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Departament de Fı́sica, Facultat de Ciències
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Abstract

The success in the experimental control of quantum systems, along with the advent
of artificial intelligence, raises the question of where do these worlds meet. In
this thesis, a series of frameworks is proposed, in which a machine-learning agent
sequentially interacts with a quantum system in order to learn control strategies.
Such frameworks are interconnected with each other by the degree of knowledge
the agent possesses on the setting at hand.

Our journey begins by model-free learning of long-distance quantum commu-
nication protocols, continues towards an intermediate-stage of awareness in which
NISQ-computing problems are tackled, and finally lands on the fully-aware terrain,
where statistical-inference problems are considered for continuously-monitored
systems.

Specifically, we depart from a completely agnostic assumption, where a rein-
forcement learning agent is posed to the task of calibrating a quantum receiver that
decodes information out of a continuous-variable system. From here, some light is
shed into the learning problem, and in the second framework we consider how to
design useful quantum circuits for currently-available quantum computers. To this
end, a semi-agnostic algorithm that jointly optimizes both the structure and the
parameters of the circuit is introduced. Finally, we consider how open quantum
dynamics can be inferred by an agent which is continuously-monitoring a system.
Here, the structure of the quantum evolution is assumed to be known, and the
agent needs to learn which is the underlying hypothesis that describes systems’
dynamics out of a noisy measurement signal.

The methods developed in this thesis can potentially be applied to real-life sce-
narios, and represent a step forward towards the constitution of quantum machine
learning.
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Resum

L’èxit en el control experimental dels sistemes quàntics, juntament amb la presència
quotidiana de diferents intel·ligències artificials, planteja la pregunta d’on es creuen
aquests mons. En aquesta tesi es proposa una sèrie de marcs en què un agent
d’aprenentatge automàtic interactua seqüencialment amb un sistema quàntic per
tal d’aprendre estratègies de control. Aquests marcs estan interconnectats entre si
pel grau de coneixement l’agent té sobre l’escenari en qüestió.

El nostre viatge comença amb l’aprenentatge sense model de protocols de
comunicació quàntica sobre llarga distància, continua cap a una etapa intermèdia
de consciència en què s’aborden problemes de computació quàntica tipus NISQ
i finalment aterra al terreny totalment conscient, on es consideren problemes
d’inferència estadı́stica en sistemes quàntics contı́nuament monitoritzats.

Especı́ficament, partim d’un escenari completament agnòstic on un agent
d’aprenentatge per reforç s’enfronta a la tasca de calibrar un receptor quàntic que
descodifica informació clàssica d’un sistema quàntic de variable contı́nua. Partint
d’aquest context, llancem una mica de llum sobre el problema de l’aprenentatge, i
el segon escenari consisteix a dissenyar circuits quàntics útils per als ordinadors
quàntics actualment disponibles. Per això, introduı̈m un algorisme semi-agnòstic
que optimitza de manera conjunta tant l’estructura com els paràmetres del circuit.
Finalment, considerem com la dinàmica d’un sistema quàntic pot ser inferida per
un agent que està monitoritzant contı́nuament aquest sistema. Aquı́, assumim que
l’estructura de la dinàmica és coneguda per l’agent, que necessita aprendre quina és
la hipòtesi subjacent que descriu l’evolució a partir d’un senyal de mesura sorollós.

Els mètodes desenvolupats en aquesta tesi estan preparats per poder ser aplicats
a escenaris de la vida real i representen un pas endavant cap a la constitució de
l’aprenentatge automàtic quàntic.
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Resumen

El control experimental exitoso de ciertos sistemas cuánticos, junto con la presencia
de la inteligencia artificial, plantea la pregunta de dónde estos mundos se encuen-
tran. En esta tesis proponemos una serie de marcos donde agente de aprendizaje
automático interactúa secuencialmente con un sistema cuántico para aprender
estrategias de control. Los marcos están interconectados entre sı́ por el grado de
conocimiento el agente posee sobre el escenario en cuestión.

Nuestro viaje comienza con el aprendizaje sin modelo para protocolos de co-
municación cuántica, continúa hacia una etapa intermedia de conciencia donde se
abordan problemas de computación cuántica, y finalmente aterriza en el terreno to-
talmente consciente, considerando problemas de inferencia estadı́stica en sistemas
continuamente monitoreados.

En particular, partimos de una escenario agnóstico, donde un agente de apren-
dizaje por refuerzo se enfrenta a la tarea de calibrar un receptor cuántico que
decodifica estados coherentes. Continuamos arrojando algo de luz sobre el grado de
conciencia, y nuestro segundo escenario consiste en el diseño de circuitos cuánticos
útiles para dispositivos actualmente disponibles. Para ello, introducimos un algo-
ritmo semi-agnóstico que optimiza conjuntamente la estructura y los parámetros
del circuito. Finalmente, estudiamos cómo inferir la dinámica de un sistema a partir
de su monitoreando continuo. Aquı́, asumimos que la estructura de la dinámica es
conocida por el agente, quien necesita aprender cuál es la hipótesis subyacente que
describe la evolución, a partir de la señal de medidas ruidosas.

Los métodos desarrollados en esta tesis están listos para ser aplicados a es-
cenarios de la vida real y representan un paso adelante hacia la constitución del
aprendizaje automático cuántico.
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It is imperfection - not perfection - that is the end
result of the program written into that formidably
complex engine that is the human brain, and of the
influences exerted upon us by the environment and
whoever takes care of us during the long years of
our physical, psychological and intellectual develop-
ment.

Rita Levi-Montalcini

1
Motivation

Motivating this thesis should be quite easy, a friend told me a couple of days ago:
just ask ChatGPT. However, I will not do this, and the main reason for that is
because I have actually found joy during the writing of my thesis, and I think this
is a good starting point. If we find pleasure in doing certain things, like research
for example, why would we care in finding protocols to automatize them, as done
in this thesis? Ups: tricky question.

Well, I can think of two reasons. The first one is for the fun in doing so: it has
been (and still is) an amazing experience! Yes, definitely fun… but… it does not
sound very convincing that my only motivation to do a PhD in quantum machine
learning was only for the fun of it, right?

Thus, we need to think on a second reason. Think, think… come on… four and
a half years thinking on this PhD and now nothing… Well, at least we can try to
imagine the shape of the answer. It should be something like… mmmm…. a bit
harder to swallow… but not too much, since we really want to keep the reader up
to (at least) the end of this Section. Exactly! that’s the concept I need: “Sections!”

While Sections help us structure things (and I can assure you, my Dear Reader
that we will use them later in the thesis), they do also place a distance between things.
For us scientits, such distance is necessary — and often essential — in order to focus
on an specific research topic. But more often than not, scientific communities (and
we can well generalize this to the human knowledge) fall into an abuse of knowledge
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compartmentalization. And this sounds a more satisfying motivation for why doing
this PhD: work on connecting Science back (by contribution with our little grain
of sand). In turn, this thesis brings two fields that (back to 2018, when my PhD
began) were quite far away from each other. Moreover, and as it happens in many
situations when bringing two different worlds toghether, many beautiful things
come up. While I will not use the card that quantum AI could lead to a major
breakthrough —I could sell it, but I don’t buy it— I do think that research directions
that focus on intersecting two communities with each other is healthy for science,
and this is some kind of enough motivation to me.

So what about quantum? and what about AI? Falling (perhaphs not too much!)
in contradiction with the previous paragraph, let’s go by parts.

Quantum theory is a route to understand physical reality, and I want to put
emphasis on its fundamental aspects. Those have to do with describing the reality by
means of quantum superpositions and quantum correlations. Moreover, the theory
is intrinsically stochastic in nature. Yet the physical reality that we inhabit has — a
priori — nothing to do with this wierd phenomena of superpositions and non-local
correlations. Furthermore, classical physics is intrinsically deterministic, in the
sense that with precise knowledge of a given system, we can perfectly predict its
behaviour. Some authors describe this gap as a desert of ignorance occupying many
decimals in the scale: how our classical & deterministic world can be reconciled
with the quantum theory? We simply do not know the answer yet, and this is
perhaps one of the biggest misteries that we currently need to deal with.

On the other hand we have artificial intelligence (AI), and a huge (classical)
computing power available —at least to some— right now. While ChatGPT and all
the advent of AI is truly impressive, we are certainly not living in an Asimov’s tale,
and many questions remain open on how can current AIs become truly intelligent
as we humans are, if there even exists a clear definition for such concept. As of
now, the possibility of an AI having the scientific aha!s that we scientists are often
illuminated with (call it intuition) sounds like a fantasy. Perhaphs this will never
happen, and our human condition hindered us to completely understand the logic
behind our reasoning (be it concious or unconcious).

However, a PhD thesis consists in leaving almost all of the unresolved misteries
of science, technology and humanity aside for a while, but focusing on only some.
And I guess this is what motivates the current thesis: on the one hand there is clear
evidence that we can control quantum systems up to an unprecedented level1. On
the other hand, while current AIs might be a game-changer in a volatile society like

1By this, we mean preparing and storing a system in a quantum superposition for a sufficiently
long time.



ours, they do not represent a change-of-paradigm on how intelligence is understood,
as they do not even get close to it. This might sound polemic, I know, since for
example ChatGPT has recently passed Scott Aaranson’s quantum-mechics exam
with a 7/10 score. However, I do refer to intelligence as something beyond passing
an exam. Again, I would be truly impressed (and of course chances are that I am
wrong) that an AI aha!, and come up with a new theory of knowledge on its own,
i.e. without human intervention. Thus, AI should be understood as a tool, and not
as a stand-alone system.

In particular, we will pay special attention to the currently available quan-
tum technologies, by considering three paradigmatic devices. First we will study
continuous-variable quantum receivers, which are aimed to decode information
out of a quantum state of light. Secondly, we focus on NISQ computers, which are
relatively small and extremely noisy version of quantum computers, but have able
provide to provide a quantum advantage with respect to any classical computer
paradigm. Thirdly, we will consider the case of continuous-time quantum sensors,
where a quantum system stored in an optical cavity is being monitored, which
provides an effective to infer information of its environment.

In this thesis we tackle each of the aforementioned devices —also called quantum
environments— from the machine-learning perspective. This is done by introducing
an agent equipped with a varying level of awareness on the quantum environment
she is faced to.

The phyisical systems that we consider, along with the methods and machine-
learning algorithms, are widely explained in the Preliminaries Chapter. This (consid-
erably long) section serves as a reference for the subsequent ones. Thus, the reader
can straightfowardly begin from its preferred Chapter, and consult the Preliminaries
when necessary (appropiate reference are included).

The learning journey begins in the darnkness, where the agent is asked to
optimally callibrate a quantum receiver without any knowledge of the setting at
hand. Here, the only information given to the agent is a binary reward (a bit, valued
either 0 or 1), which stands for the correctness of the guess made for the underlying
signal that is aimed to be decoded.

We continue in the twilight, with an agent facing the problem of building
noisy quantum circuits, in the context of NISQ computing. Here, the solutions
the agent is asked to reach are even unknown to us, and we can only aid her by
providing specifically-tailored circuit compression rules. To this end, we introduce
the VAns algorithm, which sequentially modifies the quantum circuit by following
a variable-ansatz structure. Our method is thoroughly tested in paradigmatic
quantum machine learning applications, ranging from VQE to quantum autoencoder



tasks.
Finally, we learn during daylight, where a fully model-aware agent is asked to

tackle statistical inference problems. Here, our attention is put on continuously-
monitored quantum systems, where the performance of sequential discrminiation
protocols is studied. Here, we analytically study the evolution of the log-likelihood
ratio, by providing insight on error rates and stopping time probability distribution
for a sequential test. In addition, the case of parameter estimation is considered,
and a maximum-likelihood estimation is carried out by an automatic-differentiation
method; such recurrent structure allow us to infer parameters of external signals
out of measurement signal.

The main contribution of this thesis is that of “ bringing the quantum scientist
closer to the AIs, in such a way that they can collaborate with each other”. This
thesis, as most of the scientific research, provides a (small) step further towards
the constitution of such collaboration. Having this in mind, the reader shall not
understand each of the Chapters as a closed-one, but rather as an invitation to
continue writing it. In turn, our results do not constitute a milestone in quantum
AI, but we rather see them as blueprints towards more ellaborate quantum AI
framework.
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Yo no se qué pasó // en mil calles la calle se abrió. //
Me perdı́ y en verdad // no sabı́a que rumbo tomar//.
Pregunté, porque al fin // preguntando se llega a
Pekı́n.

— Lo que me costó el Amor de Laura
Alejandro Dolina

2
Preliminaries

This chapter is aimed to explain both physics and algorithms studied in the thesis.
We begin with quantum physics; after recaping the basic ingredients of quantum
information in Sec. 2.1.5, we discuss about (discrete-variable) NISQ computing
in Sec. 2.2. We then review continuous-variable quantum systems in Sec. 2.3,
with a particular focus on Gaussian states and operations. Introducing such a
formalism allows us to discuss continuously-monitored systems in Sec. 2.4, and
this consitutues the end of our tour through quantum systems. In Sec. 2.5.2 we
introduce the problem of quantum state discrimination, and we then softly turn to
the classical world by discussing statistical inference problems in Sec. 2.5. Finally,
we introduce the reinforcement learning framework in Sec. 2.6, with a particular
focus on model-free Q-learning agents.

2.1 Some basic notions of quantum information

A system S is described by quantum theory using a d-dimensional Hilbert space
H; the dimension d might be infinite, e.g. if we want to describe systems in the
continuous-variable (CV) ones, such as optical or mechanical ones. The state of
the system is represented by a self-adjoint, positive semi-definite and unit-trace
operator ρ ∈ H.

5



2.1. SOME BASIC NOTIONS OF QUANTUM INFORMATION

Physical quantities such as position, angular momenta or energy are described
by self-adjoints operators, known as observables. As such they have an associated
eigenbasis, each eigenstate being a unit-vector inH and deemed pure state. Note
however that a quantum state is generally found in a mixed state, e.g. a probabilistic
mixture of pure states.

The value that physical quantities can take is obtained by measuring the system,
and this makes quantum theory a physical one, since we can readily contrast
measurement statistics with theoretical predictions.

Given an orthonormal basis {|i⟩}di=1, a quantum state1 can be written as

ρ =
∑
i,j

ρij |i⟩⟨j| , (2.1)

where ρij are the matrix components of ρ. Since ρ 0, its spectral decomposition is
always available, with an associated eigenbasis {|k⟩}

ρ =
∑
k

pk |k⟩⟨k| , 0 ≤ pk ≤,
∑
k

pk = 1, (2.2)

where the conditions on pk arise from the fact that ρ is positive semi-definite and
unit-trace operator. The purity of the state is defined as Tr[ρ2]; while pure-states
are represented by rank-one operators (of purity 1), mixed-states’ purity is strictly
less than 1.

Composite systems are described in a Hilbert space formed by the tensor-
product of the individual components. As an example, let us consider bipartite
systems with parties S and A; the composite quantum state ρSA is an operator in
HSA = HS ⊗HA. Taking a basis forHSA formed by a tensor-product of basis |iS⟩
and |jA⟩ in S and A respectively, we obtain that

ρAS =
∑
ijkl

ρklij |i⟩S⟨j| ⊗ |k⟩A⟨l|. (2.3)

A state is separable if it can be written as a convex combination of product-like
states, i.e.

ρsepAS =
∑
k

pkρ
(k)
S ⊗ ρ

(k)
A , (2.4)

where ρ(k)i is a local quantum state in subsystem i = S,A. If ρAS cannot be written
in this form, then the state exhibits quantum correlations.

1While much of the following discussion applies to CV systems as well, we will restrict in this
Section to finite d, and study CV-systems in Sec. 2.3.

6
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The reduced state of each subsystem is defined via the partial-trace [NC00]; e.g.
ρS(A) = TrA(S) [ρAS]. For instance, the local state of system S reads

ρS = Tr[ρAS] =
∑
m

⟨mA|
(∑
ijkl

ρklij |i⟩S⟨j| ⊗ |k⟩A⟨l|
)
|mA⟩ =

∑
ijm

ρmmij |i⟩S⟨j|.

(2.5)

Projective measurements

In order to extract information out of a quantum state, we need to measure it.
Quantum measurements deliver a classical outcome, and provide a route to map
quantum information to classical one. While generalized measurements will be
discussed in Sec. 2.1.3, we will now discuss a particular type of measurement.

Projective measurements consist on orthogonal projectors {Ek} such that
EkEj = δkjEj , with

∑
k Ek = I, and Ek = E†k. Here, the possible measure-

ment outcomes are {k}d−1k=0, and the probability of outocome k given the state of
the system is ρ reads

p(k) = Tr[ρEk]. (2.6)
Moreover, the state of the system after this outcome occurs, known as the post-
measurement state, is given by

ρ→ ρ|k =
EkρEk
Tr[ρEk]

, (2.7)

where we note that the normalization is given by the probability of such measure-
ment outcome. On the contrary, if the measurement is performed bu the outcome
is not known, the unconditional post-measurement state is given by

ρ→
∑
k

EkρEk. (2.8)

Here, we observe that (i) the unconditional state is the average of all possible
conditional-states, as weighted by the corresponding probability p(k), and (ii) if the
original state to be measured is pure, then not recording the measurement outcome
will generally convert it to a mixed state.

As an example, let us consider an observable O. We can readily construct
a projective measurement via its spectral decomposition, i.e. Ô =

∑
k ok |k⟩⟨k|,

leading to Ek = |k⟩⟨k| and

⟨O⟩ρ = Tr[Ôρ] =
∑
k

pkok, (2.9)
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where pk = Tr[ρ |k⟩⟨k|] is the probability of finding the state ρ in the kth eigenstate
of Ô. Here, let us recall that if Ĥ is the system’s Hamiltonian, then the variational
theorem is obtained by noting that pk ≥ 0 ∀k; it follows that ⟨H⟩ρ ≥ E0 where
E0 is the ground-state energy, i.e. the lowest eigenvalue of Ĥ . The inequality is
saturated in the case that ρ is the ground-state of Ĥ ; this is the basis of variational
quantum algorithms, where ρ is evolved in such a way to get as close as possible to
the ground-state, as discussed Sec. 2.2.

2.1.1 Closed-system dynamics
The evolution of a closed quantum system is given by an unitary transformation
Ût, generated by a Hamiltonian Ĥ , e.g. Ût = e,−iĤt, where the Hamiltonian will
be assumed time-independent. Here, the Schrodinger equation describes quantum-
state evolution according to

∂tρ(t) = −i[Ĥ, ρ(t)]. (2.10)

The solution to such equation can be expressed as

ρ(t) = Ûtρ(0)Û
†
t , (2.11)

and this constitutes the Shcrodinger picture. However, the time-dependence of the
quantum state can be entirely translated to the observables, which gives rise to the
Heisenberg picture. In turn, by defining

Ô(t) = Û †Ô(0)Û , (2.12)

we observe that the expected value of O reads

⟨O⟩ (t) = Tr[O(0)ρ(t)] = Tr[O(t)ρ(0)]. (2.13)

The correspoding equation of motion for the observable reads

∂tO(t) = i[H,O(t)]. (2.14)

Moreover, the interaction picture —or interaction frame— is obtained by decompos-
ing the Hamiltonian in terms of the free Hamiltonian H0 and an interaction term
V according to H = H0 + V . In this picture, both states and observables depend
on time, according to

ρIF (t) = e−iH0tρ(0)eiH0t, (2.15)
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ÔIF (t) = e−iH0tÔ(0)eiH0t, (2.16)
and the evolution of ρIF (t) reads

∂tρIF (t) = −i[V, ρIF (t)], (2.17)

where a similar evolution applies for observables as well.
Changes in quantum-states can be generalized to consider the case in which

the quantum system is interacting with an environment, i.e. an open-quantum
system. While our discussion of the continuous-time case will be postponed until
Sec. 2.1.5, we will now introduce a tool to represent discrete changes, such as those
modeling the noise that a quantum-receiver suffers, as studied in Sec.3.3.5, or the
noise injected into a quantum state by an imperfect NISQ-component, as we study
in Sec. 4.2.6.

2.1.2 Quantum channels
A quantum channel Φ is a lineal map Φ : L(H1)→ L(H2), whereL(H) denotes the
set of operators inH and the dimensions of the input-spaceH1 and output-space
H2 might differ.

The lineal map is required to be:

• Completely positive (CP): letH1′ be of dimension d′, then

(Id′ ⊗ ϕ)[σ] ≥ 0 ∀d′, ∀σ ∈ H1′ ⊗H1. (2.18)

• Trace-preserving (TP).

The first condition is required such that when Φ acts locally (i.e. on one out of many
subsystems), the resulting global state is a positive state. The second condition is
required such that the resulting state is unit-traced.

Choi-Krauss theorem [Man19] guarantees that any CPTP channel admits a
Kruss decomposition:

M(ρ) =
N∑
k=1

MkρM
†
k , (2.19)

with
N∑
k=1

M †
kMk = Id. (2.20)

The operators {Mk}Nk=1 are known as Krauss operators, and it is important to note
that this decomposition is not unique.
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The non-uniqueness of Krauss decomposition is explicited by the Stinespring
dillation. This states that any CTPT channel can be obtained by unitarily evolving
the input-system with an ancilla and tracing the latter out. To see this, let the
initial state of the system and ancilla be ρ and |0A⟩⟨0A| respectively, and the closed
(unitary) evolution of the joint system given by Û = ÛSA. The resulting state of
the system is

ρ→TrA
[
Ûρ⊗ |0A⟩⟨0A| Û †

]
(2.21)

=
N∑
k=1

⟨kA|
(
Û |0A⟩ ρ ⟨0A| Û †

)
|kA⟩ (2.22)

=
N∑
k=1

MkρM
†
k , (2.23)

where we defined Mk = ⟨kA|Û |0A⟩ by considering a basis {|kA⟩}Nk=1 of the ancilla.
However, we can readily note that a different basis {|νA⟩}N ′

k=1 (of a possibly enlarged)
ancilla could be considered, where the basis-elements are related to each other by
an isometry V̂ such that |ν⟩ =∑N

l=1 Vνk |k⟩. Using the latter basis, the two sets of
Krauss operators relate to each other as Nν =

∑N
l=1 V

†
νkMk.

Morever, note that the map Φ will be trace-preserving iff
∑N

k=1M
†
kMk = I.

Also, we remark that as long as Eq. 2.20 is satisfied, the Krauss operators can also
be time-dependent [Man19].

As an example, we can consider an unitary channel as in Eq. 2.11, where the
Krauss representation reduces to Mk = Ût, with N = 1.

2.1.3 Generalized quantum measurements

A generalized quantum measurement given by a set of lineal operators {Ek}nk=1,
each associated to a possible outcome k ∈ {1, ..., n}. The probablity that outcome
k happens, conditioned on the quantum state being ρ, is given by the Born rule:

p(k|ρ) = Tr[ρEk]. (2.24)

Since such probability is required to be positive for any quantum state, it follows
that Ek ≥ 0 (which imply self-adjointness). Moreover, since

∑
k p(k|ρ) = 1 for

any quantum state, then
∑

k Ek = 1d. This constitute a Positive Operator-Valued
Measure (POVM), which we will often denote byM.

10
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POVMs arise when a projective measurement is carried out on an ancilla that the
system is coupled with. Similarly to our previous discussion on quantum channels2,
we can readily define an ancilla systemA, with an associated eigen-basis {|kA⟩}nk=1.
Now, considering the initial-state of the system and ancilla to be ρS and |0A⟩⟨0A|
respectively, and the joint unitary evolution to be Û , a projective measurement
{|kA⟩⟨kA|} carried out on sub-system A will occur with probability

p(k) = Tr[(1d ⊗ |kA⟩⟨kA|)ρs ⊗ |0A⟩⟨0A|] = Tr[ρM †
kMk] = Tr[ρEk], (2.25)

where similarly to the previous Section we have Mk = ⟨kA|Û |0⟩. Thus, under this
Krauss decomposition we have that Ek = M †

kMk, and the conditional state of ρ
upon obtaining measurement outcome k reads

ρ→ ρ|k =
MkρM

†
k

Tr[ρM †
kMk]

. (2.26)

Similarly, the unconditional post-measurement state under such Krauss decompo-
sition reads

ρ→
n∑
k

MkρM
†
k . (2.27)

It is important to recall that this decomposition is not unique, since different Krauss
decompositions are equivalent by an isometry, as discussed in the previous Section.
In turn, Eq. 2.27 can be understood as a quantum channel acting on ρ, similar to
Eq. 2.20. In this direction, it is useful to understand different Krauss decompositions
as different unravelings of the open-quantum system dynamics, all averaging up to
the same unconditional evolution.

The notion of quantum measurements and channels can be generalize to take
into account stochastic channels, using the concept of a quantum instrument [Wat18]
,or quantum operation [Pre98], which we now turn to introduce.

2.1.4 Quantum instruments
A quantum instrument is described by a collection of CP maps {ϕk}nk=1, which sum
up to a channel, i.e. Φ =

∑
k ϕk. Such object is to be considered as a generalization

of a POVM: after applying a quantum instrument on a state ρ, two things happen:

• A measurement outcome k is obtained with probability Tr[ϕk(ρ)],
2In fact, measurements can be regarded as quantum-to-classical channels [Wat18]
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• The conditional state of ρ upon observing measurement outcome k is

ρ→ ϕk(ρ)

Tr[ϕk(ρ)]
. (2.28)

We can readily consider a krauss decomposition of ϕk, given by {Mkµ}. Such
Krauss operators should obey the completeness relation derived above, namely∑

kµM
†
kµMkµ = 1. Here, we can interpret the quantum instrument as an object

describing an stochastic application of ϕk: whereas k is recorded, the label µ is
ignored. As such, the post-measurement state reads

ϕk(ρ) =
∑
µ

MkµρM
†
kµ, (2.29)

with outcome k occuring with probability p(k) = Tr[ϕk(ρ)]. We note that since
outcome µ is ignored, the channel ϕk is generally trace-decreasing, and the normal-
ized post-measurement state coincides with the post-measurement state defined
above as ρ|k = ϕk(ρ)

Tr[ϕk(ρ)]
.

Moreover, we might think of a process that consists on M consecutive measure-
ments, leading to an stochastic sequence k = {k1, ..., kj, ...kM}. The conditional
state of the system upon observing outcome kj is obtained via ϕkj . Note that when
keeping the system’s state unnormalized up to the M -outcome, the trace of the
unnormalized state, i.e. ϕkM ◦ .... ◦ ϕk1(ρ), represents the likelihood of observing
such sequence of outcomes, and the normalized state reads:

ρ|k =
ϕM ◦ .... ◦ ϕ1(ρ)

Tr[ϕkM ◦ .... ◦ ϕk1(ρ)]
. (2.30)

Our discussion has so-far limited to discrete changes of the quantum state.
In the following we will discuss how a dynamical equation is obtained for the
(unconditional) evolution of an open-quantum system.

2.1.5 Quantum master equation
While we have previously introduced the notion of a quantum channel given by a
CPTP map between quantum states, no notion of continuous-time has entered so-
far in the discussion. Thus, we will here consider a quantum channel Et, and discuss
a dynamical equation accounting for ρ(t) = Et[ρ(0)]. In the Markov approximation,
this can be expressed as a differential equation of the form

dρ = L[ρ]dt, (2.31)
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where L is a superoperator that generates the quantum dynamical semi-group 3

associated to Et and can be shown to admit the so-called Libland form [Lin76;
WM09; Man19]:

L(ρ) = −i[Ĥ, ρ] +
M∑
k=1

D[L̂k]ρ, D[L̂k]ρ = L̂kρ+ ρL̂†k −
1

2
{L̂kL̂†k, ρ}, (2.32)

where Ĥ is the system Hamiltonian (generator of the closed-system dynamics)
and the linearly-independent operators {Lk} are known as the Libland operators,
or jump operators. We note that the Libland form is invariant under (i) unitary
transformations of the jump operators, i.e. L̂k →

∑
l V̂klL̂l with V̂ unitary (which

is a consequence of the unitary invariance of the Krauss decomposition), and (ii)
shifts of the Libland operators accompanied by a new term in the Hamiltonian:

L̂k → L̂k + ξk, Ĥ → Ĥ − i

2

M∑
i=1

ξ∗kL̂k − ξkL̂†k. (2.33)

The dynamical equation introduced above is known as the quantum master equation,
and its generator is given by Eq. 2.32. We remark that this evolution can also be
obtained by suitable time-dependent Krauss operators:

ρ(t+ dt) = Edt[ρ(t)] =ρ+
M∑
k=1

Kk(dt)ρK
†
k(dt) (2.34)

=ρ+ L[ρ]dt. (2.35)

As discussed in Sec. 2.1.3, the choice of Krauss and jump operators Kk(dt) in
Eq. 2.34 plays an imporant role when studying the conditional dynamics, arising as
a consequence of recording the measurement outcome at each time-step. This can
be understood as an stochastic sequence of channels, as introduced in Sec. 2.1.4,
which give rise to the notion of a quantum-trajectory, as discussed in Sec. 2.4.

To conclude, in this Section we have revisted some of the basics in quantum
information theory. Many of the concepts discussed here will be recaped later in

3A quantum dynamical semi-group consists on a family of CPTP maps {Et : t ≥ 0} such
that (i) EtEs = Et+s and (ii) Tr[Et[ρ]Ô] is continuous over t, for any state-observable pair (ρ, Ô).
Note that the first restriction is quite restrictive, since an aritrary evolution might not admit such
decomposition.
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the thesis. We will now turn to introduce some of the physics and concepts that set
the basis for Chapter 4.

2.2 NISQ & the qubits
In this Section we will focus on discrete-variable systems. Special attention will be
payed to Noisy Intermediate-Scale Quantum (NISQ) computing, a concept standing
for currently available technologies, where quantum circuits of about 50 − 100
qubits are already being implemented and controlled despite the strong presence
of noise [Pre18].

While error-correcting codes cannot be built with such a low amount of qubits
—it is estimated that nearly a thousand physical qubits are required in order to get a
single logical qubit [FMM+12]— special-purpose quantum devices can readily be
built, exhibiting a genuinely quantum behaviour. Whether such techologies will
be able to provide a game-changer quantum advantage in industry applications,
or they are just a stepping stone towards fault-tolerant architectures is a matter
of vivid debate between the community [AAB+19; PCZ22; LLZ+22]. However, we
remark that the sole feasibility of experimental preparation and control of quantum
systems already constitute a game-changer paradigm in our scientific community.
In turn, not only a plethora of new questions regarding scalability and overall
implementation of such techologies arise [ABB+21], but also the demand for new
theoretical tools, particularly to better analyze performance issues that we will later
discuss [MBS+18; CSV+21; PCW+21a; HAY+21; ZG21; TWN+21; SCC+22; PNG+21;
MKW21; CC21; ACC+21; BK21].

In the following we will concentrate on an specific topic that falls under the
umbrella of NISQ computing, called Variational Quantum Algorithms.

2.2.1 VariationalQuantum algorithms
Recently, a superpisition of hype and hope has been put on the field of quantum
machine learning [BWP+17; AAB+19; SK22; Aar15; Pre18; PMS+14; PCW+21b;
SCH+22], particularly when training Parametrized Quantum Circuits (PQCs).

PQCs consists on a series of quantum gates, e.g. CNOTs and rotations, where
the real parameters of the latter are modified in order to optimize the circuit.
Here, and in analogy to the classical neural networks scenario [GBC16], we aim
to minimize a given cost function (and thereby, these circuits are also known as
quantum neural networks). The overall training of PQCs is known as a Variational
Quantum Algorithm (VQA), and consists on an hybdrid classical-quantum scheme.
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In turn, a quantum device is only used to estimate cost-function values, whereas a
classical algortihm is in charge of controlling that quantum device by optimizing
over accessible degrees of freedom, e.g. rotation parameter values. Recently, many
efforts have been carried out in order to analyze the performance, trainability and
overall feasibility of VQAs [CAB+21a; BCLK+22].

Training a VQA means to solve an optimization problem encoded into a cost
function of the form

C(k,θ) =
M∑
i

fi

(
Tr[ÔiU(k,θ)ρiU

†(k,θ)]
)
. (2.36)

Here, {ρi} are n-qubit states forming a training set of cardinality M , and U(k,θ)
is our NISQ circuit parametrized by continuous parameters θ (e.g., rotation angles)
and by discrete parameters k (e.g., gate placements). Moreover, Ôi are observables
and fi are functions that encode the optimization task at hand.

For example, when employing the Variational Quantum Eigensolver (VQE)
algorithm [PMS+14] we have fi(x) = x and the cost function reduces to

CVQE(k,θ) = Tr[ĤU(k,θ)ρU †(k,θ)], (2.37)

where ρ is the input state (and the only state in the training set) and H is the
Hamiltonian whose ground state we seek to prepare. Alternatively, in a classifi-
cation problem where the training set is of the form {ρi, yi}, with yi ∈ {1, ..., n}
being the true label, the choice fi(x) = (x − yi)2 leads to the least square error
cost [LLD22; FN18; SBS+20; BBF+20; CCL19a]. In this regard, and as it happens in
the reinforcement-learning scenario discussed in Sec. 2.6, the possibility of encoding
a given problem into a cost function is a matter of creativity.

Given the cost function, a NISQ circuit is employed to estimate each term in
Eq. (2.36). Ussually, the available measurements consist on local projections over
the eigenbasis of σiz for each qubit i = 1, ..., n. Here, in order to estimate the cost
function, we decompose each operator appearing in the cost-function in terms
of Pauli-strings. Recall that Pauli-string operators form a basis in the space of
n-dimensional hermitian operators and hence

Ôi =
4n∑
k=1

ckPk, (2.38)

with Pk =
⊗n

i=1 σj , where σj ∈ {I, σx, σy, σz}. Note that Pauli-string operators
are orthogonal to each other, i.e. Tr[PkPk′ ] = 2nδkk′ and thus ck = Tr[ÔiPk]/2

n.
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Thus, the cost-function can be estimated by computing averages of some pre-
determined observables, which are in turn a weighted sum of expected values of
Pauli-strings. Moreover, we can estimate each expected value ⟨Pk⟩ by performing
the corresponding single-qubit transformation beforehand and measuring σz4. In
this regard, if an ϵ-accuracy is required in order to estimate this expected value, an
order of ∼ 1

ϵ2
measurements needs to be done (this will have consequences when

trying to resolve between very small values of the cost-function in Sec. 2.2.4).
We also note that the Pauli-string procedure outlined above consists on an

exponentially large sum of expected values. However, we are often interested in
local hamiltonians, where many of these terms vanish (for example, TFIM and
XXZ models considered in Ch. 4). In this case, techniques such as randomized
measurements (RMs) have recently been developed, in which the cost function
can be computed more efficiently. While we do not consider such approaches in
this thesis, we refer the interested reader to Ref. [EFH+22], and we note that a
combination between our methods (discussed in Chapter 4) and classical shadows
(a sub-class of RMs) is discussed in Sec. 4.3.

Once the cost-function has been estimated, the power of classical optimization
algorithms is leveraged to solve the optimization task

argmin
k,θ

C(k,θ) . (2.39)

The estimation of a cost function via a quantum circuit and its modification (hope-
fully towards a cost-minimizing direction) by a classical optimization algorithm
defines a cycle, which is repeated until convergence, as depicted in Fig. 2.1. The
success of such scheme hinges on several factors. As a matter of fact, the classical
optimizer must be able to efficiently train the parameters, and in the past few
years, there has been a tremendous effort in developing quantum-aware optimiz-
ers [VPB18; KAC+20; ACS+20; SIK+20; KB19; NFT20; FCA+20]. In particular, severe
trainability issues has been pointed out, which forbid the success of VQAs and as
constitute the main barrer (along with hardware-noise) for making use of current
NISQ devices in the VQA framework, and we will review some of them in Sec. 2.2.2.

However, we note that even if such trainability issues could be overcomed, the
performance of a VQA will intrinsically be linked to the specific quantum circuit
used for the training. Here, the choice of an ansatz for U(k,θ) plays a crucial role
in determining the success of a VQA scheme; for instance, for a given Hamiltonian

4This can be understood as a change-of-basis.

16



CHAPTER 2. PRELIMINARIES

Figure 2.1: Figure adapted from Ref. [YEZ+19]: a generic VQA algortihm is sketched.
Here, a quantum device is used to estimate a cost-function value, whereas the device
itself is controlled by a classical optimization algorithm. This cycle is iterated until
convergence.

in the VQE algorithm, circuits that are close to the ground-state preparing one
might lie outside the subspace U of the unitary group U(n) which is generated by
varying θ in U(k,θ), with a fixed circuit layout given by k [HSC+22].

In this respect, not every unitary transformation in U(n) can straightforwardly
be implemented, since the availability of quantum gates is often restricted; we
generally need to deal with a gate-alphabet D, which in this thesis will be composed
of one-qubit rotations and of CNOTs entangling any pair of qubits present in the
circuit. We note that such an alphabet is universal [NC00]: any quantum gate can be
implemented provided enough gates of the alphabet are used. Nevertheless, such a
compilation is a tricky one: noise accumulates with circuit’s depth, and hence only a
non-trivial set of unitaries can be reached. Moreover, we remark that the availability
of fully-connected qubits is a slight simplification, and connectivity constraints
should in principle be considered. In the latter case, entangling two qubits which
are not straightforwardly connected represents an overhead in circuit’s depth, and
many efforts have been carried out recently in order to find novel strategies to
tackle this issue [Gri19].

For these reasons, it is important to discuss different strategies ussually consid-
ered when constructing the quantum-circuit to be used in a VQA, also known as
an ansatz.
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2.2.2 The Ansatz
We refer to the ansatz as the quantum-circuit structure, i.e. the layout defining
quantum-gates placements. While such a word stand for an educated guess or
an additional assumption made to help solve a problem [Wik], let us remark that
trainability and noise-related issues make it non-trivial to define what an educated
guess for a given problem is in the NISQ-era.

We will make a distinction between fixed-structured ansatzes (i.e. where k
is fixed), and variable-structure ones, in which also the structure of the circuit is
optimized. In the latter case, the optimization is arguably more complex, since it
consists on finding the right circuit structure on top of the continuous parameter
optimization.

A key parameter that characterizes the ansatz is the number of gates present in
the circuit. It is thus essential to construct ansatzes that maintain this number as
low as possible to mitigate noise and trainability-related issues, but also that have
enough expressibility to contain the problem solution (or at least an approximate
version of it).

In the following we will first discuss some commonly-used fixed-structured
ansatzes, and we will then turn to the variable-structure case.

Let us now discuss on some commonly-used fixed-structure ansatzes. We
first consider a separable ansatz as depicted in Fig. 2.2. Here, the structure is so
trivial that no entanglement is generated by the circuit, since only local operations
are performed on each qubit. Assuming that the initial state is separable —we
often consider it to be |0⟩⊗n—, only a very small fraction of the Hilbert space can
be reached under this circuit’s choice [ZHS+98], and the overall performance is
expected to be poor since the presence of entanglement is generally required. Also,
note that the separable case can efficiently be simulated in a classical computer,
and thus we do would not expect them to provide any quantum advantage.

This issue can be addressed with the layered Hardware Efficient Ansatz[KMT+17],
which we refer as HEA. Here, the gates are arranged in a brick-like fashion and
act on alternating pairs of qubits, as depicted in Fig. 2.2. We define a L-HEA as a
circuit in which L layers are stacked next to each other: a single layer consists on
n− 1 two-qubit gates (in the figure, rotations around x and z axis, followed by a
CNOT) that correlate two neighbour qubits in the circuit. We here will consider the
qubits as a cyclic chain, where the bottom one is also conected to the upper one,
although this definition can be adapted to specific qubit-connection constraints
of the quantum computer at hand. As L increases, it can be expected that HEA
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Figure 2.2: We show examples of commonly-used quantum circuits. In (a) we depict
a separable product ansatz which generates no entanglement between the qubits.
On the other hand, (b) shows two layers of a shallow alternating Hardware Efficient
Ansatz where neighboring qubits are initially entangled. Here Z (X) indicates a
parametrized rotation about the z (x) axis (the angles θ are not explicitely shown,
but such are the degree of freedom to optimize over).

becomes more expressible. as opposed to the separable circuit, whose expressibility
is very poor.

In turn, HEA turns out to be too expressible [HSC+22], in the sense that any
unitary can be mimicked using enough HEA-layers, and this can lead to trainability
issues. For a sufficiently-expressible PQC, the landscape of possible unitaries U
that can be reached by varying its parameters turns to be hard to navigate, in the
sense that the cost-function landscape becomes very flat, a phenomenon known
as a barren plateau. The latter fact constitute a big challenge for an optimization
proccedure that needs to navigate such landscape and reach the lowest cost-function
value, as discussed in Sec. 2.2.4.

One of the main advantages of HEA is that it employs gates native to the
specific device used, hence avoiding an unnecessary overhead in the number of
gates present in the circuit, arising from compiling non-native unitaries into native
gates (for instance, the building-blocks in the figure could be replaced with gates
coming from another dictionary). This type of ansatz is problem-agnostic, in the
sense that it is expressible enough so that it can be generically employed for any
task; in Chapter 4 we will often use this ansatz for benchmarking purposes.

On the other hand, a hint on the solution for the target problem to be solved by
a quantum computer can, in principle, be helpful when building the ansatz. This
claim should certainly holds in the ideal (e.g. noise-less) scenario, and in VQAs, this
is reflected by the so-called problem-inspired ansatzes. Here the goal is to encode
information of the problem into the ansatz’s structure so the optimal solution of
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Eq. (2.39) exists within the parameter space without requiring high expressibility.
An example of such fixed-structure ansatzes is the Quantum Alternating Op-

erator Ansatz (QAOA) for optimization problems, which is aimed to adiabatically
prepare the ground-state of a problem-hamiltonian, and thus alternates between a
mixing unitary and a problem one. We will not discuss thse ansatzes here, and the
interested reader can find more details in Refs. [FGG14; HWO+19].

On a different note, considerable effort has been made in order to construct
physically-inspired ansatzes in the field of quantum chemistry, and the Unitary
Coupled Cluster (UCC) Ansatz [CRO+19; BM07] is an example of them. We will
discuss the quantum-chemistry problem in greater detail in Sec. 4.2.3. Essentially,
we here seek to prepare the ground state of a molecular Hamiltonian, which (under
the Born-Oppenheimer approximation) translates to solve a many-body fermionic
system, known as the electronic-structure problem. While much insight from the
classical methods that tackle this problem can be brought to the NISQ scenario, some
issues raise up. Namely, we need to map the [UCC] ansatz from fermions to qubits,
as well as the molecular Hamiltonian, since we are here targeting applications
on digital quantum computers. Such mapping can be done by the Jordan-Wigner
transform (or alternatively Bravi-Kitaev). Unfortunately, it ussually comes with an
overhead in the number of quantum gates required to build the specific circuit (and
also a large number of Pauli observables to represent the molecular Hamiltonian).
This fact constitutes a big challenge for NISQ applications, since deep circuits are
severely affected by noise.

We might think of quantum chemistry as a subset of problems that quantum
computing can potentially addess. Generally, for a given physical problem, a family
of quantum-circuit structures reflecting certain symmetries of potential solutions
could in principle be constructed. However, quantum-hardware noise makes it
highly no trivial to directly translate such physical intuition into the structure of
the quantum circuit.

Under the presence of limited resources, each component of the VQA that could
in principle be optimized over, should be optimized over. This constitutes the spirit
of several efforts [GEB+19; TSB+21; ZKK+21; RHP+19; CSU+20; CRS+21; CSS+18;
DHY+20; ZHZ+20] to adapt the circuit layout to the specific scenario at hand (e.g.
a noise model, or the restricted availability of quantum hardware). In the following
we will review some of such efforts, which are known as variable-structure ansatzes.
We remark that this is not the end of the story regarding optimization of VQA’s
components. As a matter of fact, we could also optimize the way cost-function

20



CHAPTER 2. PRELIMINARIES

estimates are obtained [GPRS+21; Alg], though we will only focus to optimizing
circuit’s structure.

The overall strategy of variable-structure ansatzes consists of iteratively chang-
ing the quantum circuit by placing (or removing) gates that empirically lower the
cost-function value after the continuous-parameter optimization. The first proposal
for variable ansatzes for quantum chemistry was introduced in [GEB+19] under
the name of ADAPT-VQE. Here, the authors follow a circuit structure similar to
that used in the UCC ansatz introduced above, and propose to iteratively grow
the circuit by appending gates that implement fermionic operators chosen from
a pool of single and double excitation operators. At each iteration, one decides
which operator in the pool is to be appended, which can lead to a considerable
overhead if the number of operators in the pool is large. Similarly to the UCC case,
the mapping from fermions to qubits can lead to prohibitively deep circuits. This
issue can be overcomed using the qubit-ADAPT-VQE [TSB+21] algorithm, where
the pool of operators is modified in such a way that only easily implementable
gates are considered. However, the size of the pool still grows with the number
of qubits. We refer the reader to [CWM+20] for a detailed comparison between
ADAPT-VQE and UCC ansatzes.

A different approach to variable-structure ansatzes that has gained considerable
attention are machine-learning-aided evolutionary algorithms (EA) that upgrade in-
dividuals (quantum circuits) from a population. Noticeably, the presence of quantum
correlations makes it so that it is not straightforward to combine features between
circuits during the evolution, as simply merging two promising circuits does not
necessarily lead to low cost-function values. Thus, only random mutations have
been considered so far. An example of this method is found in the Evolutionary VQE
(EVQE) [RHP+19], where one explores the Hilbert space smoothly by growing the
circuit with identity-initialized blocks of gates and randomly removing sequences of
gates. Another example of an evolutionary algorithm is the Multi-objective Genetic
VQE (MoG-VQE) [CSU+20], where one uses building blocks that are randomly
placed along the circuit, and simultaneously optimizes both the energy and number
of entangling gates. Evolutionary algorithms constitute a promising approach to
ansatzes design, they nevertheless come at the cost of high quantum-computational
resources to evolve populations of quantum circuits.

In addition, in Refs. [DHY+20; ZHZ+20; PT20; DHY+20] tools from auto-
machine were employed in order to learn how to build ansatzes. The overall idea
behind these methods is that of employing neural network (supernet) that suggests
the quantum circuit structure; supernet-training can be done using policy-gradient
methods, a variant of the reinforcement-learning algorithms that we consider
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in Sec. 2.6. While the idea of artificial-intelligence improving (quantum) neural-
network architectures is exciting, it is extremely resource-consuming: recall that
the amount of data required to train a neural network is very often prohibitively
high. Similarly to the EA case, the high amount of resources consumed by this
method is a challenge that needs to be addressed.

Finally, in Refs. [CSS+18; CRS+21] a methodology, formalized by the VAns
algorithm [BCV+21] — i.e. our main contribution to the field, and explained and
showcased in great detail in Chapter 4 — was used to obtain a short-depth version of
a given unitary under specific quantum hardware constraints (such as connectivity,
noise-model as represented by quantum channels or available gates).

Having reviewed some commonly-used quantum circuit structures, we will
now turn to discuss the continuous optimization.

2.2.3 The optimization procedure
With a quantum circuit parametrized by U(k,θ), VQAs employ a classical opti-
mization algorithm in order to minimize the cost-function in Eq. (2.36). Here, we
will focus on derivative-based methods, which at each cycle ℓ of the algorithm,
the gradient∇θC(k,θ) is computed, and a cost-minimizing direction is followed.
Ussually, the initial parameters θℓ are randomly chosen (this random initialization
should be understood according to the Haar measure, as we discuss in the next
Section). In the following we will first discuss about optimization algorithms, and
then on how such gradients can be computed.

The most straightforward approach in gradient-based optimization is that of
following the gradient; as such we are guaranteed to attain (at least) a local min-
ima. Thus, in Gradient Descent algorithm, the continuous parameters are updated
according to

θ(ℓ+1) = θ(ℓ) − α∇θ(k,θ)|θ=θ(ℓ) , (2.40)

where α is the learning-rate, accounting for the update-step size, and this is guar-
anteed to reach, at least, a local-minima.

In optimization problems where the dataset is too large, computing the gradients
can be prohibitively expensive (for instance, if the entire dataset does not fit in the
memory). In this case, the training set is splitted into chunks, and an stochasticity
arises when estimating gradient; such is the case of Stochastic Gradient Descent
(SGD), where the gradient is estimated out of b-dimensional data subsets known as
batches. At each cycle, the data is randomly splitted and the update rule of Eq. 2.40
is sequentially applied using the gradient∇θC(k,θ) computed using each batch
(note that this injects stochasticity); an epoch is consequently defined as an entire
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pass of the original training set. We note that this stochasticity, which might in
principle appear undesired, it can actually be helpful since taking random directions
often help in escaping local minima.

While a large learning-rate value in Eq. 2.40 can potentially forbid the optimizer
to reach the actual minima (since the update becomes simply too large), we note
that small learning-rate values will potentially dampen the convergence rate. More
elaborate optimization algorithms can be considered, which adapt the magnitude of
the learning-rate according to the gradient landscape at hand. Among them, a very
popular optimizer is the Adaptive Moment Estimation (Adam) algorithm [KB15],
which sequentially adapts the learning rate for each parameter, by specifically
tailoring it out from moving averages of first and second moments for each gradient
component. In practice, this allows to reach a better optimization performance,
although we shall ultimately adapt the optimization algorithm to the specific prob-
lem at hand. In the context of VQA, many issues need to be addressed, such as
shot-noise, sampling-complexity and optimal choice of learning-rate values to take
into account the quantum nature of the optimization landscape; in this regard there
has been a tremendous effort in developing quantum-aware optimizers [VPB18;
KAC+20; ACS+20; SIK+20; KB19; NFT20; FCA+20; GLD+21].

With a basic understanding on how optimization algorithms proceed, let us
now discuss how the essential ingredient in the update-rule can be obtained under
the VQA framework. For this, we distinguish between two approaches: (i) classical
simulation of quantum circuits, and (ii) experimental implementations on quantum
hardware.

Classical simulation of quantum circuits & Automatic differentiation

If no particular symmetries are imposed, we are able to simulate quantum systems
classically for up to ∼ 30 qubits5. State-of-the-art techniques used to classically
compute VQA-cost-function gradients rely on automatic differentiation (AD), in
which cost-function derivatives are obtained by tracking each intermmediate-
operation derivative, and following the chain-rule [BVM+20; LLZ+20]. This is
done by decomposing a generic program in terms of elementary operations whose
derivatives can be computed, and is the spirit behind the paradigm of differentiable

5On the contrary, many systems can be approximated efficiently by using clever ansatzes; this lies
at the heart of Tensor Network (TN) methods such as Matrix Product States (MPS), Density Matrix
Renormalization Group (DMRG) or Multiscale Entanglement Renormalization Ansatz (MERA).
There is currently much excitement about TNs: while the space of all possible quantum states is
large, only a portion of it is physically relevant and it is believed that such portion can be simulated
efficiently using TNs [BB17; Orú19].
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Figure 2.3: We show how the computational graph is travelled forward and back-
wards in each of the possible modes of AD, for the example of an scalar function
f(x1, x2) = x1x2 + sin(x1)

programming [REF+20; LLW+19; SSK+21].
We remark that AD differs from numerical differentiation (such as finite dif-

ferences) since it is an exact method. Similarly to symbolic differentiation, each
operation involved in the computation provides a rule for its derivative with respect
to the corresponding input. However, the output of AD is a numerical value of the
derivative, and not a mathematical expression for it.

In turn, AD is carried out by constructing a computational graph, where nodes
are associated to the elementary operations present in the computation (and whose
derivatives are known), and where the dependence on the parameters is explicited.
In order to compute the function derivative, the graph is transversed either forward
or backwards; the latter case is known as backpropagation6. Thanks to efficient
matrix multiplication sub-routines and special-purpose hardware such as GPUs
and TPUs, this can be done consideraly fast, and in turn AD stands as one of the
main ideas behind the advent of Artificial Intelligence.

