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Abstract

Deep learning has made tremendous progress in the last decade due to the explo-
sion of training data and computational power. Through end-to-end training on a
large dataset, image representations are more discriminative than the previously
used hand-crafted features. However, for many real-world applications, training
and testing on a single dataset is not realistic, as the test distribution may change
over time. Continuous learning takes this situation into account, where the learner
must adapt to a sequence of tasks, each with a different distribution. If you would
naively continue training the model with a new task, the performance of the model
would drop dramatically for the previously learned data. This phenomenon is
known as catastrophic forgetting.

Many approaches have been proposed to address this problem, which can be di-
vided into three main categories: regularization-based approaches, rehearsal-based
approaches, and parameter isolation-based approaches. However, most of the exist-
ing works focus on image classification tasks and many other computer vision tasks
have not been well-explored in the continual learning setting. Therefore, in this
thesis, we study continual learning for image generation, object re-identification,
and object counting.

For the image generation problem, since the model can generate images from
the previously learned task, it is free to apply rehearsal without any limitation. We
developed two methods based on generative replay. The first one uses the generated
image for joint training together with the new data. The second one is based on
output pixel-wise alignment. We extensively evaluate these methods on several
benchmarks.

Next, we study continual learning for object Re-Identification (ReID). Although
most state-of-the-art methods of ReID and continual ReID use softmax-triplet loss,
we found that it is better to solve the ReID problem from a meta-learning perspective
because continual learning of reID can benefit a lot from the generalization of meta-
learning. We also propose a distillation loss and found that the removal of the
positive pairs before the distillation loss is critical.

Finally, we study continual learning for the counting problem. We study the
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mainstream method based on density maps and propose a new approach for density
map distillation. We found that fixing the counter head is crucial for the continual
learning of object counting. To further improve results, we propose an adaptor to
adapt the changing feature extractor for the fixed counter head. Extensive evalua-
tion shows that this results in improved continual learning performance.

Keywords: continual learning, generative adversarial model, object re-identification,
counting
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Resumen

El aprendizaje profundo ha progresado enormemente en la última década debido
a la explosión en la medida de los datos de entrenamiento y los avances en poder
computacional. A través del entrenamiento de extremo a extremo en un gran con-
junto de datos, las representaciones de imágenes son más discriminatorias que las
funciones hechas a mano que se usaban anteriormente. Sin embargo, para muchas
aplicaciones del mundo real, el entrenamiento y evaluación en un solo conjunto de
datos no son realistas, ya que la distribución y características de los datos pueden
cambiar con el tiempo. El aprendizaje continuo se enfoca en explorar esta situación,
donde el sistema debe adaptarse a una secuencia de tareas, cada una con una
distribución diferente. Si ingenuamente continuara entrenando el modelo con una
nueva tarea, el rendimiento del modelo se reduciría drásticamente para los datos
aprendidos anteriormente. Este fenómeno se conoce como olvido catastrófico.

Se han propuesto muchos enfoques para abordar este problema, que se pueden
dividir en tres categorías principales: enfoques basados en la regularización, enfo-
ques basados en ensayos y enfoques basados en el aislamiento de parámetros. Sin
embargo, la mayoría de los trabajos existentes se centran en tareas de clasificación
de imágenes. Muchas otras tareas de visión artificial no han sido exploradas en el
entorno de aprendizaje continuo. Por lo tanto, en esta tesis estudiamos el aprendi-
zaje continuo para la generación de imágenes, la reidentificación de objetos y el
recuento de objetos.

Para el problema de generación de imágenes, dado que el modelo puede generar
imágenes a partir de la tarea previamente aprendida, es libre de aplicar aprender de
esos datos generados sin ninguna limitación. Desarrollamos dos métodos basados
en la reproducción generativa. El primero utiliza la imagen generada para el entre-
namiento conjunto junto con los nuevos datos. El segundo se basa en la alineación
de píxeles de salida. Evaluamos ampliamente estos métodos en varios puntos de
referencia.

A continuación, estudiamos el aprendizaje continuo para la reidentificación de
objetos (ReID). Aunque la mayoría de los métodos de vanguardia de ReID y ReID
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continuo usan una función de coste basade en tripletes softmax, descubrimos que
es mejor resolver el problema de ReID desde una perspectiva de meta-aprendizaje,
porque el aprendizaje continuo de reID puede beneficiarse mucho de su capacidad
de generalización. También proponemos una nueva función de coste por destila-
ción y descubrimos que la eliminación de los pares positivos antes de aplicar la
función de coste es fundamental.

Finalmente, estudiamos el aprendizaje continuo para el problema de recuento
de objetos. Estudiamos el método principal basado en mapas de densidad y propo-
nemos un nuevo enfoque para la destilación de mapas de densidad. Descubrimos
que ajustar los parametros de la ultima capa del modlo del contador es crucial
para el aprendizaje continuo del recuento de objetos. Para mejorar aún más los
resultados, proponemos un adaptador para ajustar el extractor de caracteristicas
del modelo manteniendo la ultima capa fija. Mediante una evaluación exhaustiva
mostramos resultados de mejora de rendimiento en aprendizaje continuo.

Palabras clave: aprendizaje continuo, modelo generativo adversarial, reidentifi-
cación de objetos, recuento de objetos
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Resum

L’aprenentatge profund ha experimentat un gran progrés en l’última dècada a causa
de l’explosió de la mida de les dades d’entrenament i els avenços en potència com-
putacional. Mitjançant el processament d’inici a final de grans conjunts de dades
utilitzant xarxes neuronals, les representacions d’imatges són més discriminatòri-
es que les funcions fetes a mà utilitzades anteriorment. Tanmateix, per a moltes
aplicacions del món real, la formació i les proves en un únic conjunt de dades no
són realistes, ja que la distribució i característiques de les proves pot canviar amb el
temps. L’aprenentatge continu té en compte aquesta situació, on l’aprenent s’ha
d’adaptar a una seqüència de tasques, cadascuna amb una distribució diferent. Si
ingènuament continues entrenant el model amb una tasca nova, el rendiment del
model baixaria dràsticament per a les dades apreses anteriorment. Aquest fenomen
es coneix com a oblit catastròfic.

S’han proposat molts mètodes per abordar aquest problema, que es poden
dividir en tres categories principals: mètodes basats en regularització, mètodes
basats en assaig i mètodes basats en aïllament de paràmetres.

Tot i això, la majoria dels treballs existents s’enfoquen a tasques de classificació
d’imatges i moltes altres tasques de visió per ordinador no han estat ben explorades
en l’entorn d’aprenentatge continu. Per tant, en aquesta tesi, estudiem l’aprenen-
tatge continu per a la generació d’imatges, la reidentificació d’objectes i el recompte
d’objectes.

Pel que fa a la qüestió de la generació d’imatges, com que el model pot generar
imatges a partir de la tasca prèviament apresa, és lliure d’aplicar l’assaig sense cap
limitació. Hem desenvolupat dos mètodes basats en la reproducció generativa. La
primera utilitza la imatge generada per a l’entrenament conjunt juntament amb
les noves dades. El segon es basa en l’alineació de píxels de sortida. Avaluem
àmpliament aquests mètodes en diversos punts de referència.

A continuació, estudiem l’aprenentatge continu per a la reidentificació d’ob-
jectes (ReID). Tot i que la majoria dels mètodes d’última generació de ReID i ReID
contínua usen tècniques basades en triplets softmax, vam trobar que és millor
resoldre el problema de ReID des d’una perspectiva de meta-aprenentatge, ja que
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l’aprenentatge continu de reID es pot beneficiar molt de la seva capacitat de gene-
ralització. També vam proposar una funció de cost per destil·lació i vam trobar que
l’eliminació dels parells positius abans de calcular el cost per destil·lació és crítica.

Finalment, estudiem l’aprenentatge continu per al problema del recompte.
Estudiem el mètode principal basat en mapes de densitat i proposem un nou en-
focament per a la destil·lació de mapes de densitat. Hem trobat que ajustar els
paràmetres de les últimes capes del model del comptador és crucial per a l’apre-
nentatge continu del recompte d’objectes. Per millorar encara més els resultats,
proposem un adaptador per adaptar l’extractor de funcions canviants per a les
últimes capes del comptador fix. Una avaluació àmplia mostra que això es tradueix
en un millor rendiment de l’aprenentatge continu.

Paraules clau: aprenentatge continu, model generatiu adversari, reidentificació
d’objectes, recompte d’objectes
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1 Introduction

Deep learning has seen tremendous progress in the last decade due to the explosive
growth of training data and computational power. Its ability to jointly learn features
and a classifier, known as end-to-end training, resulted in image representations
which were much more discriminative than the hand-crafted features used before.
As a result, it has been applied to most computer vision tasks and achieves remark-
able result, e.g., in image classification [46, 133], face recognition [98, 142], and
image generation [11, 38].

The most common paradigm nowadays for deep learning is to train a model on
a very large dataset, where the distribution is assumed to be identical to the one on
which the model is going to be tested. The distribution of the training set does not
change throughout the training process. However, for many real-world applications
this is not the case, and the training distribution could change over time. Continual
learning considers this scenario, where a learner has to adapt to a sequence of
tasks, each with a different distribution. If you would naively continue training the
model with a new task, the performance of the model would drop drastically for the
previously learned data. This phenomenon is called catastrophic forgetting [97].

However, this is not the way we learn. We accumulate and preserve the knowl-
edge learned from previous tasks and use it in learning new tasks and solving new
problems. The knowledge learned from the new task also helps us to solve previous
problems, even if we have not seen this problem for some time. The knowledge we
learn is general and independent of certain tasks. Even if we forget the “data” (how
we learned it), we still remember the knowledge. When a new task arrives, we can
quickly recall it and adjust to this new task.

To make the deep learning system more capable of learning knowledge from the
real world scenario like humans, people studied the continual learning problem
[66,75]. In this setting, the model is learning from a changing distribution or several
training data. And the performance of the model is measured on a distribution
that combines all the trained data. The ability to learn from data with varying
distributions is a desired characteristic for many AI systems. In this thesis, we aim
to contribute to the research on continual learning and extend its applications to
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Figure 1.1: The most common paradigm for deep learning nowadays is to train a
model with all the data together (Joint Training). A more realistic setting is Con-
tinual Learning (CL), where the data comes in sequence and the model learns
incrementally.

various domains of computer vision.

1.1 Continual Learning

Currently, most research on continual learning is focussed on the image classi-
fication problem [55, 66, 84, 128]. In this case, the setup that is most commonly
considered splits the dataset in a number of tasks, where each task defines an image
classification tasks over a limited number of classes. The learner has to learn then
from the sequence of tasks. When training on a new task, the learner does not have
access (or only has limited access) to data from previous tasks. At each moment,
however, the learner has to be able to classify all classes previously seen. There are
two main scenarios called task-incremental learning (TIL) and class-incremental
learning (CIL). The former requires that at inference time the method knows the
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task-ID of the test sample. The latter does not assume that the task-ID is given.
This makes CIL a more challenging setup, since the method needs to be able to
discriminate between all classes from all tasks. People have addressed the problem
from several aspects and proposed a large amount of techniques. These can be
mainly divided in five types of techniques:

Regularization. Regularization based techniques save an old model and apply
a regularization loss between the new and old model. Parameter regularization
based techniques, like EWC [66], MAS [3] and SI [172], apply regularization on the
changing of parameters. They evaluate an importance factor for each parameter,
where the parameter regularization loss of each parameter is scaled by it. Differ-
ent methods evaluate the importance matrix differently. The data regularization
based techniques, e.g. LwF [75], iCaRL [119], LUCIR [54], PoDNET [27], apply the
regularization loss on the changing of the output of the network. Some [2, 75, 119]
apply it only the final prediction probability and some others apply it on the final
features [54] or also the intermediate features [27]. Regularization methods have
shown good performance and are generally easy to implement, as such they are also
often used as one of the techniques in more complex continual learning systems.

Parameter Isolation. Parameter isolation based techniques, e.g, PackNet [92],
PiggyBack [91] and HAT [128], use only part of the parameters in the network for
each task and these parameters are fixed after training. Most of the methods using
parameter isolation requires a task-ID to select the needed parameters, so they
are only available for TIL (Task Incremental Learning) setting. But there are also
methods in this category that can be applied to CIL (Class Incremental Learning).
For example, RPS [116] uses all the available paths during inference. Expandable
network [164, 167] is also a special type of parameter isolation where the size of the
network is growing during the learning process. Parameter isolation methods are
very good at preventing forgetting, however, they typically require the capacity of
the network to grow over time, which might not be desirable for all applications.

Gradient Update Modification. Gradient update modification based techniques
modify the gradient directly to prevent the performance drop of the previous task.
For example, GEM [84] and AGEM [15] apply an inequality constrain on the gradient
to prevent the loss for the saved exemplars from increasing. GPM [124], OGD [30]
and OWM [171] construct a base for the space of gradient update. The components
that might damage the performance of the previous tasks are removed from the
base.

Replay. When storing few exemplars for the previous tasks is allowed, the idea of
jointly training the new samples together with the old exemplars comes naturally.
People mentioned such techniques data back to 1990s [118, 121] and they call it
experience replay(ER) or rehearsal. Most methods that allow for exemplars use
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experience replay as an importance component of their method to recall past tasks,
e.g. iCaRL [119], BIC [161]. However, because of the limitation of the usage of
exemplars, there are also methods that train a generative model to implement
generative replay. DGR [130], DGM [108] and DreamingReplay [135] generate and
replay the whole image. On the other hand GFR [82] and PASS [182] generate and
replay at feature level.

Model Generalization. Instead of preventing forgetting when learning new tasks,
this type of techniques focuses on training a network that tends not to forget. There
are three types of approaches in this category. The first type, called meta learning,
defines it as a loss and optimize it directly [42, 57, 120]. The second type use self-
supervised learning(SSL) for the feature extractor [111,182]. The features learned by
self-supervised learning are less limited to a certain task (especially when compared
with supervised learning) and they typically tend to generalize well to new tasks.
The third type focuses on the effect of the training regimes [55], e.g. studying the
influence of weight decay, learning rate, batch size and optimizer, on continual
learning.

Classification Specific. There are other techniques designed to solve specific prob-
lems that are highly related to the classification problem. BIC [161] and IL2M [10]
solve the bias problem in CIL that the classifier always tend to predict classes from
the latest task. iCaRL [119] use Nearest-Mean-of-Exemplars to replace the softmax
classification. Finally, SDC [169] uses the triplet loss instead of cross-entropy loss
for the training of the classifier.

In this thesis, we identify three main research areas in which continual learning
has not yet researched in detail, including generative models, object re-identification
and object counting. We will provide a more elaborate overview of continual learn-
ing methods in Chapter 2.

1.1.1 Continual learning of generative models

Image generation is an important and challenging task in computer vision. Since
the rise of deep learning, to generate a realistic image is no longer an impossible task.
People proposed different types of methods for this problem, including VAE [64],
GAN [38], Flow-based [65] and diffusion models [139].

In this thesis, we focus on Generative Adversarial Network(GAN) for image
generation. A GAN consists of two networks, a generator and a discriminator. The
generator takes a noise vector as input and generates images. The discriminator
takes a generated or real image as input and outputs a scalar value. The training
of the GAN is a min-max game where the discriminator tries to maximize the
difference between the generated image and the real one while the generator tries
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Figure 1.2: Generative Adversarial Network [38]. The generator takes a noise vector
as input and generate images. The discriminator takes an image (generated or
real) as input and outputs a score indicating if it is real or fake. The discriminator
is trained to find the difference between the real and fake while the generator is
trained to deceive the discriminator. Training of these models within a continual
learning setup has received little research attention.

to minimize this difference. As a result, the generator will end up generating images
that are similar to the training dataset.

Since the appearance of the original GAN, many improvements have been made
to generate better quality images. The original GAN suffers from stability problems.
The training process is sometimes compared with a boxing game, if one network is
overwhelming another, the game is over. People proposed alternative losses [6, 93]
or regularization methods [41, 101] to solve this problem. Another improvement
comes from the architecture of the network, e.g. DCGAN [115], ProgressiveGAN [59]
and BigGAN [11]. They design larger and better networks to generate larger and
better images.

Another improvement of GAN is to control the generated images. In [115], they
propose a conditional GAN where the image generation can be conditioned by a
given class label. The class-conditioning is further improved by ACGAN [107] and
projectionGAN [102]. The former uses an auxiliary classifier to assist the discrimina-
tor on the class label and the latter uses an additional projection layer. In [56], they
propose an image conditioned GAN where the class label conditioning is replaced
by an image. Zhang et al. [173] propose a text conditioned GAN which provide
better convenience for user-oriented applications.

Despite this impressive progress, all these models require a joint training paradigm,
which is not always available in the real life. In addition, a promising approach
to continual learning of classification networks is pseudo-replay [130] and it also
requires the continual learning of a generator. However, they propose a naive ap-
proach to continual training of the generator. Therefore, in this thesis we investigate
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Figure 1.3: Classification vs Metric-learning and Meta-learning. For both classifica-
tion and meta-learning problem, the model is trained with labeled images. During
the inference, for the classification problem, the test sample is from one of the
learned categories. However, for the meta-learning problem, few more labeled
samples (gallery images) from new categories are given, and the new test sample
(query image) is going to be predicted from these new categories.

how to extend continual learning theory to generative models, and more particularly
to generative adversarial networks.

1.1.2 Continual learning for object re-identification

The goal of Object re-identification (ReID) is to identify individuals from the gallery
image set that are identical to the query image [47, 174]. These images are usually
from different cameras and viewpoints. Object ReID has been widely used in appli-
cations including person re-identification [17, 80, 166], vehicle re-identification [61,
85, 179], and face verification [148, 149].

A key aspect for object ReID is metric learning [88]. Metric learning has first
been proposed by Chopra et al. [23]. Traditionally, the classification task classifies
an unseen image to a seen category. A certain amount of samples for each category
are needed for training the classifier. However, this paradigm is not suitable for
scenarios like face recognition, where the number of categories is large and the
number of samples per category is limited. To solve this problem, metric learning is
proposed to learn a similarity metric from data. So, during the inference, whether
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several samples belong to a same category can be predicted by the distance to each
other.

In [23], they use a contrasting loss, which bring the pair from the same cat-
egory closer and push the pairs from different category farther. People extend
it to triplet loss with triplet inputs [52] and N-pair loss with batch inputs [132].
More recently, deep metric learning approaches have been used to learn non-
linear relationships [62, 103]. Metric learning has been widely applied to object
re-identification [47, 174], mainly focusing on person ReID [17, 74, 166, 176], vehicle
ReID [61, 85, 179] and face verification [148, 149, 176]).

Another similar research area is few-shot learning [9, 70, 78, 140, 153, 165], where
the objective is also to classify unseen categories with only few samples guided.
Several works use Meta-learning [8, 21, 32, 53, 106, 136, 144], which focuses on
generalizing to unseen tasks, for few-shot learning. Meta learning is mainly metrics-
based, e.g. ProtoNets [136] and RelationNets [141] or optimization-based, e.g.
MAML [32] and Reptile [106].

