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0Abstract
In recent years, the term "quantum materials" has become a powerful unifying concept in science
and engineering. These materials manifest quantum effects over large energy and length scales.
Quantum materials are at the forefront of the ongoing “second quantum revolution,” which
promises to bring about paradigm-shifting advances in energy efficiency and beyond. However,
with their enormous potential, quantum materials also pose new technical challenges for
the scientific community in materials fabrication, characterization, and development of new
computational methods. This work addresses some of the most significant problems related to
first-principles computational methods for quantum materials (Part II). It uses these methods
to gain new insights into low-dimensional quantum materials (Part III).

In particular, implementing the DFT + NEGF formalism based on spinors allow the modeling
of charge and spin transport in systems with non-collinear spin and spin-orbit coupling effects
(Chapter 6), which is essential for topological materials and spin-orbitronics devices. Further-
more, the development of the Bogolioubov-de-Gennes method and its implementation in the
SIESTA software is presented as a semi-empirical tool for modeling superconductors based on
first-principles electronic structure calculations (Chapter 7). In addition, postprocessing tools
for calculating topological invariants and spin textures complete the code development part of
this work (Chapter 8).

Aside from methods development, detailed studies of quantum materials are presented.
Interference effects in finite sections of one-dimensional moiré crystals are investigated using
a Landauer-Büttiker formalism within the tight-binding approximation (Chapter 9). Wave
function interference is visible at the mesoscale: in the strong coupling regime, as a periodic
modulation of quantum conductance and emergent localized states; in the localized-insulating
regime, as a suppression of interlayer transport and oscillations of the density of states. These
effects are linked to changes in the band structure of the ideal carbon nanotubes and are shown
to be described by a model of one-dimensional wave interference.

Interactions between topological states in metastable polymorphs of bismuth monolayers
(bismuthene) and silicon-based substrates are computed using first-principles methods (Chap-
ter 10). The bismuthene polymorphs bind to silicon carbide (SiC), silicon (Si), and silicon
dioxide (SiO2) substrates. The proximity interaction in these heterostructures significantly
affects the electronic structure, e.g., the topological band gap, even when bonding is weak. Van
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der Waals interactions and the breaking of the sublattice symmetry are identified as the main
factors driving changes in the electronic structure in non-covalently binding heterostructures.
The topological character of the bismuthene phases is retained in all monolayer/substrate
combinations, except for flat-hexagonal bismuthene on SiC, where covalent bonding drives a
topological phase transition. Moreover, this work demonstrates that substrate interaction can
strengthen the topological properties of bismuthene polymorphs and make them accessible for
experimental investigations and technological applications.

The newly developed methods are applied to various systems to demonstrate possible
applications and show the code’s validity. In particular, the spinor-based DFT+NEGF method
is used to determine the (anisotropic) magnetoresistance in one-dimensional iron chains and
a Fe/MgO/Fe tunneling junction (Chapter 11). The code is also employed to model quantum
transport in TMD nanodevices, characterized by strong spin-orbit coupling. Furthermore,
the importance of spin-orbit coupling and electron correlation (DFT+U) in carbon nanotubes
functionalized with antiferromagnetic molecules are analyzed. Finally, the BdG+DFT method
models a conventional superconductor (lead) and an unconventional superconductor (iron
selenide). The experimentally observed shape and size of the superconducting gap of both
materials are reproduced.
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0Unit Convention
Unless units are explicitly stated, this work adopts the Hartree atomic unit convention.

Defining units

Name Symbol Value Alternative Expression

Reduced Planck constant ℏ 1 ℎ/2𝜋
Elemenatary charge 𝑒 1 –
Bohr (radius) 𝑎0 1 4𝜋𝜖0ℏ

2/(𝑚𝑒𝑒
2)

Electron mass 𝑚𝑒 1 –
Hartree (energy) 𝐸ℎ 1 ℏ/𝑚𝑒/𝑎2

0

Derived units

Unit of Expression Value in SI units[NIST18]

Action ℏ 1.054 571 817 ... × 10−34 J s
Charge 𝑒 1.602 176 634 × 10−19 C
Charge density 𝑒/𝑎3

0 1.081 202 384 57 × 1012 C m−3

Current 𝑒𝐸ℎ/ℏ 6.623 618 237 510 × 10−3 A
Energy 𝐸ℎ 4.359 744 722 2071 × 10−18 J
Force 𝐸ℎ/𝑎2

0 8.238 723 4983 × 10−8 N
Length 𝑎0 5.291 772 109 03 × 10−11 m
Magnetic dipole moment ℏ𝑒/𝑚𝑒 1.854 802 015 66 × 10−2 J T−1

Mass 𝑚𝑒 9.109 383 7015 × 10−31 kg
Momentum ℏ/𝑎0 1.992 851 914 10 × 10−24 kg m s−1

Time ℏ/𝐸ℎ 2.418 884 326 5857 × 10−17 s
Velocity 𝑎0𝐸ℎ/ℏ 2.187 691 263 64 × 106 m s−1
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1 Introduction

Over the last decades, the energy consumption of the information and communication sector has
increased steadily and is projected to exceed 20% of global energy consumption by 2030 [Jon18].
This makes the development of smaller and more efficient devices for memory storage and
information processing a crucial challenge in the pursuit of sustainability. One possible avenue
to address this issue is the design of devices that exploit spin degrees of freedom (spintronics).
Magnetic phenomena occur on an energy scale that is one order of magnitude smaller than
electronic ones, making spintronics devices more efficient [Hir+20; Pue+20; Tra16; ŽFD04].
To date, research in the field of spintronics has led to the discovery of novel devices such as
nonvolatile magnetic random access memory or spin-polarised field effect transistors [Ber96;
Fer08; Gaj+12; Kat+00; Kaw+12; Khv+13; KW15; Slo96; Wol+10; ŽFD04]. However, neither
first-generation (based on spin manipulation via magnetic fields) nor second-generation (based
on spin transfer torque) spintronics devices have reached the efficiencies required to help solve
the global energy crisis. The ongoing "second quantum revolution" promises to bring about a
breakthrough by exploiting quantum physics directly, rather than using it as a mere tool to
observe and understand the world around us. Quantum materials, i.e., materials that manifest
quantum effects over large energy and length scales, are at the forefront of this development.
Developing spintronics devices based on quantum materials may lead to much-needed paradigm-
changing advances in energy efficiency and beyond [Giu+20; He+22]. However, with enormous
potential, quantum materials also pose new technical challenges to the scientific community
regarding material fabrication and characterization, as well as computational methods used to
predict and understand the science at play. This thesis addresses some of the most impactful
challenges concerning first-principles computational methods for quantum materials and
applies these methods to gain novel insights into low-dimensional quantum materials.

What AreQuantum Materials?

The term "Quantum Materials" encompasses many materials, including superconductors, mul-
tiferroics, van der Waals heterostructures, moiré crystals, and topological insulators. These
materials, which at first glance have little in common, are fundamentally connected by a single
thread: they exhibit quantum effects at the macroscopic level.[Giu+20; HK10; Kan13; KM05]
Although the physical description of all materials is rooted in quantum mechanics, in most
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Chapter 1 | Introduction

materials, quantum effects are not observable at the macroscopic scale where classical mechan-
ics can describe their behavior. This is known as Bohr’s correspondence principle. However,
quantum materials defy this principle and manifest quantum effects at a wide range of energy
and length scales. But what sets quantum materials apart from other materials? The answer to
this question hinges on two concepts: entanglement and topology.

The concept of invariance is one of the most important in modern theoretical physics.
Physical invariants represent the fundamental and unchangeable aspects of any system and
allow us to create abstract ideas about physical properties. Without the concept of invariants,
we would be left to study any system from scratch, but with invariants, we can generalize the
knowledge gained in one system and apply it to groups of materials with specific commonalities.
The most prominent examples of invariants include the conservation of energy or (angular)
momentum. Wave function topology applies the mathematical concept of topology to identify
new invariants at the level of quantum wave functions1 Topological invariants have produced
the understanding that not all states of insulating matter are equivalent to the insulating state
of the vacuum. Furthermore, it has brought about the concept of the quantum (spin) Hall effect.
Another prominent example of wave function topology is vortices in superconductors and
superfluids with quantized flux that remains invariant under smooth changes to the system.
These states with different topological invariants are separated from the conventional state by
phase transition.

The concept of entanglement has existed since the early days of quantum mechanics. In
its most fundamental form, entanglement arises from the Pauli exclusion principle, which
demands that the many-body wave function of an electron system must be antisymmetric
under particle exchange. Although this condition may appear harmless, its implications are
far-reaching. Entanglement creates an inseparable connection between all quantum particles
in a system. Even if we can find the quantum mechanical wave function of every component of
a quantum system, this does not imply that we know the system’s wave function as a whole or
vice versa. But not all forms of entanglement originate in the Pauli exclusion. For example, the
formation of Cooper pairs in superconductors or the entanglement between spins in complex
magnets does not arise from the antisymmetry of the electron wave function alone. Like the
wave function topology, these forms of entanglement signify new types of quantum order
distinct from conventional matter by a phase transition.

The term Quantum Materials encompasses all materials that exhibit nontrivial wave function
topology or unconventional forms of entanglement. Controlled generation and manipulation
of the quantum order in these materials by electrical, magnetic, or optical means are key

1 A more detailed description of topology and topological invariants can be found in Chapter 4.
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challenges in the application of quantum materials. For this reason, tunable quantum materials
are highly sought after. Possibly the most prototypical example of a tunable quantum material
is twisted bilayer graphene (tBLG). In tBLG, the twist angle controls the emerging properties.
For special magic angles, tBLG exhibits flat bands [BM11] that host strongly correlated phases,
such as a correlated insulator state [Cao+18a; Po+18; Won+20; Zon+20], a superconducting
state [Cao+18b; Sai+20; Sha+19; Ste+20; Yan+19], or a strange metal state [Cao+20]. In general,
two-dimensional moiré crystals are an ideal playground for realizing tunable quantum materials
and, as such, have been studied extensively. However, their one-dimensional counterparts
have received considerably less attention from the scientific community. As part of this thesis,
double-wall carbon nanotubes were studied as examples of one-dimensional tunable quantum
materials to understand the role of wave interference and interlayer coupling on the transport
properties of one-dimensional moiré crystals.

Using proximity interactions to affect the properties of two-dimensional materials is an
alternative approach to creating tunable quantum materials. This effect has been used to
enhance the weak spin-orbit coupling and induce the quantum anomalous Hall and quantum
spin-Hall effects in graphene [AAU16; CFR18; Gmi+16; Pez+21; Zan+18], topological phases
in other topologically trivial 2D materials [Sin+19]. This work presents a detailed study of
the effects of proximity interactions on the stability, topology, and band gap of metastable
monolayer bismuth phases, which promise to host robust topological phases due to strong
intrinsic spin-orbit coupling.

The Role of Spin-Orbit Coupling in Topological Matter

Spin-orbit (SO) coupling is a relativistic effect that originates from the interaction between
an electron’s spin moment, its orbital moment, and electric fields: An electron moving with
momentum (p) in an electric field (E) experiences an effective magnetic field (Beff ∼ E × p).
This effective field gives rise to a momentum-dependent Zeeman-like energy, the SOC, H𝑆𝑂 ∼
(E × p · 𝜎). In the context of quantum materials, SOC has led to the prediction of topological
insulators and superconductors [BHZ06; Giu+20; KM05; QZ11]. But SOC plays a fundamental
role far beyond topological matter. It is fundamental in understanding the fine structure
of atoms [Woo92]. In solids, the SOC is responsible for coupling the magnetic moments
and the underlying crystal structure. It gives rise to magnetic anisotropy [Joh+96], spin
relaxation [WJW10], magnetic damping [MR03], anisotropic magnetoresistance [MP75], and
the anomalous Hall effect [Nag+10].

3



Chapter 1 | Introduction

New Computational Challenges

Numerical methods are essential for studying any material’s physical and chemical properties.
However, among the computational methods used today, first-principles methods have a
specific place because they do not rely on empirical parameters, which gives them enormous
predictive power. To include SOC in first-principles simulations, the Schrödinger equation
has to be solved using fully relativistic Hamiltonians and spinor wave functions. During
the 1960s, when DFT was first conceptualized, this was difficult to achieve for most systems
due to limited computational power. Relativistic effects were approximated as a scalar field,
and the Schrödinger equation was solved for spins-up and -down electrons (collinear spin
approximation). Today, spinor wave functions have become computationally affordable thanks
to improvements in computational power and the efficiency of DFT codes. All state-of-the-art
DFT codes include options to perform simulations with SOC.

Although DFT has been widely successful at predicting many material properties, it is not
always applicable. In particular, modeling nanodevices under non-equilibrium conditions
requires beyond-ground-state DFT methods such as the DFT+NEGF approach. Including the
description of SOC in the transport methods is equally important because it drives many
spintronics-mechanism like spin-orbit-torques, spin-to-charge conversion, and topological
matter in general. Thus far, spinor-based implementations of this framework have only been re-
alized in Gollum [Fer+14], which employs a semi-empirical approach to model non-equilibrium
conditions, and some commercial codes with closed source (FHI-AIMS, QuantumATK) [Góm21;
Smi+20].

Similarly, methods for modeling superconductors based on first principles require generaliz-
ing the DFT framework to the four-component Nambu spinor. In recent years, two types of
DFT-based approaches for the simulation of superconductors have emerged: ab initio methods
which include the motion of nuclei to calculate the superconducting pairing from the electron-
phonon coupling[Lüd+05; Mar+05], and approaches which use a semi-empirical parameter to
calculate a self-consistent superconducting pairing based only on electron-electron interac-
tions[OGK88]. However, the computational complexity of fully ab initio methods remains a
challenge for systems with more than a few atoms. Semi-empirical approaches to supercon-
ductivity, to our knowledge, have only been implemented within the Korringa-Kohn-Rostoker
(KKR) method [Csi+18; RB22a; Sau+20].

As part of this work, a spinor-based approach to quantum transport was implemented in the
open-source code SIESTA. SIESTA is a mature open-source DFT implementation that exploits
strictly localized basis sets and sparse methods to perform highly efficient DFT calculations
with thousands of atoms. Until now, TranSIESTA, the DFT+NEGF extension of SIESTA, used
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the collinear spin approximation. With the extension presented here, it is now possible to
include fully relativistic effects and simulate non-equilibrium transport in topological materials.
The semi-empirical Bogoliubov-de-Gennes method has been implemented in SIESTA (SIESTA-
BdG) to leverage the efficiency of SIESTA and make highly accurate calculations of large-scale
superconductor structures feasible. The SIESTA-BdG method bridges the gap between large-
scale tight-binding and small-scale fully ab initio methods. Furthermore, tools were developed
for extracting and visualizing the spin texture and Z2 from the SIESTA output to analyze
topological material properties. These new methods have been applied to a series of relevant
systems to test the correctness of their implementation and highlight their capabilities for
understanding the fundamental physical concepts at play.

Thesis Outline

The body of this thesis is organized into three parts. Part I Theoretical Background introduces
and reviews the theoretical frameworks and implementations thereof for quantum mechanical
modeling of the electronic structure of solids (Chapter 2), electron transport (Chapter 3), topolog-
ical band theory (Chapter 4) and superconductivity (Chapter 5). Part II Methods Development
outlines the development of new methods for modeling specific aspects of Quantum Materials
building on top of the state-of-the-art open-source project SIESTA. Chapter 6 describes imple-
menting a spinor-based version of quantum transport, essential to model spin-orbit coupling
and simulate transport in topological matter. Chapter 7 details the implementation of the
Bogoliubov-de-Gennes method for modeling superconductivity, and Chapter 8 the develop-
ment of post-processing tool for extracting the spin texture and topological invariants from
SIESTA calculations. The new code developments created as part of this work are already
publicly available and will become part of the main version of SIESTA in the near future.
Part III Simulations comprises three chapters utilizing the newly developed methods to un-
ravel aspects of quantum materials. Chapter 9 addresses quantum interference and its effect
on quantum transport through one-dimensional moiré crystals, exemplified in double-wall
carbon nanotubes. Chapter 10 deals with the effects of substrate interactions on the topological
insulator phase of bismuth monolayers. Finally, Chapter 11 demonstrates the capabilities of
our new quantum transport implementation at the example of magnetic junctions, transition
metal dichalcogenides interfaces, and carbon nanotubes functionalized with anti-ferromagnetic
molecular magnets.
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2 Electronic Structure

The quantum many-body problem is the fundamental basis on which solid-state physics rests. Its

complexity remains a challenge to theoretical physicists, and analytical solutions are unknown for

all but the simplest systems. This chapter briefly outlines the many-body problem itself and the

framework of density functional theory as one of the most powerful tools for solving it.

2.1 Introduction: The Many-Body Problem

All matter we encounter in our daily lives is composed of electrons, protons, and neutrons.
Protons and neutrons tightly bind to each other, forming atomic nuclei. Negatively charged
electrons bind to the positive charge of the nuclei forming the atom. Unlike the very localized
nucleus, which has a radius of a few femtometers (1 × 10−15 m) [Jev05], electrons remain much
less localized, forming a cloud around the nucleus with (atomic) radii ranging from tens to
hundreds of picometers (1 × 10−11 m to 2 × 10−10 m) [Sla64]. In condensed matter, the distance
between these atoms is on the order of 1×10−10 m. As a result, the electron clouds of neighboring
atoms overlap, causing them to interact strongly. Electromagnetic interactions between the
electrons and nearby nuclei not only form the bonds that hold solids and molecules together
but also determine the electrical, optical, and magnetic properties of all known materials.
Therefore, the study of electronic interactions is one of the fundamental issues concerning
physicists, chemists, and material scientists trying to understand the materials that make up the
world around us and attempting to create new materials tailored to address the technological
limitations of naturally occurring ones. At the core of these considerations stands the quantum
many-body problem: finding solutions for the time-independent Schrödinger equation for a
system of many interacting particles [Sch26a; Sch26b; Sch26c]:

H|𝛹⟩ = 𝐸 |𝛹⟩, (2.1)

where H is the Hamiltonian,𝛹 is the many-body wave function, and 𝐸 is the energy of the
system. For a state of matter consisting of 𝑀 nuclei and 𝑁 electrons, the Hamiltonian is
commonly decomposed into six components: the kinetic energy of the electron (T𝑒 ) and nuclei
(T𝑛), the electron-electron (𝑈𝑒 ) and nuclei-nuclei (𝑈𝑛) Coulomb repulsion, the electrostatic
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interaction between electrons and nuclei (V𝑒𝑛) and external potentials (vext), such as magnetic
or electric fields:

H = T𝑒 + T𝑛 + U𝑒𝑒 + U𝑛𝑛 + V𝑒𝑛 + vext

= −
𝑀∑︁
𝛼=1

1
2𝑀𝛼

∇2
𝛼 − 1

2

𝑁∑︁
𝑖=1

∇2
𝑖 +

𝑀∑︁
𝛼=1

𝑀∑︁
𝛽>𝛼

𝑍𝛼𝑍𝛽��R𝛼 − R𝛽
��

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1��r𝑖 − r𝑗
�� − 𝑀∑︁

𝛼=1

𝑁∑︁
𝑖=1

𝑍𝛼

|R𝛼 − r𝑖 |
+ vext. (2.2)

Here, 𝑀𝛼 and 𝑍𝛼 are the mass and charge of the nuclei 𝛼 , and R𝛼 and r𝑖 represent the 3𝑀 + 3𝑁
spatial coordinates of the many-body wave function. Finding solutions to this non-linear differ-
ential equation in 3𝑀+3𝑁 dimensions is a complex task. An exact solution can only be obtained
for hydrogen-like systems consisting of one electron and one nucleus. It is, therefore, necessary
to apply a set of adequate approximations to gain a quantum-mechanical understanding of any
system with more than three particles.

The following sections of this chapter discuss approximations and methodologies used to
solve the many-body problem, in particular, the density functional theory framework and its
application to solid matter. The introduction found here is brief and focused on the aspects
most relevant to the work presented in this thesis. A more extensive introduction to electronic
structure theory and density functional theory can be found, for example, in R. Martin’s
"Electronic Structure: Basic Theory and Practical Methods" [Mar04], E. Engel and R. Dreizler’s
"Density Functional Theory: An Advanced Course" [ED11], or C. Fiolhais, F. Nogueira and M.
A. L. Marques’ "A Primer in Density Functional Theory" [FNM03].

2.2 Born-Oppenheimer Approximation

Since the mass of an electron is 15 orders of magnitude smaller than that of any nuclei, we
assume that the typical relaxation time for electrons is also orders of magnitude smaller. Hence,
we can treat the motion of electrons and nuclei effectively as decoupled and search for solutions
to the electronic part of the wave function while keeping the nuclei’s positions fixed (Born-
Oppenheimer approximation [BO27]).

𝛹 (r1, . . . , r𝑁 ,R1, . . . ,R𝑀 ) = 𝛷𝑒 (r1, . . . , r𝑁 )𝛷𝑛 (R1, . . . ,R𝑀 ) (2.3)

H𝑒 |𝛷𝑒⟩ = 𝐸 |𝛷𝑒⟩ (2.4)

10



Hatree-Fock Method | Section 2.3

H𝑒 = − − 1
2

𝑁∑︁
𝑖=1

∇2
𝑖 +

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1��r𝑖 − r𝑗
�� + vext(r), (2.5)

where the electrostatic potential of the nuclei has been included in the external potential 𝑣ext.
Although this approximation already significantly reduces the spatial degrees of freedom, the
complexity of the problem at hand remains immense.

2.3 Hatree-Fock Method

The Hartree-Fock (HF) method [Foc30; Har28; Sla28; Sla30b; Sla51] was developed as an early
attempt to find solutions to this Hamiltonian, based on the assumption that the 𝑁 -electron wave
function𝛷 could be represented by the Slater determinant of 𝑁 one-electron wave functions.

𝛷𝐻𝐹 (r1, r2, . . . , r𝑁 ) =
1

√
𝑁 !

����������
𝜙1(r1) 𝜙2(r1) · · · 𝜙𝑁 (r1)
𝜙1(r2) 𝜙2(r2) · · · 𝜙𝑁 (r2)
...

...
. . .

...

𝜙1(r𝑁 ) 𝜙2(r𝑁 ) · · · 𝜙𝑁 (r𝑁 ).

���������� (2.6)

The Slater determinant ensures that the wave function satisfies the Pauli principle, i.e., it is
antisymmetric under electron exchange. To find the Hartree-Fock ground state wave function,
the energy functional

〈
𝛷𝐻𝐹

��H𝑒
��𝛷𝐻𝐹 〉 is minimized under the orthonormalizing constraint〈

𝜙𝑖
��𝜙 𝑗 〉 = 𝛿𝑖 𝑗 . The constraint minimization problem can be rewritten in terms of Lagrangian

multiplier _𝑖 𝑗 :

L[𝜙1, . . . , 𝜙𝑁 ] =
〈
𝛷𝐻𝐹

��H𝑒
��𝛷𝐻𝐹 〉 − 𝑁∑︁

𝑖, 𝑗=1
_𝑖 𝑗 (

〈
𝜙𝑖

��𝜙 𝑗 〉 − 𝛿𝑖 𝑗 ) . (2.7)

Setting the functional derivative to zero yields the Hartree-Fock equations, a set of coupled
equations that need to be solved self-consistently:

𝜖𝑖𝜙𝑖 (r) = h(r)𝜙𝑖 (r) +
𝑁∑︁
𝑗=1
𝑖≠𝑗

∫
dr′

|𝜙∗
𝑗 (r′) |

2

|r − r′ | 𝜙𝑖 (r) −
𝑁∑︁
𝑗=1
𝑖≠𝑗

∫
dr′

𝜙∗
𝑗 (r′)𝜙∗

𝑖 (r′)
|r − r′ | 𝜙𝑖 (r), (2.8)

where h is the one-electron operator − 1
2∇

2
𝑖 −

∑𝑀
𝛼=1 𝑍𝛼/(r − R𝛼 ) and 𝜖𝑖 is the energy eigenvalue

associated with 𝜙𝑖 . The second term on the right-hand side, the Hartree term, represents the
electrostatic potential of the electron charge distribution 𝑛(r) = ∑

𝑗 |𝜙 𝑗 |2. The third term arises
from the constraint of the Pauli principle and accounts for electron exchanges. While exchange
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effects are explicitly included in the Hartree-Fock model, electron-electron correlations are
completely neglected by this ansatz, thus limiting the applicability of the Hartree-Fock method.

Since the inception of the Hartree-Fock method, many methods have been developed to incor-
porate correlation effects [TKV19]. At large there are three types of such extensions many-body

perturbation theory methods, based on Møller-Plesset [MP34] or Epstein-Nesbet perturbation
theory [Eps26; Nes55], coupled-cluster methods [Číž66; CK60; Coe58] and configuration interac-

tion methods [DS99], like the multi-configuration self-consistent field method [SO96] and the
complete active space self-consistent field method [Roo07]. These post-Hartree-Fock methods
are widely employed in the area of Quantum Chemistry.

2.4 Density Functional Theory Framework

In contrast to the Hartree-Fock and post-Hartree-Fock methods, the density functional theory
framework avoids determining the many-body wave function. Instead, the quantum-mechanical
many-body problem is solved in terms of the electronic density. The concept of electronic
density as a fundamental quantity that describes the properties of matter can be traced back to
the early days of quantum mechanics when Fermi [Fer27; Fer28] and Thomas [Tho27] applied
it to the study of isolated atoms (the Thomas-Fermi model). A few years later, Dirac [Dir30]
included exchange interactions to improve the description (the Thomas-Fermi-Dirac model)
and already stated that the electronic state density fully determines the ground state of an
atom. Despite these influential works, the variational principle of the energy on which modern
density functional theory hinges was introduced almost 40 years later in the seminal work of
Hohenberg and Kohn [HK64].

2.4.1 Hohenberg-Kohn Theorems

The work of Hohenberg and Kohn laid the foundation of modern density functional theory
by establishing a one-to-one correspondence between the wave function and the electronic
density of the many-body ground state.

▶ Theorem 2.1 (Hohenberg-Kohn Theorem 1 [HK64]). Let 𝑛0(r) be the non-degenerate
electronic ground state density of a system consisting of an arbitrary but fixed number of
electrons under the influence of an external potential 𝑣ext(r) and mutual Coulomb repulsion.
Then the external potential 𝑣ext(r) is a unique functional of 𝑛0(r), apart from a trivial additive
constant. ◀

Since a given ground-state density fixes the external potential up to an additive constant,
the Hamiltonian is also fixed up to the same additive constant. This, in turn, implies that the
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ground- and excited-state wave functions are unique functionals of the ground-state density.
Therefore, all the properties of the system are entirely determined by the density of the ground
state, and the complexity of the many-body problem has been reduced to finding the density of
the ground state with 3 instead of 3𝑁 spatial degrees of freedom. Furthermore, Hohenberg and
Kohn showed:

▶ Theorem 2.2 (Hohenberg-Kohn Theorem 2 [HK64]). There exists a universal func-
tional of the density 𝐹 [𝑛(r)], independent of 𝑣ext(r), such that the expression 𝐸 [𝑛(r)] ≡∫
𝑣ext(r)𝑛(r) d3𝑟 +𝐹 [𝑛(r)] has as its minimum value the correct ground-state energy associated

with 𝑣ext(r). ◀

We note that particular emphasis should be placed on the fact that 𝐹 [𝑛(r)] is independent
of 𝑣ext(r), and therefore is universally applicable to any system of interacting electrons in an
external potential. Levy later generalized the second Hohenberg-Kohn Theorem to include
degenerate ground states [Lev79]. In the case of a degenerate ground-state density, not all
observables are functionals of the ground-state density.

2.4.2 Kohn-Sham Scheme

In 1965, W. Kohn and Lu J. Sham proposed another crucial step towards making the quantum
mechanical many-body problem computationally accessible [KS65]. They demonstrated that
any system of 𝑁 interacting electrons could be mapped onto an auxiliary system of 𝑁 non-
interaction electrons in an effective local potential 𝑣𝑆 (r) with the same ground state density
𝑛0(r). For the non-interacting systems, the density is given by the sum of one-electron densities

𝑛𝐾𝑆 (r) =
𝑁∑︁
𝑖=1

��𝜓𝐾𝑆𝑖 (r)
��2, (2.9)

where𝜓𝐾𝑆𝑖 are the eigenstates of the Kohn-Sham Hamiltonian:

𝜖𝑖𝜓
𝐾𝑆
𝑖 (r) = (−1

2∇
2 + 𝑣𝑆 (r))𝜓𝐾𝑆𝑖 (r). (2.10)

These eigenstates are called Kohn-Sham orbitals. Given that the ground state densities of the
non-interacting and interacting systems are assumed to be equal, the energy functionals also
have to be the same. The energy functional of the interacting system is the sum of the kinetic
energy of the system (T) and the potential energy of the electrons due to Coulomb interaction
(U) and the external potential 𝑣ext(r):

𝐸 [𝑛(r)] = ⟨𝛹 [𝑛(r)] |T + U + vext |𝛹 [𝑛(r)]⟩
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= T[𝑛(r)] + U[𝑛(r)] +
∫

𝑣ext(r)𝑛(r) d3𝑟 . (2.11)

The energy functional of the non-interacting system is the sum of the kinetic energy and the
potential energy in the effective potential 𝑣𝑆 :

𝐸 [𝑛(r)] = T𝑆 [𝑛(r)] +
∫

𝑣𝑆 (r)𝑛(r) d3𝑟 . (2.12)

Equating the two expressions of the energy functional and solving for the effective potential
yields

𝑣𝑆 (r) = 𝑣ext(r) +
𝛿

𝛿𝑛

(
𝑇 [𝑛(r)] −𝑇𝑆 [𝑛(r)] + U[𝑛(r)]

)
. (2.13)

It is important to note that the second term in Equation (2.13) is the difference in the universal
part 𝐹 of the two energy functionals (Theorem 2.2) and, therefore, universal itself. This universal
part is commonly rewritten in terms of the Hartree potential 𝑣𝐻 and the exchange-correlation
potential 𝑣𝑋𝐶 :

𝑣𝑆 (r) = 𝑣ext(r) +
𝛿𝐸𝐻 [𝑛(r)]

𝛿𝑛´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
𝑣𝐻 (r)

+ 𝛿𝐸𝑋𝐶 [𝑛(r)]
𝛿𝑛´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

𝑣𝑋𝐶 (r)

(2.14)

𝐸𝐻 [𝑛(r)] =
1
2

∬
𝑛(r)𝑛(r′)
|r − r′ | d3r d3r′ (2.15)

𝑣𝐻 [𝑛(r)] =
∫

𝑛(r′)
|r − r′ | d3r′ (2.16)

𝐸𝑋𝐶 = 𝑇 [𝑛(r)] −𝑇𝑆 [𝑛(r)] + U[𝑛(r)] − 𝐸𝐻 [𝑛(r)], (2.17)

where 𝐸𝐻 is the Hartree energy, the potential energy due to the electrostatic interaction of
the charge density with itself, and 𝐸𝑋𝐶 is the exchange-correlation energy, which combines
all remaining terms. The exchange-correlation energy (a) accounts for the exchange and
correlation contributions to U, (b) corrects for the artificial self-interaction included in the
Hartree energy, and (c) corrects for the error in the kinetic energy made by approximating the
exact kinetic energy by T𝑆 .

If the exchange-correlation potential was known, the Kohn-Sham equations (Equations (2.9),
(2.10) and (2.14)) could be solved iteratively as in the Hartree-Fock method. The advantage of
the Kohn-Sham scheme over the Hartree-Fock method lies in the fact that it is, in principle, an
exact method and also includes correlation effects. However, it is necessary to approximate the
exchange-correlation potential in practice, as the analytical form is unknown.
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While the Kohn-Sham approach is the most common DFT approach, it is possible to avoid
calculating the wave function entirely. However, the Kohn-Sham approach has advantages
over such orbital-free density functional theory (OF-DFT) approaches [LC05; WW13]: OF-
DFT suffers from a lack of an accurate kinetic energy functional and is restricted to local
pseudopotentials (Section 2.6), which are less transferable than nonlocal pseudopotentials
typically used in orbital-dependent DFT.

2.4.3 Approximating the Exchange-Correlation Energy

Many different approximations have been proposed for the exchange-correlation energy, with
varying degrees of complexity, universality, and accuracy. The local density approximation
(LDA) and the generalized gradient approximation (GGA) are two of the most widely used
approximations for the exchange-correlation energy. The LDA assumes that 𝐸𝑋𝐶 can be locally
approximated by the exchange-correlation energy density 𝜖𝑋𝐶 (𝑛(r)) of the uniform electron
gas with the same density 𝑛(r).

𝐸𝐿𝐷𝐴𝑋𝐶 [𝑛(r)] =
∫

𝑛(r)𝜖𝑋𝐶 (𝑛(r)) d3𝑟 (2.18)

Despite its simplicity, LDA has been remarkably successful in unraveling many aspects of
condensed matter [GJL79]. However, LDA is known to yield an incorrect dispersion of the
exchange-correlation potential in long-range limit for neutral atoms [TS66] and metal sur-
faces [LK71], systematically overestimate binding energies, and, in turn, underestimate bond
lengths. GGA includes the local density gradient (∇𝑛(r)) to improve the shortcomings of LDA.

𝐸𝐺𝐺𝐴𝑋𝐶 [𝑛(r)] =
∫

𝑓 (𝑛(r),∇𝑛(r)) d3𝑟 (2.19)

GGA can be used to describe systems with inhomogeneous electronic densities with greater
precision, yielding more accurate estimates of bond lengths. However, GGA overcorrects
LDA in this regard, overestimates bond lengths, and, in turn, underestimates binding energies.
As a result, GGA predicts nonbonding character in van der Waals (vdW) heterostructures
such as graphite. LDA functionals often yield estimates of the bonding energies in some
vdW systems, which are closer to experimental values, due to partial compensation of the
overestimated bonding and the incorrect long-range dispersion. However, this compensation is
not systematic. Furthermore, GGA, like LDA, functionals perform poorly in strongly correlated
electron systems.

Many corrections and new functionals have been developed to improve the accuracy of the
DFT method further:
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• Van der Waals corrections aim to describe long-range molecular/surface interactions.
These semi-empirical corrections are either applied as additional force fields or included
in the exchange-correlation energy. Force-field approaches do not affect the electronic
structure and only correct the interatomic forces ad-hoc. The most prominent examples of
such vdW corrections are the methods developed by Grimme et al. (DFT-D [Gri+10], DFT-
D2 [Gri06], DFT-D3 [Gri+10]) and the method of Tkatchenko and Scheffler (TS) [Gri+10].
A comprehensive review of vdW correction included in the exchange-correlation energy
can be found in the work of Silvestrelli and Ambrosetti [SA19].

• meta-GGA functionals aim to systematically improve the description of the exchange-
correlation energy by including second partial derivatives in addition to the gradient.
Meta-GGA functionals achieve high accuracy for atoms, molecules, solids, and surfaces
simultaneously [Hao+13]. Notable examples of the meta-GGA functional are the M06-
L [ZT06] and TPSS [Tao+03] functionals.

• the Exact Exchange (EXX) method [LM83] uses the exact Hartree-Fock exchange energy
to correct the underestimation of band gaps and to improve the long-range dispersion
behavior [Stä+99]. However, the EXX method over-corrects the error in the exchange-
correlation energy made by LDA and is unable to describe molecular bonding [Bec93].

• hybrid functionals include only a fraction of the exact exchange potential of the Hartree-
Fock method to combine the advantages of the classical DFT functionals (LDA/GGA) and
the EXX method:

𝐸
hybrid
𝑋𝐶

= 𝛼𝐸HF
𝑋 + (1 − 𝛼)𝐸DFT

𝑋 + 𝐸DFT
𝐶

PBE0 [Bec96] and B3LYP [Bec93] are two of the most prominent examples of hybrid
functionals used today.

• RPA and PT2 functionals introduce the effect of unoccupied KS orbitals to the cor-
relation energy calculated from second-order perturbation theory (PT2) [Wan+21], or
within the random phase approximation (RPA) [JE07]. These approaches are currently
the most advanced method available. RPA correlation energy yields a fully ab initio
description of vdW interactions and band gaps with an accuracy comparable to the GW
approximation [Hed65; NG04].

• Double-hybrid functionals are built on top of hybrid functionals and also include a
fraction of PT2 or RPA correlation energies to improve accuracy for specific applications:

𝐸
hybrid
𝑋𝐶

= 𝛼𝐸HF
𝑋 + (1 − 𝛼)𝐸DFT

𝑋 + 𝛽𝐸PT2
𝐶 + (1 − 𝛽)𝐸DFT

𝐶 .
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• Range-separated functionals: Numerical convergence of the RPA method is difficult,
and its scaling with system size is high [Bru12]. In order to balance the computational
cost accuracy range-separated functional interpolate between classic DFT functionals for
short interaction ranges and RPA approach for long-range interactions [Bru12].

The number of functionals is enormous, and highly accurate functionals are available for most
systems. However, despite considerable efforts, searching for a universally applicable and
accurate approximation of the exact exchange-correlation energy remains an open issue.

2.4.4 Spin-Polarized Density Functional Theory

Thus far, electron spin and magnetism have been neglected. The tendency of a material to
display magnetic properties is driven by the competition of exchange and kinetic energies. The
parallel alignment of electrons results in lower kinetic and higher exchange energies. In an
atom where electrons can be considered localized, kinetic energy is the leading contribution
and gives rise to the Hunds rules. In solids, electrons tend to be delocalized, reducing their
kinetic energy. As a result, the exchange energy becomes dominant, which gives rise to the
nonmagnetic character of most solid-state matter. However, solid-state materials with strong
electron localization can display magnetism, e.g., elemental metals Fe, Co, Ni, and Cr, where
electrons are localized in the 𝑑-subshell, rare-earth metals in the 𝑓 -subshell, and various alloys
containing these metals.