Let us consider an example7 of an algorithm taking as input a real-value x,
and outputing y = f(g(h(x)) where f, g and h are elementary functions whose
derivatives are well-known and can be recorded when building the computational
graph. We aim to compute ∂xy, and to this end we define w0 = x, w1 = h(w0),
w2 = g(w1) and w3 = f(w2) = y. Now, the chain rule implies that

∂y

∂x
=

∂y

∂w2

∂w2

∂w1

∂w1

∂x
. (2.41)

Thus, the computational graph is built by recording each of the elementary functions
6The optimal way to transverse the computational graph generally depends on the setting at hand.

For high-dimensional inputs (as customary when working with neural networks), backpropagation
is prefered at the cost of an increase in memory usage.

7Taken from Ref. [Wik23]
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that need to be computed and each of the elementary functions derivatives, which
are known in advance. Then, forward-AD transverses the chain-rule from inside
to outside, by first computing ∂w1

∂x
, then ∂w2

∂w1
and finally ∂y

∂w2
. On the contrary,

backwards-AD transverses the chain-rule from outside to inside, by first computing
∂y
∂w2

, then w2

w1
and finally ∂w1

∂x
. As a concrete example, we can consider the function

y = f(x1, x2) (2.42)
= x1x2 + sin(x1) (2.43)
= w1w2 + sin(w1) (2.44)
= w3 + w4 (2.45)
= w5, (2.46)

where at each elementary operation we define a new variable wi, which represents
a node in the computational-graph. In the table we show the operations needed to
compute the function, forward-AD, and backward-AD (this is also schematised in
Fig. 2.3).

Function computation Forward-AD Backward-AD
w1 = x1 ẇ1 = 1 (seed) w̄5 = 1 seed
w2 = x2 ẇ1 = 0 (seed) w̄4 = w̄5 · 1

w3 = w1 · w2 ẇ3 = ẇ1 · w2 + w1 · ẇ2 w̄3 = w̄5 · 1
w4 = sin(w1) ẇ4 = cos(w1) · ẇ1 w̄2 = w̄3 · w1

w5 = w3 + w4 ẇ5 = ẇ3 + ẇ4 w̄1 = w̄3 · w2 + w̄4 cos(w1)

Here, we used the notation of w̄i = ∂y
∂wi

for the backward-AD, and note that
the seed value in this example is trivial for such case (since it stands for possible
multidimensional outputs, e.g. cases where y ∈ Rn). On the contrary, since the
example function has two inputs (x1, x2), forward-AD needs to be specified which
derivative we are computing —either ∂x1y, as set by the seed value in the table, or
∂x2y—. Note that to compute the gradient, we would need two passes of the graph
for this example8.

While this discussion only provides an introduction to the meaning of AD, we
remark that much work has been done in this field during the last years, and we
refer the interested reader to Refs. [Wik23; ABC+16; MDA15; Mac16; BPR+18].

8For a vector field f : Rm → Rn, then computing the gradient requires m computational graphs
sweeps for the backward-AD, and n sweeps for the forward-AD.
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Experimental implementations on quantum hardware

In NISQ circuits, backpropagating cost-function derivatives imply that the quantum
state at each step in the circuit should be kept in memory, a fact essentially forbiden
because of exponentially large Hilbert-spaces. Alternatively, we can use quantum
hardware to compute such gradients.

In this scenario, cost-function derivatives can be obtained by the so-called
parameter-shift rules where cost-function derivatives are expressed as linear com-
binations of cost-function values, each obtained by using the very same circuit,
but shifting the parameters by a finite amount. We remark that this is an analytic
result, unrelated to numerical differentiation techniques such as finite differences9.

In the following we will detail the idea behind parameter-shift rules. Let us
consider a single parameter α ∈ θ, and a VQE problem, whose Hamiltonian is Ĥ
and thus the cost-function becomes

C(θ) = CVQE(θ) = ⟨0|U †(θ)ĤU(θ)|0⟩ , (2.47)

where we momentaneaously simplified our notation by dropping the dependence
on k, and used the notation |0⟩⊗n ≡ |0⟩).

Moreover, we will assume that U(θ) = ULG(α)UR, where UL and UR are
unitary transformations parametrized by θ − {α}. Upon defining |ψ⟩ = UR |0⟩,
and Q̂ = U †LĤUL, it follows that

∂αC(θ) = ⟨ψ|G†Q̂(∂αG)|ψ⟩+ ⟨ψ|(∂αG†)Q̂∂αG|ψ⟩ , (2.48)

where we used G as a shorthand for G(α). Now, let us consider G(α) = e−i
α
2
P ,

with P ∈ {σx, σy, σz}. In this case, we obtain

∂αC(θ) =
i

2
⟨ψ|G†

[
P, Q̂

]
G|ψ⟩ . (2.49)

Now, using the following identity, which holds for any operator σ [MNK+18]:

[P, σ] = i
(
G(
π

2
)σG(−π

2
)−G(−π

2
)σG(

π

2
))
)
, (2.50)

we get

∂αC(θ) =−
1

2

(
⟨ψ|G(α)†G†(−π

2
)Q̂G(−π

2
)G(α)|ψ⟩+ ⟨ψ|G(α)†G†(π

2
)Q̂G(

π

2
)G(α)|ψ⟩

)
9In turn, finite-differences do not get along with gradient-based optimizers, and often leads to

inestabilities due to approximation errors; this issue intensifies in the NISQ framework, since we
generally need to resolve between cost-function values that are small. Estimating such difference in
cost-function values turns difficult, since not only a high amount of samples is required, but also
the strong presence of hardware-noise can potentially forbid to resolve it.
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By noting that G(α)G(β) = G(α + β), and recalling that Q̂ = U †LĤUL, it follows
that

∂αC(θ) =
1

2

(
C(θ)|α←α+π

2
− C(θ)|α←α−π

2

)
(2.51)

This procedure can be extended to consider arbitrary Pauli strings [MNK+18], and
unitary transformations for which the derivative is not unitary. In the latter case,
the derivative can be written as a linear combination of unitary operations, resulting
in a generalized parameter-shift rule which — as opposed to Eq 2.51 — involves
more than two contributions [SBG+19; WIW+22].

Thus, the cost-function derivatives can be obtained by estimating each term
in Eq. 2.51 using a quantum computer parametrized by U(θ), and repeating this
procedure for each parameter α ∈ θ. As mentioned, this result is exact (contrary to
numerical differentiation methods); it nevertheless relies on cost-function estimates,
thus statistical fluctuations arising from measurement outcomes will always be
present. This plays an important role if the value of such derivatives is small, in
which case many measurements will be required in order to deal with sufficient
accuracy.

Thus, VQAs’ optimizers will generally need to deal with an intrinsically stochas-
tic component, and convergence properties of SGD has been analyzed in Ref. [SWM+20].
Following such reference, we can readily distinguish between different sources
of stochasticity, the first one being shot-noise. Alternatively, in Eq. 2.38 we have
decomposed the Hamiltonian as a sum of Pauli-string, and at each cycle of the
optimization algorithm, the gradient could be estimated out of a subset of all the
Pauli strings present in such decomposition. In this case, another source of stochas-
ticity arises, and is associated to estimating cost-function gradient out of a subset
of terms appearing in the cost-function. Methods combining both techniques are
known as doubly-stochastic optimizers [SWM+20; HN21].

Overall, parameter-shift rules can be understood as a recipe for computing
gradients of cost functions; we remark that the approach presented above naturally
generalizes to cost-functions of the form in Eq. 2.36. Under this recipe, circuit’s struc-
ture needs not to be modified, but rather the parameter in question is shifted, and
the derivative is obtained as linear combination of the corresponding cost-function
estimates. For classical simulation purposes, the best of both worlds are ussually
combined, and backpropagation methods are used along with the parameter-shift
rules (provided that the systems under consideration are not too large); this is one
among the many efforts behind projects like TensorFlow-Quantum or PennyLane
[BIS+18; BVM+20].

By now, we have introduced the basic ingredients required to run a VQA.
Namely, a strategy that defines the structure of our quantum circuit, a cost-function
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that evaluates its performance, and a (classical) optimization algorithm that takes
control of free parameters such as rotation values. The ultimate goal is to find the
global minima of the cost function by navigating the optimization landscape. In
this regard many issues have been recently raised up, which put into question the
overall feasibility of VQA framework, and that is the matter of our next section.

2.2.4 Barren-plateaus

The barren plateau (BP) phenomenon has recently received considerable attention
as one of the main challenges to overcome for the VQA framework to provide
a quantum speedup. BPs refer to the exponentially vanishing (in the number of
qubits) for a random circuit to present a gradient component which is slightly
higher than zero. In turn, this constitutes a big challenge when navigating the
cost-function landscape, since such landscape (e.g. the set of unitaries that are
generated when varying the parameters of a sufficiently random PQC) becomes
flat in the pressence of a BP.

In the following we will first outline how the BP phenomenon emerges from a
2-design, and then discuss several extensions of this phenomena to other classes of
circuits.

The notion of t-design quantifies how similar the measure obtained from vary-
ing parameters θ in U(k,θ) differs from that of the Haar measure, which is the
uniform measure in U(n). A random event refers to randomly sampling an unitary
transformation from U , i.e. the set of unitaries that are generated from U(k,θ) by
modifying the parameters θ. Thus, we can define an expressibility super-operator
as

A(t)
U (·) =

∫
U
dµ(U) U

⊗t(·)U †⊗t −
∫
U(n)

dµH (U) U
⊗t(·)U †⊗t, (2.52)

where dµH (U) denotes the volume element of the Haar measure, and dµ(U) is the
volume element corresponding to the uniform distribution over U [HSC+22]; for
PQCs such set is generated by uniformly sampling over the parameters θ.

Thus, U forms a t-design if A(i)(X) = 0 for every operator X and every
i = 1, ..., t, meaning that the uniform distribution over U matches the uniform
distribution over U(n) up to the first t-moments. Using some useful identities from
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integrating over the Haar measure, namely that∫
U(n)

dµ(U) UijU
∗
mk =

δimδjk
n

(2.53)∫
U(n)

dµ(U) UijUklU
∗
mnU

∗
op =

1

n2 − 1
(δimδjnδkoδnp + δioδkmδjpδln) (2.54)

− 1

n(n2 − 1)
(δimδkoδjpδln + δioδkmδjnδlp),

the landscape of 2-designs was explored in Ref. [MBS+18]. In particular, using the
identities we can show that 2-designs have gradients which are on average (over the
Haar measure) zero-valued, which indicate that the landscape is not biased towards
any particular direction. Moreover, the identities can also be used to compute
the variance of the cost-function gradient, and the result (for 2-designs) is that it
exponentially vanishes with the number of qubits present in the circuit:

Var [∂αCVQE(k,θ)] ≤ F (n) , with F (n) = O
(

1

2n

)
, (2.55)

where α ∈ θ. From Chebyshev’s inequality we have that Var [∂αC(k,θ)] bounds
the probability that the cost-function partial derivative deviates from its mean value
(of zero) as

Pr
[∣∣∣∂αC(k, θ⃗)∣∣∣ ≥ c

]
≤ Var[∂αC(k, θ⃗)]

c2
∼ O(2−n), , (2.56)

for any c > 0. This indicates that when navigating the set U by varying parameters
θ, an optimizer will observe a considerably flat landscape with a high probability.
Here, such probability is associated to the chances that, after a random circuit
initialization, the cost-function value associated to such circuit presents a gradient
whose value is larger than c, as per Eq. 2.56.

Thus, two difficulties arise when using a quantum computer in this context.
On the one hand, we will need to deal with shot-noise arising from meaurements

done to estimate the cost-function value. Here, the accuracy of the estimations is
proportional to the squared-root-inverse of the number of shots N .

On the other hand, navigating through the set U , i.e. the set of unitary trans-
formations that can be reached from the parametrized quantum circuit under
consideration U(k,θ), when varying the continuous parameters θ. Here, the prob-
ability of reaching a higher-than-ϵ gradient in Eq. 2.56 should be understood in
terms of the parameter landscape: high gradients are exponentially unlikely to
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be reached, when randomly varying the parameters. Nevertheless, the optimizer
will ultimately need to deal with such small gradients, and for the optimization
procedure not to behave like a random-walk, we will need to resolve between this
gradients, and the accuraccy required to accomplish that will generally require
a high number of measurements [MBS+18]. In this sense, exponentially many
resources will be required to navigate such flat landscape.

While barren plateaus were first identified for large circuits, they were shown
to be present in shallow circuits as well. Here, cost-function locality plays a crucial
role: while several choices of observables {Oi} and functions {fi} can lead to
different faithful cost functions (i.e., cost functions whose global optima correspond
to the solution of the problem), global cost functions can lead to trainability issues
for large problem sizes [CSV+21; SCC+22]. Here we recall that global cost functions
are defined as ones where Oi acts non-trivially on all n qubits. On a different note,
the BP-phenomena discussed above has so-far considered 2-designs. In this sense,
Refs. [HSC+22; LCS+22] study the presence of BPs when the circuits are ϵ-close
to a 2-design. In particular, the expressibility of a quantum circuit (i.e., which
sample large regions of the unitary group [SJAG19]), can be linked to the amount
of entanglement it generates [SCC+22; PNG+21; MKW21], which serves as a tool to
diagnosticate the presence of a BP. For example, the Hardware-Efficient-Ansatz is a
highly expressible circuit, and consequently suffers from an expressibility-induced
BP. Several promising strategies have been proposed to mitigate barren plateaus,
such as correlating parameters [VC21], layerwise training [SMM+21], and clever
parameter initialization [GWO+19; VBM+19]. Nonetheless, constructing smart
ansatzes that do not present BPs seem to be the most promising route to avoid them;
an example of such are the Quantum Convolutional Neural Networks [CCL19b;
PCW+21a].

However, this is not the end of the barren-pleateu story: there exists a second
effect that leads to barren plateaus which can even affect smart ansatzes with no
randomness or entanglement-induced barren plateaus. As shown in Ref. [WFC+21],
the presence of certain noise models acting throughout the circuit maps the in-
put state toward the fixed point of the noise model (i.e., the maximally mixed
state) [WFC+21; SFGP21], which effectively implies that the cost function value
concentrates exponentially around its average as the circuit depth increases. Ex-
plicitly, in a noise-induced barren plateau (NIBP) we now find that

|∂αC(k,θ)| ≤ g(n) , with g(L) = O
(

1

qL

)
, (2.57)

where q > 1 is a noise parameter and L the number of ansatz’s layers. From Eq. 2.57
we see that noise-induced barren plateaus will be critical for circuits whose depth
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scales (at least linearly) with the number of qubits. It is worth remarking that
Eq. 2.57 is no longer probabilistic as the whole landscape flattens. Here, we note
that strategies aimed at reducing the expressibility of the circuit cannot generally
prevent the cost from having a noise-induced barren plateau, since here reducing
the circuit noise (e.g. improving the quantum hardware) and employing shallow
circuits seem to be the only viable and promising strategies to prevent these barren
plateaus at the moment.

2.2.5 Discussion

In this Section we have discussed about NISQ computing, and strategies to train
parametrized quantum circuits. We have introduced the quantum machine learn-
ing gargeon, namely a cost-function, an ansatz and an optimizer. Then, we have
discussed about trainability issues that appear due to the fact that cost-function
derivatives concentrates around its mean-value (e.g. zero); such value of the gra-
dient does not correspond to a local minima, but rather to a pleateau, known as
barren pleateau. Such landscape represents an important issue for optimizers, since
finding cost-minimizing directions is forbidenly resource-consuming. Moreover,
we note that the barren-pleateu phenomena has also been observed in gradient-free
optimizers [ACC+21]. Under the vast literature studying this trainability issue,
we particularly emphasized that neither strategies that mitigate randomness nor
entanglement in ansatzes [VBM+19; VC21; SMM+21; GWO+19; PCW+21a; ZHL+20;
BH21; CSA+22], which cause the appearence of barren pleateaus will be effective
in mitigating a different source of landscape-flatness, called noise-induced barren
pleateau.

In this regard, it is widely accepted that designing smart ansatzes which prevent
altogether barren plateaus is one of the most promising applications. In Chapter 4
we move a step-forward in this direction, providing a method to train quantum
circuits on both parameter and structure-wise.

2.3 Continuous-variable systems

Let us now introduce the formalism describing continuous variables quantum
systems, which sets the playground to work with optical and optomechanical
quantum systems, as we do in Chaptes 3 and 5. This section is intended as a
brief introduction to the formalism of continuous-variable quantum systems, with
an emphasis on Gaussian states and operations, and thus several topics remain
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out of the scope. The interested reader is referred to Refs. [Ser17a; FOP05] for a
comprehensive review of these topics and more.

A quantum continuous variable system is defined as a system whose n degrees
of freedom, as desribed by 2n canonical operators r̂ =

(
q̂1, p̂1, ..., q̂n, p̂n)

T , obey
the Canonical Commutation Relations (CCR):[

q̂j, p̂k
]
= iℏδjk, j, k = 1, ..., n. (2.58)

Note that we can also define anhiliation and creation operators as âj =
q̂j+ip̂j√

2
,

and â =
(
â1, â

†
1..., ân, â

†
n

)T , where an unitary transformation Ū =
⊕n

j=1 ū, where

ū = 1√
2

(
1 i
1 −i

)
relates the former operators with the later as â = Ū r̂, and the

CCR can be compactly written as

[
r̂, r̂†

]
= iΩ, Ω =

n⊕
i=1

Ωi, Ωi =

(
0 1
−1 0

)
, (2.59)

[
â, â†

]
= σ̄z =

n⊕
i=1

σ(i)
z (2.60)

where the notation
[
b̂, ĉ†

]
= b̂ĉ†−(b̂ĉ†)† should be understood as an outer product

which in components reads
[
b̂, ĉ†

]
jk

= b̂j ĉk − b̂kĉj .
Each canonical degree of freedom j defines a mode equipped with an infinite-

dimensional Hilbert spaceHj , and thus we talk of a n-mode system whose Hilbert
space is⊗nj=1Hj . Moreover, theΩmatrix in Eq. 2.59 is known as the symplectic form,
and it can be checked that holds: (i): antisymmetry Ω = −ΩT , (ii) its inverse is its
negative Ω2 = −12n, and (iii) it corresponds to a real orthogonal transformation
ΩTΩ = −Ω2 = 12n. From here, we are define Weyl transformations as

D̂r⃗ := eir⃗ Ωr̂, (2.61)

where r⃗ =
(
q1, p1, ..., qn, pn

)
is a constant vector in the phase space.A composition

law of Weyl operators and its action on canonical operators can readily be derived,
and reads10

D̂r⃗1+r⃗2 = D̂r⃗1D̂r⃗2e
ir⃗T1 Ωr⃗2

2 (2.64)
10Here, we have used the CCR and the BCH formular, which relates the exponential of two

operators X,Y as

eXeY = eZ , Z = X + Y +
[X,Y ]

2
+

[X, [X,Y ]]

12
+

[Y, [X,Y ]]

12
+ .... (2.62)
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D̂r⃗ r̂D̂†r⃗ = r̂ + r⃗. (2.65)

This last equation indicates that Weyl operators act as displacement transformations.
Equivalently, we can express these transformations with respect to anhilation and
creation operators; let α⃗ =

(
Re[α1], Im [α1] , ...,Re[αn], Im [αn]

)
, with αj = qj+ipj√

2
,

e.g. ⃗⃗r = Ū †α⃗, and define

D̂α⃗ := D̂r⃗|r⃗=−α⃗ (2.66)
= eα⃗σ̄zâ, (2.67)

and thus Eq. 2.64 reads

D̂α⃗+β⃗ = D̂α⃗D̂β⃗e
−αT β̄+ᾱTβ (2.68)

We will now introduce an important set of quantum states, which in turn constitute
our battle-horse when dealing with continuous degrees of freedom.

2.3.1 Gaussian systems
We define Gaussian quantum states as thermal states of a quadratic hamiltonians

ρG =
e−βĤ

Tr[e−βĤ ]
, β ∈ R+, (2.69)

Ĥ =
r̂THr̂

2
+ r̂T r⃗, (2.70)

where r⃗ is a constant vector in phase space, andH is the Hamiltonian matrix, which
is positive-defined and symmetric. Note this definition includes the limit β →∞,
which corresponds to the case of pure states.

Such construction allows us to find the so-called normal mode form of ρG, in
which the system behaves as a set of n decoupled harmonic oscillators. In particular,
studying the transformation that takes ρG into its normal form is instructive, and
we will comment on it nextly. There are at least two important reasons to study
Gaussian states. Firstly, many problems become analytically tractable when dealing
with such a class. Secondly, manipulating Gaussian states is experimentally feasible.

Moreover, if we take a central commutator [X,Y ], i.e. [X, [X,Y ]] = [Y, [X,Y ]] = 0, then the action
of eX by similarity reads

eXY e−X = Y + [X,Y ] (2.63)
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Moreover, light (e.g) is a natural candidate for quantum communication scenarios,
and coherent states — a particular type of Gaussian states — describe very well the
behaviour of lasers.

We note that, up to a constant shift in the energy landscape, Ĥ is equivalent to

Ĥ ′ =
(r̂ − r̄)TH(r̂ − r̄)

2
, r̄ = −H−1r⃗. (2.71)

Note that H−1 does always exists since H > 0. It follows that

Ĥ ′ =
1

2
D̂−r̄r̂

THr̂D̂r̄, (2.72)

we can thus focus on the non-displaced hamiltonian r̂THr̂. In the Heisenberg
picture, the evolution of canonical operators corresponds to ˙̂rj = i

[
Ĥ, r̂j

]
, and by

using the CCR, it follows that ˙̂r = ΩHr̂. Thus, we conclude that r̂(t) = eΩHtr̂(0).
Since any system transformation should preserve the CCR, it follows that

iΩ =
[
r̂(t), r̂T (t)

]
= eΩH

[
r̂(0), r̂(0)T

]
(eΩH)T = ieΩHΩ(eΩH)T , (2.73)

and thus
Ω = SΩST , S := eΩHt. (2.74)

The last line is the condition for S to belong to the real symplectic group Sp2n,R,
which is the reason for calling Ω the symplectic form. If we now explicit the unitary
character of canonical operators’ time-evolution, we obtain

˙̂r = Û †(t)r̂(0)Û(t) = e−iĤtr̂(0)eiĤt = eΩHtr̂(0) = Sr̂(0), (2.75)

we see that there is a clear correspondence between unitary operators and symplec-
tic transformations, and in fact Sp2n,R∩SO(2n) is a isomorphic toU(n). Thus, there
is a correspondence between symplectic transformations S = eΩH and unitary
operators generated by second-order hamiltonians, Ŝ = e

ir̂THr̂
2 :

Ŝr̂ Ŝ† = Sr̂. (2.76)

In particular, said symplectic transformation S can be written in its singular value
decomposition as

S = O1ZO2, (2.77)
where O1, O2 ∈ Sp2n,R ∩ SO(2n) are orthogonal symplectic transformations and

Z =
⊕n

j=1

(
zj 0
0 z−1j

)
stands for the squeezing transformation. The energy of

34



CHAPTER 2. PRELIMINARIES

the system (r̂T r̂) is invariant under the action of Oi, and thus we refer to those
transformations as passive ones. Importantly, the isomorphism with the unitary
group guarantees that such symplectic transformations can be constructed out
from phase-shifters and beam-splitters [RZB+94; WPGP+12].

In particular, phase-shifters Rϕ and beam-splitters Bθ,ψ have the following
matrix representations

Rϕ =

(
cosϕ sinϕ
− sinϕ cosϕ

)
, Bθ,ψ =

(
cos θ eiψ sin θ

−e−iψ sin θ cos θ

)
⊗ I2. (2.78)

In passing, we note that if we move the anhilation and creation operators, the
action of phase-shifters is that of adding a phase eiϕ, whereas beam-splitters mix
two modes a1 and a2 (which correspond to the input modes):

B†θ,ψâ1Bθ,ψ = cos θâ1 + eiψ sin θâ2 (2.79)
B†θ,ψâ2Bθ,ψ = −e−iψ sin θâ2 + cos θâ1, (2.80)

where the added phase ψ can, for instance, be corrected via a proper phase-shift.
To sum up, any simplectic transformation can be implemented out of squeezing

operations and interferometers (e.g. a combination of phase-shifters and beam-
splitters, which can in turn mimic any passive simplectic transformation.

Let us now focus on the structure of the Hamiltonian matrixH . In particular, we
recall that givenM ∈ R2n×2n, withM > 0, there exists a transformationS ∈ Sp2n,R
taking M into its normal form [Wil36], e.g. SMST = D with D =

⊕
j djI2 con-

taining the symplectic eigenvalues {dj}nj=1; recall that such transformation can
be challenging to find [JPP21; PSL09]. In this regard, S is related to the transfor-
mation L that puts iΩM into its diagonal form, e.g. LΩML−1 is diagonal, with
S = (L−1Ū)†, and the symplectic eigenvalues of M are the (absolute values of) the
eigenvalues of iΩM , which come into pairs {±dj}nj=1. We can readily apply such
decomposition to our quadratic Hamiltonian matrix H :

H = ST
( n⊕
j=1

ωj12

)
S, (2.81)

where by denoting the symplectic eigenvalues by ωj we highlight its role as frequen-
cies of n non-interacting free modes. By inserting such normal mode decomposition
into Ĥ :

Ĥ =
1

2
r̂THr̂ (2.82)

=
1

2
r̂TST

( n⊕
j=1

ωj1
(j)
2

)
Sr̂ (2.83)
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We now use that the symplectic transformation S has a unitary representation Ŝ:

Ĥ =
1

2
r̂†Hr̂ (2.84)

=
1

2
Ŝr̂T

( n⊕
j=1

ωj1
(j)
2

)
r̂Ŝ† (2.85)

Upon defining Ĥωj
:=

ωj

2
(q2j + p2j), we note that any second-order Hamiltonian

with zero displacement is equivalent (up to a unitary transformation) to a set of
decoupled oscillators. The decomposition of the original quadratic hamiltonian
reads

Ĥ =
1

2
(r̂ − r̄)TH(r̂ − r̄) (2.86)

= D̂−r̄Ŝ
( n∑
j=1

Ĥωj

)
Ŝ†D̂r̄, (2.87)

which implies that gaussian states have the following structure:

ρG =
D̂−r̄Ŝ

(⊗n
j=1 e

−βĤωj
)
Ŝ†D̂r̄∏

j Tr[e−βĤωj ]
(2.88)

= NβD̂−r̄Ŝ†
( n⊗
j=1

∞∑
kj=0

e−βkjωj |kj⟩⟨kj|
)
ŜD̂r̄, (2.89)

where in the second line we have expanded Ĥωj
in the Fock basis {|kj⟩⟨kj|} of each

mode j, and defined Nβ :=
∏

j(1 − e−βωj). We observe that for β → ∞ a pure
state is obtained, since only vacuum terms survive. Hence, pure gaussian states are
generated by applying gaussian unitary operations to the n-mode vacuum state.
Quite remarkably, either Gaussian states have rank 1 (pure states), or infinite rank
(mixed states).

We thus conclude that Gaussian states are obtained from orthogonal symplectic
transformations (and displacements) applied to a set of non-interacting harmonic
oscillators. In particular, the action of such transformations is lineal in phase space,
a fact that becomes clear when inspecting its action on the statistical moments.

2.3.2 Some methods in phase space
Another parametrization of Gaussian states can be obtained, by departing from
Eq. 2.88; in particular we note that the first two moments of ρG encode all its
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information, as

r̄ := Tr[ρGr̂] (2.90)

Σ := Tr[{r̂ − r̄, (r̂ − r̄)†}ρ] = S
(⊕

j

νj1
(j)
2

)
ST ,

where νj =
1 + e−βωj

1− e−βωj
stand for the symplectic eigenvalues of Σ11. All the in-

formation about the Gaussian state is encoded in both the expectation value and
covariance. On the one hand, the displacement value r̄ stand for the first statistical
moment of the Gaussian state. On the other hand, the symplectic transformation
S (associated to the gaussian unitary Ŝ), as well as the symplectic eigenvalues of
H can be obtained through Σ. In this regard, we note that the spectrum of the
Guassian state can be obtained from the covariance matrix, and thus correlation
measures between the modes, as well as the states’ purities, can be inferred from
the second statistical moment.

Importantly, any covariance matrix Σ of a quantum state should satisfy the
Robertson-Schrödinger uncertainty relation

Σ+ i Ω ≥ 0, (2.91)

which is a direct consequence of the CCR and the positivity of the quantum state
ρ. The singular value decomposition of symplectic transformations in (2.77) turns
useful to understand the structure of the covariance matrix. For example, if we
restrict to pure Gaussian states, then it follows that

Σ = ODOT , (2.92)

where D =
⊕n

j=1

(
dj 0
0 1

dj

)
, dj > 0 and O stands for a passive, orthogonal

transformation. Moreover, if we restrict to single-mode systems, we observe that
covariance matrices are generated by squeezing and rotating the identity; this is
aligned with the fact that all pure gaussian states can be obtained through symplectic
tranformations applied to the vacuum state |0⟩⊗n.

While preparation of pure Gaussian states has such intuitive interpretation,
this picture can be complemented with a collection of quasiprobability distribu-
tions that depict the quantum state in phase space which we now turn to present.

11Note that for the single-mode case, the covariance reads Σnm = ⟨∆r̂n∆ r̂m⟩+ ⟨∆r̂m∆ r̂n⟩,
with ∆r̂i = r̂i − ⟨r̂i⟩, and r̂ = (q, p).
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In analogy to classical mechanics, we can study the quantum system in phase
space. In doing so, we arrive to the so-called quasiprobability density functions,
which are equivalent to the quantum state and provides yet another operational
approach to its characterisation. Unsurprisingly, such analogy finds frontiers, since
such quasiprobability distributions can take negative values (for instance, for non-
Gaussian states). In this regard, we find that the set of quantum Gaussian states
behave classically, since their associated quasiprobabilities are — spoiler alert —
Gaussian distributions.

The phase-space formalism hinges on the overcompleteness of Weyl operators,
which serves as a bridge between Hilbert and phase spaces. In the following
we will restrict to the single-mode case; generalizations to n-mode systems are
straightforward.

Recall that a coherent state is defined an eigenstate of â{
âD̂α |0⟩ = αD̂α |0⟩
|α⟩ = D̂α |0⟩

. (2.93)

In particular, note that |α⟩⟨α| = D̂α |0⟩⟨0| D̂†α, meaning that coherent states are —
in line with the formalism revisted in the provious section — just displaced vacuum
states, with idle symplectic transformations and thus an identity as covariance
matrix. In particular, by writing such states in the Fock basis, we obtain

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n
|n⟩ , (2.94)

from which it is not hard to prove that coherent states resolve to identity:∫
C |α⟩⟨α| d2α

π
= 1. (2.95)

This shows that coherent states resolve to a measurement, called heterodyne mea-
surement. Moreover, given any (bounded) operator Ô, we can express it as

Ô =
1

π

∫
C
d2αTr[ÔD̂α]D̂−α, (2.96)

Tr[Ô] = 1

π

∫
C
d2α⟨α|Ô|α⟩, (2.97)

which is known as the Fourier-Weyl relation. This allows us to write any quantum
state ρ in terms of coherent states as

ρ =
1

π

∫
C

Tr[ρD̂α]D̂−α. (2.98)
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Figure 2.4: We show the Wigner functions of the vacuum state |0⟩ (left) and of the
Fock state |5⟩ (right). While in the former case the probability distribution is a
Gaussian, the latter represents a non-Gaussian state (e.g. is the fifth eigenstate of
the harmonic oscillator), which here translates into negative values of the Wigner
function.

In particular, the characteristic function χ(α) is defined as the coefficient accompay-
ing D̂−α in the integral, e.g.

χ(α) = Tr[ρD̂α] (2.99)

ρ =
1

π

∫
C
χ(α)D̂−α. (2.100)

Such characteristic function allows us to definethe Wigner function as its (complex)
Fourier transform:

W (α) =
1

π2

∫
C
d2βχ(β)eαβ̄−ᾱβ, (2.101)

which satisfies that
∫
W (α)d2α = 1. By expanding α = q+ip√

2
and β = q̃+ip̃√

2
, we

find that W (q, p) =
∫
dq̃eipq̃⟨q + q̃|ρ|q − q̃⟩. Such parametrization provides an

operational interpretation of Wigner functions, since 1
2

∫∞
∞ dpW (q, p) = ⟨q|ρ|q⟩, e.g.

marginal distributions predict probability measurement outcomes over conjugate
variables and if varying the direction of p in the integrand one can perform a
tomographic reconstruction of the quantum state. Finally, for Gaussian states, the
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characteristic and Wigner functions are Gaussians, e.g.

χ(r⃗) = e−
(Ωr⃗)TΣΩr⃗

2
−i(Ωr⃗)T r̄ (2.102)

W (r⃗) =
2n

πn
√
|Σ|

e−(r⃗−r̄)
TΣ−1(r⃗−r̄). (2.103)

In Fig. 2.4 we show two examples of such Wigner functions, one for a coherent
(and thus Gaussian) state, and other one for a Fock number state; we observe in the
latter case that the Wigner function can take negative values: such negativity play
a role of a classical-quantum frontier in continuous-variable systems [Wal21].

We have thus identified the set of Gaussian states as thermal (and ground) states
of quadratic hamiltonians. Equivalently, Gaussian states can be defined as those
whose characteristic function is Gaussian. On the one hand, we have observed that
Gaussian states can be understood as a set of n non-interacting harmonic oscillators,
up to a symplectic transformation Ŝ. Such symplectic transformation is ultimately
linked to a Gaussian unitary, e.g. generated by a quadratic hamiltonian. Moreover,
Eq. 2.90 explicits the action of such transformations on the first two statisitcal
moments of the Gaussian state, namely displacing the canonical coordinates and
transforming the covariance matrix via a simplectic matrix that acts by similarity.
In turn, such operations act linearly in phase space and that is the reason for which
Gaussian operations are deemed so in literature [WPGP+12; Oli12].

2.3.3 Gaussian operations and beyond
A quantum channel is deemed Gaussian if it preserves the Gaussian character of
the state. Such definition applies to unitary transformations, but also to CP-maps
(which can suitably be obtained via a Stinespring dilation with an ancilla).

A handful parametrization of Gaussian CP-maps can readily be obtained by
studying the evolution of system’s state after a Gaussian unitary interaction with a
(Gaussian) auxiliary system. The result is an update rule for the first two moments,
parametrized by matrices X and Y in R2n×2n:

r̄ → Xr̄ (2.104)
Σ→ XΣXT + Y, (2.105)

with Y + i Ω ≥ iXΩXT (such condition guarantees that Robertson-Schrödinger
uncertainty relations in Eq. (2.91) are preserved). We note that such evolution
is different than the resulting one when continuously monitoring the system, as
studied in Sec. 2.4.
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In particular an attenuator — or lossy channel — is obtained by mixing a quantum
state with the vacuum by a beam-splitter, and we denote it by Lη, where η is the
transmissivity coefficient. For such a channel, and restricting to the single-mode
case, one finds that X = ηI2 and Y =

√
1− η2I2, with η ∈ [0, 1]. We note that

if the input state is a coherent state, the covariance matrix remains unchanged
(since Σ = I2), whereas the first moment gets attenuated as α→ ηα. This channel
turns to accurately model the behaviour of a laser beam transmitted through the
atmosphere, though the transmissivity η non-trivially depends on parameters such
as height, temperature and more [DVR+19; AP05; UHP+12; Pir21a; Pir21b; VSV11;
VSV+17].

2.3.4 Measurements

A measurement is deemed gaussian if (i) it preserves the Gaussian character of the
state upon post-conditioning, and (ii) when measuring a Gaussian state, the outcome
probability distribution is Gaussian. For instance, counting excitations correspond
to projections over Fock states: recall that

∑∞
n=0 |n⟩⟨n| = I), and are obviously

non-gaussian since number states (asside from vacuum) are not; moreover, the
underlying distribution is Poissonian. Nevertheless, it is experimentally possible
(though expensive) to resolve excitations in quantum optics laboratories, thorugh an
apparatus known as photon-counter [LMN08]. In this regard, one may be interested
in only resolving between “‘no photons” or “‘one or more photons”, an apparatus
known as on/off photodetector, which correspond to jut partitioning the Hilbert space
differently, e.g. Mon/off = {|0⟩⟨0| , I − |0⟩⟨0|}, where the second measurement
operator is non-gaussian.

Le us know restrict to Gaussian projections. In particular, we have mentioned
homodyne detection corresponds to projecting over a quadrature direction in phase
space, as defined by the operator q̂θ = cos θq̂ + sin θp̂, where q̂θ |qθ⟩ = qθ |qθ⟩ and
I =

∫
R |qθ⟩⟨qθ| dqθ, and p(qθ) = Tr[|qθ⟩⟨qθ| ρ]. Such measurement can be realized,

for instance, by the so-called balanced homodyne detection. This consists in mixing
ρ with a local oscillator (|α⟩ with |α| ≫ 1) by a balanced beam-splitter (θ = π

4
and

ψ = 0 in Eq 2.79), and substracting the detected intensities at the two outputs of
the beam-splitter (each measured by a photodetector). An alternative way to realize
a homodyne detection is the direct homodyne detection, which consists on mixing
the incoming signal with a local oscillator by a low-reflectivity BS (which transmits
most of the original signal, adding only a small amount of the local oscillator) and
measuring the intensity of the reflected port.

On the other hand, we can consider heterodyne measurements, which in ac-
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cordance to Eq. (2.95) are projective measurements on coherent state of varying
intenstity and phase. They can be realized by combining the state ρ with a vacuum
into a balanced beam splitter, and homodying in the direction of q̂ and p̂ (e.g. θ = 0
and θ = π

2
in Eq. 2.78 respectively) in the paragraph of above); in this regard hetero-

dyne measurements correspond to joint measurements of position and momenta,
and its probability measurement outcome is p(α) = ⟨α|ρ|α⟩π−1.

Such a mechanism of implementing a measurement by homodying and having
access to ancillas can actually be generalized to any Gaussian operation via Gaussian
ancillas, Gaussian unitary interactions and homodyning/discarding the reduced
state of the ancilla system [GIC02].

2.4 Continuously-monitored systems
Our focus in this Section will be put on continuously-monitored quantum systems.
Opposite to the previously discussed single-shot scenarios, here we are interested
in measuring the system repeatedly, which in the continuous limit leads to a
measurement signal. Here, we will give an introduction to the topic, and the
interested reader is encouraged to complement our discussion with Refs. [WM09;
Jac14; GC85; DJ99; WM93a].

The most direct way to implement a continuous measurement on a quantum sys-
tem is to couple it an electromagnetic auxiliary mode that is subsequently measured
via photon-counting or homodyning measurements as shown in Fig. 2.5. While
several phyiscal scenarios allow for this kind of detection — among them atomic
sensors [JMnT+18] and mesoscopic electrometers using quantum dots [LJP+03]—,
we will focus on optomechanical cavities [AKM14].

To this end, we begin in Sec. 2.4.1 by providing some insight on optical cavities
and their interplay with measurements done on the light that leaks otu of the cavity.
Since such measurement outcomes are stochastic, the evolution of the system will
be given by a stochastic master equation (SME). Thus, in Sec. 2.4.2 we derive an
SME for the case of a single optical mode stored in the cavity and photon-detection
done on the outside modes, leading to a SME driven by point processes, e.g. the
measurement record is a sequence of photon clicks. We then consider homodyne
detection in Sec. 2.4.3, where the measurement signal becomes continuous, and
a Wiener noise appears in the play. Next, a general equation for a continuously-
monitored Gaussian system is discussed in Sec. 2.4.6. Finally, in Sec. 2.4.7 we
introduce the optomechanical model that we consider in Chapter 5, which is used
as a testbed for our approaches to the statistical inference problems considered in
that Chapter.
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Figure 2.5: We depict the continuously-monitored setting under consideration. This
consists on an optomechanical cavity that stores a quantum system ρt, and whose
decay rate is γ, and is coupled to a bosonic bath ρE , the latter being constantly
measured. This gives rise to the measurement signal, whose (stochastic) value at
time t is denoted by dyt.

2.4.1 Cavity emission and photon-detection
Optical cavities consist on convex mirrors faced together at some distance, where
light can be stored in a standing wave mode for long periods of time. In order to
access the cavity mode, one of the mirrors can be made slightly transmissive, as
in Fig. 2.6. This allows to retrieve information by measuring the leaked photons
and to pump the cavity field by an external laser. Since light is trapped inside the
cavity for long periods of times, placing a quantum system inside it, is one of the
most effective means of coupling quantum systems to light.

The leaked light occupies travelling modes (free propagating), which means
that such photons will never interact again with the system. This fact allows
one to describe the evolution of the cavity mode as a Markovian dynamics. This
corresponds to an electromagnetic (bosonic) cavity mode coupled to a bosonic bath,
which in turn consists in the free-propagating modes. For optical modes, this bath
is taken to be at zero temperature, i.e. the vaccuum state, but the formalism also
allows us to consider non-zero temperatures, that are present for example in the
baths of optomechanical systems.
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Figure 2.6: An optical cavity is depicted (image taken from Ref. [Jac14], Ch.3). Here,
light is input (and output) to (and from) the cavity by the same mirror, and such
two modes are splitted by the circulator.

We denote the cavity’s decay rate by γ (depending on the transmissivity of the
mirror), the annihilation operator for the cavity mode by a, and the anhilliation
operator at detection time t, by bt. By approximating the bath’s autocorrelation
function as a delta-function, which makes the bath Markovian12 we obtain the
following commutation for the bosonic bath’s operators in the interaction picture
w.r.t. system’s Hamiltonian:

[bt, b
†
t′ ] = δ(t− t′). (2.106)

Under the rotating-wave approximation, the interaction potential between cavity
and bath is modelled to be

VIF = −i√γ
(
bta
† − b†ta

)
, (2.107)

and describes the exchange of excitations between each other. However, due to
the singularity appearing in Eq. 2.106, we must be careful when studying the
dynamics generated by VIF . A convinient approach is that of interpreting bt a la
Ito [WM93a]13. Thus, an infinitesimal operator is defined as

dBt = btdt, (2.108)
12This matter is discussed further in Sec.3.3. and Sec.3.11 of Ref. [WM09]
13Ito calculus is a tool of stochastic calculus, that allows to compactly write differential equations

for random variables subject to Wiener noise, and also integrals. While working with Ito calculus,
one proceeds similarly than traditional calculus but taking into account a few important rules. We
briefly discuss this topic in Sec. 2.4.4.
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where dt accounts for an infinitesimal time-interval leading to δ(0)dt = 1. With
the new operators, we then get the following commutation relations:

[dBt, dB
†
t ] = dt, (2.109)

which indicates that the operator dBt can be undestood as being order
√
dt. With

the re-defined bath’s operators, we can now study how an infenitesimal evolution
looks like. Here, we must be careful when performing expansions, since the

√
dt

scaling requires to go up to second order terms. To do this, we consider the
infinitesimal evolution generated by VIF in Eq. 2.107, and we get

U(t+ dt, t) = e
√
γ(a dB†

t−a†dBt)

= I+
√
γ
(
a dB† − a†dB

)
− 1

2
γa†a dt− γ

2
{a†, a}dB†dB (2.110)

+
γ

2

(
a2dB†

2
+ a†

2
dB2

)
,

which describes an infinitesimal evolution of the joint system, in the interaction
picture.

We will now assume that the bosonic bath is always found in the ground-state
|0⟩, and that at each time-step t, the system interacts with a new copy of such
ground-state, i.e. with a new mode bt. Let us also assume that system’s state is
given by |ψ(t)⟩. With this, the global state at time t+ dt is given by

U(t+ dt, t) |0⟩ |ψ(t)⟩ =
(
I− γ

2
a†adt

)
|0⟩ |ψ(t)⟩+ γdB† |0⟩ a |ψ(t)⟩ . (2.111)

Under these assumptions, the probability of finding an excitation in the bath is
given by

p1(dt) = γ⟨0|dBdB†|0⟩ ⟨ψ(t)| a†a |ψ(t)⟩ , (2.112)

which turns out to be small if we recall that dBdB† = dt.14

We also note that if we do measure the state of the leaked mode, and detect a
photon, the state of the cavity becomes |ψ1(t+ dt⟩) ∝ a |ψ(t)⟩ (a photon-subtracted
state), while if no photon is detected |ψ0(t+ dt)⟩ ∝ (I+ γ

2
a†a) |ψ(t)⟩. In the next

section we formalize this (stochastic) conditional state dynamics using a sequence
of quantum instruments aplied one infinitesimal step after the other.

14This relationship holds since we only keep the non-normally ordered operators in bath’s
commutation relations, as such is assumed to be in the ground-state
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2.4.2 Continuous photon-detection

To begin our study of conditional post-measurement states, we will consider
the photon-detection example outlined in the previous section, but we will also
include the action of the system’s hamiltonian. By direct identification of the
post-measurement (unnormalized) conditional states are given by |ψ0(t+ dt)⟩ =
M0 |ψ(t)⟩ and |ψ1(t+ dt)⟩ =M1 |ψ(t)⟩ where the two Krauss operators are:

M0 = I−
(R
2
+ iH

)
dt (2.113)

M1 = c
√
dt, (2.114)

where H stands for the system’s Hamiltonian15, dt is an infinitesimal amount of
time, c = √γa, with γ being the cavity’s decay rate and R = c†c.

By droping terms of O(dt2), it is straightfoward to check that {M0,M1} con-
stitute a valid quantum instrument (M †

0M0 +M †
1M1 = I), and the unconditional

post-measurement state, e.g. the state of the system at time t+ dt when not record-
ing the measurement outcome, recovers the Libland form in Eq. 2.32 for the cavity
emission model:

ρ(t+ dt) =M0ρM
†
0 +M1ρM

†
1 (2.115)

= ρ− i [H, ρ] dt+ c†ρc− 1

2
{c†c, ρ}, (2.116)

If we do keep track of the measurement record, at each (infinitesimal) time step we
can get a detection “click” (outcome i = 1) with probability

p1(dt) = Tr[ρM †
1M1] = Tr[ρc†c]dt. (2.117)

and the absence of a click (outcome i = 0) with probability

p1(dt) = Tr[ρM †
0M0] = 1− Tr[ρc†c]dt. (2.118)

15We will drop the hat notation in this Section.

46



CHAPTER 2. PRELIMINARIES

and the corresponding normalized states will be given by. 2.113 we have

|ψ1(t+ dt)⟩ = M1 |ψ(t)⟩
||M1 |ψ(t)⟩ ||

=
c1 |ψ(t)⟩√

⟨ψ(t)| c†c |ψ(t)⟩
, (2.119)

|ψ0(t+ dt)⟩ = M0 |ψ(t)⟩
||M0 |ψ(t)⟩ ||

=
1√

⟨M †
0M0⟩

[
I− (

R

2
+ iH) |ψ(t)⟩

]
(2.120)

≃
(
1 +
⟨c†c⟩
2

dt
)[
I−

(R
2
+ iHdt

)]
=
(
I− dt

[
iH +

R− ⟨R⟩
2

])
|ψ⟩ , (2.121)

where we have Taylor-expanded the normalization term in |ψ0(t+ dt)⟩ up to
the first order, and dismissed terms O(dt2). We that while most of the time the
system will evolve continuously with (M0 = 1+O(dt)), with very small probability,
p1 = O(dt), the state will suffer a very drastic (finite) change, the so-called quantum
jump. Note that in both cases, upon a click or a no-click, the act of measuring has
always a back-action on the system dynamics.

Now we wish to express the above results describing the stochastic evolution of
the system in a single stochastic differential equation. For this purpose, we define
the stochastic variable N(t), corresponding to the total number of clicks until time
t, i.e. the number of occurrences of measurement outcome i = 1 registered up
to time t. Since such quantity can only increase by a single unit, the following
properties hold:

dN2
t = dNt (2.122)

E [dNt] = Tr[M †
1(t)M1(t)ρ(t)] = dt ⟨ψ(t)| c†c |ψ(t)⟩ , (2.123)

A variableN(t) with these properties defines what is called a a point process [Dol73;
WM09]. Since such variable dN can only take the binary values of zero and one,
we can compactly write the conditional evolution of the (normalized) pure state as

|ψ(t+ dt)⟩ =
(
1−dN)

[
I−

(
iH +

c†c− ⟨c†c⟩
2

)
dt

]
|ψ(t)⟩+dN c |ψ⟩√

⟨c†c⟩
, (2.124)

where the time-dependence of the variable N will be left implicit from now on.
This a non-linear, stochastic equation, known as a Stochastic Scrhodinger Equation
since it preserves the purity of the state. Any solution to this equation defines a
quantum trajectory, and describes the possible paths that the quantum state can
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take under the stochastic outcomes obtained from the point process. By dropping
the terms of order dNdt16, we get

|ψ(t+ dt)⟩ = |ψ⟩+dN
( c√
⟨c†c⟩

−1
)
|ψ⟩+ 1

2
dt
(
c†c−⟨c†c⟩−2iH

)
|ψ⟩ . (2.125)

We can now extend this to density matrices by witting ρ(t) = |ψ(t)⟩⟨ψ(t)| and
dropping high order terms in dt:

dρ = dN
( cρc†
⟨c†c⟩

)
− dt

(
i[H, ρ] +

1

2
{c†c, ρ} − 1

2
⟨c†c⟩ ρ

)
. (2.126)

which by linearity extends to arbitrary mixed initial states. Note that averaging this
equation out over all possible measurement outcomes and recalling E [dNt] = ⟨c†c⟩
one recovers again the Lindbladinan dynamics.

This can also be written as

dρ(t) = dNG[c]ρ(t)− dtH
[
iH +

c†c

2

]
ρ(t), (2.127)

in terms of the super-operatos G andH as

G[c]ρ = cρc†

⟨c†c⟩ (2.128)

H[c]ρ = cρ+ ρc† − Tr[ρ(c+ c†)]ρ (2.129)

We note that one could easily extend this approach to include consider more
jump operators, {ci}Mi=1 by taking Mi = ci

√
dt, M0 = I − (R

2
+ iH)dt with

R =
∑M

i=1 c
†
ici. For example, one could include losses the other mirror. Most

interestingly, this approach lets us easily describe situations in which only some
types of jumps are monitored or accounted for. One then obtains a stochastic equa-
tion with jump terms of the form G[c] for the monitored modes and the averaged
Lindbladian counterpart for the unobserved modes.

In this section we have studied the conditional evolution of system under the
particular measurement choice in Eq. 2.113 (corresponding to photon-counting),
and we have obtained the stochastic equation describing the continuously moni-
tored system. As discussed in the introduction to quantum channels and quantum
instruments, for a fixed interaction between the system and the auxiliary system,
different choices of measurement on the auxiliary system lead to different Kraus

16this can be justified by the fact that the probability of dN = 1 is of order dt
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representations of the same quantum map. In the next section we will study the con-
ditional dynamics when one performs a different a different type of measurement
on the auxiliary (bath) modes. Of course, this will lead to a completely different
type of stochastic equation, but if we average over all its realization we will recover
the same Lindblad equations.

The different stochastic differential equations corresponding to the same aver-
age open system Lindbladian equations are called unravelings. We remark here that
while in many works these unravellings are presented as just convenient interpre-
tations or as a numerical tool to simulate (Montecarlo) open system dynamics —in
many occasions it is much simpler to propagate the pure state, than the full density
matrix—, in this thesis the particular unravelling will have a direct physical meaning
and we will be concerned about inference methods based the single-trajectories,
single (possibly long) measurement records rather than average quantities of the
state.

2.4.3 Continuous homodyne detection
We have previously study an stochastic master equation for an specific unraveling
of unconditional dynamics, namely photon-detection. In such case, a detection
induces a quantum jump on the system’s density matrix, with a probability that is
proportional to dt, as given by Eq. 2.122. Here, we will study a different unraveling
of the dynamics.

