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Mosaic: a definition 

Mosaic  

/mə(ʊ)ˈzeɪɪk/ 

noun 

a picture or pattern produced by arranging together small pieces of stone, tile, 
glass, etc. 
"mosaics on the interior depict scenes from the Old Testament 

 
BIOLOGY 
an individual (especially an animal) composed of cells of two genetically different 
types. 

 
verb 

decorate with a mosaic. 
"he mosaicked the walls, ceilings, and floors" 

 
adjective 
BIOLOGY 

      denoting an individual composed of cells of two genetically different types. 
 

(“Oxford Languages and Google - English | Oxford Languages,”) 

 

In the framework of the present thesis, the focus will be put on the biological 

meaning of the word.  

More precisely, the term mosaic denotes an individual or tissue who has at least two 

populations of cells with distinct genotypes that are derived from a single fertilized 

egg (Martínez-González et al., 2020). Throughout post-zygotic cell divisions any 

genotype alteration may result in a mosaic. The modification can occur from 

nucleotide to chromosomal scale with a wide range of possible consequences for the 

affected individual or tissue depending on which the modification is, as well as when 

and where it happens. 



12    INTRODUCTION 

 

The present dissertation will focus on the study of chromosomal mosaicism in 

preimplantation embryos and more specifically at the blastocyst stage both focusing 

on its origins and consequences within the particular environment of Assisted 

Reproductive Techniques (ART) and Preimplantation Genetic Testing (PGT). 

 

Chromosomal anomalies in human embryos 

The presence of chromosomal anomalies in human embryos has been described as 

one of the main causes of adverse reproductive outcomes both in vivo and in vitro 

(Hassold and Hunt, 2001). Depending on the type of aneuploidy and the 

chromosome involved, an embryo may either fail to implant, or result in a 

miscarriage, or give rise to a viable affected pregnancy.  

Aneuploidies in human embryos can either be from meiotic origin and, therefore, be 

already present in the gamete, or be originated after fertilization through mitotic 

errors. 

Meiotic aneuploidy 

Meiotic aneuploidies are those generated through chromosome segregation errors 

during gametogenesis. These errors can occur due to an existing risk factor in the 

progenitor, such as an altered karyotype, or may occur spontaneously “de novo”. 

The factors that may induce spontaneous chromosome missegregation have been 

widely studied. It seems that meiotic errors are a common feature in human species. 

Moreover, it has been observed that most aneuploidies have a maternal origin 

(Hassold et al., 1996; Hassold and Hunt, 2001; Nagaoka et al., 2012; Ottolini et al., 

2015; Capalbo et al., 2017a; Gruhn et al., 2019; Wartosch et al., 2021).  
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Table 1: Summary of the origin of the main human trisomies. MI: meiosis I; MII: meiosis II; PZM: post-zygotic 

mitotic. Reproduced and adapted from Hassold et al., 2007 and Hall et al., 2007 (with permission). 

 

The specific characteristics of human female gametogenesis make it more prone to 

such errors. Ovarian reserve is generated and finalized through foetal development. 

Then, oocytes remain in a quiescent status until puberty when, in each cycle, a pool 

of follicles will be activated being finally ovulated the oocyte contained in the 

dominant follicle (Fritz and Speroff, 2011; Johnson, 2018). Therefore, female 

gametogenesis is not a continuous process in contrast to male gametogenesis 

(Figure 1). All the stopping and re-activation stages that need to happen during 

oogenesis increase the risk of an error.  

 

Figure 1: The female meiotic cycle (a) and oogenesis (b). Reproduced from Nagaoka et al., 2012 (with permission). 
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Moreover, the probability of such errors to happen is high in teenagers, then it 

reduces in early twenties and increases again in late thirties, especially from the age 

of 37 (Gruhn et al., 2019). The most important aneuploidy increase occurs with 

advanced female age (Figure 2). Although the reason why the inflexion point takes 

place at 37 is not clear, it has been hypothesized that the longest is the meiotic 

pause, the more errors occur: no turn over of cohesion-related proteins, 

destabilization of chiasms, deficient operation of division timings and check-points 

(Handyside, 2012). Moreover, as age increases, there may be a shift to a pre-

menopausal endocrine ambient, a recruitment of the worst quality oocytes, and 

certain small chromosomes with few crossings may go past a critical point (Nagaoka 

et al., 2012). Advanced female age has been the most associated factor to 

aneuploidy in human embryos. 

 

Figure 2: Aneuploidy rate in human blastocysts relative to female age. Reproduced from Franasiak et al., 2014 

(with permission). 
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In contrast to female gametogenesis, spermatogenesis has been proven to be less 

prone to errors (reviewed by Wartosch et al., 2021). However, it has been reported 

that, in some infertile men, this rate of error can sometimes be increased as 

observed by fluorescence in-situ hybridization (FISH) studies in sperm (Egozcue et 

al., 2000).  

It has been reported that, although meiotic aneuploidies can be observed in 

preimplantation embryos affecting any chromosome, there are specific 

chromosomes that, due to their morphological and/or genetic characteristics, are 

clearly more prone to be involved in errors (Capalbo et al., 2014; Nakhuda et al., 

2018)(Figure 3). 

 

Figure 3: Percentage of aneuploidies observed for each chromosome in 956 screened blastocysts. Reproduced 

from Capalbo et al., 2014. 
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In the context of in vitro fertilisation (IVF), oocyte meiotic anomalies can be increased 

due to suboptimal laboratory conditions, as meiosis will not finalize until fertilization 

in the laboratory. Moreover, it is possible that procedures used in ART, such as 

controlled ovarian hyperstimulation, may affect meiosis (Nagaoka et al., 2012). 

Mitotic aneuploidy 

In contrast to meiotic aneuploidy, mitotic chromosome anomalies occur after 

fertilization and regardless of the chromosomal constitution of the gametes. 

Consequently, the resulting embryo will be a mosaic. Chromosomal mosaicism is 

defined as “a state in which there is more than one karyotypically distinct cell 

population arising from a single embryo” (Zegers-Hochschild et al., 2017). 

The phenomenon of embryo mosaicism was first reported in 1993 (Delhanty et al., 

1993; Munné et al., 1993). Since then, it has been demonstrated that mitotic 

anomalies during preimplantation embryo development are a common feature in 

the human species (Vanneste et al., 2009). The prevalence of mosaicism in cleavage 

stage embryos has been reported to be as high as 90% (Delhanty et al., 1993; Munné 

et al., 1993; van Echten-Arends et al., 2011; Mertzanidou et al., 2013) whereas at 

the blastocyst stage it is reduced to 5-45% (Northrop et al., 2010; Fragouli et al., 

2011, 2017; Capalbo et al., 2013; Novik et al., 2014; Greco et al., 2015; Ruttanajit et 

al., 2016; Munné et al., 2017; Nakhuda et al., 2018; Popovic et al., 2018). The wide 

ranges reported both at cleavage and blastocyst stage have been suggested to be 

due to several reasons. Studies have been performed with different patient 

populations in different settings, which could influence the prevalence of mitotic 

errors. Moreover, techniques used to detect mosaicism have been as diverse as their 

limitations. Finally, the nature of mosaicism itself makes it elusive to be detected if 

the whole embryo is not analyzed (reviewed by Popovic et al., 2020).  
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Mosaic abnormalities, as meiotic aneuploidy, can be presented affecting the whole 

chromosome or just a segment of it (whole-chromosome mosaicism and segmental 

mosaicism). 

The mechanisms through which a mitotic abnormality can occur have been 

extensively discussed and reviewed (Taylor et al., 2014a). During a normal division, 

each chromosome replicates into a double-chromatid chromosome. Thanks to the 

mitotic spindle, each chromatid will be segregated to each of the sister cells, which 

will be identical in terms of chromosome constitution (Figure 4A). Any error 

occurring during this process may lead to an abnormal chromosome segregation. 