However, most of the work mentioned previously is based on a joint training
paradigm. There are few works in incremental metric learning, e.g. FGIR [20],
and AKA [112]. However, they do not consider meta-learning to ensure improved
generalizability to future tasks. Neither do they consider the intra-domain setting,
where the similarity between the tasks is much smaller than in the inter-domain
setting studied in their papers.

1.1.3 Continual learning of counting

The image-based counting task aims to infer the number of people, vehicles or any
other objects present in images. It has a wide range of applications such as traffic
control, environment survey and public safety.

Existing work can be divided into two main categories: point-based [77,125,138]
and density-based [90, 147]. Point-based methods [138] aim to predict the position
of each object which provides extra information in addition to the number itself.
Some methods [76, 125] are based on object detectors. They benefit from the
development of object detection, but inaccuracy is introduced by estimating the
bounding box ground truth from the point ground truth. Liu et al. [77] propose to
train a model to perform the counting and localization tasks at the same time, and
they define an adaptive fusion scheme to make these two tasks complement each
other. Song et al. [138] propose the Point to Point Network (P2PNet) that predicts
the localization points directly. They develop a one-to-one matching strategy from
the prediction to the ground truth based on the Hungarian algorithm.

However, the point-based approach does not perform well for images that
are too dense and have a lot of occlusions. Density-based methods [90, 147, 175]
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Figure 1.4: Continual learning for object counting. In each task, the model aims to
learn a new type of object.

evaluate a density map for the image and the counting value is simply the sum of
the density map. Several methods focus on identifying objects in different sizes.
In [126, 175], they propose to use multi-column CNNs of different size. In [134],
Sindagi et al. propose the Contextual Pyramid CNN that encodes local and global
context together. Another line of research focuses on defining a better loss for the
distance between the ground truth to the predicted density map. Ma et al. [90]
propose a Bayesian loss and Wang et al. [147] propose to solve an Optimal Transport
(OT) problem.

Most of the counting method is trained on one specific dataset each time. In
[16, 89], the authors address the problem of training a model on multiple datasets
at the same time. In [89], Ma et al. address the problem of model sensitivity to
scale shift. They propose a closed-form solution of the optimal image rescaling
factor given the scale distribution. The scale alignment is applied on the patches
that divide from the image. They train a network to predict the spatial distribution
and the scale distribution. Chen et al. [16] propose a Domain-specific Knowledge
Propagating Network (DKPNet) to address the problem that the model tends to
focus on learning in the dominant domain at the expense of the non-dominant
domains.

In [35, 44, 152], the authors address the problem of domain adaptation in count-
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ing problem. The model is trained on the source dataset and the label of the target
dataset is limited. Wang et al. [152] consider generating a synthetic dataset as a
source set. And they propose using CycleGAN [183] for domain adaptation to the
real dataset. In [35, 44], they use typical adversarial training [33] for the domain
adaption. A discriminator is trained to identify the feature to source or target, and
an adversarial loss is applied to the feature extractor to minimize the discrepancy of
the discriminator.

These methods mentioned above are limited to counting people. In [87], Lu
et al. propose class-agnostic counting, where the model can count any type of
objects. They propose Generic Matching Network(GMN). The network is pretrained
on video data for tracking, and they count instances by matching the instance on
the test images with the specified exemplar patch. In [117], they propose to train a
model that can count multiple type of objects, e.g., animals and fruits.

1.2 Objectives and approach

1.2.1 Continual learning of generative models

Most of previous work in generative model requires a joint training paradigm. Only
few works, for example [127] study the continual learning of a generative model.
They adapt EWC [66], which is a popular method for classification, to generative
model. However, it does not achieve satisfying results. Therefore, we define the
following objective:

Continual learning of generative models: Incorporate the new develop-
ments of conditional GANs and regularization methods for the continual
learning of generative models. We will focus on generative adversarial
networks (GANs).

The idea of the proposed method is to save a copy of the old model to generate
samples from previous tasks, and use these samples to prevent the new model from
forgetting. We will consider two variations of our method. The first one is called
Joint Training (JT) where we combine the generated samples with the new real
samples to train a new GAN. The second one is called replay alignment (AL) where
we try to align the old and the new model which means that when the input of
the two model are identical the output should also be the same. We will apply a
pixel-wise square loss given the sample input noise vector and class index.
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1.2.2 Continual learning for object re-identification

Most of the methods for the re-identification(re-ID) problem require a large dataset
for joint training. However, in reality the dataset come in a sequence and sometimes
are not allowed to be stored. In Chapter 4, we address the problem of continual
object re-identification problem. Previous state-of-the-art method of continual
object re-ID problem AKA [112] use softmax-triplet loss of BoT [88], which follows a
typical metric learning perspective. We also consider the object re-identification
problem from a perspective of meta learning, which can improve generalization,
following DMML [18]. We define the following objective for Chapter 4:

Continual learning of object reID: We propose a novel approach for the
continual learning of object ReID. We will consider an exemplar-free setting
due to the privacy consideration in person ReID problem.

We observe that meta-metric learning [18] is a better approach when it comes to
continual learning, compared with the typical triplet-loss like metric learning. To
prevent forgetting, we aim to apply knowledge distillation loss [50] on the output
probability. Furthermore, we evaluate the role of positive and negative pairs in the
knowledge distillation loss. We will also consider a new incremental intra-domain
object ReID benchmark, where the previous benchmark are mainly cross domain.

1.2.3 Continual learning of counting problem

Most of the previous work in counting focus on counting a single type of object.
Only few works [87, 117] study the setting of counting different objects. However,
these works are in the few-shot learning setting, which relies on training the model
on a large dataset in a single step. In Chapter 5, we consider the following objective:

Continual learning of counting: We propose a novel method for the con-
tinual learning of counting based on meta-metric learning. In each task,
the model is trained to count a new type of object.

We propose to train a task-specific counter head for each object, and all the counter
heads share the same feature extractor. After the training of each task, the counter
head is fixed, but the feature extractor is still trained with new data. To prevent
forgetting, we apply a regularization loss on the output of previous counter heads.
In addition to that, we also investigate the usage of an adaptor that translates the
feature from the new feature extractor to the old one. So the forgetting by the
drifting of the feature extractor can be mitigated.
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2 Related Work

The goal of continuous learning [26, 94] is to train a model to learn from a non-
stationary distribution. Typically, for most deep learning methods, one assumes
that data arrives in a sequence of batches (or datasets) each with a different data
distribution. The vast majority of literature considers the stationary distribution
case, where the model has access to all data, and it can train on this data by cy-
cling through it (in epochs). This strategy, also known as joint training, is however
not practical for many real-world applications. In many real-world applications,
the data distribution can change over time. As an example, consider the COVID
pandemic, when many people started to wear face-masks, requiring a fast update
of all face recognition software. Continual learning develops theory, metrics, and
algorithms to allow algorithms to learn from a sequence of data. In this chapter, we
provide an overview of the main approaches that have been proposed.

One of the main problems of continual learning is catastrophic forgetting [39,66,
94]. When the model is trained with data from new tasks and the data from previous
task is no longer available to the model, the performance of the previous tasks
drop drastically. Related to this challenge is the stability-plasticity dilemma [99],
which refers to the trade-off between retaining knowledge from previous tasks and
the acquiring of new knowledge from the current data. Continual learning has
seen a considerable increase in research attention in recent years. There are three
main practical problems for which continual learning could be a solution [94]:
Firstly, systems might have memory restrictions making it physically impossible
to store much data from previous tasks (e.g., in robotics applications). Secondly,
government legislation and privacy consideration can prohibit the storing (and
sharing) of data from previous tasks. Thirdly, the paradigm of joint training, where
a model is retrained from scratch when new data arrives is very energy inefficient,
and continual learning which can build upon previously learned models can be a
more sustainable alternative.

A large part of the current research on continuous learning is focused on image
classification [66, 75, 119]. Several excellent surveys [26, 94] for this topic exist,
and they introduce CL methods by several broad categories. In this chapter, we
introduce the main techniques that are used in continual learning. We will start
from the typical setting for continual learning for classification.
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2.1 Continual learning settings for classification

In the continual learning setting, the model learns from a sequence of datasets
[D1,D2, ...,DT ], where T is the number of tasks. For the classification problem, each
dataset contains a number of data pairs (x, y), where x is an image and y ∈ Yt is a
label. In general, each dataset [D1,D2, ...,DT ] is disjoint to each other and the labels
from each dataset [Y1,Y2, ...,YT ] are also disjoint to each other.

Currently, there are three main different characteristics that define the con-
tinual learning setup. The first one is whether the task-ID is given during infer-
ence. Following the terminology of Van de Ven et al. [143], most of the work can
be classified as Task Incremental Learning(TIL) [66, 84, 124] or Class Incremental
Learning(CIL) [27, 54, 119]. TIL refers to the setting where, during testing, each data
point comes with a task-ID τ which denotes from which dataset Dτ it comes. So the
label can be picked from Yτ. In CIL on the contrary, the task-ID τ is not given, so
the label has to be chosen from all learned labels [Y1 ∪ ...∪YT ]. This makes the CIL
setup more challenging than the TIL setup.

The second characteristic is whether the application allows for the storage of any
data from previous tasks. For the more restrictive set up, the usage of exemplars (or
a buffer) is not allowed. Methods which require exemplars such as iCaRL [84, 119]
and GEM [84, 119] can not be applied to this setup, and instead one has to apply
exemplar-free methods such as EWC [66] and MAS [3]. It should be noted that with
the help of exemplars, it is much easier to prevent forgetting.

The third characteristics is whether the number of training epochs is limited. In
online continual learning, one is only allowed to see all data once. Several methods
have been proposed for this situation, including GEM [84] and StableSGD [55].
This situation more realistically mimics the streaming scenario, where a stream of
data arrives, and the learner can only process every sample once (except for those
samples that are selected for the buffer). However, the majority of the continual
learning methods do not consider this restriction, and the number of training
epochs is not limited just like for the regular classification problem.

In principle, when comparing two methods, all these three mentioned charac-
teristics should be set to be the same, otherwise the comparison is not fair.

2.2 Techniques for continual learning

2.2.1 Parameter Regularization

There are two main regularization approaches in continual learning, namely param-
eter and data regularization. We will first focus on parameter regularization. These

12



2.2 Techniques for continual learning

Train

Step 1

Step n

N
et

w
or

k 
N

et
w

or
k 

Test
TIL CIL 

From Task 1: 
Tiger? 

 or  
Hamster?

Tiger? 
Hamster? 

... 
Panda? 
Rabbit? 

Network 

Figure 2.1: Taks incremental Learning (TIL) vs Class Incremental Learning (CIL).
During testing, in the TIL setting, the model is aware of which task the sample
comes from and in the CIL the model is agnostic of that. As a result, CIL is a more
challenging setting than TIL.

works are in general based on the idea that one should look for optimal parameters
on the new task that do not incur a high loss on previous tasks. Since the loss on
previous tasks cannot be directly measured (we have no longer access to its data),
we need to estimate it.

Kirkpatrick et al. [66] propose Elastic Weight Consolidation(EWC) to address
the problem of catastrophic forgetting. They apply a quadratic penalty on the
parameters of the network to constrain it to stay in the low error region for the
previous task, as follows:

Lreg = 1

2

∑
i
Ωi (θt-1

i −θt
i )2, (2.1)

They evaluate a stiffness (importance weights)Ωi for each parameter θi , instead of
applying a uniform penalty on all parameters(Ωi = 1). The importance weights are
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Figure 2.2: Parameter regularization methods in general aim to regularize the
weights based on their importance for previous tasks. This figure shows a graphical
overview for Elastic Weight Consolidation(EWC) where the ellipsoids represent
the low error regions for the two tasks A and B. Parameter regularization prevents
the learner from finding an optimal that is only good for task B and would incur
catastrophic forgetting for task A (this figure is taken from [66]).

defined as the diagonal of the Fisher information matrix F. This can be computed
from first-order derivatives according to [110]:

Ωi = Ex∼D t−1

[(
∂L(x,θ)

∂θi

)2]
(2.2)

Here L(x,θ) is the loss of the task given the datapoint x and parameters θ. The
basic idea is illustrated in Figure 2.2. In this paper, they show that EWC can prevent
catastrophic forgetting on both visual classification problems, and on reinforcement
learning problems where they learn a series of Atari games.

EWC is based on the assumption that the Fisher matrix can be approximated
by a diagonal matrix. To improve upon EWC, rotated-EWC (or R-EWC) [81] has
been proposed. The method rotates the parameter space to minimize the error
introduced by diagonal-assumption of the Fisher Information Matrix approxima-
tion. Rotation of the parameter space is done by splitting each layer in such way to
optimize approximation by a diagonal matrix on the resulting network.

Zenke et al. [172] proposed Synaptic Intelligence(SI). Similar to EWC [66]. They
also apply a quadratic penalty on the changing of parameters, as Equation (2.1).
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Figure 2.3: Data regularization: (1) Fine-Tuning(FT): The feature extractor and the new
classifier are trained with new images and ground truth labels (2) Learning without Forget-
ting(Lwf) [75]: The output of the new images from the new classifier are trained with the
ground truth labels as target like in FT. At the same time, a knowledge distillation loss is
applied between the output of the new images from the old classifier and the output from
the previous model (This figure is taken from [75]).

They compute the importance weightsΩi by a path integral during the training.

Ωt
i =

t−1∑
τ=1

wi

(∆τi )2 +ξ (2.3)

where wi stands for the contribution to a drop in the loss of each individual param-
eter. It can be approximated by the running sum of the gradient ∂L/∂θi . ∆τi stands
for the distance that parameters move from the previous task ∆τi = θτi −θτ−1

i , and ξ
is a damping parameter.

In [3], Aljundi proposed Memory Aware Synapses(MAS). They calculate the
importance weights as the sensitivity of the learned function.

Ωi = Ex∼D t−1

[
∂∥ht−1( ft−1(x))∥2

2

∂θi

]
(2.4)

ft−1(·) is the feature extractor for task t −1 and ht−1(·) is the classifier for task t −1.
They also provide a local version of the method, and they show that it is similar to the
Hebbian learning theory [48] which provides an explanation for the phenomenon
of synaptic plasticity in neuroscience.

2.2.2 Data Regularization

Li et al. [75] proposed Learning without Forgetting(LwF). In their method, they
propose to use the knowledge distillation loss [50] to address the catastrophic
forgetting problem in continual learning. More specifically, it is a modified cross
entropy loss that encourage the new output probability to approximate the old one:
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Lreg = Ex∼D t

[
t−1∑
τ=1

σ(hτt−1( ft−1(x))) logσ(hτt ( ft (x)))

]
, (2.5)

ft (·) is the feature extractor at task t . hτt (·) is the task-specific classifier for task τ
when learning task t . σ(·) is the softmax activation function with a temperature.

The method is originally proposed for the task incremental learning(TIL) setting
with no exemplars. However, it can also be easily adapted to CIL (Class Incremental
Learning) with exemplars (see e.g. [161]):

Lreg = Ex∼D t∪M
[
σ(ht−1( ft−1(x))) logσ(ht ( ft (x)))

]
, (2.6)

Here the task specific classifiers [h1,h2, ...,ht ] are replaced by a unified classifier h.
ht and ht−1 stand for the unified classifier at task t and task t −1 respectively. And
the x is sampled from D t ∪M where M is the set of saved exemplars. The learning
without forgetting method without exemplars was found to be very efficient in
countering catastrophic forgetting, and performed among the best exemplar-free
methods in a recent survey [94].

Ahn et al. [2] proposed Separated Softmax for Incremental Learning(SSIL). They
apply a KL divergence loss (equivalent to the knowledge distillation loss, since the
old output is not changing) on a task-wise probability instead of global probability.
Previously in CIL, the probability is evaluated on a unified classifierσ(h(·)), but here
they separate the output of the classifier by task and then evaluate the probability[
σ(h1(·)),σ(h2(·)), ...,σ(ht (·))

]
.

Lreg = Ex∼D t∪M

[
t−1∑
τ=1

DK L(σ(hτt−1( ft−1(x)))∥σ(hτt ( ft (x))))

]
, (2.7)

The regularization loss is applied on these task-wise probabilities. This small change
of the original LwF methods leads to remarkable performance gains.

In [54], Hou et al. proposed LUCIR (Learning a Unified Classifier Incrementally
via Rebalancing). They apply the regularization loss on the feature embedding f (x)
with a cosine similarity, instead of the output probabilities σ(h( f (x))) as in LwF:

Lreg = Ex∼D t∪M
[
1− cos( ft−1(xi ), ft (xi ))

]
, (2.8)

Another approach is proposed by Liu et al. [82]. They propose a method called
Generative Feature Replay(GFR). They propose a feature distillation loss which is a
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L2 norm on the feature embedding.

Lreg = Ex∼D t

[∥( ft−1(x)− ft (x)∥2
]

, (2.9)

GFR is an exemplar-free method, so the data is only sampled from current dataset
D t when evaluating regularization loss. Experiments show that feature distillation
loss itself is not very effective but when it is combined with feature replay (explained
further in section 2.2.8), it outperforms other exemplar free method with a large
margin.

In [12], Buzzega et al. propose DER (Dark Experience Replay). The idea is to
align the output between a new and old network given a data point x sampled from
the memory M . Different from other methods where the output of old network
are computed from the previously stored model, in DER, they store output logits
z = hτ( fτ(x)) after task τ where these samples are firstly trained. The regularization
loss is as follows:

Lreg = E(x,z)∼M

[∥∥z −ht ( ft (x))
∥∥2

2

]
. (2.10)

They also proposed DER++ where they add a standard cross entropy loss on the
exemplars saved in the memory M with the ground truth label as described in
section 2.2.6. In general, their method is a combination of knowledge distillation
and rehearsal. And the method is also compatible with the setting of blurred task
boundaries (where tasks are partially overlapping).

The previously discussed methods apply the distillation loss on the end of the
network or feature extractor. Instead, Douillard et al. [27] use the regularization
loss on intermediate feature layers. The feature of the intermediate layer is 3-
dimensional(channel, height, width). Applying directly a L2 loss is too rigid, leading
to low plasticity. Therefore they propose Pooled Outputs Distillation(PoDNet) that
applies a feature distillation loss after a pooling operator according to:

Lreg-flat = E(x)∼D t∪M

[
C∑

c=1

∥∥∥∥∥ H∑
h=1

W∑
w=1

f l ,c,w,h
t−1 (x)− f l ,c,w,h

t (x)

∥∥∥∥∥
2]

. (2.11)

However, they also find this loss it too loose and a good trade-off between plasticity
and prevention of forgetting is obtained when they take the sum of the result
of applying pooling (summation) on the feature in the height or width direction
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respectively:

Lreg-spatial =E(x)∼D t∪M

[
L−1∑
l=1

C∑
c=1

H∑
h=1

∥∥∥∥∥ W∑
w=1

f l ,c,w,h
t−1 (x)− f l ,c,w,h

t (x)

∥∥∥∥∥
2]

(2.12)

+E(x)∼D t∪M

[
L−1∑
l=1

C∑
c=1

W∑
w=1

∥∥∥∥∥ H∑
h=1

f l ,c,w,h
t−1 (x)− f l ,c,w,h

t (x)

∥∥∥∥∥
2]

, (2.13)

here f l ,c,w,h
t (x) is the feature at layer l , channel c and spatial position w,h. The

final loss is defined as the sum of equation 2.11 and 2.12 where the flat loss is only
applied on the last layer. This method outperforms all the previous method in the
setting of CIL with half of all classes as the starting task(CIL Half).

