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Abstract

In the present thesis, we study the theory of decomposition spaces, focusing on the interval
construction for decomposition spaces and the decomposition space of subdivided intervals U,
which was constructed by Gálvez, Kock, and Tonks [60] as a recipient of Lawvere’s interval
construction. Our interest in U is due to the Gálvez–Kock–Tonks conjecture, which states that U
enjoys a certain universal property: for every complete decomposition space X, the space of culf
functors from X to U is contractible.

The first main contribution, developed in collaboration with Alex Cebrian, is to introduce the
concept of connected and non-connected directed hereditary species and show that they have
associated monoidal decomposition spaces, comodule bialgebras, and operadic categories. The
notion subsumes Schmitt’s hereditary species, Gálvez–Kock–Tonks directed restrictions species,
and a directed version of Carlier’s construction of monoidal decomposition spaces and comodule
bialgebras. In addition to all the examples of Schmitt, Gálvez–Kock–Tonks and Carlier, the new
construction covers also the Fauvet–Foissy–Manchon comodule bialgebra of finite topological
spaces, the Calaque–Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees, and the Faà di
Bruno comodule bialgebra of linear trees.

The second main contribution is to prove the Gálvez–Kock–Tonks conjecture. First, we proved
the conjecture for the discrete case. However, as kindly pointed out by the anonymous referee
of [47], the proof works the same for a broader class of decomposition spaces, namely those
1-truncated decomposition spaces with the property that all their intervals are discrete. This
locally discrete case is general enough to cover all locally finite posets, Cartier–Foata monoids,
Möbius categories, and strict (directed) restriction species. The proof is 2-categorical. First, we
construct a local strict model of U, which is then used to show by hand that the Lawvere interval
construction, considered as a natural transformation, does not admit other self-modifications than
the identity.

It is natural to ask whether the techniques developed in the proof of the discrete case of the
conjecture can be applied or refined to prove the conjecture in full generality. Unfortunately, this
is not very likely, since the proof relies on explicit strictification. Therefore, we prefer to study the
conjecture from another perspective by imposing cardinal bounds through the Möbius condition
for decomposition spaces. This is a certain finiteness condition ensuring that the general Möbius
inversion principle admits a homotopy cardinality. From this perspective proving the conjecture
is equivalent to proving that the decomposition space of subdivided Möbius intervals UMob is
a terminal object in the ∞-category of Möbius decomposition spaces and culf maps. The proof
is given by combining (∞, 2)-category theory of 2-colimits, the interval construction, and the
straightening-unstraightening equivalence of ∞-categories. The Möbius case, together with the
fact that the ∞-category of decomposition spaces and culf maps is locally an ∞-topos imply that
the ∞-category of Möbius decomposition spaces and culf maps is an ∞-topos.

Keywords: decomposition spaces, topos, interval, directed hereditary species, incidence coalgebra.

MSC classes: 18N10, 18N50, 06A11, 16T15.

iii





Acknowledgments / Agradecimientos

This thesis brings together dozens of stories,
innumerable words of encouragement, and
countless moments in front of a blackboard
or a computer. It is the culmination of a
formative process that led me to grow as a
human being and realise that I could never
have done it alone. So I want to dedicate
a few lines to mention the people and
institutions that, with their support, company,
and knowledge, made it possible for a child
of limited resources in an underdeveloped
country to become a doctor.

En esta tesis convergen decenas de historias,
sin fin de palabras de aliento e innumerables
momentos frente a una pizarra o un orde-
nador. Es la culminación de un proceso
formativo que me llevó a crecer como
ser humano y darme cuenta que jamás
lo hubiera podido hacer solo. Así que
dedicaré unas cuantas líneas para mencionar
a personas e instituciones que con su apoyo,
compañía y conocimientos hicieron posible
que un niño de escasos recursos de un país
subdesarrollado lograra convertirse en doctor.

Institutions / Instituciones: Universidad Distrital Francisco José de Caldas, Universidad Nacional
de Colombia, Universitat Autònoma de Barcelona, University of Virginia, Copenhagen Centre for
Geometry and Topology, Fundació Ferran Sunyer i Balaguer.

Professors / Profesores: Joachim Kock, Reinaldo Montañez, Carlos Ochoa, Carlos Giraldo, Carles
Broto, Natàlia Castellana, Julie Bergner, Jesper Møller, Josep Maria Burgués, Andrés Ángel, Imma
Gálvez, Andrew Tonks, Michael Batanin, Walker Stern, Jan Steinebrunner, Edgar Ramírez, Pedro
Zambrano, Wolfgang Pitsch, Carles Casacuberta, Viktoriya Ozornova.

Friends / Amigos: Julián Cano, Edwar Macías, Laura Forero, Alex Cebrian, Myo Yan Naung
Thein, Paula Castellanos, Guille Carrión, Thomas Mikhail, Antonio Labrador, Rosa María Torre-
grosa, Alexander Garzón, Daniel López, Luis Narváez, Wilmer Diaz, Jesús Amaya, Jerson Cuevas,
Juan Paez, Alejandro López, Walter Ortiz, Andrea Bernal, Prithvi Bernal.

Family / Familia: Saray, Lucas, Wilson, Cristina y Evelyn.

v





Contents
Abstract iii
Acknowledgments / Agradecimientos v
Introduction 1

1 Preliminaries 9

1.1 Decomposition spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 The incidence coalgebra and the Möbius condition . . . . . . . . . . . . . 11

1.1.2 Culf and culfy maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.3 Decalage construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.4 Monoidal decomposition spaces . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.5 Full and faithful maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.6 Factorisation system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Groupoids and homotopy pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Fat nerve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2 Symmetric monoidal category functor . . . . . . . . . . . . . . . . . . . . . 18

2 Connected and non-connected directed hereditary species 19

2.1 Connected directed hereditary species . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Partially defined contractions . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Coalgebras from directed connected hereditary species . . . . . . . . . . . 22

2.1.4 Calaque–Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees:
part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The decomposition space of contractions . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 The decomposition space of admissible maps . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Fauvet–Foissy–Manchon Hopf algebra of finite topologies and admissible
maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 The decomposition space A . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Admissible maps and contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Admissible maps and the Waldhausen construction . . . . . . . . . . . . . 39

2.5 Connected directed hereditary species as decomposition spaces . . . . . . . . . . 42

2.5.1 Calaque–Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees:
part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.2 Comodule structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 The incidence comodule bialgebra of a connected directed hereditary species . . 44

2.6.1 Directed restrictions species . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 Comodule bialgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.3 Calaque–Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees:
part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Connected directed hereditary species and operadic categories . . . . . . . . . . . 49

2.7.1 The lt-nerve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7.2 Half decalage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7.3 The category of connected directed hereditary species and OpCat . . . . 51

2.8 Directed hereditary species as monoidal decomposition spaces, comodule bialge-
bras and operadic categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8.1 Partially reflecting maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8.2 Directed Hereditary Species . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.8.3 Pseudosimplicial groupoid of collapse maps . . . . . . . . . . . . . . . . . 54

vii



viii CONTENTS

2.8.4 Directed hereditary species as decomposition spaces . . . . . . . . . . . . 56

2.8.5 The incidence comodule bialgebra of non-connected directed hereditary
species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8.6 Directed hereditary species as operadic categories . . . . . . . . . . . . . . 56

3 The Gálvez–Kock–Tonks conjecture for rigid decomposition spaces 59

3.1 Slices and intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Discrete intervals and rigid decomposition groupoids . . . . . . . . . . . . . . . . 64

3.3 Stretched-culf factorisation system . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 The decomposition groupoid U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.1 The complete decomposition groupoid UX . . . . . . . . . . . . . . . . . . 75

3.4.2 Compatibility of M-maps and subdivided intervals . . . . . . . . . . . . . 80

3.4.3 Interval construction of an interval . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.4 Comparison with a strictification of U . . . . . . . . . . . . . . . . . . . . . 84

3.5 Gálvez–Kock–Tonks Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5.1 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 The Gálvez–Kock–Tonks conjecture for Möbius decomposition spaces 91

4.1 Flanked decomposition spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.1 Algebraic intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1.2 The decomposition spaces of intervals . . . . . . . . . . . . . . . . . . . . . 93

4.1.3 Interval construction as a coreflection . . . . . . . . . . . . . . . . . . . . . 94

4.2 The Gálvez–Kock–Tonks conjecture for Möbius decomposition spaces . . . . . . . 95

4.2.1 Comparison with the proof of the locally discrete case . . . . . . . . . . . 100

4.3 The ∞-topos of Möbius decomposition spaces and culf maps . . . . . . . . . . . . 101

4.3.1 Edgewise subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.2 Slicing adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.3 Rezk completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.4 Toposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A Oplax colimits as weighted out-colimits 107

Bibliography 113

List of Symbols 116

General Index 117



Introduction

One of the earliest forms of cognitive evolution of our species was the symbolic representation of
our environment. This allowed the transmission of information from generation to generation
more efficiently than that provided by memory and oral tradition [3].

Over the millennia, our mind evolved and, along with it, the symbols we used, to the point
that we could give a more precise meaning to those first scribbles, and we created writing, opening
a new era for humanity. When studying the first traces of writing, it is interesting that some of
the oldest texts contain elementary counting techniques, from keeping the inventory of material
possessions to state taxation [89]. These counting techniques were perfected, from counting
animals to the combinations of syllables of the Greek alphabet, from finding out how many
different combinations of flavors we can choose to the formulation of the binomial coefficients.

In recent decades, these techniques were framed in the enumerative combinatorics, which
addresses the problem of how to count the number of elements of a finite set given by some
combinatorial conditions [4]. One of the branches of enumerative combinatorics is algebraic
enumeration which deals with exact results, either explicit formulas for the numbers in question,
or more often, generating functions or recurrences from which the numbers can be computed
[62].

However, it has been shown that working with objects rather than numbers provides more
insight into the problems at hand. For example, with the theory of species [69], Joyal showed that
many manipulations with generating functions could be carried out directly on the combinatorial
structures themselves. If we now work with objects instead of numbers, we move to objective
combinatorics, where we can obtain bijective proofs instead of algebraic proofs, leading to a
deeper understanding.

A nice feature of the objective level is that it is possible to use techniques from category
theory. (This theory is a mechanism of abstraction, transversal to all mathematics, in which
we understand an object by how it relates to its environment [96].) We can use linear algebra
with coefficients in the category of sets instead of rational numbers, linear maps are replaced
by spans, and equalities are expressed by bijections [77]. But in recent years, homotopy theory
has taught us, that one retains more information and that certain constructions become better
behaved when sets are replaced by spaces and bijections by homotopy equivalences. This allowed
the incorporation of coalgebras and related structures that came from combinatorics to the world
of higher categories through the theory of decomposition spaces, formulated by Gálvez, Kock,
and Tonks [58–60] to frame mathematical structures that canonically can be associated with an
algebraic structure that has a strong connection with combinatorics. This theory will be the
central focus of this thesis, so it is necessary to delve deeper into its history.

Background and motivation

Decomposition spaces [58–60] were created as a far-reaching generalisation of posets for the
purpose of defining incidence algebras and Möbius inversion, covering the classical theory for
posets by Rota [84], for monoids (Cartier–Foata [25]), Möbius categories (Leroux [32, 78]), as
well as various constructions with operads ([28], [91], [92], [90]). Decomposition spaces are
certain simplicial ∞-groupoids, and the theory becomes homotopical in nature. Independently
Dyckerhoff and Kapranov [35] had arrived at the equivalent notion of 2-Segal spaces (see Feller
et al. [41] for the last piece in the equivalence), from the viewpoint of representation theory,

1
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homological algebra, and K-theory, where Hall algebras and Waldhausen’s S-construction are the
main motivating examples.

It was suggested by Gálvez, Kock, and Tonks [56] that virtually all combinatorial co- bi-
and Hopf algebra should be incidence algebras of decomposition spaces, whereas many are not
incidence algebras of posets. This idea is difficult to state as a precise theorem, but several recent
papers have contributed with classes of examples vindicating the principle.

A series of combinatorial co- bi- and Hopf algebras which are not directly incidence algebras
of posets were given in the seminal paper of Schmitt [85], where he identified large significant
families of combinatorial coalgebras coming from extra structures on combinatorial species in
the sense of Joyal [69] (see Aguiar–Mahajan [2] for further treatment). The two main such
structures are restriction species, as exemplified by the chromatic Hopf algebra of graphs [86] (see
also [43]) and hereditary species, as for example the Faà di Bruno Hopf algebra (see also [72]).
Restriction species are presheaves on the category of finite sets and injections. Hereditary species
are presheaves on the category of finite sets and partial surjections.

The constructions of these two families of examples have been assimilated into decomposition-
space theory: Gálvez, Kock, and Tonks [57] showed how Schmitt’s coalgebra of a restriction species
is a special case of the general incidence-coalgebra construction of decomposition spaces, and
generalised it to directed restriction species (presheaves on the category of finite posets and convex
inclusions); this generalisation includes for example the Butcher–Connes–Kreimer Hopf algebra
from numerical analysis [21] and renormalisation theory [73], [31]. Shortly after, Carlier [23]
showed that also Schmitt’s construction of bialgebras from hereditary species is a special case of
the incidence bialgebra of monoidal decomposition spaces. He went on to establish that these are
actually comodule bialgebras, an intricate interaction between two bialgebra structures which is of
importance in certain areas of analysis (see Manchon [81], and also [44] and [70]). Carlier also
discovered that hereditary species provide a new class of examples of the operadic categories of
Batanin and Markl [11–13]: while there is a clear operadic flavour in Schmitt’s hereditary species,
they are not always operads. They turn out to be operadic categories.

The unification of the above examples relates to the idea that all combinatorial co- bi- and
Hopf algebra should be incidence algebras of decomposition spaces. However, we must remember
that the principal idea of decomposition-space theory is to create an environment where we have
a Möbius formula from a simplicial point of view.

The first antecedent of this formula at the objective level comes from Lawvere [76], who
discovered in the 1980s that there is a universal Möbius function which induces all other Möbius
functions. It is an ‘arithmetic function’ on a certain Hopf algebra of Möbius intervals. A category
is an interval if it has an initial and a terminal object [75], and the Möbius condition is a certain
finiteness condition. This Hopf algebra has the property that it receives a canonical coalgebra
homomorphism from every incidence coalgebra of a Möbius category. This includes all locally
finite posets and all the monoids considered in [25]. Lawvere’s work remained unpublished
for some decades, but it is cited in influential texts from that time, such as Joyal [69] and Joni–
Rota [84]. Independently, Ehrenborg [39] constructed a closely related Hopf algebra, but less
universal. It only accounts for intervals in posets. In both cases, the universal object can be
interpreted as the colimit of all incidence coalgebras of intervals. The possibility of this is closely
related to the local nature of coalgebras, expressed for example in the well-known fact that every
coalgebra is the colimit of its finite-dimensional subcoalgebras, see Sweedler [87].

Lawvere’s discovery did not appear in print until Lawvere–Menni [77] in 2010. In that work
the authors took an important step towards explaining the universal property by lifting the
construction of the Hopf algebra of Möbius intervals to the objective level. This means that its
comultiplication is realised as something called a pro-comonoidal structure on certain extensive
categories. The original Hopf algebra is exhibited as being only a numerical shadow of this
categorical construction. There are at least two precursors to the idea of a more objective approach
to incidence algebras. One is given by Joyal [69]. In his foundational paper on species, there is a
final section where he considers certain decomposition structures on categories (that final section



CONTENTS 3

has little to do with species). Another is in the work of Dür [34] who constructed incidence
coalgebras of certain categorical and simplicial structures.

However, many coalgebras, bialgebras and Hopf algebras in combinatorics are not of incidence
type, meaning that they cannot arise directly as the incidence coalgebra of any Möbius category.
In fact the Lawvere–Menni Hopf algebra is not of incidence type. This gives the somewhat
unsatisfactory situation that the universal object is not of the same type as the objects it is
universal for.

A solution to this problem was found by Gálvez, Kock, and Tonks [58–60] with the theory of
decomposition spaces, since they showed that the Lawvere–Menni Hopf algebra is the incidence
coalgebra of the decomposition space of subdivided intervals U. With this discovery the universal
property could be stated, showing its nature as a moduli space:

Gálvez–Kock–Tonks Conjecture [60, §5.4] For each decomposition space X, the space of culf
maps map(X,U) is contractible.

The conjecture will be studied in detail in Chapters 3 and 4. Gálvez, Kock, and Tonks [60]
observed that the decomposition space of subdivided intervals U takes values in the very large∞-category of large ∞-categories. This size issue prevents U from being a terminal object in the∞-category of decomposition spaces and culf maps.

Lawvere’s original work (suitably upgraded to the new context) shows that map(X,U) is
not empty: it contains I : X → U, which is essentially Lawvere’s interval construction. Gálvez,
Kock and Tonks [60] were able to establish one further ingredient of the conjecture, namely that
map(X,U) is connected, meaning that every map is homotopy equivalent to I. The finer property
of being contractible is the full homotopy uniqueness statement, that not only is every map
equivalent to I: it is so uniquely (in a coherent homotopy sense).

The homotopy content was one of the reasons for Gálvez, Kock and Tonks to develop the
whole theory in a homotopy setting: decomposition spaces are defined to be certain simplicial∞-groupoids, and everything is fully homotopy invariant. It is an important insight of higher
category theory (see for example Lurie [79]) that a universal object cannot exist in any truncated
situation. The most famous example is the fact that the topos of sets (0-types) contains a classifier
for monomorphisms ((−1)-types) but cannot contain a classifier for sets (0-types), and that for
these to be classified one needs the 2-topos of groupoids (1-types), and to classify 1-types one
needs to 3-topos of 2-types, and so on. Only in the limit is it possible to find a classifier for
general homotopy types (∞-groupoids) in the ∞-topos of ∞-groupoids.

The conjecture acquires further interest in connection with ∞-topos theory. In case we work
with discrete complete decomposition spaces, Kock and Spivak [71] proved that the slice category
over any discrete decomposition space is a presheaf topos. In other words, the category of discrete
complete decomposition spaces and culf maps is locally a topos. Hackney and Kock [63] extended
Kock–Spivak’s main result by showing that for any simplicial space X the ∞-category of culf
maps over X is equivalent to the ∞-category of right fibrations over the edgewise subdivision of
X. A consequence of this result is that the ∞-category of decomposition spaces and culf maps
cDcmpculf is locally an ∞-topos.

The condition of being locally an ∞-topos of cDcmpculf and the solution of the conjecture
give the tools to prove that the ∞-category of Möbius decomposition spaces and culf maps is an∞-topos, which will be the final result of this thesis.

Contribution of the present thesis

Two overall topics are treated.
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• Connected and non-connected directed hereditary species as monoidal decomposition
spaces, comodule bialgebras and operadic categories, developed in collaboration with Alex
Cebrian (Chapter 2).

• The Gálvez–Kock–Tonks conjecture for decomposition spaces (Chapters 3 and 4).

The new contributions of this work have already been released in the form of three papers at
different publication stages.

1. Directed hereditary species and decomposition spaces, coauthored with Alex Cebrian [26].

2. The Gálvez–Kock–Tonks conjecture for locally discrete decomposition spaces [47].

3. The Gálvez–Kock–Tonks conjecture for Möbius decomposition spaces [46].

The first has just submitted for possible publication in International Mathematics Research
Notices. The second has just been accepted for publication in Communications in Contemporary
Mathematics, pending approval of the changes suggested by the referee. The third is ready to be
submitted for publication.

We will list by chapters the new contributions of this thesis:

Chapter 2: Connected and non-connected directed hereditary species

In the quest to develop a directed version of the theory of Carlier [23] that covers new examples,
we found two different routes called: connected directed hereditary species and non-connected directed
hereditary species. In Chapter 2, we focus on the connected variant since it covers two important
examples: the Fauvet–Foissy–Manchon (comodule) bialgebra of finite topologies [40] and the
Calaque–Ebrahimi-Fard–Manchon (comodule) bialgebra of trees [22].

The bialgebra of finite topologies is essentially the base case in our setting, namely corre-
sponding to the connected directed hereditary species of posets. Modulo the difference between
posets and preorders, this turns out to be the same construction, in view of an equivalence we
establish between admissible maps into a poset T (in the sense of [40]) and contractions out of T
(2.4).

The construction in Fauvet–Foissy–Manchon [40] was inspired by Écalle’s mould calculus in
dynamical systems (see [33], [37]), and more precisely by the more elaborate notion of ormould [38].
The construction is subtle, and they write in fact that it would have been difficult to guess the
comultiplication formula without the inspiration from Écalle’s work. From the present viewpoint
of connected directed hereditary species, it comes out very naturally from general principles.
(The slight difference between preorders and posets might in fact be in the latter’s favour: it
seems that posets are closer to the ormoulds of Écalle [38]. Fauvet–Foissy–Manchon [40] had to
introduce the notion of quasi-ormould.)

The Fauvet–Foissy–Manchon bialgebra constitutes a comodule bialgebra in conjunction with
the bialgebra of finite topologies of Foissy–Malvenuto–Patras [45]. Again, the subtle algebraic
conditions to be verified are now a direct consequence of the general theory.

The other important example, the Calaque–Ebrahimi-Fard-Manchon comodule bialgebra [22],
is the connected directed hereditary species of trees (2.1.4). It originates in numerical analysis: its
restriction part is the Butcher–Connes–Kreimer Hopf algebra corresponding to composition of
B-series [21]. The hereditary part corresponds to the substitution, a second operation on B-series
discovered by Chartier–Hairer–Vilmart [29]. Again, the comodule-bialgebra condition is now
a formal consequence of the theory. Previously, Kock [70] had given a decomposition-space
interpretation (in fact in terms of operads) of the Calaque–Ebrahimi-Fard-Manchon comodule
bialgebra fitting it into the general framework of the Baez–Dolan construction [8], but his
construction in fact gives an operad version with operadic trees rather than the combinatorial
trees actually relevant in numerical analysis. An ad hoc quotient construction was required to
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precisely recover those. The machinery of connected directed hereditary species delivers the
Calaque–Ebrahimi-Fard-Manchon comodule bialgebra directly.

Finally, in the context of the theory of operadic categories, our proof that connected directed
hereditary species induce operadic categories is very different from Carlier’s proof in the discrete
case. Where he simply verified the 9 axioms for operadic categories one by one by hand, in
the present work we exploit a recent conceptual simplicial approach to operadic categories by
Batanin, Kock, and Weber [10]. They reinterpret the operadic-category axioms in simplicial
terms in such a way that all 9 axioms end up as simplicial identities. In the end the category of
operadic categories can be described as a strict pullback, involving small categories with chosen
local terminal objects (in the style of [54]) and certain simplicial groupoids. With this formalism
in hand, we can establish the functor from connected directed hereditary species to operadic
categories by exploiting the universal property of the pullback, without having to check any
axioms by hand. This result is interesting because it constitutes a new family of examples of
operadic categories that had not been observed before.

On the other hand, Schmitt’s hereditary species are not connected directed hereditary species,
as the fibres along a surjection between discrete posets are not necessarily connected. To cover
these examples, we introduce the notion of collapse map of posets (2.8.1.1) and directed hereditary
species (2.8.2.1).

Chapter 3: The Gálvez–Kock–Tonks conjecture for rigid decomposition spaces

In Chapter 3, the first case of the conjecture is proved. Working at the level of 1-types, we define
the simplicial groupoid U of discrete intervals (i.e. intervals that are simplicial sets rather than
simplicial spaces), and show that:

Theorem 3.5.1.5. map(X,U) is a contractible 1-groupoid for every 1-truncated locally discrete
decomposition space X.

This is the first substantial evidence for the full conjecture. The expected generality for X is
that of discrete decomposition spaces, but in fact (as kindly pointed out by the anonymous referee
of [47]) the proofs work the same for a broader class of decomposition spaces, namely those
1-truncated decomposition spaces with the property that all their intervals are discrete. Clearly,
discrete decomposition spaces have this property, so the level of generality already covers all the
classical theory of incidence algebras and Möbius inversion in combinatorics, since locally finite
posets, Cartier–Foata monoids, Möbius categories, and Schmitt’s examples are all 0-truncated
simplicial spaces. In particular it gives finally a firm formalisation of Lawvere’s intuition that the
interval construction should be universal in some sense. As a particular case it establishes also
the universal property of the Ehrenborg Hopf algebra.

The idea of the proof of the contractibility of the 1-grupoid map(X,U) is based on 2-categorical
theory. However, a direct verification of the statement seems intractable, due to coherence
problems. The difficulty is that U : �op → Grpd is only a pseudo-simplicial groupoid. Jardine [64]
has identified all the 2-cell structure and the 17 coherence conditions for pseudo-simplicial
groupoids. The definition of modification in this context requires compatibility with all that.
The strategy to overcome this difficulty is to build a local strict model, a kind of neighbourhood
UX ⊂ U around the intervals of a given locally discrete decomposition space X. The bulk of the
chapter is concerned with setting up this local model and showing that it is strict. To construct
this, we introduce a stricter algebraic notion of interval, where the initial and terminal objects are
not just given as properties of a discrete decomposition space, but are carried around as data, in
the notion of chosen initial and terminal objects. This focus is inspired by the work in another
context of Batanin and Markl on operadic categories [13]. This is quite technical, but the benefit is
to achieve a strict local model UX which is shown to be a strict simplicial groupoid and a complete
decomposition groupoid, and to receive a strict version of the interval construction. With this
strict local model in place, the local version of the contractibility of map(X,UX) can be established
with 2-category theory by showing that I : X→ UX, interpreted as a natural transformation, does
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not admit other self-modifications than the identity modification. In the end this check is not so
difficult.

Chapter 4: The Gálvez–Kock–Tonks conjecture for Möbius decomposition spaces

It is natural to ask whether the techniques developed in Chapter 3 can be applied or refined
to prove the conjecture in full generality. Unfortunately this is not very likely, since the proof
relies on an explicit strictification. Therefore, we prefer to study the conjecture from another
perspective.

The size issue of U prevents to formulate the conjecture as: U is a terminal object in the∞-category of complete decomposition spaces and culf maps. But a more refined analysis of the
conjecture is possible by standard techniques by imposing cardinal bounds through the Möbius
condition for decomposition spaces [59]. This is a certain finiteness condition ensuring that the
general Möbius inversion principle admits a homotopy cardinality. The decomposition space of
Möbius subdivided intervals UMob is small, so it is a genuine object in the ∞-category MobDcmp
of Möbius decomposition spaces and culf maps. So to prove the conjecture is to show that:

Theorem 4.2.0.14: The decomposition space of subdivided Möbius intervals UMob is a terminal
object in the ∞-category MobDcmp of Möbius decomposition spaces and culf maps .

The proof of Theorem 4.2.0.14 is the combination of several results. In the first place, we show
that the canonical codomain projection map � ↓ cDcmp→ cDcmp is a weighted colimit that takes
values in the ∞-category Cat∞ of ∞-categories (4.2.0.1). On the other hand, we have that any
weighted colimit that takes values in Cat∞ induces a slice (∞, 2)-category of the ∞-bicategory
Cat∞ of ∞-categories (§A). So the canonical codomain projection map � ↓ cDcmp → cDcmp
induces a functor cDcmp→ Cat∞//�↓cDcmp (4.2.0.2). The next step is to show that this functor
factors through MobDcmp/UMob

using the interval-factorisation construction (4.2.0.3) and the
straightening-unstraightening equivalence of ∞-categories (4.2.0.4). After this step, it is not
difficult to prove that UMob is a terminal object in MobDcmp.

The ∞-category cDcmpculf of decomposition spaces and culf maps is locally an ∞-topos [63].
This locally property combining with the solution of the conjecture imply that the ∞-category
of Möbius decomposition spaces and culf maps is an ∞-topos (Theorem 4.3.4.1). The proof
is easy: UMob is a terminal object in MobDcmp (by the solution of the Gálvez–Kock–Tonks
conjeture), and therefore the canonical map MobDcmp/UMob

→ MobDcmp is an equivalence
and MobDcmp/UMob

is an ∞-topos (special case of Hackney–Kock’s main result [63]).

Summary

Chapter 1: Preliminaries

In Section 1.1, we recall from [58–60] some basic notions and results of the theory of decomposition
spaces. Furthermore, we review the notions of incidence coalgebras of decomposition spaces and
the Möbius condition (1.1.1), culf and culfy maps (1.1.2), decalage (1.1.3), monoidal decomposition
spaces (1.1.4), and full and faithful maps (1.1.5). In 1.2, we give a brief review of basic notions
and some results on homotopy pullbacks of groupoids.

Chapter 2: Connected and non-connected directed hereditary species

The material of this chapter is a joint work with Alex Cebrian [26]. In Section 2.1, we introduce
the notion of contraction (2.1.1.2), and the connected directed hereditary species as a Grpd-valued
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presheaf on the category of finite connected posets and partially defined contractions (2.1.2.1).
Examples of this notion are the Fauvet–Foissy–Manchon Hopf algebra of finite topologies, the
Calaque–Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees (2.1.4) and the Faà di Bruno
comodule bialgebra of linear trees (2.1.4.8).

In Section 2.2, we define the monoidal decomposition space of contractions K. In addition,
we show that K is complete (2.2.0.9), locally finite, locally discrete, and of locally finite length
(2.2.0.10), and monoidal (2.2.0.11).

In Section 2.3, we define the monoidal decomposition space of admissible maps of preorders
A. In 2.3.1, we show that the incidence bialgebra of A corresponds to the Fauvet–Foissy–Manchon
bialgebra of finite topologies.

In Section 2.4, we relate the notions of admissible maps of preorders (due to [40]) and of
contractions of posets through a culf map (2.4.0.8). This map explains the connection between
admissible maps of preorders and contractions of posets. In 2.4.1, we define the double category
AdCon of finite preorders, admissible maps as horizontal morphisms and contractions as vertical
morphisms and show that the Waldhausen S•-construction in the sense of Bergner et al. [14] of
AdCon is equivalent to the decomposition space of admissible maps A.

In Section 2.5, we show that every connected directed hereditary species has an associated
monoidal decomposition space (2.5.0.2) which is locally finite, locally discrete, and of locally finite
length (2.5.0.3).

Every hereditary species has an underlying monoidal restriction species; therefore, we have
two bialgebra structures associated with a hereditary species. Carlier [23] showed that these
bialgebras are compatible in the sense that the incidence bialgebra associated with the restriction
species is a left comodule bialgebra over the incidence bialgebra of the hereditary species. In
Section 2.6, we apply Carlier’s ideas to the connected directed case. In 2.6.3, we show that the
comodule bialgebra of the connected directed hereditary species of rooted trees is the Calaque–
Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees [22], and the comodule bialgebra of
the connected directed hereditary species of linear trees is the Faá di Bruno comodule bialgebra
of linear trees [70].

In Section 2.7, we construct a functor from the category of connected directed hereditary
species to the category of operadic categories in the sense Batanin and Markl [13], using a new
approach by Batanin, Kock, and Weber [10].

In Section 2.8, we introduce the notion of collapse map of posets (2.8.1.1) and define the
decomposition space of collapse maps D (2.8.3). Furthermore, we prove that D is complete
(2.8.3.8), locally finite, locally discrete and of locally finite length (2.8.3.9). Similarly to the
connected case, we prove that directed hereditary species induce monoidal decomposition spaces
(2.8.4), comodule bialgebras (2.8.5), and operadic categories (2.8.6).

Chapter 3: The Gálvez–Kock–Tonks conjecture for rigid decomposition spaces

The material of this chapter is the main part of [47]. In Section 3.1, we introduce some necessary
material relating to the notion of slice and coslice of decomposition groupoids. Furthermore, we
give the definition of interval (3.1.0.14).

In Section 3.2, we work with strict simplicial groupoids such that all active-inert squares
are strict pullbacks and such that d1 is a discrete isofibration. (It follows that all the strict
pullbacks are also homotopy pullbacks.) For short we shall call such decomposition groupoids
rigid (3.2.0.1). Furthermore, we explain the concept of chosen initial and chosen terminal object
(3.2.0.5). Also, the notion of discrete interval (3.2.0.7) and some results for discrete intervals are
given, in particular a lifting property (3.2.0.17 and 3.2.0.19). In Section 3.3, we construct the
stretched-culf factorisation system in the category of discrete intervals. Furthermore, we introduce
important working tools (3.3.0.3 and 3.3.0.5) that will be useful in next sections.

In Section 3.4, we define the decomposition groupoid of all discrete intervals U [60]. In
3.4.1, we construct a strict simplicial groupoid UX (3.4.1.5) that only contains the information
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about the discrete intervals of a fixed rigid decomposition groupoid X and prove that UX is a
complete decomposition groupoid (3.4.1.9 and 3.4.1.10). Furthermore, we define a simplicial map
I : X→ UX and prove that I is culf (3.4.1.12). In 3.4.3, we explain the interval construction of an

interval. Furthermore, we compare UX with a strictification
∼
U of U suggested by the referee in

3.4.4.
In Section 3.5, we finally address the Gálvez–Kock–Tonks conjecture as formulated in [60], and

we prove a partial result (3.5.0.1) about the connectedness of the mapping space mapcDcmp(X,U)
in the case of rigid decomposition groupoids. In 3.5.1, we use modifications (3.5.1.2) to prove
a truncated version of the conjecture, the case of rigid decomposition groupoids. We first
show that mapcDcmp(X,UX) is contractible (3.5.1.4) and from this we deduce that the groupoid
mapcDcmp(X,U) is contractible (3.5.1.5). This version of the Gálvez–Kock–Tonks conjecture is the
main result of this chapter.

Chapter 4: The Gálvez–Kock–Tonks conjecture for Möbius decomposition spaces

The material of this chapter is the main part of [46]. In Section 4.1, we start by studying the notion
of stretched maps (4.1.1.3), flanked decomposition spaces (4.1.0.2), and algebraic intervals 4.1.1.2
from [60]. In 4.1.2, we define the large complete decomposition space of sub-divided intervals U
and the Möbius decomposition space of sub-divided Möbius intervals UMob. In 4.1.3, we give
the interval factorisation construction I that allows to construct a culf map IX : X → U for any
complete decomposition space X.

In Section 4.2, we state the Gálvez–Kock–Tonks conjecture for Möbius decomposition spaces
(4.2.0.5) and give a proof (4.2.0.14). The proof involves a mixture of results so it is divided into a
series of steps (4.2.0.1, 4.2.0.2, 4.2.0.3 and 4.2.0.4) to get a cleaner picture of the proof. In 4.2.1, we
compare the ideas behind the proof given in Chapter 4 for locally discrete decomposition spaces
with the proof for Möbius decomposition spaces.