The framework of density functional theory was originally extended to spin-polarized
systems by Barth and Hedin [BH72] and Pant and Rajagopal [PR72]. In spin density functional
theory, the scalar electronic density 𝑛(r) becomes a 2 × 2 matrix 𝑛𝜎𝜎′ (r), or equivalently, the
magnetization density m(r) is introduced in addition to the electron density. The connection
between these three variables is given by

n𝜎𝜎
′ (r) = 1

2

(
𝑛(r)𝛿𝜎𝜎′ +

∑︁
𝛾=𝑥,𝑦,𝑧

𝑚𝛾𝜎
𝜎𝜎′
𝛾

)
(2.20)

where 𝜎𝛾 are the Pauli matrices

𝜎𝑥 =

(
0 1
1 0

)
𝜎𝑦 =

(
0 −𝑖
𝑖 0

)
𝜎𝑧 =

(
1 0
0 −1

)
. (2.21)

In the simplest case, all spin moments in a system are collinear, and after rotation of the
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system, the charge density and the Hamiltonian become diagonal in spin space.

𝐴 =

(
𝐴↑ 0
0 𝐴↓

)
(2.22)

where 𝐴𝜎 is the submatrix of the spin channel 𝜎 (𝜎 ∈ {↑, ↓}). The Schrödinger equation
decouples into separate equations for the majority (↑) and minority (↓) electrons. In this case,
the formalism can be applied to the two spin channels independently. Only the exchange-
correlation functional depends on both spin components of the electron density and can give
rise to magnetic interactions.

In non-collinear spin systems, electron spins are not aligned along a common axis. In this
case, the DFT formalism has to be extended from independent spin channels to spinor wave
functions. The case of non-collinear spins is essential for fully relativistic DFT calculations,
where SO coupling introduces non-zero terms in the off-diagonal spin block of the Hamiltonian.

𝐴 =

(
𝐴↑↑ 𝐴↑↓

𝐴↓↑ 𝐴↓↓

)
. (2.23)

The overlap matrix retains the form in Eq. 2.22.

2.5 Crystals and Reciprocal Space

A crystal is a state of matter in which atoms form a regular pattern, i.e., the atomic positions are
periodic in space. The smallest repetitive unit of this structure is the primitive unit cell and may
contain an arbitrary number of atoms (at least one). The set of all translations (T(R)) that map a
primitive cell to one of its periodic replicas forms a Bravais lattice {𝑛1a1+𝑛2a2+𝑛3a3 |𝑛1, 𝑛2, 𝑛3 ∈
Z} and encodes the periodicity of the crystal. Vectors a𝑖 are called lattice vectors. In addition
to translational symmetry, a crystal may possess various point-group symmetries (proper and
improper rotations). Together with the translations, they form the space group of a crystal,
which contains all operations that leave the crystal structure unchanged. All crystals can be
classified based on these symmetries and belong to one of the 230 crystallographic space groups.

The importance of crystal symmetries goes far beyond the simple classification of different
crystals. The crystal symmetries imply that the electrostatic potential felt by the electrons and,
thereby, the Hamiltonian possess the same symmetries. The electronic wave functions in such
a periodic Hamiltonian satisfy the Bloch theorem [Blo29].

▶ Theorem 2.3 (Bloch theorem). Let A be a periodic operator, that is, invariant under a set
of translations T = {T(𝑛1a1 + 𝑛2a2 + 𝑛3a3) |𝑛1, 𝑛2, 𝑛3 ∈ Z}, then each eigenfunction𝛹 of A can
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be chosen so that it satisfies

T(R)𝛹 (r1, . . . , r𝑁 ) =𝛹 (r1 + R, . . . , r𝑁 + R) = 𝑒𝑖k·R𝛹 (r1, . . . , r𝑁 ) (2.24)

for all T(R) ∈ T and some vector k. ◀

The choice of k in Bloch’s Theorem is not unique. There exist an infinite number of equivalent
vectors that are related to each other by the reciprocal lattice. The reciprocal lattice is spanned by
three vectors b𝑖 that satisfy a𝑖 ·b𝑗 = 2𝜋𝛿𝑖 𝑗 . If K is a reciprocal lattice vector, then 𝑒𝑖 (k+K) ·R = 𝑒𝑖k·R.
Therefore, the vector k can always be chosen to lie in the primitive cell of the reciprocal lattice,
the first Brillouin zone (BZ).

The Bloch Theorem also applies to the Kohn-Sham states because the effective potential 𝑣𝑆
inherits the crystal symmetries from the interacting electron system. Therefore, the Kohn-Sham
states𝜓𝐾𝑆

𝑖k , which are one-electron wave functions, can be decomposed into a lattice periodic
part 𝑢𝑖k and a phase.

𝜓𝐾𝑆
𝑖k (r) = 𝑒𝑖kr𝑢k(r) . (2.25)

Equation (2.10) can be rewritten in terms of the lattice periodic part:

𝜖𝑖 (k)𝑢𝑖k(r) = 𝑒−𝑖krh𝐾𝑆 (r)𝑒𝑖kr𝑢𝑖k(r)

= h𝐾𝑆k 𝑢𝑖k(r)

=

(
−1

2 (∇ + 𝑖k)2 + 𝑣𝑠 (r)
)
𝑢𝑖k(r) (2.26)

Therein lies another key concept used in DFT codes: instead of having to solve the Kohn-Sham
equations for an infinite system, it is possible to solve the Kohn-Sham equation within the
primitive unit cell of the crystal for any k. Diagonalization H(k) yields distinct eigenstates𝜓𝑖k(r)
which are a subset of all Kohn-Sham states of the infinite solid. The associated eigenenergies
𝜖𝑖 (k) are known as the crystal band structure. All eigenstates of the infinite solid are recovered
in the limit of infinitely dense sampling of k. Of course, no implementation can achieve an
infinite sampling density, but the charge density 𝑛(r) =

∫
dk

∑
𝑖 |𝜓𝑖k(r) |2 can be approximated

with arbitrary accuracy by numerical integration of the first Brillouin zone.

2.6 Pseudopotentials

While some (all-electron) codes directly solve the DFT problem using the techniques discussed
here, it is useful to employ pseudopotentials to reduce computational costs further. Pseudopo-
tentials are effective potentials that describe the effect of the nucleus and core electrons felt
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by the valence electrons. The idea behind the pseudopotential approximation is that a set of
electrons (the core electrons) is closely bound to the nucleus and insensitive to the environ-
ment of the atom. Thus, the core electrons act merely as an effective screening of the nuclei
potential, and the number of electrons considered in the Kohn-Sham scheme is reduced to the
"interacting" valence electrons. The computational benefit of this approach is most significant
for heavier atoms with many closed shells, but even for light atoms, it is beneficial because the
many computational methods scale cubically with the number of electrons. However, in recent
years it has become evident that some material properties cannot be correctly predicted if all
closed-shell electrons are treated as core electrons [Zan+07]. Careful consideration of the va-
lence configuration for any pseudopotential is essential to balance accuracy and computational
complexity.

Besides reducing the number of electrons, pseudopotentials can help alleviate another
computational challenge: The exact solutions to the Kohn-Sham equations for the isolated
atom oscillate close to the nucleus, where the wave functions have to be orthogonal to the
wave functions of the core electrons. Thus very dense grids are required to represent the
wave functions in the core region accurately. By including the effect of the core electrons in
the pseudopotential, this orthogonality constraint can be overcome. The atomic potential in
the core region can be modified to smooth wave functions for the valence electrons, thereby
reducing sampling issues.

Hamann et al. [HSC79] proposed a set of conditions that pseudopotentials should satisfy to
improve their transferability:

1. The eigenvalues of all valence electrons are the same for the exact potential and pseu-
dopotential.

2. Outside a chosen core radius (𝑟𝑐 ), all valence electrons wave functions are the same for
the exact potential and pseudopotential

3. For 𝑟 > 𝑟𝑐 the norm
∫ 𝑟

0 |𝜙 (𝑟 ′) |2 dr′ of any valence electron wave functions is the same
for the exact potential and pseudopotential

4. For 𝑟 > 𝑟𝑐 the logarithmic derivatives 𝜕/𝜕𝑟𝑖 (ln𝜙 (r)) of the valence electron wave
functions and their first energy derivatives 𝜕/𝜕𝜖 𝜕/𝜕𝑟𝑖 (ln𝜙 (r)) are the same for the exact
potential and pseudopotential.

Pseudopotentials that fulfill these conditions are called "norm-conserving." Conditions 1 to
3 ensure that the electrostatic potential of the atom is correctly reproduced outside the core
radius, and condition 4 aims to reproduce the scattering properties of the potential well [HSC79].
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A balance needs to be struck between accuracy, transferability, and computational cost, which
is determined by the smoothness of the potential and the number of valence electrons.

In the simplest form, a pseudopotential can be represented by a local function [HJ78], which
must follow 𝑍−𝑛core

|r | in the long-range limit. However, the number of degrees of freedom in the
local form is limited; for example, condition four can generally not be satisfied in the local form
because the derivatives explicitly depend on the angular quantum number 𝑙 of a given orbital.
This shortcoming naturally leads to the formulation of non-local pseudopotentials.

𝑉 𝑃𝑆 ( |r|) = 𝑉𝑙𝑜𝑐𝑎𝑙 ( |r|) +
∑︁
𝑙𝑚

𝛼𝑙 ( |r|)
��𝑌𝑙,𝑚〉〈

𝑌𝑙,𝑚
�� (2.27)

where
��𝑌𝑙,𝑚〉〈

𝑌𝑙,𝑚
�� are the projectors on the spherical harmonics and 𝛼𝑙 are non-local terms

(depending on the angular momentum).

2.7 Basis Set Expansions of the Kohn-Sham States

To finally solve the many-body problem, many implementations expand the lattice periodic
part of Kohn-Sham orbitals in terms of a set of basis functions 𝜙𝑛 .

𝜓𝐾𝑆
𝑖k (r) = 𝑒𝑖k·r

∑︁
𝑛

𝑐𝑛
𝑖k𝜙𝑛 (r) (2.28)

Given that 𝑢𝑖k is periodic by construction, plane waves are a natural choice for the basis
expansion in crystals:

𝜓𝐾𝑆
𝑖,k (r) = 𝑒𝑖k·r

∑︁
K

𝑐𝑖,k(K)𝑒𝑖k·K, (2.29)

where the sum runs over all reciprocal lattice vectors K. In practical implementations, the sum
is truncated using an energy cutoff: |k + K|2/2 < 𝐸cutoff. In the limit of an infinitely large cutoff,
this method is exact for a given exchange-correlation potential; i.e., the numerical accuracy
can be systematically improved by increasing the cutoff. Another advantage of this method is
the orthonormality of the basis set, which simplifies the eigenvalue problem in Equation (2.26).

While plane waves are a natural choice for periodic solids, they are less suited to describe
molecules. Localized basis sets are an alternative commonly used in quantum chemistry to
model molecules. They are composed of functions centered around discrete points in space,
typically around the position of the nuclei. These basis functions are often expressed as the
product of a spherical harmonic 𝑌𝑙,𝑚 and a radial part 𝜙𝑛,𝑙 , and the Kohn-Sham states take the
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form:

𝜓𝐾𝑆
𝑖,k (r) = 𝑒𝑖k·r

∑︁
R𝛼

∑︁
𝑛,𝑙,𝑚

𝑐
𝛼,𝑛,𝑙,𝑚

𝑖,k 𝛷𝛼,𝑛,𝑙,𝑚 (r − R)

= 𝑒𝑖k·r
∑︁
R𝛼

∑︁
𝑛,𝑙,𝑚

𝑐
𝛼,𝑛,𝑙,𝑚

𝑖,k 𝜙𝑛,𝑙 ( |r − R𝛼 | − R)𝑌𝑙,𝑚 (\, 𝜙), (2.30)

where 𝛼 runs over all atoms in the unit cell and R over all lattice vectors. The most com-
mon localized basis set include Slater-type orbitals [Sla30a] (𝜙𝑛,𝑙 ∼ 𝑟 𝑙𝑒−𝛼𝑟 ), Gaussian-type
orbitals [Boy50] (𝜙𝑛,𝑙 (𝑟 ) ∼ 𝑟 𝑙𝑒−𝛼𝑟

2 ), and numerical atomic orbitals [AE73]. Unlike Gaussian and
Slater-type orbitals, numerical atomic orbitals have no closed analytical form. Instead, they are
defined as numerical solutions to the Schrödinger equation for electrons in the (pseudo)potential
of the isolated atom.

Localized basis sets are typically non-orthogonal, which turns Equation (2.26) into a gener-
alized eigenvalue problem, whose complexity is higher than the simple eigenvalue problem
obtained for plane waves.∑︁

𝛼,𝑛,𝑙,𝑚

𝐻𝛽,𝑛′,𝑙 ′,𝑚′;𝛼,𝑛,𝑙,𝑚 (k)𝑐𝛼,𝑛,𝑙,𝑚
𝑖,k = 𝜖𝑖k

∑︁
𝛼,𝑛,𝑙,𝑚

𝑆𝛽,𝑛′,𝑙 ′,𝑚′;𝛼,𝑛,𝑙,𝑚 (k)𝑐𝛼,𝑛,𝑙,𝑚
𝑖,k (2.31)

𝑆𝛽,𝑛′,𝑙 ′,𝑚′;𝛼,𝑛,𝑙,𝑚 (k) =
∑︁

R

〈
𝛷𝛽,𝑛′,𝑙 ′,𝑚′ (r)

��𝛷𝛼,𝑛,𝑙,𝑚 (r − R)
〉

(2.32)

𝐻𝛽,𝑛′,𝑙 ′,𝑚′;𝛼,𝑛,𝑙,𝑚 (k) =
∑︁

R

〈
𝛷𝛽,𝑛′,𝑙 ′,𝑚′ (r)

��h𝐾𝑆k

��𝛷𝛼,𝑛,𝑙,𝑚 (r − R)
〉

(2.33)

The atomic character of the basis orbital results in a much better approximation of the
ground state of molecules and solids than plane-wave basis sets with the same number of basis
functions. The electron configuration of an atom defines a natural (primitive) atomic basis set,
e.g., the electron configuration of carbon is 1𝑠22𝑠22𝑝2. Disregarding the core-electrons (𝑛=1),
which may be included in the pseudopotential, the natural basis set includes one 2𝑠-orbital
(𝑛=2, 𝑙=0) and three 2𝑝-orbitals (𝑛=2, 𝑙=1). This primitive basis is also referred to as a single-Z
basis set. However, the accuracy achieved with single-Z basis sets is often not sufficiently high.
It is, therefore, necessary to increase the variational degrees of freedom and obtain even better
approximations of the charge density by including new basis set orbitals. While plane-wave
basis sets can be systematically expanded to any basis set size, expanding a localized basis
set is more complicated. Possible ways of increasing a localized basis set while maintaining
localization of the basis functions include: adding additional basis functions with modified
radial part (multiple-Z basis sets), adding orbitals with higher angular or primary quantum
numbers (e.g., polarization orbitals), or adding basis functions that are not centered on atoms
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(floating or ghost orbitals). Floating or ghost orbitals are particularly useful for improving
the description of vacuum regions at surfaces or vacancies that might otherwise be poorly
represented by the basis set [Gar+09]. It is often sufficient to place single 𝑠-orbitals in these
regions. Polarization orbitals and multiple-Z basis sets aim to improve the variational degrees
of freedom in the areas already covered by the original basis.

Localized orbitals become particularly attractive when the primitive cell includes large
vacuum regions, for example, when simulating surfaces and low-dimensional nanostructures.
At fixed energy cut-off, the number of plane waves scales proportionally to the lattice vectors.
Therefore, simulating vacuum regions quickly becomes costly. The number of localized basis
sets, on the other hand, is independent of the vacuum region and depends only on the number
of atoms. Localized orbitals are also well suited for scaling calculations up to thousands of
atoms. The shape of the basis orbitals can be optimized to reproduce high-accuracy plane wave
results in a small system using far fewer basis functions. This optimized base set can be used in
larger systems where the chemical environment is similar. Furthermore, localized basis sets are
an ideal basis set modeling quantum transport (Chapter 3).

2.8 The SIESTA Method

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) [Gar+20;
Sol+02] is a method and computer program to perform electronic structure calculations and
ab initio molecular dynamics simulations of molecules and solids. The characteristic feature
of SIESTA is the use of a basis set of strictly-localized numerical atomic orbitals. In addition,
SIESTA uses the Kohn-Sham approach and supports the use of various exchange-correlation
functionals (LDA, GGA, vdW) and norm-conserving pseudopotentials.

2.8.1 Basis Sets in SIESTA

In SIESTA, the basis functions are restricted to a finite sphere with radius 𝑟𝑐 , which can be
different for each orbital. At first, a single-Z basis is constructed by solving the Kohn-Sham
eigenvalue problem for the isolated atom with an additional confinement potential𝑉𝑐𝑜𝑛𝑓 ., which
is flat in the center of the sphere and diverges at 𝑟 𝑙𝑐 .[

− 1
2𝑟

d2

d𝑟 2 𝑟 +
𝑙 (𝑙 + 1)

2𝑟 2 +𝑉 𝑃𝑃
𝑙

(𝑟 ) +𝑉conf .

]
𝜙

1Z
𝑙
(𝑟 ) = (𝜖𝑙 + 𝛿𝜖𝑙 )𝜙1Z

𝑙
(𝑟 ) (2.34)

𝜙
1Z
𝑙
(𝑟 𝑙𝑐) = 0 (2.35)
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Using a hard-well potential to confine the wave functions leads to discontinuous derivatives at
𝑟 𝑙𝑐 [SN89]. Smoother potentials, such as

𝑉conf . (𝑟 ) = 𝑉0
exp

(
−𝑟𝑐−𝑟𝑖
𝑟−𝑟𝑖

)
𝑟𝑐 − 𝑟

, , (2.36)

ensure continuous derivatives and reduce problems in calculating forces and stresses [Jun+01].
The added confinement potential leads to an energy shift 𝛿𝜖𝑙 in the eigenstates of the free atom
concerning the true eigenvalues 𝜖𝑙 . Rather than fixing the same confinement radius for each
orbital, it is often beneficial to choose a common energy shift is often beneficial.

The single-Z basis set can then be extended to a double-Z basis set using different methods.
The default method in SIESTA is called the split-valence method: for each orbital 𝜙1Z (𝑟 ) a
modified orbital

𝜙
2[
𝑙
(𝑟 ) =


𝑟 𝑙 (𝑎𝑙 − 𝑏𝑙𝑟 2) 𝑟 ≤ 𝑟 𝑙𝑠
𝜙1Z (𝑟 ) 𝑟 ≥ 𝑟 𝑙𝑠

, (2.37)

is defined. The split radius 𝑟 𝑙𝑠 is optimized so that the norm of
∫ 𝑟 𝑙𝑠

0 𝜙1Z (𝑟 ) d𝑟 corresponds to a
specific value (typically 0.15), and 𝑎𝑙 and 𝑏𝑙 are chosen so that 𝜙2[

𝑙
and its first derivative are

continuous. The new basis orbital is then given by 𝜙2Z
𝑙
(𝑟 ) = 𝜙1Z

𝑙
(𝑟 ) − 𝜙2[

𝑙
(𝑟 ). This procedure

can be repeated with smaller split norms to create a multiple-Z basis set.
In molecules or solids, the bond formation introduces a deformation of the orbitals. To model

this deformation, polarization orbitals can be added to a multiple-Z basis set to model this
deformation. Polarization orbitals are obtained by solving the eigenvalue problem of an isolated
atom in a small, uniform electric field. In first-order perturbation theory, selection rules imply
that perturbed or polarized orbitals have two components with quantum numbers of angular
momentum 𝑙 ′ = 𝑙 ± 1,𝑚′ =𝑚. Since orbitals with 𝑙 − 1 are most commonly already included in
the basis, only the projection on 𝑙 + 1 needs to be considered and can be added as a new orbital.

The choice of these basis orbitals separates the SIESTA method from other DFT approaches.
The atom-like character of the basis orbitals often means that the number of basis functions
required is smaller compared to other methods [Ang+02; Art+99; Jun+01]. In addition, strict
localization of the orbitals leads to sparse matrices, and sparse methods can be exploited for
efficiency.

2.8.2 Electron spin in SIESTA

SIESTA supports four possible spin configurations: unpolarized, polarized, non-collinear, and
spin-orbit [CC12]. Unpolarized spin calculations do not consider spin degrees of freedom.
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Spin-polarized calculations consider two collinear spin channels for which the Schrödinger
equation decouples. However, spins in condensed matter are not always collinear. For example,
the grounds state of 𝛾-Fe is characterized by a helical spin density wave [SN02], and exchange-
frustration in spin glasses or molecular magnets leads to canting of magnetic moments [Yam+00;
Yam+01; ZKN17]. In these materials, the Schrödinger equation does not decouple, and it has
to be solved using spinor wave functions. Non-collinear and spin-orbit calculations use the
spinor wave function to solve the Schrödinger equation for coupled spin channels. Spin-orbit
calculations differ from non-collinear calculations in two aspects: (1) They use a fully relativistic
Hamiltonian, which includes SO interactions in addition to the Darwin and velocity correction
terms. (2) They impose different symmetries on the Hamiltonian or the density matrix: no
symmetries in the spin-orbit case and spin box hermiticity (𝐴𝜎,𝜎′ = (𝐴𝜎′,𝜎 )∗) in the non-collinear
case [CC12].
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3 Electronic Transport

In pursuit of increasing computing power, memory and transistor densities in electronic devices are

continuously growing and have already reached the classical-to-quantum crossover point. Therefore,

modeling quantum electronic transport is a crucial issue. The quantum mechanical transport

problem generally requires descriptions of infinite, nonperiodic structures under non-equilibrium

conditions. Ground-state electronic structure methods cannot be applied under these circumstances,

and special techniques are required. This chapter introduces the quantum-mechanical transport

problem and describes how it can be solved from the first principles of quantum mechanics.

3.1 Introduction: The Transport Problem

Ohm’s law describes usual macroscopic electron transport: the current (𝐼 ) through a wire is
proportional to the bias (𝑉𝐵) applied to it, and the conductance 𝐺 = 𝐼/𝑉 is proportional to the
cross-section (𝐴), and inversely proportional to the length (𝐿) of a wire.

𝐺 = 𝜎
𝐴

𝐿
. (3.1)

The conductivity 𝜎 is an intrinsic material property, i.e., 𝜎 is independent of the geometry and
dimensions of the wire. However, as electronic devices are scaled to smaller sizes, they enter
into a regime where ohmic behavior breaks down, and quantum phenomena become significant.
Today’s electronic devices are already at the precipice of this limit [Pow08]. To further scale up
the computation power at our disposal, every component of our electronic devices needs to
be scaled down in size even further. Thus, quantum effects are becoming increasingly more
pronounced in electronic devices, and it is essential to develop an understanding of electron
transport based on the first principles of quantum mechanics [Dat95].

The simplest case of a quantum transport system is depicted in Figure 3.1 (a): a one-
dimensional structure consisting of a device that is connected to two reservoirs by two elec-
trodes (left and right). To describe these systems, an explicit quantum mechanical description
of the reservoir is typically neglected because the electrodes tend to be much longer than the
coherence length. For this reason, the reservoir is neglected, and electrodes are treated as
semi-infinite and effectively act as reservoirs Figure 3.1 (b).
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(a)

(b)

(c)

Figure 3.1: Schematic of the quantummechanical transport problem in one dimension. (a) A device
connected by two electrodes (left and right) to a battery or two different reservoirs. (b) Abstraction
of transport setup consisting of the devices and two semi-infinite periodic electrodes. (c) Decompo-
sition of the Hamiltonian of the abstracted transport setup. 𝐻𝐷 contains all interactions within the
device region. 𝐻𝐿𝐷 and 𝐻𝐷𝑅 account for the contact between the devices and the electrodes. 𝐻 0,0

𝐿/𝑅 ,

𝐻
0,1
𝐿/𝑅 and 𝐻 1,0

𝐿/𝑅 describe the interaction within and between the principal layers of the electrodes.

The DFT methods discussed thus far are based on Bloch’s theorem and are, therefore, limited
to periodic or finite systems and cannot be applied to such a transport setup. Moreover,
when modeling electronic transport, it is important to consider non-equilibrium conditions,
i.e., different chemical potentials in the two electrodes that make current flow. Under non-
equilibrium conditions, the usual relation between eigenenergies and occupations does not hold,
and special techniques are required to determine the charge density and other observables.

To solve the transport problem at the atomistic level, it is assumed that the electrodes are
screened from the device region; i.e., the presence of the device does not perturb the electronic
structure of the electrode. To achieve sufficient screening, it is generally required to include
parts of the electrodes inside the device region. Furthermore, the electrodes should be metallic
because the low charge carrier density in semiconductors gives rise to macroscopic electrostatic
screening lengths. Therefore, modeling semiconductor devices exceeds the scope of atomistic
frameworks.
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The Hamiltonian H 2 for such a system can be easily constructed using a basis of strictly
localized orbitals (Figure 3.1 (c))

H =

©«

. . .
. . .

. . .
. . .

. . .
. . .

. . . 𝐻
0,0
𝐿

𝐻
0,1
𝐿

0 0 0 . . .

. . . 𝐻
1,0
𝐿

𝐻
0,0
𝐿

𝐻𝐷𝐿 0 0 . . .

. . . 0 𝐻𝐿𝐷 𝐻𝐷 𝐻𝐷𝑅 0 . . .

. . . 0 0 𝐻𝑅𝐷 𝐻
0,0
𝑅

𝐻
0,1
𝑅

. . .

. . . 0 0 0 𝐻
1,0
𝑅

𝐻
0,0
𝑅

. . .

. . .
. . .

. . .
. . .

. . .
. . .

ª®®®®®®®®®®®®®®®®¬

(3.2)

Here, the electrodes are partitioned into principal layers, interacting only with one previous
section and one following section. Starting from a tight-binding or SIESTA Hamiltonian, the
principal layers can always be constructed by increasing the size of the primitive cell until the
largest interaction range is shorter than the unit cell length. 𝐻 0,0

𝐿
, 𝐻 0,0

𝑅
are the Hamiltonian

matrices of the principal layers of the left and right electrodes, and 𝐻𝐷 the Hamiltonian of the
device region. 𝐻 0,1

𝐿/𝑅 and 𝐻 1,0
𝐿/𝑅 describe the hopping between the principal layers, and 𝐻𝐷𝐿/𝐷𝐿

and 𝐻𝐷𝑅/𝑅𝐷 the contact between the electrodes and the device region. If the electrodes are
sufficiently screened, the interaction at the contact is limited to the first principal layer.

This chapter reviews two approaches for solving the transport problem described by such
a Hamiltonian: the Landauer-Büttiker formalism and the non-equilibrium Green’s function
(NEGF) formalism [Dat95]. Furthermore, the combination of the DFT method (introduced in
Chapter 2) and the NEGF formalism is introduced as a first-principles transport method, and
the implementation of this method in TranSIESTA [Bra+02; Pap+17] is discussed.

A complete review of electronic quantum transport and scattering theory can be found, for
example, in Datta’s "Electronic Transport in Mesoscopic Systems" [Dat95], or Sakurai and
Napolitano’s "Modern Quantum Mechanics" [SN21].

3.2 Landauer-Büttiker Formalism

The Landauer-Büttiker formalism, first conceived by Landauer [Lan57; Lan70] and later gener-
alized to multielectrode systems by Büttiker [Büt+85], is one of the most influential frameworks
for modeling quantum transport. Its view of the transport problem is simple yet effective: The
device region is a scattering potential through which electrons must pass to conduct currents.

2 The usage of calligraphic symbols indicates infinite matrices.
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The transmission and reflection probabilities associated with pairs of incoming and outgoing
wave functions determine the transport properties.

When an incoming wave function from one lead scatters in the potential of the device, the
resulting scattering wave function is a superposition of the incoming, outgoing, and reflected
parts. Inside the left and right leads, the wave function components asymptotically approach
Bloch waves. For an incoming wave from the left electrode, the scattering wave function
satisfies

𝛹𝑠𝑐𝑎𝑡𝑡𝑒𝑟 (𝑧) =

𝑢𝐿
a𝑘
(𝑧)𝑒𝑖𝑘𝑧 +

∫
d𝑘 ′

∑
𝑗 𝑟
𝐿
a𝑘,`𝑘′𝑢

𝐿
`𝑘′ (𝑧)𝑒

−𝑖𝑘′𝑧 𝑧 → −∞∫
d𝑘 ′

∑
𝑗 𝑡
𝐿𝑅
a𝑘,𝑗𝑘′𝑢

𝑅
`𝑘′ (𝑧)𝑒

𝑖𝑘′𝑧 𝑧 → ∞
, (3.3)

where 𝑢 is the normalized lattice-periodic parts of the Bloch waves. |𝑡𝐿𝑅
𝑖𝑘,𝑗𝑘′ |

2 is the probability
that the 𝑖-th eigenstate of the left lead with lattice momentum 𝑘 is transmitted into the 𝑗-th state
of the right lead with momentum 𝑘 ′, and |𝑟𝐿

𝑖𝑘,𝑗𝑘′ |
2 the reflection probability for the same state.

Momentum conservation implies that 𝑡 and 𝑟 are zero unless 𝑘 = 𝑘 ′. Section 3.3 demonstrates
how the scattering matrix can be calculated using Green’s function techniques. Finally, the
transmission function between the left and right electrodes is given by integrating over the
Brillouin zone the sum over all eigenstates of the left and right electrodes with fixed energy:

𝑇𝐿𝑅 (𝜖) =
∬

d𝑘 d𝑘 ′
∑︁
𝑖 𝑗

���𝑡𝐿𝑅𝑖𝑘,𝑗𝑘′ ���2 . (3.4)

However, not all states will participate in electronic transport. For a state to contribute to the
current flowing through a system, the state has to be (a) occupied on the left-hand side and (b)
unoccupied on the right-hand side. The Landauer-Büttiker formalism relates these probabilities
and occupations to the current flowing from the left to the right electrode:

𝐼𝐿𝑅 =
1
𝜋

∫
d𝜖 𝑇𝐿𝑅 (𝜖) (𝑓𝐿 (𝜖) − 𝑓𝑅 (𝜖)) . (3.5)

After the original formulation by Landauer, Büttiker generalized this approach to multi-electrode
systems (Figure 3.2). The currents between any pair of electrodes are expressed in the same
form as in the two-terminal device. The sum over all pairs of current originating in 𝛼 gives the
total current through a lead 𝛼 .

𝐼𝛼,𝛽 =
1
𝜋

∫
d𝜖 𝑇𝛼,𝛽 (𝜖) 𝑓𝛼 (𝜖) −𝑇𝛽,𝛼 (𝜖) 𝑓𝛽 (𝜖) (3.6)

𝐼𝛼 =
∑︁
𝛼

𝐼𝛼,𝛽 (3.7)
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Figure 3.2: Sketch of a setup for 3-electrode transport simulation. The three electrodes are depicted
in three different colors (grey, blue, and red). These electrodes extend infinitely in the direction
indicated by the dots. The striped regions denote the electrode screening regions, which are used
to screen the perturbation of the scattering region. Screening is required to ensure an effective
potential similar to the bulk potential of the electrodes at the edge of the scattering region.

An alternative derivation of the Landauer formula that avoids scattering states and gives a
more intuitive explanation of its origin can be found in "Introduction to Graphene-Based
Nanomaterials" by L.E.F. Foa Torres, S. Roche, and J.-C. Charlier [FRC20].

3.3 Non-Equilibrium Green’s Function Formalism

3.3.1 Green’s Function Transport

The equilibrium Green’s function formalism offers an approach to calculating the charge density
of a generic transport system (Figure 3.2) and determining its transmission probabilities using
Green’s function techniques. In the Green’s function formalism, the degrees of freedom of the
electrodes are eliminated, and the infinite Hamiltonian of the open system is mapped onto a
finite non-hermitian Hamiltonian, which includes the effect of full electrodes as self-energies.
Eliminating the electrodes’ degrees of freedom is possible because the electrodes are assumed to
be bulk-like, i.e., their electronic structure can be determined independently from the presence
of the scattering device.

Before considering its extension to multi-terminal devices, it is instructive first to understand
how the Green’s function formalism works in the two-electrode case. In the Green’s function
formalism, the transport problem defined by the Hamiltonian H in Equation (3.2) is rewritten
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in terms of the retarded Green’s function G𝑅 .

(𝜖+S −H)G𝑅 (𝜖) = 1 , (3.8)

where 𝜖+ denotes lim𝑥→0+ (𝜖 + 𝑖). Equation (3.8) can be rewritten in block matrix form:

©«
𝜖+S𝐿 −H𝐿 𝜖+S𝐿𝐷 −H𝐿𝐷 0
𝜖+S𝐷𝐿 −H𝐶𝐿 𝜖+S𝐷 − H𝐷 𝜖+S𝐷𝑅 −H𝐷𝑅

0 𝜖+S𝑅𝐷 −H𝑅𝐷 𝜖+S𝑅 −H𝑅

ª®®¬
©«
G𝐿 G𝐿𝐷 G𝐿𝑅
G𝐷𝐿 G𝐷 G𝐷𝑅
G𝑅𝐿 G𝑅𝐷 G𝑅

ª®®¬ = 1 , (3.9)

where the superscript 𝑅 for the retarded Green’s function has been removed. In contrast to the
Hamiltonian and the overlap matrix, the blocks G𝐿𝑅 and G𝑅𝐿 of the Green’s function do not
vanish. They describe the scattering between the two electrodes.

The Green’s function formalism approach maps this infinite Hamiltonian onto a finite,
effective Hamiltonian

Heff =
©«
H𝐿 + Σ𝐿 H𝐿𝐷 0

H𝐷𝐿 H𝐷 H𝐷𝑅

0 H𝑅𝐷 H𝑅 + Σ𝑅

ª®®¬ , (3.10)

which includes the effective interaction with electrodes in the form of surface self-energies.
No method is described here to calculate surface self-energies, but various approaches can be
found in the works of Allen [All79a; All79b], Chang and Schulman [CS82], Dy et al. [DWS79],
Galperin et al. [GTN02], Lee and Joannopoulos [LJ81], Sancho et al. [SSR85], Tomfohr and
Sankey [TS02], Umerski [Ume97], and Wu et al. [WCJ94].

The Green’s function matrix G for this effective Hamiltonian can be easily calculated by
inversion.3

G(𝑧) =
(
𝑧S − H − Σ𝐿 (𝑧) − Σ𝑅 (𝑧)

)−1
𝑧 ∈ C (3.11)

Finally, the generalized Fisher-Lee relations [Dat95; FL81] or Lippman-Schwinger equa-
tion [LS50] can be applied to find the scattering matrix.

s(𝑧) = 𝑖Γ1/2
𝐿

(𝑧)G(𝑧)Γ1/2
𝑅

(𝑧), (3.12)

3 The subscript 𝐷 for the device region has been dropped.
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which is directly related to the transmission function,

𝑇 (𝜖) = Tr
{
s(𝜖+)†s(𝜖+)

}
= Tr

{
Γ𝐿 (𝜖+)G(𝜖+)Γ𝑅G†(𝜖+)

}
, (3.13)

where Γ𝐿/𝑅 are the broadening matrices of the leads

Γ𝛼 (𝑧) = 𝑖
[
Σ𝛼 (𝑧) − Σ†

𝛼 (𝑧)
]
. (3.14)

The Green’s function approach to calculating the transmission function can be extended to
two- and three-dimensional transport devices. In these cases, it is important to consider recip-
rocal space sampling, and the procedure described above has to be applied independently for
each point in reciprocal space. Finally, the transmission function is obtained by BZ integration:

𝑇 (𝜖) =
∫
𝐵𝑍

dk Tr
{
Γ𝐿,k(𝜖+)G†

k(𝜖
+)Γ𝑅,k(𝜖+)Gk(𝜖+)

}
(3.15)

Similar to the Landauer-Büttiker formalism, the Green’s function approach formalism can
be applied to devices with an arbitrary number of leads by adding the surface self-energies for
each electrode separately.

Gk(𝑧) =
(
𝑧Sk − Hk −

∑︁
𝔢

𝛴𝔢,k(𝑧)
)−1

. (3.16)

The scattering matrix and transmission function for any pair of electrodes 𝔢 and 𝔢′ are given by

s𝔢,𝔢′,k(𝑧) = 𝜞 1/2
𝔢,k (𝑧)Gk(𝑧)𝜞 1/2

𝔢,k (𝑧) (3.17)

𝑇𝔢,𝔢′ (𝜖) =
∫
𝐵𝑍

dk Tr
{
s𝔢,𝔢′,k(𝜖+)†s𝔢,𝔢′,k(𝜖+)

}
(3.18)

3.3.2 The DFT+NEGF Method

The techniques discussed above describe quantum transport through open quantum systems.
The missing ingredient for a first-principle description of quantum transport is the Hamiltonian
of the transport setup. The calculation of the electrode Hamiltonian is straightforward within
the DFT framework because it is assumed to be bulk-like. However, the Hamiltonian of the
Device and the contact with the electrodes cannot be modeled using DFT. Again, Green’s
function techniques deliver a solution: the electron density of the open quantum system is
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directly related to the lesser Green’s function 𝐺<
k [KB62; Kel65]:

𝜌 =
1

2𝜋

∬
BZ
dkd𝜖G<

k (𝜖)𝑒
𝑖kR . (3.19)

In equilibrium, that is, when the chemical potentials and temperatures of all electrodes are
equal, the lesser Green’s function is proportional to the imaginary part of the retarded Green’s
function [Car+72; Kel65]:

G<
k (𝜖) = −2𝑖 Im

{
G𝑅

k (𝜖)
}
𝑓 (𝜖), (3.20)

where 𝑓 (𝜖) is the Fermi distribution. Under non-equilibrium conditions, this simple relationship
does not hold. Instead, the lesser Green’s function can be expressed in terms of the retarded
Green’s function, and the broadening matrices 𝛤𝔢 [Bra+02; Dat95; HJ96; Roc07]:

G<
k (𝜖) =

∑︁
𝔢

A𝔢,k(𝑧) 𝑓𝔢 (𝜖)𝑒𝑖kR (3.21)

A𝔢,k(𝑧) = Gk(𝑧)𝜞𝔢,k(𝑧)G†
k(𝑧), (3.22)

where A𝔢,k(𝑧) denotes the spectral function of electrode 𝔢, respectively. The occupation in the
electrode is given by the Fermi distribution (𝑓𝔢) with corresponding chemical potential (`𝔢) and
temperature (𝑇𝔢). Lastly, 𝜌 is the non-equilibrium density matrix of the scattering region.

