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“Nature is simple if you know how to look at her.”

Murray Gell-Mann
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Abstract
The phenomenology of the neutral and long-lived η and η′ mesons constitutes an ideal
flavour-conserving laboratory for investigating the dynamics of quantum chromodynamics
in the non-perturbative regime, as well as its relevant symmetry-breaking mechanisms. In
addition to this, the decays of these states have been identified, and have gained plenty of
attention in recent years, as unmatched probes in the context of high-precision measurements
to observe potential departures from the Standard Model predictions and, therefore, as a po-
tential window for discovering new physics beyond the Standard Model. As a result of this,
many broad experimental programmes in high-intensity-frontier centres have been designed
for this purpose, holding promise for a new and exciting era of η and η′ physics at the preci-
sion frontier.

It is within this context that we explore several phenomenological aspects of the η and η′

mesons in this thesis. We begin by studying the mixing in the π0-η-η′ system from radiative
V → Pγ and P → V γ decays using a phenomenological model that incorporates explicit
breaking of the isospin symmetry. We then move on to analyse the Standard Model scalar
and vector meson exchange contributions to the doubly radiative decays η(′) → π0γγ and
η′→ ηγγ, presenting for the first time theoretical predictions for the latter. Next, we in-
vestigate the sensitivity of these decays to signatures of a hypothetical leptophobic B boson
that couples to the baryon number. We provide improved constraints on the B-boson mass
mB and coupling to Standard Model particles αB , and perform fits to the available diphoton
invariant mass distribution data. The results from this analysis may be of relevance for theB-
boson search programmes at existing and forthcoming light-meson facilities, such as KLOE(-
II) and Jefferson Lab Eta Factory experiments. We then follow with a detailed analysis of
the Standard Model predictions for the C-conserving semileptonic decays η(′) → π0l+l−

and η′ → ηl+l− (l = e or µ), which may be used to identify potential discrepancies with
high-precision measurements at future η and η′ factories. Theoretical predictions for the four
η′→ π0l+l− and η′→ ηl+l− branching ratios and dilepton invariant mass distributions are
presented in this thesis for the first time. Finally, we study potential CP -violating signatures
in η(′)→ π0µ+µ− and η′→ ηµ+µ− decays using the Standard Model effective field theory
as the general framework to capture new physics, and we assess the prospect of observing
them at the future REDTOP experiment.
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Chapter 1

Introduction

The Standard Model of particle physics (SM) is our current best scientific theory to de-
scribe the most fundamental building blocks of Nature, encapsulating our understanding of
elementary particles and their interactions. Specifically, it is a mathematically consistent
SU(3)C ×SU(2)L×U(1)Y gauge theory of the strong, electromagnetic and weak interac-
tions [1, 2].

The SM consists of two gauge field theories: i) quantum chromodynamics (QCD), which
is the non-abelian SU(3)C component of the SU(3)C×SU(2)L×U(1)Y SM gauge group,
it is non-chiral and it describes the strong interactions of coloured quarks and gluons, and ii)
the (standard model of) electroweak interactions, which is based on the SU(2)L×U(1)Y
gauge group, it is chiral and its gauge symmetry group is spontaneously broken down to
U (1)Q after electroweak symmetry breaking, generating the mass of the weak bosons through
the Higgs mechanism [1–6], as well as the mass of all quarks and charged leptons from
Yukawa terms in the SM Lagrangian.

As it is well known, asymptotic freedom is a property of some non-abelian gauge the-
ories, such as QCD [7, 8], that results in an energy-dependent behaviour of the coupling
constant —otherwise known as the running of the coupling— such that it becomes weaker
at short distances or high momentum, enabling the use of perturbative techniques to perform
calculations in this energy regime. This, indeed, is the case for QCD where at high energies
one can construct a perturbative expansion in powers of the renormalised coupling αs(µ2

R) to
obtain theoretical predictions for physical observables.1 Contrary to this, perturbation theory
fails to be applied in the low-energy regime of QCD, as the expansion in powers of αs no
longer converges [3, 4]. In the non-perturbative regime of QCD, other techniques such as
effective field theories, dispersive techniques or lattice QCD are required to make progress.

Most aspects of the SM have been successfully tested in detail at colliders, accelerators
and non-accelerator experiments, and it has precisely predicted a wide variety of physical
phenomena [2, 9]. In addition, it has provided a successful framework for many observa-
tions in cosmology and astrophysics [2]. Among its major triumphs are the agreement with
experiment of the anomalous magnetic dipole moment of the electron to within 1 part in a
trillion [10], the successful prediction of the existence of the Higgs boson, the gluon, the
top and charm quarks, and the W and Z bosons (as well as their masses) [11]. Despite its
huge successes, the SM leaves some phenomena unexplained and, thus, there are reasons to
believe that the SM is not the final theory [12]. For example, it fails to incorporate Einstein’s
theory of General Relativity, it does not provide a viable dark matter particle candidate with
the required properties as deduced from astrophysical and cosmological observations,2 and
it does not fully explain the observed matter-antimatter asymmetry present in the universe.
Moreover, the SM neutrinos are massless whilst the observed neutrino oscillations in flight
require them to have a small mass and whether they are Dirac or Majorana particles is still

1Of course, µR is an unphysical renormalisation scale and, thus, all physical observables must be indepen-
dent of it.

2It must be noted that modified gravity models can account for galaxy rotation measurements and, thus, may
provide an explanation for dark matter. A review of these ideas is outside the scope of the present work though.
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unclear. In addition, the so-called hierarchy problem presents an important challenge to the
SM as one would naturally expect that the mass of the Higgs boson, which has been experi-
mentally established to be at the electroweak energy scale —i.e. mH = 125.25± 0.17 GeV
∼ ΛEW(∼ 100 GeV)—, should receive huge quantum contributions bringing it up to the
next energy scale for new physics —such as, e.g., the Planck scale, ΛPlanck ∼ 1019 GeV—
unless there is an exquisitely precise cancellation between the quadratic radiative corrections
and the Higgs bare mass [2]. Supersymmetry and warped extra dimensions have long been
postulated as potential solutions to the hierarchy problem but the lack of any experimental
evidence after years of extraordinary efforts at high energy colliders have led these theories
to loose traction.

It is likely that the SM is just a low-energy approximation to some currently unknown
ultraviolet (UV) completion theory, where the SM Lagrangian represents the leading order
term of the more fundamental theory in the effective field theory (EFT) perturbative expan-
sion. Should this be the case, then it would be remarkable that the leading term of such an
EFT expansion is a perturbatively renormalisable quantum field theory (QFT) in the conven-
tional sense, which means that, technically, the SM is a mathematically consistent and fully
predictive theory all the way up to the Planck scale, where the effects of quantum gravity
ought to become important. In this sense, it is not beyond the realm of possibility that there
may be no intermediate particle physics between the electroweak energy scale and the Planck
mass [13].

Given the current economic, social and political state of affairs —as well as the public
perception—, the option of building new particle accelerators in the future with even higher
energies that may help shed light into the above issues remains uncertain, which calls for
different strategies to find new physics beyond the Standard Model (BSM). An interesting
alternative to direct searches is precision measurements that may be sensitive to new physics.
These measurements, which are carried out at low-energy high-intensity experimental facili-
ties, are compared with theoretical predictions from the SM and any potential deviations that
may appear would then be attributed to the effect of BSM physics. Of course, to fully exploit
this experimental programme, adequate and precise theoretical predictions are crucial.

In this context, the phenomenology of the neutral and long-lived η and η′ mesons provides
a unique flavour-conserving laboratory to test low-energy QCD and search for new BSM
physics [14], which is down to the special nature of these mesons. In particular [14, 15],

• the η meson is a pseudo-Goldstone boson of the spontaneously broken chiral symmetry
of QCD,

• the η′ meson is largely influenced by the axial U (1)A anomaly of QCD,

• the η and η′ mesons are eigenstates of the charge conjugation (C), parity (P ), the
product CP , and G-parity operators,

• all their additive quantum numbers are zero, which amounts to all their decays being
flavour-conserving, and

• all their strong and electromagnetic decays are forbidden at lowest order due to sym-
metries (e.g. C, P , angular momentum, G-parity, etc.), which means that the SM con-
tribution to their decays is highly suppressed.

Accordingly, the η and η′ decays provide extraordinary opportunities to test the chiral dy-
namics of QCD at low energies, extract fundamental parameters of the SM such as the light
quark masses, study potential small violations of the discrete fundamental symmetries and,
possibly, provide a window to the dark sector (i.e. BSM physics) [14, 15].
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In this thesis, we investigate several phenomenological aspects of the η and η′ mesons
with the aim of contributing to improve the state of knowledge through the calculation of
some novel or improved SM theoretical predictions, so that comparison with future measure-
ments in high-intensity low-energy experiments allows to confirm, or otherwise, any potential
departure from the SM and, therefore, new physics BSM.

In the first five chapters, we provide a brief introduction to the theoretical framework that
is employed in subsequent chapters. In particular, Chapter 2 presents a basic introduction
to QCD, including a discussion of the symmetries of the QCD Lagrangian, as well as the
quark model and the axial U(1)A anomaly of QCD. Chapter 3 covers the topic of effective
field theories (EFTs) and presents some useful EFTs to characterise QCD in the low- and
medium-energy regimes, such as chiral perturbation theory (χPT), large number of colours
(large-NC) χPT, resonance chiral theory (RχT), vector meson dominance (VMD) and the
U (3)×U(3) linear sigma model (LσM). In addition, we provide a concise account of the
Standard Model effective field theory (SMEFT). Chapter 4 is dedicated to the analysis of the
η-η′ mixing within the framework of large-NC χPT, which enables the inclusion of the η′ as
the ninth pseudo-Goldstone boson of the spontaneously broken U(3)L×U(3)R → U(3)V
chiral symmetry of QCD. In Chapter 5, we explore the complex plane in elementary particle
physics, and we discuss topics such as the S-matrix, resonances and dispersion relations. We
conclude Part I of this thesis with Chapter 6, which introduces the topic of CP violation in
the SM, including a discussion of discrete symmetries and CP violation in the quark sector.

In the following five chapters, we present the contribution to knowledge of this thesis.
Specifically, we present in Chapter 7 an enhanced phenomenological model that includes
violations of the isospin symmetry to quantify the admixtures of the η and η′ with the π0

in the context of radiative transitions between vector (V ) and pseudoscalar (P ) mesons. We
then proceed to perform statistical fits to the most recent VPγ experimental data, which
shows that the current experimental uncertainties allow for isospin-symmetry violations with
a confidence level of approximately 2.5σ. In Chapter 8, we perform a detailed analysis of
the doubly radiative decays η(′) → π0γγ and η′ → ηγγ within the VMD and LσM frame-
works. We provide theoretical predictions for the diphoton invariant mass distributions and
associated integrated branching ratios, and we compare them with the available experimen-
tal data. In Chapter 9, we study the sensitivity of the η(′) → π0γγ and η′ → ηγγ decays
to signatures of a leptophobic B boson in the MeV–GeV mass range using the VMD and
LσM frameworks to characterise the exchange of vector and scalar resonances within the
SM. Using experimental data for these processes, we improve the current constraints on the
B-boson mass mB and coupling to SM particles αB . In Chapter 10, we present an in-depth
analysis of the C-conserving semileptonic decays η(′)→ π0l+l− and η′→ ηl+l−, with l= e
or µ, within the framework of the VMD model and provide predictions for the decay widths
and dilepton energy spectra. In Chapter 11, we investigate the prospect of observing new-
physics signatures through CP violation in η(′)→ π0µ+µ− and η′→ ηµ+µ− decays at the
REDTOP experiment using the SMEFT as the theoretical framework to parameterise BSM
CP -violating effects. We find that the experiment’s projected statistics are not competitive,
using the above semileptonic decays, with respect to the limits already stablished by the
neutron electric dipole moment (nEDM) experiments.

We conclude this thesis with a summary of the work carried out and an overview of our
findings in Chapter 12, together with some final conclusions.
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Chapter 2

Quantum chromodynamics

In this chapter, the essential concepts of quantum chromodynamics (QCD) are introduced.
The QCD Lagrangian is presented, alongside its fundamental properties, and a discussion of
its exact and approximate symmetries is given. Moreover, a brief presentation of the quark
model and the axial U(1)A anomaly of QCD is provided.

2.1 Introduction

Quantum chromodynamics is the modern theory of the strong interactions. Its fundamental
degrees of freedom are non-chiral spin-1/2 fermion fields, known as quarks, and spin-1 gauge
boson fields, called gluons, with their dynamical behaviour being controlled by the non-
abelian gauge theory of SU(3) coloured charges.

The choice of gauge group comes down to the empirical fact that the quarks are colour
triplets but all the hadrons, which are complex bound systems of quarks and gluons, are
colour singlets (i.e. colour neutral) [16]. Accordingly, quarks are said to be in the funda-
mental representation of the SU(3) colour group, whilst gluons transform under the adjoint
representation of the SU(3) colour group [1]. Neither quarks nor gluons are observed as free
particles in Nature.

The QCD Lagrangian is given by [2]

LQCD = −1

4
GiµνG

iµν +
∑
f

q̄Af i /DB
AqfB−

∑
f

mf q̄
A
f qfA+ θQCD

g2
s

32π2
GiµνG̃iµν , (2.1)

where µ and ν are Lorentz indices, A and B are gauged colour indices running from 1 to
NC = 3 (i.e. quarks come in three colours), f = u,d, s, c, b, t is the ungauged flavour index,
and the gluon field strength tensor can be written as

Giµν = ∂µG
i
ν−∂νGiµ−gsfijkGjµGkν , (2.2)

withGi=Gi† being the eight Hermitian gluon fields and i,j,k running from 1 toN2
C−1= 8.

Furthermore, gs in Eqs. (2.1) and (2.2), often expressed as αs = g2
s/4π, is the QCD coupling

constant, G̃iµν is the dual of the gluon field tensor, i.e. G̃iµν ≡ 1
2εµνσρG

iσρ, and the gauge
covariant derivative is given by

DµB
A ≡ (Dµ)AB = ∂µδBA − igsG

µB
A , (2.3)

where

GBA = (GAB)
† =

8∑
i=1

GiT iAB (2.4)

represents the gluon field in tensor or matrix notation. Moreover, the T iAB ≡ λiAB/2 are the
eight 3× 3 generators of the SU(3) group, which encode the fact that a gluon’s interaction
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with a quark rotates the quark’s colour in SU(3) space [1], with λi being the eight linearly
independent, Hermitian and traceless Gell-Mann matrices, i.e.

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 ,

(2.5)

which satisfy the Lie algebra
[T i,T j ] = ifijkT

k , (2.6)

where fijk are the structure constants of the SU(3) group.
The Feynman rules associated to the QCD Lagrangian are a quark-antiquark-gluon (qq̄g)

vertex proportional to gs, a 3-gluon vertex proportional to gs and a 4-gluon vertex propor-
tional to g2

s [1]. The triple and quartic gluon self-interaction terms, which ultimately are
responsible for the asymptotic freedom property of QCD [3, 4], originate from the third
term in Eq. (2.2). In order to be able to use perturbation theory with the Lagrangian from
Eq. (2.1), a gauge fixing term is required so that the propagator for the gluon field can be
properly defined [3, 9]. The choice

Lgauge-fixing = −
1

2λ
(∂µGiµ)

2 (2.7)

fixes the class of covariant gauges with gauge parameter λ. In addition, given that QCD is
a non-abelian theory, the gauge fixing term must be supplemented by a ghost term. This is
usually expressed as

Lghost = ∂µη
i†(Dµ

ijη
j) , (2.8)

where ηi is a complex scalar field which obeys Fermi statistics and Dµ
ij is the covariant

derivative in the adjoint representation of SU(3) [3, 9]. This class of Lagrangian terms are
known as Faddeev-Popov ghosts.

The strong interactions are invariant under the discrete symmetries charge conjugation
(C), parity inversion (P ), time reversal (T ), and the CP and CPT products. The first three
terms in Eq. (2.1) respect these symmetries. The last term, which is associated to the more
complicated structure of the QCD vacuum, observes gauge invariance and does not spoil the
renormalisability of QCD but it can lead to large violations of CP unless the phase parameter
θQCD is very small [2]. Experimentally, limits on ultracold neutrons and atomic mercury
constrain this parameter to θQCD . 10−10 [1]. The question as to why the θQCD phase is
so small in Nature is referred to as the strong CP problem and, whilst several potential
solutions have been proposed over the decades such as the Peccei-Quinn mechanism [17,
18], the puzzle remains unresolved.

Apart from the phase parameter θQCD and the current quark masses mf , which are
generated by the spontaneous breaking of the electroweak symmetry,1 the only free pa-
rameter in QCD is the strong coupling constant gs(µ2

R). Its value in turn depends on the

1Note that, when one considers QCD alone, the mf parameters can be thought of as bare masses.
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renormalisation scale µR, which is taken to be the typical momentum scale of the pro-
cess. This dependence is known as the running of the renormalised strong gauge coupling
whereby αs(µ2

R) = g2
s (µ

2
R)/4π decreases for large µR (short distance) and the theory be-

comes asymptotically free with quasi-free quarks and gluons [2, 5], enabling a perturbative
analysis of QCD (pQCD) in this regime. For small µR (large distance), αs(µ2

R) becomes
large and perturbation theory can no longer be employed. The strong coupling and gluon
self-interactions (presumably) lead to the confinement of quarks, gluons and any coloured
states, so that only colour-singlet hadrons (i.e. mesons and baryons) can emerge [2]. In ex-
periments, though, both regimes may be important to account for different aspects of a pro-
cess. Fortunately, for many processes the short- and long-distance effects can be factorised,
with the short-distance effects being calculable using pQCD and the long-distance effects
can be accounted for by means of parton distribution function, which in turn are obtained
directly from experiment [2, 9]. Notwithstanding this, for some other low-energy processes
alternative approaches such as QCD lattice or effective field theories, e.g. chiral perturbation
theory (χPT), are required to make progress [19].

The strong coupling constant, αs(µ2
R), satisfies the following renormalisation group

equation (RGE)

µ2
R

dαs
dµ2

R

= β(αs) = −(b0α2
s+ b1α

3
s+ b2α

4
s+ · · · ) , (2.9)

where2 b0 = (11CA− 4nfTR)/(12π) = (33− 2nf )/(12π) is referred to as the 1-loop β-
function coefficient, with nf being the number of quark flavours, the 2-loop coefficient is
b1 = [17C2

A−nfTR(10CA+6CF )]/(24π2) = (153−19nf )/(24π2), and the 3-loop coef-
ficient is b2 = (2857− 5033

9 nf +
325
27 n

2
f )/(128π

3) [1]. The coefficient b2 is renormalisation-
scheme dependent and here the modified minimal subtraction scheme (MS) has been adopted.
One must note that the minus sign on the right-hand side of Eq. (2.9) is the origin of asymp-
totic freedom. It is important to note that the β-function coefficients, bi, are given for the
coupling of an effective theory in which nf out of all the quark flavours are considered light,
i.e. mf � µR, whilst the heavier quark flavours decouple from the theory [1]. Assuming
a constant number of flavours and neglecting all the β-function coefficients but b0, one can
easily find the analytic solution

αs(µ
2
R) =

[
b0 ln

(
µ2
R

Λ2

)]−1

, (2.10)

where Λ is a constant of integration corresponding to the scale at which the perturbative
expansion of the coupling no longer converges.

As already mentioned, free quarks have never been observed and this experimental fact
is understood as a result of the confining property of the strong interactions at long distances.
Accordingly, the up (u), down (d), strange (s), charm (c) and bottom (b) quarks all hadro-
nise, whilst the top (t) quark decays before it has time to hadronise [1]. The fact that free
quarks are not found in Nature raises difficulties when defining their masses. Two prescrip-
tions are usually employed: i) the pole mass, mq, which corresponds to the position of the
pole of the quark propagator and has got a clearer physical interpretation but suffers from
non-perturbative ambiguities, and ii) the MS mass, mq(µ2

R), which depends on the renor-
malisation scale µR and is, therefore, not physical. Light quark masses are often quoted in

2Some useful colour algebra relations are in order at this point [1]: T iABT
i
BC = CF δAC , where CF ≡

(N2
C −1)/(2NC ) = 4/3 is the colour factor associated with gluon emission from a quark; fijkfljk = CAδil,

where CA ≡NC = 3 is the colour factor associated with gluon emission from a gluon; and T iABT
j
AB = TRδij ,

where TR = 1/2 is the colour factor for a gluon to split into a qq̄ pair.
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the MS scheme at the µR ∼ 2 GeV scale, whilst the masses of the heavier quarks are quoted
using either prescription. The pole and MS masses are related by [1]

mq =mq(m
2
q)

[
1+

4αs(m2
q)

3π
+O(α2

s)

]
, (2.11)

whilst the scale-dependence of MS masses is given at lowest order by [1]

µ2
R

dmq(µ2
R)

dµ2
R

=

[
−
αs(µ2

R)

π
+O(α2

s)

]
mq(µ

2
R) . (2.12)

To conclude this section, it is worth highlighting that hadrons not involving the c or b
quarks receive relatively little contribution from the current quark masses and, thus, their
masses are dominated by the dynamical or constituent quark mass mdyn ∼Mp,n/3∼ΛQCD,
which is associated to the spontaneous breaking of the SU(3)L×SU(3)R chiral symmetry
of QCD. The exception to this is the pseudoscalar octet, which are pseudo-Goldstone bosons
with masses generated by the explicit chiral breaking from the current quark masses [2].

2.2 Symmetries of the QCD Lagrangian

2.2.1 Local gauge invariance

The QCD Lagrangian in Eq. (2.1) has the property that it is invariant under the colour SU(3)
group of local gauge transformations of the quark fields [3, 4]

q(x)→ Uq(x) ≡ eiθj(x)T jq(x) , (2.13)

where θi are the group parameters, T i are the generators of the SU(3) group of transforma-
tions, with Lie algebra defined by the commutation relations from Eq. (2.6), and a summation
over the repeated index j is implicit.

Imposing local gauge invariance on the free Dirac Lagrangian of coloured quark fields
requires the introduction of eight gauge boson fields Giµ, the gluons, which transform as

Giµ→Giµ+
1

g
∂µθ

i−fijkθjGkµ (2.14)

and a covariant derivative of the form [cf. Eq. (2.3)]

∂µ→Dµ ≡ ∂µ− igsTjGjµ , (2.15)

which ultimately leads to the Lagrangian shown in Eq. (2.1), after adding the gauge-invariant
free Lagrangian term for the gluon fields, i.e. −1

4G
i
µνG

µν
i .

Local gauge invariance requires the gauge fields to be massless, since a Proca-like mass
term in the Lagrangian violates local gauge symmetry [3, 4, 6, 20]. Consequently, one
must resort to a subtle procedure involving the introduction of a complex scalar doublet field
(the Higgs field), the spontaneous breaking of the electroweak gauge symmetry SU(2)L×
U(1)Y → U (1)Q and the so-called Higgs mechanism, in order to generate the masses for
the W± and Z weak gauge bosons. Similarly, the quark (and charged lepton) masses can-
not be introduced through the standard Dirac Lagrangian mass term, −mqq̄, as it spoils the
SU(2)L symmetry of the electroweak interactions and, therefore, the renomalisability of the
gauge theory [2, 6, 20]. In order to address this, the masses of the quarks have to be gener-
ated by means of additional Yukawa terms in the SM Lagrangian, coupling the fermions to
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the Higgs doublet, which, after spontaneous breaking of the electroweak symmetry, acquires
a non-zero vacuum expectation value, ultimately leading to the generation of the fermion
masses [3, 4, 20].

Before concluding this subsection, it is worth highlighting that the introduction of the
gauge fixing term of Eq. (2.7) into the general QCD Lagrangian explicitly spoils its gauge
invariance [4, 9]. However, this is innocuous in this particular case, as the S-matrix elements
and, therefore, the physical observables, remain independent of the gauge fixing choice λ [9].

2.2.2 Exact symmetries

According to Weinberg [6, 21], quantum field theory appears to be an inevitable consequence
of Lorentz invariance, quantum mechanics and cluster decomposition, without additional as-
sumptions about locality or causality. Consequently, QCD includes the full symmetry group
of special relativity, i.e. rotations in space and boosts, which in turn expresses the propo-
sition that the laws of physics are the same for all inertial observers. Even though some
approaches to quantum gravity appear to require small violations of Lorentz invariance at
energies approaching the Planck scale, currently, there is no experimental evidence for low-
energy Lorentz-violating signatures that may suggest that Lorentz invariance is not an exact
symmetry of Nature. In addition, the local gauge symmetry of colour SU(3) discussed in
the previous subsection is believed to be an exact symmetry of the QCD Lagrangian, which
in turn is required to ensure unitarity3 for massless spin-1 fields.4 As it turns out, non-abelian
gauge theories with spontaneous symmetry breaking, such as the SM, happen to be renor-
malisable in the conventional sense [22].

The first two terms of the QCD Lagrangian in Eq. (2.1) are invariant under the discrete
symmetries P , C and T , which are satisfied individually and in combination (e.g. CPT
invariance). These discrete symmetries are in agreement with the observed properties of the
strong interactions [1, 9]. However, the additional gauge invariant term of mass dimension
four that can be added to the QCD Lagrangian, i.e. the third term in Eq. (2.1), which is
associated to the complicated structure of the QCD vacuum [23–25], complicates the analysis
of the above discrete symmetries at the quantum level. An interaction term like this violates
both P and T but conserves C, so it violates CP . However, the strong interactions are
invariant under CP , which means that the phase θQCD must be very small to account for the
experimental evidence. It should be noted that setting θQCD = 0 would not solve the problem,
as it could still be regenerated by CP -violating effects from the electroweak interactions that
are known to exist in Nature [9].

2.2.3 Approximate symmetries

In this subsection, we follow the presentation of Ref. [9] as it introduces the different approx-
imate symmetries in a natural and logical manner.

Let us begin by considering just the u and d quark fields from the quark sector of the
QCD Lagrangian from Eq. (2.1)

Lq =
∑
f=u,d

q̄f (i /D−mf )qf . (2.16)

3Unitarity implies that, in the Schrödinger picture, the norm of a state |Ψ, t〉 is constant for all t, which in a
quantum theory is equivalent to the statement of conservation of probability.

4For the optical theorem to hold in general, which is a direct consequence of unitarity, the numerator of a
propagator must be equal to the sum over physical spin states [4]. This for massless spin-1 fields is achieved so
long as gauge invariance and the Ward identity hold.
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A global phase redefinition of the quark fields leaves the Lagrangian invariant, giving rise to
the conservation of baryon number in the strong interactions.

Next, we consider approximate symmetries that couple different quark flavours. To this
end, one can rewrite Eq. (2.16) as

Lq = q̄(i /D−M)q , (2.17)

where matrix notation for the quark fields has been introduced,5

q =

(
u
d

)
, (2.18)

and the mass matrix M is given by

M =

(
mu 0
0 md

)
. (2.19)

Since md−mu is much smaller than the hadronic mass scale (ΛQCD ∼ 250 MeV), one can
assume that the masses of the up and down quarks are approximately degenerate, mu ≈md.
A direct consequence of this is that the mass matrix can now be factorised and the symmetry
of the Lagrangian is significantly enhanced, becoming invariant under a SU(2) transforma-
tion acting on the quark fields

q→ U(φα)q = ei
~φ·~σ
2 q , (2.20)

where the σi, with i= 1,2,3, are the Pauli matrices taken to be

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.21)

The above U(2)V symmetry can be decomposed into the product SU(2)V ×U(1)V ,
where SU(2)V corresponds to the isotopic spin symmetry (isospin), which becomes exact in
the mu =md limit, and U(1)V to the quark number conservation. According to Noether’s
theorem, the conserved currents associated to isospin can be written as

Jµi = q̄γµσiq . (2.22)

The flavour SU(2)V symmetry can be increased by assuming that the strange quark also
degenerates in mass, i.e. mu ≈md ≈ms. This gives rise to the approximate flavour SU(3)V
symmetry, which ultimately enables the classification of the hadrons in various irreducible
representations [26]: an octet of 1/2+ baryons p, n, Λ0, Σ±,0, Ξ−,0; an octet of 0− mesons
K+,0, π±,0, η, K−,0; an octet of 1− mesons K∗+,0, ρ±,0, ω, K∗−,0; and a decuplet of 3/2+

baryons ∆++,+,0,−, Σ∗+,0,−, Ξ∗0,−, Ω−.
Given that the masses of the three light quarks (i.e. u, d and s) are significantly smaller

than the masses of the heavy quarks (i.e. c, b and t), one may assume that mu,d,s = 0, which
largely enhances the symmetry of the QCD Lagrangian. Introducing the left- and right-
handed projection operators

γL =
1

2
(1−γ5) , γR =

1

2
(1+γ5) , (2.23)

5A word of caution is in order here, as in this thesis q sometimes refers to a generic quark field whilst in
other cases it refers to a vector of quark fields, and the distinction should be clear from the context.
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which satisfy γ2
L = γL,γ

2
R = γR and γLγR = 0, allows one to decompose the quark fields

into left- and right-handed components

qL = γLq =
1−γ5

2
q ,

qR = γRq =
1+γ5

2
q ,

(2.24)

which in the quark massless limit correspond to the negative and positive helicities, respec-
tively. The Lagrangian from Eq. (2.17) can, therefore, be written in this limit as

Lq = q̄Li /DqL+ q̄Ri /DqR . (2.25)

One can easily see from Eq. (2.25) that the Lagrangian for massless quarks contains no
coupling between the left- and right-handed fermion fields. This in turn means that this
Lagrangian is invariant under two independent rotations of the left- and right-handed fields,
yielding a global U(3)L×U(3)R symmetry

qL→ q′L = ei
βaλ

a

2 qL ,

qR→ q′R = ei
β′aλ

a

2 qR ,

(2.26)

where the λa are the Gell-Mann matrices from Eq. (2.5), with a running from 1 to 8. This
symmetry is known as the chiral symmetry of QCD, which is exact only in the quark massless
limit.

In the absence of quark masses, the QCD Lagrangian contains no dimensional parame-
ters. Accordingly, in this limit the Lagrangian is invariant under the scale transformations

q(x)→ λ3/2q(λx) , Giµ(x)→ λGiµ(λx) , (2.27)

with q and Gi being the quark and gluon fields, and QCD becomes scale invariant as a
classical theory. Quantum corrections, though, result in the trace of the symmetric QCD
energy-momentum tensor to take a non-zero value, known as the trace anomaly of QCD,
which breaks the scale invariance of the quantum theory by introducing the renormalisation
scale when defining the coupling constant [3–5]. The trace anomaly is, therefore, propor-
tional to the β-function and is ultimately responsible for the origin of the hadron masses. An
exception to this are the pseudoscalar mesons, which in the chiral limit are Nambu-Goldstone
modes of a spontaneously broken global flavour-SU(3)A symmetry.

2.2.4 The chiral symmetry of QCD

As explained in previous subsection, in the chiral limit, i.e. mu,d,s→ 0, the QCD La-
grangian is invariant under global U(3)L×U(3)R chiral transformations at the classical
level. The flavour U(3)L×U (3)R group of symmetries can in turn be decomposed into
SU(3)L×SU(3)R×U(1)L×U(1)R and the Noether currents associated to these (contin-
uous) symmetries are [3]

JµL = q̄Lγ
µqL , JµR = q̄Rγ

µqR ,

JµaL = q̄Lγ
µT aqL , JµaR = q̄Rγ

µT aqR ,
(2.28)

where, once again, the T a = λa/2 are the generators of the SU(3) group of symmetry trans-
formations. The sum of left- and right-handed currents gives rise to the vector currents [2, 3]

JµV = JµR+JµL = q̄γµq , JµaV = JµaR +JµaL = q̄γµT aq , (2.29)
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whilst the difference results in the corresponding axial-vector currents

JµA = JµR−J
µ
L = q̄γµγ5q , JµaA = JµaR −J

µa
L = q̄γµγ5T aq . (2.30)

The above currents are conserved at the classical level but quantum effects known as anoma-
lies spoil the conservation law for the singlet axial-vector current. As it turns out, the more
complex nature of the QCD vacuum makes the U(1)A not a true symmetry of QCD, despite
being an apparent symmetry of the QCD Lagrangian in the chiral limit [25].

The charges associated to the Noether currents in Eq. (2.28) are

QL(R) =

∫
d3x Jµ

L(R)
(x) , QaL(R) =

∫
d3x Jµa

L(R)
(x) , (2.31)

which enable one to write the vector and axial-vector charges as

QV =QR+QL , QA =QR−QL ,

QaV =QaR+QaL , QaA =QaR−QaL ,
(2.32)

with the following behaviour under parity inversion [27]

QV
P−→QV , QA

P−→−QA ,

QaV
P−→QaV , QaA

P−→−QaA .
(2.33)

Spontaneous breaking of a symmetry occurs when the symmetry group of the solutions
to a theory is dynamically determined to be less than the symmetry of the original La-
grangian [9]. This in turn happens when the ground state of the theory is not invariant under
the full group of symmetry transformations. In the particular case that we are discussing, the
QCD vacuum, |0〉, is invariant under the action of the vector charges but it is not under the
action of the axial-vector charges

QaV |0〉= 0, QaA |0〉 6= 0. (2.34)

Accordingly, the octet of vector currents, JµaV , reflects the approximate flavour-SU(3)V
symmetry, which is experimentally observed in the hadronic spectrum. As well as this, the
conservation laws associated to the octet of axial-vector currents, JµaA , are not observed in
the particle spectrum, suggesting that the global chiral SU(3)L×SU(3)R symmetry of the
QCD Lagrangian is spontaneously broken down to SU(3)V and the JPC = 0− pseudoscalar
mesons appear in the physical spectrum as an octet of (pseudo-)Goldstone bosons [26, 28].
However, since the light-quark masses are non-zero, the chiral symmetry is also explicitly
broken, giving rise to Goldstone particles that are not exactly massless [19, 28].

The fact that QaA |0〉 6= 0, cf. Eq. (2.34), implies non-vanishing matrix elements of the
axial-vector currents [27]. This in turn means that the octet of pseudoscalar mesons can be
created by the axial-vector currents [3, 4]

〈0|JµaA (x) |φb(p)〉= ipµfφδ
abe−ip·x , (2.35)

where φb = π,K,η are Nambu-Goldstone modes and fφ is the corresponding pseudoscalar
decay constant. The divergence of the above matrix elements is given by

〈0|∂µJµaA (0) |φb(p)〉= p2fφδ
ab , (2.36)

which explicitly shows that in the chiral limit the octet of axial-vector currents is conserved,
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i.e. p2 =M2
φ = 0. For non-vanishing light-quark masses, the axial-vector currents are par-

tially conserved only [3].
The mechanism responsible for the breaking of the chiral symmetry of QCD is directly

connected to the ground state of QCD having a non-zero expectation value for the quark
bilinears 〈qq̄〉 [4]. This can be understood by noting that, if the quarks were massless, the
energy cost of generating quark-antiquark pairs would be very small [3]. Since mu,d ≈ 0, the
QCD vacuum is expected to contain a condensate of quark-antiquark pairs characterised by
a non-zero vacuum expectation value

〈0|qq̄ |0〉= 〈0|uū+dd̄ |0〉 6= 0. (2.37)

The fermion pairs that constitute this condensate must necessarily have zero total linear and
angular momenta, as required by their associated conservation laws. This leads to the pairing
of quarks and antiquarks with opposite helicities

〈0|qq̄ |0〉 ≡ 〈0|qRq̄L+ qLq̄R |0〉 . (2.38)

This mixture of helicities causes the quarks to acquire effective masses as they move through
the vacuum, ultimately spoiling the chiral symmetry of the strong interactions [3].

The chiral U(3)L×U (3)R decomposition into SU(3)L×SU(3)R×U (1)V ×U (1)A
presents two additional global symmetries: the U(1)V and U (1)A unitary symmetries. The
former corresponds to the conservation of baryon number and, as already mentioned, the
latter gives rise to neither a conserved current, ∂µJ

µ
A 6= 0, nor a Goldstone boson in the

physical spectrum. The non-conservation of the singlet axial-vector current results in the
mass of the singlet pseudoscalar meson η′ not vanishing in the chiral limit. The U (1)A
anomaly of QCD and its solution will be studied in more detail in Sec. 2.4.

2.3 The quark model

Out of the degrees of freedom of QCD, gluons carry no intrinsic quantum numbers beyond
colour charge, which is believed to be permanently confined in Nature. Consequently, most
of the quantum numbers of strongly interacting particles —the hadrons— are given by the
quantum numbers of the constituent quarks and antiquarks [1]. For this reason, the quark
model, which describes the properties of hadrons emphasising the role of the minimum
quark-content part of their wavefunction, generally works well providing a number of good
predictions.

Back in the early 1960s, the SU(3) symmetry group, which is an approximate global
symmetry of the strong interactions and extends the SU(2) isospin subgroup, was proposed
by Gell-Mann and Y. Ne’eman [29, 30] to account for the fact that the low-lying mesons
and baryons can be organised in octets. This classification in terms of baryons and mesons
becomes much simpler when reexpressed in terms of the three lightest quarks, i.e. u, d and s.
These transform under isospin as a doublet (u,d) and a singlet (s), whilst under SU(3) as a
fundamental triplet (and the antiquarks as 3) [2]

q =

ud
s

→ ei
~β·~λ
2 q , q̄ =

(
ū d̄ s̄

)
→ q̄e−i

~β·~λ
2 . (2.39)

The SU(3) symmetry group can be expressed in terms of its defining representation,
the 3× 3 unitary matrices with determinant one, where its N = 8 generators are given by
T i = λi/2, with the λi being the Gell-Mann matrices from Eq. (2.5). Given that the SU(3)
group has got rank 2, two generators, i.e. T 3 and T 8, can be simultaneously diagonalised
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FIGURE 2.1: Nonet of pseudoscalar JPC = 0−+ and vector JPC = 1−−

mesons consisting of up, down and strange quarks.

with the Hamiltonian [2]. These give rise to the quantum numbers

Q= I3 +
Y
2
, I3 = T 3 , Y =

2√
3
T 8 , (2.40)

where Q is electric charge, I3 is the third component of isospin and Y = B+S is the strong
hypercharge, with B and S standing for baryon number and strangeness, respectively. The
low-dimensional representations of SU(3) are the 1, 3, 3, 6, 6, 8, 10, 10 and 27, with the 1,
8 (adjoint) and 27 being real, whilst the others complex. The observed light hadrons can be
assigned to the 1, 8, 10 and 10 representations [2].

The approximate degeneracy of masses for the three light quarks gives rise to the flavour-
SU(3) symmetry, which is only roughly realised in Nature, but it still provides reasonable
predictions to the ∼ 25% level [2]. Much better predictions can be obtained from flavour
SU(2) —or isospin—, which is also an approximate global symmetry of the strong interac-
tions, with violations of order ∼ 1% down to the u− d quark mass difference and electro-
magnetic effects (i.e. the u and d quarks have different charges).

In the quark model, the observed baryons are interpreted as three-quark states, i.e. qqq,
with totally antisymmetric wavefunctions. In fact, the need to have an antisymmetric wave-
function for the ∆++ baryon constituted a crucial experimental hint for the introduction of
colour charge as a new degree of freedom of the strong interactions.6 The mesons in turn
are bound quark-antiquark pair states, i.e. qq̄, and have vanishing baryon number B = 0. A
quark and antiquark can combine to form an octet and singlet, i.e. 3×3= 8+ 1. This is,7

q× q̄ =

uū ud̄ us̄
dū dd̄ ds̄
sū sd̄ ss̄

=M +
η′√
3
I

=

2uū−dd̄−ss̄
3 ud̄ us̄

dū 2dd̄−uū−ss̄
3 ds̄

sū sd̄ 2ss̄−uū−dd̄
3

+
1

3

(
uū dd̄ ss̄

)1 0 0
0 1 0
0 0 1

 ,

(2.41)

6The wavefunction of a baryon can be written as |qqq〉A = |colour〉A×|space, spin, flavour〉S , where the
subscripts S andA stand for symmetric and antisymmetric under the exchange of any two equal-mass quarks [1].

7Note that in Eq. (2.41) and Table 2.1 we employ the common identifications of the physical η and η′ states
with the mathematical pseudoscalar octet and singlet states, respectively. For a detailed account of the η-η′

mixing, see Chapter 4.
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TABLE 2.1: Quark content, charge and mass of the lightest mesons.