In Section 4.3, we expose the main result of Hackney and Kock in [63]: the ∞-category
of decomposition spaces and culf maps cDcmpculf is locally an ∞-topos (4.3.3.6). The locally∞-topos condition of cDcmpculf and the solution of the conjecture imply that the ∞-category of
Möbius decomposition spaces and culf maps is an ∞-topos (4.3.4.1).

In order to improve the readability we have deferred the rather technical result (4.2.0.7) into
the appendix.



1
Preliminaries

This chapter establishes a few background facts and notation for the reader. These results are not
new.

1.1 Decomposition spaces

Our theoretical results in Chapter 4 are formulated in the setting of homotopy pullbacks, ∞-
categories and simplicial spaces. Although these theories are extensive we will mention in this
section some tools that we will need.

Given a map of ∞-groupoids p : X→ S and an object s ∈ S, the homotopy fibre Xs of p over s
is the homotopy pullback

Xs X

1 S.

y
p

psq

Lemma 1.1.0.1. [24] A square of ∞-groupoids

P Y

X S

y
u

f

is a homotopy pullback if and only if for each x ∈ X the induced comparison map ux : Px → Yfx is an
equivalence.

Lemma 1.1.0.2. [79, Lemma 4.4.2.1] Given a prism diagram of ∞-groupoids

· · ·

· · ·

y

where the right square is a homotopy pullback. Then the left square is a homotopy pullback if and only if
the outer diagram is a homotopy pullback.

The simplex category � is the category whose objects are the nonempty finite ordinals and
whose morphisms are the monotone maps. These are generated by coface maps di : [n− 1]→ [n],
which are the monotone injective functions for which i ∈ [n] is not in the image, and codegeneracy
maps si : [n+ 1]→ [n], which are monotone surjective functions for which i ∈ [n] has a double
preimage. We write d⊥ := d0 and d> := dn for the outer coface maps. In this thesis, we assume a
(large) ∞-category Cat∞ of all small ∞-categories, with a full ∞-subcategory S of ∞-groupoids,
which we called spaces. Let sSpaces denote the functor ∞-category of S-valued presheaves on �.

Definition 1.1.0.3. [58, §2.9][35, §2.1] A simplicial space X : �op → S is called a Segal space if it
satisfies the Segal condition,

9
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Xn X1 ×X0 · · · ×X0 X1 for all n > 0.'

This is equivalent [58, Lemma 2.10] to requiring that for each n > 0 the following diagram is a
homotopy pullback

Xn+1 Xn

Xn Xn−1.

y

d>

d⊥ d⊥

d>

An arrow of � is termed active, and written g : [m]→ \ [n], if it preserves end-points, g(0) = 0

and g(m) = n. An arrow is termed inert, and written f : [m]� [n], if it is distance preserving,
f(i+ 1) = f(i) + 1 for 0 6 i < m. The category �

act is the subcategory of � whose objects are the
nonempty finite ordinals and whose morphisms are the active maps.

Definition 1.1.0.4. [58, Definition 3.1][35, Definition 2.3.1] A decomposition space is a simplicial
space

X : �op → S

such that the image of any pushout diagram in � of an active map g along an inert map f is a
homotopy pullback of groupoids,

X


[p] [m]

g ′�oo

[q]
OO

f ′

OO

[n]
g

�oo
OO
f

OO

 =

Xp

f ′∗

��

g ′∗ // Xm

f∗

��
Xq

g∗
// Xn.

This is equivalent [58, Proposition 3.5] to requiring that the following diagrams are homotopy
pullbacks for all 0 < i < n:

Xn+1 Xn

Xn Xn−1

y

di+1

d⊥ d⊥

di

Xn+1 Xn

Xn Xn−1.

y

di

d> d>

di

The notion of decomposition space is equivalent to the notion of 2-Segal space [35, Proposition
2.3.2] (see [41] for the last piece of this equivalence) introduced by Dyckerhoff and Kapranov
[35, Definition 2.3.1, Definition 2.5.2, Remark 5.2.4].

Example 1.1.0.5. The decomposition space of rooted trees RT is defined as follows [58]. Recall
that a forest is a disjoint union of rooted trees. An admissible cut of a rooted tree is a splitting
of the set of nodes into two subsets such that the second forms a subtree containing the root
node or is the empty forest. RT1 denotes the groupoid of forests, and RT2 denotes the groupoid
of forests with an admissible cut. More generally, RT0 is defined to be a point, and RTk is the
groupoid of forests with k− 1 compatible admissible cuts. These form a simplicial groupoid in
which the inner face maps forget a cut, and the outer face maps project away stuff: d⊥ deletes
the crown and d> deletes the bottom layer. It is readily seen that RT is not a Segal groupoid: a
tree with a cut cannot be reconstructed from its crown and its bottom tree, which is to say that
RT2 is not equivalent to RT1 ×RT0 RT1. It is straightforward to check that it is a decomposition
groupoid [58].

Proposition 1.1.0.6. [35, Proposition 2.3.4][58, Proposition 3.7] Any Segal space is a decomposition space.
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Certain pullbacks in �
op are preserved by general decomposition spaces, which is the content

of the following result.

Lemma 1.1.0.7. [58, Lemma 3.10] Let X be a decomposition space. For all 0 < i < j < n, the following
squares of active face and degeneracy maps are homotopy pullbacks

Xn+1 Xn

Xn Xn−1

y

di

dj+1 dj

di

Xn−3 Xn−2

Xn−2 Xn−1.

y

si−1

sj−2 sj−1

si−1

A map of ∞-groupoids f : X → Y is a monomorphism when its homotopy fibres are either
empty or contractible.

Definition 1.1.0.8. [59] A decomposition space X is complete when s0 : X0 → X1 is a monomor-
phism (i.e. is (−1)-truncated). It follows from the decomposition space axiom that in this case all
degeneracy maps are monomorphisms [59, Lemma 2.5].

1.1.1 The incidence coalgebra and the Möbius condition

Let X be a decomposition space. The span

X1 X2 X1 ×X1
(d2,d0)d1

defines a linear functor, the comultiplication

∆ : S/X1 → S/X1×X1

f 7→ (d2,d0)! ◦ d∗1(f).

Likewise, the span

X1 X0 1
s0 t

defines a linear functor, the counit
δ : S/X1 → S

f 7→ t! ◦ s∗0(f).

The decomposition space axioms serve to ensure that ∆ is coassociative with counit δ, up to
coherent homotopy [58, §5.3]. This coalgebra (S/X1 ,∆, δ) is called the incidence coalgebra, at the
objective level of slices and linear functors. The connection to ordinary coalgebras in the category
of vector spaces is given by taking homotopy cardinality. This is an important aspect of the theory
(see [61] for details), but it is not a focus point of this thesis, and will be used only in some
examples. Here we only briefly explain it. In order to take homotopy cardinality, some finiteness
conditions are required:

Definition 1.1.1.1. [59] A decomposition space X is locally finite if X1 is a locally finite ∞-groupoid
(meaning that its homotopy groups are finite and trivial from certain dimension on), and the
maps s0 : X0 → X1 and d1 : X1 → X0 have finite homotopy fibres.

If T is a locally finite ∞-groupoid, the cardinality of the slice spaces/T is the vector space Qπ0T
spanned by one basis vector et for each t ∈ π0T . This basis vector is the homotopy cardinality of
the object ptq : 1→ T , the ‘name’ of t. In this way the homotopy cardinality of a linear functor
given by a span becomes matrix multiplication at the vector space level. The condition of local
finiteness is required for the sum in the formula for comultiplication to be finite. Otherwise it
does not admit a cardinality.
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Example 1.1.1.2. [58, §5.1] If X is the nerve of a category (for example, a poset) then X2 is the set
of all composable pairs of arrows. Since X1 is discrete in this case, it is automatically locally finite,
and the basis vectors of QX1 are just the arrows of the category. For X to be locally finite, the
category must satisfy the condition that for each arrow there are only finitely many ways to factor
it into the composite of two arrows. The comultiplication at the vector space level then becomes

∆(f) =
∑
b◦a=f

a⊗ b,

and the counit sends identity arrows to 1 and other arrows to 0. This is the incidence coalgebra of
a locally finite category of Leroux [78].

Example 1.1.1.3. The decomposition space RT of Example 1.1.0.5 is locally finite. Indeed, any
forest has only a finite automorphism group, so the groupoid RT1 is locally finite (since it is
only a 1-groupoid, there are no higher homotopy groups). The simplicial groupoid RT is locally
finite because for a given forest there is only a finite number of possible admissible cuts. At the
groupoid slice level, the comultiplication is

S/RT1 −→ S/RT1 ⊗ S/RT1

(pTq : 1→ RT1) 7−→ (pPcq : 1→ RT1)⊗ (pRcq : 1→ RT1).

which means that after taking homotopy cardinality, the comultiplication at the vector space level
becomes

∆(T) =
∑

c∈admi.cuts(T)

Pc ⊗ Rc,

where Pc is the forest above the cut and Rc is the forest below the cut. After taking homotopy
cardinality the comultiplication at the vector space level thus becomes the famous Butcher–Connes–
Kreimer Hopf algebra of rooted trees from perturbative renormalisation [73] and numerical
analysis [21].

These two examples satisfy two further finiteness conditions typical for examples coming
from combinatorics. Namely, they are locally discrete and of locally finite length. Most examples
in this thesis (all the examples in Chapter 2) will be both locally discrete and of locally finite
length. The universal decomposition space UMob of Chapter 4) will be locally finite and of locally
finite length (i.e. is Möbius).

Definition 1.1.1.4. [59] A decomposition space X is locally discrete if the maps s0 : X0 → X1 and
d1 : X1 → X0 have discrete fibres, and X is of locally finite length if for each a ∈ X1 there is an
upper bound on the n for which the map Xn → \ X1 has non-degenerate elements in the fibre.

Definition 1.1.1.5. [60] A decomposition space X which is both locally finite and of locally finite
length is called a Möbius decomposition space, because they admit a Möbius inversion principle, not
just at the objective slice level but also at the vector space level.

1.1.2 Culf and culfy maps

A map F : Y → X of simplicial spaces is cartesian on an arrow [n] → [k] in �, if the naturality
square for f with respect to this arrow is a pullback.

Definition 1.1.2.1. [58, §4] A simplicial map F : X→ Y is called culf if F is cartesian on each active
map.

Culf stands for ‘conservative’ and ‘unique lifting of factorisations’ where conservative means
cartesian on all codegeneracy maps, and unique lifting factorisations means cartesian on all coface
maps. The culf condition can be seen as an abstraction of coalgebra homomorphism: the conser-
vative condition corresponds to counit preservation, and ulf corresponds to comultiplicativity.
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Lemma 1.1.2.2. [58, Lemma 4.3] A simplicial map between decomposition spaces is culf if and only if it
is cartesian on d1 : [1]→ [2].

Lemma 1.1.2.3. [58, Lemma 4.6] If X is a decomposition space and F : Y → X is a culf map, then also Y is
a decomposition space.

Since the culfness condition refers to active maps, just as the finiteness conditions stated for
locally discrete decomposition spaces, we have the following result.

Lemma 1.1.2.4. [57, Lemma 1.12] If X is a locally discrete (resp. locally finite length) decomposition space
and F : Y → X is a culf map, also Y is locally discrete (resp. locally finite length) decomposition space. This
also the case for locally finite, provided we check separately that Y1 is locally finite.

In many cases it is easier to work with right fibrations than with presheaves, so it is necessary
to introduce the notion of culf for right fibrations, which we will call culfy [63].

Definition 1.1.2.5. A simplicial map F : X → Y is called a right fibration if F is cartesian on all
last-point-preserving maps.

Remark 1.1.2.6. The right fibration condition can be rewritten as follows: F is a right fibration if
for all terminal-object-preserving maps ` : ∆m → ∆n and commutative squares

∆m X

∆n Y,

F` ∃!

the space of fillers is contractible. A simplicial map F : X→ Y between decomposition spaces is a
right fibration if it is cartesian on all bottom coface maps d⊥.

Definition 1.1.2.7. A simplicial map F : X → Y is called a left fibration when it is cartesian on
all initial-point-preserving maps, or equivalently, if it is right orthogonal to all initial-object-
preserving maps  h : ∆m → ∆n. In case X and Y are decomposition spaces, F is a left fibration if it
is cartesian on d>.

Lemma 1.1.2.8. Let Y be a Segal space and let F : X → Y be a simplicial map that is a left or a right
fibration, then also X is a Segal space.

Let X : �op → S be a simplicial space. The category of elements of X is by definition el(X) :=
� ↓ X. Its objects and arrows are, respectively, diagrams of the form

∆m ∆m ∆n

X X.

λ
λ γ

α

The category of elements is the domain of the right fibration corresponding to X under the
straightening-unstraightening equivalence of ∞-categories RFib(�) ∼= PrSh(�) (due to Lurie [79],
see [7, Theorem 3,4,6] for a model-independent statement).

Definition 1.1.2.9. Let E→ � and E ′ → � be right fibrations over �. A map p : E→ E ′ between
right fibrations is called culfy if it is a left fibration after restriction to �act ⊂ �.

Proposition 1.1.2.10. [63, §6] Let F : Y → X be a simplicial map between decomposition spaces. The map
F is culf if and only if the corresponding right fibration

el(Y) el(X) �
el(F)

is culfy.
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Proof. Suppose that el(F) is a left fibration after restriction to �act ⊂ �. Since Y and X are
decomposition spaces, to prove that F is culf, it is enough to show that F is cartesian to the active
map d1 : [1]→ [2] as a consequence of Lemma 1.1.2.2. In other words, we have to prove that the
square

Y2 Y1

X2 X1

d1

F2 F1

d1

(1)

is a pullback. The pullback condition of (1) is equivalent to prove that el(F) is right orthogonal
to d1 : ∆2 → ∆1. But, this is a consequence of the assumption that el(F) is a left fibration after
restriction to �act ⊂ � since d1 is an initial-object-preserving map. The other direction use
analogous arguments.

1.1.3 Decalage construction

Given a simplicial space X, the lower dec Dec⊥ X is a new simplicial space obtained by deleting
X0 and shifting everything one place down, deleting also all d0 face maps and all s0 degeneracy
maps. It comes equipped with a simplicial map, called the lower dec map, d⊥ : Dec⊥ X → X

given by the original d0. Similarly, the upper dec Dec> X is obtained by instead deleting, in each
degree, the top face map d> and the top degeneracy map s>. The deleted top face maps becomes
the upper dec map d> : Dec> X→ X.

Proposition 1.1.3.1. [58, Proposition 4.9] If X is a decomposition space then the dec maps d> : Dec> X→
X and d⊥ : Dec⊥ X→ X are culf.

The decomposition property can be characterised in terms of decalage:

Theorem 1.1.3.2. [35,41,58] A simplicial space X : �op → S is a decomposition space if and only if both
Dec⊥ X and Dec> X are Segal spaces.

1.1.4 Monoidal decomposition spaces

There is a natural notion of monoidal decomposition space [58, §9]; which leads to bialgebras.
It is a decomposition space X with two functors η : 1 → X and ⊗ : X× X → X required to be a
monoidal structure and culf. In examples coming from combinatorics, the monoidal structure
will typically be given by disjoint union.

1.1.5 Full and faithful maps

A map F : X→ Y between simplicial spaces is called full and faithful if for each n > 1, the diagram

Xn Yn

X
×(n+1)
0 Y

×(n+1)
0

Fn

F
×(n+1)
0

is a pullback.

Remark 1.1.5.1. It is not difficult to prove that this definition agrees with the usual definition in
the case of Segal spaces. A map F : X→ Y between Segal spaces is full and faithful if and only if
the diagram
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X1 Y1

X×20 Y×20

F1

F×20

(d>,d⊥) (d>,d⊥)

is a pullback.

Lemma 1.1.5.2. Let F : X→ Y be a full and faithful map between simplicial spaces. Then for any simplicial
space Z, the map F! : mapPrSh(�)(Z,X)→ mapPrSh(�)(Z, Y) is full and faithful.

Proof. The diagram

Xn Yn

X
×(n+1)
0 Y

×(n+1)
0

Fn

F
×(n+1)
0

(1)

is a pullback since F is full and faithful. Applying the mapping space functor mapPrSh(�)(Z,−) to
(1), we obtain the diagram

map(Z, map(∆n,X)) map(Z, map(∆n, Y))

map(Z, map(∆0,X)×(n+1)) map(Z, map(∆0, Y)×(n+1))

F!

F!

(2)

which is a pullback since mapPrSh(�)(Z,−) preserves limits. Using the currying isomorphism
map(Z, map(∆n,X)) ∼= map(Z×∆n,X), the pullback (2) can be rewritten as the pullback

map(Z×∆n,X)) map(Z×∆n, Y))

map(Z,X)×(n+1)0 map(Z, Y)×(n+1)0

F!

F!

and therefore F! is full and faithful.

Lemma 1.1.5.2 was proved in the context of ∞-categories by Gepner, Haugseng and Nikolaus
[55, Lemma 5.2].

1.1.6 Factorisation system

In Chapters 3 and 4, to define the decomposition space of subdivided intervals U, we use proper-
ties of factorisation systems. This section introduces the notions we will need in the future.

A factorisation system in an ∞-category D consists of two classes E and F of maps, that we
shall depict as� and�, such that

1. The class E and F is closed under isomorphism.

2. The classes E and F are orthogonal, E ⊥ F. That is, given e ∈ E and f ∈ F, for every solid
square
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. .

. .
e f

the space of fillers is contractible.

3. Every map h admits a factorisation

. .

.

h

e f

with e ∈ E and f ∈ F.

Remark 1.1.6.1. The classical notion of orthogonal factorisation system requires that E be closed
under isomorphism. In Chapter 3 is not require. In case E is not closed under isomorphism we
can always saturate it.

Let ArE(D) ⊂ Ar(D) denote the full subcategory spanned by the arrows in the left-hand class
E.

Lemma 1.1.6.2. [60, Lemma 1.3] The domain projection ArE(D) → D is a cartesian fibration. The
cartesian arrows in ArE(D) are given by squares of the form

. .

. .

1.2 Groupoids and homotopy pullbacks

Our theoretical results in Chapters 2 and 3 are formulated in the setting of groupoids. A groupoid
is a category where all the arrows are invertible. Let’s take a look at some of the notions we will
need.

Homotopy pullbacks are important for the results that will be developed in the following
chapters. They are examples of homotopy limits, and as such are defined only up to equivalence.
A particular case of homotopy pullbacks is given by the homotopy fibres. Given a map of
groupoids p : X → S and an object s ∈ S, the homotopy fibre Xs of p over s is the homotopy
pullback

Xs X

1 S.

y
p

psq

We use the following standard lemma many times.

Lemma 1.2.0.1. [24] A square of groupoids

P Y

X S

y
u

f

is a homotopy pullback if and only if for each x ∈ X the induced comparison map ux : Px → Yfx is an
equivalence.
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Since homotopy pullback is defined up to equivalence, for some calculations it is important
to work with a specific model. Let’s look at one of the models to be used: the homotopy fibre
product of a pair of functors f : A→ C and g : B→ C between groupoids is the groupoid H whose
objects are triples (a, θ,b) consisting of objects a ∈ A, b ∈ B and an isomorphism θ : f(a)→ g(b)

in C, and whose arrows (α,β) : (a, θ,b) → (a ′, θ ′,b ′) consist of arrows α : a → a ′ ∈ A and
β : b→ b ′ ∈ B such that g(β) ◦ θ = θ ′ ◦ f(α). The groupoid H fits into a homotopy commutative
square

H A

B C,

πA

πB f

g

y

where πA : H → A and πB : H → B are the canonical projections, and the components of the
natural isomorphism is given by θ itself. Note that the projections always are isofibrations [24].
Another model is possible when one of the two legs f and g is an isofibration. In that case, the
strict pullback is also a homotopy pullback [67, Theorem 1].

The most used result for homotopy pullbacks is the prism lemma.

Lemma 1.2.0.2. Consider a diagram of groupoids

· · ·

· · ·

y

where the right square is a homotopy pullback. Then the left square is a homotopy pullback if and only if
the outer diagram is a homotopy pullback.

We will use the following variation of the prism lemma in Chapter 3.

Lemma 1.2.0.3. [24] Consider a diagram of groupoids

· · ·

· · ·

y

where the right square is a homotopy fibre product. Then the left square is a strict pullback if and only if the
outer diagram is a homotopy fibre product.

A map of groupoids f : X → Y is a monomorphism when it is fully faithful. Equivalently, its
homotopy fibres are (−1)-groupoids, that is, are either empty or contractible.

1.2.1 Fat nerve

The fat nerve of a category X is the simplicial groupoid

N X :�op → Grpd

[n] 7→ map([n], X).

where map([n], X) is the mapping space, defined as the maximal subgroupoid of the functor
category Fun([n], X). The fat nerve of a category is always a Segal space [58, §2.14].
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1.2.2 Symmetric monoidal category functor

Let FinSetbij denote the groupoid of all finite sets and bijections. The symmetric monoidal
category functor S : Grpd→ Grpd [72] is defined as follows: given a groupoid X, the objects of
SX are functors from B→ X, where B ∈ FinSetbij. The morphisms are homotopy-commutative
diagrams

B B ′

X

α

where α is a morphism in FinSetbij. In other words, SX can be interpreted as the comma category
FinSetbij

/X
. To simplify notation, when we refer to an object SX we will write {Pi}i∈I where I

is a finite set except in Section 2.7, where we will use finite ordinals in order to have precise
constructions in the context of operadic categories.

The algebras over S are symmetric monoidal categories. The unit sends an element x to the
list with one element (x), and the multiplication takes disjoint union of index sets. Furthermore,
S preserves homotopy pullbacks and fibrations [94].

Remark 1.2.2.1. The functor S is normally defined as follows: given a groupoid X, the objects of
SX are finite lists of objects of X, and a morphism (x1, x2, ..., xn)→ (y1,y2, ...,ym) consists of a
bijection σ : n→ m and morphisms xi → yσ(i).

Note that a finite list of objects in X is a functor a : n→ X. A morphism in the groupoid S(X)
is a bijection α : n ' n ′ together with arrows in X from a(i) to a(σ(i)). We can package that data
into saying that it’s a homotopy-commutative triangle

n n ′

X.

α

The components of the natural transformation α are then precisely the arrows from a(i) to a(σ(i)).
Altogether, if B denotes the skeletal category of finite ordinals and all bijections, then we have
that SX is the comma category (weak slice) B/X.

Now that we know this, it is very easy to see the connexion with our presentation of S from
skeletal B to FinSetbij: It is still just FinSetbij

/X
.



2
Connected and non-connected directed
hereditary species

In this chapter we introduce the notion of connected and non-connected directed hereditary species,
which subsumes Schmitt’s hereditary species, Gálvez–Kock–Tonks directed restrictions species,
and a directed version of Carlier’s construction of monoidal decomposition spaces and comodule
bialgebras. In addition to all the examples of Schmitt, Gálvez–Kock–Tonks and Carlier, the new
construction covers also the Fauvet–Foissy–Manchon Hopf algebra of finite topological spaces,
the Calaque–Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees, and the Faà di Bruno
comodule bialgebra of linear trees. Finally, we show that directed hereditary species induce a
new family of examples of operadic categories. The results of this chapter are a joint work with
Alex Cebrian [26].

2.1 Connected directed hereditary species

In this section, we will introduce the concept of connected directed hereditary species, but first,
we will provide a series of tools necessary to define this notion.

2.1.1 Contractions

A map of posets f : P → Q is convex if for all x,y ∈ P and f(x) 6 w 6 f(y) in Q there is a unique
p ∈ P with x 6 p 6 y and f(p) = w.

Lemma 2.1.1.1. In the category of posets, convex maps are stable under pullback.

In a poset P, we say that p ′ covers p, written pl p ′, if p < p ′ and there is no element x such
that p < x < p ′.

Definition 2.1.1.2. A map of posets f : P → Q is a contraction if:

1. f is a monotone surjection;

2. for each q ∈ Q, the fibre Pq is a connected convex subposet of P;

3. for any cover ql q ′ in Q, there exists a cover pl p ′ in P such that f(p) = q and f(p ′) = q ′.

Remark 2.1.1.3. The following picture gives an illustration of a contraction

• • •

• • •

• • •

19
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Note the importance of demand only to lift covers l; if we had demanded to be able to lift <,
then the above map would not be an example of contraction.

Remark 2.1.1.4. The following picture gives an illustration of a monotone surjection that satisfies
condition (2) in Definition 2.1.1.2 but does not lift covers

• •

•

• •

•

If we allow this map to be a contraction, Lemma 2.2.0.6 would be false. This lemma is a key
ingredient for developing the connection between directed hereditary species and decomposition
spaces, so cover lifting is necessary.

Lemma 2.1.1.5. In the category of posets, contractions are stable under pullback along convex maps.

Proof. Let P,Q and V be posets. Let f : P � V be a contraction. Let g : Q→ V be a convex map,
and let

P×V Q Q

P V

πP

πQ

y
(1) g

f

be a pullback diagram. Since monotone surjections are stable under pullback, we have that πQ is
a monotone surjection. Let us see that for each q ∈ Q, the fibre (P×V Q)q is a connected convex
subposet. Since the diagram (1) is a pullback and g is a convex map, for each q ∈ Q, the map
πP : (P×V Q)q → Pg(v) is a convex map. Furthermore, Pg(v) is a connected convex subposet of P
since f is a contraction. Combining this with the convex property of πP , it follows that (P×V Q)q
is a connected convex subposet of P×V Q. It only remains to prove that for any cover ql q ′ in
Q, there exists a cover (p,q)l (p ′,q ′) in P×V Q. Let ql q ′ be a cover in Q. Since g is convex,
we have that g(q)l g(q ′). Since f is a contraction, there exists p and p ′ in P such that pl p ′, and
f(p) = g(q) and f(p ′) = g(q ′). This means that (p,q)l (p ′,q ′).

2.1.2 Partially defined contractions

The theory of species was introduced by Joyal [69] as a combinatorial theory of formal power
series. Through this notion, Joyal showed that manipulations with generating functions can be
carried out directly on the combinatorial structures themselves. A species is a functor

F : B→ Set

from the category of finite sets and bijections to the category of sets. Usual types of species
include graphs, trees, endomorphisms, permutations, etc.

Schmitt [85] extended the notion of species in such a way that the combinatorial structures
are classified according to their functorial properties. Let I be the category of finite sets and
injections: a restriction species [85] is a functor R : Iop → Set. Let Sp be the category of finite sets
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and partial surjections: a hereditary species [85] is a functor H : Sp → Set. If partial surjections

are portrayed as spans P P ′ Q,ι f we can say that H is contravariant in injections and
covariant in surjections.

Gálvez, Kock, and Tonks [57] generalised the notion of restriction species to cover examples
with posets, trees and many related structures. A directed restriction species [57] is a functor
R : Cop → Grpd, where C is the category of finite posets and convex maps. We introduce
the new notion of connected directed hereditary species to cover examples related to the Fauvet–
Foissy–Manchon comodule bialgebra of finite topologies and admissible maps; and the Calaque–
Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees. But it does not cover Schmitt
hereditary species. For such species, we need the non-connected case, which will be defined in
Section 2.8.

A partially defined contraction P → Q consists of a convex map ı : P ′ → P and a contraction
f : P ′ � Q depicted in the diagram below:

P ′

P Q.

fı

Let Kp denote the category of finite connected non-empty posets, and whose morphisms are

partially defined contractions. The composite of P P ′ Q
ι f and Q Q ′ V

ι ′ f ′ in Kp

is obtained from the diagram

V ′

P ′ Q ′

P Q V

pr1

ι f ι ′ f ′

pr2y

as the span P V ′ V .
ι ′ pr1 f ′ pr2 Here V ′ is the pullback of f and ι ′ in the category of posets.

By the stability property of convex maps (2.1.1.1) and contractions under pullbacks (2.1.1.5), we
have that pr1 is convex and pr2 is a contraction.

Definition 2.1.2.1. A connected directed hereditary species is a functor H : Kp → Grpd.

Note that H is covariant in contractions and contravariant in convex maps. An element of
H[P] is called a H-structure on the finite poset P. An H-structure on a poset P also induces a H
structure on any quotient poset and on any convex subposet. Furthermore, these functorialities
are compatible in the sense that for any pullback diagram

P P ′

Q Q ′

f

u

f ′

v

we have
H[f ′] ◦H[u] = H[v] ◦H[f].

This ‘Beck–Chevalley’ law is a consequence of the fact that H must respect the composition of
spans.
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2.1.3 Coalgebras from directed connected hereditary species

As in the case of Schmitt hereditary species, connected directed hereditary species give rise to
coalgebras. Let P be a poset and X an H-structure on P. The comultiplication of X is given by

∆(X) =
∑

f : P�Q

{X|Pq}q∈Q ⊗X!Q,

where the sum ranges over isomorphism classes of contractions P � Q. Here X|Pq is the
restriction of X to the fibre Pq for every q ∈ Q, and X!Q is the H-structure H(f)(X) in H(Q).

2.1.4 Calaque–Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees: part I

We will see that the coalgebra of rooted trees studied by Calaque, Ebrahimi-Fard, and Manchon
[22] comes from a connected directed hereditary species. For this, we need some preliminaries.

Let P be a poset. For p,p ′ in P, an interval [p,p ′] is linear if for each z,w ∈ [p,p ′], we have
that z 6 w or w 6 z.

Definition 2.1.4.1. A tree T is a poset with a terminal object where every interval is linear.

A forest is a disjoint union of trees. We need the following results to obtain a connected
directed hereditary species with connected posets and contractions. Let P be a poset. For each
x ∈ P, we define P/x := {p ∈ P|p 6 x}.

Lemma 2.1.4.2. Let P be a tree. For each x ∈ P, the poset P/x is a tree with root x.

Lemma 2.1.4.3. Let P be a tree. Let S be a convex subposet of P, put P/S =
∑
x∈S P/x. Then P/S is a

forest.

Proof. Since every interval in P is linear, it is straightforward to see that P/S is a disjoint union
of posets. Moreover, for each x ∈ S, the poset P/x is a tree by Lemma 2.1.4.2. Hence, P/S is a
forest.

Lemma 2.1.4.4. Let T be a forest. Let S be a convex subposet of T . Then S is a forest.

Lemma 2.1.4.5. Let f : P � Q be a contraction between posets. If P is a tree, then Q is a tree.

Proof. Let >P denote the terminal object of P. The object f(>P) is terminal in Q. Indeed, let q be
an object in Q. Since f is a surjection, there exists p ∈ P such that f(p) = q. Furthermore, p < >P
since >P is terminal, and therefore f(p) < f(>P) by the monotonicity condition of f. Now we will
prove that every interval in Q is linear. Let [q1,q2] be an interval in Q, and let ı : [q1,q2] → Q

denote the canonical convex map. Consider the pullback diagram

f−1([q1,q2]) P

[q1,q2] Q.

ff ′

ı

y

Here f ′ is a contraction since contractions are stable under pullback along convex maps (2.1.1.5).
Since f is a contraction and ı is a convex map, we have that f−1([q1,q2]) is a connected convex
subposet of P. For each z and w in [q1,q2], there exists a and b in f−1([q1,q2]) such that f ′(a) = z
and f ′(b) = w since f ′ is surjective. By the connectivity property of f−1([q1,q2]), we have that a
and b are connected by a ziz-zag. The contraction property of f ′ forces that the ziz-zag is of the
form: a < · · · < b or b < · · · < a. By the monotonicity property of f ′ follows that z < w or w < z.
Hence, [q1,q2] is linear.
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Lemma 2.1.4.6. Let f : P � Q be a contraction between posets. Suppose, moreover, that P is a forest, then
Q is a forest.

The functor HCEM : Kp → Grpd is defined as follows: if P is a tree HCEM(P) has one object,
which is P itself, and if P is not a tree HCEM(P) is empty. By Lemma 2.1.4.4, we have that HCEM is
contravariant in convex maps. By Lemma 2.1.4.6, the functor HCEM is covariant in contractions.
Therefore, HCEM is a connected directed hereditary species.

Remark 2.1.4.7. The comultiplication ∆HCEM of the incidence coalgebra of HCEM is given by:

∆HCEM(T) =
∑
f:T�Q

{Tq}q∈Q ⊗Q.

This coalgebra is the Calaque–Ebrahimi-Fard–Manchon coalgebra of rooted trees [22] .

Example 2.1.4.8 (Faà di Bruno comodule bialgebra of linear trees, part I). A linear tree is one
in which every node has precisely one input edge. The functor HFB : Kp → Grpd is defined
as follows: if P is a linear tree HFB(P) has one object, which is P itself, and if P is not a linear
tree HFB(P) is empty. By Lemmas 2.1.4.4 and 2.1.4.6, we have that HFB is contravariant in convex
maps and covariant in contractions. Therefore, HFB is a connected directed hereditary species.
The bialgebra associated to HCEM is the Faà di Bruno bialgebra of linear trees since there is a
one-to-one correspondence between comultiplying contractions of linear trees and comultiplying
monotone surjections [n]� 1. The way it appears here is like in algebraic topology where it is
the (dual) Landweber–Novikov bialgebra (see [82, §3]), whereas the usual presentation of the Faà
di Bruno bialgebra is with (non monotone) surjections (see for example [27] and [72]) or with
partitions, as in [42]. Over the rational numbers the two are isomorphic (see for example [36]).

2.2 The decomposition space of contractions

In this section we will introduce the decomposition space of contractions K, but first we need
some preliminaries.

Let Catlt denote the category of categories with chosen local terminals, or equivalently
upper-dec coalgebras [54]. Let K denote the category of finite connected non-empty posets and
contractions.

Example 2.2.0.1. In the category K of connected finite non-empty posets and contractions a
chosen terminal object is a poset with one element.

The t-simplex category �t is the category whose objects are the nonempty finite ordinals and
whose morphisms are the monotone maps that preserve the top element.

Definition 2.2.0.2. For C a category with chosen local terminals, its fat lt-nerve Nlt(C) is the
Grpd-valued �

t-presheaf describe as follows: for n > 1, the groupoid Nlt(C)n is the same
as the groupoid N(C)n−1. The groupoid Nlt(C)0 is the groupoid of chosen local terminal
objects in C. The face and degeneracy maps act as the usual fat nerve construction except in
d⊥ : Nlt(C)1 → Nlt(C)0 that sends each object in C to its corresponding chosen local terminal
object. The degeneracy map s0 : Nlt(C)0 → Nlt(C)1 is the inclusion.