This allows the NEGF formalism to be combined with the DFT method to find self-consistent
solutions for the density matrix. Starting from an initial guess for the density in the scattering re-
gion, the Kohn-Sham Hamiltonian in the scattering region is constructed. Using Equation (3.19),
the density matrix corresponding to this Hamiltonian is calculated. If the initial and final
density matrices coincide within a given threshold, the calculation has converged; otherwise,
the density matrices are mixed to create a new initial density matrix, and the procedure is
repeated until convergence is achieved. A schematic of this procedure is shown in Figure 3.3.

Thus far, the electrodes have been assumed to be in equilibrium. However, the NEGF
formalism also holds when the chemical potentials or the temperatures in the electrodes are
different. The non-equilibrium electron density and the non-equilibrium Hamiltonian can
be predicted from first principles. Using this technique, electronic transport can be modeled
beyond the linear approximation of the Landauer-Büttiker formalism.

𝐼𝔢,𝔢′ =
1

2𝜋

∫
d𝜖

[
𝑓𝔢 (𝜖) − 𝑓 ′𝔢 (𝜖)

]
𝑇𝔢,𝔢′ (𝜖), (3.23)

where 𝑇𝔢,𝔢′ is implicitly dependent on the chemical potential and temperature of all electrodes.
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Figure 3.3: Schematic of the DFT+NEGF. The central self-consistent cycle is shown in dark green.
The initial guess for the densitymatrix (grey) and the electrode self-energy (orange) is only calculated
once. After self-consistency is achieved, the converged density matrix and Hamiltonian can be
post-processed to extract the transmission functions, current or other quantities of the open system.

The DFT+NEGF approach [Bra+02; Roc07; TGW01b] has been implemented in a large
number of codes: gecm [Pal+02], g-fleur [WIB02], smeagol [Roc+05], turbomole [Woh+07],
gdftb [Pec+08], openmx [ONK10], gpaw [CTJ12], gollum [Fer+14], aitranss [Góm21] and
has been used successfully in a wide range of systems [CCS99; JI99; TGW01a]. One such
implementation is TranSIESTA [Bra+02; Pap+17], which is based on the SIESTA method for
simulations of density functional theory. Although there are real-space NEGF formalisms, the
SIESTA method is an ideal starting point for the implementation of the DFT+NEGF approach.
The strictly localized basis sets used in SIESTA make it easy to define the local Hamiltonians
and local Green’s functions considered thus far.

3.3.3 Complex Contour Integration

The Green’s function in Equation (3.16) is analytical on the whole complex plane except for its
poles along the real axis. These poles make the integration over energies in Equation (3.19)
numerically challenging. However, the integral can be simplified under equilibrium conditions
(𝑓𝔢 (𝜖) = 𝑓 (𝜖) for all 𝔢):

𝝆 =
𝑖

2𝜋

∬
BZ
dk d𝜖

[
Gk(𝑧) − G†

k(𝑧)
]
𝑓 (𝜖), (3.24)
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Re{𝑧}

Im{𝑧}

L

C

S

R

Figure 3.4: Example of two closed, complex contours for the integral in Equation (3.24). The circle
contour is composed of three parts: R parallel the real axis with a small, positive imaginary part, L
parallel the real axis with a large complex part, C a circular part connecting to L in the upper-left
quadrant of the complex plane and to R far below the Fermi level. The square contour consists of
three straight line segments. Poles of the Fermi function 𝑧a along the imaginary axis are indicated
by dots.

In this form, it becomes clear that the integrand is analytical and that the integral along the
real axis can be replaced using the residual theorem.∮

d𝜖
[
Gk(𝑧) − G†

k(𝑧)
]
𝑓 (𝜖) = −2𝜋𝑖𝑘𝐵𝑇

∑︁
𝑧a

[
Gk(𝑧a ) − G†

k(𝑧a )
]

(3.25)

In the non-equilibrium cases, i.e., when there are differences in the temperatures or chemical
potentials of the electrodes, the integrand in Equation (3.19) is generally not analytical. In this
case, the residue theorem can only be applied to a part of the integrand. The non-equilibrium
integral can be rewritten as

𝝆 = 𝝆eq
𝔢 +

∑︁
𝔢′≠𝔢

𝜟𝔢,𝔢′ (3.26)

𝝆eq
𝔢 =

𝑖

2𝜋

∬
BZ
dkd𝜖

[
Gk(𝑧) − G†

k(𝑧)
]
𝑓𝔢 (𝜖) (3.27)

𝜟𝔢,𝔢′ =
𝑖

2𝜋

∬
BZ
dkd𝜖A𝔢,k(𝑧)

[
𝑓𝔢′ (𝜖) − 𝑓𝔢 (𝜖)

]
. (3.28)

In this form, the equilibrium part of the density matrix (Equation (3.27)) can still be calculated
using the residual theorem, and the non-equilibrium part (Equation (3.28)) only requires
integration along the real axis. The two occupation functions are equal outside the bias
window from min(`𝔢) to max(`𝔢). Therefore, the integral along the real axis can be limited
to this window, which makes this recast form of Equation (3.19) very suitable for numerical
integration.
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4 Topological Band Theory

and the Z2 Invariant

4.1 Introduction: Topology

Topology is a branch of mathematics concerned with properties of geometric objects that are
invariants under smooth deformations. This concept is most easily exemplified in closed two-
dimensional surfaces embedded in three-dimensional space: By smoothly deforming a sphere,
you can create a variety of shapes, such as a disk or a bowl; by smoothly deforming a doughnut,
you can create a tube or a coffee mug. However, the smooth deformation of a sphere never yields
a doughnut or vice versa. The sphere and the doughnut can be distinguished by the number of
holes in the object (0 for the sphere and 1 for the doughnut). Since integers are discrete and
cannot change smoothly, surfaces with different numbers of holes must be topologically distinct.
On the other hand, surfaces with the same number of holes can be transformed into one another
and are topologically equivalent. This intuitive concept is formalized in the Gauss-Bonnet
theorem [Bon48; GSA70], which states that the integral of the Gaussian curvature over a closed
smooth surface is an integer multiple of 2𝜋 .

In the following sections, we will show how the mathematical concept of topology can be
applied to the band structure of semiconductors and address the physical implications of band
topology. The discussion will be based on the band theory of solids, which is only valid in
the picture of noninteracting electrons, e.g., Kohn-Sham or tight-binding picture. However,
in reality, electrons interact, and the concept of a band structure cannot be invoked. It can be
shown that the concepts discussed in the following apply to systems of interacting electrons,
nevertheless. Such explanations for the applicability of band topology in interacting electron
systems can, for example, be found in "Topological Band Theory and the Z2 Invariant" by
Kane [Kan13] and "Berry Phases in Electronic Structure Theory" by Vanderbilt [Van18].

4.2 The Berry Phase, the Chern Number, and theQuantum Hall

Effect

The band structure of a solid is defined by the Bloch Hamiltonian H(k) or equivalently the
set of eigenvalues 𝜖a (k) and eigenvectors |𝑢 (k)⟩. The set of occupied eigenstates in a gapped
system defines a subspace in the Hilbert space of all wave functions. This can be viewed as an

37



Chapter 4 | Topological Band Theory and the Z2 Invariant

analogy to the closed surface embedded in a higher dimensional space. Topological band theory
aims to identify which subspaces are equivalent under smooth deformation of the underlying
Hamiltonian.

The central concept in band topology is the Berry phase. It is defined as the integral over a
closed loop 𝐶 in reciprocal space:

𝛾𝐶 =

∮
𝐶

dk A = −𝑖
∮
𝐶

dk ⟨𝑢 (k) |∇k |𝑢 (k)⟩, (4.1)

where |𝑢 (k)⟩ is a Bloch state and A = −𝑖⟨𝑢 (k) |∇k |𝑢 (k)⟩ is called Berry connection. The Berry
phase is the phase difference acquired by the Bloch state along the curve 𝐶 during a cyclic
adiabatic process. Unlike the Berry connection, the Berry phase is invariant under gauge
transformation of the Bloch states |𝑢 (k)⟩ → 𝑒𝑖𝜙 (k) |𝑢 (k)⟩. Using Stokes’ theorem, the Berry
phase can be rewritten as a surface integral

𝛾𝐶 =

∫
𝑆

d2k F , (4.2)

where F is the Berry curvature

F = ∇ × A. (4.3)

While the Gaussian curvature describes the change in the tangent space on a surface, the
Berry curvature describes the change in the Hilbert space of the occupied states [Kan13;
Van18]. Similarly to the Gaussian curvature, the integral of the Berry curvature over a closed
two-dimensional space is quantized [Tho+82]:

𝑛 =
1

2𝜋

∫
BZ

d2k F (4.4)

This invariant is called the Chern number or the TKNN invariant. It is directly related to the
integer quantum Hall effect [WK78]: in conventional states of matter, the Chern number is
zero, and in quantum Hall states, it is nonzero. The Chern number equals the integer 𝑛 in the
observed Hall conductance 𝐺𝑥𝑦 = 𝑛𝑒2/ℎ.

4.3 Bulk-Boundary Correspondence

Gapless edge states emerge at the boundary between the integer quantum Hall state and the
vacuum [Hal82]. In contrast to conventional edge states, these edge states are chiral, i.e., they
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move only in one direction along the edge. Furthermore, the absence of counter-propagating
edge states implies that electrons moving through these states cannot backscatter and are
insensitive to disorder. In this way, the chirality of the edge states is the origin of perfectly
quantized electronic conductance in the quantum Hall effect. Such chiral edge states are closely
related to the bulk quantum Hall state’s topology by the bulk-boundary correspondence: while
the number of edge states can change during smooth deformation of the Hamiltonian near
the surface, the difference between the number of left-handed and right-handed edge states is
invariant and always equal to the Chern number [Kan13].

4.4 Time-Reversal Invariance, the Z2 Invariant and theQuantum

Spin Hall Effect

The quantum Hall conductivity, and therefore the Chern number 𝐶 , is odd under the operation
of time-reversal (T𝐶T −1 = −𝐶). On the other hand, the Chern number of a time-reversal
symmetric system has to be time-reversal invariant (T𝐶T −1 = 𝐶) like any observable. This
implies that the Chern number can only be nonzero if the time-reversal symmetry is broken
through an external magnetic field or the magnetic order in the crystal. However, not all
time-reversal-symmetric semiconductors are topological equivalent. The topological invariant
distinguishing these states is the Z2 invariant.

To understand the origin of theZ2 invariant it is essential to recall Kramers’ theorem [Kra30],
which states that the eigenstates of a time-reversal-symmetric Hamiltonian occur in pairs (

��𝜙 𝐼𝑖 〉,��𝜙 𝐼𝐼𝑖 〉
) with the same eigenenergy. The two states are related to each other by the time reversal��𝜙 𝐼𝐼𝑖 〉

= T
��𝜙 𝐼𝑖 〉.

These pairs of states are called Kramers pairs and naturally give rise to a partition of the Hilbert
space of occupied states H into two subspaces linked by time-reversal symmetry:

H = H 𝐼 ∪
{
T

��𝜙 𝐼𝑖 〉 ��� ��𝜙 𝐼𝑖 〉 ∈ H 𝐼
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H𝐼𝐼

. (4.5)

The Chern number for the entire system is given by the sum of the Chern numbers of the
two subspaces 𝐶 = 𝐶𝐼 +𝐶𝐼𝐼 . Since the Chern number of the whole system is zero, the Chern
numbers associated with the two subspaces must be opposites 𝐶𝐼 = −𝐶𝐼𝐼 . It should be noted
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that this partition is not unique: instead of assigning��𝜙 𝐼𝑖 〉 →H 𝐼 and T
��𝜙 𝐼𝑖 〉 →H 𝐼𝐼 (4.6)

it is possible to assign

T
��𝜙 𝐼𝑖 〉 →H 𝐼 and T 2��𝜙 𝐼𝑖 〉 = −

��𝜙 𝐼𝑖 〉 →H 𝐼𝐼 . (4.7)

In other words, the two states forming a Kramers pair can simultaneously swap subspaces.
Since the subspace formed by any Kramers pair is time-reversal invariant, the two individual
states have to carry opposite Chern numbers 𝑐𝐼𝑖 and 𝑐𝐼𝐼𝑖 = −𝑐𝐼𝑖 . As a result, the Chern numbers
of the two subspaces for two different partitions can only differ by multiples of two.

𝐶𝐼 → 𝐶𝐼 − 𝑐𝐼𝑖 + 𝑐𝐼𝐼𝑖 = 𝐶𝐼 − 2𝑐𝐼𝑖 (4.8)

𝐶𝐼𝐼 → 𝐶𝐼𝐼 − 𝑐𝐼𝐼𝑖 + 𝑐𝐼𝑖 = 𝐶𝐼𝐼 + 2𝑐𝐼𝑖 (4.9)

Therefore, the two Chern numbers 𝐶𝐼/𝐼𝐼 are always odd or even, regardless of which partition
is chosen. This is formalized in the definition of the Z2 invariant:

Z2 = (𝐶𝐼 −𝐶𝐼𝐼 ) / 2 mod 2. (4.10)

Two-dimensional materials with Z2 = 1 are called topological insulators.
Topologically protected edge states emerge at the interface between a topological insulator

and a vacuum. Due to time-reversal symmetry, the edge state appears in Kramer pairs. Like in
the integer Hall effect, the number of edge states itself is not a topological invariant, but the
number of Kramers pairs of edge modes modulo 2 is (𝑁𝐾 = Z2 mod 2).

In three-dimensional systems, a single invariant is not enough to characterize the topology
of the ground state wave function. Instead, a set of four invariants [a ; (a𝑥 , a𝑦, a𝑧)] can be used.
These indices are defined in terms of the Z2 invariants of two-dimensional cross-sections of
the reciprocal cell. Each cut is obtained by fixing one component of the 𝑘-vector. The four
indices are defined as

a = 𝛥 (𝑘𝑖 = 0) + 𝛥 (𝑘𝑖 = 0.5) mod 2, (4.11)

a𝑖 = 𝛥 (𝑘𝑖 = 0), (4.12)

where 𝑘𝑖 is in reduced coordinates. A material is called a weak topological insulator if any of
the a𝑖 is nonzero and a strong insulator if a is nonzero.
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5 Superconductivity

The first observation of vanishing resistivity baffled the physics community and sparked a tremen-

dous amount of academic work on the phenomenon of superconductivity. One of the crowning

achievements of this time is the Bardeen, Cooper, and Schrieffer (BCS) theory, a comprehensive

microscopic description capable of explaining many superconducting phenomena. However, a

growing number of superconductors defy the BCS theory today. This chapter outlines different

theories of superconductivity and introduces the semi-empirical Bogoliubov-de-Gennes method for

simulating superconductivity within the DFT framework.

5.1 Introduction: Beyond Normal Metals

Both metals and insulators possess a finite resistivity, which limits the number of electrons
conducted through the material. Resistivity varies between 10−8 Ωm for most metals and
more than 109 Ωm for many insulators. In normal metals, inelastic scattering processes limit
the mobility of electrons and give rise to finite resistivity. With a decrease in temperature,
the number of occupied phonon modes is reduced, and the resistivity of a perfect metal
asymptotically approaches zero. However, the crystal structure of real materials is imperfect,
and impurities, vacancies, and lattice distortions lead to non-vanishing resistivity. However,
in 1911 Onnes discovered that the resistivity of pure mercury below a critical temperature
of 𝑇𝐶 = 4.154 K dropped to zero [Onn11]. This hallmark discovery was the first observation
of superconductivity. Since then, many other superconductors have been discovered, first
in other pure metals (aluminum, lead, niobium) and later in alloys. The number of known
superconducting materials has increased steadily since then. Finding superconductors that can
operate close to room temperature is the primary objective of much of this research.

In addition to a vanishing resistivity below the critical temperature, one observes a few other
characteristic properties:

1. Meissner–Ochsenfeld effect: Up to a critical magnetic field strength 𝐵𝐶 superconductors

completely expel magnetic fields from their interior. This effect was first demonstrated by
Meissner and Ochsenfeld [MO33]. Once the magnetic field strength exceeds 𝐵𝐶 , either
the superconducting phase disappears completely and the magnetic field penetrates the
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sample like any other metal (Type-I superconductors), or the magnetic field starts to pen-
etrate the superconductor in isolated points called vortices leaving the superconductivity
intact (Type-II superconductors). In Type-II superconductors, a second, larger critical
magnetic field strength exists at which the superconducting phase breaks down, and the
sample returns to the normal metallic state.

2. London moment: A rotating superconductor generates a magnetic field whose axis is

perfectly aligned with the rotation axis. This effect was first predicted by Becker et
al. [BHS33] for a superconductor being set into motion. Becker et al. explained that
electrons near the superconductor’s surface, which lag behind rotation, generate this
magnetic moment of the rotating superconductors [BHS33]. Later, London also predicted
that this magnetic moment would arise when an already rotating sample is cooled from the
normal state below the critical temperature [Lon50]. In the normal state, electrons do not
exhibit such a lag, and no magnetic moment is measured. However, as Hildebrandt [Hil64]
showed, the predicted magnetic field sets in at the critical temperature proving London’s
prediction that the initial state of the probe does not affect the final state.

3. Josephson effect [Jos62; Jos74]: In a junction consisting of two weakly coupled supercon-

ductors, a superconducting current can flow between the superconductors without external

electromagnetic fields (DC Josephson effect). A junction with weak coupling can be achieved
by inserting a normal metal or insulator between two superconductors or by creating a
constriction in the superconducting material. If the superconducting current is increased
above a critical current, for example, by applying a bias 𝑉 , a superconducting current
starts to oscillate with the Josephson frequency a = 2𝑒/ℎ 𝑉 (AC Josephson effect).

This chapter briefly reviews different theories of superconductivity and outlines the Bogoli-
ubov-de Gennes (BdG) [Bog58; BTŠ58; De 18] method. The last section demonstrates how the
BdG method can be combined with the DFT to create a semi-empirical framework for simulating
superconductivity based on the first-principles electronic structure. A comprehensive review of
the theories of superconductivity can be found in Bang and Stewart [BS17], Hirschfeld [Hir16],
Schmalian [Sch10], and Sharma [Sha21].

5.2 Theories of Superconductivity

The first phenomenological theory of superconductors was proposed by London and Lon-
don [LL35] and treated electrons as free particles within a metal. Their theory extended the
Maxwell equations by two new equations for superconductors. The London-London theory
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was able to explain the Meissner effect and infinite conductivity. However, the quantitative
agreement of the predicted penetration depths for magnetic fields with experiments was poor.

A few years later, Ginzburg and Landau [GL50] drew an analogy between the superconducting
and second-order ferromagnetic phase transitions. They introduced a superconducting order
parameter called the superconducting wave function. The Ginzburg–Landau theory predicts
a parameter that distinguishes Type-I and Type-II superconductors and arrives at the key
equations of the London-London theory as a special case. Even though the Josephson effect had
not been discovered in 1950, it can still be predicted in the framework of the Ginzburg-Landau
theory [Sha21].

Ginzburg-Landau only described superconductors near the phase transition ((𝑇 −𝑇𝐶 ) ≪ 𝑇𝐶 ),
which limited its applicability deep inside the superconducting phase. The first microscopic the-
ory of superconductivity valid for all temperatures between 𝑇 = 0 and 𝑇 = 𝑇𝐶 was formulated
by Bardeen, Cooper, and Schrieffer (BCS) in their influential article "Theory of Superconductiv-
ity" [BCS57]. The BCS theory was based on Fröhlich’s ideas that electron-phonon processes
are responsible for superconductivity [Frö50]. The BCS theory proposes that interactions
between electrons and virtual phonons lead to an effective, attractive potential for electrons, in
which pairs of electrons form bosonic quasiparticles (Cooper pairs). In superconductors, these
quasiparticles condense into a ground state. The Ginzburg-Landau theory can be derived from
BCS theory as a limiting case near the critical temperature 𝑇𝐶 [Gor59].

5.3 Unconventional Superconductivity

BCS theory has been instrumental in understanding many superconductors. However, some
superconductors exhibit behaviors that are not consistent with BCS theory. These not-BCS-
like superconductors are called unconventional superconductors. The first unconventional
superconductor, CeCu2Si2, was discovered in 1979 by Steglich et al. [Ste+79], followed shortly
after that by the discovery of unconventional organic superconductors in 1980 by Jérome
et al. [Jér+80]. Since then, many other unconventional superconductors have been discovered,
which can be grouped into five categories (except for Sr2RuO4): heavy fermion, cuprate, iron-
based, non-centrosymmetric, and organic superconductors [Ste17].

While Schrodi et al. [SOA21] argue that unconventional superconductivity is a purely elec-
tronic effect, Hirsch and Marsiglio [HM89] proposed a theory based on hole-pairing rather
than electron-pairing. This theory of hole-superconductivity explains the Meissner effect
in unconventional superconductors and predicts a Spin-Meissner effect [Hir08], which has
not been observed yet. Furthermore, hole-superconductivity has been used to understand
high-temperature superconductivity in electron-doped cuperates [AFG10; DG07; Li+19]. How-
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ever, understanding the origins of unconventional superconductivity remains one of the most
important and controversial issues in the field.

5.4 The Bogoliubov-de-Gennes Method

In recent years, fully ab initio methods for superconductivity have been proposed by Lüders
et al. [Lüd+05], Marques et al. [Mar+05], and Sanna et al. [San+18] and [Pav+17, Chapter 16].
These methods go beyond the Born-Oppenheimer approximation and include the nuclei in the
DFT framework. Such ab initio methods can explain conventional phonon-mediated supercon-
ductivity. However, a different approach is required to model unconventional superconductors.

The BdG method is based on a Hartree-Fock-like mean-field approximation of the many-body
Hamiltonian. It assumes that well-defined quasiparticles (Bogoliubons) exist in superconductors.
This assumption allows for the one-particle local density of states (LDOS) of a system to be
easily calculated. Furthermore, the one-particle LDOS can be directly linked to low-temperature
STM experiments probing excitation spectra near interfaces, surfaces, or vortices. Herein lies
one of the strengths of the BdG method. Furthermore, the BdG method goes beyond BCS
theory and can describe multiband effects and treat inhomogeneous superconductors and
interfaces between superconductors and non-superconductors [Zhu16]. Another advantage
of the BdG method is its applicability to unconventional superconductors. The BdG method
uses a semi-empirical parameter to describe the pairing responsible for the emergence of the
superconducting states. This phenomenological parameter does not impose any assumption
about the underlying pairing mechanism, which means that the framework of the BdG method
can be applied to unconventional superconductors [Gyo+98; Tem+96].

Note that the BdG formalism technically only describes the weak-coupling regime, where
the pairing interaction is limited to a small range around the Fermi level. However, it also
yields qualitative results in some cases of systems with strong coupling [Bee97].

The following section follows the derivation of the BdG equation in Zhu [Zhu16]. However,
the assumption that the pairing potential only couples particles with opposite spins is avoided
here to derive the BdG equation in its most general form. In Section 5.4.3, the former case is
discussed as the special case of singlet pairing.
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5.4.1 Mean-Field Approximation of the Many-Body Hamiltonian

In second quantization, the quantum many-body Hamiltonian with a two-particle potential
𝑉eff reads

H =

∫
dr𝜓 †

𝜎 (r)ℎ𝜎𝜎′ (r)𝜓𝜎′ (r)

− 1
2

∬
dr dr′𝜓 †

𝜎 (r)𝜓 †
𝜎′ (r

′)𝑉eff (r, r′)𝜓𝜎′ (r′)𝜓𝜎 (r). (5.1)

where𝜓 †
𝜎 (r) and𝜓𝜎 (r) are the creation and annihilation operators of an electron with spin 𝜎

at position r. ℎ𝜎𝜎′ is a single particle Hamiltonian. The potential 𝑉eff is assumed to be positive,
making the two-particle interaction attractive, and is symmetric under particle exchange
𝑉eff (r′, r) = 𝑉eff (r, r′) = 𝑉eff (r − r′). Equation (5.1) and all the following equations use the
Einstein summation convention. The BCS Hamiltonian has the same form and can be understood
as a special case of Equation (5.1). Therefore, the following derivation applies to BCS theory
and any other type of pairing mechanism based on two-particle interaction.

A mean-field approximation4 of this Hamiltonian yields

HMF =

∫
dr𝜓 †

𝜎 (r)ℎ𝜎𝜎′ (r)𝜓𝜎′ (r)

+ 1
2

∬
dr dr′ (𝛥𝜎𝜎′ (r, r′)𝜓 †

𝜎 (r)𝜓 †
𝜎′ (r

′) + H.c.)

+ 1
2

∬
dr dr′ |𝛥𝜎𝜎′ (r, r′) |2/𝑉eff (r, r′). (5.2)

The pairing potential 𝛥𝜎𝜎′ is given by

𝛥𝜎𝜎′ (r, r′) = −𝑉eff (r − r′)⟨𝜓𝜎′ (r′)𝜓𝜎 (r)⟩

= 𝑉eff (r′ − r)⟨𝜓𝜎 (r)𝜓𝜎′ (r′)⟩ = −𝛥𝜎′𝜎 (r′, r) (5.3)

𝛥𝜎𝜎′ (r, r′)∗ = −𝑉eff (r − r′)⟨𝜓 †
𝜎 (r)𝜓 †

𝜎′ (r
′)⟩ = (𝛥†)𝜎′𝜎 (r′, r) (5.4)

The statistical averages 𝜒𝜎𝜎′ = ⟨𝜓𝜎 (r)𝜓𝜎′ (r′)⟩ are order parameters of the superconducting state.
In the normal state, they vanish. However, in the superconducting state, the terms remain finite.
𝜒𝜎𝜎′ is called the anomalous density in analogy to the normal density 𝑛𝜎𝜎′ = ⟨𝜓 †

𝜎 (r)𝜓𝜎′ (r′)⟩

4 The two operators 𝜓𝜎′𝜓𝜎 and 𝜓†
𝜎𝜓

†
𝜎′ are expressed as a small deviation (𝛿 = 𝜓𝜎′𝜓𝜎 − ⟨𝜓𝜎′𝜓𝜎 ⟩) from their

expectation value and quadratic terms in 𝛿 are neglected:

𝜓
†
𝜎𝜓

†
𝜎′𝜓𝜎′𝜓𝜎 = (⟨𝜓†

𝜎𝜓
†
𝜎′⟩ + 𝛿†) (⟨𝜓𝜎′𝜓𝜎 ⟩ + 𝛿) ≈ ⟨𝜓†

𝜎𝜓
†
𝜎′⟩⟨𝜓𝜎′𝜓𝜎 ⟩ + ⟨𝜓†

𝜎𝜓
†
𝜎′⟩𝛿 + 𝛿†⟨𝜓𝜎′𝜓𝜎 ⟩

≈ ⟨𝜓†
𝜎𝜓

†
𝜎′⟩𝜓𝜎′𝜓𝜎 +𝜓†

𝜎𝜓
†
𝜎′ ⟨𝜓𝜎′𝜓𝜎 ⟩ − ⟨𝜓†

𝜎𝜓
†
𝜎′⟩⟨𝜓𝜎′𝜓𝜎 ⟩
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This mean-field Hamiltonian does not conserve the particle number. Applying HMF to a
state with 𝑁 particles yields a superposition of states with 𝑁 − 2, 𝑁 , and 𝑁 + 2 particles. This
property of the Hamiltonian is a signature of spontaneous breaking of the𝑈 (1) symmetry in the
superconducting state [Zhu16]. Of course, the observable number of particles in the system is
fixed; that is, the statistical average of the particle number operator ⟨N⟩ of the superconducting
ground states is equal to the expectation value of the normal state.

Using the anti-commutation relations{
𝜓𝜎 (r),𝜓 †

𝜎′ (r
′)
}
= 𝛿 (r − r′)𝛿𝜎𝜎′ (5.5){

𝜓𝜎 (r),𝜓𝜎′ (r′)
}
=

{
𝜓 †
𝜎 (r),𝜓 †

𝜎′ (r
′)
}
= 0 (5.6)

and the identities

[𝐴, 𝐵𝐶] = {𝐴, 𝐵}𝐶 − 𝐵{𝐴,𝐶} (5.7)

[𝐴†, 𝐵] = −[𝐴, 𝐵†]† (5.8)

the commutator relations for the field operators and the Hamiltonian can be obtained.[
𝜓𝜎 (r),HMF

]
= − ℎ𝜎𝜎′ (r)𝜓𝜎′ (r) +

∫
dr′𝛥𝜎𝜎′ (r, r′)𝜓 †

𝜎′ (r
′) (5.9)[

𝜓 †
𝜎 (r),HMF

]
= − ℎ∗𝜎𝜎′ (r)𝜓

†
𝜎′ (r) −

∫
dr′𝛥∗

𝜎𝜎′ (r, r′)𝜓𝜎′ (r′) (5.10)

5.4.2 Bogliubov Transformation

To derive the BdG Hamiltonian, the field operators are expanded in terms of orthogonal quasi-
particle operators 𝛾�̃� and 𝛾†

�̃�
, which create and destroy Bogoliubons. In contrast to Cooper pairs,

Bogoliubons are fermionic particles. Bogoliubons diagonalize the mean-filed Hamiltonian5

𝜓𝜎 (r) =
′∑̃︁
𝑛

(𝑢�̃�𝜎 (r)𝛾�̃� + 𝑣�̃�∗𝜎 (r)𝛾†
�̃�
) (5.11)

where ′ indicates that sum of �̃� only runs over the states with positive excitation energy.

HMF = 𝐸0 + 𝐸�̃�𝛾†�̃�𝛾�̃� (5.12){
𝛾�̃�, 𝛾

†
�̃�

}
= 𝛿�̃��̃� (5.13)

5 Many authors use the definition of𝜓𝜎 (r) = (𝑢�̃�𝜎 (r)𝛾�̃� +𝜎𝑣�̃�∗𝜎 (r)𝛾†
�̃�
) for the Bogoliubon operators instead. However,

the spin-dependent prefactor can be absorbed into 𝑣, simplifying the following equations.
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{
𝛾�̃�, 𝛾�̃�

}
=

{
𝛾
†
�̃�
, 𝛾

†
�̃�

}
= 0. (5.14)

Inserting this transformation into Equation (5.9) and comparing the coefficients in front of
𝛾�̃� (or, since the quasiparticle operators are orthogonal, taking the anticommutator with 𝛾�̃�)
produces the BdG eigenvalue problem.

𝐸�̃�

©«
𝑢�̃�↑ (r)
𝑢�̃�↓ (r)
𝑣�̃�↑ (r)
𝑣�̃�↓ (r)

ª®®®®®¬
=

∫
dr′ HBdG(r, r′)

©«
𝑢�̃�↑ (r

′)
𝑢�̃�↓ (r

′)
𝑣�̃�↑ (r

′)
𝑣�̃�↓ (r

′)

ª®®®®®¬
HBdG(r, r′) =

(5.15)

©«
ℎ↑↑(r′)𝛿 (r−r′) ℎ↑↓(r′)𝛿 (r−r′) 𝛥↑↑(r, r′) 𝛥↑↓(r, r′)
ℎ↓↑(r′)𝛿 (r−r′) ℎ↓↓(r′)𝛿 (r−r′) 𝛥↓↑(r, r′) 𝛥↓↓(r, r′)
−𝛥∗

↑↑(r, r
′) −𝛥∗

↑↓(r, r
′) −ℎ∗↑↑(r

′)𝛿 (r−r′) −ℎ∗↑↓(r
′)𝛿 (r−r′)

−𝛥∗
↓↑(r, r

′) −𝛥∗
↓↓(r, r

′) −ℎ∗↓↑(r
′)𝛿 (r−r′) −ℎ∗↓↓(r

′)𝛿 (r−r′)

ª®®®®®¬
(5.16)

5.4.3 Singlet and Triplet Pairing

In BCS theory, the single-particle Hamiltonian ℎ𝜎𝜎′ is diagonal in spin space, and the pairing
potential is symmetric in the two spatial coordinates.

𝛥𝜎𝜎′ (r, r′) = 𝛥𝜎𝜎′ (r′, r) = −𝛥𝜎′𝜎 (r, r′) (5.17)

𝛥 (r, r′) ≡ 𝛥↑↓(r, r′) =
1
2𝑉eff (r − r′)

(
⟨𝜓↑(r)𝜓↓(r′)⟩ + ⟨𝜓↑(r′)𝜓↓(r)⟩

)
(5.18)

𝛥↑↑(r, r′) = 𝛥↓↓(r, r′) = 0 (5.19)

As a result of these symmetries, the mean-field Hamiltonian simplifies to

HBCS =

∫
dr𝜓 †

𝜎 (r)ℎ𝜎𝜎′ (r)𝜓𝜎′ (r)

+ 1
2

∬
dr dr′𝛥 (r, r′)

(
𝜓
†
↑ (r)𝜓

†
↓ (r

′) −𝜓 †
↓ (r)𝜓

†
↑ (r

′)
)
+ H.c.

+ 𝐸const . (5.20)

The second term on the right-hand side contains the creation and annihilation operators for
spin-less, bosonic particles (Cooper pairs). This type of pairing is also called singlet-pairing
because the corresponding particles are spin-less.

As a result of these symmetries, the BdG eigenvalue problem splits into two decoupled
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eigenvalue problems

𝐸�̃�

(
𝑢�̃�↑ (r)
𝑣�̃�↓ (r)

)
=

∫
dr′

(
ℎ↑↑(r′)𝛿 (r−r′) 𝛥↑↓(r, r′)
−𝛥∗

↑↓(r, r
′) −ℎ∗↓↓(r

′)𝛿 (r−r′)

) (
𝑢�̃�↑ (r

′)
𝑣�̃�↓ (r

′)

)
(5.21)

𝐸�̃�

(
𝑢�̃�↓ (r)
𝑣�̃�↑ (r)

)
=

∫
dr′

(
ℎ↓↓(r′)𝛿 (r−r′) 𝛥↓↑(r, r′)
−𝛥∗

↓↑(r, r
′) −ℎ∗↑↑(r

′)𝛿 (r−r′)

) (
𝑢�̃�↓ (r

′)
𝑣�̃�↑ (r

′)

)
. (5.22)

Taking the complex conjugate of Equation (5.22) reveals that the two eigenvalues problems
are equivalent. The eigenvalues and eigenvectors occur in pairs.

𝐸�̃�1 = −𝐸�̃�2 𝑢�̃�1
↑ (r) = −𝑣�̃�2

↓ (r)∗ 𝑣�̃�1
↑ (r) = −𝑢�̃�2

↓ (r)∗ (5.23)

This symmetry of the spectrum and the amplitudes 𝑢 and 𝑣 demonstrates the particle-hole
symmetry of the BCS Hamiltonian.

However, in some unconventional superconductors, supercurrents are spin-polarized. Using
only singlet contributions the superconducting quasiparticles are spin-less and it is necessary
to consider the remaining terms Equation (5.2) to explain this phenomenon. These terms
correspond to the creation and annihilation of spin-triplet states. It is convenient to rewrite the
Pairing potential and the anomalous density in terms of singlet and triplet components:

𝛯𝑆 (r, r′) =
𝛯↑↓(r, r′) −𝛯↓↑(r, r′)

2 𝛯𝑇𝑥 (r, r′) =
𝛯↓↓(r, r′) −𝛯↑↑(r, r′)

2 (5.24)

𝛯𝑇𝑦 (r, r′) =
𝛯↓↓(r, r′) +𝛯↑↑(r, r′)

2𝑖 𝛯𝑇𝑧 (r, r′) =
𝛯↑↓(r, r′) +𝛯↓↑(r, r′)

2 (5.25)

where 𝛯𝜎𝜎′ (r, r′) can be 𝜒𝜎𝜎′ (r, r′), 𝛥𝜎𝜎′ (r, r′), or𝛹𝜎𝜎′ (r, r′) =𝛹𝜎 (r)𝛹𝜎′ (r′). While the singlet
component is symmetric in space the three triplet components are anti-symmetric in space. An
in-depth analysis of crystal, magnetic, and time-reversal symmetries can help identify which of
these four components can contribute to a given system.

Finally, the mean-field Hamiltonian can be rewritten in terms of singlet and triplet compo-
nents:

HMF =

∫
dr𝜓 †

𝜎 (r)ℎ𝜎𝜎′ (r)𝜓𝜎′ (r)

+ 1
2

∬
dr dr′𝛥𝑆 (r, r′)𝛹𝑆†(r, r′) + H.c.

+
∑︁

a=𝑥,𝑦,𝑧

1
2

∬
dr dr′𝛥𝑇a (r, r′)𝛹𝑇a †(r, r′) + H.c.

+ 𝐸const . (5.26)
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The same decomposition can of course be applied to the BdG Hamiltonian as well.

5.4.4 The BdG+DFT Method

Similar to how the magnetic density was used to expand the DFT framework to spin-polarized
systems, Kohn et al. [KGO89] and Oliveira et al. [OGK88] used the anomalous density to extend
the DFT framework to superconductors. The Kohn-Sham Hamiltonian for superconductors has
the form of Equation (5.16).