The main mechanisms through which sister cells with chromosome anomalies would 

be generated are mitotic non-disjunction, anaphase lagging and endoreduplication. 

• In non-disjunction, sister chromatids fail to separate and both end up in one 

of the sister cells. Therefore, one cell will present a trisomy for the implicated 

chromosome while the other will present the complementary monosomy 

(Figure 4B). 

• In anaphase lagging, a chromatid fails to attach to the mitotic spindle or to 

be incorporated to the nucleus. While one of the sister cells will have a 

normal chromosome complement, the other will present a monosomy for 

the implicated chromosome (Figure 4C). 

• Endoreduplication implies a chromosome replication without cytokinesis due 

to a cell cycle error. The cell in which this error occurs will present a trisomy 

for the implicated chromosome (Figure 4D). 

Other anomalies such as abnormal spindle formation or DNA replication without cell 

division can also lead to mosaicism (McCoy, 2017). 
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Figure 4: Different segregation patterns during mitotic divisions. Two chromosomes are represented in each 

figure. Grey chromosomes are maternal in origin and black chromosomes are paternal. A: normal segregation. 

B: Mitotic non-disjunction. C: Anaphase lagging. D: Endoreduplication of a paternal chromosome. Reproduced 

and adapted from Taylor et al., 2014a (with permission). 

 

Many authors have tried to discern which of the above-mentioned mechanisms 

would be the one more frequently associated to mosaic abnormalities in human 

preimplantation embryos. Most authors have reported that anaphase lagging would 

be the main mechanism followed by endoreduplication (Delhanty et al., 1993; 

Coonen et al., 2004; Ioannou et al., 2012). However, others have reported contrarily 

(Munné et al., 2002; Chow et al., 2014). 

Euploid Euploid Monosomic Monosomic Euploid Euploid Trisomic 

Trisomic 
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Despite the fact that the general mechanisms for an abnormal chromosome 

segregation during mitosis are known, very little is known about the factors that 

cause such errors.  

Mitosis in early embryos present several differences compared to later embryos and 

somatic cells (Figure 5). First embryo divisions are, comparatively, very rapid. It has 

been hypothesized that in order to allow them to be fast, mitotic check-points, such 

as spindle assembly check-point, may have to be compromised to some degree 

(Taylor et al., 2014a; McCoy, 2017; Vázquez-Diez and FitzHarris, 2018) allowing 

errors to happen and persist. Moreover, other peculiarities of early embryo 

cleavage, such as spindle/cell size and the unusual lack of a centriolar structure 

(reviewed by Vázquez-Diez and FitzHarris, 2018), could make them more prone to 

errors. Problems with chromatin cohesion could also play an important role in 

mitotic anomalies (McCoy, 2017). With regards to segmental mosaicism, it has been 

extensively discussed that DNA double-strand breaks may contribute to its 

generation (Babariya et al., 2017; Vera-Rodriguez and Rubio, 2017). Additionally, it 

could be hypothesized that, mirroring what happens with meiotic errors, certain 

chromosomes might be more susceptible to be involved with mitotic errors. 

 

Figure 5: Differences in cell cycle changes throughout cellular differentiation. ES cells: embryonic stem cells. 

Reproduced from Padgett and Santos, 2020 (with permission). 
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Mosaic embryos can be categorized in different groups depending on the ploidy of 

the gametes, the number of different cell lines present within the embryo, and the 

moment when the mitotic abnormality happens; as summarized in Figure 6.  

A euploid-aneuploid mosaic embryo presents a combination of euploid and 

aneuploid cells, and it is usually originated from chromosomally normal gametes. It 

can sometimes be a result of an aneuploidy rescue of a zygote derived from 

abnormal gametes (Taylor et al., 2014a). It is important to mention that, from a 

reproductive point of view, the focus will be put on this kind of mosaic embryos as, 

having a euploid cell line, they have the potential to give rise to an ongoing 

pregnancy and healthy newborn. 

An aneuploid-aneuploid mosaic embryo presents a meiotic aneuploidy together with 

at least one mitotic imbalance. It is usually originated from a chromosomally 

abnormal gamete with the resulting embryo undergoing at least one error during 

mitosis. It could also be originated from euploid gametes, occurring the mitotic error 

at the first embryo division through non-disjunction, which would result in two 

complementary abnormal cells. From a reproductive point of view, aneuploid-

aneuploid embryos will behave, at least, as embryos just presenting the meiotic 

abnormality. Therefore, they will either not implant, or result in a miscarriage or give 

rise to an affected ongoing pregnancy. 

Embryos with >3 cell lines are called complex mosaics. 
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Figure 6: Outline of the different types of mosaic embryos and their origin. A: Possible mosaic embryos after 

fertilization with euploid gametes and mitotic error(s) during cleavage. B: Possible mosaic embryos after 

fertilization with aneuploid gamete(s) and mitotic error(s) during cleavage. 

 

In the ART scenario, intrinsic and exogenous factors can compromise the proper 

function of cell cycle and cause mitotic errors that lead to mosaicism.  

Intrinsic mosaicism 

It is known that early embryo divisions are manly driven by oocyte-stored 

molecules (RNAs and proteins) (Lu et al., 2017) and that mitochondria, which 
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are involved in cell division (Schon et al., 2000; Wilding et al., 2001), are 

maternally inherited. Moreover, as female age has been observed to be the 

main factor related to meiotic aneuploidies in human embryos, it would be 

reasonable to assume that female patients’ characteristics may play a role in 

mitotic divisions. 

On the other hand, sperm provides the embryo with the centrosome, which is 

key in the first mitotic divisions (Palermo et al., 1997), making male factor a 

clear candidate to be associated to mosaicism. Therefore, abnormal sperm 

parameters might also be related to mosaicism. 

Iatrogenic mosaicism 

Although reported differences in mosaicism prevalence may be due to the 

study populations analysed or different diagnostic tools used, one additional 

reason might be differences in IVF laboratory conditions. Actually, the 

existence of iatrogenic mosaicism was first evidenced by a study with a 

controlled population (oocyte donation cycles) and a controlled single setting 

for genetic analysis, but with different IVF laboratories referring samples. The 

prevalence of mosaicism among laboratories was remarkably different 

(Sachdev et al., 2016). 

It should not be overseen that mosaicism might indeed be a normal feature in human 

embryos to some extent. Other mammals than human also present chromosomal 

mosaicism and some authors have discussed whether this could even be an 

evolutionary benefit (Vázquez-Diez and FitzHarris, 2018). 

Nevertheless, as much as mosaicism seems to be usual in human embryos, its 

prevalence decreases through embryo and foetal development. Placental mosaicism 
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is detected in around 1-4% of prenatal chorionic villus samples (CVS) (Malvestiti et 

al., 2015; Benn et al., 2019; Li et al., 2022). The likelihood of an abnormality also 

present in the foetus will depend on the chromosome involved, the type of 

aneuploidy, the percentage of abnormal cells and the tissue distribution (Grati et al., 

2018). In most cases mosaicism is confined to the placenta, being true foetal 

mosaicism detected in around 0.2-0.5% of pregnancies and it has been estimated to 

be present in less than 0.2% of live births (Spinner and Conlin, 2014; Benn, 2015; 

Malvestiti et al., 2015; Li et al., 2022). However, this figure may be an 

underestimation as mosaicism could be overseen in cases of low percentage or if 

confined to specific tissues (Figure 7). 

 

Figure 7: Mosaicism prevalence through different developmental stages. Chorionic villi and amniotic fluid 

sampling images have been reproduced from https://ib.bioninja.com.au/standard-level/topic-3-genetics/33-

meiosis/karyotyping.html. 