JP Meson Quark content Charge Mass [MeV]

0− π± ud̄, dū 1, −1 139.57039

π0 (uū−dd̄)/
√
2 0 134.9768

K± us̄, sū 1, −1 493.677

K0, K
0

ds̄, sd̄ 0 497.611

η (uū+dd̄−2ss̄)/
√
6 0 547.862

η′ (uū+dd̄+ ss̄)/
√
3 0 957.78

0+ f0(500) aka σ (uū+dd̄+ ss̄)/
√
3 0 ∼ 500

K∗0 (700) aka κ us̄, ds̄, sd̄, sū 1, 0, −1 ∼ 845

a0(980) ud̄, (uū−dd̄)/
√
2, dū 1, 0, −1 ∼ 980

f0(980) (uū+dd̄−2ss̄)/
√
6 0 ∼ 990

1− ρ ud̄, (uū−dd̄)/
√
2, dū 1, 0, −1 775.26

ω (uū+dd̄)/
√
2 0 782.66

K∗ us̄, ds̄, sd̄, sū 1, 0, −1 895.5

φ ss̄ 0 1019.461

whereM is the pseudoscalar octet expressed in terms of quarks and η′= (uū+dd̄+ss̄)/
√
3

is the pseudoscalar singlet state [2]. Fig. 2.1 shows a graphical representation of the pseu-
doscalar meson nonet.

Quarks are strongly interacting spin-1/2 fermion fields and by convention have positive
parity, whereas their associated antiparticles have negative parity. As well as this, quarks have
additive baryon number B = 1/3 and antiquarks B = −1/3. By convention, the flavour
quantum number of a quark has the same sign as its charge Q [1]. For an orbital angular
momentum ` of the qq̄ state, the parity P of the meson is found to be P = (−1)`+1.8 The
meson’s total angular momentum J is given by the well-known relation |`−s| ≤ J ≤ |`+s|,
where s = 0 for anti-parallel quark spins and s = 1 for parallel quark spins. The charge
conjugation C of the qq̄ state, which is only defined for mesons made of quarks and their
own antiquarks, is given by C = (−1)`+s and the generalised G-parity by G= (−1)I+`+s,
where I corresponds to the multiplet isospin [1].

The mesons are classified by their J , P and C quantum numbers in JPC multiplets. The
` = 0 states are the pseudoscalars (0−+) and the vectors (1−−), whilst the ` = 1 are the
scalars (0++), the axial vectors (1++) and (1+−), and the tensors (2++). A summary of
the lightest mesons showing their quark content, charges and masses is given in Table 2.1.
It should be noted that mesons with natural spin-parity9 and CP = −1 (i.e. 0+−, 1−+, 2+−,
etc.) are forbidden in the qq̄ model, and so is the JPC = 0−− state. It is important to
highlight that isoscalar states with the same JPC mix, as we shall investigate in Chapter 7.
The existence of other exotic meson states, such as tetraquarks and other non-qq̄ states, is also
predicted by the quark model but shall not be covered in this short review and the interested
reader is referred to Chapter 15 of Ref. [1].

8Note that parity conservation for a multi-particle system, e.g. the A→ B +C decay, implies P (A) =
P (B) ·P (C) · (−1)`.

9Natural spin-parity states have P = (−1)J .
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2.4 The axial U(1)A anomaly of QCD

An anomaly occurs when a symmetry of the classical action is not a true symmetry of the
full quantum theory.10 Continuous symmetries imply conserved Noether currents but if a
symmetry is anomalous then the associated Noether current is not conserved, receiving con-
tributions that arise from quantum corrections [5]. If the non-conserved current couples to a
massless spin-1 gauge boson, then the Ward identity is violated, unphysical longitudinal po-
larisations can be produced and unitarity is spoiled [4]. Accordingly, gauge symmetries must
be anomaly free in a consistent quantum theory.11 This is not the case for global anomalies
as they do not lead to inconsistencies.

As explained in detail in some Sec. 2.2.4, the QCD Lagrangian for nf quark flavours
has got a large global symmetry, U(nf )V ×U(nf )A, in the limit of vanishing quark masses,
mf → 0. Given that mu,d,s � ΛQCD, the limit in which the mass of the three light quarks
is sent to zero should be a sensible approximation and, thus, one would anticipate the
strong interactions to be approximately U (3)V ×U(3)A invariant [25]. Experimentally,
one finds that the vector symmetry corresponding to flavour SU(3) times baryon number,
U(3)V = SU(3)V ×U(1)B , is a good approximate symmetry of Nature. On the other hand,
quark condensates 〈uū〉 = 〈dd̄〉 6= 0 are dynamically generated, which spontaneously break
the axial U(3)A symmetry down, and, thus, one expects to find experimental traces of nine
Nambu-Goldstone bosons but only eight light pseudoscalar states are found in the hadronic
spectrum, with no signs of the ninth light state, as M2

η′ � M2
π0 .12 This was coined the

U(1)A problem by Weinberg [32]. The resolution to this problem is given by the axial
anomaly of QCD,13 which in turn can be understood through the direct analysis of the Adler-
Bell-Jackiw [33, 34] fermion triangle diagram or, alternatively, by means of the path integral
formalism [35]. In the former, if one or three of the fermion triangle vertices involve the
coupling to an axial-vector current, the corresponding diagrams diverge linearly14 resulting
in an anomalous divergence of the currents in perturbation theory [2], whilst in the latter the
fermion measure is not invariant under the anomalous symmetry transformation [35], with the
anomaly arising from non-trivial Jacobian factors in the path integral measure.15 Denoting
〈JαAJ

µ
V J

ν
V 〉 as the matrix element for the 3-point function, one finds that ∂µ〈JαAJ

µ
V J

ν
V 〉 = 0

and ∂ν〈JαAJ
µ
V J

ν
V 〉 = 0, so that the Ward identity is satisfied for the vector currents, whereas

∂α〈JαAJ
µ
V J

ν
V 〉 6= 0, resulting in the axial current not being conserved in the quantum the-

ory [4].
The axial anomaly has got two applications of particular importance in the SM. One

is connected to the non-conservation of the flavour-SU(3) singlet axial current discussed

10Note that we have a symmetry in classical physics if the symmetry transformation ϕ→ ϕ+ δϕ leaves the
action S(ϕ) invariant. For the same symmetry to hold in the quantised version of the theory, the transformation
must leave the path integral

∫
[dϕ] eiS(ϕ) invariant. Of course, the integration measure [dϕ] is not necessarily

invariant under the symmetry transformation, which may lead to anomalies.
11This is, of course, the case for the SM where the anomalies associated to the chiral SU(2)L×U(1)Y

symmetry group cancel between quarks and leptons within a generation [4, 31]. There are no anomalies for pure
QED or QCD since they are non-chiral [2].

12From the symmetry group theory factors, one finds that the mass of the diagonalised η′ should satisfy
Mη′ <

√
3Mπ0 [32], which is not the case in Nature.

13The axial anomaly is also known as the U(1)A anomaly or chiral anomaly.
14The subtraction of linearly divergent integrals, that would vanish if one could shift the integration variable,

are in fact finite with the result proportional to the shift [4].
15In particular, the effect on the path integral measure of fermion fields is∫

[dψ̄] [dψ]→
∫

[dψ̄] [dψ]exp

(
iθ

∫
g2s

32π2
εµναβGaµνG

a
αβ

)
. (2.42)
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above. Explicit calculation of the anomalous triangle diagram results in [25]

∂µJ
µ
A =

3g2
s

32π2
GaαβG̃

aαβ ,

(
G̃aαβ ≡ 1

2
εαβρσGaρσ

)
. (2.43)

This effect is responsible for keeping the ninth pseudoscalar meson, the singlet η′ state, from
being a pseudo-Goldstone boson [5]. The other application is the decay π0 → γγ which,
historically, led to the discovery of the U(1)A anomaly. In this instance, one is interested in
the isovector axial current, J (3)

Aµ , which transforms as the third component of a flavour-SU(3)
octet

J
(3)
Aµ = ūγµγ

5u− d̄γµγ5d . (2.44)

Direct calculation shows that the divergence of this current is anomalous and does not vanish
in the chiral limit [5]

∂µJ
(3)
Aµ = 2i

(
muūγ

5u−mdd̄γ
5d
)
+
e2NC

24π2
FµνF̃

µν , (2.45)

where Fµν is the electromagnetic field strength, F̃µν ≡ 1
2ε
µνρσFρσ is its dual and NC is the

number of QCD colours. We can see that the divergence of the axial current in Eq. (2.45)
is not zero, even in the quark-massless limit, and it is an operator capable of producing two
photons [36].

There is a deep connection between the axial anomaly and the vacuum of QCD. Under
the U(1)A transformation qf → eiαγ

5/2qf , the chiral anomaly affects the action by [25]

δS = α

∫
d4x∂µJ

µ
A = α

g2
snf
32π2

∫
d4xGµνa G̃aµν . (2.46)

However, one should note that the pseudoscalar density Gµνa G̃aµν may be written as a total
derivative, i.e. Gµνa G̃aµν = ∂µK

µ, with [37]

Kµ = εµναβ
(
GaνG

a
αβ−

gs
3
fabcGaνG

b
αG

c
β

)
, (2.47)

where Gaµ and Gaµν are the gluon gauge fields and the associated field strength tensors, re-
spectively. Accordingly, δS is a pure surface integral and, if one employs the naive boundary
condition Gaµ = 0 at spatial infinity, then

∫
d4x∂µK

µ = 0 and the U(1)A appears to be a
symmetry of QCD again. The resolution to this was given by ’t Hooft in Refs. [23, 24] where
he showed that the correct boundary conditions at spatial infinity are either Gaµ = 0 or a
(topologically non-trivial) gauge transformation of 0. Employing these boundary conditions,
then

∫
d4x∂µK

µ 6= 0 and the U(1)A turns out not to be a symmetry of QCD.
In the Ga0 = 0 gauge, one has spatial gauge fields Gai only. Now, under a ‘large’ gauge

transformation16 Λ(x), defined such that

Gai T
a ≡Gi→ Λ(x)GiΛ(x)+

i

gs
[∆iΛ(x)]Λ−1(x) , (2.48)

where the T a are the SU(3) symmetry group generators, the vacuum configurations of QCD
either vanish or have the form ig−1

s [∆iΛ(x)]Λ−1(x) (see Refs. [5, 25] for details). In this

16Gauge transformations that are homotopic (i.e. continuously deformable) to the identity are called ‘small’
gauge transformations, whilst homotopically non-trivial gauge transformations that cannot be deformed to the
identity are called ‘large’ gauge transformations [38].
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gauge, one can classify the vacuum configurations by how Λ(x) goes to unity as r→∞

Λn(x)→ ei2πn as r→∞ , with n= 0,±1,±2, ... , (2.49)

where the integer n is known as the winding number. In order to have a gauge-invariant
vacuum state, one needs to consider the contribution from all configurations with non-zero
winding number, such as the coherent superposition

|θQCD〉=
∑
n

e−inθQCD |n〉 , (2.50)

where here θQCD is an arbitrary parameter. The presence of a non-zero θQCD vacuum induces
an extra phase in a generic matrix elements of the form [5]

out〈θQCD|X |θQCD〉in =
∑
n,m

ei(m−n)θQCD
out〈m|X |n〉in , (2.51)

where X is some quantum operator. This phase can be accounted for in the path integral
formalism by adding a new term to the QCD action

out〈θQCD|X |θQCD〉in =

∫
[dGµ][dψ][dψ̄]Xe

iSQCD+iθQCD
g2s

32π2

∫
d4xGaµνG̃

aµν

, (2.52)

where the exponential of the winding-number difference, i.e. ei(m−n)θQCD in Eq. (2.51), is
equivalent to the new exponential factor containing GaµνG̃

aµν in Eq. (2.52). Hence, the res-
olution of the U (1)A problem consists of effectively adding an extra term to the QCD La-
grangian [i.e. the last term in Eq. (2.1)], which in turn is associated to the complicated nature
of the QCD vacuum. As discussed before, this term violates parity and time reversal invari-
ance, and induces a neutron electric dipole moment that allows setting experimental upper
bounds to this parameter, θQCD . 10−10. The question as to why θQCD is so small is known
as the strong CP problem [25].

The problem is exacerbated when one considers QCD in conjunction with the weak in-
teractions. As it is well known, CP violation in the SM arises from the Yukawa couplings
between the Higgs doublet and the fermions (see Chapter 6 for details). After spontaneous
electroweak symmetry breaking, the Higgs field picks up a vacuum expectation value and
these couplings give rise to mass matrices for the quarks that are neither diagonal nor CP
invariant [5]. One then has to perform chiral rotations on the left- and right-handed quarks to
shift all CP violation into the Cabibbo-Kobayashi-Maskawa (CKM) matrix. For three gen-
erations of fermions, the CKM matrix can be taken real up to a single phase, which is known
as the weak CP phase [4]. However, given that different left- and right-handed rotations
are required, one eventually encounters an axial U (1) rotation and, since the path-integral
fermionic measure is not invariant under U(1)A rotations, the term

LθF = θF
g2
s

32π2
εµναβGaµνG

a
αβ (2.53)

is generated in the QCD Lagrangian [cf. Eq. (2.42)].17 In particular, by denoting M ′ as the
mass matrix18 in the original quark basis and M as the diagonalised mass matrix [5]

M = S†LM
′SR , ψL = S†Lψ

′
L , ψR = S†Rψ

′
R , (2.54)

17Note that one also generates similar terms for the weak and electromagnetic fields in this process. However,
these phases can be removed with additional rotations of just the right-handed fields [4].

18Note that, here, the u and d mass matrices have been combined into a single mass matrix.
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where ψ′R,L and ψR,L are the weak and mass eigenstates, respectively, then one is allowed
to write θF = arg (detM ′) and θ̄ ≡ θQCD + arg (detM ′). Note that an arbitrary change of
path integration variables cannot have any physical effects, so observable quantities cannot
depend on θQCD or θF but only on the basis independent combination θ̄, which in the full
theory corresponds to the coefficient of the GG̃ term [4, 26].

One possible solution to the strong CP problem is that one of the quark masses vanishes.
This is because in this case one has got the ability to remove θF by performing an additional
axial phase transformation on the massless quark. However, from the analysis of quark-mass
ratios, there is strong evidence that all the quarks have non-zero masses [26]. A different way
to naturally explain why θ̄ is so small is the mechanism proposed by Peccei and Quinn [18]
whereby θ̄ becomes a dynamical variable which relaxes to a minimum of an effective poten-
tial, at which P and CP are conserved, requiring the existence of a light spinless particle,
the axion. This model was ruled out by experiment soon after its proposal but other models
following the same general idea have been proposed over the years (see Refs. [1, 25]). At the
time of writing this thesis, no experimental evidence for axions or axion-like particles has
been found.
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Chapter 3

Effective field theories

In this chapter, we review the fundamental concepts of effective field theories (EFTs) and
introduce several important EFTs for hadronic physics, such as chiral perturbation theory
(χPT), large-NC χPT (which is the EFT of QCD in the chiral and large number of colours
limit), resonance chiral theory (RχT), vector meson dominance (VMD) and the U(3)×U(3)
linear sigma model (LσM).1 At the end of the chapter, we also present the Standard Model
effective field theory (SMEFT), for which the SM is the leading order term approximation in
the EFT expansion of a more fundamental theory.

3.1 Introduction to effective field theories

In the 1960s and 1970s, it was widely regarded that any sensible physical theory would need
to take the form of a renormalisable quantum field theory [6]. Indeed, the requirement of
renormalisability played a crucial role in the development of the SM.2 However, as it turns
out, the cancellation of ultraviolet (UV) divergences does not depend on renormalisability;3

instead, so long as every one of the infinite number of interactions allowed by the symme-
tries of the theory is included, then there are always counterterms available to cancel all UV
divergences and the so-called non-renormalisable theories turn out to be just as renormalis-
able as renormalisable theories [6].4 In fact, all the realistic theories that are used today to
describe physics at accessible energies are actually effective field theories (EFTs) and it is
accepted that they require an infinite number of non-renormalisable interactions, even though
at sufficiently low energies one expects that all the non-renormalisable interactions are highly
suppressed [6].

1It should be highlighted that, strictly speaking, VMD and the LσM are not EFTs but phenomenological
models. In any case, they are reviewed in this chapter.

2As a reminder, the interaction terms of a Lagrangian with coupling constants that have positive or zero
mass dimension are renormalisable, whilst interaction terms whose couplings have negative dimensionality are
non-renormalisable. Note that renormalisable theories require only a finite number of counterterms to absorb the
UV divergences, whilst non-renormalisable theories require an infinite number of counterterms to absorb them.

3The renormalisability condition can be expressed as [6]

∆i ≡ 4− δi−
∑
f

nif (sf + 1)≥ 0, (3.1)

where ∆i is the mass dimensionality of the coupling constant of an interaction term of type i, δi is the number of
derivatives associated to the interaction of type i, nif is the number of fields of type f in interactions of type i,
and sf is (with some qualifications) the spin of fields of type f .

4It is important to note that quantum field theory in itself has no content beyond analyticity, unitarity, cluster
decomposition and symmetry. Accordingly, when one calculates matrix elements from Feynman diagrams using
the most general Lagrangian that involves the relevant degrees of freedom and satisfies the assumed symmetries of
the theory, then one is simply constructing the most general possible S-matrix that is consistent with analyticity,
perturbative unitarity, cluster decomposition and the assumed symmetry principles [26, 39]. Accordingly, there
is nothing especial about renormalisability apart from the fact that there is a clear advantage in having a finite
number of counterterms and renormalisation conditions.
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The basic idea underlying the construction of an EFT is that a simpler theory can be con-
structed when one deals with a quantum field theory (QFT) containing two or more different
energy scales, e.g. m and M with m�M . This is achieved by performing a systematic
expansion in the ratio of these scales. An effective Lagrangian is, therefore, derived by ‘in-
tegrating out’ the heavy degrees of freedom associated to the high energy scale5 from the
generating functional of Green’s functions, which allows one to obtain a non-local action
functional that can be expanded in an infinite tower of local operators O(D)

i [19]

LEFT =
∑
D≥0,i

c
(D)
i

MD−d
O

(D)
i , (3.2)

where D is the mass dimension of the operator O(D)
i and d is the number of space-time di-

mensions. For fixedD, the set {O(D)
i } forms a basis of local composite operators constructed

out of the fields of the low-energy theory. These operators are only constrained by the sym-
metries of the low-energy theory, such as Lorentz invariance, gauge invariance and global
symmetries, such as C, P , T , flavour symmetries, etc. The dimensionless coefficients c(D)i

are the so-called Wilson coefficients.
There is a deep connection between renormalisation theory and EFTs. In conventional

renormalisation theory, UV divergences are regularised by imposing a UV cut-off Λ, ren-
dering the loop integrals regular, to then take the limit Λ→∞ (which implicitly assumes
that the theory holds for arbitrarily large momentum scales) and absorb the UV divergen-
cies into the redefinition or renormalisation of some quantities of the theory in such a way
that physical observables are independent of the renormalisation conditions [3, 4, 6]. On
the other hand, in Wilson’s approach [40, 41], one imposes a ‘floating’ finite UV cut-off Λ
and assumes that the theory holds for E� Λ; one must then ensure that the bare constants
of the theory depend on Λ in such a way that all physical observables are independent of
the precise value of the cut-off [6], which amounts to the statement of observable quantities
being Λ-independent.6 There is an interesting parallelism between the Wilsonian approach
and the procedure of constructing effective Lagrangians, where one essentially splits up the
contributions from virtual particles in long- and short-distance modes. That is,7∫ ∞

0

dω

ω
=

∫ Λ

0

dω

ω
+

∫ ∞
Λ

dω

ω
, (3.3)

where the first term is sensitive to infrared (IR) physics and is absorbed into the matrix
elements 〈O(D)

i 〉, whilst the second term is sensitive to UV physics and is absorbed into the
Wilson coefficients c(D)i [19] [see Eq. (3.2)].8 One can now change the arbitrary parameter
Λ→ Λ′, such that ∫ ∞

0

dω

ω
=

∫ Λ′

0

dω

ω
+

∫ ∞
Λ′

dω

ω
, (3.4)

5Note that this view is today considered as old-fashioned. An alternative approach is to think of EFTs in
terms of the physical problem one is trying to solve, rather than as the limit of some other theory [19]. The EFT
is, consequently, constructed out of the relevant dynamical degrees of freedom of the problem at hand. This is
quite obvious in χPT, for example, where the theory is written in terms of mesons or baryon fields and in no
sense the short-distance quarks and gluons are integrated out explicitly.

6Note that the renormalisation group equations (RGE) have essentially the same form in the two schemes of
renormalisation, although the Wilsonian RG can be implemented through the path integral where one can literally
integrate out all the short-distance degrees of freedom with energies E > Λ [4].

7Note that in the EFT context, Λ and M correspond to two different energy scales, the former representing
the arbitrary scale at which one splits the long- and short-distance modes and the latter corresponding to the
characteristic energy scale of the UV physics.

8Note that a key feature in formulating EFTs is locality, which results in a separation of scales, i.e. fac-
torisation of the field theory amplitudes into short-distance Lagrangian coefficients and long-distance matrix
elements [19].
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but the physics must remain unchanged

LEFT =
∑
D≥0,i

c
(D)
i (Λ)

MD−d
O

(D)
i (Λ) =

∑
D≥0,i

c
(D)
i (Λ′)
MD−d

O
(D)
i (Λ′) , (3.5)

which means that, given that the operators O(D)
i are the same on both sides of the equality,

the couplings of the theory [i.e. the Wilson coefficients c(D)i ] must depend on Λ. Thus, we
are led to the following general form of the effective Lagrangian

LEFT =
∑
D≥0,i

c
(D)
i (µ)

MD−d
O

(D)
i (µ) , (3.6)

whose matrix elements are independent of the energy scale µ. The O(D)
i (µ) in Eq. (3.6) are

renormalised composite operators defined in dimensional regularisation and the MS scheme,
whilst the c(D)i (µ) are the corresponding renormalised Wilson coefficients, which contain
all the information about the short-distance physics that has been integrated out,9 and can
be thought of the running couplings of the effective theory. From the requirement that the
effective action Seff must be µ-independent, one can write in matrix notation [19]

d~c (µ)

d lnµ
= γT (µ)~c (µ) , (3.7)

with γ being the anomalous-dimension matrix of the composite operators.
In d= 4 space-time dimensions, Eq. (3.6) can be written as

LEFT = LD≤4 +
L5

M
+
L6

M2
+ ... , (3.8)

where all the operators of mass dimension D ≤ 4 are contained in LD≤4. It can be seen from
this expression that LEFT has to be treated as an expansion in powers of 1/M . In fact, if one
attempts to sum terms to all orders, then the EFT power counting rules are violated and the
EFT breaks down. Let us show how to systematically organise calculations by considering a
scattering amplitudeA normalised to have mass dimension zero. At some typical momentum
scale p, a single insertion of a dimension D operator gives a contribution to the amplitude of
order

A∼
( p
M

)D−4
, (3.9)

where the mass dimension 1/MD−4 comes from the coefficient associated to the operator
O(D) [see Eq. (3.6)] and the powers of p in the numerator are generated by kinematic factors,
such as external momenta, to make the amplitude dimensionless. A set of insertions from
higher-dimension operators renders

A∼
( p
M

)n
, (3.10)

with
n=

∑
i

(Di−4) , (3.11)

where one sums over the i inserted operators. This is known as the EFT power counting
formula, which also holds for graphs containing loops [19]. Accordingly, corrections of

9Note that the difference in UV structure of the full theory and the EFT is addressed by means of the matching
procedure.
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order p/M are given by diagrams with a single insertion of L5, (p/M)2 corrections are
given by graphs with a single insertion of L6 or two insertions of L5, and so on.

One can now explicitly see how the requirement of including all possible higher-
dimension operators consistent with the symmetries of the theory in an EFT allows the renor-
malisation of loop divergences: L6 operators are needed to renormalise loop diagrams con-
taining two insertions of L5, L8 operators are needed to renormalise loop graphs with two
insertions of L6, etc. It is important to note that, when using multiple insertions of operators
with D−4> 0, the above procedure generates operators of arbitrarily high dimension. This
is not the case, though, for multiple insertions of operators from LD≤4, i.e. the renormalis-
able Lagrangian. This is down to the fact that in this instanceD−4≤ 0, which in turn means
that we generate operators with D ≤ 4 only10 that are already included in LD≤4 [19]. This is
the difference between renormalisable theories and EFTs.

3.2 Chiral perturbation theory

Chiral perturbation theory (χPT) is the effective field theory of QCD at energies much lower
than typical hadronic masses. It is, thus, a systematic and model-independent approximation
of QCD based on the symmetries of the underlying theory and general principles of quantum
field theory. In this section, we follow the presentation from Ref. [19], Chapter 3, and also
Ref. [28].

Given the energy gap separating the eight pseudoscalar mesons from the rest of the
hadronic particle spectra, one may assume that these states are approximately massless modes
in a Nambu-Goldstone effective field theory. As it turns out, their Nambu-Goldstone nature
implies strong constraints on their interactions, which can be analysed on the basis of an ef-
fective Lagrangian expanded in powers of momenta over some characteristic scale, with the
pattern of symmetry breaking

G≡ SU(nf )R×SU(nf )L → H ≡ SU(nf )V , (3.12)

giving rise to n2
f −1 Nambu-Goldstone fields φa(x).11 With the choice of coset representa-

tive ξ(~φ)≡ [ξL(~φ),ξR(~φ)]∈G, the field coordinates in the coset spaceG/H can be changed
with the chiral transformation g ≡ (gL,gR) ∈G

ξL(~φ)
G−→ gLξL(~φ)h

†(~φ,g) , ξR(~φ)
G−→ gRξR(~φ)h

†(~φ,g) , (3.15)

10The counterterms for negative-dimension operators are not needed since they do not generate divergences.
11Remember that in the O(N) sigma model, where Φ(x)T ≡ (φ1,φ2, ...,φN ) is an N -dimensional vector

of real scalar fields, the Lagrangian has got a globalO(N) symmetry, under which Φ(x) transforms as anO(N)
vector, and a degenerate ground-state manifold satisfying |Φ|2 =

∑
iφ

2
i = v2, which can be rotated to any

particular direction using the O(N) symmetry. The vacuum manifold consists of the N −1 dimensional sphere
SN−1 and the particular vacuum choice Φ0 remains invariant under the O(N − 1) subgroup. The pattern of
O(N)→ O(N − 1) spontaneous symmetry breaking makes the vacuum not invariant under the action of the
N(N − 1)/2− (N − 1)(N − 2)/2 = N − 1 broken generators Ta, giving rise to N − 1 Nambu-Goldstone
bosons, which in turn parameterise the rotations of the particular vacuum choice Φ0 over the vacuum manifold
SN−1. Performing a polar decomposition, one can express the N -component field Φ(x) as

Φ(x) =

[
1+

S(x)

v

]
U(x)Φ0 , (3.13)

where S(x) is a Hermitian scalar field, which corresponds to the massive radial excitation, and theN−1 Nambu-
Goldstone fields φa(x) are encoded in the unitary matrix

U(x) = exp

{
iTa

φa(x)

v

}
. (3.14)
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where the compensating transformation h∈H , required to get back to the chosen coset repre-
sentative, is the same in the two chiral sectors since they are related by a parity transformation
that leaves H invariant [19]. One can combine the two chiral relations in Eq. (3.15) into

U(~φ) ≡ ξR(~φ)ξ†L(~φ)
G−→ gRU (~φ)g

†
L , (3.16)

and using the canonical choice of coset representative ξR(~φ) = ξ†L(
~φ) ≡ u(~φ), which in-

volves only the broken axial generators, the nf ×nf unitary matrix U(~φ) takes the form

U(~φ) = u(~φ)2 = exp

{
i
√
2

Φ
F

}
, Φ(x) ≡

√
2 T̂ aφa(x) , (3.17)

with F being a characteristic energy scale needed to make the exponent massless. For nf = 3,
one has

Φ ≡
~λ√
2
~φ=

8∑
a=1

λa√
2
φa =


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K
0 − 2√

6
η8

 . (3.18)

The matrix U (~φ)ij can be thought of parameterising the zero-energy excitations over the
quark vacuum condensate 〈0| q̄jLqiR |0〉 ∝ δij , where i,j are flavour indices, which in turn
triggers the dynamical breaking of the chiral symmetry.

In order to obtain a model-independent description of the Nambu-Goldstone dynamics at
low energies, one must write the most general Lagrangian in terms of the matrix field U(~φ)
consistent with the chiral symmetry of Eq. (3.12), i.e. invariant under the transformation in
Eq. (3.16). The Lagrangian can be organised as an expansion in powers of momenta or,
equivalently, increasing number of derivatives. Since QCD respects parity inversion, the
number of derivatives should be even

Leff(U) =
∑
n=1

L2n . (3.19)

Owing to the unitarity of the U matrix, one requires at least two derivatives in order to
generate non-trivial interactions. Accordingly, to lowest order, O(p2), one finds

L2 =
F 2

4
Tr
[
∂µU

†∂µU
]
. (3.20)

As a result of the non-linear functional form of U(~φ), the L2 Lagrangian gives rise to the
kinetic terms and a tower of interactions involving an increasing number of pseudoscalars,
which can be explicitly seen by expanding U in powers of Φ. At next-to-leading order
(NLO), the O(p4) Lagrangian has got four derivatives, and so on.

In order to incorporate into the ideal theory of massless Nambu-Goldstone bosons sources
of explicit chiral symmetry breaking, such as quark masses and electroweak interactions, it
is useful to introduce external classical fields coupled to the quark currents. As such, we
introduce the extended QCD Lagrangian

LQCD = L0
QCD + q̄γµ(vµ+γ5aµ)q− q̄(s− iγ5p)q , (3.21)

where L0
QCD is the massless QCD Lagrangian, and vµ, aµ, s and p are, respectively, the

vector, axial-vector, scalar and pseudoscalar external Hermitian matrix-valued fields. By
separating the quark fields into left and right chiralities [cf. Eq. (2.24)] and defining the
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following left- and right-handed external fields

rµ ≡ vµ+aµ , lµ ≡ vµ−aµ , (3.22)

allows one to rewrite Eq. (3.21) as

LQCD = L0
QCD + q̄Lγ

µlµqL+ q̄Rγ
µrµqR− q̄R(s+ ip)qL− q̄L(s− ip)qR . (3.23)

The external fields vµ, aµ, s and p can be used to parameterise different sources of chiral
symmetry breaking. In fact, direct comparison between Eq. (3.23) and the electroweak part
of the SM Lagrangian enables the following identifications

rµ = −eQAµ , lµ = −eQAµ−
e√

2sinθW
(W †µT++h.c.) ,

s= M , p= 0,
(3.24)

where θW is the Weinberg, Q and M are, respectively, the quark-charge and mass matrices
for three light quark flavours (i.e. nf = 3),

Q=
1

3
diag{2,−1,−1} , M = diag{mu,md,ms} , (3.25)

whilst T+ is a 3× 3 matrix carrying the relevant Cabibbo-Kobayashi-Maskawa (CKM) ele-
ments 0 Vud Vus

0 0 0
0 0 0

 . (3.26)

One could also include the Z boson interactions into vµ and aµ, the effects of the Higgs into
s or other BSM quark couplings into the external fields should it be needed.

The Lagrangian in Eq. (3.23) respects the SU(3)L×SU(3)R chiral symmetry so long
as the external fields transform as

qL→ gLqL , qR→ gRqR ,

s+ ip→ gR(s+ ip)g†L , s− ip→ gL(s− ip)g†R ,

lµ→ gLlµg
†
L+ igL∂µg

†
L , rµ→ gRrµg

†
R+ igR∂µg

†
R .

(3.27)

Furthermore, in order to respect local gauge invariance, the gauge fields vµ and aµ must be
introduced through covariant derivatives

DµU = ∂µU − irµU + iUlµ , DµU
† = ∂µU

†+ iU †rµ− ilµU † , (3.28)

and through field strength tensors

Lµν = ∂µlν−∂ν lµ− i [lµ, lν ] , Rµν = ∂µrν−∂νrµ− i [rµ,rν ] . (3.29)

Taking all this into account, the most general effective Lagrangian at LO in derivatives and
number of external fields, consistent with Lorentz invariance and the local chiral symmetry,
takes the form [42]

L2 =
F 2

4
Tr
[
DµU

†DµU
]
+
F 2

4
Tr
[
U †χ+χ†U

]
, (3.30)

with
χ= 2B0(s+ ip) . (3.31)
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The Green functions of quark currents can be obtained as functional derivatives of the
generating functional Z [v,a,s,p], which in turn is defined by

exp{iZ}=
∫

[dq] [dq̄] [dGµ]exp

{
i

∫
d4xLQCD

}
=

∫
[dU ]exp

{
i

∫
d4xLeff

}
. (3.32)

At lowest order, the generating functional reduces to the classical action, S2 =
∫
d4xL2, and

the QCD currents can be calculated by taking derivatives with respect to the external fields

JµL = q̄Lγ
µqL

.
=
δS2

δlµ
=
i

2
F 2DµU

†U =
F√
2
DµΦ− i

2
(Φ
↔
DµΦ)+O(Φ3/F ) ,

JµR = q̄Rγ
µqR

.
=
δS2

δrµ
=
i

2
F 2DµUU

† = − F√
2
DµΦ− i

2
(Φ
↔
DµΦ)+O(Φ3/F ) ,

(3.33)

where Φ
↔
DµΦ ≡Φ(DµΦ)− (DµΦ)Φ. From this, one immediately finds

JµV = JµR+JµL = −i (Φ
↔
DµΦ) , JµA = JµR−J

µ
L = −

√
2FDµΦ , (3.34)

and by using the substitution Φ→−Φ or, equivalently, U → U † it becomes obvious that JµV
conserves parity, whilst JµA violates it. Taking now derivatives with respect to the external
scalar and pseudoscalar external sources, one finds

q̄jLq
i
R

.
= − δS2

δ(s− ip)ji
= −F

2

2
B0U(~φ)ij ,

q̄jRq
i
L

.
= − δS2

δ(s+ ip)ji
= −F

2

2
B0U

†(~φ)ij .

(3.35)

All the elements in the Lagrangian of Eq. (3.30) are determined by the chiral symmetry
and its pattern of explicit breaking through the external sources with exception of F and B0,
which must be obtained from experiment. At order O(p2), the fundamental chiral coupling
F can be identified with the pion decay constant, fπ, defined as

F = 〈0| (JµA)
12 |π+〉 ≡ i

√
2fπp

µ , (3.36)

whilst the coupling B0 is related to the quark vacuum condensate through

〈0| q̄jqi |0〉= 〈0| q̄jLq
i
R |0〉+ 〈0| q̄

j
Rq

i
L |0〉= −F 2B0δ

ij . (3.37)

By setting s = M and p = 0, the non-derivative part of the Lagrangian in Eq. (3.30)
generates the quadratic mass terms for the pseudoscalar mesons, as well as a tower of Φ2n

interactions proportional to the quark masses. Explicit evaluation of the quadratic mass terms
gives rise to the following relations

M2
π± = 2m̂B0 , M2

π0 = 2m̂B0− ε+O(ε2) ,

M2
K± = (mu+ms)B0 , M2

K0 = (md+ms)B0 ,

M2
η8 =

2

3
(m̂+ 2ms)B0 + ε+O(ε2) ,

(3.38)

where12

m̂=
1

2
(mu+md) , ε=

B0

4

(mu−md)
2

ms− m̂
. (3.39)

12Note that isospin-breaking effects are of order (md−mu)/ms.
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It is important to note from Eq. (3.38) that, as a result of the chiral symmetry, the squared
pseudoscalar meson masses are proportional to a single power of the quark masses, with the
constant of proportionality being related to the vacuum quark condensate through Eq. (3.37),
which in effect is equivalent to the Gell-Mann-Oakes-Renner relation [43]

f2
πM

2
π± = −m̂〈0| ūu+ d̄d |0〉 . (3.40)

Moreover, the expressions in Eq. (3.38) allow one to obtain the old current algebra mass
ratios [43, 44]

M2
π±

2m̂
=

M2
K±

mu+ms
=

M2
K0

md+ms
≈

3M2
η8

2m̂+ 4ms
, (3.41)

and, up to O(mu−md) corrections, the Gell-Mann-Okubo mass relation [45, 46]

3M2
η8 = 4M2

K −M2
π . (3.42)

To conclude, it is worth highlighting that the LO chiral Lagrangian in Eq. (3.30) encodes
all the results from current algebra. That being said, the EFT formalism provides, in addition,
a powerful framework to compute higher-order corrections in a systematic way.

3.2.1 Higher-order corrections

In Ref. [39] Weinberg proposed that the chiral dimensionD of a connected Feynman diagram
with L loops and N2k vertices from L2k is

D = 2+(d−2)L+
∞∑
k=1

2(k−1)N2k . (3.43)

where d is the number of space-time dimensions. All possible diagrams allowed by the
symmetries of the theory with chiral dimension D have to be accounted for at order O(pD).
The ultraviolet divergences from loops must then be renormalised and this is done order by
order in the momentum expansion by absorbing them through the appropriate redefinition of
the low-energy constants (LECs).

In order to organise the chiral expansion, a well-defined power counting scheme for the
external sources is needed. This turns out to be

U(~φ) ∼O(p0) , Dµ, lµ, rµ ∼O(p1) , Lµν ,Rµν , χ∼O(p2) . (3.44)

One can easily check that the LO Lagrangian with external sources from Eq. (3.30) is of
order O(p2), as expected, and that Weinberg’s power counting remains valid in the presence
of the symmetry-breaking terms. At O(p4), the most general SU(3)L×SU(3)R-invariant
Lagrangian is given by [42]

L4 = L1Tr
[
DµU

†DµU
]2

+L2Tr
[
DµU

†DνU
]
Tr
[
DµU †DνU

]
+L3Tr

[
DµU

†DµUDνU
†DνU

]
+L4Tr

[
DµU

†DµU
]
Tr
[
U †χ+χ†U

]
+L5Tr

[
DµU

†DµU
(
U †χ+χ†U

)]
+L6Tr

[
U †χ+χ†U

]2

+L7Tr
[
U †χ−χ†U

]2
+L8Tr

[
χ†Uχ†U +U †χU †χ

]
− iL9Tr

[
RµνDµUDνU

†+LµνDµU
†DνU

]
+L10Tr

[
U †RµνUFLµν

]
+H1Tr

[
RµνR

µν +LµνL
µν
]
+H2Tr

[
χ†χ

]
,

(3.45)
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where the Li and Hj (with i = 1, ...,10 and j = 1,2) are LECs, whose numerical values are
not determined by the chiral symmetry. These parameters are the equivalent to F and B0

in L2 and contain information of the underlying short-distance dynamics. It should be noted
that the structures in Eq. (3.45) proportional toH1 andH2, whilst needed for renormalisation
purposes, only contain external sources and, thus, do not influence the pseudoscalar meson
dynamics [19].

Employing dimensional regularisation and reabsorbing the one-loop divergences origi-
nating from L2 through the renormalisation of the O(p4) LECs, one finds

Li = Lri (µ)+Γi∆ , Hj =Hr
j (µ)+ Γ̃j ∆ , (3.46)

where

∆ =
µd−4

32π2

[
2

d−4
− log (4π)+γE−1

]
. (3.47)

The renormalised couplingsLri (µ) andHr
j (µ) depend on the arbitrary scale µ of dimensional

regularisation and their logarithmic running is dictated by

Lri (µ2) = Lri (µ1)+
Γi

(4π)2
log

(
µ1

µ2

)
, Hr

j (µ2) =Hr
j (µ1)+

Γ̃j
(4π)2

log

(
µ1

µ2

)
, (3.48)

where the chiral constants Γi and Γ̃j are

Γ1 =
3

32
, Γ2 =

3

16
, Γ3 = 0, Γ4 =

1

8
, Γ5 =

3

8
, Γ6 =

11

144
,

Γ7 = 0, Γ8 =
5

48
, Γ9 =

1

4
, Γ10 = −

1

4
, Γ̃1 = −

1

8
, Γ̃2 =

5

34
.

(3.49)

All physical observables must be independent of the arbitrary scale µ and what one finds is
that the scale dependence of the running parameters is cancelled by scale-dependent terms
from non-local (non-polynomial) loop contributions in the perturbative series.

At order O(p2), the χPT Lagrangian can describe all QCD Green functions with only
two LECs (i.e. F and B0), whilst, at O(p4), one needs to fix 12 LECs (i.e. Li and Hj) from
phenomenology so as to be able to make predictions. At order O(p6), the χPT Lagrangian
contains 94 operators of even intrinsic parity and 23 independent chiral structures of odd
intrinsic parity, with their corresponding LECs. We see that increasing the precision of the
predictions by including higher-order corrections significantly reduces the predictive power
of the EFT. Thus, the main limitation of EFTs is the proliferation of unknown LECs at higher
orders. At LO, the symmetries of the theory severely restrict the number of allowed opera-
tors, enabling the derivation of many phenomenological results in terms of a small number
of dynamical parameters. However, at higher orders in the chiral expansion the symmetries
constraint significantly less the number of operators, being much more sensitive to the non-
trivial aspects of the underlying QCD dynamics. All LECs are in principle calculable from
QCD, though this first-principles computation cannot at present be analytically performed.
In practice they are fixed using either empirical input13 or QCD-inspired models, such as
meson-resonance saturation or lattice QCD. Numerical lattice simulations provide a promis-
ing avenue to address this problem, though currently this technique is still far from being able
to achieve a complete matching between QCD and its low-energy effective theory [19].

