

rs323993804 ENSSSCG00000015334 PDK4 22 60 36,67 Intron 

rs322819411 ENSSSCG00000003451 PDPN 21 57 36,84 3' UTR 

rs339524839 ENSSSCG00000012841 PNPLA2 58 60 96,67 3' UTR 

rs326772027 ENSSSCG00000000006 PPARA 1 6 16,67 Intron 

rs81231121 ENSSSCG00000000006 PPARA 27 67 40,3 Downstream 

rs342853730 ENSSSCG00000014437 PPARGC1B 16 36 44,44 Upstream 

rs80917802 ENSSSCG00000006703 PRKAB2 58 73 79,45 Synonymous 
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rs338572921 ENSSSCG00000006703 PRKAB2 47 74 63,51 3' UTR 

rs81310741 ENSSSCG00000016432 PRKAG2 2 3 66,67 Intron 

rs329891306 ENSSSCG00000016432 PRKAG2 6 14 42,86 Intron 

rs327471058 ENSSSCG00000016432 PRKAG2 6 28 21,43 Synonymous 

rs320642043 ENSSSCG00000016200 PRKAG3 1 5 20 Intron 

rs1112162843 ENSSSCG00000016200 PRKAG3 26 60 43,33 Intron 

rs322383150 ENSSSCG00000026554 PRXL2B 64 65 98,46 3' UTR 

rs325140087 ENSSSCG00000022655 PTGES2 24 66 36,36 3' UTR 

rs344694929 ENSSSCG00000004029 QKI 17 65 26,15 Downstream 

rs337851590 ENSSSCG00000016367 RNPEPL1 18 20 90 5' UTR 

rs331043783 ENSSSCG00000016367 RNPEPL1 27 65 41,54 3' UTR 

rs80782536 ENSSSCG00000001720 SLC25A27 3 11 27,27 3' UTR 

rs320952513 ENSSSCG00000013879 SLC27A1 12 62 19,35 3' UTR 

rs333695749 ENSSSCG00000000272 SP1 5 32 15,63 Downstream 

rs332553125 ENSSSCG00000017406 STAT5B 10 21 47,62 Downstream 

rs345880217 ENSSSCG00000013399 TEAD1 48 56 85,71 Downstream 

rs319491855 ENSSSCG00000013399 TEAD1 60 70 85,71 Synonymous 

rs321574540 ENSSSCG00000014834 UCP3 3 3 100 Downstream 

rs336634583 ENSSSCG00000014834 UCP3 11 17 64,71 Intron 

rs326806805 ENSSSCG00000014834 UCP3 18 18 100 Downstream 

rs81389195 ENSSSCG00000003570 WDTC1 22 26 84,62 Synonymous 
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Table S3: Common ASE-SNPs were identified between our study and the one conducted 

by Liu et al. (2020) in Duroc x Luchuan pigs, focusing on candidate genes related to meat 

quality. 

 