Kang et al. [58] propose Adaptive Feature Consolidation(AFC). They apply the
regularization loss on all the features zl ,c , where l and c are layer and channel
indices respectively, with an importance factor Il ,c . The factors are calculated as
the sensitivity of that feature according to:

Il ,c = Ex,y∼D t−1
data

[∥∥∇Zl ,c L(x, y)
∥∥2

]
,

And the final regularization loss is given by:

Lreg = Ex∼D t
data

[
L∑

l=1

C∑
c=1

Il ,c

∥∥∥ f l ,c
t−1(x)− f l ,c

t (x)
∥∥∥2

]
, (2.14)

The idea that they evaluate the importance for features is similar to those methods in
Section 2.2.1 that evaluate importance to weights. This method further outperforms
PoDNET [27], which is the previous state-of-the-art for CIL Half setting.

2.2.3 Gradient Update Modification

This type of techniques address the forgetting problem by modifying the update
gradient g directly.

In [84], Lopez-Paz and Ranzato propose to ensure that the update gradient g
does no increase the loss of previous task. They apply it as an inequality constraint
to keep the inner product non-negative between the new gradient g̃ to all the
gradient evaluated on the saved exemplar of the previous task g̃k , according to:

minimizeg̃
1

2
||g − g̃ ||22 s.t. g̃⊤gk ≥ 0 for all k < t . (2.15)

The constraint is imposed on all previous tasks k (smaller than the current task t ).
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Following the idea of GEM [84], Chaudhry et al. [15] proposed Averaged GEM(A-
GEM) to improve GEM by averaging all the previous gradients gk to a single gr e f .

minimizeg̃
1

2
||g − g̃ ||22 s.t. g̃⊤gr e f ≥ 0 (2.16)

The experiments show that A-GEM is much faster than the original GEM while
maintaining a similar accuracy.

Zeng et al. proposed Orthogonal Weights Modification(OWM) [171]. They aim
to update the network in a space that is orthogonal to the input space A which
consists of all previously trained input vectors. They construct a projector:

P = I − A
(

AT A+αI
)−1

A (2.17)

to project the gradient g̃ = P g . Here α is a small constant. To avoid saving all
previous inputs A, they use Recursive Least Square(RLS) algorithm to calculate P
iteratively.

Farajtabar et al. [30] proposed to store a subset of gradients from each task. They
construct a basis from the store gradient using the Gram-Schmidt procedure. And
the new update gradient that can be projected to the existing basis will be removed.

Finally, Saha et al. [124] proposed to use Singular Value Decomposition(SVD) on
the network representations of each task and store only the important bases in the
gradient projection memory M (GPM). When learning new tasks, the component
existing in the GPM bases will be removed directly g̃ = g −M M T g . After the training,
a few more bases that are extracted from the new representation and orthogonal to
the existing M will be added to GPM.

2.2.4 Mask mechanism for parameter isolation

Mask mechanism shares a similar idea to parameter regularization (Section 2.2.1),
where they aim to counter catastrophic forgetting by preventing the update of
parameters which are relevant for previous tasks. However mask mechanism take
this idea to a further step, parameter isolation. They use only a limited set of
parameters for each task and not update these parameter in the future task.

Mallya et al. [92] propose Packnet that stands for "pack multiple tasks into a
single network". The idea is to prune a certain amount of weights in the network
to allow further learning of the new coming task. The pruning follows the method
introduced by [43], for each layer they apply a binary mask that keeps only the
highest weights(taking a fixed percentage) and the rest of them are set to zero. Then
they finetune the network again with the mask, that is to say the weights that are set
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(a) Initial filter for Task I (b) Final filter for Task I (c) Initial filter for Task II (d) Final filter for Task II (e) Initial filter for Task III

60% pruning + re-training 33% pruning + re-trainingtraining training

Figure 2.4: Packnet: After training of each task, they apply a pruning to the filters
(find low value filter and set them to zero). When training a new task, the weights
left from the previous task are fixed and only the empty filters are trained. The
new task can also use the features trained from previous task. (this figure is taken
from [92]).

to zero remain as zero and only the preserved weights are trained. After the training
of each task, they freeze the weights trained in the current stage. And in the later
tasks, only the weights that are set to zero currently will be trained. In this paper,
the ratio of the pruning are pre-defined depending on the number of task.

In [91], Mallya et al. follow up on the idea of Packnet and propose Piggyback.
They learn a binary mask on an existing network where the weights are fixed. In
the training, they define real-valued mask weights mr and compress them to a
binary value mask mr by a selected threshold. They multiply the weights W by
the mask m according to Ŵ = W⊙mr element-wise. The network weights W are
fixed and only the mask weights mr and a final classification layer are updated by
back propagation. After the training, the real-valued mask mr is no longer required
and only the binary mask is stored for inference. Different from Packnet this work
shows that the weights of the network do not have to be trained at all, and that by
only training a binary mask on top of a pretrained network can achieve excellent
results. Recently, Wortsman et al. [158] continued this research line. They show —
surprisingly — that good performance can be obtained by learning masks upon a
randomly initialized network.

Serra et al. [128] propose to move the mask from the network weights to the
features (or activations) of the network. This has the large advantage that the
memory overhead of the masks is significantly lower (e.g. AlexNet has 54M weights
and only 10k features). Their method is called Hard Attention to the Task(HAT).
They define the attention vector(mask) a ∈ [0,1] at the feature level. The features
are multiplied by the mask a element-wise ĥ = h⊙a. The mask a is computed by
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a =σ(se) where σ(·) is the sigmoid function, s is a scaling parameter and e is a task
embedding vector. When obtained the attention vector at

l of layer l at task t , a

cumulative attention vector at
l = max

(
at

l ,at−1
l

)
is calculated. During the training,

they update less for those features that are more important for the previous task,
defined by an accumulative attention vector. To be more specific, they modify the
gradient gl ,i j , the weight for the l −1 layer’s j th channel to the l layer’s i th channel,
as:

g̃l ,i j =
[

1−min
(
a≤t

l ,i , a≤t
l−1, j

)]
gl ,i j , (2.18)

Their method was further developed into binary masks [95] and extended to recur-
rent networks [25].

In [116], Rajasegaran proposed Random Path Selection(RPS). Instead of applying
a mask on weights [91, 92] or features [128], they apply the mask on modules of the
network. The RPS is based on a modification of ResNet [46]. For each layer, the
single block between skip connections is replaced by M parallel modules(similar
to the single ResNet block). P ∈ {0,1}L×M (L is number layers) is defined as binary
masks for all layers and modules. It is called path in this paper. Similar to [91], if
the value P (l ,m) = 0, the module m at layer l is skipped and if it is equal to 1 the
module is validated. The path when training task t denote as Ptr

t . For each layer,
one and only one module is activated

M∑
m=1

Ptr
t (l ,m) = 1 ∀l = 1,2, · · · ,L, (2.19)

The mask for the inference Pt s
t is the combination of all the modules that once

selected as the training path. So it is capable of Class Incremental Learning(CIL)
method because the task-id is not required in the inference.

Pt s
t (l ,m) = Ptr

0 (l ,m)∨Ptr
1 (l ,m) · · ·∨Ptr

t (l ,m), (2.20)

During the training, N training paths are randomly initialized. And the modules
that exist in the previous path Pt s

t−1 are freezed. After the training, they select
the best path based on the performance as the final training path Pt . In their
implementation, to improve the training speed, they perform the path selection for
each J tasks, J is a fixed predefined hyperparameter, and experiments show that it
does not jeopardize the performance.

In conclusion, masking methods in general aim to use only a limited set of
network weights (or features) for a particular task. These methods allow for forward
transfer, meaning that future tasks can exploit the features learned in previous tasks.
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(a) No expansion (b) PNN [123] (c) DEN [167]

Figure 2.5: Graphical explanation of Expandable Networks: (a) No expansion: different
tasks on trained on same parameters (b) Progressive Network [123]: After training a task,
previous network is fixed and few new neurons are added to each layer. The new task is
trained only on the new neurons while the previous features can also be utilized (c) DEN [167]:
the previous network is retrained selectively on the new task. And the new neurons are added
adaptively by adding a sparsity regularization. (This figure is taken from [167]).

However, they do not allow (or severely limit) the possibility of positive backward
transfer, since the new knowledge cannot be exploited by previous tasks. They
are typically applied in the task incremental learning setting, since most of them
require a task-ID at inference time.

2.2.5 Expandable Networks

The techniques discussed in this section are closely related with those discussed
in the previous section on masking methods. Instead, other than the methods
introduced in previous sections, where the size of network is fixed from the first task
till the last, in Rusu et al. [123], they propose Progressive Neural Networks(PNN)
that expand the network for each new task. After training on a task, the existing
parameters for the network are frozen and only a few neurons(features) are added
to every layer of the network. When training the new task, old parameters are not
updated but the new network can still use the features that output from the old
network. The experiments are mainly on reinforcement learning and the results
show transfer of knowledge exists in both low-level and high-level parts of the
network.

Inspired by the PNN, Joon et al. [167] proposed Dynamically Expandable Net-
works(DEN). When learning a new task, they first train a new last layer using the
feature output from the previous network. Then they fix part of the network and
only retrain the part that has been selected as relevant weights using the newly
trained last layer from previous step. They add new neurons adaptively for each
layer with a group-sparsity regularization [5, 157] to prevent it from growing too
much. They also measure the drift of parameter and apply a parameter regular-
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ization loss as introduced in Section 2.2.1. In addition to that, when a parameter
drifts too much (more than a given threshold), they will make a duplicate of it.
Experiments shows that it outperforms PNN [123].

Yan et al. [164] proposed Dynamically Expandable Representation(DER) which
adapt HAT [128] to the CIL(Class Incremental Learning) scenario. In the vanilla
version of HAT [128], a task-ID is needed in the inference to use the correct mask, so
the method is only available for the TIL setting. In DER, when training a new task t ,
the feature extractor Ft (·) is trained with a channel mask a =σ(se) where σ(·) is the
sigmoid function, s is a scaling parameter and e is a task embedding vector. After
the training they assign s a large value so the mask turns into a binary mask and
they obtain a pruned network F P

t (·) from Ft (·). They construct the super-feature
extractorΦt by expanding the previous super-feature extractorΦt−1 with the new
feature extractor F P

t .

Φt (x) = [Φt−1(x),Ft (x)], (2.21)

where theΦt−1(x) is composed by a pruned network of previous feature extractors
Φt−1(x) = [F P

1 (x),F P
2 (x), ...,F P

t−1(x)]. In addition, they also proposed a sparsity loss
to encourage reducing the number of parameters.

LS =
∑L

l=1 Kl∥al−1∥1∥al∥1∑L
l=1 Kl cl−1cl

, (2.22)

where Kl is the kernel size of the convolution layer l . Based on the expanded feature
extractor, they re-train a classifier head for each task. Experiments show that the
new method outperforms existing CIL method [27, 116] with fewer parameters.

2.2.6 Experience Replay

When storing few exemplars for the previous task is allowed, the idea of jointly
training the new samples together with the old exemplars comes naturally. People
mentioned such techniques dating back to 1990s [118, 121] and they call it experi-
ence replay(ER) or rehearsal. In deep learning era, Rebuffi et al. [119] introduced
the new setting of CIL and they assumed that saving exemplars is allowed. They
used rehearsal as a main strategy of their method, and most of the later works in
CIL follow this setting and approach.

In [14], Chaudhry et al. study experience replay(ER) in online continual learn-
ing setting. They show that this simple technique outperforms several specially
designed CL methods. They also find that even when the memory is very small
(one example per class), ER still helps improve the performance. Over-fitting is
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not happening because the exemplars are not trained alone, but together with new
data.

2.2.7 Exemplar Selection

The naive way of selecting exemplars is to select them randomly. In Rebuffi et
al. [119] they adapt the concept of herding [156] for exemplar selection in continual
learning. The idea is to select exemplars that best approximate the mean of all data
in the feature space. The method is implemented in a greedy and iterative way.
When adding or removing an exemplar, they select the exemplar that results in the
minimal distance between the mean of the features of the exemplars of this class to
the mean of features of all data of the class.

Other than using exemplar for replay, some methods use them to constrain
the gradients. When using exemplars in the GEM [84] way (for each update, the
component that increases the loss of exemplars with be removed), the method of
selecting the exemplars becomes a different problem. In [4], Aljundi et al. proposed
Gradient based Sample Selection (GSS). They explained that the problem is to find
the intersection of the half spaces described by 〈g , gi 〉 ≥ 0 where gi is the gradient
calculated by the exemplars.

C̃ = ⋂
gi∈M

{g |〈g , gi 〉 ≥ 0} (2.23)

Since only part of previous samples are saved, to approximate the intersection
evaluated by all the previous sample with limited exemplars, the best strategy is
to find the set of exemplars that gives the smallest C̃ . So they proposed to select
the two solutions. The first one is to minimize the following equation with Integer
Quadratic Programming(IQA):

M̂ ← argmin
M̂

∑
i , j∈M̂

〈gi , g j 〉
∥gi∥∥g j ∥

, (2.24)

The second one is a cheaper greedy strategy that they give a sample that less similar
to the exemplars in the memory a higher chance to replace one in the memory. In
the experiments they find that the second one is not worse than the IQA approach
and sometimes even outperforms it.

2.2.8 Generative Replay

Because of the success of experience replay and the growing ability of generative
models to generate pseudo samples that can approximate the distribution of real
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(a) Training Generator (b) Training Solver 

Figure 2.6: Deep Generative Replay(DGR) [130]: The system contains a generator
that generate images and a solver that predict a class label(classifier) from image.
The generator is trained with the new real images and replay images generated by
the previous generator. The solver(classifier) is also trained with combination while
labels are provided by the previous classifer. (this figure is taken from DGR [130]).

samples, Shin et al. [130] propose Deep Generative Replay(DGR). In addition to
training the classifier itself, they train a GAN (unconditionally) [38] to generate
images to mimic the real data of the previous tasks. The generator and the classifier
are trained separately. When learning a new task, the generator generates images
of previous tasks. The new generator is trained with the real data of the new task
and the generated images of previous tasks. The classifier is trained with the same
images as the generator while the labels of the previous images are provided by the
prediction of the previous classifier. They apply their method on MNIST [68] and
the SVHN [104] dataset. Since the images from these two datasets are not difficult
to generate, their method achieves very high performance, just slightly lower than
exact replay of real data.

However, generation of images is computational expensive. So, in [82], liu et al.
proposed Generative Feature Replay(GFR). They train a ACGAN [107] to generate
features instead of entire images from a given label. Similar to DGR [130], the
training of each task is divided into two stages. In the first stage, the network of
ACGAN is fixed and the network of the classifer is trained with the current date
sampled from D t and the feature generated from the generator. In the second stage,
the generator is trained with the feature output from the classifier and aligned with
the previous generator (as we will also describe in more detail in chapter 3). The
method is combined with feature distillation (explained in Section 2.2.2) and it
outperforms all the previous exemplar free method and even few methods using
exemplar in the setting of CIL with a large first task. In the paper, they also proposed
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a baseline method that the feature of every class are generated by a Gaussian
distribution. It sacrifices the performance slightly but is computationally more
efficient.

2.2.9 Model Generalization

Different from other techniques that prevent forgetting when learning new tasks,
there are also some methods that try to learn a network that generalize better to
future task thus does not tend to forget by itself. We have identified three types of
methods in this scope.

Meta Learning

The first type tries to optimize this objective directly by defining a loss function.
This type of methods are called meta-learning.

In [120], Riemer et al. formalized transfer from a sample (xi , yi ) to another
sample (x j , y j ) as:

∂L(xi , yi )

∂θ
· ∂L(x j , y j )

∂θ
> 0, (2.25)

Transfer means that learning data point i improves the performance of data point j
and vice versa there is interference if the value is negative. Ideally, to encourage the
transfer-ability of the network, one can optimize the following loss.

L =−∂L(xi , yi )

∂θ
· ∂L(x j , y j )

∂θ
, (2.26)

However, the gradient of this loss requires a second derivative. So they followed
the simplification introduced by Reptile [106] where only the first order Taylor
expansion is considered. Meta-learning is combined with experience replay so the
method is called Meta-Experience Replay(MER).

Another method was proposed by Javed et al. [57]. They proposed Online Meta
Learning(OML). They divide the model into two parts: a Representation Learning
Network (RLN) and a Prediction Learning Network (PLN). They apply the meta-
learning method MAML [32] for RLN. In the inner loop, the RLN is frozen, and
only the TLN are updated using a random sampled trajectory from the stream.
Afterwards a meta-loss is computed with an additional validation batch. As the
MAML simulates few-shot learning, the proposed method simulates continual
learning in the inner loop and forgetting in the outer loop.

Finally, in [42], Gupta et al. proposed Lookahead-MAML(La-MAML). They
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introduced learnable learning rate for every parameter in the inner updates. The
augmented learning objected is as follow:

min
θ0,α

∑
S∼D t

[L(Uk (α,θ0,S))] (2.27)

They optimize the learning rate α together with the parameter θ0. Uk denotes to
operate the SGD operator U k times.

Self-Supervised Learning

Self-supervised learning(SSL) constructs an artificial task, e.g. rotation predic-
tion [36], colorization [67] and contrastive learning [19], to train a feature extractor
without using any label. In [182], Zhu et al. introduced SSL to continual learning
because with SSL the model learns features that are not limited to current tasks
but also potentially useful for future tasks. They use label augmentation for self-
supervised learning proposed in [69]. For each class, images are rotated 90, 180
and 270 degrees to generate 3 extra classes. They combined this auxiliary task with
Prototype Augmentation, a feature replay method they proposed which is simi-
lar to [82]. Experiments show that SSL task can help improve the performance of
continual learning.

Pham et al. [111] put the SSL idea in a more central position. Inspired by the
Complementary Learning Systems(CLS) theory [96] in neuroscience, they proposed
a DualNet system which contains a fast learner network and a slow learner network.
The slow network learns a feature representation that is more general and intrinsic
using only self-supervised learning without any labels. They apply a contrastive
learning method called Barlow Twins [170] in their method. For a batch of data
points, they apply two different data transformations on all of them and then they
calculate features for them. A cross-correlation matrix is evaluated on these two
batches of features. The contrastive loss is applied on the correlation matrix to
encourage the diagonal terms (same data point) to be equal to 1 and non-diagonal
terms (different data points) to be equal to 0. The fast learner network learns
to classify images using the features from the slow learner network and ground
truth labels. They apply a mask mechanism and experience replay to prevent
the forgetting of the fast learner. The fast and the slow learner complement each
other, and experiments show that the method is effective and also robust to other
contrastive learning objectives. Interestingly, this method can also be applied in a
semi-supervised continual learning setting, since the slow learner does not require
any labels, and it can exploit the information from the unlabeled data.
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Training Regimes

In [55], Mirzadeh et al. make a hypothesis that forgetting is strongly affected by
the flatness of the local minima. They state: "The wider the minima are, the less
forgetting happens". Different from other papers that propose a method to solve
the problem, they study the role of training regimes in continual learning. The effect
of dropout, weight decay, learning rate, batch size and optimizer are analyzed in
this paper with extensive experiments. In the end, they combine all the analysis and
proposed a stableSGD that uses 1)dropout, 2)no weight decay, 3)high learning rate
in the first task and decrease it across tasks, 4)small batch size, 5)SGD optimizer.
The experiments show that it outperforms several existing methods.