 

It has been hypothesized that mosaicism may be corrected throughout embryo 

development, as demonstrated in mouse model, either by active apoptosis of 

abnormal cells or impaired development depending on the tissue. Moreover, an 

embryo would be able to repair mosaicism and avoid arrest, or not, depending on 

the percentage of cells with abnormality (Bolton et al., 2016). 
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In contrast to meiotic aneuploidy, the effect of mosaicism on the developing pre, 

peri and post implantation embryo and baby-to-be are very difficult to predict, being 

unique for each case and dependent on when (which cell division cycle) and where 

(which tissue) it happens (Taylor et al., 2014a)(Figure 8). 

 

Figure 8: Cell lineage from zygote stage to the foetus. Reproduced from Taylor et al., 2014a (with permission). 

 

All trisomic anomalies are potentially viable in mosaic and some mosaic 

abnormalities can be harmless. For instance, it is known that some types of 

mosaicism are physiological in the human blastocyst such as trophectoderm cells 

polyploidy (Bielanska et al., 2002). On the other hand, while it would not affect the 

embryo itself, confined placental mosaicism may produce intrauterine growth 

retardation (IUGR) due to placental insufficiency (Spinner and Conlin, 2014). The 

greatest potential risk would be when mosaicism is present in the foetus (true foetal 

mosaicism). In this scenario, the consequences on the foetus can be diverse from 

non-affected to severely compromised embryo and/or born child. Actually, some 

well-known conditions in human are often presented in mosaic, such as Turner 

syndrome (Zhong and Layman, 2012). Reports of different births affected by 

chromosome mosaicism with a wide spectrum of symptoms have also been 
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published (Spinner and Conlin, 2014). For all these reasons, all pre, peri and post-

natal counselling in cases of a mosaic finding are really challenging. 

 

Preimplantation Genetic Testing for Aneuploidy 

Being embryo aneuploidy the most important factor leading to implantation failure 

or early pregnancy loss both in natural and IVF conceptions (Hassold and Hunt, 

2001), Preimplantation Genetic Testing for Aneuploidy (PGT-A) arose in the early 90s 

as a revolutionary and promising technique (Munné et al., 1993). 

The rationale behind the technique was that, by selecting euploid embryos for 

transfer and conversely discarding those aneuploid, the implantation rate per 

transfer would considerably increase (Gianaroli et al., 1997) while pregnancy loss 

and gestations with chromosomal syndromes would be minimized. Therefore, PGT-

A promised to reduce the time to a healthy live birth diminishing the number of 

failures during the process (Figure 9).  

PGT-A has traditionally been proposed to patients that, according to their 

characteristics, were candidates to produce a remarkable proportion of aneuploid 

embryos. The classic indications have been: advanced maternal age (>37 years), 

repeated implantation failure (≥3 good quality embryos transferred failing to 

implant), recurrent miscarriages (≥3 pregnancy losses within the first trimester), 

severe male factor with consequences on the cytogenetic constitution of sperm, and 

previous pregnancies affected of chromosome abnormality. 
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Figure 9: The rationale behind PGT-A. Reproduced from Capalbo et al., 2015 (with permission). 

Despite the promising premise of PGT-A, its history has been full of controversy and 

a constant path of evolution searching to improve the technique and prove its value. 

PGT-A 1.0 

Since the early times of PGT-A the most used approach was blastomere analysis by 

FISH (Figure 10). Although this was the main strategy used for a long time, it 

presented many limitations.  

 

Figure 10: On the left, image of a blastomere biopsy on day 3 of embryo development. On the right, nucleus with 

a FISH hybridization for PGT-A. 
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On one hand, the biopsy of a blastomere from a day 3 cleaving embryo has been 

proven to be detrimental for embryo implantation (Scott et al., 2013) regardless of 

previous data suggesting that embryo development would only be compromised if 

two blastomeres were extracted (De Vos et al., 2009). Moreover, the analysis of a 

single blastomere was itself a limitation. 

On the other hand, the main limitation of FISH methodology was the impossibility to 

analyse all the chromosomes as a consequence of a limited number of fluorescent 

probes and having only a single cell to analyse on which multiple hybridization 

rounds were not possible. Therefore, only a selected group of chromosomes were 

typically analysed (13, 15, 16, 17, 18, 21, 22, X, Y). However, aneuploidies have been 

reported to be notably present among all chromosomes (Capalbo et al., 2014; 

Nakhuda et al., 2018). 

All the above-mentioned limitations together with the publication of PGT-A non-

superiority trials (Staessen et al., 2004, 2008) and even some randomized clinical 

trials evidencing a detrimental effect (Mastenbroek et al., 2007, 2011; Hardarson et 

al., 2008) opened a reflection period among scientific community with regards of 

PGT-A. 

PGT-A 2.0 

It was evident that several changes were needed in order to improve the effectivity 

of PGT-A making it a useful tool. There were several objectives that needed to be 

accomplished in order to do so. The use of Comprehensive Chromosome Screening 

(CCS) techniques together with the transition to the biopsy at the blastocyst stage 

allowed to overcome the limitations of PGT-A 1.0 and achieve better results 

(Dahdouh et al., 2015)  
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Comprehensive Chromosome Screening Techniques 

Aiming to overcome the limitations of FISH analysis, techniques of Comprehensive 

Chromosome Screening (CCS) were optimized and adapted to be used for PGT-A 

enabling a fast, reliable and cost-effective diagnosis from a single or few cells. Such 

techniques are able to detect aneuploidy in the whole chromosome set and each of 

them has its particularities (Wells et al., 2008; Treff and Scott, 2012; Handyside, 

2013). Most known and implemented CCS techniques are quantitative Polymerase 

Chain Reaction (qPCR), array of Single Nucleotide Polymorphisms (aSNP), and array 

of comparative genome hybridization (aCGH). The latter was the most used 

technique due to its feasibility and applicability in the clinical IVF context and its 

diagnostic reliability and reproducibility. 

Nevertheless, in the recent years, the decrease in costs of genome sequencing has 

made this technique a real candidate for PGT-A analysis. Next-generation 

sequencing (NGS) has become the most predominant approach for PGT-A ousting 

aCGH (Fiorentino et al., 2014; Yang et al., 2015; Lai et al., 2017). Among its 

advantages are its remarkable cost-efficiency, allowing the simultaneous analysis of 

a high number of samples, as well as an increased sensitivity and resolution for 

aneuploidy detection. 

Trophectoderm biopsy 

As early as in 1990, the use of a trophectoderm biopsy for PGT analysis was proposed 

in order to overcome the limitations of single-cell biopsy (Dokras et al., 1990). 

However, many years of improvements in IVF protocols were needed for 

trophectoderm biopsy to finally be implemented in clinical practice (de Boer et al., 

2004). Optimisation of embryo culture to the blastocyst stage was key and was 

achieved by improvements in culture media, low oxygen tension (Bontekoe et al., 
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2012; Gardner, 2016) and undisturbed culture conditions thanks to time-lapse 

technology (Yang et al., 2014). Moreover, the irruption of the vitrification technique 

ensured excellent results of blastocyst cryopreservation (Cobo et al., 2012; Taylor et 

al., 2014b; Rienzi et al., 2017). Finally, the development of high precision non-

contact infrared laser technology for biopsy and its application was key for a 

harmless performance of trophectoderm biopsy (Veiga et al., 1997; Boada et al., 

1998; Hartshorn et al., 2005; Taylor et al., 2010). 

Trophectoderm biopsy offers a more reliable and robust diagnosis with less failures 

to obtain results (Forman et al., 2012; Coll et al., 2018) in comparison to single-cell 

biopsy thanks to the biopsy of multiple cells. Moreover, the chromosomal 

constitution of trophectoderm cells has been proven to be representative of the 

inner cell mass (ICM) (Fragouli et al., 2008). Additionally, biopsy at the blastocyst 

stage does not seem to affect the reproductive potential of the biopsied blastocyst 

(Scott et al., 2013). This may most likely be due to the biopsy being performed after 

genomic activation and the lower proportion of cells biopsied (5-10/150-300) in 

comparison to blastomere biopsy at cleavage stage (around 1/8). An additional 

advantage of trophectoderm biopsy is the fact that a selection by culture will be 

exerted before biopsy implying that only developing blastocysts being biopsied, thus 

reducing costs (Coll et al., 2018). 