The existence of different unravelings arises from the invariance of the master
equation — i.e. the undonditional open quantum system dynamics revisted in
Sec. 2.1.5 — under certain transformations (see also Eq. 2.33) of the form

c→ c+ α (2.130)

H → H − i

2

(
ᾱc− αc†), (2.131)

with α ∈ C. This is (unitarily equivalent) to a different set of Krauss representation:

M0 → M̃0(t) = I− dt
(
iH +

ᾱc− αc† − (c+ α)†(c+ α)

2

)
(2.132)

M1 → M̃1(t) =
√
dt(c+ α). (2.133)

This transformation can physically be achieved by mixing the input field with a
strong local oscillator (L.O.) by a low transmissivity beam-splitter (BS)17, as shown

17To see this, let the transmissivity of the BS be η ∼ 1, and let the intensity of the L.O. be α√
1−η

;
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Figure 2.7: We sketch a direct homodyne detection. The beam-splitter is chosen
such that the reflected part (which is subsequently measured) has only a small
contribution of the local oscillator, and is dominated by the original signal associated
to the system we are measuring.

in Fig. 2.7, which corresponds to direct homodyne detection. In turn, let us restrict
to α ∈ R, then a detection (as defined in the previous section) happens with
probability

p1(dt) = E [dN ] = Tr[ρ(c+ α)†(c+ α)]dt (2.135)
= Tr[ρ

(
c†c+ α(c+ c†) + α2

)
] (2.136)

= Tr[ρ
(
c†c+ αq + α2

)
], (2.137)

where q = c+ c† stands for the position quadrature18. Thus, if α≫ ⟨c†c⟩, photon-
detection at the reflected port is equivalent (up to a constant) to measuring the q
quadrature. This is corresponds to the case of direct homodyne detection, which
was introduced in Sec. 2.3.4; we will here consider the direct homodyne detection,
which is realized by mixing the system with a strong local oscillator by a low
transmissivity beam-splitter, as shown in Fig. 2.7.

Repeating the same procedure outlined by the end Sec. 2.4.2, but now with the
transformed set of Krauss operators {M̃0(t), M̃1(t)}, we get an stochastic master
equation that reads

dρ = G[c+ α]ρdN + dtH
[
iH + αc+

c†c

2

]
. (2.138)

the reflected mode will then be √
ηc+ α, (2.134)

assuming we treat the local oscillator classically, an approximation valid when the intensity of the
L.O. is sufficiently high [Ser17a]. From here, since√η ∼ 1, we get the desired transformation.

18We will momentaneously drop the
√
2 factor to ease the notation
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From here, we are aim to take the continuous limit, in which the photocurrent is
approximated by a continuous function of time. This corresponds to the ideal limit
of homodyne detection, in which the intensity of the local oscillator goes to infinity.
In particular, we are interested in a regime under which the number of detections
per time is high and changes in the system are small. In such regime, we obtain a
Belavkin-Zakai equation, which is yet another quantum stochastic master equation,
that describes the continuous homodyne-monitoring of a quantum system. We will
now derive such equation by making expansions in terms of the local oscillator
intensity, following Ref. [WM09]19.

We begin by considering a small time-interval δt = O(α− 3
2 )≪ 120, that results

in an expected number of detections,

E[δN ] = δt Tr[ρ(α2 + αq + c†c)] = O(α 1
2 ), (2.139)

which is large in comparison to system’s evolution (since δt = O(α− 3
2 )). Under

this choice of scaling, the detection probability is algo large p1(δt) = O(
√
α).

As pointed out in Sec. 2.3.4, δN is a Poissonian random variable. However, it
is possible — since the number of detections happening per δt is large — to ap-
proximate such probability distribution by a normal distribution [WM09; WM93b]
(intuitively we can understand this as a central-limit theorem) with a mean-value
given by Eq. 2.139 and variance

σ2 = δt
(
α2 +O(α 3

2 )
)
. (2.140)

By recurring to Ito calculus, Eq. (2.140) can be written compactly as

δN = α2(δt)

[
1 +
⟨q⟩ (t)
α

]
+ αδW, (2.141)

where δW describes a differential white noise, e.g. a zero-mean normal random
variable whose variance is E[δW 2] = δt.

It is now time to make a brief pause, and jump to revise Ito calculus. The
interested reader is referred to Ref. [Gar04], where further details about this topic
can be found.

19Note that there are alternative ways to derive this equation. For instance by straightfowardly
considering the action of a Gaussian measurement on the quantum state and Taylor-expanding it
in terms of dt [Jac14; JS06], or considering the interaction between a Gaussian system, bath and
measurement[Ser17b; GLS16], although this formalism is focused on Gaussian systems, and directly
leads to the set of stochastic linear equations for mean and covariance of the quantum state, which
we discuss later on, bypassing stochastic master equations.

20The only purpose of considering δ rather than d is that we take a limit in terms of local oscillator
intensity by the end of this discussion
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2.4.4 Intermezzo II: Ito calculus
In a nutshell, Ito provides a tool to tackle problems involving stochastic differential
equations, where the infinitesimal change dXt of a variable Xt occurring in an
infinitesimal time dt interval is written in terms of deterministic part (proportional
to dt) and a stochastic infinitesimal increment dW . Here we will focus on processes
driven by Wiener noise and Ito calculus will give us tools to make sense of and
compute integrals such as

∫
Xt dW .

A Wiener process W (t) =
∫ t
0
dW describes stochastic curve with zero mean

and a variance that grows as t, and is defined in such a way that it is continuous
in time. The infinitesimal Wiener increments dW have zero mean and variance
E(dW 2) = dt, but in order to guarantee that W (t) is a continuous function, the
increments have the (surprising) property that dW 2 = dt, i.e. it is deterministic
(the distribution of ∆W 2 become more and more peaked as the time intervals ∆t
smaller). A Wiener process can be thought of as the continuum limit of a random
walk or brownian motion

Consider the general (1D) Ito stochastic differential equation

dXt = a(Xt, t)Xtdt+ b(Xt, t)dWt. (2.142)

While the coefficientes a(Xt, t) and b(Xt, t) might be arbitrary functions, in case
they are state-independent — known as a drift-difussion process — an integral
expression can be defined as

Xt =

∫ t

t0

a(t′)dt′ +

∫ t

t0

b(t′)dWt′ , (2.143)

where the second integral is an stochastic Ito integral (whose value depends on the
specific realization of the Wiener process up to time t).

Contrary to Riemman integral, when dealing with stochastic integrals it is of
utmost importance to choose the value at which to evaluate the function for on
each partition, due to the stochastic nature of the resulting function. Ito integral is
defined by considering the value that the function takes at the beginning of each
partition. For example, in a different stochastic calculus named by Stratonovich, the
integral is defined by averaging up the values at the two extremes of the interval,
and the rules of calculus are completely different. In this thesis, we will work with
Ito integrals.

Here, we observe that Xt clearly does not depend on the future realisations of
the Wiener process (that is, on values dWs for s > t); this captures the notion of
a non-anticipating function of t, which we denote by NA(t). That is, a stochastic
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function G(t) is NA(t) if ∀ t and ∀ s such that for t < s, the values that G(t)
take are statistically independent of the future increments W (s) − W (t), with
W (T ) =

∫ T
0
dWt.

Given G(t) and H(t) non-anticipating functions, and when integration a la Ito,
the following holds:

1. ⟨
∫ t
t0
G(t′)dWt′⟩ = 0, which can be seen by the construction of Ito’s integral.

2. ⟨
∫ t
t0
G(t′)dWt′

[ ∫ t′
t0
H(s′)dWs′

]
⟩ =

∫ t
t0
⟨G(t′)H(t′)⟩ dt′, which can be under-

stood as a correlator formula, and where ⟨dWtdWs⟩ = δt,sdt rules the stochas-
tic integration out.

3. ⟨
∫ t
t0
G(t′)dWt′

[ ∫ t′
t0
H(s′)dWs′

]
⟩ = 0, which can be understood from the fact

that H̃(t′) =
∫ t′
t0
H(s′)dWs′ is NA(t′) and thus the function G(t′)H(t′) is

NA(t′), whose stochastic integral averages to zero (see first item).

4. Let G̃ and H̃ be determinstic functions of time21, then

⟨
∫ t

t0

G̃(t′)dWt′

∫ s

t0

H̃(s′)dWs′⟩ =
∫ min(t,s)

t0

dt′G̃(t′)H̃(t′). (2.144)

Where we use the ⟨·⟩ notation instead E(·) for the expected values whenever there’s
no ambiguity with the expectation over quantum states.

When considering the derivative of a (twice-differentiable) function f(Xt, t),
one has to be carefull in not using blindly the chain rule. One needs to take Taylor
expand f up to second-order, taking into account that dW ∼ O(

√
dt):

df =
(∂f
∂t

+ a(t)
∂f

∂x
+
b2(t)

2

∂2f

∂x2
)
dt+ b(t)

∂f

∂x
dWt. (2.145)

The latter formula is known as the Ito lemma, and we can understand it as a way to
take into account a change of variables when studying the dynamics of a stochastic
system.

When the drift a(t) and diffusion b(t) coefficients in Eq. 2.142 are constant, the
process is known as an Orstein-Uhlenbeck process:

dXt = κ(µ−Xt)dt+ σdWt, (2.146)
21This expression finds use when considering, for example, G̃ and H̃ to be diffusion coefficients

of respectively different stochastic processes.
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whose solution is easily obtained by a change of variables Yt = Xte
κt. Using Ito’s

lemma:
dY = κXte

κtdt+ eκtdXt = κµeκtdt+ σeκtdWt

from where

Yt = Y0 +

∫ t

0

κµeκtdt′ +

∫ t

0

σeκtdWt′ ,

and using Xt = Yte
−κt:

Xt = X0 + µ(1− e−κt) + σ

∫ t

0

e−κ(t−t
′)dWt′ (2.147)

we get

Xt = µ
(
1− e−κt

)
+
√
D

∫ t

0

e−κ(t−t
′)dWt′ . (2.148)

Using the aforementioned rules, we can readily check that, for t→∞, µ = E[Xt]
and Var[Xt] = Dt, which indicates that the distribution diffuses in time; in turn,
this solution corresponds to a Gaussian probability distribution. The mean and
variance of Xt can now be readily computed using the integration rules above,

⟨Xt⟩ = X0e
−κt + µ(1− e−κt) t→∞−−−→ µ (2.149)

Var[Xt] =
σ2

2κ
(1− e−2κt) t→∞−−−→ σ2

2κ
(2.150)

That is, unlike the Wiener process, the mean and variance converge to constant
values for large times. Moreover, since the process is Gaussian, the probability
distribution of Xt at a given time is a Gaussian with the mean and variance above.
In turn, the probability of whole trajectory is fully determined by the first and
second moments (including ⟨XtXt′⟩, which can also be readily computed).

The connection between SDE and probability distribution of the variable Xt at
a given time can be established for more general processes. In turn, considering
any function f(Xt) where the dynamics of Xt is given by Eq. (2.142), we have that

⟨df(Xt)⟩
dt

= ⟨df(Xt)

dt
⟩ = d

dt
⟨f(Xt)⟩ (2.151)

= ⟨a(Xt, t)∂xf +
1

2
b(Xt, t)

2∂2xf⟩ (2.152)
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Considering that Xt has a conditional probability density p(Xt, t|X0, t0) then
d

dt
⟨f(Xt)⟩ =

∫
dXf(X)∂tp(X, t|X0, t0) (2.153)

=

∫
dX

[
a(Xt, t) ∂Xf +

1

2
b(Xt, t)

2∂2xf
]
p(Xt, t|X0, t0). (2.154)

Integrating by parts and using the fact that f(x) is arbitrary, we arrive to the
Fokker-Planck equation

∂tp(Xt, t|X0, t0) = −∂X [a(X, t)p(X, t|X0, t0)] +
1

2
∂2X [b(X, t)

2p(X, t|X0, t0)],

(2.155)
resulting in an analogous description of the process in terms of an differential
equation for its probability distribution.

Fin del intermezzo.

Recalling that the evolution of cavity’s system under the transformed measure-
ment operators of Eq. (2.132) reads

δρ = δN(t)G
[
c+ α

]
ρ− δtH

[
iH + αc+

c†c

2

]
ρ, (2.156)

we can now work the G[c + α] term and expand it in powers of α−1; this means
keeping the terms up to 1

α2 arising by Taylor expanding up to the second order the
normalization in G (see Eq. 2.128). After such expansion, we obtain

δρ = δN(t)
[H[c]
α

+
G[c]− ⟨q⟩H[c]

⟨c†c⟩
]
ρ− δtH

[
iH + αc+

c†c

2

]
ρ (2.157)

Now, plugging the Ito form of δN into Eq. 2.157, we get

δρ =
(
α2δt

[
1+
⟨q⟩
α

]
+αδW

)(H[c]
α

+
G[c] ⟨c†c⟩ − ⟨q⟩

α2

)
ρ+δtH

[
−iH−αc−c

†c

2

]
ρ.

From here, we can expand all the products on the above equation and keep terms
of order 1√

α
or higher. Finally, taking the limit α→∞ we get the desired Belavkin-

Zakai equation for homodyne measurement:

dρ = dt
(
− i [H, ρ] +D[c]ρ

)
+H[c]ρ dW (2.158)

D[c]ρ = cρc† − {c
†c

2
, ρ} (2.159)

H[c]ρ = cρ+ ρc† − Tr[(c+ c†)ρ],
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where to facilitate reading we included the definitions of the super-operatos D[c]
andH[c] introduced before.

The last equation describes the evolution of a Markovian system which is subject
to a continuous monitoring under homodyne detection. As a consequence, the
so-called back-action term arises (the one accompanying the Wiener noise), which
takes into account the effect measurement result recording. Similar to photon-
detection situation, when averaging out over possible measurement outcomes, the
Libland form is recovered.

On the other hand, a measurement signal arises, which is also a continuous
function of time. To see this, let us return to the Ito expression for δN(t), namely

δN(t) = α2δt

[
1 +
⟨q⟩ (t)
α

]
+ α δW, (2.160)

which after substracting the intensity of the local oscillator we get

dy(t) = lim
α→∞

δN(t)− α2δt

α
= ⟨q⟩ dt+ dW, (2.161)

where clearly ⟨q⟩ is time-dependent and also the Wiener noise. As we will later see
one can use this equation to replace de Wiener term in stochastic equation (2.158)
by dW = dy − ⟨q⟩ dt to obtain the conditional quantum state of the system given
a homodyne measurement record.

Overall, we have seen one gets very different kind of information about the
cavity mode from the information that has leaked from it, when we mix the leaked
light with a local oscillator before the detector instead of measuring leaked light
directly with a photo-detector (in-phase quadrature vs. photon number). We also
note that the nature of the measured signal is very different: for homodyning we
obtain essentially a continuous noisy signal while for photo-counting one gets a
sequence of sparse sequence of “clicks”. Similarly, the stochastic equation describing
the system is of a very different nature: in the first case it’s a smooth diffusion-type
equation, while in the later exhibits abrupt quantum jumps. Of course, both lead to
the same master equation when the leaked photons are traced out (or equivalently
when all conditional dynamics is averaged out).

In the next Section we briefly explain how to take into account detection
inefficiencies.

2.4.5 Imperfect detection
First, the case of inefficient detection, in which the efficiency of the photodetector
η is less than unity. In this case, the master equation describing cavity emission of
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Eq. 2.115 can be understood as

dρ = −i [H, ρ] dt+ (1− η)D[c]ρdt+ ηD[c]ρ, (2.162)

and only unravel the last term22, resulting in a modified stochastic master equation
that for the homodyne case Eq. 2.158 is slightly modified to read

dρ = −i[H, ρ]dt+D[c]ρdt+√ηH[c]ρ dW. (2.163)

Moreover, the homodyne measurement signal for the inefficient detection case
reads

dy =
√
η⟨q⟩dt+ dW. (2.164)

The remaining refinement that we consider deals with the bosonic bath, which
so far has been assumed to be in the ground-state. However, we might assume that
the cavity is in contact with a thermal bath. Deriving stochastic master equations
when measuring such thermal bath turns to be an obscure subject [WM09; Jac14].
However, we can assume that the thermal bath is just an extra reservoir which we
do not measure. In this case, we recall that the master equation (for the cavity plus
thermal bath only) reads:

dρ

dt
= −i

[
H + i(β̄c+ βc†), ρ

]
(nth + 1) +D[c]ρ+ nthD[c†]ρ, (2.165)

where nth is the average number of photons in the cavity and depends on bath’s
temperature, and we observe that the mean value of the incoming field, βdt = ⟨dB⟩,
has a driving effect on the cavity[WM09]. This driving term induces a constant
shift in cavity’s quadratures that in the following will be dismissed.

As stressed in Sec. 2.3, measuring system’s quadrature belongs to the set of
Gaussian measurements, and as such preserves the gaussian character of (an ini-
tially gaussian) state. This motivates the following Section, in which we study the
quadratures dynamics of a quantum system under continuous homodyne detection.

2.4.6 The Gaussian case
In the previous Sections we have studied the dynamics of a cavity when its bath is
being continuously-monitored, and also discussed a model for imperfect detections.
We will now discuss the dynamics structure when the system is assumed Gaussian.

22note that D[√ηc] = ηD[c].
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We have introduced Gaussian systems in Sec. 2.3.1, and also studied how a Gaussian
map modifies the first moments of a Gaussian state in Sec. 2.3.3. Opposite to such
Section, we are here interested in studying the conditional diffusive dynamics of the
Gaussian system, arising as a consequence of continuously-monitoring the bath
coupled to it.

Our discussion follows the Wiseman approach [WM09; WD05; WM93a], which
consists on deriving dynamical equations for the moments of a Gaussian state
from the stochastic master equation of Eq. 2.158. However, we remark that for the
Gaussian case, the same equations can be derived by straightfowardly working
with the moments, and assuming an specific (Gaussian) structure for the interaction
between bath’s and system’s modes. This constitutes the Serafini approach one, and
while it will not be discussed here, the interested reeader can consult Refs. [Ser17a;
GLS16].

For the sake of simplicity, we will restrict to a single-mode quantum system.
We consider an equation of the form in Eq. 2.158:23

dρ = L0ρdt+H[c]ρ dWt, (2.166)

where c is an arbitrary system operator (c = √γa in the cavity model), and L0 is
the Liblandian describing the non-diffusive open-quantum dynamics (that takes
into account interaction with additional modes).

We recall that Gaussian states are generated by Hamiltonians which are at most
quadratic in system’s quadratures:

H =
1

2
r̂Gr̂ − r̂TΩBu(t), (2.167)

where G is the Hamiltonian matrix (i.e. G is real and symmetric)24 and included a
possible time-dependent drive u(t) that enters in the Hamiltonian as a linear term
(e.g. a displacement due by a driving force). Also, we recall that Ω is the symplectic
form defined in Eq. 2.59, and that system’s mean and covariance are defined as
r̄ = ⟨r̂⟩ = Tr[ρr̂] and Σnm = ⟨∆r̂n∆ r̂m⟩ + ⟨∆r̂m∆ r̂n⟩, with ∆r̂i = r̂i − ⟨r̂i⟩,
and r̂ = (q, p). Moreover, the transformation C̃ mapping system’s quadratures
with the operator c in Eq. (2.166) is defined via c = C̃r̂, which for the cavity model
reads C̃ =

√
γ
(
1, i
)

.

23Let us remark that while we derived such equation for an optical cavity, it can be used to describe
more complex systems, such as quantum dots coupled to nano-mechanical resonators [WM09].
Morever, by the end of this Section we will consider a slightly more complex model for the cavity,
and discuss an scenario where a mechanical mode is also considered.

24Note our change in notation with respect to Sec. 2.3, e.g. G ≡ H in Eq. 2.70.
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If we only consider the unconditional dynamics, given by the Liblandian L0,
and use the canonical commutation relations in Eq. 2.59, we can derive a dynamical
equation for the first two moments r̄,Σ:

dr̄ =
(
Ar̄ +Bu(t)

)
dt (2.168)

dΣ =
(
AΣ+ΣAT +D

)
dt,

whereA = Ω(G+ Im[C]) and D = ΩRe[C]ΩT and C = C̃†C̃ [WD05]. We note that
Eq. 2.168 is just a different parametrization of the Gaussian evolution described in
Eq. 2.104. However, if we now consider the conditional evolution, that arises from
continuously-monitoring via homodyne detection and is captured by Eq. 2.166, an
stochastic term is expected to appears in moments’ dynamics.

To this end, let us re-write the measurement signal in Eq. 2.164 in terms of
system’s quadratures25 as

dyt = C(r̄dt+ C−1)dWt, (2.169)

with C =
√
4ηγ
(1 0
0 0

)
. Here, our notation dyt accounts for the fact that two

components are in principle obtained when monitoring the first moment of the
quantum state. For homodyne detection this implies that the second component
is uninformative and always zero-valued, a fact also stressed by including the
pseudo-inverse of C in the above equation.

Computing the first moments — e.g. by taking the corresponding expectation
values in Eq. 2.166, where we take into account the interaction with a thermal math
in L0) —, and using Isserlis’ theorem to simplify the covariance evolution [JS06],
we get the following system of lineal stochastic equations:

dr̄t =
(
A− χ(Σt)C

)
r̄tdt+ χ(Σt)dyt = Ar̄tdt+ χ(Σt)dWt (2.170)

dΣt = AΣt +ΣtA
T +D − χ(Σt)

Tχ(Σt),¸

where χ(Σ) = ΣCT + ΓT 26 Here, we have made explicit the time-dependence
of the moments, and also explicited the back-action term in the evolution for the
firt moment, i.e. by including the measurement outcome dyt in the evolution, and
replacing the innovation dWt by it. We note that the measurement outcome dyt is

25We will now recover the factor 2 dropped when defining q = a+ a† in the previous Section
26The expression for Γ is not relevant for our discussion and numerics, where it is always

zero-valued, but the interested reader is referred to Ref. [WD05].
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the only experimentally-accessible object that can be used to update our knowledge
of the system’s state, e.g. we do not have access to the value of the Wiener noises.
The evolution for the covariance matrix is known as a Ricatti equation, and admits a
stationary solution if certain stability conditions, known as Hurwitz conditions, are
satisfied [WD05]: the eigenvalues of A are required to have a positive-semidefinite
value. Noticeably, such evolution for the second moment is deterministic.

The equations Eq. 5.13 are mathematically equivalent to the Kalman-Bucy
equations for solving the classical filtering problem of estimating the hidden-state
of a linear dynamic system out of a series of noisy measurements [DJ99]. In turn,
we can be understand the equations as those governing the evolution of the first
two moments of the normalized probability distribution, and obtained through
the Bayesian update of a classical linear system, using the information acquired
through the noisy measurement. Quantumly, this fact is not surprising, and is a
direct consequence of the bayesian structure of the theory.

Finally, the measurement statistics are described by Eq. 2.169. We remark that
such equation provides the value of the measurement outcome dyt obtained at
time t, and it is not meant to be understood as a differential equation but rather
as a compact formula that describes outcomes statistics. Thus, the probability
distribution of dyt is a Gaussian, centered atCr̄dt, and with a variance proportional
to dt:

p(dyt|r̄t) = N e−
||dyt−Cr̄tdt||

2

2dt , (2.171)

with N = 1√
2πdt

.
To sum up, in this Section we have studied how the stochastic master equation,

which describing a quantum system under continuous homodyne monitoring of
the field it is coupled with, reduces to a system of lineal stochastic equations under
the Gaussian assumption.

Before ending our discussion on continuously-monitored systems, we will
discuss the motion of a mechanical-mode stored in the cavity, and in contact with
the optical mode. This constitutes yet another refinement of the cavity emission
example discussed along this Section, and will fix the structure of the matricesA,C
and D of Eq. 5.13.

2.4.7 Optomechanical systems
We have previously discussed the dynamical behaviour of a quantum state of light
stored in a cavity, that is being continuously-monitored by constantly measuring the
bosonic bath which is coupled with. In this section, we will include the mechanical
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mode, and discuss how its equations of motion, which we anticipate have the same
structure than those of Eq. 5.13— are obtained. While here we provide an overview
of the optomechanical model, the interested reader can find a rigorous justification
of it in Refs. [DJ99; WM93b].

We consider a single mechanical mode describing the motion of a moving mirror
that forms the end of an optical cavity [AKM14], e.g. the one not leaking light
in Fig. 2.6. Moreover, the cavity stores an optical mode, and the Hamiltonian of
the full system — in the interaction picture with respect to cavity’s optical-mode
Hamiltonian— reads

H = Hm − ga†ax+Hd (2.172)

where a is the optical-mode anhilation operator,Hm and x stand for the Hamiltonian
and position of the mechanical mode, and g is the coupling constant. Moreover, we
included a driving term in the cavity, of the form Hd = iE(a− a†), where E ∼ αγ
and with α related to the power of the driving laser. Note that this interaction
relates the number of photons with the position of the mechanical mode. Intuitively,
since N is the generator of phase-shifts in the optical mode, the phase of the output
light will contain information of mirror’s position.

If we now monitor the cavity via homodyne-detection, we get a Belavkin-Zakai
equation for the optomechanical system, similarly to our discussion in Sec. 2.4.3:

dρc,m = L0[ρc,m]dt+ Lmon[ρc,m]dt+
√
ηγH[a]ρc,m. (2.173)

Let us now focus on the mechanical mode, and perform some assumptions. Namely,
we will assume that the cavity mode is slaved to the mirror’s dynamics, which
correspond to the bad-cavity-limit (high values of γ). In this regime, the cavity mode
can be adiabatically eliminated; this consists on expanding the optomechanical state
ρc,m in terms of a parameter that captures the difference in time-scales between the
cavity and motional dynamics [DJ99]. Intuitively, the time-scale at which the optical
mode changes is much shorter than that of the mechanical one. After performing
such expansion and focusing on the reduced state of the mirror, i.e. ρm = Trcρc,m,
we get

dρm = L[ρm]dt+
√
ηκ[x]ρmdW, (2.174)

that describes the evolution of the system following a similar structure than that if
we only monitored the optical mode. Here, we defined L[ρ] = L0[ρ] + Lmon[ρ]27

and some constants were introduced, such as the measurement constant κ = g2|α|2
γ

,

27In particular, Lmon[ρ] = −i[Hm − g|α|2x, ρm]dt+ 2κD[x]ρadt, and L0 describes the interac-
tion with a thermal bath as in Eq. 2.165.
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describing the rate at which informaton on mirror’s position is obtained and fed
back into the first momenta (i.e. the strength of the back-action term).

Recaping our discussion of Sec. 2.4.6, the equations describing the mechanical-
mode dynamics can be simplified considerably by the Gaussian assumption (i.e. the
state is Gaussian, and all channels acting on it are Gaussian as well). In this case,
the evolution of the first two moments — of the mechanical mode — is given by
Eqs. 5.13, e.g.

dr̄t =
(
A− χ(Σt)C

)
r̄tdt+ χ(Σt)dyt = Ar̄tdt+ χ(Σt)dWt (2.175)

dΣt = AΣt +ΣtA
T +D − χ(Σt)

Tχ(Σt), χ(Σ) = ΣCT + Γ̧

with the matrices having the following structure:

A =
( −γ

2
−ω

ω −γ
2

)
, D =

[
γ(n+

1

2
) + κ

]
I2, C =

√
4ηκ
(1 0
0 0

)
, (2.176)

and Γ = 0. Here, we recall that γ is cavity decay rate, ω is the mechanical-mode
frequency, κ the measurement strength and η the measurement efficiency. In this
context, the measurement signal reads

dyt = C ⟨r̄⟩ dt+ dWt. (2.177)

This measurement model can be further simplified, when the mechanical-mode
frequency is known. This simplification, introduced in Ref. [SDH+11]28, consists
on demodulating the measurement signal, resulting in an heterodyne-like mea-
surement of a (rotating) system quadratures29. Intuitively, for a “‘sufficiently in-
formative”’ measurement, e.g. after monitoring the system for enough time, the

28see also Ref. [DSH+12] for clearer explanation
29Here, the measurement current is obtained by the transformations

∆y
(x)
t =

∫ t+∆t

t

cos (ωmt′)dyt′ ∼
√

4µκ ⟨X⟩∆t+∆Wx (2.178)

∆y
(p)
t =

∫ t+∆t

t

sin (ωmt′)dyt′ ∼
√

4µκ ⟨P ⟩∆t+∆Wp, (2.179)

where the rotating quadratures are defined as

X =
1√
2
(aeiωmt + a†e−iωt)

P =
−i√
2
(aeiωmt − a†e−iωt),

and satisfy [X,P ] = i, and ∆Wx ∼
∫ t+∆t

t
cosωt′dW (t′) (and the same for p).
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mirror’s behaviour should easily be inferred from the signal. As such, its spectral
power should be peaked around ωm, and performing such demodulation can be
understood as moving to a rotating frame. We will further discuss how to infer the
value of the mechanical-mode frequency in Sec. 5.4. When moving to such rotating
frame, the matrices in Eq. 2.180 are modified and read

A =
( −γ

2
0

0 −γ
2

)
, D =

[
γ(n+

1

2
) + κ

]
I2, C =

√
4ηκ
(1 0
0 1

)
, (2.180)

namely A has only a damping term, and C is proportional to the identity.
The aforementioned model will be consider in Chapter 5, when analyzing se-

quential hypothesis testing strategies and parameter estimation problems. Overall,
the physical model consists on continuously-monitoring the position of a mechani-
cal mode; a quantum-mechanical treatment of this results in an stochastic master
equation that comes with back-action term due to the measurement result; note
that such back-action term is un-present in the classical scenario. The dynamical
equations of the moving mirror are described, in the Gaussian regime, by Eqs. 2.180.
Moreover, if the frequency of the mechanical mode is known, then the model is
simplified even further. In such case, some analytical insight can be gained, as
further discussed in Chapter 5.

2.5 Statistical Inference

It is time to put the attention on our (classical) daily lives. Arguably, the highlight
of this century is data (classical, at least for the first two decades), and motivating
this Section by writing that we are surrounded by data is, by now, a cliché, though
an useful one. In turn, we are constantly faced towards new information and we
ussually need to take decisions based on it (either conciously or unconciously)30.

While many of our daily decisions turns to be hard to model, some others
can be placed on the scientific stage (i.e. an experiment, where we acquire data
in a systematic way). In this situation, we can riguoursly study the model and
increase the possibilities of taking correct decisions in the face of uncertainty. In
this context, we will now turn study (binary) hypothesis discrimination in Sec 2.5.1,
and parameter estimation in Sec. 2.5.5.

30The number of such decisions is obviously a random variable, but neuro-science community
estimate it to be around 35K per day [SL13]
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2.5.1 Hypothesis testing
The canonical example to discuss hypothesis testing problems deals with medical
trials, where the effectiveness of a new development (for instance, a new test that
tells whether a person has COVID or not) is to be tested. We will restrict to two
hypothesis, or models, consisting on the null hypothesis H0 (the patient is healthy),
and the alternate hypothesis H1 (the patient has COVID). In this context, we are
interested in minimizing the chances that a sick patient is said to be healthy31. This
notion is captured by the overall probability that the test retrieves a false negative,
and is known as the β-error or type-II error. Denoting by Ĥi the result of the test,
i.e. Ĥ1 implies that the test result is positive (diagnosing the patient as sick) and Ĥ0

negative (telling the patient is healthy), have

β = p(Ĥ0|H1). (2.181)

It is easy to come up with a test makes this quantity zero: always diagnose the
patient as sick irrespective of the result obtained in the test. Such test is obviously
useless, and we are often interested in keeping the false positive rate bounded. This
quantity is given by the α-error, or type-II error:

α = p(Ĥ1|H0). (2.182)

We refer to α and β as weak errors, since they certify the average performance of
the test; on the contrary, when discussing sequential strtegies we will also deal
with the notion of strong certification, in the sense that we will be interested in
prodiving guarantees for each realisation of the stochastic proceses.

In general it is not possible to minimize both errors and a tradeoff appears:
reducing one type of error typically increases the other. Conventionally, we are
interested in minimizing β for a fixed value of α, and this is known as assymetric
hypothesis testing. On the contrary, there are situations where both type of errors
need to be minimized, and thus we consider a linear combination of the errors,
leading to the symmetric error probability. In particular, the total or mean error
probability is given by

Pe = p0p(Ĥ1|H0) + p1p(Ĥ0|H1), (2.183)

where pk stands for the prior probability of having the kth model (and k = 0, 1),
and

∑
k pk = 1. Analogously, the success probability is defined as

Ps = 1− Pe = p0p(Ĥ0|H0) + p1p(Ĥ1|H1), (2.184)
31By the 2020s, there was pandemics, and before having vaccines, we were particularly cautious

when testing negative for COVID. For instance, we used to do double checks: if someone contracted
COVID chances were extremely high to spread it among people in close contact with.
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Our notation emphasizes that the symmetric error can be interpreted Bayesianly,
where prior probabilities are assigned to each hypothesis and the total error is
obtained by multiplying each prior with the postirior probability of having such
hypothesis given the observed data.

Let us consider the example of a discrete random variable X (say a dice) which
takes values x ∈ {0, 1, . . . n}, with probability distribution p(x) under hypothesis
H0 or q(x) under hypothesis H1. Upon receiving a sample, i.e. a value x, we have
to make a guess Ĥg(x) about the true hypothesis according to a decision or guessing
rule g(x) ∈ {0, 1}. The total success probability can be written as

Ps =
n∑
x=1

(P (g(x) = 0, x|H0)π0 + P (g(x) = 1, x|H1)π1)

≤
n∑
x=1

max{P (g(x) = 0, x|H0)π0, P (g(x) = 1, x|H1)π1} (2.185)

This upper bound can be attained by always guessing for the most likely hy-
pothesis: i.e.

g(x) =

{
0 if P (x|H0)π0 ≥ P (x|H1)π1
1 if P (x|H0)π0 ≤ P (x|H1)π1)

(2.186)

That is the maximum-likelihood criterium is optimal for the minimum-error case
(symmetric error probability optimization).

Before further discussing hypothesis testing and the assymetric scenario, we
will discuss a situation in which the underlying models are quantum states. That is,
given a copy of a quantum state we are asked to correctly label it. However, this
situation is subtle: the maximum-likelihood criterium can only be applied once a
particular measurement (POVM) is implemented, and this is of course also subject
to optimization.

2.5.2 Single-shot quantum state discrimination
Analogies and similarities do certainly allow us to build intuition, but we do also
rely on differences to asses the meaning of physical phenomena. We do not need
to go very far: discriminating between these letters allows us to be reading this
thesis. Suppose, on the other hand, that your glasses drop all of a sudden: you will
definitely find difficulties to distinguish between letters. This means that some kind
of noise appears, and hinders —at least partially— the information to be perfectible
discernable. At zero-noise level we are able, in principle, to perfectly tell which are

65



2.5. STATISTICAL INFERENCE

the letters. Thus, in classical scenarios, external noise-sources are the only cause
for which letters might not be perfectly distinguishable.

However, in the quantum realm, letters might well be in a superposition. As
such, we ussually encounter situations in which even at zero-noise level, not
perfect distinguishability can be achieved when looking measuring the (quantum)
information, a phenomena unrelated to the transmission channel, but intrinsically
linked to the quantum nature of information.

While no glasses can help to achieve perfect distinguishability of quantum
states, we are here interested in studying optimal ways to distinguish between
the symbols, e.g. given now by quantum states. As a matter of fact, among all the
possibilities allowed by quantum mechanics to extract information out of a system,
some measurements are more helpful than others when it comes to discriminate
between a given set of quantum states. Moreover, quantum physics provides an
ultimate limit to the distinguishability of states, a fact that we will now turn to
discuss.

The Helstrom bound

We focus on the one-shot discrimination problem between two quantum states
ρ0 and ρ1. Given a single copy of a state ρ, the task is to tell if either hypothesis
H0 : ρ = ρ0 holds, or hypothesisH1 : ρ = ρ1 does it, each having a prior probability
of ocurring pk, with

∑
k pk = 1. To this end, we introduce a two-outcome POVM

M = {M0,M1} such that
∑1

k=0Mk = I andMk ≥ 0. Based on the measurement
outcome k, the decision rule reads k̂ = k 32while the outcome probability is given
by Eq. 2.24, e.g. p(k|ρ) = Tr[Mkρ]. The success and error probabilities of such
discrimination protocol is given by

Ps(M) =
∑
k=0,1

pk p(k̂|k) =
∑
k=0,1

pk Tr[ρkMk], (2.187)

Pe(M) =
∑
k=0,1

pk̄ p(k̂|k̄) =
∑
k=0,1

pk̄ Tr[ρk̄]Mk = 1− Ps(M),

where we define the complementary hypothesis k̄ = k + 1 (modulus 2). Under
these definitions, we will now derive a lower bound for the error probability, known

32Note that we do not lose generality by restricting to two outcomes POVM, since any POVM
with more outcomes, {Ei}ni=1 can be regrouped in an effective POVM with the same performance:
M0 =

∑
i∈S0

Ei, and M1 =
∑

i∈S1
Ei where Sk is the set of outcomes for which we guess

hypothesis k.
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as the Helstrom Bound. To this end, let us write the error probabiliy as per

Pe(M) = p0Tr[M1ρ0] + p1Tr[M0ρ1] (2.188)
= Tr[(I−M)ρ̃0] + Tr[Mρ̃1]

where we define M = M0 and ρ̃k = pkρk as a shorthand. Moreover, we let
∆ := ρ̃0 − ρ̃1, it follows that while ρ̃k is a positive semi-definite operator, ∆ might
not be so, although is Hermitian and thus admits a diagonal representation. Having
this in mind, we define ∆± as the positive and negative part of ∆ respectively, each
being a positive-define operator, i.e.

∆± =
∑
λ:λ>0

<

λ |λ⟩ ⟨λ| , ∆ = ∆+ −∆−. (2.189)

Then, we have that

Pe(M) = Tr[ρ̃0]− Tr[M∆] = Tr[ρ̃0]−
(
Tr[M∆+]− Tr[M∆−]

)
(2.190)

≥ Tr[ρ̃0]− Tr[M∆+]

≥ Tr[ρ̃0]− Tr[∆+]

= Tr[ρ̃0]−
1

2

(
||∆||1 + Tr[∆]

)
=

1

2

(
1− ||p0ρ0 − p1ρ1||1),

where we used that the operators M and ∆− are positive semi-definite, and that
Tr[∆+] =

1
2

(
||∆||1 + Tr[∆]

)
, which follows from the fact that ||∆||1 = Tr[|∆|] =

Tr[∆+] + Tr[∆−].
The structure of the optimal POVMM∗ can be obtained as follows. Assuming

∆ has no vanishing eigenvalues, then M = Π+, where Π+ is the projector over the
positive eigenspace ∆+, implying that M1 = I −M0 projects onto the negative
part of ∆. For this case, the error probability reads

Pe(M∗) = Tr[ρ̃0]− Tr[Π+∆] (2.191)
= Tr[ρ̃0]−

(
Tr[Π+∆+]− Tr[Π+∆−]

)
= Tr[ρ̃0]−

1

2

(
||∆||1 + Tr[∆]

)
=

1

2

(
1− ||p0ρ0 − p1ρ1||1).
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While the optimizing measurementM∗ is a projector, it a quite particular one,
which requires access to the positive and negative subspace of ∆. As such, obtaining
its expression can be challenging, since it is not always possible to diagonalize
∆. Moreover, we are often concerned with a physical implementation of that
measurement, which is a subtle matter that will be discussed in Chapter 3.

The pure-states case

As an example, let us consider the case of two arbitrary pure states |ψ⟩ and |ϕ⟩.
Here, the operator ∆ can be written in a two-dimensional basis spanned by |ψ⟩
and its orthogonal complement |ψ⊥⟩, and the Helstrom bound reduces to:

Pe(M∗, |ψ0⟩ , |ψ1⟩) =
1

2

(
1−

√
1− 4p0p1|c|2

)
, (2.192)

where c = ⟨ψ|ϕ⟩ is the overlap between the pure states; as seen in Fig. 2.8, the bound
tends to 1

2
(i.e. randomly guessing) as the overlap between the states approaches to

unity, whereas it goes to zero when the states become orthogonal, which can be
understood as a the classical limit. The optimal measurement is a projector onto a
superposition of |ψ0⟩ and |ψ⊥0 ⟩.

To see this, we can readily construct an orthogonal basis that spans the two-
dimensional subspace of the Hilbert space needed to represent the states {|ψ⟩ , |ψ⟩}.
This can be done, for example, via Gram-Schmidt decomposition, where we consider

|ψ⊥⟩ = |ϕ⟩ − c |ψ⟩√
1− |c|2,

(2.193)

allowing us to write
|ψ⟩ = c |α⟩+ s |α⊥⟩ , (2.194)

where we defined s =
√

1− |c|2. Now, the operator ∆ can be represented in the
two-dimensional space spanned by {|α⟩ , |α⊥⟩} as per

∆ = π0 |ψ⟩⟨ψ| − π1 |ϕ⟩⟨ϕ| ≡
(π0 − π1c2 −π1c s
−π1c̄ s −π1s2

)
. (2.195)

An straightforward diagonalization leads to the eigenvalues of ∆:

λ± =
1

2

(
1− 2π1 ±

√
1 + 4π0π1|c|2

)
, (2.196)
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where we can readily see that expression in Eq. 2.192 is obtained by inserting the
trace-norm of ∆ in Eq. 2.191. Moreover, we can also compute the eigenstates (each
associated to the positive and negative parts of ∆) as per

|λ+⟩ = α1 |ψ⟩+ α2 |ψ⊥⟩ (2.197)
|λ−⟩ = α3 |ψ⟩+ α4 |ψ⊥⟩ , (2.198)

where the coefficients are included in the footnote33. Recalling that the optimal
POVM is constructed by projecting over |λ±⟩, we observe that generally the state
we project over is a superposition between |ψ⟩ and |ϕ⟩, e.g. the hypothesis we aim
to distinguish. This will play an important role when discussing the discrimination
between two coherent states, since we can readily see that the optimal POVM in
this case is a projection onto a cat-like state, e.g. a superposition of coherent-states.

To sum up, we have discussed the basics of single-shot quantum state discrimi-
nation; long is the road that continues this discussion. For instance, we ommited
unambiguous state discrimination, where we demand that every time we guess for
one hypothesis no errors are commited. This requires that we allow an extra I don’t
know outcome, that deems that data inconclusive; in such case we are interested in
minimizing the probability associated to such inconclusive outcome.

Also, we have not discussed multiple-hypothesis problems. In particular, closed-
form solutions are known if the states are generated by a symmetry group; here,
the optimal POVM is the pretty-good (or square-root) measurement, and can be
obtained explicitely in terms of the candidate states. In the non-symmetric case,
such measurement often provides a pretty-good success probability [HW94; BC09].
Also it is worth mentioning that semidefinite programming [BV04] will not be dis-
cussed here. The latter is a technique that allows to efficiently convex optimization
problems (and relates to state discrimination when numerically optimizing over
measurements).

33

α1 = −1

2

√
2
√

1− c2 + 2 (2.199)

α2 =
c

√
2
√√

1− c2 + 1
(2.200)

α3 =
c2 +

√
1− c2 − 1

√
2
√

(c2 − 1)
(√

1− c2 − 1
) (2.201)

α4 =
c√

2− 2
√
1− c2

(2.202)
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Figure 2.8: We show Helstrom bound for the error probability when discriminating
between two pure states as a function of their overlap c (aboslute value).

2.5.3 Back to the classics: asymetric hypothesis testing

Error probabilities non-trivially depends on the amount of data available, e.g. the
number of samples. Intuitively, the more data we have (e.g. the more we have
sampled our system), the smaller should the errors be on average. Quite generically,
it can be seen that the error decays exponentially with the number of samples,
with a rate that is an entropic function of the two underlying distributions; we will
discuss some characterizations of such rates later in this Section.

In this context, a very powerful lemma known as the Neyman-Pearson lemma,
provides the statistic that is optimal for a wide range of settings.

Neyman-Pearson Lemma. Given a binary hypothesis testing problem where
we need to tell if data x = (x1, ..., xn) has been sampled from either H = H0 or
H = H1, for T > 0 we define the acceptange region as

A(T ) =

{
p(x|H1)

p(x|H0)
≥ T

}
, (2.203)

where x are the samples acquired, and T is the decision-boundary (note that the
point T = 1 is where the hypothesis are equally likely). The decision region plays
a prominent role in the values that the resulting errors take, and in this case read

70



CHAPTER 2. PRELIMINARIES

α∗ = p
(
A(T )|H0

)
and β∗ = p(A(T )|H1)

34. Now, consider any other decision
region B, whose error probabilities are αB and βB . Then, the lemma states that if
αB ≤ α∗, it follows that βB ≥ β∗ (and also if βB ≤ β∗ then αB ≥ α∗)35.

As discussed previously, we are generally interested in minimizing β error when
keeping α bounded. Considering the set of all possible statistics that can be defined,
the power Neyman-Pearson lemma is that of providing the optimal one, which is
given by the log-likelihood ratio.

Large deviations and assymptotic error rates

The dependence of the error probabilities is non-trivial with repect to the number
of samples available, and we intuitively expect that the error probabilities become
smaller and smaller when more data is acquired. This is can be formally studied,
and we here provided a short outline of the topic.

We will begin by discussing the notion of random variable concentration. We
consider the random sequence x with xk ∈ A = {a1, ..., aM}, and consisting on
n i.i.d samples, whose underlying probability will be denoted by Q, i.e. Qn(x) =∏n

k=1Q(xk)

We define a type Px(A) —for simplicity we will denote it as Px)— which is the
empirical probability distribution of each letter in alphabet A, associated to the
sequence x, i.e. Px(a) =

Nx(a)
n
, ∀a ∈ A, where Nx(a) is the number of times that

letter a appears in x. Next, we define as Pn as the set comprising all possible types
P generated by a denominator n. For example taking a binary alphabetA = {0, 1},
we get

Pn = {
(
P (0), P (1)

)
:
( 0
n
,
n

n

)
,
( 1
n
,
n− 1

n

)
...,
(n
n
,
0

n

)
}.

Since many sequences can lead to the same type, we define the type class T (P ) as

T (P ) = {x : Px = P}. (2.204)

Now, the probability of a given sequence x, which is i.i.d. and sampled from Q can

34A(T ) denotes the complement of A(T ), e.g. A(T ) =

{
x : p(x|H1)

p(x|H0)
< T

}
35The proof of the lemma is straightforward, and consists on exploting decision functions associ-

ated to A(T ) and B, and playing a bit with the definition of A(T ).
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be written in terms of its type Px as36

Q(x) = e
−n
(
D(Px||Q)+H(Px)

)
, (2.205)

where the relative entropy between two (discrete) random-variable distributions is
defined as D(p||q) =∑k pk log

pk
qk

and H is the Shannon entropy.
From Eq. 2.205 we can readily see that for typical sequences, i.e. sequences x

with Px = Q, Q(x) = e−nH(Q), i.e. its occurrence is given by the entropy of Q.
It can be shown that the size of a given type class (that is the number of sequences

with a given empirical distribution) is asymptotically given by |T (P )| ∼ enH(P ).
This allows us to write the probability of a given type class as

Q
(
T (P )

)
= |T (P )|e−n

(
D(Px=P ||Q)+H(P )

)
∼ e−nD(P ||Q). (2.206)

This shows that type class corresponding to the typical distribution is exponen-
tially most probable that any other type. This puts on solid grounds that if one
samples a distribution many times the frequency of symbols will be essentially
equal to the probabilities. N(a)

n
= Q(a) with high probability.

For example, considering again the tossing-coin example, with a heads proba-
bility of q. For n samples the types Pn can be fully characterized by the number of
heads, i.e. Pn = {

(
k
n
, n−k

n

)
}nk=1, and the random variables concentrate around the

type k given by k
n
= q as n→∞.

Let us return to the likelihood ratio, which given a random sequence x is
obtained as Λ(x) = p1(x)

p0(x)
. In the i.i.d. setting we can link the logarithm of the

likelihood ratio, which we call the log-likelihood ratio and denote by ℓ, to the relative

36To see this, we expand the total probability of x and exploit the i.i.d. property:

Q(x) =
∏
k

Q(xk) =
∏
a∈A

Q(a)Nx(a) =
∏
a∈A

Q(a)nPx(a)

= e
−n

(∑
a∈A Px(a) log

Px(a)
Q(a)

−Px(a) logPx(a)

)
,

where the last terms in the exponent can is the relative entropy and Shannon entropy respectively.
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entropies as

ℓ(x) = log
p1(x)

p0(x)
=

n∑
i=1

log
p1(xi)

p0(xi)
(2.207)

=
∑
a∈A

nPx(a) log
p1(a)

p0(a)
(2.208)

=
∑
a∈A

nPx(a) log
px(a)

p0(xi)
−
∑
a∈A

nPx(a) log
px(a)

p1(xi)

= n
[
D(Px||p0)−D(Px||p1)

]
.

From here it is immediate to see that the expectation value of log-likelihood
under hypothesis H1 is given by the relative entropy, ⟨ℓ⟩1 /n = D(P1||P0), and
under H0 by ⟨ℓ⟩0 /n = −D(P0||P1). Moreover, from our previous discussion on
the theory of types, it also follows that ℓ/n concentrates around these values:

ℓ(x)

n
−→
n→∞

D(P1||P0). (2.209)

under H1 (and similarly with H0).
Neyman-Pearson’s Lemma in conjunction with the theory of types also allows

us to easily asses the asymptotic error rates for i.i.d. sampling. It is clear that the
decision region depends only on the type class of the observed sequence (in the
case of the coin, the total number of head and tails).

Then, for symmetric hypothesis testing, the optimal decision region corresponds
to guessing for the most probable hypothesis (given the observed empirical distri-
bution) or equivalently guessing hypothesis H1 (H0) if ℓ > 0 (ℓ ≤ 0). It is easy to
check that the error rate for P (n)

err = π0αn + π1βn is dominated by the events were
ℓ = 0, i.e. D(Px||p0)−D(Px||p1) = 0. That is, we obtain the Chernoff coefficient:

C∗ = lim
n→∞

− 1

n
log min

An

P (n)
err , (2.210)

where C∗ = D(Pλ∗||P1) = D(Pλ∗ ||P0), meaning that λ∗ is determined by the
probability distribution Pλ for which the relative entropy to P0 equals the relative
entropy to P1

37.

37Such probability distrbution has the structure Pλ(x) =
Pλ

0 (x)P 1−λ
1 (x)∑

a∈A Pλ
0 (a)P 1−λ

1 (a)
, which leads to an

alternative (and more common) expression for C∗ = − min
0≤λ≤1

log
∑

a∈A P0(a)
λP 1−λ

1 (a)
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Similarly, in the asymmetric setting one can get the largest error exponent
(fastest decay of the error), while keeping a finite probability for the other type
error (recall that we wish to diagnose correctly at least a fraction of the healthy
patients). This is is formalized in the following lemma.

Stein-lemma. Let x be a sequence of i.i.d. samples obtained fromQ. We consider
an hypothesis testing scenario where the models are given by Q = P1 and Q = P0.
Let An be an acceptance region for hypothesis H1, and the error probabilities be
αn = P (Ān|H0) and βn = P (An|H1). Let 0 < ϵ < 1

2
, and define βϵn = min

An

βn

such that αn < ϵ. Then the optimal error exponent is

− lim
n→∞

log βϵn
n

= D(P0||P1). (2.211)

Note that this rate is independent of the particular value of ϵ. Similarly, the α
error is minimized instead (while keeping β < 1/2, then the optimal rate is given
by D(P1||P0). The relative entropies appearing in the Stein lemma, are strictly
larger than the Chernoff coefficient, as it should since in the symmetric scenario
both (optimal) errors must decay exponentially, whereas in the asymmetric case
only one them remains constant.

Finally, note that the error rates provide an operational interpretation to the
relative entropy and the Chernoff coefficient as measures of distinguishability
between the two probability distributions.