2.2.10 Task Balancing

Wu et al. [161] point out that, in class incremental learning, a large part of the error
is not introduced by the forgetting of the feature network, but just the last layer.
They observe that the last fully connected layer is biased toward the new classes. So
they propose to add a a simple linear model as the bias correction layer. The model
only contains two trainable parameters α and β. They calculate the final output
logits qk as:

qk =
{

ok k is an old class

αok +β k is a new class
, (2.28)

ok are the output logits of the model h( f (x)) for class k. They split both the trainset
and the exemplar dataset in to two parts. The first part is used to train the network
as usual with a data regularization loss as in equation 2.6. After the training, they
fix the network, and train the linear model with only the second part. This simple
model is very effective for correcting the bias toward new classes and experiments
showed that it was the new state of the art for the setting of CIL with a uniform
division of tasks (instead of a large first task).

Similarly, in [10], Belouadah et al. propose Incremental Learning with Dual
Memory(IL2M). They store the statistics of each class, in addition to the exemplars.
During the inference, the prediction score is corrected by:

qk =


ok k is an old class

ok ×
µO

k

µN
k

× µN

µO
k is a new class

, (2.29)

µO
k and µN

k stand for statistics of prediction score of class k in Old and New model
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respectively and µO and µN stand for averaged prediction scores of all data in
Old and New model. BIC [161] and IL2M are proposed in the same period of
time and share a similar idea. One of the main differences is that BIC uses data
a regularization loss while IL2M does not. Despite this difference, according to
experiments by Masana et al. [94], in the setting of CIL with a uniform division of
tasks, both method are state-of-the-art and perform similarly. This further proves
that dealing with the task imbalance is one of the most important challenges in this
setting.

2.2.11 Alternative Classification Methods

A large part of the forgetting is introduced by the last classifier layer, as mentioned in
Section 2.2.10. There are also methods that aim to avoid this problem by not using
the standard classification approach. In [119], Rebuffi et al. propose Nearest-Mean-
of-Exemplars(NME) classification. When predicting a class label for a datapoint
x, they do not select the class directly from the output probability. Instead, they
evaluate a prototype for each class by averaging the features of the exemplars of this
class. µy = 1

|Py |
∑

p∈Py φ(p). Then they predict the class label by find the prototype

with minimal distance to the feature of the datapoint.

y = argmin
y=1,...,t

∥φ(x)−µy∥ (2.30)

In [169], Yu et al. propose to train the feature extractor by triplet loss, instead
of cross entropy loss. The idea is to maximize the distance between samples from
different class and the minimize the distance between samples from the same class.
They construct a triplet by the anchor za , a positive instance zp and a negative
instance zn . The positive instance zp and the anchor come from the same class and
the negative instance zn come from a different class.

L = max(0,d+,d−+m) (2.31)

where d+ = ∥za − zp∥ and d− = ∥za − zn∥. During the inference, they use nearest
class mean (NCM) classifier.
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3 Memory Replay GANs: learning to generate
images from new categories without forget-
ting*

3.1 Introduction

Generative adversarial networks (GANs) [38] are a popular framework for image
generation due to their capability to learn a mapping between a low-dimensional
latent space and a complex distribution of interest, such as natural images. The
approach is based on an adversarial game between a generator that tries to generate
good images and a discriminator that tries to discriminate between real training
samples and generated. The original framework has been improved with new
architectures [59, 114] and more robust losses [6, 41, 93].

GANs can be used to sample images by mapping a randomly sampled latent
vector. While providing diversity, there is little control over the semantic properties
of what is being generated. Conditional GANs [100] enable the use of semantic
conditions as inputs, so the semantic properties and the inherent diversity can be
decoupled. The simplest condition is just the category label, allowing to control the
category of the generated image [107].

As most machine learning problems, image generation models have been stud-
ied in the conventional setting that assumes all training data is available at training
time. This assumption can be unrealistic in practice, and modern neural networks
face scenarios where tasks and data are not known in advance, requiring to continu-
ously update their models upon the arrival of new data or new tasks. Unfortunately,
neural networks suffer from severe degradation when they are updated in a se-
quential manner without revisiting data from previous tasks (known as catastrophic
forgetting [97]). Most strategies to prevent forgetting in neural networks rely on
regularizing weights [66, 81] or activations [75], keeping a small set of exemplars
from previous categories [84, 119], or memory replay mechanisms [60, 121, 130].

While previous works study forgetting in discriminative tasks, in this paper we
focus on forgetting in generative models (GANs in particular) through the problem
of generating images when categories are presented sequentially as disjoint tasks.
The closest related work is [127], that adapts elastic weight consolidation (EWC) [66]
to GANs. In contrast, our method relies on memory replay and we describe two
approaches to prevent forgetting by joint retraining and by aligning replays. The

*This chapter is based on a publication in NeurIPS 2018 [159]
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(a) Joint training (b) Sequential fine tuning (c) GAN with EWC [127]

Figure 3.1: Baseline architectures.

former includes replayed samples in the training process, while the latter forces to
synchronize the replays of the current generator with those generated by an auxiliary
generator (a snapshot taken before starting to learn the new task). An advantage
of studying forgetting in image generation is that the dynamics of forgetting and
consolidation can be observed visually through the generated images themselves.

3.2 Sequential learning in GANs

3.2.1 Joint learning

We first introduce our conditional GAN framework in the non-sequential setting,
where all categories are learned jointly. In particular, this first baseline is based
on the AC-GAN framework [107] combined with the WGAN-GP loss for robust
training [41]. Using category labels as conditions, the task is to learn from a training
set S = {S1, . . . ,SM } to generate images given an image category c. Each set Sc

represents the training images for a particular category.
The framework consists of three components: generator, discriminator and clas-

sifier. The discriminator and classifier share all layers but the last ones (task-specific
layers). The conditional generator is parametrized by θG and generates an image
x̃ =GθG (z,c) given a latent vector z and a category c . In our case the conditioning is
implemented via conditional batch normalization [28], that dynamically switches
between sets of batch normalization parameters depending on c. Note that, in
contrast to unconditional GANs, the latent vector is completely agnostic to the
category, and the same latent vector can be used to generate images of different
categories just by using a different c.

Similarly, the discriminator (parametrized by θD ) tries to discern whether an
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input image x is real (i.e. from the training set) or generated, while the generator
tries to fool it by generating more realistic images. In addition, AC-GAN uses an
auxiliary classifier C with parameters θC to predict the label c̃ =CθC (x), and thus
forcing the generator to generate images that can be classified in the same way
as real images. This additional task improves the performance in the original
task [107]. For convenience we represent all the parameters in the conditional GAN
as θ = (

θG ,θD ,θC
)
.

During training, the network is trained to solve both the adversarial game (using
the WGAN with gradient penalty loss [41]) and the classification task by alternat-
ing the optimization of the generator, and the discriminator and classifier. The
generator optimizes the following problem:

min
θG

(
LG

GAN (θ,S)+LG
CLS (θ,S)

)
(3.1)

LG
GAN (θ,S) =−Ez∼pz ,c∼pc

[
DθD

(
GθG (z,c)

)]
(3.2)

LG
CLS (θ,S) =−Ez∼pz ,c∼pc

[
yc logCθC

(
GθG (z,c)

)]
(3.3)

where LG
GAN (θ,S) and λCLSLG

CLS (θ,S) are the corresponding GAN and cross-entropy
loss for classification, respectively, S is the training set, pc =U {1, M }, pz =N (0,1)
are the sampling distributions (uniform and Gaussian, respectively), and yc is the
one-hot encoding of c for computing the cross-entropy. The GAN loss uses the
WGAN formulation with gradient penalty [41]. Similarly, the optimization problem
in the discriminator and classifier is

min
θD,θC

(
LD

GAN (θ,S)+λCLSLD
CLS (θ,S)

)
(3.4)

LD
GAN (θ,S) =−E(x,c)∼S

[
DθD (x)

]+Ez∼pz ,c∼pc

[
DθD

(
GθG (z,c)

)]
(3.5)

+λGPEx∼S,z∼pz ,c∼pc ,ϵ∼pϵ

[(∥∇DθD

(
ϵx + (1−ϵ)GθG (z,c)

)∥2 −1
)2

]
LD

CLS (θ,S) =−E(x,c)∼S
[
CθC

(
GθG (z,c)

)]
(3.6)

where ϵ are parameters of the gradient penalty term, sampled as pϵ =U (0,1) . The
last term of LD

GAN is the gradient penalty.

3.2.2 Sequential fine tuning

Now we modify the previous framework to address the sequential learning scenario.
We define a sequence of tasks T = (1, . . . , M), each of them corresponding to learning
to generate images from a new training set St . For simplicity, we restrict each St to
contain only images from a particular category c, i.e. t = c.

The joint training problem can be adapted easily to the sequential learning
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scenario as

min
θG

t

LG
GAN (θt ,St ) (3.7)

min
θD

t

LD
GAN (θt ,St ) (3.8)

where θt =
(
θG

t ,θD
t

)
are the parameters during task t , which are initialized as θt =

θt−1, i.e. the current task t is learned immediately after finishing the previous task
t−1. Note that there is no classifier in this case since there is only data of the current
category.

Unfortunately, when the network learns to adjust its parameters to generate
images of the new domain via gradient descent, that very drifting away from the
original solution for the previous task will cause catastrophic forgetting [97]. This
has also been observed in GANs [127, 154] (shown later in Figures 3.3, 3.5 and 3.7 in
the experiments section).

3.2.3 Preventing forgetting with Elastic Weight Consolidation

Catastrophic forgetting can be alleviated using samples from previous tasks [84,
119] or different types of regularization that result in penalizing large changes in
parameters or activations [66, 75]. In particular, the elastic weight consolidation
(EWC) regularization [66] has been adapted to prevent forgetting in GANs [127] and
included as an augmented objective when training the generator as

min
θG

t

LG
GAN (θt ,St )+

∑
i

λEW C

2
Ft−1,i

(
θG

t ,i −θG
t−1,i

)2
(3.9)

where Ft−1,i is the Fisher information matrix that somewhat indicates how sensitive
the parameter θG

t ,i is to forgetting, and λEW C is a hyperparameter. We will use this
approach as a baseline.

3.3 Memory replay generative adversarial networks

Rather than regularizing the parameters to prevent forgetting, we propose that the
generator has an active role by replaying memories of previous tasks (via generative
sampling), and using them during the training of current task to prevent forgetting.
Our framework is extended with a replay generator, and we describe two different
methods to leverage memory replays.

This replay mechanism (also known as pseudorehearsal [121]) resembles the
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role of the hippocampus in replaying memories during memory consolidation [29],
and has been used to prevent forgetting in classifiers [60,130], but to our knowledge
has not been used to prevent forgetting in image generation. Note also that image
generation is a generative task and typically more complex than classification.

3.3.1 Joint retraining with replayed samples

Our first method to leverage memory replays creates an extended dataset S′
t =

Sc
⋃

c∈{1,...,t−1} S̃c that contains both real training data for the current tasks and
memory replays from previous tasks. The replay set S̃c for a given category c
typically samples a fixed number for replays x̂ =GθG

t−1
(z,c).

Once the extended dataset is created, the network is trained using joint training
(see Fig. 3.2a) as

min
θG

t

(
LG

GAN

(
θt ,S′

t

)+λCLSLG
CLS

(
θt ,S′

t

))
(3.10)

min
θD

t

(
LD

GAN

(
θt ,S′

t

)+λCLSLD
CLS

(
θt ,S′

t

))
(3.11)

This method could be related to the deep generative replay in [130], where the
authors use an unconditional GAN and the category is predicted with a classifier. In
contrast, we use a conditional GAN where the category is an input, allowing us finer
control of the replay process, with more reliable sampling of (x,c) pairs since we
avoid potential classification errors and biased sampling towards recent categories.

3.3.2 Replay alignment

We can also take advantage of the fact that the current generator and the replay
generator share the same architecture, inputs and outputs. Their condition spaces
(i.e. categories), and, critically, their latent spaces (i.e. latent vector z) and parameter
spaces are also initially aligned, since the current generator is initialized with the
same parameters of the replay generator. Therefore, we can synchronize both the
replay generator and current one to generate the same image by the same category
c and latent vector z as inputs (see Fig. 3.2b). In these conditions, the generated
images x̂ and x should also be aligned pixelwise, so we can include a suitable
pixelwise loss to prevent forgetting (we use L2 loss).

In contrast to the previous method, in this case the discriminator is only trained
with images of the current task, and there is no classification task. The problem
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Replay

(creates extended set)

Joint learning 

(a) Joint retraining with replay

Joint replay and alignment

(prevents forgetting)

Learning new task

(b) Replay alignment

Figure 3.2: Memory Replay GANs and mechanisms to prevent forgetting (for a given
current task t ).

optimized by the generator includes a replay alignment loss

min
θG

t

LG
GAN (θt ,St )+λRALRA (θt ,St ) (3.12)

LRA (θt ,St ) = Ex∼S,z∼pz ,c∼U {1,t−1}

[∥∥∥GθG
t

(z,c)−GθG
t−1

(z,c)
∥∥∥2

]
(3.13)

Note that in this case both generators engage in memory replay for all previous tasks.
The corresponding problem in the discriminator is simply minθD

t
LD

GAN (θt ,St ).

Our approach can be seen as aligned distillation, where distillation requires
spatially aligned data. Note that in that way it could be related to the learning with-
out forgetting approach [75] to prevent forgetting. However, we want to emphasize
several subtle yet important differences:

Different tasks and data Our task is image generation where outputs have a
spatial structure (i.e. images), while in [75] the task is classification and the
output is a vector of category probabilities.

Spatial alignment Image generation is a one-to-many task with many latent
factors of variability (e.g. pose, location, color) that can result in completely dif-
ferent images yet sharing the same input category. The latent vector z somewhat
captures those factors and allows an unique solution for a given (z,c). However,
pixelwise comparison of the generated images requires that not only the input
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but also the output representations are aligned, which is ensured in our case
since at the beginning of training both have the same parameters. Therefore we
can use a pixelwise loss.

Task-agnostic inputs and seen categories In [75], images of the current classi-
fication task are used as inputs to extract output features for distillation. Note
that this implicitly involves a domain shift, since a particular input image is
always linked to an unseen category (by definition, in the sequential learning
problem the network cannot be presented with images of previous tasks), and
therefore the outputs for the old task suffer from domain shift. In contrast, our
approach does not suffer from that problem since the inputs are not real data,
but a category-agnostic latent vector z and a category label c. In addition, we
only replay seen categories for both generators, i.e. 1 to t −1.

3.4 Experimental results

We evaluated the proposed approaches on different datasets with different level of
complexity. The architecture and settings are set accordingly. We use the Tensor-
flow [1] framework with Adam optimizer [63], learning rate 1e-4, batch size 64 and
fixed parameters for all experiments: λEW C = 1e9, λR A = 1e-3 and λC LS = 1 except
for λR A = 1e-2 on SVHN dataset.

3.4.1 Digit generation

We first consider the digit generation problem in two standard digit datasets. Learn-
ing to generate a digit category is considered as a separate task. MNIST [68] consists
of images of handwritten digits which are resized 32×32 pixels in our experiment.
SVHN [104] contains cropped digits of house numbers from real-world street im-
ages. The generation task is more challenging since SVHN contains much more
variability than MNIST, with diverse backgrounds, variable illumination, font types,
rotated digits, etc.

The architecture used in the experiments is based on the combination of AC-
GAN and Wasserstein loss described in Section 3.2.1. We evaluated the two variants
of the proposed memory replay GANs: joint training with replay (MeRGAN-JTR)
and replay alignment (MeRGAN-RA). As upper and lower bounds we also evaluated
joint training (JT) with all data (i.e. non-sequential) and sequential fine tuning
(SFT). We also implemented two additional methods based on related works: the
adaptation of EWC to conditional GANs proposed by [127], and the deep generative
replay (DGR) module of [130], implemented as an unconditional GAN followed by a
classifier to predict the label. For experiments with memory replay we generate one
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Table 3.1: Average classification accuracy (%) in digit generation (ten sequential
tasks).

5 tasks (0-4) 10 tasks (0-9)
Baselines Others MeRGAN Baselines Others MeRGAN
JT SFT EWC [127] DGR [130] JTR RA JT SFT EWC [127] DGR [130] JTR RA

MNIST 97.66 19.87 70.62 90.39 97.93 98.19 96.92 10.06 77.03 85.40 97.00 97.01
SVHN 85.30 19.35 39.84 61.29 80.90 76.05 84.82 10.10 33.02 47.28 66.50 66.78

batch of replayed samples (including all tasks) for every batch of real data. We use a
three layer DCGAN [114] for both datasets. In order to compare the methods in a
more challenging setting, we keep the capacity of the network relatively limited for
SVHN.

Figure 3.3 compares the images generated by the different methods after se-
quentially training the ten tasks. Since DGR is unconditional, the category for
visualization is the one predicted by its classifier. We observe that SFT completely
forgets previous tasks in both datasets, while the other methods show different
degrees of forgetting. The four methods are able to generate MNIST digits properly,
although both MeRGANs show sharper ones. In the more challenging setting of
SVHN (note that the JT baseline also struggles to generate realistic images), the
digits generated by EWC are hardly recognizable, while DGR is more unpredictable,
sometimes generates good images but often generating images with ambiguous
digits. Those generated by MeRGANs are in general clear and more recognizable,
but still showing some degradation due to the limited capacity of the network.

We also trained a classifier with real data, using classification accuracy as a proxy
to evaluate forgetting. The rationale behind is that in general bad quality images
will confuse the classifier and result in lower classification rates. Table 3.1 shows the
classification accuracy after the first five tasks (digits 0 to 4) and after the ten tasks.
SFT forgets previous tasks so the accuracy is very low. As expected, EWC performs
worse than DGR since it does not leverage replays, however it significantly mitigates
the phenomenon of catastrophic forgetting by increasing the accuracy from 19.87
to 70.62 on MNIST, and from 19.35 to 39.84 on SVHN compared to SFT in the case
of 5 tasks. The same conclusion can be drawn in the case of 10 tasks. By using the
memory replay mechanism, MeRGANs obtain significant improvement compared
to the baselines and the others related methods. Especially, our approach performs
about 8% better on MNIST and about 21% better on SVHN compared to the strong
baseline DGR in the case of 5 tasks. Note that our approach achieves about 12% gain
in the case of 10 tasks, which shows that our approach is much more stable with
increasing number of tasks. In the more challenging SVHN dataset, all methods
decrease in terms of accuracy, however MerGAN are able to mitigate forgetting and
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SFT EWC DGR MeRGAN-JTR MeRGAN-RA JT

c = 0
c = 1
c = 2
c = 3
c = 4
c = 5
c = 6
c = 7
c = 8
c = 9

SFT EWC DGR MeRGAN-JTR MeRGAN-RA JT

c = 0
c = 1
c = 2
c = 3
c = 4
c = 5
c = 6
c = 7
c = 8
c = 9

Figure 3.3: Images generated for MNIST and SVHN after learning the ten tasks.
Rows are different conditions (i.e. categories), and columns are different latent
vectors.

obtain comparable results to JT.
In addition to that, we also evaluated the reverse accuracy by training a classifier

with the data generated by the MeRGAN and testing it on the real dataset. The result
are shown in table 3.2.