However, blastocyst biopsy also presents some limitations. On one hand, in most 

settings, it will require of a deferred embryo transfer in order to have time to achieve 

diagnosis, although it may also be compatible with fresh transfer in some cases 

(Coates et al., 2017). Despite the fact that no differences have been reported 

between one and another strategy, this could be an inconvenient for patients having 

to wait a longer time. On the other hand, while this would be rare at day 3 of embryo 
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development, it may happen that no blastocysts are available for biopsy (Franasiak 

et al., 2014) and patients should be aware of this. Moreover, asynchrony in 

blastocyst formation may represent a logistics problem for the laboratory.  

From the logistics point of view, there are different trophectoderm biopsy 

approaches that may be followed, each of them with its own advantages and 

limitations (Kokkali et al., 2005; McArthur et al., 2005; Capalbo et al., 2014; ESHRE 

PGT Consortium and SIG-Embryology Biopsy Working Group et al., 2020). However, 

to date, none has been clearly proven superior (Figure  11). 

 

Figure 11: Methods for blastocyst biopsy. ZP: Zona Pellucida. TE: Trophectoderm. Reproduced from ESHRE PGT 

Consortium and SIG-Embryology Biopsy Working Group et al., 2020 (with permission). 

 

With regards to the trophectoderm biopsy itself, it should be the least invasive to 

ensure good results. Trophectoderm biopsy can be performed by combining the 

aspiration of the desired number of cells together with the appliance of laser pulses 

aimed at intercellular spaces. Then, by pulling the aspirated fragment it should 

release from the remaining blastocyst.  In another approach for biopsy, pulling can 



INTRODUCTION    31 

 

be substituted for flicking the aspirated fragment against the holding micropipette 

in order to release it (Figure 12).  

 

Figure 12: A: Image of a trophectoderm biopsy being obtained by pulling. B: Image of a trophectoderm biopsy 

being obtained by flicking. Reproduced from Coll et al., 2022 (with permission). 

 

After biopsy, the retrieved trophectoderm sample must be stored in a buffered 

solution before processing. The biopsy is usually isolated in a PCR tube after 

washings in microdroplets washing buffered solution. This procedure is key to ensure 

a clean sample for processing without exogenous DNA contamination. 

For optimal laboratory logistics, the preferred strategy is to freeze all blastocysts 

after biopsy in order to have time for analysis, although, as previously stated, a fresh 

strategy can also be feasible in some occasions (Coates et al., 2017).  
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Chromosomal mosaicism in the PGT-A context 

Mosaicism: the eternal nemesis of PGT-A 

From the origin of PGT-A, mosaicism has been a matter of concern, in many times  

suggested to compromise the usefulness of the technique itself. All PGT-A 

approaches have suffered either from the inability to detect mosaicism or from 

totally the opposite. 

The analysis of polar body biopsies was initially proposed as a valuable PGT-A 

strategy. However, it was reported not to be an efficient option. Among its 

limitations, one was the fact that it could not detect post-zygotic errors (Verpoest et 

al., 2018).  

During the era of PGT-A 1.0 and cleavage-stage biopsy, only one blastomere was 

generally biopsied. Obviously, this approach was, conceptually, incompatible with 

mosaicism detection. Moreover, considering that mosaicism prevalence in day 3 

embryos has been reported to be notably high, there was always a concern on the 

representativity of the biopsied cell and the possibility to wrongly categorize a 

mosaic embryo as either fully euploid or aneuploid (Mastenbroek et al., 2011)(Figure 

13). 
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Figure 13: Chromosomal constitution of the blastomeres from 14 cleavage-stage embryos. Results evidence that 

mosaicism can compromise PGT-A when performing blastomere biopsy. Reproduced from Mertzanidou et al., 

2013 (with permission). 
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Later, with the change of paradigm of PGT-A 2.0, these issues seemed to be solved. 

Biopsies were performed at the blastocyst stage, when mosaicism prevalence was 

lower. Moreover, the combination of a multiple cell biopsy together with the 

development of more sensitive techniques for analysis, such as NGS, enabled 

mosaicism detection (Sermon et al., 2016). However, the ability to detect mosaicism 

has been proven to be a double-edged sword, as the clinical management of euploid-

aneuploid mosaic embryos is challenging. In addition, while early studies of 

trophectoderm biopsy representativity of the remaining embryo showed a very high 

accuracy (Evsikov and Verlinsky, 1998; Fragouli et al., 2008), later concerns have 

arisen with regards of false positive and false negative diagnoses (Gleicher et al., 

2017; Popovic et al., 2018). 

Detection of mosaicism in trophectoderm biopsies 

The most used technique for PGT-A in general, and mosaicism detection in 

particular, is, to date, NGS. While aCHG allowed to reliably detect mosaicism from 

around 50% (Mamas et al., 2012), NGS has been reported to accurately detect 

mosaic abnormalities affecting from 20 to 80% of the biopsied cells (Maxwell et al., 

2016; Fragouli et al., 2017; Munné et al., 2017; Popovic et al., 2018; Spinella et al., 

2018). 

Typically, mosaicism is detected as an intermediate copy number variation between 

monosomy and disomy or disomy and trisomy (Figure 14). 
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Figure 14: Example of mosaicism being detected as an intermediate copy number by NGS. From top to bottom: 

euploid male trophectoderm biopsy; mosaic trisomy  7; full trisomy 7.  

 

One of the main problems of mosaicism is that, due to its nature, it can be either 

elusive or seem more severe than it actually is. Abnormal cells may not be 

homogeneously distributed in the blastocyst. Therefore, the result obtained from 
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the biopsy of 5-10 trophectoderm cells may not be representative of the remaining 

embryo. Moreover, the inner cell mass might be different from the trophectoderm 

in terms of mosaicism, potentially leading to false positives or negatives (Figure 15). 

 

Figure 15: Example on how similar sets of biopsies might be obtained from completely different mosaic 

blastocysts.  

 

In this sense, several authors evidenced that performing multiple trophectoderm 

(and ICM) biopsies from a single blastocyst, different results can be obtained 

(reviewed by Popovic et al., 2020). Therefore, worries arose that false negatives and 

false positives could compromise the reliability of PGT-A, setting again the ground 

for the debate of the utility of this technique (Rosenwaks et al., 2018). Specially 

concerning was the possibility that embryos with reproductive potential could be 

discarded considered as fully aneuploid. Despite important technical limitations 

compromising the study results, a publication of a paper ensuring that healthy births 

occurred after the transfer of embryos with a diagnostic of full aneuploidy had quite 

an impact (Gleicher et al., 2016). 
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Artefactual or technical mosaicism 

Despite the fact that an intermediate copy number result should be the consequence 

of a combination of euploid and aneuploid cells within a single biopsy, many authors 

have discussed that it could also be a consequence of a technical artefact (Capalbo 

et al., 2017b; Goodrich et al., 2017; Popovic et al., 2020). In other words, a false 

mosaic result is obtained from a euploid biopsy as a consequence of the introduction 

of a technical artefact. This kind of “mosaic” finding has been typically called 

artefactual or technical mosaicism. 

It has to be taken into account that, until the obtention of a result, the sample to be 

analysed undergoes several procedures that altogether or individually may lead to 

artefactual mosaicism. 