𝐻KS+BdG =

©«
ℎKS
↑↑ ℎKS

↑↓ 𝛥↑↑ 𝛥↑↓

ℎKS
↓↑ ℎKS

↓↓ 𝛥↓↑ 𝛥↓↓

−𝛥∗
↑↑ −𝛥∗

↑↓ −ℎKS∗
↑↑ −ℎKS∗

↑↓
−𝛥∗

↓↑ −𝛥∗
↓↓ −ℎKS∗

↓↑ −ℎKS∗
↓↓

ª®®®®®¬
(5.27)

ℎKS
𝜎𝜎′ (r, r′; [n, 𝜒]) = −∇2 +𝑉 eff

𝜎𝜎′ (r, r′; [n, 𝜒]) (5.28)

𝑉 eff
𝜎𝜎′ (r; [n, 𝜒]) = 𝑉 ext

𝜎𝜎′ (r) +
∫

dr
𝑛↑↑(r) + 𝑛↓↓(r)

|r − r′ | 𝛿𝜎𝜎′ +
𝛿𝐸𝑥𝑐 (r, r′; [n, 𝜒])

𝛿𝑛𝜎𝜎′
(5.29)

𝛥𝜎𝜎′ (r, r′; [n, 𝜒]) = 𝛥ext
𝜎𝜎′ (r) −

𝛿𝐸𝑥𝑐 (r, r′; [n, 𝜒])
𝛿 𝜒𝜎𝜎′

(5.30)

This approach is an exact theory for describing superconductors. However, like in the case
of normal-state DFT, the issue lies in the unknown exchange-correlation potential. To make
the formalism useful, Kohn et al. [KGO89] suggested rewriting the exchange energy as

𝐸𝑥𝑐 (r, r′; [n, 𝜒]) = 𝐸0
𝑥𝑐 (r; n)

−
⨌

dr dr′dx dx′ 𝜒∗𝜎𝜎′ (r, r′)𝛬𝜎𝜎′ (r, r′, x, x′; [n, 𝜒])𝜒𝜎𝜎′ (x, x′) (5.31)

where 𝐸0
𝑥𝑐 (r; n) is the exchange-correlation potential in the normal state, for which any of the

approximations discussed above can be used. The kernel 𝛬𝜎𝜎′could be calculated based on
a specific coupling mechanism to obtain an ab initio method for superconductivity [Lüd+05;
Mar+05; San+18]. Alternatively, the kernel can be treated as a phenomenological parameter. A
commonly used form of the kernel was proposed by Oliveira et al. [OGK88] and Suvasini and
Gyorffy [SG92]: (a) the kernel is non-zero only inside a well potential around atomic sites and
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vanishes everywhere else

𝛬𝜎𝜎′ (r, r′, x, x′; [n, 𝜒]) =


𝛬𝑖 ( [n, 𝜒])𝛿 (r − r′)𝛿 (r − x)𝛿 (r − x′),

if r, r′, x, and x′ are inside the potential wells at site 𝑖

0, otherwise

(5.32)

and (b) 𝛬𝑖 is not an explicit functional of n and 𝜒 , and only depends on the atomic site.
Now, the functional derivative can be evaluated analytically, and the resulting pairing

potential is given by

𝛥𝜎𝜎′ (r, r′; [n, 𝜒]) = 𝛥ext
𝜎𝜎′ (r, r′) − 𝛬(r, r′)𝜒 (r, r′) . (5.33)

Although the first part of this approximation is unproblematic for superconductors with short
coherence lengths [STG93], the second part makes the BdG+DFT approach semiphenomenolog-
ical and undermines the predictive aspect of DFT. However, it is exactly the phenomenological
parameter that makes the modeling of unconventional superconductors feasible. Once the
underlying mechanisms for unconventional superconductivity have been unveiled, the corre-
sponding kernel can replace the phenomenological approximation.
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6 Implementing Spinor

Transport In TranSIESTA

In this chapter, we present how we implemented support for a non-collinear spin and fully relativistic

calculations in TranSIESTA and the postprocessing code TBTrans. This version of TranSIESTA

(TBTrans) can be found online at https://gitlab.com/nils.wittemeier/ siesta/ -/ tree/ ts-soc (https:

//gitlab.com/nils.wittemeier/ siesta/ -/ tree/ tbtrans-soc-new). A publication of the work presented in

this chapter and the applications of the new code described in Chapter 11 is currently in preparation.

6.1 Electronic spin in the Non-Equilibrium Green’s Function

Formalism

Just like the DFT formalism, the NEGF formalism can be extended to include electronic spin. In
the case of collinear spins, Green’s function, spectral functions, and non-equilibrium density
factorize into independent quantities for each spin channel:

G𝑅
k (𝑧) →

{
G𝑅 ↑

k (𝑧),G𝑅 ↓
k (𝑧)

}
(6.1)

A𝔢,k(𝑧) →
{
A↑

𝔢,k(𝑧),A
↓
𝔢,k(𝑧)

}
(6.2)

𝝆k(𝑧) →
{
𝝆↑

k(𝑧), 𝝆
↓
k(𝑧)

}
(6.3)

The total transmission and the total current are given by the sum of the two spin components.

𝑇𝔢,𝔢′ (𝜖) = 𝑇 ↑
𝔢,𝔢′ (𝜖) +𝑇

↓
𝔢,𝔢′ (𝜖)

=
∑︁
𝜎

∫
𝐵𝑍

d𝑘 Tr
{
𝛤𝜎
𝔢,k(𝑧)𝐺

𝜎†
k (𝑧)𝛤𝜎

𝔢′,k(𝑧)𝐺
𝜎
k (𝑧)

}
(6.4)

𝐼𝔢,𝔢′ = 𝐼
↑
𝔢,𝔢′ + 𝐼

↓
𝔢,𝔢′ =

1
2𝜋

∫
d𝜖

[
𝑓𝔢 (𝜖) − 𝑓𝔢′ (𝜖)

]
𝑇𝜎𝔢,𝔢′ (𝜖) . (6.5)

In the non-collinear case, the two spin channels are not independent and the whole formalism
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has to be extended to a full description with spinor matrices:

G𝑅
k (𝑧) →

(
G𝑅 ↑↑

k (𝑧) G𝑅 ↑↓
k (𝑧)

G𝑅 ↓↑
k (𝑧) G𝑅 ↓↓

k (𝑧)

)
(6.6)

A𝔢,k(𝑧) →
(
A↑↑

𝔢,k(𝑧) A↑↓
𝔢,k(𝑧)

A↓↑
𝔢,k(𝑧) A↓↓

𝔢,k(𝑧)

)
(6.7)

𝝆k(𝑧) →
(
𝝆↑↑

k (𝑧) 𝝆↑↓
k (𝑧)

𝝆↓↑
k (𝑧) 𝝆↓↓

k (𝑧)

)
(6.8)

𝑇𝔢,𝔢′ (𝜖) =
∑︁
𝜎1𝜎2
𝜎3𝜎4

∫
𝐵𝑍

d𝑘 Tr
{
𝛤
𝜎1𝜎2
𝔢,k (𝑧)𝐺†𝜎2𝜎3

k (𝑧)𝛤𝜎3𝜎4
𝔢′,k (𝑧)𝐺𝜎4𝜎1

k (𝑧)
}
. (6.9)

So far TranSIESTA has been able to perform NEGF+DFT calculations with collinear spin
calculations, and we have extended the implementation now to support simulations with
non-collinear spins and spin-orbit coupling as well.

For our new implementation, we have added a set of new modules to the SIESTA code base.
These modules are labeled with the _spinor postfix to indicate that they specifically address
the spinor implementation.

Every TranSIESTA calculation follows the following steps:

1. For every energy point 𝑧 in a given contour and every k point:

a) Calculate the electrode surface self-energy: m_ts_electrode_spinor

b) Calculate the Green’s function and determine the contribution to the density
matrix from current k and energy point: m_ts_fullg_spinor, m_ts_fullk_spinor ,
m_ts_trig_spinor , m_ts_trik_spinor

c) If non-equilibrium conditions, weigh the different contributions to density matrix:
m_ts_weight_spinor

2. Update the SIESTA density matrix: m_ts_dm_update

3. Check convergence and mix density matrix for next iteration: no code change required

4. Repeat

After convergence of the self-consistency cycle TBTrans can be used to extract the trans-
mission, currents, density-of-states, and various other quantities. To have the same analysis
tools available for spinor calculations, we have also extended the capabilities of TBTrans.
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6.1.1 Calculating the Electrode Surface Self-Energy

To calculate the electrode surface self-energy, we use the Sancho-Sancho-Rubio (SSR) algorithm,
an iterative scheme for calculation of surface self-energies by Sancho et al. [SSR85]. This
algorithm requires us to construct the Hamiltonian and overlap matrices for the principal layer
and the corresponding interlayer matrices.

H𝔢
0,0(k) =

∑︁
R⊥

H𝔢
0,0(R⊥)𝑒𝑖kR⊥ S𝔢0,0(k) =

∑︁
R⊥

S𝔢0,0(R⊥)𝑒𝑖kR⊥ (6.10)

H𝔢
0,1(k) =

∑︁
R⊥

H𝔢
0,1(R⊥)𝑒𝑖kR⊥ S𝔢0,1(k) =

∑︁
R⊥

S𝔢0,1(R⊥)𝑒𝑖kR⊥, (6.11)

where the sum runs over all lattice vectors perpendicular to the semi-infinite direction of the
electrode 𝔢. At this stage, we convert the Hamiltonian matrix of the electrodes from their usual
sparse matrix format (Table 6.1) to the dense matrix format in Equation (2.23). A dummy code
for the conversion between the sparse matrix and the dense matrix for a specific k-point can be
found in Listing 1. After determining the k-point matrices, we reuse the existing implementation
of the SSR algorithm, which is agnostic to the difference of spin and orbitals indices. Therefore,
it can be reused completely.

By default, the surface self-energies for all energies and all k-points are calculated during
the initialization of SIESTA, written to a file and later read when needed. Alternatively, the
self-energies can be calculated on demand. The latter option significantly reduces the amount
of disk space used by TranSIESTA. However, calculating the self-energies only on demand,
means that the same calculation must be repeated at every step of the iterative procedure.

6.1.2 Calculating the Green’s Function

To calculate the Green’s function, we first set up its inverse 𝑧Sk − Hk −
∑

𝔢 𝜮𝔢,k(𝑧). For unpo-
larized and collinear spin calculations TranSIESTA supports three inversion methods: full
matrix inversion using (Sca)LAPACK [And+99; Bla+97], block-tridiagonal (BTD) inversion
method [Pap+17], and MUMPS [Ame+01; Ame+19]. For spinor calculations, we have only
implemented support for full matrix inversion using (Sca)LAPACK and the BTD method because
the BTD method is by far the most efficient [Pap+17] and the simplicity of the full inversion
method makes it ideal as a reference.

We convert the Hamiltonian and overlap matrices of the device region for a given k-point
using a similar procedure used to set up the k-point matrices for the SSR algorithm. For the
full inversion method, we set up the inverse Green’s function as a dense matrix and for the
block-tridiagonal inversion method as a sparse matrix. In either case, the matrix is structured
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Unpolarized Collinear non-collinear Spin-orbit

H(:,1) Re{H} Re{H↑↑} Re{H↑↑} Re{H↑↑}
H(:,2) – Re{H↓↓} Re{H↓↓} Re{H↓↓}
H(:,3) – – Re{H↑↓} Re{H↑↓}
H(:,4) – – − Im{H↑↓} − Im{H↑↓}
H(:,5) – – – Im{H↑↑}
H(:,6) – – – Im{H↓↓}
H(:,7) – – – Re{H↓↑}
H(:,8) – – – Im{H↓↑}

Table 6.1: Sparse matrix format for the Hamiltonian and density matrix in SIESTA. The first
dimension corresponds to orbital indices (`, a,R) with non-zero matrix elements, and the second
dimension to real and imaginary parts of the different spin components. The negative sign infront
of the ↑↓ component is motivated by the 𝜎𝑦 Pauli matrix.

1 do ind = 0 ... N_nonzero

2 ! Convert i to orbital indices and the corresponding lattice vector

3 mu, nu, R_vec = convert_indices(ind)

4 kphase = exp(cmplx(0._dp, -dot_product(k_vec, R_vec), dp))

5 Sk(mu,nu) = complex(S(nd), 0._dp, dp) * kphase

6

7 if ( spin%none == .true. ) ! spin-unpolarized

8 Hk(mu,nu) = complex(H(ind,1), 0._dp, dp) * kphase

9 else if ( spin%Col == .true. ) ! collinear spin

10 ! > ispin : spin index currently being addressed

11 Hk(mu,nu) = complex(H(ind,ispin), 0._dp, dp) * kphase

12 else if ( spin%NCol == .true. ) ! non collinear spin

13 Hk(1,mu,1,nu) = complex(H(ind,1), 0._dp, dp) * kphase ! 𝐻
↑↑
`a

14 Hk(1,mu,2,nu) = complex(H(ind,3),-H(ind,4), dp) * kphase ! 𝐻
↑↓
`a

15 Hk(1,mu,2,nu) = complex(H(ind,3), H(ind,4), dp) * kphase ! 𝐻
↓↑
`a

16 Hk(2,mu,2,nu) = complex(H(ind,2), 0._dp, dp) * kphase ! 𝐻
↓↓
`a

17 else ! spin-orbit

18 Hk(1,mu,1,nu) = complex(H(ind,1), H(ind,5), dp) * kphase ! 𝐻
↑↑
`a

19 Hk(1,mu,2,nu) = complex(H(ind,3),-H(ind,4), dp) * kphase ! 𝐻
↑↓
`a

20 Hk(1,mu,2,nu) = complex(H(ind,7), H(ind,8), dp) * kphase ! 𝐻
↓↑
`a

21 Hk(2,mu,2,nu) = complex(H(ind,2), H(ind,6), dp) * kphase ! 𝐻
↓↓
`a

22 end if

23 end do

Listing 1: Dummy code for conversion between sparse matrix format of SIESTA and dense k-point
matrices
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as

𝐴 =

©«

𝐴
↑↑
1,1 𝐴

↑↓
1,1 𝐴

↑↑
1,2 · · ·

𝐴
↓↑
1,1 𝐴

↓↓
1,1 𝐴

↓↑
1,2 · · ·

𝐴
↑↑
2,1 𝐴

↑↓
2,1 𝐴

↑↑
2,2 · · ·

...
...

...
. . .

ª®®®®®®®¬
(6.12)

to keep the matrix bandwidth as small as possible and increase the efficiency of the matrix
inversion method. Subsequently, we add the self-energy to set up the inverse Green’s function
(Listing 2).

6.1.3 Mixing Weights

The choices of the electrode 𝔢 in Eq. 3.26 are all equivalent, making the choice of any electrode
as a reference electrode arbitrary. To reduce numerical errors and avoid this arbitrariness,
TranSIESTA weights the non-equilibrium density matrices calculated for each 𝔢:

𝝆 =
∑︁
𝔢

𝑤𝔢

(
𝝆eq
𝔢 +

∑︁
𝔢′≠𝔢

𝜟𝔢,𝔢′

)
(6.13)

\𝔢 =
∑︁
𝔢′≠𝔢

Var[𝜟𝔢,𝔢′] (6.14)

𝑤𝔢 =
∏
𝔢′≠𝔢

\𝔢′/
∑︁
𝔢′

∏
𝔢′′≠𝔢′

\𝔢′′ . (6.15)

For the spinor implementation of TranSIESTA, we only use the real part of the sum of the
diagonal elements of the spin box of𝜟𝔢,𝔢′ when calculating the weights𝑤𝔢. We omit the spin-box
off-diagonal elements following the same rationale as in Ref. [Bra+02] because the off-diagonal
terms do not affect the charge density.

6.1.4 Parallelization and Scaling

The newly implemented routine use the same to hybrid parallelization as the existing routines:
each MPI task handles a distinct set of energy points, and OpenMP threading is used to speed
up parallelized matrix operations. In Figure 6.1, we show the scaling with the number of MPI
tasks and OMP threads for a test system comprising 816 atoms (11088 orbitals) and a complex
contour containing 256 energy points. The tests were performed using the BTD method (20
blocks; 200 to 720 orbitals each) with bias on a single node composed of 2 sockets holding 128
AMD Rome 7H12 CPUs each. The calculations scale close to perfectly up to 128 MPI tasks and
8 OMP threads. For a larger number of OMP threads the performance scales sub-linear, but

57



Chapter 6 | Implementing Spinor Transport In TranSIESTA

1 ! (1) Full matrix inversion method

2 ! =================================

3 do ind = 0 ... N_nonzero

4 iu, ju = convert_index(ind) ! Convert ind to orbital indices

5 GFinv(1, ju, 1, iu) = Z * Sk(ju,iu) - Hk(1, ju, 1, iu)

6 GFinv(2, ju, 1, iu) = - Hk(2, ju, 1, iu)

7 GFinv(1, ju, 2, iu) = - Hk(1, ju, 2, iu)

8 GFinv(2, ju, 2, iu) = Z * Sk(ju,iu) - Hk(2, ju, 2, iu)

9 end do

10 do iElectrode in 1, nElectrodes

11 off = Electrodes(iElec)%offset ! Position of first electrode orbital in device

12 do jElec, iElec = 1 , Electrodes(iElec)%orbitals()

13 do ii,jj = 1 , 2

14 Gfinv(ii, off+iElec, jj, off+jElec) = El%Sigma(ii iElec, jj jElec)

15 end do

16 end do

17 end do

18

19 ! (2) BTD matrix inversion method

20 ! =================================

21 do ind = 0 ... N_nonzero

22 iu, ju = convert_index(ind) ! Convert ind to orbital indices

23 ! idx_BTD : map from indices i,j onto element in block-tridiagonal matrix

24 GFinv(idx_BTD(2*iu-1, 2*ju-1)) = Z*Sk(ind) - Hk(1, ju, 1, iu)

25 GFinv(idx_BTD(2*iu , 2*ju-1)) = - Hk(2, ju, 1, iu)

26 GFinv(idx_BTD(2*iu-1, 2*ju )) = - Hk(1, ju, 2, iu)

27 GFinv(idx_BTD(2*iu , 2*ju )) = Z*Sk(ind) - Hk(2, ju, 2, iu)

28 end do

29 do iElectrode in 1, nElectrodes

30 off = Electrodes(iElec)%offset ! Position of first electrode orbital in device

31 do jElec, iElec = 1 , Electrodes(iElec)%orbitals()

32 i = 2*iElec - 1

33 j = 2*jElec - 1

34 do ii,jj = 1 , 2

35 Gfinv(idx_BTD(i+ii, j+jj) = El%Sigma(ii, iElec, jj, jElec)

36 end do

37 end do

38 end do

Listing 2: Dummy code for setting up the inverse Green’s function
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Figure 6.1: Performance characterization of TranSIESTA using a Fe/MgO/Fe tunneling junction
with 816 atoms (11088 orbitals)

remains good up to 16 threads. The reported OMP performance characteristics show slightly
better scaling with the number of OMP threads than previously reported [Pap+17]. Improved
scaling results from the larger block sizes in the BTD matrix due to the spin blocks.

6.2 Postprocessing

6.2.1 Spin Channel Projected Transmission

There are several approaches to analyze transport properties by calculating the local density of
states, transmission eigenchannels [PB07], bond-currents [Sol+10] or molecular state projection
transmission [Pap+17]. With these methods, it is possible to gain insight into which states
or regions contribute to the transmission. Similarly, it might be desirable to decompose the
transmission into contributions of different spin channels and transitions between them. In the
collinear spin case, this decomposition arises naturally since all operators are diagonal in spin
space. In the non-collinear case, the spin-up and spin-down transmission can be recovered
discarding the off-diagonal spin terms of the scattering matrix s↑↓ and s↓↑. We can then calculate
the transmission probability between states with the same spin 𝜎 .

𝑇𝜎𝜎𝔢,𝔢′ (𝑧) =
∫

BZ
dk Tr

{
s𝜎𝜎
𝔢,𝔢′,ks𝜎𝜎†

𝔢,𝔢′,k

}
(6.16)

In addition to the spin-up and spin-down transmission, we might also find a non-zero
probability for transmission between states with opposite spins

𝑇𝜎𝜎
′

𝔢,𝔢′ (𝑧) =
∫

BZ
dk Tr

{
s𝜎𝜎

′

𝔢,𝔢′,ks𝜎
′𝜎†

𝔢,𝔢′,k

}
(6.17)
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Such spin-flip transitions are possible because the Green’s function matrix couples the different
spin channels. The total transmission can be recovered as the sum of spin-up and spin-down
and spin-flip transmissions.

𝑇 total
𝔢,𝔢′ = 𝑇

↑↑
𝔢,𝔢′ +𝑇

↑↓
𝔢,𝔢′ +𝑇

↓↑
𝔢,𝔢′ +𝑇

↓↓
𝔢,𝔢′ (6.18)

More generally, we might be interested in the transmission probability between states with
spin (up or down) along an axis ®𝑛 in electrode 𝔢 and along axis ®𝑚 in electrode 𝔢′. We can easily
generalize the spin-projected transmission function to the case of arbitrary polarization axes

𝑇
𝜎 ®𝑛,𝜎′ ®𝑚
𝔢,𝔢′ (𝑧) =

∫
BZ
dk Tr

{
⟨𝜎 ®𝑛 |s†

𝔢,𝔢′,k |𝜎
′ ®𝑚⟩⟨𝜎 ′ ®𝑚 |s𝔢,𝔢′,k |𝜎 ®𝑛⟩

}
(6.19)

where |𝜎 ®𝑛⟩ is the eigenstate of the spin operator oriented along ®𝑛 with eigenvalues 𝜎 , that is,
𝜎 |𝜎 ®𝑛⟩ = (∑𝑖=𝑥,𝑦,𝑧 𝑛𝑖�̂�𝑖) |𝜎 ®𝑛⟩.

Instead of implementing Equation (6.19) directly and constructing the scattering matrices,
we define the spin projected broadening matrix and the spin projected spectral density matrix.

Γ𝔢,k(𝑧)𝜎 ®𝑛 = Γ𝔢,k(𝑧)
1
2 |𝜎 ®𝑛⟩⟨𝜎 ®𝑛 |Γ𝔢,k(𝑧)

1
2 (6.20)

A𝔢,k(𝑧)𝜎 ®𝑛 = Gk(𝑧)Γ𝔢,k(𝑧)𝜎 ®𝑛G†
k(𝑧) (6.21)

We can then rewrite the spin projected transmission as

𝑇
𝜎 ®𝑛,𝜎′ ®𝑚
𝔢,𝔢′ (𝑧) =

∫
BZ
dk Tr

{
Γ𝔢,k(𝑧)𝜎 ®𝑛A𝔢′,k(𝑧)𝜎

′ ®𝑚
}

(6.22)

To calculate the spin-projected broadening matrices Γ𝜎 ®𝑛 , we (1) diagonalize Γ to obtain the
eigenvalues 𝑑𝑖 and the eigenvectors matrix 𝑣 (𝑣†

𝑗
Γ𝑣𝑖 = 𝑑𝑖𝛿𝑖 𝑗 ), (2) construct the matrix square

root of Γ (Γ1/2
𝑖 𝑗

=
∑
𝑘 (𝑣𝑘 )𝑖

√
𝑑𝑘 (𝑣𝑘 )∗𝑗 ), and (3) calculate the triple matrix product Γ1/2 |𝜎 ®𝑛⟩⟨𝜎 ®𝑛 |Γ1/2.

We also explored an alternative approach to calculating the spin-channel projected transmis-
sion, following the same strategy employed to define the molecular state projection transmis-
sion [Tod02]. Instead of projecting the broadening matrices 𝛤𝔢 onto molecular eigenstates, we
project them onto different spin channels. In this light, we can define the transmission between
a spin channel ®𝑛 in electrode 𝔢 and a spin channel ®𝑚 in electrode 𝔢′ as

𝑇
𝜎 ®𝑛,𝜎′ ®𝑚
𝔢,𝔢′ (𝑧) =

∫
BZ
dk Tr

{
⟨𝜎 ®𝑛 |Γ𝔢,k(𝑧) |𝜎 ®𝑛⟩⟨𝜎 ®𝑛 |Gk(𝑧) |𝜎 ′ ®𝑚⟩

⟨𝜎 ′ ®𝑚 |Γ𝔢′,k(𝑧) |𝜎 ′ ®𝑚⟩⟨𝜎 ′ ®𝑚 |G†
k(𝑧) |𝜎 ®𝑛⟩

}
. (6.23)
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If the spins in both electrodes are collinear and aligned with the projection axes ®𝑛 and ®𝑚,
then the projector and the broadening matrix commute, and both approaches are equivalent.
However, if the electrode states at a given energy are not collinear, the resulting transmission
is incorrect. In Chapter 11, we will see an example of this. Therefore, the latter approach is
generally not applicable in fully relativistic calculations. It can find applications in calculations
where both electrodes are perfectly collinear and non-collinear effects occur only in the scatter-
ing region. Directly projecting the broadening matrix is less computationally demanding than
the first approach because it avoids diagonalizing the broadening matrix. However, in most
cases the number of electrode orbitals is small compared to the scattering device and in these
cases diagonalizing the broadening matrix will not affect the computing time significantly. For
these reasons, we have enabled the scattering matrix approach as the default way of calculating
spin channel projected transmissions.
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7 Implementing

Superconductivity in SIESTA

In this chapter, we present how we implemented the BdG+DFT method in SIESTA. The initial

implementation of the method was performed by Gabor Csire in the group of Prof. Pablo Ordejón

at ICN2, Barcelona. The completion, parallelization, and improvement of this implementation

is an ongoing collaborative effort with the group of Prof. Zeila Zanolli at the University of

Utrecht. The development version of Siesta with support for BdG calculations can be found online

at https://gitlab.com/nils.wittemeier/bdg-siesta/ -/ tree/bdg-future. A publication of the work

presented in this chapter and its applications to a selected test systems is currently in preparation.

7.1 The BdG Equation for Localized Basis Sets

In order to implement the BdG method in Siesta, we need to rewrite the BdG equation
(Equation (5.16)) in terms of the localized basis sets. Since we will use periodic boundary
conditions, we first expand the Bogoliubon amplitudes 𝑢�̃�𝜎 and 𝑣�̃�𝜎 in terms of Bloch waves

𝑢�̃�𝜎 (r) = 𝑢𝑛k
𝜎 (r)𝑒𝑖kr 𝑣�̃�𝜎 (r) = 𝑣𝑛k

𝜎 (r)𝑒𝑖kr (7.1)

and then expand the Bloch wave in terms of a localized basis set 𝜙a .

𝑢𝜎
𝑛k(r) =

∑︁
Ra

𝑢a𝜎
𝑛k𝜙a (r − R) (7.2)

𝑣𝜎
𝑛k(r) =

∑︁
Ra

𝑣a𝜎
𝑛k𝜙a (r − R) (7.3)

where the sum runs through all lattice vectors R and all orbitals a within the unit cell.

To obtain the BdG equation for localized basis sets, we insert these identities in Equation (5.16),
multiply the equation from the left with 𝜙∗

` (r)𝑒−𝑖kr and integrate over r. Furthermore, we
assume that the pairing potential 𝛥 (r, r′) and the anomalous density 𝜒 (r, r′) are local, that
is, 𝛥 (r, r′) = 𝛥 (r)𝛿 (r, r′) and 𝜒 (r, r′) = 𝜒 (r)𝛿 (r, r′). The assumption of locality drastically
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simplifies the calculations and is therefore widely applied [Csi+18; Csi17; RB22a; RB22b; STG93].

𝐸𝑛k

∑︁
R

𝑒𝑖kRS`a (R)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S`a (k)

©«
𝑢𝑛k
a↑
𝑢𝑛k
a↓
𝑣𝑛k
a↑
𝑣𝑛k
a↓

ª®®®®®¬
=

∑︁
R

𝑒𝑖kRHBdG
`a (R)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
HBdG
`a (k)

©«
𝑢𝑛k
a↑
𝑢𝑛k
a↓
𝑣𝑛k
a↑
𝑣𝑛k
a↓

ª®®®®®¬
(7.4)

where

S`a (R) =
∫

dr𝜙` (r)𝜙a (r − R)14 = 𝑠`a (R)
©«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®®®¬
(7.5)

HBdG
`a (R) =

∫
dr𝜙` (r)HBdG(r)𝜙a (r − R)

=

©«
ℎ`↑a↑(R) ℎ`↑a↓(R) 𝛥`↑a↑(R) 𝛥`↑a↓(R)
ℎ`↓a↑(R) ℎ`↓a↓(R) 𝛥`↓a↑(R) 𝛥`↓a↓(R)
−𝛥∗

`↑a↑(R) −𝛥∗
`↑a↓(R) −ℎ∗

`↑a↑(R) −ℎ∗
`↑a↓(R)

−𝛥∗
`↓a↑(R) −𝛥∗

`↓a↓(R) −ℎ∗
`↓a↑(R) −ℎ∗

`↓a↓(R)

ª®®®®®¬
(7.6)

ℎ`𝜎a𝜎′ (R) =
∫

dr𝜙` (r)ℎ𝜎𝜎′ (r)𝜙a (r − R) (7.7)

𝛥`𝜎a𝜎′ (R) =
∫

dr𝜙` (r)𝛥𝜎𝜎′ (r)𝜙a (r − R) . (7.8)

7.2 Solution Methods

BdG calculations are always performed on top of fully relativistic calculations and can currently
not be performed on top of collinear spin or spin-unpolarized calculations. We implemented
three different solution methods for BdG calculations, which treat self-consistency at different
levels:

1. One-shot method: Performs a normal state DFT calculation to find self-consistent ℎ and
𝑛. After convergence, we switch from a normal spinor calculation to a Nambu spinor
calculation to calculate bands, density-of-states, and other quantities in the analysis phase
of siesta. At this stage, the pairing potential is used exactly as specified in the input
file. This method has significantly lower computational cost compared to the fixed-𝛥

and fixed-𝛬 methods (see below), which have two times more wave functions and two
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times more coefficients per wave function. However, the assumption behind the one-shot

method is that the perturbations of ℎ and 𝑛 are negligible. This may be true for very small
pairing potentials 𝛥. In general, it is well suited to test the effects of different choices of
𝛥, but users are advised to double-check the results obtained with this method with one
of the more advanced methods.

2. Fixed-𝜟 method: Performs a calculation with Nambu spinors6 . At every step of the
self-consistent cycle, the normal part (ℎ) of the BdG Hamiltonian and the normal density
𝑛 are updated. The pairing 𝛥 is kept constant throughout the calculation. The Fermi
level is shifted to zero at the beginning of the calculation and is not updated. This means
that fixed-𝛥 does not take into account particle conservation. Technically, the Fermi level
could be updated to keep the number of the particles 𝑁elec = Tr{𝑛S} fixed. However, the
pairing potential 𝛥 is typically a small perturbation, and the change in the number of
particles is multiple orders of magnitude lower than the total number of particles.

3. Fixed-𝜦 method: Performs a calculation with Nambu spinors, and updates ℎ, 𝑛, 𝛥, and
𝝌 at every step using 𝛥 (r, r′) = 𝛬(r, r′)𝜒 (r, r′). This method is an implementation of the
full, self-consistent BdG method, excluding particle conservation. Just like the fixed-𝛥

method, this method pins the Fermi level to 0 eV and does not update it.

7.3 Code Structure

Most routines specific to BdG calculations have been isolated in a new module ( m_bdg ). This
module contains routines for

1. Parsing BdG-specific input flags; called only once, during initialization.

2. Documenting all BdG-specific options in the output file, including options not changed
in the input file; used only once, during initialization.

3. Setting up the initial guess of 𝛥; used only once during the preparation of the first SCF step.

4. Calculate and print anomalous charges

𝝌𝛼eff = tr
{
S𝝌𝛼out

}
6 The Nambu spinor is extension of the Dirac spinor. It describes a four-component (particle-hole + half-integer

spin) wave function.
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and effective pairing amplitudes.

𝜦𝛼eff = tr
{
S𝜟𝛼in

}
/𝝌𝛼eff

for the singlet, and three triplet channels (𝛼 ∈ {S,Tx,Ty,Tz}) at every SCF step for

monitoring purposes.

5. Clean-up of BdG-specific data; used during general clean-up, immediately before the code

exits.

During the initialization of Siesta sparse arrays are allocated to store 𝛥 and the anomalous
density 𝝌 for the current and the previous SCF step in the same format as all quantities of the
normal state. In the fixed-𝛬 method additional memory is allocated to store 𝛬 as a grid quantity.

7.3.1 Updating the Pairing Potential

In order to update the pairing potential 𝛥 in the local pairing approximation (Equation (5.33)),
we need to extract 𝜒 from 𝑢 and 𝑣 at every SCF step. In contrast to the Hamiltonian, we define
the matrix elements of 𝜒 with respect to the dual basis 𝜙` .

𝜙` (r) =
∑︁

R

(S−1)`a (R)𝜙a (r − R) (7.9)∫
dr𝜙` (r)𝜙a (r − R) = 𝛿`a𝛿 (R) (7.10)

First, we rewrite the anomalous density in terms of the Bogoliubon amplitudes 𝑢 and 𝑣 and
expand them in the basis of localized orbitals.

𝜒𝜎𝜎
′ (r, r′) = ⟨𝛹𝜎 (r)𝛹𝜎′ (r′)⟩

= 𝜙a (r)
′∑︁
𝑛

(
𝑢a𝜎
𝑛k 𝑣

`𝜎′∗
𝑛k 𝑓 (−𝐸𝑛k)𝑣a𝜎∗

ak 𝑢
`𝜎′

𝑛k 𝑓 (𝐸
𝑛k)

)
𝜙` (r′) (7.11)

where we used Equation (5.14) and the statistical averages
〈
𝛾 �̃�𝛾�̃�

〉
= 0 and

〈
𝛾 �̃�†𝛾�̃�

〉
= 𝛿�̃��̃� 𝑓 (𝐸�̃�).

Finally, we obtain the matrix elements

𝜒`𝜎a𝜎
′
=

∬
dr dr′𝜙` (r)𝜒 (r, r′)𝜙∗

a (r′)

=

′∑︁
𝑛

𝑢
`𝜎

𝑛k 𝑣
a𝜎′∗
𝑛k 𝑓 (−𝐸𝑛k) + 𝑣`𝜎∗

𝑛k 𝑢
a𝜎′

𝑛k 𝑓 (𝐸
𝑛k) . (7.12)
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This shows how defining the anomalous density matrix with respect to the dual basis makes
it easy to calculate 𝜒`𝜎a𝜎′ directly from 𝑢 and 𝑣. Using the matrix elements with respect to
the direct basis would require a triple matrix product 𝜒`𝜎a𝜎′ = 𝑆`𝛼 𝜒𝛼𝜎𝛽𝜎

′
𝑆𝛽a and calculation

𝜒 (r, r′). More importantly, this definition makes it possible to convert the matrix 𝜒`𝜎a𝜎′ to 𝜒
in real space.

𝜒 (r, r′) = 𝜙a (r)𝜒`𝜎a𝜎
′
𝜙` (r′) (7.13)

Doing the same transformation starting from 𝜒`a , would require calculating the inverse of the
overlap matrix, which cannot be done exactly for periodic crystals, and is the resulting matrix
would no longer be sparse. In Siesta the electron density matrix is defined equivalently to
avoid similar issues when calculating the electrostatic and exchange-correlation terms of the
Hamiltonian from the real-space charge density. Thus, our treatment of the anomalous density
matrix is consistent with the existing code base. In BdG calculations, we write the electron
density matrix as

𝑛`𝜎a𝜎
′
=

′∑︁
𝑛

𝑢
`𝜎∗
𝑛k 𝑢

a𝜎′

𝑛k 𝑓 (𝐸
𝑛k) + 𝑣`𝜎

𝑛k𝑣
a𝜎′∗
𝑛k 𝑓 (−𝐸𝑛k) . (7.14)

We remind ourselves that 𝑛 only runs over states with positive excitation energy, and therefore
the contribution of the second term vanishes at zero temperature. Furthermore, with the
vanishing pairing potential 𝛥 = 0, the amplitudes satisfy 𝑣`𝜎 = 𝑢`𝜎∗ and we again arrive at the
usual expression for the electron density matrix.

𝑛`𝜎a𝜎
′
=

∑︁
𝑛

𝑢
`𝜎∗
𝑛k 𝑢

a𝜎′

𝑛k 𝑓 (𝐸
𝑛k) (7.15)

Equation (7.12) and Equation (7.14) are implemented in diagbk and diagbkp . We have
implemented the transformation between 𝜒`a and 𝜒 (r, r′) in chiofd , the real-space product
_(r, r′)𝜒 (r, r) and the calculation of the matrix elements 𝛥`a in dhbgdscf .

7.3.2 Solving the Eigenvalue Problem

The energy scale of the superconducting gap is typically significantly smaller than the electronic
and spin energy scales. Describing materials at these small energy scales requires very dense
grids in reciprocal space and very small electronic temperatures. Additionally, the matrix
dimension are a factor of two larger compared to normal spinor calculations and a factor of
four larger compared to spin-unpolarized calculations. Due to the cubic scaling of matrix
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diagonalization with the matrix size and the necessity of dense grids, BdG+DFT calculation
are computationally demanding and efficient parallelization strategies are indispensable. We
introduce two new routines to solve the eigenvalue problem and construct the new normal and
anomalous density for calculations with Nambu spinors ( diagbk , which is parallelized over
orbitals and diagbkp , which is parallelized over k points). These routines are structured in the
same way as the diagonalization routines for normal spinor or non-spinor calculations: for every
k point H(k) and S(k) are calculated by Fourier transforming the sparse real-space matrices
H(R) and S(R). Then the corresponding eigenvalues and occupation levels are calculated. On
the basis of the occupations, the minimal number of eigenvectors required to construct the
normal and anomalous density is determined. Finally, the eigenvectors are calculated and the
normal and anomalous density is constructed. In Siesta, the sparse matrices like H(R) are
distributed over MPI tasks. To perform the calculation in parallel over multiple k points, we
gather the distributed parts of the sparse matrices on each MPI task at the beginning of the
diagonalization routine. At the end of the routine, we need to sum the contribution to n and 𝝌

calculated by each MPI task and again distribute the final matrices. Similarly to diagbk and
diagbkp , we implement two more routines that solve the eigenvalue problem and subsequently
calculate the projected density of states (PDOS) ( pdosbk and podsbkp ).