Quantum hypothesis testing: a brief comment

While we provided an introduction to the classical hypothesis testing problem, and
this suffices for the scope of this thesis, we will here outline how this situation
generalizes to the quantum realm. Contrary to the single-shot quantum-state
discrimination scenario, we are here given N copies of the same quantum state,
and it is desired to identify its nature among two (or more) alternatives. In this
case, since more information is available, our performance is expected to be better
on average, similarly to the results discussed in Sec. 2.5.3. The scope of possible
strategies is, however, non-trivially larger. In turn, we can choose to perform either
a separable quantum measurement (individually measure each copy), an adaptive
quantum measurement (where the result of the previous copy conditions the next
quantum measurement to be performed), or a joint measurement acting on all
the N copies at once, or even any combination of the above strategies. In this
context, a quantum version of the Neyman-Pearson lemma discussed above can be
formulated:
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Quantum Neyman-Pearson Lemma Given a binary hypothesis testing problem
with the two hypotheses: ρ (H0) vs. σ (H1). For T > 0 define a two outcome POVM
M = {M0,M1 = I−M0} with

M0(T ) = I(ρ−Tσ)>0 (2.212)

where I∆>0 is the projector on the positive part of ∆, and the corresponding error
probabilities α∗ = P (M0|H1) = Tr[M0(T )ρ] and β∗ = P (M0|H1) = Tr[M0(T )σ].
Given any measurement F = {F0, F1} and its associated error probabilities αF
and βF . If αF ≤ α∗ then βF ≥ β∗(and vice versa).

The projective measurement M0(T ) is the quantum analog of the likelihood
test which defined the acceptance region (for hypothesis H0)

A =

{
x :

P0(x)

P1(x)
> T

}
= {x : P0(x)− TP1(x) > 0}

Note also from (2.212) that such class of measurements M0(T ) is optimal when
one wishes to minimize the linear combination of errors α∗ + Tβ∗, as for instance
in symmetric hypothesis testing taking the parameter T to be the ratio of priors:
T = π1/π0. Indeed for this case we recover the famous Helstrom bound from last
section.

Generally, the optimal error probability exponentially decreases with the num-
ber of copies, and deriving rates at which it does so is the matter of quantum
hypothesis testing. For example, in the i.i.d. scenario, generalizations of the classical
testing framework are known: while the symmetric error decrases with a rate
known as the quantum Chernoff coeficient[ACT+07], the asymmetric errors have
quantum relative entropies as rates [HP91; ON]. Strikingly, such rates are often
obtained by replacing the classical expression of the entropic functions with the
quantum one. The optimal measurement attaining such rates might be a global one
(i.e. acting jointly on all the available copies). We remark, however, that for the
case of binary pure state discrimination, it has been shown that one can be assymp-
totically optimal when measuring locally and updating the priors in a Bayesian
manner [ABB+05]. Moreover, the setting of quantum sequential hypothesis testing
has recently been formalized and studied in Ref. [MVHS+21], and we will now turn
to study the classical version of it.

2.5.4 Sequetial hypothesis testing
So far we have discussed the hypothesis testing setting in which n samples of
data where presented to us, and a decision needs to be made for the underlying
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hypothesis. We introduced different figures of merits, taking into account the
importance given to each error type. Following, we introduced the log-likelihood
ratio, which via the Neymann-Pearson lemma turns out to be the optimal statistic.
Then, we have discussed the assymptotic behaviour of the errors, which in the
i.i.d. are exponentially decaying, with a rate given by either the relative entropy
(assymetric scenario) or the Chernoff coefficient (symmetric scenario).

Strikingly, by slightly relaxing the setting, more efficient strategies can be
brought to the stage. This consists in relaxing the condition that the underlying
hypothesis needs to be determined after observing the random sequence x (of
length n). Instead, we could think of allowing for an extra label that deems x as
unconclusive. In this case, further samples will be required, and the test proceeds
in a sequential fashion until a given criterium is met.

Thus, a sequential strategy is characterized by (i) a stopping rule, that tells
whether to stop the sampling process or to demand an additional sample, and (ii)
a decision rule which selects one hypothesis or the other in case of stopping the
test. Moreover, we will consider an scenario in which one can guarantee that for
each realization of the test, the conditional probability of correctly identifying each
of the hypothesis is above some pre-defined threshold. This is known as a strong
errors guarantee, i.e. given ϵk (k = 0, 1), the test assures that

p(Hk|xn) ≥ 1− ϵk. (2.213)

These conditions cannot always be achieved by a test with a fixed-horizon — since
there is a chance that the random sequence is not informative enough to assert the
correctness of Eq. 2.213 for both hypothesis —. On the contrary, if new samples are
required until conditions in Eq. 2.213 are fullfiled, then we can readily devise a test
— known as the Sequential Probability Ratio Test (SPRT) [WW48] — that consists
on the following. Starting at n = 1, at each step n check if

1. p(H1|xn) ≥ 1 − ϵ1. If this happens, stop and accept H1, with a success
probability guaranteed to be Ps1 = 1− ϵ1.

2. p(H0|xn) ≥ 1 − ϵ0. If this happens, stop and accept H0, with a success
probability guaranteed to be Ps1 = 1− ϵ0.

3. If neither of 1. nor 2. is acccomplished, then continue sampling and move to
the next step.

This procedure can be casted in terms of the log-likelihood ratio ℓn = ℓ(xn) at
step n. By using Bayes theorem, we can readily construct an undecision region
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Ω = [a0, a1] such that

a1 = log
(1− ϵ1

ϵ1

p0
p1

)
(2.214)

a0 = log
( ϵ0
1− ϵ0

p0
p1

)
and then the test proceeds at step n as follows:

• Compute the log-likelihood ratio ℓn

• If ℓn ≥ a1 stop the test, and accept H1, with a success probability guaranteed
to be Ps1 = 1− ϵ1

• Alternatively, if ℓn ≤ a0, stop the test, and accept H0, with a success proba-
bility guaranteed to be Ps0 = 1− ϵ0

• On the contrary, if ℓn ∈ Ω, demand an extra sample and repeat the test for
step n+ 1.

As explicited by Eq. 2.207, in the i.i.d. scenario the log-likelihood ratio can be
casted as a sum of contributions ℓk = ℓ(xk) that are sequentially-acquired:

ℓ(xn) = log
p(x|H1)

p(x|H0)
) =

n∑
k=1

ℓk, ℓk = log
p(xk|H1)

p(xk|H0)
. (2.215)

The beauty of this relies on the random walk interpretation: with each new sample,
a step of length ℓk is taken with probability p(xk|Q), where Q is the underlying
probability distribution, i.e. either P0 or P1. From here, we can readily see that
the walker will have a positive (negative) drift when H1(H0) is the underlying
hypothesis: by denoting the log-likelihood ratio obtained under hypothesis i as ℓ|i,
we have

⟨ℓ|1(xn)⟩ = nD(P1||P0) (2.216)
⟨ℓ|0(xn)⟩ = −nD(P0||P1).

These drifts values indicate that the random walk will likely hit the decision bound-
ary that corresponds to the underlying hypothesis, since it moves with an average
speed given by the relative entropy. However, it might well be that the stochastic
nature of the process leads the walker to hit the complementary decision boundary.
Either the case, Wald proved that the walker eventually exits the undecision region
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Ω, and thus the process stops [WW48]. The time —or sample number— at which
the process stops is known as the stopping time, and we denote it by τ :

τ := inf
n
{n : ℓ(xn) /∈ Ω}. (2.217)

Thus, the stopping time refers to the first instance at which the process leaves the
Ω region, and we have that the probability of the walker to be inside the region
Ω goes to zero as the number of samples goes to infinity. In the following, we
will intercheangably refer to τ as the number of samples n at which the process
stops, since this Section will serve as a reference for the continuous-time processes
analyzed in Chapter 5.

The average position of the walker at step τ , e.g. the value of ⟨ℓ(xτ )⟩ can be
linked to the average value of the stopping-time τ via the Wald’s identity [MU05]:

⟨ℓ(xτ )⟩|i = ⟨
τ∑
k=1

ℓk⟩|i = ⟨ℓk⟩|i , (2.218)

resulting in

⟨τ⟩1 =
⟨ℓ⟩1

D(P1||P0)
, (2.219)

⟨τ⟩0 = −
⟨ℓ⟩0

D(P1||P0)
. (2.220)

Thus, it becomes clear that the value of the log-likelihood at the stopping time
(the moment when it exits the undecision region) will be essentially given its value
at the boundary (essentially a0 or a1 for hypothesis H1 or H0, respectively). Hence,
as we will show more rigorously below,

⟨τ⟩1 ∼
a1

D(P1||P0)
, (2.221)

⟨τ⟩0 ∼ −
a0

D(P1||P0)
. (2.222)

The last equation clearly shows that the average value of the likelihood ratio
is proportional to the average-time required to reach the corresponding decision
boundary, and the slope is given by the relative entropy between the probability
distributions under consideration. Since the relative entropy is generally not sym-
metric, i.e. D(P0||P1) ̸= D(P1||P0), we expect the average stopping-times to differ
when swapping the underlying model. Thus, it is interesting to ask how many
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samples would be required, on average, to stop the process; this will in turn depend
on the quality of the sequential test, as given by the strong error conditions of
Eq. 2.213.

Let us see now how does SPRT perform regarding the type-I and type-II errors,
in particular in the regime where |ai| asymptotically large (small errors), where
Pr
[
ℓ(xn) ∈ Ω

]
−→
n→∞

0 holds. For simplicity, we define

A = ea1 =
1− ϵ1
ϵ1

p0
p1
, B = ea0 =

ϵ0
1− ϵ0

p0
p1
.

Then, the weak errors can be linked to the decision thresholds as follows

α = p(Ĥ1|H0) =
∑
x∈X0

p(x|H0) ≤ A−1
∑
x∈X0

p(x|H0) = A−1(1− β) (2.223)

β = p(Ĥ0|H1) =
∑
x∈X1

p(x|H1) ≤ B
∑
x∈X1

p(x|H0) = B(1− α), (2.224)

where used that, when stopping the test, the log-likelihood ratio is either higher
(smaller) than a1(a0), and defined the decision regions Xk under which the test
decides for the kth hytpothesis.

Moreover, the inequalities above saturate if there is no overshooting, that is if
the process stops exactly at the boundary. This happens either approximately when
the step-sizes ℓk are small relative to ai, as mentioned above, or if the log-likelihood
evolves continuously — e.g. if we are sampling from a Wiener-like process, as
discussed in Sec. 2.4.4, and analyzed in Chapter 5. In that case the above relations
can be inverted to get

α =
1−B
A−B =

1− ea0
ea1 − ea0 =

ϵ1(p1 − ϵ0)
p0(1− ϵ0 − ϵ1)

(2.225)

β =
B(A− 1)

A−B = ea0
ea1 − 1

ea1 − ea0 =
ϵ0(p0 − ϵ1)

(1− ϵ0 − ϵ1)p1
. (2.226)

Thus, imposing strong-error conditions fixes the value of the weak errors in
the SPRT. Note that in the case that the boundaries are very large in absolute value,
e.g. a0 → −∞ and a1 → ∞, corresponding to very small values of ϵ0 and ϵ1
respectively, then

α ∼ ea0 ∼ ϵ1, β ∼ e−a1 ∼ ϵ0. (2.227)
ℓ(xτ ) as binary random-variable. In the non-overshooting case, the log-likelihood

ratio ℓ(xτ ) can take two values once the SPRT stops, which are determined by the re-
gion Ω, e.g. ℓ(xτ ) ∈ {a0, a1}. For instance, if the underlying probability distribution
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is P1, then the walker will arrive to position a1 with probability p(Ĥ1|H1) = 1−α,
and otherwise arrive to position a0 with probability p(Ĥ0|H1) = β (a similar
reasoning applies when the underlying model is P0), and thus we have that the
mean-value of the ℓ(xτ ) reads

⟨ℓ|1(xτ )⟩ = a1(1− β) + a0β, ⟨ℓ|0(xτ )⟩ = a0α + a1(1− α). (2.228)

From here, we can infer the number of samples required to stop the test, given
pre-defined strong error thresholds. In turn, from Eq. 2.228, the Wald identity in
Eq. 2.218, and the expressions of the weak errors in terms of the strong ones, one
can readily identify the average stopping-time, whose expression is assymptotically
given by

⟨τ⟩1 ∼ −
log ϵ1

D(P0||P1)
, ⟨τ⟩0 ∼ −

log ϵ0
D(P1||P0)

(2.229)

Remarkably, the SPRT is optimal regarding such resource [WW48]. This means
that, for a pre-defined value of the weak errors α and β38, the number of samples
—⟨τ|1⟩ and ⟨τ|0⟩— that a test would require to gather cannot be less than that of the
SPRT, when accomplishing to such errors.

In this regard, the SPRT comes with a bonus: not we one can attain the desired
error rates faster, but also it is possible to certify the error commited for any given
trajectory. This is in contrast to the approach presented in Sec. 2.5.3, which contrasts
the hypothesis in a static way. As expected, allowing the test to stop when enough
evidence is gathered, results in a lower average number of samples; and when
compared with its deterministic counterpart, one can attain better error rates using
the same resources (on average). Similarly, these results hold for the symmetric
error probability in Eq. 2.184, e.g. when the value Pe = p0α+p1β is fixed in advance,
and a sequential test is carried out in order to optimize the average stopping time
required to reach such error threshold [Sim76].

Thus, we will deem the test presented in Sec. 2.5.3 — which does not process
the data sequentially but rather makes a decision once a fixed and pre-defined
time-horizon has been reached— as the deterministic test. In Chapter 5 we will
thoroughly study the performance of sequential tests in continuously-monitored
systems and compare their performance with to respect to that of deterministic
ones (those that gather data during a pre-established and fixed time).

38To avoid confusion, recall that such errors are, in the SPRT, are fixed by the values of ϵ0 and ϵ1.
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2.5.5 Parameter estimation
In this Section we discuss parameter estimation, and in particular the limits that
(classical) information theory imposes to the accuraccy that can be attained when
estimating a parameter encoded in a probability distribution function out of a finite
number of samples.

Let f(x, θ) be a probability distribution function, parametrized by θ (as an
example, a normal distributionN (µ, σ) has parameters µ and σ). We interpret such
object as being the probability of a sample to take the value x, given a known value
of θ. For instance, if f has a strong dependence w.r.t. θ, we expect it to be easier
to infer information about θ, and fewer samples will be sufficient to estimate the
value of the parameter with a given precision. On the contrary, if the landscape of
f looks flatter when varying the value of θ, then we will require more samples to
be sure that value of θ is the right one. This notion is captured by the score of f :

s(x, θ) := ∂θ log f(x, θ), (2.230)

whose mean value vanishes:

E[s(x, θ)] =
∫
R
dx∂θ log f(x, θ)f(x, θ) = ∂θ

∫
R

dxf(x, θ) = 0.

where the last equality follows from the normalization
∫
R
dxf(x, θ) = 1. However,

its variance contains information about the parameter-landscape, and reads

I(θ) := Var[s] = Ex[
(
∂θ log f(x, θ)

)2
] =

∫
R
dxf(x, θ)

(
∂θ log f(x, θ)

)2
=

∫
R
dxf(x, θ)

(∂θf
f

)2
.

The variance of the score is known as the Fisher information, and we can explicitely
see that is linked to the curvature of f as per

⟨∂2θ log f⟩ = ⟨−
(∂θf)

2

f 2
⟩+

�
�

���
0

⟨∂
2
θf

f
⟩.

Overall, the Fisher information describes how the landscape of f looks when
varying the parameters θ, and the following relation holds

I(θ) = E[(∂θ log f)2] = −E[∂2θ log f ]. (2.231)
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However, we are interested in providing an estimation of the parameter, given that
we acquired a random (i.i.d) sequence sampled from f . To this end we define an
estimator θ̂ to be an statistic that provides such value θ̂. For instance, the sample
average ⟨x⟩ = 1

n

∑
k xk is an (unbiased) estimator for the mean of f .

Among all possible estimators, we will find it useful to consider the maximum-
likelihood one, defined as

θ̂ = ArgMax
θ

log f(x, θ), (2.232)

where we note that since x consists on i.i.d. samples, we can factorize the logarithm
of the likelihood function as a sum of contributions, similarly to Eq. 2.215. While
the maximum-likelihood estimator is consistent, in the sense that for a very large
number of samples such estimator converges to the correct value almost surely, it
might be biased (in the sense that its expected value might differ from underlying
true parameter we want to estimate)39. This is in line with the fact that such
estimator retrieves the parameter value which is most consistent with the observed
data, but not with the average.

To end this discussion on parameter estimation, let us comment on a funda-
mental result that relates the ultimate performance of an estimator with the Fisher
information. In turn, the Cramer-Rao bound provides a lower bound to the variance
of any (unbiased) estimator. This means that our confidence in the estimation
cannot be higher than the information carried out by the underlying probability
distribution function f , as given by the Fisher Information I(θ) introduced above.
To see this, we consider an (unbiased) estimator of θ, i.e θ̂. If it is unbiased, then
the following chain of equailities holds:

0 =

∫
dxf(x)

(
θ̂ − θ) = ∂θ

[ ∫
dxf(x)

(
θ̂ − θ)

]
= −1 +

∫
dx
(
∂θf(x)

) (
θ̂ − θ),

and thus we conclude that
∫
dxf(x)

(
∂θ log f

)(
θ̂ − θ) = 1 If we now we use the

Cauchy-Schwartz inequality, i.e. (u, v)2 ≤ (u, u)(v, v), we get

12 =
[ ∫

dx
(
(θ̂ − θ)

√
f
)(√

f∂θ log f(x)
)]2

≤
∫
dx
(
(θ̂ − θ)

√
f
)2][ ∫

dx
(√

f∂θ log f(x)
)2

= Var[θ̂]I(θ).

39Note however that any consistent estimator is assymptotically unbiased.
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Thus, the Fisher information provides an ultimate (classical) bound for the
variance of any estimator. Note that in the case of n trials the Fisher information,
in the i.i.d. case, is additive: In(θ) = nI(θ), which can be seen from E∂2θ log p(x)n.
Moreover, it can also be shown that in this limit the bound can be saturated (by a
proper estimator, for instance, maximum-likelihood), and hence Var[θ̂] ∼ 1

nI(θ)
, a

situation known as shot-noise limit.
To conclude, we note that similar to hypothesis testing, the problem of parameter

estimation gets a twist in the quantum realm, where again a non-trivial optimization
over measurements (and probes) is involved. Moreover, a new object known as
the quantum Fisher information appears in the stage, accompanied by a quantum
Cramer-Rao bound. We will not discuss this topic, but refer the interested reader to
Refs. [Mey21; Hel76; GLM06].

2.6 Reinforcement learning
The framework of Reinforcement Learning (RL) is based on the sequential inter-
action between an agent and an environment during several episodes, and — as
many ideas in artificial intelligence — is strongly inspired in biological models of
learning [SG18; Sze10a].

At each time-step ℓ = 0, · · · , L of each episode t = 1, · · · , T , the agent observes
its environment in a state s(t)ℓ ∈ S and chooses an action a(t)ℓ ∈ A; as a consequence,
the agent enjoys a reward r(t)ℓ+1 ∈ R and observes a new state of the environment,
s
(t)
ℓ+1 ∈ S ; here S , A and R stand for the sets of states, actions and rewards the

agent may experience. Such reward serves as a classical conditioning to the agent,
who needs to train its behaviour in order to acquire as much rewards as possible,
in a similar way we reward our dogs with soome cheese if they sit after saying
“‘seu”40. In this sense, one might steer the agent towards optimal desired behaviours
which are actually unkown to the designer of the reinforcement learning scenario:
while we have the free will to define states, actions, rewards and envionment
dynamics, it is highly unlikely that optimal behaviours that lead to high-rewards
are known beforehand. This is the spirit of tackling open problems in science with
reinforcement learning algorithms, where unknown solutions can readily be found
by letting the sequential interaction to evolve over several episodes.

The environment is usually modeled to be Markovian: its dynamics is completely
determined by the last time-step via the transition function τ(s′, r|s, a), i.e., the
conditional probability of ending up in a state s′ and conferring a reward r, given

40Seu is sit in catalan.
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Figure 2.9: We depict the interaction with agent and environment in fully (left) and
partially observable (right) cases.

that the previous state was s and the agent took an action a; the next future states
accessible from s are thus restricted to S(s) = {s′ : τ(s′|s) ̸= 0} ⊆ S .

In general, the agent does not have control of nor access to the transition func-
tion, but it will influence the dynamics of the environment by choosing actions
according to an interaction policy π(a|s), i.e., the conditional probability of per-
forming an action awhen the observed environment’s state is s; hence the available
actions at a given state may be restricted to a subset A(s) ⊆ A. This setting is
usually known as a Markov decision process (MDP).

The agent’s objective is to interact with the environment through an optimal
policy π∗, for which the total reward acquired during an episode is as high as
possible. In the dog-training case, this means getting as much cheese as possible,
implying correctly execution of all the tricks. To achieve such goal, a value function
is assigned to each state and optimized over all possible policies, as explained in
Sec. 2.6.2.

The Markov assumption is justified whenever the agent’s observations provide
a complete description of the state of the environment sℓ. However, in general this
is not the case, and the agent has only access to partial observations oℓ ∈ O at each
time-step. This leads the agent to define its own state, e.g. agent’s state. While in
the fully observable case agent’s and environment’s states coincide, in partially-
observable environments the agent can only rely in such partial observations in
order to learn. These observations would not allow to determine the dynamics
even if τ was known, and they are generated from the current (environment) state
and the previous interaction history (e.g. actions performed, observations acquired
and environments’ states). In RL literature this is known as a partially-observable
MDP (POMDP) and developing methods to solve it efficiently constitutes an active
area of research [SJJ94; MKS+13; SPK13; Ego15; ZLP+18]; the problem is usually
tackled by first reducing it to an effective MDP. The most straightforward approach
is to define an effective state that contains all the past history of observations and
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actions up to a given time-step, i.e., hℓ = (a0, o1, · · · , aℓ−1, oℓ). In this way, the
dynamics observed by the agent can always be described by an effective MDP with
transition function τ(h′, r|h, a), which is unknown to the agent and determined by
the underlying environmental transition function. We will choose such approach
when framing quantum-state discrimination as reinforcement learning problem in
Chapter 3.

In order to gain some intuition on both the reinforcement learning problem
and its difficulty, it is instructive to revist bandit problem. Such problem is a
simplified version of the reinforcement learning setting, that yet captures many of
the challenges underlying model-free learning frameworks. After discussing about
bandits, we move to define value functions and study their associated Bellman
equations in Sec. 2.6.2, whereas in Sec. 2.6.3 we introduce the Q-learning algorithm,
used to learn optimal policies in model-free settings. We finally comment on
model-aware approaches such as dynammic programming in Sec. 2.6.4.

2.6.1 Bandit problems
The multi-armed bandit problem constitutes a simplified version of the RL setting.
Here, an agent is faced towards a set of N slot-machines, and each action a ∈
A = {1, ..., N} stands for the pulling arm of the a-th machine, which retrieves
a reward r ∈ R with an unknown probability τ(r|a). Each episode starts from a
single default state, the bandit can only pull one machine at the episode, which
ends right after obtaining the reward; thus the MDP is reduced to a Markov Reward
Process (MRP). Though it is not clear who the actual bandit is, the situation models
a gambler trying to maximize its earnings in a casino. Note also that we restrict to
the case in which arms’ distributions are stationary, e.g. do not change in time.

The bandit problem is ideal to discuss our figures of merit when it comes to
model-free learning optimal policies, and in particular to characterize learning
curves behaviour. On the one hand, we would like the agent to identify the arm
which — on average — leads to the highest reward. If the agent knew beforehand
all reward distributions τ(r|a), then it would readily know which action to take.
Nevertheless, since no access is granted to those distributions (for otherwise that
would be a very generous casino), we then monitor how reward acquisition evolves
during the learning process. In this regard, a reasonable figure of merit is the
cumulative reward

Rt(π) =
1

t

t∑
ν=1

rν (2.233)
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where rν is the reward enjoyed by the agent at episode ν. As such, the cumulative
reward is an stochastic quantity, and depends on agent’s policy π (i.e. the way it
decides for which arm to sample at a given episode). Whenever it is clear from the
context, we will drop the dependence on π and simply denote the cumulative reward
as Rt. Note that the cumulative reward is upper-bounded (on average) by that one
associated to the optimal policy, which always samples from a∗ = argmax

a∈A
Q(a),

with Q(a) = Er[τ(r|a)]. Such expected values Q(a) quantify how valuable each
action a is, and are the analogue of state-action value functions in MRP — a slightly
more complex quantity that we will define in Sec. 2.6.2 —. While the agent is not
aware of those values, successful learning hinges on how accurately can the agent
discriminate between such quantities, and in particular find the optimal one. To
this end she updates and estimate of such quantity as new samples are obtained,
which we denote by Q̂(a). In particular, bandit theory defines the so-called expected
cumulative regret:

Lt = E
[ t∑
k=1

(
Q(a∗)−Q(a(k))

)]
= t

(
Q(a∗)− E[Rt]

)
, (2.234)

where E indicates the expected value with respect to different agents (that expe-
rience different realizations of the sampling processes) following the same policy
π,and a(t) is the action actually taken by the agent at episode t. The cumulative
regret is closely related to the (expected) cumulative reward per episode Rt, and
quantifies the price to pay, or loss, for taking actions different from the optimal
one a∗. In other words, it quantifies the difference in earnings of the agent with
respect to those of a model-aware super-agent, which owns the casino and hence
has access to a∗.

One of the most fundamental results in bandit theory is the Lai-Robbins bound [LR85]
for the asymptotic behaviour of the expected cumulative regret:

Lt ≳
t>1

log t
( ∑
a∈A\{a∗}

∆a

KL(a||∗) + o(1)
)
:= CLR log t, (2.235)

with ∆a = Q(a∗)−Q(a) and KL(a||∗) the Kullback-Leibler divergence between
the reward distributions τ(r|a) and τ(r|a∗).

Recalling that the agent is unaware of the underlying distribution τ(r|a), we
note that Rt is a figure of merit that detects whether the learning behaviour has
improved or not, and is readily available to the agent. In particular, it captures the
entire learning process, and measures how well the agent has balanced between
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exploring potentially optimal (yet undersampled) arms, or exploiting arms that she
consider the best, according to the statistics gathered up to episode t. Such tradeoff
is known as the exploration-exploitation tradeoff, and is one of the core concepts in
RL theory. It also captures the relevance of bandit problems in real-life applications,
where the final success probability of the protocol is not the only figure of merit, but
the whole learning process counts. For example, in clinical trials [Tho33] one needs
to find the right compromise between advancing in the search of the best treatment
(exploring) while effectively treating current patients (exploiting). Moreover, if one
as a scientist is aware of the setting, and aims to monitor the average learning
behaviour of the agent, the expected regret is readily accessible (provided that
enough realisations of the learning process could be simulated), and we know
from Lai-Robbins bound that such quantity is assymptotically bounded. In this
regard, the general traits of the cumulative reward per episode Rt could inspire
several ways of quantifying the performance of the learning agent, e.g., (a) the onset
episode at which Rt starts exceeding a completely random policy (which samples
a random arm unconditioned on the history of past rewards acquired); (b) the
transient episode at which Rt reaches a given fraction of its upper bound Rt(π∗);
(c) the learning speed as quantified by the slope of Rt after the onset episode; and so
on. While little is known on how such traits behave, the expected regret constitutes
a route to design policies in bandit problems, which are considered good ones if
they assimptotically saturate the Lai-Robbins bound. Thus, bandit theory provides
us with a framework were some of these notions can be rigorously studied, though
extending such formal approach to the general MDP is a challenging task, and
constitutes an active area of research [LS18; AOM17; TP21; Liu22; DWC+19].

We will now turn to review some well-known policies that are used in bandit
problems, and that will find use in this thesis when dealing with reinforcement
learning scenarios (see Sec. 3.3).

Recall that at each episode, the agent keeps an estimate Q̂(a) of how valuable
taking each action is, by estimating the mean reward it provides. Here, the non-
trivial question is which arm to try, given the experience gathered so far. The most
straightforward policy to use is the ϵ-greedy, which is outlined in Algorithm 1, and
consists on going greedy (that is, choosing action argmax

a∈A
Q̂(a)) with probability ϵ,

or to randomly choose an action with probability 1− ϵ. After enjoying the reward,
a Monte-Carlo like update is performed on Q̂(a), which sequentially updates such
average value according to some learning-rate λt(a), and which might depend on
both the arm label and the episode number. While small values of ϵ will favour
potentially sub-optimal actions that were discovered by the agent in early episodes,
large values of ϵ imply a random behaviour, and thus a low reward acquisition. In
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general, the value of ϵ is modified ah-hoc with the episode number.
Algorithm 1: We detail the ϵ-greedy policy for bandit problems.
input : Q̂(a) arbitrarily initialized and learning rates λt(a) ∈ (0, 1]

∀a ∈ A , ϵ ∈ (0, 1]
1 for t in 1 … T do
2 generate a random number j
3 if j ≤ ϵ then
4 choose a at random
5 else
6 choose a = argmax

a∈A
Q̂(a)

7 observe r
8 update Q̂:
9 Q̂(a)← Q̂(a) + λt(a)[r − Q̂(a)]

Note that by choosing the learning rates λt(a) to be the inverse of the number
of times action a was visited up to time t, then

Q̂(a) →
t→∞

∑
r∈R

r τ(r|a) = Q(a) ∀a ∈ A. (2.236)

Moreover, an ε-greedy strategy can not attain the logarithmic behaviour for the Lt
since E[Rt] < Q(a∗) for all t, because at every episode there is a finite probability
ε that the agent performs a suboptimal action, and thus the expected cumulative
regret grows linear with t. It is then clear that there is room for improvement before
saturating the bound in Eq. (2.235).

In what follows we will present two strategies, one based on Upper Confidence
Bounds (UCB) [LR85; Agr95; ACBF02] and the other based on Thompson sampling
(TS) [Tho33; Tho35; Sco10; RVK+18], which substantially improve the performance
of ε-greedy and even attains the assymptotic logarithmic behaviour forLt [KKM12].

In UCB, the agent keeps a record of the number of times each action a was
selected up to episode t, which we denote as Nt(a). Hoeffding’s inequality bounds
the probability that the Q̂(a) underestimates the true value of Q(a) by more than
ε(t) > 0, as

Pr[Q̂(a) < Q(a)− ε(t)] ≤ e−2Nt(a)ε(t)2 =: P(t). (2.237)

Then, for Nt(a) > 0, the upper confidence bound, defined as

ucbt(a) := Q̂(a) + ε(t) = Q̂(a) +

√
− logP(t)
2Nt(a)

, (2.238)
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represents an upper bound to the true value Q(a) with a high probability 1−P(t).
This value is used to compare and choose among the different actions, i.e. a =
argmax

a∈A
ucbt(a), and responds to the motto optimism under the face of uncertainty:

actions that have not been visited enough are assigned an optimistic estimate value
and hence more chances of being picked; in addition, actions whose Q-estimate is
accurate but sub-optimal will have little chances to be picked again. The functional
form of P(t) can be tuned to balance exploration and exploitation. In particular,
for the standard choice P(t) = t−4 it can be proven that the expected cumulative
regret Lt follows the logarithmic scaling [ACBF02; LS18].

Algorithm 2: UCB for bandit problems.
input :P(t), initialize Q̂(a), N(a) to zero ∀a ∈ A .

1 for t in 1, ..., T do
2 if t ≤

∣∣A∣∣ then
3 (choose each action once) a = t
4 else
5 choose a = argmax

a∈A
ucbt(a), (Eq. (2.238))

6 observe reward r
7 record visit:
8 Nt(a))← Nt(a) + 1
9 update Q-value:

10 Q̂(a)← Q̂(a) + [r−Q̂(a)]
Nt(a)

Instead of updating an estimate Q̂(a) for each action, in Thompson sampling
(TS) a Bayesian approach is followed, where at every episode a full prior distribution
(and not just an expectation value) is assigned to the expected reward r̄ of every arm
a, ft(r̄|a) ∀a ∈ A. This distribution characterizes the knowledge the bandit has
about the expected earnings of each arm, Q(a), and at the first episode can be taken
to be flat over the whole interval [0, 1]. The policy then consists in sampling an
expected reward r̄ ∼ ft−1(r̄|a) for each possible action a and choosing the action
with the largest sample r̄: a = argmax

a∈A
{r̄ ∼ ft(r̄|a)}); such sampling procedure

constitutes an overhead for the bandit, since at each episode N extra samples are
required, which are nonetheless unrelated to the arms (i.e. at each episode, the
bandit still samples only a single arm). Finally, the distribution for the chosen action
is updated according to the true reward r obtained, using Bayes’ theorem.

In order to avoid computationally-expensive Bayesian updates, families of
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distributions that are closed under the update rule are used. In the case of Bernoulli
bandits, beta-distributions are employed since those are precisely their conjugate
priors. That is, given

ft(r̄|a) = Beta(µt(a), νt(a)) ∝ r̄µt(a)−1(1− r̄)1−νt(a), (2.239)

upon obtaining a reward r the prior is updated to a beta distribution with parameters
µt+1(a) = µt(a) + r, νt+1(a) = νt(a) + 1 − r, where at the first episode it is
µ1(a) = ν1(a) = 1 ∀a ∈ A (flat prior). By mimicking the underlying distributions,
TS gauges exploration according to the information acquired so far: if a certain
action has not been sampled enough at episode t, its reward distribution will still be
broad and, when sampled, can easily return a higher value of r̄ than that obtained
from other (more peaked) distributions; thereby TS will favour to explore such
action. At the same time, if a sub-optimal action has been sampled enough episodes,
it will be very unlikely that it is sampled again, since the corresponding prior will
be highly peaked at low values.

TS algorithm has been introduced surprisingly long ago [Tho35], and it is kown
to assymptotically attain the Lai-Robbins bound [AG11]. Moreover, its performance
has been studied in non-assymptotic regimes [GMS19], where it was shown that
sub-leading constants and terms of order log(log t) might be important. Finally, a
review about TS and its applicability can be found in Ref. [RVK+18].

Let us conclude this overview of bandit theory by introducing the simple regret,
another widely used figure of merit that quantifies how well has the agent learned

Algorithm 3: TS for Bernoulli bandit problems.
input :µ1(a), ν1(a) initialized to one ∀a ∈ A

1

2 for t in 1, ..., T do
3

4 for a in A do
5 draw r̄a according to Beta(µt(a), νt(a))
6

7 choose a = argmax
a

r̄a

8 observe reward r
9 update Beta distribution:

10 µt+1(a) = µt(a) + r
11 νt+1(a) = νt(a) + 1− r
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to identify the optimal action at episode t, regardless of her actual performance:

Λt = E
(
Q(a∗)−Q(a(t)∗)

)
, (2.240)

where a(t)∗ is the agent’s recommendation of which the optimal action is at episode
t. For example, in an ϵ-greedy strategy, the recommendation is given by a(t)∗ =
argmax

a

Q̂(a). Thus, strategies designed to minimize Λt will prioritize to learn what
the optimal arm to pull is, regardless of the rewards acquired during the entire
learning process.Recent results [BMS11] show that the exploitation-exploration
trade-off manifests itself in the asymptotic scaling of the simple and cumulative
regret in the sense that one imposes lower and upper-bounds on the other, and
therefore optimizing one usually affects the performance of the other.

Having gained some intuition on why model-free learning schemes are complex,
we will not return to study the general MDP setting.

2.6.2 Value functions and the Bellman equation
The complexity added in MDPs, as compared to bandit problems (MRPs), is that
agent and environment sequentially interact during (a possibly infinite number
of) time-steps. Similar to the bandit case, agent’s objective is to acquire as much
reward as possible during an episode, and as a matter of fact this strongly depends
on the policy that the agent follows. At the end of episode t, in which a sequence
of tuples {(sℓ, aℓ, rℓ+1)}Lℓ=0 has been experienced (with sL+1 a terminal state, and
L generally varying among different episodes), the agent’s performance after each
time-step ℓ is evaluated using the so-called return,

G
(t)
ℓ =

L−ℓ∑
i=0

γir
(t)
i+ℓ+1, (2.241)

which is the weighted sum of rewards obtained at all future time-steps, with a
discount factor γ ∈ (0, 1], weighting more the rewards that are closer in the future.
Note that for infinite-horizon MDPs, i.e., L→∞, it must hold γ < 1 to ensure that
Gℓ remains finite.

By introducing the return, it is straightforward to assign a value to a state s for
a given interaction policy π, via the so-called state value function:

vπ(s) = Eπ[Gℓ|sℓ = s], (2.242)

which is the expected return over all possible trajectories that start from state s,
take actions according to policy π and whose dynamics is governed by τ . In other

91



2.6. REINFORCEMENT LEARNING

words, the value function measures how convenient it is to visit state s when policy
π is being followed, and thus provides a route to qualify the goodness of such
policy. Note that this quantity is completely determined by the future trajectories
accessible from s and hence its dependence on the time-step ℓ can have at most the
effect of restricting the set of states on which vπ(s) is supported at that time; we
keep this dependence implicit unless otherwise stated. By writing explicitly the
expected value for the first future time-step in Eq. (2.242) and then applying the
definition of v recursively, it is easy to show that the state-value function satisfies,
for any policy, the Bellman equation [Bel03]:

vπ(s) =
∑

s′∈S,r∈R
a∈A

τ(s′, r|s, a)π(a|s) (r + γvπ(s
′)) . (2.243)

This equation relates the value of a state s with that of its nearest neighbours s′,
which can be reached with a single action from s, and with the corresponding
reward obtained by performing such action.

Since value functions assign a score to the policy π being followed, a possible
route to solve the reinforcement learning problem is that of maximizing state-value
functions. Specifically, the optimal policy π∗, maximizes the state-value function for
each s and thus represents the optimal value function, which satisfies a particular
Bellman equation, which is known as the optimal Bellman equation:

v∗(s) := vπ∗(s) = max
π

vπ(s) (2.244)

= max
a∈A

∑
s′∈S,r∈R

τ(s′, r|s, a) (r + γv∗(s′)) . (2.245)

In an hypothetical situation where optimal value functions are available, an optimal
policy can readily be constructed by selecting an action that, from each state, takes
the environment towards the next state whose state-value function is the highest.
Nevertheless, to do so one needs to have a precise mapping between actions and
next-states, an information which is missing if environment dynamics τ(s′|s, a) is
unavailable to the agent.

For this reason, we define the state-action value function (or Q-function, or
Q-value) as the expected return when starting from state s and performing action
a:

Qπ(s, a) = Eπ [Gℓ|sℓ = s, aℓ = a] , (2.246)

which is related to the state-value function by vπ(s) =
∑

a∈A π(a|s)Qπ(s, a).
Whenever it is clear from the context we will drop the dependence on the policy π
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for Q(s, a). Similar to the state value function, by writing explicitly the expected
value for the first future time-step, the Bellman equation for state-action value
function reads:

Qπ(s, a) =
∑

s′∈S,r∈R
a∈A

τ(s′, r|s, a)(r + γπ(a′|s′)Qπ(s
′, a′)).

Importantly, the optimal policy π∗ can also be obtained by maximizing the
Q-function, with a corresponding optimal Bellman equation

Q∗(s, a) := Qπ∗(s, a) = max
π

Qπ(s, a) (2.247)

=
∑

s′∈S,r∈R

τ(s′, r|s, a)(r + γmax
a′∈A

Q∗(s′, a′)).

Note that the state-action value function Q(s, a) provides a natural generalization
of the expected reward Q(a) to the case where agent and environment interact
sequentially during an episode, where the necessity of defining enivornment states
arises. In the latter case, the Bellman equation trivially reduces to only the first
term in the right-hand side of Eq. 2.243.

We are now in position to understand the complexity of the reinforcement
learning problem. While agent and environment begin to interact through some
policy π, state-action value functions are not available to the agent. In turn, several
repetitions of such interaction are required in order to asses which is the relevant
subspace of states and actions (recall that environment dynamics τ(s′, r|s, a) might
be stochastic). Since the agent can not do better than randomly sampling actions
at the beggining of the learning process, she needs to wait a transient time —
which is related to the probability of randomly arriving to a high-reward region
of the state-action space — until some reward signal that might guide the search
is experienced. Once obtained a reward signal, a balance between exploring new
regions of the state-action space, and to better estimate current state-action value
functions should be made. Here, even if an action deterministically maps a state s
to a state s′, the agent needs several episodes in order to estimate value functions
Qπ(s, a), since those depend on the accessible region of the state-action space
under policy π, once s′ has been reached, as explicited in the Bellman equation
of Eq. 2.247. Moreover, such policy should be modified in order to maximize the
expected return. Overall, reaching a reasonable balance between exploration and
exploitation in such scenarios is certainly challenging, particularly if the agent has
resource constraints such as a finite number of episodes available in order to learn
a reasonably good policy.
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In this regard, while the model-free assumption is strong, it often happens that
such agents discover unknown protocols solving the probem at hand. While the
solutions found by RL might not be optimal, they can be better than any previously
known one. Moreover, the versatily of the reinforcement learning setting (in
particular when defining states, actions and rewards) constitutes an extremely
appealing tool the discovery of ansatz to problems that are challenging to tackle
(or even to model), as we do in Chapter 3.

In what follows we will detail one out of the — very many — algorithms that
can be used in order to learn optimal policies in model-free, reinforcement learning
scenarios.

2.6.3 Q-learning
In the model-free setting, the agent not only has to find an optimal policy by
exploiting valuable actions, but also needs to characterize the environment in the
first place by exploring possibly advantageous configurations. In such a case, the
Q-value is quite helpful since it associates a value to the transitions determined by
taking action a from state s and following policy π thereafter.

Q-learning is an algorithm that can be used to learn optimal policies in a model-
free way, and it was first proposed by Watkins [Wat89]. This algorothm is often used
as a basis for more advanced RL algorithms [MKS+13; SLH+14]. It is based on the
observation that any Bellman operator, i.e., the operator describing the evolution
of a value function as in Eqs. (2.243,2.244,2.247), is contractive [Sze10b]. This
implies that, under repeated applications of a Bellman operator, any value function
converges to a fixed point, which by construction satisfies the corresponding
Bellman equation. Thus, in order to find Q∗(s, a), Q-learning turns the optimal
Bellman equation for Q, Eq. (2.247), into an update rule for Q̂(sℓ, aℓ), i.e. , the
Q-function’s estimate available to the agent at a given time-step ℓ of any episode
t = 1, · · · , L.

After an interaction step sℓ → aℓ → rℓ+1 → sℓ+1 is experienced, the update
rule for the Q-estimate is

Q̂(sℓ, aℓ)← (1− λt(sℓ, aℓ))Q̂(sℓ, aℓ) (2.248)

+ λt(sℓ, aℓ)

(
rℓ+1 + γ max

a′∈A(sℓ+1)
Q̂(sℓ+1, a

′)

)
, (2.249)

where λt(s, a) is the learning rate, which depends on the number of times the
state-action pair (sℓ, aℓ) has been visited. Note that in order to do the update at
each time-step ℓ, it is only necessary to enjoy the next immediate reward rℓ+1 and
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observe the next state sℓ+1; this method thereby allows an on-line learning of the
MDP. A pseudo-code of the algorithm can be found below.

Algorithm 4: Q-learning pseudo-code.
input : Q̂(s, a) arbitrarly initialized ∀s ∈ S, ∀a ∈ A(s);

learning rates λt(sℓ, aℓ) ∈ (0, 1], ϵ > 0
output : Q̂(s, a) ∼ Q∗(s, a)

1

2 for t in 1 … T do
3 initialize s0
4 for step ℓ in episode t do
5 take action aℓ according to π (e.g. ϵ-greedy)
6 observe reward rℓ+1 and next state sℓ+1

7 update Q̂(sℓ, aℓ) according to:
8 Q̂(sℓ, aℓ)← Q̂(sℓ, aℓ) + λ(sℓ, aℓ)[rℓ+1+

9 γmaxa′ Q̂(sℓ+1, a
′)− Q̂(sℓ, aℓ)]

10 if sℓ+1 is terminal state then
11 break
12 else
13 sℓ ← sℓ+1

After a large number n of iterations of the update rule Eq. (2.248) for all state-
action couples, the convergence of the Q-estimate to the optimal Q-function is
guaranteed by two general conditions on the learning rate (also known as Robinson
conditions) [Wat89; SG18]:

Q̂(s, a) →
k→∞

Q∗(s, a) ∀s ∈ S, a ∈ A(s) (2.250)

iff
∑
t(s,a)

λt(s, a) =∞,
∑
t(s,a)

λt(s, a)
2 <∞, (2.251)

where the sums are taken over all interactions at which a given state-action couple
is visited. Once the optimal Q-function is obtained, an optimal (deterministic)
policy can be constructed by “going greedy” with respect to it, i.e., π∗(a|s) =
δ(a, argmax

a∈A
Q∗(s, a)) for all s ∈ S , where δ(x, y) is a Kronecker delta.

In RL literatue, Q-learning is classified as an off-policy method [SG18], meaning
that it learns the state-action values of a target policy - in this case the optimal
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policy - by taking actions according to an interaction policy, generally differing from
the first one. The standard Q-learning method commits to an ϵ-greedy interaction
policy, where with probability ϵ the agent chooses a random action and otherwise
it chooses the greedy action that maximizes the current Q-estimate. However, as
we will see in Sec. 3.3.4, more general strategies can be considered, including a
clever search as inspired by UCB or TS algorithms.

Moreover, Q-learning is also classified as a tabular method [SG18], meaning
that it does not approximate or infer the value function of state-actions that have
not been visited. In the latter case, it is customary to use an artificial neural network
in order to infer the value of the Q-function, and much of the recent success of
reinforcement learning algorithms in discovering new protocols for a wide variaty
of problems hinges on such networks.

There is a plethora of reinforcement learning algorithms that has been proposed
according to specific constraints imposed in the setting, and there is generally no
best algorithm; on the contrary — as it happens in real-life — the success of an idea
generally depends on the context it is carried out. In general, a combination of them
needs to be done in order to attain succesful learning and to prove an advantage
over state-of-the-art techniques, when tackling a problem from the reinforcement
learning perspective. Before closing up this section in reinforcement learning, let
us comment on the case where a model of environment dynamics is available to
the agent.

2.6.4 Model aware methods

In the model-aware scenario, the agent has access to the environment dynamics
τ(s′r|s, a). Nonetheless, the question of how to design an optimal policy still holds:
while estimating value functions out of samples is no longer required, the agent
still needs to solve the Bellman equation in Eq. 2.243 in order to compute vπ(s) for
s ∈ S . Moreover, the policy optimization challenge remains, and solving it can be
highly non-trivial. Such a problem is known as planning [SG18], and can be solved
for finite-horizon MDPs via dynamic programming methods.

Here we distinguish between two approaches. On the one hand, there is the
sequential approach, which exploits the structure of Bellman equation and solves
the policy optimization by splitting the global policy optimization into a sequence
of smaller optimization problems [Bel03]. On the other hand, iterative approaches
can be formulated for the policy optimization problem, such as value and policy
iteration algorithms. The latter approach exploits the contractive property of state
value function, and are sligthly more general than the methods we consider here,
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since they can readily be applied in scenarios where L (the number of time-steps
in each episode) is not fixed [SG18]). In particular, the state value function can be
seen as a fixed point of a contractive operator, called the Bellman operator [Sze10a].
While policy iteration algorithms consist on a loop where value functions are
estimated through such contractiveness property and a policy is modified in such a
way to optimize such values, value iteration algorihtms straightfowardly apply the
optimal Bellman operator in order to compute v∗(s) ∀s ∈ S ; more insight can be
gained in this online demonstration.

In this thesis we restrict to a sequential optimization of the state value, since
we will apply RL algorithms to a problem with a well-defined, sequential structure,
namely the calibration of Dolinar receivers. We thus follow the method introduced
by Bellman [Bel03], which makes use of the recursive relation of Eq. (2.244) to
find the optimal policy step by step, and for this we assume that every episode
deterministically ends at a fixed time-step L, and denote by v∗ℓ (s) the optimal value
function of state s at time-step ℓ. Here, the so-called principle of optimality holds,
which is nothing than the optimal value equation in Eq. 2.247, and states that an
optimal policy can be obtained by going greedy sequentially, e.g. step by step.
Hence, since the optimal policy consists in taking the best possible action from any
given state, it can be constructed by concatenating optimal (and local) policies at
each time-step: we start by solving Eq. (2.244) at the last time-step,

v∗L(s) = max
a∈A(sL)

∑
r∈R

τ(r|s, a)r, (2.252)

where we used the fact that vL+1(s) = 0. The solution to Eq. (2.252) provides the
optimal action at step L− 1 for each s and the optimal value function v∗L(s). Then
we plug the latter into the optimal Bellman equation for the previous time-step,
which in turn can be solved to obtain the optimal action and value function v∗L−1(s)
for every s. By repeating this procedure iteratively for each time-step ℓ = L, · · · , 0,
we can obtain the optimal sequence of actions and value functions for any state
at any time-step. This an approach has the nice interpretation of constructing the
solution of a large problem by solving smaller problems, each stage essentially
adding some complexity into the problem at hand.

The difficulty in this method is that the optimization over actions at a given state
i.e. maxa∈A(sℓ) might be find problems. As a matter of fact, we will find difficulties
in such optimization landscape when calibrating coherent-state receivers in the
presence of noisy channels (see Sec. 3.3.5.)
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2.6.5 Discussion
In this section we have introduced some basic concepts in reinforcement learning,
which can readily be used by an agnostic agent in order to learn good behaviours
when acting in unknown environments. The goodness of such behaviours is for-
mally quantified by the amount of reward that the agent gets, on average, when
departing from its initial state (or the average over possible states, if there is a
non-vanishing probability of the interaction being initialized in more than one
state). For this, we have introduced value functions, which are the expected return
(i.e. a weighted sum of stochastic rewards obtained during an episode) that the
agent enjoys when following policy π, and by doing so we have defined an order
relation among policies, i.e. a policy π′ is better than a policy π if vπ(s) < vπ′ (s)
∀s ∈ S . In particular, the agent should seek to perform optimally, and that guaran-
tees her to attain as much rewards as possible, on average, during an episode. We
have discussed some methods that the agent can used in order to find such optimal
policies, through the optimal state value functions, in Sec. 2.6.4. Nonetheless, such
methods can only work if a perfect model of the environment dynamics is available
to the agent, that is, if the agent knows excatly which is the probability of enjoying
a reward r, and observe its environment transitioning to state s′, when departing
from state s and performing action a. To gain some intuition on the complexity
that model-free scenarios carry on, we have stepped back and discussed a simpli-
fied setting in Sec. 2.6.1, known as the multi-armed bandit problem, in which we
introduced several strategies that balance between exploring how good untaken
actions are, and exploiting potentially sub-optimal yet high-reward-retrieving ac-
tions; in particular we studied ε-greedy, UCB and TS strategies. We then moved to
the general MDP case in Sec. 2.6.2, where the usefulness of the state-action value
functions Q(s, a) was highlighted. Finally, we introduced an algorithm that allows
the agent to learn optimal policies, called Q-learning, in Sec. 2.6.3.

These concepts and methods will find use in Ch. 3, where a reinforcement
learning agent is asked to calibrate a quantum receiver out of several repetitions of
the experiment. The model-free features of the algorithms we have discussed can
readily be used to deal with scenarios where quantum information is transmitted
over unknown quantum channels, a result we will present in Sec. 3.3.5. Let us
stress that here, even finding sub-optimal strategies might already be a step forward
towards better understanding the structure of quantum communication protocols,
since little is known about such systems. In this regard, there is plenty of room
for the type of machine learning heuristics that are presented along this thesis, in
order to help with the development of quantum information protocols.
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Yo te pido un favor, no me dejes caer
en las tumbas de la gloria.

— Fito Paez

3
Learning in the darkness

Our journey through the learning in the quantum begins, literally, by trial and
error. We focus on quantum state discrimination (see Sec. 2.5.2), where we want to
tell which is the physical state of our system out of measurement outcomes. In this
Chapter, learning occurs from the darkness, and we ask how the discrimination
error can be minimized by using only binary reward signals, accounting for the
correctness of the guess.