13At present, low-energy phenomenology is the main source of information for theO(p4) LECs. In particular,
the elastic ππ and πK scattering amplitudes are affected by L1,2,3, the two-derivative couplings L4,5 give rise to
mass corrections to the meson decay constants, the pseudoscalar meson masses are sensitive to the non-derivative
terms L6,7,8, L9 is associated to the meson electromagnetic radius, and L10 contributes to amplitudes with at
least two external vector or axial-vector fields, such as the radiative semileptonic decay π→ eνγ [19].
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TABLE 3.1: Values for the renormalised couplings Lri (Mρ) from phe-
nomenological analyses at ordersO(p4) andO(p6) in χPT, and from lattice

simulations [19].

Lri (Mρ)×103

i O(p4) [47] O(p6) [47] Lattice [48]

1 1.0±0.1 0.53±0.06

2 1.6±0.2 0.81±0.04

3 −3.8±0.3 −3.07±0.20

4 0.0±0.3 0.3 (fixed) 0.09±0.34

5 1.2±0.1 1.01±0.06 1.19±0.25

6 0.0±0.4 0.14±0.05 0.16±0.20

7 −0.3±0.2 −0.34±0.09

8 0.5±0.2 0.47±0.10 0.55±0.15

9 6.9±0.7 5.9±0.4

10 −5.2±0.1 −4.1±0.4

Table 3.1 summarises our current knowledge on the O(p4) renormalised couplings, Lri ,
from phenomenological analyses [47] performed at orders O(p4) and O(p6) in χPT at the
scale µ=Mρ. In addition, we quote results from lattice simulations by the HPQCD Collab-
oration [48] for comparison. Note that the values obtained from the O(p6) analysis need to
be taken with caution as the theoretical procedure required the inclusion of some priors for
the unknown LECs.

To conclude, it is worth highlighting that, since χPT is a polynomial expansion in powers
of momenta over some typical hadronic scale ΛχPT , the validity of the effective theory is
expected to break around the mass of the lightest non-pseudo-Goldstone hadronic resonances,
i.e. ΛχPT .Mρ, which is down to the fact that they induce poles in the S-matrix that cannot
be reproduced by a power expansion.

3.2.2 The effective Wess-Zumino-Witten action

As discussed in Sec. 2.4, an anomaly arises when a symmetry of the classical Lagrangian
is no longer valid at the quantum level. This usually occurs when one deals with theories
that have different transformation properties for the right and left fermion chiralities and
can be understood within the path integral formalism as the fermionic integration measure
transforming non-trivially under those transformations associated to the symmetries that are
destroyed by the quantum effects.

The low-energy effective chiral Lagrangians that we have discussed thus far in this
section contain a larger symmetry than QCD. Assuming no external fields with excep-
tion of χ= 2B0M [cf. Eqs. (3.31) and (3.25)], both L2 and L4 are invariant under the
Φ(x)→−Φ(x) substitution, which amounts to having interaction terms with only an even
number of Nambu-Goldstone bosons and is equivalent to saying that these terms are of even
intrinsic parity [28]. Thus, L2 and L4 cannot describe processes such as K+K−→ π+π−π0

or the decay π0→ γγ (after including a coupling to electromagnetic fields).
Let us next consider the nf = 3 QCD Lagrangian from Eq. (3.21), with external sources

vµ, aµ, s and p, and local chiral transformations given by Eq. (3.27). The anomalous change
in the generating functional due to the non-invariance of the fermionic integration measure
under the U(1)A transformation is given by [49]

δZ [v,a,s,p] = −
NC

16π2

∫
d4xTr [β(x)Ω(x)] , (3.50)
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where NC = 3 is the number of QCD colours, β = βaT
a and

Ω(x) = εµνσρ
[
vµνvσρ+

4

3
∇µaν∇σaρ+

2

3
i{vµν ,aσaρ}+

8

3
iaσvµνaρ

+
4

3
aµaνaσaρ

] (3.51)

with ε0123 = 1 and

vµν = ∂µvν−∂νvµ− i [vµ,vν ] , ∇µaν = ∂µaν− i [vµ,aν ] . (3.52)

Note, that the anomalous change in the generating functional δZ [v,a,s,p] is anO(p4) effect
in the chiral counting. Since the U (1)A anomaly explicitly violates the chiral symmetry at
the fundamental QCD level, one must include in the effective theory a functional ZA with
the property that its change under a chiral gauge transformation reproduces Eq. (3.50). This
functional has the explicit form [50, 51]

S[U , l,r]WZW = − iNC

240π2

∫
dσijklmTr

[
ΣLi ΣLj ΣLkΣLl ΣLm

]
− iNC

48π2

∫
d4xεµναβ

{
W (U , l,r)µναβ−W (1, l,r)µναβ

}
,

(3.53)

where

W (U , l,r)µναβ = Tr
[
Ulµlν lαU

†rβ

]
+

1

4
Tr
[
UlµU

†rνUlαU
†rβ

]
+ iTr

[
U∂µlν lαU

†rβ

]
+ iTr

[
∂µrνUlαU

†rβ

]
− iTr

[
ΣLµ lνU

†rαUlβ

]
+Tr

[
ΣLµU

†∂νrαUlβ

]
−Tr

[
ΣLµΣLνU

†rαUlβ

]
+Tr

[
ΣLµ lν∂αlβ

]
+Tr

[
ΣLµ∂ν lαlβ

]
− iTr

[
ΣLµ lν lαlβ

]
+

1

2
Tr
[
ΣLµ lνΣLαlβ

]
− iTr

[
ΣLµΣLν ΣLαlβ

]
− (L↔R) ,

(3.54)

with
ΣLµ = U †∂µU , ΣRµ = U∂µU

† , (3.55)

and (L↔ R) standing for the interchanges U ↔ U †, lµ↔ rµ and ΣLµ ↔ ΣRµ . Note that the
first line of Eq. (3.53) corresponds to the effective Wess-Zumino-Witten (WZW) action in the
absence of external fields, where the dσijklm integration is over a five-dimensional manifold
whose boundary is a four-dimensional Minkowski space, whilst the second line contains the
additional terms in the anomalous action associated to the presence of external fields. Both
terms in SWZW are of O(p4) according to the chiral counting rules [19].

Let us now look into the special case with coupling to the external electromagnetic four-
vector potential by inserting the external sources

rµ = lµ = −eQAµ , (3.56)

where Q is the quark-charge matrix from Eq. (3.25). Operating, one finds from the WZW
action, i.e. second line of Eq. (3.53), the following expression for the relevant part of the
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lowest-order anomalous Lagrangian [28]

Lext
WZW = −eAµJµ+ i

e2

48π2
εµνρσ∂νAρAσ

×Tr
[
2Q2

(
U∂µU

†−U †∂µU
)
−QU †Q∂µU +QUQ∂µU

†
]
,

(3.57)

where the current is given by

Jµ =
εµνσρ

48π2
Tr
[
Q∂νUU

†∂ρUU
†∂σUU

†+QU †∂νUU
†∂ρUU

†∂σU
]
. (3.58)

With this equation, one can now calculate the decay rate π0→ γγ, which is found to be

Γ(π0→ γγ) =

(
NC

3

)2 α2M3
π

64π3F 2
= 7.7 eV, (3.59)

where F is set to F = fπ . This result is in excellent agreement with the measured empirical
value of (7.63±0.16) eV for NC = 3.

3.3 Large-NC limit of QCD

The 1/NC expansion of QCD is an attempt to create a perturbative framework where none
exists otherwise [5]. The general idea is to extrapolate the physical value for the number of
QCD colours from NC = 3 to NC →∞ [52], whilst scaling the strong coupling constant in
such a way that g2

sNC remains finite. This enables the amplitudes in the theory to be analysed
in powers of 1/NC and the expectation is that significant dynamical insights can be drawn
that may be relevant to the real world.

In going from colour SU(3) to SU(NC), the quark and gluon representations are pro-
moted from the original 3 and 8 to NC and N2

C − 1, respectively. Consequently, at large
NC there are N2

C − 1 ≈ N2
C gluons, whilst only NC colours for a given quark, which

means that the gluon dynamics becomes dominant in this limit. The perturbative analysis of
large-NC QCD becomes simpler by making use of the double-line notation in Feynman dia-
grams [52–54], where the colour flow becomes explicit as in q̄i(Gµ)ijq

j , with i,j = 1, ...,NC

being colour indices (see Fig. 3.1 where a few examples are explicitly shown). In this no-
tation, quarks carry one colour label whilst gluons carry two (see, e.g., Refs. [5, 19, 54] for
a pedagogical introduction to the topic). Several simple large NC-counting rules emerge by
examining the behaviour of Feynman diagrams in the large-NC limit [54]: (i) the LO contri-
butions are planar diagrams containing the minimum number of quark loops; (ii) non-planar
diagrams are suppressed by factors of N−2

C ; and (iii) internal quark loops are suppressed
by factors of 1/NC . Out of these rules, a general statement surfaces which is that in the
large-NC limit diagrams that are planar and with only a single quark running at the edge
dominate.14

Assuming that colour confinement persists at NC →∞, one expects that the particle
spectrum continues to be divided into mesons and baryons. The wavefunction of a meson
can be written as [5]

|q̄(α)q(β)〉colour singlet ∼
1√
NC

d
(α)†
i b

(β)†
i |0〉 , (3.60)

14One must note that, since the one-loop gluon vacuum polarisation is required to have a smooth limit at large
NC , the strong coupling constant gs must scale as O(1/

√
NC ); accordingly, adding an extra internal gluon

propagator to a LO diagram effectively introduces an additional colour loop factor NC that is cancelled by the
additional two (gluon-quark-quark) vertex factors (1/

√
NC )

2 fulfilling, therefore, the above general statement.
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FIGURE 3.1: Propagators and vertices in the double line notation showing
the colour flow.

where α and β are flavour labels, i is a colour index, b† (d†) is the quark (antiquark) creation
operator, and the

√
NC factor in the denominator is needed to normalise the wavefunction,

as a sum over quark colours is required to form a colour singlet. It is not difficult to see
that a meson propagator is, therefore, of order O(1) in NC , since the (1/

√
NC)2 factors

from the wavefunction normalisation cancel the NC factor from the quark loop. This in turn
leads to meson masses, which appear in the denominator of propagators, being of O(1) in
the large-NC limit. Thus, meson masses remain close to their physical values at NC →∞.

The two-body decay amplitude of a meson is of order (1/
√
NC)3NC = 1/

√
NC , where

the factor (1/
√
NC)3 comes from the three-meson wavefunction normalisation and the last

NC is the quark-loop colour factor, which renders the decay rate of order 1/NC . Conse-
quently, the large-NC limit involves narrow meson resonances, i.e. Γ/M → 0. The rate of
a meson decaying into three final states, by the same arguments, is further suppressed to
order N−2

C and, therefore, this provides a qualitative explanation for the two-body meson
decay dominance in the real world. Likewise, meson-meson scattering amplitudes are of
order (1/

√
NC)4NC = 1/NC , which suggests that mesons are stable and non-interacting

at large NC . Mixing of neutral mesons, including any number of gluons ng, is of order15

(1/
√
NC)2(1/

√
NC)2ngN

ng
C = 1/NC and, therefore, suppressed in the NC →∞ limit.

Moreover, the number of meson states is infinite in the large-NC limit [54]. One way to
see this is by noting that a generic n-point function of local quark bilinears J = q̄Γq,

〈0|J1(x1)...Jn(xn) |0〉 , (3.61)

15The factor (1/
√
NC )

2 comes from the two-meson wavefunction normalisation, the factor (1/
√
NC )

2ng

originates from the 2ng gluon-quark-quark vertex factors and the N ng
C factor arises from the additional colour

loops associated to the ng gluons.
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is of order NC . By inspecting two-point correlation function diagrams, one finds that at
large NC the only possible singularities correspond to one-meson poles.16 Thus, a two-point
function in momentum space can be written in the large-NC limit as [54]

〈0|J1(k)J2(−k) |0〉=
∑
n

a2
n

k2−M2
n

. (3.62)

From this, it is not difficult to see that the number of meson states must be infinite, since
the left-hand side behaves logarithmically for large k2 (down to asymptotic freedom) and the
right-hand side would behave as 1/k2 for large k2 should there be a finite number of states n.
In addition to this, given that the one-particle poles must lay on the real axis for the spectral
representation to hold, one can infer that the mesons are stable at NC →∞.

A consequence of internal quark loops being suppressed by factors of 1/NC in the
large-NC limit, which in turn is connected to the fact that there are NC quark states whilst
N2
C gluon states, is that the q̄q sea is virtually absent in the NC →∞ limit. Similarly, q̄qq̄q

exotic states are heavily suppressed given that, in this limit, mesons do not interact with each
other and, therefore, cannot merge to form an exotic. The large-NC limit also provides a
dynamical explanation for the OZI rule at low energies. In particular, for diagrams with nm
mesons and ng gluons, the OZI-violating configurations are of order N ng−nm

C , whilst OZI-
allowed diagrams are of order N ng−nm+1

C , rendering the processes that do not respect the
OZI rule comparatively suppressed by a factor of 1/NC .

An intriguing unity between the pseudoscalar singlet η′(960) and the octet of Nambu-
Goldstone bosons arises in massless QCD in the NC →∞ limit. In order to understand this,
let us first look into the matrix elements of the octet of axial currents from Eq. (2.35),

〈0|JµbA (0) |Pa(q)〉= ifaq
µδab . (3.63)

At large NC , these matrix elements involve a meson normalisation factor and a quark-colour
loop and, thus, they are of order (1/

√
NC)NC =

√
NC , which in turn implies fa ∼O(

√
NC).

The divergence of these matrix elements takes the form

〈0|∂µJµbA (0) |Pa(q)〉= faM
2
aδab , (3.64)

which, as discussed before, leads to the conservation of the octet of axial currents in the chiral
limit, where the pseudoscalar mesons are massless Goldstone bosons. This is not the case for
the singlet axial current due to the effect of the U (1)A anomaly, which leads to

〈0|∂µJµ0
A (0) |η1(q)〉= fη1M

2
η1 =

〈
0

∣∣∣∣ 3g2
s

32π2
GaµνG̃

µν
a

∣∣∣∣η1(q)

〉
. (3.65)

Using the large-NC counting rules, one finds that the above matrix element is of order
(1/
√
NC)(1/

√
NC)2NC = 1/

√
NC , where the first factor comes from the meson wave-

function normalisation, the second originates from the square of the strong coupling con-
stant and the last corresponds to the quark-colour loop. Thus, one sees that the effect of
the anomaly disappears in the large-NC limit and the mass of the singlet state vanishes,
i.e. Mη′ ∼ 1/NC → 0, which enables the η′(958) to become the ninth pseudo-Goldstone
boson.

The large-NC counting rules are, of course, satisfied in χPT. As just shown above, F is
of order O(

√
NC) in the NC →∞ limit, which in turn cancels the O(

√
NC) dependence of

16Note that in a confining theory any intermediate state of a two-point function is a perturbative approximation
to a single meson [19].
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the field operators ~φ in the U(~φ) matrix [see Eq. (3.17)], rendering U(~φ) ∼O(1).17 Meson
masses are of orderO(1) at large NC and, consequently, momenta and derivatives also scale
as O(1). From Eq. (3.37), one can easily infer that B0 is of order O(1). Next, by noting
that the generating functional in Eq. (3.32) involves classical sources that are coupled to
QCD quark bilinears and the fact that correlation functions of quark currents are of order
O(NC), then it is not difficult to see that the chiral Lagrangian in Eq. (3.19) must also
scale as O(NC) at large NC , i.e. Leff ∼ O(NC). On the other hand, chiral loops get a
suppression factor of (4πF )−2 ∼O(1/NC) for each loop [19]. Similarly, a trace taken over
flavour indices amounts to a sum over the quark flavours, which can only arise in a quark
loop [5]; accordingly, any additional flavour trace in operators gets a 1/NC suppression.
Taking all this into account,18 the large-NC limit predicts the following ordering for the
chiral coefficients in L4 [19]

L1 , L2 , L3 , L5 ,L8 , L9 , L10 =O(NC) ,

2L1−L2 , L4 , L6 , L7 =O(1) ,
(3.66)

which is good agreement with phenomenological and lattice simulation results (see Tables 3.1
and 3.2).

It may be worth mentioning before concluding that baryons have a completely different
behaviour in the large-NC limit. In particular, given that to form a colour singlet one needs
to combine NC quarks in a totally colour-antisymmetric fashion, the mass of baryons grow
as O(NC) and, thus, become infinitely massive in the NC →∞ limit [5]. For more details
on baryons in the 1/NC expansion, the reader is referred to [54].

Despite the explanatory power provided by the large-NC framework, one must not forget
that in the real world NC = 3 and, thus, one finds experimental evidence for η-η′ mixing,
meson decays and scattering, finite masses for baryons, etc., which are forbidden in the
NC →∞ limit. In any case, the large-NC limit of QCD provides a useful theoretical frame-
work to qualitatively explain a number of dynamical effects that would otherwise remain
unexplained.

3.3.1 Large-NC chiral perturbation theory

Large-NC χPT is the effective field theory of QCD in the chiral and large-NC limits [57]. As
seen in the previous subsection, in the large-NC limit the U(1)A anomaly is absent and the
pseudoscalar singlet η1 becomes the ninth Nambu-Goldstone boson associated to the spon-
taneous breaking of U(3)L×U(3)R → U(3)V . Both chiral and large-NC corrections are
treated perturbatively in this framework [57, 58]. The effective Lagrangian is, thus, organ-
ised as a simultaneous expansion in powers of momenta, quark masses and 1/NC [57, 59]

Leff = L(0)+L(1)+L(2)+ ... , (3.67)

where the superscripts arrange the perturbative expansion in contributions of order 1, δ, δ2, ...,
based on the following counting rules

∂µ =O(
√
δ) , mq =O(δ) , 1/NC =O(δ) . (3.68)

17Note that each additional pseudoscalar meson state coupled to a current brings a suppression factor of
1/
√
NC from the wavefunction normalisation.

18There are a few caveats associated to the operatorsO1,O2 andO7 of theO(p4) χPT Lagrangian that are ex-
plained in detail in Refs. [5, 19]. Without going into detail, it is worth highlighting that, sinceMη′ ∼O(1/NC ),
the L7 coupling could naively be considered of order O(N2

C ) [42]. However, the large-NC counting is not
consistent if one takes the limit of a heavy η′ mass whilst keeping ms small [55, 56].



38 Chapter 3. Effective field theories

At lowest order, O(δ0), the effective Lagrangian is given by

L(0) = F 2

4
Tr
[
DµŨ

†DµŨ
]
+
F 2

4
Tr
[
Ũ †χ+χ†Ũ

]
− 1

2
τ (ψ+ θ)2 , (3.69)

where F ∼
√
NC is the pion decay constant in the chiral limit, τ ∼ O(1) is the topological

susceptibility of the purely gluonic theory [59] and χ = 2B0(s+ ip) [cf. Eq. (3.31)], with
B0 ∼ O(1) being connected to the vacuum quark condensate. The unitary 3× 3 matrix
Ũ = exp

{
i
√
2 Φ̃/F

}
collects the dynamical degrees of freedom, with

Φ̃ ≡
8∑

a=0

λa√
2
φa =


1√
2
π0 + 1√

6
η8 +

1√
3
η1 π+ K+

π− − 1√
2
π0 + 1√

6
η8 +

1√
3
η1 K0

K− K
0 − 2√

6
η8 +

1√
3
η1

 ,

(3.70)
where the mathematical states ηTB ≡ (η8, η1) in the so-called octet-singlet basis are related to
the physical states ηTP ≡ (η, η′) by the following orthogonal transformation (see Appendix A)(

η8

η1

)
=

(
cosθP sinθP
−sinθP cosθP

)
=

(
η
η′

)
, (3.71)

with θP being the η-η′ mixing angle in the octet-singlet basis at this order. Furthermore,
ψ =

√
6η1/F is a dimensionless field variable defined such that det

{
Ũ
}
= exp{iψ} [42]

and θ is a real field coupling to the winding number density.19 Finally, Dµ is the covariant
derivative defined in Eq. (3.28).

For completeness, we enumerate the remaining counting rules of large-NC χPT: (i) the
vacuum angle, θ, and the effective fields Ũ(x) and ψ(x) are treated as quantities of order 1;
(ii) the vector and axial-vector external fields, vµ(x) and aµ(x), both used in the definition
of Dµ count as small perturbations of the same order as derivatives; and (iii) the scalar and
pseudoscalar external fields, s(x) and p(x), are of the same order as the quark masses [57].
This is,

(Ũ ,ψ,θ) =O(1) , (vµ, aµ) =O(
√
δ) , (s, p) =O(δ) . (3.72)

With these counting rules, it is straightforward to see that the first term in L(0) is of order
O(NC , p

2), the second term20 is of order O(NC ,mq) and the third is of order O(1). The
LO effective Lagrangian contains, therefore, 3 LECs, namely, F , B0 and τ .

The effective Lagrangian L(1) = O(δ) contains the contributions of O(NC , p
4), O(p2)

and O(1/NC). The explicit expression for L(1) is given by [57]

L(1) = L2Tr
[
DµŨ

†DνŨD
µŨ †DνŨ

]
+(2L2 +L3)Tr

[
DµŨ

†DµŨDνŨ
†DνŨ

]
+L5Tr

[
DµŨ

†DµŨ
(
Ũ †χ+χ†Ũ

)]
+L8Tr

[
Ũ †χŨ †χ+χ†Ũχ†Ũ

]
− iL9Tr

[
RµνD

µŨDνŨ †+LµνD
µŨ †DνŨ

]
+L10Tr

[
RµνŨL

µνŨ †
]

+
1

12
F 2Λ1DµψD

µψ− 1

12
iF 2Λ2(ψ+ θ)Tr

[
Ũ †χ−χ†Ũ

]
+

1

12
H0DµθD

µθ+H1Tr
[
RµνR

µν +LµνL
µν
]
+H2Tr

[
χ†χ

]
,

(3.73)

19The winding number density or topological charge density can be written as ω = αs
8πGG̃.

20Note that here we have made the following assignments s =M and p = 0, where the quark-mass matrix
M is given in Eq. (3.25).
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where DµŨ and DµŨ
† are, once again, defined in Eq. (3.28), the field strength tensors Rµν

and Lµν are given in Eq. (3.29), and the other covariant derivatives can be expressed as

Dµψ = ∂µψ−2Tr [aµ] , Dµθ = ∂µθ+ 2Tr [aµ] . (3.74)

It should be noted that the large-NC χPT counting rules imply that the LECs L2, L3, L5, L8,
L9 and L10 represent quantities of order O(NC), whilst Λ1 and Λ2 are of order O(1/NC).
Regarding the contact terms, H0 is of order O(1), whilst H1 and H2 are of order O(NC).

To conclude, it is worth noting that in large-NC χPT the number of independent LECs
entering the low-energy representation of the effective action at NLO is about the same as for
the SU(3) Lagrangian: whilst the four parameters 2L1−L2, L4, L6 and L7 are relegated to
NNLO, three new LECs appear, namely τ , Λ1 and Λ2 [57].

3.4 Resonance chiral theory

As already discussed, χPT is the low-energy effective field theory of QCD and is valid up
to some energy scale ΛχPT close to the mass of the lowest-lying resonances, e.g. Mρ. Well
below ΛχPT, the resonance propagator can be approximated by

1

p2−M2
R

= − 1

M2
R

∑
n=0

(
p2

M2
R

)n
, (p2�M2

R) , (3.75)

which means that the exchange of virtual resonances generates derivative Nambu-Goldstone
couplings proportional to powers of 1/M2

R. At energies close to ΛχPT, though, χPT is
no longer expected to provide accurate predictions, as the perturbative expansion cannot
account for resonance poles, and other effective field theories with new degrees of freedom
are required. In this section, we follow the presentation from Ref. [19], chapter 3.

As a consequence of confinement, the QCD hadronic spectrum constitutes a dual asymp-
totic representation of the quark and gluon degrees of freedom. In effect, the hadronic reso-
nances represent the most important feature of the non-perturbative strong dynamics of QCD.
Accordingly, the chiral couplings receive significant contributions from the exchange of these
resonances. In particular, one expects that at O(p4) the χPT couplings, Li, are saturated by
the resonance exchange parameters (i.e. the masses and couplings).

A systematic analysis of the role of the QCD resonances can be performed within the
framework of resonance chiral theory (RχT), which constitutes an interpolating representa-
tion, defined in the intermediate energy region (i.e.∼ 1−2 GeV), between the short-distance
QCD and χPT. In RχT, one writes the most general chiral-invariant Lagrangian containing
the resonances of the type V (1−−), A(1++), S(0++) and P (0−+), as well as the Nambu-
Goldstone modes, as degrees of freedom. The associated generating functional is given by

exp{iZ}=
∫
[dU ][dV ][dA][dS][dP ]exp

{
i

∫
d4xL(U ,V ,A,S,P )

}
, (3.76)

where the coupling constants in the Lagrangian are to be extracted from phenomenology at
the resonance mass scale. By integrating out the heavy degrees of freedom of RχT, one
recovers the low-energy theory with only Nambu-Goldstone bosons, i.e. χPT. Of course, all
the information from the short-distance physics remains encoded in the coupling constants
of the low-energy EFT.

The resonance states in the hadronic spectrum have got definite transformation prop-
erties under the vacuum symmetry group H ≡ SU(3)V . These states need to be coupled
to the Nambu-Goldstone modes in a chiral-invariant manner and for that the compensating
transformation h(~φ,g) in Eq. (3.15) can be employed. With the canonical choice of coset
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representative ξR(~φ) = ξ†L(
~φ) ≡ u(~φ), the action of G [cf. Eq. (3.12)] leads to [19]

u(~φ)
G−→ gRu(~φ)h

†(~φ,g) = h(~φ,g)u(~φ)g†L . (3.77)

Thus, the chiral transformation (gL,gR) ∈ G of the quark fields results in a transformation
h(~φ,g)∈H acting on the hadronic states. Since we are interested in resonances transforming
as octets or singlets under SU(3)V , one can write

R8
G−→ h(~φ,g)R8h

†(~φ,g) , R1
G−→R1 , (3.78)

whereR8 = ~λ~R/
√
2 andR1 are the resonance octet and singlet, respectively. The non-linear

realisation of G acting on the octet field R8 is local, which requires us to define the covariant
derivative [60]

∇µR8 = ∂µR8 +[Γµ,R8] , (3.79)

where the connection

Γµ =
1

2

[
u†(∂µ− irµ)u+u(∂µ− ilµ)u†

]
(3.80)

guarantees that
∇µR8

G−→ h(~φ,g)∇µR8h
†(~φ,g) . (3.81)

Let us define the following useful covariant parameters that shall be employed later

uµ ≡ iu†(DµU)u
† = u†µ , χ± ≡ u†χu†±uχ†u , fµν± = uLµνu†±u†Rµνu , (3.82)

where u is the canonical coset representative that fulfils the condition U = u2 , and Dµ, χ,
Lµν and Rµν are defined, respectively, in Eqs. (3.28), (3.31) and (3.29). All the quantities
in Eq. (3.82) transform as SU(3)V octets, i.e. X G−→ h(~φ,g)Xh†(~φ,g), and can easily be
combined with the resonance fields to build chiral-invariant structures.

It is convenient to collect the octet and singlet resonances into a nonet multiplet, which
can be done using the large-NC limit whereby the resonances become degenerate in the chiral
limit, such that

R≡R8 +
1√
3
R11 =

1√
2
~λ ~R+

1√
3
R11 . (3.83)

Consequently, RχT employs the counting rules of large-NC χPT to organise the perturbative
expansion. Noting that the RχT couplings are of order O(

√
NC) [56], then the RχT La-

grangian can be systematically arranged according to the number of resonance fields in the
interaction terms. In order to compute the resonance-exchange contributions to the O(p4)
χPT Lagrangian, it suffices to consider the LO couplings to the Nambu-Goldstone modes
that are linear in the resonance fields [19]

LRχT
.
=
∑
R

LR = LV +LA+LS+LP . (3.84)

Let us investigate the different individual contributions to LRχT. In particular, the spin-0
Lagrangian, which caters for R= S,P , is given by

LR =
1

2
Tr[∇µR∇µR−M2

RR
2]+Tr[RχR] , (3.85)

whereMR is a common resonance multiplet mass, and the first and second traces correspond,
respectively, to the kinetic and interaction terms. As it turns out, by invoking C and P
invariance, it can be shown that the resonance interaction terms are governed by the O(p2)



3.4. Resonance chiral theory 41

chiral structures
χS = cduµu

µ+ cmχ+ , χP = dmχ− . (3.86)

One can now express the solutions of the resonance equations of motion at low energies in
terms of the local chiral operators, which contain light fields only, rendering

R=
1

M2
R

χR+O
(
p4

M4
R

)
. (3.87)

By plugging Eqs. (3.87) and (3.86) into Eq. (3.85), one can find the LO contributions to the
O(p4) χPT Lagrangian, which take the form

∆LR4 =
∑

R=S,P

1

2M2
R

Tr[χRχR] . (3.88)

This result can be expressed in the standard basis of χPT from Eq. (3.45), which in turn
enables the identification of the following spin-0 resonance-exchange contributions to the
O(p4) χPT LECs [56, 60]

LS3 =
c2
d

2M2
S

, LS5 =
cdcm
M2
S

, LS+P8 =
c2
m

2M2
S

− d2
m

2M2
P

. (3.89)

As it can be seen, scalar exchanges contribute to L3, L5 and L8, whilst the exchange of
pseudoscalar resonances contribute to L8 only.

Let us now look into the singlet η1 resonance-exchange contribution to the O(p4) χPT
couplings. As it should clear, the singlet state has got a much larger mass than the octet of
Nambu-Goldstone bosons due to the effect of the U(1)A anomaly, and, thus, this state is
integrated out along with other massive resonances in the context of χPT. One can extract the
LO effects, though, from the U(3)L×U(3)R chiral Lagrangian, which contains the matrix
Ũ (~φ) that collects the nonet of pseudoscalar fields

L(U3)
2

.
=
F 2

4
Tr[Ũ †χ+χ†Ũ ] . (3.90)

From this, it can be shown that the exchange of the η1 meson generates the following O(p4)
LEC contribution [19]

Lη17 = − F 2

48M2
η1

. (3.91)

It is important to note, however, that the singlet and octet contributions to L7 exactly cancel
each other at large NC , which explains the result in Eq. (3.89).

Next, let us explore the LV and LA parts of LRχT in Eq. (3.84). The spin-1 Lagrangian,
withR= V ,A, can more conveniently be written in terms of the anti-symmetric tensor fields
Vµν and Aµν [60, 61], i.e.21

LR = −1

2
Tr[∇λRλµ∇νRνµ−

M2
R

2
RµνR

µν ]+Tr[Rµνχ
µν
R ] , (3.92)

where the first and second traces correspond to the kinetic and interaction terms, respectively,
and the O(p2) chiral structures take the form

χµνV =
FV

2
√
2
fµν+ +

iGV√
2
uµuν , χµνA =

FA

2
√
2
fµν− . (3.93)

21Do not confuseRµν in Eq. (3.92) with the field strength tensor of right-handed external fields in Eq. (3.29).



42 Chapter 3. Effective field theories

Following the same procedure as for the spin-0 resonances, one can obtain the following
vector and axial-vector contributions to the O(p4) χPT LECs [60]

LV1 =
G2
V

8M2
V

, LV2 = 2LV1 , LV3 = −6LV1 ,

LV9 =
FVGV
2M2

V

, LV +A
10 = −

F 2
V

4M2
V

+
F 2
A

4M2
A

.

(3.94)

Thus, vector-meson exchanges contribute to L1, L2, L3, L9 and L10, whilst the exchange of
axial-vector resonances contribute to L10 only.

It is important to highlight that the predicted contributions to the O(p4) χPT LECs from
the exchange of resonances provides a dynamical explanation to the phenomenological val-
ues shown in Table 3.1. As it can be seen in this table, the couplings L4 and L6 are consistent
with zero and much smaller than the other LECs, which can be explained by the fact that they
do not receive any contributions from the exchange resonances [cf. Eqs. (3.89) and (3.94)].
The coupling L1 is predicted to be positive, in accordance with its phenomenological value,
and the relation L2 = 2L1 is approximately satisfied. The prediction for L7 being negative
turns out to be also correct and of order O(1). All the other couplings are of order O(NC).

By setting F ≈ fπ = 92.2 MeV, which can be done at this order in the chiral expan-
sion, and MV =Mρ = 775 MeV, one obtains the numerical result |FV | = 154 MeV from
Γ(ρ0→ e+e−). As well as this, one can find |GV |= 53 MeV from the experimental data on
the electromagnetic pion radius, whilst |GV | ∼ 69 MeV is found from Γ(ρ0→ 2π) [60]. For
the axial parameters, use of Weinberg’s sum rules [62],

F 2
V −F 2

A = F 2 , M2
V F

2
V −M2

AF
2
A = 0, (3.95)

allows one to compute FA = 123 MeV and MA = 968 MeV.
There is, of course, more information that can be extracted from the short-distance prop-

erties of the underlying QCD dynamics, which can further constraint the RχT parame-
ters [19, 63]. In particular, the matrix element of the vector current between two Nambu-
Goldstone bosons can be parameterised by the vector form factor

FV (t) = 1+
FVGV
F 2

t

M2
V − t

. (3.96)

From this, one can easily extract the relation

FVGV = F 2 , (3.97)

which is found after imposing that FV (t) vanishes at infinite momentum transfer t.22 Like-
wise, the matrix element of the axial current between a Nambu-Goldstone state and a photon
is characterised by the axial form factor

GA(t) =
2FVGV −F 2

V

M2
V

+
F 2
A

M2
A− t

, (3.98)

from which one obtains the condition

2FVGV = F 2
V , (3.99)

22This is known as the Brodsky-Lepage asymptotic behaviour of the form factor, which in turn is a direct
consequence of pQCD at large momentum transfers [64].
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TABLE 3.2: Values for the renormalised couplings Lri (Mρ) from RχT pre-
dictions without (column 3) and with (column 4) short-distance information.

Values labelled with † are used as inputs [19].

Lri (Mρ)×103

i O(NC) RχT [60] RχTSD [56, 63]

1 O(NC) 0.6 0.9

2 O(NC) 1.2 1.8

3 O(NC) −2.8 −4.8
4 O(1) 0.0 0.0

5 O(NC) 1.2† 1.1

6 O(1) 0.0 0.0

7 O(1) −0.3 −0.3
8 O(NC) 0.5† 0.4

9 O(NC) 6.9† 7.1

10 O(NC) −5.8 −5.3

after requiring that the axial form factor GA(t) vanishes at t→∞. Combining the relations
from Eqs. (3.97) and (3.99), together with Weinberg’s sum rules from Eq. (3.95), allows one
to write

FV = 2GV =
√
2F , FA = F , MA =

√
2MV . (3.100)

We can also obtain similar constraints from the scalar sector. Specifically, the matrix
element of the scalar current between a kaon and a pion is parameterised by the scalar form
factor [65, 66]

FKπS (t) = 1+
4cm
F 2

[
cd+(cm− cd)

M2
K −M2

π

M2
S

]
t

M2
S− t

, (3.101)

from which one gets
4cdcm = F 2 , cm = cd , (3.102)

after imposing FKπS (t)→ 0 when t→∞. In addition, from the difference between the two-
point correlation functions of two scalar and two pseudoscalar currents ΠSS−PP (t), which
should vanish if chirality were absolutely preserved [19], one finds the conditions [67]

c2
m−d2

m =
F 2

8
, c2

mM
2
S−d2

mM
2
P =

3παs
4

F 4 , (3.103)

after requiring that ΠSS−PP (t) vanishes as 1/t2 when t→∞ [68–70]. Accordingly, the
scalar and pseudoscalar parameters are found by combining the constraints from Eqs. (3.102)
and (3.103) resulting in23 [56]

cm = cd =
F

2
, dm =

F

2
√
2
, MP ≈

√
2MS . (3.104)

Finally, one can plug the results from Eqs. (3.100) and (3.104) into Eqs. (3.89) and (3.94) to
obtain the following expressions for the O(p4) χPT LECs in terms of just three parameters,

23The last relation actually contains a small correction,MP =
√

2MS(1−δ)1/2 , with δ≈ 3παsF
2/M2

S ∼
0.08αs, which can be safely neglected [19].
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i.e. F , MV and MS ,

2L1 = L2 =
1

4
L9 = −

1

3
L10 =

F 2

8M2
V

,

L3 = −
3F 2

8M2
V

+
F 2

8M2
S

, L5 =
F 2

4M2
S

, L8 =
3F 2

32M2
S

.

(3.105)

In Table 3.2, we summarise the numerical predictions for the O(p4) χPT couplings from
RχT with and without short-distance information [19]. The numerical values employed for
the RχT input parameters are MV = 775 MeV, MS = 1.4 GeV and F = fπ = 92.2 MeV. In
addition, Mη1 = 804 MeV is used for the L7 prediction.

3.5 Vector meson dominance

Before QCD was discovered, the physics of hadrons was described using a variety of phe-
nomenological models, which incorporated the approximate symmetries of the strong inter-
actions. Some of these models still play an important role in our understanding of hadronic
physics nowadays, which is down to the physical insight behind them, as well as our inability
to solve QCD in the non-perturbative regime.

In particular, the interaction between hadronic matter and the photon is successfully de-
scribed by the vector meson dominance (VMD) model, which posits that the hadronic com-
ponents of the photon vacuum polarisation consists exclusively of vector mesons [71]. The
prime ingredient of QCD at low energies appears to be the hadronic spectrum of the theory,
which is supported by the fact that the χPT O(p4) counterterms are saturated by the ex-
change of hadronic resonances, as we saw in Sec. 3.4. This idea puts VMD on firm footing
at energies below∼ 1 GeV, where the main dynamical effect is associated to the exchange of
vector mesons. Despite the fact that VMD enjoys considerable phenomenological support, it
has never been formally derived from the SM [5].24

In the early 1960s, Sakurai proposed a theory of the strong interactions mediated by the
exchange of intermediate vector mesons [72]. His theory was based on the ideas laid out by
Yang and Mills on non-Abelian gauge theory [73]. Despite being able to generate the required
interaction terms by minimal substitution in the Lagrangian, the mass term associated to the
vector mesons destroyed the local gauge invariance. A few years later, Kroll et al. [74]
attempted to derive VMD from field theory and found that the hadronic contribution to the
polarisation of the photon takes the form of a propagating vector meson [71] (cf. Fig. 3.2).
This in turn is directly linked to the idea that the hadronic electromagnetic current operator
is proportional to the vector meson fields. For the neutral ρ0 meson, this turns out to be25

Jemµ (x) =
M2
ρ√

2gρ
ρ0
µ(x) , (3.106)

which is known as the current-field identity and can be generalised to the isovector field
~ρ (x). The conservation of electromagnetic current in this equation implies that the ~ρ (x)
field is divergenceless under the strong interactions, i.e.

∂µ~ρ
µ = 0, (3.107)

24This is because, contrary to what happens in QED, high-order effects associated to the dressing of the qq̄
quark-loop contribution to the photon propagator cannot be dismissed.

25Note that one could easily absorb the
√

2 in the denominator into the redefinition of the g coupling. How-
ever, we shall not do this in an effort to be consistent with the convention employed by Ref. [75], with the only
caveat being that we use fπ = 92.2 MeV.
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𝛾 𝛾𝜌

FIGURE 3.2: Hadronic contribution to the photon propagator in the VMD
picture. Additional intermediate vector mesons are included in generalised

VMD models.

which is, in fact, the usual Proca condition for a massive vector field coupling to a conserved
current. The resulting Lagrangian for the hadronic sector obtained by Kroll et al. [74] also
contained a mass term that violated the local (flavour) gauge symmetry.