To simplify the notation we define K◦ := Nlt(K). Thus K◦2 is the groupoid of contractions,
and K◦1 is the groupoid of finite connected non-empty posets and monotone bijections. K◦0 is the
terminal groupoid. To obtain the top face maps, it is necessary to introduce families through
the symmetric monoidal category functor. We define K := SK◦ to be the symmetric monoidal
category functor S applied to K◦. All the face maps (except the missing top ones) and degeneracy
maps are just S applied to the face and degeneracy maps of Nlt(K). The top face map is given by:
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• For n > 2, the top face map d> : Kn → Kn−1 is defined as follows: given a (n− 1)-chain
of contractions

P0 P1 P2 · · · Pn−2 Q,
f0 f1 fn−2

for each element q ∈ Q, we can form the fibres over q. We end up with a family

{(P0)q (P1)q (P2)q · · · (Pn−3)q (Pn−2)q}q∈Q.
(f0)q (f1)q (fn−2)q

For each 0 6 i 6 n− 2, the map (fi)q is a contraction by the stability under pullback of the
contractions (Lemma 2.1.1.5).

• d> : K1 → K0 sends a family of finite posets {Qi}i∈I to the family whose components are
the terminal poset 1 indexed by the disjoint union

∑
i∈IQi.

Note that the fibres are convex non-empty subposets since we only consider contractions, not
arbitrary maps. The simplicial identities will be verified in Proposition 2.2.0.5.

To simplify the proof that K is a decomposition space, we need some preliminaries.

Proposition 2.2.0.3. We have an equality Dec>K = SNK.

Proof. The proof follows from combining that K = SNlt(K), the definition of the fat lt-nerve, and
that taking upper decalage is deleting, in each degree, the top face map and the top degeneracy
map.

Remark 2.2.0.4. Since K is a category, its fat nerve NK is a Segal space 1.2.1, and therefore SNK

is a Segal space, as S preserves pullbacks and hence Segal objects. By Proposition 2.2.0.3, we have
that Dec>K = SNK. Combining everything, we have that Dec>K is a Segal space and therefore
for each n > 2 the following diagram is a pullback for 0 < i < n:

Kn+1 Kn

Kn Kn−1.

di+1

d⊥ d⊥

di

Proposition 2.2.0.5. The groupoids Kn and the degeneracy and face maps given above form a pseudosim-
plicial groupoid K.

Proof. The only pseudosimplicial identity is d>d> ' d>d>−1. The other simplicial identities are
strict and follows from equality Dec>K = SNK of Proposition 2.2.0.3. Let us prove d>d>(Kn) '
d>d>−1(Kn) for n = 2. For greater n the proof is completely analogous. Given an object

P Q V
f g

in K3, we consider the following commutative diagram for each v ∈ V

(Pv)q Pv P

1 Qv Q

1 V .
pvq

fv f

g

pqq
y

yy

It is easy to see that d>d>(K3) = {(Pv)q}q∈Q. Furthermore, note that the top horizontal
rectangle is isomorphic to Pq for each q ∈ Q. This implies that d>d>(K3) ' d>d>−1(K3) since
d>d>−1(K3) = {Pq}q∈Q.
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Lemma 2.2.0.6. Suppose we have a contraction f : P � Q between connected posets, and a family of
contractions {hq : Pq �Wq}q∈Q where each Pq andWq are connected posets. Then there exists a unique
connected poset W and contractions h and g such that the diagram

P W Q

Pq Wq
hq

h g

f

commutes. Here the vertical arrows are convex inclusions.

Proof. We will do the proof in three steps: in the first place, we will construct the underlying set
of the poset W and the functions h : P →W and g : W → V . After that, we will construct a partial
order <W on W forced by the requirement that h and g are monotone maps. To conclude, we
will prove that f and g are contractions.

1. Put W :=
∑
q∈QWq and h :=

∑
q∈Q hq. The map g : W → Q is defined as g(w) = q for

w ∈Wq. Furthermore, the diagram

P W Q

Pq Wq 1
hq

h g

f

pqq

commutes at the level of sets by the way h and g were defined.

2. The partial order <W on W is defined by taking transitive closure in the following relation:
for w,w ′ ∈W, we declare that w <W w ′ if one of the following conditions is satisfied:

(a) In case w,w ′ ∈Wq and w <Wq
w ′;

(b) There exist p <P p ′ in P such that h(p) = w and h(p ′) = w ′.

The condition (b) is necessary for h and g to be monotone maps.

3. We will prove that h is a contraction. Let w ∈ W, by the way W was defined, we have
that w ∈Wq for some q ∈ Q. Recall that contractions and convex maps are stable under
pullback by Lemmas 2.1.1.1 and 2.1.1.5. These imply that in the commutative diagram

P W

Pq Wq

Pw 1,

h

hq

q
pwq

for each w ∈W, the poset Pw is connected and convex since hq is a contraction. Hence, h
is a contraction. By analogous arguments, we have that g is a contraction.

The poset W is connected since g is a contraction and Q is connected.

Lemma 2.2.0.7. For each 0 < i < n, the map di : Kn → Kn−1 is a fibration.
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Proof. Since S preserves fibrations and di : Kn → Kn−1 is equal to S(di) : S(K◦n)→ S(K◦n−1), it is
enough to prove that di : K◦n → K◦n−1 is a fibration. We will only check that d1 : K◦2 → K◦1 is a
fibration, the other cases use similar arguments. Let f : P � Q be an object in K◦2. Let u : P ′ → P

be a morphism in K◦1. It is straightforward to check that the morphism σ : f ◦ u→ f, pictured in
the diagram

P ′ P

Q Q,

f◦u

u

σ f

idQ

is a lift of the morphism u in K◦2 such that d1(σ) = u.

Proposition 2.2.0.8. The pseudosimplicial groupoid K is a decomposition space.

Proof. We will prove that the following diagrams are pullbacks for 0 < i < n:

Kn+1 Kn

Kn Kn−1

(1)

di+1

d⊥ d⊥

di

Kn+1 Kn

Kn Kn−1.

(2)

di

d> d>

di

Let us prove it for n = 2. For greater n the proof is completely analogous. The square (1) is
a pullback by Remark (2.2.0.4). To prove that the square (2) is a pullback we will use Lemma
1.2.0.1. This means that (2) is a pullback if and only if for each object f : P � Q in K2, the map
d> : Fibf d1 → Fibd>f d1 is an equivalence of groupoids. For an object {hq : Pq � Wq}q∈Q in
Fibd>f d1, Lemma 2.2.0.6 gives contractions h and g such that the diagram commutes

P W Q

Pq Wq.
hq

h g

f

The commutativity of the diagram implies that P W Q
f g

is an object in Fibf d1. Therefore,
d> is surjective on objects. The map d> is full. Indeed, for any morphism uqrq : fq → f ′q in
Fibd>f d1, put u =

∑
q∈Q uq and r =

∑
q∈Q rq. The map ur idQ satisfies that d>(ur idQ) =

uqrq. Furthermore, the diagram

P W ′

Pq W ′q Q

P W

Pq Wq

h ′

uq

u

rq

hq

h ′q r

h

g ′

g

commutes by Lemma 2.2.0.6 and the definitions of u and r. This implies that ur idQ is a morphism
in Fibf d1 and hence d> is full. To prove that d> is faithful, let uq idQ and u ′q ′ idQ be morphisms
in Fibf d1 such that d>uq idQ = d>u

′q ′ idQ in Fibd>f d1. This means that for each q ∈ Q, we
have uq = u ′q and rq = r ′q, but ur and u ′r ′ are determined by uqrq and u ′qr ′q, hence u = u ′

and r = r ′.

Recall that a decomposition space X is complete when s0 : X0 → X1 is a monomorphism.
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Proposition 2.2.0.9. The decomposition space K is complete.

Proof. Note that s0 : K0 → K1 is actually S of the map s0 : K◦0 → K◦1, and S preserves pullbacks
and hence monomorphism. This means that s0 : K0 → K1 is a monomorphism if s0 : K◦0 → K◦1 is
a monomorphism, but this is clear since K◦0 is the terminal groupoid consisting of only the poset
with one element and s0 sends the terminal groupoid to the poset with one element.

Proposition 2.2.0.10. The decomposition space K is locally finite, locally discrete and of locally finite
length.

Proof. Since S respects finite maps and K = SK◦, we will prove that K◦ is locally finite, locally
discrete and of locally finite length:

• Note that a connected finite non-empty poset has only a finite number of automorphisms.
This means that each object in K◦1 has a finite number of automorphisms, and therefore, K◦1
is locally finite.

• In the proof of Proposition 2.2.0.9, we see that s0 : K◦0 → K◦1 is finite and discrete. Since
K◦1 is locally finite and s0 is finite, to prove that K◦ is locally discrete and locally finite, we
have to check that d1 : K◦2 → K◦1 is discrete and finite. In the proof of Lemma 2.2.0.7, we
showed that d1 is a fibration so we will use strict fibres. In the strict pullback diagram

Fibd1(P) 1

K◦2 K◦1,

y
pPq

d1

let f : P � Q and f ′ : P � Q ′ be objects in Fibd1(P). A morphism u : f → f ′ in Fibd1(P),
it is in fact a monotone bijection u : Q → Q ′ such that u ◦ f = f ′. This equality with the
monotone surjection condition of f and f ′ force that u is unique. Therefore, Fibd1(P) is
discrete and K◦ is locally discrete. Furthermore, the discrete groupoid Fibd1(P) is finite
since we have a finite number of contractions whose source is P by the finite condition of P.
Therefore, K◦ is locally finite.

• K◦ is of locally finite length. Indeed, the fibre of P along K◦n → \ K◦1 has no degenerate
simplices for n greater than the cardinality of P.

The decomposition space K has a monoidal structure given by disjoint union. Recall Kn is
the groupoid of families of (n− 1)-chains of contractions. The disjoint union of two such families
is just the family whose components are the objects of the families index by the disjoint union of
the two index sets. This clearly defines a simplicial map +K : K×K → K. So K is a monoidal
decomposition space if the map +K is culf [58, §9].

Proposition 2.2.0.11. The map +K : K×K→ K is culf.

Proof. By Lemma 1.1.2.2, the map +K is culf, if the diagram

K2 ×K2 K1 ×K1

K2 K1

+K

d1

d1

+K

is a pullback since K is a decomposition space. But this is clear: a pair of families of contractions
(an object in K2 ×K2) can be uniquely reconstructed if we know what the two source families of
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posets are (an object in K1 ×K1) and we know how the disjoint union is contract (an object in
K2). This is subject to identifying the disjoint union of those two source families of posets with
the source of the disjoint union of the two families of contractions (which is to say that the data
agree down in K1).

Since K is a monoidal decomposition space, it follows that the resulting incidence coalgebra
is also a bialgebra [58, §9].

2.3 The decomposition space of admissible maps

In this section we will introduce the decomposition space of admissible maps A.

Definition 2.3.0.1. [40, §2.2] Let T ′ → T be an identity-on-objects monotone map between two
preorders. We define T/T ′ to be the preorder with the same objects as T and T ′, and the preorder
is defined by closing the relation R by transitivity:

xRy⇐⇒ (x 6T y or y 6T ′ x).

In other words, we obtain T/T ′ by inverting those arrows of T that also belong to T ′, and
then closing by transitivity. Later in this section, we will use the following more categorical
characterisation of quotients.

The underlying set of a preorder T will be denoted as T , and T denotes the discrete preorder
of connected components of T . We have a natural map comp : T → T that sends each object to its
corresponding connected component.

Lemma 2.3.0.2. Let T ′ → T be an identity-on-objects monotone map between two preorders. Then T/T ′

is the pushout in category of preorders

T ′ T

T ′/T ′ T/T ′.
p

Proof. Since the maps are identity-on-objects then T/T ′ = T . This means that at the level of sets
the square is a pushout. Consider the preorder given by closing the relation R by transitivity:

xRy⇐⇒ (x 6T y or y 6T ′ x).

It is straightforward to see that the diagram commutes at the level of preorders. In case that we
have another preorder < ′ in T/T ′ that made the square commutes, the monotonicity of the maps
force that < ′ is equal to the transitive closure of R.

Definition 2.3.0.3. [40, Definition 2.2.] A map of preorders T ′ → T is admissible if it satisfies the
following:

1. it is the identity-on-objects,

2. for every connected sub-preorder Y in T ′, we have that T|Y = Y,

3. x ∼T/T ′ y if and only if x ∼T ′/T ′ y.

The following picture gives an illustration of an admissible map of preorders:

• • •

• • •

• • •

• • •
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Lemma 2.3.0.4. In the category of preorders, admissible maps are stable under pullback along identity-on-
objects monotone maps.

Proof. Let β : V ′� V be an admissible map and let f : T → V be an identity-on-objects monotone
map. Consider the pullback diagram

V ′ ×V T T

V ′ V .
β

fπV ′

πT

y

It is easy to see that πT is an identity-on-objects monotone map. For a connected sub-preorder
Y of V ′ ×V T , we have that πV ′(Y) is a connected sub-preorder of V ′ since πV ′ is a projection
map. By the admissible condition of β, it follows that β(πV ′) is a connected sub-preorder of V
and V |Y = Y. Combining this with the commutative of the square and the identity-on-objects
monotone condition of the arrows it follows that πT (Y) is a connected sub-preorder of T and
T |Y = Y. To prove that πT is admissible, all that remains is to check x ∼T/(V ′×VT) y if and only if
x ∼(V ′×VT)/(V ′×VT) y, but the commutative condition of the square implies that x ∼T/(V ′×VT) y
if x ∼V/V ′ y and x ∼(V ′×VT)/(V ′×VT) y if x ∼V ′/V ′ y. In other words x ∼V/V ′ y if and only
if x ∼V ′/V ′ y but this is true as consequence of the admissible condition of β. Hence πT is
admissible.

The posetification of a preorder T will be denoted as T̃ . Let P denote the discrete poset of
connected components of a poset P, which is the same as P̃/P.

Lemma 2.3.0.5. An identity-on-objects monotone map of preorders T ′ → T is admissible if and only if the
pushout square

T ′ T

V ′ V ,
p

satisfies the following properties:

1. V = V ′

2. it is also a pullback square.

Proof. First, note that condition 1 is equivalent to condition 3 of Definition 2.3.0.3. Indeed, if

x ∼T/T ′ y ⇔ x ∼T ′/T ′ y then necessarily V = T̃/T ′ and V ′ = T̃ ′/T ′ have the same objects, and
vice-versa, because the objects of V are given by the equivalence classes of objects of T/T ′, and the
objects of T ′ are given by the equivalence classes of objects of T ′/T ′. On the other hand, assuming
these two conditions hold, condition 2 is equivalent to condition 2 of Definition 2.3.0.3. Indeed,
the connected components of T ′ are the preimages of V , and the fact that the square is a pullback
is equivalent to the fact that the map T ′ → T is full on each connected component of T ′, which is
precisely condition 2 of Definition 2.3.0.3.

2.3.1 Fauvet–Foissy–Manchon Hopf algebra of finite topologies and admissible maps

Fauvet, Foissy, and Manchon ([40], §3.1) introduced the notion of quotient of a topology T on a
finite set X by another topology T ′ finer than T. The quotient topology T/T ′ thus obtained lives
on the same set. Furthermore, they introduced the relation©< on the topologies on X defined by



30 Connected and non-connected directed hereditary species

T ′©<T if and only if T ′ is finer than T and fulfills the technical condition of T-admissibility. This
enabled them to give the internal coproduct

∆(T) =
∑

T ′©<T

T ′ ⊗ T/T ′.

Since there is a natural bijection between topologies and quasi-orders on a finite set X, Fauvet,
Foissy, and Manchon also expressed the T-admissibility in the context of preorders. This corre-
sponds to the one we use in this section (2.3.0.1). The above coproduct is just rewritten in the
context of preorders as:

∆(T) =
∑
T ′�T

T ′ ⊗ T/T ′.

We shall see in 2.3.2.7 that this coproduct corresponds to the coproduct ∆A of the incidence
coalgebra of the decomposition space of admissible maps A.

2.3.2 The decomposition space A

A groupoid preorder is a preorder where all its morphisms are invertible. Given a finite preorder
T , we denote by T inv the groupoid preorder that contains the same objects that T but only the
invertible morphisms of T .

We describe a pseudo simplicial groupoid (2.3.2.3) of admissible maps which we call A. Let
An denote the groupoid of (n− 1)-chains of admissible maps between non-empty finite preorders.
Thus, A2 is the groupoid of admissible maps and A1 is the groupoid of finite preorders whose
underlying sets are ordinals and monotone bijections. A0 is the groupoid whose objects are the
groupoid preorders. Face maps are given by:

• For n > 2, the bottom face map d⊥ : An → An−1 is defined as follows: given (n− 1)-chain
of admissible maps

T0 T1 T2 · · · Tn−2 Tn−1,

for each poset in the chain, we can form the quotient Ti/T0 by Lemma 2.3.0.2. We end up
with a (n− 2)-chain of admissible maps

T1/T0 T2/T0 T3/T0 · · · Tn−2/T0 Tn−1/T0;

• d⊥ : A1 → A0 sends a preorder T to T inv.

• d1 forgets the first preorder in the chain;

• di : An → An−1 composes the ith and (i+ 1)th admissible map, for 1 < i < n− 1;

• d> forgets the last preorder in the chain.

Degeneracy maps are given by:

• s⊥ : An → An+1 is given by appending with the map whose source is the underlying
groupoid preorder of the first preorder of the chain.

• si : An → An+1 inserts an identity arrow at object number i, for 0 < i 6 n.

The simplicial identities will be verified in 2.3.2.3. Let A denote the category of finite preorders
and admissible maps.

Proposition 2.3.2.1. We have an equality Dec⊥A = NA.
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Proposition 2.3.2.1 implies the compatibility of the face and degeneracy maps in A except the
face maps d⊥. We need the following result to verify the simplicial identities for d⊥.

Lemma 2.3.2.2. Let T0� T1 and T1� T2 be admissible maps. The following diagram

T0 T1 T2

T0/T0 T1/T0 T2/T0

T1/T1 T2/T1

commutes and the squares are pushouts.

Proof. By the prism Lemma, the outer diagram

T1 T2

T1/T0 T2/T0

(T1/T0)
(T1/T0)

(T2/T0)
(T1/T0)

y

y

is a pushout. This combining with the fact that (T1/T0)
(T1/T0)

= T1/T1 implies that (T2/T0)
(T1/T0)

is the
pushout of T1 � T2 along T1 → T1/T1 but T2/T1 is also a pushout over the same diagram.
Therefore, (T2/T0)

(T1/T0)
∼= T2/T1.

Proposition 2.3.2.3. The groupoids An and the degeneracy and face maps given above form a pseudosim-
plicial groupoid A.

Proof. We only need to verify the simplicial identities that involve d⊥. The others follow from the
fact that Dec⊥A = NA (2.3.2.1). Let us prove that the following diagram

A3 A2

A2 A1

d⊥

d⊥d1

d⊥

commutes, for the other cases the proof follows the same arguments but the notation becomes
much heavier. Let T0 � T1 � T2 be an object in A3. It easy to check that d⊥d⊥(T0 � T1 �

T2) =
T2/T0
T1/T0

and d⊥d1(T0 � T1 � T2) = T2/T1. So the square commutes when T2/T0
T1/T0

∼= T2/T1,
but in the proof of Lemma 2.3.2.2 we gave this isomorphism.

Lemma 2.3.2.4. Suppose we have admissible maps T ′� T and Q� T/T ′, there exists a unique preorder
P and admissible maps T ′� P and P� T such that the diagram

T ′ P T

Q T/T ′

commutes.
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Proof. Put P = Q×T/T ′ T . Since admissible maps are stable under pullbacks, the map P → T

is admissible. Furthermore, we have a natural map from T ′/T ′ → Q which is admissible since
T ′/T ′� T/T ′ and Q� T/T ′ are admissible. Therefore, the outer diagram

T ′ P T

T ′/T ′ Q T/T ′

y

commutes. The dotted arrow then exists by the pullback property of P. By the prism Lemma
1.2.0.2, the left square is a pullback since the outer diagram is a pullback by Lemma 2.3.0.5. The
map T ′ → P is admissible since admissible maps are stable under pullbacks and T ′/T ′� Q is
admissible.

Proposition 2.3.2.5. The pseudosimplicial groupoid A is a decomposition space.

Proof. We will prove that the following diagrams are pullbacks for 0 < i < n:

An+1 An

An An−1

(1)

di+1

d⊥ d⊥

di

An+1 An

An An−1.

(2)

di

d> d>

di

Let us prove it for n = 2. For greater n the proof is completely analogous. The square (2) is a
pullback as a consequence of Lemma 2.3.2.1. To prove that the square (1) is a pullback we will
use Lemma 1.2.0.1. This means that (1) is a pullback if and only if for each object α : T ′� T in
A2, the map d⊥ : Fibα d2 → Fibd⊥α d1 is an equivalence of groupoids. For an object V � T/T ′

in Fibd⊥α d1, Lemma 2.3.2.4 gives the following commutative diagram

T ′ V T

T ′/T ′ V ′ T/T ′

α

y

where the horizontal arrows are admissible maps. The commutativity of the diagram implies that
T ′� V � T is an object in Fibα d2 and hence d⊥ is surjective on objects. For the full condition
of d⊥, let p ′ : V ′� R ′ be an admissible map such that the lower square

T V T ′

T R T ′

V ′ T/T ′

R ′ T/T ′

id

α

p ′

id
p

id

commutes. This means that {p ′, idT/T ′ } is a morphism in Fibd⊥α d1. Lemma 2.3.2.4 applied to
V ′ and R ′ gives the top admissible maps. The pullback property of R gives the dotted arrow
p : V → R. The commutativity of the diagram follows from the pullback condition of V and R,
and therefore {idT ,p, idT ′ } is a morphism in Fibα d2. This implies that d⊥ is full. The faithful
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condition of d⊥ is straightforward to check using Lemma 2.3.2.4. Indeed, let {idT ,p, idT ′ } and
{idT ,q, idT ′ } be morphisms in Fibα d2 such that d⊥{idT ,p, idT ′ } = d⊥{idT ,q, idT ′ }. This means
that the following diagram commutes

T V T ′

T R T ′

V ′ T/T ′

R ′ T/T ′

id

α

p ′

id
p

id

q

By the pullback property of R, it follows that p = q.

Proposition 2.3.2.6. The decomposition space A is complete.

Proof. Let T be an object in A1. Consider the pullback diagram

Fibs0 T 1

A0 A1.

y
pTq

s0

We have that Fibs0 T is empty if T is not a groupoid preorder. In case T is a groupoid preorder,
we have that Fibs0 T ' T inv. Therefore, s0 : A0 → A1 is a monomorphism.

Recall that the comultiplication of the incidence coalgebra of A is given by the formula:

∆A(α) =
∑

( α∈A2
d1(α)=T)

)

d2(α)⊗ d0(α)

which means that we sum over all admissible maps α : T ′� T that have target T and return T ′

and T/T ′. But this is precisely the comultiplication of the Fauvet–Foissy–Manchon coalgebra
of finite topological spaces after using the bijection between finite topological spaces and finite
preorders (see §2.3.1). Hence, we have the following result.

Lemma 2.3.2.7. The incidence coalgebra ∆A is the Fauvet–Foissy–Manchon coalgebra of finite topological
spaces.

Remark 2.3.2.8. There is a natural bijection between finite T0-topological spaces and finite posets.
It would be interesting to explore the constructions given above from a topological point of
view. The starting point would be to translate the notion of contraction between posets into a
contraction between finite T0-spaces. We will decide to leave this point of view for future work.

2.4 Admissible maps and contractions

In this section, we will relate the notions of admissible maps of preorders (due to [40]) and of
contractions for posets through a culf map (see 2.4.0.8). This provides a deeper explanation
of both classes of maps and simultaneously allows us to relate the Fauvet–Foissy–Manchon
bialgebra of finite topological spaces with the Calaque–Ebrahimi–Fard–Manchon bialgebra of
rooted trees (see §2.3.1). To relate admissible maps between preorders and contractions of posets,
it is necessary to introduce some results.
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Definition 2.4.0.1. A monotone map of preorders f : T → V is a contraction if:

1. its is identity on objects;

2. for each x ∈ V , the fibre f−1(x') is a connected sub-preorder of T , where x' denotes the
subpreorder of objects equivalent to x in V ;

3. for any cover al a ′ in V , there exists a cover tl t ′ in T such that f(t) = a and f(t ′) = a ′.

Given a preorder T there is a canonical contraction T → T/T . We will show that for any
admissible map T ′� T , we can construct a contraction T � T/T ′. An illustration of the canonical
contraction from an admissible map is given by the following pushout diagram

• • •

• • •

T ′

• • •

• • •

T

• • •

• • •

T ′/T ′

• • •

• • •

T/T ′

Recall that T̃ is the posetification of a preorder T and let postf : T → T̃ denote the posetification
monotone map.

Lemma 2.4.0.2. Let T be a preorder. There is a bijection between the set of admissible maps onto T and the
set of admissible maps onto T̃ .

Proof. The conditions of Definition 2.3.0.3 imply that if x ∼T y then x ∼T ′ y, so that contract T to
T̃ does not have any effect in the set of admissible maps.

Lemma 2.4.0.3. Let f : T → V be a contraction between preorders. Then f̃ : T̃ → Ṽ is a contraction of
posets.

Proof. The map f̃ : T̃ → Ṽ is monotone since for each [t] ∈ T̃ , we have that f̃([t]) = [f(t)]. In other
words, the diagram

T T̃

V Ṽ

f

postfT

postfV

f̃(1)

commutes. The commutativity of the square together with the monotone surjection condition of f
and postfT and postfV implies that f̃ is a monotone surjection. Let’s prove that for each [v] ∈ Ṽ ,
the fibre f̃[v] is a connected convex subposet of T̃ . Let [a] and [b] be objects in f̃[v]. This implies
that

f(a) ∼V v ∼V f(b),

and therefore a and b are objects in f−1(v'). Furthermore, a and b are connected since f−1(v')
is a connected preorder in T by the contraction condition of f. Therefore, [a] and [b] are connected.
Let’s prove that f̃ lifts covers: let [v]l [v ′] be a cover in Ṽ . Since the posetification map respects
covers, we have that vl v ′ in V . Recall that f lifts covers since it is a contraction. This means
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that there exists a cover tl t ′ in T such that f(t) = v and f(t ′) = v ′. Applying the posetification
map to tl t ′, we have that [t]l [t ′] in T̃ , and by the commutative of the square (1), we get that
f̃([t]) = [v] and f̃([t ′]) = [v ′].

Lemma 2.4.0.4. For an admissible map of preorders α : T ′� T , the map T → T/T ′ is a contraction.

Proof. The map f : T → T/T ′ is given by the pushout in the category of preorders

T ′ T

T ′/T ′ T/T ′.

α

fy

The map f is clearly identity-on-objects. For each x ∈ T/T ′, we have that f−1(x') is connected.
Indeed, for each y ' x in T/T ′, we have three possibilities: y 'T x in T , or x <T ′ y or y <T ′ x.
By the admissible property of α, we have that x <T y or y <T x if x < y or y < x in T ′ since α
respects the connected subpreorders from T ′ to T . Furthermore, f lifts covers. Indeed, if xl x ′
in T/T ′ then x < x ′ in T since f only inverts the relations that are in T ′ and preserves all other
relations in T . Hence, f is a contraction of preorders.

Lemma 2.4.0.5. Let T be a finite preorder. There is a bijection between the set of admissible maps with
target T and the set of contractions with source T .

Proof. Given an admissible map T ′ � T , the map T � T/T ′ is a contraction by Lemma 2.4.0.4.
For a contraction T � V , consider the pullback diagram:

T ×V V inv T

V inv V .

y

The map V inv → V is an identity-on-objects monotone map. Furthermore, this map is canonical
admissible since V inv only contains the invertible morphisms in V , which is equivalent to condition
(3) of the requirement to be admissible (2.3.0.3). The condition (2) to be admissible is automatic
since we only consider invertible morphism in V inv. Therefore, V inv → V is admissible. Since
admissible maps are stable under pullback along identity-on-objects monotone maps (2.3.0.4), the
map T ×V V inv → T is admissible.

Construction 2.4.0.6. We will construct a simplicial map r from the decomposition space of admissible
maps A to the decomposition space of contractions K.
The functor r1 : A1 → K1 sends a preorder T to the family of the connected components {T̃i}i∈T̃/T of the
posetification of T , where each element of the family is defined by the pullback:

T̃i T̃

1 T̃/T .
piq

y

For n > 2, let

T0 T1 T2 · · · Tn−2 Tn−1
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be an object in An. Consider the following diagram consisting of pushout squares

T0 T1 · · · Tn−2 Tn−1

T0/T0 T1/T0 · · · Tn−2/T0 Tn−1/T0

T1/T1 · · ·
...

...

Tn−2/Tn−2 Tn−1/Tn−2

Tn−1/Tn−1.

(1)

Since the top horizontal arrows are admissible maps and the canonical map T0� T0/T0 is a contraction,
we have that the horizontal maps are admissible and the verticals are contractions by the stability property
of admissible maps and contractions under pushout (2.3.0.4 and 2.4.0.4). Taking the posetification of the
last column of the diagram (1), we obtain the chain

T̃n−1 ˜Tn−1/T0 ˜Tn−1/T1 · · · ˜Tn−1/Tn−2 ˜Tn−1/Tn−1 (2)

of contractions between posets. Since the posets in the chain are not necessarily connected, for each

i ∈ ˜Tn−1/Tn−1, we take the pullback of (2) along piq : 1→ ˜Tn−1/Tn−1 to obtain the diagram

T̃n−1 ˜Tn−1/T0 · · · ˜Tn−1/Tn−2 ˜Tn−1/Tn−1

(T̃n−1)i ( ˜Tn−1/T0)i · · · ( ˜Tn−1/Tn−2)i 1

piqy

y

y

(3)

where the lower part is a chain of contractions between connected posets since the top part of the diagram is
given by a chain of contractions.

For n > 2, the functor rn : An → Kn sends an (n− 1)-chain of admissible maps to the family of
(n− 1)-chains of contractions

{(T̃n−1)i ( ˜Tn−1/T0)i ( ˜Tn−1/T1)i · · · ( ˜Tn−1/Tn−2)i}
i∈ ˜Tn−1/Tn−1

(4)

To prove that r is a simplicial map, we need the following result:

Lemma 2.4.0.7. For each admissible map T ′� T , we have that

{T̃i}i∈T̃/T ′ = {T̃ ′i}
i∈T̃ ′/T ′

.

Proof. Since T ′� T is admissible, we have that T ′/T ′ = T/T ′ and the right square

T̃i

T̃ ′i T̃ ′ T̃

1 T̃ ′/T ′ T̃/T ′
piq

y
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is a pullback as a consequence of Lemma 2.3.0.5. By the prism Lemma 1.2.0.2 the outer rectangle
is a pullback since the left square is a pullback by definition. So by the pullback property of T̃ ′i,
the dotted arrow exists and is an equality since the outer diagram is a pullback.

To see that r is a simplicial map, we have to verify that for 0 6 i < n, the diagram

An An−1

Kn Kn−1

rn

di

rn−1

di

commutes, but this follows from Construction 2.4.0.6. For the case i = n, we have to use Lemma
2.4.0.7. Let us prove it for n = 2. For greater n the proof is completely analogous, but the notation
becomes much heavier. To prove that the diagram

A2 A1

K2 Kn−1

r2

d>

r1

d>

commutes. It is enough to verify that for each admissible map T ′� T , we have that

{T̃i}i∈T̃/T ′ = {T̃ ′i}
i∈T̃ ′/T ′

since d>(T ′� T) = T ′ and d>(T̃ � T̃/T ′) = {T̃i}i∈T̃/T ′ . But this follows from Lemma 2.4.0.7.

Proposition 2.4.0.8. The map r : A→ K is culf.

Proof. Since A and K are decomposition spaces, to prove that r is culf, it is enough to check that
the diagram

A2 A1

K2 K1

r2

d1

r1

d1

is a pullback by Lemma 1.1.2.2. To prove that the square is a pullback, we will use Lemma
1.2.0.1. This means that for each object T ∈ A1, we have to show that the map r2 : FibT (d1) →
Fibr1T (d1) is an equivalence. We will divide the proof into three steps: first we will prove that is
r2 : FibT (d1)→ Fibr1T (d1) is essentially surjective on objects. After we will show that r2 is full
and finally that it is faithful.

• Let f : T̃ � P be an object in Fibr1T (d1). Consider the following pullback diagram:

P×P T T

P×P T̃ T̃

P P.

postf

f

α

y

y
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Since P → P is admissible, the map α is admissible by the stability property of admissible
maps under pullback (Lemma 2.3.0.4). It is easy to check that α is an object in FibT (d1). To
verify that r2(α) ∼= f, consider the commutative diagram:

P×P T T

(P×P T)/P×P T T/(P×P T) T̃

P P.

α

f

postf

y

u

(1)

(2)

The square (1) is a pushout by definition of T/(P×P T). Since the outer diagram commutes,
the pushout property of T/(P×P T) gives the dotted arrow u. Applying the posetification
functor to the square (2), we obtain the commutative diagram:

T̃ T̃

˜T/(P×P T) P.

f

id

r2(α)

u ′

(3)

Furthermore, u ′ is a bijection. Indeed, u ′ is a monotone surjection since id and r2(α) and f
are monotone surjections, and the diagram (3) commutes. The injectivity condition of u ′

follows from the fact that the diagrams (1) and (2) commute and u ′ is obtained from the
posetification of u. This implies that r2(α) ' f, and therefore r2 is essentially surjective on
objects.

• Let’s prove that r2 is full. Let u be a morphism in Fibr1T (d1). The morphism u can be
illustrated by the following diagram

T̃

P P ′.

f f ′

u

Since r2 is essentially surjective on objects, for f and f ′ in Fibr1T (d1), we have objects α and
α ′ in FibT (d1) such that r2(α) = f, and r2(α

′) = f ′, and the following diagram commutes

W T

W ′ T

W̃ T̃

W̃ ′ T̃

P P

P ′ P ′.

f ′

α ′

u

u

id

f

id

α

u

The pullback property of W ′ gives the dotted arrow u, and the top square commutes. This
implies that u : α→ α ′ is a morphism in FibT (d1) and r2(u) = u.
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• It only remains to prove that r2 is faithful. Let v and v ′ be morphisms in FibT (d1) such
that r2(v) = r2(v

′). The objects v and v ′ can be illustrated by the following diagram

W W ′

T .
α α ′

v

v ′

(3)

Applying r2 to (3), we have the following commutative diagram

W T

W ′ T

W̃ T̃

W̃ ′ T̃

P P

P ′ P ′.

r2(α
′)

α ′

r2(v) r2(v)

id

r2(α)

id

α

v ′

v

By the pullback property of W ′, there exists a unique map from W to W ′ such that the
above diagram commutes. This forces v = v ′. Hence, r2 is faithful.