On the MNIST dataset, both methods, MeRGAN-JTR and MeRGAN-RA, produce
very high accuracy in 5 tasks setting (digits 0 to 4), 0.992 and 0.985 respectively,
and keep relatively high accuracy in 10 tasks setting, 0.968 and 0.939 respectively.
However, on the SVHN dataset there is a huge drop compared with the direct classi-
fication accuracy. In the 10 tasks setting, the reverse classification accuracy of JTR
is only 0.201. We found that this drop in performance can be reduced by improv-
ing the architecture of the GAN. Therefore, we also trained a GAN with ResNet-18
network [46]. This network was further improved by replacing the AC-GAN with
cGAN with projection discriminator [102] and using one-hot conditioning [100].
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Chapter 3. Memory Replay GAN

Table 3.2: Direct and reverse classification accuracy (%) in digit generation (ten
sequential tasks).

5 tasks (0-4) 10 tasks (0-9)
MeRGAN-JTR MeRGAN-RA MeRGAN-JTR MeRGAN-RA

direct reverse direct reverse direct reverse direct reverse

MNIST 97.93 99.15 98.19 98.55 97.00 96.83 97.01 93.86
SVHN 80.90 40.71 76.05 74.83 66.50 20.07 66.78 49.43

SVHN(ResNet-18) 82.30 81.12 81.74 82.30 73.29 51.00 78.56 70.98

(a) After all tasks

SFT EWC

MeRGAN-JTR MeRGAN-RA

(b) After tasks 0,1,3,9

Figure 3.4: t-SNE visualization of generated 0s. Real 0s correspond to red dots.
Please view in electronic format with zooming.

The results of JTR and RA are 51.0 and 71.0 respectively. It shows that result of the
reverse classification accuracy can be improved by using a better GAN. It also shows
that in a more complex case, the RA works better than JTR.

Another interesting way to compare the different methods is through t-SNE
visualizations. We use a classifier trained with real digits to extract embeddings of
the methods to compare. Fig. 3.4a shows real 0s from MNIST and generated 0s from
the different methods after training 10 tasks (i.e. the first task, and therefore the
most difficult to remember). In contrast to SFT and EWC, the distributions of 0s
generated by MeRGANs greatly overlap with the distribution of real 0s (in red) and
no isolated clusters of real samples are observed, which suggests that MeRGANs
prevent forgetting better while keeping diversity (at least in the t-SNE visualizations).
Fig. 3.4b shows the t-SNE visualizations of real and 0s generated after learning 0,1,3
and 9, with similar conclusions.
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3.4 Experimental results

3.4.2 Scene generation

We also evaluated MeRGANs in a more challenging domain and on higher resolu-
tion images (64×64 pixels) using four scene categories of the LSUN dataset [168].
The experiment consists of a sequence of tasks, each one involving learning the
generative distribution of a new category. The sequence of categories is bedroom,
kitchen, church (outdoors) and tower, in this order. This sequence allows us to
have two indoor and outdoor categories, and transitions between relatively similar
categories (bedroom to kitchen and church to tower) and also a transition between
very different categories (kitchen to church). Each category is represented by a set of
100000 training images, and the network is trained during 20000 iterations for every
task. The architectures are based on [41] with 18-layer ResNet [46] generator and
discriminator, and for every batch of training data for the new category we generate
a batch of replayed images per category.

Figure 3.5 shows examples of generated images. Each block column corresponds
to a different method, and inside, each row shows images generated for a particular
condition (i.e. category) and each column corresponds to images generated after
learning a particular task, using the same latent vector. Note that we excluded DGR
since the generation is not conditioned on the category. We can observe that SFT
completely forgets the previous task, and essentially ignores the category condition.
EWC generates images that have characteristics of both new and previous tasks (e.g.
bluish outdoor colors, indoor shapes), being unable to neither successfully learn
new tasks nor remember previous ones. In contrast both variants of MeRGAN are
able to generate competitive images of new categories while still remembering to
generate images of previous categories.
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Figure 3.6: Evolution of FID and classification accuracy (%). Best viewed in color.

Table 3.3: FID and average classification accuracy (%) on LSUN after the 4th task

SFT EWC DGR MeRGAN-JTR MeRGAN-RA
Acc.(%) 15.02 14.28 15.40 79.19 81.03

Rev acc.(%) 28.0 63.35 26.17 70.00 83.62
FID 110.12 178.05 93.70 49.69 37.73

In addition to classification accuracy (using a VGG [133] trained over the ten
categories in LSUN), for this dataset we add two additional metrics. The first one is
reverse accuracy measured by a classifier trained with generated data and evaluated
with real data. The second one is the Frechet Inception Distance (FID), which is
widely used to evaluate the images generated by GANs. Note that FID is sensitive to
both quality and diversity [49]. Table 3.3 shows these metrics after the four tasks are
learned. MeRGANs perform better in this more complex and challenging setting,
where EWC and DGR are severely degraded.

Figure 3.6 shows the evolution of these metrics during the whole training pro-
cess, including transitions to new tasks (the curves have been smoothed for easier
visualization). We can observe not only that sequential fine tuning forgets the task
completely, but also that it happens early during the first few iterations. This also
allows the network to exploit its full capacity to focus on the new task and learn it
quickly. MeRGANs experience forgetting during the initial iterations of a new task
but then tend to recover during the training process. In this experiment MeRGAN-
RA seems to be more stable and slightly more effective than MeRGAN-JTR.

Figure 3.6 provides useful insight about the dynamics of learning and forgetting
in sequential learning. The evolution of generated images also provides comple-
mentary insight, as in the bedroom images shown in Figure 3.7, where we pay special
attention to the first iterations. The transition between task 2 to 3 (i.e. kitchen to
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Chapter 3. Memory Replay GAN

church) is particularly revealing, since this new task requires the network to learn
to generate many completely new visual patterns found in outdoor scenes. The
most clear example is the need to develop filters that can generate the blue sky
regions, that are not found in the previous indoor categories seen during task 1
and 2. Since the network is not equipped with knowledge to generate the blue
sky, the new task has to reuse and adapt previous one, interfering with previous
tasks and causing forgetting. This interference can be observed clearly in the first
iterations of task 3 where the walls of bedroom (and kitchen) images turn blue (also
related with the peak in forgetting observed at the same iterations in Figure 3.6).
MeRGANs provide mechanisms that penalize forgetting, forcing the network to
develop separate filters for the different patterns (e.g. separated filters for wall and
sky). MeRGAN-JTR seems to effectively decouple both patterns, since we do not
observe the same "blue walls" interference during task 4. Interestingly, the same
interference seems to be milder in MeRGAN-RA, but recurrent, since it also appears
again during task 4. Nevertheless, the interference is still temporary and disappears
after a few iterations more.

Another interesting observation from Figures 3.5 and 3.7 is that MeRGAN-RA
remembers the same bedroom (e.g. same point of view, colors, objects), which is
related to the replay alignment mechanism that enforces remembering the instance.
On the other hand, MeRGAN-JTR remembers bedrooms in general as the generated
image still resembles a bedroom but not exactly the same one as in previous steps.
This can be explained by the fact that the classifier and the joint training mechanism
enforce the not-forgetting constraint at the category level.
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Chapter 3. Memory Replay GAN

3.5 Conclusions

We have studied the problem of sequential learning in the context of image genera-
tion with GANs, where the main challenge is to effectively address catastrophic for-
getting. MeRGANs incorporate memory replay as the main mechanism to prevent
forgetting, which is then enforced through either joint training or replay alignment.
Our results show their effectiveness in retaining the ability to generate competitive
images of previous tasks even after learning several new ones. In addition to the
application in pure image generation, we believe MeRGANs and generative models
robust to forgetting in general, could have important application in many other
tasks. We also showed that image generation provides an interesting way to visu-
alize the interference between tasks and potential forgetting by directly observing
generated images.
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4 Positive Pair Distillation Considered Harm-
ful: Continual Meta Metric Learning for
Lifelong Object Re-Identification*

4.1 Introduction

Object re-identification (ReID) aims to associate the identity of a query image with
those in a gallery set [47, 174]. It is applied to many applications, including per-
son re-identification [17, 74, 166], vehicle re-identification [61, 85, 179], and face
verification [148, 149]. Most existing approaches assume that the test and training
dataset are drawn from the same distribution and that all training data is available
jointly when training the network [74, 85, 88, 174, 179]. In domain generalization
ReID [7,22,24,105,137] all source domain data is assumed available during training.
This assumption is not realistic for many applications as all training data might not
be available from the start and its distribution could vary over time. In addition, the
trained system could be applied at inference time to new data never seen during
training. Only recently, the problem of Lifelong ReID has been proposed [112]. This
setting requires learning from a sequence of domains, and evaluates the algorithm
on unseen domains.

Continual learning [26, 94, 97] addresses the problem of learning from non-
stationary streams of data. It has developed several techniques including regularization-
based methods [3, 66, 81, 172], parameter-isolation [91, 92, 128], and replay-based
methods [45, 159, 161, 164]. In this chapter we consider exemplar-free continual
learning where it is not allowed to save any samples (exemplars) of previous tasks
for the problem of object re-identification. This requirement is out of the privacy
considerations in person ReID problems.

Most continual learning methods specifically consider the incremental learn-
ing of classification problems. The considered setup for object re-identification
(Fig. 4.1) is different in two main aspects. Firstly, they usually do not incrementally
learn a classifier, instead they incrementally learn a feature representation. Sec-
ondly, the aim is to perform evaluation on new unseen tasks. So the real goal is to
incrementally learn a metric space that generalizes to previously unseen tasks. Pu
et al. [112] propose a method to address the first problem but ignore the second
consideration: the representation should generalize to unseen tasks.

Meta-learning [8, 21, 32, 53, 106, 136, 144] focus on generalising to unseen tasks

*This chapter is based on a publication in BMVC 2022 [151].
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Figure 4.1: Lifelong Object ReID with continual meta-metric learning. Unlike
conventional object re-identification, data are presented sequentially in discrete
tasks of disjoint classes. Data from previous tasks are unavailable in successive ones
and the learner must incrementally update when a new task arrives. Furthermore,
in object re-identification the test identities are not seen during training, which
demands generalization of the learned metric.

and has been applied to few-shot learning [9, 70, 78, 140, 153, 165]. Object ReID
can be considered a few-shot learning problem, since the object identities at test
time are not shown during the training and we only have few support images. To
exploit the generalization capability of meta learning, Chen et al. [18] propose Deep
Meta Metric Learning (DMML) that formulates the deep metric learning as a meta
learning problem. Since the main challenges of object re-identification are learning
from a sequences and generalization to previously unseen domains, in this chapter
we propose Continual Meta Metric Learning to address this problem.

To further endow continual meta metric learning with a mechanism to miti-
gate forgetting knowledge from previous tasks, we introduce a temporary classifier
for the support set and study the potential of directly applying knowledge distilla-
tion [50, 75]. However, we find that the distillation and metric learning losses are
antagonistic. We therefore propose Distillation without Positive Pairs (DwoPP).
DwoPP, different from naive distillation, which distills knowledge from the previous
to the current task classifier over all classes in the current task, distills only using
negative examples. In this way, we avoid the antagonistic relationship between the
metric and distillation losses which is from positive pairs distillation.

The main contributions of this chapter are: 1) we show that meta metric learn-
ing is superior to global metric learning for object re-identification; 2) we explic-
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itly explore the roles of positive and negative pairs in distillation and propose a
novel distillation scheme called DwoPP for Continual Meta Metric Learning; 3) we
propose task splits for evaluation of continual metric learning methods on intra-
domain object ReID for three ReID datasets and evaluate on much longer sequences
than the existing benchmark; and 4) we perform extensive experimental analysis
demonstrating that, DwoPP achieves significantly better performance on person
and vehicle ReID, as well as on the existing LReID benchmark [112].

4.2 Related work

Object re-identification and metric learning. Metric learning has been widely
applied to object re-identification [47, 174], mainly focusing on person ReID [17,
74, 166, 176], vehicle ReID [61, 85, 179] and face verification [148, 149, 176]). Deep
metric learning methods can be divided into three categories based on the loss
used: contrastive loss with pairwise inputs [23], triplet loss with triplet inputs [52],
and N-pair loss with batch inputs [132]. In general, deep metric learning works well
but does not take generalization of the learned metrics into account and neglects
relationships between inter-class samples. DMML [18] formulates metric learning
for object re-identification from a meta learning perspective. We build upon DMML
for our continual learning view of meta metric learning.

Continual learning. Continual learning methods can be categorized into three
groups: parameter-isolation, regularization-based and replay-based methods [26].
The most relevant to our work are regularization-based methods [3, 66, 75, 81, 169,
172]. Knowledge distillation is a widely used regularization method which decreases
forgetting by either aligning features [82, 159] or the predicted probabilities [75].
To adapt knowledge distillation to Continual Meta Metric Learning, we propose
a variant of knowledge distillation by introducing a temporary classifier for the
current support set, and more importantly the distillation in the chapter is without
considering positive pairs. Replay-based continual learning overcomes forgetting
by saving a set of exemplars from each task [45, 54, 159, 161, 164]. We focus on
exemplar-free continual learning. And continual learning applied to persons in
particular has privacy considerations which makes retaining data problematic.

(Incremental) Meta learning. Meta learning based on metrics or optimization-
based approaches are the main directions of current research [153]. ProtoNets [136]
and RelationNets [141] are canonical representatives of metric-based approaches,
while MAML [32] and Reptile [106] are representative optimization-based meth-
ods. Incremental meta learning (IDA [79], ERD [150]) methods have been mainly
developed for incremental few-shot learning, however, they can also be applied to
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lifelong object ReID and we will compare to them in the experimental section. There
are a few methods on incremental metric learning which approach the problem
as one of representation learning with a metric-based classification loss. Exam-
ples include CRL [176], FGIR [20], and AKA [112]. However, these works all focus
on distillation over seen classes and thus neglect the need to recognize unseen
identities.

4.3 Methodology

4.3.1 Preliminaries

There are two main approaches to metric learning applied to object ReID: those
based on global optimization of a metric embedding over the training set, and
those based on episodic meta learning. Most global optimization metric learning
methods minimize a metric loss over the whole dataset D = (X,Y) of inputs X and
corresponding labels Y. For comparison in this chapter we use the popular softmax-
triplet loss as used in BoT [88].

Deep meta metric learning (DMML). In DMML [18], the authors instead formulate
metric learning as a meta learning problem. They decompose the training data into
a series of sub-tasks, called episodes in meta learning, and then learn a meta metric
that generalizes well to all sub-tasks. Assuming the unseen test task is drawn from
the same distribution of sub-tasks from the training set, this learned meta metric
should generalize to this unseen test task.

Assume that we sample K episodes in total for training, that each episode Ek is
composed of N classes, and that each class contains ns images in the support set
Sk and nq images in the query set Qk . In each episode, we learn the meta metric to
correctly predict the query samples from support samples. The learning problem
for DMML is:

θ∗ = argmin
θ
Ek∈[1,K ]

[
Leps(θ;Sk ,Qk )

]
(4.1)

where Leps is the episode level hard-mining metric loss proposed in DMML [18].
An illustration of the DMML loss [18] is shown in Fig. 4.2. The hard-mining

DMML loss finds the largest distance to a positive example and the smallest distance
to a negative sample to compute the metric loss with a margin.

The episodic loss Leps is defined in terms of positive and negative pairs. In the
current episode Ek with the class setC, a query point qc ∈Qk is drawn from a specific
class c ∈C. We construct the positive pairs [qc , sc ] from the query point and support
points sc ∈ Sk from the class c, and negative pairs [qc , sc ′ ] from the query point and
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Margin

support points from

query point from

Class 1

Class 2
Class 3

Class 4

computed by

computed by

Figure 4.2: Supposing the query point is from class 1, the hard-mining DMML
loss selects the farthest positive point and nearest negative point to compute the
distance. It forces a margin between negative and positive distances.

support points sc ′ ∈ Sk from different classes c ′ ̸= c. Hard mining is performed over
the positive pairs by finding largest Euclidean distance from qc to a positive support
sample dc = maxsc∈Sk d(qc , sc ), and over negative pairs by finding the smallest
distance from qc to the a negative support sample dc ′ = minsc′∈Sk d(qc , sc ′ ). Leps is
defined in terms of these hard-mined distances (τ is a margin):

Leps(θ;Sk ,Qk ) = ∑
qc∈Qk

log(1+ ∑
c ′∈C\{c}

exp(dc ′ −dc +τ)), (4.2)

4.3.2 Continual Metric Learning

In continual metric learning, tasks t ∈ [1,T ] arrive sequentially as disjoint datasets
Dt . The aim is to learn θt incrementally in a training session for each task t and to
ensure it accumulates knowledge from the previous tasks so as to generalize better
to unseen test tasks:

θ∗t = argmin
θt

Lcml(θt ;Dt ). (4.3)
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Figure 4.3: (a) Comparing continual meta-metric learning (DMML-FT [18]) with
continual metric learning (BoT-FT [88]). We finetune on 10 equally split Market-
1501 tasks. Upper bounds are joint training on all data. (b) Comparison between
DwPP and DwoPP (class 1 is the positive class). The old model has never seen class
1 and so likely produces an output less than 1 although we want positive pairs to
map to the exact same point in latent space. Also, the dominance of the positive
class inhibits distillation of negative pair information.

And the data from previous tasks (i.e. D t ′ for t ′ < t ) are not available to the learner
at task t .

There are two approaches to defining Lcml in Eq. 4.3: meta-learning meth-
ods (DMML [18]) or softmax-based methods (BoT [88]). The majority of Person
Re-Identification approaches (including the LReID benchmark [112]) are based
on the softmax-triplet loss. We compare these methods in the Continual Metric
Learning setting on Market-1501 in Fig. 4.3(a) by simply applying fine-tuning (FT)
without any mitigation of forgetting. We clearly see that continual metric learning
is quickly surpassed by continual meta-metric learning. The underlying reason for
this marked improvement is that re-identification aims to recognize unseen objects
(each object identity is represented by only one query image at test time). This is the
central characteristic of few-shot recognition. Instead, the conventional softmax-
triplet loss easily overfits to the current task and neglects the relationships between
inter-class samples. The meta learning DMML loss, however, tends to learn a better
representation space that generalizes to future unseen tasks and thus suffers less
from forgetting. In brief, DMML is a more principled approach for continual metric
learning than the softmax-triplet loss and we propose to use DMML as the basis.