Lurie managed to reproduce in Ref. [76] Sakurai’s results employing conserved currents
only. In this case, the Lagrangian is assumed to be invariant under global SU(2) transforma-
tions and, thus, the presence of a mass term is innocuous. We start with the Lagrangian [71]

L= −1

4
~ρµν · ~ρµν +

1

2
M2
ρ ~ρµ · ~ρµ+

1

2
Dµ~π ·Dµ~π− 1

2
M2
π~π ·~π , (3.108)

where the vector meson field strength tensor takes the form

~ρµν = ∂µ~ρν−∂ν~ρµ−
√
2g~ρµ× ~ρν (3.109)

and the covariant derivative is defined as

Dµ~π = ∂µ~π−
√
2g~ρµ×~π . (3.110)

Note that the Lagrangian in Eq. (3.108) is invariant under the transformations

~ρ→ ~ρ+ ~ρ×~ε , ~π→ ~π+~π×~ε . (3.111)

It is not difficult to find from Eq. (3.110) that

1

2
Dµ~π ·Dµ~π =

1

2
∂µ~π ·∂µ~π−

√
2g~ρµ · (~π×∂µ~π)+ g2(~ρµ×~π)2 , (3.112)

which in turn can be plugged into Eq. (3.108) to obtain the equation of motion for the ρ field

∂ν~ρ
µν +M2

ρ ~ρ
µ =
√
2g ~J µN , (3.113)

where the Noether current turns out to be [71, 76]

~J µN =− ∂L
∂(∂µ~ρν)

×~ρν−
∂L

∂(∂µ~π)
×~π = ~ρµν×~ρν+~π×∂µ~π+

√
2g(~ρµ×~π)×~π . (3.114)

Since ~JµN must be conserved, Eq. (3.113) implies that the ~ρµ field is necessarily divergence-
less on account of ~ρµν being antisymmetric in its indices, as in Eq. (3.107). Expanding the
field strength tensor in Eq. (3.113), moving the non-Abelian part of it to the right hand side
and making use of the fact that the ~ρ field is divergenceless, allows one to write

(∂2 +M2
ρ )~ρ

µ =
√
2g ~J µ , (3.115)

with
~J µ = ~J µN + ~ρ ν×∂ν~ρµ . (3.116)
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FIGURE 3.3: VMD dressing of the photon propagator.

In order to include the electromagnetic interactions into the model, we make use of
Eqs. (3.106) and (3.115) to write a generic matrix element of the electromagnetic current
Jemµ as [71]

〈B|eJemµ |A〉= e〈B|
M2
ρ√

2gρ
ρ0
µ |A〉=

eM2
ρ√

2gρ
〈B|
−
√
2gJ0

µ

q2−M2
ρ

|A〉

=
−ieM2

ρ√
2gρ

−i
q2−M2

ρ

〈B|
√
2gJ0

µ |A〉 ,
(3.117)

where the substitution ∂µ → iqµ has been employed and only the third component of the
isotriplet has been considered for simplicity.26 It is important to notice from Eq. (3.117) that
the photon seems to couple to the hadronic matrix element with strength eM2

ρ/
√
2gρ via a ρ

meson.
At this point, one can assume that the effects of the ρ self-interaction are negligible,

which is a reasonable approximation considering that the ρ0 decays almost exclusively via
the two-pion channel. This allows writing the hadronic current of Eq. (3.116) as

Jµπ = (~π×∂µ~π)0 , (3.118)

which in the charge basis can be expressed as

Jµπ = i(π−∂µπ+−π+∂µπ−) . (3.119)

Accordingly, the associated part of the Lagrangian takes the simple form

Lρπ = −
√
2gρππρ

0
µJ

µ
π , (3.120)

where we have chosen to write the coupling constant g as gρππ.
It is worth noting that one may naively guess the interaction part of the electromagnetic

Lagrangian by making use of Eq. (3.106) so that

Lγρ = −eJemµ Aµ = −
eM2

ρ√
2gρ

ρ0Aµ . (3.121)

However, the addition of this term to the Lagrangian in Eq. (3.108), along with the associated
kinetic term for the electromagnetic field, results in the photon acquiring an imaginary mass
owing to the dressing of the photon propagator [72] (cf. Fig. 3.3). Instead, one must include
the Lagrangian term

Lγρ = −
e

2
√
2gρ

Fµνρ
µν , (3.122)

26Note that from this point forward we shall refer to the ρ0(x) meson only in the remaining calculations of
this section.



3.5. Vector meson dominance 47

which guarantees that the photon field remains massless. Note that in Eq. (3.122) Fµν and
ρµν are, respectively, the field strength tensors for the electromagnetic and ρ0 fields.27 By ex-
panding the product of field strength tensors, integrating by parts and substituting ∂µ→ iqµ,
one finds that the above equation reduces in momentum space to

Fµνρ
µν → 2q2Aµρ0

µ , (3.123)

which can be interpreted as the photon decoupling from the ρ0 (and, thus, from the hadronic
matter) at q2 = 0. This points towards the need for another term in the Lagrangian that
directly couples the photon to hadronic matter. This happens to be

Lγπ = −eAµJµπ , (3.124)

which becomes dominant at q2 = 0.
Summarising what we have discussed thus far, the full VMD Lagrangian can be ex-

pressed as [71]

LVMD = − 1

4
FµνF

µν− 1

4
ρµνρ

µν +
1

2
M2
ρρµρ

µ−
√
2gρππρµJ

µ
π

−eAµJµπ −
e

2
√
2gρ

Fµνρ
µν ,

(3.125)

where the shorthand notation ρµ ≡ ρ0
µ has been used. There is an alternative VMD formula-

tion which has become the standard representation

L′VMD = − 1

4
F ′µνF

′µν− 1

4
ρ′µνρ

′µν +
1

2
M2
ρρ
′
µρ
′µ−
√
2gρππρ

′
µJ

µ
π

−
e′M2

ρ√
2gρ

ρ′µA
′µ+

1

2

e2M2
ρ

2g2
ρ

A′µA
′µ .

(3.126)

The two representation are equivalent to order O[(e/gρ)3] in the limit of universality
(i.e. gρ = gρππ) and with the following substitutions [71]

ρ′µ = ρµ+
e√
2gρ

Aµ , A′µ = Aµ

√
1− e2

2g2
ρ

, e′ = e

√
1− e2

2g2
ρ

. (3.127)

It is important to note that, whilst in Eq. (3.125) there is a direct coupling between the photon
and hadronic matter, this term is missing in Eq. (3.126) and, instead, it contains a mass term
for the photon.

One can compute the effect of the dressing of the photon propagator shown in Fig 3.3
using the standard representation of the VMD Lagrangian, which turns out to be

iD(q2) =
−i

q2− e2M2
ρ

2g2ρ

+
−i

q2− e2M2
ρ

2g2ρ

−ieM2
ρ√

2gρ

−i
q2−M2

ρ

−ieM2
ρ√

2gρ

−i

q2− e2M2
ρ

2g2ρ

+ ... , (3.128)

where the prime of the parameter e has been dropped for simplicity of notation. After resum-
mation, one finds

iD(q2) =
−i

q2
(
1+ e2

2g2ρ

1
1−q2/M2

ρ

) , (3.129)

27Thus, the latter does not contain the non-Abelian cross product from Eq. (3.109).
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which shows that the propagator has got the desired behaviour in the q2→ 0 limit, i.e.

iD(q2)→ −i
q2(1+ e2

2g2ρ
)
. (3.130)

It is worth noticing that the above equation appears to suggest a modification to the electro-
magnetic coupling constant of the form

e→ e√
1+ e2

2g2ρ

. (3.131)

Before concluding, we would like to highlight that, in the standard VMD representation,
the pion form factor used for describing the process γ→ π+π−, which is the multiplicative
deviation from a pointlike behaviour of the coupling of the photon to the pion field, can be
written as

Fπ(q
2) = −

M2
ρ

q2−M2
ρ

gρππ
gρ

. (3.132)

At zero momentum transfer, the photon field sees only the charge of the pions and, therefore,
the form factor should reduce to Fπ(0) = 1 in the q2→ 0 limit. In order to fulfil this con-
straint, it is required that gρππ = gρ, which is the basis for Sakurai’s argument of universality,
whereby it is assumed that all the interactions of the ρ meson are generated from the gauge
principle through minimal substitution in the covariant derivative [72]. In this case, it is also
a direct consequence of the ρ completely dominating the pion form factor [71].

3.5.1 Effective schemes for including vector mesons

In this subsection, we introduce the hidden symmetry scheme proposed by Bando et
al. [77, 78] to explicitly incorporate the vector meson fields in the chiral Lagrangian. As
well as this, we briefly present an alternative scheme known as the massive Yang-Mills ap-
proach put forward by Meissner, Schechter and other authors [79–82].

In the hidden symmetry (HS) scheme, the ρ-meson appears as the dynamical gauge bo-
son of a hidden local symmetry in the non-linear chiral Lagrangian and its mass is generated
by the Higgs mechanism associated to the partial spontaneous breaking of this local sym-
metry [71]. Let us start with the SU(2) non-linear sigma-model Lagrangian [cf. Eq. (3.20)]

L=
f2
π

4
Tr
[
∂µU

†∂µU
]
, (3.133)

where fπ = 92.2 MeV is the pion decay constant and

U(x) = exp

{
i
√
2
π(x)

fπ

}
, (3.134)

with π(x) =
√
2πata and ta = σa/2 being the generators of the SU(2) symmetry group

[cf. Eq. (2.21)]. Using Meissner’s convention [79], the U(x) field transforms under global
chiral SU(2)L×SU(2)R as

U(x)→ gLU(x)g
†
R , (3.135)

where gL,R ∈ SU(2)L,R. In addition to the chiral symmetry, we want to introduce a local
hidden SU(2)V symmetry. In order to do this, let us first split the U(x) field into two
constituents that transform, respectively, under (left and right) SU(2)L,R so that

U(x) ≡ ξ†L(x)ξR(x) , (3.136)
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where the ξL,R(x) are SU(2)-valued entities transforming as

ξL,R(x)→ ξL,R(x)g
†
L,R . (3.137)

The crucial point here is that one assumes that, in addition, the components of the coset
representative ξL,R possess a local SU(2)V symmetry such that [79]

ξL,R(x)→ λ(x)ξL,R(x)g
†
R,L , (3.138)

with λ(x) = e−iα
a(x)ta . It can immediately be seen that the U (x) field is unaffected by this

local SU(2)V , although its components ξL,R are not. Consequently, we say that it is a hidden
symmetry [71].

One can now write the following SU(2)V invariant Lagrangians [75, 79]

LA = − f
2
π

4
Tr[DµξLξ

†
L−DµξRξ

†
R]

2 ,

LV = − f
2
π

4
Tr[DµξLξ

†
L+DµξRξ

†
R]

2 ,

(3.139)

where the matrices ξL and ξR contain the pseudoscalar fields π(x), as well as the unphysical
fields τ (x) that will be absorbed to give mass to the vector mesons, i.e.

ξL,R = exp

{
i
τ ∓π√
2fπ

}
. (3.140)

The covariant derivative takes the form

DµξL,R = ∂ξL,R− igVµξL,R , (3.141)

where we have introduced the gauge field

Vµ(x) =
√
2V a

µ t
a . (3.142)

Note that the Lagrangians in Eq. (3.139) are invariant under the local SU(2)V transformation
λ(x) so long as Vµ transforms as

Vµ→ λ(x)Vµλ
†(x)+

i√
2g
λ(x)∂µλ

†(x) . (3.143)

A kinetic term for the gauge field Vµ(x) is required so that LV does not identically vanish
when one uses the equation of motion (EOM) for Vµ [79]. Bando et al., thus, assumed that
quantum mechanical effects at the composite level dynamically generate the corresponding
kinetic term [71, 83]

−1

4
~Gµν · ~Gµν , (3.144)

where Gµν is the non-Abelian field strength tensor associated to the vector meson

~Giµν = ∂µ~V
i
ν −∂ν ~V i

µ−
√
2g~Vµ× ~Vν . (3.145)

Taking all this into account, we can construct the Lagrangian

LHS = LA+aLV −
1

4
~Gµν · ~Gµν , (3.146)
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where a is an arbitrary parameter. The unphysical scalar degrees of freedom can be elim-
inated by choosing an appropriate SU(2)V gauge. This in turn is done by imposing the
condition

ξ†L = ξR = exp

{
i
π(x)√
2fπ

}
. (3.147)

To make further progress, we approximate ξ†L = ξR ≈ 1+ iπ(x)/
√
2fπ, which allows the

Lagrangian in Eq. (3.146) to be expressed as

LHS = −1

4
~Gµν · ~Gµν +

f2
π

4
Tr[∂µU

†∂µU ]+ag2f2
π
~Vµ · ~V µ− ag√

2
~V µ · (~π×∂µ~π) , (3.148)

where ~π× ∂µ~π is the the hadronic current from Eqs. (3.114) and (3.118). Comparing this
with Eq. (3.126), one can make the identifications M2

V = 2ag2f2
π and gρππ = 1

2ag.
Next, let us incorporate the electromagnetic interactions into the model. The photon field

couples to the charge operator Q = I
(L+R)
3 +Y/2, with I(L+R)3 and Y being, respectively,

the global SU(2)L×SU(2)R isospins and hypercharge [79]. Note that these generators are
independent of the ones associated to the hidden local SU(2)V to which the field Vµ couples.
We can now extend the local gauge group SU(2)V → SU(2)V ×U(1)Q, where the U(1)Q
is not a hidden symmetry. This in turn means that the U(x) field must transform as [71]

U → b(x)Ub†(x) , (3.149)

where b(x) = e−ie0Qθ(x), andQ and e0 are, respectively, the generator and coupling constant
of the U(1)Q group. This transformation demands that the ξ fields transform as

ξL,R→ ξL,Rb
†(x) . (3.150)

In addition, the covariant derivative in Eq. (3.141) must be redefined to include the new
interaction term

DµξL,R = ∂ξL,R− i
√
2g~Vµ ·~tξL,R− ie0ξL,RBµt

3 , (3.151)

where Bµ is the new gauge field, which can be identified with the photon, and needs to
transform as

Bµ→Bµ−
i

e0
∂µb
†b , (3.152)

to ensure invariance of the Lagrangians in Eq. (3.139) underU(1)Q. Accordingly, Eq. (3.148)
becomes

LHS = − 1

4
~Gµν · ~Gµν−

1

4
BµνB

µν +
f2
π

4
Tr[∂µU

†∂µU ]

+
1

2
M2
ρ
~Vµ · ~V µ−

e0M
2
ρ√

2g
V 3
µB

µ+
1

2

e2
0M

2
ρ

2g2
BµB

µ

− ag√
2
~V µ · (∂µ~π×~π)−e0(1−

a

2
)Bµ(∂µ~π×~π)3 ,

(3.153)

whereBµν is the strength tensor of the fieldBµ. The parameter a can be chosen to reproduce
the standard VMD representation from Eq. (3.126). This is done with a = 2, which allows
the direct coupling between the photon and the hadronic current [last term in Eq. (3.153)] to
vanish, and imposes universality gρππ = ag/2 = gρ. Furthermore, one can assume that the
states V 3

µ and Bµ mix in such a way that, after diagonalising the mass matrix, the physical
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photon is massless [79]. Accordingly,

m2
γ = 0, M2

ρ = a(2g2 + e2
0)f

2
π , M2

ρ± = 2ag2f2
π , (3.154)

and the mass eigenstates are given by

Aµ =

√
2gBµ+ e0V

3
µ√

2g2 + e2
0

, V 0
µ =

√
2gV 3

µ −e0B
3
µ√

2g2 + e2
0

, (3.155)

where the electromagnetic charge is given by

e=
e0√

1+
e20
2g2

≈ e0 . (3.156)

An alternative approach to the HS scheme just presented is the so-called massive Yang-
Mills (YM) approach, in which the spin-1 fields are introduced in the ungauged Lagrangian
through the covariant derivative. We start again with the non-linear sigma model from
Eq. (3.133) and define the following covariant derivative

DµU = ∂µU + ig[Vµ,U ] , (3.157)

where U and Vµ are given in Eqs. (3.134) and (3.142), respectively. From this, it is straight-
forward to find the lowest order Lagrangian [75]

LYM =
f2
π

4
Tr[DµU

†DµU ] = i
√
2gρ0

µ(π
+∂µπ−−π−∂µπ+)

×
[
1− 1

3f2
π

(π0π0 + 2π+π−)

]
+ 2g2ρ0

µρ
0µπ+π−+ ... ,

(3.158)

where only the terms involving interactions between the neutral ρ0 and the pions are shown.
In the massive YM approach, the vector-photon interaction is introduced through the corre-
sponding Lagrangian term from the conventional VMD representation in Eq. (3.126)

Lργ = −2
√
2egf2

πA
µρ0

µ , (3.159)

where use of the relation M2
ρ = 4g2f2

π has been made [cf. Eq. (3.154)].
For completeness, we quote the SU(3)-extended non-anomalous Lagrangian terms that

shall be used in subsequent chapters of this thesis. These are

LVPP = igTr[ṼµΦ̃ ∂µΦ̃− Ṽµ∂µΦ̃ Φ̃] ,

LVγ = −4egf2
πA

µTr[QṼµ] ,
(3.160)

where Q is the quark-charge matrix from Eq. (3.25), Φ̃ is nonet of pseudoscalar mesons
defined in Eq. (3.70) and Ṽµ can be written in the ideal-mixing limit as

Ṽµ ≡
8∑

a=1

λa√
2
V a
µ =


1√
2
ρ0
µ+

1√
2
ωµ ρ+µ K∗+µ

ρ−µ − 1√
2
ρ0
µ+

1√
2
ωµ K∗0µ

K∗−µ K
∗0
µ φµ

 . (3.161)

It is worth noting that the gauge coupling constant g can be determined using the experimental
decay widths from the processes ρ0 → π+π− and ρ0 → e+e−, yielding g = 4.2±0.1 and
g = 4.0±0.2, respectively [75].
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3.5.2 Inclusion of the anomalous term

The starting point for this discussion is the WZW anomalous Lagrangian from Sec. 3.2.2,
Eq. (3.57). At order O(p6) in the chiral expansion, the relevant part of the anomalous La-
grangian can be written as a linear combination of three independent terms with coefficients
a1, a2 and a3 (see Ref. [84] for details). For the present discussion, though, we are only inter-
ested in the Lagrangian terms associated to the Pγγ, VPγ and V VP vertices and, as it turns
out, they are proportional to the constants a2 and a3 only.28 Thus, one can write [75, 85]

LPγγ =
(

3

4π2
+ 8a3

)
e2

√
2fπ

εµναβ∂µAν∂αAβTr[Q
2Φ̃] ,

LVPγ = (a2−2a3)

√
2eg

fπ
εµναβ∂µAνTr[Q(∂αṼβΦ̃+ Φ̃∂αṼβ)] ,

LV VP = −2
√
2a2

g2

fπ
εµναβTr[∂µṼν∂αṼβΦ̃] ,

(3.162)

where Q is, once again, the quark-charge matrix from Eq. (3.25), and Φ̃ and Ṽµ are, re-
spectively, the U(3) matrices of pseudoscalar and vector meson fields defined in Eqs. (3.70)
and (3.161). The characteristic feature of these anomalous terms is the appearance of the
totally antisymmetric Levi-Civita tensor εµναβ , which indicates a mismatch of natural parity
assignments in these processes [83].

It is interesting to note that the choice of coefficients a2 = 2a3 =−3/16π2 in Eq. (3.162)
leads to the vanishing of the direct Pγγ and VPγ couplings, which in turn allows recovering
the conventional VMD model from Eq. (3.126), whereby pseudoscalar mesons do not couple
directly to photons but through the exchange of intermediate vectors. Thus, LV VP becomes

LV VP =
3g2

4
√
2π2fπ

εµναβTr[∂µṼν∂αṼβΦ̃] , (3.163)

It is important to highlight that any other choice for these parameters would give rise to
deviations from the conventional VMD representation, with the possibility of direct Pγγ
and VPγ vertices (see Ref. [75] and sources therein for a complete discussion).

3.6 U(3)×U(3) linear sigma model

Naive quark models (NQMs) (see Sec. 2.3) give predictions that are in qualitative agreement
with the hadronic spectrum in the vector meson sector. However, they fail at providing an
understanding of the spectrum of the lightest pseudoscalar and scalar meson sectors. For
the former, though, the spontaneous breaking of the approximate chiral symmetry of QCD
explains the lowest lying pseudoscalar mesons as pseudo-Goldstone modes and, thus, their
smaller than expected masses; in addition, the effects of the U(1)A anomaly provide an
explanation for the comparatively large mass of the pseudoscalar singlet state η′.

Contrary to this, the situation in the scalar sector has been far from clear [86–88], to the
point where the qq̄ structure for the a0(980) and f0(980) was at some stage put in doubt
owing to the fact that the NQMs are unable to explain the very small coupling of these states
to two photons [89, 90] and the quark content suggested by the mass spectrum is incompat-
ible with their main decay channels [91, 92]. Similar to what happens in the pseudoscalar
sector, there is an obvious reason as to why the NQMs fail at describing the scalar meson
spectrum, which is the absence of the chiral symmetry within the model. As it turns out, the

28Note that all three coefficients enter in the analysis of processes such as ω→ 3π.
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approximate chiral symmetry of QCD is broken in the vacuum by the quark condensate, and
the σ and f0 have the same quantum numbers as the vacuum [87], rendering these features
of the chiral symmetry as fundamental to understanding the scalar meson sector.

The well-known linear sigma model [93–95] can be generalised to three flavours by in-
troducing ab initio and on the same footing the nonet of pseudoscalar mesons and its chiral
partner, the scalar meson nonet. This effective theory contains the same flavour and chiral
symmetries as massless QCD [87], incorporates the breaking of the U(1)A symmetry [88]
and explicitly introduces the effect of the scalar meson poles, whilst keeping the correct be-
haviour as expected from χPT at low invariant masses [96]. Accordingly, the U(3)×U(3)
linear sigma model (LσM) Lagrangian takes the form [86]

LLσM =
1

2
Tr
[
∂µM∂µM

†]−Vsym−VSB , (3.164)

where Vsym is the U (3)×U(3) symmetric potential

Vsym =
µ2

2
Tr
[
MM†

]
+
λ

4
Tr
[
MM†MM†

]
+
λ′

4
Tr
[
MM†

]
Tr
[
MM†

]
, (3.165)

and VSB contains symmetry-breaking terms that explicitly break both the chiral and U (1)A
symmetries

VSB = −Tr
[
CΣ̃
]
+β
(
det{M}+det

{
M†
})

. (3.166)

The field matrix M is in turn written as

M= Σ̃+ iΦ̃ , (3.167)

where
Σ̃ ≡ 1√

2
λiσi , Φ̃ ≡ 1√

2
λiφi (3.168)

are, respectively, the matrices for the nonet of scalar and pseudoscalar meson fields, with
i= 0, ...,8 [cf. Eq. (3.70)]. The coefficient matrix C in Eq. (3.166) is defined as

C ≡ 1√
2
λici , (3.169)

where the ci are constants. The most general form that preserves isospin and gives rise to
the partially conserved axial currents has c0 and c8 as the only two non-vanishing coeffi-
cients, with the former providing a common mass to the pseudoscalar nonet and the latter
breaking the SU(3) symmetry down to isospin [86]. On the other hand, the second term in
Eq. (3.166) corresponds to the instanton induced quark interaction associated to the break-
ing of the U(1)A axial symmetry, which has the form of a determinant in flavour space that
breaks the U(3)L×U(3)R symmetry group down to SU(3)L×SU(3)R×U(1)V [88].

Linear terms in the fields appearing in the Lagrangian, which originate from the lin-
ear Σ̃ term in the symmetry breaking potential VSB, can be eliminated from the theory by
performing a shift to a new scalar field matrix Σ̃→ Σ̃+V0. Thus, we introduce the SU(3)-
violating isospin-conserving vacuum expectation value (VEV) matrix V0 = diag{a,a,b},
with a and b being related to the VEV of the scalar fields (denoted by {}) through [86, 88]

a=
1√
3
{σ0}+

1√
6
{σ8} , b=

1√
3
{σ0}−

2√
6
{σ8} . (3.170)

It is important to note that the shift in the Σ̃ field gives rise to new three-meson interac-
tions, as well as mass terms for the fields. To analyse this, it is convenient to write the shifted
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Lagrangian as LLσM =
∑

nLn, where terms containing products of n fields are collected in
Ln. The stability condition L1 = 0 sets the constraints [86]√

2

3
c0 +

√
1

3
c8 =

√
2a(ξ+ 2βb+λa2) ,√

2

3
c0−

1

2
√
3
c8 =

1√
2
(a+ b)

[
ξ+ 2βa+λ(a2−ab+ b2)

]
,

(3.171)

where we have defined the parameter ξ ≡ µ2 + λ′(2a2 + b2) for convenience. The meson
masses, on the other hand, are extracted from L2. For the non-mixed sector, one finds [88]

M2
π = ξ+ 2βb+λa2 , M2

K = ξ+ 2βa+λ(a2−ab+ b2) ,

M2
a = ξ−2βb+ 3λa2 , M2

κ = ξ−2βa+λ(a2 +ab+ b2) ,
(3.172)

whereas the following relationships hold in the quark-flavour basis29 for the mixed sector [86]

M2
ηNS

= ξ−2βb+λa2 , M2
σNS

= ξ+ 2βb+ 3λa2 + 4λ′a2 ,

M2
ηS

= ξ+λb2 , M2
σS

= ξ+ 3λb2 + 2λ′b2 ,

M2
ηS−NS

= −2
√
2βa , M2

σS−NS
= 2
√
2(β+λ′b)a .

(3.173)

As it turns out, the U (1)A anomaly couples in this model to the scalar fields VEV by the
spontaneous breaking of the chiral symmetry and contributes through this mechanism to the
masses of all fields of the theory with exception of the strange mesons [88]. The masses for
the physical fields, being linear combinations of the corresponding |NS〉 and |S〉 states, can
be found by diagonalising the corresponding mass matrices yielding

M2
η =

1

2
(M2

ηNS
+M2

ηS
)− 1

2

√
(M2

ηNS
−M2

ηS
)2 + 4M4

ηS−NS
,

M2
η′ =

1

2
(M2

ηNS
+M2

ηS
)+

1

2

√
(M2

ηNS
−M2

ηS
)2 + 4M4

ηS−NS
,

M2
σ =

1

2
(M2

σNS
+M2

σS
)− 1

2

√
(M2

σNS
−M2

σS
)2 + 4M4

σS−NS
,

M2
f0 =

1

2
(M2

σNS
+M2

σS
)+

1

2

√
(M2

σNS
−M2

σS
)2 + 4M4

σS−NS
,

(3.174)

with mixing angles given by [86]

sin2φP = − 4
√
2βa

m2
η′−m2

η

, sin2φS =
4
√
2(β+λ′b)a

M2
f0
−M2

σ

, (3.175)

where φP and φS are, respectively, the pseudoscalar and scalar mixing angles in the quark-
flavour basis. It is interesting to note from Eq. (3.174) that, according to this model, the η-η′

mass splitting,
(m2

η′−m2
η)

2 = [λ(a2− b2)−2βb]2 + 32β2a2 , (3.176)

is down to the breaking of the SU(3) flavour symmetry and the effect of the U(1)A anomaly,
as one would expect.

The U(3)×U(3) LσM has got six free parameters, i.e. a, b, µ, λ, λ′ and β, which can be
fixed from phenomenology. With exception of the mixed scalar meson masses, all the other

29See Appendix A for the definition of the basis states.
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masses in Eqs. (3.172) and (3.173) depend on the parameters a, b, λ, β and the combination
ξ = µ2 +λ′(2a2 + b2). In order to extract the value of λ′, though, one requires experimental
information on the mixed scalar sector that still contains a significant amount of uncertainty.
From the stability condition (i.e. L1 = 0), together with the definition of the divergence of the
axial-vector currents in Eq. (2.36) and the meson mass relationships, one can obtain values
for the VEV parameters [86]

a=
fπ√
2
, b=

2fK −fπ√
2

. (3.177)

Likewise, one can use the expressions for M2
η′ , M

2
η and M2

π to fix the values of β, λ and ξ.
In particular, β is found as the solution to the second order equation30

8(a2 + 2b2)β2−4b(2M2
π −M2

η′−M2
η )β+(M2

η′−M2
π)(M

2
η −M2

π) = 0, (3.178)

whilst λ and ξ turn out to be

λ=
2M2

π −M2
η′−M2

η −6bβ

a2− b2
, ξ =M2

π −2bβ−λa2 . (3.179)

As it is discussed in Ref. [86], a mass of 980 MeV for the scalar singlet state f0 requires a
λ′ ≈ 4. This in turn leads to Mσ ≈ 400 MeV, which is consistent with the range provided
in Ref [1]. On the other hand, the scalar mixing angle φS can be extracted from Eq. (3.175)
and several numerical values have been proposed by different authors, where φS ≈−14◦ has
been suggested in Ref. [86] and φS ≈−8◦ in Ref. [96].

Next, the trilinear σaφbφc coupling constants, which arise from the field shift Σ̃→ Σ̃+V0,
can be written in the isospin limit in terms of the predicted physical masses, mixing angles
and decay constants (see Refs. [86, 87, 96] for details). As it turns out, they are given by

gσK+K− = g
σK0K

0 =
M2
K −M2

σ

2fK
(cosφS−

√
2sinφS) ,

gf0K+K− = g
f0K0K

0 =
M2
K −M2

f0

2fK
(sinφS+

√
2cosφS) ,

ga0K+K− = −g
a0K0K

0 =
1√
2
ga±0 K∓K0(0) =

M2
K −M2

a0

2fK
,

gσπ0π0 = gσπ+π− =
M2
π −M2

σ

fπ
cosφS ,

gf0π0π0 = gf0π+π− =
M2
π −M2

f0

fπ
sinφS ,

gκ∓K±π0 =
M2
π −M2

κ

2fK
=
M2
K −M2

κ

2fπ
,

ga0π0η(′) =
M2
η(′)
−M2

a0

fπ
cosφP ,

gκ∓K±η(′) =
M2
η(′)
−M2

κ

2fK
(cosφP −

√
2sinφP ) .

(3.180)

Needless to say, the electromagnetic interactions are incorporated into the model through
the usual procedure of promoting the partial derivatives in Eq. (3.164) to the gauge covariant

30It is worth highlighting that the β parameter is a direct measure of the ηNS-π mass splitting [86].
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derivative defined as
∂µM→DµM= ∂µM+ ieAµ[Q,M] , (3.181)

with Aµ being the photon field and Q= diag{2/3,−1/3,−1/3} the quark-charge matrix.
Before concluding, a couple of points are worth highlighting: i) as it is done with VMD,

one may invoke saturation by meson-resonance exchange to estimate the numerical values of
some of the O(p4) LECs using the U (3)×U(3) LσM but we shall not further pursue this
topic here (the interested reader is referred to Ref. [86] for details); and ii) the U (3)×U(3)
LσM appears to have fallen out of favour against dispersive methods to assess scalar ex-
change contributions (see, e.g., Refs. [97, 98]).

3.7 The Standard Model effective field theory

In the applications considered thus far in this chapter, the SM plays the role of the underlying
UV theory whose low-energy limit is to be explored using the appropriate EFT. However, one
can also regard the SM as an effective theory describing the low-energy limit of a presently
unknown UV-completion theory that will ultimately replace the SM at much shorter dis-
tances [31], and this is known as the Standard Model effective field theory (SMEFT).

There are advantages in employing the EFT formalism in this context. First of all, the
SMEFT allows describing new physics in a model-independent way, enabling the derivation
of bounds on the parameters of the effective theory from experiments that can subsequently
be recasted into bounds on the parameters of specific BSM models. As well as this, the
SMEFT does not require defining concrete BSM schemes in order to parameterise potential
deviations of experimental results from the SM. All in all, the SMEFT represents a powerful
consistent field theory for characterising the low-energy limit of any new BSM physics.

Let us begin assuming that the separation of scales between the SM and the new physics
is sufficiently large that a meaningful description of the SM as an EFT is possible.31 Thus,
the SMEFT Lagrangian takes the form

LSMEFT = LSM +L(5)+L(6)+ ...

= LSM +
1

Λ

nD∑
k=1

c
(5)
k Q

(5)
k +

1

Λ2

nD∑
k=1

c
(6)
k Q

(6)
k + ...

= LSM +
∞∑
D=5

nD∑
k=1

c
(D)
k

ΛD−4
Q(D)
k ,

(3.182)

where the SM Lagrangian is the leading term in the EFT expansion, the c(D)k are Wilson
coefficients and Λ is the energy scale associated to the new physics in this context. The
new operators Q(D)

k , with mass dimension D, must respect the symmetries of the SM, such
as Lorentz and gauge invariance, and are made of SM fields only, which means that the
SM degrees of freedom are incorporated as fundamental or composite fields. The SMEFT
Lagrangian contains an infinite set of operators although there are only a finite number of
them at each dimensionD, with their contributions to any given observable being suppressed
by powers of (E/Λ)D−4, where E represents the characteristic scale of the low-energy
effective theory. In order to find a minimal set of independent operators at a given dimension,
one may need to redefine the fields, use the equations of motion (EOMs) and apply other
operator identities to eliminate the redundant operators [100].

31For a general renormalizable theory in the conventional sense, the heavy degrees of freedom decouple from
the low-energy dynamics of the theory and can, therefore, be integrated out by virtue of the decoupling theorem
by Appelquist and Carazzone [99].
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As with any other EFT, one needs to include all possible operators at a given order in
the power counting consistent with the symmetries of the theory for the SMEFT to be renor-
malisable order by order. The power counting scheme in the SMEFT is based on the mass
dimension of the operators Q(D)

k . It must be noted that one can write

Q(D)
k = ψ

a
ψb∂cHe(H†)fAg , (3.183)

where ψ stands for a generic fermion field, H is the Higgs field and A is a generic gauge
field. The mass dimension of this operator is

[Q(D)
k ] ≡D =

3

2
(a+ b)+ c+ e+ f + g , (3.184)

so that, in d= 4 spacetime dimensions, the condition[
Q(D)
k

ΛD−4

]
= 4 (3.185)

is always fulfilled and the c(D)k are, thus, dimensionless coefficients, as expected.
As indicated above, the leading term in the EFT expansion of the SMEFT is the SM

Lagrangian. Consequently, it makes sense to provide a lightning summary of the SM here
(cf. Refs. [3–6, 26] for a detailed account). The SM [101–103] is the most general renormal-
isable theory consistent with SU(3)C ×SU(2)L×U(1)Y gauge invariance. The associated
Lagrangian consists of the following parts

LSM = Lgauge +Lfermion +LHiggs +LYukawa , (3.186)

where Lgauge and Lfermion contain, respectively, the kinetic terms for the gauge and fermion
fields, LHiggs contains the kinetic and potential terms for the Higgs field, and LYukawa con-
tains the Yukawa sector of the SM. The gauge kinetic terms are

Lgauge = −
1

4
GAµνG

Aµν− 1

4
W I
µνW

Iµν− 1

4
BµνB

µν , (3.187)

where GAµν is the gluon field strength tensor, which is defined in Sec. 2.1, Eq. (2.2), whilst
W I
µν = ∂µW

I
ν −∂νW I

µ −gεIJKW J
µW

K
ν andBµν = ∂µBν−∂νBµ are, respectively, the cor-

responding SU(2)L and U(1)Y counterparts.
The fermion kinetic terms are given by

Lfermion = q̄i /Dq+ ūi /Du+ d̄i /Dd+ l̄i /Dl+ ēi /De , (3.188)

where the matter content includes the left-handed32 lepton weak doublet fields ljp, with weak
hypercharge Yl =−1, the right-handed weak singlet lepton fields ep, with Ye =−2, the left-
handed quark weak doublet fields qαjp , with Yq = 1/3, and the right-handed weak singlet
up and down quark fields uαp and dαp , with Yu = 4/3 and Yd = −2/3, respectively (see
summary of transformation properties of the SM fields under the Lorentz and gauge groups in
Table 3.3). The matter field indices employed refer to weak isospin j= 1,2, colour α= 1,2,3
and generation p = 1,2,3, all of which have been suppressed in Eq. (3.188) for clarity of
notation. The SM weak hypercharge assignment for the field i is related to the corresponding

32Remember that the chiral fermions are ψR/L = PR/Lψ, where PR/L = (1±γ5)/2 [cf. Eq. (2.23)].
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TABLE 3.3: Transformation properties of the SM fields under the Lorentz
SU(2)L×SU(2)R and gauge groups [19].

Lorentz SU(3)C SU(2)L U(1)Y

Gµν (1,0)+ (0,1) 8 1 0

Wµν (1,0)+ (0,1) 1 3 0

Bµν (1,0)+ (0,1) 1 1 0

H (0,0) 1 2 1

q ( 12 ,0) 3 2 1
3

u (0, 12 ) 3 1 4
3

d (0, 12 ) 3 1 − 2
3

l ( 12 ,0) 1 2 −1
e (0, 12 ) 1 1 −2

electric charge Qiem and diagonal SU(2)L generator ti3 by

Qiem = ti3 +
Yi
2
. (3.189)

The fermion fields in Eq. (3.188) are in the weak eigenbasis, with

q1 =

(
uL
d′L

)
, q2 =

(
cL
s′L

)
, q3 =

(
tL
b′L

)
,

l1 =

(
νe′L
eL

)
, l2 =

(
νµ′L
µL

)
, l3 =

(
ντ ′L
τL

)
,

(3.190)

where the down-type quark weak eigenstates (primed) can be expressed as linear combina-
tions of the mass eigenstates (unprimed) through the CKM matrix (see Sec. 6.2 for further
details). Similarly, in the lepton sector the neutrino weak eigenstates (primed) are related to
the mass eigenstates (unprimed) by the PMNS matrixd′Ls′L

b′L

= VCKM

dLsL
bL

 ,

νe′Lνµ′L
ντ ′L

= UPMNS

νeLνµL
ντL

 . (3.191)

Furthermore, the covariant derivative acting on (left-handed) doublet fields is defined as33

Dµ = ∂µ− (igsT
AGAµ )− igtIW I

µ − ig′
Yi
2
Bµ , (3.192)

whilst, when acting on (right-handed) singlet fields, it is given by

Dµ = ∂µ− (igsT
AGAµ )− ig′

Yi
2
Bµ , (3.193)

where the TA ≡ λA/2 are the generators of SU(3) transformations, with λA being the Gell-
Mann matrices from Eq. (2.5), the tI ≡ σI/2 are the generators of the SU(2) group, with σI

being the Pauli matrices from Eq. (2.21), and Yi is the weak hypercharge of the i field.

33Note that leptons are singlets under the SU(3)C gauge symmetry group. Hence, the covariant derivative
term containing the gluonic interaction vanishes when acting on leptons, which is indicated with the brackets in
Eqs. (3.192) and (3.193).
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The Higgs part of the SM Lagrangian takes the form

LHiggs = (DµH)†(DµH)−λ
(
H†H− 1

2
v2

)2

, (3.194)

where H is the Higgs SU(2)L complex scalar doublet, with hypercharge YH = 1. The
associated VEV can be written as 〈H†H〉= v2/2, with v ∼ 246 GeV, which spontaneously
breaks the gauge group SU(2)L×U(1)Y →U(1)Q. With the above normalisation, the mass
of the Higgs boson is m2

H = 2λv2.
Finally, the Yukawa sector of the SM is

−LYukawa = Y d
mnq̄

mHdn+Y u
mnq̄

mH̃un+Y e
mn l̄

mHen+h.c. , (3.195)

where the Y p are the symmetric 3× 3 (in generation space) Yukawa matrices of coupling
constants (do not confuse these matrices with the hypercharge assignments Yi). The con-
jugated Higgs field H̃ is defined as H̃ ≡ iσ2H

∗ and can be expressed in tensor notation
as H̃j = εjk(H

k)∗, where εjk is the totally antisymmetric tensor such that ε12 = +1 and
εjk =−εkj . After spontaneous symmetry breaking, the Higgs field acquires a VEV resulting
in the generation of all quark and charged lepton masses. In the unitary gauge, one can write

H =
1√
2

(
0

v+h(x)

)
(3.196)

and, after setting h(x)→ 0, it can be shown that the fermion mass matrices take the form
Mu,d,e = Y u,d,e v/

√
2 (cf. Sec. 6.2).