Remark 2.4.0.9. The culf map r : A → K induces a homomorphism from the Fauvet–Foissy–
Manchon bialgebra of admissible maps ∆A to the incidence bialgebra of contractions ∆K.

2.4.1 Admissible maps and the Waldhausen construction

Bergner, Osorno, Ozornova, Rovelli, and Scheimbauer [14] showed an equivalence between
decomposition objects and augmented stable double Segal objects, which is given by an S•-
construction. In this section, we will construct a stable augmented double category using
admissible maps and contractions between preorders.

A double category is a category internal to categories. More informally, it consists of the
following data, subject to some axioms: a set of objects; two different classes of morphisms
(horizontal and vertical); and squares, which are connected by various source, target, identity,
and composition maps.

Example 2.4.1.1. Let AdCon denote the double category of finite preorders, admissible maps
as horizontal morphisms, and contractions as vertical morphisms. The squares are pushout
diagrams of admissible maps along contractions of preorders.

An augmentation of a double category C consists of a set of objects C satisfying the condition
that for every object d of C, there are a unique horizontal morphism c� d and a unique vertical
morphism d� c ′ such that c and c ′ are in C [14]. We need some results to show an augmentation
in AdCon.

Lemma 2.4.1.2. The category of finite preorders and admissible maps has chosen initial objects given by
the groupoid finite preorders.

Proof. Given a finite preorder T , we have a canonical groupoid finite preorder T inv and a canonical
admissible map T inv → T .
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Lemma 2.4.1.3. The category of finite preorders and contractions of preorders has chosen terminal objects
given by the groupoid finite preorders.

Proof. Given a finite preorder T , we have a groupoid finite preorder T/T and a canonical identity-
on-objects monotone map T → T/T , which is a contraction since we invert all the morphism in T .
Indeed, the lift of covers is automatic. The connection of the fibres is given by the fact that T/T is
the preorder of connected components of T .

Proposition 2.4.1.4. The double category AdCon has an augmentation given by the set of groupoid finite
preorders

Proof. For each preorder T , we have a canonical admissible map T inv � T (2.4.1.2) and a canonical
contraction T � T/T (2.4.1.3). It is easy to see that T inv and T/T are groupoid preorders, and
hence the set of groupoid finite preorders is an augmentation of AdCon.

A double category is stable if every square is uniquely determined by its span of source
morphisms and, independently, by its cospan of target morphisms [14].

Proposition 2.4.1.5. The double category AdCon is stable.

Proof. By definition of AdCon the squares are pushout diagrams as follows:

· ·

· ·

y

where the horizontal morphisms are admissible maps and the vertical are contractions of preorders.
Since the top horizontal arrow is admissible, the square is also a pullback as a consequence of
Lemma 2.3.0.5. This means that all the squares in AdCon are bipullbacks, and therefore AdCon
is stable.

In an augmented stable double category, there is a bijection between the set of horizontal
morphisms and the set of vertical arrows [14]. This implies that in AdCon, we have a bijection
between admissible maps and contractions of preorders. This bijection was also proved in Lemma
2.4.0.5.

Bergner, Osorno, Ozornova, Rovelli, and Scheimbauer [14] expressed the Waldhausen S•-
construction in terms of a functor S• from the category of augmented double categories to the
category of simplicial groupoids. If we only consider stable augmented double categories, they
showed that the functor S• sends stable augmented double categories to decomposition spaces.

Theorem 2.4.1.6. [14, Theorem 4.8] The Waldhausen S•-construction restricts to the functor

S• : DCatst
aug → Dcmp,

where DCatst
aug denotes the category of augmented stable double categories.

The construction of S• and the proof of Theorem 2.4.1.6 require some preliminaries that are
beyond the scope of this thesis but which can be found in detail in [14]. So we will choose to give
a detailed description of the example we are interested in, the decomposition space S•(AdCon).
The objects of the groupoid (S•AdCon)0 are finite preorders and the morphisms monotone
bijections. The objects of the groupoid (S•AdCon)n are diagrams of the form:
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V00 T01 T02 · · · T0(n−1) T0n

V11 T12 · · · T1(n−1) T1n

V22 · · ·
...

...

V(n−1)(n−1) T(n−1)n

Vnn

� �

�

�

�

�

�

�
(1)

where each Vii is a groupoid finite preorder and the squares are bipullbacks. The morphisms in
(S•AdCon)n are families of monotone bijections between the finite preorders of the diagrams.
The face maps di : (S•AdCon)n → (S•AdCon)n−1 acts by ‘erasing’ all the finite preorders that
containing an index i. The degeneracy maps si : (S•AdCon)n → (S•AdCon)n+1 ‘repeat’ the ith
row and the ith column.

We have a canonical map from πfirstrow : S•(AdCon)→ A, that forgets the extra information
and only conserves the first row of the diagram (1) deleting the groupoid finite preorder V00 in
the chain. In other words, its sends the diagram (1) to the chain

T01 T02 · · · T0(n−1) T0n.

Proposition 2.4.1.7. The map πfirstrow : S•(AdCon)→ A is an equivalence of simplicial spaces.

Proof. The map πfirstrow is essentially surjective on objects. Let us prove it for an 3-simplex, for a
n-simplex the proof is completely analogous. For a 3-simplex

T0 T1 T2

in A, we construct the following diagram

T0 T1 T2

T0/T0 T1/T0 T2/T0

T1/T1 T2/T1

y y

y

where each square is a pushout, and since the top arrows are admissible it follows that the squares
are bipullbacks by Lemma 2.3.0.5. Furthermore, adding to the top row the canonical admissible
map T inv

0 � T0 and the end of the last column the contraction T2/T1 � (T2/T1)/(T2/T1), we
obtain a 3-simplex in S•(AdCon). The map πfirstrow is full and faithful since any morphism
between n-simpleces in S•(AdCon) is unique determined by families of monotone bijections
between the preorders of the top row of the n-simpleces in S•(AdCon). Since πfirstrow is full
and faithful, and essentially surjective on objects, then it is an equivalence of decomposition
spaces.

Note that S•(AdCon) is a strict simplicial space while A is a pseudo simplicial space. So the
equivalence πfirstrow : S•(AdCon)→ A allows us to see S•(AdCon) as the strictification of A in
the sense of Gambino [50, §6.4].
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2.5 Connected directed hereditary species as decomposition spaces

We will show how to obtain a decomposition space H from a connected directed hereditary
species H : Kp → Grpd.

Given a connected directed hereditary speciesH : Kp → Grpd, we consider first its Grothendieck
construction. It is a left fibration

∫
H → Kp. The objects of

∫
H are pairs (P, x) where P is a

finite poset and x ∈ H[P]. The morphisms are pairs (p,α) : (P, x)→ (Q,y) where p : P → Q is a
partially defined contraction and α : H(p)(x) → y is a morphism in H[Q]. We are interested in
the groupoid of connected finite non-empty posets and genuine contractions K, not all partially
defined contractions. For that, we consider H as the pullback

H
∫
H

K Kp.

y

Furthermore, we define H := SNltH. Thus, an object of Hn is a family of (n− 1)-chains of
contractions

P0 P1 · · · Pn−2 Pn−1
f0 fn−2

with a H-structure on P0 and H0 is the groupoid of families of H-structure over the poset with
one element. We define the bottom face map as follows: we remove the first element of the chain,
P0, and take the H-structure H(f0) on P1. To define the top face map, we use (contravariant)
functoriality on convex map: for each element a ∈ Pn−1, we can form the fibres over a. We end
up with a family

{(P0)a (P1)a (P2)a · · · (Pn−3)a (Pn−2)a}a∈Pn−1 ,
(f0)a (f1)a (fn−3)a

and we restrict the H-structure on P0 to the corresponding H-structure on the fibre (P0)a, in the
same way as for K.

Proposition 2.5.0.1. The groupoids Hn form a simplicial groupoid H.

Proof. It is straightforward to see that all the simplicial identities involving inner face maps and
degeneracy maps are satisfied since H = SNltH'. Let us see the identity d>d⊥ ' d⊥d>: consider
an element

P0 P1 · · · Pn−2 Pn−1
f0 fn−2

of Hn. Clearly the identity is satisfied at the level of posets, since it is satisfied in K. Hence
we only need to see that the final H-structures coincide, but this is just a consequence of the
Beck–Chevalley rule of 2.1.2 (in turn coming from the functoriality of H) applied to the square

P0 (P0)p

P1 (P1)p.

x

for every p ∈ Pn−1. Similarly, the identities d>d> ' d>d>−1 and d⊥d⊥ ' d⊥d⊥+1 come from
functoriality of H in composition of convex maps and composition of contractions, respectively.
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Since the map H→ K is a left fibration and S preserves pullbacks, we have a canonical culf
map H→ K.

Proposition 2.5.0.2. The simplicial groupoid H is a monoidal decomposition space.

Proof. Since there is a culf map H→ K and K is a decomposition space, so is H by Lemma 1.1.2.3.
The monoidal structure is again given by the disjoint union.

Proposition 2.5.0.3. The decomposition space H is complete, locally finite, locally discrete and of locally
finite length.

Proof. Note that H1 is the groupoid of finite families of non-empty H-structures. The automor-
phisms of an object in H1 are given by permutations of the family and by the automorphisms of
the underlying finite posets. Therefore each object can only have finitely many automorphisms.
The rest follows from Propositions 1.1.2.4, 2.2.0.9, and 2.2.0.10.

Since H is locally finite by Lemma 2.5.0.3, the homotopy sum resulting from H is just an
ordinary sum, as in 2.1.3. Therefore, we have the following result:

Proposition 2.5.0.4. The homotopy cardinality of the incidence bialgebra of H is isomorphic to the
incidence bialgebra of H.

2.5.1 Calaque–Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees: part II

In 2.1.4, we constructed the connected directed hereditary species HCEM of trees and contractions.
Let HCEM denote the decomposition space associated with HCEM which is defined as follows:

• (HCEM)0 is the groupoid of families of the tree with one element.

• (HCEM)1 is the groupoid of families of trees and monotone bijections;

• (HCEM)2 is the groupoid whose objects are families of contractions between trees and
whose morphisms are monotone bijections;

• (HCEM)n is the groupoid whose objects are families of (n − 1)-chains of contractions
between trees and whose morphisms are monotone bijections.

The face and degeneracy maps of HCEM are defined as in K. The incidence coalgebra of HCEM
is described in Remark 2.1.4.7.

Example 2.5.1.1 (Faà di Bruno comodule bialgebra of linear trees: part II). Let HFB denote the
decomposition space induced by the directed hereditary species of linear trees HFB (2.1.4.8). The
description of HFB is similar to the description of HCEM but we consider linear trees instead of
arbitrary trees.

2.5.2 Comodule structure

The theory of comodules in the context of decomposition spaces (2-Segal spaces) has been
developed by Walde [93], and independently by Young [95], both in the context of Hall algebras.
Carlier [23] gave a conceptual way to reformulate their definitions using linear functors. Given a
map between two simplicial groupoids F : C→ X, the span

C0 C1 X1 ×C0
d> (F1,d⊥)

defines a linear functor
γ : Grpd/C0 → Grpd/X1 ⊗Grpd/C0 .
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Proposition 2.5.2.1. [23, Proposition 2.1.1] Let F : C→ X be a map between simplicial groupoids. Suppose
moreover that C is Segal, X is a decomposition space, and the map F : C→ X is culf, then the span

C0 C1 X1 ×C0
d> (F1,d⊥)

induces on the slice category Grpd/C0 the structure of a left Grpd/X1 -comodule.

Given a connected directed hereditary species H, the upper decalage of H induces a left
comodule over Grpd/H1 .

Lemma 2.5.2.2. The slice category Grpd/H1 is a left comodule over Grpd/H1 .

Proof. Note that Dec>H is a Segal space since H is a decomposition space. Furthermore, the
decalage map d> : Dec>H→ H is culf. Since Dec>H is Segal and d> is culf, it follows that

H1 H2 H1 ×H1
d1 (d>,d0)

induces a left comodule structure of Grpd/H1 over Grpd/H1 by Lemma 2.5.2.1.

2.6 The incidence comodule bialgebra of a connected directed hered-
itary species

Every hereditary species is, in particular, a restriction species by precomposition with the inclusion
Iop → Sp. Therefore we have two bialgebra structures associated to a hereditary species H: the
incidence bialgebra B of H and the incidence bialgebra A of the restriction species R associated to
H. Carlier [23] showed that A is a left comodule bialgebra over B. The main result of this section
is to apply the Carlier ideas to the directed case.

2.6.1 Directed restrictions species

Recall from Subsection 2.1.2 that a directed restriction species in the sense of Gálvez–Kock–Tonks
[57] is a functor

R : Cop → Grpd.

As usual, the idea is that the value of a poset S is the groupoid of all possible R-structures that
have S as the underlying poset.

The notion of directed restriction species needs to be modified to fit our theory of directed
hereditary species since we only work with finite connected posets. Let C◦ denote the category of
connected finite posets and convex maps and C ′ := SC◦. A directed restriction species is a functor

R : (C ′)op → Grpd.

Every hereditary species H is, in particular, a directed restriction species. Indeed, let R◦ denote
the precomposition of H with the inclusion (C◦)op → Kp which is identity on objects and sends

a convex map ı : P ′ → P to the span P P ′ P ′.ı id The directed restriction species R is the
monoidal extension of R◦. In other words, R is the unique functor that makes the following
diagram commutes:

(C◦)op Kp

(C ′)op.

R◦

R
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Every directed restriction species R induces a decomposition space R where an n-simplex is
a family of n-layered posets with an R-structure on the underlying posets. In other words, the
objects of R2 are families of maps of posets P → 2 with a R-structure on P, and Rn is the groupoid
of families of R-structures P → n. The construction of R follows from the theory developed by
Gálvez, Kock, and Tonks in [57, §7] considering only finite connected posets.

The comultiplication ∆R : Grpd/R1 → Grpd/R1 ⊗Grpd/R1 is given by the span

R1 R2 R1 ×R1
d1 (d2,d0)

where d1 joins the two layeres of the 2-simplex and d> and d⊥ return the first and second layers
respectively.

Remark 2.6.1.1. Our notion of directed restriction species is less general than the Gálvez–Kock–
Tonks notion [57]. For example, the map picture in the following diagram

• •
• •

•

is a morphism in C but not in C ′.

Example 2.6.1.2. The Butcher–Connes–Kreimer Hopf algebra [31, 34] comes from the directed
restriction species of trees RBCK: a forest has an underlying poset, whose convex subposets inherit
a tree structure (see Lemma 2.1.4.4). The comultiplication ∆RBCK is defined by summing over
certain admissible cuts c:

∆RBCK(T) =
∑

c∈admi.cuts(T)

Pc ⊗ Rc.

Note that RBCK is the ordinary directed restriction species associated with the connected directed
hereditary species HCEM.

Remark 2.6.1.3. Recall that for a connected directed hereditary species H, we have that R1 = H1,
so that by Lemma 2.5.2.2, the slice category Grpd/R1 is a left Grpd/H1-comodule. The left
Grpd/H1 -coaction is the linear functor γR1 : Grpd/R1 → Grpd/H1 ⊗Grpd/R1 given by the span

R1 H2 H1 ×R1.
d1 (d>,d0)

The decomposition space R has a monoidal structure given by disjoint union. Recall Rn is the
groupoid of families of finite connected posets with n− 1 compatible cuts. The disjoint union of
two such structures is given by taking the disjoint union of the underlying posets, with the cuts
concatenated. This defines a simplicial map +R : R×R→ R. So R is a monoidal decomposition
space if the map +R is culf [58, §9].

Proposition 2.6.1.4. The map +R : R×R→ R is culf.

Proof. By Lemma 1.1.2.2, the map +R is culf, if the diagram

R2 ×R2 R1 ×R1

R2 R1

+R

d1

d1

+R

is a pullback since R is a decomposition space. But this is clear: a pair of families of finite
connected posets with a cut (an object in R2 ×R2) can be uniquely reconstructed if we know
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what are the families of the underlying finite connected posets are (an object in R1 ×R1) and we
know how the disjoint union is cut (an object in R2). This provided of course that we can identify
the disjoint union of those two families of posets with the family of the underlying posets of the
disjoint union (which is to say that the data agree down in R1).

Since R is a monoidal decomposition space, it follows that the resulting incidence coalgebra
is also a bialgebra [58, §9].

2.6.2 Comodule bialgebra

For a background on comodule bialgebras, see for example [1, §3.2], [23, §5], and [81]. We
follow the terminology of Carlier [23, §5]. Let B be a bialgebra. We can associate B with a
canonical braided monoidal category of left B-comodules. The categorical structure comes from
the coalgebra structure of B, and the (braided) monoidal structure arises from the algebra structure
of B. A comodule bialgebra over B is a bialgebra object in the (braided) monoidal category of left
B-comodules, where a bialgebra object in the braided monoidal category of left B-comodules is a
B-comodule M together with structure maps

∆M : M→M⊗M εM : M→ Q

µM : M⊗M→M ηM : Q→M

which are all required to be B-comodules maps and to satisfy the usual bialgebra axioms. We
shall be concerned in particular with the requirement that ∆M and εM be B-comodule maps
which is to say that they are compatible with the coaction γ : M→ B⊗M:

M M⊗M

B⊗M⊗B⊗M

B⊗M B⊗M⊗M

γ

∆M

idB⊗∆M

γ⊗γ

ω

M Q

B⊗M B

γ

idB⊗ε

ηB

εM

where the map ω is given by first swapping the two middle tensor factors and then using the
multiplication of B in the two now adjacent B-factors. In Proposition 2.6.2.3, the two other axioms
will be automatically satisfied, because as comodule, M coincides with B itself and the algebra
structure of M coincides with that of B.

Recall that every connected directed hereditary species is also a directed restriction species.
Let H be a connected directed hereditary species. We denote by R the induced directed restriction
species and, as usual, H and R correspond to decomposition spaces. Also, the incidence coalgebra
of R is denoted A, and the incidence bialgebra of H is denoted B.

Lemma 2.6.2.1. The comultiplication structure of A is a B-comodule map.

Proof. We need to check that the following diagram commutes, and the squares (1) and (2) are
pullbacks:
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R1 R2 R1 ×R1

H2 Z H2 ×H2

H1 ×R1 ×H1 ×R1

H1 ×R1 H1 ×R2 H1 ×R1 ×R1.

(1)

d1 (d2,d0)

d1

(d>,d0) (2)

d2

d3

d1

(g,d0)

d1⊗d1

(d>,d0)⊗(d>,d0)

ω

id⊗d1 id⊗(d2,d0)

The objects of the groupoid Z are families of pairs of 2-chains of maps P � Q→ 2, such that the
first one is a contraction and the other is a cut, and with a H-structure on P. The map d0 forgets
the contraction, the map d1 composes the contraction and the cut, the map d2 forgets the cut, the
map d3 gives the pair of contractions (P1 � Q1,P2 � Q2), and the map g sends the 2-chain to
the family {Pq}q∈Q of the fibres of the contraction P � Q.

By Lemma 1.2.0.1, the square (1) is a pullback if for any pair of contractions (f1 : P1 �
Q1, f2 : P2 � Q2) ∈ H2 ×H2 and cut P → 2 ∈ R2 such that

(d2,d0)(P → 2) = (P1,P2) = (d1 ⊗ d1)(P1 � Q1,P2 � Q2),

there exists a finite connected poset Q, a contraction f : P � Q, and a cut Q → 2 such that the
diagram

P Q 2

Pi Qi

f

fi

commutes for i = 1, 2. But this is easy to show if we put Q :=
∑
i∈2Qi, and f :=

∑
i∈2 fi, and

consider the partial order <Q on Q given by taking transitive closure in the following relation:
for q,q ′ ∈ Q, we declare that q <Q q ′ if q,q ′ ∈ Qi and q <Qi q

′ or there exists p <P p ′ in P
such that f(p) = q and f(p ′) = q ′.

We will prove that (2) is a pullback. By the prism Lemma 1.2.0.2, (2) is a pullback if the outer
diagram

Z H1 ×R2 R2

H2 H1 ×R1 R1
(d>,d0)

d0

(g,d0)

d1id⊗d1d2

d0

(3)

and the square (3) are pullbacks. The square (3) is obtained after projecting away H1 so it is
straightforward to see that it is a pullback. By Lemma 1.2.0.1, the outer diagram is a pullback
since for any contraction P � Q ∈ H2 and cut Q→ 2 ∈ R2, we can form the 2-chain P � Q→ 2,
which is an object in Z, such that it makes the outer diagram commutes.

Lemma 2.6.2.2. The counit structure of A is a B-comodule map.

Proof. We must show that the following diagram commutes and the squares (4) and (5) are
pullbacks:
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R1 R0 1

H2 R0 1

H1 ×R1 H1 ×R0 H1.

(4)

s0

(5)

d1

(d>,d0)

id⊗s0

The pullback of id⊗s0 along (d>,d0) is the groupoid of families of contractions P � Q with a
H-structure on P, such that the induced H-structure on Q is an empty H-structure. This forces
that both P and Q are empty, and therefore it is any H-structure on the empty poset, which is R0.
This means that (5) is a pullback.

Proposition 2.6.2.3. A is naturally a left B-comodule bialgebra.

Proof. Combining Lemmas 2.6.2.1 and 2.6.2.2, it follows that A is naturally a left B-comodule
coalgebra. The bialgebraic part follows from the monoidal property of H and R, and that the
multiplication of both is the same for how R was constructed.

Remark 2.6.2.4. The arguments used in the proof that A is naturally a left B-comodule coalgebra
in Proposition 2.6.2.3 are the same as those given in the proof of Proposition 5.3 in [23] considering
contractions instead of monotone surjections and families of finite connected posets instead of
sets. We prefer to add the proof to make the document as self-contained as possible, but in any
case, the ideas come from Carlier [23].

2.6.3 Calaque–Ebrahimi-Fard–Manchon comodule bialgebra of rooted trees: part III

The connected directed hereditary species HCEM of trees, described in §2.1.4, induces a comodule
bialgebra. The comultiplication ∆HCEM is explained in Remark 2.1.4.7. The second comultiplication
is given by the directed restriction species of trees RBCK (§2.6.1). By Proposition 2.6.2.3, this is a
comodule bialgebra usually known as the Calaque–Ebrahimi-Fard–Manchon comodule bialgebra
of rooted trees [22].

On the other hand, Kock [70, §5.4] showed another presentation of the Calaque–Ebrahimi-
Fard–Manchon comodule bialgebra of rooted trees related to the reduced Baez–Dolan construction
of the terminal operad. In the operadic setting, operadic trees have an input edge (the leaf edge)
and an output edge (the root edge), and there is a tree without nodes (where leaf=root). To relate
operadic trees and combinatorial trees, we have to forget all decorations and shave off leaf edges
and root edge. This construction is known as the core of an operadic tree.

Since the trees involved in the Calaque–Ebrahimi-Fard–Manchon comodule bialgebra are
combinatorial trees, it is not possible to realise this bialgebra as the incidence bialgebra of an
operad, but this can be solved using the core construction. Kock [70, Proposition 5.4.7] proved
that taking core of the incidence comodule bialgebra of the reduced Baez–Dolan construction
of the terminal operad, we obtain the Calaque–Ebrahimi-Fard–Manchon comodule bialgebra of
rooted trees. Note that our approach to this comodule bialgebra is more straightforward since it
follows from the connected directed hereditary species HCEM of trees.

Example 2.6.3.1 (Faà di Bruno comodule bialgebra of linear trees: part III). The connected
directed hereditary species HFB of linear trees, described in Example 2.1.4.8, induces a comodule
bialgebra: the comultiplication ∆HFB is explained in Example 2.1.4.8. The second comultiplication
is given by the directed restriction species of linear trees RFB, which is similar to RBCK but we
consider linear trees instead of arbitrary trees. By Proposition 2.6.2.3, this is a comodule bialgebra.

In fact, it is the Faà di Bruno comodule bialgebra of linear trees. The form in which it arises
here is very similar to that shown in [70, Section 5.2] from the reduced Baez–Dolan construction
on the identity monad. The difference between these two presentations of the Faà di Bruno
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comodule bialgebra is analogous to the difference between the Calaque–Ebrahimi-Fard–Manchon
bialgebra via the reduced Baez–Dolan construction [70] and the construction from the directed
hereditary species HCEM.

2.7 Connected directed hereditary species and operadic categories

The goal of this section is to construct a functor from the category of connected directed hereditary
species to the category of operadic categories.

Operadic categories were introduced by Batanin and Markl [13] and used to prove the duoidal
Deligne conjecture. An operadic category is a kind of combinatorial structure whose ‘algebras’
are operads of various kinds depending on the operadic category. For example, ∆ is an operadic
category and its operads are nonsymmetric operads.

An operadic category C has chosen local terminal objects (that is, in each connected component
there is a chosen terminal object), a cardinality functor |− | : C→ FinSet to the standard skeleton
of the category of finite sets, and a notion of fibre: this is an assignment that for each morphism
F : Y → X in the operadic category, and each i ∈ |X| gives a new object denoted f−1(i), but this
is abstract and does not have to be a fibre in the usual sense of the word. For example, it is not
necessarily a subobject of Y. These data are subject to many axioms, which can be formulated
in various ways [13], [74], [54]. The Carlier proof [23] that hereditary species induce operadic
categories consisted in checking the whole list of axioms.

Garner, Kock, and Weber [54] observed that the chosen-local-terminals structure amounts
precisely to be a coalgebra for the upper decalage comonad, and went on to give a characterisation
of operadic categories in terms of a certain modified decalage comononad.

Recently Batanin, Kock, and Weber [10] have found a more conceptual characterisation, where
all the axioms end up formulated as simplicial identities. Their discovery is that just as the
chosen-local-terminals structure amounts to an extra top degeneracy map, the fibre structures
amount to an extra top face map, except that this extra top face map lives in the Kleisli category
for the free-symmetric-monoidal-category monad. To understand this point of view, we will
introduce a few concepts.

2.7.1 The lt-nerve

Recall that Catlt is the category of categories with chosen local terminals. Given a opfibration
p : E→ B and an object x ∈ E, we will denote by f!(x) the opcartesian lift for a map f : p(x)→ y

in B.

Lemma 2.7.1.1. Let B be a category with chosen local terminal objects and let p : E → B be a discrete
opfibration. Consider the pullback diagram

FibBlt(p) E

Blt B.

p
y

The objects in FibBlt(p) equip E with chosen local terminal objects.

Proof. Let x be an object in E. Since B has chosen local terminal objects, we have a unique map
tp(x) : p(x)→ cp(x) in E, where cp(x) is a chosen local terminal object. Furthermore, we have a
unique lift (tp(x))!(x) : x→ cx for the map tp(x) in E since p is a discrete opfibration. Note that
cx ∈ FibBlt(p). To prove that cx is a chosen local terminal object in E it is enough to prove that
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any map f : x→ y in E forces that cx = cy. Indeed, the objects cp(x) and cp(y) are connected by
the zig-zag illustrated in the following diagram

p(x) p(y)

cp(x) cp(y).

p(f)

tp(x) tp(y)

Since cp(x) and cp(y) are in the same connected component in B, the chosen local terminal
object property forces that cp(x) = cp(y). This implies that the maps (tp(y))!(y) ◦ f : x→ cy and
(tp(x))!(x) : x → cx are two lifts for the map tp(x). But the discrete opfibration property of p
forces that (tp(y))!(y) ◦ f = (tp(x))!(x), and hence cx = cy.

We now work with posets whose underlying sets are ordinals and strict pullbacks. These
assumptions are necessary to follow the work of Batanin and Markl [13, §1] on operadic categories.

Moreover, we work only with Set-valued species, as in the Schmitt theory of hereditary species.
This is necessary to ensure that given a connected directed hereditary species H : Kp → Set,
its Grothendieck construction

∫
H → Kp is a discrete opfibration. For a connected directed

hereditary species, the category H is the pullback of the Grothendieck construction
∫
H→ Kp

along the inclusion K→ Kp.

Lemma 2.7.1.2. Let H : Kp → Set be a connected directed hereditary species. Then H is a category with
chosen local terminal objects.

Proof. Since H is a presheaf with values in Set, we have that
∫
H→ Kp is a discrete opfibration.

This implies by the construction of H and the stability of discrete opfibrations under pullback
that H→ K is a discrete opfibration. Combining this with the fact that K has a terminal object
(the poset with one element), it follows that the set H[1] of H-structures of the poset with one
element is a set of chosen local terminal objects in H as a consequence of Lemma 2.7.1.1.

Recall that �t is the category whose objects are the non-empty finite ordinals and whose
morphisms are the monotone maps that preserve the top element. Let tsGrpd denote the category
of Grpd-valued �

t-presheaves.

Definition 2.7.1.3. For C a category with chosen local terminals, its lt-nerve Nlt(C) is the �
t-

presheaf

Nlt(C) : (�t)
op Catop Set

Cat(−,C)

Let us describe the lt-nerve Nlt(C): for n > 0, the set Nlt(C)n is the same as the set N(C)n.
The set Nlt(C)[−1] is the set of chosen local terminal objects in C. The face and degeneracy maps
act as the usual nerve construction except in d⊥ : Nlt(C)0 → Nlt(C)[−1] that sends each object in C

to its corresponding chosen local terminal object. The degeneracy map s0 : Nlt(C)[−1] → Nlt(C)0
is the inclusion.

Example 2.7.1.4. Given H : Kp → Set a connected directed hereditary species, we have that H is
a category with chosen local terminal objects by Lemma 2.7.1.2. The lt-nerve of H is described as
follows: (Nlt H)[−1] is the set H[1] of H-structures over the poset with one element. (Nlt H)0 is
the set of finite posets with a H-structure. (Nlt H)1 is the set of contractions with a H-structure
on the first poset. For n > 2, the elements of the set (Nlt H)n are (n− 1)-chains of contractions
with a H-structure on the first poset in the chain.
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2.7.2 Half decalage

Let sGrpdtps denote the subcategory of pseudosimplicial groupoids that the unique pseudo-
simplicial identities involve the top face maps. Given a pseudo simplicial space X in sGrpdtps,
the half upper dec HDec> X is a �t-presheaf obtained by deleting the top face maps and shifting
everything one position down (for n > −1, we have that (HDec> X)n = Xn+1). Note that HDec>
throws away the top face maps but keeps the top degeneracy maps to get a �t-presheaf (with
values in groupoids). This gives a functor HDec> : sGrpdtps → tsGrpd.

A �
t-presheaf A is a �t-Segal space if the simplicial groupoid obtained after eliminating A[−1]

is Segal. Since we are working in this section with Set-valued species, we have to modify the
definition of H to H := S Nlt H.

Lemma 2.7.2.1. Let H : Kp → Set be a connected directed hereditary species. Then HDec>H is a
�
t-Segal space.

Proof. Since H is a category, its nerve N H is a Segal space, and therefore S N H is a Segal space,
as S preserves pullbacks and hence Segal objects. This means that S Nlt H is a �t-Segal space.

2.7.3 The category of connected directed hereditary species and OpCat

For Batanin, Kock, and Weber [10] an operadic category is a pseudosimplicial groupoid Xwhose half
upper dec HDec> X is equal to the symmetrical monoidal functor of the lt-nerve of some category
with chosen local terminal objects. In short: it is a pair (C,X) such that S Nlt C = HDec> X, where
X ∈ sGrpdtps and C ∈ Catlt. To be more precise, they prove that the diagram

OpCat sGrpdtps

Catlt tsGrpd

y
HDec>

S Nlt

is a strict pullback of categories.
Let ConDirHerSp denote the category of connected directed hereditary species. For each

connected directed hereditary species H, we have a pseudosimplicial groupoid H. For a map
f : H ′ → H between connected directed hereditary species, the Grothendieck construction of f
gives a map

∫
f : H ′ →H. This map induces a map from H ′ to H that we denote as

∫K
f : H ′ → H.

Since f is simplicial map for each P ∈ K, we have a map fP : H ′[P]→ H[P]. So the map
∫K
f sends

an n-simplex in H ′ which is a n-chain of contractions

P0 P1 . . . Pn−2 Pn−1

with an H ′-structure X in P0 to the same n-chain but with the H-structure fP0(X) in P0 which is a
n-simplex in H.

We define the functor
∫K

: ConDirHerSp→ sGrpdtps as follows:
∫K

(H) = H, for each object
H ∈ ConDirHerSp and for a morphism f : H ′ → H, the functor sends it to

∫K
f. Furthermore,

HDec> ◦
∫K

(H) is a �t-Segal space by Lemma 2.7.2.1.
On the other hand, Lemma 2.7.1.2 established that H is a category with chosen local terminal

objects given by the set H[1] of H-structures of the poset with one element. This gives a functor∫∗
: ConDirHerSp→ Catlt that sends H to the category H.
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Lemma 2.7.3.1. The diagram

ConDirHerSp sGrpdtps

Catlt tsGrpd

∫∗
S Nlt

HDec>

∫K

strictly commutes.

Proof. Let H be an object in ConDirHerSp. The commutativity of the diagram follows from the
fact that

∫∗
(H) = H and

∫K
(H) = H = S Nlt(H).

Proposition 2.7.3.2. There exists a canonical functor from the category of connected directed hereditary
species ConDirHerSp to the category of operadic categories OpCat.

Proof. Consider the diagram

ConDirHerSp

OpCat sGrpdtps

Catlt tsGrpd.

HDec>

S Nlt

y∫∗

∫K

Batanin, Kock, and Weber [10] proved that the square is a pullback. The outer diagram commutes
by Lemma 2.7.3.1. The dotted arrow then exists by the pullback property of OpCat. The functor
ConDirHerSp→ OpCat sends a connected directed hereditary species H to the pair (H, H).