To this end, we will focus in optical systems, and ask a model-free reinforcement-
learning agent (see Sec. 2.6) to control an optical table; by departing from complete
ignorance about the setting, we require the agent to achieve near-optimal discrimi-
nation performance. Our approach is crucially focused in experimental scenarios,
where each repetition of the experiment counts, and thus exploiting every mea-
surement outcome is required.

Studying this setting is motivated particularly by long-distance classical com-
munication over quantum channels. Here, classical information is encoded into
a quantum state, which is sent by a quantum channel to a receiver. Once ar-
rived, the original information needs be decoded as accurately as possible, and
thus a non-trivial optimization over quantum measurements arises. For instance in
ground-to-satellite communication, optical signals are sent through the atmosphere,
which can degrade signals’ intensity to the point that quantum distinguishability
effects become relevant. A quantum receiver is thereby used, which decodes the
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original information sent from free space.
We consider one of the most standard sources of light found in optical labo-

ratories, which are lasers. The quantum-mechanical behaviour of such systems
is described by coherent states [Gla63] |α⟩, that belong to the set of Gaussian
states (see 2.3.1). Specifically, we cast the discrimination of two electromagnetic
signals with opposite phases, described by two coherent states of the field, |αk⟩,
with α(k) = (−1)kα, whose energy is proportional to |α|2. When the energy of
the signals approaches zero, i.e., |α|2 ≪ 1 (or when losses are present in the trans-
mission channel), quantum effects become evident and it becomes impossible to
discriminate between them perfectly. In particular, the ultimate bound given by
quantum mechanics imposes bounds to the distinguishability of states, as discussed
in Sec. 2.5.2. For the discrimination between two coherent states, the Helstrom
bound (e.g. Eq. (2.192)) reads:

P (hel)
s (α) = max

M
Ps(α,M) =

1

2

(
1 +

√
1− e−4|α|2

)
, (3.1)

where we recall that the overlap between the two states is |⟨−α|α⟩|2 = e−4|α|
2 .

Thus, as the intensity of the original signals to zero, the success probability gets
closer to that of randomly guessing for the phase of the coherent state.

As discussed in Sec. 2.5.2, any binary discrimination protocol is described
compactly by a POVM,M = {M0,M1} with M1,2 ≥ 0 and M1 +M2 = I. The
probability of obtaining measurement outcome k̂ given that hypothesis k was true
is given by p(k̂|αk) = Tr[Mk |α(k)⟩⟨α(k)|]. Nevertheless, once outcome k̂ has been
obtained, a guess for k needs to be done, and the best one is — by definition —
related to the most likely hypothesis k ∈ {0, 1}, given outcome k̂. Thus, the success
probability of this setting reads

Ps(α,M) =
∑
k̂=0,1

max
k=0,1

p(α(k), k̂) (3.2)

=
∑
k̂=0,1

max
k=0,1

p(k̂|α(k))pk. (3.3)

In particular, the measurementM that achieves the Helstrom success probability
is a superposition on the positive and negative part of an operator Λ = 1

2
(|α⟩⟨α|+

|−α⟩⟨−α|). As discussed in the exampe of Sec. 2.5.2, such projection is obtained by
a superposition of the original states, which in the coherent-state discrimination
problem leads to a projection over cat-like states of the form |α0⟩+ |α1⟩ [OBH96].

While preparation of such states currently constitutes an experimental chal-
lenge [TBW+20; SEL+22], an implementation of this projection can be carried out
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using lineal (i.e. Gaussian) optics, photon-detectors and feedback operations. This
measurement scheme is known as the Dolinar receiver, works in a sequential logic
and it is proven to be assymptotically optimal [Dol; TSV+05]. Because it only
requires lineal optics, photon-detection and feedback operations, this receiver is
experimentally appealing, and several proofs of concepts have already been carried
out [CMG+07; Ger04; DGD13; DB18]. It constitutes, nevertheless, a non-Gaussian
measurement (see Sec. 2.3.4), and as such it presents several implementation chal-
lenges; for example, the feedback operation is assumed to act instantaneously, with
arbitrarly many operations happening during the measurement process, whereas
in practice we are constrained to a limited amount of such operations. Moreover,
the presence of noise might alter the performance of the receiver.

However, a strong assumption is needed to implement the Helstrom measure-
ment, or approximate versions of it. Namely, it is (obviously) required that the
experimenter knows the quantum states she wants to distinguish. This motivates
the current Chapter, where we will focus on the model-free discrmination of co-
herent states, by means of a Dolinar-like reveiver. Our motivation emerges from
situations where the experimental setting is not well characterized, and where we
need to take advantage of each device usage (i.e. each measurement).

In this regard, achieving optimality in the implementation of quantum protocols
(such as state discrimination) is certainly a goal, but we shall not dismiss sub-optimal
strategies. Several examples supporting this claim can be found in our thesis: we
find several scenarios in which sub-optimal strategies become state-of-the-art
techniques that can readily be used to tackle a problem at hand. For instance, while
the Dolinar receiver is assymptotically optimal when enough measurement layers
are performed, we will see that already a single layer is sufficient to surpass the
best Gaussian receiver (that is, a receiver composed only out of Gaussian elements).

Nevertheless, while the performance of such receivers can prove succesful even
in the case of limited resources (for example, a limited number of such measurement
layers available), there are certainly more shortcomes that we need to address in
order to model realistic scenarios. Among them, there is always the presence of
some noise that underlies every experiment. Moreover, in communication scenarios,
an unknown source of noise (such as an uncharacterized quantum channel) may
alter the transmitted signals in a non-trivial manner. For example, in the case of
long-distance ground-to-satellite communications, such channel is the atmosphere,
whose action on the coherent-states can be understood as a lossy channel (see
Sec. 2.3.3) whose attenuation suffers non-trivial variations depending on height
or temperature, a situation which turns particularly difficult to model [DVR+19;
AP05; UHP+12; Pir21a; Pir21b; VSV11; VSV+17].
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In this context, our model-free approach to the calibration of resource-limited
Dolinar-like receivers finds a solid motivation. Here, an agent needs to find a
near-optimal configuration for its initially uncalibrated receiver by trial and error
repetitions of the discrimination experiment. At each episode, one of the two
possible coherent-states |αk⟩ is randomly picked and sent to the agent, who needs
to make use of its apparatus in order to guess for the signal’s label. Here, we stress
that no knowledge about the physics of the setting is assumed, but only a reward
is given to the agent if the bit of information is correctly decoded. As we will
show, this approach is robust under the presence of unknown sources of noise,
since the agent is no biased towards the noise-free setting and can readily adapt its
calibration strategy to the noisy channel at hand.

This Chapter is structured in the following way. We begin in Sec. 3.1 by re-
visting some quantum receivers that are frequently used to discriminate between
two coherent-states; in particular we explain the structure of Dolinar receiver
in Sec. 3.1.3, and its calibration is casted as a reinforcement-learning problem in
Sec. 3.3.1. Before studying the performance of model-free agents, we turn to opti-
mize Dolinar-like receivers in the model-aware case via dynamic programming in
Sec. 3.2. We then turn to Sec. 3.3.2 where we present the main results of this Chapter,
following by a sequence of experimental limitations considered in Sec. 3.3.5. Finally,
we finish with a discussion and prospects for future extensions of this project in
Sec. 3.4.

3.1 Coherent-state quantum receivers

This section is a tour through Gaussian and almost-Gaussian quantum receivers
which are used to discriminate between two coherent states |±α⟩ of equal energy
and opposite phase. Note that such encoding is known in the literature as Binary
Phase-Shifted Key (BPSK) coherent state discrimination, since the (classical) infor-
mation is encoded into the phase of the coherent states. For simplicity, we assume
that the sender and receiver have a shared reference frame, so that we can take the
states to be real, e.g. α ∈ R, without loss of generality, as shown in Fig. 3.1. The term
quantum receiver stands for a quantum measurement that decodes the information
carried out on a quantum state that was sent through a quantum channel. In this
Section we will restrict to the case where the signals are not altered by neither
the presence of a quantum channel (e.g. we consider the noiseless channel) nor by
noise due to malfunctioning devices: we will deal with such scenarios in Sec. 3.3.5.

As discussed in Sec. 2.3.4, operations in continuous-variable systems can be
classified as either Gaussian or non-Gaussian. Generally, the Gaussian ones are
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Figure 3.1: We show the Wigner function for the two candidate states |αk⟩ , k = 0, 1,
which are Gaussian distribution functions. We restrict to real amplitudes, since in
the binary case one can always rotate the frame (assuming we know the direction
to do so).

considered feasible in quantum optics laboratories. As such, they include linear
operations (i.e. displacing, phase-shifting, squeezing and mixing signals by beam-
splitters), Gaussian POVMs (e.g. homodyne and heterodyne measurements) and
laser-beams. In particular, we observed in Sec. 2.3.2 that coherent states are Gaussian
states (e.g. their Wigner function is a Gaussian distribution in phase-space), are
obtained by displacing the vacuum state |α⟩ = D̂α |0⟩ and describe laser states.

This Section is structured as follows. We will comment on BPSK Gaussian
receivers in Sec. 3.1.1. We then introduce some non-gaussianity through photon-
detection measurements in Sec. 3.1.2, where we study the performance of the so-
called Kennedy receiver. Then, we will introduce the Dolinar receiver in Sec. 3.1.3,
and explain its sequential logic throughout the section.
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3.1.1 Gaussian receivers
Let us brieflly retrict our attention to Gaussian measurements for the BPSK coherent-
state discrimination problem. As explained in Sec. 2.3.4, such measurements are
defined as those that preserve Gaussianity upon post-measurement condition-
ing or, if the entire state is measured, give rise to Gaussian outcome probability
distributions.

A wide class of Guassian measurements are knwon as general-dyne measure-
ments, which are POVMs that correspond to projections on generic Gaussian pure
states, and discussed in the Preliminaries section. Here, note that such projections
might not be orthogonal to each other, as happens in the heterodyne case, e.g.
projecting over a coherent state, since ⟨α|α′⟩ ̸= 0. Let us also recall that any pure
Gaussian state can be obtained through a symplectic unitary operation acting on
the vacuum state, and Weyl displacements.

When it comes to discriminate between two Gaussian states, it is known that
homodyne POVM (given by projections over quadrature states) is optimal among
the set of Gaussian operations [RIR+21; TS08; SW21]. For this reason, homodyne
success probability (in the discrimination setting) is known as the homodyne limit.
Note, nevertheless, that this is subset of all POVMs, and as such it might not saturate
the Helstrom bound (see Sec. 2.5.2). In turn, as mentioned above for the BPSK case,
the Helstrom measurement can be attained by projecting over cat-like states, which
is a non-Gaussian measurement.

To gain some more insight on the problem, let us derive the success proba-
bility attained by homodyne measurement in the BPSK. We consider a quadra-
ture measurement of the formM = {Π−,Π+}, with Π− =

∫ 0

−∞ dq |q⟩ ⟨q|, and
Π+ =

∫∞
0
dq |q⟩ ⟨q|. Given an outcome of the homodyne measurement q, the

guess for the underlying hypothesis k is chosen according to the sign of q: if the
value is negative, the signal is associated to |α(1)⟩ = |−α⟩, whereas if positive
to |α(0)⟩ = |α⟩. Such a decision rule is denoted by k̂(k) With this, the success
probability reads:

P hom
s =

∑
k

pk̂p(k̂|k) (3.4)

=
1

2

(∫ 0

−∞
dqp(q| − α) +

∫ ∞
0

dqp(q|+ α)
)

(3.5)

Recalling that p(q|α) = |⟨q|α⟩|2 =
√

2
π
e2(q−α)

2 , a straightforward calculation leads
to

P hom
s =

1

2

(
1 + Erf[

√
2α]
)
. (3.6)
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Figure 3.2: An implementation of homodyne measurement is shown, which con-
sists on mixing the incoming signal with a coherent state of strong intensity,
known as Local Oscillator, by a balanced beam-splitter. The difference in signals’
intensities between the two exiting ports constitutes the homodyne measurement
outcome [Ser17a].

As shown in Fig. 3.2, the homodyne receiver can be realized by measuring the
intensity of the resulting signals after mixing the state ρ with a local oscillator
(a high-intensity cohernet state). Quite surprisingly, the building blocks of such
standard Gaussian measurement are photon-detectors, which are actually non-
Gaussian.

Experimentally, Gaussian operations can be complemented with on/off photon-
detectors, constituted by a POVM with elements {Π0 = |0⟩⟨0| ,Π1 = I− |0⟩⟨0|},
where the Π1 is a non-Gaussian projection. Using on-off photon-detections is
experimentally feasible, and there has been a trend in the recent years to combine
Gaussian transformations with photo-detections carried out by the end of the
circuit. While in general one can surpass the homodyne limit, it has been shown
that optimality might be elusive in this setting [GG21]. Before considering more
sophisticated receivers, we will now study an example of the aforementioned
Gaussian+on/off receiver, named after Kennedy.

3.1.2 Kennedy receivers

When allowing on/off photodetectors, an intuitive approach to the discrimination
of binary coherent states can be constructed [Ken73]. Assuming we know the
amplitude |α| of the incoming states, we can readily displace the signal by D̂β with
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(a) (b)

Figure 3.3: We show the Wigner functions for (panel a) the coherent states |±α⟩
and (panel b) the displaced coherent states |0⟩ and |2α⟩

β = α. In this way, if |−α⟩ was received, the resulting state would be |0⟩, and
if |α⟩ was received instead, the resulting state would be |2α⟩. This is illustrated
in Fig. 3.3, where the Wigner function of the incoming states (either |α⟩ or |−α⟩,
with equal priors) is shown, along with the displaced signals. After displacing, an
on/off photodetector is used, which projects the probe into the vacuum state |0⟩
or its complement, i.e.Mph = {|0⟩⟨0| , I− |0⟩⟨0|}. Such a measurement is a non-
Gaussian one, yet is a standard component in modern quantum optics laboratories.
The whole apparatus of measuring the displaced signal is known as the Kenendy
receiver, and is shown in Fig. 3.4.

Thus, once the measurement outcome is obtained, a guess for the most-likely
hypothesis needs to be performed. By denoting the measurement outcome by
o ∈ {0, 1} (standing for zero and one or more photons detected respectively), the
sucess probability reads

P ken
s =

∑
o=0,1

max
k
pkp(o|α(k)), (3.7)

where p(n|α(k)) can easily be obtained by noticing that p(0|α(k)) = |⟨0|D̂β |α⟩ |2 =
|⟨−β|α⟩|2, and p(1|α(k)) = 1− p(0|α(k)).

Let us understand the logic behind this receiver. Once displaced, the signal
can either be |0⟩ or |2α⟩. In the former case, when measuring with an on/off
photodetection — and in the absense of errors such as dark-counts — the only
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possible result is n = 0 photons. Thus, if outcome n = 1 was obtained, we can
be sure that the signal is |α⟩. However, outcome n = 0 does not imply that the
signal is |−α⟩ with absolute certainty, since |⟨0|2α⟩|2 = e−4|α

2| ̸= 0. This leads us
to evaluate the success probability of Kennedy receiver as:

P ken
s (α) = 1− e−4|α|

2

2
. (3.8)

When compared with the homodyne measurement (i.e. Eq. 3.6), we observe that an
advantage in favour of Kennedy receiver is only attained when |α| ≳ 0.4.

As it happens in cases where little resources are available, each component of
a protocol should be optimized if possible. Here, we can readily observe that the
displacement value β = α might not be the best choice.

Optimized Kennedy receiver

By identifying the displacement as a degree of freedom to be optimized, we have
parametrized the Kennedy receiver, and its performance is now measured by the
success probability associated to the specific choice of β. For a fixed β, we will
denote such receiver as the β-Kennedy receiver (the original Kennedy receiver is
recovered for β = α).

We note that different values of β will lead to different POVMs Mβ , each
belonging to the same family of Kennedy-like receivers. This is analogous to
the case of parametrized quantum circuits studied in Sec. 2.2, in which a unitary
transformation was constructed from local qubit rotations and entangling CNOT
gates, and optimized in such a way to minimize a given cost function. From
this quantum machine learning point of view, the parametrized quantum circuit
analogous is given byMβ and the success probability (or, equivalently, the error
probability) P β−ken

e (α, β) plays the role of the cost function.
Depending on the context, this problem also falls into the category of optimal

control theory [Bel64; Ber05], since one is interested in optimizing the cost function.

Figure 3.4: We show the Kennedy receiver, which in the case of coherent states’
intensity being α, it reduces to β = −α.
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Figure 3.5: We show the optimization landscape for the β-Kennedy receiver, at a
fixed intensity α = 0.2. which in the case of coherent states’ intensity being α, it
reduces to β = −α.

This field tries to find answers on how to steer a system towards a target state by
performing external controls or actions on it. For instance, such system can be
thought as our coherent state |α(k)⟩, whose phase needs to be deciphered by the
β-Kennedy receiver, and different actions correspond to varying the value of β. In
this regard, navigating through the optimization landscape is important in order to
find which actions are the best, though doing so is generally hard. For instance,
one needs to estimate the cost value for each possible value of the control: in our
discrimination example, this means estimating the success probability associated to
each possible β-Kennedy receiver out of several repetitions of the discrimination
experiment. While estimating the entire landscape is generally too costly, we
can get some insight into the problem at hand by studying simplified models.
In particular, certain scenarios can readily be deemed hopeless, in the sense that
parameter optimization might only succeed with an exponentially vanishing success
probability, as it happens with barren plateaus appearing in certain parametrized
quantum circuits (see Sec. 2.2)

In this chapter, the simplified model that allows us to get some insight is precisely
the β-Kennedy receiver, whose optimization landscape is shown in Fig. 3.5 for a
fixed value of α = 0.2. In this a region, the homodyne receiver outperforms the
Kennedy one, as noticed after inspecting Eq. 3.8. However, we observe that there is
an entire region of β values for which the β-Kennedy receiver can actually surpass
the homodyne limit. Note also that the optimal solution is degenerate; this is a
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Figure 3.6: We compare the success probabilities for homodyne receiver, Kennedy
receiver, and optimized-Kennedy receiver with the Helstrom bound. Data in both
panels is the same, however in right one we show the different with Helstrom
bound, in order to help visualization.

consequence of the symmetry in testing either |α⟩ (negative β) or |−α⟩ (positive
β) using the photon-detector logic explained above.

In this way, the optimization over β can be carried out for each value of α. The
resulting receiver is known as the optimized Kennedy receiver, and surpasses the
homodyne limit for all intensity values, as shown in Fig. 3.6, where we compare
its success probability, denoted by P opt−ken

S , with that of homodying and with the
original Kennedy receiver P ken

S (e.g. β = −α). To aid the comparison, we have
depicted the difference with respect to the Helstrom bound: how to approach such
a limit is the matter of the next section.

3.1.3 Dolinar receivers
Sequential strategies lie in the heart of this thesis, and this Chapter is no exception.
The Dolinar receiver [Dol73] is a concatenation of β-Kennedy receivers, each acting
on an tiny portion of the original signal.

In particular, this receiver consists on splitting the incoming coherent state by
using beam-splitters (BMs), resulting into L lower-intensity copies, e.g |α(ℓ)

k ⟩ =
| αk√

L
⟩ for ℓ = 1, ..., L. From here, the phase of each state is tested by using a β-

Kennedy receiver. Crucially, a sequential logic is applied, in which the displacement
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Figure 3.7: We show a Dolinar-like receiver. For an infinite sequence measurements
and feedforward operations, such a scheme attains the Helstrom bound for binary
coherent-state discrimination.

value at ℓ-th stage depends on the measurement outcomes previously obtained, as
shown in Fig. 3.7. This conditioning operation is known as a classical feed-forward,
and should in principle be optimized over all possible measurement outcomes. We
note that for L = 1 we recover the optimized-Kennedy receiver. However, because
of its structure consisting on L processing layers ℓ = 0, · · · , L, Dolinar receiver
is considerably more complex than the Kennedy one. Specifically, for each layer
ℓ < L, the following operations are applied:

1. The input signal |α⟩ (or equivalently |−α⟩) is split on a BS of transmissivity
θ, effectively extracting a fraction 1− θ of the energy for detection. The BS
transforms the input signal and vacuum states as

|α⟩ |0⟩ 7→ |α
√
θ⟩tr |α

√
1− θ⟩ref , (3.9)

Note that the BS adds a phase to the second mode, which we assumed cor-
rected via a proper phase-shifter not shown in the figure.

2. The reflected part of the signal undergoes a displacement operation D̂β .
Such operation is realizable via interference with a strong coherent signal
on a small-reflectivity BS, not shown in the figure. The resulting state is
|α̃(β, θ)⟩ref = D̂β |α

√
1− θ⟩ref.

3. The displaced signal is measured via a on/off photodetector, which detects
no photon, i.e., outcome oℓ+1 = 0, with conditional probability

p(oℓ+1 = 0|α, (β, θ)) = |⟨0|α̃(β, θ)⟩ref|2 = e−|α̃(β,θ)|
2

, (3.10)
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and detects one or more photons, i.e., oℓ+1 = 1, with probability 1−p(oℓ+1 =
0|α, (β, θ)).

4. The transmitted part of the signal enters layer ℓ+ 1.

Finally, the last processing layer ℓ = L consists in elaborating a guess k̂ of the true
hypothesis k, based on previous measurement outcomes and parameter choices.

Similar to β-Kennedy receivers, Dolinar-like receivers are parametrized by the
displacements D̂β . Nevertheless, the complexity is considerably higher: while L
displacement operations should be performed per signal detection, the feed-forward
conditioning non-trivally enlarges the optimization landscape to 2L − 1 possible
values.

In addition, we shall now adopt the control-theory mindset introduced in
Sec. 2.6,and think of the displacements D̂βℓ and attenuations θℓ as actions aℓ per-
formed on the signal.

Under these definitions, let us now study the success probability associated to a
Dolinar-like receiver. For an initial coherent state |α⟩, the input state at the ℓ-th
layer is |αℓ⟩ = |α

√
θ0 · · · θℓ−1⟩. In principle, we can use all the past history defined

as
hℓ = (a0, o1, · · · , aℓ−1), (3.11)

with h0 = ∅, to decide the next value of (β, θ) and the final guess. We label them
compactly as aℓ(hℓ) = (βhℓ , θhℓ) and aL(hL) = k̂, omitting the label ℓ or the
dependence on hℓ when it is clear from the context.

Hence, the average success probability of the L-Dolinar receiver, calibrated
under actions {aℓ}, and averaged out over all possible outcomes’ sequences o1:L =
(o1, · · · , oL) can be written as

Ps(α, {aℓ}) =
∑
o1:L

L∏
ℓ=1

p(oℓ|α(k), a(hℓ)) pk

∣∣∣
k=a(hL)

, (3.12)

Here, the configuration {aℓ} is the total set of actions over all histories, and we
have written the conditional probability of the sequence of outcomes o1:L as a
product of single-layer conditional probabilities, e.g. Eq.(3.10). In particular, we aim
to optimize this success probability over the available actions of the receiver, and
this value will denote as

P (L)
∗ (α) = max

{aℓ}
Ps(α, {aℓ}). (3.13)

We will omit the dependence on L whenever it is clear from the context.
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Figure 3.8: We show the original proposal of the Dolinar receiver, which works in
continuous-time. This image is taken from Ref. [ADPP11]. Instead of splitting the
coherent-state in space by a beam-splitter array, we here have the signal spread in
time, as explained in the main-body. The ℓ-dependence in the conditional displace-
ments is now translated into a time-dependence for u(t), which in turn depends on
the parity of the measurement outcomes as captured by the function z(t). After
the pulse-duration T , a decision for the phase of the coherent state is done via the
function z(T ).

The importance of the Dolinar receiver is that it is known to attain the Helstrom
bound in the limit of many layers, i.e. L→∞, provided that the optimal actions
are performed. However, before discussing such optimality and the structure of the
receiver further, we will comment on an alternative formulation of this receiver.

3.1.4 Time-domain Dolinar receiver & optimality
While we have introduced Dolinar receiver in the spatial-domain, its original
formulation was done in the continuous-time domain [Dol]. The two formulations
are related to each other by the equivalence between continuous-time photon-
counting procesess and a (sufficiently-large) sequence of lossless beam-splitters
and photon-detectors, as studied in Ref. [Ban94].

In the time-domain picture, the coherent state |±α⟩ is understood as a travelling-
mode, and given by the field ψ(t) = ±ψeiωt, where ω is the optical frequency and
|α|2 =

∫ T
0
|ψ(t)|2dt = ψ2T , with T the total duration of the pulse. At each time

t, the receiver shifts the incoming-field by a value uz(t)(t), and measures it by
a photon-detector, as depicted in Fig. 3.8. Such measurement is assumed to be
carried out very fast, leading only to binary outcomes (click or no click), which
defines a so-called compound Poisson process. As shown in Dolinar’s PhD thesis,
the most-likely hypothesis k is given by the parity of the sum of the outcomes
obtained up to time t, and this determines the binary value z(t) that controls the
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nature of the displacements to be done at consecutive times. The optimal shape
of the pulses uz(t)(t) and of the success-probability of this scheme was originally
derived in Ref. [Dol] by performing a dynamic programming optimization of the
likelihood-ratio; in turn, he was able to show that the receiver attains the Helstrom
bound.

In this line, the optimality of Dolinar receiver can also be proved as follows.
With sufficiently many measurement layers, say L, the coherent state will be
splitted into L copies, each having a very low intensity. As such, the support of
the attenuated coherent state will be determined by (the Fock states) of |0⟩ and
|1⟩. From here, we can recall the results of Ref. [ABB+05], namely that the optimal
discrimination between multiple copies of two pure quantum states can be achieved
by a sequential strategy, in the assymptotic case of many copies. This strategy
consists on a local projective measurement that is optimized at each step according
to the most likely hypothesis; most notably the global measurement optimization
problem is solved by an adaptive-local measurement, which hinges on bayesian
updating the prior probabilities of each hypothesis after each measurement result.
Such strategy is shown to achieve the Helstrom bound, and it can readily be applied
to the L copies of the attenuated coherent-state. In Ref. [ADPP11] it was shown
that, following this approach, the optimal adaptive measurement coincides with
the Dolinar receiver, in the binary coherent-state discrimination problem. Also, let
us mention that an alternative proof of Dolinar receiver’s optimality is given in
Ref. [TSV+05]

However, in practical experimental scenarios it is not possible to perform a large
number of measurement layers. Such constraint is justified by (i) the experimental
feasibility of constructing the receiver, and (ii) the noise accumulation at every
layer.

Moreover, noise might even accumulate with the number of layers, as it happens
with one of the most common sources of photon-detectors noise, the dark counts.
Here, a click appears in the detector even when measuring the vacuum. Moreover,
optimality of Dolinar receiver also requires the feed-forward operation to act
before the signal reaches the next measurement layer. However, measuring and
classical post-processing do take some time, and this delay is in practice modelled
by including losses in between each measurement layer [SL14].

From our previous discussion, it might seem that we are heading towards a
paradigm where a set of suggestions is given to the experimentalist, with the
optimizing actions in Eq. 3.13 essentially constituting the recipe to follow. This
paradigm is actualy followed in Chapter 4, where several cost-minimizing quantum
circuits are discovered using our VAns algorithm, which is shown to work under
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several noise-models. While our experimental simulations should be realistic as
possible, the usefulness of the recipe we provide will ultimately depend on how
accurate can reality be modeled.

On the contrary, we will here tackle the situation from a different angle, and
adapt to reality on the fly. This is the radical and experimentally-centered approach
taken in this Chapter. To this end, a reinforcement-learning agent is faced towards
the discrimination experiment, and asked to optimize its Dolinar-like receiver by
having only access to an answer: yes/no, a binary value standing for the correctness
of its guess.

3.1.5 The sequential structure of Dolinar receiver
Before jumping to the optimization of Dolinar-like receivers (either model-aware or
model-free), it is important to further discuss its structure, as captured by Eq 3.12. In
turn, we can take profit of the sequential structure, in order to compute Eq. 3.13 in
a model-aware setting, a quantity that will help us to benchmark the performance
of agnostic agents.

We will refer to a finite Dolinar receiver, i.e. one consisting on L processing
layers as L-Dolinar, and refer to the prior probability of having the state |+α⟩ as
η0 = η; as a consequence the prior probability of |−α⟩ is η1 = 1− η. Whenever it
is clear from the context, we will drop the subscripts and simply refer to η.

To this end, we will study the performance of the L-receiver layer by layer, and
first consider a 0-Dolinar receiver. Without any measurement, we only rely on the
prior probabilities to asses the label of the states (e.g. to guess for the value of k).
The success probability of such a trivial receiver thus corresponds to the probability
of the most likely hypothesis:

PL=0
s (α, η) = max {η, 1− η}. (3.14)

Let us now consider an 1-Dolinar receiver (e.g. a Kennedy-like receiver). In such
a case, the success probability — when considering the optimal, i.e. maximum-
likelihood guess— reads

PL=1
s (α, {a}, η) =

∑
o1=0,1

max
k
p(αk, o1), (3.15)

where p(αk, o1) denotes the joint probability of having the state |αk⟩ and observing
outcome o1, and {a} reduces to the displacement with value β, as shown in Fig. 3.4.

The joint probability p(αk, o1) can be written in terms of the prior probabilty
ηk of having |αk⟩ times the probability of observing outcome o1, given we actually
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have such state:

PL=1
s (α, {a}, η) =

∑
o1=0,1

max
k
p(o1|αk)ηk. (3.16)

On the other hand, we can also write the joint probability in terms of the total
outcome probability, i.e. p(o1) =

∑
k p(o1, αk) =

∑
k p(o1|αk)ηk, and the posterior

probability of having |αk⟩ once o1 was observed:

ηk|o1 = p(αk|o1) =
p(o1|αk)ηk
p(o1)

. (3.17)

With this, the success probability of Kennedy-like receivers reads

PL=1
s (α, {a}, η) =

∑
o1=0,1

p(o1) max
k
p(αk|o1) (3.18)

=
∑
o1=0,1

p(o1) P
L=0
s (ηk|o1), (3.19)

where the dependence on {a} is left implicit. We note that once once the outcome is
observed, 1-Dolinar receivers trivially recurs to 0-Dolinar receivers, with a bayesian-
updated prior values.

Let us now consider a 2-Dolinar receiver. Here, the success probability reads

PL=2
s (α, {a}, η) =

∑
o1=0,1

∑
o2=0,1

max
k
p(αk, o1, o2) (3.20)

=
∑
o1=0,1

∑
o2=0,1

p(o1, o2) max
k
p(αk|o1, o2) (3.21)

=
∑
o1=0,1

p(o1)
∑
o2=0,1

p(o2|o1) max
k
p(αk|o1, o2) (3.22)

=
∑
o1=0,1

p(o1)
∑
o2=0,1

p(o2|o1) max
k

p(o2|αko1) p(αk|o1)
p(o2|o1)

(3.23)

=
∑
o1=0,1

p(o1)P
L=1
s (ηk|o1), (3.24)

where we expressed conditional outcomes probabilities as p(o1, o2) = p(o2|o1)p(o1),
and used

p(o2|o1) =
∑
k

p(o2αk|o1) =
∑
k

p(o2|αko1)p(αk|o1) =
∑
k

p(o2|αko1)ηk|o1 .

(3.25)
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Here, we can readily highlight the conditional dependence of the actions. In the
2-Dolinar receiver, they are given by {a1, ao1=0

2 , ao1=1
2 }, where a1 denotes the first

displacement (which is unconditional) and ao12 stands for the second displacement
(conditioned on the outcome n − 1). While this can be extended to consider
the attenuation values as well, we will not reinforcement-learn them, since their
contribution to the success probability is very small, as observed in the next Section.

Thus, the conditional dependence of the actions is reflected in the outcome
probabilities. For the first outcome o1, the dependence is only on a1 as

p(o1) =
∑
k

p(o1αk) =
∑
k

p(o1|αk)ηk =
∑
k

(o1 + (−1)o1e−|αk+a1|2)ηk, (3.26)

where we have wrote compactly the outcome probability of an on/off photodetector
with coherent state |αk + a1⟩ as input. Furthermore, as Eq. 3.25 indicates, the
dependence of o2 with o1 has a contribution on ao12 (through p(o2|αko1)), but
also through the updated prior ηk|o1 . In turn, the sequential interpretation of
the Dolinar receiver crucially depends on this bayesian update; as observed in
Eq. 3.20, a 2-Dolinar receiver is an extension of a 1-Dolinar receiver, in which the
prior probability of each hypothesis is modified according to the first measurement
outcome.

Similarly, the sequential structure can be made explicit for the L-Dolinar re-
ceiver. Let us denote with oℓ1:ℓ′ the string of outcomes (oℓ1 , oℓ1+1, ...oℓ′ ) (with
ℓ < ℓ

′). Then, the success probability of L-Dolinar receiver reads

PL
s (α, η) =

∑
o1:L

max
k
p(αk, o1:L) (3.27)

=
∑
o1

p(o1)
∑
o2:L

p(o2:L|o1)max
k
p(αk|o1:L) (3.28)

=
∑
o1

p(o1)
∑
o2:L

p(o2:L|o1)max
k

p(αk|o2:L) p(αk|o1)
p(o2:L|o1)

(3.29)

=
∑
o1

p(o1)
∑
o2:L

max
k
p(αk|o2:L) p(αk|o1) (3.30)

=
∑
o1

p(o1)P
L−1
s (ηk|o1). (3.31)

Thereby, enlarging Dolinar’s receiver with an extra layer translates into bayesian
updating the prior probability of each hypothesis.

This resemblences to the dynamic programming procedure we discussed in
Sec. 2.6.4, where the principle of optimality (i.e. the recurrence relation given by
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the optimal Bellman equation) allowed us to sequentially attain the optimal policy.
Here, we observe that the best success probability — i.e. that optimized over all
actions {a} — can be obtained by a sequential optimization of local problems, in
this case given by Kennedy-like receivers with varying priors.

Before jumping to this model-aware optimization, let us highlight some further
symmetries that will find use in the following section. In particular, note we that
the prior probability of having |α⟩, e.g. η0 = η, is sufficient to encode all the
information required for the binary discrimination problem, since η1 is trivially be
obtained from

∑
k ηk = 1. This simple symmetry should also be translated into the

success probability. In turn, from Eq. 3.16 it is trivial to see that

PL=1
S (η, {a}) = PL=1

S (1− η, {−a}), (3.32)

where by −a we mean that the displacement take now the opposite values. In
practice, since ηk ∈ [0, 1], this means that it is sufficient to consider half of such an
interval, the complementary optimal actions can be obtained from Eq. 3.32.

We will now turn to explain how the sequential structure studied above can be
exploited in order to compute the optimal values of the displacements and success
probabilities in the fully-aware scenario.

3.2 The model-aware approach

We will now discuss the model-aware optimization of Dolinar-like receivers, which
is based in the observations outlined previously regarding the sequential structure
of such receivers.

As introduced in Sec. 2.6.4, dynammic programming exploits the so-called
principle of optimality, which links optimal actions to optimal state value functions
through the optimal Bellman equation, see Eq. 2.244. In there, we introduced Markov
Decision Problems (MDP) consisting on an agent that sequentially interacts with
its environment in order to maximize a figure of merit known as the return. This
quantity captures the amount of rewards the agent collects during an episode,
and it here translates to the correcteness of agent’s guess, which is obtained after
measuring the state by a Dolinar-like receiver. In the MDP section, we have also
made the distinction between agent and environment states, which arises due to the
impossibility of the agent to have fully access to the environment’s state at a given
step, and thus Partially Observable Markov Decision Processes were introduced.
Here, we will define the environment states as the underlying quantum states |αk⟩
to be discriminated.
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Figure 3.9: We show the difference between the best probability of success at-
tainable for a fix L and the optimal probability of success in discriminating BPSK
coherent states. The results were obtained by dynamic programming. Left panel:
the attenuations at the beam-splitters are fixed in such a way that each partial
measurement deals with a state having the same intensity αℓk = αk√

L−1 for all ℓ.
Right panel: we compare the advantage of adapting beam-splitter transmisivities
(dashed lines) as compared to the receivers considered in left panel (solid lines).

Since in the model-aware scenario the agent has full access to the outcomes
probabilities, it is sensible to define agent’s state as the prior probability of |αk⟩
at each layer of the receiver. Intuitively, such a quantity stands for the belief
distribution over the states |αk⟩, and it is defined as:

bℓ(k) = p(α
(k)
ℓ |oℓ, aℓ−1, bℓ−1). (3.33)

As new information about the hidden state is collected, the belief evolves. The
evolution law of this quantity is obtained by a bayesian update, which reads:

bℓ(k) =
p(α

(k)
ℓ |oℓ, aℓ−1) bℓ−1(k)∑

k p(α
(k)
ℓ |oℓ, aℓ−1) bℓ−1(k)

. (3.34)

We can readily define the state value function v(s), recalling it quantifies how
valuable state s is in terms of the expected return. In our case, the return reduces
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to the final reward obtained after action aL, e.g. guessing, and the expected return
becomes the success probability associated to agent’s policy. Specifically, agent’s
policy consists on specifying the actions of its L-Dolinar receiver, and we are thus
interested in finidng the optimal policy, which on the one hand is linked to Eq. 3.13,
and on the other hand its state value function should satisfy the optimal Bellman
equation.

To understand this last point, let us consider final last step of an L-Dolinar
receiver, which consists on performing a guess. The optimal action to take is the
maximum-likelihood guess, and its associated value function reads

v∗L(bL) = max
k
bL(k). (3.35)

Observe that since
∑

k bℓ(k) = 1, it is sufficient to track bℓ(k = 0). The optimal
Bellman equation at step ℓ < L instead reads

v∗ℓ (bℓ) = max
a∈A(sℓ)

∑
oℓ+1∈O

∑
k

p(oℓ+1; bℓ(k), aℓ)v
∗
ℓ+1(bℓ+1). (3.36)

The last equation shows that the value-functions can be computed back-wards.
In this sense, we can first compute the optimal state-value functions for the final
layer, then move the previous layer (i.e. ℓ = L−1), and compute optimal ones using
Eq. (3.36) for each belief value in a (discretized) set of possible beliefs B. Because
of the symmetry highlighted in Eq. 3.32, we can consider points in between the
interval [0, 1

2
].

However, we note that for a given bℓ ∈ B, the posterior probability bℓ+1 ap-
pearing in optimal Bellman equation might lie outside the set B. This constitutes a
problem, since its state value function is unavailable from the previous step. To cir-
cumvent this issue, we interpolate v∗ℓ+1(b) to the entire interval [0, 1] using Eq. 3.32,
and to this end we require many points in B (in our numerics we considered 100).

In our numerics, shown in Fig. 3.9 we were able to optimize up to L = 30;
the interpolation method is based on Radial Basis Functions (see e.g. introduction
of Ref. [Rbf]) and the minimization method used was dual annealing [VGO+20].
Moreover, following a similar proccedure than outlined above, we can optimize
over the attenuations as well. The latter proves advantageous, since from L = 4
and on, adaptive beam-splitters outperform non-adaptive ones, even in the case
where an extra layer is included for the latter. To see this, consider Fig. 3.9: we
observe that dashed lines (adaptive beam-splitters) for L = 5 outperform solid ones
(non-adaptive beam-splitters) even for L = 6.
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Figure 3.10: We show the structure of the optimal policy for a 10-Dolinar receiver, where
we consider α = 0.4. Each panel corresponds to a different string of observations obtained
through a possible experiment realisation. At each layer, the optimal policy obtained
through dynamic programming instructs the agent to perform an action (a displacement)
according to the current belief bℓ on state |α⟩; such belief is updated as more information
about the environment state is acquired. Thus, in order to obtain this plot, we propagate the
initial prior (set to 1

2 ) as per Eq. 3.34, using the corresponding measurement outcome. Then,
we find the interpolate the optimal action that corresponding to that belief, and repeat
this along the 10 layers. Here, we do also compute the total probability of finding each
sequence, as per p(o1:L) =

∑
k p(o1:L|αk)ηk. Such probability is extremely low for the

rightmost sequence (all ones), here rounded to zero, and considerably high for the sequence
of all zero outcomes (see discussion in the main body).
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Unveiling Dolinar’s strategy from the numerics

It is worth discussing the optimal strategy, i.e. which are the displacements obtained
of each layer after the dynamic programming optimization for a fixed L. In Fig. 3.10
we illustrate this optimal strategy, for the 10-Dolinar receiver. Here, we do only
consider a subset of the 210 possible combinations of measurement outcomes that
can be observed in a single discrimination experiment.

As with Kennedy receiver, Dolinar one is equipped with on/off photodetectors,
which projects the incoming state either into the vacuum |0⟩⟨0| (no photons), or
into its complement I − |0⟩⟨0| (one or more photons). Displacing the signal by
β right before such measurement acts as a projection |β⟩⟨β| (or I − |β⟩⟨β|), and
as outlined in Sec. 3.1.2 there is a symbiosis between displacements and photon-
detection that surpasses the so-called homodyne limit, when optimizing over β.
While for Kennedy receivers β = α, leading to measure either |0⟩ or |2α⟩, optimized
Kennedy receivers find a better balance between the two contributions by displcing
the signal with differnet value (see Fig. 3.6). However, the bottom line is similar:
after displacing by a value β > 0 and measuring, if outcome 0 was obtained, a bet
for |−α⟩ is done, and if outcome 1 is obtained, |α⟩ is then the most likely hypothesis
for which the agent bets.

Dolinar receiver exploits this idea, and carries out partial tests in a sequential
way. By splitting the signal into L parts, the receiver essentially has now L copies
of the state, each attenuated by a factor

√
L. Thus, until a click is detected (mea-

surement outcome 1), it proceeds similarly to the Kennedy receiver, i.e. by testing if
the state was |−α⟩. In this sense, the belief of having such state increases according
to the number of 0’s, as can be seen in the Fig. 3.10. We also observe that there is a
dependence on the value of β with the layer number ℓ, whereas its sign remains
positive. However, if the first measurement result happens to be 1, the preferred
hypothesis flips to |α⟩, since by having performed a positive displacement, that is
the most-likely state. From there, Dolinar receiver verifies if such claim holds, by
testing on the remaining layers whether the state was |α⟩: this is done by changing
the sign of the displacement. In turn, if the state |α⟩ was displaced by a value
β < 0, then it is more likely to detect outcome 0. As we can observe in the Figure,
if further outcomes happen to be 0, then the receiver keeps testing |α⟩ through
negative displacements. On the contrary, if outcome 1 is obtained, the strategy
flips again (bottom-left panel). The success of Dolinar receiver hinges on the fact
that having sequences containing so many consecutive 1’s is vanishingly small. In
turn, for α = 0.4, we observe that the probability of encountering such a string of
outcomes is as small as 10−16.

We remark that a similar reasoning for the structure of the optimal controls
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applies in the time-domain Dolinar receiver (see Sec. 3.1.4), as discussed in Refs. [Dol;
TSV+05; ADPP11].

We are now in position to turn agnostic, and introduce our reinforcement-
learning agent that adapts the receiver to the measurement outcomes sampled
from an unknown probability distribution. In such situation, the agent has no
other choice than interacting with the receiver through several repetitions of the
discrimination experiment, and thus the methods outlined in this Section cannot
be applied.

3.3 The model-free approach
This Section represents the main contribution of the Chapter, namely the real-time
model-free calibration of coherent-state receievers.

Here, the reinforcement-learning agent is asked to optimally-calibrate a L-
Dolinar receiver, but is provided with essentially no information about the setting:
she can only select actions according to the experience gathered via sequential
repetitions of the discrimination experiment.

By the end of each episode (each discrimination experiment), the agent is only
given one bit of information, i.e. the reward that accounts for the correcteness of
her guess. Thus, if the agent is able to calibrate the receiver such that it performs
near-optimal actions {aℓ}, then the rewards enjoyed will be higher on average.
This stresses the difficulty of the setting proposed: even if the receiver was calibrated
to perform optimally, there is a chance of enjoying no reward. In turn, the reward is a
Bernoulli-distributed random variable with success probabilty PL

s , and even the
optimal configuration in Eq. 3.13 will experience a zero reward with probability
1− PL

∗ .

3.3.1 Reinforcement learning the Dolinar receiver
Reinforcement learning was discussed in Sec. 2.6, where the versatility of such
framework was stressed. In particular, once a problem of interest is translated
into the RL formalism, algorithms such as Q-learning (introduced in Sec. 2.6.3) can
readily be applied.

For this purpose, we now need to specify the corresponding definitions of states,
actions, rewards and episodes specific in our problem of calibrating the L-Dolinar
receiver. Hence, we now state:

• Each episode t corresponds to an independent discrimination experiment,
with a new default state s0 = α(k) sampled from pk, k ∈ {0, 1}
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• Each episode consists of L+ 1 time-step ℓ = 0, · · · , L, corresponding to the
L detection layers followed by the final guessing stage;

• The possible states of the environment at time-steps ℓ are sℓ = α
(k)
ℓ , i.e., the

transmitted part of s0 at that layer;

• The agent is not aware of the state sℓ, in particular it does not know which
hypothesis is true, but it can observe the measurement outcome oℓ, 0 < ℓ ≤ L;

• The actions aℓ available at time-step 0 ≤ ℓ < L are the displacements βℓ
available at that layer, conditioned on the history of observations and actions
hℓ = (a0, o1, ..., aℓ−1, oℓ), while at the last step they constitute the guess,
a(hL) = k̂ ∈ {0, 1}. For a given state sℓ, the set of available actions is
denoted as A(sℓ).

• The reward r ∈ {0, 1} is non-zero only at the end of the episode and provided
that the guess is correct, hence the transition function for the environment
τ(r, s′|s, a) is

τ(α
(k′)
ℓ+1|α

(k)
ℓ , aℓ) = δ(k′, k) ∀ℓ ≤ L, (3.37)

τ(rL+1|α(k)
L , aL) = δ(rL+1, 1)δ(aL, k), (3.38)

were we omitted the trivial reward for ℓ ≤ L.

• Measurement outcomes obtained from the ℓ-th photodetector will be denoted
as oℓ. The set of possible observations is denoted as O.

• A policy will correspond to the entire set of conditional actions and guess {aℓ},
which can be thought as a pre-defined receiver configuration. In particular,
we target to find the optimal configuration, i.e. that leading to the highest
expected reward.

Additionally we set γ = 1 since the process has a finite horizon (L); recall that such
parameter acts as a regularizer for the return function in infinite-horizon problems
(see, e.g. Eq. 2.241).

Similarly to the model-aware situation studied in Sec. 3.2, we need to specify
agent’s reconstruction of environment state (recall we are dealing with a Partially
Obersvable Markov Decision Process, and as such the state of the environment
is not fully observable by the agent at each time-step). While when applying
dynammic programming techniques we defined agent’s state to be the belief of

123



3.3. THE MODEL-FREE APPROACH

bℓ of having |α⟩, the model-free agent is not able to perform the bayesian update,
since it ignores outcomes probabilities distributions.

Thus, we define agent’s state as the history hℓ of observations and actions made
up to the ℓ-th stage. An important consequence of such definitions is that the
expected return, departing from the initial state (that is, the state value function of
s0, independent of agent awareness) is the success probability associated to agent’s
policy.

In contrast to the dynamic programming approach, the agent needs now to
estimate the state-value functions out of several repetitions of the experiment, in
order to asses how valuable a given configuraton is.

In particular, in Sec. 3.3.3 we will show that the optimal state-action value
functions are in close correspondence to the ultimate attainable success probability
PL
∗ . Thus, if the agent is able to find such state-action value functions, then it can

readily construct the optimal policy, as described in Sec. 2.6.2. To do so, we now
bring the Q-learning algorithm into the play.

3.3.2 Q-learning the Dolinar receiver

We will now apply the Q-learning algorithm to L-Dolinar-receiver calibration
problem.

Here, we restrict to L = 2 processing layers and fix the attenuation coefficients
to give equal amplitude at each layer, since the advantage obtained in the success
probability is small when optimizing over them as well, see Fig. 3.9.

The Q-learning algorithm was introduced in Sec. 2.6.3, and we recall that is
consists in exploiting the contractive property of the optimal state-action value
function. In our setting, such quantity Q∗(hℓ, aℓ) is the average reward that will
be enjoyed by the agent, when departing from state hℓ, performing action aℓ, and
following the optimal policy afterward. As expected, this quantity reduces to the
success probability, as explicitely shown in Sec. 3.3.3.

Since the Q value is unavailable to the agent, she relies on its estimate Q̂, and
a tradeoff between exploring and exploiting greedy policies appears, which in
Q-learning is tackled by following an ϵ-greedy policy. This consists on choosing, for
a given state hℓ, a greedy action with probability ϵ (e.g. the action that maximizes
Q̂(hℓ, aℓ)), or to act randomly with probability 1− ϵ.

In contrast to the model-aware case, where the guessing rule was straightfor-
wardly obtained from the Bellman equation at the last time-step, the optimization
of state-action value function includes a non-trivial search for the optimal guessing
rule, determined by the most likely hypothesis. For a given state hℓ, the agent needs
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to select a displacement value out of a set A(hℓ), which here consists on 21 points
for each displacement, each one ranging from −1 to 1 with step 0.1, leading to a
fairly large state-action space: the agent has 21× 2× 21× 2× 2 = 3528 possible
Q-values to learn from (including the last guess). We note that each discretized
displacement is an independent action or “button” in the eyes of the agent —the
agent is dispossessed of any notion of closeness between buttons corresponding to
similar values.

In particular, we have studied different schedules for ϵ. While an ϵ close to 1 will
not demonstrate an empirical success rate better than random guesses, an ϵ value
that drops to zero too fast will get stuck in sub-optimal actions (since the agent
would not dispose of enough episodes in order to explore the entire state-action
space). The update rule for the agent’s estimate Q̂ is given by Eq. (2.248), with
sℓ → hℓ and learning rates λt(h, a) = Nt(h, a)

−1 being the inverse of the number
of times a state-action pair has been visited. This choice guarantees convergence as
per Eq. (2.250).

As the behaviour of the RL agent strongly depends on the actions chosen at early
episodes, we averaged the learning curves over 48 agents. Our results are compared
with: (i) the maximum success probability attainable with this number of layers and
discretization of displacements, Eq. (3.27), and (ii) the success probability attainable
via a standard homodyne measurement, which is optimal among Gaussian receivers.

Following our discussion about the figures of merit in Sec. 2.6.1, we have
evaluated the performance of our model-free agents at episode t using two figures
of merit: (i) the cumulative return per episode,

Rt =
1

t

t∑
i=1

G
(i)
0 =

1

t

t∑
i=1

r
(i)
L+1, (3.39)

where r(i)L+1 = {1, 0} stands for the correctness of the guess made at episode i, and
(ii) the success probability of the best actions according to the agent, at the current
episode,

Pt = Ps(α, {a(t)∗ℓ }), (3.40)

where the best actions {a(t)∗ℓ } at episode t are obtained by going greedy with respect
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to the current Q-estimate, i.e.,

a
(t)∗
0 (h0) = argmax

a∈A(h0)
Q̂(h0, a)→ h∗1 = (o1, a

(t)∗
0 ) (3.41)

a
(t)∗
1 (h∗1) = argmax

a∈A(h∗1)
Q̂(h∗1, a)→ h∗2 =

(
a
(t)∗
0 , o1, a

(t)∗
1 (h∗1), o2

)
...

a
(t)∗
L (h∗L) = argmax

a∈A(h∗L)
Q̂(h∗L, a).

The first figure of merit, Rt, is usually employed to describe the learning process in
reinforcement learning, and it evaluates the success rate obtained by the agent so
far. On the other hand, the second figure of merit, Pt, is standard in quantum state
discrimination, and in our context it evaluates the best strategy discovered by the
agent so far. Note that such quantity is unavailable to the agent, but is here used to
monitor its learning process.