Let us now summarise the SM EOMs, which play a crucial role in the choice of SMEFT
operator basis and the removal of redundant operators.34 For the Higgs and gauge fields, one
finds [100, 105]

(DµDµH)j = λv2Hj−2λ(H†H)Hj+ εjkq̄
kY uu− d̄Y d†qj− ēY e†lj ,

(DµGµν)
A = gs(q̄γνT

Aq+ ūγνT
Au+ d̄γνT

Ad) ,

(DµWµν)
I =

g

2
(H†i

↔
Dν
IH+ l̄γνσ

I l+ q̄γνσ
Iq) ,

∂µBµν = g′YHH
†i
↔
DνH+ g′

∑
f=l,e,q,u,d

Yf f̄γνf ,

(3.197)

where the hermitian derivative notation, defined as

H†i
↔
DµH = iH†(DµH)− i(DµH)†H ,

H†i
↔
Dν
IH = iH†σI(DµH)− i(DµH)†σIH ,

(3.198)

has been used. The fermion field EOMs are in turn given by

i /Dqj = Y dHj d+Y uH̃j u , i /Dd= Y d†H†q , i /Du= Y u†H̃†q ,

i /Dlj = Y eHj e , i /De= Y e†H†l .
(3.199)

34It is worth noting that one can generally apply the EOMs to the Lagrangian without changing the observ-
ables, as it was shown in Ref. [104].
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TABLE 3.4: Operators with Hn, sets X3, H6, H4D2 and ψ2H3 [100]. See
main text for the operator naming conventions.

X3 H6 and H4D2 ψ2H3+h.c.

QG fABCGAνµ GBρν GCµρ QH (H†H)3 QeH (H†H)(l̄perH)

QG̃ fABCG̃Aνµ GBρν GCµρ QH� (H†H)�(H†H) QuH (H†H)(q̄purH̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QHD (H†DµH)∗ (H†DµH) QdH (H†H)(q̄pdrH)

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

TABLE 3.5: Operators with Hn, sets X2H2, ψ2XH and ψ2H2D [100].
See main text for the operator naming conventions.

X2H2 ψ2XH+h.c. ψ2H2D

QHG H†HGAµνG
Aµν QeW (l̄pσµνer)σIHW I

µν Q(1)
Hl (H†i

↔
DµH)(l̄pγµlr)

QHG̃ H†HG̃AµνG
Aµν QeB (l̄pσµνer)HBµν Q(3)

Hl (H†i
↔
Dµ
IH)(l̄pσIγµlr)

QHW H†HW I
µνW

Iµν QuG (q̄pσµνTAur)H̃GAµν QHe (H†i
↔
DµH)(ēpγµer)

Q
HW̃

H†HW̃ I
µνW

Iµν QuW (q̄pσµνur)σIH̃W I
µν Q(1)

Hq (H†i
↔
DµH)(q̄pγµqr)

QHB H†HBµνBµν QuB (q̄pσµνur)H̃Bµν Q(3)
Hq (H†i

↔
Dµ
IH)(q̄pσIγµqr)

QHB̃ H†HB̃µνBµν QdG (q̄pσµνTAdr)HGAµν QHu (H†i
↔
DµH)(ūpγµur)

QHWB H†σIHW I
µνB

µν QdW (q̄pσµνdr)σIHW I
µν QHd (H†i

↔
DµH)(d̄pγµdr)

Q
HW̃B

H†σIHW̃ I
µνB

µν QdB (q̄pσµνdr)HBµν QHud (H̃†iDµH)(ūpγµdr)

3.7.1 SMEFT operators

In this subsection, we summarise the SMEFT operators up to mass dimension 6. By noticing
that in d= 4 spacetime dimensions scalar fields have mass dimension 1, field strength tensors
have mass dimension 2, fermion fields have mass dimension 3/2 and derivatives have mass
dimension 1, one can already constrain the combinations of fields and derivatives in operators
of a given mass dimension based on dimensional-analysis grounds only.

At mass dimension 5, there is a single operator that is consistent with the SM field content
and gauge symmetries [106], and takes the form

Q(5) = εjkεmnH
jHm(lkp)

TClnr ≡ (H̃†lp)
TC(H̃†lr) , (3.200)

where p,r are generation indices, j,k,m,n are weak SU(2)L indices and C is the charge-
conjugation operator, which can be expressed as C = iγ2γ0 in the Dirac representation of
gamma matrices. Note that this operator violates lepton number by two units, i.e. ∆L= ±2,
and an experimental consequence of it is the generation of Majorana neutrino masses when
the weak interactions are spontaneously broken.35 Since neutrino masses are very small, it
is assumed that this operator may be generated at a very high scale (e.g. the grand unifica-
tion energy scale) [19]. Accordingly, the first new-physics corrections are expected to be
parameterised by operators of mass dimension 6.

35Note that the minimal SM contains only left-handed neutrinos. If one postulates, though, the existence of
non-interacting right-handed neutrino fields, then the Higgs mechanism could be extended to generate neutrino
Dirac masses. However, there is an alternative whereby neutrinos are their own antiparticles, i.e. they are Majo-
rana fermions. In this scenario, it is possible to write a mass term out of left-handed neutrino fields only, which
takes the form

Lν =mν ν̄
c
LνL+h.c. , (3.201)

where ν̄cL is the charge-conjugated neutrino field.
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TABLE 3.6: Four-fermion operators, sets (L̄L)(L̄L), (R̄R)(R̄R) and
(L̄L)(R̄R) [100]. See main text for the operator naming conventions.

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγµlt) Qee (ēpγµer)(ēsγµet) Qle (l̄pγµlr)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Qlu (l̄pγµlr)(ūsγµut)

Q(3)
qq (q̄pγµσIqr)(q̄sγµσIqt) Qdd (d̄pγµdr)(d̄sγµdt) Qld (l̄pγµlr)(d̄sγµdt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
lq (l̄pγµσI lr)(q̄sγµσIqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

TABLE 3.7: Four-fermion operators, sets (L̄R)(R̄L) and baryon-number
violating [100]. See main text for the operator naming conventions.

(L̄R)(R̄L) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk[(dαp )

TCuβr ][(q
γj
s )TClkt ]

Q(1)
quqd (q̄jpur)εjk(q̄

k
sdt) Qqqu εαβγεjk[(qαjp )TCqβkr ][(uγs )

TCet]

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt) Q(1)

qqq εαβγεjkεmn[(qαjp )TCqβkr ][(qγms )TClnt ]

Q(1)
lequ (l̄jper)εjk(q̄

k
sut) Q(3)

qqq εαβγ(σIε)jk(σIε)mn[(qαjp )TCqβkr ][(qγms )TClnt ]

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut) Qduu εαβγ [(dαp )
TCuβr ][(u

γ
s )
TCet]

The first step towards constructing a complete set of operators for L(6) satisfying in-
variance under the SU(3)C ×SU(2)L×U (1)Y gauge group was reported in Ref. [107].
However, this operator basis was overcomplete, that is, there were operators whose Wilson
coefficients vanished when observables were calculated, which occurs when the EOMs relate
the field variables as the external states go on-shell [105]. One can make field redefinitions of
the SM fields so that redundant combinations ofQ(6) operators vanish at the Lagrangian level
instead of cancelling at the S-matrix-element level, resulting in a non-redundant basis for the
SMEFT after making use of the EOMs. Although the first step in this direction was car-
ried out by Buchmüller and Wyler [108] in the mid-1980s, a complete set of non-redundant
dimension-6 operators was not found until more than two decades later through the works
of Grzadkowski et al. in Ref. [109], and Giudice et al. in Ref. [110] and others [111–115].
It is important to highlight that there is not a unique way of redefining the SM model fields,
which means that different operator bases are allowed and that SM fields become contextual
in the SMEFT. All operator bases, though, are equivalent up to operator redefinitions, Fierz
transformations, EOMs and other operator identities [100].

At dimension 6, one can have four-fermion interaction terms without bosons or deriva-
tives. There can also be operators with two fermion fields, and a combination of scalar fields,
derivatives and a field strength tensor with a total mass dimension of 3. The last possible class
of operators are purely bosonic terms, such as a combination of field strength tensors, scalar
fields and derivatives. In this thesis, we employ the so-called Warsaw basis [109], which con-
tains 59 baryon-number conserving and 5 baryon-number violating operators. These in turn
can be organised in twelve subsets (see Tables 3.4, 3.5, 3.6 and 3.7). Among these subsets,
there are five that contain various four-fermion operators (cf. Tables 3.6 and 3.7).

The naming conventions in these tables are as follows: p,r,s, t are generation indices;
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α,β,γ are fundamental-representation SU(3)C indices; A,B,C are adjoint-representation
SU(3)C indices; j,k,m,n are fundamental-representation SU(2)L indices; and I is an
adjoint-representation SU(2)L index. In addition, TA are the generators of the SU(3)C
group; and σI are the Pauli matrices. Moreover, H̃ is the conjugated Higgs field; G̃Aµν is the
dual of the gluon field strength tensor (i.e. G̃Aµν ≡ 1

2εµνσρG
Aσρ); and W̃ I

µν is the correspond-
ing dual weak field strength tensor. Finally, C is the charge-conjugation operator; ε is the
totally antisymmetric tensor; σµν ≡ i

2 (γ
µγν−γνγµ) is the Dirac antisymmetric tensor; and

� is the d’Alambertian operator. Taking into account all the different flavours of quarks and
leptons results in a total of 2499 baryon-number conserving operators [100].
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Chapter 4

The η-η′ mixing

The mixing of states is a quantum-mechanical feature that is closely related to the symmetries
of the underlying dynamics and the specific mechanisms that lead to their breaking [116]. In
particular, one finds numerous examples of mixing phenomena in the field of high energy
physics, such as K0-K0, D0-D0 and B0-B0 mixing, neutrino oscillations, quark mixing
through the Cabibbo-Kobayashi-Maskawa mechanism, and the Weinberg angle [1].

In the non-perturbative regime of QCD, there is a very rich phenomenology arising from
the dynamical (spontaneous) breaking of the chiral symmetry, its explicit breaking by the
quark masses and the axial U(1)A anomaly [116]. In this context, the η and η′ phenomenol-
ogy has stablished itself as a fruitful arena to investigate many aspect of low-energy QCD.

In this chapter, we analyse in detail the mixing of the η and η′ mesons within the frame-
work of large-NC χPT, which allows the η′ meson to become the ninth pseudo-Goldstone
boson of the spontaneously broken U(3)L×U(3)R→ U(3)V chiral symmetry of QCD.

4.1 Leading order in large-NC χPT

As shown in Chapter 3.3, the axial U (1)A anomaly vanishes within the large-NC χPT frame-
work in the NC →∞ limit, which in turn enables the inclusion of the pseudoscalar singlet
within the nonet of Nambu-Goldstone bosons associated to the spontaneous breaking of the
flavour U(3)L×U(3)R→ U(3)V chiral symmetry. In this setting, let us consider the two-
dimensional space of isoscalar (pseudoscalar) mesons, where the SU(3) octet and singlet
fields are grouped in the doublet ηTB ≡ (η8,η1). Accordingly, the quadratic term in the La-
grangian takes the form [58, 65]

L=
1

2
∂µη

T
BK∂µηB−

1

2
ηTBM2ηB , (4.1)

where

K =

(
1+ δ8 δ81

δ81 1+ δ1

)
, M2 =

(
M2

8 M2
81

M2
81 M2

1

)
, (4.2)

with the following definitions for the mass matrix elements

M2
8 =

◦
M2

8 +∆M2
8 ,

M2
1 =

◦
M2

1 +∆M2
1 +M2

0 ,

M2
81 =

◦
M2

81 +∆M2
81 .

(4.3)

Note that M2
0 = 6τ/F 2 stands for the U (1)A anomaly contribution to the η1 mass, with

τ being the topological susceptibility of the purely gluonic theory (see Sec. 3.3.1), whilst

the
◦
M2
i (i = 8,1) are the O(δ0) quark-mass contributions to the octet and singlet isoscalar

masses, which can be obtained from the second term in Eq. (3.69), and in the isospin limit



64 Chapter 4. The η-η′ mixing

read [58]
◦
M2

8 =
2

3
B0(m̂+ 2ms) =

1

3
(4

◦
M2
K −

◦
M2
π) ,

◦
M2

1 =
2

3
B0(2m̂+ms) =

1

3
(2

◦
M2
K +

◦
M2
π) ,

◦
M2

81 =
2
√
2

3
B0(m̂−ms) = −

2
√
2

3
(
◦

M2
K −

◦
M2
π) ,

(4.4)

where the ma (a = u,d,s) are the masses of the three light quarks, m̂ ≡ (mu+md)/2,

and
◦

M2
K and

◦
M2
π are the kaon and pion masses at O(δ0) in the combined chiral and 1/NC

expansion.
The parameters δ8, δ1 and δ81 in Eq. (4.2), and ∆M2

8 , ∆M2
1 and ∆M2

81 in Eq. (4.3)
correspond to NLO corrections, which means that they vanish at LO. Accordingly, the LO
mass eigenstates of the physical states η and η′ are obtained by simply diagonalising the mass
matrixM2 by means of the orthogonal transformation (cf. Appendix A)

R≡
(
cosθP −sinθP
sinθP cosθP

)
, (4.5)

such that

ηB = RT ·ηP ≡RT ·
(
η
η′

)
, M2

diag = R ·M2 ·RT . (4.6)

Operating, one finds the following LO large-NC results for the η and η′ masses, and mixing
angle θP [117, 118]

◦
M2
η =

1

2
M2

0 +
◦

M2
K −

1

2

√
M4

0 −
4

3
M2

0 ∆+ 4∆2 ,

◦
M2
η′ =

1

2
M2

0 +
◦

M2
K +

1

2

√
M4

0 −
4

3
M2

0 ∆+ 4∆2 ,

sinθP = − 1√
1+

(
3M2

0 −2∆+
√
9M4

0 −12M2
0 ∆+ 36∆2

)2
/32∆2

,

(4.7)

with ∆ ≡
◦

M2
K −

◦
M2
π . It is worth highlighting that the mathematical parameterisation that

has been employed in this subsection is the octet-singlet basis but others, such as the quark-
flavour basis (cf. Appendix A), are also widely used.

4.2 Next-to-leading order in large-NC χPT

To first order in δ8, δ1 and δ81, the kinetic matrix K in Eq. (4.1) can be diagonalised through
the following matrix field redefinition [58]

ηB = Z1/2T · η̂ ≡ Z1/2T ·
(
η̂8

η̂1

)
, Z1/2 ·K ·Z1/2T = 1 , (4.8)

which is satisfied for

Z1/2 =

(
1− δ8/2 −δ81/2
−δ81/2 1− δ1/2

)
. (4.9)
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Using this field redefinition, the mass matrix can be written in the η̂ basis as

M̂2 = Z1/2 ·M2 ·Z1/2T , (4.10)

where, to first order in ∆M2
i and δi×M2

j products (i,j = 8,1,81), one finds

M̂2
8 =

◦
M2

8 (1− δ8)−
◦

M2
81 δ81 +∆M2

8 ,

M̂2
1 = (M2

0 +
◦
M2

1 )(1− δ1)−
◦

M2
81 δ81 +∆M2

1 ,

M̂2
81 =

◦
M2

81

[
1− (δ8 + δ1)/2

]
− (M2

0 +
◦
M2

8 +
◦
M2

1 )δ81/2+∆M2
81 .

(4.11)

As before, one must diagonalise the mass matrix M̂2 by means of an orthogonal transforma-
tion in order to obtain the physical mass eigenstates. To that end, one employs Eq. (4.5) so
that

η̂ = RT ·ηP ≡RT ·
(
η
η′

)
, M2

diag = R · M̂2 ·RT , (4.12)

and finds the following non-trivial relations [58]

M2
η +M2

η′ = M̂2
8 + M̂2

1 , M2
η′−M2

η =

√(
M̂2

8 −M̂2
1

)2
+ 4M̂2

81 , (4.13)

and

tanθP =
M̂2

8 −M2
η

M̂2
81

=
M2
η′−M̂2

1

M̂2
81

=
M̂2

81

M2
η′−M̂2

8

=
M̂2

81

M̂2
1 −M2

η

. (4.14)

It follows from Eqs. (4.8) and (4.12) that the transformation matrix from the bare to the
physical basis takes the form ηB = (R ·Z1/2)T ·ηP , with

R ·Z1/2 =

(
cosθP (1− δ8/2)+ sinθP δ81/2 −sinθP (1− δ1/2)− cosθP δ81/2
sinθP (1− δ8/2)− cosθP δ81/2 cosθP (1− δ1/2)− sinθP δ81/2

)
.

(4.15)
At O(δ) in large-NC χPT, a shift in the kinetic matrix can only come from the terms

associated to L5 and Λ1 in Eq. (3.73). Accordingly, it is straightforward to find the following
expressions

δ8 =
8L5

F 2

◦
M2

8 , δ1 =
8L5

F 2

◦
M2

1 +Λ1 , δ81 =
8L5

F 2

◦
M2

81 . (4.16)

Likewise, a shift in the mass matrix can only come from the terms associated to L8 and Λ2

in Eq. (3.73). Thus, one obtains

∆M2
8 =

16L8

F 2
(
◦
M4

8 +
◦

M4
81) ,

∆M2
1 =

16L8

F 2
(
◦
M4

1 +
◦

M4
81)+ 2Λ2

◦
M2

1 ,

∆M2
81 =

◦
M2

81

(
32L8

F 2

◦
M2
K +Λ2

)
.

(4.17)

Making use now of some of the RχT results from Sec. 3.4, in particular the relations
from Eq. (3.89)

L5 =
cdcm
M2
S

, L8 =
c2
m

2M2
S

, (4.18)
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one can rewrite the expressions from Eqs. (4.16) and (4.17) as

δ8 =
8cdcm
M2
S

◦
M2

8

F 2
, δ1 =

8cdcm
M2
S

◦
M2

1

F 2
, δ81 =

8cdcm
M2
S

◦
M2

81

F 2
(4.19)

and

∆M2
8 =

8c2
m

M2
SF

2
(
◦
M4

8 +
◦

M4
81) ,

∆M2
1 =

8c2
m

M2
SF

2
(
◦
M4

1 +
◦

M4
81) ,

∆M2
81 =

16c2
m

M2
SF

2

◦
M2

81

◦
M2
K ,

(4.20)

where MS is the mass of a generic octet scalar resonance.

4.3 Decay constants in the η-η′ sector

The decay constants in the η-η′ system are defined as in Eq. (2.35), that is, as the matrix
elements of the axial currents [58]

〈0|JµaA (0) |P (p)〉= ipµf
a
P , (4.21)

where the JµaA ≡ q̄γµγ5λ
aq are the axial currents defined at the quark level, a = 8,1 and

P = η,η′. Since the physical η and η′ mesons have octet and singlet components, Eq. (4.21)
defines four independent decay constants, faP . These can be expressed as [119]

{faP }=

(
f8
η f1

η

f8
η′ f1

η′

)
=

(
f8 cosθ8 −f1 sinθ1

f8 sinθ8 f1 cosθ1

)
(4.22)

in what is known as the two-angle parameterisation scheme [119–122]. The physical decay
constants are given by [42]

faP = F
[
(T †)−1K

]a
P
, (4.23)

where F = fπ at O(δ0) and T is the matrix that simultaneously diagonalises the kinetic and
mass matrices of the Lagrangian in Eq. (4.1)

K = T †T , M2 = T †M2
diagT . (4.24)

Of course, the transformation matrix T that diagonalises both K andM2 is the one that re-
lates the physical and bare fields, i.e. ηP =R · (Z1/2T )−1 ·ηB , and, therefore, one is allowed

to write faP = F
[
R · (Z1/2T )−1

]a
P

. Accordingly, to first order in δ8, δ1 and δ81, the decay
constants faP can be expressed as

f8
η/F = cosθP

(
1+

δ8

2

)
− sinθP

δ81

2
,

f1
η/F = −sinθP

(
1+

δ1

2

)
+ cosθP

δ81

2
,

f8
η′/F = sinθP

(
1+

δ8

2

)
+ cosθP

δ81

2
,

f1
η′/F = cosθP

(
1+

δ1

2

)
+ sinθP

δ81

2
.

(4.25)
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Employing the relationships

f8 =
√
(f8
η )

2 +(f8
η′)

2 , f1 =
√
(f1
η )

2 +(f1
η′)

2 (4.26)

and

tanθ8 =
f8
η′

f8
η

, tanθ1 = −
f1
η

f1
η′
, (4.27)

one can easily find the following NLO results for the two basic decay constants

f8 = F

(
1+

δ8

2

)
, f1 = F

(
1+

δ1

2

)
, (4.28)

and mixing angles

θ8 = θP + arctan
δ81

2
, θ1 = θP −arctan

δ81

2
. (4.29)

4.4 η and η′ admixtures with the π0

In order to study the mixing between the η, η′ and π0, one must incorporate isospin-breaking
effects, which are induced by the difference in mass of the u and d quarks, as well as the
difference in electric charge once QED is taken into account. Some of the results from this
subsection are relevant for Chapter 11.

For the analysis that follows, we perform the calculations in the quark-flavour basis (see
Appendix A for details). One can easily change basis by means of the following substitutions

|π0〉 → |π3〉 , |η8〉 →
1√
3
|ηNS〉−

√
2

3
|ηS〉 , |η1〉 →

√
2

3
|ηNS〉+

1√
3
|ηS〉 , (4.30)

where |π3〉 = 1√
2
|ūu− d̄d〉 is the pure isospin triplet state, and |ηNS〉 = 1√

2
|ūu+ d̄d〉 and

|ηS〉= |s̄s〉 are the non-strange and strange mathematical states, respectively. Using the
above substitutions, Eq. (3.70) becomes

Φ̃ =


1√
2
π3 +

1√
2
ηNS π+ K+

π− − 1√
2
π3 +

1√
2
ηNS K0

K− K
0

ηS

 . (4.31)

In order to make progress, Eqs. (4.1) and (4.2) must be enlarged so as to include the π3

state. This is
L=

1

2
∂µφ

T
BK̃∂µφB−

1

2
φTBM̃2φB , (4.32)

where φTB ≡ (π3,ηNS,ηS) and

K̃ =

1+ δ3 δNS3 δS3

δNS3 1+ δNS δSNS

δS3 δSNS 1+ δS

 , M̃2 =

 M2
3 M2

NS3 M2
S3

M2
NS3 M2

NS M2
SNS

M2
S3 M2

SNS M2
S

 , (4.33)

with definitions for the mass matrix elements similar to those from Eq. (4.3)

M2
3 =

◦
M2

3 +∆M2
3 , M2

NS =
◦

M2
NS +∆M2

NS , M2
S =

◦
M2

S +∆M2
S +M2

0 ,

M2
NS3 =

◦
M2

NS3 +∆M2
NS3 , M2

S3 =
◦

M2
S3 +∆M2

S3 , M2
SNS =

◦
M2

SNS +∆M2
SNS .

(4.34)
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As before, from the second term in Eq. (3.69) one finds at LO

◦
M2

3 = B0(mu+md) =
◦

M2
π± ,

◦
M2

NS = B0(mu+md) =
◦

M2
π± ,

◦
M2

S = 2B0ms =
◦

M2
K0 +

◦
M2
K±−

◦
M2
π± ,

◦
M2

NS3 = B0(mu−md) =
◦

M2
K±−

◦
M2
K0 ,

◦
M2

SNS = 0,
◦

M2
S3 = 0.

(4.35)

Drawing a parallel with Eqs. (4.8) and (4.9), at NLO the kinetic matrix K̃ is diagonalised
with the field redefinition

φB = Z̃1/2T · φ̂ , Z̃1/2 · K̃ · Z̃1/2T = 1 , (4.36)

where

Z̃1/2 =

1− δ3/2 −δNS3/2 −δS3/2
−δNS3/2 1− δNS/2 −δSNS/2
−δS3/2 −δSNS/2 1− δS/2

 . (4.37)

After some algebra, one arrives at the following large-NC χPT expressions for the kinetic
shifts from the terms associated to L5 and Λ1 in Eq. (3.73)

δ3 =
8L5

F 2

◦
M2

3 , δNS =
8L5

F 2

◦
M2

NS +
2

3
Λ1 , δS =

8L5

F 2

◦
M2

S +
1

3
Λ1 ,

δNS3 = −
8L5

F 2

◦
M2

NS3 , δSNS =

√
2

3
Λ1 , δS3 = 0.

(4.38)

To diagonalise the mass matrix, we employ the following orthogonal transformation [see
Eq. (7.9)]

R̃≡

 1 ε12 ε13

−ε12 cosφ23 + ε13 sinφ23 cosφ23 −sinφ23

−ε12 sinφ23− ε13 cosφ23 sinφ23 cosφ23

 , (4.39)

where φ23 is the mixing angle in the η-η′ sector, and ε12 and ε13 are first order approximations
to the mixing angles in the π0-η and π0-η′ systems, respectively. The shifts in the masses,
which are associated to the L8 and Λ2 terms in Eq. (3.73), are

∆M2
3 =

16L8

F 2
(
◦
M4

3 +
◦

M4
NS3) , ∆M2

NS =
16L8

F 2
(
◦

M4
NS +

◦
M4

NS3)+
4

3
Λ2

◦
M2

NS ,

∆M2
S =

16L8

F 2

◦
M4

S +
2

3
Λ2

◦
M2

S , ∆M2
S3 = −

√
2

3
Λ2(

◦
M2

S +
◦
M2

3 −2
◦

M2
K±) ,

∆M2
NS3 =

32L8

F 2

◦
M2

NS3

◦
M2

NS−
2

3
Λ2(

◦
M2

S +
◦
M2

3 −2
◦

M2
K±) ,

∆M2
SNS = −

√
2

3
Λ2(

◦
M2

S +
◦

M2
NS) ,

(4.40)

where
◦

M2
K± = B0(mu +ms). As before, the RχT results can be obtained by using the

identities from Eq. (4.18).
For completeness, we provide the theoretical expressions for the mathematical states π3,

ηNS and ηS as functions of the physical states π0, η and η′ at NLO in large-NC χPT in
Appendix B.
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Chapter 5

The complex plane in elementary particle physics

In this chapter, we explore one of the most important discoveries in elementary particle
physics, which is that of the existence of the complex plane [123]. We begin by reviewing
some basic features of the scattering matrix (S-matrix), including unitarity, analyticity and
crossing symmetry. Next, we briefly cover the topic of resonances and some Breit-Wigner-
like parameterisations. We conclude the chapter by discussing dispersion relations and some
of the associated basic results.

5.1 The S-matrix

The superposition principle in quantum mechanics allows for a generic state |ψ〉 to be writ-
ten as

|ψ〉=
∑
n

an |n〉 , (5.1)

where the set of basis states |n〉 is assumed to be orthonormal and complete, i.e.

〈m|n〉= δmn ,
∑
m

|m〉〈m|= 1 . (5.2)

The probability that a final state |f〉 is measured can be calculated from squaring the modulus
of the matrix element 〈f |U |i〉, where |i〉 is some initial state and U is assumed to be a linear
operator. In addition, one requires that, after normalisation of the quantum states, the total
probability of a system to end up in any other state to be unity, which in turn can be expressed
by the condition

∑
n |an|2 = 1. Thus, one is allowed to write [123]

1=
∑
m

| 〈m|U |ψ〉 |2 =
∑
m

〈ψ|U † |m〉〈m|U |ψ〉

= 〈ψ|U †U |ψ〉=
∑
n,n′

a∗n′an 〈n′|U †U |n〉 .
(5.3)

For Eq. (5.3) to hold for any choice of an, it is necessary that U †U = 1. Accordingly, the
condition that the total probability be unity for some initial state to end up in some other
arbitrary final state is equivalent to requiring the operator U to be unitary.

The unitary operator that connects asymptotic in and out states is known as the S-matrix,
and the scattering amplitude is defined as the interacting part of the S-matrix [1]

(2π)4δ4(pi−pf )Mi→f = out〈f |S−1 |i〉in , (5.4)

where |i〉 and |f〉 are asymptotic states of non-interacting particles with four-momenta pi
and pf , respectively. Note that the usual relativistic normalisation for single particle states is
employed

〈pf |pi〉= (2π)32Epiδ
3(~pf −~pi) , (5.5)
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with Epi =
√
~p 2
i +m2. The transfer matrix (T -matrix), defined such that S = 1 + iT ,

is the non-trivial part of the S-matrix and, as a consequence of the unitarity of the latter,
i.e. S†S = 1, one can write [4]

i(T †−T ) = T †T . (5.6)

Sandwiching the left-hand side of Eq. (5.6) between 〈f | and |i〉 gives

〈f | i(T †−T ) |i〉= i〈i|T |f〉∗− i〈f |T |i〉

= i(2π)4δ4(pi−pf )
(
M∗f→i−Mi→f

)
,

(5.7)

whilst on the right hand side one gets

〈f |T †T |i〉=
∑
X

∫
dΠX 〈f |T † |X〉〈X|T |i〉

=
∑
X

(2π)4δ4(pf −pX)(2π)4δ4(pi−pX)
∫
dΠXMi→XM∗f→X ,

(5.8)

after making use of the completeness relation

1 =
∑
X

∫
dΠX |X〉〈X| , (5.9)

where the sum is over any single- and multi-particle states |X〉, and

dΠX ≡
∏
j∈X

d3pj
(2π)3

1

2Ej
. (5.10)

Therefore, unitarity implies [4]

Mi→f −M∗f→i = i
∑
X

∫
dΠX(2π)

4δ4(pi−pX)Mi→XM∗f→X , (5.11)

which is known as the generalised optical theorem. The above relation must hold order-
by-order in perturbation theory and, since the left-hand side has matrix elements whilst the
right-hand side has matrix elements squared, implies that, for example at order Λ2 in some
coupling, the left-hand side must be a loop to match a tree-level contribution on the right-
hand side. Consequently, imaginary parts of loop amplitudes are determined by tree-level
amplitudes and, therefore, an interacting theory must contain loops to satisfy the unitarity
requirement [4].

A particularly important special case of this theorem is when |i〉 = |f〉 = |A〉, for some
state |A〉. In particular, Eq. (5.11) takes now the form

2ImMA→A =
∑
X

∫
dΠX(2π)

4δ4(pA−pX)|MA→X |2 . (5.12)

By noting that when |A〉 is a one-particle state the decay rate may be written as

ΓA→X =
1

2mA

∫
dΠX(2π)

4δ4(pA−X)|MA→X |2 , (5.13)
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then one finds from Eqs. (5.12) and (5.13) that

ImMA→A =mA

∑
X

ΓA→X =mAΓtot , (5.14)

where Γtot is the total decay rate of the particle. The above expression states that the imag-
inary part of the amplitude associated to the exact propagator is equal to the mass times the
total decay rate of the particle [4]. Similarly, if |A〉 is a two-particle state, the cross section
in the centre-of-mass (CM) frame can be expressed as

σA→X =
1

4ECM|~pi|

∫
dΠX(2π)

4δ4(pA−X)|MA→X |2 , (5.15)

and, thus,
ImMA→A = 2ECM|~pi|

∑
X

σA→X , (5.16)

which is known as the optical theorem.
Notice from Eqs. (5.14) and (5.16) that, when an energy threshold for particle production

is crossed from below, then new additional intermediate states are allowed in |X〉. This in turn
implies sudden changes in the left-hand side of these equations, suggesting that the matrix
elements have singularities in the complex plane at each threshold. These singularities are
branch points of the amplitudeM. In order for the amplitude to be single-valued, Riemann
surfaces are employed and, by convention, one draws branch cuts in the complex energy-
squared plane from branch points to infinity along the (positive) real axis. This is an example
of the effect of unitarity on analyticity of the S-matrix.

It is generally believed that causality requires transition amplitudes to be the real-boundary
values of analytic functions of complex variables [123]. The causality condition in QFT is
usually assumed to correspond to the commutativity1 (anticommutativity) of integer (half-
integer) spin field operators for spacelike separations

[φ(x),φ(y)] = 0, (x−y)2 < 0,

{ψ̄(x),ψ(y)}= 0, (x−y)2 < 0.
(5.17)

The above condition is only physically meaningful for the electromagnetic field and it can
only have an indirect application for other fields. Even if the condition in Eq. (5.17) is
accepted, it is difficult to use it to rigorously prove any analytic properties of transition am-
plitudes, though an heuristic derivation was provided in Ref. [124]. The reader is referred to
Ref. [123] for an in-depth discussion.

The scattering amplitude is effectively an analytic function of the Mandelstam variables
s, t and u barring poles and kinematic singularities. The Mandelstam variables are Lorentz-
invariant quantities used in 2→ 2 scattering and 1→ 3 decays. For a 2→ 2 scattering process
with matrix element 〈p3,p4|S |p1,p2〉, they are given by

s≡ (p1 +p2)
2 = (p3 +p4)

2 ,

t≡ (p1−p3)
2 = (p2−p4)

2 ,

u≡ (p1−p4)
2 = (p2−p3)

2 .

(5.18)

As a consequence of total energy-momentum conservation and the on-shell mass condition
for each particle, these variables are related by s+ t+u=

∑4
i=1m

2
i .

1Remember that commutativity and anticommutativity of integer and half-integer spin operators, respec-
tively, imply that they are simultaneously observable, and that they are uncorrelated and cannot influence each
other for spacelike separations.
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Branch points, thus, appear when particle-production channels open, forcing the number
of Riemann sheets to double at each massive two-particle threshold. With branch cuts on
the real axis of the s-complex plane, one must decide which side of the branch cut provides
the physical amplitude. This is directly connected to the Feynman prescription (also known
as the iε-prescription) for obtaining physical amplitudes, which consists of giving a small
negative imaginary part, −iε, to the mass of each particle in any internal line of a Feynman
diagram. This is nothing but a trick for representing the time ordering of causal processes.
From perturbation theory one finds that the physical amplitude is given by the limit on the
(right-hand) branch cut from the upper-half of the s-plane [123]

M(physical) = lim
ε→0+

M(s+ iε, t0) . (5.19)

Poles in the scattering amplitude refer to either bound states, which are located on the phys-
ical sheet (specifically on the real s-axis below the lowest threshold), or resonances, which
are located on the unphysical sheets [1]. Resonances are covered in more detail in Sec. 5.2.

Let us now consider the consequences of relativistic invariance of the S-matrix. If Λ is
any proper Lorentz transformation, such that |m′〉 = Λ |m〉, then we require any observable
quantities to be independent of the Lorentz frame, which is expressed by the condition

|〈m′|S |n′〉|2 = |〈m|S |n〉|2 . (5.20)

The definition of the S-matrix elements given above does not specify the phase uniquely.
This in turn allows us to replace Eq. (5.20) by the stronger condition [123]

〈m′|S |n′〉= 〈m|S |n〉 . (5.21)

For spinless particles this entails that the matrix elements depend on the external four-momenta
through their invariant scalar products only, i.e. the Mandelstam variables. For the case of
elastic scattering of two spinless particles, the requirement of Lorentz invariance in Eq. (5.21)
has the direct consequence of the symmetry of the matrix element

〈m|S |n〉= 〈n|S |m〉 , (5.22)

that is
〈p1,p2|S |p3,p4〉= 〈p3,p4|S |p1,p2〉 , (5.23)

where a rotation of π about the bisector of the angle between p1 and p3 in the CM frame
interchanges these momenta, as well as p2 and p4. Note that this result does not necessarily
stand for other amplitudes, although it sometimes can be derived from the C invariance of
the strong interactions. This appears to suggest that, in this general case, the left-hand side of
Eq. (5.11) is not the imaginary part of the amplitude. However, it can be shown [123] that the
matrix element 〈p1,p2|T |p3,p4〉∗ is related to 〈p3,p4|T |p1,p2〉 by analytic continuation,
where the latter is the limit onto the real axis of the complex s-plane from above and the
former is the limit from below of the same analytic function. Therefore, the left-hand side of
Eq. (5.11) is the discontinuity of the analytic function across the branch cut.

Crossing symmetry is, therefore, the property whereby transition amplitudes of processes
that differ only by particles being replaced by their antiparticles on the other side of the in-
teraction (and vice versa) are related by analytic continuation of the kinematic variables. The
interpretation of this statement is that particles are indistinguishable from antiparticles travel-
ing back in time. This effectively entails that the same analytic function for the scattering am-
plitude of a process can be used to describe the amplitude of other channels associated to the
original process. It is, thus, possible to deduce the existence of additional singularities from
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crossing symmetry [123]. Since
√
t and

√
u represent the energies in the t- and u-channels,

they yield further branch points at the corresponding particle-production thresholds.
In order to calculate the discontinuity associated to the branch cut of a transition am-

plitude, one normally has to carry out a Feynman integral, which is usually a complicated
task. There are, however, alternative techniques that can facilitate this by making use of the
analytic properties of the amplitude. To demonstrate the idea, let us take a simple theory with
two scalar fields φ and π, with Lagrangian

L= −1

2
φ(�+M2)φ− 1

2
π(�+m2)π− λ

2
φπ2 , (5.24)

where � is the d’Alembertian operator, i.e. � = ∂µ∂µ. The imaginary part of a propagator
can be evaluated by noting that [4]

Im
1

p2−m2 + iε
=

1

2i

(
1

p2−m2 + iε
− 1

p2−m2− iε

)
=

−ε
(p2−m2)+ ε2

, (5.25)

which vanishes as ε→ 0 except when p2 ≈m2. By integrating over p2, one obtains∫ ∞
0

dp2 −ε
(p2−m2)+ ε2

= −π , (5.26)

which in turn implies

Im
1

p2−m2 + iε
= −πδ(p2−m2) . (5.27)

Thus, the propagator is real except when the particle goes on-shell [4].
The imaginary part of a loop amplitude can also be calculated using similar manipula-

tions. As it turns out (see Ref.[4] for a detailed derivation), this is given by

2ImMloop(p
2) = −λ

2

2

∫
d4k

(2π)4
(−2πi)δ

[
(p−k)2−m2

]
(−2πi)δ(k2−m2) . (5.28)

It is important to note that Eq. (5.28) indicates that the imaginary part of the loop amplitude
can be calculated by putting the intermediate virtual particles on-shell. This result is valid
for any amplitude and the generalisation of the procedure is known as the cutting rules [125].
They can be summarised as follows [4]:

• cut through the diagram in all possible ways that put the propagators on-shell, respect-
ing momentum conservation;2

• for each cut, replace 1
p2−m2+iε →−2iπδ(p

2−m2)θ(p0);

• sum over all the cuts;

• finally, the result is the discontinuity across the branch cut of the diagram, where
Disc(iM) ≡ iM(p0 + iε)− iM(p0− iε) = −2ImM.

At this point, one can employ dispersive techniques (cf. Sec. 5.3) to calculate the real part
of the amplitude from its imaginary part (which can in turn be computed using the cutting
rules, as just shown). It is remarkable that complicated Feynman integrals can be evaluated in
a relatively easy manner by making use of the analytic properties of the scattering amplitudes.

2Note that cuts are directional, meaning that “cut” particles should have positive energy when flowing from
left to right (i.e. the time direction) in Feynman diagrams.
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5.2 Resonances

Resonances are extremely short lived particles whose presence is inferred from the peak
located around certain energies in differential cross sections of scattering experiments and
widths of decaying particles.

Resonance particles can be produced in resonance formation experiments [1]

A+B→R→ C1 + ...+Cn , (5.29)

and resonance production experiments

A+B→R+S→ [C1 + ...+Cn]+S,

Z→R+S→ [C1 + ...+Cn]+S,
(5.30)

where S symbolises a spectator particle. The first reaction in Eq. (5.30) corresponds to an
associated production and the second to a decay.

The most important characteristic of a resonance is its pole position, sp, in the complex
s-plane, which is defined as

sp ≡
(
Mp−

i

2
Γp

)2

≈M2
p − iMpΓp , (5.31)

and is independent of the reaction analysed. In addition to the pole position, a resonance is
also characterised by its residues, which quantify its couplings to the various channels. Close
to the resonance pole, the scattering matrixM can be written as [1]

lim
s→sp

(s−sp)Mba = −Rba , (5.32)

where the residues may be calculated using the closed contour integral around the pole

Rba = −
1

2πi

∮
dsMba , (5.33)

with s being the CM energy squared.
Different approaches to extracting the intrinsic properties of a resonance, in general, lead

to parameterisations that deviate from each other.3 For instance, the standard Breit-Wigner
parameters MBW and ΓBW do not correspond to the Mp and Γp from the pole position
in the complex s-plane [cf. Eq. (5.31)], and this is down to the effects of the finite width
and the influence of thresholds.4 In the following discussion, we restrict the scope to Breit-
Wigner-like descriptions of resonances. For details on other formalisms, see for example

3There are two well-known definitions of mass and width for a given resonance that are commonly used in
the hadron physics literature. In the conventional approach, which we only mention here for completeness but
we shall not further discuss in this thesis, the mass and width of the resonance are defined in terms of the phase
shift δ as

δ(s=M2
δ ) = 90◦ , Γδ =

1

Mδ

[
dδ(s)

ds

]−1
s=M2

δ

. (5.34)

The interested reader may check Refs. [126, 127] and sources therein for details. The second definition makes
use of the position of the resonance pole in the complex s-plane. The different formalisms associated to this are
discussed in the main text.