Connected directed hereditary species constitute a new family of examples of operadic
categories. In fact, the connected directed hereditary species associated to the Fauvet–Foissy–
Manchon comodule bialgebra of finite topologies and admissible maps; and the connected
directed hereditary species HCEM associated to the Calaque–Ebrahimi-Fard–Manchon comodule
bialgebra of rooted trees are now covered by the theory of operadic categories.

2.8 Directed hereditary species as monoidal decomposition spaces,
comodule bialgebras and operadic categories

Schmitt hereditary species are not connected directed hereditary species, as the fibres along a
surjection between discrete posets are not necessarily connected. To cover these examples, in
this section, we introduce the notion of collapse, which allows for non-connected fibres. This
leads to the notion of (not-necessarily-connected) directed hereditary species. Furthermore, each
directed hereditary species induces a decomposition space (2.8.4), a comodule bialgebra (2.8.5),
and a operadic category (2.8.6).

2.8.1 Partially reflecting maps

Definition 2.8.1.1. A map of posets f : P → Q is partially reflecting if f(x) < f(y) in Q implies that
x < y in P. Partially reflecting monotone surjections are called collapse maps.

Lemma 2.8.1.2. In the category of posets, collapse maps are stable under pullback.
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Proof. Let P,Q and V be posets. Let f : P � V be a collapse. Let g : Q→ V be a monotone map
and let

P×V Q Q

P V

πP

πQ

y
g

f

be a pullback diagram. Since monotone surjections are stable under pullback, we have that πQ is
a monotone surjection. It remains to prove that πQ is a partially reflecting map. Let (p,q) and
(p ′,q ′) be objects in P×V Q. This means

f(p) = g(q) and f(p ′) = g(q ′). (1)

Assuming that πQ(p,q) <Q πQ(p ′,q ′), we get that

q <Q q
′. (2)

Since g is a monotone map, g(q) <V g(q ′). This together with Eq. (1) implies that

f(p) <V f(p
′). (3)

Since f is partially reflecting, we have that p <P p ′. This combining with (2) implies (p,q) <
(p ′,q ′). Hence, πQ is partially reflecting.

An illustration of a collapse is given by the following picture

• • •

• • •

• • •

2.8.2 Directed Hereditary Species

We can also define the notion of directed hereditary species for the non-connected case by
substituting the category Kp of partially defined contractions by the category Dp of partially
defined collapse maps in Definition 2.1.2.1.

A partially defined collapse map P → Q consists of a convex subposet P ′ of P and a collapse
P ′ � Q

P ′

P, Q

fi

where i is a convex map and f is a collapse. Partially defined collapse maps are composed by
pullback composition of spans in the category D.

Definition 2.8.2.1. A directed hereditary species is a functor H : Dp → Grpd.

Example 2.8.2.2. Any Schmitt hereditary species is a directed hereditary species since any set
can be regarded as a discrete poset, and any partial surjection of sets is then a partially defined
collapse map of discrete posets.
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2.8.3 Pseudosimplicial groupoid of collapse maps

In this subsection, the monoidal decomposition space D of finite non-empty posets and collapse
maps is defined in analogy with K.

Let D denote the category of finite posets and collapse maps. We define D := SNlt(D) to be
the symmetric monoidal category functor S applied to the fat lt-nerve of D. All the face maps
(except the missing top ones) and degeneracy maps are just S applied to the face and degeneracy
maps of Nlt(D). The top face map is given by:

• For n > 2, the top face map d> : Dn → Dn−1 is defined as follows: given a (n− 1)-chain
of collapse maps

P0 P1 P2 · · · Pn−2 Q,
f0 f1 fn−2

for each element q of the last target poset, we can form the fibres over q of the source
posets. We end up with a family

{(P0)q (P1)q (P2)q · · · (Pn−3)q (Pn−2)q}q∈Q,
(f0)q (f1)q (fn−2)q

for each 0 6 i 6 n− 2, the map (fi)q is a collapse by Lemma 2.8.1.2

• d> : D1 → D0 sends a family of finite posets {Qi}i∈I to the underlying set of the disjoint
union

∑
i∈IQi.

Note that the fibres are non-empty convex subposets since we only consider collapse maps,
not arbitrary maps.

Proposition 2.8.3.1. The groupoids Dn and the degeneracy and face maps given above form a pseudosim-
plicial groupoid D.

Proof. The proof is analogous to that of Proposition 2.2.0.5.

To simplify the proof that D is a decomposition space, we need some preliminaries.

Proposition 2.8.3.2. We have an equality Dec>D = SND.

Proof. Note that the objects of (SND)n are finite families of (n− 1)-chains of collapse maps
between non-empty finite posets, which is the same as the description given above of (Dec>D)n.

Remark 2.8.3.3. Since S preserves pullbacks and ND is a Segal space, Proposition 2.8.3.2 implies
that Dec>D is a Segal space. This is equivalent to saying that for each n > 2 the following
diagram is a pullback for 0 < i < n:

Dn+1 Dn

Dn Dn−1.

di+1

d⊥ d⊥

di

Lemma 2.8.3.4. Suppose we have a collapse f : P � Q and a family of collapse maps {hq : Pq �Wq}q∈Q.
Then there exists a unique poset W and collapse maps h and g such that the diagram

P W Q

Pq Wq
hq

h g

f

commutes. Here the vertical arrows are convex inclusions.
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Proof. We will do the proof in two steps: in the first place, we will construct the underlying set of
the poset W and the functions h : P →W and g : W → Q. After that, we will construct a partial
order <W on W forced by the requirement that h and g are collapse maps.

• Put W :=
∑
q∈QWq and h :=

∑
q∈Q hq. The map g : W → Q is defined as g(w) = q for

w ∈Wq. Furthermore, the diagram

P W Q

Pq Wq 1
hq

h g

f

pqq

commutes at the level of sets by the way h and g were defined.

• The partial order <W on W is defined as follows: for w,w ′ ∈W, we declare that w <W w ′

if one of the following conditions is satisfied:

1. In case w,w ′ ∈Wq and w <Wq
w ′;

2. In case g(w) 6= g(w ′) and g(w) <Q g(w ′).

The condition (b) is required to make g : W → Q to be a collapse. Let p and p ′ be objects
in Pi such that h(p) <W h(p ′). Applying g, we have that g(h(p)) <Q g(h(p ′)). Since
f = g ◦ h, it follows that f(p) <Q f(p ′). By hypothesis, f is partially reflecting. This implies
that p <P p ′. Therefore, h is a partially reflecting map. Furthermore, h is a monotone
surjection. Indeed, let p and p ′ be objects in P such that p <P p ′. Applying g ◦ h, we have
that g(h(p)) <Q g(h(p ′)). Since g is partially reflecting, it follows that h(p) <W h(p ′).

Remark 2.8.3.5. Lemma 2.8.3.4 would not hold for general monotone surjections instead of
collapse maps. Suppose we have monotone surjections illustrated in the following picture:

a b

a b

a b

a b

a b

a b

If the inclusion map from {a,b} to {a→ b} plays the role of f in Lemma 2.8.3.4, the collapse
maps illustrated above are two solutions to the problem described in Lemma 2.8.3.4 and therefore
the lemma would be false.

Lemma 2.8.3.6. For each 0 < i < n, the map di : Dn → Dn−1 is a fibration.

Proof. The proof is analogous to that of Proposition 2.2.0.7, but using the category D instead of
K.

Proposition 2.8.3.7. The pseudosimplicial groupoid D is a decomposition space.

Proof. The proof is analogous to that of Proposition 2.2.0.8, but applying Remark 2.8.3.2 instead
of Remark 2.2.0.4 and Lemma 2.8.3.4 instead of Lemma 2.2.0.6.
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Proposition 2.8.3.8. The decomposition space D is complete.

Proof. The proof is analogous to that of Proposition 2.2.0.9, but using D instead of K.

Proposition 2.8.3.9. The decomposition space D is locally finite, locally discrete, and of locally finite
length.

Proof. The proof is analogous to that of Proposition 2.2.0.10.

Since the simplicial groupoid D is equal to SNltD, the decomposition space D is a monoidal
decomposition space. The monoidal structure is obtained by categorical sum as in K.

2.8.4 Directed hereditary species as decomposition spaces

We can also construct a decomposition space H from a directed hereditary species H : Dp → Grpd
similarly to the connected case. We define H1 as the groupoid of families of non-empty H-
structures. An object of Hn is a family of chains of collapses

P0 P1 · · · Pn−2 Pn−1
f0 fn−2

with an H-structure on each P0. The inner face maps and degeneracy maps are induced by the
maps in D. For the bottom face map we use functoriality of H along collapse maps. Similarly, we
use (contravariant) functoriality in convex map to define the top face map. The groupoid H0 is
defined as the groupoid of families of H-structures over the poset with one element.

Proposition 2.8.4.1. The groupoids Hn form a monoidal decomposition space H.

Proof. The proof is analogous to that of Proposition 2.5.0.2.

Proposition 2.8.4.2. The decomposition space H is complete, locally finite, locally discrete, and of locally
finite length.

Proof. The proof is analogous to that of Proposition 2.5.0.3

2.8.5 The incidence comodule bialgebra of non-connected directed hereditary species

Recall that every directed hereditary species is also a directed restriction species, in the sense
of Gálvez–Kock–Tonks [57], through precomposition with the inclusion Cop → Dp. Let H be
a directed hereditary species. We denote by R the induced directed restriction species and, as
usual, H and R the corresponding to decomposition spaces. Also, the incidence coalgebra of R is
denoted A, and the incidence bialgebra of H is denoted B. The following result is a consequence
of the theory developed in Section 2.6 but using collapse maps instead of contractions.

Proposition 2.8.5.1. A is a left comodule bialgebra over B.

2.8.6 Directed hereditary species as operadic categories

We now work with Set-valued species as in the classical theory and posets whose underlying sets
are ordinals. These are necessary to ensure that given a directed hereditary species H : Dp → Set,
its Grothendieck construction

∫
H→ Dp is a discrete opfibration and have precise constructions

in the context of operadic categories.
Recall that for a directed hereditary species H, the category H is the pullback of the

Grothendieck construction
∫
H→ Dp along the inclusion D→ Dp.



2.8 directed hereditary species as monoidal decomposition spaces , comodule bialgebras and operadic categories 57

Lemma 2.8.6.1. Let H : Dp → Set be a directed hereditary species. Then H is a category with local
terminal objects.

Proof. Since H is a presheaf with values in Set, we have that
∫
H→ Dp is a discrete opfibration.

This implies by the construction of H and the stability of discrete opfibration under pullback that
H→ D is a discrete opfibration. Combining this with the fact that D has a terminal object (the
poset with one element), it follows that the set H[1] of H-structures of the poset with one element
is the set of local terminal objects in H by Lemma 2.7.1.1.

Example 2.8.6.2. Given H : Dp → Set a directed hereditary species, we have that H is a category
with local terminal objects by Lemma 2.8.6.1. The lt-nerve of H is described similarly to the
connected case (Example 2.7.1.4).

Lemma 2.8.6.3. Let H : Dp → Set be a directed hereditary species. Then HDec> S Nlt H is a �t-Segal
space.

Proof. The proof is the same as Lemma 2.7.2.1.

Let DirHerSp denote the category of directed hereditary species. For each directed hereditary
species H, we have a pseudosimplicial groupoid H = S Nlt H. This construction gives a functor∫D

: DirHerSp → sGrpdtps defined by
∫D

(H) = H. Furthermore, HDec> ◦
∫D

(H) is a �
t-Segal

space by Lemma 2.8.6.3.
On the other hand, Lemma 2.8.6.1 established that H is a category with local terminal

objects given by the set of H-structures of the poset with one element H[1]. This gives a functor∫∗
: DirHerSp→ Catlt that sends H to the category H.

Lemma 2.8.6.4. The diagram

DirHerSp sGrpdtps

Catlt tsGrpd

∫∗
S Nlt

HDec>

∫D

strictly commutes.

Proof. The proof is analogous to that Proposition 2.7.3.1.

Proposition 2.8.6.5. There exists a canonical functor from the category of directed hereditary species
DirHerSp to the category of operadic categories OpCat.

Proof. The proof is analogous to that Proposition 2.7.3.2, but using Lemma 2.8.6.4 instead of
Lemma 2.7.3.1.





3
The Gálvez–Kock–Tonks conjecture for
rigid decomposition spaces

In this chapter, we work at the level of homotopy 1-types to prove the first case of the conjecture,
namely for locally discrete decomposition spaces. This provides also the first substantial evidence
for the general conjecture. This case is general enough to cover all locally finite posets, Cartier–
Foata monoids, Möbius categories and strict (directed) restriction species. The proof is 2-
categorical. First, we construct a local strict model of U (3.4.1), which is then used to show by
hand that the Lawvere interval construction, considered as a natural transformation, does not
admit other self-modifications than the identity (3.5.1). The material of this chapter is the main
part of [47].

3.1 Slices and intervals

In this section, we introduce some constructions with slice and coslice of decomposition groupoids
required to introduce the concept of interval.

Throughout we write δA : �op → Grpd for the constant simplicial space on a groupoid
A. We have a natural transformation πlast : Dec> X → δ(X0) defined as follows: the map
πlast : Dec> X→ δ(X0) sends an n-simplex λ in Dec> X to dn+1⊥ (λ) in X0 and an arrow α : λ→ η

in (Dec> X)n to dn+1⊥ (α) in X0. Since [0] is terminal in (�t)op, the map πlast is a simplicial map.

Lemma 3.1.0.1. The natural transformation πlast is cartesian on right fibrations. That is, given a right
fibration p : X→ Y, the square

Dec> X δ(X0)

Dec> Y δ(Y0)πlast

Dec> p

πlast

δ(p0)(1)

is a homotopy pullback.

Proof. The pullback property can be checked level-wise. Note that (Dec> X)n = Xn+1. In level
n > 0, the square (1) is

Xn+1 X0

Yn+1 Y0,

dn+1⊥

pn+1

dn+1⊥

p0

which is a homotopy pullback since p is a right fibration.

We also have a natural transformation πfirst : Dec⊥ X→ δ(X0) defined as follows: the simpli-
cial map πfirst : Dec⊥ X→ δ(X0) sends an n-simplex λ in Dec⊥ X to dn+1> (λ) in X0 and an arrow
α : λ→ η in (Dec⊥ X)n to dn>(α) in X0. The proof of the following result is analogous to that of
Lemma 3.1.0.1.

Lemma 3.1.0.2. The natural transformation πfirst is cartesian on left fibrations.

59
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Lemma 3.1.0.3. [41, Proposition 2.1] Let X be a decomposition groupoid. For all 0 6 i 6 n the following
squares are homotopy pullbacks:

Xn+1 Xn+2

Xn Xn+1.

y

si+1

d0 d0

si

Xn+1 Xn+2

Xn Xn+1.

y

si

dn+1 dn+2

si

The pullbacks of Lemma 3.1.0.3 are called the upper and lower unital condition.

Definition 3.1.0.4. Let X be a decomposition groupoid. For an object y in X0, the slice X/y is
defined as the homotopy pullback

X/y 1

Dec> X δ(X0).πlast

u pyq
y

Remark 3.1.0.5. Taking the upper decalage construction of X gives a simplicial object starting in
X1, but equipped with an augmentation d0 : X1 → X0. Pulling back this simplicial object along
pyq : 1→ X0, yields a new simplicial object which is X/y. The map u is cartesian since 1→ δ(X0)

is cartesian and cartesian maps are stable under pullback. Therefore, u is a right fibration, and as
a consequence, X/y is Segal by 1.1.2.8.

Definition 3.1.0.6. Let X be a Segal groupoid. An object b ∈ X0 is called terminal if the projection
map X/b → X is a levelwise equivalence.

Proposition 3.1.0.7. Let X be a decomposition groupoid. Then for an object y in X0, the object s0(y) is
terminal in X/y.

Proof. In the diagram

(X/y)/s0(y) 1

Dec> X/y δ((X/y)0)

Dec>Dec> X δ((Dec> X)0),

u ′

πlast

ps0yq

Dec>u

πlast

δ(u0)

(1)

(2)

the square (1) is a homotopy pullback by definition of (X/y)/s0(y). Since u : X/y → Dec> X is a
right fibration, we have that (2) is a homotopy pullback by Lemma 3.1.0.1. Therefore, the outer
diagram is a homotopy pullback. Furthermore, note that δ(u0)(s0(y)) = s0(y). This means that
(X/y)/s0(y) is the homotopy pullback of πlast along ps0yq : 1 → δ((Dec> X)0). Note that in the
diagram

X/y 1

Dec> X δ(X0)

Dec>Dec> X δ((Dec> X)0)

u

πlast

pyq

H

πlast

δ(s0)

(3)

(4)

the square (3) is a homotopy pullback by definition of X/y. The map H : Dec> X→ Dec>Dec> X
is defined by H((Dec> X)n) = sn+1(Xn+1). The square (4) is a pullback as a consequence
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of Lemma 3.1.0.3 and the definition of H. Combining (3) and (4), the outer diagram is a
homotopy pullback. Furthermore, note that δ(s0)(y) = s0(y). This means that X/y is the
homotopy pullback of πlast along ps0yq : 1 → δ((Dec> X)0). Since X/y and (X/y)/s0(y) are
homotopy pullbacks over the same diagram, we get a canonical identification (X/y)/s0(y)

∼= X/y.
Furthermore, this identification is given by the canonical projection map pr : (X/y)/s0(y) → X/y
since H ◦ u ◦ pr = u ′ ◦Dec> u.

Definition 3.1.0.8. Let X be a decomposition groupoid. For an object x in X0, the coslice Xx/ is
defined as the homotopy pullback

Xx/ 1

Dec⊥ X δ(X0).πfirst

v pxq
y

We write v : Xx/ → Dec⊥ X for the canonical map of Definition 3.1.0.8. Note that for each x in X0,
the coslice Xx/ is Segal. Indeed, Dec⊥ X is Segal and Xx/ is a left fibration over Dec⊥ X, and is
therefore Segal too by Lemma 1.1.2.8.

Definition 3.1.0.9. Let X be a Segal groupoid. An object a ∈ X0 is called initial if the projection
map Xa/ → X is a levelwise equivalence.

Proposition 3.1.0.10. Let X be a decomposition groupoid. For an object x in X0, the object s0(x) is an
initial object in Xx/.

Proof. The proof is analogous to that of Proposition 3.1.0.7.

Lemma 3.1.0.11. Let C be a Segal groupoid with an initial object ⊥C. Then for each object y in C, the
slice C/y has an initial object.

Proof. Since ⊥C is an initial object, we have a map f⊥C
: ⊥C→ y. This map can be regarded as an

object in C/y or in C⊥/, and after two pullbacks of Dec>Dec⊥ = Dec⊥Dec> we get the natural
identification (C/y)f⊥C/

∼= (C⊥C/
)/f⊥C

. Furthermore, in the diagram

(C⊥C/
)/f⊥C

1

Dec> C⊥C/
δ((C⊥C/

)0)

Dec> C δ(C0)

u

πlast

pf⊥Cq

Dec> d⊥

πlast

δ(d⊥)

(1)

(2)

the square (1) is a homotopy pullback by definition of (C⊥C/
)/f⊥C

. Since ⊥C is an initial object, we
have that d⊥ : C⊥/ → C is a levelwise equivalence. This implies that (2) is a homotopy pullback.
Combining (1) and (2), we have that the outer diagram is a homotopy pullback. Furthermore,
note that d⊥(f⊥C

) = y. This means that (C⊥C/
)/f⊥C

is the homotopy pullback of πlast along
pyq : 1→ δ(C0). But this is precisely the definition of C/y. This implies that (C⊥C/

)/f⊥C
∼= C/y and

therefore (C/y)f⊥C/
∼= C/y. Furthermore, this isomorphism is given by the canonical projection

map pr : (C/y)f⊥C/ → C/y since u ′′ ◦ pr = Dec> d⊥ ◦ u, where u ′′ : C/y → Dec> C denotes the
canonical map of Definition 3.1.0.4.

Lemma 3.1.0.12. Let C be a Segal groupoid with a terminal object. Then for each object x in C, the coslice
Cx/ has a terminal object.
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Proof. The proof is analogous to that of Lemma 3.1.0.11.

Let X be a decomposition groupoid. For λ : ∆n → X, we denote by long(λ) the 1-simplex

∆1 ∆n X
λ . Applying lower and upper decalage to X, we obtain a new decomposition

groupoid Dec>Dec⊥ X and a map ε : Dec>Dec⊥ X → X which is culf by Proposition 1.1.3.1.
Furthermore, we have a natural transformation πlong : Dec>Dec⊥ X→ δ(X1) defined as follows:
the map πlong : Dec>Dec⊥ X → δ(X1) sends an n-simplex λ in Dec>Dec⊥ X to long(λ) in X1
and an arrow α : λ→ η in (Dec>Dec⊥ X)n to long(α) in X1. Recall that the category �

act is the
subcategory of � whose objects are the nonempty finite ordinals and whose morphisms are the
active maps. Since [1] is terminal in (�act)op, the map πlong is a simplicial map.

Lemma 3.1.0.13. The natural transformation πlong is cartesian on culf maps. That is, given a culf map
F : X→ Y between decomposition groupoids, the square

Dec>Dec⊥ X δ(X1)

Dec>Dec⊥ Y δ(Y1)πlong

δ(F1)Dec> Dec⊥ F

πlong

is a homotopy pullback.

Proof. The pullback property can be checked levelwise. Note that (Dec>Dec⊥ X)n = Xn+2. For
n > 0, the square

Xn+2 X1

Yn+2 Y1

dn+11

Fn+2

dn+11

F1

is a homotopy pullback since F is culf.

Definition 3.1.0.14. Let X be a decomposition groupoid and let f be an object in X1. The Segal
groupoid If is defined as the homotopy pullback, called the interval of f,

If 1

Dec>Dec⊥ X δ(X1).πlong

w pfq
y

We write w : If → Dec>Dec⊥ X for the simplicial map obtained in this way. From its
construction as a pullback of a map between constant simplicial groupoids, it is clear that w
is culf. The double decalage construction induces a culf map Mf : If → X, defined by the
composition of w and the canonical map ε : Dec>Dec⊥ X→ X.

Remark 3.1.0.15. When X is the ordinary nerve of a category, the description of If is due to
Lawvere [77]: the objects of If are two-step factorisations of f. The 1-cells are arrows between
such factorisations, or equivalently 3-step factorisations, and so on. More generally, let X be a
decomposition set and f ∈ X1. The Segal set If is described as follows:

1. An object of If is any σ ∈ X2 such that d1(σ) = f.

2. Given two objects σ and σ ′ in If, a morphism γ : σ → σ ′ in If is any object γ ∈ X3, such
that d2(γ) = σ and d1(γ) = σ ′.
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3. Given two morphisms γ : σ → σ ′ and γ ′ : σ ′ → σ ′′ of If, the composition is defined by
γ ′ ◦ γ : = d2(η), where η ∈ X4 satisfies that d1(η) = γ ′ and d3(η) = γ. The unique
existence of η is a consequence of the decomposition-groupoid axioms in the form of
Lemma 1.1.0.7. Associativity also follows by Lemma 1.1.0.7.

Applying lower and upper decalage to X generate two sections on Dec>Dec⊥ X. The first
one is induced by s⊥ : X → Dec⊥ X and the other is induced by s> : X → Dec> X. We shall
see later that s⊥(f) is an initial object and s>(f) is a terminal object in If. Recall that we write
u : X/y → Dec> X for the canonical map of Definition 3.1.0.4 and v : Xx/ → Dec⊥ X for the
canonical map of Definition 3.1.0.8. When further (co)slicing is used we decorate the u or v with
a prime.

Lemma 3.1.0.16. Let X be a decomposition groupoid. For f ∈ X1, put x = d1(f) and d0(f) = y. There
are canonical equivalences (Xx/)/f → If and (X/y)f/ → If such that the following diagram commutes
up to isomorphism

(Xx/)/f If (X/y)f/

Xx/ X X/y.

'

d>◦u (1)
(2)Mf

'

d⊥◦v ′

d⊥◦v d>◦u ′

Proof. In the diagram

(Xx/)/f 1

Dec> Xx/ δ((Xx/)0)

Dec>Dec⊥ X δ(X1)

pfqu

πlast

Dec> v

πlong

δ(v0)

(3)

(4)

the square (3) is a homotopy pullback by construction of (Xx/)/f . Since v is a right fibration the
square (4) is a homotopy pullback by Lemma 3.1.0.2. Therefore, the outer diagram is a homotopy
pullback. Note that δ(v0)(f) = y. This implies that (Xx/)/f is the homotopy pullback of πlong
along pfq : 1 → δ(X1). But this is precisely the definition of If. This gives us an equivalence
G : (Xx/)/f → If such that w ◦G ' Dec> v ◦ u, which is the upper square in the diagram

(Xx/)/f If

Dec> Xx/ Dec>Dec⊥ X

Xx/ Dec⊥ X X

d>

Mf

G

u

Dec> v

ε

w

d>

d⊥v

Since the other regions in the diagram commute strictly (by functoriality of upper decalage and
by definition of ε and Mf), we get a natural isomorphism for the outer square, which is precisely
(1). By analogous arguments, (2) commutes up to isomorphism.

When X is the ordinary nerve of a category, Lemma 3.1.0.16 is the same as Lemma 3.2 in [77].

Lemma 3.1.0.17. Let X be a Segal groupoid with an initial object⊥ and a terminal object>. Let h : ⊥ → >
be a map from ⊥ to >, then X ' Ih.
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Proof. Applying Lemma 3.1.0.16 to h, we have that (X⊥/)/h ' Ih. Applying Lemma 3.1.0.11 to
>, it follows that X/> ' (X⊥/)/h. Furthermore, X/> ' X since > is a terminal object. Combining
these equivalences, we get that X ' Ih.

When X is the ordinary nerve of a category, Lemma 3.1.0.17 is the same as Lemma 3.3 in [77].

Proposition 3.1.0.18. Let X be a complete decomposition groupoid. Then for each f ∈ X1, the Segal
groupoid If is complete in the sense of decomposition groupoids, meaning that s0 : (If)0 → (If)1 is a
monomorphism.

Proof. By construction of If, we have the following diagram

(If)0 (If)1 (If)0

X1 X2 X1.

s0

w0

d0

w1
y

w0

s1 d1

Since X is complete, the map s1 : X1 → X2 is a monomorphism, and therefore also its pullback
s0 : (If)0 → (If)1 is a monomorphism, which is to say that If is complete.

3.2 Discrete intervals and rigid decomposition groupoids

To study the first case of the Gálvez–Kock–Tonks conjecture, the obvious level of generality would
be discrete decomposition groupoids, but the proofs to be presented in this section work for
locally discrete decomposition groupoids of the kind featured in the following definition:

Definition 3.2.0.1. A rigid decomposition groupoid is a strict simplicial groupoid X such that
d1 : X2 → X1 is a discrete fibration, s0 : X0 → X1 is a monomorphism and the active-inert squares
are strict pullbacks.

The point, as we shall see, is for a rigid decomposition groupoid X, we have that for all f ∈ X1,
the Segal groupoid If (3.1.0.14) is discrete. Note that every discrete decomposition groupoid is a
rigid decomposition groupoid. This means that the rigid decomposition groupoids already cover
locally finite posets, Cartier–Foata monoids and Möbius categories. The importance of locally
discrete is to cover also strict (directed) restriction species as shown in the following example:

Example 3.2.0.2. A directed restriction species R : Cop → Grpd induces a decomposition groupoid
R [57], where Rn is the groupoid of R structures with an n-layering of the underlying poset P,
that is a monotone map P → n, the linear order with n elements. The map d1 : R2 → R1 forgets
the layering and is clearly a discrete fibration. Altogether, the decomposition groupoid R is rigid.

Example 3.2.0.3. Recall that for the decomposition groupoid of rooted trees RT of Example 1.1.0.5,
RT2 is the groupoid of forests with an admissible cut, RT1 is the groupoid of forests and the
map d1 : RT2 → RT1 forgets the admissible cut. It is straightforward to see that d1 is a discrete
fibration. Therefore, RT is a rigid decomposition groupoid.

Dür [34] gave an incidence-coalgebra construction of the Butcher–Connes–Kreimer coalgebra
by starting with the category of forests and root-preserving inclusions, generating a coalgebra
and imposing the equivalence relation that identifies two root-preserving forest inclusions if their
complement crowns are isomorphic forests.

Consider the rigid decomposition groupoid of rooted trees RT. We can consider a tree T as
an object in RT1. The interval IT can be described as follows: (IT )0 is the set of all isoclasses of
admissible cuts of T , and (IT )k is the set of isoclasses of all k+ 1 compatible admissible cuts of T .

We can relate the construction of Dür with the interval construction of a rooted tree as follows:
note that admissible cuts are essentially the same thing as root-preserving forest inclusions: then
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the cut is interpreted as the division between the included forest and the forest induced on
the nodes in its complement. In this way we see that (IT )k is the discrete groupoid of k+ 1
consecutive root-preserving inclusions ending in T .

Remark 3.2.0.4. In a decomposition groupoid X, every active face map is a pullback of d1 : X2 →
X1 [59, Lemma 1.10]. Therefore, in the case where X is rigid we have that πlong is a levelwise
discrete fibration since in each level it is the long-edge map, which is a composition of active
face maps, and these are all discrete fibrations. Therefore, the strict pullback of πlong along
pfq : 1→ δ(X1) is also a homotopy pullback. Furthermore, for every f ∈ X1, the Segal groupoid
If is discrete.

Definition 3.2.0.5. Let X be a discrete Segal groupoid. A chosen terminal object is the choice of a
terminal object b. A chosen initial is the choice of an initial object a.

Example 3.2.0.6. Let X be a discrete decomposition groupoid. Let y be an object in X0. We already
know from Proposition 3.1.0.7 that s0(y) is a terminal object in X/y, which we take as the chosen
one. In this way X/y acquires a canonical chosen terminal. Similarly, s0(y) is an initial object in
Xy/ (Proposition 3.1.0.10), which we take as the chosen one. In this way Xx/ acquires a canonical
chosen initial.

Definition 3.2.0.7. A discrete interval is a discrete Segal groupoid C with a chosen initial object ⊥
and a chosen terminal object >. We denote the map from the chosen initial to the chosen terminal
by $ : ⊥→ >.

Remark 3.2.0.8. In the case of the nondiscrete intervals, further structure is required in the
notion of chosen terminal, namely the choice of a section s : X → X/b for the canonical map
d>u : X/b → X. This will not be needed in the present paper, but the interested reader can find
the theory of these worked out in Version 1 of this paper on arXiv.

Remark 3.2.0.9. Batanin and Markl [13] used the notion of a category with chosen local terminal
objects, meaning a category which in each connected component is provided with a chosen
terminal object. This notion plays an important role in their theory of operadic categories. Garner,
Kock and Weber [54] observed that the structure of chosen local terminal objects is precisely
to be a coalgebra for the upper-Dec comonad. This in turn amounts to having an extra top
degeneracy map for the nerve of the category. When we insist on having a chosen terminal
object, it is inspired by this decalage viewpoint on chosen terminals. Similarly of course, the
notion of chosen local initial object amounts to coalgebra structure for the lower-Dec comonad,
via extra bottom degeneracy maps, as the chosen initial object in our definition. Finally, the main
point here is the combination of the two ideas. A discrete interval structure is in particular a
coalgebra for the two-sided-Dec comonad. This is very much in line with the notion of flanking
of Gálvez–Kock–Tonks [60, §1].

Definition 3.1.0.14 can be rewritten in terms of rigid decomposition groupoid as follows:

Definition 3.2.0.10. Let X be a rigid decomposition groupoid and let f be an object in X1. The
Segal groupoid If is defined as the strict pullback

If 1

Dec>Dec⊥ X δ(X1).πlong

w pfq
y

In fact this strict pullback is also a homotopy pullback since πlong is a discrete fibration as a
consequence of the fact that d1 is a discrete fibration.
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Lemma 3.2.0.11. Let X be a rigid decomposition groupoid and f ∈ X1. The Segal groupoid If has a
canonical structure of an interval, where the chosen initial object is s0(f) and the chosen terminal object is
s1(f).

Proof. The object s1(f) is a terminal object in If as a consequence of Lemma 3.1.0.7, which we take
as the chosen one. On the other hand, the object s0(f) is a initial object in If as a consequence of
Lemma 3.1.0.10, which we take as the chosen initial.

A simplicial map F : X→ Y between rigid decomposition groupoids is called strict culf if the
naturality square for F with respect any active map [n]� [k] in � is a strict pullback. Since the
active maps are fibrations in rigid decomposition groupoids, it follows that the strict pullbacks of
a strict culf map are also homotopy pullbacks, so that strict culf map is in fact culf in the usual
homotopy invariant sense. Lemma 3.1.0.13 can be rewritten in terms of the strict condition as
follows:

Lemma 3.2.0.12. The natural transformation πlong is cartesian on strict culf maps. That is, given a strict
culf map F : X→ Y between rigid decomposition groupoids, the square

Dec>Dec⊥ X δ(X1)

Dec>Dec⊥ Y δ(Y1)πlong

δ(F1)Dec> Dec⊥ F

πlong

is a strict pullback.

Proof. The proof is analogous to that of Lemma 3.1.0.13. Furthermore, the strict pullback is also a
homotopy pullback since πlong is a discrete fibration.

The culf maps preserve the algebraic structure of a decomposition groupoid, but do not
necessarily preserve the chosen initial and chosen terminal objects for a discrete interval. The
maps that preserve this structure is the content of the following definition:

Definition 3.2.0.13. A simplicial map between discrete intervals is termed stretched , and written
C→ \ D, if it preserves the chosen initial object ⊥C and the chosen terminal object >C.

Lemma 3.2.0.14. Let X be a rigid decomposition groupoid and let f be a 1-simplex in X. The unique
stretched map $ : ∆1 → \ If is compatible with Mf, meaning that we have a commutative triangle

∆1 If

X.

$

f
Mf

Proof. Put x := d>(f) and y := d⊥(f) (the domain and codomain of f). Recall that the objects
of If are 2-simplices with long edge f. The arrows in If are 3-simplices with long edge f. We
know that the (chosen) initial object is s⊥(f) (which can be thought of as the triangle with
short sides idx and f) and the (chosen) terminal object is s>(f) (which can be thought of as the
triangle with short sides f and idy). The unique arrow $ from the initial to the terminal is the
tetrahedron s⊥s>(f) (which we can think of as the tetrahedron with short sides idx, f, and idy).
By definition Mf = d>d⊥w. Since If is a discrete interval the map w : If → Dec>Dec⊥ X is
level-wise injective on objects. So what Mf does is that it applies d>d⊥. In conclusion we have
Mf($) = d>d⊥s>s⊥(f) = f, which is what we wanted to prove.