7.3.3 Input Options

For BdG calculations, we introduce a set of new input flags and options. So far, SIESTA has
recognized four different spin configurations: unpolarized (no spins), collinear spins, non-

collinear spins, and spin-orbit (fully relativistic calculations). Now, we introduce a new option
Nambu, which enables BdG+DFT calculations.

To specify the initial pairing potential, we added new input blocks that allow users to specify
whether to use singlet or triplet pairing, its strength, and its complex phase. With these blocks,
𝛥 can be specified on an orbital-by-orbital basis, including options to select the ranges of
orbitals in a single line. In the case of triplet pairing, the values for each spin channel can be
defined separately. This input format allows for maximum flexibility and a combination of
multiple pairing options to create any imaginable electron-hole pairing. In the same format,
the pairing amplitude 𝜦 can be specified orbital-by-orbital for each pairing channel.

The user can specify convergence criteria can for the 𝜟 and 𝝌 , in addition to the usual
criteria. At every SCF, the code will check whether the maximum change in all matrix elements
is below the threshold if the convergence check is activated.
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7.4 Tests

In order to verify the validity of our implementation we study two test systems: bulk lead (Pb)
and bulk iron selenide (FeSe).

7.4.1 Bulk lead (Pb)

Bulk Pb is a conventional s-wave superconductor where the pairing potential arises from
electron-phonon interactions [Hei+10; Sir+16; Skl+12]. The superconducting gap of lead is
U-shaped, that is, the density of states inside superconducting gap is flat. It rises sharply at the
edge of the gap [Lyk+71]. The size of the superconducting gap has been measured between 4.6
and 5 meV depending on the crystal orientation [BM69; Lyk+71].

Based on this knowledge, we use a singlet-pairing potential with a strength of 2.5 meV (half
of the gap size) to model the superconducting state of Pb. We assume that this potential is
uniform and isotropic, i.e., in matrix form the pairing potential can be written as

𝛥`a (R) = 2.5 meV
(

0 𝑠`a (R)
−𝑠`a (R) 0

)
(7.16)

and perform a one-shot calculation to obtain the density of states for the superconducting phase
of Pb. The resulting superconducting gap has a U-shape and is approximately 2 meV wide
(Figure 7.1 (a)). The coherence peaks at the edge of the gap are sharp and the density of states
forms a small plateau right next to these peaks. All of these aspects are consistent with previous

(a) Pb (b) FeSe

Figure 7.1: Density of states of bulk a conventional (lead, panel (a)) and an unconventional (iron
selenide, panel (b)) superconductor calculated with the BdG+DFT method assuming isotropic
pairing (𝛥 = 2.5 meV and 3 meV, respectively). The simulations reproduce the size and shape of
experimentally observed superconducting gap [Lyk+71] and [Kas+14], respectively.
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measurements [Lyk+71]. The superconducting gap is 0.5 meV smaller than the experimentally
observed gap, which indicates the limits of using a phenomenological parameter 𝛥.

7.4.2 Bulk iron selenide (FeSe)

The origin and character of FeSe and other high-temperature iron-based superconductors
remain unclear. However, research thus far suggests that FeSe is unconventional, d-wave
superconductor [Bae+15; Mas+16; PG10] driven by pairing interaction in 3𝑑𝑥𝑧 and 3𝑑𝑦𝑧 orbitals
of iron [Zha+15]. Unlike Pb, the superconducting gap of FeSe is V-shaped and approximately
5 meV wide [Kas+14]. Again, we use a uniform isotropic pairing potential to model the super-
conducting state in FeSe. Despite this simple guess, the correct shape of the superconducting
gap emerges from our calculations (Figure 7.1 (b)). This suggests that orbital symmetries
and the electronic structure near the Fermi level are sufficient to explain the V-shape of the
superconducting gap.

We limit the pairing interaction to specific orbitals to analyze further the role of different
orbitals in opening the superconducting gap. Among the Fe(3𝑑) orbitals, we observe that a
pairing potential applied to the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals opens a V-shaped gap (Figure 7.2). The

Figure 7.2: Density of states of iron selenide for different pairing potentials calculated with the
BdG+DFTmethod. Each subplot shows the density of states a pairing potential limited to a different
Fe-𝑑 orbital (𝛥𝑑a = 3 meV). The superconducting gap only emerges if the pairing potential is applied
to the 𝑑𝑥𝑧 or 𝑑𝑦𝑧 orbitals.
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superconducting gap is smaller than the one obtained with isotropic pairing because the pairing
interaction is limited to a subset of all orbitals, reducing the pairing potential’s average strength.
No superconducting gap emerges if the pairing interaction is restricted to any of the other
Fe(3𝑑) orbitals. Similarly, no gap is observed if the pairing potential is restricted to any other
shell or Se orbitals. This is consistent with previous analysis of the superconducting state in
FeSe, which suggested that the electron and hole pockets formed by 𝑑𝑥𝑧 and 𝑑𝑦𝑧 bands are
responsible for the superconducting state [Zha+15].

7.4.3 Computational Details

For the lead simulation, we solve the KS-equations using an electronic temperature of 0.1 meV,
a 24×24×24 grid, and a mesh cut-off of 500 Ry. For the simulation of FeSe, we employ an
electronic temperature of 0.5 meV, a 29×29×29 grid for the sampling of reciprocal space, and
a mesh cut-off of 1300 Ry. In both cases, the simulations are performed with PBE [PBE96]
functional and norm-conserving pseudopotentials from the Pseudo-Dojo database [van+18].
The density of states is sampled on much denser grids in order to obtain sufficient resolution at
the meV scale: 120×120×120 k points for lead and 480×480×120 k points for iron selenide.

Experimental evidence suggests that FeSe does not possess long-range magnetic order. Even
at low temperatures (4 K), spin fluctuations are significant [Wan+16]. These fluctuations occur
primarily between two magnetic phases: Néel (or checkerboard) and staggered dimer. Due to
the periodic boundary conditions, simulating such a nematic phase would require very large
supercells. Instead, we only report results for the Néel magnetic structure with the smaller
unit cell. In this magnetic structure, the magnetic moments of neighboring iron atoms are
antiparallel.

The simulations presented here were performed with the one-shot method, which is already
sufficient to obtain qualitatively correct results for the superconducting gap of Pb and FeSe.
Using the fixed-𝛥 method for FeSe, we observe no qualitative changes in the density of states
and therefore refrain from showcasing them here. A comparison to the fixed-𝛬 method is
impossible because we are still finalizing this implementation at the time of writing. A detailed
comparison between the different solution methods will be included in our future publication
of this method.
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We have designed a set of scripts to calculate and visualize the spin texture of different materials

based on sisl, a library of tight binding and DFT interfaces, and created an interface between

sisl and Z2pack, a Python library capable of calculating Z2 invariants. We have published these

scripts online at https://github.com/ juijan/TopoToolsSiesta.

Alongside these scripts, we are hosting a set of tutorials developed for the "Advanced school on

Quantum Transport using SIESTA", which explain the key concepts behind these calculations and

how to perform them.

8.1 Spin Texture

We have created a script ( SpinTexture.py ) to calculate the spin texture of materials from the
Siesta output using the Python library sisl as a back-end. Our script provides an interface for
users to specify a path in the k-space and point to the output files. The script then automatically
reads the converged Siesta Hamiltonian and can calculate the spin texture. Currently, users can
either manually provide a list of k points or use one of the following methods to generate a path:
circular path (requires center, radius, and number of points or spacing), Monkhorst-Pack grid
(requires the number of points in each direction and potentially a shift), linear path (requires
a set of edge points to be connected linearly and the number of points along the path). The
script uses sisl to retrieve the Hamiltonian and the overlap matrix from Siesta output files and
calculate the eigenvalues 𝜖a (k) and the spin moments sa of each eigenstate.

𝑠a𝛼 (k) = ⟨𝜙a (k) |𝜎𝛼 ⊗ S(k) |𝜙a (k)⟩, (8.1)

where𝜙a (k) is thea-th eigenstate with lattice momentum k, and𝜎𝛼⊗S(k) denotes the Kronecker
product of the Pauli matrix 𝜎𝛼 and the overlap matrix S(k). The results are saved in an easily
parsable format with one block per band, each containing one line per k-point (Listing 3). In
addition, we have developed a second script ( PlotSpinTexture.py ) to visualize the output of
the first script, which can display the magnitude of the spin moments either as a color scale
in a typical band structure plot (Figure 8.1), or as arrows in a plane in the k space (Figure 8.2).
Our file format is also compatible with other visualization software such as gnuplot [Wil+13].
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Figure 8.1: Spin texture of a Bi(111) monolayer, the 𝑥 , 𝑦, and 𝑧 components of the spin texture
are indicated by the red-to-blue color scale. Red color represents a state with a magnetic moment
of +`𝐵 , and blue a state with −`𝐵 . AT the high-symmetry points 𝐾 and 𝛤 , the spin moments of
the highest occupied and lowest unoccupied bands are aligned with the 𝑧. Around the 𝐾 point,
the spin moments of the lowest unoccupied are parallel to the lattice plane. Overall the structure
exhibits a non-collinear spin texture, which varies particularly rapidly around the avoided crossing
at the 𝛤 point.

We also implemented an option to find a closed path on which the energy is constant. This
method starts from a circular path and optimizes the distance 𝑟𝑖 of each point on the path to
the center independently by minimizing the function:

𝑓 (𝑟𝑖) = min
{���𝐸a (𝑟 k̂𝑖 + kcenter) − 𝐸const

���} , (8.2)

where k̂𝑖 is the normalized vector pointing from the center of the path to the 𝑖-th point along
the path. For this minimization procedure, it is necessary to specify 𝐸const and an interval
[𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥 ] for the distances from the center. The interval has to be large enough that the
constant energy path lies between the two circles defined by the interval. However, if the
interval is too large and multiple bands are in the energy window 𝐸 (k(𝑟𝑚𝑖𝑛)) and 𝐸 (k(𝑟𝑚𝑎𝑥 )),
then the minimization problem may not have a unique solution. Therefore, it is essential to
carefully choose 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 . An example of a spin texture of few-layer Bi2Se3 calculated
along two constant energy paths obtained by this process is shown in Figure 8.2. These results
compare well to ARPES measurements of surface states of Bi2Se3 [Che+09]. They reproduce
a circular shape with a chiral spin texture close to the charge neutrality point and a star-like
shape at higher energies.
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0.35 eV

0.15 eV

Figure 8.2: In-plane spin texture of 3-quintuple-layer Bi2Se3 along two constant energy paths
(top: 0.35 eV; bottom: 0.15 eV). For reference, the band structure along the 𝐾 − 𝛤 −𝑀 direction
is shown on the right side. The two Kramer’s pairs (left/right) have opposite spins at every point
along the path. The shape of the paths and the direction of the spin moments reproduce ARPES
measurements of surface states in Bi2Se3 [Che+09].

1 # // *************** HEADER *************** //

2 # nk, nbnds = <<Number of k points>>, <<Number of bands>>

3 #

4 # Ticks and labels

5 # tick 1: << Pos of edge point 1 along path >>, << Label of edge point 1 >>

6 # ...

7 # tick n: << Pos of edge point n along path >>, << Label of edge point n >>

8 # // *************** BODY *************** //

9 lk( 1) [kx( 1) ky( 1) kz( 1)] e( 1,1) s_x( 1,1) s_y( 1,1) s_z( 1,1)

10 lk( 2) [kx( 2) ky( 2) kz( 2)] e (2,1) s_x( 2,1) s_y( 2,1) s_z( 2,1)

11 ...

12 lk(nk) [kx(nk) ky(nk) kz(nk)] e(nk,1) s_x(nk,1) s_y(nk,1) s_z(nk,1)

13

14 lk( 1) [kx( 1) ky( 1) kz( 1)] e( 1,2) s_x( 1,2) s_y( 1,2) s_z( 1,2)

15 ...

16 lk(nk) [kx(nk) ky(nk) kz(nk)] e(nk,nbnds) s_x(nk,nbnds) s_y(nk,nbnds) s_z(nk,nbnds)

Listing 3: Output file format of our spin texture tool. If the user has specified a path defined by
multiple edge points, the file contains the positions of all points along the path 𝑙𝑘 (𝑖) in units of
1/Å. In all other cases, the first three columns of the file contain the 𝑥 , 𝑦, and 𝑧 coordinates of k
points in units of 1/Å. Energies 𝑒 are specified in eV and are the unit less expectation value of the
spin-momentum operators for the corresponding eigenstate.
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8.1.1 Application: Manipulation of Spin Transport in Graphene/Transition

Metal Dichalcogenide Heterobilayers upon Twisting

We have also employed our spin texture tool to calculate the spin texture of twisted graphene/-
transition metal dichalcogenide (TMD) bilayers [Pez+21]. Graphene possesses large carrier
mobility and long spin relaxation lengths, making it a great candidate for application in spin-
tronics [Fer+15; Hal19; Roc+15; Sie+21]. However, its weak intrinsic spin-orbit coupling is
detrimental for electronic control of spins [Fer+15; GN07; Roc+15]. Enhancing the SOC of
graphene via proximity interaction with another 2D material with strong SOC is a possible so-
lution to this problem. A prime example for this are graphene/transition-metal dichalcogenides
(TMDs) heterostructures [AAU16; AAU18; Avs+14; CFR18; Dav+19; Gmi+16]. Some experimen-
tal studies suggest that the strength of the induced SOC can be as high as 10 meV [Wak+18;
Wak+19; Wan+15], while first principles calculation predict spin-orbitcoupling parameters
between 0.1 meV and 1 meV [AAU16; AAU18; Avs+14; CFR18; Dav+19; Gmi+16; LK19]. These
discrepancy could be the result moiré physics, which could induces modulation of the SOC
depending on the the strain and rotational alignment of the two materials [AAU18; Dav+19;
LK19].

We performed large-scale DFT simulations of graphene/TMD heterostructure with various
rotational alignments and different strains. We used our new tool to extract the band structure
from the first principles wavefunction (Figure 8.3). Our collaborators used this data to fit a
spin-orbit coupling Hamiltonian model for graphene based on the model proposed by Kochan
et al. [KIF17]. From this model, it was possible to extract the strength of different spin-orbit
coupling and the dependence on the twist angle and applied strain published in [Pez+21].

Figure 8.3: Electronic band struc-
ture around one of the Dirac
points (a) and spin texture compo-
nents (b-d) computed from DFT
(symbols) and model Hamilto-
nian (lines) for graphene/MoTe2
twisted by 15◦. Red and black
colors identify spin-up and down,
respectively. Spin textures in
momentum space are computed
along the same path as the band
structure. © IOP Publishing. Re-
produced with permission. All
rights reserved.
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Using the spin texture in addition to the band structure was essential in order to unravel the
contribution of different SOC mechanisms (intrinsic, valley Zeeman, Rahsba).

Our work demonstrated that the spin-orbit coupling strength in graphene/TMD heterostruc-
ture depends strongly on the twist angle and the strain but does not explain the experimentally
observed giant enhancement of SOC. Rashba-type SOC was found to be particularly sensitive
to strain and twist angle. Furthermore, it was discovered that specific combinations of twist
angles and TMDs induce a topological phase in graphene.

8.2 Interface Z2Pack

Topological invariants are calculated in Z2Pack [Gre+17] using Hybrid Wannier Charge Centers
(HWCC), which are defined in terms of Hybrid Wannier Functions (HWF). The difference
between HWFs and Wannier functions is that the former are localized only in one direction (for
instance, 𝑥 ) and delocalized in the others. In 2D, a Hybrid Wannier function can be written as:��𝑛, 𝑙𝑥 , 𝑘𝑦〉 = 1

2𝜋

∫
d𝑘𝑥 𝑒𝑖𝑘𝑥 𝑙𝑥𝑎𝑥

���𝜓𝑛𝑘𝑥 ,𝑘𝑦 〉 (8.3)

where 𝑛 is the band index, 𝑙𝑥 is an integer, and 𝑎𝑥 is the lattice constant along the direction
where the wave function is localized (𝑥 ). The charge center of an HWF is defined as the average
position of the function along 𝑥 . The hybrid Wannier charge centers are defined modulo the
lattice constant as:

𝑥𝑛 (𝑘𝑦) =
〈
𝑛, 0, 𝑘𝑦

��𝑥 ��𝑛, 0, 𝑘𝑦〉 (mod 𝑎𝑥 ) (8.4)

One can think of an HWCC as the charge center of a Wannier function in a 1D system
coupled to an external parameter 𝑘𝑦 . In this interpretation, the sum of all HWCCs is directly
linked to the 1D hybrid electronic polarization (equation 19 in [Gre+17])

Pℎ𝑒 (𝑘𝑦) = 𝑒
∑︁
𝑛

𝑥𝑛 (𝑘𝑦) (8.5)

Although individual HWCCs are not gauge invariant, the sum of all HWCCs and Pℎ𝑒 (𝑘𝑦) are
gauge invariant.

Since HWCCs are defined modulo the lattice constant 𝑎𝑥 , we can think of 𝑥 (𝑘𝑦) as a point
on the unit circle for any given 𝑘𝑦 . As 𝑘𝑦 goes from 0 to 2𝜋/𝑎𝑦 the HWCCs and electronic
polarization (Pℎ𝑒 ) describe the trajectories on a cylinder (Figure 8.4). These trajectories can loop
around the cylinder axis an arbitrary number of times. Given that 𝑥 (0) = 𝑥 (2𝜋), the number
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Figure 8.4: Sketch of the three different tra-
jectories of an HWCC as a function of 𝑘𝑦 on
a rolled (top) and unrolled (bottom) cylinder.

of loops is a well-defined integer, the winding number. The winding number of Pℎ𝑒 is equal to
the Chern number of the system [Van18]. Therefore, the Chern number of any system can be
calculated as the sum of the winding numbers of all HWCCs corresponding to occupied states.

8.2.1 Numerical Computation of Winding Numbers

In order to determine the winding number, we can unroll the cylinder and determine the
winding number by counting the number of times the trajectory jumps from one side to the
other (Figure 8.4). For example, if the trajectory jumps from 𝑥 = 𝑎𝑥 to 𝑥 = 0, the winding
number increases by one. Instead, the winding number decreases by one for a jump in the
opposite direction. To determine Z2, which is defined modulo 2, we can neglect the direction
of the jump and count the number of times the trajectory crosses 𝑥 = 0. In fact, it is possible to
choose any line 𝑓 (𝑘𝑦) (green line in Figure 8.5) and count the number of intersections between
this line and the trajectories, as long as the line connects the two ends of the cylinder (Figure 8.5).
Furthermore, the HWCC trajectories of a Kramer pair (𝑖 , 𝑗 ) on each half of the cylinder are
related by:

𝑥 𝑗

(
𝜋

𝑎𝑦
+ 𝑘𝑦

)
= 𝑥𝑖

(
𝜋

𝑎𝑦
− 𝑘𝑦

)
(mod 𝑎𝑥 ) . (8.6)

due to time-reversal symmetry. Therefore, counting the intersection on one half of the cylinder
is sufficient.

Our discussion thus far has focused on continuous trajectories. However, unless we are
dealing with a model in which the dependence on 𝑘𝑥 and 𝑘𝑦 can be expressed analytically, wave
functions and HWCCs must be calculated on discrete meshes. In particular, the discretization in
𝑘𝑦 can be a numerical challenge: When we calculate the HWCCs for a finite set of 𝑘𝑦 , we probe
the trajectories on lines (grid lines) parallel to 𝑥 . To correctly determine the winding number,
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Figure 8.5: Sketch of possible evolutions of
HWCCs (red and blue lines) for a system
with two occupied bands and time-reversal
symmetry. The invariant can be calculated
via the number of crossings of the trajectory
with the arbitrary line (dashed green) or the
line formed by the center of the largest gap
(orange). In the top panel, neither line in-
tersects with the trajectories: Z2=0. In the
bottom panel, both lines intersect one time
with the trajectories: Z2=1.

we must determine which points on neighboring grid lines are connected. This requires a
sufficiently dense 𝑘𝑦 sampling. In principle, increasing the mesh until the connectivity is evident
from a visual inspection is possible [RK11]. However, HWCCs typically cluster at some points
along 𝑘𝑦 . If this clustering occurs near an intersection with 𝑓 (𝑘𝑦), a dense grid is required,
which can be computationally challenging and difficult to automatize. A different approach,
the Vanderbilt method, proposed by A. Soluyanov and D. Vanderbilt [SV11], addresses this
issue and offers a systematic way to calculate winding numbers:

1. Evaluate the distances between pairs of neighboring HWCCs at every 𝑘𝑦

2. Find the pair with the largest distance

3. Define the function 𝑔(𝑘𝑦) as the middle point of this distance (orange line in Figure 8.5).

4. Count the number of HWCCs this function 𝑔(𝑘𝑦) crosses from one mesh point to the
next

This method is implemented in Z2pack.
So far, Z2Pack was able to perform calculations of Z2 using the Vanderbilt method from

Wannier coefficients and tight-binding models with orthogonal basis sets. We have now
extended Z2Pack to work with non-orthogonal basis sets as well. This involves an extension
of the existing interface for tight-binding models, which accepts an overlap in addition to the
Hamiltonian. Within this interface, Z2pack now performs a Löwdin transformation of the
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Hamiltonian at every k-point to switch to an orthogonal basis set before diagonalization.

H̃k = S−1/2
k HkS−1/2

k (8.7)

In Chapter 10, we have used this interface to calculate the topological invariants of two
bismuth monolayer phases in free-standing form and supported by a substrate [WOZ22]. Our
new interface correctly reproduces previously published results for the topological invariants
of the free-standing monolayers and one of the heterostructures (f-hex@SiC).
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9 Interference Effects in

One-Dimensional Moiré Crystals

Double-wall carbon nanotubes (DWNTs) are prime examples of one-dimensional moiré crystals,

which exhibit three distinct coupling regimes: strong coupling, localized insulating, and weak cou-

pling. Here, first-principle methods, a tight-binding model and the Landauer-Büttiker formalism

are employed to explain interlayer transport in telescopic DWNTs with finite overlap and interfer-

ence effects. In the weak coupling regime, the electronic structure of the DWNTs is a superposition

of that of the individual tubes, and interlayer transport is suppressed. In the strong coupling

regime, interference effects are observable at the mesoscale as a periodic modulation of quantum

conductance and emergent localized states. In the localized-insulating regime, similar interference

effects cause suppression of interlayer transport and oscillations of the density of states. The results

presented here could be used for the design of quantum electronic devices, e.g., nano-electronic

switches. The content of this chapter was published in January 2022 in Carbon [Wit+22].

9.1 Introduction: One-Dimensional Moiré Crystals

Double-wall carbon nanotubes (DWNTs) are the one-dimensional counterparts of twisted
bilayer graphene (tBLG) and a prime example of a one-dimensional moiré system. In tBLG,
the effective interlayer interaction is determined by a single parameter, the chiral angle. In
contrast, in a DWNT the interlayer interaction depends on two parameters: the angle between
the two sheets, like in tBlG, and the difference between the two radii. The difference in radii
introduces an effect comparable to that of uniaxial strain applied to one layer of twisted bilayer
graphene. Although two-dimensional moiré crystals have been extensively studied, their one-
dimensional counterparts are less well understood. Exisiting studies have addressed ideal,
infinite nanotubes [Bon+16; KMS15; Zha+20] and commensurate telescopic nanotubes [GBL04;
KC02; TC06; TSH05; UA05; Yan+06].

Recently, Koshino et al. [KMS15] studied the interlayer interaction in ideal infinite DWNTs us-
ing a continuum model and proposed a classification of double-wall carbon nanotubes into three
groups depending on the nature of the interlayer interaction: localized insulating nanotubes, in
which dispersionless, flat bands emerge due to electron localization in an effective potential
with very long periodicity, strongly coupled nanotubes, in which the interlayer interaction
strongly perturbs the electronic structure of the individual tubes, and weakly coupled nanotubes,
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in which the interlayer interaction is negligible, and the electronic structure of the DWNTs
is the superposition of the individual tubes. In strongly coupled nanotubes, the interlayer
interaction can even affect metallicity. As a result, DWNTs composed of two semiconducting
tubes may exhibit a finite density of states at the Fermi level and a band gap may open up in
DWNTs composed of two metallic nanotubes. The existence of this strong coupling regime
has been experimentally confirmed by Zhao et al. [Zha+20] in multi-wall carbon nanotubes
(MWNTs). However, the relationship between the measurements and the continuum model for
ideal infinite DWNTs is not trivial, and the agreement between measurement and model is only
qualitative. In the experiment, the inner tubes are inaccessible, and electrical contacts can only
be placed on the outer tube. In addition, the measured nanotubes have finite lengths, and it is
not clear whether the coupling regimes predicted by Koshino et al. apply to finite-length tubes
or in which limit they are recovered. In finite SWNTs, strong confinement effects occur [RSA99;
Rub+99], which could affect DWNTs as well. Answering these basic questions is essential to
gain a deeper understanding of carbon nanotubes and making it feasible to incorporate CNTs
into future nanoelectronic devices [Nak+20].

In this chapter, we present our answers to these questions achieved by studying the interlayer
transport properties of telescopic double-wall carbon nanotubes (tDWNTs). TDWNTs are
composed of two concentric nanotubes with finite overlaps that extend infinitely in opposite
directions (Figure 9.1 (a)). We unveil how the length of the overlap region affects the electronic
structure and the interlayer transport. Our study goes beyond existing works by taking into
account the three coupling regimes predicted by Koshino et al. and considering commensurate
and incommensurate tDWNT.

Figure 9.1: Schematic of three different
types of DWNT geometries: (a) an infinite
telescopic DWNT, consisting of two semi-
infinite SWNTs with a finite overlap, (b) a
finite telescopic DWNT consisting of two
finite SWNTs with finite overlap, and (c)

infinite, ideal DWNTs consisting of two
infinite DWNTs with infinite overlap. Infi-
nite, ideal DWNTs are only periodic along
the tube axis if the two layers are com-
mensurate. A periodic approximation of
incommensurate DWNTs can be obtained
by applying small amounts of strain on
both tubes and choosing an appropriate
number of repetitions for each tube.

(a)

(b)

(c)
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9.2 Basics of Carbon Nanotubes

Carbon is one of the most versatile elements known to humankind. Despite missing only two
electrons to a noble state configuration, carbon can form up to four bonds with neighboring
atoms. This becomes possible through rehybridization between the 2𝑠 and 2𝑝 valence shells,
which form new orbitals 𝑠𝑝3, 𝑠𝑝2, 𝑠𝑝 . Each type of hydridized orbitals gives rise to different
shape and directionality: 𝑠𝑝3 hybridization is found in methane and diamonds, 𝑠𝑝2 hybridization
in graphite and its derivatives, and 𝑠𝑝 hybridization in linear molecules like acetylene. The
different bond formations also give rise to drastically different physical properties and are the
basis of Carbon’s versatility.

Carbon nanotubes (CNTs), a carbon-based nanostructure made up of one or more cylinders
that surround one another, have raised broad fundamental and technological interests since their
discovery in 1991 by Iijima [Iij91]. Each layer of a CNTs is a rolled-up sheet of graphene [Nov04]
and has a diameter on the nanoscale. Single-walled carbon nanotubes (SWNTs) are fully
characterized by the chiral vector Cℎ = 𝑛 a1 +𝑚a2 ≡ (𝑛,𝑚) along which the nanotubes are
rolled (Figure 9.2). In the first approximation, the electronic structure can be inferred from that
of graphene by considering that rolling-up sheets of graphene introduce periodic boundary
conditions along the chiral vector. The periodic boundary conditions quantize the allowed
wave vectors perpendicular to the tube axis, and the CNT electronic structure is given by
parallel cuts through the BZ of graphene. This zone-folding approximation predicted that CNTs
with 𝑛 ≡ 𝑚 (mod 3) are metallic and CNTs with 𝑛 −𝑚 ≡ ±1 (mod 3) are semiconducting.
The band gap of semiconducting CNTs is inversely proportional to the tube diameter. In
CNTs metallic nanotubes, the Dirac point of graphene is preserved, which makes these tubes
metallic. However, curvature effects induce a secondary tiny band gap in all nanotubes with

Tube axis

Chiral Vector
(n,0) zig-zag

(n,m) chiral

(n,n) armchair

Figure 9.2: Schematic of three
chiral vectors and corresponding
carbon nanotube axes.
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𝑛 ≠𝑚, which scales inversely with the square of the diameter of the tube. As a result, only the
armchair nanotubes (𝑛 =𝑚) are truly metallic. While the electronic structure of SWNTs can be
understood well using such a simple picture, double-wall carbon nanotubes (DWNTs) are far
more complex.

9.3 Methodology

9.3.1 First-Principles Calculations

We performed DFT simulations of ideal, infinite CNTs using the SIESTA [Gar+20; Sol+02]
DFT implementation and modeled telescopic double-wall carbon nanotubes using the NEGF-
code TranSIESTA [Bra+02; Pap+17]. We extracted transmission functions and the density
of states from the converged Hamiltonians using the TBTrans postprocessing tool [Pap+17].
We employed the LDA exchange-correlation functional as parametrized J. P. Perdew and Y.
Wang [PBE96], which has proven to be well suited for carbon-based nanostructure [RS09]. In
conjunction with LDA, we used norm-conserving Vanderbilt (ONCV) scalar-relativistic pseu-
dopotentials [Ham13; van+18] with 2𝑠 and 2𝑝 valence electrons. We expanded the Kohn-Sham
states in a custom double-Z basis set (Listing 4), which includes two sets of 2𝑠 and 2𝑝 orbitals
and an additional single set of 3𝑝 orbitals. The first sets of 2𝑠 and 2𝑝 orbital have a cut-off radius
larger than the default to ensure that interlayer interactions are modeled correctly. Comparison
between siesta and QuantumESPRESSO (plane-waves) calculations revealed that basis sets

1 # Atomic Label, number l-shells, ionic charge

2 C 3 -0.0671

3 # ====== Carbon 2s =======

4 # n, l, Nzeta, soft conf. pot., V_0[Ry], r_i[Bohr]

5 n=2 0 2 E 37.7993 5.9570

6 7.35211218440568 4.86544155511571 # cut-off radii [Bohr]

7 # ====== Carbon 2p =======

8 n=2 1 2 E 37.1931 3.4222

9 7.67179628290414 3.04785080450208 # cut-off radii [Bohr]

10 # ====== Carbon 3d =======

11 n=3 2 1 E 47.1819 0.0109

12 5.12166197009186 # cut-off radius [Bohr]

Listing 4: Custom basis set for carbon including two sets of 2𝑠 and 2𝑝 atomic orbitals and a single
set of 3𝑑 orbitals to increase variational degrees of freedom. The first sets of 2𝑠 and 2𝑝 orbitals
are long-range (> 3.8 Å [7.3 𝑎0]) to accurately describe the interlayer interaction in carbon-based
nanostructures.
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with short cut-off radii fail to account for the interlayer interactions accurately [Gar+09; RLO05].
The Brillouin zone was sampled using a 𝛤 -centered one-dimensional grid of 78 equidistant
k-points for the pristine armchair nanotubes and was scaled inversely with the length of the
unit cell for longer CNTs.

9.3.2 Tight-Binding Model

Figure 9.3: Schematic of 𝑝 orbitals in a
double-wall carbon nanotube, each per-
pendicular to the tube surface.

To reduce computational complexity, reach the
mesoscale regime (up to 100 nm), and make sim-
ulations of hundreds of configurations for in-
dividual tDWNTs possible, we employ a cus-
tom tight-binding (TB) model fitted against ab

initio calculations. Our TB model is a non-
orthogonal tight-binding Hamiltonian with a
single 2𝑝 atomic orbital per carbon site based
on the models of Bonnet et al. [Bon+16], Re-
ich et al. [Rei+02], and Trambly de Laissardière
et al. [TMM10]. We assume that 𝑝 orbitals on
each carbon atom are perpendicular to the local
surface of the cylinder (Figure 9.3). Using the
normal vectors n̂𝑖 we can write the orbital at side 𝑖 as a linear combination of three 𝑝 orbitals
centered on this site: |𝑖⟩ = ∑

a=𝑥,𝑦,𝑧 n̂𝑖a
��𝑝a (R𝑖)〉. Using a Slater-Koster parameterization, the hop-

ping and overlap terms between neighboring 𝑝 orbitals can be described as a linear combination
of 𝑝𝑝𝜋 and 𝑝𝑝𝜎 interactions.

⟨𝑖 |H| 𝑗⟩ =
∑︁

a,`=𝑥,𝑦,𝑧

n̂𝑖a n̂𝑗`
{
𝐻𝑝𝑝𝜎 (𝑑𝑖 𝑗 )R̂𝑖 𝑗a R̂𝑖 𝑗` + 𝐻𝑝𝑝𝜋 (𝑑𝑖 𝑗 ) (𝛿a` − R̂𝑖 𝑗a R̂𝑖 𝑗` )

}
(9.1)

⟨𝑖 |S| 𝑗⟩ =
∑︁

a,`=𝑥,𝑦,𝑧

n̂𝑖a n̂𝑗`
{
𝑆𝑝𝑝𝜎 (𝑑𝑖 𝑗 )R̂𝑖 𝑗a R̂𝑖 𝑗` + 𝑆𝑝𝑝𝜋 (𝑑𝑖 𝑗 ) (𝛿a` − R̂𝑖 𝑗a R̂𝑖 𝑗` )

}
(9.2)

where 𝑑𝑖 𝑗 = |R𝑖 − R 𝑗 | is the distance between two atomic sites and R̂𝑖 𝑗 = (R𝑖 − R 𝑗 )/𝑑𝑖 𝑗 is the
normalized vector that points from one site to the other. The 𝑝𝑝𝜋-terms account for hopping
between 𝑝 orbitals orthogonal to R̂𝑖 𝑗 . The 𝑝𝑝𝜎-terms describe hopping between 𝑝 orbitals
parallel to R̂𝑖 𝑗 and are required to describe the curvature dependence of the electronic structure.

We split the tight-binding parameters into intra-layer interactions, in which we describe
constant parameters up to third-nearest neighbors. The interlayer interaction is modeled using
an exponentially decaying term that is cut off at a distance of 5 Å. In total, this model consists
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Figure 9.4:Comparison of tight-binding band structures to first-principle simulations for a selection
of SWNTs and commensurate DWNTs.

of 21 parameters: on-site energy 𝐸𝑝 = ⟨R𝑖 |H|R𝑖⟩ (1), intralayer Hamiltonian (6) and overlap (6),
and interlayer Hamiltonian (4) and overlap (4):

𝐻𝛼 (𝑑𝑖 𝑗 ) =



𝐻 1nn
𝛼 if 𝑖 and 𝑗 are first nearest neighbors

𝐻 2nn
𝛼 if 𝑖 and 𝑗 are second nearest neighbors

𝐻 3nn
𝛼 if 𝑖 and 𝑗 are third nearest neighbors

𝐻 inter
𝛼 𝑒 (𝑑−𝑎0)/𝑔𝛼 if 𝑖 and 𝑗 in different layers &

��𝑑𝑖 𝑗 �� < 5 Å

0 otherwise

(9.3)

𝑆𝛼 (𝑑𝑖 𝑗 ) =



𝑆1nn
𝛼 if 𝑖 and 𝑗 are first nearest neighbors

𝑆2nn
𝛼 if 𝑖 and 𝑗 are second nearest neighbors

𝑆3nn
𝛼 if 𝑖 and 𝑗 are third nearest neighbors

𝑆 inter
𝛼 𝑒 (𝑑−𝑎0)/ℎ𝛼 if 𝑖 and 𝑗 in different layers &

��𝑑𝑖 𝑗 �� < 5 Å

0 otherwise

, (9.4)

where 𝑎0 = 3.35 Å is the interlayer spacing of bulk graphite and 𝛼 ∈
{
𝑝𝑝𝜎/𝑝𝑝𝜋

}
.

We optimize the parameters to reproduce the ab initio band structure of graphene, three small
diameter SWNTs, and two DWNTs (Figure 9.4). Fitting to graphene ensures the correct limiting
behavior for very large diameter nanotubes and fixes the 𝑝𝑝𝜋 parameters of the intra-layer
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Onsite Intra-Layer Inter-Layer

𝑝𝑝𝜎 𝑝𝑝𝜋 𝑝𝑝𝜎 𝑝𝑝𝜋

𝐸𝑝[eV] −2.04 𝐻 1𝑛𝑛[eV] 3.93 −2.81 𝐻 𝑖𝑛𝑡𝑒𝑟 [eV] 0.505 0.709
𝑆1𝑛𝑛 0.573 0.301 𝑆𝑖𝑛𝑡𝑒𝑟 0.003 0.062
𝐻 2𝑛𝑛[eV] 1.17 −0.679 𝑔[Å] 0.408 0.387
𝑆2𝑛𝑛 0.018 0.047 ℎ[Å] 1.12 0.620
𝐻 3𝑛𝑛[eV] 1.11 −0.298
𝑆3𝑛𝑛 0.074 0.040

Table 9.1: Optimized tight-binding parameters.

interaction. Small diameter nanotubes, in which curvature effects are strongest, should be
used to optimize the 𝑝𝑝𝜎 terms. However, in nanotubes with radii below 4 Å, rehybridization
becomes relevant, which can not be described in our model. Therefore we use three SWNTs
with radii between 5.2 Å and 6.2 Å ((9,9), (16,0), and (9,6)) to fix the intra-layer 𝑝𝑝𝜎 terms. Lastly,
we fix the eight parameters of the interlayer interaction using one achiral DWNT, (16,0)@(24,0),
and a chiral one, (9,6)@(15,10). In each case, we minimize the absolute difference between
the TB and ab initio band structure around the Fermi level (from −0.3 eV to 0.3 eV). Table 9.1
summarizes the optimized parameters. In this way, our TB model retains the accuracy of the
DFT calculations in the transport-relevant energy window.