4In general, the use of the simple Breit-Wigner parameterisation with constant width is only applicable to
narrow resonances far from thresholds. One could improve on this by using an energy-dependent width, which
incorporates a kinematic dependence on the energy, but this amounts to including only the imaginary part of the
self-energy. Thus, there is a strong case for using the fully corrected one-loop propagator, which includes both
the real and imaginary parts of the self-energy, ensuring in this way that the analytical properties of the amplitude
where the propagator is used are preserved [126, 128].
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Refs. [1, 129] and references therein.
The standard perturbative formalism for calculating the decay width of an unstable par-

ticle is an extension of the formalism used for calculating the S-matrix of stable particles,
despite the fact that unstable particles are not asymptotic states. If the particle is long-lived,
the general expectation is for this formalism to be approximately valid, though not necessar-
ily to all orders in perturbation theory. Let us demonstrate the procedure for the particular
case of a scalar particle. The two-point Green’s function after Dyson summation takes the
form [130]

D(s) =
i

s−M2
0 +Π(s)

, (5.35)

where Π(s) is the sum of one-particle irreducible graphs and M0 is the bare mass of the
scalar particle. One can now Taylor expand the real part of Π(s) around M2

R,

ReΠ(s) = ReΠ(M2
R)+

dReΠ(s)

ds

∣∣∣∣
s=M2

R

(s−M2
R)+ ... , (5.36)

and plug it into Eq. (5.35). Rearranging, one finds

D(s) =
iZ

s−M2
R+ iZImΠ(s)+ ...

, (5.37)

where the renormalised mass and wavefunction renormalisation factor are defined as

M2
R ≡M2

0 −ReΠ(M2
R) , Z−1 ≡ 1+

dReΠ(s)

ds

∣∣∣∣
s=M2

R

. (5.38)

The parameter MR is known as the on-shell mass and, by comparison with a Breit-Wigner
resonance, the on-shell width is given by5

ΓR =
1

MR
ZImΠ(M2

R) , (5.39)

which is equivalent to the standard perturbative definition [cf. Eq. (5.14)]. The on-shell
formalism breaks down when the mass of the unstable particle is close to the opening of
a two-body threshold. This is because when the real part of Π(s) was Taylor expanded in
the above derivation, it was assumed that the function is analytic near M2

R. However, when
s is at a threshold, Π(s) has a branch point on the real axis. If this is a two-body threshold,
then one can write [130]

Π(s) = ik2L+1f(s)+ g(s) , (5.40)

where L is the orbital angular momentum of the particles, and the functions f and g are
regular, non-vanishing at threshold and real. Furthermore, k is the common momentum of
the threshold particles of mass M1 and M2 in the CM frame

k =
1

2
√
s

√
[s− (M1 +M2)2][s− (M1−M2)2] . (5.41)

Accordingly, when a two-particle s-wave threshold is approached from below,
dReΠ(s)/ds|s=M2

R
diverges like k−1, and so does Z−1. The on-shell width, thus, van-

ishes as these type of thresholds are approached. One arrives at the conclusion that a width

5As noted in Ref. [126], this definition applies only to narrow resonances, i.e. Γ�MR, where ImΠ(s)
can be approximated by ImΠ(M2

R) over the width of the resonance. If this is not the case, then the full energy
dependence of Π(s) ought to be taken into account.
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that is not based on the Breit-Wigner analogy [cf. Eq. (5.39)] and that behaves sensibly in the
threshold region is required.

An alternative approach to the one just presented is proposed in Ref. [130] where the
definitions of the width and mass of a particle are extracted directly from the position of the
pole in the particle’s propagator. In this so-called pole approach, a consistent definition of
the resonance width that behaves sensibly in the threshold region is found by not performing
a Taylor expansion of the real part of Π(s). Instead, the scalar propagator is expressed
as [126, 130]

D(s) =
i

s−M2
0 +Π(s)

=
i

s−M2
R+ReΠ(s)−ReΠ(M2

R)+ iImΠ(s)
, (5.42)

where MR is defined in Eq. (5.38). The pole mass and pole width of the resonance, Mp and
Γp, are found from the pole equation [126]

∆(sp) = sp−M2
R+ReΠ+(sp)−ReΠ+(M

2
R)+ iImΠ+(sp) = 0, (5.43)

where sp is defined in Eq. (5.31) and Π+(s) ≡ Π(s+ iε). The pole equation involves a
complex function of a complex variable. Accordingly, noting that for real s one has got
Π+(s) = R(s)+ iI(s), then for an arbitrary complex s one finds

Π+(s) = ReR(s)− ImI(s)+ i[ImR(s)+ReI(s)] . (5.44)

For the general case where the resonance is coupled to several channels, one must look for
the poles of Eq. (5.43) in all Riemann sheets,6 which in turn are defined by the corresponding
complex channel momenta. For the particular case of a resonance coupled to channels a and
b, one must look for the poles in the four Riemann sheets enumerated according to the signs
of (Impa, Impb) [126, 131]

sheet I (+ +) : (Impa > 0,Impb > 0) ,

sheet II (− +) : (Impa < 0,Impb > 0) ,

sheet III (− −) : (Impa < 0,Impb < 0) ,

sheet IV (+ −) : (Impa > 0,Impb < 0) .

(5.45)

To conclude, it is worth highlighting that the physically relevant poles are the ones that
lie closest to the physical axis. For a resonance coupled to a single channel, one finds that,
below threshold, this pole is on the first sheet; above threshold, it is on the second sheet, since
the lower half plane of the second sheet is connected to the physical axis without crossing
the branch cut [130].

5.3 Dispersion relations

Dispersive methods are powerful, model-independent techniques based on the fundamental
principles of analyticity and unitarity. By exploiting non-perturbative relations between am-
plitudes, a resummation of rescattering effects between final-states particles is possible, in
contrast to the usual perturbative expansion in which these effects are treated order-by-order
only [14].

A dispersion relation is a formula that gives the real part of a scattering amplitude in terms
of an integral over its imaginary part [6]. In its original formulation, it was derived from the
analyticity property of the index of refraction as a function of frequency, which in turn fol-
lowed from the condition that electromagnetic waves in a medium cannot travel faster than

6Remember that for each threshold that is crossed, the number of Riemann sheets duplicates.
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Im s’

Re s’

𝛬2

s

𝛾

sth

FIGURE 5.1: Integration contour γ in the complex s-plane.

light in the vacuum. The modern approach to dispersion relations [124] considers instead
the condition of microscopic causality to derive the analyticity property of scattering ampli-
tudes. The precise statement of this condition is, as discussed before, that the commutator of
observables vanishes for spacelike separations.

It is useful to consider a two-meson form factor F (s) as an example to develop the
main ideas and features of dispersion relations. It turns out that F (s) is an analytic function
of the Mandelstam variable s across the entire s-complex plane, except for a branch cut
along the positive real axis, originating at the first two-particle intermediate state threshold
sth. In general, these form factors are real below threshold, s < sth, and they acquire an
imaginary part above threshold, s > sth, which in turn is linked to the propagation of on-
shell intermediate states. Analyticity allows one to relate the real part of the form factor to
the discontinuity across the branch cut and this is done by analytically continuing s into the
complex plane so that F (s) becomes a complex-valued function of the complex variable s.

Using Cauchy’s integral formula

F (s) =
1

2πi

∮
γ
ds′

F (s′)

s′−s
, (5.46)

and performing the integration along the closed contour shown in Fig. 5.1, one finds

F (s) =
1

2πi

∫ Λ2

sth

ds′
F (s′+ iε)−F (s′− iε)

s′−s
+

∮
|s′|=Λ2

ds′
F (s′)

s′−s
+

∮
|s′|=ε

ds′
F (s′)

s′−s

 , (5.47)

where ε is a positive infinitesimal quantity and Λ2 is the infinite radius of a contour circle.
The definition of the discontinuity across the branch cut,

DiscF (s) = F (s+ iε)−F (s− iε) = F (s+ iε)−F ∗(s+ iε) = 2iImF (s+ iε) , (5.48)

where the second equality follows from Schwartz’s reflection principle, i.e. F (z∗) = F ∗(z),
allows writing the first term in Eq. (5.47) as

1

π

∫ Λ2

sth

ds′
ImF (s′)

s′−s− iε
. (5.49)
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In addition, one can show that the second and third integrals in Eq. (5.47) vanish, respectively,
in the limits Λ2→∞, if F (s) decreases fast enough as |s| →∞, and ε→ 0. Therefore, we
arrive at the following expression for the unsubtracted dispersion relation

F (s) =
1

π

∫ ∞
sth

ds′
ImF (s′)

s′−s− iε
. (5.50)

The above relation, which is a direct consequence of analyticity, implies that the form factor
F (s) can be reconstructed anywhere in the complex plane provided one knows its absorptive
part along the branch cut, which is in turn given by unitarity and the optical theorem [14].

If the function F (s) does not approach zero quickly enough for |s| → ∞, one can still
write a dispersion relation with subtractions points s0 located on the real axis and to the left
of the first threshold. To show this, note that the following identity

1

s′−s
=

1

s′−s0
+

s−s0

(s′−s0)(s′−s)
(5.51)

enables Eq. (5.46) to take the form

F (s) =
1

2πi

∮
γ
ds′

F (s′)

s′−s0
+
s−s0

2πi

∮
γ
ds′

F (s′)

(s′−s0)(s′−s)
, (5.52)

where the first term is the subtraction constant F (s0). By following the same steps as in
the derivation of the unsubtracted version of the dispersion relation, we obtain the once-
subtracted dispersion relation

F (s) = F (s0)+
s−s0

π

∫ ∞
sth

ds′
ImF (s′)

(s′−s0)(s′−s− iε)
, (5.53)

where the integrand of the second term is suppressed by an additional power of s in the
denominator, which helps improve the convergence of the integral and reduce the dependence
of the dispersion relation on the knowledge of ImF (s) at large s. This procedure can be
generalised to an n-times subtracted dispersion relation at s= s0 [132]

F (s) =
n−1∑
k=0

(s−s0)k

k!
dkF (s)

dsk

∣∣∣∣
s=s0

+
(s−s0)n

π

∫ ∞
sth

ds′
ImF (s′)

(s′−s0)n(s′−s− iε)
. (5.54)

Note that the subtractions can be performed at different points so long as they are located on
the real axis and to the left of the branch cut.

It is important to highlight that one can still perform subtractions even when it is not
strictly necessary, that is, even if F (s) has the desired asymptotic behaviour, i.e. F (s) = 0
as |s| →∞. The reason for this is that the unsubtracted dispersion relation in Eq. (5.50)
requires complete knowledge of the discontinuity across the branch cut up to arbitrarily large
energies, which is, of course, not realistic. By introducing subtractions, one reduces the
importance of the contribution from the high energy region of the integral. Note that, by
doing this, the information from this region of the integral becomes encoded in the subtraction
constants instead. Thus, there is a clear parallelism between the subtraction constants from
dispersion relations and the low-energy constants from EFTs, as they both contain short-
distance information [19, 132].

Unitarity imposes additional strong constraints on the form factors. Let us consider the
scattering of two incoming and two outgoing particles, and assume that the energy region of
interest only allows elastic final-state rescattering, which in turn means that in Eq. (5.11) the



5.3. Dispersion relations 79

only intermediate state is |X〉= |f〉. Accordingly,

ImMi→f =
(2π)4

2S

∫
d3q1d

3q2

2E1(2π)32E2(2π)3
δ4(pi− q1− q2)Mi→fM∗f→f , (5.55)

where S = 2 is a symmetry factor required to avoid double counting when the final state par-
ticles are indistinguishable, S = 1 otherwise. Furthermore, q1 = (E1,q1) and q2 = (E2,q2)
are the on-shell four-momenta of the two intermediate particles, and pi = k+ k′ = (

√
s,0)

and pf = p+p′ = (
√
s,0) are the total initial and final four-momenta in the CM frame, re-

spectively. Next, let us define the angles θ=](k,p), θ′ =](k,q1) and θ′′ =](q1,p), and
integrate over the delta function to find [14]

ImMi→f (s,θ) =
1

32π2S

|q1|√
s

∫
dΩMi→f (s,θ

′′)M∗f→f (s,θ′) , (5.56)

where dΩ ≡ sinθ′dθ′dφ and |q1|= 1
2

√
s−sth.

One can now particularise the above discussion to the pion vector form factor, which is
defined as

〈π+(p′)π−(p)|Jemµ (0) |0〉= (p′−p)µF Vπ (s) , (5.57)

where
Jemµ =

2

3
ūγµu−

1

3
d̄γµd−

1

3
s̄γµs (5.58)

is the electromagnetic vector current for the light quarks. After performing a partial-wave
projection of the integrand,7 the unitary relation of Eq. (5.56) becomes [14]

ImF Vπ (s) = σ(s)F Vπ (s)[tI=1
J=1(s)]

∗θ(s−sth) , (5.60)

where σ(s) ≡
√
1−sth/s = 2|q1|√

s
, tI=1
J=1(s) is the ππ P -wave isospin I = 1 scattering am-

plitude and the two-pion threshold is sth = 4M2
π . The unitary relation in Eq. (5.60) can also

be applied to the elastic partial-wave amplitude t11(s) rendering

Imt11(s) = σ(s)|t11(s)|2θ(s−sth) . (5.61)

After rewriting t11(s) = |t11(s)|eiδ
1
1 (s), one finds

|t11(s)|=
sinδ1

1(s)

σ(s)
, (5.62)

where δ1
1(s) is the elastic scattering phase shift. Plugging Eq. (5.62) into the form factor

unitary relation of Eq. (5.60) results in

ImF Vπ (s) = sinδ1
1(s)e

−iδ11(s)F Vπ (s)θ(s−sth) . (5.63)

Noting that the form factor can also be expressed as F Vπ (s) = |F Vπ (s)|eiφ(s), Eq. (5.63)
becomes

ImF Vπ (s) = sinδ1
1(s)|F Vπ (s)|ei[φ(s)−δ11(s)]θ(s−sth) , (5.64)

7The partial-wave projection of a scattering amplitude can be expressed as [4]

M(s,z) = 16π

∞∑
L=0

tL(s)(2L+ 1)PL(z) , (5.59)

where PL(z) is the Legendre polynomial of degree L, with L being the orbital angular momentum, and tL(s)
is the amplitude of the L-th partial wave.
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which fixes the phase φ(s) = δ1
1(s) since the left-hand side is real. This result is known as

Watson’s theorem, which holds only in the elastic region.
Next, since lnF Vπ (s) is an analytic function in the complex plane, one can make use of

the once-subtracted dispersion relation from Eq. (5.53) so that

lnF Vπ (s) = lnF Vπ (s0)+
s−s0

π

∫ ∞
sth

ds′
ImlnF Vπ (s′)

(s′−s0)(s′−s− iε)
. (5.65)

Using Watson’s theorem, the form factor can be expressed as F Vπ (s) = |F Vπ (s)|eiδ11(s), which
in turn allows writing [cf. Eq. (5.48)]

ImlnF Vπ (s) =
lnF Vπ (s)− lnF Vπ (s)∗

2i
= δ1

1(s) . (5.66)

This can be plugged into Eq. (5.65) to give

lnF Vπ (s) = lnF Vπ (s0)+
s−s0

π

∫ ∞
sth

ds′
δ1

1(s
′)

(s′−s0)(s′−s− iε)
. (5.67)

Exponentiating both sides leads to the following solution8 to the unitary relation from Eq. (5.60)

F Vπ (s) = F Vπ (s0)exp

{
s−s0

π

∫ ∞
sth

ds′
δ1

1(s
′)

(s′−s0)(s′−s− iε)

}
= F Vπ (s0)Ω1

1(s) , (5.68)

where Ω1
1(s) is the so-called Omnès function [133]

Ω1
1(s) = exp

{
s−s0

π

∫ ∞
sth

ds′
δ1

1(s
′)

(s′−s0)(s′−s− iε)

}
. (5.69)

Note that by using the Sokhotski–Plemelj theorem,9 the solution from Eq. (5.68) can be
re-expressed as

F Vπ (s) = F Vπ (s0)exp

{
P s−s0

π

∫ ∞
sth

ds′
δ1

1(s
′)

(s′−s0)(s′−s)

}
eiδ

1
1(s) , (5.71)

which enables the easy extraction of the real and imaginary parts, as well as the absolute
value, of the form factor.

To conclude, the result from Eq. (5.68) can be generalised to n subtractions [132]

F Vπ (s) =Qn(s)exp

{
(s−s0)n

π

∫ ∞
sth

ds′
δ1

1(s
′)

(s′−s0)n(s′−s− iε)

}
, (5.72)

where

Qn(s) = exp

{
n−1∑
k=0

1

k!
dk lnF Vπ (s)

dsk

∣∣∣∣
s=s0

(s−s0)
k

}
. (5.73)

8It is worth noting that, since δ11(s) asymptotically approaches a constant value at large s, one subtraction
point suffices for good convergence.

9This theorem states that, under the integral sign, the following relationship holds

lim
ε→0+

1

x′−x− iε = P 1

x′−x + iπδ(x′−x) , (5.70)

where P denotes the Cauchy principal value and δ stands for the Dirac delta function.
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Chapter 6

CP violation in the Standard Model

CP violation plays a crucial role in our current understanding of particle physics as well as
the evolution of the early Universe. In order to explain the observed dominance of matter
over antimatter in the Universe, the so-called baryon asymmetry, CP violation is required.
However, the only place where CP violating effects can be accommodated within the SM
is in the weak interactions of quarks and leptons [134], which is insufficient to generate
the observed baryon asymmetry in Universe, suggesting that other sources of CP violation
beyond the SM may be at play.

In this chapter we provide a brief introduction to discrete symmetries, to then focus on
the quark-mixing matrix and CP violation in the quark sector, which is the dominant source
of CP -violating effects in the SM.

6.1 Introduction to discreet symmetries

As it is well known, the invariance of a system under a continuous symmetry transformation
leads to a conservation law by Noethers’ theorem. In addition to the familiar continuous
symmetries, there are discrete symmetries that also play an important role in modern particle
physics: parity inversion, charge conjugation and time reversal.

The parity transformation P is a unitary operator that reverses the momentum of a particle
without flipping its spin. In other words, it reverses the handedness of space, ~x → −~x.
Mathematically, it can be expressed as [3, 5]

Pψ(t,~x)P−1 = γ0ψ(t,−~x) . (6.1)

Under the charge conjugation operation C, particles and antiparticles are interchanged by
conjugating all internal quantum numbers. In particular, C is a unitary linear operator that
takes a fermion with a given spin orientation into an antifermion with the same spin orienta-
tion. In the Dirac representation of the gamma matrices,1 C can be written as

Cψ(x)C−1 = iγ2γ0ψ T (x) . (6.3)

Last but not least, the time reversal transformation T is an antiunitary operator that reverses
momentum and flips the spin of a particle. The expression that allows computing the action
of T on a fermion field using the same Dirac basis for the γ matrices is

Tψ(t,~x)T−1 = iγ1γ3ψ(−t,~x) . (6.4)

1The Dirac basis that we employ is given by [5]

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 −1
−1 0

)
, (6.2)

where the σi (with i = 1,2,3) are the Pauli matrices from Eq. (2.21). These Dirac matrices, of course, obey the
anticommutation relations {γµ,γν}= 2gµν , as it can easily be checked.
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TABLE 6.1: Transformation properties of the various fermion bilinears un-
der P , C, T and CPT [3]. Note that the shorthand (−1)µ ≡ 1 for µ= 0 and

(−1)µ ≡−1 for µ= 1,2,3 is used.

ψψ iψγ5ψ ψγµψ ψγµγ5ψ ψσµνψ ∂µ

P +1 −1 (−1)µ −(−1)µ (−1)µ(−1)ν (−1)µ

C +1 +1 −1 +1 −1 +1

T +1 −1 (−1)µ (−1)µ −(−1)µ(−1)ν −(−1)µ

CPT +1 +1 −1 −1 +1 −1

An important result in quantum field theory, known as the CPT theorem, states that one
cannot build a locally Lorentz-invariant QFT with a Hermitian Hamiltonian that violates
CPT [3] and, at the time of writing this, all observations to date indicate that CPT is indeed
a symmetry of Nature [1]. A summary of how the various Dirac field bilinears transform
under P , C, T and CPT is given in Table 6.1.

A CP transformation combines the charge conjugation with parity operations, and takes
a specially simple form in the Majorana representation of the γ matrices,2 where the charge
conjugation operator is just the complex conjugation of the fermion field. Thus, the CP
transformation takes the form [135]

ψ(t,~x)→ γ0ψ∗(t,−~x) = −ψT (t,−~x) ,

ψ(t,−~x)→ ψT (t,−~x) .
(6.6)

From Eq. (6.6) one can see that the CP transformation interchanges ψ and ψ with a minus
sign to make up for Fermi statistics. In effect, a CP transformation takes, for example, a
left-handed electron e−L into a right-handed positron e+R.

If CP were an exact symmetry of Nature, its laws would be identical for matter and
antimatter. The electromagnetic, strong and gravitational interactions respect P and C sepa-
rately and, therefore, any phenomena mediated by these interactions is also CP -symmetric.
The weak interactions, on the other hand, violate separately P and C maximally, though
CP is still preserved in most processes mediated by this force. CP is violated in some rare
weak-interaction processes such as in neutral K decays, as well as in B and D decays.

Experimentally, one finds that a KL meson decays more often into π−e+νe than into
π+e−νe, which allows electrons and positrons to be unambiguously distinguished, although
the asymmetry is very small, at the 0.003 level only. CP -violating effects within the B sys-
tem are significantly larger, with the asymmetry associated to the B0/B0 decaying into CP
eigenstates such as J/ψKS being at the 0.7 level. The above observations arise from mixing
effects in theK0-K0 andB0-B0 sectors, but CP violation has also been detected originating
directly from decay amplitudes in K → ππ, subsequently in B0, B+ and B0

s decays, and
most recently in charm decays (see Ref. [1] for an in-depth review of the experimental status
of CP violation in meson decays). Similar CP -violating effects are also expected in baryon
decays, although they have not yet been observed. Contrary to this, should any CP violation
be detected in processes involving the top quark or in flavour-conserving processes, such as
electric dipole moments, or in the lepton sector would be a clear indication of BSM physics.

2A Majorana representation is one in which the γ matrices are imaginary. For example, one can take

γ0 =

(
0 σ2
σ2 0

)
, γ1 =

(
iσ3 0
0 iσ3

)
, γ2 =

(
0 −σ2
σ2 0

)
, γ3 =

(
−iσ1 0

0 −iσ1

)
. (6.5)
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6.2 CKM quark-mixing matrix

The quark masses and mixing arise in the SM from the Yukawa interactions between the
quark fields and the Higgs condensate (see Sec. 3.7 for a quick introduction to the SM). In-
cluding three generations of quarks, indexed by i and j, the Yukawa terms in the Lagrangian
are [1]

−Lmass = Y d
ij q̄

i
LHd

j
R+Y u

ij q̄
i
LH̃u

j
R+h.c. , (6.7)

where qiL≡ (uiL,d
i
L)
T are left-handed quark doublets, and diR and uiR are right-handed down-

and up-type quark singlets, respectively, in the weak-eigenstate basis.3 Furthermore, H is
the complex scalar SU(2) Higgs-doublet field and H̃ ≡ iσ2H

∗ is its conjugate, which also
transforms in the fundamental representation of SU(2). In addition, Lmass contains two
3×3 (in generation space) Yukawa matrices, i.e. Y d and Y u, which need to be diagonalised
in order to yield the physical masses of the quarks. The Yukawa matrices, being general
complex matrices, consist of many parameters for just a few masses but, in spite of the
structure imposed by the gauge interactions, they embody enough redundancy so that most
of the complex phases can be rotated away by redefinitions of the fields. It is important to
note that each term in Eq. (6.7) is invariant under the set of SU(3)C ×SU(2)L×U (1)Y
gauge transformations [4].

After spontaneous breaking of the electroweak symmetry, H acquires a vacuum expecta-
tion value that, without loss of generality, can be expressed as

〈H〉=
√

1

2

(
0
v

)
. (6.8)

By plugging 〈H〉 into Eq. (6.7), the quark mass terms in the Lagrangian become

Lmass = −
v√
2
(Y d
ij d̄

i
Ld

j
R+Y u

ij ū
i
Lu

j
R)+h.c.= − v√

2
(d̄LYddR+ ūLYuuR)+h.c. , (6.9)

where in the last expression we are employing matrix notation. Next, we diagonalise the
Yukawa matrices to extract the physical masses. To that end, we make use of the fact that the
matrix Y Y † is Hermitian and, thus, has real eigenvalues. Accordingly, one may write [4]

YdY
†
d = UdM

2
dU
†
d , YuY

†
u = UuM

2
uU
†
u , (6.10)

whereMd,u are diagonal mass matrices and Ud,u are unitary matrices. Therefore, the Yukawa
matrices can in general be expressed as

Yd = UdMdK
†
d , Yu = UuMuK

†
u , (6.11)

where additional unitary matrices, Kd,u, have been employed. The Lagrangian, thus, takes
the form

Lmass = −
v√
2
(d̄LUdMdK

†
ddR+ ūLUuMuK

†
uuR)+h.c. (6.12)

Note that we are free to change the basis of the right-handed fields using the substitu-
tions dR→KddR and uR→KuuR, as well as the left-handed fields using dL→ UddL and
uL→ UuuL. These substitutions have the effect of removing theUd,u andKd,u unitary matri-
ces from the Yukawa couplings, leaving just the diagonal Mu,d mass matrices. Accordingly,
we arrive at

Lmass = −md
j d̄
j
Ld

j
R−m

u
j ū

j
Lu

j
R+h.c. , (6.13)

3In this section, as opposed to what was done in Sec. 3.7, we shall keep the L and R subindices to denote
left- and right-handed fields to avoid any potential ambiguity.
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where md
j and mu

j are the diagonal elements associated to v√
2
Md and v√

2
Mu, respectively.

The basis employed in Eq. (6.13) is known as the mass-eigenstate basis. It must be noted that
the Lagrangian still contains a residual U(1)6 global symmetry [4].

Let us now look at how the kinetic terms are affected by the above change of basis. The
Lagrangian in the flavour basis can be written as

Lflavour−basis = q̄iLi

(
/∂− igσ

a

2
/W a− ig′

Yq
L

2
/B
)
qiL+ ūiRi

(
/∂− ig′

Yu
R

2
/B
)
uiR

+ d̄iRi

(
/∂− ig′

Yd
R

2
/B
)
diR−

v√
2

(
Y d
ij d̄

i
Ld

j
R−Y

u
ij ū

i
Lu

j
R+h.c.

)
= (ūL d̄L)

i

[
i/∂+

(
g′

6
/B+ g

2
/W 3 g√

2
/W+

g√
2

/W− g′

6
/B− g

2
/W 3

)](
uL
dL

)i
+ ūiR

(
i/∂+ g′

2

3
/B
)
uiR+ d̄iR

(
i/∂−g′ 1

3
/B
)
diR

− v√
2

[
d̄iL

(
UdMdK

†
d

)
ij
djR+ ūiL

(
UuMuK

†
u

)
ij
ujR+h.c.

]
,

(6.14)

where i and j are flavour indices, σa are the Pauli matrices, and the weak hypercharges
used in the second equality are Yq

L = 1/3, Yu
R = 4/3 and Yd

R = −2/3 (not to be confused
with the Yukawa matrices Y d

ij and Y u
ij ). From Eq. (6.14) it is straightforward to see that the

matricesKd andKu drop out once the dR→KddR and uR→KuuR rotations are performed.
Similarly, after rotating dL → UddL and uL → UuuL, the Bµ and W 3

µ couplings are not
affected, as they do not mix up- and down-type quarks, and the only couplings affected by
the flavour rotations are those associated to the W±µ gauge bosons. Thus, one obtains [4]

Lmass−basis = Lkin +
e

sinθw
ZµJZµ + eAµJµem−md

j (d̄
j
Ld

j
R+ d̄jRd

j
L)−m

u
j (ū

j
Lu

j
R+ ūjRu

j
L)

+
e√

2sinθw

[
W+
µ ū

i
Lγ

µ(VCKM)ijd
j
L+W−µ d̄

i
Lγ

µ(V †CKM)iju
j
L

]
,

(6.15)
where the photon and neutral weak gauge boson fields are defined as

Aµ ≡ sinθwW
3
µ + cosθwBµ ,

Zµ ≡ cosθwW
3
µ − sinθwBµ ,

(6.16)

JZµ and Jemµ are the neutral and electromagnetic currents, respectively, and θw is the Wein-
berg or weak mixing angle. Moreover, VCKM ≡ U †uUd, known as the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, contains all the quark mixing effects and takes the form

VCKM ≡ U †uUd =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (6.17)

Fundamentally, the VCKM matrix is the unitary transformation that relates the weak down-
type eigenstates (primed) with the corresponding physical mass down-type eigenstates (un-
primed). That is [see Eqs. (3.190) and (3.191)],d′Ls′L

b′L

= VCKM

dLsL
bL

 . (6.18)
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In general, an n×n unitary matrix contains n2 degrees of freedom (i.e. n real numbers
for the diagonal elements and two real numbers for each element above the main diago-
nal). Since a real unitary matrix is an orthogonal matrix and orthogonal matrices have got
1
2n(n−1) independent parameters, it follows that, out of the n2 elements that parameterise
the unitary matrix, 1

2n(n− 1) elements can be represented by real mixing angles. The re-
maining 1

2n(n+ 1) parameters are complex phases [9]. However, some of these can be
absorbed into arbitrary phase rotations of the quark fields. For n generations of quarks, there
are 2n arbitrary phase rotations available (one for each up- and down-type quark) but, noting
that changing all the quark phases by the same amount would have no effect on the mixing
matrix, it tuns out that in general 2n−1 complex phases can be absorbed into the redefinition
of the fields, leaving 1

2 (n−1)(n−2) complex phases that cannot be removed.
As far as we know, there are three generation of quarks in Nature and, thus, n= 3 for the

CKM matrix. Consequently, it may be parameterised by means of three real mixing angles,
θ12, θ23 and θ13 (which correspond to rotations in the ij-flavour planes [4]), and six phases
out of which five can be eliminated by a redefinition of the quark fields, leaving just one
phase, δ, that cannot be removed. Accordingly, the most general CKM matrix, using the
standard parameterisation, is [1]

VCKM =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
iδ/2

0 1 0

−s13e
iδ/2 0 c13

 c13 0 s13

0 1 0
−s13 0 c13



=

 c12c13 s12c13 s13e
−iδ

−s12c23− c12s23s13e
iδ c12c23−s12s23s13e

iδ s23c13

s12s23− c12c23s13e
iδ −c12s23−s12c23s13e

iδ c23c13

 ,

(6.19)

where cij = cosθij and sij = sinθij .4 It is important to highlight that the phase δ is responsi-
ble for all CP -violating effects in quark flavour-changing processes in the SM. Accordingly,
unless all the elements of the CKM matrix can be made real, the quark sector of the SM is
not invariant under CP and, with the parameterisation from Eq. (6.19), this would require
the phase angle δ = 0 [135]. Interestingly, if there were only two generations of quarks in
the SM, there would be enough redundancy available in the quark mixing matrix to make all
its elements real and the electroweak SU(2)L×U (1)Y interactions would respect the CP
symmetry.

The most up-to-date experimental values for the four parameters in Eq. (6.19) are [1]

sinθ12 = 0.22650±0.00048, sinθ13 = 0.00361+0.00011
−0.00009 ,

sinθ23 = 0.04053+0.00083
−0.00061 , δ = 1.196+0.045

−0.043 .
(6.20)

As it can be seen, the mixing angles are small, which means that the mass and flavour basis
are reasonably close, and that the CKM matrix is nearly diagonal. As well as this, the mixing
angles satisfy the hierarchy θ13 � θ23 � θ12 � 1 and, therefore, it makes sense to use a
small-angle approximation to the general mixing matrix from Eq. (6.19), which leads to the
widely used Wolfestein parameterisation. Identifying Vus ' s12 = λ, then one can write
Vcb ' s23 =Aλ2 and Vub = s13e

−iδ =Aλ3(ρ− iη), whereA' 1 and |ρ− iη|< 1 [9]. Thus,
the CKM matrix can be expressed to O(λ3) as

VCKM =

 1−λ2/2 λ Aλ3(ρ− iη)
−λ 1−λ2/2 Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

+O(λ4) . (6.21)

4Note that the three real mixing angles can be chosen to lie in the first quadrant (i.e. sij ,cij ≥ 0).
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FIGURE 6.1: Graphical representation of CKM elements by means of the
unitarity triangle.

The unitarity condition of the CKM matrix implies that its rows, as well as its columns,
are orthonormal, i.e.

∑
iVijV

∗
ik = δjk and

∑
j VijV

∗
kj = δik. There are six vanishing combi-

nations that can be represented as closed triangles in the complex plane. The most interesting
and commonly used unitarity triangle, down to the fact that the Vtd and Vub elements are
poorly determined, comes from the condition

VudV
∗
ub+VcdV

∗
cb+VtdV

∗
tb = 0. (6.22)

After dividing each side by the best measured term, i.e. VcdV ∗cb, we arrive at

VudV
∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1= 0, (6.23)

which is graphically represented in Fig. 6.1. The angles of the unitarity triangle can be
expressed as [1]

α= arg

(
−
VtdV

∗
tb

VudV
∗
ub

)
' arg

(
−1−ρ− iη

ρ+ iη

)
,

β = arg

(
−
VcdV

∗
cb

VtdV
∗
tb

)
' arg

(
1

1−ρ− iη

)
,

γ = arg

(
−
VudV

∗
ub

VcdV
∗
cb

)
' arg (ρ+ iη) ,

(6.24)

where η represents the CP -violating phase. It is important to note that the length of the sides
of the unitarity triangle quantify the amount of quark-flavour mixing in the SM, whilst its
angles are sensitive to CP violation. In fact, the unitarity triangle would collapse to a line
if all the elements of VCKM were real [4]. Many measurements of CP -violating observables
can be used to constrain these angles (cf. [1] for details).

It is interesting to note that, without loss of generality, one could have assumed that
the Yukawa matrices are Hermitian and, thus, they may be written as Yd = UdMdU

†
d and

Yu = UuMuU
†
u, which is accomplished by rotating dR→KdU

†
ddR and uR→KuU

†
uuR.

Now, if Yd and Yu could be simultaneously diagonalised, then VCKM = 1 and there would be
no CP violation in the SM. Accordingly, CP -violating effects are encoded in the commuta-
tor [4]

−iC = [Yu,Yd] =
[
UuMuU

†
u,UdMdU

†
d

]
= Uu

[
Mu,VCKMMdV

†
CKM

]
U †u , (6.25)
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where the matrix C is traceless and Hermitian due to both Yu and Yd being Hermitian. One
can use its determinant as a basis-independent quantity

detC = −16

v6
(mt−mc)(mt−mu)(mc−mu)(mb−ms)(mb−md)(ms−md)J , (6.26)

where J is known as the Jarlskog invariant and is defined such that

Im
[
(VCKM)ij (VCKM)kl (VCKM)∗il (VCKM)∗kj

]
= J

∑
m,n

εikmεjln , (6.27)

with εijk being the Levi-Civita symbol. In terms of the standard parameterisation from
Eq. (6.19), the Jarlskog invariant can be expressed as

J = s12s23s31c12c23c
2
31 sinδ . (6.28)

As it turns out, the Jarlskog invariant has a geometrical interpretation whereby it is equal to
twice the area of the unitarity triangle and, thus, the condition for the reality of the CKM
matrix is contained in the requirement J = 0. On that account, CP -violating effects in the
SM are proportional to J (or, equivalently, they are proportional to Imdet[Yu,Yd]), and their
presence is subject to the conditions θij 6= 0 and δ 6= 0, as it can be seen from Eq. (6.28).

It should be noted that the origin of CP violation in the quark sector through the CKM
mechanism is the dominant source of CP -violating effects in the SM. However, despite the
large range of phenomenological successes, this mechanism fails to accommodate the cos-
mologically5 observed baryon asymmetry by several orders of magnitude [1]. The evidence
for neutrino masses points towards the possibility of an additional source of CP violation
in the lepton sector through the complex phase of the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix butCP violation in the neutrino sector has yet to be experimentally observed.

Before concluding, it is important to highlight that neutral mesons that do not carry
flavour quantum numbers, such as the η and η′ states, are their own antiparticles and have
definite CP eigenvalues. In particular, the decays of these states are mediated by the electro-
magnetic and strong6 forces, which in principle respect the CP symmetry.7 Accordingly, an
observation of CP -violating effects in these processes would be an unequivocal signature of
physics beyond the SM.

5Of course, this refers to baryogenesis, which is the proposed process through which the matter-antimatter
asymmetry of the Universe was dynamically generated. It requiresCP violation as a necessary condition, as well
as C and baryon-number violations, and interactions out of equilibrium, all collectively known as the Sakharov
conditions [136].

6Note that, in this instance, the processes mediated by the strong interactions are OZI-suppressed.
7The signature of CP violation in these decays is the presence of particles with opposite CP in the final

state.
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Chapter 7

π0-η-η′ mixing from V →Pγ and P→V γ decays1

An enhanced phenomenological model that includes isospin-symmetry breaking is presented
in this chapter. This model is then used in a number of statistical fits to the most recent
experimental data for the radiative transitions VPγ (V = ρ, K∗, ω, φ and P = π, K, η,
η′) and estimations for the mixing angles amongst the three neutral pseudoscalar states with
vanishing third-component of isospin are obtained. The quality of the performed fits is good,
e.g. χ2

min/d.o.f = 1.9. The current experimental uncertainties allow for isospin-symmetry
violations with a confidence level of approximately 2.5σ.

7.1 Introduction

The SU(3)-flavour symmetry is broken by the strange quark being significantly heavier than
the up and down quarks [116, 122, 138]. As a result of this, the physical states η and η′

become a mixture of the pure octet |η8〉 and singlet |η1〉 mathematical states. Through an
orthogonal transformation with mixing angle θP (see Appendix A), the mass eigenstates |η〉
and |η′〉 can be expressed as a linear combination of |η8〉 and |η1〉 [116, 138],

|η〉= cosθP |η8〉− sinθP |η1〉 ,
|η′〉= sinθP |η8〉+ cosθP |η1〉 ,

(7.1)

with |η8〉= 1√
6
|uū+dd̄−2ss̄〉 and |η1〉= 1√

3
|uū+dd̄+ss̄〉. Another commonly used basis

for the description of the η-η′ mixing is the quark-flavour basis, which becomes exact in the
limit ms→∞ [139],

|η〉= cosφP |ηNS〉− sinφP |ηS〉 ,
|η′〉= sinφP |ηNS〉+ cosφP |ηS〉 ,

(7.2)

where |ηNS〉 = 1√
2
|uū+dd̄〉 and |ηS〉 = |ss̄〉. The mixing angles θP and φP are related by

θP = φP −arctan
√
2' φP −54.7◦.

The mixing of the η and η′ mesons is heavily influenced by the U(1)A anomaly of
QCD [120], which induces a significant amount of mixing in the η-η′ sector [122]. The
U (1)A anomaly forces the |η〉 and |η′〉 mass eigenstates, which one would naively expect to
be almost ideally mixed, to be nearly flavour octet and singlet states. In addition, the U(1)A
anomaly is responsible for the non-Goldstone nature of the singlet state, forcing it to be mas-
sive even in the chiral limit. As a result of the mixing, the U(1)A anomaly is transferred to
both the η and η′ mesons [116].

In the vector meson sector, where the spins of the quark-antiquark bound states are par-
allel, the mixing between the ω and φ mesons is usually described using the quark-flavour
basis, as there is no anomaly affecting this sector [122, 140]. Accordingly, the mixing angle
φV is small (about 3◦ to 4◦), which is consistent with the OZI-rule and becomes rigorous in
the limit NC →∞ [122].

1This chapter is based on Ref. [137].
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Early phenomenological studies on the η-η′ mixing used experimental data to perform
statistical fits in terms of the mixing angles. One significant contribution was made by Gilman
et al. in the late 1980s [141], which provided an estimation of θP ' −20◦ after a complete
review of the empirical data available at the time. Subsequently, Bramon et al. [138, 142] in-
troduced in their phenomenological model corrections due to non-ideal mixing in the vector
meson nonet and obtained a somewhat less negative mixing angle, i.e. θP = (−16.9±1.7)◦

and θP = (−15.5± 1.3)◦, respectively, where the former was deduced from the rich set of
J/ψ decays into a vector and a pseudoscalar meson, whilst the latter came from a thorough
analysis of many different decay channels. In Ref. [138], the flavour SU(3)-breaking cor-
rections were introduced in terms of constituent quark mass differences, whilst mixing with
other pseudoscalar states like glueballs was neglected. Benayoun et al. proposed in Ref. [143]
an approach based on a hidden local symmetry model, supplemented with nonet symmetry
breaking in the pseudoscalar sector. This approach achieved good agreement with experi-
mental data, with exception of the K∗± radiative decays, and found a pseudoscalar mixing
angle θP ' −11◦, which is consistent with the quadratic Gell-Mann-Okubo mass formula
but in conflict with χPT. A value of φV ' 3◦ was found in the vector meson sector.