Chr Position SNP rs Consequence Ensembl ID Gene name 

14 74735219 rs333684092 downstream_variant ENSSSCG00000010278 - 

15 121489462 rs334957944 intergenic_variant - - 

1 2551985 rs55618867 synonymous_variant ENSSSCG00000032916 - 

4 30712844 rs80853234 synonymous_variant ENSSSCG00000031728 ABRA 

14 54671108 rs335002364 intron_variant ENSSSCG00000010144 ACTN2 

4 118192174 rs338066881 synonymous_variant ENSSSCG00000006872 AGL 

6 77374418 rs337463568 3_UTR_variant ENSSSCG00000024752 ALDH4A1 

4 105875649 rs80886011 synonymous_variant ENSSSCG00000006754 AMPD1 

4 90341948 rs55618847 downstream_gene_variant ENSSSCG00000006391 ATP1A2 

4 90358204 rs337150379 synonymous_variant ENSSSCG00000006391 ATP1A2 

10 23506975 rs337736193 missense_variant ENSSSCG00000024784 CACNA1S 

10 23533274 rs344595791 synonymous_variant ENSSSCG00000024784 CACNA1S 

2 151251114 rs81367920 3_UTR_variant ENSSSCG00000014443 CAMK2A 

4 90277066 rs326395928 3_UTR_variant ENSSSCG00000006390 CASQ1 

2 89814154 rs333166681 synonymous_variant ENSSSCG00000014128 CKMT2 

16 72204077 rs81212760 synonymous_variant ENSSSCG00000039763 CMBL 

2 15387579 rs341370139 upstream_variant ENSSSCG00000013243 DDB2 

4 105891070 rs80806741 upstream_variant ENSSSCG00000006755 DENND2C 

12 54653333 rs81213334 synonymous_variant ENSSSCG00000017996 DHRS7C 

14 141343802 rs80915078 synonymous_variant ENSSSCG00000038086 ECHS1 

6 148854583 rs81215882 synonymous_variant ENSSSCG00000003812 EFCAB7 

5 18296730 rs325084555 synonymous_variant ENSSSCG00000032028 EIF4B 

13 138883473 rs335347548 3_UTR_variant ENSSSCG00000011885 FBXO40 

4 99331757 rs343127577 synonymous_variant ENSSSCG00000035429 HJV 

7 30563851 rs333189515 3_UTR_variant ENSSSCG00000001527 ILRUN 

4 117944377 rs80795413 synonymous_variant ENSSSCG00000006867 LRRC39 

15 79328240 rs328301396 intron_variant ENSSSCG00000015960 MAP3K20 

14 76456694 rs345277231 upstream_variant ENSSSCG00000010304 MYOZ1 

15 686266 rs325077707 synonymous_variant ENSSSCG00000016397 NEB 

15 687431 rs321740884 synonymous_variant ENSSSCG00000016397 NEB 

15 694683 rs326317941 synonymous_variant ENSSSCG00000016397 NEB 

6 54598842 rs329151980 upstream_variant ENSSSCG00000024823 RCN3 

8 30694399 rs337912544 synonymous_variant ENSSSCG00000061243 RPL9 

9 9626505 rs55619120 synonymous_variant ENSSSCG00000014855 RPS3 

1 268576015 rs80830222 3_UTR_variant ENSSSCG00000005636 SLC25A25 

2 8894947 rs81312355 synonymous_variant ENSSSCG00000022404 SLC3A2 

3 57870098 rs334447146 3_UTR_variant ENSSSCG00000008215 SMYD1 

5 63840701 rs80868263 downstream_variant ENSSSCG00000025460 SPSB2 

1 239455864 rs345128403 synonymous_variant ENSSSCG00000063066 TMOD1 
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1 39525860 rs327383186 synonymous_variant ENSSSCG00000027613 TRDN 