9.4 Results and Discussion

We simulate the open quantum system of an infinite telescopic nanotube consisting of two
concentric nanotubes with a finite overlap region of length 𝐿 (Figure 9.5). This transport setup
allows us to probe the interlayer interaction directly and is expected to primarily depend on the
coupling regimes, assuming they are present in the finite overlap. We start our analysis in the
strong coupling regime, discussing the interlayer conductance and its modulation with changing
overlap length 𝐿. Then we move on to the localized-insulating regime, where we discuss the
emergence of localized states in the open system with increasing size of the overlap region.
Last, we demonstrate that inter-layer transport is suppressed in the weak coupling regime. In
total, we present results for ten different SWNT combinations with all possible combinations
of chiralities, commensurabilities, and coupling regimes and with different interlayer spacings
(Table 9.2).
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Figure 9.5: Transport set-up: The scattering region consists of two overlapping nanotubes. It
encompasses the whole overlap region, a section of the individual tubes required to screen the
electrode (light red/blue), and one principle layer of each electrode. The electrodes (red/blue) extend
in opposite semi-infinite directions.

A few introductory remarks before discussing the results for individual nanotubes are in
order:

1. The edges of the nanotubes in the overlap region do not influence transport properties
significantly. Rochefort et al. [RSA99] and Rubio et al. [Rub+99] demonstrated that edge
effects are negligible for nanotubes longer than 5 nm to 10 nm and can safely be neglected
for our semi-infinite leads.

2. The electron transmission through the scattering device can not exceed the number of
electrode channels. If one electrode has 𝑛 available channels at a given energy and the
other𝑚 > 𝑛, then the total transmission is at maximum 𝑛. Of course, scattering in the
overlap region can always reduce the total transmission below 𝑛. For semiconducting
tubes, this implies that electron transmission requires the gating of the nanotubes to
shift the chemical potential into the valence or conduction bands of both tubes. Alterna-
tively, sufficiently large temperatures could partly populate (depopulate) the conduction
(valence) bands and lead to finite transmissions.

3. While the exact crystal structure and some details of the electronic structure can depend
on the rotational alignment of the two nanotubes, the moiré lattice vector and, thus, the
coupling regime is unaffected by relative rotations.

9.4.1 Strong Coupling Regime

The strong coupling regime encompasses all pairs of nanotubes for which the chiral vectors
are nearly parallel, and their difference points along the armchair direction (𝑛, 𝑛). Naturally,
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DWNTs composed of two armchair SWNTs (armchair@armchair) fulfill these conditions
exactly. Since parallelity of the two chiral vectors is not strictly required, chiral nanotubes
(n,m)@(n+d,m+d) can also fall into the strong coupling regime if 𝑛 and𝑚 are sufficiently large.
In the following section, we discuss the interlayer transport properties of two strong-coupling
tDWNTs with different chirality and commensurability: (10,10)@(15,15) and (18,15)@(23,20).

Achiral and Commensurate: (10,10)@(15,15)

For the telescopic DWNT (10,10)@(15,15) with an overlap length of 𝐿 = 34.08 Å, we observe a
conductance which is 1𝐺0 for most energies near the Fermi level and a series of narrow dips
at which the conductance drops to zero (Figure 9.6). For other overlap lengths, the height of
the plateaus and the position and width of the dips vary. We will first analyze the special case
of 𝐿 = 34.08 Å, before explaining the modulation of the transmission with changing overlap
length.

Similar dips have previously been observed in defective and functionalized CNTs [Zan+11;
ZC09; ZC10; ZC12]. Here, in the absence of such impurities, the dips have to arise from
the interlayer interaction in the finite overlap region. To better understand this effect, it is
helpful to consider an isolated, finite (10,10)@(15,15) tDWNT with the same overlap length
(Figure 9.1). We start from the scattering region, extend the size of the electrode sections in the
scattering region, and place the new CNT system in a large box surrounded by a vacuum. We
then determine the energy levels and the wave function for this finite-length approximation
of the infinite tDWNT using our TB model. In Figure 9.6, the horizontal lines visualize the
position of the tight-binding energy levels of the isolated, finite (10,10)@(15,15) tDWNT with
44 Å extra electrodes regions on each. Each line is colored according to the weight of the
corresponding wave function in the overlap region. We see that each dip corresponds to one

Figure 9.6: TB electron transmission between two
semi-infinite SWNTs ((10,10) and (15,15)) through
a finite overlap region with a length of 34.08 Å.
The horizontal lines indicate energy levels of an
isolated, finite tDWNT obtained by extending the
electrodes in the scattering region by an additional
44 Å on each side by. The yellow-to-blue scale for
horizontal lines indicates the weight of correspond-
ing wave functions in the overlap region. Each dip
in conductance coincides (approximately) with one
or several localized eigenstates.
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Figure 9.7: Projected TB bandstructure of an
ideal (10,10)@(15,15) DWNT (strongly coupled).
Blue-to-White-to-Red color scale indicates the
weight of the wave function on the inner (10,10)
and outer(15,15) nanotube. The bands with neg-
ative Fermi-velocity (white) are hybridized be-
tween the nanotubes, and bands with positive
Fermi-velocity (red/blue) are localized on individ-
ual SWNTs.

or more eigenstates, which are localized in the overlap region. Depending on the exact size
of the included electrode regions, the agreement between the eigenenergies and dip energies
varies slightly, but the correspondence remains. In the picture of scattering waves, we can now
understand why the conductance curve features multiple dips: rather than simply propagating
through the system, wave functions with matching energies scatter with the localized states and
are reflected into the same electrode; in-scattering waves with different energies are agnostic
to the localized state and can propagate unhindered.

There is another aspect of the calculated conductance that requires explanation: the con-
ductance is limited to 1𝐺0. Armchair SWNTs are metallic and their conduction in the linear
range around the Dirac point is given by 𝐺 = 2𝐺0 [CBR07; Dub+09]. Similarly, an ideal infinite
armchair@armchair DWNT possesses four channels near the Fermi level (Figure 9.7), and
the total conductance of such an ideal DWNT is given by 4𝐺0. However, as discussed above,
the conductivity in asymmetric transport devices of a telescopic nanotube is limited by the
electrode conductivity and, therefore, at most 2𝐺0. We can understand this phenomenon by
examining the projection of wave functions of the ideal (10,10)@(15,15) DWNT onto the two
layers(Figure 9.7). The two linear bands with negative Fermi velocity (negative slope) are per-
fectly hybridized between the two nanotubes, and the two bands with positive Fermi velocity
(positive slope) are fully localized on a single layer of the DWNT. This causes the in-scattering
states with positive Fermi velocity to be scattered back into the electrode because these states
are insensitive to the interlayer interaction. On the other hand, an in-scattering state with
negative Fermi velocity hybridized in the overlap region and can be transmitted seamlessly.

We have performed the same calculations using Siesta, and the resulting first-principle
projected band structure, conductance curve, and the localization of eigenstate in the finite
tDWNT agree very well with our tight-binding simulations. Visualization of first-principle
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(a) (b)

(c) (d)

(e) (f)

Figure 9.8: DFT wave functions of a telescopic (10,10)@(15,15) DWNT (strongly coupled) with an
overlap length of 34.08Å: (a, b) 𝐸 = 𝐸𝐹 + 0.005 eV localized on the inner (10,10) nanotube, (c, d)
𝐸 = 𝐸𝐹 + 0.100 eV localized in the overlap region, and (e, f) 𝐸 = 𝐸𝐹 + 0.373 eV delocalized and evenly
distributed on both tubes
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wave functions beautifully demonstrates the existence of states localized on the inner tube or
the overlap region and fully hybridized states (Figure 9.8). The states localized in the overlap
region at this overlap length are cone-shaped: the wave function weight on the atoms at the
tube terminations is the highest, and they decay towards the electrode regions.

Until now, we have considered only a single overlap length (𝐿 = 34.08 Å). Our tight-binding
model allows us to perform similar calculations for hundreds of configurations of the same
DWNT. Scanning a wide range of overlap lengths from 17 Å to 194 Å reveals that the number,
position, and width of the dips are sensitive to the overlap length (Figure 9.9 (a)). The height
of the conductance plateaus in the energy window around the Fermi level oscillates with a
periodicity of roughly 100 Å. It is the largest (1𝐺0) around 𝐿 ≈ 50 Å and 𝐿 ≈ 150 Å and
zero around 𝐿 ≈ 100 Å and 𝐿 ≈ 200 Å. Similarly, the width of the dips oscillates. Around
𝐿 ≈ 50 Å and 𝐿 ≈ 150 Å the dips in the transmission become very narrow and barely visible; for
larger and smaller overlap lengths, the dips become wider until the conduction is completely
suppressed around 𝐿 ≈ 100 Å and 𝐿 ≈ 200 Å.

(a)

(b)

(c)

Figure 9.9: TB electron transmission
from a (10,10) SWNT into a (15,15)
SWNT through a finite overlap re-
gion at different overlap lengths cal-
culated with a) LB+TB formalism,
and (b) our 1D-wave model (Equa-
tion (9.5)) with linear band disper-
sion, and (c) our 1D-wave model us-
ing band dispersion from the ideal,
infinite DWNT. The overlap length
𝐿 is sampled with a high density
(1/(40·2.459 Å)) below 50 Å and lower
density above (1/2.459 Å). The 1D-
wave model reproduces both trends
in LB transmission: the energy-
independent modulation of the trans-
mission with overlap length on a
long spatial period and the secondary
modulation of the transmission de-
pendent on energy and overlap.
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The reduction of the maximum conduction to 1 𝐺0 as well as the oscillation with overlap
length was predicted by Tamura et al. [TSH05] for the (10,10)@(15,15) tDWNT. We have
now shown that localized states cause the dips in the conductance and further show that the
modulation of the transmission can be observed in a wide range of energy and overlap lengths.

Wave Interference Model

The origin of the localized states and the modulation of the transmission can be explained using
a simple one-dimensional wave interference model (Figure 9.10). We assume that the dispersion
of the SWNT and DWNT bands is linear 𝐸 (𝑘) = ±𝑣𝐹 (𝑘 − 𝑘𝐹 ), and the Fermi wave vector 𝑘𝐹
and velocity 𝑣𝐹 are the same for both SWNTs and the non-hybridized bands of the DWNT. The
hybridized bands are split, and therefore the Fermi vectors of the two bands are not the same.
Assuming that the splitting of the bands with negative 𝑣𝐹 in the DWNT is considered symmetric
around the Fermi wave vector, we can write the dispersion relations as 𝐸± = −𝑣𝐹 (𝑘 −𝑘𝐹 ∓ 𝛿𝑘𝐹 ).

An in-scattering electron wave with energy 𝐸 can have one of two wave vectors 𝑘0(𝐸) =
±𝐸/𝑣𝐹 + 𝑘𝐹 . To pass from one tube into the other, the in-scattering electron wave needs to
couple to the hybridized DWNT states with the same energy. So, we can neglect the states with
positive Fermi velocity and consider only the wave with 𝑘0(𝐸) = −𝐸/𝑣𝐹 + 𝑘𝐹 . Once this wave

Figure 9.10: Schematic of one-dimensional scattering waves in the quantum box of the overlap
region between two semi-infinite nanotubes.

96



Results and Discussion | Section 9.4

enters the overlap region and hybridizes, it propagates as a superposition of the two waves with
𝑘±(𝐸) = 𝑘0(𝐸) ± 𝛿𝑘𝐹 /2. We rewrite the superposition as the product of a fast, primary wave
function and a slower envelope function. The primary component propagates with the average
wave vector 𝑘 = (𝑘++𝑘−)/2 = 𝑘0(𝐸), which is the same as the initial wave vector. The envelope
wave vector is given by the difference 𝛿𝑘𝐹 /2 and is much shorter. The envelope modulates the
incoming wave and describes how the weight oscillates between the two tubes. The incoming
electron wave is reflected if the weight of the wave function is completely on the initial tube at
the end of the overlap region (Figure 9.10 bottom). This condition is satisfied whenever the
overlap length is commensurate with the envelope wave vector 𝛿𝑘𝐹𝐿/2 = 𝑛𝜋 . On the other
hand, if the overlap length fits an extra quarter of the enveloping wave 𝛿𝑘𝐹𝐿/2 = (𝑛 + 1/2)𝜋 ,
then the wave function can pass through the overlap region without backscattering (Figure 9.10
top). For all intermediate overlap lengths, the incoming wave is partially reflected, thus reducing
the conductance without fully blocking it.

Of course, the fast wave function component can also become commensurate with the
overlap length (𝑘 (𝐸)𝐿 = 𝑛𝜋 ). The corresponding incoming wave can form a standing wave in
the quantum box of the overlap region and is not transmitted through the systems. At every
overlap length, this condition is satisfied for a set of energies 𝐸 = −𝑣𝐹 (𝑛𝜋/𝐿+𝑘𝐹 ). This explains
the origin of the localized states.

We combine both of these effects, the energy-independent global oscillation of the transmis-
sion with 𝐿 and the 𝐸 and 𝐿-dependent position of the dips, to create a simple model for the
transmission function 𝑇 :

𝑇 (𝐸, 𝐿) = sin
(
𝐿
𝛿𝑘𝐹

2

)2
· sin

(
𝐿(𝑘𝐹 −

𝐸

𝑣𝐹
)
)2

(9.5)

𝑇 (𝐸, 2𝜋𝑛
𝛿𝑘𝐹

) = 0

𝑇 (−𝑣𝐹 (
𝜋𝑛

𝐿
+ 𝑘𝐹 ), 𝐿) = 0

This simple expression can also be obtained by simplifying the model of Kim and Chang [KC02]
assuming the linear dispersion relationship.

From the band structure of the ideal infinite (10,10)@(15,15) DWNT we obtain 𝛿𝑘𝐹 ≈
0.715 Å−1, and 𝑘𝐹 = 2𝜋/3/𝑎. Using these two parameters, this simple model shows good
agreement with the TB conductance over the full range of energies and overlaps (Figure 9.9
(b)). The corresponding periodicity of the global oscillations predicted by our model is 89 Å,
while the periodicity observed in the TB transmission is only slightly higher (100 Å). The
model also reproduces the 𝐸 and 𝐿-dependent positions of the smaller dips observed in the
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transmission. The sine functions make the dips smoother compared to the Landauer-Büttiker
(LB) calculation, but the general trends are accurately reproduced. The curvature of regions
without transmission (dark blue in Figure 9.9) can be recovered when the linear bands are
replaced by the dispersion of the TB band of the infinite ideal DWNT (Figure 9.9 (c)).

Chiral, Incommensurate: (18,15)@(23,20)

For the telescopic DWNT (18,15)@(23,20), we find a similar oscillatory behavior of the transmis-
sion as a function of the overlap length with a period of 90 Å (Figure 9.11). However, there are a
few key differences compared to the armchair@armchair tDWNT. The maximum conductance
near the Fermi level is 2𝐺0 rather than 1𝐺0, and we do not observe suppression of conductivity
at multiple overlap-dependent energies.

Although (18,15)@(23,20) is an incommensurate DWNT, we can use a periodic approximation
to calculate its band structure. For this purpose, we create a supercell consisting of 4 and 3
repetitions of (18,15) and (23,20), respectively, and strain both tubes by ±1 %. Near the Fermi
level, the band structure of this periodic approximation consists of many fully hybridized bands
(Figure 9.12). This hybridization of the linear bands allows electrons to flow through the overlap
region and thus yields a maximum conductivity of 2 𝐺0. The overlap-independent dips and
peaks at 0 eV and ±0.31 eV are the results of small gaps in the eigenspectrum of the DWNT.

Figure 9.11: TB electron transmission
from (18,15) into (23,20) (strongly cou-
pled) (a) for three selected overlap
length 𝐿 showcasing "perfect" (𝐿 =

44 Å), partially blocked (𝐿 = 20 Å), and
blocked transmission (𝐿 = 88 Å). (b)
For a wide range of overlap lengths.
The transmission oscillates as a func-
tion of 𝐿. At 0 eV and ±0.31 eV sharp
features occur irrespective of 𝐿.
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Figure 9.12: Band structure of a periodic approxima-
tion of the incommensurate (18,15)@(23,20) (strongly
coupled), projected on each tube. Periodicity is imposed
by building a commensurate supercell consisting of 4
and 3 repetitions of (18,15) and (23,20), respectively, and
straining the tubes by ±1%. The bands of (18,15)@(23,20)
are fully hybridized between the tubes.

These features do not appear in Figure 9.12 but can be seen in the band structure calculated with
a continuum model of Koshino et al. [KMS15], which does not artificially impose periodicity.

The chiral nanotubes (n,m) possess far fewer symmetries compared to achiral tubes. There-
fore, chiral nanotubes can only have nodes at a few specific points along the tube circumference
and cannot form localized states in the overlap region. This key difference between chiral and
achiral nanotubes can be demonstrated by visualizing DFT wave functions (Figure 9.13).

From the band structure reported by Koshino et al. [KMS15] we can also extract the splitting
of the Fermi wave vectors 𝛿𝑘𝐹 ≈ 0.065 Å−1. In our 1D wave interference model, this corresponds
to an envelope wave function with a period of 96 Å, again a good approximation of the actual
period observed in the calculated transmission function (90 Å). We note that the oscillations of
the transmission will occur in all combinations of strong coupling, metallic@metallic tDWNTs,
and depend only on the splitting of Fermi wave vectors induced by the interlayer interaction.

(a) (b)

Figure 9.13: DFT wave function (𝐸 = 𝐸𝐹 − 0.5 eV) of a chiral nanotube: (18,15). The nodes of
the wave function are not aligned along the circumference of the tubes, as is the case in achiral
nanotubes.
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9.4.2 Localized Insulating Regime

The localized insulating regime is achieved when the chiral vectors of the inner and outer
tubes are nearly parallel and their difference points along the zig-zag direction. We consider
two representatives of this family, (27,3)@(36,3) and (27,3)@(35,3), which are metallic-metallic
(M@M) and metallic-semiconducting (M@SC), respectively. Interference effects are observable
as peaks in the (27,3)@(35,3) DOS in Figure 9.15. The small (3.12 Å) interlayer spacing enhances
the coupling and suppresses the increase in DOS near the onset of the outer tube parabolic
bands (gray area in Figure 9.15 and Figure 9.14). This effect can already be observed in short
DWNT segments (𝐿 <81 Å) and is not exclusive to the infinite tubes of Ref. [KMS15]. In
(27,3)@(36,3), instead, the interference is weaker due to the larger interlayer spacing (3.51 Å),
and the onset of the parabolic bands is visible at ±0.3 eV (Figure 9.16). A series of peaks are
observed in the DOS of both cases (Figure 9.15 and Figure 9.16). This is consistent with the
flat bands predicted by Koshino et al., who attribute them to the localization of electrons in
an effective potential with a long spatial period (≈ 1200 Å for these two cases). However,

Figure 9.14: Band structure (a) and density
of states (b) of a periodic equivalent of the
incommensurate (27, 3)@(35,3) (localized in-
sulating). Periodicity is imposed by building
a unit cell consisting of 23 and 6 repetitions
of (27,3) and (35,3), respectively, and strain-
ing the tubes by ±0.07%. The bands near the
Fermi level are all flat. Significant dispersion
only occurs more than 1 eV away from the
Fermi level.

Figure 9.15: Density of states in the scatter-
ing region (a) and electron transmission (b)

from (27,3) into (35,3) for different overlap
lengths (localized insulating). Interference be-
tween the tubes results in sharp spikes and
flat bands (Figure 9.14), which are more pro-
nounced with increasing overlap length. The
transport gap of the outer tube is highlighted
in striped gray.
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Figure 9.16: Density of states in the scatter-
ing region (a) and electron transmission (b)

from (27,3) into (36,3) for different overlap
lengths (localized insulating). Interference be-
tween the tubes results in sharp spikes and
flat bands at 𝐸𝐹 and at the edge of the quasi-
insulating gap, which is more pronounced
with increasing overlap length.

L [Å] 𝜹𝑬𝑫𝑶𝑺[eV] 𝜹𝑬[eV]

1016 0.016 0.017
528 0.031 0.033
284 0.058 0.062

Table 9.3: Oscillation periods in
DOS of a (27,3)@(36,3) tDWNT in
the energy ranges -0.35 eV to -0.05 eV
and 0.1 eV 0.35 eV for three different
overlap length extracted from TB+LB
calculations (𝛿𝐸𝐷𝑂𝑆 ) and calculated
using Equation (9.6) (𝛿𝐸).

our simulations indicate that localized states already emerge in much shorter tube segments
(𝐿 ≈ 244 Å) and could be experimentally observable even without requiring long, pristine
DWNT samples. While some of the localized states emerge at these short overlap lengths, the
peak density in the DOS increases with overlap length and is significantly lower than predicted
by Koshino. This shows that the minima of effective potential that cause localization emerge
successively with increasing overlap. The full set of localized states will be observable only if
the overlap length is larger than the period of the effective potential.

We observe additional oscillations of lower magnitude in the DOS of (27,3)@(36,3) DWNT,
which can not be attributed to flat bands. These oscillations occur in the energy ranges between
-0.35 eV to -0.05 eV and 0.1 eV to 0.35 eV and are a result of the finite overlap length that
causes quantization of the wave vectors of states in the finite overlap region. Analogous to the
discussion in the strong coupling regime, we assume linear dispersion of the low-energy bands
and determine the energy spacing of states commensurate with the overlap length:

𝛿𝐸 = 𝑣𝐹
𝜋

𝐿
≈ 5.6 eV Å 𝜋

𝐿
, (9.6)

which matches the observed periods in the DOS (𝛿𝐸𝐷𝑂𝑆 ) quite well (Table 9.3).
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Given the small size of these oscillations, it will likely be challenging to observe them
experimentally. These oscillations are not predicted by Koshino, since they are caused by the
finite length of the overlap. This quantization effect is absent in the (27,3)@(35,3) DWNT because
its outer tube is semiconducting and, therefore, only one set of linear bands is present. The
interlayer conductance is heavily suppressed in both localized insulating DWNTs considered
here. The interlayer transmission becomes significant only outside the energy range from -
0.35 eV to 0.35 eV, where non-linear bands are present. Different examples of localized-insulating
tDWNT (metallic@metallic) with shorter interlayer spacing (d𝑅) can be found in Figure 9.17
(d𝑅 = 3.4 Å).

Figure 9.17: Density of states from a
semi-infinite (45,18) into a semi-infinite
(54,18) for an overlap length of 44 Å. The
interlayer transmission is suppressed
near the Fermi level, showing that the
interlayer conduction is low in localized
insulating DWNTs.

9.4.3 Weak Coupling Regime

The weak coupling regime consists of all other nanotubes, that is, all nanotubes for which
the difference of the chiral vectors points neither along the armchair nor the zigzag direction,
for which the two chiral vectors are not nearly parallel, and all DWNTs composed of two
zigzag nanotubes (zig-zag@zig-zag). This regime encompasses the largest fraction of all
carbon nanotubes, and for most carbon nanotubes in this regime, the interlayer transmission
is completely suppressed. DWNTs composed of two zigzag nanotubes are an exception to
this rule. Similarly to armchair@armchair DWNTs, rotational symmetry plays an important
role in zigzag@zigzag DWNTs [KC02] and can lead to significant interlayer conductivity. If
we restrict ourselves to a realistic interlayer spacing of 2.8 Å to 4.0 Å only one nanotube has
the required symmetries: (9,0)@(18,0). Figure 9.18 (a) showcase the transmission function of
(9,0)@(18,0) tDWNT: conductivity ranges from zero to 2𝐺0 and varies with energy and overlap
length. For all energies, there is an overlap length where the conductivity is not zero, except for
a small energy window around the Fermi level (−0.04 eV to 0.04 𝑒𝑉 ), where the conductance
is always suppressed. This energy window corresponds to the curvature-induced gap of (9,9)
SWNT (𝐸𝑔 = 0.08 eV [KE01]), in which no electrode level is available for transport. Other
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zigzag@zigzag DWNTs without three-fold rotation symmetry with the same interlayer spacing
do not show interlayer conductivity, for example (18,0)@(27,0) (Figure 9.18 (b)). Similarly, the
conductivity between layers is reduced for incommensurate achiral nanotubes with a zigzag
layer and an armchair layer (Figure 9.18 (c)) and incommensurate chiral DWNTs (Figure 9.18 (d)).

(a) (9,0)@(18,0) (b) (18,0)@(27,0)

(c) (9,0)@(10,10) (d) (39,0)@(36,18)

Figure 9.18: Density of states and electron transmission of two telescopic DWTNs in the weak
coupling regime for different overlap lengths 𝐿. (a) The transmission from (9,0) into (18,0) is not
suppressed due to 3-fold rotational symmetry and oscillates as a function of 𝐿. (b) The transmission
from (18,0) into (27,0) is suppressed due to weak inter-layer coupling. (c) The transmission from
(9,0) into (10,10) is suppressed due to weak inter-layer coupling. (d) The transmission from (39,0)
into (36,18) is suppressed due to weak inter-layer coupling.
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9.5 Conclusion

In conclusion, we show that telescopic DWNTs exhibit the same coupling regimes predicted for
infinite double-wall carbon nanotubes, despite the finite length of the DWNT segments. Even
when the DWNT segments are short, all three regimes should be identifiable in experimental
setups. In strong coupling metallic nanotubes, the interlayer transmission is significant and
tunable. Controlling the overlap length makes it possible to change between the periodically
occurring insulating and metallic behavior. These oscillations of the conductance can be de-
scribed using the picture of wave interference in one dimension. Based on this simplistic
picture, we derived an expression for the transmission that can predict the periodicity of the
oscillation with excellent accuracy. Strong-coupling metallic nanotubes armchair@armchair
exhibit multiple dips in the transmission function. We show that these dips correspond to
standing wave formation in the overlap region, which has quantized wave vectors and quan-
tized energies. Standing waves do not form in chiral nanotubes as a result of broken rotational
symmetries. In (10,10)@(15,15), rotational symmetries prohibit transmission through one
of the electrode channels and thus reduce the maximum transmission. This specific char-
acteristic of armchair@armchair nanotubes with three-fold rotation symmetries shed light
on a long unexplained measurement of 1𝐺0 conductance plateaus in some carbon nanotube
bundles [Fra+98].

In weak-coupling metallic tDWNTs, the interlayer transmission is negligible in almost all
cases. Metallic zigzag@zigzag tDWNTs are the only type of weak-coupling nanotube that can
exhibit significant interlayer transmission, as seen for (9,0)@(18,0). Again, rotational symmetries
play a crucial role in achiral tDWNTs. While the interlayer transmission of (9,0)@(18,0) is
significant, it is negligible in (18,0)@(27,0). In other weak-coupling tDWNTs, where at least one
tube is chiral or the two tubes are incommensurate, the interlayer transmission is negligible.
In the localized insulating regime, the interlayer transmission is also heavily suppressed near
the Fermi level. In this regime, the emergence of flat bands causes oscillations in the DOS. In
particular, the flat bands already appear in segments significantly shorter than the predicted
spatial periodicity of the underlying effective potential (≈ 1200 Å for tubes discussed above).
The number of localized states is directly related to the overlap length.

The coupling regime, in addition to the metallicity of the layers, plays an important role in
predicting the conductivity of a tDWNT. As a result of the low interlayer conductance for weak
coupling and localized insulating tDWNT, metallic layers in multiwall CNTs are contributing
less to the overall conductance than previously expected. This explains, for example, the low
interlayer conductivity reported in [UA05].

In addition, our results highlight that applications such as nanoelectronic switches based
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on tDWNTs are very sensitive to their structure. Chiral tDWNTs are the most promising
candidates for such applications. These tubes preserve the oscillating behavior found in all
strongly coupled tDWNTs, while the absence of rotational symmetries prevents backscattering
at localized states.
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10 Tuning the Topological

Band Gap of Bismuthene

Bismuthene (monolayer bismuth) hosts nontrivial topological phases in some of its metastable

polymorphs. However, it is yet unknown whether these polymorphs can bind to a substrate,

whether their topological characteristics are maintained, and how to design the best substrate to

strengthen their topological phase. In this chapter, we show, by means of first-principles methods,

that bismuthene polymorphs can bind to silicon carbide (SiC), silicon (Si), and silicon dioxide

(SiO2), and that proximity interaction in these heterostructures, even in the presence of weak

bonding, significantly affects the electronic structure of the monolayer. For the non-covalently

bound heterostructure, we demonstrate that the main mechanisms affecting the electronic structure

are van der Waals interactions and symmetry breaking. Our research demonstrates that the

topological characteristics of bismuthene polymorphs can be strengthened by substrate interaction,

allowing them to be used for experimental analysis and practical use.

The content of this chapter has been published in January 2022 in Carbon [WOZ22].

10.1 Introduction

Although the topology of bulk bismuth is disputed, atomically thin layers of Bi(111) (buckled
hexagonal or b-hex bismuthene) are unanimously predicted to be topological [Kor+08; Liu+11;
Ma+15; Sin+19; Zho+15] and a prime example of a Haldane-type topological material. However,
two main issues limit the applicability of b-hex bismuthene: it is only metastable, and its band
gap (0.08 eV) [Sin+19] is too small for room-temperature applications. Finding a substrate that
can increase the gap while maintaining the topological features is one potential answer to
these issues. Additionally, topologically trivial monolayers can become topological through
interaction with substrates. For example, flat hexagonal (f-hex) bismuthene becomes topological
when grown on SiC(0001) [Rei+17] or partially passivated Si (111) [Zho+15]. In addition to
b-hex and f-hex bismuthene, other two-dimensional polymorphs of bismuthene exist or have
recently been predicted. The energetically most favored phase is the puckered monoclinic
bismuthene (Bi(110)), which is topologically trivial. In the order of formation energy, Bi(110) is
followed by the b-hex, 𝛼 , 𝛽 , 𝛾 and f-hex [Sin+19]. In free-standing form, only the b-hex and 𝛾
phases are topologically nontrivial.
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In this chapter, we focus only on the b-hex and f-hex phases, which can be Haldane-type TIs
because of their hexagonal in-plane symmetry. We address the most important questions about
the robustness of their topological phases:

1. Are the topological properties preserved on a substrate?

2. Can we design an optimal substrate to make the topological properties more robust?

3. Can a metastable polymorph become stable through interaction with a substrate?

To answer these questions, we performed a complete first-principles study of the interactions
between topological states in bismuthene monolayers and silicon-based substrates. We show
that interaction with the substrate can stabilize bismuthene polymorphs and strengthen their
topological properties, making them accessible for experimental investigation and technological
applications. In particular, we show that the Bi-monolayer phases can be stabilized on silicon
carbide (SiC), silicon (Si), and silicon dioxide (SiO2). We demonstrate that the proximity
interaction has a significant effect on the electronic structure of the monolayer even when
no bonding occurs. We further identify van der Waals interactions and the breaking of the
sublattice symmetry of the monolayer as the main factors driving changes in the electronic
structure. We also show that the structure of the surface greatly affects the interaction between
b-hex and SiO2: a hydroxylated SiO2 surface can increase the topological band gap, whereas a
surface with cleaved silicon ends can considerably decrease the band gap.

10.2 Methods

We perform fully relativistic DFT calculations using Siesta [CC12; Cua+21; Gar+20; Sol+02]
and employ optimized norm-conserving Vanderbilt pseudopotentials [Ham13] in the PSML
format [Gar+18] from the PseudoDojo database [van+18] generated with PBE [PBE96] exchange-
correlation functional. We expand the Kohn-Sham states using a standard double-Z polarized
basis set [Art+99].

We solve the Kohn-Sham equations using an electronic temperature of 5 meV and a 15×15×1
Monkhorst-Pack grid for a single bismuthene unit cell. For larger cells, the k-point sampling
is scaled accordingly. All structures are relaxed with a force threshold of 0.01 eV/Å and a
maximum stress tolerance of 0.006 eV/Å3. We employ a real space grid with a mesh cut-off of
600 Ry.

For heterostructures, we use the van der Waals density functional of Dion et al. [Dio+04]
(vdW-DRSSL), fix the substrate lattice vectors, and strain the bismuthene monolayer. This
approach recreates the experimental conditions under which the monolayer will adjust to the
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more rigid substrate. To determine the binding energies, we apply a counterpoise correction
for the basis set superposition error [BB70]. Because GGA functionals, such as PBE, routinely
underestimate binding energies for vdW materials [Laz+10], the adoption of a vdW functional
is essential for heterostructures. Except for f-hex@SiC, the GGA functional predicts that none
of the heterostructures is binding. For the free-standing bismuthene phases, we compare the
effects of PBE and vdW-DRSSL functionals on the electronic structure. For the relaxation of
the isolated substrate slabs, we use the PBE functional [PBE96].

To ensure that the slabs are thick enough to consider the upper and lower slab surfaces as
decoupled, we increase the slab thickness layer by layer until the change in surface energy for
any extra layer is smaller the 1 meV. We reach the following slab thicknesses:

1. Si(111): 4 layers (2 Si per layer)

2. SiC(0001): 4 layers (1 Si and 1 C per layer)

3. Hydroxylated SiO2(0001): 7 layers (1 Si and 2 O per layer) + 1 Si + 4 OH groups
displayed in Figure 10.6 (a,b) with 3 layers.

4. Reconstructed SiO2(0001): 5 layers (1 Si and 2 O per layer ) + 1 Si + 2 surface layers (2
Si and 5 O); displayed in Figure 10.6 (c,d) with 1 layer.

5. Silicon-terminated SiO2(0001): 5 layers (1 Si and 2 O per layer) + 1 Si displayed in
Figure 10.6 (e,f) with 3 layers.

To avoid overestimation of the dipole moments of the heterostructures, we use a dipole correc-
tion, which removes the interaction between periodic images along the vacuum direction.

In general, the substrate and the free-standing monolayer lattices are incommensurate. To
find realistic representations of the possible heterostructures, we take into account all possible
combinations of supercells of the two materials and select the combination with a lattice
mismatch of less than 5% and the least number of atoms possible. In this process, we also
include supercells of (

√
3×

√
3)R30◦cells of either material, which are obtained by rotating the

unit cell lattice vectors by 30◦ and enlarging them by a factor of
√

3.
We apply a counterpoise correction for the basis set superposition error (BSSE) [BB70] to

evaluate the binding energies (𝐸𝐵) between the monolayer and the substrate. The BSSE refers to
the overestimation of binding energy when comparing the total energy of a combined system
and its components obtained from simulations with localized basis sets. This overestimation
is a consequence of additional orbitals at the interface, which can be shared between the two
components to lower their individual energy. To correct this error we calculate the total energy
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of the components using ghost orbital, i.e., basis set functions without associated electrons.
The corrected binding energy is given

𝐸𝐵𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐸 (bismuthene + 𝑠𝑢𝑏𝑠.) − 𝐸 (bismuthene + ghost subs.) (10.1)

− 𝐸 (ghost bismuthene + subs.) (10.2)

Our new interface for Z2Pack [Gre+17] is used here to determine the topological invariant
Z2.

10.3 Results and Discussion

10.3.1 Free-Standing Bismuthene

Before studying the effect of substrates on bismuthene monolayer phases, it is essential to
establish the structure, topological and electronic properties of the free-standing monolayers
as a reference point.

The two hexagonal phases of bismuthene (f-hex and b-hex) have a similar crystal structure.
In both phases, the bismuth atoms are arranged in a honeycomb lattice. In flat hexagonal
bismuthene, the two sublattices lie in a common plane (Figure 10.1 (d,e)) whereas in buckled
hexagonal bismuthene, they form two distinct parallel planes (Figure 10.1 (a,b)). The structural
relaxation of flat hexagonal bismuthene yields a lattice constant of 5.35 Å, which corresponds to
a distance of 3.09 Å between neighboring bismuth atoms. The bond lengths (3.04 Å) in buckled
hexagonal bismuthene and its lattice constant (4.28 Å) are slightly shorter. The formation
energy of the free-standing buckled hexagonal bismuthene is higher compared to that of f-hex

(a)

(b)

(c) (d)

(e)

(f)

Figure 10.1: Crystal structure of free-standing buckled hexagonal bismuthene (top view (a); side
view (b)) and flat hexagonal bimuthene (top view (d); side view (e)); (c) and (f) corresponding DFT
electronic band structure.
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(𝛥𝐸 = 0.4 𝑒𝑉 ). The buckling height, that is, the distance between the two planes of bismuth
atoms, is approximately 1.78 Å.

Both bismuthene phases are semiconductors with an indirect band gap. The band gap of flat
hexagonal bismuthene (0.5 eV) is larger than that of buckled hexagonal bismuthene (0.13 eV;
PBE). We calculate the invariantZ2for both phases and find that the f-hex phase is topologically
trivial (Z2 = 0), while the b-hex phase is topologically nontrivial (Z2 = 1). These results are
consistent with the literature, for example, the work of Singh et al. [Sin+19]. Compared to
Singh et al., we observe a slightly larger band gap for b-hex. However, this level of deviation
with respect to the literature is reasonable, taking into account the use of different DFT codes,
pseudopotentials, and basis sets (plane waves vs. localized basis sets).