As t → ∞, for a good learner it is expected that Rt → Pt, i.e. with enough
agent-environment interactions the average reward should tend to the success
probability for the best actions found by the agent, which in turn should converge
to the optimal success probability P (L)

∗ . Therefore, the learner is not only expected
to find a good discrimination strategy, but to also follow it: the interaction policy
should tend to the optimal policy. This feature is captured by the evolution of Rt

over different episodes: a good learner is asked to obtain as much reward as possible
during the learning process.

In Fig. 3.11 we show the evolution of these two figures of merit for Q-learning
agents with three different ϵ-greedy interaction policies: (i) a completely random
one, i.e., ϵ = 1, (ii) a 0.3-greedy one, i.e., ϵ = 0.3, and (iii) a dynamic one (exp-greedy)
that becomes exponentially greedier as time passes, i.e., ϵ(t) = max{e− t

τ , ϵ0}, with
ϵ0 = 10−2 1.

In the first place we note in Fig. 3.11 that, as we mentioned above, a fully
random search over the action space (1-greedy policy) leads to the extremely poor
cumulative reward per episode of Rt ≈ 1/2, even for long times, which is expected
because a random guess (last action) leads to Ps(α, {aℓ}) = 1/2. Instead, since all
the actions will be sampled enough times for the agent to learn the optimal policy,
Pt will converge to optimal value at long enough episode number. Nevertheless, if
the action space is large, the fully random strategy will require a large number of
episodes to explore each action a significant number of times, and for moderate

1This choice assures that at initial episodes the agent favours exploration, whereas at t = τ log 1
ϵ0

the agent’s behaviour collapses to an ϵ0-greedy policy.
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Figure 3.11: We benchmark traditional Q-learning with different schedules on ϵ
as the episode number increases. The figures of merit are averaged over A = 48
agents and show the corresponding uncertainty region.

times a ϵ-greedy strategy might reach a better strategy. Indeed, Fig. 3.11 shows
that the 0.3-greedy policy has at all episodes a higher Pt than the 1-greedy one,
being 99% the optimal success probability P (L=2)

∗ at episode t = 105. Of course, for
0.3-greedy policy the agent collects many more rewards (actual correct guesses)
than for the 1-greedy but it is still limited to Rt ≈ 0.7P

(L=2)
∗ . In order to reach a

better exploration-exploitation trade-off, it is customary to consider an episode-
dependent ϵ, e.g. ϵ(t) = max{e− t

τ , ϵ0}. Fig. 3.11 shows the results for this tunable
interaction policy with τ = 2 · 102 and ϵ0 = 0.01. This allows the agent’s Rt to
surpass the homodyne limit at about episode ∼ 5 · 103 (which is comparable with
the size of the action space), while at later times the performance converges to that
of the 0.01-greedy policy. Note also that 0.3-greedy discovers a strategy whose Pt

surpasses the homodyne limit at episode ∼ 3 · 102.
In Fig. 3.12 we study the guessing rule discovered by the 0.3-greedy agent at
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episode t = 5 · 105. For each sequence of outcomes o1, o2, we plot the difference
between the Q-values of guessing for |−α⟩, i.e., aL = 1, and |+α⟩, i.e., aL = 0, as a
function of the past actions:

Q̂
(
(a0, o1, a1(h1), o2), 1

)
− Q̂

(
(a0, o1, a1(h1), o2), 0

)
. (3.42)

Note that the sign of Eq. (3.42) corresponds to the agent’s best guess for the true
hypothesis, since the latter is obtained by going greedy towards Q̂(hL, aL), as
explained below. We compare these results with the optimal guessing rule in the
model-aware setting, plotting a shaded region when the maximum-likelihood guess
is |±α⟩. The plot shows the agent perfectly learn the guessing rule at the given
resolution. Moreover, the difference between the two Q-values is more pronounced
in the surroundings of the optimal β values, meaning that the agents are more
confident about their guess in these regions.

Our numerical results indicate that standard Q-learning successfully trains
agents that surpass the homodyne limit of optical detection and discover strategies
whose error rate is comparable with that of the optimal receiver. This is remarkable,
especially taking into account that the agents are not initially trained for this
task, and run in a model-free setting entirely based on the feedback they get
(correct/incorrect) on their guess. While many reinforcement learning schemes
focus on extracting the optimal policy from the agent (as measured e.g. by Pt), our
central figure of merit, Rt, captures the real performance of the agent, and can
actually be assessed by the agent itself. It is hence important to design strategies
that not only aim at finding the optimal policy within an episode, but also maximize
the cumulative reward per episode, reaching Rt → P

(L)
∗ as fast as possible.

As we discussed in Sec. 2.6.1, bandit theory precisely captures such tradeoff by
means of the expected cumulative regret. In next sections, we will actually borrow
ideas from such a field, in order to enhance the Q-learning agents. Nevertheless,
before doing so, let us show how the sequential structure of the receiver is exploited
by the Q-learning algortihm.

3.3.3 Optimal state-action values & convergence

In this section we verify that, by construction, the optimal policy leads to the
maximum success probability P (L)

∗ (α). It is assumed that Q is always associated
with the optimal policy π∗; we simplify notation by Q = Qπ∗ .

At step L, given any history hL, the actions available to the agent are k̂ = aL,
i.e. guessing for one of the possible phases of the coherent state. The Q-values at
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Figure 3.12: Density plot of the difference between the estimated Q-values for
guessing “plus” and “minus” as a function of the displacements at the first and second
layer, for each possible sequence of outcomes, with α = 0.4. The shaded areas
correspond to the regions where the optimal guess, taken according to maximum-
likelihood, is “plus”. The white dots corresponds to the optimal values of the
displacements for the proper discretization).
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this time-step read as

Q(hL, aL) = E[GL|hL, aL] =
∑
rL+1

rL+1 p(rL+1|hL; aL)

= p(α(aL)|o1:L, a0:(L−1)),
(3.43)

with o1:ℓ = {o1, o2, ..., oℓ} the observations obtained up to the ℓth photodetector, and
a0:ℓ = {a0, a1, ..., aℓ} the actions done up to step ℓ. Such actions are deterministic
functions of hℓ, and thus we aim to optimize over all possible function choices (and
for this reason we will here use the semi-colon notation in the probabilities).

Recalling that the optimal action, given hℓ, is obtained from Q as a∗(hℓ) =
argmax

aℓ

Q(hℓ, aℓ), the optimal guess a∗L is the one of maximum-likelihood:

a∗L = argmax
aL

p(α(k)|o1:L; a0:(L−1))
∣∣∣
k=aL

.

By definition of the optimal policy and because the optimal Bellman equation
Eq. (2.247) holds, namely

Q∗(s, a) := Qπ∗(s, a) = max
π

Qπ(s, a) (3.44)

=
∑

s′∈S,r∈R

τ(s′, r|s, a)(r + γmax
a′∈A

Q∗(s′, a′)), (3.45)

then the optimal action to take given history hL−1 at step L− 1 is

a∗L−1 = argmax
aL−1

Q(hL−1, aL−1)

= argmax
aL−1

∑
oL

p(oL|o1:(L−1); a0:(L−1)) max
aL

Q(hL, aL)

= argmax
aL−1

∑
oL

p(oL|o1:(L−1); a0:(L−1)) max
k

p(α(k)|o1:L; a0:(L−1))

= argmax
aL−1

∑
oL

maxk p(o1:L|α(k); a0:(L−1))pk

p(o1:(L−1); a0:(L−1))
,

(3.46)

where in the last line we have used Bayes theorem. Following this line of reasoning,
we can obtain the optimal actions a∗ℓ at any time-step. In particular, for ℓ = 0, by
recursively applying the optimal Bellman equation (Eq. (2.247)) we have
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Q(h0, a0) =
∑
o1

p(o1; a0) max
a1

Q(h1, a1) (3.47)

=
∑
o1

p(o1; a0) max
a1

∑
o2

p(o2|o1; a1) max
a2

Q(h2, a2)

=
∑
o1

p(o1; a0) max
a1

∑
o2

p(o2|o1; a1) max
a2

∑
o3

(
(...)

∑
oL

p(oL|o1:(L−1); a1:(L−1)) max
aL

Q(hL, aL)
)

=
∑
o1

max
a1

∑
o2

max
a2

∑
o3

(
(...)

∑
oL

max
k

p(o1:L|α(k); a0:(L−1)) pk

)
.

Therefore, by taking the optimal action a∗0 = argmax
a0

Q(h0, a0), we obtain

max
a0

Q(h0, a0) = p(L)∗ , (3.48)

which was defined in Eq. 3.13, though here we dropped the dependence on α. As
pointed out in the main text, the value and action-value functions are related via
vπ(s) =

∑
a π(a|s)Qπ(s, a). Therefore, the optimal value function for the initial

state is the optimal success probability:

v∗(h0) =
∑
a

δ
(
a, argmax

a

Q(h0, a)) = Q(h0, a
∗
0

)
= PL

∗ (α). (3.49)

In Fig. 3.13 we show several sections of the estimats Q̂, using 1-greedy as the
interaction policy and each update made according Q-learning, at episode t = 108,

The success of Q-learning agents in finding the optimal configurations of
Dolinar-like receivers crucially depends on accurately estimating the success prob-
ability of the relevant configurations. Such configurations correspond to the inter-
esting region of the state-action space (i.e. where high rewards are allocated), and
as we have seen, they are related to optimal state-action value functions Q∗.

From such optimal values, the agent can straightfowardly follow an optimal
policy π∗ by going greedy with respect to them. Nevertheless, as we stressed in
Sec. 2.6.2, learning begins without the knowledge of how to access those high-
rewarding configurations, and hence the agent needs to balance between exploring
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Figure 3.13: We plot different values of the Q-estimates, after 108 episodes of
random exploration (ϵ = 1), updating the Q-estimates according to Q-learning
(see Algorithm 1). The random exploration is used in order to ensure that, at
finite number of episodes, all state-action pairs were equally visited on aver-
age. The lower plot corresponds to the estimates Q̂(a0), and it is compared
with the optimal success probability as a function of a0, i.e. P

(L=2)
∗ (α, a0) =∑

o1 p(o1; a0) max
a1

∑
o2
p(o2|h1, a1) max

a2=±
p(±α|h2)pr(±α).

new ones (through displacements that has not been performed previously) and
performing displacements that have previously led to a reward of 1 with a high
probability. In the latter case, statistical fluctuations when estimating success
probabilities out of measurement outcomes can potentially hide the fact that some
displacements are actually sub-optimal. To balance such trade-off, Q-learning
selects a displacement according to an ϵ-greedy strategy.

As introduced in Sec. 2.6.1, bandit theory defines the so-called regret, that
precisely captures the exploration-exploitation tradeoff in Markov Reward Processes.
In that Section, we introduced strategies based on Upper Confidence Bounds (UCB)
or Thompson Sampling (TS) which outperforms ϵ-greedy ones in terms of the
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expected regret. It is thus sensible to ask wheter the Q-learning agent can be
enhanced with such bandit-based strategies, and hence we now turn to study how
these enhanced agents perform in our BPSK coherent-state discrimination problem.

3.3.4 A little help from my bandit friends
As introduced in Sec. 2.6.1, there exists other strategies than ϵ-greedy ones, that
balance between exploration and exploitation in Markov Reward Processes (MRP).
Among them, we studied UCB and TS ones. In this section we will equip the
Q-learning agent introduced in Sec. 3.3.1 to enchance the model-free calibration.

Calibration of Kennedy-like receivers as a bandit-problem. We will first consider
the model-free calibration of a Kennedy-like receiver as a bandit-problem. To this
end, we have numerically compared the performance of the three bandit policies
discussed in Sec. 2.6.1. The bandit problem that we consider deals with three
different Bernoulli distributions, each associated to a different value of a Kennedy
receiver. At each episode the agent observes a reward of value either 0 or 1, obtained
by guessing (max-likelihood) for the underlying phase of the coherent state by
using the selected receiver. In Fig. 3.14 we show the expected regret Lt estimated
out of several realizations of such 3-armed bandit problem. The figure shows that
the cumulative regret scales linearly with time for the ϵ-greedy strategy, while
it has a logarithmic scaling for the UCB and TS strategies. The inset shows the
cumulative regret as a function of log t together with the ultimate bound given by
Lai-Robbins bound; we observe that sub-leading constants seem to still be relevant
in such a bound, and that whereas assymptotic regime seems not to have been
reached, the results are yet consistent with Eq. 2.235.

We will now turn to use this strategies to improve the performance of the Q-
learning agent considered previously. In particular, we will present two alternative
strategies for the action exploration to be applied in the Q-learning algorithm.

The first strategy employs the standard Q-learning update rule for the estimate
Q̂, as described in Eq. (2.248), but it uses UCB to determine the interaction policy
at each time-step of each episode. Here, we recall that UCB choices the action
according to an upper confidence bound of the form of Eq. 2.238:

ucbt(a) := Q̂(a) + ε(t) = Q̂(a) +

√
− logP(t)
2Nt(a)

, (3.50)

which represents an upper bound to the true value Q(a) with a high probability
1− P(t).
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Figure 3.14: We show the evolution of the cumulative regret for three different
policies: ε-greedy, UCB and TS in a bandit setting. The mean values considered
are associated to success probabilities of Kennedy-like receivers, as introduced in
Sec. 3.1.2. All curves are averaged over 103 agents. Specifically, they are Bernoulli
distributions with different mean values, each associated to different configura-
tions of a quantum receiver parametrized by a value β. For bandit problem 1,
we considered β ∈ {0,−α, β∗}, with α = 0.4 and β∗ = −0.74. Furthermore,
we compare the asymptotic behaviour of TS, studying bandit problem 2, where
β ∈ {−α, β∗,−1.5α}, shown in the inset plot.

We have here chosen P(t) = t−4. This is implemented by keeping a count of
the number of visits of each history-action couple up to the current episode t, i.e.,
Nt(hℓ, aℓ), which is then used to compute an upper confidence bound, ucbt(hℓ, aℓ)
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as in Eq. (2.238), for each action aℓ and history hℓ. Finally, at time-step ℓ the agent
chooses the greedy action with respect to the UCB, i.e., a(t)ℓ = argmax

a

ucbt(hℓ, a).

The second strategy is instead based entirely on TS, considering each action
conditioned on the past history as a bandit problem and rewarding each sequence
of actions that led to a successful experiment. In detail, the agent keeps a beta-
distribution, Eq. (2.239), of the mean reward obtainable at each time-step ℓ from
each action aℓ given each possible history hℓ, i.e., ft(r̄|hℓ, aℓ). In order to choose a
new action at time-step ℓ given history hℓ, the agent samples an expected reward
r̄ ∼ ft(r̄|hℓ, aℓ) for each aℓ and selects the action with the largest sample r̄. At the
end of the episode a reward is obtained as usual, and ft(r̄|hℓ, aℓ) is updated in a
Bayesian way for all the history-action couples visited at the episode. In this case,
when computing Pt, the best actions are chosen by going greedy with respect to
their mean reward distribution ft(r̄|hℓ, aℓ) [RVK+18].

In Fig. 3.15 we show the evolution of the two figures of merit Rt, Pt for several
agents trained using these two enhanced strategies, as well as for those based
on the exp-greedy and 0.3-greedy strategies, considered in Sec. 3.3.2, which had
respectively the largest finalRt andPt out of all the analyzed strategies. We observe
that UCB performs a thorough exploration of the action space and indeed it is able
to attain a value of Pt close to that of 0.3-greedy. This result comes at the price
of a small Rt value, which nevertheless shows that UCB has better exploitation
properties than 0.3-greedy; in particular it has a strikingly larger slope than the
latter at long times. As for TS, we observe that this strategy attains the best Rt

values, surpassing exp-greedy at intermediate times. Moreover, TS also radically
improves the values of Pt with respect to exp-greedy and it is even able to attain
the performance of the other two strategies that favour exploration. Overall, it
appears that for this particular problem setting, and the hyperparameters chosen
for all three algorithms, TS provides the most profitable balance of exploration and
exploitation.

Overall, we observe that model-free Q-learning agents can readily learn to
calibrate Dolinar-like receivers by beggining the learning task from the darkness,
meaning that they complete ignore the setting at hand.

While such learning process is interesting on its own, we can now turn to
non-ideal scenarios, which arguably is the motivation of our setting. The reason for
this is, on the one hand, that the presence of unknown quantum channels might
non-trivially act on the signals, and thus the optimal configuration will differ to
that one of the idealistic, noise-less case. On the other hand, we have assumed so
far that there are no imperfections during the measurement process, an issue that
is certainly present in experiments. For this reason, we will now turn to benchmark
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Figure 3.15: We show the learning curves for the enhanced Q-learning agents via
bandit methods. On the upper plot we despict Rt, the agent’s success rate per
episode, whereas on the bottom plot we despict Pt, the success probability of the
agent’s recommended actions at episode t, {a(t)∗ℓ }. Each of the learning curves is
averaged over 48 agents; the amplitude was fixed to α = 0.4.

the performance of our model-free agents in a wide range of noisy scenarios.

3.3.5 Noise robusteness

We have already seen that our RL agents are able to learn near-optimal discrimina-
tion strategies and — most importantly — exploit them in real time, by employing
exclusively the detectors’ outcomes and the rewards enjoyed by the end of each
episode. In this section we show that such results do not sensibly change in the
presence of noise, i.e., that the same Q-learning agents are able to attain near-
optimal performances even when unknown errors affect the experiment and hence
the learning process. Here, we will consider dark counts, phase flip errors and the
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presence of a compound lossy channel acting between sender and receiver.
Dark counts. First, we consider a common experimental imperfection known as

dark counts: due to the presence of background noise, each photodetector of the
receiver has a non-zero probability pdc of detecting a photon even when it receives
a vacuum signal. Accordingly, the conditional probability of obtaining an outcome
0 given an input state |α⟩, Eq. (3.10), is modified by a multiplicative factor (1− pdc).
In Fig. 3.16 we plot Rt and Pt at time t = 5 · 105 for several RL strategies as a
function of pdc ∈ [0, 1], along with the maximum success probability attainable by
the corresponding receiver. We see that the final values of Pt are near-optimal for
all values of pdc, while Rt seems to be slightly affected in an intermediate region of
values of pdc. Since the agents operate on a completely model-free basis and the
reward system has been chosen to ensure convergence of the value function to the
true success probability, it can be expected that they are still be able to learn in the
long term, as shown by the high values of Pt attained. However, since a dark count
effectively increases the chance of (not) obtaining a reward for a (correct) wrong
action, the time it takes to learn a near-optimal strategy and to start exploiting it
might increase, as shown by the behaviour of Rt. Note that for pdc ∼ 1 the best
guess is the random one and thus easier to learn.

Phase flips. Next, we consider the case where the phase of the incoming signal
is flipped before arriving to the receiver, with probability pf . In this scenario, if the
agent guesses for the correct received phase, the corresponding reward will be zero
since the phase initially sent was opposite than the received one. In particular, the
probability of observing a string of outcomes p(o1:L|α, {a(hL−1)}) in Eq. (3.10) is
modified such that

p(o1:L|α, {a(hL−1)})→ (1− pf )p(o1:L|α, {a(hL−1)}) (3.51)
+ pfp(o1:L| − α, {a(hL−1)}) (3.52)

In Fig. 3.17 we despict the values of Rt and Pt attained by several agents at episode
t = 5·105, as a function of pf ∈ [0.5, 1], along with the maximum success probability
attainable by the corresponding receiver. As in the dark counts case, we see that
for all values of pf , the agents are able to converge to near-optimal Pt values and
they exhibit very small variations in Rt as pf increases.

Compound lossy channels

Next, we consider the presence of lossy-channels, which are based in Ref. [BRC21].
These channels were introduced in Sec. 2.3.3, and consist on mixing the incoming
state with the vacuum state |0⟩ by a beam-splitter. As such, lossy channels consti-
tute a common model for long-distance optical-fiber and free/deep-space optical
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Figure 3.16: We compare the performance of the three RL agents (the same consid-
ered in Sec. 3.3.4) at episode t = 5 · 105, for several photo-detection noise values
(dark count rates). The amplitude of the coherent states is fixed to α = 0.4; all data
points are averaged over 48 agents.

communication [DVR+19; AP05; UHP+12; Pir21a; Pir21b; VSV11; VSV+17], since
they model attenuations of the incoming signal; their action on coherent states
reads

Lη : |α⟩ 7→ |
√
ηα⟩ , (3.53)

where η ∈ [0, 1] is the transmissivity or attenuation coefficient of the lossy channel.
While we have seen that RL is effective in calibrating the receiver at different

values of the noise-parameters, a considerably more challenging situation arises
when practical communication links are affected by noise-parameter variations. In
turn, these situation occurs in practice, and can be difficult to estimate and counter-
act in real-time. In particular, in the case of a lossy channel Lη, the transmissivity
η can be altered over time, a phenomenon known as fading, and which is caused
by a plethora of different effects that alter the optical signal during its transmission
through the atmosphere to/from a satellite [DVR+19; AP05; UHP+12; Pir21a; Pir21b;
VSV11; VSV+17]. In this setting, the performance of all the receivers studied in this
Chapter can be expected to degrade.

Here, we model such variable-loss channels by restricting to the case of two
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Figure 3.17: We compare the performance of the three RL agents (the same consid-
ered in Sec. 3.3.4) at episode t = 5 · 105, as a probability of the signal being phase
flipped before arriving to the receiver. The amplitude of the coherent states is fixed
to α = 0.4; all data points are averaged over 24 agents.

lossy channels {Lη0 ,Lη1}, happening with probabilities {π0 = π, π1 = 1 − π},
and hence the success probabilityis is now averaged over the possible channel
realizations,

P̄s(M) :=
∑
i=0,1

πiPs(M; ηi). (3.54)

As a consequence, the Helstrom bound will also be affected, and we will now
discuss how to compute it in this case. Each hypothesis state |αk⟩ can take two
different values, depending on the channel transmissivity. This effectively amounts
to discriminate between the two mixed states

ρx :=
∑
i=0,1

πi |
√
ηiαk⟩⟨

√
ηiαk| , k ∈ {0, 1}. (3.55)

The average success probability of a generic measurement then reads

P̄s(M) =
∑
k=0,1

pkTr[Mkρk] (3.56)
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Figure 3.18: We show Wigner function of inputs and outputs states of the compound
channel. We observe that each input state is splitted accoriding to the possible
attenuation value.

and in order to compute Eq. 2.191, we need to compute the trace-norm of the
matrix q0ρ0 − q1ρ1 in the four-dimensional subspace where it is supported, S :=
span{|ψk+2i⟩ := |√ηiαk⟩}i,k=0,1. Since the trace-norm is basis-independent, one
can readily find a four-dimensional representation of the involved states by com-
puting the square-root of their Gram matrix, B =

√
G with Gij = ⟨ψi|ψj⟩. By

construction it holds that B†B = G, hence the column vectors of B constitute
a representation of the original states in a 4-dimensional subspace of the Hilbert
space. By expressing all the operators via this representation, we are then able to
compute the Helstrom bound in Eq. (2.191) numerically.

Furthermore, we can readily compute how the homodyne success probability
in Eq. 3.6 is affected by this channel,

P hom
s =

1

2

(
1 +

∑
i=0,1

πiErf
[√

2ηia
] )
. (3.57)

Finally, in the case of Dolinar-like receivers, we need to take into account that
the outcome probability should now be averaged out considering the two different
transmissivities:

p(j|ρ(ℓ)k ) :=
∑
i=0,1

πip(j|
√
ηiα

(ℓ)
k ). (3.58)

Thus, we are now in position to compare the success probabilities attained by
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Figure 3.19: Top: We compare the success probabilities attainable by one (L = 1)
and two (L = 2) adaptive receivers with homodyne measurement and Helstrom
bound, for different values of signal intensity. Bottom: difference between the
success probabilities of the receivers under considerations and the Helstrom bound
are shown in order to ease the visualizaton of different features. In this case, a
lossy channel (η = 10−2) acts on the transmitted state with probability of one half,
whereas the signal is transmitted through a noise-less channel otherwise.

the different receivers we have studied. We note that in the case of variable-loss
channels, there is no guarantee that Dolinar-like receivers will be able to attain the
Helstrom bound, and whether that holds or not is an open question.

In particular, we consider the parameter regime where the two transmissivities
are relatively distant from each other, which approximates the physical cases where
the channel transmissivity changes abruptly due to weather conditions [VSV+17].
In Fig. 3.19 we compare the behaviour of optimized Kennedy, 2-Dolinar and homo-
dyne receivers across different values of input signal amplitude, together with the
Helstrom bound. Displacements in the adaptive receivers have been numerically
optimized using simulated annealing [XSF+97; VGO+20]. This optimization proves
demanding for higher number of adaptive measurements, and thus the dynamic
programming method presented in Sec. 3.2 fails, unless a sufficiently high amount
of computational resources is allocated to perform the continuous optimization (for
instance, several initializations per optimization seed, and several seeds), though
we have not investigated this optimization further.

We observe that, while the homodyne receiver maintains a satisfying perfor-
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mance in the whole amplitude range, the behaviour of the Kennedy receiver exhibits
a clear transition and its performance degrades at sufficiently large amplitudes.
Fortuantely, the addition of a second adaptive detection layer appears to be able to
correct this trend. Hence the two-layer receiver can get close to the performance
of the homodyne receiver in the large-amplitude regime, while showing a clear
advantage with respect to the latter in the low-amplitude regime.

The degrade of 1-Dolinar receivers in the high-amplitude regime can be under-
stood as follows. The action of the compound channel, for high-amplitude signals,
is that of increasing the possible candidates in the discrimination problem to four;
each channel can act with probability 1

2
, and while the success probability in Eq. 3.56

weights only the final binary guess, the action of the compound channel is that of
averaging out two binary discrimination problems: the original one (with states
|±α⟩), and the new one (with states |±ηα⟩). In this sense, if initial amplitudes are
small, then the attenuated amplitude will be very small, and the resulting state will
effectively be the vacuum state.

One can understand this results by looking at the phase space in Fig 3.18. The
kennedy reciver efectivly projects over |β⟩⟨β|. Therefore it checks whether the
hypothesis occupies a small region around β or not. In the case of composite
hypothesis the coherent state projection can only cover one of the states in the
ensemble. This effect is reduced when the amplitude is very low, and the blobs
for both coherent states can be partially covered by the coherent state projection.
In the limit of very large amplitudes, where the signals are almost orthogonal, a
Kennedy receiver will need to specialize on one of the members of the ensemble,
which will lead to a succes probability of 3

4
, instead of 1.

On the contrary, a L-Dolinar receiver performs a projection on a coherent state
|βℓ⟩ (v. the rest), at each ℓ. Thus, such receiver is expected to attain a probability
1 for large amplitudes, if the number of hypothesis —composite or not— can be
covered by L coherent states.

Finally, in Fig. 3.20 we show that our Q-learning agent is also capable of cal-
ibrating a 2-Dolinar receiver under the composite noisy channel, without prior
informaton about the original amplitudes nor the attenuations.

To sum up, our numerical simulations indicate that model-free Q-learning
agents can readily adapt to many situations that are present in experimental sce-
narios. As a matter of fact, we have considered dark counts, phase flips and lossy
channels with varying transmissivity.
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Figure 3.20: We show learning curve behaviour for ϵ-greedy Q-learning, with an ϵ
exponentially decaying as a function of episode number. The figures of merit are
averaged over 48 agents and corresponding uncertainty region are shown.

3.4 Discussion & Future work

While the reinforcement learning of quantum systems is a relatively young re-
search direction, it has arguably positioned as a state of the art technique in many
branches of science. In turn, approaches based in deep reinforcement learning have
recently lead to breakthroughs in protein-folding problem [JEP+21], quantum sens-
ing [SFB20], quantum communications [WMD+20], quantum computing [CAB+21b;
FNM+21] and more [CT16; TM17; VLH17; CM17; TMC+18; MPK+18; FTW+18;
WMD+19; BDS+18; NBS+19].

Whether such a human-computer collaboration will remain as a state-of-the-art
paradigm for the discovery of novel protocols in science and technology, or is
a stepping stone towards a deeper understanding of knowledge is an open and
existing question.

This chapter humbly stands as one of the first steps towards the reinforcement
learning of quantum systems, in an experimentally-centered paradigm (this project
was initiated back in 2018). While many issues shall be address before proving suc-
cesful for real-life quantum communications, the approach we have presented can
potentially be implemented as a proof of principle. While conditional displacements
can be implemented relatively fast using a FPGA, it is a question whether this ex-
perimental arangement is the most suitable for the discrimination of coherent-state
signals. In this regard, the original proposal of the experiment, i.e. by resolving
the states in the time-domain, seems slightly more experimentally friendly, though
theoretically equivalent to the spatial-domain studied in this Chapter, as previously
discussed. Here, instead of regarding the coherent-state as a train of pulses, whose
time-envelope gives rise to a coherent state of intensity α, we have performed such
splitting in space, by using beam-splitters. On the original approach, the feedback
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has a time-dependence and acts on the pulses arriving to the receiver. However, we
remark that the application of reinforcement-learning algorithms in time-domain
is still in the first steps [Doy00; YHL21].

Regarding the machine learning framework we have posed, there is also room
for improvement. For example, the actions were considered to be discrete, whereas
the displacement actually has a continuous nature. In this regard, this project has
hosted a Degree Thesis [JEJ20], in which we have studied the usage of deep neural
networks aiming to generalize the experience gathered at episode t to state-action
value functions that has not been visited until that episode. Much of these ideas
were inspired by the Deep Deterministic Policy Gradient algorithm [LHP+15],
where policy and state-action value functions are now predicted by deep neural
networks, and special care is taken about trianing stability.

While during José’s thesis we obtained successful results for the calibration of
Kennedy-like receivers, training the networks under the conditioning operations
(L = 2) prooved hard, due to the fact that a huge training set was required in
order to succesfully train it. A possible circumvent to that situation would be
the usage of pre-trained generative models, to have a clever ansatz for the state-
action value function profile. Thus, many doors remain open to deeper understand
the reachability of reinforcement-learning algorithms to model-free discrminating
between quantum states in an agnostic way.

3.4.1 Code
The code and simulations supporting this Chapter can be found in the repos:
[Bil02a; BC20] (the latter contains a collection of unsuccesful approaches to the
deep learning of dolinar-like receivers). We remark that the dynamic programming
approach has been carried out mainly by Raúl Morral, an undergraduate student by
the time this project was carried out, and the code can be found in Ref. [Bil02b].
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El lujo es vulgaridad, dijo y me conquistó
— Indio Solari

4
Learning in the twilight

The learning-in-the-quantum journey continues: after interacting in a model-free
way with quantum systems of light, we will here pose the learning task differently.
The agnostic drama will be diminished: we will now profit from our knowledge of
quantum theory to aid the discover of novel protocols in NISQ quantum computing.
Instead of treating quantum devices as black-boxes, we will inject some knowledge
by introducing a semi-agnostic algorithm that discovers useful NISQ circuits. While
the agent will have perfect control of the task at hand, the nature of the problem she
is faced towards is so hard, that the solutions are unknown to us. Thus, the agent
learns in the twilight: while knowledge of NISQ quantum-computing is available,
the nature of the solutions she is seeking for is completely unknown.

Here, we will focus on how currently available quantum computers can be used
a wide range of problems, ranging from ground-state preparation and training
quantum autoencoders to compiling unitary transformations to native hardware.
As discussed in Sec. 2.2, it seems natural to adjust the learning algorithm to the task
at hand, doing it is often hard, because the learning scenarios are far from ideal.

While in the introductory Section we have stressed these difficulties for the
NISQ scenario, let us remark that big efforts have been carried out by the machine-
learning community in the recent years in order to injecting prior knowledge into
deep-learning architectures [MLE21; SFE+20]. Overall, the design of the machine-
learning-algorithm, when taking into account the structure that a potential solution
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shall obey, is subtle and (as expected) problem-dependent. An example of this
is given by Convolutional Neural Networks [LHB04; KSH12; ON15], designed in
such a way to sequentially process an image in a task-oriented manner. Here,
the network is able to identify features that are invariant under translation-like
transformations, such as eyes or mouths in human pictures, and thus exploits the
correlations hidden in the image.

However, by such prior-knowledge injection we unavoidable induce some bias
to model, and we can readily elucidate a tradeoff. In this chapter, rather than
specifically-tailoring an algorithm to come up with a task-oriented solution, we
will study the performance of a general-purposed algorithm, which adapts its
structure to the specific cost-function at hand, by means of machine-learning
inspired techiques.

We will focus on NISQ computing, which were first introduced in Sec. 2.2. Here,
an intermediate-scale (of about ∼100 qubits) noisy quantum device needs to be
configured as a special-purpose machine. A promising route to do so is given by
Variational Quantum Algorithms (VQAs), as discussed in Sec. 2.2.1. In VQAs, a
parametrized quantum circuit (PQC) is used to estimate cost-function values, whose
minima encodes solutions to the problem at hand. In order to reach such minima, a
classical algorithm is used to optimize available degrees of freedom such as qubit-
rotation values, or even circuit’s structure. The latter plays a crucial role in NISQ
computing: while the presence of noise essentially fordibs the implementation of
large-depth circuits, special care must be taken even when dealing with shallow
circuits due to the appearence of Barren Plateaus (BPs). As discussed in Sec. 2.2.4,
under the pressence of a BP, estimating cost-minimizing directions is very hard,
since the gradients exponentially concentrate around zero, which in turn implies
that any optimizer will effectively get stucked. Addressing the BP issue currently
constitutes one of the major research directions in the field of NISQ computing.
Here, the ansatz used for the quantum circuit (e.g. the structure under which
quantum gates act on the available qubits) plays a fundamental role, and developing
tools to discover useful quantum-circuit structures that can be trained under the
VQA framework is of utmost importance.

To this end, we combine several features of recently proposed methods and
introduce the Variable Ansatz (VAns) algorithm [BCV+21] to generate variable
structure ansatzes for generic VQA applications. As shown in Fig. 4.1, VAns itera-
tively grows the parameterized quantum circuit by adding blocks of gates initialized
to the identity, but also prevents the circuit from over-growing by removing gates
and compressing the circuit at each iteration. In this sense, VAns produces shallow
circuits that are more resilient to noise, and that have less trainable parameters
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Figure 4.1: We show a schematic diagram of the VAns algorithm. (a) VAns explores the
hyperspace of architectures of parametrized quantum circuits to create short depth ansatzes
for VQA applications. VAns takes a (potentially non-trivial) initial circuit (step I) and
optimizes its continuous parameters θ until convergence. At each step, VAns inserts blocks
of gates into the circuit which are initialized to the identity (indicated in a box in the figure),
so that the ansatzes at contiguous steps belong to an equivalence class of circuits leading to
the same cost value (step II). VAns then employs a classical algorithm to simplify the circuit
by eliminating gates and finding the shortest circuit (step II to III). The ovals represent
subspaces of the architecture hyperspace connected through VAns. While some regions
may be smoothly connected by placing identity resolutions, VAns can also explore regions
that are not smoothly connected via a gate-simplification process. VAns can either reject
(step IV) or accept (step V) modifications in the circuit structure. Here Z (X) indicates a
rotation about the z (x) axis. (b) Schematic representation of the cost function value versus
the number of iterations for a typical VAns implementation which follows the steps in (a).
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to avoid trainability issues. Our approach provides a simple yet effective way
to address the ansatz design problem, without resorting to resource-expensive
computations similar to recently evolutionary-oriented proposals.

Our algorithm is inspired by the strong presence of noise in NISQ devices. As
such, it potentially hinders any successful application of NISQ computers. In this
context, we should take advantage of every component of the quantum device that
could be optimized over, and this generally includes the circuit’s layout. In this
regard, some approaches —as EVQE [RHP+19] or MoG-VQE [CSU+20] —have been
introdued in the past, as discussed in Sec. 2.2.2. VAns algorithm differs from them
in at least two important aspects: (i) it considers general cost functions, and thus
can be considered a general-purposed quantum-machine learning algorithm, and
(ii) the method incorporates knowledge on quantum computing via specific circuit
compression rules.

Thus, the learning problem we are dealing with consists in finding cost-minimizing
quantum circuits, where not only the parameters can be optimized, but also the
structure of the circuit itself. While some light is shed into the learning prob-
lem through the aforementioned compression rules, an important learning-in-the-
darkness component remains. In particular, no structure is imposed on how our
algorithm grows the quantum circuit, and at each time-step quantum gates are
randomly placed across the circuit, acting on qubits that are also randomly selected.
Thus, the learning paradigm departs from the one considered in Chapter 3, and
rather than assuming complete ignorance of the setting, the agent (VAns algorithm)
is now equipped with partial information about the setting, henceforth it learns in
the twilight through the VAns algorithm, which we now turn to explain in detail.

4.1 The Variable Ansatz (VAns) Algorithm

The goal of the VAns algorithm is to adaptively construct trainable ansatzes for
generic problems encoded into a cost function, using parametrized quantum circuits.
We will here consider general cost-functions of the form1

C(k,θ) =
M∑
i

fi
(
Tr[OiU(k,θ)ρiU

†(k,θ)]
)
, (4.1)

where {ρi}Mi=1 are n-qubit states forming a training-set, and U(k,θ) is our NISQ
circuit parametrized by continuous parameters θ (e.g., rotation angles) and by

1More details can be found in Sec. 2.2.1.
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discrete parameters k (e.g., gate placements); moreover Oi are observables and fi
are functions that encode the optimization task at hand.

We define Cl as the architecture hyperspace of quantum circuits having l gates
in the layout. VAns takes as input:

• A cost function C(k,θ) to minimize.

• A dictionary D of parametrized gates that compile to the identity. That is, for
V (γ⃗) ∈ D there exists a set of parameters γ⃗∗ such that V (γ⃗∗) = 1.

• An initial circuit configuration U (0)(k,θ) ∈ Cl0 of depth l0 .

• Circuit Insertion rules which stochastically take an element V (γ⃗∗) ∈ D
and randomly insert it in the circuit. The insertion is a map I : Cl → Cl′ with
l′ ≥ l.

• Circuit Simplification rules to eliminate unnecessary gates, redun-
dant gates, or gates that do not have a large effect on the cost. The simplifica-
tion is a map S : Cl → Cl′ with l′ ≤ l.

• An optimization algorithm for the continuous parameters θ, and an optimiza-
tion algorithm for the discrete parameters k.

Given these inputs, VAns outputs a circuit architecture and set of parameters that
approximately minimize the cost function in Eq. 4.1.

In what follows we describe the overall structure of VAns (whose pseoudocode
is provided later in this Section), and in the next sections we provide additional
details for the Insertion and Simplification modules. We remark that
the steps presented here are aimed at giving a general overview of the method and
are intended to be used as building blocks for more advanced versions of VAns
(which we discuss in Sec. 4.3).

The first ingredient of VAns (besides the cost function, which is defined by
the problem at hand) is a dictionary D of parametrized gates that can compile to
identity and which VAns employs to build the ansatz. A key aspect here is that D
can be composed of any set of gates, so that one can build a dictionary specifically
tailored for a given application. In addition, it is usually convenient to have the
unitaries in D expressed in terms of gates native to the specific quantum hardware
employed, as this avoids compilation depth overheads (e.g. a larger number of
gates would otherwise be required). In our numerics, we will consider a dictionary
composed of one and two qubit identity block of gates that can resolve to the
identity; the alphabet is given by single-qubit rotations and CNOT acting on any
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two qubits present in the circuit (see Sec. 4.1.1 for further details). As stressed in
Sec. 2.2.1, we will not consider issues arising from connectivity constraints.

Once the gate dictionary is set, the ansatz is initialized to a given configuration
U (0)(k,θ). As discussed in Sec. 2.2.3, we then need to employ an optimizer to
control the parameters θ of the initial ansatz until the convergence is reached.
We recall that in Sec. 2.2.2 we discussed several strategies that define the ansatz
structure. In particular, the two non-trivial ansatzes shown in Fig. 2.2 are employed
in our numerical simulations as initialization strategies: (i) the separable product
ansatz which generates no entanglement, and (ii) the alternating Hardware Efficient
Ansatz which entangles neighboring qubits; note that only shallow circuits (e.g. a
low number of HEA-layers) are considered for initialization purposes. While the
choice of an appropriate initial ansatz can lead to faster convergence, VAns can in
principle transform a simple initial ansatz into a more complex one as part of its
architecture search.

From this point, VAns enters a nested optimization loop. In the outer loop, VAns
explores the architecture hyperspace to optimize the ansatz’s discrete parameters k
that characterize the circuit structure. Then, in the inner loop, the ansatz structure
is fixed and the continuous parameters θ are optimized.

At the start of the outer loop, VAns employs its Insertion rules to stochas-
tically grow the circuit. The fact that these rules are stochastic guarantees that
different runs of VAns explore distinct regions of the architecture hyperspace. As
previously mentioned, the gates added to the circuit compile to the identity so
that circuits that differ by gate insertions belong to an equivalence class of circuits
leading to the same cost function value (we remark that this strategy has been
also introduced in [RHP+19]). As discussed below, the Insertion rules can be
such that they depend on the current circuit they act upon. For instance, VAns can
potentially add entangling gates to qubits that were not previously connected.

To prevent the circuit from constantly growing each time gates are inserted,
VAns follows the Insertion step by a Simplification step. Here, the
goal is to determine if the circuit can be compressec without significantly modifying
the cost function value in a systematic way, as proposed in [MDM+08]. This is a
fundamental step of VAns as it allows the algorithm to explore and jump between
different regions of the architecture hyperspace which might not be trivially con-
nected. Moreover, unlike other variable-ansatz strategies that continuously grow
the number of gates present in the circuit, or which randomly remove gates, the
Simplification step allows VAns to find shorter ansatzes by deleting gates
in an informed manner.

Taken together, Insertion and Simplification provide a set of dis-
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crete parameters k. However, to determine if this new circuit structure can improve
the cost function value it is necessary to enter the inner optimization loop and
train the continuous parameters θ. Here, we remark that a global optimization
of all parameters shall be performed, since the landscape might contain a newer
minima. In practice, when entering the continuous optimization, the parameters
are initialized such that the circuit does not exactly compile to the same unitary
than that of the previous step, but rather small perturbations are injected in order
to help exiting potential local minima. When convergence in the optimization
is reached, the final cost-function value is compared to the cost in the previous
iteration. Updates that lead to equi-cost values or to smaller costs are accepted,
while updates leading to higher cost functions are accepted with exponentially
decaying probability in a manner similar to a Metropolis-Hastings step [Has70].
Here one accepts an update which increases the cost value with a probability given
by exp (−β∆C

C0 ), with ∆C
C0 being increment in the cost function with respect to the

initial value, and β > 0 a temperature factor. The previous optimizations in inner
and outer loops are repeated until a termination condition fTerm is reached, e.g.
distance to a target cost function value (if a lower bound is available), maximum
VAns iteration number, or an user-specified function that might depend on variables
such as circuit structure and cost value reached.

In the following we will give more details about VAns specific modules.

4.1.1 Insertion method
The Insertion step stochastically grows the circuit by inserting a parametrized
block of gates from the dictionary D which compiles to the identity. In order to
facilitate the exploration of a larger architecture-hyperspace region, in practice
we allow some deviation from the identity by slightly modifying the continuous
parameters so that the new gate deviates slightly from the identity. In Fig. 4.2
we show examples of two parametrized quantum circuits that can compile to the
identity.

There are many choices for how VAns determines which gates are chosen from
D at each iteration, and where they should be placed. When selecting gates, we
have here taken a uniform sampling approach, where every sequence of gates in D
has an equal probability to be selected.

4.1.2 Simplification method
The Simplification steps in VAns are aimed at eliminating unnecessary
gates, redundant gates, or gates that do not have a large effect on the cost. For this
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Figure 4.2: We show the two words from the dictionary D used during the
Insertion steps. Here we show two types of the parametrized gate sequences
composed of CNOTs and rotations about the z and x axis. Specifically, one obtains
the identity if the rotation angles are set to zero. Using the circuit in (a), one inserts
a general unitary acting on a given qubit, while the circuit in (b) correlates the two
qubits it acts upon.

purpose, Simplification moves gates in the circuit using the commutation
rules shown in Fig. 4.3(a) to group single qubits rotations and CNOTs together. Once
there are no further commutations possible, the circuit is scanned and a sequence
of simplification rules are successively applied. For instance, assuming that the
input state is initialized to |0⟩⊗n, we can define the following set of simplification
rules.

1. Scan the circuit for possible commutations: if possible place CNOTs at the
left, and rotations at the right side.

2. CNOT gates acting at the beginning of the circuit are removed.

3. Rotations around the z-axis acting at the beginning of the circuit are removed.

4. Consecutive CNOT sharing the same control and target qubits are removed.

5. Two or more consecutive rotations around the same axis and acting on the
same qubit are compiled into a single rotation (whose value is the sum of the
previous values).

6. If three or more single-qubit rotations are sequentially acting on the same
qubit, they are simplified into a general single-qubit rotation of the form
Rz(θ1)Rx(θ2)Rz(θ3) or Rx(θ1)Rz(θ2)Rx(θ3) which has the same action as
the previous product of rotations.
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Figure 4.3: We depict the rules for theSimplification steps. (a) Commutation
rules used by VAns to move gates in the circuit. As shown, we can commute a
CNOT with a rotation Z (X) about the z (x) axis acting on the control (target)
qubit; when possible, CNOTs are moved to the left-side of the circuit, and rotations
to the right one. (b) Example of simplification rules used by VAns to reduce the
circuit depth. Here we assume that the circuit is initialized to |0⟩⊗n.

7. Gates whose presence in the circuit does not considerably reduce the cost
are removed.

Rules (2) − (6) are schematically shown in Fig. 4.3(b). We remark that a crucial
feature of these Simplification rules is that they can be performed using
a classical computer that analyzes the circuit structure and hence do not lead to
additional quantum-computation resources.

As indicated by step (6), the Simplification steps can also delete gates
whose presence in the circuit does not considerably reduce the cost. Here, given a
parametrized gate, one can remove it from the circuit and compute the ensuing cost
function value. If the resulting cost is not increased by more than some threshold
value, the gate under consideration is removed and the simplification rules (1)− (5)
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Figure 4.4: We show a non-trivial circuit structure that can be obtained by VAns
using the Insertion and Simplification steps and the gate dictionary
in Fig. 4.2.

are again implemented. Here, we can use information from the inner optimization
loop to find candidate gates for removal. For instance, when employing a gradient
descent optimizer, we may attempt to remove gates whose parameters lead to
small gradients. Note that, unlike the simplification steps (1)− (5) in Fig. 4.3(b),
when using the deletion process in (6) one needs to call a quantum computer
to estimate the cost function, and hence these come at an additional quantum-
resource overhead which scales linearly with the number of gates one is attempting
to remove.

An interesting aspect of theSimplificationmethod is that it allows VAns
to obtain circuit structures that are not contained in the initial circuit U (0)(k,θ)
or in the gate dictionary D, and hence to explore new regions of the architecture
hyperspace. For instance, using the gate dictionary in Fig. 4.2, VAns can obtain a
gate structure as the one shown in Fig. 4.4.
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Algorithm 5: Pseudo-code for VAns
Input: Cost function C(k,θ); initial circuit U (0)(k,θ); dictionary of gates

D; Insertion rules which take gates from D and appends them
to a circuit; Simplification rules; optimization algorithm
OptC for continuous parameters θ; optimization algorithm OptD
for discrete parameters which accepts or rejects an ansatz update
given changes in the cost function value; termination condition
function fTerm(n,C(k,θ), U(k,θ)), n ∈ N

Output: Optimized ansatz U (f).
Init: Randomly initialize the parameters θ; initialize the ansatz

U (f) ← U (0)(k,θ); C(f) ← 0; k(f) ← k; θ(f) ← θ; U(k,θ)← 1;
Term← false; n← 0.

1 Optimize θ with OptC and store result in θ(f); C(f) ← C(k,θ).
2 while Term is false do
3 n← n+ 1
4 Accept← false
5 while Accept is false do
6 Use Insertion in U (f) and store new sets of discrete

parameters, continuous parameters and ansatz in θ, k, and
U(k,θ), respectively.

7 Use rules [1-6] of Simplification on U(k,θ) and store new
sets of discrete parameters, continuous parameters and ansatz in θ,
k, and U(k,θ), respectively.

8 Optimize continuous parameters in U(k,θ) with OptC and store
result in θ; C(f) ← C(k,θ).

9 Repeat step 7, with rules [1-7] of Simplification.
10 Given C(k,θ) and C(f), optimize discrete parameters in U(k,θ)

with OptD and store result in Accept.
11 k(f) ← k.
12 θ(f) ← θ.
13 U (f) ← U(k,θ).
14 C(f) ← C(k,θ).
15 Term← fTerm(n,C

(f), U (f))
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4.1.3 Scaling of VAns
With the previous overview of the VAns method in mind, let us now discuss
the computational complexity arising from using VAns versus that of using a
standard fix architecture scheme. In the following discussion we will not include
any computational cost or complexity of the continuous-parameter optimizer as
we assume that the same tools could be used for fixed or variable ansatzes.

Firstly, we note that any additional computational cost comes due to circuit
manipulations, meaning that we should study the scaling of the Insertion and
Simplificationmethods. On the one hand, adding gates viaInsertion is
stochastic, and independent of the number of qubits or the current circuit depth, that
is: its complexity is always inO(1). Then, removing gates viaSimplification
has a cost which increases with the number of gates in the circuit. If we have M
gates, then running the Simplification scheme has a cost O(M). We note
that such computational complexity is similar to that of using gradient-free versus
gradient-based methods, as the computational cost of the latter also scale as O(M).
Notably, since the goal of VAns is to produce short-depth circuits, the algorithm
itself tries to reduce its own computational cost during training. As we sill see below
in our numerical examples, VAns is always able to find short-depth circuits whose
solutions are better than those arising from fixed structure ansatzes, meaning that
the extra complexity of VAns can be justified in terms of its performance.

With an understanding of VAns mechanism, we will now turn to use it in a
plethora of different scenarios.

4.2 Using VAns

In this Section, we present our results obtained from simulating VAns to solve
paradigmatic problems in condensed matter, quantum chemistry, quantum au-
toencoding and quantum compiling problems in ideal conditions,e.g. without
considering any noise-model of the quantum computer.

We first use VAns in the Variational Quantum Eigensolver (VQE) algorithm [PMS+14]
to obtain the ground state of the Transverse Field Ising model (TFIM), the XXZ
Heisenberg spin model, and the H2 and H4 molecules. We then apply VAns to a
quantum autoencoder [ROAG17] task for data compression. We then move to use
VAns to compile a Quantum Fourier Transform unitary in systems up to 10 qubits.
In all these cases, we have perform the simulations under the unrealistic scenario
in which neither shot-noise nor harware noise were considered; this will be the
matter of further sections.
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The simulations presented here were performed using Tensorflow Quantum [BVM+20].
Adam [KB15] and qFactor [YC] were employed to optimize the continuous param-
eters θ, e.g. OptC in the pseudo-code previously presented. While VANs is an
stochastic algorithm, and the number of iterations required until meeting a con-
vergence criteria should in principle be a random variable, we remark that all the
results shown in this Section were obtained from a single instance of the algo-
rithm (for each of the problems considered). While a statistical analysis should in
principle be carried out in order to analyze VAns’ average performance, the latter
fact intuitively highlights the way in which VAns is able to exploit computational
resources.

The dictionary D of gates used consisted on block of single single-qubit and
two-qubit gates that can resolve to identity. Each is composed by single-qubit
rotations around x and z axis, and CNOTs gates between all qubits present in the
circuit. As already mentioned, we have assumed no connectivity constraints under
the quantum circuits under consideration. In the following examples, VAns was
initialized to either a separable ansatz or an L-HEA, with L < 3 (recall that in
Fig. 2.2 we showed the separable and 2-HEA circuits).