52



4.3 Methodology

4.3.3 Distillation without Positive Pairs (DwoPP)

To adapt the DMML loss defined in Eq. 4.2 to continual metric learning, we compute
it for task t over episodes E t

k drawn only from the current task data D t . We denote
the support set and query set of each episode during task t as S t

k and Q t
k . Then the

DMML loss is defined with the current model fθt as Leps(θt ;S t
k ,Q t

k ) (see Eq. 4.2).
Episodic meta learning with the DMML loss will not mitigate forgetting in a

continual metric learning. Knowledge Distillation [50, 75] is a common technique
for alleviating catastrophic forgetting when learning over a sequence of tasks. Note,
however, distillation assumes that a classifier over classes from the previous tasks is
available on which to perform knowledge distillation – something that for continual
meta metric learning we do not have. However, based on the sampled episodes we
can construct two temporary classifiers, one based on the previous and one based
on the current tasks’ feature extractor. We can then define a new distillation loss in
terms of these temporary classifiers.

Class Prototypes. To construct the temporary classifier, we compute prototypes as
the centroid of embedded samples of each class uc (c is class label):

uc = 1

ns

∑
(xi ,yi )∈St

k

fθ(xi )δc (yi ), (4.4)

where δc (y) = 1 ⇔ y = c is an indicator function.

DwPP: Distillation with Positive Pairs. With the class prototypes uc , the prediction
for class c ∈C of query image x̂ ∈Q t

k with the model fθt is given by:

gc (S t
k , x̂;θ) = [exp(−d( fθ(x̂),uc ))]1/T∑

c ′∈C[exp(−d( fθ(x̂),uc ′ ))]1/T
, (4.5)

where T is the temperature and d is the Euclidean distance. These predictions are
used to distill knowledge from task t-1 into task t by constructing two temporary
classifiers, one using θt and another using θt−1, and considering all negative and
positive pairs:

LDwPP(θt ;θt−1,S t
k ,Q t

k ) = ∑
x̂∈Q t

k

K L
[
g(S t

k , x̂;θt−1) ||g(S t
k , x̂;θt )

]
. (4.6)

Here g is a classifier constructed by concatenating the predictions gc defined in
Eq. 4.5 for all classes in the episode.

Knowledge distillation for continual meta metric learning requires careful atten-
tion to which pairs are included in the distillation loss. Consider the hypothetical
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case illustrated in Fig. 4.3(b) where we show the predictions of the two temporary
classifiers (class 1 is the query class). In task t , the new classes from D t are not
well-discriminated from each other – that is, the margin between positive and neg-
ative pairs in D t is not guaranteed by the model from task t −1 and the predicted
probabilities are distributed as in the upper left column of Fig. 4.3(b). After learning
task t we would like it to be a peaked distribution around the correct class, and
simultaneously we also wish to maintain the relative probabilities of all classes (via
knowledge distillation). Although this distillation will maintain model stability and
mitigate forgetting, the estimate of the old model for the correct label is likely to be
unreliable and will prevent the metric loss from pushing similar labels to the same
position in the embedding space. Furthermore, the dominance of the positive class
prevents distillation of the relevant negative pair information (also known as dark
knowledge [50]), which weakens the alignment of classes in the feature space.

In essence, the metric and distillation losses are antagonistic due to the inclusion
of positive pairs in knowledge distillation. Thus we propose to remove positive pairs
from distillation. As shown in the right column of Fig. 4.3(b), since the other classes
are negatives for class 1, they can be easily aligned with the previous probabilities
to overcome forgetting. At the same time, the peaked distribution in the bottom
left of Fig. 4.3(b) can also be achieved by the metric loss. To further analyze the
role of positive and negative pairs, we decouple the KL divergence into positive
and negative pair distillation as proposed by DKD [177], showing that positive pair
distillation leads to performance degradation (see Table 4.5).

DwoPP: Distillation without Positive Pairs. To remove positive pairs from DwPP
distillation, we exclude class ŷ which is the class label of query image x̂ ∈Q t

k from
the temporary classifier and rewrite the Eq. 4.5 as:

g ′
c (S t

k , x̂, ŷ ;θ) = [exp(−d( fθ(x̂),uc ))]1/T∑
c ′∈C\{ŷ}[exp(−d( fθ(x̂),uc ′ ))]1/T

(4.7)

Then the DwoPP distillation can be rewritten as:

LDwoPP(θt ;θt−1,S t
k ,Q t

k ) = ∑
(x̂,ŷ)∈Q t

k

K L[g′(S t
k , x̂, ŷ ;θt−1) ||g′(S t

k , x̂, ŷ ;θt )]. (4.8)

With the above defined DwoPP distillation loss and episode DMML loss, the contin-
ual metric learning loss function for each episode is defined as:

Lcml(θt ;θt−1,St
k ,Qt

k ) =Leps(θt ;St
k ,Qt

k )+λLDwoPP(θt ;θt−1,S t
k ,Q t

k ). (4.9)

To demonstrate the necessity of removing positive pairs from the distillation, we
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Figure 4.4: mAP and Rank-1 performance. Methods with “*” use the softmax-triplet
loss.

compare DwPP and DwoPP in Sec. 4.4 and perform an ablation on T in both.

4.4 Experimental Results

4.4.1 Experimental setup

Datasets for Intra-domain Object ReID. We propose continual metric learning
splits for two Person ReID datasets and one vehicle ReID dataset. (1) Market-
1501 [180] consists of 32,668 images of 1,501 identities captured by 6 cameras. The
dataset is divided into a training set with 12,968 images of 751 identities and a
test set containing 3,368 query images and 19,732 gallery images of 750 identities.
For continual metric learning setup, we split the 751 training identities into 10
disjoint tasks, each with 75 identities (the first with 76). (2) MSMT17_V2 [155]
consists of 126,441 images of 4101 persons captured by 15 cameras. Its training set
includes 30,248 images of 1041 persons, and its test set covers the remaining 3060
persons with 11,659 query images and 82,161 gallery images. For MSMT17_V2, we
split the training persons into 10 tasks also, each task with 104 persons (the first
task with 105 persons). (3) VeRi-776 [83] contains 49,357 images of 776 vehicles,
which are captured by 20 cameras. Among them, 576 vehicles are used for training
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continual metric learning training tasks
Unseen-test task

Task id: 1 2 ... 10

Identities per task:
Market-1501 76 75 ... 75 750
MSMT17_V2 105 104 ... 104 3060

VeRi-776 63 57 ... 57 200

Table 4.1: Our proposed 10-task split of two Person ReID datasets and one Vehicle
ReID dataset for Continual Metric Learning.

and the remaining 200 are used for testing. In total, VeRi-776 consists of 37,778
training images, 1,678 query images, and 11,579 gallery images. For continual
metric learning, we split the training 576 vehicles into 10 tasks, each task with 57
vehicles (the first task with 63 vehicles). Our splits of three dataset are shown in
Table. 4.1. For all three datasets, we try to uniformly distribute the training identities
into 10 continual metric learning tasks. The query and gallery set are fixed and
serve as the unseen-test task.

The Lifelong ReID (LReID) benchmark. We adapt the train set of the inter-domain
LReID benchmark by building it from four datasets: Market-1501 [180], CUHK-SYSU
ReID [163], MSMT17_V2 [155], and CUHK03 [73]. We removed the DukeMTMC-
ReID dataset from the original LReID benchmark [112] due to its retraction on
account of privacy issues. Except for this change, we keep the same training order
as LReID Order-1: Market-1501 [180]→ CUHK-SYSU [163] → MSMT17_V2 [155] →
CUHK03 [73]. After training, the model is evaluated on the test query and gallery sets
LReID-Seen of these four datasets (i.e. over seen domains). We also test on LReID-
Unseen test set which combines seven person ReID datasets: VIPeR [40], PRID [51],
GRID [86], i-LIDS [181], CUHK01 [72], CUHK02 [71], and SenseReID [178].

Implementation details. We follow the same network structure and training
strategy as DMML [18] for methods based on the DMML loss, and use the network
and training protocol of BoT [88] for methods based on the softmax-triplet. For
our person ReID experiments, we use ResNet-50 [46] pretrained on ImageNet [122]
as our feature extractor. The last spatial downsampling operation in the network
is removed to maintain high resolution. We resize input images to 256×128 for
all methods. For vehicle ReID, we also use a ResNet-50 backbone pretrained on
ImageNet as the embedding architecture, and use input images of size 224×224
augmented with random horizontal flips. We use the Adam optimizer [63] with a
base learning rate of LR = 0.0002 and weight decay of 0.0001. All models are trained
for 600 epochs with fixed learning rate of 0.0002 for the first 300 epochs, after which
the learning rate is reduced by a factor of 0.0051/300 each epoch until the end. We set
the trade-off coefficient to λ= 1.0, the margin as τ= 0.4 as in DMML [18], and the

56
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temperature to T = 1.0 for DwoPP and T = 10.0 for DwPP. The number of classes,
support images, and query images are in each episode are N = 32,ns = 5,nq = 1,
respectively.

Compared methods and metrics. Our evaluation is divided into two parts: (1)
To compare with conventional continual learning methods, we train models with
the softmax-triplet loss of BoT [88]. For methods using this loss without exemplars,
we selected AKA [112], PASS [182], and LwF [75]. For methods using exemplars,
we selected FT+, iCaRL [119], LUCIR [54], and LwF+ [75]. (2) For comparison
with incremental meta learning methods, we build upon the DMML loss [18]. For
methods without exemplars we selected IDA [79]. For methods with exemplars, we
selected ERD [150]. Note that AKA is the state-of-the-art in LifelongReID and IDA is
the state-of-the-art in incremental meta learning. For all exemplar-based methods
we store 500 exemplars for all experiments. We use mean Average Precision (mAP)
and Accuracy at Rank-1 as metrics [166]. We compute the mAP and Rank-1 Accuracy
of the model on the unseen test set after each task. All results are averages over
three runs.

4.4.2 Comparative performance evaluation

Intra-domain Lifelong Object ReID. Fig. 4.4 gives the mAP and Rank-1 curves on
Market-1501, MSMT17_V2, and VeRI-776. We report the performance of all methods
after task t = 10 and the average metrics over all training sessions in Table 4.2. On
all three datasets, finetuning with softmax-triplet loss is always sub-optimal to the
finetuning with the meta metric loss. The performance gap between the mAP for
the DMML-FT and BoT-FT after the last task is 25.8, 4.3, and 5.0 on three datasets,
respectively. Note that the two losses result in a similar joint training performance.
This demonstrates that meta metric learning is more suitable to the Continual
Metric Learning problem, as we discussed in Sec. 4.3.2. For continual learning
methods without exemplars, our method DwoPP performs best on all datasets.
Compared to the DMML-FT metrics after task 10, DwoPP improves by between
9.1 to 12.9 in mAP. Note that on Market-1501 and VeRi-776 DMML-FT outperforms
most of the methods that actively counter fogetting. Furthermore, we also include a
comparison with rehearsal methods in Table 4.2. The methods iCaRL, LwF+, FT+
and ERD obtain similar results, and improved performance compared to DMML-FT.
LUCIR performs the worst and that could be because the cosine embedding is used
for re-balancing the old and new tasks. Our exemplar-free method DwoPP performs
better than exemplar-based methods on these three datasets (only marginally worse
in average Rank-1 Accuracy on VeRi-776). We also ablate our distillation and report
results for distillation with all pairs (DwPP). The results of DwPP show that naive
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Metric: mAP Rank-1 Accuracy
Dataset: Market MSMT17 VeRi-776 Market MSMT17 VeRi-776

Based on episodic optimization with DMML loss [18]
Joint training: 82.2 44.7 73.6 92.6 68.9 92.1

Sessions: last avg last avg last avg last avg last avg last avg
without exemplars

DMML-FT (ICCV’19) 56.3 49.1 10.9 10.0 30.8 29.3 77.8 71.5 28.9 27.4 70.3 62.4
IDA (ECCV’20) 32.2 37.8 19.2 16.8 21.0 18.4 58.7 63.1 45.6 38.2 56.6 45.4

DwPP 57.8 48.4 16.3 13.3 30.9 28.9 78.1 70.7 39.0 33.9 71.7 63.3
Ours (DwoPP) 67.2 57.6 23.8 19.1 39.9 35.3 84.6 77.1 51.0 42.6 78.5 69.3

with 500 exemplars in total
ERD (CVPRW’22) 63.5 53.9 21.7 17.2 38.2 33.8 81.8 74.5 46.6 39.4 72.9 65.5

Based on global optimization with softmax-triplet loss from BoT [88]
Joint training: 82.4 43.2 69.2 93.0 71.1 92.7

Sessions: last avg last avg last avg last avg last avg last avg
without exemplars

BoT-FT (CVPR’19) 30.7 33.5 6.6 8.4 25.8 24.9 55.4 58.8 20.6 25.4 65.3 62.1
LwF (ECCV’16) 40.5 40.2 10.7 11.8 31.2 28.1 65.9 65.4 30.3 32.3 71.3 65.8

PASS (CVPR’21) 40.0 40.1 9.9 11.6 30.7 27.3 65.8 64.2 29.7 31.9 70.9 64.4
AKA (CVPR’21) 52.5 45.6 15.1 13.3 30.9 27.1 76.2 69.9 37.3 34.6 72.9 64.4

with 500 exemplars in total
BoT-FT+ (CVPR’19) 61.5 52.4 21.5 17.5 36.7 32.3 81.0 74.4 47.7 41.3 76.2 69.6

iCaRL (CVPR’17) 58.0 52.2 21.6 18.3 38.0 33.3 78.7 74.5 47.5 42.2 78.1 70.9
LwF+ (ECCV’16) 60.7 54.0 20.8 17.5 38.3 33.3 80.3 75.4 46.6 40.8 77.9 70.1

LUCIR (CVPR’19) 8.3 6.8 3.0 2.5 10.1 11.6 27.7 22.3 10.6 9.1 42.9 41.4

Table 4.2: Results in mAP and Rank-1 Accuracy (in %) after last task and average over
all tasks. The top half reports results for meta metric learning, and the lower half
for global optimization methods using the softmax-triplet loss (BoT [88]). Results
are further split into methods with and without exemplars. The best exemplar-free
results are highlighted in bold.

application of knowledge distillation to continual meta metric learning does hardly
improve results. The removal of positive pairs (DwoPP) results in large performance
gains after the last task: gains between 7.5 to 9.4 in mAP. To further analyze the
results we measure forgetting and plasticity on the Market 1501 dataset. Continual
learning aims to counter forgetting (stability) while optimally learning new tasks
(plasticity). To measure these, we track the change in mAP for each identity in the
unseen test set after each task: a drop is added to forgetting, an increase to plasticity.
In Table 4.3 we report the plasticity and forgetting averaged over tasks. We see
that DwoPP has greatly reduced forgetting at the price of only a small decrease in
plasticity.

Inter-Domain Lifelong Person ReID (LReID). In Table 4.4, we compare DwoPP
with other methods on the LReID [112] benchmark. Similar to the results for the
intra-domain ReID setting, the DMML-FT baseline outperforms BoT-FT by a large
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Continual learning metrics on Market 1501
BoT FT LwF AKA IDA DMML FT DwPP DwoPP

Plasticity 9.7 9.5 9.7 7.2 10.8 10.7 8.1
Forgetting -8.9 -7.7 -6.5 -5.9 -6.8 -6.5 -2.9

Overall 0.8 1.8 3.2 1.3 4.0 4.2 5.2

Table 4.3: Average forgetting and plasticity in mAP (%) on Market-1501 together
with the overall mAP change (defined as plasticity plus forgetting).

mAP Rank-1 Accuracy
market sysu msmt17 cuhk03 seen avg. unseen market sysu msmt17 cuhk03 seen avg. unseen

BoT-FT 11.6 54.6 0.8 31.2 24.6 32.4 31.6 61.6 2.8 35.1 32.8 32.8
LwF 21.0 58.0 1.7 48.0 32.2 43.3 46.5 64.7 5.8 53.8 42.7 42.9
AKA 18.7 56.3 1.6 48.6 31.3 43.6 42.3 63.1 5.8 53.9 41.3 43.6

DMML-FT 22.5 56.8 2.3 67.0 37.2 42.8 47.3 62.6 8.4 73.8 48.0 42.6
DwPP 23.2 56.7 2.2 67.9 37.5 44.7 49.1 63.2 7.5 72.4 48.0 44.2

Ours (DwoPP) 34.4 67.3 4.1 53.5 39.8 48.5 58.6 73.0 12.3 59.6 50.9 47.8

Table 4.4: Results after learning the last task. BoT [88] (above) and DMML [18]
(below).

margin for both seen and unseen tasks. Our method performs best, outperforming
AKA by 8.5/9.6 (mAP/Rank-1 Accuracy) on seen tasks and 4.9/4.2 (mAP/Rank-1
Accuracy) on unseen tasks. The difference between DwPP and DwoPP on LReID
further highlights the importance of removing positive pairs from knowledge distil-
lation. An interesting phenomenon we observed is that DwPP is always better in the
current task evaluation. We assume this is because DwPP forces the predictions to
be aligned with the probability distributions of the old model, which contain some
information about the relative distances of these identities. This extra information
further enhances representation learning in the current task, thus leading to better
performance on the current task even compared to the finetuning baseline (which
is usually better on the current task). All the performance curves on LReID-Seen are
shown in Fig. 4.5 and the curves on LReID-Unseen are shown in Fig. 4.6.

Influence of positive pairs on distillation. To better understand the role of posi-
tive pairs (PP) and negative pairs (NP) in knowledge distillation, we decouple the
knowledge distillation (following DKD [177]) from Eq. 4.6 into PPKD and NPKD
by LDwPP* = α∗PPK D +β∗N PK D,α+β = 1.0 (here we use T = 1.0). Note that
LDwPP = PPK D+ρ∗N PK D (see Supplementary Material for further explanations).
In Table 4.5, we observe that the performance drastically decreases with higher
participation of positive pairs.

Ablation on λ in DwoPP and temperature T in both DwoPP and DwPP. In
Fig. 4.7(a) we vary λ which controls the tradeoff between metric and distillation
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Figure 4.5: Results in mAP and Rank-1 Accuracy on the LReID benchmark. The
training order is (Market-1501→ CUHK-SYSU → MSMT17_V2 → CUHK03). The
first four rows show the evaluation on these four tasks respectively.
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Figure 4.6: Results in mAP and Rank-1 Accuracy the LReID-Unseen test set of
the LReID benchmark. The training order is (Market-1501→ CUHK-SYSU →
MSMT17_V2 → CUHK03).
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Figure 4.7: Ablation study on hyperparameters λ and T .

losses. Except for λ= 10.0 and λ= 0.1, DwoPP performance is stable to changing λ.
We set λ= 1.0 for DwoPP in all experiments. In Fig. 4.7(b), we vary the temperature
hyperparameter T in DwoPP. A high temperature smooths the distribution and de-
creases the influence of the dominant class. For DwoPP T = 10.0 performs similarly
to finetuning, and T = 0.1 causes the model to focus only on the highest probability.
Thus we set T = 1.0 for DwoPP. In Fig. 4.7(c) we vary the temperature T in DwPP to
determine if larger temperatures benefit it. However, even with the best T = 10.0,
DwPP performs similarly to DMML-FT and much worse than DwoPP. Again show-
ing that naive knowledge distillation does not improve results for continual meta
metric learning. We use T = 10 for DwPP in all experiments.