12 40021728 rs81434826 synonymous_variant ENSSSCG00000017717 UNC45B 

5 61360959 rs55619150 3_UTR_variant ENSSSCG00000000633 YBX3 

4 118196368 rs80809403 synonymous_variant ENSSSCG00000006872 AGL 

17 48028661 rs320512199 upstream_variant ENSSSCG00000007424 TNNC2 

14 15010065 rs81215802 synonymous_variant ENSSSCG00000026044 FDFT1 

13 64993726 rs318581283 3_UTR_variant ENSSSCG00000011538 LMCD1 

4 81912941 rs81213257 synonymous_variant ENSSSCG00000006296 ATP1B1 

13 138887967 rs324947205 synonymous_variant ENSSSCG00000011885 FBXO40 

3 55686851 rs333083882 3_UTR_variant ENSSSCG00000058408 COA5 

5 100764373 rs340349360 synonymous_variant ENSSSCG00000026533 MYF6 

18 48526014 rs81215877 synonymous_variant ENSSSCG00000028523 HUS1 

6 68960180 rs709011514 intron_variant ENSSSCG00000033497 RERE 

6 135351740 rs81217583 5_UTR_variant ENSSSCG00000003768 NEXN 

12 24315213 rs1112301778 3_UTR_variant ENSSSCG00000017525 NFE2L1 

1 268569552 rs335457302 synonymous_variant ENSSSCG00000005636 SLC25A25 

8 39128611 rs338676518 3_UTR_variant ENSSSCG00000058015 SGCB 

12 5305600 rs81434107 upstream_variant ENSSSCG00000017187 FOXJ1 

13 26208896 rs340940976 3_UTR_variant ENSSSCG00000011286 KLHL40 

14 108948871 rs340123986 missense_variant ENSSSCG00000010522 ANKRD2 

14 77677549 rs334467231 upstream_variant ENSSSCG00000010319 SAMD8 

2 10832146 rs340758760 synonymous_variant ENSSSCG00000013110 TMEM109 

6 54244744 rs45435515 synonymous_variant ENSSSCG00000003154 GYS1 

14 77660653 rs318806339 3_prime_UTR_variant ENSSSCG00000035105 - 

12 23344596 rs1108115245 3_prime_UTR_variant ENSSSCG00000033291 PIP4K2B 

3 5117830 rs55618502 5_prime_UTR_variant ENSSSCG00000024245 AIMP2 

2 116878437 rs81213697 synonymous_variant ENSSSCG00000022048 REEP5 

13 16892960 rs81243380 3_UTR_variant ENSSSCG00000038607 GADL1 

2 7921760 rs81213209 missense_variant ENSSSCG00000021620 STIP1 

12 5281032 rs327576749 synonymous_variant ENSSSCG00000017186 RNF157 

14 141257121 rs342495519 missense_variant ENSSSCG00000010774 ZNF511 

13 65130787 rs81215798 synonymous_variant ENSSSCG00000056902 CAV3 

X 41845691 rs81213062 synonymous_variant ENSSSCG00000012269 CDK16 

6 55328951 rs319771677 downstream_variant ENSSSCG00000055583 - 

6 52840574 rs335469124 3_UTR_variant ENSSSCG00000003107 ARHGAP35 

4 366159 rs55618482 synonymous_variant ENSSSCG00000005904 VPS28 

14 76450783 rs333025427 intron_variant ENSSSCG00000010304 MYOZ1 

14 81877940 rs80855699 downstream_variant ENSSSCG00000010331 ANXA11 

3 23887869 rs81313849 intron_variant ENSSSCG00000007839 EEF2K 

6 95478637 rs328326902 intron_variant ENSSSCG00000003662 NT5C1A 

18 48734613 rs342453650 downstream_variant ENSSSCG00000016722 UBE2D4 

7 45967451 rs80834158 downstream_variant ENSSSCG00000049456 - 

3 56780533 rs323205258 intron_variant ENSSSCG00000008200 ANKRD23 

13 202767758 rs81212247 synonymous_variant ENSSSCG00000062206 PSMG1 
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8 120797165 rs81403966 missense_variant ENSSSCG00000057637 C4orf54 

15 121431187 rs326201198 intron_variant ENSSSCG00000020785 DES 

10 32442287 rs81423443 synonymous_variant ENSSSCG00000033196 MYORG 

14 77663270 rs321324707 3_UTR_variant ENSSSCG00000035105 - 

4 86929049 rs345715585 intergenic_variant - - 

1 881098 - 3_UTR_variant ENSSSCG00000004012 THBS2 

9 21749745 rs327689182 intron_variant ENSSSCG00000014924 CTSC 

11 71191392 rs81212427 synonymous_variant ENSSSCG00000042169 - 

10 10187869 rs323573076 upstream_variant ENSSSCG00000010829 MTARC1 

4 96007274 rs55618485 synonymous_variant ENSSSCG00000031053 S100A1 

4 122234335 rs333866332 3_UTR_variant ENSSSCG00000039854 TLCD4 

14 141258454 rs339733512 intron_variant ENSSSCG00000010774 ZNF511 

9 113875098 rs331765803 downstream_variant ENSSSCG00000021059 ADORA1 

10 56088388 rs81213201 synonymous_variant ENSSSCG00000011101 ITGB1 

2 88776183 rs1109433572 synonymous_variant ENSSSCG00000014117 THBS4 

18 1751306 rs337423366 synonymous_variant ENSSSCG00000016411 NOM1 

7 31859476 rs341613198 3_UTR_variant ENSSSCG00000001556 MAPK14 

1 242319854 rs336222829 3_UTR_variant ENSSSCG00000037954 CAVIN4 

4 85345636 rs80783545 synonymous_variant ENSSSCG00000006328 RXRG 

12 53486525 rs328962961 synonymous_variant ENSSSCG00000038726 RANGRF 

2 5059013 rs331196147 missense_variant ENSSSCG00000012905 TMEM134 

10 39885762 rs332787631 downstream_variant ENSSSCG00000056325 - 

10 32443725 rs336979398 3_UTR_variant ENSSSCG00000033196 MYORG 

1 65875605 rs80924453 synonymous_variant ENSSSCG00000004347 FBXL4 

7 114176385 rs10720191 3_UTR_variant ENSSSCG00000002452 LGMN 

12 39995516 rs318972369 intron_variant ENSSSCG00000017717 UNC45B 

3 125269117 rs333133716 3_UTR_variant ENSSSCG00000026161 E2F6 

12 561604 rs345060363 3_UTR_variant ENSSSCG00000017125 FOXK2 

6 63337751 rs324952295 5_UTR_variant ENSSSCG00000033735 - 

10 56099889 rs81213197 synonymous_variant ENSSSCG00000011101 ITGB1 

1 229928827 rs319792426 non_coding_transcript ENSSSCG00000044318 - 

3 106077747 rs332838197 synonymous_variant ENSSSCG00000008508 FAM98A 

18 55465655 rs339749290 missense_variant ENSSSCG00000016772 VPS41 

7 24958150 rs80929898 missense_variant ENSSSCG00000001456 - 

5 63654591 rs81214778 synonymous_variant ENSSSCG00000060530 C1R 

14 20705168 rs328487846 synonymous_variant ENSSSCG00000029331 PALLD 

13 72353100 rs80817166 synonymous_variant ENSSSCG00000011622 KBTBD12 

12 55358735 rs344933137 intron_variant ENSSSCG00000018007 MYH3 

2 147500131 rs338568085 synonymous_variant ENSSSCG00000014411 LARS1 

14 11342815 rs55619081 synonymous_variant ENSSSCG00000009668 CLU 

6 51709386 rs1112593947 intron_variant ENSSSCG00000036132 CKM 

12 57235477 rs344875842 missense_variant ENSSSCG00000028465 ELAC2 

5 63743600 rs337519120 missense_variant ENSSSCG00000027205 LPCAT3 

8 120796517 rs81403965 synonymous_variant ENSSSCG00000057637 C4orf54 

13 72300643 rs331383534 intron_variant ENSSSCG00000011622 KBTBD12 
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14 125183673 rs320582474 synonymous_variant ENSSSCG00000010652 FHIP2A 