First, the methodology through which the trophectoderm biopsy is obtained and the 

characteristics of such sample may play a key role in the generation of artefacts. It 

seems reasonable to think that if the sample is damaged, this may affect the results, 

as some authors have discussed (Munné and Wells, 2017; ESHRE PGT Consortium 

and SIG-Embryology Biopsy Working Group et al., 2020; ESHRE PGT-SR/PGT-A 

Working Group et al., 2020). Actually, the Preimplantation Genetic Diagnosis 

International Society (PGDIS) include in their mosaicism guidelines that the biopsy of 

too few cells as well as a suboptimal biopsy technique may lead to poorer quality 

results compatible with mosaicism (Leigh et al., 2022). In this sense, it has been 

suggested that the use of laser pulses during the biopsy as well as the potential 

mechanical damage on the sample using different biopsy methodologies (flicking or 

pulling) may be related to artefactual mosaicism.  

Then, the biopsy has to be isolated into a PCR tube containing a buffered solution: a 

procedure generally known as “tubing”. During this procedure, exogenous DNA 
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contamination has to be avoided at all costs as, among other serious consequences, 

it could lead to artefactual results. After that, the sample needs to undergo whole 

genome amplification (WGA), which can generate artefacts too. Additionally, using 

PGT-A with NGS, inefficiencies during all the library preparation steps can occur. Last, 

but not least, the final result showing a profile in which the copy number for each 

chromosome is observed is, at the end, the result given by an algorithm interpreting 

the data. Therefore, artefactual mosaicism of bioinformatic origin is also plausible 

(Figure 16).  

 

Figure 16: Graphical explanation of artefactual mosaicism and its potential origins. 
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It should also be taken into consideration that, on some occasions, artefactual 

mosaicism could be not originated by the technique itself but have a biological origin. 

A non-specific chromosome gain or loss might be detected due to cells being in S-

phase (ESHRE PGT-SR/PGT-A Working Group et al., 2020). 

The challenging management of a mosaic diagnosis 

As the technique surrounding PGT-A evolved, mosaicism began to be detected in 

trophectoderm biopsies. At the beginning, due to lack of experience and data, 

euploid-aneuploid mosaic embryos were usually considered non transferrable. 

However, in 2015, the report of live-births after the transfer of mosaic embryos, set 

a new scenario (Greco et al., 2015). The paper showed the transfer outcomes of 18 

mosaic embryos diagnosed by aCGH, reporting a healthy live birth rate of 33.3% 

(6/18) (Table 2). 

Since that moment, several groups began to consider mosaic embryos for transfer 

as evidenced by the results from a survey including 102 IVF centres from 32 countries 

around the world (Weissman et al., 2017)(Figure 17). The survey also evidenced 

discrepancies in the decision to report mosaicism and the cut-off values to call 

mosaicism. There was consensus in the need of more research, being the study of 

mosaicism distribution within the embryo and clinical data the topics of most 

interest. 
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Table 2: Details on the first mosaic embryos transferred and their outcomes. Reproduced from Greco et al., 2015 

(with permission). Copyright Massachusetts Medical Society.  

 

 

 
Figure 17: Opinions on the fate of mosaic embryos. Dark bars: centres performing PGT-A. Grey bars: centres not 

performing PGT-A.  Reproduced from Weissman et al., 2017 (with permission). 
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Consequently, as mosaic embryos began to be transferred, new data arose. A 

retrospective study reported, after sample reanalysis with NGS, that, among 

pregnancies with aCGH-analysed euploid embryos, those that miscarried were 

mosaic in a higher proportion than those ending up in a live birth (Maxwell et al., 

2016). Additional data has been published evidencing that mosaic embryos performe 

worse than euploid embryos with lower pregnancy rate and higher miscarriage rate. 

Moreover, some authors have tried to determine which mosaic embryos present a 

better prognosis according to the type of abnormality (monosomy/trisomy, whole-

chromosome/segmental, simple/complex, high percentage/low percentage) with 

different results among them (Fragouli et al., 2017; Munné et al., 2017; Spinella et 

al., 2018; Munné et al., 2019b; Victor et al., 2019b). As new data have been made 

available, scientific societies have developed and updated guidelines for mosaic 

diagnosis and mosaic embryo transfer (MET) (COGEN, 2018; Cram et al., 2019; Leigh 

et al., 2022). 

Despite the fact that ongoing pregnancies after MET seem to end up in healthy 

births, there has always been a concern with regards to a potential adverse effect to 

the foetus or the newborn. It is true that data seem to point to the fact that either 

the aneuploid line prevails and the embryo fails to implant or miscarries, or the 

euploid line prevails and the embryo results in the birth of a healthy baby. However, 

there is a potential  risk that the presence of an abnormal cell line could result in 

abnormalities in the foetus, the baby, or even in adulthood. 

Mosaic abnormalities of specific chromosomes may be more prone to affect an 

ongoing pregnancy. Some authors proposed a risk categorization of chromosomes 

according to their implication in anomalies found in products of conception (Grati et 

al., 2018) (Figure 18). Monosomies and trisomies should be equally considered for 
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transfer as a monosomy can be the complement of a trisomy originated by mitotic 

non-disjunction. 

 

Figure 18: Chromosome risk groups for mosaicism according to Grati’s categorization. Reproduced from Grati et 

al., 2018.  

 

The figure of the genetic counsellor has become of capital importance in an ART 

setting for many reasons. Counselling before MET has become one of them. They are 

essential to provide patients with all the updated information available with regards 

to the prognosis of a MET in order to allow an informed decision on transferring or 

not such kind of embryos (Besser and Mounts, 2017). The lack of data and the 
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uncertainty with regards to MET outcomes has made the decision very difficult for 

patients.  

For all these reasons, the recommendation of performing prenatal diagnosis after 

any established pregnancy following PGT especially applies after a MET. Most 

guidelines and recommendations agree that prenatal testing options should be 

offered to patients disclosing the advantages and limitations of each approach (NIPT, 

CVS, Amniocentesis). With regards to mosaicism, the most representative analysis 

would be amniocentesis. (Besser and Mounts, 2017; COGEN, 2018; Leigh et al., 

2022). 
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HYPOTHESIS 

There are intrinsic and extrinsic factors related to chromosomal mosaicism in human 

blastocysts from Preimplantation Genetic Testing cycles.  

 

 

OBJECTIVES 

1. To investigate the chromosomal constitution of mosaic blastocysts. 

 

2. To identify the factors that may be associated with chromosomal mosaicism in 

preimplantation human blastocysts. 

 

3. To better understand the mechanisms of mosaicism. 

 

4. To assess the impact of chromosomal mosaicism diagnosis on PGT-A patients. 

 

a. Prevalence 

b. Decision making 

c. Pregnancy follow-up 

 

  



48    HYPOTHESIS AND OBJECTIVES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



WORK PLAN    49 

 

 

 

 

 

 

 

 

 

 

 

 

 

WORK PLAN



50    WORK PLAN 

 

  



WORK PLAN    51 

 

The objectives of the present thesis have been accomplished through 3 different 

studies that have been published in international journals in reproductive medicine 

and are presented in the following section. 

The first study was developed to improve the knowledge of mosaicism at the 

blastocyst stage in the IVF and PGT-A context. We retrospectively analysed the data 

of our PGT-A programme in order to assess the prevalence of mosaicism, the type of 

mosaic abnormalities found, the chromosomes affected by mosaic abnormalities, 

and, most importantly, to identify whether specific patients’ ad IVF cycles’ 

characteristics were associated with mosaicism.  

As no published data were available with regards to the role of the trophectoderm 

biopsy on the generation of artefactual mosaic results, we put in place a second 

study with prospective data collection to assess whether different biopsy techniques 

were related to different mosaicism prevalences. 

Finally, from the beginning of the thesis project, it was evident that patients were 

importantly affected by the diagnosis of mosaicism in their embryos and had to face 

important decisions with regards to the possibility of MET. That is why, throughout 

the whole development of the project, we collected data for a third study to assess 

mosaicism from patients’ perspective, bring light to the complicated MET decision-

making process, and analyse the outcomes of METs in our setting. 
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The present doctoral thesis is being presented as a compendium of publications. 