In 2001, Bramon et al. [140] introduced an additional source of flavour SU(3)-symmetry
breaking by including a quantum mechanical extension for the VPγ radiative decays. The
phenomenological model assumed isospin symmetry and the expectation that, even though
gluon annihilation channels induce η-η′ mixing, they play a negligible role in VPγ transi-
tions respecting, therefore, the OZI-rule [140]. The VPγ decay couplings were expressed in
terms of the mixing angles and relative spatial wavefunction overlaps; then, using experimen-
tal estimations for the decay couplings, the best fit values for the free parameters of the model
were obtained. The quality of their fits was very good (e.g. χ2

min/d.o.f. = 0.7) and the esti-
mations for the mixing angles were found to be φP = (37.7±2.4)◦ and φV = (3.4±0.2)◦

using the experimental data available at the time. An important conclusion that was drawn
is that the SU(3)-breaking effects originated from flavour dependence through the relative
spatial wavefunction overlaps cannot be neglected.

Ball et al. presented in Ref. [144] (see also Ref. [145]) a different approach by assuming
that the meson decay constants follow the pattern of particle state mixing, connecting the
short-distance properties of mesons, i.e. decay constants, with long-distance phenomena,
i.e. mass eigenstates mixing [139]. In particular, the VPγ radiative decays were directly
linked to the anomaly of the AV V triangle diagram and the SU(3)-breaking effects were
introduced by means of leptonic decay constants. A fit using experimental data for several
VPγ decay channels enabled an estimation for θP between −20◦ and −17◦. This strategy
and subsequent enhancements introduced by others have been ubiquitous in the literature
(e.g. [120, 122, 139, 146–149]). In this context, phenomenological studies have confirmed
that a two mixing angle scheme is required to properly describe the experimental data in
the octet-singlet basis [120, 121, 150–152], whilst a single mixing angle suffices to achieve
good agreement in the quark-flavour basis [120, 121, 150, 153–155], which is supported by
large-NC χPT [57, 119] at next-to-leading order. This appears to indicate that the difference
between the two mixing angles in the octet-singlet basis is produced by an SU(3)-breaking
effect, whereas in the quark-flavour basis the difference comes from an OZI-rule violating
effect [120, 122]. In addition, at lowest order in χPT, one only requires a single mixing angle,
which endorses Eqs. (7.1) and (7.2).

Using this approach, Feldmann et al. [121] provided theoretical (to first order in flavour
symmetry breaking) and phenomenological estimations for θP of−12.3◦ (no error provided)
and (−15.4±1.0)◦, respectively. Likewise, Escribano et al. [120] found phenomenological
values for θP = (−14.3±1.0)◦ and φV = (4.1±2.2)◦ using one mixing angle in the quark-
flavour basis. As well as this, Kroll obtained in Ref. [156] values for θP of (−13.2± 2.2)◦

and (−13.5±1.1)◦, employing two different sources of empirical data available at the time,
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i.e. the PDG 2004 and KLOE Collaboration, respectively.
The gluonic content of the η and η′ wavefunctions was analysed using empirical data

from VPγ decays in Refs. [157, 158] and the model that was employed followed Ref. [140].
It was found that the gluonic content for the η and η′ wavefunctions is consistent with zero,
using the most up-to-date data at the time. Furthermore, it was once again emphasised the
importance of the secondary source of flavour SU(3)-symmetry breaking to achieve good
agreement with experimental data.

Feldmann et al. discussed in Ref. [153] the effects of isospin-symmetry breaking, which
is induced by the mass difference between the u and d quarks, as well as QED effects, using
the theoretical framework first presented in Ref. [159]. Mathematically, they expressed the
admixtures of the η and η′ to the physical π0 as [153]

|π0〉= |π3〉+ ε |η〉+ ε′ |η′〉 , (7.3)

where |π3〉 denotes the I3 = 0 state of the pseudoscalar isospin triplet. By assuming a mix-
ing angle of φ = 39.3◦ for the η-η′ system, they found through the diagonalisation of the
associated mass matrix that the mixing between the π0 and η mesons was ε = 1.4%, whilst
the π0-η′ mixing was ε′ = 0.37% (no errors associated to these theoretical estimations were
provided).

Kroll, as a continuation of the previous work, highlighted in Ref. [156] that isospin-
symmetry breaking is of order (md −mu)/ms due to the effect of the U(1)A anomaly,
which is embodied in the divergence of the singlet axial-vector current [42, 160]. As a result
of the mixing, the U(1)A anomaly is transferred to the π0, η and η′ physical states. A simple
generalisation of the quark-flavour mixing scheme (e.g. [122, 148, 153]) allowed him to write
the following theoretical expressions for the mixing parameters ε and ε′ [156],

ε(z) = cosφ

[
1

2

m2
dd−m2

uu

m2
η−m2

π0

+ z

]
,

ε′(z) = sinφ

[
1

2

m2
dd−m2

uu

m2
η′−m2

π0

+ z

]
,

(7.4)

where the parameter z is the quotient of decay constants z = (fu− fd)/(fu+ fd) and the
quark mass difference m2

dd−m2
uu was estimated from the K0-K+ mass difference. Assum-

ing again a mixing angle in the η-η′ sector of φ= 39.3◦ and making use of the fu = fd limit,
he found the following numerical estimations for the mixing parameters ε and ε′,

ε̂= ε(z = 0) = (1.7±0.2)%,

ε̂′ = ε′(z = 0) = (0.4±0.1)% .
(7.5)

Escribano et al. analysed in Ref. [161] the second-class current decays τ−→ π−η(′)νη
and found estimations for the π0-η and π0-η′ mixing parameters from theory, making use of
scalar and vector form factors at next-to-leading order in χPT. The analytic expressions that
they found are consistent with those from Kroll shown in Eq. (7.4) up to higher-order isospin
corrections. The numerical estimations that they obtained are

επη = cφηη′
m2
K0−m2

K+ −m2
π0 +m2

π+

m2
η−m2

π−

[
1−

m2
η−m2

π−

M2
S

]
= (9.8±0.3)×10−3 ,

επη′ = sφηη′
m2
K0−m2

K+ −m2
π0 +m2

π+

m2
η′−m2

π−

[
1−

m2
η′−m2

π−

M2
S

]
= (2.5±1.5)×10−4 ,

(7.6)
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TABLE 7.1: Comparison between estimations for the seven free parameters
from the model presented in Ref. [140], using the PDG 2000 and the most

up-to-date experimental data.

Parameter Estimation from [140] Current Estimation

g 0.70±0.02 GeV−1 0.70±0.01 GeV−1
ms
m 1.24±0.07 1.17±0.06

φP (37.7±2.4)◦ (41.4±0.5)◦

φV (3.4±0.2)◦ (3.3±0.1)◦

zNS 0.91±0.05 0.84±0.02

zS 0.89±0.07 0.76±0.04

zK 0.91±0.04 0.89±0.03

χ2
min/d.o.f. 0.7 4.6

where cφηη′ and sφηη′ stand for cosφηη′ and sinφηη′ , respectively; also, an η-η′ mixing angle
of φηη′ = (41.4±0.5)◦ was assumed, together with a scalar mass of MS = 980 MeV.

It must be noted that Kroll’s mixing parameters ε and ε′ in Ref. [156] [cf. Eq. (7.3)]
were defined in the quark-flavour basis whilst Escribano et al.’s επη and επη′ in Ref. [161]
were defined in the octet-singlet basis. Despite this difference, it can be easily shown that,
since both authors used the same SO(3) rotation matrix structure, one can write ε= επη and
ε′ = επη′ , which are valid as first order approximations.

7.2 Methodology

From the effective Lagrangian that is commonly used to describe VPγ radiative decays, a
set of expressions for the theoretical decay couplings is found in terms of the free parameters
of the model. Next, using experimental data from Ref. [1], the corresponding experimental
decay couplings are calculated and, finally, an optimisation fit is performed.

In the framework of the conventional quark model, the flavour symmetry-breaking mech-
anism associated to differences in the effective magnetic moments of light and strange quarks
in magnetic dipolar transitions is introduced via constituent quark mass differences. This is
implemented by means of a multiplicative SU(3)-breaking term, i.e. 1−se ≡m/ms, in the
s-quark entry of the quark-charge matrix Q [138]. A second source of flavour symmetry
breaking, connected to the differences in the spatial extensions of the meson state wavefunc-
tions, is also considered [140]. This symmetry-breaking mechanism is introduced through
additional multiplicative factors in the theoretical coupling constants, accounting for the cor-
responding relative wavefunction overlaps, and are left as free parameters in the fit.

The isospin violation in the pseudoscalar sector is investigated in this framework. The
mixing in this case requires an SO(3) rotation matrix relating the π0, η and η′ mass eigen-
states to the SU(3) mathematical states, with three mixing angles. Additional wavefunction
overlap factors are introduced to the model and gluon annihilation channels, which might
contribute to the mixing, are neglected.2

7.3 The mixing of the η-η′ revisited

The analysis carried out in Ref. [140] for the estimation of the mixing angle in the η-η′ sector
is reproduced in this section using the most up-to-date experimental data [1]. The theoretical

2This is a necessary simplification to reduce the number of free parameters in the model; otherwise, the
statistical fit would not be possible given the limited number of available decay channels.
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VPγ decay couplings are confirmed to be those presented in Ref. [140]. The relationship
between the decay couplings and the decay widths is given by

Γ(V → Pγ) =
1

3

g2
VPγ

4π
|pγ |3 =

1

3
Γ(P → V γ) , (7.7)

where pγ is the linear momentum of the outgoing photon. Using Eq. (7.7) together with
the experimental data for the total decay widths, branching ratios and meson masses from
Ref. [1], one can obtain experimental values for the decay couplings. From these and the
corresponding theoretical counterparts, an optimisation fit can be performed. Making use of
a standard minimisation software package, the optimal values for the seven free parameters
of the model are presented in Table 7.1. One can see that the fitted values obtained in this
chapter are in good agreement with those found by Bramon et al. in Ref. [140]. The current
associated standard errors are smaller, which is due to the fact that the uncertainties associated
to the experimental measurements have decreased over the years. The most recent empirical
data seems to favour a somewhat bigger η-η′ mixing angle φP , which is consistent with other
recent results (e.g. Refs. [154, 162–164]). As well as this, the most up-to-date experimental
data grants more relevance to the secondary source of flavour SU(3)-symmetry breaking, as
the zNS and zS spatial wavefunction overlap factors are further from unity.

That being said, the quality of the fit for the current estimations is poor with a
χ2

min/d.o.f. ' 23.1/5 ' 4.6, while in Ref. [140], using the data available at the time, the
quality of the fit was excellent, i.e. χ2

min/d.o.f. = 0.7. This, again, is connected to the im-
proved quality of the most recent data [1]. Based on this goodness-of-fit test, one ought
to come to the conclusion that the current experimental data no longer supports the model
presented in Ref. [140].

7.4 Enhanced model for the π0-η-η′ mixing

The phenomenological model presented above is enhanced in this section by incorporating
isospin-breaking effects, enabling the investigation of the mixing phenomena between the
π0, η and η′ pseudoscalar mesons. This improved model considers that the physical pseu-
doscalar mesons with vanishing third-component of isospin are an admixture of some pure
mathematical states and the mixing is, thus, implemented by a three-dimensional rotation
amongst them. In addition, the mechanisms of flavour SU(3)-symmetry breaking that have
been discussed in Sec. 7.2 are enhanced to account for violations of isospin. In the vector
meson sector, a single mixing angle is still considered, as this sector is anomaly-free.

In order to find the theoretical decay couplings associated to the different VPγ radiative
transitions, one starts with the effective Lagrangian that is usually used to calculate ampli-
tudes in V → Pγ and P → V γ decay processes [138],

LVPγ = geεµναβ∂
µAνTr[Q(∂αV βP +P∂αV β)] , (7.8)

where ge is a generic electromagnetic coupling constant, εµναβ is the totally antisymmet-
ric tensor, Aµ is the electromagnetic field, Vµ and P are, respectively, the matrices for
the vector and pseudoscalar meson fields, and Q is the quark-charge matrix in Eq. (3.25),
i.e. Q= diag{2/3,−1/3,−1/3}.

Next, the following SO(3) rotation matrix correlating the pseudoscalar I3 = 0 physical
states with the pure quark-flavour basis states is selectedπ0

η
η′

=

 1 ε12 ε13

−ε12cφ23 + ε13sφ23 cφ23 −sφ23

−ε13cφ23− ε12sφ23 sφ23 cφ23

 π3

ηNS
ηS

 , (7.9)
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where ε12 and ε13 are first order approximations to the corresponding φ12 and φ13 mixing
angles, as isospin-breaking corrections are small [159]. It must be stressed that the particular
structure that we have selected for the SO(3) rotation matrix is down to the fact that it
enables an enhanced resolution against the statistical uncertainties associated to both mixing
parameters ε12 and ε13 simultaneously, once the optimisation fits are performed.3

The transformations that map Kroll’s ε and ε′ in the quark-flavour basis (cf. Eq. (7.3) and
Ref. [156]) and Escribano et al.’s επη and επη′ in the octet-singlet basis (cf. Ref. [161]) to the
ε12 and ε13 in the quark-flavour basis used in this chapter [cf. Eq. (7.9)] are4(

ε12

ε13

)
=

(
cφP sφP
−sφP cφP

)(
ε
ε′

)
, (7.10)

and (
ε12

ε13

)
=

1√
3

(
cθP −

√
2 sθP sθP +

√
2 cθP

−sθP −
√
2 cθP cθP −

√
2 sθP

)(
επη
επη′

)
. (7.11)

At this point, one can obtain the expressions for the theoretical decay couplings of the
enhanced phenomenological model. These are

gρ0π0γ = g
(1
3
+ ε12zNS

)
, gρ+π+γ = g

z+
3

,

gρ0ηγ = g
[(
zNS−

ε12

3

)
cφ23 +

ε13

3
sφ23

]
,

gωπ0γ = g
[(

1+
ε12

3
zNS

)
cφV +

2

3
zS
m

ms
ε13sφV

]
,

gη′ρ0γ = g
[(
zNS−

ε12

3

)
sφ23−

ε13

3
cφ23

]
,

gωηγ = g

{[(zNS

3
− ε12

)
cφ23 + ε13sφ23

]
cφV −

2

3
zS
m

ms
sφ23sφV

}
,

gη′ωγ = g

{[(zNS

3
− ε12

)
sφ23− ε13cφ23

]
cφV +

2

3
zS
m

ms
cφ23sφV

}
,

gφπ0γ = g
[(

1+
ε12

3
zNS

)
sφV −

2

3
zS
m

ms
ε13cφV

]
,

gφηγ = g

{[(zNS

3
− ε12

)
cφ23 + ε13sφ23

]
sφV +

2

3
zS
m

ms
sφ23cφV

}
,

gφη′γ = g

{[(zNS

3
− ε12

)
sφ23− ε13cφ23

]
sφV −

2

3
zS
m

ms
cφ23cφV

}
,

gK∗0K0γ = −
1

3
g
(
1+

m

ms

)
zK0 = −

1

3
g
(
1+ zS

m

ms

)
z′K0 ,

gK∗+K+γ =
1

3
g
(
2− m

ms

)
zK+ =

1

3
g
(
2−zS

m

ms

)
z′K+ ,

(7.12)

where the wavefunction overlap parameters have been redefined as relative overlap fac-
tors [140]: zNS≡ZNS/Z3, zS≡ZS/Z3, z+≡Z+/Z3, zK0 ≡ZK0/Z3 and zK+ ≡ZK+/Z3.
The generic electromagnetic coupling constant ge in Eq. (7.8) has been replaced by g = Z3ge
on the right hand side equalities of Eq. (7.12). In some instances, the overlap factors
in the strange sector have been redefined to z′K0 = zK0(1+m/ms)/(1+ zSm/ms) and

3This point will become clearer later when the results are discussed.
4Given that these are orthogonal transformations, to move from one definition to the other in the opposite

direction, one only needs to multiply by the transposed matrices.
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z′K+ = zK+(2−m/ms)/(2−zSm/ms) in order to avoid redundant free parameters. It is
worth highlighting that Eq. (7.12) reduce to the expressions shown in Ref. [140] in the good
SU(2) limit, as expected.

A fit of the theoretical decay couplings from Eq. (7.12) to the experimental data for ten
free parameters provides the following estimations

g = 0.69±0.01 GeV−1 , z+ = 0.95±0.05,

φ23 = (41.5±0.5)◦ , φV = (4.0±0.2)◦ ,

ε12 = (2.3±1.0) %, ε13 = (2.5±0.9) %,

zNS = 0.89±0.03, zSm/ms = 0.65±0.01,

z′K0 = 1.01±0.04, z′K+ = 0.76±0.04 .

(7.13)

The quality of the fit is relatively good, with χ2
min/d.o.f. ' 4.6/2 = 2.3. The fitted values

for the mixing angles φ23 and φV are in very good agreement with recent published results
(e.g. [120, 157, 163]). The g and ms/m [see Eq. (7.14) below for an estimation of the
latter] are also consistent with those from other studies but, as highlighted by Bramon et
al. in Ref. [140], these parameters are largely dependent on the particular model used; hence,
comparison provides limited value.

An important point to notice from Eq. (7.13) is that the estimations for ε12 and ε13 are
very small but not compatible with zero with a confidence level of 2.3σ and 2.8σ, respec-
tively, assuming a Gaussian distribution for the error. The ε12 and ε13 values from our fit
can be translated to Kroll’s and Escribano et al.’s definitions for their SO(3) rotation matrix
yielding ε= επη = (0.1±0.9) % and ε′ = επη′ = (3.4±0.9) %. It can be observed that our
mixing parameters ε and επη are compatible with zero, whilst our parameters ε′ and επη′ are
not consistent with zero with a confidence level of 3.8σ. Clearly, all mathematical represen-
tations for the physical states are equivalent; however, the specific rotation matrix selected in
Eq. (7.9) enables the simultaneous determination that both parameters controlling the mixing
in the π0-η and π0-η′ sectors are incompatible with zero.

In addition, it is worth noting from our results that the contribution to the physical state
|π0〉 from the mathematical state |η8〉 is significantly smaller (in fact, consistent with zero)
than that from the pure singlet state |η1〉. This is an interesting result as one would naively
expect the amount of mixing in the π0-η system to be larger than the one found in the π0-η′

sector, based on mass arguments. This can be explained, though, by the fact that the U (1)A
anomaly mediates η1↔ π3 transitions and, therefore, provides an additional contribution to
the associated mixing. Note that Escribano et al. [161] made use of the large-NC limit in their
calculations, which effectively rids the theory of the chiral anomaly; hence, the effect men-
tioned above does not surface in their estimations for the mixing parameters. On the other
hand, Kroll obtained in Ref. [156] first order theoretical results for the mixing parameters,
neglecting, thus, any high-order symmetry breaking corrections; this is a sound approxima-
tion for the η-η′ system but might potentially compromise the results for the π0-η and π0-η′

sectors where the mixing parameters are very small.
Another fit is carried out fixing ε12 = ε13 = 0 and leaving all the other parameters free.

The quality of the fit is significantly decreased with χ2
min/d.o.f.' 21.3/4' 5.3, highlighting

the fact that a certain amount of mixing between the neutral π0 with the η and η′ mesons
different from zero is required to correctly describe the data.

Fixing the parameters z+ = 1 and zK0 = zK+ , which accounts for turning off the sec-
ondary mechanism of isospin-symmetry breaking, and performing a fit with all the other
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parameters left free, we find

g = 0.69±0.01 GeV−1 , ms/m= 1.17±0.06,

φ23 = (41.5±0.5)◦ , φV = (4.0±0.2)◦ ,

ε12 = (2.4±1.0) %, ε13 = (2.5±0.9) %,

zNS = 0.89±0.03, zS = 0.77±0.04,

zK = 0.90±0.03,

(7.14)

where the quality of the fit is better, i.e. χ2
min/d.o.f. ' 5.6/3' 1.9. The z’s in Eq. (7.14) are

different from unity, signalling that the secondary mechanism of flavour SU(3)-symmetry
breaking is still required for the correct description of the experimental data. This statement
can be tested by performing a fit where all the z’s are fixed to one and it is found that the
quality of the fit is substantially decreased, i.e. χ2

min/d.o.f.' 41.8/6' 7.0.
The estimates for ε12 and ε13 in Eq. (7.14) are, again, not compatible with zero with a

confidence level of 2.4σ and 2.8σ, respectively. In general, the estimations from Eq. (7.14)
are very approximate to the ones shown in Eq. (7.13). It is interesting to see that reduc-
ing the number of free parameters in the last fit leads to a sizeable increase in the quality
of the fit. This is related to the fact that, despite the residual χ2

min being smaller when ten
free parameters are employed, this reduction does not compensate for the loss of one degree
of freedom. Accordingly, it appears that the introduction of the secondary mechanism of
isospin-symmetry breaking is not required to reproduce the experimental data. For this rea-
son, the degrees of freedom z+, zK0 and zK+ will be fixed to z+ = 1 and zK0 = zK+ for any
subsequent fits.

Two more statistical fits using the estimated values for ε12 and ε13 from Kroll [156] and
Escribano et al. [161] can be performed. Starting with Kroll’s estimations ε12 = (1.6±0.2)%
and ε13 = (−0.8±0.1) % we obtain

g = 0.69±0.01 GeV−1 , ms/m= 1.17±0.06,

φ23 = (41.4±0.5)◦ , φV = (3.1±0.1)◦ ,

zNS = 0.86±0.0 , zS = 0.77±0.04,

zK = 0.90±0.03,

(7.15)

where the quality of the fit is significantly poorer, i.e. χ2
min/d.o.f. ' 22.0/5 = 4.4. Like-

wise, using Escribano et al.’s ε12 = (7.5± 0.2)× 10−3 and ε13 = (−6.3± 0.2)× 10−3 and
performing the fit once more, the following results are found

g = 0.70±0.01 GeV−1 , ms/m= 1.17±0.06,

φ23 = (41.4±0.5)◦ , φV = (3.2±0.1)◦ ,

zNS = 0.85±0.02, zS = 0.77±0.04,

zK = 0.90±0.03,

(7.16)

where the quality of the fit is similar to the previous one, i.e. χ2
min/d.o.f. ' 24.0/5 = 4.8.

This shows that the theoretical estimations for the mixing parameters ε12 and ε13 provided
by Kroll [156] and Escribano et al. [161] do not appear to agree with the most recent exper-
imental data [1]. It must be stressed, though, that the phenomenological model presented in
this chapter is based on the relatively simple standard quark model with a quantum mechan-
ical extension, whilst Refs. [156] and [161] used more sophisticated theoretical approaches.
Having said this, those estimations had limited numerical input from experiment due to their
intrinsic theoretical nature.
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TABLE 7.2: Summary of fitted values for the Fit 1, Fit 2, Fit 3, Fit 4 and Fit 5,
corresponding to Eqs. (7.13), (7.14), (7.15), (7.16) and (7.17), respectively.

Parameter Fit 1 Fit 2 Fit 3 Fit 4 Fit 5

g (GeV−1) 0.69±0.01 0.69±0.01 0.69±0.01 0.70±0.01 0.69±0.01

ε12 (2.3±1.0) % (2.4±1.0) % - - (2.4±1.0) %

ε13 (2.5±0.9) % (2.5±0.9) % - - (2.5±0.9) %

φ23 (◦) 41.5±0.5 41.5±0.05 41.4±0.5 41.4±0.5 41.5±0.5

φV (◦) 4.0±0.2 4.0±0.2 3.1±0.1 3.2±0.1 4.0±0.2

ms/m - 1.17±0.06 1.17±0.06 1.17±0.06 -
zSm/ms 0.65±0.01 - - - 0.65±0.01

zNS 0.89±0.03 0.89±0.03 0.86±0.02 0.85±0.02 0.89±0.03

z+ 0.95±0.05 - - - -
zS - 0.77±0.04 0.77±0.04 0.77±0.04 -
zK - 0.90±0.03 0.90±0.03 0.90±0.03 -
z′K0 1.01±0.04 - - - -
z′K+ 0.76±0.04 - - - -

χ2min/d.o.f. 2.3 1.9 4.4 4.8 1.9

A final fit is carried out where the experimental points associated to the neutral and
charged K∗ → Kγ transitions are not considered.5 Accordingly, the free parameters zK ,
or z′K0 and z′K+ , are not included in this fit, and the parameters ms/m and zS are considered
jointly again. The estimated values from the fit are

g = 0.69±0.01 GeV−1 , zSm/ms = 0.65±0.01,

φ23 = (41.5±0.5)◦ , φV = (4.0±0.2)◦ ,

ε12 = (2.4±1.0) %, ε13 = (2.5±0.9) %,

zNS = 0.89±0.03 .

(7.17)

The quality of the fit is good, χ2
min/d.o.f. ' 5.6/3 ' 1.9. The estimates for ε12 and ε13 are

again incompatible with zero at a confidence level of 2.4σ and 2.8σ, respectively.
A summary of all the fitted parameters is shown in Table 7.2. The robustness of the fitted

values for the parameters g, ε12, ε13, φ23 and φV across Fits 1, 2 and 5 is remarkable. In
addition, the consistency of the z parameters across all the fits is also very good. As well as
this, a comparison between the calculated decay widths and the experimental decay widths
obtained directly from [1] is presented in Table 7.3. The agreement is very good for the
estimated values from Γfit1, Γfit2 and Γfit5. The decay width estimations Γfit3 and Γfit4 are not
as good as the others, implying again that the experimental data seems to favour different
values for ε12 and ε13 than those suggested by Kroll [156] and Escribano et al. [161].

It is worth highlighting that the biggest contribution to the residual χ2
min in Γfit1, Γfit2

and Γfit5 consistently comes from the neutral ρ0→ π0γ decay. This might be related to the
fact that the measurement associated to this decay channel has relatively small experimen-
tal uncertainty. However, it might also be pointing to limitations directly connected to the
assumptions that have been taken in the phenomenological model presented in this chapter,
such as, for example, potential gluonic content of the mesonic wavefunctions or contributions
to the mixing from gluonic annihilation channels.

5Note that, traditionally, strange decay width measurements have suffered from larger uncertainties than the
other radiative decays.



100 Chapter 7. π0-η-η′ mixing from V →Pγ and P→V γ decays

TABLE 7.3: Comparison between the experimental decay widths Γexp for
the various radiative decay channels, and the Γfit1, Γfit2, Γfit3, Γfit4 and
Γfit5 predictions from the enhanced model associated to the fit values from

Eqs. (7.13), (7.14), (7.15), (7.16) and (7.17), respectively.

Transition Γexp [keV] Γfit1 [keV] Γfit2 [keV] Γfit3 [keV] Γfit4 [keV] Γfit5 [keV]

ρ0→ ηγ 44±3 41±3 41 ± 3 38 ± 2 38 ± 2 41 ± 3
ρ0→ π0γ 69±9 85±5 85 ± 5 82 ± 2 79 ± 2 85 ± 5
ρ+→ π+γ 67±7 67±8 74 ± 2 75 ± 2 75 ± 2 74 ± 2
ω→ ηγ 3.8±0.3 4.0±0.5 4.0 ± 0.5 3.4 ± 0.2 3.5 ± 0.2 4.0 ± 0.5
ω→ π0γ 713±20 705±21 701 ± 20 703 ± 19 704 ± 19 701 ± 20
φ→ ηγ 55.4±1.1 55±3 55 ± 8 54 ± 8 54 ± 8 55 ± 3
φ→ η′γ 0.26±0.01 0.27±0.01 0.27 ± 0.04 0.28 ± 0.05 0.27 ± 0.05 0.27 ± 0.01
φ→ π0γ 5.5±0.2 5.5±1.0 5.5 ± 1.1 5.5 ± 0.3 5.5 ± 0.3 5.5 ± 1.0
η′→ ρ0γ 57±3 57±4 57 ± 4 56 ± 3 55 ± 3 57 ± 4
η′→ ωγ 5.1±0.3 5.2±0.2 5.2 ± 0.2 6.4 ± 0.1 6.5 ± 0.1 5.2 ± 0.2

K∗0→K0γ 116±10 116±11 116 ± 10 116 ± 10 116 ± 10 -
K∗+→K+γ 46±4 46±5 46 ± 5 46 ± 5 46 ± 5 -

χ2min/d.o.f. - 2.3 1.9 4.4 4.8 1.9

7.5 Conclusions

The phenomenological model based on the standard quark model with two sources of flavour
SU(3)-symmetry breaking proposed by Bramon et al. in Ref. [140] has been tested using the
most up-to-date VPγ experimental data [1] in Sec. 7.3. It has been shown that the quality
of the most recent empirical data is sufficiently good to see that the model struggles to accu-
rately reproduce experiment. Consequently, the objective in this chapter has been to enhance
this phenomenological model to reconcile it with experiment. This has been achieved by
introducing isospin symmetry-breaking effects in the model.

The main result from the present investigation is that the quality of the most up-to-date
experimental data [1] enables a small amount of isospin-symmetry breaking that is incon-
sistent with zero, with a confidence level of approximately 2.5σ, using the enhanced phe-
nomenological model. The quality of the performed fits is good, with e.g. χ2

min/d.o.f.' 1.9.
In addition, the estimations for the fit parameters appear to be very robust across the fits that
have been performed. The fitted values for g = 0.69± 0.01 GeV−1, φ23 = (41.5± 0.5)◦,
φV = (4.0±0.2)◦ and ms/m = 1.17± 0.06 are in good agreement with those from other
analyses available in the published literature (e.g. [120, 157, 163]). Contrary to this,
our estimates for the parameters controlling the mixing in the π0-η and π0-η′ sectors,
i.e. ε12 = (2.4±1.0) % and ε13 = (2.5±0.9) % —using the mathematical definition for the
rotation matrix from Eq. (7.9)— or ε = επη = (0.1±0.9) % and ε′ = επη′ = (3.5±0.9) %
—once translated into Kroll’s [156] and Escribano et al.’s [161] definitions—, are not in ac-
cordance with the estimations that were provided by these authors in Refs. [156] and [161],
respectively.

To conclude, it is worth highlighting that all the results from the present investigation ap-
pear to indicate that the enhanced phenomenological model, which is based on simple quark
model concepts and implements isospin-violating effects, is sufficient to describe to a large
degree of accuracy the radiative decays, and the rich and complex mixing phenomenology in
the pseudoscalar meson sector.
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Chapter 8

A theoretical analysis of the doubly radiative decays
η(′)→ π0γγ and η′→ ηγγ1

The scalar and vector meson exchange contributions to the doubly radiative decays
η(′)→ π0γγ and η′ → ηγγ are analysed within the U(3)×U (3) LσM and VMD frame-
works, respectively. Predictions for the diphoton invariant mass distributions and the asso-
ciated integrated branching ratios are given, and compared with current experimental data.
Whilst a satisfactory description of the shapes of the η(′) → π0γγ diphoton spectra and the
η′→ π0(η)γγ branching ratios is obtained —thus, supporting the validity of our approach—,
the situation is unclear for the normalisation of the η → π0γγ as there are significant dis-
crepancies in the measurements from different experimental collaborations. The theoretical
predictions for the η′→ ηγγ presented in this chapter are the first that have been published.

8.1 Introduction

Measurements of η and η′ decays have reached unprecedented precision over the years
placing new demands on the accuracy of the corresponding theoretical descriptions [14].
Amongst them, the radiative decay η→ π0γγ has attracted much interest as this process is
the perfect laboratory for testing χPT and its natural extensions, but also down to decades of
tension between the associated theoretical predictions and the experimental measurements.

Likewise, the study of the η′→ π0γγ and η′→ ηγγ decay processes are of interest for a
number of reasons. First, they complete existing calculations of the sister process η→ π0γγ,
which has been studied in many different frameworks, ranging from the seminal works based
on VMD [166, 167] and χPT [168] to more modern treatments based on the unitarisation
of the chiral amplitudes [97, 98] or dispersive approaches [169]. At present, whilst there is
only a course estimation for the branching ratio (BR) of the η′ → π0γγ decay [170, 171],
there is no calculation or theoretical prediction for the η′→ ηγγ. Second, the BESIII Col-
laboration has recently reported the first measurements for the decays η′→ π0γγ [172] and
η′→ ηγγ [173], thus, making the topic of timely interest [174]. Third, the analysis of these
decays could help extract relevant information on the properties of the lowest-lying scalar
resonances; in particular, the isovector a0(980) from the two η(′)→ π0γγ processes, and the
isoscalars σ(500) and f0(980) from the η′→ ηγγ decay, thus, complementing other investi-
gations such as the studies of V →P 0P 0γ decays (V = ρ0,ω,φ and P 0 = π0,η) [96],D and
J/ψ decays, central production, etc. (see note on scalar mesons in Ref. [1]). For all these
reasons, our aim here is to provide a first detailed evaluation of the invariant mass spectra and
integrated BRs for the three doubly radiative decays η(′)→ π0γγ and η′→ ηγγ.

On the experimental front, the BR of the η → π0γγ decay has been measured
by GAMS-2000 [175], BR = (7.1 ± 1.4) × 10−4, Crystal Ball@AGS in 2005 [176],
BR = (3.5±0.7±0.6)×10−4, and 2008 [177], BR = (2.21± 0.24± 0.47)× 10−4, where
the latter also included an invariant mass spectrum for the two outgoing photons. An indepen-
dent analysis of the last Crystal Ball data resulted in BR = (2.7±0.9±0.5)×10−4 [178].

1This chapter is based on Ref. [165].
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η(′)→ π0γγ and η′→ ηγγ

Early results are summarised in the review of Ref. [179]. Surprisingly low in compari-
son with all previous measurements is the 2006 result reported by the KLOE Collabora-
tion [180], BR = (0.84±0.27±0.14)×10−4, based on a sample of 68± 23 events. More
recent measurements of the diphoton energy spectrum, Γ(η→ π0γγ) = (0.330±0.030) eV
and BR = (2.54± 0.27)× 10−4 were released by the A2 Collaboration at the Mainz Mi-
crotron (MAMI) [181], based on the analysis of 1.2× 103 η → π0γγ decay events. Very
recently, a (preliminary) value with significantly smaller uncertainties has been found by the
KLOE Collaboration, BR = (1.23± 0.14)× 10−4, and has been published in a conference
proceedings [182]; the associated diphoton spectrum has not yet been published, although it
was presented at The 10th International Workshop on Chiral Dynamics 2021 [183]. The latest
PDG states a fit value of BR = (2.55±0.22)×10−4 [1]. For the η′→ π0γγ decay, the BE-
SIII Collaboration has recently reported for the first time the associated m2

γγ invariant mass
distribution [172]. The measured branching fraction is BR = (3.20± 0.07± 0.23)× 10−3,
superseding the upper limit BR < 8× 10−4 at 90% CL determined by the GAMS-2000 ex-
periment [184]. Finally, for the η′→ ηγγ decay, a measurement of BR< 1.33×10−4 at 90%
CL has been provided, again for the first time, by the BESIII Collaboration [173].

On the theoretical front, the η → π0γγ decay has been a stringent test for the predic-
tive power of χPT. Within this framework, the tree-level contributions at O(p2) and O(p4)
vanish because the pseudoscalar mesons involved are neutral. The first non-vanishing con-
tribution comes at O(p4), either from kaon loops, largely suppressed by their mass, or from
pion loops, also suppressed since they violate G-parity and, therefore, are proportional to
mu−md. Quantitatively, Ametller et al. found in Ref. [168] that Γ(4)

π = 0.84× 10−3 eV,
Γ(4)
K = 2.45× 10−3 eV and Γ(4)

π,K = 3.89× 10−3 eV for the π, K and π+K loop contribu-
tions to the decay width, which turns out to be two orders of magnitude smaller than the PDG
fit value Γexp

η→π0γγ
= 0.334±0.029 eV [1]. The first sizeable contribution comes atO(p6), but

the associated low-energy constants are not well defined and one must resort to phenomeno-
logical models to fix them. To this end, for instance, VMD has been used to determine
these coefficients by expanding the vector meson propagators and keeping the lowest term.
Assuming equal contributions from the ρ0 and ω mesons, the authors of Ref. [168] found
that Γ(6)

ρ+ω = 0.18 eV, which was about two times smaller than their “all-order” estimation
with the full vector meson propagator ΓVMD = 0.31 eV, and in reasonable agreement with
older VMD estimates [166, 167], as well as Refs. [185, 186]. The contributions of the scalar
a0(980) and tensor a2(1320) resonances to the O(p6) chiral coefficients were also assessed
in Ref. [168] following the same procedure but no “all-order” estimates were provided. Con-
trary to the VMD contribution where the coupling constants appear squared, the signs of the
a0 and a2 contributions are not unambiguously fixed [168]. At order O(p8), a new type of
loop effects taking two vertices from the anomalous chiral Lagrangian appear. Pion loops
are no longer suppressed since the associated vertices do not violate G-parity and the kaon-
loop suppression does not necessarily occur. Numerically, the contributions from these loops
were Γ(8)

π = 5.2× 10−5eV, Γ(8)
K = 2.2× 10−3 eV and Γ(8)

π,K = 2.5× 10−3 eV [168]. Sum-
ming up all the effects that were not negligible and presented no sign ambiguities, i.e. the
non-anomalous pion and kaon loops at O(p4), the corresponding loops at O(p8) with two
anomalous vertices, and the “all-order” VMD estimate, resulted in Γχ+VMD

η→π0γγ
= 0.42 eV [168].

Including the contributions from the a0 and a2 exchanges with sign ambiguities, which did
not represent an “all-order” estimate of these effects, they conservatively concluded that
Γχ+VMD+a0+a2
η→π0γγ

= 0.42± 0.20 eV [168]. The further inclusion of C-odd axial-vector res-
onances raised this value to 0.47±0.20 eV [187] (see also Ref. [188]). Other determinations
of the O(p6) low-energy constants in the early and extended Nambu–Jona-Lasinio models
led to 0.11–0.35 eV [189], 0.58± 0.30 eV [190] and 0.27+0.18

−0.07 eV [191]. A different ap-
proach based on quark-box diagrams [192, 193] yielded values of 0.70 eV and 0.58–0.92 eV,
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respectively. In the most recent analyses, the η→ π0γγ process has been considered within
a chiral unitary approach for the meson-meson interaction, thus generating the a0 resonance
and fixing the sign ambiguity of its contribution. Using this approach, Oset et al. found a
decay width of 0.47± 0.10 eV and 0.33± 0.08 eV in their 2003 [97] and 2008 [98] works,
respectively, and the discrepancy may be down to differences in the radiative decay widths
of the vector mesons used as input in their calculations. In any case, both estimations appear
to be in good agreement with the empirical value Γexp

η→π0γγ
= 0.334± 0.029 eV [1]. On the

other hand, there is only a rough estimation for the η′→ π0γγ decay width [170, 171] and
no theoretical analysis for the η′→ ηγγ process.

The methodology in this chapter can be summarised as follows. First, we begin cal-
culating the dominant chiral-loop contribution, that is, the O(p4) diagrams containing two
vertices of the lowest order Lagrangian and one loop of charged pions or kaons. We em-
ploy the large-NC limit of χPT and regard the singlet state η1 as the ninth pseudo-Goldstone
boson of the theory. In addition, we simplify the calculations by assuming the isospin limit,
which allows one to consider only the kaon loops for the two η(′)→ π0γγ decays. TheO(p8)
loop corrections from diagrams with two anomalous vertices are very small [168] and, there-
fore, not considered. The explicit contributions of intermediate vector and scalar mesons are
accounted for by means of the VMD and LσM frameworks. Accordingly, we compute the
dominant contribution, i.e. the exchange of intermediate vector mesons, through the decay
chain P 0 → V γ → P 0γγ. Next, we consider the scalar meson contributions, providing an
“all-order” estimate of the scalar effects through a calculation performed within the LσM,
which enables us to, first, fix the sign ambiguity and, second, assess the relevance of the full
scalar meson propagators, as opposed to integrating them out.

The structure of this chapter is as follows. In Sec. 8.2, we review the χPT calculation for
the η→ π0γγ and provide theoretical expressions for the η′→ π0γγ and η′→ ηγγ decays.
In Sec. 8.3, we calculate the effects of intermediate vector meson exchanges, which represent
the dominant contribution, using the VMD model. In Sec. 8.4, the chiral-loop prediction is
substituted by a LσM calculation, where the effects of scalar meson resonances are taken
into account explicitly. In Sec. 8.5, theoretical results for the decay widths and associated
diphoton energy spectra are presented for the three decay processes, and a detailed discussion
of the results is given. Some final remarks and conclusions are presented in Sec. 8.6.