Example 3.2.0.15. In the situation of Lemma 3.2.0.14, if X is already an interval and f is its long
edge, we see from the argument in the proof that Mf is stretched in this case we will see in 3.3.0.2
that Mf is actually invertible in this case.
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Remark 3.2.0.16. ∆n is an interval for each n. The stretched maps ∆m → \ ∆n are precisely
the active maps. Every interval A receives a unique stretched map from ∆1. A simplicial map
between intervals A→ B is stretched if and only if it commutes with the stretched maps from ∆1.

Let C be a discrete interval. Let Cn denote the set of n-simplices in C and let Cstr
n be the subset

of stretched (n+ 2)-simplices in C.

Lemma 3.2.0.17. The map d>d⊥ : Cstr
n+2 → Cn is a bijection.

Proof. We will construct an inverse t : Cn → Cstr
n+2 of d>d⊥ as follows. Let λ be an object in Cn,

put a = d>(long(λ)) and b = d⊥(long(λ)). Since C is a discrete interval, we have a chosen edge
f⊥ : ∆

1 → C such that d>(f⊥) =⊥C and d⊥(f⊥) = a. By the same argument, we have a chosen
edge f> : ∆1 → C such that d⊥(f>) = >C and d>(f>) = b. In the diagram

1

Cn+1 Cn

C2 C1

C1 C0

λ

(1)

f⊥

(4)

µ

dn−12

d⊥

(2) dn−11

d⊥

d> (3) d>

d⊥

the squares (2) and (3) are strict pullbacks since C is a discrete Segal groupoid. Therefore, the
outer rectangle is a strict pullback. By the pullback property of Cn+1, there exists a unique map
µ : 1→ Cn+1 such that the diagram commutes. Since the square (2) commutes and d⊥µ = λ, we
have that d⊥ long(µ) = b. Furthermore, in the diagram

1

Cn+2 Cn+1

C2 C1

C1 C0

µ

f>

(8)

η
(5)

η

(6)dn1

d>

dn1

(7)

d>

d⊥ d⊥

d>

the squares (6) and (7) are strict pullbacks since C is a discrete Segal groupoid. Therefore, the
outer rectangle is a strict pullback. By the pullback property of Cn+2, there exists a unique map
pηq : 1→ Cn+2 such that the diagram commutes. Note that d>(long(η)) =⊥C since (4) commutes
and d>(f⊥) =⊥C. Since (8) commutes and d⊥(f>) = >C, we have that d⊥(long(η)) = >C. This
together with d>(long(η)) =⊥C implies that long(η) = $C since C is a discrete interval. We
define

t(λ) := η.

Combining (1) and (5), we have that d⊥d>η = λ. This means that d>d⊥(t(λ)) = λ. Now we
will check that t ◦ d>d⊥ = idCstr

n+2
. Let ψ be an object in Cstr

n+2. Since C is a discrete interval,

we have a chosen edge f ′⊥ : ∆
1 → C such that d>(f ′⊥) =⊥C and d⊥(f ′⊥) = d⊥(long(d>d⊥ψ)).



68 the gálvez–kock–tonks conjecture for rigid decomposition spaces

By the same argument, we have a chosen edge f ′> : ∆
1 → C such that d⊥(f ′>) = >C and

d>(f
′
>) = d⊥(long(d>d⊥ψ)). The commutative diagrams

1

Cn+1 Cn

C1 C0

d>d
n−1
1

d⊥

d⊥

d>d
n−1
2

f ′⊥

d>d⊥ψ

µ ′

y

1

Cn+2 Cn+1

C1 C0

d⊥d
n
1

d>

d>

d>d
n
1

f ′>

µ ′

η ′

y

are given by the construction of t. Furthermore, t(d>d⊥(ψ)) = η ′. If we substitute d>ψ by µ ′,
we have that the left diagram commutes. By the uniqueness of µ ′, it follows that µ ′ = d>ψ.
This together with the stretched condition of ψ implies that the right diagram commutes if we
substitute ψ by η ′. Therefore, by the uniqueness of η ′, we have that η ′ = ψ. This means that
t(d>d⊥(ψ)) = ψ.

Suppose X is a rigid decomposition groupoid. For an object f : x→ y, we have a canonical
projection πm : (Xx/)/f → X defined as the composite

(Xx/)/f Dec> Xx/ Dec>Dec⊥ X X.u Dec> v ε

Lemma 3.2.0.18. Let C be a discrete interval. The canonical projection πm : (C⊥C/
)/$C

→ C has an
inverse L : C→ (C⊥C/

)/$C
.

Proof. Since C has a chosen initial object, the projection d⊥ : C⊥C/
→ C is an equivalence, and

therefore an isomorphism since C and C⊥C/
are discrete. The map p⊥C

: C→ C⊥C/
denotes the

inverse of d⊥. The object $C is terminal in C⊥C/
since it is chosen terminal in C. This implies

that the projection d> : (C⊥C/
)/$C

→ C⊥C/
has an inverse p$C

: C⊥C/
→ (C⊥C/

)/$C
since d> is

an equivalence between discrete intervals. So we define L as the composite

C C⊥C/
(C⊥C/

)/$C
.

p⊥C p$C

Since C is a discrete interval, u and v are level-wise injective on objects. This implies that πm
is equal to d> ◦ d⊥. Since p$C

and p⊥C
are inverse of d> and d⊥, it follows that L ◦ πm =

id(C⊥C/)/$C
and πm ◦ L = idC.

Recall that the class of culf maps can also be characterised as the class right orthogonal to the
active maps (between representables). That is, X→ Y is culf if and only if for every active map
p : [m]→ \ [n] and every commutative square

∆m X

∆n Y

p
∃!

there is a unique filler. Usually this is about homotopy commutative squares and a contractible
space of lifts, but for strict culf, it is actually about strictly commutative squares and truly unique
lifts.

Proposition 3.2.0.19. For any n-simplex λ : ∆n → X with long edge f, there is a unique lift φλ for the
square

∆1 If

∆n X.

Mf

λ

φλ
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Proof. The square commutes by Lemma 3.2.0.14. Indeed the composite ∆1 → ∆n → X is equal
to f since f was defined as the long edge, and ∆1 → If → X is equal to f by Lemma 3.2.0.14.
Furthermore, since ∆1 → ∆n is active and Mf is strict culf, we have a unique filler which we
denote as φλ.

Lemma 3.2.0.20. Let G : X→ Y be a simplicial map between rigid decomposition groupoids. For f ∈ X1,
there is a unique stretched map Gf fitting into the commutative diagram

If IGf

X Y.

Mf MGf

G

Gf

(1)

If G is strict culf then Gf is an isomorphism.

Proof. In the diagram
If 1

Dec>Dec⊥ X δ(X1)

Dec>Dec⊥ Y δ(Y1),

pfqw

πlong

(2)

Dec> Dec⊥G δ(G1)

πlong

(3)

the square (2) is a strict pullback by construction of If, and (3) commutes since πlong is a natural
transformation. Combining (2) and (3), we have that the outer diagram commutes. By the
pullback property of IGf, we have a unique map Gf : If → IGf fitting into a commutative diagram

If

Dec>Dec⊥ X IGf 1

X Dec>Dec⊥ Y δ(Y1).

Y

pGfqw ′

πlong

w

Dec> Dec⊥G

Gf

ε

ε ′
G

(4)

(5)

Combining (4) and (5), we get that (1) commutes. This implies that MGfGf($f) = Gf. Since X
and Y are rigid, the maps w and w ′ are level-wise injective on objects. The functor Gf is described
as follows: for an n-simplex λ in If, we have that (Gf)n(λ) = Gn+2(λ). This description is
possible since we work with strict pullbacks, w is level-wise injective on objects and (1) commutes.
This implies that w(λ) is the same λ but interpreted as an (n + 2)-simplex in X. Using this
description of If it is immediate to see that Gf(s0(f)) = s0(Gf) and Gf(s1(f)) = s1(Gf), this
means that Gf sends the chosen initial and terminal objects of If to the chosen initial and terminal
objects of IGf. In other words, Gf is stretched.

Recall that the chosen edge$Gf : ⊥IGf→ >IGf of If, satisfying that MGf$Gf = Gf. Applying
Proposition 3.2.0.19 to the map Gf, we have a unique stretched map φGf satisfies MGfφGf = Gf.
But as shown above, Gf($f) and$Gf also satisfy this condition. This implies that Gf($f) = $Gf.
Furthermore, if G is strict culf, (3) is a strict pullback by Lemma 3.2.0.12. Therefore, combining
(2) and (3), we have that If is the strict pullback of πlong : Dec>Dec⊥ Y → δ(Y1) along pGfq : 1→
δ(Y1). But this is precisely the definition of IGf. Since If and IGf are pullbacks over the same
diagram, it follows that If ∼= IGf. Furthermore, this isomorphism is given by Gf since the squares
(3) and (4) commute.
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Remark 3.2.0.21. The uniqueness of Lemma 3.2.0.20 immediately implies the following ‘transitiv-
ity’ property of the construction G 7→ Gf: Given

If IGf IHGf

X Y Z,

Mf

Gf

MGf

HGf

MHGf

G H

we have
(H ◦G)f = HGf ◦Gf.

3.3 Stretched-culf factorisation system

Let DisInt be the category whose objects are discrete intervals and whose morphisms are functors.
We need some preliminary results to prove that the stretched functors as left-hand class and the
culf functors as right-hand class form a factorisation system in DisInt.

Lemma 3.3.0.1. Consider the following commutative diagram of simplicial maps

B

A C.
F

S G

where A, B and C are discrete intervals, and S is stretched. Then F is stretched if and only if G is stretched.

Proof. Let $A : ⊥A→ >A be the unique map from ⊥A to >A. Let $B : ⊥B→ >B and
$C : ⊥C→ >C be the unique maps in B and C. It is obvious that F is stretched when G is
stretched. For the other direction, suppose F stretched. We have that

G($B) = G(S($A)) (since S is stretched)

= F($A) (since F = GS)

= $C. (since F is stretched)

This means that G is stretched.

Lemma 3.3.0.2. Let C be a discrete interval with long edge $. The simplicial map M$C
: I$ → C has an

inverse W : C→ I$.

Proof. Since C is a discrete interval, we have a map L : C→ (C⊥C/
)/$ by Lemma 3.2.0.18. Recall

that for an n-simplex λ in Cn, the n-simplex L(λ) satisfies that long(L(λ)) = s>s⊥$C and
d>d⊥L(λ) = λ. Consider the canonical projections u : (C⊥C/

)/$ → Dec> C⊥C/
and v : C⊥C/

→
Dec⊥ C. Since C is a discrete interval, the canonical projections are level-wise injective on objects.
So it is straightforward to check that πlong(Dec> v ◦ u ◦ L(λ)) = $C. Therefore, the outer diagram

C

I$ 1

Dec>Dec⊥ C δ(C1)

p$qw

πlong

W

Dec> v◦u◦L
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commutes. By the pullback property of I$, we have a unique map W : C → I$ such that the
diagram commutes. Informally, for an n-simplex λ in Cn, the map W only adds to λ the chosen
initial edge ⊥C→ d>(long(λ)) by precomposing and the chosen terminal edge d⊥(long(λ))→ >C

by postcomposing. Since w ◦W = Dec> v ◦ u ◦ L and d>d⊥L(λ) = λ, we have that M$ ◦W(λ) = λ.
By analogous arguments we have that W ◦M$ = idI$ .

Lemma 3.3.0.3. Let A and B be discrete intervals, and let X be a rigid decomposition groupoid. Suppose
we have a fork diagram

A B X
V

W

F

(meaning FV = FW) where V and W are stretched and F is strict culf. Then already V =W.

Proof. Let $A denote the long edge of A and $B the long edge of B, as usual. Since V and W
are stretched, we have V($A) = $B = W($A), so the following diagram is well formed from
applying the construction of Lemma 3.2.0.20 (for composable maps as in Remark 3.2.0.21):

I$A
I$B

IF$B

A B X.

M$A

V$A

W$A

M$B

F$B

MF$B

V

W F

Since FV = FW, we also have F$B
V$A

= F$B
W$A

. This is a consequence of the uniqueness
statement in Lemma 3.2.0.20 as in Remark 3.2.0.21. But since F is strict culf, the map F$B

is an
isomorphism by Lemma 3.2.0.20. It follows that V$A

=W$A
. Finally, since A and B are discrete

intervals and $A and $B are their long edges, it follows from Lemma 3.3.0.2 that the two vertical
maps M$A

and M$B
are isomorphisms, and this implies that V =W.

Lemma 3.3.0.4. Let C and D be discrete intervals. Let F : C→ D be a simplicial map. Then F admits an
stretched-culf factorisation.

Proof. Let $C be the long 1-simplex of the interval C. By Lemma 3.2.0.20, we have an stretched
map F$C

: I$C
→ IF$C

fitting into the commutative diagram

I$C
IF$C

C D.

M$C

F$C

MF$C

F

Recall that the vertical arrows are strict culf. The map M$C
is stretched by Example 3.2.0.15.

Since C is a discrete interval, we have that M$C
is invertible by Lemma 3.3.0.2. From the diagram

I$C
I$C

C,

idI$C

M$C M−1
$C

it follows that M−1
$C

is also stretched, by Lemma 3.3.0.1. So altogether, the diagram

C D

IF$C

F

F$C
◦M−1

$C
MF$C

commutes, where the map F$C
◦M−1

$C
is stretched and MF$C

is culf.
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Lemma 3.3.0.5. Let E,E ′ and C be discrete intervals. Let X be a rigid decomposition groupoid. For the
commutative square of simplicial maps

E C

E ′ X

G

S F

H

where S : E→ \ E ′ is stretched and F : C→ D is strict culf, there is a unique filler.

Proof. We will first construct a filler L : E ′ → C and then prove it is unique. For each n-simplex
λ : ∆n → E ′, Lemma 3.2.0.17 gives an (n+ 2)-simplex ηλ : ∆n+2 →\ E ′ such that

d⊥d>(ηλ) = λ, (3.3.1)

and
long(ηλ) = $E ′ . (3.3.2)

We assumed that S is stretched, so S($E) = $E ′ . This together with the equation HS = FG and
the stretched condition of S are used in the following calculation:

long(H(ηλ)) = H(long(ηλ)) = H($E ′) = H(S($E)) = F(G($E)).

In other words, the outer diagram

1

(IFG$E
)n 1

Xn+2 X1

H(ηλ)

id

(3)

Hηλ

w ′n
y

FG$E

long

commutes. The pullback property of IFG$E
gives the dotted map Hηλ : ∆n → \ IFG$E

such that
the diagram commutes. We define the map V : E ′ → IFG$E

by V(λ) = H(ηλ), for each n-simplex
λ : ∆n → E ′. It is straightforward to check that V is a simplicial map. Furthermore,

MFG$E
V(λ) = d⊥d>w

′
nH(ηλ) (by def. of MFG$E

and V)

= d⊥d>H(ηλ) (by triangle (3))

= Hd⊥d>(ηλ) (since H is a sim. map)

= H(λ). (by Eq. (3.3.1))

This means that the following diagram commutes

IFG$E

E ′ X.
H

V MFG$E

(4)

Since F is strict culf, Lemma 3.2.0.20 gives an isomorphism K : IG$E
→ IFG$E

fitting into the
commutative diagram

IG$E
C

IFG$E
X.

F

MFG$E

MG$E

K−1 (5)
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Combining the commutativity of (4) and (5) gives H = F ◦MG$E
◦K−1 ◦ V , and the hypothesis

that H ◦ S = F ◦G, we have that

F ◦MG$E
◦K−1 ◦ V ◦ S = H ◦ S = F ◦G. (3.3.3)

Lemma 3.3.0.3 says that it is possible to cancel F in Eq. (3.3.3) if F is strict culf, which is given by
hypothesis. Therefore, the diagram

E ′ IFG$E
IG$E

E C

V

G

S MG$E

K−1

(7)

commutes. The pieces now fit together to form the commutative diagram

E C

IG$E

IFG$E

E ′ X.

S

G

(7)

F

MG$E

(5)

MFG$E

K−1

(4)

H

V

We define L : E ′ → C as L := MG$E
◦K−1 ◦ V . Finally we establish uniqueness, exploiting that we

already have existence given by the functor L. Suppose we have two fillers

E C

E ′ X.

G

S F

H

L1

L2

Now factor G as a stretched map G ′ followed by a strict culf map C,

E C ′

C

G ′

G
C

which is possible by Lemma 3.3.0.4. Now we can invoke existence of lifts to the situation

E C ′

E ′ C

G ′

S C

L ′1

L ′2

L1

L2

since S is stretched and C is culf. This gives the existence of L ′1 and L ′2 as indicated, and they are
stretched by Lemma 3.3.0.1 since both S and G ′ are stretched. But now we are in position to apply
Lemma 3.3.0.3: Since we have FL1 = FL2 (as both are equal to H), we also have FCL ′1 = FCL ′2.
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Furthermore, since FC is culf and L ′1 and L ′2 are stretched, we conclude by Lemma 3.3.0.3 that
already L ′1 = L ′2, and therefore also L1 = L2.

Remark 3.3.0.6. In Lemma 3.3.0.5, we have that the diagram

E C

E ′ X

G

S F

H

L

commutes. By hypothesis F is culf. Therefore, L is a culf if and only if H is culf. On the other
hand, by hypothesis S is stretched and applying Lemma 3.3.0.1, we have that L is stretched if and
only if G is stretched.

Remark 3.3.0.7. If we had required X to be a discrete interval, then Lemma 3.3.0.5 would say
that the stretched and strict culf maps are orthogonal classes of maps in the category of discrete
intervals and simplicial maps, as exploited in the following proposition. It will be important later
in 3.4.1 that we allow X to be more general than just a discrete interval.

Proposition 3.3.0.8. The stretched maps as left-hand class and the strict culf functors as right-hand class
form a factorisation system in DisInt.

Proof. The strict culf maps are closed under isomorphism. We have that every simplicial map
F in DisInt admits an stretched-culf factorisation by Lemma 3.3.0.4. Therefore, we only have to
prove that the classes are orthogonal, which follows from Lemma 3.3.0.5.

3.4 The decomposition groupoid U

In Section 3.3, the stretched-culf factorisation system was defined in DisInt, which we can use to
define a fibration that encodes the pseudo-simplicial groupoid of discrete intervals.

Let Ars(DisInt) ⊂ Ar(DisInt) denote the full subcategory spanned by the stretched functors.
Ars(DisInt) is a cartesian fibration over DisInt via the domain projection by Lemma 1.1.6.2. We
now restrict this cartesian fibration to � ⊂ DisInt

Ars(DisInt)|� Ars(DisInt)

� Int.

y

f.f.

dom dom

f.f.

We put
U := Ars(DisInt)|� .

U→ � is the cartesian fibration of subdivided discrete intervals. By Lemma 1.1.6.2, the cartesian
maps in U are squares

∆k ∆n

C D.
culf

The cartesian fibration U→ � determines a right fibration Ucart → �, and hence by straightening
[20, Theorem 8.3.1] a simplicial groupoid

U : �op → Ĝrpd
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where Ĝrpd is the 2-category of large groupoids, functors and natural transformations.
The following result is due to Gálvez–Kock–Tonks [58, Theorem 4.8], who prove it in the more

general setting of ∞-groupoids.

Theorem 3.4.0.1. The simplicial groupoid U : �op → Ĝrpd is a complete decomposition groupoid.

3.4.1 The complete decomposition groupoid UX

The decomposition groupoid U : �op → Ĝrpd is not a strict simplicial object but only a pseudo-
simplicial object. In a famous paper [64], Jardine figured out all the 2-cell data and 17 coherence
laws for pseudo-simplicial objects in terms of face and degeneracy maps. We overcome the
difficulty of working with these coherence laws by building a local strict model, a kind of
neighbourhood UX ⊂ U around the discrete intervals of a given rigid decomposition groupoid X.

From the viewpoint of cartesian fibrations, the problem with U→ � is that it is not split. It
is not possible to define a coherent global choice of cartesian lifts of arrows in �. To fix this, we
restrict to a full subcategory UX consisting only of the (subdivided) intervals of X (and not even
including isomorphic intervals).

Definition 3.4.1.1. Let UX ⊂ U denote the full subcategory consisting only of the subdivided
intervals ∆n → \ If, where f ∈ X1.

The benefit is that when everything is inside X, we can make canonical choices of cartesian
lifts. They are given by the following lemma.

Lemma 3.4.1.2. Let X be a rigid decomposition groupoid, and let p : ∆n
′ → ∆n be a map in �. For any

n-simplex λ : ∆n → X, the commutative triangle

∆n
′

∆n

X

p

λ ′ λ

gives the standard factorisations (Proposition 3.2.0.19) as in the solid square

∆n
′

∆n

If ′ If

X.

p

φλ ′ φλ
c
p
λ

Mf ′ Mf

The statement is that there is a unique filler cpλ as indicated with the dotted arrow, and this map is strict
culf.

Proof. Since φλ ′ is stretched and Mf is strict culf, the required map cpλ is given by Lemma 3.3.0.5,
and it is strict culf by Remark 3.3.0.6.

Notice how the ambient X is crucially exploited to characterise the lift uniquely. We also spell
out how this choice of lifts act on isomorphisms:
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Lemma 3.4.1.3. Let X be a rigid decomposition groupoid, and consider an isomorphism F : (If,φλ) ∼→
(Ig,φµ) in (UX)n, as on the right in the following diagram. For any map p : ∆n

′ → ∆n in �, there is
induced an isomorphism F ′ : (If ′ ,φλ ′) ∼→ (Ig ′ ,φµ ′) in (UX)n ′ , as indicated with the dotted arrow:

∆n
′

∆n

If ′ If

Ig ′ Ig

p

φλ ′ φµ ′
φλ

φµ

c
p
λ

∃! F ′ F

c
p
µ

This F ′ is characterised as the unique isomorphism in (UX)n ′ compatible with the canonical interval
inclusions cpλ and cpµ (that is, unique making the whole diagram commute).

Let us explain the notation. The domain and codomain of F are objects in (UX)n: as usual,
the notation refers to an n-simplex λ : ∆n → X with long edge f := long(λ) and another n-simplex
µ : ∆n → Xwith long edge g := long(µ), and F : If ∼→ Ig is an isomorphism of intervals compatible
with the subdivisions φλ : ∆n → \ If and φµ : ∆n → \ Ig provided by Proposition 3.2.0.19.

The map p : ∆n
′ → ∆n gives rise to n ′-simplices λ ′ and µ ′ in X:

∆n
′

∆n

X

p

λ ′ λ

∆n
′

∆n

X

p

µ ′ µ

and induced interval inclusions (strict culf maps)

If ′
c
p
λ−→ If Ig ′

c
p
µ−→ Ig

as in Lemma 3.4.1.2.

Proof Lemma 3.4.1.3. Rearranging the bottom and left part of the diagram as

∆n
′

Ig ′

If ′ If Ig

φλ ′

φµ ′

c
p
µ

F ′

c
p
λ

F

we see that F ′ is the unique lift existing by Lemma 3.3.0.5 since φλ ′ is stretched and cpµ is strict
culf.

Remark 3.4.1.4. In Lemma 3.4.1.3, the diagram

∆n
′

Ig ′

If ′ Ig

φλ ′

φµ ′

c
p
µ

Fc
p
λ

F ′

commutes. When p is active, we have that f ′ = f and g ′ = g. Furthermore, if we substitute F ′ by
F, the diagram also commutes. By Lemma 3.3.0.5, we have that F ′ = F. Therefore, when we work
with an active map, we will use F instead of F ′.
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Whit these preparations, we can establish that UX is split:

Proposition 3.4.1.5. The cartesian fibration UX → � is split. The splitting is given by the cartesian
arrows chosen in Lemma 3.4.1.2.

Proof. That this choice of lifts constitutes a splitting means that it is functorial: composites of
chosen lifts are lifts of composites, and lift of identity arrows are identity arrows. For composition:
given the solid diagram

∆n
′′

∆n
′

∆n

If ′′ If ′ If

X

q

φλ ′′

p

φλ ′ φλ
c
q

λ ′

Mf ′′

c
p
λ

Mf ′ Mf

there are induced cq
λ ′ and cpλ making the whole diagram commute. Now by the uniqueness

characterisation of c-maps, the composite cpλ ◦ c
q
λ ′ must be equal to cpqλ , as required.

Knowing that the c-maps provide a splitting for UX → �, there is now induced a strict functor

UX : �
op → Grpd

(groupoid-valued functor corresponding to the associated right fibration). We can now simply
spell out explicitly what this simplicial groupoid is. On objects, we simply have to describe the
fibres: (UX)n is thus the groupoid whose objects are subdivided intervals of X, say φλ : ∆n →\ If
(for some λ ∈ Xn with long edge f), and whose arrows are the vertical arrows in UX, namely
strictly commutative triangles

∆n

If Ig.

φλ φµ

∼

Note that since UX was defined as full inside U, there are no compatibility requirement with the
‘inclusions’ Mf : If → X and Mg : Ig → X.

The simplicial operators act via cartesian lifts: the formula for p : ∆n
′ → ∆n is

p∗
(
∆n

φλ→\ If
)
= (∆n

′ φλ ′→\ If ′)

with reference to the chosen cartesian arrow

∆n
′

∆n

If ′ If.

p

φλ ′ φλ

c
p
λ

(3.4.1)

The action of the simplicial operator on an isomorphism in (UX)n, say F : (If,φλ) ∼→ (Ig,φµ),
is given by Lemma 3.4.1.3. Indeed, this lemma is nothing but the standard description of how a
vertical isomorphism is transported along a cartesian lift.

(Note that the construction of the isomorphism F ′, which in Lemma 3.4.1.3 was given using
the stretched-culf factorisation system, can also be regarded as the argument why general arrows
in a cartesian fibration factor uniquely through cartesian arrows. Indeed the stretched-culf
factorisation system is the abstract reason why we have a cartesian fibration.)

Lemma 3.4.1.6. Let p : [n] → \ [m] be an active map in �. Then p∗ : (UX)m → (UX)n is a discrete
fibration.
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Proof. Let (Ig,φµ) be an object in (UX)m and let F : (If,φλ) → p∗(Ig,φµ) be a morphism in
(UX)n. To provide a lift is to use the same underlying F (by 3.4.1.4, since p is active), but the
compatibility which characterises morphisms in (UX)m is now with the φ maps from ∆m instead
of from ∆n. In other words, we need to find the dashed arrow in the diagram

∆n If

∆m Ig,

φλ

p F

φµ

φη

which is possible since F is invertible, in fact η = Mf F
−1(φλ). Therefore p∗ is a discrete

fibration.

Example 3.4.1.7. In general, the image of an inert map of �op under UX is not a discrete fibration.
Let C be the category pictured by the following commutative diagram

y

x z w.

y ′

a

a ′

b

b ′

f g

Since x is an initial object and w is a terminal object, we have that N(C) ' Igf by Lemma
3.3.0.2. Let φgf be the 2-simplex induced by the morphisms f and g in (N(C))2. Let (N(C),φgf) ∈
(UN(C))2 be the interval construction of φgf. Applying d0 to φgf, we have that d0(N(C),φgf) =
(Ig,φg). Let idIg : (Ig,φg)→ (Ig,φg) be the identity morphism in (UN(C))1.

We can construct two lifts of idIg in (UN(C))2. Let F : (N(C),φgf) → (N(C),φgf) be the
functor that fixes all the objects in C except y and y ′. It is easy to check that d0F = idIg . On the
other hand, it is straightforward to see that the identity morphism idIgf satisfies d0 idIgf = idIg .
Therefore, F and idIgf are two different lifts of idIg .

When S is a simplicial groupoid, we have a simplicial set induced by the object functor
Obj : Grpd→ Set, which is defined as forgetting the morphisms. We denote Obj ◦S as S0.

Proposition 3.4.1.8. Let X : �op → Grpd be a rigid decomposition groupoid. Then U0X ∼= X0.

Proof. The proof is easily deduced from the fact that every object (If,φλ) in (U0X)n corresponds
to some λ in X0n by definition of UX.

Lemma 3.4.1.9. Let X be a rigid decomposition groupoid. The simplicial groupoid UX : �op → Grpd is a
decomposition groupoid.

Proof. We need to show that for an active-inert pullback square in �
op, the image under UX is a

homotopy pullback

(UX)m (UX)n

(UX)k (UX)s.

g

h h

g

Here g and g are active maps, h and h are inert maps. Since g and g are active maps, they
are discrete fibrations by Lemma 3.4.1.6. Therefore, we can work with strict fibres. By Lemma
1.2.0.1, the previous square is a homotopy pullback if and only if for each object (If,φλ) in (UX)n,
corresponding to some λ ∈ Xn, the morphism h ′ : Fib(If,φλ)(g) → Fibh(If,φλ)(g), induced by
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the morphism h, is an equivalence. Here Fib(If,φλ)(g) is the strict fibre of g over (If, λ) and
Fibh(If,φλ)(g) is the strict fibre of g over h(If,φλ).

The fibres Fib(If,φλ)(g) and Fibh(If,φλ)(g) are discrete groupoids since g and g ′ are discrete
fibrations. Furthermore, as a consequence of Proposition 3.4.1.8, we have a bijection between the
objects of X and UX. This implies that the diagram

Fib(λ)(g) Fibhλ(g)

Fib(If,φλ)(g) Fibh(If,φλ)(g)

h ′′

h ′

commutes. Here h ′′ : Fibλ(g) → Fibhλ(g) is the morphism induced by h : Xm → Xk. Since
X is rigid, the morphism h ′′ is an equivalence. Since Fib(If,φλ)(g) and Fibh(If,φλ)(g) are dis-
crete groupoids, the vertical maps are equivalences by Proposition 3.4.1.8. Hence, the map
h ′ : Fib(If,φλ)(g)→ Fibh(If,φλ) is an equivalence.

Lemma 3.4.1.10. Let X be a rigid decomposition groupoid. Then the decomposition groupoid UX is
complete.

Proof. To establish that UX is complete, we need to check that the map s0 : (UX)0 → (UX)1 is a
monomorphism. This means that we need to show that the fibre is either empty or singleton.
Remember that the objects in (UX)0 are given by 0-simplices of X. Combining this with the fact
that the long edge of a 0-simplex is s0(x), we have that the objects in (UX)0 are of the form
(Is0(x),φx). Since s0 is active, we have that s0 is a discrete fibration by Lemma 3.4.1.6. Therefore,
we will consider strict fibres. For f ∈ X1 denote by φf : ∆1 →\ If the unique stretched map. The
strict fibre over (If,φf) ∈ (UX)1 is given by the strict pullback

Fib(If,φf)(s0) (UX)0

1 (UX)1.

y
s0

p(If,φf)q

Unless f is degenerate, the strict fibre is empty. In the degenerate case, consider (Is0(x),φs0(x))
and (Is0(y),φs0(y)) two objects in Fib(If,φf)(s0) such that (Is0(x),φs0(x)) = (Is0(y),φs0(y)). This
means that φs0(x) = φs0(y). This together with the rigid condition of X (the map s0 : X0 → X1 is
a monomorphism) implies that x = y.

To construct a map from X to UX, the following result is necessary:

Lemma 3.4.1.11. Given an isomorphism α : λ→ µ in Xn, there is induced an isomorphism

∆n

If Ig.

φλ φµ

Fα

As usual, f = long(λ) and g = long(µ).

Proof. The main point is to prove it just for 1-simplices: given long(α) : f→ g in X1, the interval
If is the fibre over f ∈ δ(X1) of the whole simplicial groupoid Dec>Dec⊥ X → δ(X1), and Ig
is the fibre over g. This is a level-wise fibration over δ(X1), since it is formed entirely of active
maps. But in a fibration, any isomorphism f ∼= g between two objects in the base induces an
isomorphism Fα : If → Ig between the fibres. Recall the objects of If are the 2-simplices with long
edge f, and the objects of Ig are the 2-simplices with long edge g. So the isomorphism Fα sends
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a 2-simplex with long edge f to a 2-simplex with long edge g. This forces Fαs0(f) = s0(g) and
Fαs1(f) = s1(g), which is equivalent to saying that Fα is stretched and therefore Fα$If = $Ig .

Coming back to the general case, λ ∼= µ: we have the solid outer square:

∆1 If Ig

∆n X.

$If

$Ig

Fα

Mg
φλ

φµ

µ

The curved triangle commutes by the 1-simplex case already treated. The dotted arrows then
exist individually by Proposition 3.2.0.19. The triangle that these two dotted arrows form with
If ' Ig is now forced to commute, since ∆1 → ∆n is active and Mg is strict culf.

We define a simplicial map I : X→ UX, using the interval construction:

• the map I sends an object λ ∈ Xn to the pair (If,φλ) where f = long(λ) and φλ is the
n-simplex induced by λ of Proposition 3.2.0.19.

• the map I sends an arrow α : λ → µ in Xn to the isomorphism Fα : (If,φλ) → (Ig,φµ)
induced by α of Lemma 3.4.1.11. (As usual, f = long(λ) and g = long(µ).)

Proposition 3.4.1.12. Let X be a rigid decomposition groupoid. The simplicial map I : X→ UX is strict
culf.

Proof. Since d1 is active, we have that d1 is a discrete fibration by Lemma 3.4.1.6. Therefore, as
a consequence of Lemma 1.1.2.2, to prove that I is culf it is enough to prove that the following
diagram is a strict pullback

X2 X1

(UX)2 (UX)1,

d1

I2 I1

d1

which is equivalent to proving that the functor G : X2 → (UX)2×(UX)1 X1 induced by the pullback
property is an isomorphism. For each σ ∈ X2, the object G(σ) is equal to ((Id1(σ),φσ),d1(σ))
where φσ is given by Proposition 3.2.0.19. For a morphism α : σ → σ ′ put f = d1(σ) and
g = d1(σ

′), the morphism G(σ) is equal to (Hα,d1(α)). Here Hα : (If,φσ) → (Ig,φσ ′) is the
isomorphism given by Lemma 3.4.1.11.

Recall that d1 is a discrete fibration, this together with Proposition 3.2.0.19 allows to construct
a functor R : (UX)2 ×(UX)1 X1 → X2. For an object (φσ : ∆2 → \ If, f), the object R(φσ, f) is defined
as Mfφσ in X2. For a morphism (H,α), where H : (If,φσ) → (Ig,φσ ′) and α : f → g, the
morphism R(H,α) is defined as the morphism α : Mfφσ → Mgφσ ′ which is the lifting of the
arrow α : f → g with respect to Mfφσ and Mgφσ ′ . The lift is unique since d1 is a discrete
fibration. It is straightforward to verify that R is the inverse of the functor G. Note that the
diagram is also a homotopy pullback since it is a strict pullback and d1 is a discrete fibration.