Therefore, extensive discussion of results has already been done in the discussion 

section of each article. For this reason, this section has been addressed as a 

summarized discussion incorporating the most recent findings after the articles’ 

publication. The focus will be put on answering the questions that were raised at the 

beginning of the project and during its progress. Thanks to the knowledge acquired 

both from our research and other researchers’ studies, we are now in position to try 

to respond to many questions for which we had no answers at the beginning. 
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What is the chromosomal constitution of mosaic blastocysts? 

We observed that most of the mosaic abnormalities found in human blastocysts 

affect a whole chromosome, while around one third of them correspond to 

segmental abnormalities (Coll et al., 2021). These results are in concordance with 

previous publications (Munné and Wells, 2017; Nakhuda et al., 2018) and have been 

corroborated in later studies (Palmerola et al., 2022). 

With regards to the distribution of mosaic abnormalities among chromosomes we 

found that it is heterogeneous (Coll et al., 2021), which has also been confirmed in 

other studies  (Nakhuda et al., 2018; Capalbo et al., 2021; Wu et al., 2021). Therefore, 

some chromosomes seem to be more sensitive to be involved in mitotic errors than 

others. For the sub-group of whole-chromosome mosaicism, we observed that, 

unlike in meiotic aneuploidy, the uneven distribution of anomalies showed no 

specific pattern that allowed to understand why some chromosomes were more 

affected than others (Coll et al., 2021). Still, anomalies in chromosomes 18, 21 and 

22 were at the highest frequencies also in mosaicism, as similarly observed by other 

authors (Nakhuda et al., 2018; Capalbo et al., 2021; Wu et al., 2021). Regarding 

segmental mosaicism, we concluded that larger chromosomes are more prone to be 

affected by segmental mosaicism (Coll et al., 2021) in agreement with previous 

findings (Munné and Wells, 2017). Remarkably, we observed chromosomes 1, 5 and 

9 to be especially affected. 

Our results in whole-chromosome mosaicism evidenced that gain and loss 

frequencies are similar. However, there are conflicting published data in this regard. 

While some authors have published results in accordance with ours (Munné et al., 

2002; Chow et al., 2014) or even reported trisomies to be more frequent (Nakhuda 

et al., 2018), others have observed monosomies to be more common (Coonen et al., 
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2004; Delhanty, 2005; Ioannou et al., 2012). We observed that mosaic segmental 

monosomies, on the contrary, were remarkably more frequent than trisomies (69.6 

vs 28.4%) (Coll et al., 2021) in agreement with other reports (Babariya et al., 2017; 

Nakhuda et al., 2018). 

The fact that the characteristics of the chromosomal constitution between whole-

chromosome and segmental mosaics are widely different, strongly suggests that 

they arise from different causes and should be treated separately. 
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Which are the mechanisms behind mosaicism? 

With regards to segmental mosaic abnormalities, our results are in agreement with 

the hypothesis that the most frequent mechanism through which it occurs would be 

chromosome breakage and loss of the acentric fragment, since most segmental 

anomalies are found as monosomies (Coll et al., 2021). In fact, other authors have 

reached the same conclusion (Babariya et al., 2017; Nakhuda et al., 2018; Palmerola 

et al., 2022).  Actually, hot-spots for chromosome breakage have been reported to 

exist in low gen-density regions rich in heterochromatin blocks (Durkin and Glover, 

2007; Saksouk et al., 2015; Palmerola et al., 2022). Accordingly, the three 

chromosomes we found to be most affected by segmental mosaicism (1, 5 and 9) 

are especially rich in such regions (Coll et al., 2021). 

Contrarily, data are not so conclusive regarding whole-chromosome mosaicism. Our 

results were compatible with either the hypothesis that non-disjunction is the main 

mechanism behind it or that anaphase lagging and endoreduplication occur at 

similar frequencies (Coll et al., 2021). This is conflicting with the most extended idea 

that anaphase lagging is the main mechanism involved in mosaicism (Coonen et al., 

2004; Delhanty, 2005; Taylor et al., 2010; Ioannou et al., 2012). It should be noted 

that FISH was the technique used in these early studies and, considering its 

limitations, (including limited probes, hybridization failure, or unspecific 

hybridization), these results ought to be considered with caution. In this sense, later 

analysis performed by CCS techniques showed results in agreement with ours (Chow 

et al., 2014; Nakhuda et al., 2018). However, a recent study inducing replication 

errors in a murine model at cleavage stage showed that the prevalence of 

chromosome loss doubled that of gain (Palmerola et al., 2022). 
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Trying to discern the mechanisms underlying mosaicism through trisomy and 

monosomy rates is extremely complex for several reasons. First, mosaic embryos 

may end up with an arrested development depending on the mechanism that has 

originated the mosaicism (McCoy, 2017; Vázquez-Diez and FitzHarris, 2018; 

Palmerola et al., 2022). Therefore, certain mechanisms may be under or 

overrepresented at advanced developmental stages such as the blastocyst. Second, 

regardless of the mechanism, trisomic cells may be more proliferative than  

monosomic cells leading to a bias in sampling when biopsy is performed at later 

stages (Munné and Wells, 2017). Finally, technical limitations and the use of different 

diagnostic platforms may also lead to conflicting results.  
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Does “a prevalence of mosaicism in preimplantation embryos” 
exist? 

As many factors may affect the occurrence of mosaicism and mosaicism reporting 

varies among centres, it is extremely challenging to reach a consensus on the 

prevalence of mosaicism in human blastocysts and, actually, “a prevalence of 

mosaicism” may not even exist. It might be more accurate to talk about the 

prevalence of a mosaic diagnosis according to a specific environment. 

Our results with regards to mosaicism prevalence have evidenced it to be 14%, with 

around 7% blastocysts showing a euploid-aneuploid mosaic result (Coll et al., 2021, 

2022a). Although the reported prevalence of mosaicism has been different among 

clinics, most settings with NGS-based analysis of a single trophectoderm biopsy have 

a prevalence of euploid-aneuploid mosaic ranging from around 5 to 15%, which is in 

concordance with our results (Ruttanajit et al., 2016; Munné et al., 2019a; Popovic 

et al., 2020; Rodrigo et al., 2020; Leigh et al., 2022). 

Our data for euploid-aneuploid mosaicism prevalence is among the lowest reported. 

Among other factors, the fact that the range used to call mosaicism was established 

at 30-70% may have been important to avoid overdiagnosis. Cell-mixing experiments 

demonstrate that NGS-based PGT-A can identify mosaicism from 20-80% (Maxwell 

et al., 2016; Fragouli et al., 2017; Munné et al., 2017; Popovic et al., 2018; Spinella 

et al., 2018). However, most authors currently agree that those experiments may 

not properly represent a trophectoderm sample (Munné and Wells, 2017; Treff and 

Franasiak, 2017; Fragouli et al., 2019), and narrowing the range may be very helpful 

in order to avoid false-positive mosaic results (Treff and Marin, 2021; Wu et al., 2021; 

Capalbo et al., 2022). 
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Moreover, being strict with regards to quality parameters after sequencing as well 

as to ensure the expertise of the person performing the diagnosis will be crucial to 

avoid mosaicism overdiagnosis.
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Are patients’, IVF cycle, or biopsy procedure characteristics 
associated with mosaicism? 