While the results for the flat hexagonal phase do not depend on whether the calculations
are performed with the PBE or vdW-DRSSL functions, we find that the band gap of buckled
hexagonal bismuthene is sensitive to the choice of the exchange-correlation functional. Includ-
ing the vdW interaction leads to an increase in the band gap to 0.38 eV with the functional
vdW-DRSSL. The difference in sensitivity to the choice of functional can be attributed to the
crystal structure. In the buckled hexagonal phase, the vdW interactions lead to an attraction of
the two sublattice planes and decrease the buckling height to approximately 1.65 Å. However,
in the flat hexagonal phase, the vdW interactions do not result in an effective attraction because
it is flat. In addition to a reduction of the buckling height, the vdW interaction induces small
magnetic moments (0.01 `𝐵), which break the time-reversal symmetry and cause the Kramer
pairs to split (Figure 10.1 (f) and Figure 10.1 (c)). The Z2 invariant remains unchanged and
indicates that the topological phase of buckled hexagonal bismuthene is robust enough to
persist despite the small spontaneous magnetization.

10.3.2 SiC(0001)

The first substrate we consider is silicon carbide, a wide-bandgap semiconductor with hexagonal
symmetry. We demonstrate that the f-hex and b-hex bismuthene phases bind to (partially)
hydrogen-passivated SiC(0001) substrates and the resulting heterostructures are topological.

The most stable crystal structure for SiC is the Moissanite-6H crystal structure. Other closely
related metastable polymorphs, such as SiC-4H or SiC-3C, also occur naturally and have similar
electronic properties. When cut along the (0001) direction, these SiC polymorphs possess a
hexagonal in-plane symmetry, similar to that of our two monolayer phases. The in-plane
lattice constant of SiC(0001), about 3.1 Å, is considerably shorter compared to f-hex and b-hex
bismuthene. Nevertheless, f-hex bismuthene can be grown on silicon-terminated SiC(0001)
and becomes topological, as recently demonstrated by Reis et al. [Rei+17]. In this case, the
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two crystal structures are rotated by 30◦ with respect to each other, forming a superlattice of
one (

√
3×

√
3)R30◦supercell of SiC(0001) and one f-hex unit cell (Figure 10.2 (a) and (b)). The

Bi atoms of the monolayer bind to the Si atoms at the surface. Below the center of each Bi
hexagon lies one unpaired Si atom, which is expected to be hydrogen-passivated.

To simulate this structure, we place a 1% strained unit cell of f-hex bismuthene on the rotated
unit cell (

√
3×

√
3)R30◦of Si(0001). We passivate the unpaired Si atom at the center of the Bi

hexagons and those at the opposite side with hydrogen atoms to avoid metallic states in the
substrate. After structural relaxation, we find the monolayer remains flat and binds strongly to
the surface. The distance between the monolayer and the silicon surface layer is approximately
2.76 Å and the binding energy is 1.5 eV per bismuth atom. The Bi-𝑝𝑧 orbitals play a dominant
role in the formation of Bi-Si bonds (Figure 10.3). As a result, the Bi-𝑝𝑧 orbitals are shifted away
from the Fermi level, which drives the phase transition from trivial to topological [Rei+17;
Zho+15].

Our simulations accurately reproduce the electronic structure and structural characteristics
described by Reis et al. [Rei+17]. We confirm the existence of a topological phase and an indirect
band gap with the valence band maximum at K and the conduction band minimum at 𝛤 . We find
very little variation in the electronic structure calculated with the GGA-PBE and vdW-DRSSL
functionals. This can be attributed in part to the covalent nature of the bonding and, in part,
to the insensitivity of the isolated monolayer to the choice of function. We calculate a band

Figure 10.2: Crystal structure of flat hexagonal bismuthene@SiC(0001) (top view a; side view
b). Color code and schematic of the individual unit cells are displayed in the inset. Orbital projected
DFT electronic band structure (c): in each panel, the contribution of different orbitals is proportional
to the line width.
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Figure 10.3: Flat hexagonal bis-

muthene@SiC(0001): Change in charge
density due to interaction between monolayer
and substrate. The shape of the isosurface
reveals, that bonds between Bi and Si are
primarily formed by 𝑝𝑧 orbitals. The teal and
yellow colors indicate a decrease and increase
in the charge density respectively.

gap of 0.6 eV for both functionals, which is only marginally higher than that reported by Reis
et al. [Rei+17], namely 0.5 eV.

The lattice mismatch between b-hex bismuthene and SiC(0001) is larger than that of f-hex
bismuthene, and an unrealistic amount of strain would be required to realize a one-to-one
correspondence between Bi atoms and surface Si as for f-hex@SiC. Attempting to place b-hex
bismuthene directly on silicon-terminated SiC(0001) would create a structure with several
undercoordinated Si atoms resulting in a metallic heterostructure. Instead, we consider a fully
hydrogen-passivated slab of SiC(0001) as a substrate for b-hex bismuthene. The interactions
between a fully passivated surface and the monolayer can be expected to be dominated by
van der Waals interactions, which should favor the more stable buckled hexagonal phase or

Figure 10.4: Crystal structure of buckled hexagonal bismuthene@SiC(0001) (top view a; side
view b). Color code and schematic of the individual unit cells are displayed in the inset. Orbital
projected DFT electronic band structure (c): in each panel, the contribution of different orbitals is
proportional to the line width.
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Figure 10.5: Effect of the strain on the band structure of free-standing b-hex bismuthene. The
topological features are resilient to strain.

puckered monoclinic phase over the flat hexagonal phase. Furthermore, the vdW interactions
can be expected to perturb the electronic structure of the monolayer only weakly and preserve
the topological phase.

Our b-hex@H-SiC(0001) heterostructure consists of a 4×4 supercell of hydrogen-passivated
SiC(0001) and a −3% strained 3×3 supercell of b-hex bismuthene (Figure 10.4 (a) and (b)). Again,
we passivate the silicon atoms on the bottom side of the slab with hydrogen atoms to avoid
metallic substrate states. As predicted, the binding energy per Bi atom in the heterostructure
(𝐸𝐵 = 0.08 eV) is much lower than in f-hex@Sic and results in a van der Waals heterostructure.
Despite the low binding energy, the first SiC layer is slightly deformed as a result of the
proximity interaction. However, we find that the Z2 invariant of the monolayer remains
unchanged (Z2=1). The band gap of the heterostructure (0.18 eV) is reduced with respect
to the free-standing monolayer. This effect can be largely attributed to the imposed strain
(Figure 10.5). However, the proximity interaction also has a significant effect. It produces a more
pronounced Mexican-hat profile and causes stronger splitting of the Kramer pairs. Because of
the robust topological phase, hydrogen-passivated SiC is a reasonable substrate candidate for
b-hex bismuthene, irrespective of the slightly reduced band gap.

10.3.3 SiO2(0001) 𝜶 -Quartz

Commonly used silicon dioxide substrates are amorphous (a-SiO2), and cannot be modeled
directly with DFT methods that rely on periodic boundary conditions. Rather than using large
supercells that aim to model a-SiO2, we chose different surface terminations of crystalline
SiO2 𝛼-quartz(0001) and compared the effect of these crystalline substrates on the bismuthene
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 10.6: Crystal structure of SiO2 slabs with different surfaces (side view (a,c,e) and top
view (b,d,f)): hydroxylated (OHT) (a,b), reconstructed oxygen terminated (ROT) (c,d), and silicon
terminated (SiT) (e,f).

monolayers. The approximation of a-SiO2 through crystalline surfaces is possible because
(a) the atomic structure of a-SiO2 is locally very similar to 𝛼-quartz, (b) the roughness of
a-SiO2 substrates can be very small 𝜎 = 2 Å, and (c) monolayer can closely follow the surface
roughness [Que+14]. We consider a silicon-terminated cleaved surface (SiT), a reconstructed
oxygen-terminated surface (ROT), and a hydroxylated silicon-terminated surface (OHT) (Fig-
ure 10.6). We ignored a non-reconstructed oxygen-terminated surface because of its structural
instability.

As in the case of SiC substrates, b-hex bismuthene binds to SiO2 weakly due to van der Waals
interactions and could potentially be experimentally synthesized7. Although the binding is
dominated by van der Waals interactions on all three surfaces, the electronic structure is highly
sensitive to the surface configuration. In particular, the hydroxylated surface enhances the
band gap and a silicon-terminated, cleaved surface significantly reduces the band gap.

The b-hex@SiO2 heterostructures consist of a (
√

3×
√

3)R30◦supercell of SiO2, and a 2%
strained 2×2 supercell of b-hex bismuthene (Figure 10.7). On all three surfaces, b-hex bismuthene
binds weakly with binding energies between 0.06 eV and 0.11 eV per bismuth atom (Table 10.1).
Among the three heterostructures, b-hex@OHT-SiO2 is the most promising candidate for
the realization of room-temperature quantum spin Hall (QSH) states because it possesses the

7 Positive binding energy does not imply thermodynamic stability of these heterostructures, nor do these energies
allow comparison of the stability of the different heterostructures. As such, it is possible that it could be
synthesized but this is not guaranteed.
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Figure 10.7: Crystal structure of buckled hexagonal bismuthene on SiO2 (top view and side
view) and orbital projected DFT electronic band structure for three different surface terminations:
hydroxylated (a-c), reconstructed (d-f), and Si terminated (g-i). In each panel, the contribution of
different orbitals is proportional to the line width. On the hydroxylated and reconstructed surfaces,
the signature of a band inversion is visible in the projection of Bi 6𝑝𝑦 orbitals. Bi 6𝑠 orbitals do not
contribute to the bands near the Fermi level.
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largest band gap (0.40 eV, Figure 10.7 (c)) and remains topologically nontrivial (Z2 = 1). With
respect to the free-standing monolayer, the band gap is slightly increased, and the orbital
character of the states near the Fermi level changes. In the free-standing monolayer, all three
Bi-𝑝 orbitals have equal contributions to the valence and conduction bands. In contrast, in the
heterostructure, Bi-𝑝𝑥 orbitals contribute primarily to the conduction bands and Bi-𝑝𝑦 orbitals
to the valence band. The 𝑝𝑥 -𝑝𝑦 symmetry is lifted due to the breaking of D3d symmetry of the
free-standing b-hex monolayer in the heterostructure8. As a result, the position of the valence
bands near 𝑀 and 𝐾 is lowered (Figure 10.7 (c)), and the valence band minimum at 𝛤 increases,
thus increasing the direct band gap at 𝛤 slightly. Analysis of the orbital contributions of the
bands also illustrates the signature of a band inversion at 𝛤 . These two characteristics indicate
a very robust topological phase of b-hex@OHT-SiO2.

We observe very similar characteristics in the b-hex@ROT-SiO2 heterostructure. The
nontrivial topology of the monolayer is preserved, and the broken in-plane symmetry changes
the orbital character of the valence and conduction bands. Again, the signature of a band
inversion can be observed 𝛤 (Figure 10.7 (f)). We find that the band gap of the free-standing
monolayer is preserved (0.38 eV) on the ROT surface, which makes ROT-SiO2 a good substrate
if b-hex bismuthene.

In contrast, the b-hex@SiT-SiO2 heterostructure shows very different behavior. In this
heterostructure, the interaction between the surface and the monolayer is significantly enhanced
due to a decrease in the spacing between the two materials compared to b-hex@OHT-SiO2 or
b-hex@ROT-SiO2 (Table 10.1). The stronger interaction in this heterostructure also causes the
Bi-hexagons to become skewed and the buckling height to be non-uniform (Figure 10.7 (g)).
Furthermore, the Bi-6𝑝 orbitals hybridize with the Si-3𝑝 of the substrate. As a result, the band
gap is significantly smaller and the splitting of the Kramer pairs increased (Figure 10.7 (i)).
Despite these strong perturbations of the electronic structure, the calculated Z2-invariant
remains 1, demonstrating the robustness of the topological phase of b-hex bismuthene. The
reduction of the band gap in b-hex@SiT-SiO2 prevents its application in quantum spin Hall
devices. We predict that an optimal experimental realization of the topological b-hex requires a
hydroxylated SiO2 surface.

F-hex bismuthene also binds to the SiO2 surfaces with varying binding energies per Bi atom:
0.09 eV (ROT-SiO2), 0.11 eV (OHT-SiO2), and 0.19 eV (SiT-SiO2) (Figure 10.8). The f-hex@SiO2

heterostructures consist of a -4% strained f-hex unit cell and a substrate unit cell. On all three
surfaces, we observe that the crystal structure of the flat monolayer is perturbed, causing it
to buckle slightly. This effect is caused in part by the imposed strain and is further enhanced

8 the point group of bismuthene@OHT-SiO2 heterostructure is P1
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Figure 10.8: Crystal structure of flat hexagonal bismuthene on SiO2 (top view and side view) and
orbital projected DFT electronic band structure for three different surface terminations: hydroxy-
lated (a-c), reconstructed (d-f), and Si terminated (g-i). In each panel, the contribution of different
orbitals is proportional to the line width. Bi 6𝑠 orbitals do not contribute to the bands near the
Fermi level.
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by the surface geometry. The buckling is particularly strong on the SiT surface, where the
atoms of one Bi-sublattice sit in the middle of the cleavages in the surface, while the second set
of atoms sits on top of the ridges. We observe a Mexican hat profile in the topmost valence
bands, similar to the case of the b-hex bismuthene. Despite these similarities, the f-hex@SiO2

heterostructures are topologically trivial (Z2=0). However, by comparing the band structures,
we can see that the band gap closes with increasing buckling height. This could indicate that
the monolayer on the SiT-SiO2 surface is close to a topological phase transition. Using the
inverse piezoelectric effect to modulate the strain and thus the buckling height could make it
possible to tune between a topologically trivial and nontrivial phase of hexagonal bismuthene
on SiO2.

10.3.4 Si(111)

Buckled hexagonal bismuthene binds to Si(111) and remains topologically nontrivial. However,
Si(111) is a poor choice for bismuthene-based topological insulator devices because the band
gap is significantly reduced.

The b-hex@Si(111) heterostructure is composed of a 2×2 Si(111) supercell and a 4% strained
(
√

3×
√

3)R30◦b-hex supercell (Figure 10.9 (a) and (b). The monolayer binds weakly to the
substrate with a binding energy of 0.07 eV per Bi atom. Similarly to b-hex@SiC, the lattice
mismatch requires passivation of the Si(111) substrate to prevent the heterostructure from
being metallic and results in a van der Waals heterostructure. In this heterostructure, the

Figure 10.9: Crystal structure of buckled hexagonal bismuthene@passivated Si(111) (top
view a; side view b). DFT electronic band structure (c) in each panel the contribution of different
orbitals is proportional to the line width.
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contributions of the Bi-p𝑥 and Bi-p𝑦 orbitals to the bands are not symmetric due to the broken
in-plane symmetry of the monolayer. Analysis of the orbital contributions to the eigenstates
reveals that the electronic structures of the two materials are largely independent. For all the
heterostructures discussed above, the Fermi level falls within the band gap of the substrate and
the monolayer. Here, however, the electronic structures of the two materials are aligned so that
the Fermi level lies slightly above the top edge of the substrate band gap and slightly below
the bottom edge of the monolayer band gap. This creates very small electron and hole pockets
and makes this heterostructure semimetallic. Even if the substrate states are excited at finite
temperatures, these states should not interfere with the monolayer states since both materials
are effectively decoupled. Therefore, the topological band gap should here be defined as the gap
between the valence and conduction bands of the monolayer: 0.12 eV (Figure 10.9 (c)). Compared
to the free-standing phase, this gap is significantly reduced due to the strain (Figure 10.5) and
the interaction with the substrate. Overall, Si is a poor substrate choice for b-hex bismuthene.

To create an f-hex@Si heterostructure with less than 5% monolayer strains, large supercells
are required, for example, a 4×4 (

√
3×

√
3)R30◦supercell of Bi and a 5×5 unit cell of Si with

more than 500 atoms in total. Preliminary screening of the topological properties of the initial
unrelaxed structure, a partially relaxed structure, and a fully relaxed smaller heterostructure
with larger strain revealed a topologically trivial character of this heterostructure. For this
reason, we exclude f-hex@Si from our study.

10.4 Conclusion

In this work, we have studied the proximity interaction between hexagonal Bi monolayer
phases and silicon-based substrates to identify potential substrates for room-temperature TI
applications based on Bi monolayers. We showed that these heterostructures have positive
binding energies (Table 10.1) and therefore buckled hexagonal and flat hexagonal bismuthene
could be stabilized on H-SiC(0001), H-Si(111), and 𝛼-quartz SiO2(0001). As such, our work can
help guide experimental studies in the choice of potential substrates.

Except for f-hex@SiC(0001), which covalently binds, all other monolayer substrate combi-
nations considered here form vdW heterostructures. The interaction with the substrate has
no effect on the topology of the hexagonal Bi monolayers (f-hex: trivial, b-hex: nontrivial),
except for f-hex@SiC(0001). We expect that this topological character is also preserved, when
geometrical edges are created in monolayers, to ultimately observe the quantum spin Hall effect.
Technically, these edges introduce a new perturbation of the electronic structure. However,
Bieniek et al. [BWP17], Reis et al. [Rei+17], and Wu et al. [Wu+16] have shown that the creation
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of such edges does not affect the topology in the covalently bound heterostructure. Therefore,
the topology in the vdW heterostructure discussed here should remain unchanged as well.

We demonstrate that even in the absence of bonding, proximity interactions in the het-
erostructure have a considerable impact on the electronic structure of the monolayer. The main
causes of the change in the electronic structure are the structural realignment and the breaking
of the sublattice symmetry of the hexagonal monolayers. The substrate material and its surface
influence the precise nature of this proximity interaction. In particular, the magnitude of the
topological gap of b-hex bismuthene changes greatly depending on the substrate selected. Due
to an increase in the topological gap, hydroxylated SiO2 appears as an exceptionally promising
substrate option for b-hex bismuthene and may allow for room-temperature use.
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11 Quantum Transport with

Spin Orbit Coupling

In this chapter, we use our newly developed methods in the TranSIESTA code to study the effect of

SOC and non-collinear spin configuration on transport properties of 1D, 2D and 3D nanomaterials.

First, we determine the anisotropic magnetoresistance (AMR) in an infinite monatomic iron chain

and study the domain wall resistance in the constraint domain wall between two semi-infinite

ferromagnetic chain segments. Next, we test whether our new implementation can correctly predict

the tunneling magnetoresistance (TMR) in Fe/MgO/Fe junctions and whether these junction exhibit

tunnel anisotropic magnetoresistance (TAMR). As a third test case, we simulate a lateral MoS2/WS2

heterojunction, which exhibits strong intrinsic SOC. Lastly, we determine the effects of spin-orbit

coupling and electron correlation on the transport properties of carbon nanotubes decorated with

antiferromagnetic molecules.

11.1 Monatomic Iron Chain (1D)

In an infinite monatomic iron chain, the Hamiltonian of the scattering region is independent of
k. With this system, we test the part of our implementation without k-point sampling. We check
whether the magnetic moments in the scattering region relax when the initial guess does not
match the spin orientation of the electrodes. Furthermore, we calculate the transport properties
of monatomic iron chains with different magnetic configurations: infinite periodic chains with
collinear spin moments (Figure 11.1 (a) and (b)) and constraint domain walls (Figure 11.1 (c), (d),
and (e)). We compare the contribution of different spin channels between the scalar relativistic
(SR; collinear spin approximation and no SOC) and fully relativistic (FR; with SOC) simulations
using the previously induced concept of spin-channel projected transmission. Before disusing
these properties obtained with the NEGF formalism, it is important to study the electronic
structure of the infinite periodic iron chain (Figure 11.1 (a) and (b)).

The magnetic anisotropy energy (MAE) describes how the free energy of magnetic materials
depends on the relative orientation of magnetic moments with respect to the crystal structure.
MAE emerges as the result of Coulomb repulsion, SOC, and the broken rotational symmetry in
the crystal. The anisotropic magnetoresistance (AMR) is the transport counterpart of MAE and
describes the dependence of the resistance on the relative orientation between magnetization
and current flow. While AMR is known to have a small effect in bulk materials (<5% in 3d
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Figure 11.1: Schematic of five different spin alignments in monoatomic chains: (a) parallel spins
perpendicular to the chain axis (\𝑖 = 0), (b) parallel spin along the chain axis (\𝑖 = 𝜋/2,𝜙𝑖 = 𝜋/2),
(c) abrupt domain wall between two domains with \𝑖 = 0 and \𝑖 = 𝜋 , (d) Néel type domain wall
(\𝑖 ∈ [0, 𝜋], 𝜙 = 𝜋/2) (e) Bloch-type domain wall (\𝑖 ∈ [0, 𝜋], 𝜙𝑖 = 0).

alloys [MP75]), a variety of low-dimensional systems have a large AMR (20-50% in 3d transition
metal nanojunction [BPM04], >100,000% in (Ga, Mn)As/GaAs/(Ga, Mn) stacks [Rüs+05]). Here,
we will use our new implementation to determine the AMR of ferromagnetic monatomic iron
chains and constraint domain walls.

11.1.1 Magnetic Anisotropy in the Ideal Iron Chain

The ground state of an iron chain is characterized by an interatomic spacing of 2.26 Å and
ferromagnetic alignment of spin magnetic moments with 3.35`B per iron atom. We observe
small differences in the total energy depending on the alignment of the spin moments relative
to the chain axis. This MAE favors an alignment of the spin moments parallel to the chain
axis (𝐸 (\ = 𝜋/2) − 𝐸 (\ = 0) ≈ 1 meV per Fe). Similarly, the band structure of the iron chain
is anisotropic with respect to the direction of the spin magnetic moments. Like MAE, the
anisotropy of bands arises because of the SOC in Fe. When the spin moments are parallel to
the chain axis (\ = 𝜋/2), SOC acts like an effective magnetic field and splits some of the bands,
which are doubly degenerate in the scalar relativistic case (Figure 11.2 (a)). Not all bands split,
nor is the splitting uniform for all bands that are split. Jacob et al. [JFP08] show that the same
effect can be observed in nickel chains. Furthermore, they showed that the size of this splitting
is proportional to the size of the orbital magnetic moment (𝑚 ∥) and spin (𝜎 ∥) parallel to the
chain axis. Effectively, the SOC introduces an orbital Zeeman effect along the spin-polarization
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Figure 11.2: Comparison of scalar relativistic (SR) and fully relativistic (FR) spin band structure of
a monatomic iron chain with spin moment parallel to the chain axis (a) and perpendicular to the
chain axis (b - f). For spins aligned with the chain axis SOC acts as an effective magnetic field,
shifting bands proportionally to their orbital magnetic moment (a). For spins perpendicular to the
chain axis (b), the two band structures are almost identical, except for SOC induced avoided band
crossings, which are highlighted with blue circles. Zoomed-in views of each avoided band crossing
in the energy range from -2 eV to 2 eV are displayed in panels (c - f).

axis. This same effect is responsible for band splitting in the iron chain with spin moments
parallel to the chain axis [TG07].

In contrast, the band structure of an iron chain with perpendicular moments features no
shifted bands. It reproduces the scalar-relativistic case almost exactly. However, closer in-
spection of the intersection points of all bands reveals avoided band crossings for some bands
(Figure 11.2 (b to f)). These avoided band crossings are absent when the spin moments are
parallel to the chain axis or without SOC. Whether SOC repels two bands is determined by
their respective spin 𝜎 and orbital magnetic quantum numbers𝑚 projected along the magnetic
axis of the chain: crossings of bands with (𝜎,𝑚) and (±𝜎,∓𝑚) are lifted [JFP08]. The results
we obtain for the electronic and magnetic structure of infinite monatomic iron chains match
previously published studies [DP98; EKF03; TG07]. Only the magnetic anisotropy energy we
obtain is a factor of 2 lower compared to other studies [OYC+09; Wij86]. Given that all other
properties are reproduced well and our focus is on the transport properties, we can proceed
safely with our simulation parameters.
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Figure 11.3: Spin texture (a - d) and spin-channel projected transmission ((e, f)) of an iron chain
with spin magnetic moments perpendicular to the chain axis (\ = 0). The spin texture is collinear
to the magnetic axis in the -2 eV to 2 eV energy window except for three points (grey circles
in (a) and zoomed-in graphs (b - d)). The spin channel projected transmission calculated with
Equation (6.19) (

√
𝛤𝑃

√
𝛤 ) reproduces the scalar relativistic spin channel transmission except for

the energy corresponding to avoided crossings (-0.81 eV, -0.10 eV, 0.15 eV, and 1.25 eV) where it is
reduced according to the number of split bands. The spin channel projected transmission calculated
with Equation (6.23) (𝑃𝛤𝑃 )) also reproduces the scalar relativistic case closely but diverges at those
energies where the spin texture is not collinear to the projection axis.

Regardless of the alignment of the spin relative to the chain axis, the bands of the iron
chain are almost perfectly spin-polarized along the magnetic axis of the system (Figure 11.3
(a) and Figure 11.4 (b)). In the case of spins perpendicular to the chain axis (\ = 0) the spin
texture becomes non-collinear at the two avoided band crossings where bands with opposite
spin magnetic moment are repelled (Figure 11.3 (b) and (c)), and near the band edges of the
two parabolic bands with opposite spin moments at 𝑋 (Figure 11.3 (d)). The fully relativistic
spin channel projected transmission calculated using Equation (6.19) (orange dashed line in
Figure 11.3) reproduces the scalar relativistic spin channel transmissions. It corresponds to the
number of spin-up (spin-down) bands at any given energy (Landauer formula) and deviates
from the scalar-relativistic calculation at the avoided band crossing. Depending on the number
of bands that repel due to the SOC, the transmission is reduced by the same number, either
by 2 or 4. The spin-channel-projected transmission calculated using Equation (6.23) performs
equally well for most energies but diverges at those points where the spin texture becomes
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non-collinear. This showcases that the two methods work as expected: where the spin texture
is collinear, the projector commutes with the broadening matrix, and the two methods become
equivalent. At the points where the spin texture is non-collinear to the projection axis, the
equivalence breaks down, and the approximation in Equation (6.23) is not good enough to
describe the transmission properly. From this point on, we only use Equation (6.19) to calculate
the spin-channel projected transmission. In the case of spins parallel to the chain axis (\ = 𝑝𝑖/2),
the difference between the scalar relativistic and fully relativistic transmissions is slightly larger.

Due to band splitting, new plateaus arise in the transmission function. This is particularly
evident near the Fermi level, where the size of the band splitting is the largest. Overall, the
transmission function still closely resembles the scalar relativistic case. The total transmis-
sion at the Fermi level is reduced by 1 (14%) even for small angles (Figure 11.4 (d)). This
magnetic anisotropy of the transmission at the Fermi level is the signature of anisotropic
magnetoresistance. Therefore, our work demonstrates that the anisotropic magnetoresistance

Figure 11.4: Spin texture (a) and spin-channel projected transmission (b, c) of an iron chain
with spin magnetic moments parallel to the chain axis (\ = 𝜋/2) and magnetic anisotropy of the
transmission. The spin texture is collinear to the magnetic axis (𝑥 ). The fully and scalar relativistic
transmission function match closely. Near the band edges of the bands shifted by SOC, the fully
relativistic transmission function exhibits additional plateaus corresponding in width to the band
splitting. In both cases, the transmission corresponds to the number of bands at any given energy.
(d) Transmission as a function of the angle between the spins and the chain axis for three energies.
The transmission at the Fermi level changes between 7 and 6, implying that iron chains exhibit
anisotropic magnetoresistance at sufficiently low temperatures.
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predicted for nanowires [Hu+15; OYC+09] can also be observed in the one-dimensional limit
(the monatomic chain). Further away from the Fermi level, the transmission is constant and no
magnetoresistance is observed. Therefore the magnetoresistance can only be observed at low
temperatures.

11.1.2 Domain Wall Conductivity

To model a constrained domain wall, we set up a transport system with two electrodes (orange
atoms in Fig. 11.5) with non-parallel spin moments. We then relax the direction and amplitude
of the spin moments of the atoms between the electrodes (blue atoms in Fig. 11.5). The NEGF
approach serves two purposes in these calculations: it provides a natural way of fixing the spin
direction in parts of the system, and it allows us to simulate a domain wall without interactions
between periodic images.

The magnitude of the spin moments in the domain wall is constant at 3.35 `𝐵 , irrespective of
the angular offset between the spin moments in the two electrodes (\ ) (Figure 11.6). Depending
on the initialization of the density matrix, the spin moments form different types of domain
walls. If the density matrix is initialized with all spin moments in the 𝑦𝑧-plane, i.e., in a plane
containing the chain axis, then the final magnetic moments form a Néel-type domain wall
(Figure 11.1 (d)). Similarly, if all initial spin moments lie in the 𝑥𝑧-plane, i.e., all perpendicular
to the chain axis, then we obtain a Bloch-type domain wall (Figure 11.1 (e)). We can produce
these different types of domain walls because the initial guess determines the symmetry of the
Hamiltonian, and there are no external fields that break the symmetry of the initial magnetic
structure. There is one other notable high-symmetry case for electrodes with antiparallel spin

Figure 11.5: Infinite iron chain with a 6-atom wide domain wall (blue atoms) between two semi-
infinite sections with opposite magnetic moments (orange atoms).
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Figure 11.6: Direction and size of spin moments in a 4-atom wide, constraint domain wall with
𝛥\ = 𝜋 (a). Orange atoms indicate the fixed spin moments in the electrode and blue arrows the
spin moments of the device atoms. Relative deviation from ideal positions 𝛿\𝑖 = \𝑖 − 𝑖𝛥\/(𝑁 + 1)
for 4-atom wide domain walls with 𝛥\ ∈ {𝜋/12, 𝜋/6𝜋/4, 𝜋/2, 𝜋} for Néel (b) and Bloch domain
walls (c).

moments: when the initial magnetic moments in the device are all collinear to the electrodes,
we obtain an abrupt domain wall (Figure 11.1 (c)). In principle, we could choose random initial
spin moments to find the most stable domain wall. However, because of the small size of the
MAE in the iron chain, this becomes a very challenging task. Even high-symmetry structures
require up to a thousand SCF steps to converge. Instead, we focus on the three high-symmetry
cases: abrupt, Néel, and Bloch domain walls.

In Néel and Bloch domain walls, we observe an equal change in the angle from one atom
to the next (Figure 11.6). The change in angle between two neighboring atoms in the domain
wall is equal to 𝛥\/(𝑁 + 1), where 𝑁 is the number of atoms in the domain wall and 𝛥\ is the
difference in the polar angle (\ ) that describes the spin direction in the left and right electrodes.
The magnetic coupling between the atoms in the unit cell should be the same, considering
that all species, coordination, and bond lengths in the device region are equal. Therefore, the
constraint domain wall should be symmetric with equal change in angle. In Néel-type domain
walls, the magnetic anisotropy could lead to a deviation from this uniformity. However, the
Fe-Fe magnetic exchange constant (≈ 10 meV [Ant+10; Bez+13]) is approximately one order
of magnitude larger than the MAE [OYC+09; Wij86], and would thus push the system to a
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Figure 11.7: Zero-bias transmission of 180◦ domain walls calculated with scalar relativistic formal-
ism with collinear spin (a), fully relativistic formalism (b-d). Filled curves are stacked on top of each
other to visualize the decomposition of the total transmission (black line) in terms of different spin
channels and spin flips. The shaded grey area in the background displays the transmission of an
iron chain without a domain wall (T∥) as a point of reference. For the abrupt domain wall (a) and
(b), the total and spin channel projected transmission (blue (down) and red (up)) are significantly
reduced compared to the iron chain without a domain wall. SOC has no significant effect on the
transmission through the abrupt domain wall. For 4-atom wide Néel (c) and Bloch (d) domain walls,
the transmission is much higher. The gradual change in the magnetic moment along the domain
wall allows for significant spin flip transmission (yellow and green filled curves). The contributions
of the pure spin-up and spin-down transmissions are comparable to the abrupt domain wall.

more uniform domain wall like the one we observe. We conclude that the relaxation of spin
moments in our code is consistent with expectations based on the symmetry of the system and
the comparison of MAE and magnetic exchange constant.

The non-periodic structure of the domain wall gives rise to electron scattering. The resulting
transmission is not a step function as in the periodic parallel case (Figure 11.7). We find that
the resistance of an abrupt domain wall is significantly higher than that of the Néel or Bloch
domain walls. SOC in Fe is not strong enough to allow for spin-flips in an abrupt domain wall.
As a result, the scalar and fully relativistic transmissions are almost identical and reduced by a
factor of 3 compared to the parallel case near the Fermi level. In Néel or Bloch domain walls,
a width of 4 atoms, spin-flip transmissions are significant. The pure spin-up and spin-down
transmissions remain equally suppressed as in the abrupt domain-wall case. The reduction of
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these contributions in all four cases can be immediately understood from the band structure of
the iron chain. In the left electrode with magnetic moments pointing along 𝑧, only one band with
spin 𝜎𝑧 = 1 exists. Therefore, the spin-up transmission can not exceed one. The same is true
for the spin-down channel in the right electrode. Thus both pure spin-channel transmissions
are limited to 1. In Néel and Bloch domain wall, the change in spin moments is gradual and
allows for spin-flip, i.e., scattering between different spin channels. The contribution of the two
spin-flip transmissions (down into up (yellow) and up into down (green)) are not equal. This
allows spin-down states in the left electrodes to scatter into spin-up states in the right electrode
(down-up spin-flip transmission; depicted as a yellow curve in Figure 11.7). Below 1 eV the
availability of spin-down and spin-up channels in the left and right electrodes is reversed, and
up-down spin-flip transmission becomes dominant. We also performed calculations with 5
and 6-atom-wide domain walls, which show qualitatively the same results. The low TAMR
in domain walls with more than two atoms matches predictions by Autès et al. [Aut+08] and
Velev and Butler [VB04].

11.1.3 Computational Details

Our transport setup consists of an infinite chain with Fe atoms. The simulation cell contains 12
atoms: 4 atoms on each side correspond to one principal electrode layer, and the 4 atoms in the
center represent the scattering device. In the electrode calculations, we sample the reciprocal
space along the chain axis with 101 k points. We used a double-zeta-polarized basis set for the
Fe atoms (energy shift 0.2 eV, split norm 0.15), a real space grid with a cut-off of 700 Ry, an
electronic temperature of 8 meV, and the PBE exchange-correlation functional [PBE96]. The
lattice constant is optimized up to a stress tolerance of 0.1 meV/Å. Calculations were carried
out within the fully relativistic pseudo-potential formalism [CC12], i.e., including spin-orbit
interactions, and the scalar relativistic collinear spin formalism. We used pseudo-potentials
from the PseudoDojo database [van+18].

The density matrix in the scattering region is initialized from a periodic SIESTA calculation.
For the initial guess of the density matrix in the domain walls, we extend the scattering region
by three extra iron atoms on each side and terminate the chain with hydrogen atoms. We
then initialize the moments along the domain wall in one of the high symmetry configurations
discusses above and perform a few SCF steps in SIESTA. It is important to terminate the initial
SIESTA early enough for the spin moment to remain non-collinear but late enough for the
charge density to converge reasonably well. If the convergence criteria for this initial calculation
are chosen too tight all magnetic moments will become parallel. On the other hand, if the
convergence criteria are chosen too loosely the DFT+NEGF SCF loop diverges in the first few
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steps. We find that a good initial guess can be obtained with a convergence threshold of 10−3 for
the density matrix and 10−2 eV for the Hamiltonian works. For the subsequent DFT+NEGF SCF
loop, we choose much more stringent convergence thresholds: 10−6 for the density matrix and
10−4 eV for the Hamiltonian. We perform the complex contour integral with a circle contour
starting at (−20+0.1𝑖) eV which transitions into a line contour at (0.08+1.6085𝑖) eV. The contour
encircles 32 poles of the Fermi function. The transmission function is calculated with tbtrans
using a contour along the real axis with a spacing of 0.2 meV.

The band structure and spin texture of the iron chains with different magnetic moments are
calculated in the primitive unit cell. To resolve the SOC-induced band gaps, we calculate the
band structure and spin texture on 4800 points along the 𝛤 -𝑋 direction.

11.2 Fe-MgO-Fe Hetero Structure (3D)

In addition to AMR, magnetic transport devices may also exhibit tunneling magnetoresistance
(TMR), which refers to changes in the resistance of a magnetic tunneling junction depending
on the relative magnetic alignment of its magnetic components. Magnesium oxide (MgO)
based tunneling junctions, such as Fe / MgO / Fe, have been predicted to yield TMR ratios
between a few hundred and a few thousand percent [But+01; MU01]. We test whether our new
implementation could previously reproduce TMR in Fe / MgO / Fe and whether these junctions
exhibit tunnel anisotropic magnetoresistance (TAMR).

Fe / MgO / Fe junctions are periodic in the two directions parallel to the interface and therefore
require sampling at k points in these directions. With this system, we check whether our code
also works for more realistic cases with three-dimensional electrodes and non-homogenous
geometries in the scattering device. We will first characterize the transport properties of the
electrode (bulk iron) and then move on to tunneling junctions. Previous works on Fe/MgO/Fe
tunneling junctions (with scalar-relativistic DFT) [BVT05; Hei+08; Wal+06] and studies of
magnetic anisotropy in bulk iron [KHB08; Zwi+08] will serve as a reference point for our
calculations.

11.2.1 Magneto Resistance of Bulk Iron

Similarly to iron chains, bulk iron (bcc) exhibits magnetic anisotropy in its band structure.
Without SOC, the Brillouin zone of iron contains six equivalent 𝐻 points. However, with
SOC these six equivalent points split into two or three inequivalent groups depending on the
alignment of the spin magnetic moments with respect to the crystal structure. For magnetic
moments aligned along one of the high-symmetry axes [001] or [100], there are two inequivalent
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Figure 11.8: Band structure of bulk
iron magnetized along the [001] direc-
tion. The band structure is calculated
along a line parallel to the magnetiza-
tion axis (𝐻1-𝛤 ) and a line perpendic-
ular to the magnetization axis 𝛤 -𝐻2.
Along parallel direction, the degener-
acy of the parabolic band crossing the
Fermi level at 𝐻1 is lifted due to SOC.
Along the 𝛤 -𝐻2 the degeneracy is not
lifted. Instead, multiple band cross-
ings are opened up. The inequivalence
of the structure along these two lines
demonstrates a magnetic anisotropy
electronic structure of the bulk iron.