3.4.2 Compatibility of M-maps and subdivided intervals

Given a simplicial map G : X→ Y, there will be natural relationships between intervals in X and
intervals in Y, but to compare them we need to step out to the global U, leaving the realms of UX
and UY .

Lemma 3.2.0.20 can be proved in an alternative way as follows:
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Lemma 3.4.2.1. For any simplicial map between decomposition groupoids G : X→ Y, there is a unique
stretched map Gf : If → \ IGf, compatible with M-maps. This means that the diagram

If IGf

X Y

Mf MGf

G

Gf

commutes. If G is culf then Gf is invertible.

Proof. The unique stretched map is given by Lemma 3.3.0.5:

∆1 IGf

If X Y

MGf

Mf G

If G is culf, then the dotted arrow is culf too by Remark 3.3.0.6, and since it is both culf and
stretched, it is invertible as a consequence of Proposition 3.3.0.8.

Lemma 3.4.2.2. For any simplicial map between decomposition groupoids G : X→ Y, there is a unique
stretched map Gf : If → \ IGf, compatible with subdivision: if we start with λ : ∆n → X (with long edge f),
then the triangle

∆n

If IGf

X Y

φλ φGλ

Gf

Mf MGf

G

(3.4.1)

commutes.

Proof. Orthogonality (Lemma 3.3.0.5) for the square

∆1

∆n IGf

If X Y

MGf

Mf G

gives a unique filler, which has to be Gf, since it is also a filler for the square starting at ∆1.

Finally we need to establish also the corresponding result for isomorphisms in Xn: given
λ ∼= µ in Xn, Lemma 3.4.1.11 gives isomorphisms of (subdivided) intervals

∆n

If Ig

φλ φµ

∼

∆n

IGf IGg.

φGλ φGµ

∼

(3.4.2)



82 the gálvez–kock–tonks conjecture for rigid decomposition spaces

Lemma 3.4.2.3. Let G : X→ Y be a simplicial map between decomposition groupoids. For any f ∼= g in
X1, the diagram

If IGf

Ig IGg

Gf

∼ ∼

Gg

(3.4.3)

commutes. Here the horizontal arrows are given by Lemma 3.4.2.1 and the vertical arrows by Lemma
3.4.1.11.

Proof. The diagram

∆n IGf IGg

If Ig X Y

φGµφλ

φGλ

φµ

∼

MGg

∼

Mg G

commutes: the middle pentagon region is (3.4.1), and the triangles are (3.4.2). Inside the outer
square we have the following two dotted maps:

∆n IGf IGg

If Ig X Y.

φλ

φGλ ∼

MGg

∼

Mg G

The two triangle-shaped regions with dotted arrows also commute: the leftmost triangle is the
triangle part of (3.4.1) for λ, and the rightmost ‘triangle’ is the square part of (3.4.1) for µ. The
dotted parallelogram is now forced to commute, since both composites in it are fillers for the
outer square, and by orthogonality (Lemma 3.3.0.5) only one filler can exist as φλ is stretched
and MGg is strict culf.

So now we completely control the G-maps in each simplicial degree individually. We shall
also establish the naturality in simplicial operators: We have seen (in Lemma 3.4.1.2) that for any
p : ∆n

′ → ∆n, there is induced a canonical culf map cpλ : If ′ → If compatible like this:

∆n
′

∆n

If ′ If.

p

φλ ′ φλ

c
p
λ

(3.4.4)

The following lemma shows that these functorialities are compatible.

Lemma 3.4.2.4. Let G : X→ Y be a simplicial map between decomposition groupoids. From the situation

∆n
′

∆n

X

Y,

p

λ ′ λ

G
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we get a commutative square

If ′ If

IGf ′ IGf

c
p
λ

Gf ′ Gf

c
p
Gλ

involving the maps from the previous functorialities.

Proof. The diagram

∆n
′

∆n If IGf

X

If ′ IGf ′ Y

φλ ′

p φλ Gf

MGf

Gf ′ MGf ′

commutes: the pentagon by construction of the φ-maps (3.2.0.19), and the two squares by
Equation (3.4.1).

The outer square has the following two dotted c-maps:

∆n
′

∆n If IGf

If ′ IGf ′ Y.

φλ ′

p φλ Gf

MGf

Gf ′ MGf ′

The two triangle-shaped regions with dotted arrows commute by construction of the c-maps
(Lemma 3.4.1.2). The dotted parallelogram is now forced to commute, since both composites in it
are fillers for the outer square, and only one filler can exist, as φλ ′ is stretched and MGf is strict
culf.

3.4.3 Interval construction of an interval

Let A be a discrete interval (simplicial set), and consider a subdivision of it, a : ∆n →\ A. This
whole data describes an n-simplex in U, which we denote a : ∆n → U. Note that the long edge
of a is A itself.

We can now apply Proposition 3.2.0.19 to a (as an n-simplex in U) to get

∆n IUA

U

φa

a MA

Lemma 3.4.3.1. There is a canonical isomorphism A ' IUA compatible with the subdivision:

∆n

A IUA.

a φa

∼

(3.4.1)

Proof. There is a canonical simplicial map A → Dec⊥Dec>U, given by sending an n-simplex
λ : ∆n → A to the corresponding stretched (n+2)-simplex λ : ∆n+2 → \ A, interpreted as an
(n+2)-simplex in U. This simplicial map clearly factors through IUA → Dec⊥Dec>U. We claim
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that the induced simplicial map A→ IUA is an isomorphism. Indeed, (IUA)n is by definition the
strict pullback

(IUA)n 1

Un+2 U1

y
pAq

which is to say that it is the groupoid of stretched maps ∆n+2 → \ A, in turn isomorphic to the
groupoid of general maps ∆n → A, which is the groupoid An.

Lemma 3.4.3.2. For any stretched isomorphism of intervals A ' B, we get from Lemma 3.4.1.11 an
isomorphism IA ' IB. The statement is that these isos are compatible, meaning that the diagram

A IA

B IB

commutes.

Proof. This follows since the isomorphisms involved

(IUA)n ' mapstr(∆n+2,A) ' map(∆n,A) = An

are all natural in stretched isomorphisms A ' B.

A simplicial map G : X → Y between decomposition groupoids is Full and faithful if for all
objects x,y ∈ X it induces an equivalence on the mapping groupoids

Gx,y : mapX(x,y)→ mapY(Gx,Gy).

Recall that we have a canonical simplicial map  : UX → U, defined by (If,φλ) = (If,φλ) for
(If,φλ) ∈ (UX)n and F = F for F ∈ (UX)n. It is straightforward to prove the following result.

Lemma 3.4.3.3. Let X be a rigid decomposition groupoid. Then the simplicial map  : UX → U is full and
faithful.

Remark 3.4.3.4. Gálvez, Kock and Tonks [60] defined the culf classifying map I ′ : �/X → U. It takes
an n-simplex λ : ∆n → X to an n-subdivided interval φλ : ∆n → \ If in U (or to the pair (If,φλ)
in Un). Here f = long(λ) and �/X denotes the Grothendieck construction of X. In the present
chapter I ′ is the map ( ◦ I) : X→ U, since for each λ ∈ Xn, we have that ( ◦ I)(λ) = (If,φλ) which
is the same as I ′(λ). We will abuse of notation and denote I ′ as I in Section 3.5.

3.4.4 Comparison with a strictification of U

In this section, we briefly compare our local strict model UX with a global strictification
∼
U of U,

proposed by the referee.
There is a well-known construction that replaces a pseudo-functor into Grpd with a strict

functor (see for example [50, §6.4]). In the present case there is a very explicit combinatorial
description of such a strictification. An inert map from ∆k to ∆n is completely determined by
the values of 0 and k. So we will denote an inert map ∆k� ∆n as a pair (i, j) : ∆k� ∆n such

that 0 7→ i and k 7→ j. We denote by Pn the poset of inert faces of ∆n. We define
∼
Un to be the

groupoid of liftings
U

Pn �.

dom
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This gives a whole family of stretched maps ∆k → \ C, one for each (i, j) ∈ Pn, and squares

∆k ∆k
′

Cij Ci ′j ′culf

for each map (i, j)� (i ′, j ′). Here Cij and Ci ′j ′ are discrete intervals. For example an object in
∼
U2 is pictured as follows

∆0

C22

∆0 ∆1

C11 C12

∆0 ∆1 ∆2

C00 C01 C02.

It is possible to define face and degeneracy maps between the groupoids
∼
Un to assemble them

into a strict simplicial groupoid
∼
U. Informally, the face map di acts by ‘erasing’ all stretched maps

containing an index i. The degeneracy maps si repeat the ith row and the ith column. We have a

canonical equivalence πendvertex :
∼
U→ U that on objects erases all the stretched maps except the

last one. In case we consider only intervals that come from a fixed strict decomposition groupoid

X, we have a strict simplicial groupoid
∼
UX and a canonical equivalence π ′endvertex :

∼
UX→ UX.

The interval construction I : X → UX from [60] can easily be factored through
∼
UX to give

a refined interval construction
∼
I : X →

∼
UX that sends an n-simplex λ : ∆n → X to (Iλc,φλc) for

each c : ∆k� ∆n ∈ Pn. Here φλc is given by Proposition 3.2.0.19. For example, for a 1-simplex

f : ∆1 → X, the object
∼
I (f) in (

∼
UX)1 is given by the following diagram

∆0

∆0 ∆1 Ifd1

Ifd0 If.
φ
fd0

φ
fd1

φf

Note that since UX is already strict, all this refined data is redundant.
The four versions of U and the four interval constructions are compatible, as indicated in the

commutative diagram

ŨX Ũ

X

UX U.
I



 ′

Ĩ

πendvertex πendvertex

The original U is hard to work with, as it is pseudo-simplicial instead of strict simplicial. Both
∼
UX

and UX are practical because they are strict. (
∼
UX is strict but is too redundant.) In this chapter
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we prefer to work with UX since in any case most of the arguments are carried out locally at X,
and in this situation it is the most direct approach.

3.5 Gálvez–Kock–Tonks Conjecture

Let cDcmpculf denote the ∞-category of complete decomposition spaces and culf maps. The
construction of the complete decomposition groupoidUwas motivated by the following statement:

Gálvez–Kock–Tonks Conjecture [60, §5.4] For each decomposition space X, the mapping space
of culf maps map(X,U) is contractible.

A partial result states that map(X,U) is connected. An ∞-version of this result is Theorem 5.5
in [60]. We include a proof here for two reasons. Firstly, we need to be more precise regarding
strictness conditions, and secondly, the proof in [60] does not actually give any argument for
naturality in inert maps. As we shall see, this is a subtle issue, and the lack of argument in [60]
may be considered a gap in that proof.

In our setting of rigid decomposition spaces, the relevant maps are the strict culf maps. We
are now concerned with culf maps to U. Recall that U : �op → Grpd is only pseudo-simplicial,
but that it is actually strict on active maps. Furthermore, for active [n ′]→ \ [n], the corresponding
Un → Un ′ is a fibration. The notion of strict culf map J : X→ U is therefore still meaningful: we
do allow pseudo-simplicial maps, but they are still required to be strict on the active part, and the
naturality squares on active maps are required to be strict pullbacks. This implies in particular
that for the unique active map long : [1]→ \ [n], and for every n-simplex λ ∈ Xn with long edge
f = long(λ), we have a strict equality

long(Jn(λ)) = J1(f). (3.5.1)

For general p : [n ′]→ [n] in � (not necessarily active) it follows that J takes a strict triangle

∆n
′

∆n

X

p

λ ′ λ

to a commutative square of the form

∆n
′

∆n

J1(f
′) J1(f)

p

Jn ′(λ
′) Jn(λ)

e

(3.5.2)

with e culf. (This is to say, it is a cartesian morphism for the right fibration Ucart → �.)

Theorem 3.5.0.1. For any rigid decomposition groupoid X, the groupoid mapcDcmpculf
(X,U) of strict

culf maps from X to U is connected. More precisely, for any strict culf map J : X→ U, there is a natural
transformation (actually a modification) Γ : J ∼→ I.

Proof. There are three steps in the proof: Step 1 is to establish a canonical isomorphism J1(f) ∼=
I1(f) for each f ∈ X1, and show that this is natural in arrows in X1. Step 2 is to exploit culfness to
extend this isomorphism canonically to Jn(λ) ∼= In(λ) for each λ ∈ Xn (again naturally in λ). The
construction in Step 2 actually shows that these isomorphisms are natural in active maps in �.
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But in any case, Step 3 consists in showing that the isomorphisms are natural in all maps in �,
meaning that for any p : [n ′]→ [n] in �, the naturality square

∆n
′

∆n

J1(f
′) J1(f)

I1(f
′) I1(f)

p

a ′ a

∼ ∼

commutes (as will be detailed).
Step 1. Given f ∈ X1, we construct isomorphisms

IXf ' I
U
J1(f)

' J1(f).

Here the first isomorphism is an instance of Lemma 3.4.1.2, where J : X → U plays the role of
G : X→ Y. The second isomorphism is an instance of Lemma 3.4.3.1, where J1(f) plays the role of
A.

We should now argue why these isomorphisms are natural in arrows in X1: given f ' g, we
need to check that this naturality square commutes:

J1(f) I1(f)

J1(g) I1(g).

Since the vertical isomorphisms are composites of isos from Lemma 3.4.2.1 and from Lemma 3.4.3.1,
the naturality in maps inside X1 follows from the naturality expressed by Lemmas 3.4.2.3 and
3.4.3.2.

Step 2. We now show that these isomorphisms J1(f) ∼= I1(f) extend to isomorphisms
Jn(λ) ∼= In(λ) for each n, using that both I and J are strict culf. We have

X1 Xn

(UX)1 (UX)n

x

Since these horizontal maps are fibrations, we can describe the objects in (UX)n as follows. To
give an object Jn(λ) in (UX)n is to give the underlying interval J1(f) and an object in the fibre
over J1(f). Since the square is a strict pullback, to give an object in the fibre of the bottom
horizontal map is the same as giving an object in the fibre over f of the top horizontal maps, i.e. a
subdivision, i.e. an object λ ∈ Xn. This same description holds for I. So to give, for a fixed λ ∈ Xn,
an isomorphism Jn(λ)

∼→ In(λ) is to give an isomorphism I1(f)
∼→ I1(f), and keep the λ in the

fibres fixed.
As in Step 1, we should now argue why these isomorphisms are natural in arrows in Xn:

given λ ' µ in Xn, we need to check that this naturality square commutes:

Jn(λ) In(λ)

Jn(µ) In(µ).

The argument is the same as that given in degree 1, but invoking now Lemma 3.4.2.2 instead of
Lemma 3.4.2.1.
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Note that the isomorphisms are natural in all active maps [n] → \ [1] by construction, and
therefore, by the standard prism-lemma argument, are also natural in all active maps.

Step 3. The final step is to show that the isomorphisms are also natural in inert maps, and in
fact we prove uniformly that they are natural in all maps p : [n ′]→ [n] in �. Given λ : ∆n → X

(with long edge f) and a map p : ∆n
′ → ∆n, put λ ′ := λ ◦ p (with long edge f ′), so that we have

∆n
′

∆n

X

p

λ ′ λ

which is sent by J to

∆n
′

∆n

J1(f
′) J1(f).

p

a ′ a

e culf

(3.5.3)

By Step 1 we have isomorphisms in each simplicial degree, which are strictly compatible with
the subdivisions by Step 2, to give commutative triangles

∆n

J1(f
′) IU

J1(f ′)
I1(f

′)∼ ∼

∆n

J1(f) IU
J1(f)

I1(f).
∼ ∼

(3.5.4)

These diagrams together with Lemma 3.4.1.2 ensure that the following outer rectangle
commutes:

∆n
′

∆n J1(f) IU
J1(f)

I1(f)

J1(f
′) IU

J1(f ′)
I1(f

′) X

a ′

p a ∼ ∼

Mf
e

∼ ∼
c
p
λ

Mf ′

We furthermore have the two diagonal dotted arrows indicated. The leftmost triangle-shaped
region is (3.5.3), and the right-most triangle is given in Lemma 3.4.1.2. The composed dotted
parallelogram is now forced to commute, since the composites in it are fillers for the outer square,
and only one filler can exist since a ′ is stretched and Mf is strict culf.

The dotted arrows are the cartesian lifts of p to J1(f) and I1(f), and the commutativity of

∆n
′

∆n

J1(f
′) J1(f)

I1(f
′) I1(f)

p

a ′ a

e

∼ ∼

c
p
λ

now shows that the isomorphisms Jn ∼→ In are natural in p (and thereby with the whole simplicial
structure).

3.5.1 Modifications

Theorem 3.5.0.1 implies that every natural transformation from X to U is isomorphic to I.
Therefore, to prove the conjecture, we only need to prove that I does not admit other self-
modifications than the identity. Thus, we will introduce the notion of modification in the context
in which we need it.
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A modification between two natural transformations is a family of 2-cells in the 2-category of
(small) categories that satisfies some coherence conditions as indicated in the following definition:

Definition 3.5.1.1. [19, Definition 7.3.1] Let C and D be two 2-categories. Let F,G : C→ D be two
functors and α,β : F⇒ G be two natural transformations from F to G. A modification Γ : α⇒ β

assigns to each object x in C a 2-cell Γx : αx → βx of D compatibly with the 2-cell components of
F and G in the sense of the equation

F(x) G(x)

F(y) G(y)

F(f) G(f)

Γx

βf
=

F(x) G(x)

F(y) G(y).

F(f) G(f)

Γy

αf

We are interested in the case where C = � and D = Grpd, and where F = X and G = UX, and
where α and β are both equal to I. In this case, Definition 3.5.1.1 can be written as follows.

Definition 3.5.1.2. A modification Γ : I → I assigns to each [n] in � a natural transformation
Γn : In → In in Grpd such that for each n > 1 the following equations hold for each 0 6 i 6 n
and 0 6 j < n

Xn (UX)n

Xn−1 (UX)n−1

di di

Γn

=

Xn (UX)n

Xn−1 (UX)n−1

di di

Γn−1

(1)

Xn−1 (UX)n−1

Xn (UX)n

sj sj

Γn−1

=

Xn−1 (UX)n−1

Xn (UX)n.

sj sj

Γn

(2)

Remark 3.5.1.3. We can define a modification Γ : I → I level by level, so let Γn : In → In be
a component of the modification Γ . Given λ ∈ Xn, let φλ be the n-simplex induced by λ
constructed in Proposition 3.2.0.19 and f = long(λ). The modification Γ assigns to λ an invertible
morphism Γλn : (If,φλ)→ (If,φλ) in (UX)n. The morphism Γλn has associated an underlying map
Γλn : If → If.

Let p : [m]→ \ [n] be an active map. By Remark 3.4.1.4, we have that p∗Γλn = Γλn. This implies
that

Γ
λp
m = Γλn

where Γλpm : If → If is the underlying map of Γλpm . The difference between Γλn and Γλpm is that the
first one respects the n-subdivision φλ and the other respects the m-subdivision φλp.

Lemma 3.5.1.4. Let X be a rigid decomposition groupoid. The mapping groupoid mapcDcmpculf
(X,UX) is

contractible.

Proof. Theorem 3.5.0.1 shows that we only have to prove that I does not admit other self-
modifications Γ than the identity. Let λ be an n-simplex in X and put f = long(λ). Let Γ a
modification, with components Γn : In → In and let Γλn : If → If be the underlying map of
Γλn : (If,φλ)→ (If,φλ) of Remark 3.5.1.3.
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Since long : [1]→ \ [n] is an active map in �, by Remark 3.5.1.3, we have that

Γλn = Γf1 (3.5.5)

where Γf1 : If → If is the underlying map of Γf1 : (If,φf) → (If,φf). On the other hand, given a
morphism α : σ→ σ in If, Lemma 3.2.0.17 gives an stretched 3-simplex ηα : ∆3 → \ If such that

d⊥d>ηα = α. (3.5.6)

The modification Γ assigns to Mf ηα an invertible map Γηα3 : (If,ηα)→ (If,ηα) such that Γηα3 ηα =

ηα. Furthermore,

Γ
ηα
3 (α) = Γηα3 (d⊥d>ηα) (by Eq. (3.5.6))

= d⊥d>Γ
ηα
3 (ηα) (since Γηα3 is a sim. map)

= d⊥d>(ηα)

= α.

By Definition 3.5.1.2, we have the equality

X3 (UX)3 (UX)1

I3

I3

d1d1
Γ3 = X3 X1 (UX)1.

d1d1

I1

I1

Γ1

This equation implies that d1d1(Γ
ηα
3 ) = Γf1 . Since d1d1 is active, we have that Γηα3 = Γf1 by

Remark 3.5.1.3. Hence altogether, for each α ∈ If

Γλn(α) = Γ
f
1(α) (by Eq. (3.5.5))

= Γηα3 (α)

= α.

Since Γλn is the identity arrow for each λ ∈ Xn, we have that Γ is the identity modification.

Theorem 3.5.1.5. Let X be a rigid decomposition groupoid. The mapping groupoid mapcDcmpculf
(X,U) is

contractible.

Proof. Since  : UX → U is full and faithful (3.4.3.3), we have that ! : mapcDcmpculf
(X,UX) →

mapcDcmpculf
(X,U) is also full and faithful. Furthermore, each natural transformation from X to

U is isomorphic to I by Theorem 3.5.0.1, this implies that ! is essentially surjective on objects,
and therefore mapcDcmpculf

(X,UX) ∼= mapcDcmpculf
(X,U). This equivalence combining with the

contractibility of mapcDcmpculf
(X,UX) (3.5.1.4) implies that mapcDcmpculf

(X,U) is contractible.



4
The Gálvez–Kock–Tonks conjecture for
Möbius decomposition spaces

In Chapter 3, it was studied the conjecture at the level of locally discrete decomposition spaces.
With this strict restriction, the contractibility of map(X,UX) can be established with 2-category
theory by showing that IX : X → UX, interpreted as a natural transformation, does not admit
other self-modifications than the identity modification. It is natural to ask whether the techniques
developed in Chapter 3 can be applied or refined to prove the conjecture in full generality.
Unfortunately this is not very likely, since the proof relies on explicit strictification. Therefore, we
prefer to study the conjecture from another perspective by imposing cardinal bounds through the
Möbius condition (1.1.1). The decomposition space of Möbius subdivided intervals UMob is small,
so to prove the conjecture is to show that UMob is a terminal object in the ∞-category MobDcmp
of Möbius decomposition spaces and culf maps . This proof is the main result (4.2.0.14) of this
chapter. Furthermore, the proof of the conjecture allows together with the fact that the ∞-category
of decomposition spaces and culf maps is locally an ∞-topos [63] to prove that MobDcmp is an∞-topos (4.3.4.1).

4.1 Flanked decomposition spaces

In this section we recall from [60] some constructions and results required to set up the decompo-
sition space of sub-divided intervals U.

We denote by Ξ the category of finite strict intervals, that is, a skeleton of the category whose
objects are nonempty finite linear orders with a bottom and a top elements, required to be distinct,
and whose arrows are the maps that preserve both the order and the bottom and top elements.
There is a forgetful functor u : Ξ→ � which forgets that there is anything special about the bottom
and top elements. This functor has a left adjoint i : �→ Ξ which to a linear order adjoins a bottom
and top elements. The two functors can be described in object as u([k]) = [k+ 2] and i([k]) = [k],
and the adjunction is given by the following isomorphism:

Ξ([n], [k]) = �([n], [k+ 2]) n > 0,k > −1. (4.1.1)

The objects in the category Ξ are [−1], [0], [1], etc. Furthermore, compared to � via the inclusion i,
the category Ξ has one extra coface map [−1] → [0]. It also has in each degree, two extra outer
degeneracy maps: s⊥ : [n]→ [n− 1] and s> : [n]→ [n− 1].

The adjunction i a u induces an adjunction i∗ a u∗

Fun(Ξop, S) Fun(�op, S).
i∗

u∗
(4.1.2)

The functor i∗ takes the underlying simplicial space A and deletes A[−1] and removes the extra
outer degeneracy maps. On the other hand, the functor u∗ applied to a simplicial space X, deletes
X0 and removes all outer face maps and then reindexes.

91
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Definition 4.1.0.1. [60, §2.9] A Ξop-space A is called flanked if the extra outer degeneracy maps
form cartesian squares with the opposite outer face maps. Precisely, for n > 0

An−1 An

An An+1

s⊥−1s⊥−1

d>

d>

y

An−1 An

An An+1.

s>+1s>+1

d⊥

d⊥

y

Definition 4.1.0.2. [60, §2.12] A Ξop-space A is called complete flanked decomposition space if A is
flanked and i∗A is a complete decomposition space.

Let cDcmp denote the full subcategory of sSpaces spanned by the complete decomposition
spaces and let cFD denote the full subcategory of Fun(Ξop, S) spanned by the complete flanked
decomposition spaces. It follows that the adjunction 4.1.2 restricts to the adjunction

cFD cDcmp.
i∗

u∗
(4.1.3)

4.1.1 Algebraic intervals

Definition 4.1.1.1. [60, §3.2] A Ξop-space A is called reduced when A[−1] ' 1.

Definition 4.1.1.2. [60, §3.4] A Ξop-space A is called algebraic interval if A is a reduced complete
flanked decomposition space.

We denote by aInt the full subcategory of Fun(Ξop, S) spanned by algebraic intervals.

Definition 4.1.1.3. [60] An arrow G : A→ B in Fun(Ξop, S) is stretched if its [−1]-component is an
equivalence.

Note that every morphism in aInt is stretched and all the representables Ξ[k] are algebraic
intervals.

Proposition 4.1.1.4. [60, Proposition 4.2] The stretched maps as left-hand class and the cartesian maps as
right-hand class form a factorisation system on aInt.

Let Int denote the image of aInt ⊂ cFD under the left adjoint i∗ in the adjunction (4.1.3). Say
a map in Int is stretched if it is the i∗ image of a map in aInt. Furthermore, a Möbius interval is an
interval which is a Möbius decomposition space.

Proposition 4.1.1.5. [60, Proposition 4.2] The stretched maps as left-hand class and the culf maps as
right-hand class form a factorisation system on Int.

Given an arrow f in a decomposition space X, we can construct an algebraic interval associate
to f. In the case where X is a 1-category the construction is due to Lawvere [77]: the objects are
two-steps factorisation of f, with initial object id-followed by-f and the terminal object f-followed
by-id. The 1-cells are arrows between such factorisations.

For the general case, by Yoneda, to give an arrow f in X1 is to give ∆1 → X in cDcmp. By
adjunction, this equivalent to giving Ξ[−1] → u∗X in cFD. Now factor this map as an stretched
map followed by a cartesian map:

Ξ[−1] u∗X

A
stretched cartesian

The object A is an algebraic interval since it is stretched under Ξ[−1]. By definition, the factorisation
interval of f is If := i∗A.
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Lemma 4.1.1.6. Consider the following commutative diagram of simplicial maps

B

A C,
F

S G

where A, B and C are intervals, and S is stretched. Then F is stretched if and only if G is stretched.

Proof. One direction is trivial. We assumed that F is stretched, so F(A[−1]) ' C[−1]. This together
with the commutativity of the triangle and the stretched condition of S are used in the following
calculation:

G(B[−1]) ' G(S(A[−1])) ' F(A[−1]) ' C[−1].

Hence, G is stretched.

4.1.2 The decomposition spaces of intervals

Let Ars(Int) ⊂ Ar(Int) denote the full subcategory spanned by the stretched functors. We have
an stretched-culf factorisation system in Int that we can use to define a fibration that encodes the
simplicial space of sub-divided intervals. Recall that Ars(Int) is a cartesian fibration over Int via
the domain projection by Lemma 1.1.6.2. We now restrict this cartesian fibration to � ⊂ Int

Ars(Int)|� Ars(Int)

� Int.

y

f.f.

dom dom

f.f.

We put
U := Ars(Int)|� .

The cartesian fibration of subdivided intervals U → � determines a right fibration Ucart → �, and
hence by straightening [79, §3.2] a simplicial space

U : �op → Ŝ

where Ŝ is the ∞-category of large ∞-groupoids.

Theorem 4.1.2.1. [60, Theorem 4.8] The simplicial space U : �op → Ŝ is a complete decomposition space.

The objects of the ∞-groupoid Un are n-subdivided intervals. That is, an interval A equipped
with an stretched map ∆n → \ A. Note that U1 is equivalent to the ∞-groupoid Inteq.

The fibres of the right fibration U→ � are large ∞-groupoids. Therefore, U takes values in
large ∞-groupoids. This means that U can not be literally an object in the ∞-category of complete
decomposition spaces and culf maps.

Remark 4.1.2.2. For κ a regular and strong limit cardinal [65, §5], say that a simplicial space X is
κ-bounded, when for each n ∈ �, the space Xn is κ-small. Hence the ∞-category of κ-bounded
decomposition spaces and κ-bounded intervals is essentially κ-small. Carrying the κ-bounded
and the Möbius condition through in all the constructions, Gálvez, Kock, and Tonks [60, §6]
proved that there is an essentially small ∞-category (UMob)1 of Möbius intervals, and a legitimate
presheaf UMob : �

op → S of Möbius intervals.

Theorem 4.1.2.3. [60, Theorem 6.14] The decomposition space of subdivided Möbius intervals UMob is
Möbius.
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4.1.3 Interval construction as a coreflection

Let Int ↓ cDcmp denote the comma ∞-category whose objects are simplicial maps F : A → X

from an interval A to a decomposition space X.

Theorem 4.1.3.1. [60, Theorem 5.1] The inclusion functor Ars(Int) ↪→ Int ↓ cDcmp has a right adjoint

I: Int ↓ cDcmp→ Ars(Int)

which takes cartesian arrows to cartesian arrows.

Remark 4.1.3.2. The functor I: Int ↓ cDcmp→ Ars(Int) sends a simplicial map F : A→ X to the
stretched map in the following diagram

A X

A ′
stretched

F

culf

which is obtained from the stretched-culf factorisation of the map F.

Let � ↓ cDcmp denote the full ∞-subcategory of Int ↓ cDcmp whose objects are maps
∆n → X with X a complete decomposition space, and the morphisms are squares

∆n ∆m

X Y

where X→ Y is a simplicial map. The adjunction of Theorem 4.1.3.1 restricts as follows:

� ↓ cDcmp Ars(Int)|�

Int ↓ cDcmp Ars(Int).
I

I

To simplify the notation, we put W := � ↓ cDcmp. We call this restriction the factorisation
interval construction I. Recall that U = Ars(Int)|� and note that I is a morphism of cartesian
fibrations over �:

W U

�.
dom

I

dom

Let I : W → U denote the simplicial map classified by the map I: W→ U. Inside W, we have the
fibre over X, for the codomain fibration. This fibre is just el(X), the category of elements of X.
This fibre clearly includes into the cartesian part of W.

Lemma 4.1.3.3. [60, Lemma 5.3] The associated morphism of right fibrations

el(X)→Wcart

is culfy, and by composition we get a culfy map

IX : el(X)→Wcart → Ucart.

Notation 4.1.3.4. The simplicial map classified by IX is denoted as IX : X→ U. Furthermore, the map IX
is culf since IX is culfy and there exists a bijection between culf and culfy maps (1.1.2).
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4.2 The Gálvez–Kock–Tonks conjecture for Möbius decomposition
spaces

We need the following results to prove the main theorem of the paper.

Theorem 4.2.0.1. [66, Proposition 4.2][30, Theorem 4.3.11] Let C be an ∞-category. We consider an
object > in C and write dom : C/> → C for the canonical projection. Then the following conditions are
equivalent:

1. The object > is terminal.

2. For any object c in C, the ∞-groupoid mapC(c,>) is contractible.

3. The map dom : C/> → C has a section which sends > to a terminal object in C/>.

4. The map dom : C/> → C is an equivalence.

Corollary 4.2.0.2. [30, Corollary 4.3.13] The terminal objects of an ∞-category C form an ∞-groupoid
which is either empty or equivalent to the point.

Corollary 4.2.0.3. [30, Corollary 4.3.8] For any object c in an ∞-category C, the object idc is terminal in
the slice C/c.

Remark 4.2.0.4. The condition (3) of Theorem 4.2.0.1 is formulated in [30, Theorem 4.3.11] as
follows: the map dom : C/> → C has a section which sends > to id>. The subtle modification we
use is valid thanks to Corollary 4.2.0.2.

Let cDcmpculf denote the ∞-category of complete decomposition spaces and culf maps. The
construction of the complete decomposition space of sub-divided intervals U was motivated by
the following statement:

Gálvez–Kock–Tonks Conjecture [60, §5.4] For each complete decomposition space X, the space
of culf maps map(X,U) is contractible.

Since U is not a legitimate object in cDcmpculf, the conjecture does not assert that U is a terminal
object. If we impose a cardinality bound using the Möbius condition, UMob is a legitimate object
in the ∞-category MobDcmp of Möbius decomposition spaces and culf maps by Remark 4.1.2.2
and Theorem 4.1.2.3. So, in the Möbius case, the conjecture says that UMob is a terminal object in
MobDcmp.

Lemma 4.2.0.5. For each Möbius decomposition space X, the mapping space

mapMobDcmp(X,UMob)

is contractible if and only if there exists a section map

s : MobDcmp→MobDcmp/UMob

of dom : MobDcmp/UMob
→MobDcmp such that s(UMob) ' idUMob .

Proof. The proof follows from conditions (2) and (3) of Theorem 4.2.0.1.

The goal of this section is to prove the conjecture in the Möbius case. By Lemma 4.2.0.1, this
is equivalent to the following theorem, which we prove.

Theorem 4.2.0.13: There exists a section map

s : MobDcmp→MobDcmp/UMob

of dom : MobDcmp/UMob
→MobDcmp such that s(UMob) ' idUMob .