4.2.1 Transverse Field Ising model (TFIM)
We now consider a cyclic TFIM chain. The Hamiltonian of the system reads

Ĥ = −J
n∑
j=1

σxj σ
x
j+1 − g

n∑
j=1

σzj , (4.2)

where σx(z)j is the Pauli x (z) operator acting on qubit j, and where n+ 1 ≡ 1 to
indicate periodic boundary conditions. Here, J indicates the interaction strength,
while g is the magnitude of the transverse magnetic field. As mentioned in Sec-
tion 2.2.1, when using the VQE algorithm the goal is to optimize a parametrized
quantum circuit U(k,θ) to prepare the ground state of H so that the cost function
becomes

CVQE(k,θ) = Tr[ĤU(k,θ)ρU †(k,θ)], (4.3)

where one usually employs ρ = |0⟩⟨0| with |0⟩ = |0⟩⊗n.
In Fig. 4.5 we show results obtained from employing VAns to find the ground

state of a TFIM model of Eq. (4.2) with n = 4 qubits (a) and with n = 8 qubits (b),
field g = 1, and different interactions values. To quantify the performance of the
algorithm, we additionally show the relative error |∆E/E0|, where E0 is the exact
ground state energy E0, ∆E = EVAns − E0, and EVAns the best energy obtained

157



4.2. USING VANS

Figure 4.5: Results of using VAns to obtain the ground state of a Transverse Field
Ising model: we use VAns in the VQE algorithm for the Hamiltonian in Eq. 4.2
with (a) n = 4 qubits and (b) n = 8 qubits, field g = 1, for different values of the
interaction J . Top panels: solid lines indicate the exact ground state energy, and
the markers are the energies obtained using VAns. Bottom panels: Relative error in
the energy for the same interaction values.

through VAns. For 4 qubits, we see from Fig. 4.5 that the relative error is always
smaller than 6× 10−5, showing the that ground-state energy was obtained for all
coupling values J . Then, for n = 8 qubits, VAns obtains the ground state of the
TFIM with relative error smaller than 8× 10−4.

To gain some insight into the learning process, in Fig. 4.6 we show the cost
function value, number of CNOTs, and the number of trainable parameters in the
circuit discovered by VAns as different modifications of the ansatz are accepted
to minimize the cost in an n = 8 TFIM VQE implementation. Specifically, in
Fig. 4.6(top) we see that as VAns explores the architecture hyperspace, the cost
function value continually decreases until one can determine the ground state of the
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(a)

Figure 4.6: We show VAns learning process: (a) we show an instance of running
the algorithm for the Hamiltonian in Eq. (4.2) with n = 8 qubits, field g = 1, and
interaction J = 1.5. The top panel shows the cost function value and the bottom
panel depicts the number of CNOTs, and the number of trainable parameters versus
the number of modifications of the ansatz accepted in the VAns algorithm. Top: As
the number of iterations increases, VAns minimizes the energy until one finds the
ground state of the TFIM. Here we also show the best results obtained by training
a fixed structure layered Hardware Efficient Ansatz (HEA) with 2 and 5 layers, and
in both cases, VAns outperforms the HEA. Bottom: While initially the number of
CNOTs and number of trainable parameters increases, the Simplification
method in VAns prevents the circuit from constantly growing, and can even lead to
shorter depth circuits that achieve better solutions. Here we also show the number
of CNOTs (solid line) and parameters (dashed line) in the HEA ansatzes considered,
and we see that VAns can obtain circuits with less entangling and trainable gates.

159



4.2. USING VANS

Figure 4.7: We show a low-depth, ground-state preparing circuits found by VAns
during the learning process; here Z (X) indicates a rotation about the z (x) axis,
about the corresponding value appearing below.

TFIM. Fig. 4.6(bottom) shows that initially VAns increases the number of trainable
parameters and CNOTs in the circuit via the Insertion step. However, as the
circuit size increases, the action of the Simplificationmodule becomes more
relevant as we see that the number of trainable parameters and CNOTs can decrease
throughout the computation. Moreover, here we additionally see that reducing
the number of CNOTs and trainable parameters can lead to improvements in the
cost function value. The latter indicates that VAns can indeed lead to short depth
ansatzes which can efficiently solve the task at hand, even without the presence of
noise.

Finally, in Fig. 4.7 we also compare the performance of VAns with that of 2-HEA
and 5-HEA. We specifically compare against those two fixed structure ansatzes
as the first (latter) has a number of trainable parameters (CNOTs) comparable to
those obtained in the VAns circuit. In all cases, we see that VAns can produce better
results than those obtained with the Hardware Efficient Ansatz.
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Figure 4.8: We show results of using VAns to obtain the ground state of a Heisenberg
XXZ model. Here, we consider the VQE algorithm for the Hamiltonian in Eq. 4.4
with (a) n = 4 and (b) n = 8 qubits, field g = 1, and indicated anisotropies ∆. Top
panels: The solid line indicates the exact ground state energy, and the markers are
the energies obtained using VAns. Bottom panels: Relative error in the energy for
the same anisotropy values.

4.2.2 XXZ Heisenberg Model

Here we use VAns in a VQE implementation to obtain the ground state of a periodic
XXZ Heisenberg spin chain in a transverse field. The Hamiltonian of the system
is

H =
n∑
j=1

σxj σ
x
j+1 + σyjσ

y
j+1 +∆σzjσ

z
j+1 + g

n∑
j=1

σzj , (4.4)

where again σµj are the Pauli operators (with µ = x, y, z) acting on qubit j, n+1 ≡ 1
to indicate periodic boundary conditions, and where ∆ is the anisotropy. We recall
that H commutes with the total spin component Sz =

∑
j σ

z
i , meaning that its
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eigenvectors have definite magnetization MZ along z [CRC+17].

In Fig. 4.8 we show numerical results for finding the ground state of (4.4) with
n = 4 and n = 8 qubits, field g = 1, and for different anisotropy values. For 4
qubits, we see that VAns can obtain the ground-state energy with relative errors
which are always smaller than 9× 10−7. In the n = 8 qubits case, the relative error
is of the order 10−3, with error increasing in the region 0 < ∆ < 1; in such case,
as we discuss next, the algorithm finds the first-excited energy state.

We remark that a similar phenomenon is observed in [CLKAG20], where errors
in preparing the ground state of the XXZ chain increase in the same region.
The reason behind this phenomenon is that the optimizer can get stuck in a local
minimum where it prepares excited states instead of the ground state. Moreover,
it can be verified that while the ground state and the three first exited states all
belong to the same magnetization sub-space of state with magnetization MZ = 0,
they have in fact different local symmetries and structure. Several of the low-lying
excited states have a Néel-type structure of spins with non-zero local magnetization
along z of the form | ↑↓↑↓ · · · ⟩. On the other hand, the state that becomes the
ground-state for ∆ > 1 is a state where all spins have zero local magnetization
along z, meaning that the local states are in the xy plane of the Bloch sphere.
Since there is a larger number of excited states with a Néel-type structure (and
with different translation symmetry) variational algorithms tend to prepare such
states when minimizing the energy. Moreover, since mapping a state with non-zero
local magnetization along z to a state with zero local magnetization requires a
transformation acting on all qubits, any algorithm performing local updates will
have a difficult time finding such mapping.

4.2.3 Molecular Hamiltonians

We will now focus on quantum chemistry problems, which consist in preparing the
ground-state of a molecular hamiltonian. We will first outline how such systems can
be modelled under the NISQ framework, and present our VQE-results afterwards.
While our introduction to quantum chemistry suffices for the purposes of presenting
the problem we benchmark VAns with, the curious reader can find more information
on quantum chemistry in Refs. [MEAG+20a; MSK+19; MEAG+20b].

The molecular Hamiltonian, under the Born-Oppenheimer approximation, can
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be written both in the phase-space and in the (fermionic) Fock space as per

H =
1

2

∑
i ̸=j

ZiZj
|Ri −Rj|

− 1

2

∑
i

∇2
ri
−
∑
i,j

Zj
|Rj − ri|

+
∑
i<j

1

|ri − rj|
, (4.5)

= hnuc +
∑
pq

hpq(R)a†paq +
1

2

∑
pqrs

hpqrs(R)a†pa
†
qaras, (4.6)

where we have used atomic units, and where Zi represents the nuclear charge of ith
nuceli whose position is Ri. Moreover, a and a† represent the fermionic anhilation
and creation operators obeying the anticommutation relations {ai, a†j} = δij , and
we have also included the one and two-electron integrals, which relate the phase-
space representation of the Hamiltonian to the Fock-space one. To this end, we use
single-electron wave-functions (known as electron spin-orbitals, or atomic orbitals)
ψ(σ)— generally obtained via a Hartree-Fock approach — with σ = (ri, si) standing
for the electron’s position and spin respectively, whose expression is given by

hpq(R) = −
∫
dσϕ∗p(σ)

(∇2
r

2
+
∑
i

Zi
|Ri − r|

)
ϕq(σ) (4.7)

hpqrs(R) =

∫
dσ1dσ2

ϕ∗p(σ1)ϕ
∗
q(σ2)ϕp(σ1)ϕq(σ2)

|r1 − r2|
, (4.8)

and remark that such quantities depend on the geometry of the molecule under
consideration, as given by the position of all nuclei R = {Rj}. Computing such in-
tegrals is a non-trivial task, and we here rely on specific libraries to do so [MSK+19].

From here, a basis-set of states known as molecular orbitals is used to describe
the molecule’s ground-state, and many methods have been developed in the past
decades to classically solve this problem [MEAG+20a]. The fermionic state is
generally given by a superposition of Slatter determinants, generated by such
basis-set.

If we aimed to obtain the exact ground state of the molecule, then we could
variationally minimize its energy, and this constitutes the Full Configuration Inter-
action (FCI) approach; we note however that the number of determinants buildable
from a given basis-set is exponentially large, and this approach is not practical —
although we will use it for benchmarking purposese in our numerics —.

On the contrary, the Hartree-Fock (HF) method keeps a single determinant,
where the molecular orbitals are obtained as lineal combinations of atomic orbitals;
the combination coefficients are optimized by following a mean-field approach
where each electron is assumed to suffer from an effective potential generated by
the remaining ones, and the state |HF ⟩ is thereby obtained.
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However, since the HF approach treats the electrons independently, it does not
capture correlation effects generally present in the ground-state. To this end, an
iterative approach can be considered, which applies excitation operators to the |HF ⟩,
in order to bring it closer to the true molecular ground-state. Each excitation swaps
an electron from one molecular orbital to another, and if all excitation operators Tn
were to be considered, then any state could be reachable within this approach, i.e.
we get get FCI. However, and in order to remain in the scope of classically-tractable
solutions, only one and two excitation operators are often considered. To this end,
the Unitary Coupled Cluster with Single and Double excitations (UCCSD) ansatz
reads |ψUCC⟩ = eT−T

† |HF ⟩ with T =
∑2

i=1 Ti, and

T1 =
∑
i,α

ti,αa
†
iaα, T2 =

∑
ij,αβ

tij,αβa
†
ia
†
jaαaβ. (4.9)

From here, we variationally minimize the energy associated to |ψUCC⟩, by modifying
the coefficients ti,α and tij,αβ .

As discussed in Sec. 2.2.2, to implement Eq. 4.5 in a digital quantum computer
one needs to map the fermionic operators into qubits operators (usually through
a Jordan Wigner or Bravyi-Kitaev transformation). Here we employed the Open-
Fermion package [MSK+19] to map Eq. 4.5 into a Hamiltonian expressed as a linear
combination of n-qubit Pauli strings of the form

H =
∑
z⃗

cz⃗Pz⃗ , (4.10)

with Pz⃗ ∈ {1, σx, σy, σz}⊗n, cz⃗ real coefficients, and z⃗ ∈ {0, x, y, z}⊗n. Here, we
stress that the coefficients cz⃗ generally depend on the electronic integrals, which in
turn depend on the geometry of the molecule under consideration.

In all cases, the basis set used to approximate atomic orbitals was the STO-3g one,
a neutral molecule was always considered, and the Jordan-Wigner transformation
was used. While for the H2 the number of qubits required is four (n = 4), this
number is doubled for the H4 chain (n = 8). Here, we note that the H4 chain that
we consider might not be found in equilibrium conditions (e.g. the geometry that
we consider may not be stable). This consists on an equally-separated array of
Hydrogen atoms, by a distance that we deem bond-length, and in our numerics we
vary such distance in order to reconstruct the energy curve.

Thus, in Fig. 4.9 we show the results obtained for finding the ground-state
energy of the Hydrogen molecule (left) and H4 chain (right), at different bond
lengths. As stressed above, equal bond distance were considered for the H4 chain.
Noticeably, the dictionary of gatesD chosen here is not a chemical-inspired one (e.g.,
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it does not contain single and double excitation operators nor its hardware-efficient
implementations), yet VAns is able to find ground-state preparing circuits within
chemical accuracy, a term which stands for the ultimate accuracy experimentally
reachable in these systems [MEAG+20b]. Moreover, as shown in the bottom panels,
VAns usually requires less than 15 iterations until reaching convergence, showing
that the algorithm quickly finds a way through the architecture hyperspace towards
a solution.

(a) (b)

Figure 4.9: We show results of using VAns to obtain the ground state of a Hydrogen
(H4) molecule, at different bond lengths (for the H4 molecule, this means the
distance between the equally-separated atoms, which are disposed in a lineal array).
Here we use VAns in the VQE algorithm for the molecular Hamiltonian obtained
after a Jordan-Wigner transformation, leading to a 4(8)-qubit circuit in left(right)
panels. Top: Solid lines correspond to ground state energy as computed by the Full
Configuration Interaction (FCI) method, whereas points correspond to energies
obtained using VAns. Middle: Differences between exact and VAns ground state
energies are shown. Dashed line corresponds to chemical accuracy, which stands for
the ultimate accuracy experimentally reachable in such systems. Bottom: Number
of iterations required by VAns until convergence are shown.

165



4.2. USING VANS

Figure 4.10: Schematic diagram of the quantum autoencoder implementation. We
first employ VAns to learn the circuits that prepare the ground states {|ψi⟩}Mi=1

of the H2 molecule for different bond lengths. These ground states are then used
to create a training set and test set for the quantum autoencoder implementation.
The goal of the autoencoder is to train an encoding parametrized quantum circuit
V (k,θ) to compress each |ψi⟩ into a subsystem of two qubits so that one can
recover |ψi⟩ from the reduced states, and we quantify this using the cost in Eq. 4.13.

4.2.4 Quantum Autoencoder

We will now focus on the quantum autoencoder. This is a paradigmatic quantum-
machine learning application which was first introduced in [ROAG17], where
the quantum information stored in a multipartite quantum state is aimed to be
compressed in terms of qubits’ number.

In the following, we will first introduce the quantum-autoencoder and then
study how VANs can be applied to train it. In particular we will show results when
using VAns to train the autoencoder to compress the ground-states of the Hydrogen
molecule, from 4 qubits to 2.

We consider a bipartite quantum system AB of nA and nB qubits, respectively.
Let {pi, |ψi⟩} be a training set of pure states on AB. The goal of the quantum
autoencoder is to train an encoding parametrized quantum circuit V (k,θ) to com-
press the states in the training set onto subsystem A, so that we can discard the
qubits in subsystem B without losing much information. This can be quantified by
introducing an ancillary system B′, and computing how close can the autoencoder
transformation get to the initial training set. The performance of this task can
be quantified by the average fidelity between the input and output states (as a
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shorthand, we will denote V (k,θ) as VAB , when acting on the system (AB)).

C1(θ) = 1−
∑
i

piF(|ψi⟩ , ρi,out), (4.11)

ρi,out = V †AB′TrB
[
VAB

(
[ψi,AB]⊗ [0B′ ]V †AB]

)]
VAB′ , (4.12)

where we note that ρi,out ∈ HAB′ (for our purposes, B′ is just a copy of B, and they
have the same dimension), and the autoencoder is represented by the unitary V
we aim to train. Moreover, we have used the notation [ψ] = |ψ⟩⟨ψ|, and denoted
the fidelity between to states by F .

Thus, the quantum autoencoder consists on the following steps:

• Encode the quantum state |ψi,AB⟩ to obtain [ψ′AB] = VAB

(
[ψi,AB]

)
V †AB .

• Discard the B system by tracing over it.

• Construct a new version of the global systemAB′, by introducing a reference
state [0B′ ] in B′. This results in an state TrB[ψ′i,AB]⊗ [0′B]

2.

• Decode the quantum state to obtain an approximate version of |ψi⟩ by rever-
ing the unitary transformation (e.g. by applying V †).

In summary, V is aimed to decouple subsystem A from subsystem B, so that
the resulting state is completely compressed into subsystem A if the qubits in B are
found in the fixed target state [0B]. In turn, assuming that V |ψi,AB⟩ = |ϕi,A⟩ |0B⟩,
then it follows that ρi,out = [ψi,AB′ ], which lead to an average fidelity of 1.

As shown in [ROAG17], optimizing the average fidelity between the input and
output states is equivalent to impose that the reduced state of system B, known
as trash state e.g. TrA[ψ′i,AB] after encoding, matches the reference state [0B′ ].
This is done by introducing a swap between systems B and B′ in between the
encoding and decoding steps. Thus, the autoencoder task can be accomplished by
training only on the trash state. Inspired by this, and the fact that computing the
fidelities (for instance, via the SWAP) test requires a considerably comlex circuit,
whose compilation would lead to potentially many gates in the NISQ-context,
Ref. [ROAG17] considers an alternative cost-function of the form

C(k,θ) = 1−
∑
i

piTr[
(
|⃗0⟩⟨⃗0|B ⊗ 1A

)
V |ψi⟩⟨ψi|V †] (4.13)

2For our purposes, we can think on the previous item and this one as reseting the state of
sub-system B to [0′B ].
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Figure 4.11: Results of using VAns to train a quantum autoencoder. Here we use VAns to
train an encoding parametrized quantum circuit by minimizing Eq. (4.13) on a training set
comprised of six ground states of the hydrogen molecule. We here also show the lowest
cost function obtained for a L-HEA of L = 4 and L = 15 layers. Top panel: the cost
function evaluated at both versus accepted VAns circuit modifications. In addition, we also
show results of evaluating the cost on the testing set. Bottom panel: number of CNOTs, and
number of trainable parameters versus the number of modifications of the ansatz accepted
in the VAns algorithm. Here we additionally show the number of CNOTs (solid line) and
parameters (dashed line) in the HEA ansatzes considered. We remark that for 15-HEA has
180 parameters, and hence the curve is not shown as it would be off the scale.

where 1A is the identity on subsystem A. Here we see that if the reduced state in
B is |⃗0⟩B for all the states in the training set, then the cost is zero.

As shown in Fig. 4.10, we employ the ground states |ψi⟩ of the H2 molecule (for
M different bond lengths) to create a training set of six states and a test set of ten
states. Here, the circuits obtained through VAns in the previous section serve as
(fixed) state-preparation circuits for the H2-molecule ground-states. We then use
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VAns to learn an encoding circuit V (k,θ) which can compress the states |ψi⟩ into
a subsystem of two qubits.

Fig. 4.11 presents results obtained by minimizing the cost in Eq. 4.13, for a single
run of the VAns algorithm. As seen, within 15 accepted architecture modifications,
VAns can decrease the training cost function down to 10−7, by departing from a
separable product ansatz (see Fig. 2.2). We here additionally show results obtained
by training the Hardware Efficient Ansatz of Fig. 2.2(b) with 4 and 15 layers (as
they have a comparable number of trainable parameters and CNOTs, respectively,
compared to those obtained with VAns). In all cases, VAns achieves the best
performance. In particular, it is worth noting that VAns has much fewer parameters
(∼ 45 versus 180) than the 15-layer HEA, while also achieving a cost value that is
lower by two orders of magnitude. Hence, VAns obtains better performance with
fewer quantum resources.

To end this Section showcasing VAns in ideal scenarios, we will now discuss
the case of unitary compilation.

4.2.5 Unitary compilation

Unitary compilation is a task in which a target unitary is decomposed into a
sequence of quantum gates that can be implemented on a given quantum computer.
As discussed in Sec. 2.2, current quantum computers are limited by the depth of
quantum circuits that can be executed on them, which makes the compilation task
very important in the near term. Indeed, we would like to decompose a given
unitary using as few gates as possible to maximally reduce the effect of noise.

We will illustrate our approach by compiling Quantum Fourier Transform (QFT)
on systems up to n = 10 qubits. Apart from VAns, we also compile the QFT unitary
using standard HEA and compare the performance of both methods.

The cost function for unitary compilation is defined as follows. First, a training
set is selected

{
(
|ψj⟩ , U (n)

QFT |ψj⟩
)
}Mj=1 , (4.14)

where U (n)
QFT is a target QFT unitary on n qubits and |ψj⟩ are M , randomly selected

input states. We assume that the states |ψj⟩ are pairwise orthogonal to avoid
potential optimization problems caused by similarities in the training set. The cost
function takes the form

C(k,θ) =
N∑
j=1

||U (n)
QFT |ψj⟩ − V (k,θ) |ψj⟩ ||2 . (4.15)
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Note that the cost function introduced in Eq. (4.15) becomes equivalent to a more
standard one, C ′(k,θ) = ||U (n)

QFT − V (k,θ)||2, when M = 2n. While C(k,θ)
measures the distance between the exact output of QFT and the one returned by
V (k,θ) only on selected input states, C ′(k,θ) measures the discrepancy between
full unitariesU (n)

QFT and V (k,θ). It has recently been shown [CHC+22] thatM ≪ 2n

is sufficient to accurately decompose U (n)
QFT. More precisely, a constant number of

training states M (independent of n) can be used to ensure small value of C ′(k,θ),
while minimizing the cost function in Eq. 4.15. This observation provides an
exponential speedup in evaluating the cost function for unitary compilation. Indeed,
the cost of evaluating C(k,θ) in Eq. (4.15) is M · 2n (assuming the circuit V (k,θ)

consists of few body gates and the states U (n)
QFT |ψj⟩ are given in computational

basis), while the cost of computing C ′(k,θ) is 4n. The number of training states
M which lead to small value of C ′(k,θ) depends on the number of independent
variational parameters in V (k,θ). Suboptimal decompositions V (k,θ) (in terms of
number of parametrized gates) will require larger M to achieve good compilation
accuracy. We have used M = 15 for n = 10 qubit compilation with VAns, and
a much larger training set in an approach that uses HEA; the increase in M is
necessary since the latter approach needed a much deeper circuit, as discussed
below. We have used most general two-qubit gates as the building block in VAns
and to construct HEA. This is a slight generalization to the Insertion and
Simplification steps in the VAns algorithm discussed above. General two-
qubit gates can be decomposed in terms of CNOTs and one-qubit rotations using
standard methods.

The method based on HEA requires very deep circuits (at n = 10). They consists
of so many gates that the regular optimization has very small success probability.
We therefore modify the method based on HEA and utilize the recursive structure
of U (n)

QFT. In the modified approach, we use HEA to compile U (n−1)
QFT and then use it

to create an ansatz for U (n)
QFT. The ansatz for larger system size additionally consists

of several layers of HEA. We apply the above growth technique starting from n = 3
to eventually build the ansatz for n = 10. We stress that VAns does not require
such simplification and is capable of finding the decomposition with high success
probability directly at n = 10 while initialized randomly.

Figure 4.12 shows VAns results for n = 10 qubit QFT compilation. Panel (a)
depicts how the value of the cost function C(k,θ) is minimized over the iterations.
We also show the corresponding value of C ′(k,θ) = ||U (n)

QFT − V (k,θ)||2. We
observe strong correlation between both cost functions. C ′(k,θ) is eventually
minimized below 10−9 at the end of the optimization. Panel (b) shows how the
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Figure 4.12: Results of using VAns for unitary compilation. Here we use VAns to
find a decomposition of QFT unitary defined on n = 10 qubits, by minimizing a
cost function C(k,θ) (red line in panel (a) defined in Eq. (4.15). The cost evaluates a
difference between exact output of QFT and the one returned by a current circuit, on
a small number of input states only (M = 15). The blue line shows corresponding
difference between full unitaries,C ′(k,θ) = ||U (n)

QFT−V (k,θ)||2. We observe a high
correlation between those two cost functions. Panel (b) shows how VAns modifies
the number of two-qubit gates as it approaches the minimum of C(k,θ). The
minimum is found with 48 gates, which is ∼ 4.5 times less than the decomposition
found with HEA (not shown).
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number of two-qubit gates evolves as VAns optimization is performed. Excluding
the initial warm-up period, during which the cost function has very large (close to
maximal possible) value, the number of two-qubit gates is steadily grown reaching
48 at the end of the optimization. That number is only slightly larger than the
number of two-qubit gates (45) used in the textbook-QFT circuit for n = 10.

The approach based on HEA requires 219 general two-qubit gates to decompose
n = 10 QFT, which is over 4 times more than the best circuit found by VAns. The
HEA approach uses recursive structure of QFT to find accurate decomposition,
while VAns does not rely on that property and finds a solution in fewer number of
iterations. Finally, VAns takes advantage of the generalization bound [CHC+22],
finding solution with near optimal number of variational parameters in V (k,θ);
the training set size M required for small generalization error is small resulting in
fast cost function evaluations.

4.2.6 Noise and the λ-model

The results previously shown were obtained without considering hardware noise.
We observed that VAns was able to better exploit the quantum resources at hand
(i.e. attain a lower cost-function value) as compared to its fix-structure counterpart
(e.g. HEA).

We now consider the case where noisy channels are present in the quantum
circuit, an unavoidable situation in current experimental setups, with noise essen-
tially forbidding large-depth quantum circuits to preserve quantum coherence. In
the context of QML, the overall effect of noise is that of degrading the cost-function
value and, if its strength is sufficiently high, then short-depth circuits turn to be
favoured even at the cost of expressibility. For instance, increasing the number of
layers in HEA ansatz might not reduce the cost function and even increase it, since
noise accumulates due to the presence of gates.

There are several sources of noise in quantum computers. For instance, experi-
mental implementation of a quantum gate takes a finite amount of time, which in
turn depends on the physical qubit at hand, the latter subjected to thermal relax-
ation errors. Relaxation and dephasing errors depend, in general, on each particular
qubit (i.e. the qubit label). The overall effect of the gate implementation is often
modeled by a depolarizing quantum channel, followed by phase flips and amplitude
damping channels, whose strength depends on the aforementioned parameters
(gate implementation time, qubit label), gate type and environment temperature.
For instance, an entangling gate such as a CNOT injects considerably more noise to
the circuit than a single-qubit rotation. Moreover, state initialization and readout
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Figure 4.13: Results of using VAns for VQE under the λ-model. Here we consider
the TFIM for 8 qubits, with g = J = 1. The results are obtained after repeating 50
iterations of optimizations with VAns and HEA respectively. We observe that VAns
discovers much more efficient quantum circuits as compared to HEA. As shown
in the upper inset, VAns automatically adjusts the circuit layout according to the
noise strength at hand, a feature that fix-structure ansatzes lack. In the lower inset
we show the relative errors (e.g. standard deviation over optimal cost found) for
both ansatzes, across the 50 iterations; we observe that VAns is more precise in
reaching a minimum as compared to HEA. We note that in this experiment we
have initialized VAns to a 1-HEA, which is in turn inconvenient for a sufficiently
high value of λ. Yet, VAns learns how to adapt the ansatz (in this case, finding
a separable one) so to reach the lowest cost value. In all cases VAns termination
criteria was set to a maximum number of 30 iterations.
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errors should be taken into account. We refer the reader to find further details
on noise modeling in Ref. [GEZ21]. We also note that additional sources of noise
should ultimately be considered, such as idle noise and cross-talk effects [LMR+22;
MMM+20]. Because the complexity of noise modelling in NISQ devices is par-
ticularly high, we here propose a sufficiently simple model that yet captures the
essential noise sources.

The λ-model. While a noise-model is ultimately linked to the specific quantum
hardware at hand and depends on several factors, we propose a unifying and sim-
plified one that depends on a single parameter. The main motivation behind this is
that of benchmarking the performance of different ansatzes in the presence of noise.
In more complex scenarios, one should consider specific process matrices obtained
from e.g. process tomography [OPG+04; YZKK+14], which would here obscure
the benchmark and also bias it towards specific quantum hardware. In particular,
our model is inspired by Refs [BPR+20; GEZ21], which in turn are implemented
in the aer noise simulator of IBM, and consists of the following models.
State preparation and measurement errors are modeled via bit flip channels acting
on each qubit, with strength λ 10−2, happening before the circuit U(k,θ) and
measurements respectively. Noise due to gate implementation is modeled as a
depolarizing channel, followed by a phase flip and amplitude damping channels
acting on the target qubit right after the gate. In principle, the strength of the
channel should depend on the specific qubit, and gate type, but in order to keep
the model simple enough we have assumed no noise dependence on the qubit
label. Moreover, a two-qubit gate is considerably more noisy than a single-qubit
one, which in the λ-model is reflected by the fact that noise strengths are an order
of magnitude higher, in the depolarizing channel, than in single-qubit gates, the
latter being λ 10−5. Finally, the strengths of the phase flip and amplitude damping
channels are set to λ 10−3. We note that, while not considered here, different
situations can easily be incorporated such as qubit connectivity constraints, or
differences in qubits’ quality (some qubits might be noisier than others). In such
cases, we expect VAns to find circuits which automatically balance the trade-offs at
hand, i.e. minimize the number of gates acting on such noisier qubits.

With this model at hand, we have explored the region of λ in which the action
of the noise becomes interesting. The results of running VAns under the λ-model
for ground state preparation (VQE) of TFIM 8-qubit system are shown in Fig. 4.13.
Here, the noise strength is sufficiently high so to affect the ground-state energy
(which can otherwise be attained by either VAns or a 3-HEA). We thus sweep the
value of λ by two orders of magnitude, and compare the results that VAns reaches
with those of HEA (varying the number of layers of the latter). We see that for a
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sufficiently high noise strength, increasing the number of gates (e.g. the number
of layers in HEA) eventually degrades the cost-function value, as opposed to the
noise-less scenario. On the contrary, we observe that even if the noise-strenght is
sufficiently high, VAns considerably outperforms HEA by automatically adjusting
the depth of the circuit to the noise-strength at hand. Thus, if the noise is large,
shallow circuits are found, whereas if the noise-strength is low, deeper circuits are
allowed to be explored, since the penalty of adding new gates is smaller. In general,
we observe that VAns is capable of finding the best possible circuit under given
conditions, which is something that HEA simply can not accomplish.

4.3 Discussion and future perspectives
In this Chapter, we have introduced the VAns algorithm, a semi-agnostic method
for building variable-structure parametrized quantum circuits.

At each iteration of the optimization, VAns stochastically grows the circuit to
explore the architecture hyperspace. Crucially, VAns also compresses and simplifies
the circuit by removing redundant and unimportant gates. This is a key aspect of
our method, as it differentiates VAns from other variable ansatz approaches and
allows us to produce shallow circuits, which can potentially mitigate the effect of
noise.

To showcase the performance of VAns, we simulated our algorithm for several
paradigmatic problems in the so-called quantum machine learning framework.
Namely, we implemented VAns to find ground states of condensed matter systems
and molecular Hamiltonians, for a quantum autoencoder problem and for 10-qubit
QFT compilation. In all cases, VAns was able to satisfactory create circuits that
optimize the cost. Moreover, due to VAns’ specific circit-compression rules, these
optimal circuits contain a small number of trainable parameters and entangling
gates. Here we also compared the result of VAns with those obtained by using a
Hardware Efficient Ansatz with either the same number of entangling gates or the
same number of parameters: in all cases we found that VAns could achieve the best
performance. This point is crucial for the success of VAns in the presence of noisy
channels, as it automatically adapts the circuit layout to the situation at hand (e.g.
noise strength). For instance, under the λ-model (which is the noise model we have
proposed and implemented), VAns notably outperforms HEA under ground-state
preparation tasks.

While we provided the basic elements and structure of VAns (i.e., the gate
Insertion and gate Simplification rules), these should be considered
as blueprints for variable ansatzes that can be adapted and tailored to more spe-
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cific applications. For instance, the gates that VAns inserts can preserve a specific
symmetry in the problem. Moreover, one can cast the VAns architecture optimiza-
tion (e.g., removing unimportant gates) in more advanced learning frameworks.
Examples of such frameworks include supervised learning [QBW22] or reinforced
learning schemes [FNM+21; MPR+21; HM22], which could potentially be employed
to detect which gates are the best candidates for being removed.

We expect VAns to be especially useful for abstract applications, such as linear
systems [BPLC+19; HBR19; XSE+21], factoring [AOAG+19], compiling [KLP+19;
SKC+20], metrology [BCS+22; KEJ+20], and data science [LTOJ+19; CSA+22;
BWP+17; SSP14; ASZ+21; VMN+19], where physically motivated ansatzes are
not readily available. In addition, VAns will likely find use even for physical appli-
cations such as finding grounds states of molecular and condensed matter systems,
as it provides an alternative to physically motivated ansatzes for mitigating the
impact of noise, as shown in our noisy simulations. This is particularly promising
since we have seen that VAns readily adapts the ansatz to the noise situation at
hand.

Let us now discuss how VAns is expected to deal with barren pleateaus, which
currently constitute one of the major barriers for the success of VQA frameworks.

4.3.1 Mitigating the effect of barren plateaus

First, consider the type of BPs that are caused by the circuit approaching an approx-
imate 2-design [MBS+18]. Approximating a 2-design requires a circuit that both
has a significant number of parameters and also has a significant depth [BHH16;
DCE+09; HL09; HM18; Haf22]. Hence, reducing either the number of parameters
or the circuit depth can combat the appearence of barren plateaus. VAns attempts
to reduce both the number of parameters and the depth and consequently attempts
to avoid approximating a t-design.

Second, consider the BPs that are caused by hardware noise [WFC+21]. For
such barren plateaus, it was shown that the circuit depth is the key parameter, as
the gradient vanishes exponentially with the depth. As VAns actively attempts to
reduce the number of CNOTs, it also reduces the circuit depth. Hence VAns will
mitigate the effect of noise-induced barren plateaus by keeping the depth shallow
during the optimization. As we have seen in our noisy simulations in Sec. 4.2.6,
VAns automatically adjusts the circuit layout in such a way that the cost function
reaches a minima, which translates to short-depth circuits in noisy scenarios.
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4.3.2 Future directions

BP-aware implementation

While in the previous subsection we have presented general arguments as to why
VAns can improve trainability, here we instead present a practical method that
combines VAns with the recent techniques of Ref. [SMM+22] for mitigating barren
plateaus using classical shadows.

As discussed in Sec. 2.2.4, it is known that the presence of barren plateaus is
intrinsically related to the entanglement generated in the circuit [SCC+22; PNG+21;
MKW21]. That is, circuits generating large amounts of entanglement are prone
to barren plateaus. With this remark in mind, the authors in [SMM+22] propose
to detect the onset of a barren plateau by monitoring, at each iteration, the entan-
glement of the resulting state. This can be achieved by computing, via classical
shadows [HKP20], the second Rényi entanglement entropyS2(ρR) = − log(Tr[ρ2R)],
where

ρR = TrR
[
U(k,θ)ρiU

†(k,θ)
]

(4.16)

denotes a reduced state on a subset of R qubits. As such, if S2(ρR) approaches the
maximal possible entanglement of the S qubits, given by the so-called Page value
Spage ∼ k log(2)− 1

2n−2k+1 , one knows that the optimization is leading to a region
of high entanglement, and thus of barren plateaus.

The key proposal in [SMM+22] is to tune the optimizer (e.g., by controlling
the gradient step) so that regions of large entropies are avoided. This technique
is shown to work well with an identity block initialization [GWO+19], whereby
the parameters in the trainable unitary are chosen such that U(k,θ) = 1 at the
start of the algorithm. Note that, in principle, this is still a fixed-ansatz method,
as some circuit structure has to be fixed beforehand, and as no gates are ever
removed. Hence, the methods in Ref. [SMM+22] can be readily combined with
VAns to variationally explore the architecture hyperspace while keeping track of
the reduced state entropy. In practice, this means that one can modify the VAns
update rule to allow for steps that do not significantly increase entropy, while
favouring steps that keep the entropy constant, or even that reduce it (e.g. by
removing gates during the Simplification modules).

Reinforcement-learning

Recaping the formalism of RL introduced in the previous Chapter, we might be
tempted to define state-action value functions as done in Chapter 3, where the
problem was to find quantum receiver configurations. Nonetheless, we are here
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dealing with a task of higher complexity, as illustrated when casting it in terms
of reinforcement learning. For instance, we can define C(θ) to be the state s of
the circuit (e.g. a classical description of circuit’s layout and parameters value θ),
and the actions a ∈ A consisting on placing a parametrized gate Gx(α) ∈ A,
at the x-th position in the circuit, where A is a dictionary of available quantum
gates that can be used to grow the circuit. Moreover, we can define the reward
to be the global minima of the cost-function associated to state s (assuming the
classical optimization algorithm is capable of finding it). From here, we could opt to
consider an infinite-horizon scheme, where the environment dynamics τ becomes
a deterministic function of s and a3. However, inferring the state-action value
function constitutes an extremely hard task, since one should consider any possible
circuit layout reachable from s′ on. Moreover, the presence of quantum correlations
makes the encoding of circuit’s state a highly non-trivial task; here, we would need
an encoding that allows to process the circuit by e.g. a neural network (or more
sophiscitated RL agents).

Nevertheless, we could think of an hybrid appraoch, under which a subset of
candidate quantum circuits is found by VAns, and an RL-agent is rewarded by
filtering the important features of cost-minimizing circuits, and repeating such
approach iteratively, which would fall under the umbrella of batched reinforcement
learning.

CV systems, receivers and beyond

The VAns algorithm can also be casted in discovering useful continuous-variable
quantum neural network structues [KBA+19]. In this regard, we shall not restrict
our attention to quantum-computing problems, and we note that VAns could also
be applied to similar problems than those dealt during Chapter 3. In turn, very
little is known about the structure of near-optimal and implementable quantum
receivers (particularly if the states form an M -ary set of coherent-states, with
M ≥ 3). Here, the cost-function to be optimized is the error probability, k would
be the POVM struture, in terms of symplectic transformations (given by phase-
shifts, beam-spliters, etc.) and active transformations (squeezing, displacements)
parametrized by θ. In this regard, similar problems could be considered, such as
channel-discrimination and parameter estimation (where the cost-function will be
linked to the fisher information).

3We could slightly complexify the model, for instance by including circuit compression rules
carried out after each gate-insertion
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4.3.3 Code
The code and simulations supporting this Chapter (but the large-scale one, which
has not been carried out by myself) can be found in the repos [Bil02c; Bil02d].
Finally, let us mention that a tutorial used for introducing quantum variational
methods to undergraduate quantum physics students can be found in [BC21]

179



4.3. DISCUSSION AND FUTURE PERSPECTIVES

180



Morelliana. Si el volumen o el tono de la obra pueden
llevar a creer que el autor intentó una suma,
apresurarse a señalarle que está ante la tentativa
contraria, la de una resta implacable

— Julio Cortazar

5
Learning in the daylight

5.1 Introduction
So far in this thesis we have studied scenarios in which an agent had either none or
little information about the encommended task. On the one hand, we studied the
performance of an agent that learns in the darkness, by introducing a model-free
reinforcement-learning approach to the calibration of coherent-state receivers in
Chapter 3. On the other hand, we presented a semi-agnostic method that finds
new NISQ circuits in the twilight. This is done by the help of VAns algorithm,
discussed in Chapter 4, and which consists on randomly modifying quantum
circuit’s structure. While the opsome light is shed to the agent by allowing the
usage of specifically-tailored compression rules that help with the navigation over
the architecture-hyperspace.

This Chapter departs from the learning-with-sparse-information scenario, and
takes the agent to a daytrip. Here, the agent has a full description of its environment,
and we will ask her to tackle statistical-inference problems, a framework that has
already been introduced in Sec. 2.5.

In the first part of the Chapter, we will introduce sequential hypothesis testing
to continuously-monitored quantum systems —discussed in Sec. 2.4— where a
model for the dynamics needs to be distinguished between two candidates. The
second part of the Chapter is about parameter estimation, where an unique model
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of the environment is available, and the agent needs to tell the value of a certain
parameter, e.g. the frequency of an harmonic oscillator.

5.2 Hypothesis testing in continuously-monitored
systems

Opposite to other approaches, in which a deterministic approach is followed [KM18]1,
a sequential strategy processes the data on the fly, and potentially deems the data is
not sufficiently informative (and thus further samples are demanded). As pointed
out in Sec. 2.5.4, the Sequential Probability Ratio Test (SPRT) analyzes the log-
likelihood ratio ℓ between the two hypothesis, and provides strong error guarantees,
in the sense that the error committed for a given sample sequence can be certified.
This comes with a cost, namely that the length of the sequence becomes a random
variable itself. The conditions imposed on the SPRT are stronger than those of the
determinsitic test: in a deterministic setting the errors are only accounted for in
average, over all possible measurement sequence, so the conditional error for a
single measurement outcome could be actually larger (or smaller). Yet, the average
number of samples required to reach a certain error is generally smaller, for the
SPRT than for the deterministic test.

Our main contribution in this Chapter is to study this advantage in continuously-
monitored quantum systems. Note that an introduction to the topic of continuously-
monitored systems is provided in Sec. 2.4.

The problem of sequential hypothesis testing has been studied in the quantum
realm [MVHS+21; LHT22] in a setting were copies of a quantum system (either in
ρ = ρ0 or in ρ = ρ1) are provided on demand. The ultimate quantum bound on the
mean stopping time (or mean number of sampled copies) has been recently shown
to follow the “quantized version” (naively exchanging probability distributions
p0/1(x) for quantum states ρ0/1): ⟨τ⟩ ∼ − log ϵ

D(ρ1||ρ0) .
Here, we move to a completely different setting where instead of performing

a sequence of measurements on an increasing number of copies, we perform a
(continuous) sequence of measurements on the very same quantum system, and
the question is to discriminate between two possible internal dynamics of the
monitored system. We envision a quantum sensor, in particular an optomechanical
sensor, whose dynamics is affected by the presence of an external mass — or some

1In such deterministic approach, a batch of data is analyzed and a decision on the underlying
hypothesis (i.e. model) is made afterwards
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other force — and our task is to be able to detect this presence by observing a single
(possibly long) measurement signal.

In particular, we consider an optomechanical system that consists on a me-
chanical mode coupled to an optical mode, the latter often called the cavity mode
because it is stored in a cavity. The mechanical mode describes one of the ending
mirrors of the cavity, whose free evolution is given by a quantum harmonic os-
cillator Hamiltonian, with frequency ωm. The other extreme-mirror is assumed
to be imperfect, allowing information (e.g. light) to leak. Such leaked photons
couple to a bosonic bath, which is assumed to be in the ground state, and such
bath is continuously-monitored via homodyne measurement. While the leaked
information comes from the cavity mode, such is coupled to the mechanical mode
via an interaction of the form Vint ∼ qmqc, where qm is the position operator of the
mechanical mode and qc is the cavity mode’s quadrature. Overall, by measuring
the photons leaked from the cavity, we can infer information about the mechanical
mode thanks to such interaction. Moreover, the cavity-mode normally evolves
much quickly than the mechanical system, and an approximation called adiabatic
elimination is carried out, where an effective stochastic master equation for the
reduced system (i.e. the mechanical mode alone) under homodyne detection is
obtained, as discussed in Sec. 2.4.7 (see also Ref. [DJ99]).

Generally, the evolution of the mechanical mode under continuous-homodyne
monitoring of the environment modes c = (c1, ..., ck)

T to which is coupled with is
given by a Belavkin-Zakai equation of the form

dρt = dtLθ[ρt]dt+H[ηc]ρt · dWt (5.1)
L[ρ] = −i [H, ρ] +D[c]ρ (5.2)

D[c]ρ = cρc† − {c
†c

2
, ρ} (5.3)

H[ηc]ρ = Hηc[ρ]− Tr[Hηc[ρ]]

Hηcρ =
√
ηcρ+ ρ

√
η̄c†

where a semi-definite complex-valued matrix η generalizes our discussion in
Sec. 2.4.3 regarding detection efficiencies to consider several modes [WD05; WM09].
The term D[c] represents a difussive contribution of the external bath, and the
stochastic contribution dWt stand for the innovations, i.e. how much the measure-
ment outcome dyt deviates from its expected value:

dWt = dyt − Tr[Hηc[ρt]]. (5.4)

Here, the probability of having measurement outcome dyt at time t is described by
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the Gaussian observational model

P (dyt|ρt) =
e−

dWt·dWt
2dt√

2πkdt
(5.5)

= e−
1
2
|Tr[Hηc[ρt]]|2+Tr[Hηc][ρt]·dytPdWt(dyt), (5.6)

where PdWt(dyt) is the probability distributon of k independent Wiener processes
such that E[dWidWj] = dtδij . Accordingly, the measurement record is defined as
Yt = (dy0, ..., dyt), and its probability, conditioned on the evolution of ρt, is given
by

P (Yt|ρt) = eλ(Yt|ρt)PW (Yt), (5.7)
where PW (Yt) =

∏t
τ=0 PdW(dyτ ) is just the joint probability of the independent

Wiener noises. Here, λ(Yt|ρt) is the log-likelihood distribution associated to the
sequence of outcomes Yt and whose evolution is inferred from Eq. 5.5 and Eq. 5.7
to be

dλ(Yt|ρt) = Tr[Hηc[ρt]] · dyt −
1

2
|Tr[Hηc[ρt]]|2dt. (5.8)

We remark that the quantum state in turn ρt depends on the specific realization of
Yt via Eq. (5.1). Moreover, the realizations of such process — either the quantum
trajectories or the measurement record Yt — will also depend on the specific
structure of system dynamics. In this regard, we will here focus on two possible
models, each associated to a different set of parameters that govern the dynamics.
Such parameters can, for example, be the cavity’s decay rate value, or specific
constants appearing in the free evolution of the mechanical mode, such as the
mechanical-mode frequency.

By defining as θ0 and θ1 the two possible candidates for the parameter(s) we
aim to distinguish2, then we can readily compute the log-likelihood ratio

ℓ(Yt) = log
P1(Yt)
P0(Yt)

, (5.9)

where Pi(Yt) stands for the probability of the random sequence under parameter
θ = θi. In such case, the solution of Eq. 5.1 at time t will be denoted as ρt,k = ρt,θk ,
with k being either 0 or 1, defining the underlying model for the dynamics. As in
Sec. 2.5.1, we will deem k = 1 as the alternative hypothesis, and k = 0 as the null

2In case the model comprises more than one parameter, θ should be understood as a tuple
containing such parameter values. However, in our numerics and case-studies we will restrict to
the single-parameter case
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one. From Eq. 5.8 we can readily find a dynamical equation for the log-likelihood
ratio as per

dℓ(Yt) = Tr[Hηc[ρt,1 − ρt,0]] · dyt −
1

2

(
|Hηc[ρt,1]|2 − |Hηc[ρt,0]|2

)
dt, (5.10)

where we remark that ρi is obtained by solving the Belavkin equation up to time t
under the hypothesis θ = θk

3.
Moreover, if we consider that hypothesis k is the underlying true model for

the dynamics, meaning that the measurement outcomes are generated from ρk,
according to

dyt = dyt|k = Tr[Hηc[ρt,k]]dt+ dWt, (5.11)

then the log-likelihood ratio ℓ(Yt|k) can be written as a function of the innovations
according to

dℓ(Yt|k) = (−)k+11

2
|Hηc[ρ1(Yt|k)−ρ0(Yt|k)]|2dt+Tr[Hηc[ρ1(Yt|k)−ρ0(Yt|k)]]·dWt

(5.12)
This last equation indicates that the log-likelihood ratio obeys an stochastic

equation, whose drift value at time t happens to be the squared of the diffusion
value at such time, multiplied by a factor 2. Moreover, the drift will be positive
for k = 1, and negative for k = 0. This should be intuitively clear, as ℓ should (on
average) tend towards positive values when hypothesis k = 1 is the true one, and
towards negative values when the null hypothesis k = 0 stands for the underlying
model that generates the data, as discussed in Sec. 2.5.1.

5.3 Sequential testing & Gaussian systems
We are interested in casting how sequential strategies perform in continuously-
monoitored systems. In Sec. 2.4.7 we discussed a particular model for an optome-
chanical system under continuous homodyne detection, whose dynamics for the
mechanical mode (after adiabatic elimination of the cavity mode) under the Gaus-
sian assumption obeys an stochastic linear system for the first two moments, i.e.
r̄ = Tr[ρ r̂] and Σ = Tr[{r̂ − r̄, ρ}] given by

dr̄t =
(
A− χ(Σt)C

)
r̄tdt+ χ(Σt)dyt = Ar̄tdt+ χ(Σt)dWt, (5.13)

3As explained above, the dependence on θ in Eq. 5.1 is not made explicit, and is rather encoded
in the values of the physical constants appearing in the equation, such as decay rates, frequencies,
efficiencies, etc.
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where the measurement outcome dyt is

dyt = C
(
r̄tdt+ C−1

)
dWt. (5.14)

We remark that this last equation Eq. 5.14 is not a dynamical equation for the
measurement signal, but a compact way to provide its (stochastic) value at time t; in
turn, the measurement record is given by the tuple Yt = (dy0, ..., dyt). Moreover,
the evolution for the quantum system’s covariance reads

dΣt = AΣt +ΣtA
T +D − χ(Σt)

Tχ(Σt), χ(Σ) = ΣCT + Γ,¸

with the coefficient matrices being

A =
( −γ

2
−ω

ω −γ
2

)
, D =

[
γ(n+

1

2
) + κ

]
I2, C =

√
4ηκ
(1 0
0 0

)
, (5.15)

andΓ = 0. We recall that γ is the damping rate of the mechanical mode, whereasω is
its frequency, κ the measurement strength and η the efficiency of the measurement.
This model also considers an extra thermal bath that is in contact with the cavity,
with n being the average number of thermal excitations. While the latter bath is
not being measured, we consider the system to be in contact with another bosonic
bath, found in the ground-state, and this is being continuously-monitored. Note
also that we included C−1, the pseudo-inverse of the matrix C , in order to evidence
that only one component of the Wiener noise dWt is injected to the system (i.e.
the quadrature that is being measured). A realization of this process is shown in
Fig 5.1.

Furthermore, under the rotating frame that demodulates the signal — using the
mechanical-mode frequency, as discussed in Sec. 2.4.7—, the matrices are modified
to

C → 2
√
ηκ I2, A→ −γ

2
I2, (5.16)

with the remaining coefficient matrices being untouched. In such scenario, both
(rotating) quadratures do suffer from such noise injection. Finally, a driving term
can be incorporated in these equations by adding a term in dr̄t; such term appears
when driving the cavity with a laser, a matter that will be discussed in Sec. 5.4 when
estimating external signals.

Let us discuss further the structure of Eqs. 5.13 and Eq.5.15. Firstly, we note
that the innovations dWt do only appear in the evolution for the first moment r̄t.
In fact, the evolution for the covariance matrix given in Eq. 5.15 is deterministic,
and known as the continuous Ricatti equation; moreover we note that the final
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Figure 5.1: We show a realization of a quantum trajectory (top) along with the
measurement record (bottom), for the process described by Eq. 5.13

term causes a reduction in the uncertainty about the system state and is related
to the measurement via χ(Σ). Furthermore, it can be shown that the Ricatti
equation admits a stationary solution if the eigenvalues of A have a non-positive
real-part part, what is known as the Hurwitz condition4, then the covariance will
eventually converge to its stationary value (i.e. dΣt = 0), also known as stabilizing
solution [WD05].