10 56293972 rs337749140 synonymous_variant ENSSSCG00000011102 NRP1 

14 74941734 rs318297800 intron_variant ENSSSCG00000010283 SPOCK2 

1 72834539 rs81218519 missense_variant ENSSSCG00000004374 QRSL1 

5 23105446 rs699050767 intron_variant ENSSSCG00000029571 AVIL 

2 8291013 rs323903055 Downstream_variant ENSSSCG00000031666 ZFTA 

7 115221148 rs702721383 intron_variant ENSSSCG00000002467 ASB2 

1 72835324 rs81218520 synonymous_variant ENSSSCG00000004374 QRSL1 

18 6045394 rs322111153 intron_variant ENSSSCG00000029241 ASB10 

6 74852222 rs345945726 downstream_variant ENSSSCG00000003461 - 
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Table S4: ASE-SNPs identified in this study are located within the QTL regions previously identified in the BC1_DU animals by Crespo-Piazuelo et 

al. (2020). 

 

SNP rs Consequence Impact Symbol Gene ID Start region 
Crespo et 
al., 2020 

End region 
Crespo et 
al., 2020 

Phenotype Candidate genes QTL 
Crespo et al., 2020 

rs323450134 downstream_variant MODIFIER NRIP1 ENSSSCG00000021038 175539436 181652057 C20:3(n-3) LIPI; NRIP1; ssc-let-7c 

rs330744970 missense_variant MODERATE NRIP1 ENSSSCG00000021038 175539436 181652057 C20:3(n-3) LIPI; NRIP1; ssc-let-7c 

rs81217196 synonymous_variant LOW USP25 ENSSSCG00000024623 175539436 181652057 C20:3(n-3) LIPI; NRIP1; ssc-let-7c 

rs332508992 downstream_variant MODIFIER USP25 ENSSSCG00000024623 175539436 181652057 C20:3(n-3) LIPI; NRIP1; ssc-let-7c 

rs332617618 synonymous_variant LOW CYP2E1 ENSSSCG00000010780 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs80915078 synonymous_variant LOW ECHS1 ENSSSCG00000038086 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs339733512 intron_variant MODIFIER ZNF511 ENSSSCG00000010774 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs342495519 missense_variant MODERATE ZNF511 ENSSSCG00000010774 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs1108330410 intron_variant MODIFIER CALHM2 ENSSSCG00000010600 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs342555189 downstream_variant MODIFIER MFSD13A ENSSSCG00000010584 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs323476599 synonymous_variant LOW PITX3 ENSSSCG00000010578 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs339794165 3_UTR_variant MODIFIER ARMH3 ENSSSCG00000010571 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs341378114 3_UTR_variant MODIFIER OGA ENSSSCG00000010569 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs326425328 3_UTR_variant MODIFIER FBXW4 ENSSSCG00000010566 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs343387045 upstream_variant MODIFIER TWNK ENSSSCG00000030428 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs705003269 intron_variant MODIFIER - ENSSSCG00000049992 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs790970169 intron_variant MODIFIER - ENSSSCG00000049992 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs334275765 missense_variant MODERATE SEC31B ENSSSCG00000006165 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs340093540 3_UTR_variant MODIFIER DNMBP ENSSSCG00000010544 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs330856166 3_UTR_variant MODIFIER DNMBP ENSSSCG00000010544 109946218 114621937 C18:1(n-9)/C18:0*; MUFA/SFA ELOVL3; SCD 

rs339594448 synonymous_variant LOW CD93 ENSSSCG00000007116 30061857 32867849 C20:0 ABHD12; ACSS1; PANK2 
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rs81211078 synonymous_variant LOW CST3 ENSSSCG00000037360 30061857 32867849 C20:0 ABHD12; ACSS1; PANK2 

rs321168302 3_UTR_variant MODIFIER ATRN ENSSSCG00000007153 30061857 32867849 C20:0 ABHD12; ACSS1; PANK2 

rs318844839 3_UTR_variant MODIFIER ATRN ENSSSCG00000007153 30061857 32867849 C20:0 ABHD12; ACSS1; PANK2 

rs81217421 synonymous_variant LOW VPS16 ENSSSCG00000007167 30061857 32867849 C20:0 ABHD12; ACSS1; PANK2 
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