𝐻 points (𝐻1 and𝐻2). Analogous to the iron chain, SOC causes band splitting or avoided crossing
depending on the relative alignment of the spin magnetic and orbital magnetic moments of the
bands (Figure 11.8). The effects are different along the 𝛤 -𝐻1 (parallel to the magnetic axis) and
𝛤 -𝐻2 (perpendicular to the magnetic axis) directions. As a result, the transmission function for
transport along the [001] direction also changes depending on the orientation of the magnetic
moments. This effect is particularly strong at 𝐸 = −0.97 eV, where a large gap opens in the
direction perpendicular to the magnetic moment. This gap opening can also be observed in
the zero-bias transmission function for bulk iron when the magnetic moment is perpendicular
to the transport direction. In this case, the transmission function at 𝐸 = −0.97 eV features a
circular plateau at the center of the Brillouin zone (Figure 11.9 (d)). For magnetic moments
parallel to the transport direction, this plateau is absent (Figure 11.9 (b)). Instead, a small ring
appears at the center of the Brillouin zone, which likely corresponds to a mini gap opening at
the same energy at another point in the Brillouin zone perpendicular to the transport direction.
To calculate the AMR of iron, we need to calculate the average of the transmission function
of the whole BZ. For magnetic moments parallel and perpendicular to the transport direction,
we obtain a total transmittance of 4.311 and 4.257, respectively. This corresponds to an AMR
of only 1%. At the Fermi level (Figure 11.10), this effect is even further reduced to less than
0.1%. Although AMR is small in bulk iron, we can understand from the transmission function
of bulk iron why nano-constriction in iron can lead to a large AMR. The constriction acts as
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Figure 11.9: Spectral function and zero-bias transmission of bulk iron magnetization (M) parallel
and perpendicular to the transport direction ([001]) at 𝐸 = −0.97 eV. For M∥[001], the transmission
function has an extended plateau (T=5) around 𝛤 . For M⊥[001], an additional circular plateau (T=3)
emerges at the center of the Brillouin zone. The spectral density exhibits the same symmetry as
the transmission function.

a phase space filter and restricts transmission to channels with vanishing lattice momentum
perpendicular to the transport direction (𝑘𝑥 = 𝑘𝑦 = 0). Thus, the reduction of AMR due to
k-space averaging is avoided and AMR can be orders of magnitude larger than in bulk iron.
Our results for bulk iron are consistent with previous studies of magnetic anisotropy and AMR
in iron [KHB08; Zwi+08].
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Figure 11.10: Spectral function and zero-bias transmission of bulk iron for magnetization (M)
parallel and perpendicular to the transport direction [001] at the Fermi level. The effect of the
magnetic direction is much weaker at the Fermi level compared to E=-0.97 eV. The central plateau
of the transmission function is circular for M∥[001] to the transport direction and square otherwise.
The spectral density exhibits the same symmetry as the transmission function.

11.2.2 Magneto Resistance in Fe/MgO/Fe Tunneling Junctions

Fe/MgO/Fe tunneling junction consists of a few layers of MgO sandwiched between multiple
layers of iron (Figure 11.11). The MgO[110] plane is parallel to the Fe[100], creating a clean
interface between the two materials. The iron atoms of the contact layer sit on top of the
oxygen sites in MgO. The transmission of the junction decays exponentially with the number of
MgO layers between the iron electrodes [Hei+08]. Here we choose 4 MgO layers, for which we
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Figure 11.11: Ball and stick model of a Fe/MgO/Fe junction.

expect to observe a significant TMR effect and a transmittance that does not requires excessive
computational accuracy.

Figure 11.12 depicts the transmission function of this tunneling junction for electrodes with
parallel magnetization at the Fermi level. The MgO tunneling barrier acts as a phase filter, and
the transmission function becomes strongly localized at the center of the Brillouin zone. The
average transmission is reduced by a factor of 650 to 0.0044. Both aspects are consistent with
the prediction of previous DFT studies for Fe/MgO/Fe junctions with 4 MgO layers. We go
beyond previous studies [BVT05; Hei+08; Wal+06] and include spin-orbit coupling. As a result,
we observe two additional features in the zero-bias transmission: a) a small ring at which the
transmission is reduced, which corresponds to the ring of reduced transmission in the bulk
electrode, and b) if the magnetization is perpendicular to the transport direction the cubic
symmetry of the transmission function is broken and additional sharp features emerge in the
transmission spectrum. The decomposition of the total transmission into spin-up and spin-
down components reveals that the primary contributions to the transmission stem from the spin
channel parallel to the magnetization axis (spin-up) (Figure 11.13). The average transmission of
the spin-down channel is one order of magnitude smaller and features sharp peaks along the
reciprocal lattice directions.

11.2.3 Computation Details

All calculations were carried out within the fully relativistic pseudo-potential formalism, [CC12]
and the PBE functional [PBE96]. We used a double-zeta-polarized basis set for the Fe atoms
(energy shift 0.27 eV, split norm 0.15), a real space grid with a cut-off of 800 Ry, and an electronic
temperature of 10 meV.

For bulk iron, our transport setup consists of 4 MgO layers sandwiched between 13 layers
of iron on each side. In the electrode calculations, we sample the reciprocal space using a
Monkhorst Pack grid with 100 points along the semi-infinite direction and 16 points along
the transversal direction. We use the same number of transversal k points in the DFT+NEGF
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Figure 11.12: Spectral function and zero-bias transmission of a Fe/MgO/Fe tunneling junction
with 4 MgO layers. For magnetization in the iron layers parallel to the transport direction, the
spectral density is smooth throughout the Brillouin zone and resembles the spectral density of
bulk iron closely. For magnetization perpendicular to the transport direction, sharp features
emerge in the density, and new sharp features emerge in the density. For both orientations of the
magnetization, the transmission function is zero in most of the Brillouin zone. Only around the
center of the Brillouin zone do we observe significant transmission. For magnetization perpendicular
to the transport direction, this feature in the transmission has cubic symmetry. For magnetization
perpendicular to the transport direction, the cubic symmetry is broken, and an additional structure
in the transmission function emerges. A feature of the same shape can be observed in the density
of spectral density.
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Figure 11.13: Spin channel projected zero-bias transmission of a Fe/MgO/Fe tunneling junction
with 4 MgO layers.
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calculation. The lattice constant of bulk iron is optimized up to a stress tolerance of 0.1 meV/Å.
We relax the atoms in the central part of the transport device until the forces acting on them are
smaller than 10meV/Å and stress along the direction perpendicular to the interface is smaller
than 0.1meV/Å. During the relaxation, we keep the electrode regions (8 atoms per principal
layer) and the lattice vectors in the transversal direction fixed. Comparison of the transmission
function for Fe/MgO/Fe tunneling junctions with a different number of additionally fixed layers
shows that relaxing all atoms between the two electrodes introduces additional scattering
(Figure 11.14). Keeping one or two extra layers fixed removes this contact scattering. Here we
keep a single layer fixed. Similarly, we find that including less than 5 iron layers between the
electrodes and the MgO layer introduces additional scattering.

For the parallel magnetic configurations, we initialize the density matrix from a normal
SIESTA calculation with the same geometry and magnetic structure. For the antiparallel
magnetic configuration, we initialize the density matrix from a SIESTA calculation of 1×1×2
supercells with matching magnetic moments at the periodic boundary [ 13 layers Fe(↑), 4 layers
MgO, 26 layers Fe(↓), 4 layers MgO, 13 layer Fe(↑), repeat....]. In the TranSIESTA calculation,
the second half of this cell is discarded.

(a) (b)

Figure 11.14: Convergence of the transmission function in a Fe/MgO/Fe junction with number of
iron layers between the MgO layers and the electrodes (a) and with number of fixed layers (b).
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11.3 Transition Metal Dichalcogenides (2D)

As a third test case, we simulate a lateral MoS2/WS2 heterojunction, which has been shown
to function as monolayer p-n junctions, [Gon+14]. Transition metal dichalcogenides (TMDs)
are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W),
and X is a chalcogen atom (such as S, Se, or Te). TMDs are promising materials for a wide
range of possible applications, including energy conversion [Wi+14] and storage [Din+12] and
hydrogen evolution reaction [Li+11], due to their unique combination of the direct band gap,
strong spin-orbit coupling, and favorable electronic and mechanical properties. In addition,
TMDs great materials for spintronics applications because of the SOC-induced splitting of the
valence and conduction bands into different spin states. This splitting makes manipulations of
the electron spin possible through optical excitation [Wan+18].

In the example of iron chains, we have seen that our code works well for non-collinear
spin systems. However, SOC in Fe is relatively weak. To ensure the correct treatment of
systems with significant spin-orbit interactions, we simulate two infinite transition metal
dichalcogenide TMD monolayers (MoS2, WS2), and study the transport properties of a lateral
hetero junction of the two materials. We will use reference calculations performed by Mads
Brandbyge with QunatumATK as a reference point for our TranSIESTA calculations. Like our
new implementation, QunatumATK can simulate quantum transport with spin-orbit coupling.
It also employs the NEGF formalism and can use localized basis sets making it a good point of
reference.

11.3.1 Monolayer MoS2 and WS2

MoS2 and WS2 monolayers exhibit a direct band gap at 𝐾 and 𝐾 ′. In MoS2 this band gap is
1.79 eV wide and 1.48 eV in WS2. Around the valence band maximum (VBM), the bands of MoS2

and WS2 are split by 0.15 eV and 0.45 eV, respectively (Figure 11.15). SOC acts as a magnetic
field perpendicular to the monolayer on the top valence bands near 𝐾 and 𝐾 ′ and causes this
band splitting. The direction of this interaction is opposite for 𝐾 and 𝐾 ′, i.e., the spin moment
of the upper split band is ±1 for 𝐾 and 𝐾 ′, respectively. These properties of the electronic
ground state of MoS2 and WS2 and the overall band dispersion are comparable to our reference
calculations with QuantumATK and other DFT studies [Zah+13; Zen+13].

In the pristine monolayers, the transport gap is equal to the electronic band gap, and the
electron conductance increases linearly at the edges of the band gap. The TranSIESTA and
QuantumATK simulations agree well within a few electronvolts around the Fermi level. Thus,
we demonstrate that it is possible to correctly calculate the transmission of materials with
strong spin-orbit coupling. The most noticeable deviation occurs for MoS2 at approximately
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Figure 11.15: Band structure and zero-bias transmission function of MoS2 (a, b) and WS2 (c,

d) monolayer. Orange lines show band structure and transmission function calculated with
(Tran)SIESTA, and blue dashed lines those calculated with QuantumATK. The simulation results
agree well within a few eV around the Fermi level. Along the𝑀 −𝐾 and 𝐾 − 𝛤 directions, the band
dispersion of MoS2 obtained with the two codes is slightly different, resulting in a shift of the first
peak of the transmission function above the transport gap.

1.6 eV, where the bands calculated with SIESTA are flatter than the QuantumATK bands and
the two maxima along the 𝑀 − 𝐾 and 𝐾 − 𝛤 directions align. As a result, the maximum of
the TranSIESTA transmission function is slightly higher compared to QuantumATK, and its
position is shifted upward. These deviations are already present at the ground state DFT level
and likely arises due to the use of different pseudopotential and basis set.

11.3.2 Lateral MoS2-WS2 Heterojunction

Simulations of bulk semiconductors within the NEGF formalism are unproblematic. However,
when two different semiconductors come into contact, problems arise because it is unclear
how to match the electrostatic potentials of the two materials. Furthermore, the low carrier
density in semiconductors gives rise to very long electrostatic screening lengths, which would
require extremely large device regions, to ensure proper screening of the electrode regions.
Measurements of the built-in potential along WS2-MoS2 lateral junction show a step between
the two potentials of about 0.1 eV, which is more than 2 µm wide [Che+15; Wan+22]. To
avoid these issues, we uniformly gate the WS2 and MoS2 monolayers and the junction by
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Figure 11.16: Crystal structure of a lateral MoS2-WS2 heterojunction top view (top) and side view
(bottom).

adding a plane with constant charge density (5.76 · 10−3 e/Å2) 30 Å below the monolayers. This
plane of charge induces a countercharge of the same magnitude but of the opposite sign in
the monolayer. Therefore, the valence bands of the two materials are partially depopulated,
making them metallic. The transmission function of both materials is similar near the Fermi
level (𝑇 (𝐸𝐹 ) ≈ 0.4). In comparison to the ungated monolayer, the transmission functions are
rigidly shifted, which indicates that this amount of doping has no significant effect on the
electronic structure other than shifting the chemical potential.

To evaluate whether this level of doping is sufficient to screen electrodes from the poten-
tial step at the interface, we calculate the planar and macroscopic average [BBR88] of the
electrostatic potential (𝑉𝐻 ):

Planar average: 𝑉𝐻 (𝑧) =
1
𝑆

∬
𝑆

d𝑥 d𝑦𝑉𝐻 (𝑥,𝑦, 𝑧) (11.1)

Macroscopic average: 𝑉𝐻 (𝑧) =
∬

d𝑥 d𝑦 1
𝑎
\ (𝑎2 − |𝑧 |)𝑉𝐻 (𝑧) (11.2)

where 𝑥 is the position along the vacuum direction,𝑦 is the position along the periodic direction,
𝑧 is the position along the transport direction, 𝑎 is the strained lattice constant and 𝛩 is the
Heaviside step function. The convolution with a step function filters out the components of
the planar average with a period of 𝑎. In Figure 11.17 the planar and macroscopic averages
of the electrostatic potential and the charge density are displayed. The planar average is
represented as orange and light grey lines in Figure 11.17 (c and d) for the scattering region
and the electrodes, respectively. The planar average oscillates throughout the system: close to
the nuclei, the potential is the lowest, and the charge density is the highest, and vice versa in
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between the nuclei. These periodic oscillations are absent in the macroscopic average. Due to
uniform doping, the macroscopic average of the charge density is equal in the two electrodes
and close to constant in the scattering region. Immediately at the interface layer, we observe a
small depletion region with electron exchange from WS2 to MoS2 and a step in the electrostatic
potential of approximately 0.1 eV, which is consistent with the built-in potential observed
experimentally [Che+15; Wan+22]. At contact with the electrode, the potential is smooth,
which indicates that the electrode regions are appropriately screened from the interface.

Near the Fermi level, the transmission function of the heterojunction follows the minimum
of the transmission functions of the two electrodes. This indicates that the interface introduces
very little scattering and that the limiting factor for transmission through this system is the
availability of transport channels in the electrodes. At -1 eV backscattering is much more
significant, and the transmission function of the junction almost drops to zero. Since this effect
occurs well below the Fermi level, it should not affect the transport for reasonable hole doping
levels. This behavior and the overall shape and amplitude are consistent between our SIESTA
and QuantumATK simulations.

After doping, the edge of the valence band in WS2 (0.30 eV) is approximately 0.25 eV higher

Figure 11.17: (a) Zero-bias transmission of hole-doped (5.76 · 10−3 e/Å2) MoS2 (red line), WS2 (dark
green line) monolayers and (b) a lateral MoS2-WS2 heterojunction with same doping concentration;
(c) planar and macroscopic averaged electrostatic potential and (d) charge density of the same
heterojunction. A comparison of the transmission function of the heterojunction in (b) calculated
with TranSIESTA andQuantumATK shows very good agreement.
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than that of MoS2 (0.05 eV), which should lead to a band bending effect near the interface. To
visualize this effect and test this aspect of our implementation, we calculate the local density of
states 𝜌 (𝐸, r)

𝜌𝜎𝜎
′ (𝐸, r) =

∑̀︁
a

𝜙` (r)𝜙a (r)
1
2 (G − G†)𝜎𝜎′`a (11.3)

𝜌 (𝐸, r) = Re
{
𝜌↑↑(𝐸, r) + 𝜌↓↓(𝐸, r)

}
(11.4)

and integrate over the 𝑥 and 𝑦 directions. This density is visualized in Figure 11.18 as a function
of energy and position along the transport direction. The magnitude of the local density is
indicated by the dark-blue-to-yellow color scale. The edge of the highest valence band of MoS2

appears as a sharp feature 0.05 𝑒𝑉 above the Fermi level (Figure 11.18 (e)). In contrast, the edge
of the band of WS2 is visible only as a faint halo. In WS2 the valence band maximum lies 0.4 eV
above the band maximum at 𝛤 and 0.45 eV above the next maximum at 𝐾 . This results in a
low density of states between 0.25 eV and -0.1 eV. The larger contrast on the MoS2 side is a
reflection of a comparatively sharp increase in the number of states at this energy. This effect is
also visible in the transmission function of bulk MoS2 which increases rapidly at the edge of the

Figure 11.18: Local and total density of states of a lateral MoS2-WS2 heterjunction without applied
bias (a-d) and with -0.15 V bias (e-h). To highlight the band bending in the heterojunction the
color scale is cut off In the bright yellow regions in conduction bands the local density of states
exceeds the maximum value of the color range and is, therefore, not accurately represented.
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band (Figure 11.17 (inset)). In the conduction bands, the total density of states is significantly
higher (Figure 11.18 (b) and (f)), and the band edges are much clearer (Figure 11.18 (a)). Upon
application of a bias (Figure 11.18 (c,h)), the bands are shifted by ±𝑉Bias/2 away from the Fermi
level. These trends are consistent with the expected behavior of a junction with misaligned
band edges. Furthermore, the intensity of the local density of states is consistent with the total
density of states in the heterojunction.

Figure 11.19 (b) depicts the change in the planar averaged potential for different values of
applied bias. The bias-induced potential is continuous and has an infliction point at the interface.
Toward the electrodes the potential change becomes constant, demonstrating that even under
applied bias the electrode regions are sufficiently screened. For perfect three-dimensional
metals, the screening length is vanishingly small, and the potential should drop off sharply
right at the interface. However, in our simulations, the electrodes are neither three-dimensional
nor are they perfect metals. Therefore the screening length becomes finite and we observe
this as a smoothed potential dropoff. In Figure 11.19 (c), we show the IV characteristic of the
heterojunction for bias voltages for which the chemical potential in the electrodes remains
within the valence bands (-0.1 eV to 0.25 eV). Depending on the direction of the applied bias,

Figure 11.19: (a) Zero-bias transmission of hole-doped (5.76 · 10−3 e/Å2) MoS2 (blue line), WS2 (
orange line) and (b) a lateral MoS2-WS2 heterojunction with same doping concentration ; (c) planar
and macro averaged electrostatic potential and (d) charge density xof the same heterojunction.
The band gap in WS2 is approximately 0.02 eV large than in MoS2
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the valence bands of the two materials are either further misaligned (negative bias) or become
more aligned (positive bias). As a result, the IV characteristic of the MoS2-WS2 heterojunction
is asymmetric. For a small bias (between -10 meV and 10 meV), the current is proportional
to the applied bias, as expected. For a larger positive bias, the conductivity increases until
the band edges are aligned around 𝑉Bias = 0.15 eV at which point the conductivity decreases
slightly. For negative bias, the conductivity decreases until the edge of the valence band of
MoS2 falls below the Fermi level at 𝑉Bias = −0.1 eV and the electrode becomes semiconducting.
This behavior corresponds to the diode-like behavior expected in this type of semiconductor
junction. The relatively large leakage current for negative biases can be attributed to the high
doping concentration in our calculations.

11.3.3 Computational Details

QuantumATK only supports electrodes with rectangular unit cells. We, therefore, choose the
conventional unit cell of the TMDs for the bulk calculations with QuantumATK. In TranSI-
ESTA, we calculate the transmission using the primitive unit cell. The width of the transversal
dimension of the conventional unit cell is twice as large as in the primitive cell. The corre-
sponding transmission function is also twice as large. To correct for this geometric factor, we
divide the QuantumATK transmission function by a factor of 2. As a fail-safe, we also verified
that using the same conventional unit cell in TranSIESTA yields a 2-times higher transmission
function consistent with QuantumATK.

For the heterojunction, we perform the NEGF calculations with device region consisting
of 9 conventional unicells of Mo2 and WS2 each. The in-plane lattice constants of the two
monolayers are strained by 0.4% to match the two materials (𝑎𝐿𝑎𝑡 = 3.165 Å). The distance
between the Mo and S layers is slightly different on the two sides and amounts to 1.574 Å on
the MoS2 side and 1.607 Å on the WS2 side. Monolayers are separated by 70 Å of vacuum in
the perpendicular direction. We calculate the transport properties in the direction of the first
lattice vector. We performed electrode calculations in the conventional unit cell on a 111×15×1
grid in reciprocal space, and the transmission function is sampled on 1×51×1 grid. The real
space integrals are performed on a grid with a mesh cut-off of 800 Ry. The Kohn-Sham orbitals
are extended using a standard double-Z polarized basis set. Doping of the structures is achieved
by including a plane with constant charge density (5.76 · 10−3 e/Å2) 30 Å below the monolayer.
This charge gate shifts the Fermi level into the valence band by removing 1.8 electrons from
the device region (0.1 electrons per conventional unit cell of MoS2/WS2).
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11.4 CNT with Magnetic Molecule (1D)

The results presented in this section have, in part, been published in [Bes+21].

In this section, we study carbon nanotubes functionalized with tetranuclear clusters {M4}
= [M4(H2L)2(OAc)4] (Figure 11.20). These tetranuclear clusters consist of 4 magnetic atoms
linked by two different ligands H2L (2,6-bis-(1-(2-hydroxyphenyl)iminoethyl)pyridine) and
acetate C2H3O−

2 . The core of the cluster is formed by the four magnetic (M=Mn,Co) and four
oxygen atoms which are arranged in nearly cubic structures. In the magnetic ground state
of the cluster, the magnetic atoms with an acetate bridge are antiferromagnetically aligned,
and the pairs without the acetate bridge are aligned ferromagnetically [Ach+22; Kam+09].
Thus, the whole cluster is a molecular antiferromagnet and could be used in antiferromagnetic
spintronic devices such as magnetic random access memories or THz information technologies.
To make such applications possible, multiple of clusters need to be electrically contacted
and linked together, for example, using metallic carbon nanotubes. Our collaborators have
synthesized and characterized such {M4} CNT devices with manganese (Mn) and cobalt (Co)
as magnetic centers. Statistical analysis of the random telegraph signal in current passing
through these devices indicates that {Mn4} clusters exhibit long-lived coherent states, and {Co4}
do not. These excitation states correspond to excitation of non-degenerate 𝑆total = 0 eigenstates
of the cluster and do not involve spin flips. These excited states can not be modeled with
our first-principles methods. However, we can study the interaction between the cluster and

Electrode Scattering Region Electrode

Figure 11.20: Periodic boundary conditions (top) and open system (bottom) set-up for first-
principles simulations of {M4}-CNT hybrid systems.
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Cluster Cell size (#CNT Rings) |𝑆 | - PBC [`𝐵] |𝑆 | Open System [`𝐵]
Mn4 15 0.231 –
Mn4 23 0.173 0.028
Mn4 27 0.083 0.028
Mn4 31 0.057 0.030
Co4 15 0.176 –
Co4 23 0.258 0.150
Co4 27 0.447 0.147
Co4 31 0.333 0.139

Table 11.1: Magnetic moments of carbon nanotubes functionalized with tetranuclear clusters
({Mn4} and {Co4}) computed in the LDA+U approximation with periodic boundary conditions (PBC)
and with Green’s function techniques (Open System) for different cell sizes. The units of the
magnetic moment are Bohr magnetons (µB).

nanotube to understand the difference in the coupling of the two clusters to the nanotube. For
this purpose, we have performed DFT simulations of carbon nanotubes functionalized with a
single {Mn4} and {Co4} clusters.

We consider two simulation set-ups: a supercell with periodic boundary conditions (PBC), and
an open system (OPEN) in which a single molecule is attached to an infinite tube (Figure 11.20).
The latter allows us to ascertain the nature of the interaction between the molecule and the
CNT by avoiding spurious interaction between the periodic replicas of the molecule, mediated
by the electronic states of the metallic CNT [CKF05; Kir+08; ZC10]. In our simulations, the {M4}
clusters are bound to the dangling carbon atom of a mono-vacancy in a metallic (5,5) carbon
nanotube. The bond between the cluster and the nanotubes is formed by a -CO−

2 group obtained
by removing the C𝐻3 group from one of the acetate groups in the cluster. Previous studies have
demonstrated that the mono-vacancy site is especially favorable for the functionalization of
CNTs with molecules [ZC09] or magnetic nanoparticles [ZC12].

We compare the magnetic moments obtained in the open system setup with the values
calculated for the periodic system by increasing the PBC cell size. We verified that the magnetic
moment of {Mn4}-CNT tends to the open system solution (0.03 µB) while this is not the case
for {Co4}-CNT, where the PBC magnetic moment is not converged even for a simulation cell
containing 35 unit cells of the nanotube (Table 11.1 and Figure 11.21). This happens due to the
long-range character of the indirect exchange coupling between magnetic clusters mediated by
the conduction electrons of metallic carbon nanotubes [CKF05]. Therefore, we base our analysis
on the spin and orbital moment in the OPEN system setup. From the latter, we find that the
total magnetic moment of the {Co4}-CNT system is 0.14 µB, an order of magnitude larger than
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Figure 11.22: (Open System) Absolute value of spin density integrated over x and y (z = 0 located
at the molecule) for the {Co4}-CNT (left) and {Mn4}-CNT (right). The decay of the spin density
in the open system is exponential: {Co4}: 𝑒 (0.04𝑧−4) / {Mn4}: 𝑒 (0.04𝑧−5.5) . The asymmetry in the blue
curve arises due to the asymmetry of the molecule-CNT link. This effect is not visible in PBC due
to the periodic repetition of the grafted molecules.

in the {Mn4}-CNT case. The net magnetization of the cluster is almost one order of magnitude
smaller than the total magnetization of the hybrid systems. The remaining magnetization
is located on the linking carbon atom and nanotube. The spin moment induced in the tube
decay exponentially from the vacancy site (Figure 11.22). The larger net magnetization of the
{Co4}-CNT indicates that the nature of the interaction between {Co4} molecules is longer range
than {Mn4}, which is reflected in the interaction between the periodic replicas. On the other
hand, the decay of the magnetic perturbation in the two systems is similar (Figure 11.22), as it
is determined by the conduction electrons of the nanotube.

The transmission function of the functionalized nanotube (Figure 11.23) closely resembles
that of (5,5) carbon nanotubes with a tilted divacancy [ZC10]. Around the Fermi level, the
transmission is reduced by a factor of two compared to that of the pristine. Near the edge
of the step, transmission increases and is slightly lower in the central part of the step. The
transmission function is distinct from that of a (5,5) CNT with a monovacancy. The shape
of the transmission function is largely insensitive to the type of cluster attached to it. Both
systems also exhibit a series of dips and spikes in the transmission function. These dips are not
predicted for the transmission function of (5,5) nanotubes with a divacancy, and their number
and position depend on the type of cluster attached to the nanotube. This provides evidence of
coupling between molecular states on the cluster and carbon nanotube.

In Figure 11.23, we compare the transmission function of the two clusters calculated with
and without SOC and Hubbard-like correction (Hubbard U). Using the Hubbard U correction
in these systems is essential to account for the strong Coulomb interaction of the localized
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(a) (b)

(c) (d)

Figure 11.23: Transmission function of {Co4}-CNT (a, c) and {Mn4}-CNT (b, d); (a, b) comparison of
the effect of Hubbard-like correction on the transmission function (without SOC); (c, d) comparison
of the effect of SOC (without Hubbard U).

d-electrons in Mn and Co which affects the magnetic properties of the molecule [Ach+22;
Kam+09; Rit+14]. Due to recent developments in the SIESTA code, it is now possible to perform
calculations with spin-orbit coupling and Hubbard U. Here we combine the two features with
the NEGF formalism for the first time. For both systems, the inclusion of the Hubbard U term
affects the transmission function slightly near the Fermi level. The changes are limited to
the position of the deips and spikes. Since the Hubbard U is only included for the magnetic
atoms in the cluster, this implies that states on the cluster are at least partially coupled to the
electronic structure of the carbon nanotube. However, the electron correlation in the magnetic
atoms is insignificant for electronic transport at large. Similarly, the effect of SOC on the
transmission function is insignificant for both systems. In the {Mn4}-CNT system, the effect of
SOC is unnoticeable. In the {Co4}-CNT the effect is slightly larger, and small differences in the
transmission curve are observable. This is consistent with the expectation of a larger orbital
angular moment in Co [Ach+22].

In order, to Each of these features corresponds to a bound state in the cluster. We can identify
bound states in the hybrid system by calculating the density of states from the Green’s function
in the scattering region (𝜌G(𝐸) = Tr{G𝑆}) and the spectral functions for the two electrodes
(𝜌A𝔢 (𝐸) = Tr{A𝔢𝑆}). The density of states calculated from the spectral functions only includes
states that couple to the electrode. The density of states calculated from the Green’s function
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(a) (b)

(c) (d)

Figure 11.24: Bound density of states and spin-channel-projected transmission of {Co4}-CNT (a,c)

and {Mn4}-CNT (b,d) calculated with SOC and with Hubbard U; (a) and (b) comparison of the
bound density of states and the zero-bias transmission function; (c) and (d) spin-channel-projected
transmission functions.

includes all states in the scattering region. As such, we can identify the bound density of states
from the difference of densities (𝜌bound = 𝜌G(𝐸) − ∑

𝔢 𝜌
A
𝔢 (𝐸)). In Figure 11.24, we can see that

some of the bound states line up with the dips in the transmission function. This suggests
that the dips in the transmissions occur due to the coupling of the conduction channels in the
nanotube and the electronic states of the molecule.

Finally, we analyze the spin-dependent properties of the functionalized nanotubes. The
transmission function of {Mn4}-CNT is the same for the spin-up and down channels. On the
contrary, the transmission function for the spin-down channels is noticeably lower in {Co4}-
CNT compared to the spin-up channel. Above the Fermi level, the transmission function for
the spin-down channel is shifted to higher energies. This difference in the transmission of the
up and down channels arises due to the net magnetization of the system. The {Mn4}-CNT does
not exhibit this effect because its net magnetization is significantly lower. In both systems, the
position of the dips in the transmission is distinct for the two spin channels. This indicates
that electric manipulations of the magnetic states of the molecule could be possible. Scattering
between the spin channels (spin-flip transmission) is negligible in both systems.
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11.4.1 Computational Details

To account for the strong correlation of the 3d electrons and avoid the excessive delocalization
of the d-states predicted in the Local Density Approximation, Hubbard-like corrections with
U=6 eV and U=4 eV were used for Mn and Co, respectively. The same value was used by
Kampert et al. [Kam+09] in their calculations on {Mn4}. A standard double-zeta polarized (DZP)
basis set was used for carbon, nitrogen, and hydrogen, and an optimized double-zeta (DZ)
for Mn, Co, and O. Calculations were spin-polarized and performed assuming collinear spins.
Convergence of electronic structure and magnetic properties was achieved for a real-space grid
cut-off of 400 Ry, and a Fermi-Dirac smearing of 100 K in the LDA+U calculation, while with
SOC, a cut-off of 650 Ry and electronic temperature of 1 K was adopted. The atomic positions
were relaxed in standard periodic boundary conditions simulations, with a 1 × 1 × 12 k-points
sampling of the Brillouin zone for 15 cells of M4-CNT (shifted grid), and the conjugate gradient
algorithm. The maximum force on atoms was smaller than 0.04 eV/Å for the CNT+M4 system.

Periodic boundary conditions simulations were performed for 15, 23, 27, and 35 supercells of
the (5, 5) CNT to analyze the long-range decay of the induced spin polarization in the system.
The supercells correspond to a distance between the graft points of 36.9, 56.6, 66.5, 86.2 Å, and
a separation between the molecules of 23.5, 43.0, 53.0, 73.0 Å, as the lateral size of the molecule
is about 13.5 Å. We used a sampling of the Brillouin zone equivalent to 1×1 ×12 k points for 15
cells of {M4}-CNT (shifted grid).

11.5 Conclusion

We have presented the non-equilibrium Green’s function approach to quantum transport and
its implementation at the DFT+NEGF level for systems with non-collinear spins and spin-orbit
coupling. This makes TranSIESTA the first open-source DFT+NEGF code capable of performing
non-equilibrium, multi-terminal transport in the presence of non-collinear spin configuration
and general spin-orbit phenomena. This new implementation can utilize all highly scaleable
and effective algorithms that were recently added to the code [Pap+17] and is suitable for
large-scale transport simulations. As such, this implementation represents a significant step
forward for simulations of quantum materials and spintronics devices at large.

We apply our new implementation to a series of systems to demonstrate possible applications
and show the code’s validity. In particular, we calculate the anisotropic magnetoresistance
in one-dimensional iron chains and a Fe/MgO/Fe tunneling junction. Furthermore, we study
quantum transport in TMD nanodevices, which are characterized by strong spin-orbit coupling.
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Lastly, we determine the importance of spin-orbit coupling and electron correlation (DFT+U)
in carbon nanotubes functionalized with antiferromagnetic molecules.

154



12 Conclusions and Outlook

In this thesis, we have presented the development of first-principles computational methods
for quantum materials. We have applied these methods to gain new insights into the electronic,
topological, superconducting, and transport properties of different materials and devices. In
particular, we have implemented the DFT+NEGF approach for systems with noncollinear spins
and spin-orbit coupling (Chapter 6) and the BdG+DFT method for modeling superconductors
in SIESTA (Chapter 7). Furthermore, we have developed post-processing tools to extract the
Z2topological invariant and spin textures from SIESTA outputs (Chapter 8).

We studied double-wall carbon nanotubes as examples of ideal one-dimensional moiré
crystals (Chapter 9), characterized by two parameters (the angle between chiral vectors, the
difference in diameters) that can be used to control their electronic properties. Experimental
realizations of 1D moirés impose finite-length constraints, and electron transport is gener-
ally assumed to be exclusively ruled by the external shell. We performed Landauer-Büttiker
transport simulations on top of a new tight-binding model. We showed that the inter-layer
coupling between nanotube walls plays a crucial role in the electron transport of the multi-wall
systems and leads to non-conventional transport properties. We showed that different coupling
regimes feature markedly distinguishable characteristics already in finite tube segments within
experimental reach. We proposed a predictive transmission model based on wave interference
in a quantum box yielding an impressive agreement with tight-binding calculations. We ex-
plained that previously reported dips in inter-layer transmission between armchair nanotubes
result from the finite-length constraint and originate from back-scattering at localized states. A
possible application of this effect is nano switches based on carbon nanotubes.

Furthermore, we performed a complete first-principle study of the interactions between
topological states in bismuthene monolayers and silicon-based substrates (Chapter 10). In
particular, we showed that the Bi-monolayer phases bind to silicon carbide (SiC), silicon (Si),
and silicon dioxide (SiO2) and that the proximity interaction in the heterostructures has a
significant effect on the electronic structure of the monolayer, even when no bonding occurs.
We further demonstrated that van der Waals interactions and the breaking of the sublattice
symmetry of the monolayer are the main factors driving changes in the electronic structure.
Our work illustrates that the growth of buckled-hexagonal bismuthene on a silicon-based
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substrate is possible and retains the topological properties of the freestanding phase, in contrast
to flat-hexagonal bismuthene, which only becomes topological on SiC.

We applied our new DFT+NEGF implementation to a series of systems to demonstrate
possible applications and show the code’s validity (Chapter 6). In particular, we calculated
the anisotropic magnetoresistance in one-dimensional iron chains and a Fe/MgO/Fe tunneling
junction. Furthermore, we studied quantum transport in TMD nanodevices, characterized by
strong spin-orbit coupling, and the importance of spin-orbit coupling and electron correlation
(DFT+U) in carbon nanotubes functionalized with antiferromagnetic molecules. In the future,
our spinor version of the DFT+NEGF method could be used to simulate charge and spin transport
in realistic nanodevices based on quantum materials. Important examples of such nanodevices
are topological insulator/ferromagnetic metal heterostructures. Introducing ferromagnetism at
the surface of a topological insulator (TI) can produce spin-to-charge conversion with extremely
high efficiency and strong spin-orbit torque. This opens many opportunities for spintronics
applications.

Our implementation of the BdG+DFT method can consider all details of the band structure,
including SOC, in the description of the superconducting states. This way, complex supercon-
ductors with interactions between multiple Fermi surfaces can be accurately described. This is
essential for the modeling of superconductors like MgB2, and NbSe2. By employing the fixed-𝛬

method, the symmetry of the superconducting gap does not have to be assumed. Instead, it
emerges due to the symmetry of the states involved in the pairing near the Fermi level. Our
implementation of the BdG+DFT method in SIESTA is particularly well-suited to study het-
erostructure and other device configurations due to SIESTA’s inherent scalability. Of particular
interest are heterostructure consisting of a superconductor and an insulator with strong spin-
orbit coupling because they are expected to host Majorana zero modes. These modes are very
promising components for topological quantum computers due to their non-Abelian nature.
Other possible applications are the surfaces of superconductors and the interface between
superconductors. Furthermore, our implementation can model superconductivity beyond the
spin-singlet pairing and could be used to study the 𝑝-wave spin-triplet superconductors such
as Sr2RuO4. Finally, the BdG+DFT and DFT+NEGF approaches could be combined to create a
method for simulating the transport properties of superconductor junctions and topological
superconductor devices.

To conclude, the novel methods and insights presented in this thesis address some of the
significant problems in the field of first-principles modeling of quantum materials and create
many opportunities for future exploration of quantum materials.
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