The proof is a bit technical so we will break it down into a series of steps as follows:
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4.2.0.1 Step 1: W as an oplax colimit

Let Θ : cDcmp → Cat∞ denote the functor that sends a complete decomposition space X to its∞-category of elements el(X) (see §1.1.2). Recall that W = � ↓ cDcmp (see §4.1.3). For each
X ∈ cDcmp, the following diagram is a pullback:

el(X) W

1 cDcmp.

codom

pXq

By similar arguments, it is easy to check that a culf map F is classified by the map el(F). This
implies that codom : W → cDcmp is the cocartesian fibration that classifies the functor Θ. By
[55, Theorem 7.4], the cocartesian fibration classified by a functor is given by the oplax colimit of
the functor. This implies the following result:

Proposition 4.2.0.6. The oplax colimit of the functor Θ is W.

4.2.0.2 Step 2: Slice (∞, 2)-category over W

Let Cat∞ denote the ∞-bicategory of ∞-categories. The goal of this step is to use Proposition
4.2.0.7 which states that cocartesian fibrations that classify Cat∞-values functors induce slice
(∞, 2)-categories of Cat∞. The arguments used in the proof are technical so we prefer to add an
appendix (A) with a deeper explanation, but the idea comes from combining the fact that any
2-colimit induces a slice (∞, 2)-category of Cat∞ and cocartesian fibrations that classify Cat∞-
values functors are weighted colimits [55, Theorem 7.4], which are a special case of 2-colimits as a
consequence of results of Gagna, Harpaz, and Lanari [49].

Proposition 4.2.0.7. Let C be an ∞-category. Let H : C → Cat∞ be a functor and let H → C be a
cocartesian fibration that classifies the map H. There exists a functor

Ĥ : C→ Cat∞//H,

that sends an object c in C to the map ıc : H(c)→ H given by the pullback

H(c) H

1 C,

ıc

y

pcq

and a morphism f : c→ b in C to the triangle

H(c)

H

H(b)

H(f)

ıc

ıb

αf

where the 2-cell αf is defined for each morphism f : c→ b by the commutative square

ıc(x) ıb ◦H(f)(x)

ıc(y) ıb ◦H(f)(y).

αf(x)

αf(y)

ıc(g) ıb◦H(f)(g)
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Here g : x → y is a morphism in H(c). Note that the triangle is just the cocone diagram given by the
classifying property of H and the 2-cell is part of the data given by the the classifying property of H.

Combining Propositions 4.2.0.6 and 4.2.0.7, we have a map

Θ̂ : cDcmp→ Cat∞//W,

that sends a complete decomposition space X to the canonical map el(X) → W and a map
F : Y → X to the triangle:

el(Y)

W

el(X)

el(F)
αF

where the 2-cell αF is defined for each ([n], λ) ∈ el(Y) by the commutative square

∆n ∆n

Y X.

id

λ F(λ)

F

4.2.0.3 Step 3: Restriction to Möbius decomposition spaces and culf maps

The idea of Steps 3 (4.2.0.3) and 4 (4.2.0.4) is to show that the functor Θ̂ : cDcmp → Cat∞//W
factors through MobDcmp/UMob

using the interval-factorisation construction I : W→ UMob and
the straightening-unstraightening equivalence of ∞-categories (RFib(�) ' sSpaces). After these
steps, it is easy to prove that UMob is a terminal object in MobDcmp.

For any n-simplex λ : ∆n → X of a decomposition space X, there exists a unique stretched
n-simplex φλ : ∆n → \ Iλ such that the digram

∆n X

Iλ

λ

φλ Mλ

commutes. Here φλ and Mλ are the stretched-culf factorisation of λ.

Lemma 4.2.0.8. Let F : Y → X be a simplicial map between decomposition spaces. For any n-simplex
λ : ∆n → X, we have an stretched functor IλF from Iλ to IFλ such that the diagram

∆n IFλ

Iλ Y.

φFλ

φλ

Mλ ◦F

MFλIλF

commutes. If F is culf then IλF is an equivalence.

Proof. Consider the following commutative diagram induced by the stretched-culf factorisation
of λ and Fλ:

∆n IFλ

Iλ Y.

φFλ

φλ

Mλ ◦F

MFλIλF
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The dotted arrow IλF exists since we have the stretched-culf factorisation system on Int (4.1.1.5).
Furthermore, IλF is stretched by Lemma 4.1.1.6 since φFλ is stretched . If F is culf, the map Mλ ◦F
is culf. This implies, together with the culf condition of MFλ, that IλF is culf. Hence, IλF is an
equivalence since it is stretched.

Recall that MobDcmp is the ∞-subcategory of cDcmp consisting of Möbius decomposition
spaces and culf maps. Let Θ̂|MobDcmp

: MobDcmp → Cat∞//W denote the restriction of the

map Θ̂ : cDcmp → Cat∞//W to the subcategory MobDcmp. In 4.1.3 was defined the interval-
factorisation construction I: W→ UMob. This construction induces a functor

I! : Cat∞//W → Cat∞//UMob

given by postcomposing with I. Therefore, we have a functor

I! ◦ Θ̂|MobDcmp
: MobDcmp→ Cat∞//UMob

that sends a Möbius decomposition space to the map IX : el(X)→ Ucart
Mob and a map F : Y → X to

the triangle:
el(Y)

Ucart
Mob

el(X).

el(F)

IY

IX

I(αF)

Lemma 4.2.0.9. For each culf map F : Y → X, the 2-cell I(αF) is an equivalence.

Proof. The components of the 2-cell I(αF) are given by squares:

∆n ∆n

Iλ I(Fλ).

id

φλ φ(Fλ)

IλF

To prove that I(αF) is an equivalence it is enough to show that for each λ ∈ Xn, the stretched
map IλF : Iλ → IF(λ) is an equivalence. Indeed, since F is culf we have that IλF is an equivalence by
Lemma 4.2.0.8.

To simplify the notation, we use g = I! ◦ Θ̂|MobDcmp
. Lemma 4.2.0.9 implies that the image of g

lands in Cat∞/Ucart
Mob

.

Proposition 4.2.0.10. We can factor g as

Cat∞/Ucart
Mob

MobDcmp Cat∞//UMob
.g

g ′

Proof. By Lemma 4.2.0.9, we have that the 2-cells I(αF) are equivalences so the triangles

el(Y)

Ucart
Mob

el(X)

el(F)

IY

IX

I(αF)
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are in fact morphisms in Cat∞/Ucart
Mob

. Therefore, g factors through Cat∞/Ucart
Mob

. The map g ′ denotes
the first part of this factorisation.

4.2.0.4 Step 4: Restriction to right fibrations

Recall that the map IX : el(X)→ Ucart
Mob is culfy by Lemma 4.1.3.3.

Proposition 4.2.0.11. We can factor g ′ as

RFib (�)/Ucart
Mob

MobDcmp Cat∞/Ucart
Mob

.
g ′

s ′

Proof. For each culf map F : Y → X in MobDcmp, the map g ′ sends F to the top triangle in the
following diagram:

el(Y) el(X)

Ucart
Mob

�.

el(F)

IY IX

The vertical arrows are the domain projections and therefore right fibrations. This implies that the
top triangle is in fact a morphism in RFib (�)/Ucart

Mob
, and therefore g ′ factors through RFib (�)/Ucart

Mob
.

The map s ′ denotes the first part of this factorisation.

Using the straightening-unstraightening equivalence of ∞-categories (RFib(�) ' sSpaces),
we obtain the map

s ′ : MobDcmp→ sSpaces/UMob

that sends a Möbius decomposition spaces X to the culf map IX : X→ UMob. Since in Step 3, we
restrict our constructions to culf maps we have the following result:

Proposition 4.2.0.12. We can factor s ′ as

MobDcmp/UMob

MobDcmp sSpaces/UMob
.

s ′

s

Proof. Since s ′ is obtained from the straightening construction of the map s ′, we have that s ′

sends a culf map F : Y → X to the triangle

Y X

UMob

F

IY IX

which is a morphism in MobDcmp/UMob
since IX and IY are culf. Therefore, s ′ factors through

MobDcmp/UMob
. Let s denotes the first part of this factorisation.

Theorem 4.2.0.13. The map s : MobDcmp→MobDcmp/UMob
is a section of the map dom : MobDcmp/UMob

→
MobDcmp such that s(UMob) ' idUMob .
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Proof. We will first show that s is a section map and then prove that s(UMob) ' idUMob .

• Let F : Y → X be a culf map. By definition of s (4.2.0.12), s(F) is equal to triangle

Y X

UMob.

F

IY IX

The domain map applied to the above triangle consists of deleting UMob and retaining the
map F. In other words, dom(s(F)) = F and hence s is a section map of dom.

• Note that s(UMob) = IUMob : UMob → UMob sends an n-simplex λ : ∆n → \ A to the map
φλ : ∆

n → \ Iλ given by the stretched-culf factorisation pictured in the following diagram:

∆n A

Iλ.

λ

φλ Mλ

Since λ and φλ are stretched, we have that Mλ is stretched by Lemma 4.1.1.6. This implies
that Mλ is an equivalence since Mλ is culf. Therefore, IUMob(λ) ' λ and s(UMob) ' idUMob .

Combining Theorem 4.2.0.13 and Lemma 4.2.0.5, we have a proof of the Gálvez–Kock–Tonks
conjecture for Möbius decomposition spaces.

Theorem 4.2.0.14. The decomposition space of subdivided Möbius intervals UMob is a terminal object in
the ∞-category MobDcmp of Möbius decomposition spaces and culf maps .

Combining Theorems 4.2.0.1 and 4.2.0.14, we have the following result which we will use in
Section 4.3.

Corollary 4.2.0.15. The canonical projection dom : MobDcmp/UMob
→MobDcmp is an equivalence.

4.2.1 Comparison with the proof of the locally discrete case

As we mention before, the fibres of the right fibration U→ � are large ∞-groupoids. This means
that U can not be literally an object in the ∞-category of complete decomposition spaces and culf
maps. We have several alternatives to deal with this problem. One of them is the construction of
a kind of neighbourhood UX ⊂ U around the intervals of a complete decomposition space X.

Let UX denote the full simplicial space of U, whose objects are stretched maps φλ : ∆n →\ Iλ
for some λ ∈ Xn. Let UX : �op → S denote the simplicial space classified by the right fibration
dom : UX → �. Since right fibrations are stable under pullback, the map UX → U is cartesian and
therefore culf. This implies that UX is a complete decomposition space since U is a complete
decomposition space by Lemma 1.1.2.3. Moreover, the canonical inclusion from UX to Ucart induces
a full and faithful functor of mapping spaces for any decomposition space as a consequence of
Lemma 1.1.5.2.

Proposition 4.2.1.1. For any decomposition space X, the inclusion map UX ↪→ U induces a full and
faithful functor map(X,UX)→ map(X,U).

Gálvez, Kock and Tonks [60] proved a partial result of the conjecture given by the following
result:
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Theorem 4.2.1.2. [60, Theorem 5.5] For any complete decomposition space X, the mapping space
mapcDcmpculf

(X,U) of culf maps from X to U is connected. More precisely, for any culf map J : X→ U,
we have that J ' I.

Corollary 4.2.1.3. For any decomposition space X. The canonical inclusion  : UX ↪→ U induces a
essentially surjetive on objects map mapcDcmpculf

(X,UX)→ mapcDcmpculf
(X,U).

Proof. For any culf map J in mapcDcmpculf
(X,U), we have that J ' I by Theorem 4.2.1.2. On the

other hand, we have a canonical factorisation

X U

UX.

I

IX 

So, it is easy to see that (IX) ' J.

Combining Proposition 4.2.1.1 and Corollary 4.2.1.3, we have the following result:

Theorem 4.2.1.4. For any complete decomposition space X, we have the equivalence

mapcDcmpculf
(X,UX) ' mapcDcmpculf

(X,U).

The most important consequence of Theorem 4.2.1.4 is that mapcDcmpculf
(X,U) is contractible

if and only if mapcDcmpculf
(X,UX) is contractible. In Chapter 3, it was proved the conjecture at

the level of locally discrete decomposition spaces. With this strict restriction, the contractibility of
map(X,UX) can be established with 2-category theory by showing that IX : X→ UX, interpreted
as a natural transformation, does not admit other self-modifications than the identity modification.
The following is the main lemma of Chapter 3.

Lemma 3.5.1.4: For each locally discrete decomposition space X, the mapping space mapcDcmpculf
(X,UX)

is contractible.

Combining Theorem 4.2.1.4 and Lemma 3.5.1.4, we have a proof of the Gálvez–Kock–Tonks
conjecture for locally discrete decomposition spaces:

Theorem 3.5.1.5: For each locally discrete decomposition space X, the mapping space
mapcDcmpculf

(X,U) is contractible.

As we mention in the introduction of this chapter it is natural to ask whether the techniques
developed in Chapter 3 can be applied or refined to prove the conjecture in full generality.
Unfortunately this is not very likely, since the proof relies on explicit strictification.

4.3 The ∞-topos of Möbius decomposition spaces and culf maps

Hackney and Kock [63] proved that for any simplicial space X the ∞-category of culf maps
over X is equivalent to the ∞-category of right fibrations over the edgewise subdivision of X. A
consequence of this result is that the ∞-category of decomposition spaces and culf maps is locally
an ∞-topos. In this section, we will explain the locally ∞-topos condition of cDcmpculf, and
combining with the proof of the Gálvez–Kock–Tonks conjecture in the Möbius case that state that
MobDcmp has a terminal object, we will show that the ∞-category of Möbius decomposition
spaces and culf maps is an ∞-topos (Theorem 4.3.4.1). We recall from [63] some results required
to prove Theorem 4.3.4.1.
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4.3.1 Edgewise subdivision

Consider the functor Q : �→ � that sends an ordinal [n] to the ordinal [n]op ? [n] = [2n+ 1], with
the following special notation for the elements of the ordinal [2n+ 1],

0 1 · · · n

0 ′ 1 ′ · · · n ′.

The functor Q is described on arrows by sending a coface map di : [n − 1] → [n] to the
monotone map that omits the elements i and i ′, and by sending a codegeneracy map si : [n]→
[n+ 1] to the monotone map that repeats both i and i ′.

Definition 4.3.1.1. For a simplicial space X : �op → S, the edgewise subdivision Sd(X) is given by
precomposing with Q:

Sd(X) := Q∗X = X ◦Q.

Remark 4.3.1.2. At the level of right fibrations over �, the edgewise subdivision is the pullback

Q∗(el(X)) el(X)

� �.
Q

This means that we have the identification

Q∗(elX) = el(SdX).

Decomposition spaces can be characterised in terms of edgewise subdivision, by a result of
Begner, Osorno, Ozornova, Rovelli, and Scheimbauer [15] :

Lemma 4.3.1.3. [15] A simplicial space X is a decomposition space if and only if Sd(X) is a Segal space.

Furthermore, culf maps can be characterised in terms of edgewise subdivision, by a result of
Hackney and Kock [63]:

Lemma 4.3.1.4. [63, Lemma 5.3] A simplicial map f is culf if and only if Sd(f) : Sd(Y) → Sd(X) is a
right fibration.

A simplicial map is called final if it is left orthogonal to every right fibration. Note that every
terminal-object-preserving map between representables ` : ∆m → ∆n is final. Hackney and Kock
[63] gave a series of adjunctions for a map using the final-right fibration factorisation system in
Cat∞ that in the case of the endofunctor Q : �→ � gives the adjunctions:

sSpaces sSpaces.Q∗

Q!

Q∗

⊥

⊥

Recall that Q∗(el(X)) = el(Sd(X)).

Proposition 4.3.1.5. [63, Proposition 8.4] The right Kan extension functor Q∗ : sSpaces → sSpaces
takes right fibrations to culf maps.
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Proof. Let p : Y → X be a right fibration. The map Q∗(p) is culf when it is right orthogonal to
every active map ∆m → \ ∆n, so we have to prove that for the square:

∆m Q∗(Y)

∆n Q∗(X)

Q∗(p)(1)

the space of fillers is contractible. By the adjunction Q∗ a Q∗, the right orthogonality condition of
(1) is equivalent to say that the space of fillers of the square

Q∗∆m Y

Q∗∆n X

p(2)

is contractible. Since the edgewise subdivision functor Q∗ takes active maps ∆m →\ ∆n to
terminal-object-preserving maps, which are then final, we have that the map Q∗∆m → Q∗∆n is
final. Hence, it is orthogonal to p by the right fibration condition of p. This implies that the space
of fillers is contractible for the square (2). Therefore, Q∗(p) is culf.

4.3.2 Slicing adjunctions

Given an adjunction

D C

F

G

⊥

where D has pullbacks, we can obtain an adjunction

D/d C/Fd

Fd

⊥

whose right adjoint is given by applying GFd : C/Fd → D/GFd and then pulling back along the
unit ηd : d→ GFd (See [79], Proposition 5.2.5.1).

Lemma 4.3.2.1. [63] For a decomposition space X, we have the adjunction

Dcmpculf/X RFib(SdX).

SdX

(η ′X)
∗◦Q∗

⊥

Proof. The adjunction Q∗ a Q∗ induces the sliced adjunction

sSpaces/X sSpaces/ SdX.

SdX

(η ′X)
∗◦Q∗

⊥

By Lemma 4.3.1.4, the map SdX sends culf maps to right fibrations and by Lemma 4.3.1.5 takes
right fibrations to culf maps. So this adjunction restricts to an adjunction

Dcmpculf/X RFib(SdX).

SdX

(η ′X)
∗◦Q∗

⊥
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Remark 4.3.2.2. The right adjoint of Lemma 4.3.2.1 acts on a given right fibration W → Q∗X by
first applying Q∗ to get a culf map Q∗W → Q∗Q∗X (by Proposition 4.3.1.5), and then pulling
back along the unit η ′X of the Q∗ a Q∗ adjunction to get a culf map Y → X as in

Y Q∗W

X Q∗Q∗X.
η ′X

y

Hackney and Kock [63] proved that the adjunction of Lemma 4.3.2.1 is in fact an adjoint
equivalence.

Theorem 4.3.2.3. [63, Theorem 8.12] For any decomposition space X, there is a natural equivalence

Dcmpculf/X ' RFib(SdX).

4.3.3 Rezk completion

Let X be a decomposition space. Let Xeq
1 ⊂ X1 denote the full sub ∞-groupoid spanned by

those f : x → y for which there exists σ, τ ∈ X2 with d0σ ' f and d1σ ' s0y and d2τ ' f and
d1τ ' s0x.

Definition 4.3.3.1. [59] A decomposition space X is called Rezk complete when the canonical map
s0 : X0 → Xeq is a homotopy equivalence.

Remark 4.3.3.2. If X is a Segal space, then Definition 4.3.3.1 is equivalent to the original definition
of Rezk [83].

To prove that every Möbius decomposition space is Rezk complete, we need the following
result:

Lemma 4.3.3.3. For any Möbius decomposition space X, the following diagram

X0 X0

X2 X1d1

s0s0s0

id

is a pullback.

Proof. Given an object x in X0, the ∞-groupoid Fibx(s0) is contractible. So to prove that the
square is a pullback, it is enough to prove that Fibs0x(s0s0) is contractible. The ∞-groupoid
Fibs0x(s0s0) is non-empty since s0s0(x) is an object in Fibs0x(s0s0). Now suppose we have
another object σ ∈ Fibs0x(s0s0) such that σ 6= s0s0(x), this means that d0(σ) or d2(σ) is non-
degenerate. Combining that d0(σ) or d2(σ) is non-degenerate with the decomposition axiom
satisfying X, we can construct infinite non-degenerate n-simplex with long edge d0(σ) or d2(σ).
This implies that the long-edge map ∑−→

X r → X1

is not finite, but this contradicts the Möbius condition of X. In other words, the Möbius condition
of X forces σ to be totally degenerate and equivalent to s0s0(x). Hence, Fibs0x(s0s0) is contractible.

Proposition 4.3.3.4. [59, §8] Every Möbius decomposition space is Rezk complete.
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Proof. Let X be a Möbius decomposition space. Recall that every Möbius decomposition space
is complete, then s0 : X0 → X1 is a monomorphism. Since Xeq → X1 is a monomorphism by
construction, to show that Xeq

1 and X0 are equivalents, it is enough to show that every object
f : x → y in Xeq

1 is degenerate. But if σ ∈ X2 exists with d1(σ) = s0(y) and d0(σ) = f, as in
definition of Xeq

1 , then Lemma 4.3.3.3 implies that f is degenerate.

There is a full and faithful nerve functor

Nnat : Cat∞ sSpaces

C map(−,C)

whose essential image is the subcategory of Rezk-complete Segal spaces CSegal [68]. Furthermore,
for each Segal space X, we can construct a Rezk-complete Segal space X̂. This construction is in
fact functorial and gives a map LRezk : Segal→ CSegal that is left adjoint to the inclusion map
CSegal ↪→ Segal (due to [83], see [7] for a model-independent statement). Let X̂ denote the Rezk
completion of a Segal space X. The unit ηLRezk

X : X→ X̂, we will call it the completion map.

Proposition 4.3.3.5. [63, Proposition 9.4] Suppose X is a Segal space. Then pulling back along the
completion map X→ X̂ induces an equivalence RFib(X̂)→ RFib(X).

Theorem 4.3.3.6. [63, Theorem 9.3] The ∞-category of decomposition spaces and culf maps is locally an∞-topos. More precisely, for X a decomposition space, we have an equivalence

Dcmpculf/X ' RFib(SdX) ' RFib(ŜdX) ' PrSh(ŜdX).

Proof. The first equivalence is Theorem 4.3.2.3. The second equivalence is a consequence of
Proposition 4.3.3.5. The last equivalence is the straightening-unstraightening equivalence of∞-categories.

Remark 4.3.3.7. In the last equivalence of Theorem 4.3.3.6, we use the straightening-unstraightening
equivalence of ∞-categories. If we work with Sd(X) this is not possible since Segal spaces are
not a model for ∞-categories whereas Rezk complete Segal spaces are. Therefore, it becomes
necessary to take Rezk completion.

Proposition 4.3.3.8. [63, Proposition 9.10] If X is a Rezk complete decomposition space, and Y → X is
culf, then also Y is a Rezk-complete decomposition space.

Remark 4.3.3.9. Note that Proposition 4.3.3.8 forces the decomposition space of sub-divided
intervals U not to be Rezk complete. This happens since we have for any complete decomposition
space Y a culf map IY : Y → U. So if U were Rezk complete, Proposition 4.3.3.8 would imply that
Y is Rezk complete, i.e., that any complete decomposition space is Rezk complete, which is not
true by [59, §2.2].

The following result is needed in the proof of the main theorem of this section (4.3.4.1).

Proposition 4.3.3.10. [63, Proposition 9.12] If X is a Rezk complete decomposition space, then Sd(X) is a
Rezk complete Segal space.

4.3.4 Toposes

An ∞-topos is an ∞-category X that arises as a left exact-localisation of an ∞-category of
presheaves [79, Definition 6.1.0.4]. (There are several ways to think about what is an ∞-topos,
for example [88], [5].) One of the fundamental persistence properties is that if X is an ∞-topos,
for every object x in X, the slice ∞-category X/x is an ∞-topos [79, Proposition 6.3.5.1], i.e. X

is locally an ∞-topos. The converse is not always true. This means not every ∞-category that
is locally an ∞-topos is an ∞-topos. The converse is true when the ∞-category has a terminal
object. Recall that MobDcmp is the ∞-category of Möbius decomposition spaces and culf maps.
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Theorem 4.3.4.1. The ∞-category of Möbius decomposition spaces and culf maps is an ∞-topos.

Proof. By Proposition 4.3.3.4, UMob is Rezk complete since it is Möbius, and therefore Sd(UMob)

is Rezk complete by Proposition 4.3.3.10. Moreover, we have the equivalence

MobDcmp 'MobDcmp/UMob
' PrSh(Sd(UMob)).

The first equivalence is Corollary 4.2.0.15, the other equivalence is a consequence of Theorem
4.3.3.6 and the Rezk complete property of Sd(UMob).



A
Oplax colimits as weighted out-colimits

In the ∞-category context, we usually encode the information of diagrams of ∞-categories,
indexed by an ∞-category with a fibration. In the context of diagrams of ∞-bicategories, in-
dexed by an ∞-bicategory, we have four main notions of fibrations since we have to encode
the change of direction of 2-cells and not just 1-cells. (Op)lax colimits in the ∞-context were
studied first by Gepner, Haugseng, and Nikolaus [55], with further contributions provided
by Berman [18], García [51] and García–Stern [52, 53]. Here we follow the ideas of Gagna,
Harpaz, and Lanari [49]. They identified these four types of fibrations as inner (co)cartesian
and outer (co)cartesian based on Lurie’s work [80]. This identification allowed them to define
2-(co)limits for diagrams taking values in an ∞-bicategory. (They call them inner and outer
(co)limits.) Furthermore, they proved under some technical conditions that weighted 2-(co)limits,
and consequently all 2-(co)limits, can be computed in terms of weighted homotopy (co)limits.
A directed consequence of Gagna–Harpaz–Lanari’s work is that the oplax colimits in the sense
of Gepner–Haugseng–Nikolaus [55] are a special case of outer-colimits [49, Proposition 5.2.3,
Remark 5.2.5]. The goal of this appendix is to prove the following proposition using outer-colimits:

Proposition 4.2.0.7: Let C be an ∞-category. Let H : C→ Cat∞ be a functor and let H→ C be a
cocartesian fibration that classifies the map H. There exists a functor

Ĥ : C→ Cat∞//H,

that sends an object c in C to the map ıc : H(c)→ H given by the pullback

H(c) H

1 C,

ıc

pcq

and a morphism f : c→ b in C to the triangle:

H(c)

H

H(b)

H(f)

ıc

ıb

αf

where the 2-cell αf is defined for each morphism f : c→ b by the commutative square

ıc(x) ıb ◦H(f)(x)

ıc(y) ıb ◦H(f)(y).

αf(x)

αf(y)

ıc(g) ıb◦H(f)(g)

Here g : x → y is a morphism in H(c). Note that the triangle is just the cocone diagram given
by the classifying property of H and the 2-cell is part of the data given by the the classifying
property of H.
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In the first place, we will show that cocartesian fibrations that classify Cat∞-values functors are
oplax colimits which are a special case of weighted colimits taking values in Cat∞ [55, Theorem
7.4]. After that, we will see that weighted colimits, which take values in Cat∞, can be interpreted
as 2-colimits landing in Cat∞ (A.0.0.6). Finally we will use the fact that 2-colimits induce slice
(∞, 2)-categories of Cat∞ to describe the slice (∞, 2)-category induced by a cocartesian fibration
that classifies a Cat∞-value functor.

Remark A.0.0.1. Dealing with out-colimits and oplax colimits help in the proof of the conjecture
since we construct the section map s (§4.2) using the property that cocartesian fibrations that
classify functors, which take values in Cat∞, induce slice (∞, 2)-categories of Cat∞.

We will use some results that are too technical to explain in detail in a few lines so we
reference them precisely. Assume that C is an ∞-category. Let H : C → Cat∞ be a functor and
let H → C be a cocartesian fibration that classifies the map H. In this section, we follow the
terminology of Gagna, Harpaz, and Lanari [49]. Let C−/ : C → Cat∞ denote the functor that
sends an object x in C to the ∞-category Cx/.

Definition A.0.0.2. [55, Definition 2.9] Let C be an ∞-category and let F : C→ Cat∞ be a functor.
The oplax colimit of F is the colimit of F weighted by C−/ i.e.

colimTw(C) F(−)× C−/.

Here Tw(C) denotes the twisted arrow ∞-category of C.

Lemma A.0.0.3. [55, Theorem 7.4] The oplax colimit of the functor H : C → Cat∞ is given by the
cocartesian fibration H classified by H.

There are several models for (∞, 2)-categories, and all of them have been proven to be
equivalent in the works of Ara ([6]), Barwick–Schommer-Pries ([9]), Bergner–Rezk ([16, 17]),
Gagna–Harpaz–Lanari ([48]), Lurie ([80]) and others. We will focus in Lurie’s bicategorical model
structure on scaled simplicial sets. A scaled simplicial set is a pair formed by a simplicial set with
a subset of 2-simplices. An ∞-bicategory is a scaled simplicial set which admits extensions along
generating scaled anodyne maps [49, Definition 1.2.7].

Before introducing the concept of out-colimit, we need the notion of out-coslice simplicial
set. Let K and C be scaled simplicial sets, and let p : K→ C be an arbitrary simplicial map. The
out-coslice simplicial set Cout

p/
is characterised by the mapping property of the form

HomSet+,sc(X,Cout
p/ ) ' Homp(K �out X,C).

Here �out is the fat join equipped with some addition decorations which encodes the “laxness"
[49, §4.2] and Set+,sc denotes the category of marked-scaled simplicial sets.

Definition A.0.0.4. [49, Definition 5.1.2] Let K and C be ∞-bicategories and let p : K → C be a
functor. An out-colimit for p is an initial object of Cout

p/
.

Remark A.0.0.5. Gagna, Harpaz, and Lanari [49] defined out-colimits in terms of marked-scaled
simplicial sets. A marked-scaled simplicial set is a pair formed by a scaled simplicial set with a subset
of 1-simplices. In this section we only work with marked-scaled simplicial sets whose marked
edges are only the degenerate edges since they correspond to (op)lax cones. We chose to omit the
word marked since we work with the canonical marked structure given by the degenerate edges.

Since any ∞-category is an ∞-bicategory, we have that Cat∞ is an subcategory of Cat∞.
Let  : Cat∞ → Cat∞ denote the canonical inclusion functor. Adapting the notion of weighted
out-colimit proposed by Gagna, Harpaz, and Lanari [49, Definition 5.2.1], we have the following
notion:
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Definition A.0.0.6. The out-colimit of H : C→ Cat∞ weighted by C−/ is defined as the out-colimit
of

H : Ar(C)→ Cat∞,

where H =  ◦H ◦ dom and dom : Ar(C)→ C is the canonical cartesian fibration.

Remark A.0.0.7. Gagna, Harpaz, and Lanari [49, Proposition 5.2.3, Remark 5.2.5] characterized
weighted out-colimits as follows: Let C be an ∞-bicategory and let f : J→ C and w : Jop → Cat∞
be functors. Then the out-colimit c ∈ C of f weighted by w is characterised by the natural
equivalence of ∞-categories

HomC(c, x) ' NatJop(w(−), HomC(f(−), x)).

Gagna, Harpaz, and Lanari [49, Proposition 5.2.3, Remark 5.2.5] proved that the notion of
oplax colimit and out-colimit (in the sense of [49, Definition 5.2.1]) are the same when we work
with ∞-categories. Therefore, we have the following result:

Lemma A.0.0.8. The out-colimit of H is H.

Proof. By definition of H, for each ∞-category X we have that

FunCat∞(H(−), (X))) ' FunCat∞( ◦H(−), (X)).

Since H lands in Cat∞ and X is an ∞-category, we have that

FunCat∞( ◦H(−), (X)) ' FunCat∞(H(−),X)).

Furthermore, considering w = C−/ and f = H in Remark A.0.0.7, we have the following result

NatCop( ◦ C−/, FunCat∞(H(−), (X))) ' NatCop(C−/, FunCat∞(H(−),X))

' limTw(C)op FunCat∞(C−/, FunCat∞(H(−),X)) ([55, §6])

' FunCat∞(colimTw(C)H(−)× C−/,X) ([55, §7])

' FunCat∞(H,X). (by Lemma A.0.0.3)

This equivalence implies that H is the out-colimit of H by [49, Proposition 5.2.3].

An out-colimit of a functor p : K → C is an object of Cout
p/

by Definition A.0.0.4. So we may

identify this object with a map K �out ∆
0 → C extending p. Therefore, we have a commutative

diagram

Ar(C)

Ar(C) �out ∆
0 Cat∞

H

H
′

(A.0.1)

such that H ′|Ar(C) = H and H ′|∆0 = H since H is the out-colimit of H. Furthermore, Gagna,
Harpaz, and Lanari [49, Proposition 4.2.9] proved that Ar(C) �out ∆

0 ' Ar(C) ?∆0. Therefore, the
diagram (A.0.1) can be rewritten as:

Ar(C)

Ar(C) ?∆0 Cat∞.

H

H
′

(A.0.2)
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The slice (∞, 2)-category Cat∞//H can be described by the universal property: for any∞-bicategory C ′, we have an equivalence

map(C ′, Cat∞//H) ' mapH(C ′ ?∆0, Cat∞)

where the subscript on the right hand side indicates that we consider only those functors
C ′ ?∆0 → Cat∞ whose restriction to ∆0 coincides with H [49, §4.2]. This implies that the map H ′

induces a map:

H̃ : Ar(C)→ Cat∞//H.

Remark A.0.0.9. The functor H̃ is fully determined by the oplax colimit property of H. For an
object r : c → d in Ar(C), the functor H̃ sends r to the classifying map H̃r : H(c) → H, which is
obtained from the pullback diagram

H(c) H

1 C
pcq

H̃r

y

given by the fact that H is a cocartesian fibration that classifies H. For a morphism

c c ′

d d ′

r r ′

f

σ

in Ar(C), the functor H̃ sends σ to the cocone diagram

H(c)

H

H(c ′)

H(f)

H̃r

H̃r ′

ασ

in Cat∞ given by the oplax colimit property of H, which is a morphism in Cat∞//H. The
natural transformation ασ is defined as follows: ασ sends an object x ∈ H(c) to a morphism
ασ(x) : H̃r(x)→ H̃r ′ ◦H(f)(x) in H such that for any morphism g : x→ y in H(c), the diagram

H̃r(x) H̃r ′ ◦H(f)(x)

H̃r(y) H̃r ′ ◦H(f)(y)

ασ(x)

ασ(y)

H̃r(g) H̃r ′◦H(f)(g)

commutes in H. Note that ασ is part of the data given by the oplax colimit property of H.

On the other hand, the map dom : Ar(C)→ C has a canonical section s : C→ Ar(C) that sends
c ∈ C to idc. We define Ĥ as the composite

C Ar(C) Cat∞//H.s H̃ (A.0.3)
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We have an explicit description of Ĥ by combining Remark A.0.0.9 and that the functor s sends a
morphism f : c→ b in C to the square:

c b

c b.

idc

f

f

idb

Put Ĥ(c) as the canonical map ıc : H(c)→ H. For a morphism f : c→ b in C, the map Ĥ(f) is the
triangle

H(c)

H

H(b),

H(f)

ıc

ıb

αf

where the 2-cell αf is defined for each morphism g : x→ y in H(c) by the commutative square

ıc(x) ıb ◦H(f)(x)

ıc(y) ıb ◦H(f)(y).

αf(x)

αf(x
′)

ıc(g) ıb◦H(f)(g)

Note that the triangle is just the cocone diagram given by the oplax colimit property of H (Lemma
A.0.0.3).
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