Secondly, we note that Eq. 5.13 is shown in two forms: either with the mea-
surement outcome dyt or with the innovation dWt. While the latter provides a
clear interpretation of the evolution in the Ito form, being A and χ(Σt) the drift
and difussion terms, the innovations are not experimentally accesible. Rather, we
do only have access to the measurement outcomes dyt in order to update our
knowledge of the quantum-state, and thus the evolution should be understood from
this perspective. In turn, this makes explicit the back-action phenomena: gathering
information about the system unavoidable affects its evolution. In this regard, the
system can be understood as a Hidden markov model, where the measurement
outcome dyt conditions the value of the hidden state r̄t+dt; such hidden state (as
well as the covariance) is unavailable to us, but can be tracked by means of Eqs. 5.13

4Intuitively, the imaginary part will contribute to the oscillatory behaviour, whereas the real
part will either damp (positive) or magnify (negative) the signal, since the solutions are of the form
⟨r̄(t)⟩ = eAtr̄(0)
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and 5.15.
While the bayesian structure of quantum theory via the Born rule and the post-

measurement states result in the aforementioned set of stochastic lineal equations
for the Gaussian model under consideration, there is a classical counterpart. This
analogy with the Kalman filter was firstly highlighted in Ref. [DJ99], and a similar
structure is obtained for the equations that update the first two moments of a
Hidden Markov (Gaussian) system. In this regard, while the initial states of the
system might be unknown, the equations steer an estimate of the first two moments
in a contractive way, and via the measurement result dyt, towards their (hidden)
true value. This holds, as long as the right dynamics is used in order to update such
moments. On the contrary, if a wrong dynamics was used, a discrepancy between
the measurement result (which takes the estimate towards the true hidden state)
and the update via the wrong model will arise. This is captured by the log-likelihood
distribution, i.e. the probability of observing such measurement results under the
corresponding model, and its evolution reduces in the Gaussian to

dλt = −
1

2
||Cr̄t||2dt+ Cr̄t · dyt, (5.17)

where r̄t is the solution of Eq. 5.13 at time t, and its dependence on Yt is implicit.
Whether we are using the right dynamics in order to update the hidden state

value or not, is the matter hypothesis testing. As discussed in Sec. 2.5.1, the discrep-
ancy between the two hypothesis is captured via the log-likelihood ratio, which for
the Gaussian system under consideration obeys the dynamical equation

dℓ(Yt|k) =
(−1)k+1

2
||C∆r̄t||2dt+ C∆r̄t · dWt (5.18)

where ∆r̄t = r̄1(Yt|k, t) − r̄0(Yt|k, t) is the vector difference between the first
moment of the Gaussian state generated through the null and alternative hypothesis
dynamics. Here, each of the moments associated to the corresponding hypothesis
is obtained by (numerically) solving the set of stochastic lineal equations Eqs. 5.13
and Eq. 5.15 using the respective corresponding value for the coefficient matrices.

We will study two different scenarios: damping and frequency discrimina-
tion. The former will be analyzed in detailed, as some analytical results can be
derived. Since our goal is to introduce sequential strategies for hypothesis testing
in continuously-monitored systems, the very same approach can be used to test
different models, and thus using it on frequency discrimination problems serves as
an extra numerical check.
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Damping discrimination

We will now consider the scenario where a model is captured by a specific value of
the mechanical mode’s damping rate γ. The null hypothesis is given by γ = γ0 and
the alternative hypothesis by γ = γ1, with all the remaining coefficients (namely
η, n and κ) being shared by the two models. We will study the case in which the
system is analyzed in a frame that rotates with the mechanical-mode’s frequency,
and thus the coefficient matrices A and C are given by Eq. 5.16. In this case, the
quadratures become uncoupled (since A is now diagonal), and both quadratures
are affected by the same dynamics. Thus, we can expect the stationary value of
the covariance matrix to be diagonal. Moreover, in this case the Ricatti equation
admits a closed-form solution for its stationary value under hypothesis k, namely
Σk = σkI2 with

σk =
γk
8ηκ

(√
1 +

16ηκσk,uc
γk

− 1
)

(5.19)

σk,uc = n+
1

2
+
κ

γk
, (5.20)

where σk,uc is the solution for the unconditional evolution of the covariance in
Eq. (2.168). Because Hurwitz conditions are satisfied for the system under consid-
eration (and in order to save some computing resources), our simulations already
start from the stationary state. In case that a closed-expression for such stable
solution is not available, as it happens when studying cavity dynamics with non-
trivial Hamiltonians [FRT+22], or without moving to a rotating-frame, we rely on
numerical methods to solve the Ricatti equation and provided by Refs. [VGO+20;
Lau78].

Let us now study the evolution of the hidden-state r̄k,t ≡ r̄k(t). Assuming
hypothesis k is the true one, the solution of r̄k(t) reads

r̄k(t) = eAktr̄k(0) + χ(Σk)

∫ t

0

eAk(t−τ)dWτ , (5.21)

where we have expressed Eq. 5.13 as an integral stochastic equation. From our
discussion of Ito calculus in Sec. 2.4.4, we can expect that the average value5

⟨r̄k,t⟩ −→
t→0

0 for any initial condition r̄(0) = (q0, p0). Moreover, we can readily

5Note that this average is over several realizations of the stochastic process, i.e. over different
quantum trajectories, and as such is a classical one.
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Figure 5.2: The distributions for the hidden states are shown, simulated under
the alternative (γ = 429 Hz) and null hypothesis (γ = 100 Hz) respectively. The
histograms are obtained by simulating 2 · 104 quantum trajectories, and the time
for which the distributions are displayed is T = 4s.

compute the variance in the long-time regime, i.e. E[r̄2
k], which reads

E[r̄2
k] =

8ηκσ2
k

γk
:= s2k (5.22)

Thus, the first moment of the hidden state ρk, evolved under hypothesis k, is
Gaussian distributed with zero mean and a variance s2k given by Eq. 5.22. This is
illustrated in Fig. 5.2, where the probability distribution of the hidden state is shown
at a large time, and compared with numerical simulation of the (Gaussian) quantum
trajectories. Here, and in most of the plots shown in this section the simulations are
based on the following choice of parameters: γ0 = 100 Hz for H0 and γ1 = 429 Hz
for H1, while the rest of the parameters are taken to be same for both hypotheses
n := n0 = n1 = 1, η = η0 = η1 = 1, κ = κ0 = κ1 = 9 Hz.

5.3.1 The log-likelihood ratio
As discussed above, chances exists that the state of knowledge of our quantum
system is being updated with the wrong model. For simplicity, let us assume that
hypothesis 1 generates the data, and thus dyt = C

(
r̄1,t + C−1dWt

)
. While both

hypothesis are updated using dyt, as per Eq. 5.13, the crucial matter is to reduce
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the possibilities of telling that null hypothesis k = 0 is the true one (we will later
consider the symmetric error). Recalling that the evolution for r̄0(t) reads

dr̄0,t =
[
A0 − χ(Σ0)

]
r̄0,tdt+ χ(Σ0)Cr̄1,tdt+ χ(Σ0)dWt, (5.23)

where we have expanded the dyt term in Eq. 5.13, then the integral expression
reads6

r̄0(t) = χ(Σ0)C

∫ t

−∞
e

[
A0−χ(Σ0C)

]
(t−τ)

r̄1(τ)dWτ + χ(Σ0)

∫ t

0

e

[
A0−χ(Σ0C)

]
(t−τ)

dWτ .

(5.24)

Recalling that r̄1(t) is given by Eq. 5.21 for k = 1, and using the stochastic inte-
gration rule outlined in Sec. 2.4.4, we can readily compute the following expected
values in the long-time regime (t→∞)7:

E1[r̄
2
0] =

8σ2
0ηκ

γ0 + 8σ0ηκ

(
1 +

16σ1ηκ

γ0 + γ1 + 8σ0ηκ
+

(8σ1ηκ)
2

γ1(γ0 + γ1 + 8σ0ηκ)

)
, (5.25)

E1[r̄0r̄1] =
32σ0σ1ηκ

γ0 + γ1 + 8σ0ηκ

(
1 +

4σ1ηκ

γ1

)
. (5.26)

We note that in the case that hypothesis 0 was the underlying one (i.e. generating
dyt) then the above expressions are identical, but swapping the values of γ1 and γ0.

Combining these expressions with Eq. 5.18, we can readily find the expected
value of ℓ under hypothesis k. To see this, we take the expectation value, to get

Ek[dℓt] =
(−1)k+1

2
E
[
||C∆rt||2

]
dt = (−1)(k+1)µkdt (5.27)

where in the last equality we have used the stationary value (long time regime) of
the effective drift coefficient. Inserting the previous results we get an analytical
expression for the value of µ1 at t→∞,

µ1 =
c2(γ21χ

2
0 + 2cγ0(χ0 − χ1)

2 + γ20χ
2
1 + γ0γ1(χ

2
0 − 4χ0χ1 + χ2

1)

γ0(γ1 + 2cχ1)(γ0 + γ1 + 2cχ1)
, (5.28)

where χk = cσk, with σk given by Eq. 5.19 and c =
√
4ηκ. The expression for µ0

is obtained by swapping γ0 and γ1. It is important to note that the two drifts do
6Note that we have dropped the deterministic term proportional to e(A−χ(Σ0)t)r̄0(0) since we

are concerned with the long-time regime.
7Exact expressions for all times can be also computed, but we refrain from giving them explicitly

here.
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Figure 5.3: We show the stochastic evolution of the log-likelihood ratio under both
models, together with its empirical average computed over 2 · 104 trajectories, for
the damping discrimination problem considered in this Section.

always differ. Similarly, we can compute the variance of ℓ, which we anticipate
scales linearly with time, and its full analytical expression is, at least, scaring. We
will discuss an alternative approach to compute these two moments in (for general
system parameters) later in the Sec. 5.3.3, where we consider the evolution of an
extended system, comprising the dynamics of both models, r̄0 and r̄1, effectively
coupled by the common measurement record, as an Orstein-Uhlenbeck process.

From (5.27) and (5.28) we readily find that the expected value of the log-likelihood
function at long times is given by

Ek[ℓt] =
∫ t

0

Ek[dℓt] = (−1)k+1µkt+O(1) (5.29)

where O(1) accounts for the finite contribution to the integral of the time it takes
for µ1(t) to reach its stationary value.

We have conducted numerical simulations of a possible measurement recordsYt
obtained for both models under consideration and computed the the log-likelihood
statistic ℓt(Yt) according to the above sequential presecription. This is depicted in
Fig. 5.3, where the average value of ℓt is shown for both models, accompanied by
some realizations of the process. As expected, we observe a positive drift when the
alternative hypothesis is the underlying one, and a negative drift in the opposite
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Figure 5.4: We compare the first two moments estimated over 2·104 trajectories with
their predicted theoretical value, for both hypothesis, in the damping discrimination
scenario under consideration.

case. Moreover, the mean and variance of the log-likelihood (averaged out over
different quantum trajectories) are compared to their theoretical values in Fig. 5.4.

Having validated the stochastic equation for the log-likelihood we can compute
the average stopping time of a sequential test. Recall that the Sequential Probability
Ratio Test (SPRT) stops as soon as one can guarantee a large probability of success
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(what we called strong error conditions):

p(H1|Yt) ≥ 1− ϵ0, (5.30)
p(H0|Yt) ≥ 1− ϵ1. (5.31)

If none of these two conditions are satisfied, the test continues, i.e. further
samples are requested. Following the same reasoning than standard SPRT for the
i.i.d. case discussed in Sec. 2.5.4, these conditions can be equivalently expressed
in terms of the log-likelihood ratio ℓ, by fixing an undecision region Ω = [−a0, a1].
For simplicity of the presentation we will treat the hypothesis on an equal footing,
and set ϵ = ϵ0 = ϵ1 and equal prior π0 = π1 = 1/2 (the results are easily extended
to more general settings), resulting in

a = a0 = −a1 = log 1−ϵ
ϵ

(5.32)

. The test stops as soon ℓt first hits a boundary of Ω8 and guesses for Ĥ1 (Ĥ0) when
it hits the upper (lower) boundary.

Recall that the values of type I and II errors for such sequential test can be
computed from the consistency equation (i.e. Eq. 2.225),

α = p(Ĥ1|H0) = e−a(1− β) (5.33)
β = p(Ĥ0|H1) = e−a(1− α), (5.34)

leading to α = β = 1
1+ea

= ϵ, as it should since the error is guaranteed to be
ϵ for each single trajectory (the inequalities in strong error conditions (5.30) are
saturated because the likelihood is a continuous stochastic function).

Next note that the limit of large a (long times),

Ek[ℓτ ] = Ek[
∫ τ

0

dℓt] = Ek[
∫ ∞
0

It<τdℓt] =
∫ ∞
0

Ek[It<τ ]Ek[dℓt] (5.35)

= µk

∫ ∞
0

Ek[It<τ ]dt+O(1) = µkEk
[∫ ∞

0

It<τdt
]
+O(1) = (5.36)

= µkEk
[∫ τ

0

dt

]
+O(1) = µkEk[τ ] +O(1) (5.37)

where we have defined the indicator function IC = 1 if condition C is fulfilled
and IC = 0 otherwise, we have used that It<τ = Iℓt /∈Ω and dℓt are independent
stochastic variables, and that Ek[dℓt] becomes constant µk in a finite decay time.

8Note that if the test did not stopped, then chances are that ℓ hit such boundaries also at later
times for the same trajectory.
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Because of the continuity of ℓt, there is is no overshooting, and the stopping
time ℓτ has the value at the boundary ℓτ = ±a. Therefore, following the same
arguments than in the i.i.d. case in Eq. (2.228), we get

⟨ℓτ ⟩1 = a(1− β)− aβ = a = 1−ϵ
ϵ

(5.38)
⟨ℓτ ⟩0 = −a(1− α) + aα = a = log 1−ϵ

ϵ
(5.39)

Putting the pieces together, we finally arrive to a closed expression for the mean
stopping time

Ek[ℓτ ] = (−1)k+1µkEk[τ ] +O(1) = (−1)k+1a+O(1) (5.40)
↓

Ek[τ ] =
a

µk
+O(1) = log 1−ϵ

ϵ

µk
+O(1) (5.41)

where, as mentioned above, the O(1) term is due to the stabilization time of µk(t)
(see Fig. 5.4). Moreover, in the asymptotic limit of small errors we get

Ek[τ ] = −
log ϵ

µk
+O(1). (5.42)

In Fig.5.6 we show the mean stopping time as a function of the error threshold
corresponding to our numerical “experiments”, for each of the hypothesis, and
also the average for both equiprobable hypotheses. We see a perfect consistency
w.r.t. our analytical predictions, namely the asymptotic linear scaling of stopping
time ⟨τ⟩ = µ−1k log ϵ. This results agree very well with the i.i.d. case, ⟨τ⟩k =
D(Pk||Pk+1)

−1 log ϵ, were now we replace the relative entropy ⟨ℓi⟩k = D(Pk+1||Pk)
by its regularized version limt→∞ ⟨ℓt⟩k = µk.

Note that Eq. (5.41) gives an accurate assessment of the time it takes to reach
a decision (withing a guaranteed error bound), though however it only provides
its average value. Thus, a real-life experiment could actually end before or after
such average value. In order to characterize the size of the fluctuations we need to
understand how ℓt is distributed (see Fig.5.6).

Having the full distributionP (ℓt)would also allow us to compute the probability
of error for deterministic strategies (that is, for experiments with a fixed duration
t = T ), since Neyman-Pearson tells us that the log-likelihood ratio statistic is all
we need to optimally guess true Hypothesis (see Sec.2.5.1).

The full probability distribution of ℓt can be seen in Fig. 5.7 where we give the
histograms for ℓt at different time slices under each of the hypothesis. We note
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Figure 5.5: We compare the average stopping time (under each hypothesis and also
its mean value) with our analytical curve given in Eq. 5.40.

that for initial times, the distributions considerably overlap as expected —with a
low number of samples it is hard to distinguish the underlying model. As time
progresses the two distributions separate from each other at a linear pace. We also
observe that the distributions seem to be well approximated by a Gaussian. Indeed,
from Eq. 5.18, and the shape of the histograms in Fig. 5.2 we might be tempted to
say that ∆r̄t concentrates around its mean µk, and tends to a Gaussian with all
cumulants of order 3 or higher scaling sub-linearly with t. Under such assumption,
we could replace ∆r̄t by µk in the dynamical evolution, and thus the process would
reduce to an Orstein-Uhlenbeck process, discussed in Sec. 2.4.4. The solution of
such process is a Gaussian distribution whose mean is drifted linearly in time and
diffuses with a variance also proportional to t. As we will see in more detail bellow,
Sect. 5.3.2, this intuition is only partially true.

5.3.2 To be or not to be Gaussian

The numerics and the heuristic argument given above seems to support that the
distribution Pk(ℓt) is indeed Gaussian. We begin this Section by providing a simple
no-go theorem that shows Pk(ℓt) cannot be Gaussian. We will then revisit again the
heuristic argument and compute several quantities of interest under this, strictly
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Figure 5.6: We illustrate how the stopping time distribution arises from the random
trajectories of ℓt; here we show some realisations of the ℓ process, along with some
time-slices at t0 and t1 shown in blue together with the corresponding distributions
P (ℓt). The horizontal line in red corresponds to the fixed threshold ℓ = a, leading
to an arrival time distribution P (τ). Such distribution appears as a consequence
of a difference in the arrival times for trajectories of ℓt, which are governed by a
Gaussian distribution that is drifted and diffuses in time.

speaking, wrong Gaussian assumption. We will show that the bulk of the distri-
bution is correctly described by a Gaussian, but it completely fails to describe the
tails (or large deviations).

No-go theorem for Gaussians: We will start by showing that assuming Gaus-
sianity in both of the hypotheses implies P1(ℓt = x) = P0(ℓt = −x), that is, the
distributions are mirrored versions of each-other. To see this, we note that the
following relation between the characteristic functions holds true:
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Figure 5.7: We show the distributions for the log-likelihood ratio at different times,
for both hypothesis, computed over 2 · 104 for the damping discrimination problem
considered in this Section. Here, we have also plotted the distributions associated
to the Gaussian model discussed in Sec.5.3.2.

χℓ(q − 1) ≡ E1[e
(q−1)ℓt ] =

∫
DYt P1(Yt)e(q−1)ℓt =

∫
DYt P0(Yt)eℓte(q−1)ℓt =

=

∫
DYt P0(Yt)eqℓt = E0[e

qℓt ] ≡ χℓ(q). (5.43)

where we have used the fact that ℓ(Yt) = log P1(Yt)
P0(Yt) , to write eℓ = P1(Yt)

P0(Yt) to perform
a change of measure. Now recalling that the characteristic function for a Gaussian
distribution to be χ(q) = e(qµ+

q2

2
σ2) we obtain

(q − 1)µ1 +
(q − 1)2

2
σ2
1 = −qµ0 +

q2

2
σ2
0. (5.44)

Choosing now q = 0, q = 1/2 and q = 1, we get the following identities:
(−)k+12µk = σ2

k and 2µ1 + σ2
1 = −2µ0 + σ2

0 , which combined together give
µ1 = −µ0 and σ2

0 = σ2
1 = 2µ1, showing that P1(ℓt = x) = P0(ℓt = −x). The latter

condition that cannot be fulfilled by the model we study, since µ0 ̸= −µ1, as we
can explicitly check from Eq. 5.28 and clearly appreciate from Fig.5.7. End of No-Go
Theorem
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In the remaining of this Section we will see how far can we go analyzing
the hypothesis testing scenario assuming the Gaussianity of P0(ℓt), particularly
because this allow us to get expressions for the weak errors under the deterministic
setting, and to fully characterize the stopping-time probability distribution for the
sequential state.

The central-limit theorem (CLT) guarantees that for i.i.d random variables, the
sample average will assymptotically normally distributed, centered in the mean
value of the distribution and with a standard deviation that decreases as ∼ 1/

√
N .

If we consider the process

dℓ = (−1)k+1µkdt+ σkdWt, (5.45)

then we can readily find its associated probability distribution by recalling our
discussion on OU-like processes from the previous Section and Sec.2.4.4. Such
distribution reads

Pk(ℓ) =
1√

2 πσ2
kt
e

(ℓ+(−1)k+1µkt)2

2σ2
k
t . (5.46)

From Eq. 5.45 and the CLT we expect the normalized variable ℓG
t

to concentrate
around its mean (−1)k+1µk as t → ∞, and approximating its distribution by
a Gaussian function around the mean-value should actually be always valid, at
least in the long-time regime. That is, we do expect the Gaussian approximation
to hold under Eq. 5.18 around the mean-value of ℓ: in the long-time regime, the
probability distribution should look Gaussian in the bulk. However, we do know that
the Gaussian model should not hold, and we have already provided evidence of
this in Fig. 5.7 and Fig. 5.4: while the distributions do look Gaussian around their
mean-value, the tails of the distribution are clearly not in correspondance with the
Gaussian model.

In Sec. 2.5.1 we have discussed two different approaches to the hypothesis
testing scenario, namely the deterministic and the sequential one. We will now
analyze such strategies for the system under consideration, when assuming that ℓ
is normally-distributed.

Error probabilities for deterministic strategies. The deterministic tests consists on
computing the value of ℓ(Yt), for a fixed value of t, and making a decision for the
undelying hypothesis based on its value. In this context, we will pay attention to
the symmetric error, and thus the decision countour will be set at ℓ = 0. Moreover,
we will assume that the hypothesis are equally likely. Based on the log-likelihood
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ratio, the weak errors are defined as

α = P (ĥ1|h0) =
∫ ∞
0

P0(ℓ)dℓ (5.47)

β = P (ĥ0|h1) =
∫ 0

−∞
P1(ℓ)dℓ,

where for compactness of notation we have defined ℓ = ℓt at the given end time t
of the experiment. Under the Gaussian model for Pk(ℓ), the errors can easily be
computed and we get

β =
1

2

(
1 + Erf

(
µ0t√
2σ0t

))
→
t→∞

√
σ2
0

2µ0t
e
− µ20t

2σ2
0 , (5.48)

α =
1

2

(
1 + Erf

(
µ1t√
2σ2

1t

))
→
t→∞

√
σ2
1

2µ1t
e
− µ21t

2σ2
1 ,

In Fig. 5.8 we compare these expressions with the numerical estimation of both
type of errors, and for the symmetric one. Note that since the errors are computed
from large deviation statistics, many quantum trajectories need to be simulated
in order to have enough statistics to compute such quantities. As expected, the
agreement between the Gaussian model and our numerics deprecates, particularly
for long-times where we can differentiate the tails from the bulk.

Stopping time distribution for sequential hypothesis testing. Our result in Eq.(5.41)
already gives the average stopping-time. However, we note that if Pk(ℓ) was a
Gaussian distribution as per Eq. 5.46 then we would also fall in a new contradiction,
since µk can only coincide with the relative entropy between the two Gaussian
distribution only if µ0 = µ1

9.
However, if we ignored all of the issues pointed out above — for instance, assume

that the drifts do only differ slightly — then an expression for the full stopping-time
9Recall that the relative entropy between two Gaussian distributionsN1(µ1, σ1) andN0(µ0, σ0)

is given by

D(N1||N0) = log
σ0

σ1
+

σ2
1 + (µ1 − µ0)

2

2σ2
0

− 1

2
, (5.49)

which for the case under consideration (σk =
√
2µk) reduces to

D(N1||N0) =
1

2
log

µ0

µ1
+

2µ1 + (µ1 − µ0)
2

4µ0
− 1

2
. (5.50)
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Figure 5.8: We show the weak errors computed for the deterministic test, and
compare them with the expressions of Eq 5.48, which are obtained by assuming
that the distribution Pk(ℓ) is Gaussian.

probability probability distribution can be obtained. Thus, we will consider an
stochastic process

dℓt = µdt+ σdWt, (5.51)
whose probability distribution at time t will be denoted by P (ℓl), and is understood
as the probability that the state takes the value ℓ at time t.

Assuming that the SPRT eventually stops, i.e. ℓ eventually exits the undeci-
sion region Ω, then the stopping-time probability distribution P (τ = t), i.e. the
probability that the stopping time takes a value of t can be written in terms of its
cumulative distribution as

P (τ = t) = − d

dt
P (τ > t) = − d

dt

∫ ∞
t

P (τ)dτ. (5.52)

Now, the probability that the stopping-time is larger than t is given by the total
probability of finding the stochastic process ℓ, at times smaller or equal to t, inside
the undecision region Ω:

P (τ > t) =

∫ a1

−a0
P(ℓ, t)dℓ. (5.53)

Note our slight abuse of notation: we understand
∫
dℓ as an integral over measure-

ment record realizations Yt that lead to ℓ(Yt) = ℓ. Moreover, in the last integral we
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assume that the values of (ℓ, t) we are integrated over have not reached the decision
boundary Ω for times smaller than t, thus P(ℓ, t) is deemed survival probability;
due to this fact we will use the P notation for this process. This quantity can be
obtained as a solution of the Fokker-Planck equation (plus absorbing boundary
conditions), as per

∂tP(ℓ, t) = −µ∂ℓP(ℓ, t) +
σ2

2
∂2ℓP(ℓ, t), (5.54)

P((ℓ, t) /∈ Ω) = 0. (5.55)

The initial condition for this problem is given by
∫
Ω
P (ℓ, 0)dℓ = 1. Combining the

above equations and using the Leibniz integral rule, we obtain

P (t) =
σ2

2
∂ℓP(ℓt)|a1ℓ=a0 +

σ2

2

∫ a1(t)

a0(t)

(
ȧ0∂a0(t) + ȧ1∂a1(t)

)
P(ℓ, t)dℓ, (5.56)

where we have account for the possibility that the decision boundaries change
in time. In turn, if we now change of variables as lt = ℓt − µt, then Ω becomes
time-depentend as Ω(t) = [a0(t), a1(t)] with ai(t) = ai + µt. The Fokker-Planck
equation associated with the process l is symmetric under reflection operations
of the form l → 2β − l with β ∈ R, allowing for the use of the image charge
method to find an explicit solution in the form of an infinite series for the survival
probability P (ℓ, t):

P(ℓ, t) = P̄ (ℓ, t) (5.57)

+
∞∑
n=1

{
P̄ (2n(a1(t)− a0(t)) + ℓ, t)− P̄ (2na0(t)− 2(n− 1)a1(t)− ℓ, t)

+ P̄ (2n(a0(t)− a1(t)) + ℓ, t)− P̄ (2na1(t)− 2(n− 1)a0(t)− ℓ, t)
}

with

P̄ (ℓ, t) =
1√

2πσ2t
e−

ℓ2

2σ2t (5.58)

is the solution of the differential problem ∂tP(l, t) = σ2

2
∂2l P(l, t) with initial

condition P(l, 0) = δ(l). Substituting Eq. (5.57) in Eq. (5.52), and after some
(tedious) algebra and keeping only the lowest-order terms associated with the limit
A = min(|a0|, |a1|) → ∞, i.e. very low errors which is also associated to long-
times, we get that the stopping-time probability distribution is an inverse-gaussian
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(or Wald distribution):

P (t) =
|ak|

t3/2
√
2πσ2

k

e
− (ak+(−1)k+1µtt)

2

2σ2
k
t , (5.59)

where we have taken into account that hypothesis k is the underlying one when
taking the limit.

While the solution for the process in Eq. 5.51 corresponds to a drifted and
diffused Gaussian distribution whose expression is explicited in Eq. 5.46, we are
now interested in the probability that a trajectory drawn from such Gaussian
distribution hits the decision boundary Ω = [−a, a]. Since the mean of the ℓ
increases as µt, and its standard deviation as σ

√
t, the resulting projection of such

probability into the line ℓ = a (for hypothesis k = 1) leads to a tilted distribution,
as illustrated in Fig. 5.6 which is known as the Wald distribution, and reads

P (τ) =
a√

2πσ2t3
e−

(a−µt)2

2σ2t , (5.60)

where τ stands for the time at which the ℓτ = a, i.e. the stopping time. We note that
a similar distribution is obtained for k = 0. Moreover, the mean of this distribution
is

⟨τ⟩ = a

µ
, (5.61)

and we note that this coincides with the Wald identity in Eq. 5.41 (see also Eq. 2.229)
for large values of a ∼ log ϵ.

From our discussion regarding the validity of the Gaussian distribution, we do
expect the Wald distribution to match our numerics close to the bulk, and this is
shown in Fig. 5.9. While the agreement is particularly good for the bulk of the
distributions, we note that the tails are quite off, particularly for k = 0, for which
the drift is higher.

5.3.3 Joint system evolution as an OU-process

We have already shown that Ek
[
||∆r̄t||2

]
= µkt, and we will next outline an

alternative method to compute its variance, which scales lineary with time as
Vark

[
||∆r̄t||2

]
= σ2

kt. The fact that that ℓ is not compatible with a Gaussian
distribution can be understood from the back-action term due to the measurement
record, which couples the dynamical equations for the two hypothesis. Having this
in mind, it is convenient to treat the problem in an extended vector space where
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Figure 5.9: We show the stopping time probability distributions, under both hy-
pothesis, obtained numerically by carrying out the SPRT on 20K trajectories for
the damping discrimination problem under consideration. Here, we have chosen a
value of a = 6, i.e. ϵ ∼ 0.0025.)

the state of the system is defined as Xt = (r̄0(t), r̄1(t))
T and St = Σ0(t)⊕Σ1(t)

whose evolution is given by

dXt = (A− χ(St)ΠkC)Xtdt+ χ(Σ)dwt

Ṡt = ASt + StA+D − χ(St)χ(St)
T (5.62)

withA = A0⊕A1, C = C⊕C andD = D0⊕D1, χ(St) := StCT +Γ̃, Γ̃ = Γ0⊕Γ1

and

Π0 =

(
0 0
1 −1

)
, Π1 =

(
1 −1
0 0

)
with k denoting the hypothesis under which the signalYt is generated (i.e. k = 0, 1).
Under this notation, the evolution for the log-likelihood ratio reads:

dℓ(Yt|θk , t) =
(−)k+1

2
|∆TCXt|2dt+∆TCXtdwt (5.63)

with ∆T = (1,−1)T . Under the assumption that the evolution for the covariance
admits a stationary solution Sst = σ0 ⊕ σ1, the probability distribution of Xt is
assymptotically given by:

Pst,k(X) =
1

(2π)n/2det[ω]1/2
exp (−1

2
XTω−1X) (5.64)
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where ω is the solution of the Lyapunov equation (A − χ(Σt)ΠkC)ω + ω(A −
χ(Sst)ΠkC)T = χ(Sst)χ(Sst)

T 10 Using this notation, we can express the assymp-
totic behaviour for the expected value of ℓ as

lim
t→∞

Ek[dℓ(Yt)]
t

=
(−)k+1

2
E[|∆TCX|2]

=
(−)k+1

2
Tr[CT∆∆TCω]. (5.65)

From here, we can insert the formal solution of Xt to get

∆TCXt = ∆TCe(A−χ(Sst)ΠkC)(t−t0)Xt0 + χ(Sst)

∫ t

t0

∆TCe(A−χ(Sst)ΠkC)(t−τ)dWτ .

(5.66)
Finally, by defining

g(t− t0) = ∆TCe(A−χ(Σst)ΠkC)(t−t0)Xt0

f(t− s) = ∆TC e(A−χ(Σst)ΠkC)(t−s)χ(Σst)Q (5.67)

with Q = (1, 1)T , we arrive to an assymptotic expression for the mean and covari-
ance of ℓ:

Ek[ℓt] = lim
t→∞

(−)k+1

2

{(∫ t

t0

g(τ − t0)dτ
)2

−
∫ t

t0

dτ

∫ τ

t0

f(τ − s)2ds
}

Ek[ℓ2t ]− Ek[ℓt]2 = lim
t0→−∞

∫ t

t0

dτ

∫ τ

t0

f(τ − s)2ds

− 2

∫ t

t0

dτ1

∫ τ1

t0

dτ2f(τ1 − τ2)
∫ τ2

t0

dsf(τ1 − s)f(τ2 − s)

+

∫ t

t0

dτ1

∫ τ1

t0

dτ2

(∫ τ2

t0

f(τ1 − s)f(τ2 − s)ds
)2

.

Overall, this constitutes an alternative approach to compute the first two moments
of ℓ, and for the damping discrimination case-study we can readily check that the
above expression matches Eq. 5.28. Moreover, in Fig. 5.4 we have compared our
numerics with the analytical expressions that we get using these formulae for the
damping discrimination case, for both the average and variance of ℓ. As we can see,

10This equation arises from a generalization of the OU-process discussed in Sec. 2.4.4 to multi-
variable systems, and we refer the interested reader to Ref. [Gar04] for more details.
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after a trancient time, a good agreement can be observed. We remark that numerical
errors associated to the integration routine lead to considerable computational-
resources usage. Here, we have used the Python package sdeint [Abu17] which
implements an order 1 strong-convergence stochastic Runge-Kutta method, intro-
duced in Ref. [R0̈9]11

5.3.4 Deterministic vs Sequential
While we have discussed the validity of the Gaussian model for ℓ, let us note that
the expected time required to reach a certain threshold for the error probability is 4
times lower in favour of the SPRT. This can be seen from the asymptotic behaviour
of the asymmetric errors in Eq. 5.48, i.e. we obtain logαk ∼ −µkt

4
, with α0 = α and

α1 = β.
For the general case, we do expect an advantage in favour of the sequential,

but (for the moment) we rely on numerical methods to compute the advantage. In
Fig. 5.10 we compare the average time required by the SPRT to reach a given error
threshold for the symmetric error probability, as given by Eq. 2.225, with that of
deterministic test. For the latter, we compute the empirical probability of error for
several times, and use interpolation to find the time at which a given mean error
is reached. In both cases, we compare with the theoretical models, namely the
rigorous results for the sequential case, and the calculations based on the Gaussian
approximation for the deterministic case.

To sum up, we have introduced a sequential hypothesis testing approach to the
discrimination between two physical models in continuously-monitored systems,
showing a clear advantage of the latter as compared to the deterministic test. While
we have focused on the damping-rate discrimination case, since some analytical
insight can be gained, let us stress that the sequential approach is ought to be taken
not only for a different set of parameters in the (quantum) Gaussian model for the
optomechanical system, but also for general stochastic evolutions.

Frequency discrimination

To complement our numerical study of the sequential hypothesis test in continuously-
monitored systems, we here study the case of frequency discrimination. In Fig. 5.11
we show how the probability distribution of ℓ looks for the two hypothesis, each
associated to a different value of the mechanical-mode frequency. We observe that,

11Whereas strong convergence stands for the average error commited per time-step, the weak
convergence refers to the error of the mean values obtained by averaging out the integrated
trajectories. The order is measured in terms of dt, for instance Euler algorithm has order 1

2 .
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Figure 5.10: We compare the performance of the sequential test against the deter-
ministic one, in terms of the average time that takes the test to reach a certain
error threshold. In the deterministic case, we invert the Gaussian model for the
symmetric error, to get the desired time. This was done by interpolating the time
that the superposition of Lorentzian distributions requires to value the pre-defined
error threshold Pe, as given when fixing ϵ in Eq. 2.225 and computing 1

2
(α + β).

Such a Gaussian model is also compared with our numerics, and in this plot we
show the numerical value of the symmetric error probability in the deterministic
case (x axis), at the different times it was computed for (y axis). For the sequential
test, we show the average stopping time as a function of Pe, and compare this with
the quantity that Wald identity predicts.

for the times under consideration, the distributions are clearly not Gaussian. Note
that here we are not analyizing the data in the rotating-frame, since the frequency
is unknown. One of the consequences of this fact is that a transcendental equation
for the stationary value of the covariance matrix arises in Eq. 5.13, and thus little
can be done analytically-wise when aiming to obtain the values of the drift and
difussion for ℓt.

Following a similar analysis than in the damping discrimination case, in Fig. 5.12
we compare the sequential and deterministic strategies’ performance, showing also
a clear advantage in favour of the former.
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Figure 5.11: We show the distributions of the ℓ for the frequency discrimination
problem, where ω0 = 104Hz and ω1 = 1.1 · 104Hz, η = n = 1 and κ = 1000Hz.
The reason we take such a high value of κ is to aid with the computing resources
and time simulation. The results are shown for 104 quantum trajectories.
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Figure 5.12: Here we show the same comparison between the performance of both
discrminiation strategies (sequential vs. deterministic), similarly to Fig. 5.10, but
for the frequency discrimination case.
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5.4 Parameter estimation& continuously-monitoring

In the previous Section we have discussed how to discriminate between two different
phyiscal models, and provided strong numerical evidence in favour of the sequential
strategy. Moreover, in the examples we have considered the damping discrimination
case, and the analytical results we obtained hinge on the fact that the mechanical-
mode’s frequency is known. By the end of the previous Section we discussed the
case in which such value is discerned between two possible candidates. However,
in general we need to estimate this quantity, what reduces to a different problem
in statistical-inference, namely the (classical) parameter estimation discussed in
Sec. 2.5.5.

In this Section we will discuss a work in progress, which is about estimating
a parameter encoded in a physical system that is being continuously monitored.
Our preliminary results consist on implementing the maximum-likelihood with
the automatic-differentiation machinery, and the ultimate goal of this (ongoing)
project is that of machine-learning the dynamics of a continuously-monitored
system. By this we understand asking the machine-learning to provide a set of
dynamical equations based solely on the observed data, similar to the proposals of
Ref. [BPK16] (though taking noise and back-action terms into account). The latter
can be useful when aiming to model external signals, and we will here study simple
examples that enter in the evolutino as external forces e.g. drives.

5.4.1 The spectral power and the Lorentizan fit
To infer the value of the frequency, it is customary to fit a Lorentizan function to the
spectral power of the signal. The power spectrum of a stationary stochastic process,
say a quadrature of a mode, xt, is the Fourier transformed of its autocorrelation
function, i.e. S(ω) =

∫∞
−∞ dt

′eiωt
′⟨xtxt+t′⟩. For a damped oscillator system as the

one described in Eq. 5.13, such quantity is given by a Lorentzian peaked at the
mechanical-mode frequency as per

S(ω) ∼ A
γ

(ω − ωm)2 + γ
2

, (5.68)

where A is a constant factor related to bath’s temperature [CDG+10]. Here, we
are interested in how to estimate a physical parameter out of a single quantum
trajectory, whose access is granted via the measurement record. Whence, we
consider a single process realization (and not the average), and replace the hidden
state rt by the measurement record dyt, given by the homodyne measurement
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Figure 5.13: We show the power spectra for a realization of the stochastic process,
and the correponding Lorentzian fit.

that projects onto the q quadrature of the hidden state (i.e. we are not considering
the rotating-frame discussed in the previously-discussed damping discrimination
case). In this context, the spectral power becomes a random-variable itself, and
similar to our discussion about the concentration of ℓt around its mean, we do
expect the former quantity to be peaked at the mechanical-mode frequency in a
sufficiently-large time. This is shown in the left-panel of Fig. 5.13, accompanied by a
Lorentzian fit which — see the inset — falls into a small error when compared with
the underlying true value of ωm. Such error contributes to the estimator’s variance,
and we here estimate this quantity by averaging up the squared discrepancies over
several quantum trajectories.
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5.4.2 Evolution of the Fisher information
As discussed in Sec. 2.5.5, when estimating the value of a classical parameter, the
variance of an estimator is lower bounded by the Fisher informaton, via the Cramér-
Rao bound. Here, recall that given P (Yt; θ) the probability of Yt given a known
value of θ, and thus the log-likelihood is defined as λ(Yt; θ) = logP (Yt; θ). Then,
the Fisher information is given by

It(θ) = ⟨(∂θλ(Yt; θ)2⟩ = ⟨−∂2θλ(Yt, θ)⟩ (5.69)

For the Gaussian system in Eq. 5.13, we can readily find a dynamical equation for
λt ≡ λ(Yt, θ). In turn, by defining ut = Crt, we can write the evolution of ∂θλt,
obtained by taking the derivative w.r.t. θ in Eq. 5.17, as

d∂θλt = −ut · ∂θutdt+ (∂θ) · dyt. (5.70)

We can readily compute the second derivative as

d∂2θλt = −||∂θut||2dt− ut · (∂2θut)dt+ (∂2θut) · dyt (5.71)
= −||∂θut||2dt+ (∂2θut) · dWt, (5.72)

where in the last line we have used the expression for the measurement outcome
dyt in terms of the Wiener noise. In turn, the last expression with the Wiener
noise turns useful, since we can readily see that the expected value E[(∂2θut) ·dWt]
vanishes12. Thus, the Fisher info is obtained as

It(θ) = −E
[
∂2θλt

]
= −

∫ t

0

E
[
d∂2θλt

]
, (5.73)

and we only need to integrate the values
(
r̄t, ∂θr̄t

)
in order to get it.

12To see this, consider the solution

rt =χ(Σ)

∫ t

0

e−A(t−t′)dWt′

∂θrt =∂θχ(Σ)

∫ t

0

e−A(t−t′)dWt′ + χ(Σ)(∂θA)

∫ t

0

(t− t′)e−A(t−t′)dWt′

∂2
θrt =∂2

θχ(Σ)

∫ t

0

e−A(t−t′)dWt′ + 2(∂θχ(Σ))(∂θA)

∫ t

0

(t− t′)e−A(t−t′)dWt′

+(∂θχ(Σ))(∂θA)2
∫ t

0

(t− t′)2e−A(t−t′)dWt′ + χ(Σ)(∂2
θA)

∫ t

0

(t− t′)e−A(t−t′)dWt′ .

As expected ∂2
θr(t) is a non-anticipating function, as defined in Sec. 2.4.4, and thus it is uncorrelated

with the Wiener noise dWt at time t, i.e. E[dWtdWt′ ] = δ(t− t′)dt = 0 since 0 < t′ < t.
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Figure 5.14: We show the evolution for the optimization of the log-likelihood using
AD, and an accompanying depiction of the recurrent cell.

5.4.3 Maximum-likelihood estimation via automatic-differentiation
While we have provided a dynamical equation for the (derivative of) the log-
likelihood λ(Yt, θ), here we take a step further. With the help of an automatic-
differentiation (AD) library [ABC+16]13 we are able to implement the maximum-
likelihood estimator, i.e.

θ̂ = ArgMax
θ

λ(Yt, θ). (5.74)

This optimization is done via a recurrent cell, whose structure is also shown in
the Fig. 5.14. The mechanism of the cell is the following. The training consists on
episodes L = 1, ..., N , and at each episode the cell has an estimate θ̂L. Each episode
consists on as many time-steps as the time-trace signal Yt has. At each time-step,
the cell is fed with the value of the measurement outcome dyt, and evolves its

13We refer the reader to our discussion on AD in Sec. 2.2.3
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Figure 5.15: We compare the mean square error of the two methods discussed in
the main body with the Cramér-Rao bound.

internal state r̂θ̂L as per Eq. 5.13 (using the value θ̂L). The cell keeps a record of
such estimated hidden state, which is forwarded to the next time-step. Moreover,
at each time-step, the cell outputs a predicted value for the measurement signal,
given by C r̂tdt. By the end of the time-trace, the mean squared error between all
predicted values and Yt is computed. Note that the latter quantity coincides with
the log-likelihood of observing Yt under θ̂L. Finally, the AD mechanism is used to
optimize such likelihood over θ̂, which is done by re-tracing the (derivative of) the
likelihood and using a gradient-based method. Figure 5.14 we also show how the
estimate of the frequency improves with the number of optimization iterations.

Similarly to the Lorentzian fit, we can see in Fig. 5.14 that the AD mechanism
does also commits a certain error, which we expect it to be (on average) higher than
the (inverse of) I(θ) — that is, if assuming Yt was an i.i.d. sequence—. To this end,
in Fig. 5.15 we compare the estimated variances of the Lorentizan fit, and the AD
method, with the inverse of the Fisher information, for the frequency estimation
case. This is done by carrying out the procedures outlined above for 103 quantum
trajectories. As can be seen, there seems to be a slight advantage in favour of the
maximum-likelihood method.
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5.4.4 Learning a linear force

We have previously introduced a recurrent cell that, aided with the automatic-
differentiation machinery, is able to perform maximum-likelihood estimation. More-
over, we provided an example of frequency estimation, and this constitutes an
alternative to the Lorentzian fit that is traditionally used in experimental labs.

However, our approach is not aimed to replace the Lorentzian fit, but rather
to complement it in cases where such fit cannot help with estimating a certain
parameter. This is the case of an external drive f tθ ≡ f(t; θ), which appears in the
dynamics of the first moment r̄t as an additive term [WM09]. Thus, we consider
the following evolution:

drt = (A− χ(Σ))r̄t + χ(Σ)dyt + f tθdt, (5.75)

Here, the value of the external signal might be time-dependent and depend on
parameter(s) θ. Note that we have chosen the covariance matrix to take its stationary
value (which does not depend on the force).

In our numerics, we consider two simple scenarios, (i) a constant force and (ii)
an exponentially decaying force shown in Fig. 5.16. In the first case, we show how
the expected measurement signal value ⟨ ˆdytθ̂L⟩ differs from the beginning of the
training to the end of it. Note however that even for the untrained model, a trend
appears to be correctly reproduced. This is due to the innovation term appearing
in the evolution of the hidden state, for which the true value of dyt is injected
at each time. Such fact is also illustrated in the right panel of the figure, for the
exponentially-decaying case. In such example, large values of time will lead to no
external signal (and thus the model will reproduce the correct dynamics), although
for small values the same effect is observed. Behind such trend-reproducing effect is
the magic of Kalman filtering, which updates the probability distribution for the
hidden state by means of the avaialble observations, which are generated under
the underlying truth.

While the examples considered in this Section are arguably simple, this method
is aimed to be extended to more complex systems. In particular, we are interested
in discovering dynamical equations of motion for the external signals, in the same
spirit as in Ref. [BPK16], though further investigation needs to be carried out, i.e.
by the time of writing this thesis, the current is an ongoing project.
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Figure 5.16: We show the results of external force estimation. While the left panel
consists on estimating a constant force, the right panel shows that the method
learns both the amplitude and decay rate of an exponentially decaying external
signal.

5.5 Discussion & future perspectives

In this Chapter we have analyzed statistical inference problems for continusouly
monitored quantum systems.

Our main contribution is that of introducing sequential hypothesis testing
strategies in such quantum regime, and elucidated an advantage in terms of a
determinstic, i.e. fixed-measurement time, strategies. On the one hand, we provided
strong analytical insight on the problem, by focusing on the damping discrimination
scenario. On the other, we have shown that the sequential approach can be used in
different contexts, such as frequency discrimination problems.

Moreover, we have studied parameter estimation problems, and analyzed the
performance of maximum-likelihood strategies, which are carried out by automatic
differentiation modules. Such strategy is compared with a Lorentzian fit done on
the power spectra and the mean squared errors of both strategies are compared
with the Fisher information. The latter quantity is obtained by numerical integra-
tion. Furthermore, we have investigated how this approach can be used to infer
parameters of external signals, and tested this on some simple examples.
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5.5. DISCUSSION & FUTURE PERSPECTIVES

Finally, let us remark that it would be very interesting to derive ultimate quan-
tum bounds for the mean stopping times under general (continuous) measurement
schemes, analogous to the bound found in [MVHS+21; LHT22]. A natural way to
study this problem would be to fix the coupling with the readout system (leaked
light form the cavity) and optimize over the measurements done on this ancillary
system.

5.5.1 Code
We refer the interested reader to Ref. [GG] for the hypothesis testing results (see
branches damping-disc and freq-disc), and for the estimation results (see branch
estimation of the same reference).
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proach to coherent state discrimination. 2020.

[LHP+15] Timothy P. Lillicrap et al. Continuous control with deep reinforcement
learning. 2015. eprint: arXiv:1509.02971.

[Bil02a] Matı́as Bilkis. 202.
[BC20] Matias Bilkis and John Calsamiglia. 2020.
[Bil02b] Matı́as Bilkis. 202.
[MLE21] Vishal Monga, Yuelong Li, and Yonina C. Eldar. “Algorithm Un-

rolling: Interpretable, Efficient Deep Learning for Signal and Image
Processing”. In: IEEE Signal Processing Magazine 38.2 (2021), pp. 18–
44. doi: 10.1109/MSP.2020.3016905.

[SFE+20] Nir Shlezinger et al. “ViterbiNet: A Deep Learning Based Viterbi
Algorithm for Symbol Detection”. eng. In: IEEE Transactions on
Wireless Communications 19.5 (2020), p. 13. issn: 1536-1276.

[LHB04] Yann LeCun, Fu Jie Huang, and Léon Bottou. “Learning methods
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tic Differential Equations”. In: SIAM Journal on Numerical Analysis
47.3 (2009), pp. 1713–1738. doi: 10.1137/060673308. eprint:
https://doi.org/10.1137/060673308.

[BPK16] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. “Dis-
covering governing equations from data by sparse identification
of nonlinear dynamical systems”. In: Proceedings of the National
Academy of Sciences 113.15 (2016), pp. 3932–3937. doi: 10.1073/
pnas.1517384113. eprint: https://www.pnas.org/
doi/pdf/10.1073/pnas.1517384113.

[CDG+10] A. A. Clerk et al. “Introduction to quantum noise, measurement,
and amplification”. In: Rev. Mod. Phys. 82 (2 2010), pp. 1155–1208.
doi: 10.1103/RevModPhys.82.1155.

[GG] J. Calsamiglia G. Gasbarri M. Bilkis. https://github.com/
matibilkis/cdisc.

242

https://doi.org/10.1103/PRXQuantum.3.020310
https://doi.org/10.14264/uql.2017.148
https://doi.org/10.1137/060673308
https://doi.org/10.1137/060673308
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://www.pnas.org/doi/pdf/10.1073/pnas.1517384113
https://www.pnas.org/doi/pdf/10.1073/pnas.1517384113
https://doi.org/10.1103/RevModPhys.82.1155
https://github.com/matibilkis/cdisc
https://github.com/matibilkis/cdisc

	Motivation
	Preliminaries
	Some basic notions of quantum information
	Closed-system dynamics
	Quantum channels
	Generalized quantum measurements
	Quantum instruments
	Quantum master equation

	NISQ & the qubits
	Variational Quantum algorithms
	The Ansatz
	The optimization procedure
	Barren-plateaus
	Discussion

	Continuous-variable systems
	Gaussian systems
	Some methods in phase space
	Gaussian operations and beyond
	Measurements

	Continuously-monitored systems
	Cavity emission and photon-detection
	Continuous photon-detection
	Continuous homodyne detection
	Intermezzo II: Ito calculus
	Imperfect detection
	The Gaussian case
	Optomechanical systems

	Statistical Inference
	Hypothesis testing
	Single-shot quantum state discrimination
	Back to the classics: asymetric hypothesis testing
	Sequetial hypothesis testing
	Parameter estimation

	Reinforcement learning
	Bandit problems
	Value functions and the Bellman equation
	Q-learning
	Model aware methods
	Discussion


	Learning in the darkness
	Coherent-state quantum receivers
	Gaussian receivers
	Kennedy receivers
	Dolinar receivers
	Time-domain Dolinar receiver & optimality
	The sequential structure of Dolinar receiver

	The model-aware approach
	The model-free approach
	Reinforcement learning the Dolinar receiver
	Q-learning the Dolinar receiver
	Optimal state-action values & convergence
	A little help from my bandit friends
	Noise robusteness

	Discussion & Future work
	Code


	Learning in the twilight
	The Variable Ansatz (VAns) Algorithm
	Insertion method
	Simplification method
	Scaling of VAns

	Using VAns
	Transverse Field Ising model (TFIM)
	XXZ Heisenberg Model
	Molecular Hamiltonians
	Quantum Autoencoder
	Unitary compilation
	Noise and the -model

	Discussion and future perspectives
	Mitigating the effect of barren plateaus
	Future directions
	Code


	Learning in the daylight
	Introduction
	Hypothesis testing in continuously-monitored systems
	Sequential testing & Gaussian systems
	The log-likelihood ratio
	To be or not to be Gaussian
	Joint system evolution as an OU-process
	Deterministic vs Sequential

	Parameter estimation & continuously-monitoring
	The spectral power and the Lorentizan fit
	Evolution of the Fisher information
	Maximum-likelihood estimation via automatic-differentiation
	Learning a linear force

	Discussion & future perspectives
	Code



	Títol de la tesi: Decision-making in quantum environments:from model-free to model-aware learning of quantum controls
	Nom autor/a: Matias Bilkis