More random orders on Market-1501 dataset. In previous experiments, we split

61



Chapter 4. DwoPP

DwoPP DKD [177] DwPP
α 0.0 0.1 0.3 0.5 1.0 1.0
β 1.0 0.9 0.7 0.5 0.0 1-ρ

mAP
last 67.2 62.9 48.2 36.0 25.9 32.8
avg 57.6 53.7 46.8 39.1 32.1 37.8

Table 4.5: Decoupling Eq. 4.6 into PPKD and NPKD with coefficients α and β

on Market-1501 with temperature T = 1.0. ρ is the positive probabilities as in
DKD [177].
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Figure 4.8: Performance on Market-1501 averaged over three random ID orders
with standard deviation.

tasks according to the object IDs. Thus, for the purpose of verifying the robustness of
our proposed method to various orderings of the tasks, we randomly generate three
different orderings of person IDs from Market-1501 to split the tasks (see Fig. 4.8).
The results show that the trends are similar as those reported in Table 1. Results
are averages and standard deviations in mAP and Rank-1 Accuracy over these three
runs.

4.5 Conclusions

We observed that meta learning approaches perform better than those based on
global metric loss optimization for Object ReID, and thus based our approach on
Continual Meta Metric Learning. To overcome forgetting, we proposed Distillation
without Positive Pairs (DwoPP) as an approach that eliminates positive samples
from distillation. This distillation makes the metric learning model accumulate
knowledge from the previous and current task, and generalizes better to unseen
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tasks. Extensive experiments on newly proposed intra-task object re-identification
datasets and the existing LReID benchmark demonstrate the effectiveness of our
approach. Furthermore, the experiments confirm that naive knowledge distillation
does not improve results for continual meta metric learning, and only after the
removal of positive pairs forgetting of previous tasks is efficiently countered.

Limitations and ethical considerations Person ReID is fraught with ethical con-
cerns over its potential to violate the privacy of observed subjects. Although contin-
ual learning for Person ReID offers the possibility of learning and updating models
without the need for long-term retention of sensitive data, it also runs the risk of
“baking” biases into the model that, due to mitigation of forgetting, become difficult
to remove. For real applications there is still a large gap between joint and continual
training for object ReID, and a limitation of the experiments in this work is the
relatively short task sequences we consider.
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5 Density map distillation for incremental
object counting

5.1 Introduction

The image-based counting task aims to infer the number of people, vehicles or
any other objects present in images. It has a wide range of applications such as
traffic control, environment survey and public safety. Most of existing research
focus on learning a model from a single dataset. Only [16] and [89] propose to train
a model on multiple datasets simultaneously in a multi-task setting. In this paper,
we propose a method to incrementally learn to count new objects or to count in a
new domain.

Continual learning (CL) addresses the problem of training a model from a non-
stationary distribution. It is important because the data in the real world does not
come together, and often the previous data cannot be revisited due to the privacy or
storage restrictions. Researchers have explored continual learning in many tasks, e.g.
classification [66, 75], segmentation [13, 32], and object detection [131]. However,
continual learning for counting systems, has to the best of our knowledge, not yet
been studied.

One of the main challenges of continual learning is catastrophic forgetting.
After training on new data, models tend to forget the knowledge from the previous
data. In the past few years, people tried to alleviate this issue by using replay
examples [119, 161], expand networks [167] and regularization [66, 75]. As one of
the most promising methods, regularization can be further categorized as weight
regularization [66] and data regularization [75]. The former apply regularization
on weight to prevent them from drifting too far from the old model, while the later
apply it on the output of the network with given input data. Due to their success
for classification tasks, the fact that they do not require exemplars, and because
they scale well with the number of tasks, we will here explore data regularization for
object counting.

However, these methods are mainly designed for the classification problem,
which aims to predict the category for a given sample. For the counting problem,
which is a regression problem where the output is a scalar value, directly applying
any existing CL method is suboptimal. We therefore propose a new method called
Density Map Distillation (DMD). For each new object, we train a separate counter
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head that maps the feature extraction backbone to an object-specific density map.
After the training of each task, the counter head is fixed and only the feature extrac-
tor is trained during future tasks. When training the new task, we use the new data
to apply a distillation on the output of all previous counter heads. Since the counter
head is fixed and the feature extractor is drifting, we propose to train an adaptor
to project the new features to the old features. This mechanism allows us to keep
plasticity while maintaining stability (i.e., prevent forgetting).

The contribution of this chapter include: (1) We set up a benchmark of in-
cremental learning for counting new objects. We define metrics for evaluating
incremental counting problems. (2) We propose Density Map Distillation (DMD)
for the incremental counting problem. The novelty includes fixing the task-specific
counter head and training an adaptor for the feature extractor. Our method prevents
forgetting, while maintaining plasticity to learn new tasks. (3) We adapt several
existing methods of incremental learning in our benchmark. Experiments shows
that our new methods outperforms these existing methods.

5.2 Related Work

5.2.1 Incremental Learning

Incremental learning aims to develop methods that can learn new knowledge from
new data while not forgetting previous knowledge learned from the previous train-
ing stages. The existing methods can mainly be categorized as three types: distil-
lation based, dynamic model based and rehearsal based [26]. Distillation based
methods focus on how to limit the change of the model by applying a loss on the
weights directly [3, 66], or on the output features [54] and probabilities [75]. Dy-
namic model based methods [167] extend the architecture of the network to learn
new knowledge from the new incoming data distribution. Rehearsal based meth-
ods [119] save a few exemplars from the previous dataset and replay them or use
them to constrain the model during the new training sessions. For a more complete
overview of incremental learning literature, we refer to Chapter 2.

Previously, incremental learning mainly focused on image classification prob-
lems. Recently, the community also developed incremental learning algorithms for
other problems such as image generation [160], segmentation [13], object detec-
tion [113], video classification [109]. But to the best of our knowledge, there is no
work for incremental learning of counting problems yet.
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5.2.2 Crowd Counting

There are two categories of crowd counting methods, density map based methods
[90, 147] and localization based methods [138].

Localization based methods count by locating each individual’s position. Some
methods [76, 125] are driven by an object detector. However, since most of the
counting datasets have only point annotations available, inaccuracy is introduced
by estimation of the ground truth bounding boxes. Liu et al. [77] propose Recurrent
Attentive Zooming Network(RAZ-Net) that recurrently detect high density regions
and zoom in for re-inspection. The network performs the counting and localization
task at the same time, and they define an adaptive fusion scheme to make this
two tasks complement each other. Song et al. [138] propose the Point to Point
Network (P2PNet) that predicts the localization points directly. They surpass the
state-of-the-art by using a new one-to-one matching strategy from the prediction
to the ground truth based on the Hungarian algorithm.

For the localization based method, it is hard to predict each location where the
crowd density is very high [146]. Most of the research in counting mainly focuses
on predicting a density map and then count by the summing it. In [126, 175], they
propose to use several parallel CNNs of different sizes to address the problem of
scale variation. Another line of research focuses on the loss function. In [90], Ma
et al. propose a Bayesian loss to measure the distance between the predicted and
the ground truth density map. They construct a smoothed density map for each
of the annotated points, where the value is the posterior probability of this point
at the corresponding position. Wang et al. [147] measure the similarity between
the predicted density map to the ground truth density map by solving an Optimal
Transport (OT) problem.

In the above methods, the model is always trained with one dataset. In [16]
and [89], they propose to train a model on multiple datasets simultaneously. Ma
et al. [89] deal with the issue that the model is sensitive to scale shift. They divide
each image into non-overlapping patches and apply scale alignment. They derive
a closed-form solution of the optimal image rescaling factor given the scale distri-
bution. A CNN network is trained to predict the spatial distribution and the scale
distribution. In [16], Chen et al. deal with the problem that the model tends to
focus on learning the dominant domains and ignores the non-dominant domains.
They propose Variational Attention (VA) to model the domain specific attention
distribution. In addition, they also propose Intrisic Variational Attention (InVA) for
the concern of domain overlapp across different datasets and sub-domains within a
single dataset. Both Va and InVA refine the propagating knowledge so that the data
from each dataset can be learned without bias.

There are also some research [35, 44, 152] focusing on counting problem in
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domain adaptation setting, where the model is trained on the source dataset and
the label of the target dataset is limited. Wang et al. [152] consider using synthetic
dataset as a source set and adapt the model to real dataset. They propose using
CycleGAN [183] for domain adaptation. In [35, 44], they use adversarial training for
the domain adaption [33], where a discriminator is trained to classify the feature to
source or target and an adversarial loss is applied on the feature extractor to fool
the discriminator.

Previous works in counting focus on one category. In [87], Lu et al. propose
class-agnostic counting. The aim is to train a network that counts the number
of instances in an image by specifying an exemplar patch. They propose Generic
Matching Network (GMN) which is pretrained on video data for tracking, and they
count instances by matching the instance on the test images. In [117], Ranjan et al.
proposed the Few-shot Adaptation and Matching Network (FamNet). It contains
a density prediction module and a multi-scale feature extraction module, which
is a fixed pretrained ResNet-50 [46]. They compute the correlation maps of the
features between the images and the exemplars at different scales. The density
prediction layer uses these outputs to predict a final density map. They also propose
a test-time adaptation loss, consisting of a min-count loss and a perturbation loss.
Instead of a fixed similarity measure, Shi et al. [129] propose a trainable bilinear
similarity metric. Furthermore, they also extend it to a dynamic similarity metric
that captures the key pattern for each few-shot exemplar specifically.

5.3 Method

Counting is an integral part of many real-life applications. To alleviate the human
costs of manual counting, many methods have been developed for the counting
of objects [90, 138, 147]. As discussed in the introduction, these methods generally
assume that all training that is jointly available. However, for many applications
this assumption is not realistic and the algorithm would only be able to have access
to a batch of data at each time step.

A naive approach to learning from a sequence of tasks would be to just continue
finetuning the model on the available data of consecutive tasks. However, this
would lead to the catastrophic forgetting phenomenon. An illustration of this is
provided in Figure 5.7 where we show that after learning several tasks with fine-
tuning, the method has lost its ability to count the first-task grapes class. In this
section, we explore distillation-based methods for incremental learning of object
counting to prevent the effect of catastrophic forgetting.
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Frozen

Distillation Loss Train Loss

Training

Figure 5.1: Density Map Distillation (DMD) without Adaptor. While training new
tasks the distillation loss is applied on the output density map using the previous
counter heads, between the previous and the new feature extractors. Different from
LwF [75], previous counter heads are fixed when training new task.

5.3.1 Notation

In a typical counting problem, images Xi are annotated for a single object class c ∈C ,
for example annotations of persons, cars, or apples are given. Existing works do not
consider counting various classes of objects simultaneously. Typically, objects are
annotated with a single point in the center of the object at positions pi j , j ∈ 1, ..., Ni

where there are Ni objects for the image xi . We will use the notation Pi to refer
to the set of locations in image xi . Object counting learns a model for a single
object class that given an input image maps to a density map which predicts the
number of object instances per pixel [90, 147] or which directly predicts the object
coordinates [138].

In incremental learning for counting problems, the data is spli in various tasks,
where each task t ∈ [1,T ] arrives sequentially. For each task, the dataset D t =
{ct ,

(
(x1,P1) , (x2,P2) , · · · , (xM ,PM )

)
} contains the class category ct and images with

ground truth position annotations. We consider the scenarios where each task has a
single object category ct different from the other tasks. After training on all T tasks,
the model is evaluated on a test set Y that contains images of all objects C seen
in the various tasks. The task-ID of the test images is available to the algorithm at
inference time (this setting is also known as task-incremental learning).

For the training of the object counting network, we propose to use a network
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which can be divided into a feature extractor f : Rw×h×3 → Rwd×hd×d where d is the
number of output channels of the feature extractor, and an object-specific counter
head given by h : Rwd×hd×d → Rwd×hd×1. The counter head maps from the feature
space to a density map. The prediction of a network for an image x is then given by:

ŷ =
wd∑

w=1

hd∑
h=1

d̂(x) =
wd∑

w=1

hd∑
h=1

h ◦ f (x) (5.1)

where d̂ = h ◦ f is the predicted density map and the summation is over the spatial
coordinates of the density map.

For training the new task, we use the loss proposed by Wang et al. [147]

Ltrain = ∣∣∥d∥1 −
∥∥d̂

∥∥
1

∣∣−λ1W

(
d

∥d∥1
− d̂∥∥d̂

∥∥
1

)
+λ2

1

2

∥∥∥∥∥ d

∥d∥1
− d̂∥∥d̂

∥∥
1

∥∥∥∥∥ (5.2)

The first term is the counting loss for the final counting number. The second term is
the optimal transport loss, where W is the Monge-Kantorovich’s Optimal Transport
(OT) cost [145]. The third term is the Total Variation (TV) loss, and λ1 and λ2 are
the hyperparameters for the OT and TV losses.

To extend the above described method to incremental object counting, we use
the following notations. The network contains a feature extractor after learning task
t given by ft . For each of the learned tasks, we have a task specific counter head ht

for each object. At the beginning of the task, the feature extractor ft is initialized
from the previous feature extractor ft−1. The previous feature extractor ft−1 is then
fixed and stored as a reference. Other older feature extractors like ft−2 are not kept.

When training task t we use hτt to refer to the previous counter heads for the
object that was learned at task τ. At inference time, we combine the last feature
extractor with any of the previously learned counter heads, so for example to get
the solution for class cτ after training task t we apply hτt ◦ ft . We also consider fixing
the previous task specific counter, i.e. we do not update it when learning new tasks,
so hττ = hττ+1 = ·· · , and we simply refer to it as hτ.

5.3.2 Data regularization for regression problems

One of the popular approaches to prevent catastrophic forgetting in continual learn-
ing is by means of regularization methods [26]. Compared with the other two main
approaches to continual learning, regularization methods have the advantage over
rehearsal methods that they do not require the storage of any data from previous
tasks, and they do not have an increased memory footprint when training on larger
task sequences like isolation methods typically have. Regularization methods can
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Frozen
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Figure 5.2: Density Map Distillation (DMD). In addition to the distillation loss,
we train an adaptors (φ) to project the new features to the old features, since the
previous counter heads are fixed and the feature extractor is still training.

be differentiated in data and parameter regularization methods.
Data regularization for classification networks is proposed by [75] and it is one

of the most popular methods for exemplar-free continual learning. Different from
the parameter regularization methods [3, 66] which apply the regularization loss
on the parameters of the network, data regularization apply the regularization on
the output of network layers. Other than parameter regularization, it is dependent
upon the data on which the distillation is applied. This idea has been further
extended by [27, 54]. The former apply the regularization loss on the feature output
and the output after the cosine normalization. The latter apply them on several
intermediate layers and study various marginalization to improve the plasticity of
the method.

However, the most common data regularization methods, LwF [75] cannot be
applied directly to the counting problem. In LwF [75], Li et al. proposed to apply a
knowledge distillation loss between the new and the old output. Given the image
from the new dataset as the input, both models give a prediction of the probability
and a cross entropy loss is applied as a regularization. However, an object counting
network does not output a probability, and therefore the cross entropy loss cannot
be applied. An adaption to the counting problem is to apply a L2 loss on the density
map:

Lreg =
∑

τ∈[1,t−1]

∥∥hτt ◦ ft (x)−hτt−1 ◦ ft−1(x)
∥∥

2 . (5.3)
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We will identify this method with Learning without Forgetting (LwF) in our results
section. However, we found that such an adaptation leads to suboptimal results.
We hypothesize that this method suffers from overfitting.

Another typical data regularization method is to apply regularization on the
feature level [27, 54] according to:

Lreg =
∑

τ∈[1,t−1]

∥∥ ft (x)− ft−1(x)
∥∥

2 . (5.4)

We call this method Feature Distillation (FD). This prevents the feature extractor
from drifting too far from the old one. But this regularization does not consider
the difference between the new and old task. So it is either too rigid so that the
model cannot learn from new tasks or too flexible and the model forgets previous
knowledge. This was also observed by PODNet [27].

5.3.3 Density Map Regularization with Cross-Task adaptors

To address the shortcomings of data regularization for regression tasks, and to
prevent the overfitting of the previous counter heads, we propose a further adapta-
tion. After training of each task, the counter head for this task will be fixed. So the
notation hτt (the counter head for task τ during or after the learning of the task t)
can be simplified as hτ, because the counter head is not changed after the training,
and hence hττ = hττ+1 = ·· · . We also store the previous feature extractor ft−1 as a
reference for the regularization loss. Earlier feature extractor are not needed, so the
memory requirement does not scale linearly with the number of tasks. Then we
apply the following regularization loss on the density map output from the old and
new models:

Lreg =
∑

τ∈[1,t−1]

∥∥hτ ◦ ft (x)−hτ ◦ ft−1(x)
∥∥

2 . (5.5)

This method is an exemplar-free method, since images from previous tasks are not
used. As shown in Figure 5.1, both old and new feature extractors use the same
image x ∈ D t as input and extract a feature ft−1(x) and ft (x). We use L2 distance
as the regularization loss. It is applied to the output of each counter head for all
previous tasks h1, · · · ,ht−1, which encourages the new model output to yield the
same result when counting previous objects.

As we fixed the previous counter head, this might prevent the feature extractor
from learning new knowledge. Therefore, in addition, we propose to train an
adaptor φ to project the features from the new feature extractor to the old one.
The adaptor is trained together with the feature extractor using the distillation
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loss. As illustrated in Figure 5.2, when training task t , the adaptor φt−1 projects
the features generated by ft to approximate those by ft−1. Similarly, by cascading
several previous adaptors φt−2, · · · ,φ1, the features can be projected to those in
earlier stages. So the distillation loss with adaptor is given by:

Lreg =
∑

τ∈[1,t−1]

∥∥hτ ◦φτ ◦ · · · ◦φt−1 ◦ ft (x)−hτ ◦φτ ◦ · · · ◦φt−2 ◦ ft−1(x)
∥∥

2 . (5.6)

We call our method density map distillation (DMD). To identify, the version defined
by Eq. 5.5 without the adaptor, we will use the name DMD w/o Adapt). The learning
of adaptors between backbone networks in continual learning has been studied
recently for continual self-supervised learning [31, 37]. However, its usage in com-
bination with supervised heads, as is done in this chapter, has not been studied
before.

L =Ltrain +λLreg, (5.7)

where λ is the hyperparameter to balance the training loss and the regularization
loss.

During the inference, the feature is extract by the new feature extractor ft . To
count the object cτ, the feature needs to be adapted through all the adaptors learned
after that task, φt−1,φt−2, · · · ,φτ. Then counter head hτ uses the adapted feature to
predict the density map for the given object according to:

d̂(x) = hτ ◦φτ ◦ · · · ◦φt−1 ◦ ft (x). (5.8)

5.4 Experimental Results

In this section, we introduce the experimental setup and evaluate the proposed
method on several benchmark counting datasets.