Patients 

We only identified paternal age as a patient-related factor to be independently 

associated with mosaicism prevalence (Coll et al., 2021). We hypothesize that this 

may be an indirect finding pointing towards DNA fragmentation, as it has been 

associated both with paternal age (Belloc et al., 2014; Yatsenko and Turek, 2018) and 

segmental mosaicism (Babariya et al., 2017). Actually, some authors have observed 

an increase in segmental aneuploidy in embryos from males above 50 years (Dviri et 

al., 2020), which further supports our hypothesis (Babariya et al., 2017; Victor et al., 

2019a). Our results did not show any association between an altered spermiogram 

and an increase in mosaicism prevalence (Coll et al., 2021), in contrast to other 

reports (Tarozzi et al., 2019; Huang et al., 2022). In summary, the male factor seems 

to play an important role in mosaicism. 

On the contrary, none of the female characteristics analysed in our study were 

associated with mosaicism (Coll et al., 2021), which is in agreement with previous 

data from other authors (Munné and Wells, 2017; Popovic et al., 2018, 2020) and 

has been corroborated by later research (Xiong et al., 2021). Therefore, the female 

factor does not seem to affect mosaicism, in contrast with meiotic aneuploidy.  

We found that the indication for PGT-A is not associated with mosaicism (Coll et al., 

2021). This has also been confirmed by other authors (Xiong et al., 2021). 

Despite the fact that we only identified male age to be related to mosaicism, we 

observed a high interpatient variability regarding mosaicism prevalence (Coll et al., 

2021). This suggests that other patient related factors that have not been analysed 

might be affecting mosaicism prevalence and deserve further investigations.  
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IVF cycle 

Our results suggested that ovarian stimulation variables are not related to 

mosaicism, neither the total dose of gonadotropins nor the ovarian response (Coll et 

al., 2021). Later research has corroborated our findings and further supported this 

idea by analysing more variables (Cascales et al., 2021; Xiong et al., 2021). 

Some authors have suggested that oocytes inseminated by conventional IVF give rise 

to more mosaic embryos compared to intracytoplasmic sperm injection (ICSI) 

derived embryos (Palmerola et al., 2019; Huang et al., 2022). The biological 

explanation is still unclear and artefactual results due to DNA contamination (sperm 

and granulosa cells) cannot be completely ruled out. We could not have data in this 

regard as we followed the good-practice guidelines recommending ICSI for PGT cases 

(ESHRE PGT Consortium and SIG-Embryology Biopsy Working Group et al., 2020) 

Previously published data have evidenced that suboptimal culture conditions can 

affect mosaicism prevalence (Katz-Jaffe et al., 2018; Swain, 2019). As our culture 

conditions were standardized for optimal culture to the blastocyst stage, we could 

not test the effect that altered culture conditions may have on mosaicism 

prevalence. We could test, nevertheless, the effect that two different continuous 

culture media (G-TL®, Vitrolife and Global total®, CooperSurgical) may have on 

mosaicism, observing no differences in its prevalence (Coll et al., 2021). Results from 

other authors are controversial, highlighting the diversity of manufacturers and 

culture media that can affect embryo development (Morbeck et al., 2017; Swain, 

2021).  

In summary, as IVF cycle characteristics may have an effect on mosaicism prevalence, 

it is recommended that centres investigate both their laboratory and PGT-A 

methodologies in cases of high prevalence of mosaicism (Leigh et al., 2022). 
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In our results, mosaicism was not associated with blastocyst quality (Coll et al., 

2021). These findings were in agreement with other authors’ (Popovic et al., 2018; 

Rodrigo et al., 2020). However, it cannot be ruled out that embryos with mosaicism 

may present a compromised embryo development during early stages (McCoy, 

2017; Vázquez-Diez and FitzHarris, 2018; Lagalla et al., 2017). 

Biopsy and tubing 

Our results confirmed that the prevalence of mosaicism is the same among distinct 

senior biopsy operators (Coll et al., 2021, 2022a). This finding has been corroborated 

by other authors (Mizobe et al., 2022). However, results may not be the same in the 

case of inexperienced practitioners (Yap et al., 2021). 

With respect to the use of laser pulses to obtain the biopsy, we observed no 

differences in mosaicism prevalence when applying ≤3 pulses vs >3 (Coll et al., 

2022a), which is in agreement with previous reports showing no differences even in 

cases of extreme exposure to laser (Kelk et al., 2017; Johnson et al., 2019). However, 

other authors report contrarily (Whitney et al., 2018). Some authors have suggested 

that the use of laser per se, regardless of the number of pulses, would induce more 

mosaic artefactual results compared to mechanical retrieval of the biopsy (Yelke et 

al., 2021). This finding should be confirmed and considered with caution as not laser-

assisted biopsy might be more harmful both for the embryo and the sample.  

Our results confirmed that neither pulling nor flicking led to an increase in mosaicism 

(Coll et al., 2022a). Contemporary published research confirmed our findings 

(Mizobe et al., 2022). Therefore, despite flicking leads to the obtention of more 

damaged samples (Benavent et al., 2019), this does not seem to have an effect on 

results. Importantly enough, we observed that the reproductive potential of 

biopsied embryos is not affected by the biopsy methodology (Coll et al., 2022a). 
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Some authors have reported that sequential and simultaneous biopsy strategies may 

lead to different prevalence of mosaicism, possibly as a result of differences in 

sample quality leading to differences in artefactual results (ESHRE PGT Consortium 

and SIG-Embryology Biopsy Working Group et al., 2020; Xiong et al., 2021). 

An important fact to ensure low artefactual mosaicism seems to be the number of 

collected cells. Both, a low number of biopsied cells and too many, can increase the 

risk to observe artefacts compatible with mosaicism (Treff and Marin, 2021; Leigh et 

al., 2022; Mizobe et al., 2022). Therefore, the recommended number of cells to be 

biopsied both for minimizing artefactual mosaicism and not compromising embryo 

development is 5 to 10 (ESHRE PGT Consortium and SIG-Embryology Biopsy Working 

Group et al., 2020; Leigh et al., 2022). 

With regards to tubing and sample storing, our data evidenced that neither the time 

from biopsy to tubing nor the time the sample is stored at -80ºC have an effect on 

the prevalence of mosaicism (Coll et al., 2022a). Therefore, there is no reason to 

delay tubing expecting debris and lysed cells to be more easily washed to reduce 

artefacts.  
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What is the impact of mosaicism diagnosis in patients? 

Recent evidence has clearly demonstrated that the accuracy of full aneuploidy calling 

is almost 100% (Victor et al., 2019a; Tiegs et al., 2021; Capalbo et al., 2022; Kim et 

al., 2022). Therefore, discarding aneuploid embryos for transfer will not have an 

effect on cycles’ cumulative live births. However, the scenario is different with 

regards to mosaic embryos. As such embryos can potentially lead to healthy 

pregnancies, if patients refuse their transfer, cumulative live-birth rate per cycle will 

be compromised (Capalbo et al., 2021; Armstrong et al., 2022).  

Cycles affected by mosaicism 

In our setting, while at least one euploid-aneuploid mosaic embryo is detected in 

21% of cycles, the percentage of cycles in which patients only had mosaic embryos 

as an option for transfer was as low as 5% (Coll et al., 2022b). During the study 

period, this figure raised up to 8% when also considering cases in which all euploid 

embryos had been transferred. Therefore, despite all the concerns with respect to 

the diagnosis of mosaic embryos and its effect on PGT-A outcomes, it may actually 

impact into a limited number of patients who will have to make a decision on the 

transfer of a mosaic embryo. In this sense, ensuring a reduced rate of both iatrogenic 

and artefactual mosaicism is key for a good PGT-A program (Treff and Marin, 2021; 

Wu et al., 2021; Capalbo et al., 2022; Leigh et al., 2022). 

Patients’ decisions on MET 

We observed that around 75% of patients refuse MET (Coll et al., 2022b), which is in 

agreement with previous data (Besser et al., 2019; Coll et al., 2022b). This has most 

certainly been due to the uncertainty and lack of data with regards to the prognosis 

of such embryos. Actually, we have observed a change in patients’ decision making 
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in relation to the increase in data availability throughout 2021 (Capalbo et al., 2021; 

Treff and Marin, 2021; Viotti et al., 2021)(Figure 19).  

 

Figure 19: Percentage of patients opting for the transfer of a mosaic embryo along the years (Coll et al., 2022b; 

Dexeus Dona, unpublished data).  

 

We observed that patients’ decision is not strongly modified by their reproductive 

history (female age, number of previous cycles, history of miscarriages, the fact of 

having had euploid embryos) (Coll et al., 2022b), although a previous study reported 

otherwise in a different population. Authors found that patients with a poorer 

prognosis (advanced female age and high number of previous unsuccessful 

treatments) were more favorable to MET (Besser et al., 2019). Moreover, our results 

suggested that already having children made patients more reluctant to face the 

potential risks of a MET.  

We reported for the first time data on patients’ decision in relation to the 

characteristics of the mosaic finding as explained in genetic consultation. Patients 

were not influenced neither by the type of abnormality (whole-chromosome, 

segmental, complex) nor by the chromosome involved. Only the level of mosaicism 
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(<50% vs >=50%) may affect the decision to transfer (Coll et al., 2022b). These data 

may reflect that the information received may be overwhelming and too complex 

for patients to understand. 

Clinical outcomes after MET 

We observed outcomes after MET to be similar to those obtained after euploid 

embryo transfer (Coll et al., 2022b). Updated data to December 2022, including the 

transfer of 50 mosaic embryos, produced the results shown in Table 3 (Dexeus Dona, 

unpublished data). Our data agree with larger studies reporting results close or even 

equivalent to those obtained with euploid embryos, specifically with regards to low-

range mosaicism (≤50%), with no increase of affected pregnancy risk (Capalbo et al., 

2021; Treff and Marin, 2021; Viotti et al., 2021).  

Table 3: Clinical results of mosaic embryo transfers from January 2018 to December 2022. 

 Clinical 
pregnancies Miscarriages 

Ongoing 
pregnancies 

Outcomes per transfer 
22/49 

(44.8%) 
3/22  

(13.6%) 
19/49 

(38.7%) 

Outcomes per mosaic 
embryo transferred 

Total 
23/50 

(46.0%) 
4/23  

(17.4%) 
19/50 

(38.0%) 

≤50% (low-range) 
20/41  

(48.8%) 
2/20 

(10.0%) 
18/41 

(43.9%) 

>50% (high-range) 
3/9 

(33.0%) 
2/3 

(66.7%) 
1/9 

(11.1%) 
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Getting to know the clinical value of a mosaic diagnosis. A new 
era for PGT-A and mosaicism? 

The story of mosaicism detection at the blastocyst stage in PGT-A cycles is full of ups 

and downs and unexpected turns.  

All in all, at the beginning, this finding in trophectoderm biopsies was received with 

lots of caution, and many embryos were discarded deemed to be incompatible with 

a healthy live birth. Luckily, soon enough, healthy births with such kind of embryos 

were reported (Greco et al., 2015). This made evident that they could not simply be 

discarded. Research was conducted to better know how to deal with mosaic 

embryos, and it seems that, after years of research and transfer follow-ups, we have 

reached the conclusion that mosaicism consequences should be reconsidered. 

On one hand, studies have demonstrated that the true prevalence of mosaicism in 

preimplantation embryos may be much lower than reported, being in many 

occasions a  result of a biological or technical artefact (Capalbo et al., 2021; Treff and 

Marin, 2021; Wu et al., 2021; Kim et al., 2022). Moreover, while true mosaicism 

exists in preimplantation embryos (Capalbo et al., 2017b; Kahraman et al., 2020; Wu 

et al., 2021; Schlade-Bartusiak et al., 2022; Greco et al., 2023), evidence show that 

in many cases it resolves through embryo development (Bolton et al., 2016; Coorens 

et al., 2021; Yang et al., 2021; Griffin et al., 2023). 

On the other hand, clinical outcomes of more than 2700 METs have been published 

evidencing lower clinical pregnancy rate and higher miscarriage rate compared to 

euploid embryo transfers, but yet still yielding remarkable results, especially in the 

case of low-range mosaics (Viotti et al., 2021). Actually, a prospective non-selection 

clinical trial evidenced that results of low-range mosaics are equivalent to those 

obtained with euploid embryos (Capalbo et al., 2021). With regards to high range 
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mosaics (>50%) data are more limited and clinical outcomes are not so good (Viotti 

et al., 2021). Additionally, the risk of a mosaic ongoing pregnancy has not been 

observed to be superior to the one observed and estimated for the general 

population and, although true foetal mosaicism occurs and should be carefully 

considered, it still seems to be a very rare exception (Spinner and Conlin, 2014; Benn, 

2015; Malvestiti et al., 2015; Kahraman et al., 2020; Treff and Marin, 2021; Schlade-

Bartusiak et al., 2022; Greco et al., 2023). Moreover, a purely euploid TE biopsy result 

cannot totally prevent mosaicism in the pregnancy either (ESHRE Working Group on 

Chromosomal Mosaicism et al., 2022). 

Therefore, both the diagnostic and the clinical value of a mosaic result are poor. With 

this conclusion in mind, the new European Society of Human Reproduction and 

Embryology (ESHRE) guidelines on good practice recommendations on managing 

chromosomal mosaicism imply a change of paradigm (ESHRE Working Group on 

Chromosomal Mosaicism et al., 2022). Embryos diagnosed as low-range mosaics 

should be considered just as equals to euploid embryos, which makes diagnosing 

and reporting low-range mosaicism meaningless. On the contrary, no conclusions 

are reached with regards to high-range mosaics recommending that, in case of 

transfer, previous genetic counselling and extensive pregnancy follow up should be 

performed. 

In summary, at present, low-range mosaics are proposed to be considered equal to 

euploid embryos and high-range mosaics are still considered risky embryo transfers. 

With regards to the latter, some authors have evidenced that they are, in many 

cases, completely or almost completely abnormal, suggesting that they should be 

considered as aneuploid and not mosaic (Capalbo et al., 2021; Wu et al., 2021). 

However, clinical pregnancies with such embryos have been reported, which should 

also be taken into consideration (Viotti et al., 2021; Coll et al., 2022b). Further data 
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will be needed to elucidate whether the transfer of high-range mosaics is worth the 

risk. Luckily, they seem to be the least among PGT-A results, implying around 2% of 

the diagnoses (Capalbo et al., 2021). 

All in all it seems that, after all the struggle with the colorful mosaic of possible 

embryo diagnosis, we may now be in the way back to a black and white scenario.  
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1. The distribution of mosaic abnormalities among chromosomes is uneven. While 

no clear distribution pattern is observed for whole-chromosome mosaicism, 

segmental mosaicism is more prone to occur to larger chromosomes and 

chromosomes with fragile sites. 

 

2. The mechanisms behind whole-chromosome and segmental mosaicism are 

different and they should be treated differently. 

 

3. Within an experienced, optimised and standardised IVF and PGT setting, the 

prevalence of mosaicism is low. 

 

4. Advanced male age is associated with an increased mosaicism prevalence in 

human blastocysts. 

 

5. Detected mosaicism is equivalent among equally trained senior biopsy operators. 

 

6. The number of laser pulses applied to obtain a trophectoderm biopsy is not 

associated with detected mosaicism. 

 

7. Detected mosaicism is equivalent among embryos biopsied using pulling vs 

flicking. 

 

8. Patients’ reproductive history and information given in counselling pre-MET do 

not influence patients’ decisions. 

 

9. Although most patients have been refusing the transfer of embryos with a 

diagnosis of mosaicism, the availability of empirical data on MET outcomes has 

brought more patients to transfer their mosaic embryos 

 

10. Low-range mosaic embryos can yield similar outcomes compared to euploid 

embryos. 
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