5.4.1 Dataset and evaluation

Datasets. The RSOC dataset is a counting dataset of aerial images proposed by [34]
involving buildings, small vehicles, large vehicles, and ships. In this paper, we will
consider learning to count these classes incrementally in the before mentioned
order. The images of buildings are collected from Google Earth, while the rest are
from the DOTA dataset [162]. The DOTA dataset is an object detection dataset of
aerial images. The original labels of bounding boxes are replaced by their central
location for the counting problem. There are 2468 images for buildings, 280 images
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Figure 5.3: Sample images from RSOC dataset.

for small vehicles, 172 images for large vehicles and 137 images for ships
The FSC147 [117] dataset is a counting dataset for few-shot learning, containing

147 categories. For most categories, there are less than 100 images per category.
For our incremental learning, we chose several categories that contain a significant
number of images. To better share the knowledge across the learning process, we
select similar categories for the learning sequence. We consider two sequences
of counting of four tasks. The first sequence, called FSC-fruits, contains grapes,
tomatoes, strawberries and apples, containing 116, 117, 126 and 165 images, respec-
tively. The second sequence, called FSC-birds, is flamingos, pigeons, cranes and
geese, containing 76, 81, 108 and 162 images, respectively.

Evaluation Metric. Following previous methods, we use rooted Mean Squared
Error (MSE), Mean Absolute Errors (MAE) and mean Normalized Absolute Errors
(NAE) as metric to evaluate the performance of the model.

Mean Squared Error (MSE) is defined as:

MSE = 1

N

N∑
i=1

∥∥ŷ − y
∥∥

2 , (5.9)
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Figure 5.4: Sample images from FSC147 dataset.

where ŷ is the predicted count number, y is the ground truth count number and N
is the size for the testset.

Mean Absolute Errors (MAE) is defined as:

MAE = 1

N

N∑
i=1

∥∥ŷ − y
∥∥

1 , (5.10)

and mean Absolute Errors (NAE) is defined as:

NAE = 1

N

N∑
i=1

∥∥ŷ − y
∥∥

1

y
. (5.11)

When evaluating the average performance of all the dataset, we use NAE because
its values can be compared over datasets which have varying number of objects in
them.

5.4.2 Implementation Details

Our implementation is based on the official code of DM-Count [147]. The feature
extractor is the convolutional layers of VGG19 with 512 output channels. The
counter head contains of two 3×3 convolutional layers with 256 and 128 output
channels respectively and a 1×1 convolutional layers with 128 output channels. The
adapter is a one-layer 1×1 convolutional layer with the same number of channels.
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Figure 5.5: Result for RSOC (satellite) Dataset. The performances are evaluated after
training of each task. We report the averaged value for all the previously seen tasks.
The value is normalized to remove the dataset-scale. Lower value indicate better
performance.

We train the model with the Adam optimizer, using batch size 10, learning rate 1e-5,
weight-decay 1e-4 and beta 0.9 and 0.999. For each stage, we train the model for
1000 epochs and for the next stage the training is started from the previous model.
The hyperparameters λ= 100 for RSOC dataset and λ= 10 for both FSC-fruits and
FSC-birds.

5.4.3 Results on satellite images

For satellite images, we train our model with four classes buildings, small vehicles,
large vehicles and ships in sequence from the RSOC dataset. Table 5.1 shows the
performance at the end of the incremental learning process, after training all four
classes. The performance is evaluated in three metric: MSE, MAE and NMAE.
Smaller values indicates better performance. The average performance of the four
classes is evaluated with NMAE because of dataset-scale invariance of the NMAE
metric.

Finetuning (FT) achieves the best performance on the last task and worst on
the first task, as expected. Feature Distillation (FD), EWC [66] and MAS [3] show a
similar pattern: they are good at remembering the first task, but have difficulties to
learn subsequent tasks. However, they also often perform good in the last task. This
might be because the ships class is more similar to the first task of buildings when
comparing to the middle vehicle tasks: the stability which prevents these methods
from adapting to the vehicles tasks, helps it to get acceptable results for buildings.
LwF [75] performs good on the first task. But it fails in the second and third task due
to its very flexible counter head.

Our method DMD w/o Adapt improved the result compared with existing meth-
ods, as shown in the averaged value. The good performance in the second and
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Dataset: building small vehicle large vehicle ship Avg
Metric: MSE MAE NMAE MSE MAE NMAE MSE MAE NMAE MSE MAE NMAE NMAE

FT 31.10 27.05 0.926 1266.89 430.81 0.609 52.34 38.70 0.624 86.40 59.51 0.296 0.614
LwF 14.21 10.70 0.360 1326.12 505.10 1.000 79.65 62.78 1.000 137.76 108.27 0.499 0.715
FD 10.79 7.48 0.263 1108.06 356.01 0.379 39.16 27.17 0.423 122.86 88.16 0.382 0.362

EWC 10.94 7.58 0.268 1150.12 360.78 0.383 39.75 27.33 0.418 117.46 80.90 0.345 0.352
MAS 11.07 7.71 0.271 1068.67 333.95 0.380 40.23 27.75 0.419 117.94 85.17 0.375 0.361

DMD w/o Adapt 13.36 9.90 0.336 929.75 291.62 0.288 33.92 22.52 0.345 130.56 87.13 0.384 0.338
DMD 12.63 9.25 0.315 988.63 320.97 0.315 25.78 16.53 0.269 107.84 76.40 0.367 0.316

Table 5.1: Performance of several incremental learning methods after learning four
tasks of RSOC dataset. In bold we show the best results for each column excluding
the FT method.

the third task shows that it can learn new task while not forgetting the previous
one. After adding the adaptor for the feature extractor, our method DMD further
improved the performance, especially on the last task. In conclusion, the proposed
density map distillation obtains around a 4% improvement over the best parameter
distillation method (EWC).

Additional results are provided in Figure 5.5. Other than Table 5.1 here we
provide results after learning each of the tasks. We report the averaged MSE and
MAE (normalized for the performance that would be obtained if we only train that
task) for all previously seen tasks. For example, the scores reported at task 2 in the
graph are the average of normalized MSE obtained on building and small vehicle)
based on the network after training task 2. In the figure, we can observe that the
parameter regularization methods EWC and MAS significantly outperform the FT
baseline. Next, we observe that our method DMD w/o Adapt obtains significantly
better results, especially for averaged NAE. Next, we see that for only two tasks, the
proposed DMD method does perform similarly to DMD w/o Adapt. However, for
more tasks, DMD does significantly better, and outperforms all methods after four
tasks.

5.4.4 Results of counting fruits and birds

Here we consider two incremental learning sequences based on the FSC147 dataset.
The first one, FSC-fruits, contains the following tasks grapes, tomatoes, strawberries,
and apples. The second one, FSC-birds, considers the consecutive classification
tasks of flamingos, pigeons, cranes, and geese. Table 5.2, and Table 5.3 summarize
the results on FSC-fruits and FSC-birds, respectively.

Similar to the result in RSOC dataset, Finetuning (FT) achieves the best perfor-
mance on the last task and forgets previous tasks. LwF [75] gives relatively good
result in the first and the last task, but failed in the second and third task. MAS [3]
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Dataset: grapes tomatoes strawberries apples Avg
Metric: MSE MAE NMAE MSE MAE NMAE MSE MAE NMAE MSE MAE NMAE NMAE

FT 67.11 53.25 0.671 28.49 20.28 0.362 28.11 21.18 0.312 12.85 7.89 0.119 0.366
LwF 27.29 19.74 0.260 63.09 49.54 1.000 73.45 61.02 1.000 16.50 9.77 0.135 0.599
FD 17.26 11.99 0.149 16.44 12.76 0.319 19.83 13.79 0.225 29.35 15.19 0.179 0.218

EWC 17.91 12.40 0.154 17.86 14.07 0.328 21.42 15.16 0.252 22.03 13.69 0.190 0.231
MAS 16.12 11.37 0.142 15.79 12.19 0.298 19.23 13.31 0.212 27.32 15.61 0.211 0.216

DMD w/o Adapt 25.35 18.28 0.240 14.29 11.50 0.260 16.09 11.25 0.177 23.96 12.33 0.141 0.207
DMD 26.63 18.83 0.250 11.35 8.86 0.221 16.27 11.09 0.178 18.56 10.84 0.140 0.197

Table 5.2: Performance of several incremental learning methods after learning four
tasks on FSC-fruits. In bold we show the best results for each column excluding the
FT method.

Dataset: flamingos pigeons cranes geese Avg
Metric: MSE MAE NMAE MSE MAE NMAE MSE MAE NMAE MSE MAE NMAE NMAE

FT 74.55 37.77 0.587 41.54 27.12 0.617 12.79 7.63 0.218 7.90 3.54 0.102 0.381
LWF 66.35 27.73 0.326 60.12 42.93 1.000 54.75 32.30 1.000 10.59 5.21 0.153 0.620
FD 64.01 24.85 0.246 27.42 15.30 0.350 13.14 7.09 0.192 13.19 6.78 0.198 0.247

EWC 62.90 23.94 0.233 23.33 12.06 0.284 12.76 6.49 0.163 12.25 6.41 0.193 0.217
MAS 63.38 24.10 0.226 25.07 13.70 0.308 12.96 6.64 0.168 12.04 6.03 0.178 0.220

DMD w/o Adapt 67.35 28.19 0.330 25.96 11.60 0.204 7.78 4.41 0.128 10.72 5.56 0.166 0.207
DMD 67.21 28.66 0.354 22.52 10.56 0.198 7.23 4.16 0.123 9.01 4.37 0.133 0.202

Table 5.3: Performance of several incremental learning methods after learning four
tasks on FSC-birds. In bold we show the best results for each column excluding the
FT method.

and EWC [66] give the best result in the first task in FSC-fruits and FSC-birds re-
spectively, but they fail to learn new tasks. Feature Distillation (FD) also performs
similarly. FD and MAS work slightly better in FSC-fruits, and EWC works better in
FSC-birds.

Our method DMD w/o Adapt improves the result over the above-mentioned
methods. Especially, it gets better performance in the new tasks, on both the FSC-
fruit and FSC-bird sequence. DMD further improves the result than DMD w/o
Adapt, with the feature translation by the adaptor. In FSC-fruits, the performance
drops slightly in the first task grapes and improves by a large margin in the second
task tomatoes, compared with DMD w/o Adapt. In FSC-birds, the performance
improves in both pigeons (second) and geese (last) tasks.

Figure 5.6 shows the averaged performance after training of each task. In FSC-
fruits, our method DMD outperforms other methods. In FSC-birds, both DMD and
DMD w/o Adapt outperform other existing method with a large margin after the
third task.
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Figure 5.6: Averaged performance for FSC147 Dataset. The performances are evalu-
ated after training of each task. We report the averaged value for all the previously
seen tasks. The value is normalized to remove the dataset-scale. Lower value
indicate better performance.

Dataset: grapes tomatoes strawberries apples Avg
Metric: MSE MAE NMAE MSE MAE NMAE MSE MAE NMAE MSE MAE NMAE NMAE

DMD w/o Adapt(1) 24.35 15.85 0.200 17.15 13.38 0.302 18.82 14.70 0.266 31.26 16.47 0.195 0.241
DMD w/o Adapt(3) 25.35 18.28 0.240 14.29 11.50 0.260 16.09 11.25 0.177 23.96 12.33 0.141 0.207

DMD(1) 22.82 15.38 0.196 15.40 11.70 0.266 17.76 13.52 0.243 32.43 17.01 0.192 0.224
DMD(3) 26.63 18.83 0.250 11.35 8.86 0.221 16.27 11.09 0.178 18.56 10.84 0.140 0.197

Table 5.4: Ablation of varying number of layers in the counter head on the FSC-fruits
sequence.

5.4.5 Ablation Study

Layers of the counter head. We study the effect of using different layers for the
counter head in FSC-fruits benchmark. For the comparison, the size of the total
network is fixed, so to increase the size of the counter head means that we move few
layers from the feature extractor to the counter head. Table 5.4 shows the result of
our methods, DMD w/o Adapt and DMD, with 1 or 3 counter head layers. It shows
that compared with 1 layer, using 3 layers for the counter head achieves a better
performance on newer tasks and a better overall performance.

Hyper parameter for regularization. We study the effect of using different hy-
perparameter for regularization in FSC (fruits) benchmark. Table 5.4 shows the

79



Chapter 5. Counting

Dataset: grapes tomatoes strawberries apples Avg
Metric: MSE MAE NMAE MSE MAE NMAE MSE MAE NMAE MSE MAE NMAE NMAE

DMD w/o Adapt(10) 25.35 18.28 0.240 14.29 11.50 0.260 16.09 11.25 0.177 23.96 12.33 0.141 0.207
DMD w/o Adapt(100) 22.47 15.00 0.190 14.98 11.25 0.274 18.14 12.35 0.210 23.65 14.23 0.194 0.217

DMD(10) 26.63 18.83 0.250 11.35 8.86 0.221 16.27 11.09 0.178 18.56 10.84 0.140 0.197
DMD(100) 22.03 15.09 0.193 14.93 11.26 0.272 17.56 11.69 0.196 27.44 15.50 0.190 0.213

Table 5.5: Ablation of different regularization hyperparameter for regularization on
FSC-fruits.

result of our methods, DMD w/o Adapt and DMD. With a higher regularization, the
performance for the latter tasks drop because it is too rigid for learning new task
and the model remembers the first task better.

5.5 Conclusions

We have studied the problem of incremental learning for the object counting prob-
lem, and we mainly focus on the density based method. The challenge is to prevent
forgetting while learning to count new object categories for new tasks. We propose
an exemplar-free method, called Density Map Distillation (DMD). For counting
each object, we train a new counter head and all tasks share a feature extractor. We
propose to fix the task counter and apply a distillation loss computed with new data
on the output of the old counter head. To adapt the changed feature extractor for
the fixed counter head, we introduced an adaptor to project the new output feature
to the old one. Experiments shows that our method DMD w/o Adapt outperforms
those methods adapted from continual learning for classification problems. And
with the adaptor, our DMD further improve the performance.
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(a) (b)

(c) (d)

Figure 5.7: (a) Input Image (b) Density map after training only on the grapes data.
Density map after learning two additional tasks (tomatoes and strawberries) with
(c) Fine Tuning (FT) and (d) after learning by our proposed method (DMD). In
the upper-left corner we show the ground truth number of grapes in (a) and the
estimation of the algorithms respectively. Note that naive fine-tuning leads to
catastrophic forgetting and the method loses its ability to count grapes. (d) Our
method manages to get a considerable better count prediction even though there is
some performance loss.
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6 Conclusions and Future Work

6.1 Conclusions

In this thesis, we aimed to develop continual learning methods for various computer
vision applications, including image generation, object re-identification and object
counting.

• Chapter 2: Related Work

In this chapter, we reviewed previous work in continual learning for classifi-
cation problem. We discussed the settings and techniques used in continual
learning. Most works discuss these methods in terms of a relatively large
category, such as data regularization, parameter regularization, replay, and
parameter isolation. We present techniques that belong to these categories,
and we also present some other techniques that do not clearly fall into these
broad categories, including gradient update modification, task balancing,
model generalization, exemplar selection, generative replay and alternative
classification methods.

• Chapter 3: Memory Replay GANs: learning to generate images from new
categories without forgetting

Previous works on sequential learning address the problem of forgetting in
discriminative models. In this chapter, we considered the case of generative
models. In particular, we investigated generative adversarial networks (GANs)
in the task of learning new categories sequentially. We first showed that se-
quential fine-tuning renders the network unable to properly generate images
from previous categories (i.e. it suffers from forgetting). Addressing this
problem, we propose Memory Replay GANs (MeRGANs), a conditional GAN
framework that integrates a memory replay generator. We study two meth-
ods to prevent forgetting by leveraging these replays, namely joint training
with replay and replay alignment. Qualitative and quantitative experimental
results in MNIST, SVHN and LSUN datasets show that our memory replay
approach can generate competitive images while significantly mitigating the
forgetting of previous categories.
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• Chapter 4: Positive Pair Distillation Considered Harmful: Continual Meta
Metric Learning for Lifelong Object Re-Identification

Lifelong object re-identification incrementally learns from a stream of re-
identification tasks. The objective is to learn a representation that can be
applied to all tasks and that moreover generalizes to previously unseen re-
identification tasks. The main challenge, which distinguishes continual re-
identification from standard continual learning scenarios, is the fact that at
inference time the representation must generalize to previously unseen iden-
tities. To address this problem, we proposed to apply continual meta metric
learning to lifelong object re-identification. To prevent forgetting of previous
tasks, we used knowledge distillation and explored the roles of positive and
negative pairs. Based on our observation that the distillation and metric
losses are antagonistic, we proposed to remove positive pairs from distillation
to robustify model updates. We call this approach Distillation without Positive
Pairs (DwoPP). To verify the effectiveness of DwoPP, we performed extensive
intra-domain experimental analysis on person and vehicle re-identification
datasets (Market-1501, MSMT17 V2, VeRi-776), as well as inter-domain ex-
periments on the LReID benchmark. Our experiments demonstrated that
DwoPP significantly outperforms the state-of-the-art.

• Chapter 5: Incremental learning of counting new objects by density map
distillation

In this chapter, we presented a new problem: learn to count a series of new
objects incrementally. The challenge is to prevent forgetting of the learned
task, while also learning to count new objects. We considered the density
map-based method, which is the mainstream counting method. We set up a
benchmark that contains a variety of objects, including buildings, vehicles,
and boats from satellite, and a variety of different fruits and birds. Existing
methods that were directly adapted from continual learning for classification
task cannot get optimal performance. Therefore, we proposed an exemplar-
free method, Density Map Distillation (DMD). This approach has two main
contributions: 1) We found that it is important to fix the old counter head
in the task of counting 2) Since the counter head is fixed and the feature
will drift, we proposed to use an adaptor to project features from new to old.
Experiments showed that our method is effective and outperformed other
methods adapted from existing approaches.
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6.2 Future work

As presented in Chapter 2, many methods and techniques for continuous learning
have been proposed. In the future, we are interested in analyzing these methods
and techniques because we have at least two questions in mind.

The first question is why many of the existing techniques for continuous learning
do not appear to interfere with each other, but in reality, we do not improve result by
simply using them simultaneously. One explanation may come from the perspective
of the plasticity-flexibility tradeoff. Some of the different approaches may be similar
in nature; they simply place a point on the plasticity-flexibility tradeoff in different
ways. But at the same time, we also believe that a more in-depth study may reveal
new insights into the combination of methods. The second question is on how
these method work in an environment other than the experiments considered
in the original papers. For most works, experiments are presented for which the
method outperforms other methods. It would be very interesting to show how these
methods work in other environments and analyze why certain types of methods
work or do not work in certain situations.

Currently, most of the research on continuous learning focuses on the setting
where memory is limited or forbidden. In addition to practical considerations,
another reason why people are so fascinated by this topic is that human memory is
very limited and unstable. We want to develop an artificial intelligence system that
works in a similar way to humans themselves. However, memory is actually very
cheap and stable for a computer system. Therefore, another interesting direction is
to study continuous learning without memory limitations, but taking into account
training time or energy consumption.
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