8.2 Chiral-loop calculation

Let us first focus our attention on the η → π0γγ process. At order O(p2), there are no
contributions to this process and, at O(p4), the contributions come from diagrams with two
vertices from the lowest order chiral Lagrangian and a loop of charged pions and kaons.
However, as discussed in Sec. 8.1, the contribution from kaon loops is dominant and the pion
loops vanish in the isospin limit. The invariant amplitude can, thus, be written as follows

AχPT
η→π0γγ

=
2α

π

1

M2
K+

L(sK){a}×AχK+K−→π0η
, (8.1)

where α is the fine-structure constant, MK+ is the mass of the charged kaon, L(ŝ) is the loop
integral

L(z) = − 1

2z
− 2

z2
f

(
1

z

)
,

f(z) =


1
4

(
log 1+

√
1−4z

1−
√

1−4z
− iπ

)2
for z < 1

4

−
[
arcsin

(
1

2
√
z

)]2
for z > 1

4

,

(8.2)
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η(′)→ π0γγ and η′→ ηγγ

and sK = s/M2
K+ , with s= (q1+q2)2 = 2q1 ·q2 being the invariant mass of the two outgoing

photons. The Lorentz structure {a} in Eq. (8.1) is defined as

{a}= (ε1 · ε2)(q1 · q2)− (ε1 · q2)(ε2 · q1) , (8.3)

where ε1,2 and q1,2 are the polarisation and four-momentum vectors of the final photons and
Aχ
K+K−→π0η

is the four-pseudoscalar amplitude, which can be expressed as follows2

AχPT
K+K−→π0η

=
1

4f2
π

[(
s−

M2
η

3
−

8M2
K

9
−M

2
π

9

)
(cosφP +

√
2sinφP )

+
4

9
(2M2

K +M2
π)

(
cosφP −

sinφP√
2

)]
,

(8.4)

where fπ is the pion decay constant and φP is the η-η′ pseudoscalar mixing angle in the
quark-flavour basis at lowest order in χPT defined as [142]

|η〉= cosφP |ηNS〉− sinφP |ηS〉 ,
|η′〉= sinφP |ηNS〉+ cosφP |ηS〉 ,

(8.5)

with |ηNS〉= 1√
2
|uū+dd̄〉 and |ηS〉= |ss̄〉 (cf. Appendix A).

It must be noted that, in the seminal work of Ref. [168], the chiral-loop prediction was
computed taking only into account the η8 contribution and the mixing angle was fixed to
θP = φP −arctan

√
2= arcsin(−1/3) '−19.5◦. As explained before, in this chapter the

singlet contribution is also considered and the dependence on the mixing angle is made ex-
plicit.

For the η′ → π0γγ process, the associated amplitude is that of Eq. (8.1) with the
replacements Mη → Mη′ , (cosφP +

√
2sinφP ) → (sinφP −

√
2cosφP ) and (cosφP −

sinφP/
√
2)→ (sinφP + cosφP/

√
2) in Eq. (8.4). Finally, for the η′ → ηγγ decay, two

types of amplitudes contribute, one associated to a loop of charged kaons, as in the former
two cases, and the other to a loop of charged pions, which in this case is not suppressed
by G-parity. Again, the corresponding amplitudes have the same structure as Eq. (8.1) but
replacing sK → sπ and MK+ →Mπ+ for the pion loop, and, instead of Eq. (8.4), one must
make use of

AχPT
K+K−→ηη′ =−

1

4f2
π

[(
s−

M2
η +M2

η′

3
−

8M2
K

9
− 2M2

π

9

)(√
2cos2φP +

sin2φP
2

)
+

4

9
(2M2

K −M2
π)

(
2sin2φP −

cos2φP√
2

)]
,

(8.6)

AχPT
π+π−→ηη′ =

M2
π

2f2
π

sin2φP , (8.7)

for the loop of kaons and pions, respectively.
To the best of our knowledge, the amplitudes for the η′→ π0γγ and η′→ ηγγ constitute

the first chiral-loop predictions for these processes.

2This amplitude should not be confused with the four-pseudoscalar scattering amplitude calculated in χPT
at lowest order.
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8.3 VMD calculation

As discussed in Sec. 8.1, VMD can be used to calculate an “all-order” estimate for the con-
tribution of intermediate vector meson exchanges to the processes of interest in this chapter.
In Ref. [168], for example, it was found that the VMD amplitude represents the dominant
contribution to the η→ π0γγ decay, and, as it will be shown in Sec. 8.5, this is also the case
for the η′→ π0γγ and η′→ ηγγ processes.

There is a total of six Feynman diagrams contributing to each one of the three decay
processes, corresponding to the exchange of the three neutral vector mesons ρ0, ω and φ.
After some algebra, one arrives at the following expression for the invariant amplitude of the
η→ π0γγ decay

AVMD
η→π0γγ =

∑
V =ρ0,ω,φ

gVηγgVπ0γ

[
(P · q2−M2

η ){a}−{b}
DV (t)

+

{
q2↔ q1

t↔ u

}]
, (8.8)

where t,u = (P − q2,1)2 =M2
η − 2P · q2,1 are the Mandelstam variables, and the Lorentz

structures {a} and {b} are defined as

{a}= (ε1 · ε2)(q1 · q2)− (ε1 · q2)(ε2 · q1) ,

{b}= (ε1 · q2)(ε2 ·P )(P · q1)+ (ε2 · q1)(ε1 ·P )(P · q2)− (ε1 · ε2)(P · q1)(P · q2)

− (ε1 ·P )(ε2 ·P )(q1 · q2) ,

(8.9)

where P is the four-momentum of the decaying particle, and ε1,2 and q1,2 are the polar-
isation and four-momentum vectors of the final photons, respectively. The denominator
DV (t) =M2

V − t− iMV ΓV is the vector meson propagator, with V = ρ0, ω and φ. Note,
though, that for the ρ0 propagator we make use of an energy-dependent decay width

Γρ0(t) = Γρ0

(
t−4M2

π

M2
ρ0
−4M2

π

)3/2

θ(t−4M2
π) . (8.10)

The amplitudes for the η′ → π0γγ and η′ → ηγγ decays have a similar structure to that
of Eq. (8.8), with the replacements M2

η → M2
η′ , and gV ηγgV π0γ → gV η′γgV π0γ for the

η′→ π0γγ and gV ηγgV π0γ → gV η′γgV ηγ for the η′→ ηγγ case.
To parameterise the VPγ coupling constants, gVPγ , one can make use of a simple phe-

nomenological quark-based model first presented in Ref. [140], which was initially devel-
oped to describe V → Pγ and P → V γ radiative decays. The coupling constants can, thus,
be written as [137, 140]

gρ0π0γ =
1

3
g , gωπ0γ = g cosφV , gφπ0γ = g sinφV ,

gρ0ηγ = gzNS cosφP , gρ0η′γ = gzNS sinφP ,

gωηγ =
1

3
g
(
zNS cosφP cosφV −2

m

ms
zS sinφP sinφV

)
,

gωη′γ =
1

3
g
(
zNS sinφP cosφV + 2

m

ms
zS cosφP sinφV

)
,

gφηγ =
1

3
g
(
zNS cosφP sinφV + 2

m

ms
zS sinφP cosφV

)
,

gφη′γ =
1

3
g
(
zNS sinφP sinφV −2

m

ms
zS cosφP cosφV

)
,

(8.11)
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η(′)→ π0γγ and η′→ ηγγ

where g is a generic electromagnetic constant, φP is the pseudoscalar η-η′ mixing angle in
the quark-flavour basis, φV is the vector ω-φ mixing angle in the same basis, m/ms is the
quotient of constituent quark masses,3 and zNS and zS are the non-strange and strange mul-
tiplicative factors accounting for the relative meson wavefunction overlaps (cf. Chapter 7).

It is important to note that in Ref. [168], the VMD prediction for the η→ π0γγ process
was calculated assuming equal ρ0 and ω contributions and without including the decay widths
in the propagators. These approximations were valid in this particular case, since the phase
space available prevents the vector mesons to resonate. However, for the η′→ π0γγ case, the
available phase space allows these vectors to be on-shell and the introduction of their decay
widths is mandatory. For consistency, we include the decay widths in the vector meson
propagators of the three decays of interest.

8.4 LσM calculation

An all-order estimate for the contribution of scalar meson exchanges to the processes under
study can be obtained by means of the LσM, where the complementarity between this model
and χPT can be used to include the scalar meson poles at the same time as keeping the
correct low-energy behaviour expected from chiral symmetry. This procedure was applied
with success to the related V → P 0P 0γ decays [96].

Within this framework, the two η(′)→ π0γγ processes proceed through kaon loops, and
by exchanging the a0(980) in the s-channel and the κ in the t- and u-channels. The η′→ ηγγ
decay is more complex as it proceeds through both kaon and pion loops; the σ(600) and
the f0(980) are exchanged in the s-channel for both types of loops, whilst, in the u- and
t-channels, the κ is exchanged for kaon loops and the a0(980) for pion loops.

The loop contributions take place through combinations of three diagrams for each one
of the intermediate states, which added together give finite results. The amplitudes for the
three η(′)→ π0γγ and η′→ ηγγ processes in the LσM can, thus, be expressed as follows

ALσM
η→π0γγ =

2α

π

1

M2
K+

L(sK){a}×ALσM
K+K−→π0η , (8.12)

ALσM
η′→π0γγ =

2α

π

1

M2
K+

L(sK){a}×ALσM
K+K−→π0η′ , (8.13)

ALσM
η′→ηγγ =

2α

π

1

M2
π

L(sπ){a}×ALσM
π+π−→ηη′+

2α

π

1

M2
K+

L(sK){a}×ALσM
K+K−→ηη′ , (8.14)

where L(z), sπ,K and {a} are the same as in Sec. 8.2. The four-pseudoscalar amplitudes
ALσM
η(′)π0→K+K−

andALσM
η′η→K+K−(π+π−) in Eqs. (8.12-8.14) turn out to be s, t and u dependent

and can be expressed in terms of the pion and kaon decay constants, fπ and fK , the masses of
the scalar and pseudoscalar mesons involved in the processes, and the scalar and pseudoscalar
mixing angles in the quark-flavour basis, φS and φP , where φS is defined as

|σ〉= cosφS |σNS〉− sinφS |σS〉 ,

|f0〉= sinφS |σNS〉+ cosφS |σS〉 ,
(8.15)

3As explained in Chapter 7, the flavour symmetry-breaking mechanism associated to differences in the ef-
fective magnetic moments of light (i.e. up and down) and strange quarks in magnetic dipolar transitions is im-
plemented via constituent quark mass differences. Specifically, one introduces a multiplicative SU(3)-breaking
term, i.e. 1−se ≡m/ms, in the s-quark entry of the quark-charge matrix Q.
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with |σNS〉= 1√
2
|uū+dd̄〉 and |σS〉= |ss̄〉 (cf. Appendix A). For our analysis, the procedure

outlined in Ref. [96] is applied in order to obtain a consistent full s-dependent amplitude. In
essence, this involves replacing the t- and u-channel contributions by the result of subtracting
from the chiral-loop amplitude, i.e. Eqs. (8.4-8.7), the infinite mass limit of the s-channel
scalar contribution.4 We refer the interested reader to Ref. [96] for further details. After
performing these replacements, one finally obtains the following scalar amplitudes

ALσM
K+K−→π0η =

1

2fπfK

{
(s−M2

η )
M2
K −M2

a0

Da0(s)
cosφP +

1

6

[
(5M2

η +M2
π −3s)cosφP

−
√
2(M2

η + 4M2
K +M2

π −3s) sinφP
]}

,
(8.16)

ALσM
K+K−→π0η′ =

1

2fπfK

{
(s−M2

η′)
M2
K −M2

a0

Da0(s)
sinφP +

1

6

[
(5M2

η′+M2
π −3s) sinφP

+
√
2(M2

η′+ 4M2
K +M2

π −3s)cosφP
]}

,
(8.17)

ALσM
K+K−→ηη′ =

s−M2
K

2fK

[
gσηη′

Dσ(s)

(
cosφS−

√
2sinφS

)
+

gf0ηη′

Df0(s)

(
sinφS+

√
2cosφS

)]

−
s−M2

K

4fπfK

[
1−2

(
2fK
fπ
−1

)]
sin(2φP )

− 1

4f2
π
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s−

M2
η +M2
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3
−

8M2
K

9
− 2M2

π

9

)(√
2cos2φP +

sin2φP
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+
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(2M2

K −M2
π)

(
2sin2φP −

cos2φP√
2

)]
,

(8.18)

ALσM
π+π−→ηη′ =

s−M2
π

fπ

[
gσηη′

Dσ(s)
cosφS+

gf0ηη′

Df0(s)
sinφS

]
+

2M2
π −s
2f2
π

sin2φP , (8.19)

where DS(s) are the S = σ, f0 and a0 propagators defined in Appendix C. Note that they
are complete one-loop propagators, as the usual Breit-Wigner description is not adequate in
this case due to either the presence of thresholds or a very wide decay width. The required
couplings in Eqs. (8.18) and (8.19) are given by

gσηη′ =
sin2φP
2fπ

{
(M2

η cos
2φP +M2

η′ sin
2φP −M2

a0)

[
cosφS+

√
2sinφS

(
2
fK
fπ
−1

)]
− (M2

η′−M2
η )

(
cosφS cos2φP −

1

2
sinφS sin2φP

)}
,

(8.20)

gf0ηη′ =
sin2φP
2fπ

{
(M2

η cos
2φP +M2

η′ sin
2φP −M2

a0)

[
sinφS−

√
2cosφS

(
2
fK
fπ
−1

)]
− (M2

η′−M2
η )

(
sinφS cos2φP +

1

2
cosφS sin2φP

)}
.

(8.21)

These couplings can be written in different equivalent forms; here, the ones involving the a0

4It is important to note that this approximation is possible due to the fact that, in the t- and u-channels, the
exchanged scalar mesons do not resonate.
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η(′)→ π0γγ and η′→ ηγγ

Decay BR [1] |gVPγ | GeV−1

ρ0→ π0γ (4.7±0.6)×10−4 0.22(1)
ρ0→ ηγ (3.00±0.21)×10−4 0.48(2)
η′→ ρ0γ (28.9±0.5)% 0.40(1)
ω→ π0γ (8.40±0.22)% 0.70(1)
ω→ ηγ (4.5±0.4)×10−4 0.135(6)
η′→ ωγ (2.62±0.13)% 0.127(4)
φ→ π0γ (1.30±0.05)×10−3 0.041(1)
φ→ ηγ (1.303±0.025)% 0.2093(20)
φ→ η′γ (6.22±0.21)×10−5 0.216(4)

TABLE 8.1: PDG values for the branching ratios of the V (P )→ P (V )γ
transitions and the calculated gVPγ couplings directly from experiment

[cf. Eq. (8.23)].

mass and the pion decay constant have been chosen for the sake of clarity. We can anticipate
that taking into account the effects of scalar meson exchanges in an explicit way does not
provide a noticeable improvement with respect to the chiral-loop prediction, except for the
η′→ ηγγ case, where the σ contribution turns out to be significant (see Sec. 8.5).

8.5 Results and discussion

In this section, we use the theoretical expressions developed in this chapter to present quanti-
tative results. The decay widths for the processes of interest are calculated using the standard
formula for the three-body decay [1], with the squared amplitude given by

|A|2 = |AVMD|2 + |ALσM|2 + 2ReA∗VMDALσM , (8.22)

where the vector (AVMD) and scalar (ALσM) exchange contributions have been presented in
Secs. 8.3 and 8.4, respectively. The last term in Eq. (8.22) represents the interference between
the scalar and vector effects.

For the numerical values of the masses and decay widths of the participating resonances,
we use the most up-to-date experimental data from the PDG [1], whilst for the pion and kaon
decay constants we employ fπ = 92.1 MeV and fK = 110.1 MeV, repectively. For the VMD
couplings5 [cf. Eq. (8.8)], we follow two different approaches: i) the gVPγ are obtained
directly from the experimental decay widths of the V → Pγ and P → V γ (P = π0,η,η′ and
V = ρ0,ω,φ) radiative transitions [1] by making use of

ΓV→Pγ =
1

3

g2
VPγ

32π

(
M2
V −M2

P

MV

)3

,

ΓP→V γ =
g2
VPγ

32π

(
M2
P −M2

V

MP

)3

,

(8.23)

and are summarised in Table 8.1; ii) the phenomenological model from Ref. [140] is em-
ployed to parameterise the VMD couplings [cf. Eq. (8.11)], and, by performing an optimisa-
tion fit to the most up-to-date VPγ experimental data [1], one can find preferred values for

5Note that, for the LσM couplings, i.e. gσηη′ and gf0ηη′ , the current experimental state-of-the-art does not
allow obtaining the associated numerical values directly from the empirical data. Therefore, one must resort to
theoretical or phenomenological models to estimate them [cf. Eqs. (8.20) and (8.21)]. Likewise, the mixing angle
in the scalar sector is fixed in our calculations to φS = −8◦ following Ref. [96].
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Decay Couplings Chiral-loop LσM VMD Γ BRth BRexp [1]

η→ π0γγ (eV)
Empirical 1.87×10−3 5.0×10−4 0.16(1) 0.18(1) 1.35(8)×10−4

2.56(22)×10−4
M-B 1.87×10−3 5.0×10−4 0.16(1) 0.17(1) 1.30(1)×10−4

η′→ π0γγ (keV)
Empirical 1.1×10−4 1.3×10−4 0.57(3) 0.57(3) 2.91(21)×10−3

3.20(7)(23)×10−3
M-B 1.1×10−4 1.3×10−4 0.70(4) 0.70(4) 3.57(25)×10−3

η′→ ηγγ (eV)
Empirical 1.4×10−2 3.29 21.2(1.2) 23.0(1.2) 1.17(8)×10−4

8.25(3.41)(0.72)×10−5
M-B 1.4×10−2 3.29 19.1(1.0) 20.9(1.0) 1.07(7)×10−4

TABLE 8.2: Chiral-loop, LσM and VMD predictions for the η → π0γγ,
η′ → π0γγ and η′ → ηγγ decays with empirical and model-based VMD
couplings. The total decay widths are calculated from the coherent sum of

the LσM and VMD contributions.
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(B) η′→ π0γγ decay.

FIGURE 8.1: Comparison between the experimental diphoton energy spectra
for the η→ π0γγ and η′→ π0γγ and our theoretical predictions using the
empirical and model-based VMD couplings. The experimental data is taken
from Refs. [182, 183] (KLOE), Ref. [181] (A2), Ref. [177] (Crystal Ball)

and Ref. [172] (BESIII).

these parameters6

g = 0.70±0.01 GeV−1 , zSm/ms = 0.65±0.01,

φP = (41.4±0.5)◦ , φV = (3.3±0.1)◦ ,

zNS = 0.83±0.02.

(8.24)

Hereafter, we refer to the former couplings as empirical and the latter as model-based cou-
plings.

The numerical results obtained using both the empirical and model-based VMD cou-
plings are summarised in Table 8.2. There, we show the contributions from χPT, the LσM,
which replaces χPT when scalar meson poles are incorporated explicitly, and VMD. In ad-
dition, the theoretical decay widths and corresponding branching ratios are presented, to-
gether with the associated experimental values. Note that the quoted errors in the theo-
retical predictions come from the uncertainties associated to the VMD couplings. Using

6Note that this phenomenological model, contrary to the one presented in Chapter 7 and Ref. [137], does not
take into account isospin-violating effects and this is reflected in the quality of the fit, which is far from ideal,
χ2/d.o.f. = 5.3. However, in this study we are working in the isospin limit and, therefore, this simplified version
of the model suffices for our purposes. Should one have used more simplified models by setting, for example,
zNS = 1 and zS = 1, or zNS = 1 and zSm/ms = 1, would lead to qualities of fits of χ2/d.o.f. = 18.3 and
χ2/d.o.f. = 110.4, respectively, which are clearly not acceptable.
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FIGURE 8.2: Contributions to the η → π0γγ diphoton energy spectrum
(solid black), using the model-based VMD couplings, from intermediate vec-
tor (dashed red), scalar (dotted blue) meson exchanges and their interference

(dot-dashed green).

the empirical VMD couplings, one finds that, whilst our prediction for the η→ π0γγ pro-
cess, BR= 1.35(8)×10−4, is approximately a factor of two smaller than the PDG reported
value7 [1] BR= 2.55(22)×10−4, our theoretical estimates for the η′→ π0γγ and η′→ ηγγ,
BR= 2.91(21)×10−3 and BR= 1.17(8)×10−4, are consistent with the BESIII experimen-
tal measurements BR= 3.20(7)(23)×10−3 [172] and BR= 8.25(3.41)(72)×10−5 [173],
respectively. Employing, instead, the model-based VMD couplings from Eq. (8.11) and
making use of the fit values for the model parameters shown in Eq. (8.24), we find that the
branching ratio for the η→ π0γγ decay, BR = 1.30(8)× 10−4, is very much in line with
that obtained using the empirical couplings and approximately half the corresponding PDG
experimental value.8 Thus, our theoretical results for this reaction appear to be robust against
small variations of the VMD couplings. For the η′ → π0γγ and η′ → ηγγ processes, we
obtain BR = 3.57(25)× 10−3 and BR = 1.07(8)× 10−4, which, once again, are in agree-
ment with the values reported by BESIII [172, 173]. The branching ratio for the latter process
turns out to be BR= 1.11(8)×10−4 and BR= 1.00(7)×10−4 for the empirical and model-
based couplings using a Breit-Wigner propagator for the σ meson, where the pole parameters
quoted in Ref. [1] have been utilised, instead of the complete one-loop propagator. As it can
be seen, the use of either propagator provides very approximate results, with the differences
surfacing in the associated energy spectra.

Our predictions for the diphoton invariant mass distributions are compared with the cor-
responding experimental data in Fig. 8.1. One can see from both plots that the shape of the
spectra is captured well by our theoretical predictions. The energy spectrum of the η→ π0γγ
decay (Fig. 8.1a) appears to have a normalisation offset with respect to the measurements

7It is important to note that this prediction is in excellent agreement with the recently measured BR =
(1.23±0.14)×10−4 by the KLOE Collaboration [182].

8Oset et al. considered additional contributions in Ref. [98], such as axial exchanges in the chiral loops
and VMD loop contributions, where the associated amplitudes had been unitarised by making use of the Bethe-
Salpenter equation for the resummation of the meson-meson scattering amplitudes, as well as contributions from
the three-meson axial anomaly; all this allowed them to raise their prediction up to Γη→π0γγ = 0.33±0.08 eV.
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FIGURE 8.3: Contributions to the η′ → π0γγ diphoton energy spectrum
(solid black), using the model-based VMD couplings, from intermediate vec-
tor (dashed red), scalar (dotted blue) meson exchanges and their interference

(dot-dashed green).

from A2 [181] and Crystal Ball [177], but it is in excellent agreement with the latest mea-
surement by KLOE [182, 183]. In addition, our predictions for the η′ → π0γγ spectrum,
using either set of VMD couplings, shows very good agreement with the experimental mea-
surement by BESIII [172]. In addition, the use of one set of couplings or the other makes
little difference for the η→ π0γγ, though, it appears that the model-based couplings capture
slightly better the experimental data for the η′→ π0γγ. For this reason, as well as down to its
intrinsic aesthetic appeal and the fact that it highlights the power of the theoretical treatment,
from this point onwards we adhere to the use of the model-based VMD couplings for any
subsequent calculation.

The different contributions to the γγ invariant mass distribution of the η → π0γγ de-
cay are shown in Fig. 8.2. As it can be seen, the spectrum is dominated by the exchange
of vector mesons, accounting for 93%, out of which, the weights for the ρ0, ω and φ are
25%, 20% and 0%, respectively; the remaining 48% comes from the interference between
the three participating vector mesons. The contribution of the scalar exchanges accounts for
less than 1%, making it very difficult to isolate the effect of individual scalar mesons even
with the advent of more precise experimental data. The interference between the intermedi-
ate scalar and vector exchanges is constructive and accounts for about 7%. The contributions
to the energy spectrum of the η′→ π0γγ process are displayed in Fig. 8.3. Once again, the
exchange of vector mesons completely dominate the spectrum contributing approximately
with the 100.4% to the total signal, whilst the effects of scalar meson exchanges and their
interference with the formers are negligible with 0% and −0.4% (destructive interference),
respectively. As well as this, the ω contribution prevails with the 79% of the total VMD sig-
nal, whilst the ρ0 and φ account for the 5% and 0%, respectively; the remaining 16% comes
from the interference between the vector resonances. Finally, the different contributions to
the η′ → ηγγ energy spectrum are presented in Fig. 8.4. As expected, the contribution to
the total signal from the exchange of vector mesons dominates again with about the 91%,
with the ρ0, ω and φ accounting for 54%, 14% and 1% of the VMD signal, respectively, and
the remaining 22% being the result of their interference; interestingly, the scalar meson ef-
fects turn out to be sizeable in this process, weighing approximately 16%, with the exchange
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FIGURE 8.4: Contributions to the η′→ ηγγ diphoton energy spectrum (solid
black), using the model-based VMD couplings, from intermediate vector
(dashed red), scalar (dotted blue) meson exchanges and their interference

(dot-dashed green).

of σ mesons dominating the scalar signal.9 The interference between the scalar and vector
mesons is destructive and accounts for around the 7% and significantly influences the shape
of the spectrum. It is worth noting the effect of using the complete one-loop propagator for
the σ exchange, which manifests itself at the m2

γγ = 0.078 GeV peak and is associated to the
π+π− threshold. This peak, of course, is absent when the Breit-Wigner propagator for the σ
exchange is used.

8.6 Conclusions

In this chapter, we have presented a thorough theoretical analysis of the doubly radiative
decays η(′) → π0γγ and η′ → ηγγ, and provided theoretical results for the associated de-
cay widths and diphoton energy spectra in terms of intermediate scalar and vector meson
exchange contributions using the LσM and VMD frameworks, respectively.

A complete set of theoretical expressions for the transition amplitudes from χPT, VMD
and the LσM have been given for the three decay processes. Some of these expressions con-
stitute, to the best of our knowledge, the first predictions of its kind. In addition, we have
provided quantitative results by making use of numerical input from the PDG [1]. In par-
ticular, for the estimation of the VMD coupling constants, gVPγ , two different routes have
been followed: on the one hand, we have extracted them directly from the experimental
V (P )→ P (V )γ decay widths, and, on the other hand, we have obtained them from a phe-
nomenological quark-based model and a fit to experimental data. A summary of the predicted
decay widths, theoretical branching ratios and contributions to the total signals for the three
doubly radiative decays η(′)→ π0γγ and η′→ ηγγ is shown in Table 8.2, and a discussion
of the results obtained and how they compare to available experimental data has been carried
out in Sec. 8.5. As well as this, the diphoton invariant mass distributions associated to these

9A possible improvement to our prediction for the scalar meson contribution may be possible by considering
a more sophisticated scalar scattering amplitude Aπ+π−→η′η [cf. Eq. (8.19)] as has successfully been done for
the associated η′→ ηππ decay process in Ref. [194].
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processes are shown in Figs. 8.2, 8.3 and 8.4, respectively, using the model-based VMD cou-
plings. It is worth highlighting that, whilst vector meson exchanges vastly dominate over
the scalar contributions for the η(′)→ π0γγ decays, we find that for the η′→ ηγγ the scalar
meson effects turn out to be substantial, specially that of the σ meson, and this represents an
opportunity for learning details about this still poorly understood scalar state. In particular,
we look forward to the release of the energy spectrum data for the η′→ ηγγ process by the
BESIII Collaboration to assess the robustness of our theoretical approach.

It is important to highlight that our theoretical predictions for the η→ π0γγ appear to
agree very well with the latest measurements from KLOE [182, 183], although they are
found to be approximately a factor of two smaller than the experimental measurements from
A2 [181] and Crystal Ball [177]. In addition, our predictions for the η′→ π0γγ and η′→ ηγγ
are in good agreement with recent measurements performed by BESIII [172, 173].

As a final remark, we would very much like to encourage experimental groups to measure
these decays again, first, to try to resolve and settle the inconsistency in the measurements
from different experimental collaborations for the η→ π0γγ decay and, second, to confirm
whether a more refined theoretical treatment to describe the three processes simultaneously
is required.
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Chapter 9

Sensitivity of the η(′)→ π0γγ and η′→ ηγγ decays
to a sub-GeV leptophobic U(1)B boson1

The sensitivity of the doubly radiative decays η(′)→ π0γγ and η′→ ηγγ to signatures of a
leptophobic B boson in the MeV–GeV mass range is analysed in this chapter. By adding an
explicitB-boson resonance exchange, η→Bγ→ π0γγ, to the SM contributions from vector
and scalar meson exchanges, and employing experimental data for the associated branching
ratios, it allows us to improve the current constraints on the B-boson mass mB and coupling
to SM particles αB . From these constraints and the analysis of the available experimental
γγ invariant mass distribution, we show that a B-boson signature in the resonant mass range
Mπ0 .mB .Mη is strongly suppressed and would be very difficult to experimentally iden-
tify, assuming that the leptophobic B boson only decays to SM particles. In contrast, the
limits outside this mass window are less stringent and the corresponding t- and u-channel
signatures may still be observable in the data, as it occurs with the non-resonant SM ρ, ω and
φ meson exchanges. In addition, we make use of experimental data from the η′→ π0γγ and
η′→ ηγγ decays to explore larger B-boson masses. The results of this chapter are relevant
for the B-boson search programmes at existing and forthcoming light-meson facilities, such
as KLOE(-II) and Jefferson Lab Eta Factory experiments.

9.1 Introduction

An increasingly ubiquitous strategy to search for physical phenomena beyond the Standard
Model (BSM) is to test fundamental symmetries such as C, P , T , CP , and CPT in differ-
ent processes. Specifically, decays of the neutral pseudoscalar mesons η and η′ constitute a
particularly suited playground to look for new physics [14, 15]. This is because these two
mesons are special, as they are eigenstates of the C, P , CP and G-parity operators, and
all their strong and electromagnetic decays are either anomalous or forbidden at lowest or-
der due to the conservation of fundamental symmetries of QCD. Consequently, higher-order
contributions are expected to become relevant, rendering the η/η′ decays sensitive hadronic
probes to test discrete symmetries and to search for undiscovered fundamental BSM parti-
cles, such as dark photons or leptophobic U(1)B bosons (see Refs. [14, 15] and references
therein). Examples of this are the rare η(′)→ π0γγ and η′→ ηγγ decays which, as they are
highly suppressed in the SM [97, 98, 165, 168, 196], have been put forward as fine probes
to search for MeV–GeV signatures of a new leptophobic B boson [197] arising from a new
U(1)B gauge symmetry that couples predominantly to quarks over leptons [198–202].

Experimental searches for leptophobic B bosons depend on the mass mB and the as-
sociated decay channels, and have placed constraints on the coupling for masses that span
from below the MeV scale, obtained from long-range nuclear forces [203] and low-energy
neutron scattering [204–206], to above the GeV scale, obtained at high-energy hadron col-
liders in dijet resonance searches, as well as in heavy quarkonia and Z decays [207–212].
The intermediate MeV–GeV mass range has been less explored thus far [197, 199], which

1This chapter is based on Ref. [195].
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is down to this being the region of non-perturbative QCD, and has often been considered
as a challenging blindspot for experiment in the past. However, searches for leptophobic
B bosons are gaining traction in this intermediate mass range given the potential signatures
that can be looked for in decays of light mesons, such as η, η′, ω, and φ [197], after years
of sterile sub-GeV dark-photon searches most of them relying on the coupling of this new
force to leptons in decays to e+e− and µ+µ− pairs [213–223]. Indeed, the search for lepto-
phobic B bosons has been incorporated into the physics programmes of existing light-meson
factories such as the KLOE-II experiment [182, 224], which is searching for B bosons by
looking for enhancements in the π0γ invariant mass spectrum of the φ→ ηB→ ηπ0γ pro-
cess, and is a top priority physics goal for the recently approved Jefferson Lab Eta Factory
(JEF) experiment [225], which promises a new and exciting era for η and η′ physics, with the
η→ π0γγ decay being their key signal channel. The Belle Collaboration has also pursued
searches for a B boson decaying into π+π− using η→ π+π−γ decays [226] but have found
no signal and, since B → π+π− is suppressed by G-parity conservation, the limits on the
B-boson parameters are not as stringent as the constraints coming from other decays, such as
the η→ π0γγ. B-boson searches may also be carried out at future η/η′ factories, such as the
proposed REDTOP experiment [15],2 or in direct photoproduction γp→Bp→ π+π−π0p at
the GlueX experiment at Jefferson Lab [227], which will probe B-boson masses above 0.5
GeV. Alternatively, signals of U(1)B leptophobic B bosons decaying into invisible particles,
i.e. dark matter, have also been pursued at neutrino factories [228] and at the LHC [229].

The model that we consider in this chapter for a U(1)B leptophobic gauge boson B that
couples to the baryon number has the following interaction Lagrangian [197, 199]

Lint =

(
1

3
gB+ εQqe

)
q̄γµqBµ−εe ¯̀γµ`Bµ , (9.1)

where Bµ is the new gauge boson field and gB is the new gauge coupling, with αB = g2
B/4π

being the fine structure constant associated to the baryonic force. This interaction structure
is gauge invariant and preserves the low-energy symmetries of QCD, namely C, P and T
invariance, as well as isospin and SU(3) flavour symmetry.

Partial widths for B-boson decays in the MeV–GeV mass range have been calculated
in [197] using the hidden local symmetry framework for VMD. Above the single-pion thresh-
old, Mπ0 .mB . 1 GeV, the B boson decays predominantly to π0γ, or to π0π+π− when
kinematically allowed, very much like the ω meson. Indeed, the B boson is assigned the
same quantum numbers as those from the ω, i.e. IG(JPC) = 0−(1−−). It must be noted that
the interaction Lagrangian in Eq. (9.1) is not completely decoupled from leptons as it con-
tains subleading photon-like couplings to leptons proportional to ε= egB/(4π)2 via kinetic
mixing. This effect allows the purely leptonic decay B → e+e−, which dominates below
single-pion threshold mB .Mπ0 . There are other allowed decay channels such as B→ ηγ
and B→ π+π−; however, these are subleading [197] and, in particular, the latter, which is
forbidden by G-parity conservation, arises via ρ-ω mixing.

At present, conservative constraints from η and η′ decays on the B-boson parame-
ters αB and mB are based on total rates by setting the SM contribution to zero [197], or
using different words, by assuming the B-boson intermediate states η(′) → Bγ → π0γγ,
η′→ Bγ→ π+π−π0γ and η′→Bγ→ ηγγ, and making use of the narrow width approxi-
mation (NWA), e.g. BR(η→ π0γγ) = BR(η→Bγ)×BR(B→ π0γ). It must be stressed,
though, that the SM contribution to these decays is not negligible [98, 165, 169, 230] and,
therefore, it should not be disregarded in exclusion analyses of B bosons. Thus, one of the
goals of this chapter is to take into account SM effects in these analyses. To that effect, we

2The current detector layout at REDTOP is non-sensitive to neutral final states [15], but an improved version
of REDTOP is planned where the η will be tagged and final states with π0’s and photons could be detected.
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employ our controlled SM contributions, i.e. the VMD and LσM amplitudes from Chapter 8
(cf. Ref. [165]), we supplement them with the explicit inclusion of an intermediate B boson
and use the most up-to-date experimental data.

Significantly greater sensitivity to the B-boson model could be obtained from the anal-
ysis of the invariant mass distributions. Provided that Mπ0 ≤ mB ≤ Mη(′) , the B-boson
mediated decay η(′) → Bγ → π0γγ would reveal a peak around mB in the π0γ invariant
mass spectrum. Searches for a π0γ resonance within this mass region in η→ π0γγ decays
are the main physics goal of the JEF experiment [225], which plans to improve the total
rate limit by two orders of magnitude, and is being searched for by KLOE-II [182, 224] via
φ→ ηB→ ηπ0γ and η→Bγ→ π0γγ. Accordingly, we aim to perform a detailed analysis
of the γγ and π0γ invariant mass distributions. In particular, using the available experimen-
tal diphoton spectra, together with our SM and B-boson amplitudes, we determine which
regions of the αB-mB plane are preferred by the data and assess theB-boson contribution. It
can be anticipated that, whilst the constraint from the η→ π0γγ process in the resonant mass
range Mπ0 .mB .Mη is so strong that it makes it very difficult to identify any B-boson
signatures (assuming that the B boson only decays into SM particles), its imprint in the t-
and u-channels may be noticeable in the invariant mass distributions when mB .Mπ0 and
mB &Mη, as it occurs with the non-resonant SM ρ, ω and φ exchanges [165].

The chapter is structured as follows. In Sec. 9.2.1, we summarise the vector and scalar
meson resonance exchange contributions to the amplitudes of the three η(′) → π0γγ and
η′→ ηγγ decays (cf. Chapter 8). In Sec. 9.2.2, we present the framework to include the con-
tribution of intermediateB-boson exchanges to the amplitudes. We then use these amplitudes
in Sec. 9.3 to, first, set limits on the B-boson parameters αB and mB from the experimen-
tal branching ratios, and, second, to study the effect of the B-boson on the m2

γγ and m2
π0γ

invariant mass distributions. We conclude this chapter with some conclusions in Sec. 9.4.

9.2 Theoretical Framework

9.2.1 Standard Model: vector and scalar contributions

VMD and the LσM can be used to calculate the SM contributions from vector and scalar me-
son resonance exchanges to the η(′)→ π0γγ and η′→ ηγγ decay processes. In Ref. [168], it
was found that the VMD amplitude represents the dominant contribution to the η→ π0γγ de-
cay, whilst in Chapter 8 and Ref. [165] we showed that this is also the case for the η′→ π0γγ
and η′→ ηγγ processes.

In the VMD picture, the decay η→ π0γγ proceeds through the transition η→ Vγ fol-
lowed by V → π0γ, resulting in a total of six diagrams contributing to the amplitude of the
process, which corresponds to the exchange of the three neutral vector mesons V = ρ0,ω
and φ in the t- and u-channels. By combining the V ηγ and V π0γ interacting terms with the
propagator of the exchanged vector mesons, one can calculate the vector meson contributions
to the η→ π0γγ decay. We found in Eq. (8.8)

AVMD
η→π0γγ =

∑
V =ρ0,ω,φ

gVηγgVπ0γ

[
(P · q2−M2

η ){a}−{b}
DV (t)

+

{
q2↔ q1

t↔ u

}]
, (9.2)

where t,u = (P − q2,1)2 =M2
η − 2P · q2,1 are Mandelstam variables, {a} and {b} are the

Lorentz structures defined in Eq. (8.9)

{a}= (ε1 · ε2)(q1 · q2)− (ε1 · q2)(ε2 · q1) ,

{b}= (ε1 · q2)(ε2 ·P )(P · q1)+ (ε2 · q1)(ε1 ·P )(P · q2)

− (ε1 · ε2)(P · q1)(P · q2)− (ε1 ·P )(ε2 ·P )(q1 · q2) ,

(9.3)
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with P being in this context the four-momentum of the decaying η meson, and ε1,2 and q1,2

the polarisation and four-momentum vectors of the final photons, respectively. The denom-
inator DV (q2) =M2

V − q2− iMVΓV is the vector meson propagator, with V = ρ0, ω and
φ. Due to the fact the the ρ0 meson has got a very large decay width, the use of the usual
Breit-Wigner prescription is not justified and, thus, one must employ the energy-dependent
decay width from Eq. (8.10)

Γρ0(q
2) = Γρ0

(
q2−4M2

π

M2
ρ0
−4M2

π

)3/2

θ(q2−4M2
π) . (9.4)

The amplitudes for the decays η′→ π0γγ and η′→ ηγγ have a similar structure to that of
Eq. (9.2) with the replacementsM2

η →M2
η′ , and gV ηγgV π0γ→ gV η′γgV π0γ for the η′→π0γγ

case and gV ηγgV π0γ → gV η′γgV ηγ for the η′→ ηγγ one.
For our analysis, we fix the gVPγ couplings in Eq. (9.2) from experiment as follows: we

first calculate the decay widths for the radiative transitions V → Pγ and P → Vγ, and find
the relationships presented in Eq. (8.23)

ΓV→Pγ =
1

3

g2
VPγ

32π

(
M2
V −M2

P

MV

)3

,

ΓP→Vγ =
g2
VPγ

32π

(
M2
P −M2

V

MP

)3

,

(9.5)

which then are used in combination with the experimental decay widths from the PDG [1] to
obtain the empirical gVPγ couplings provided in Table 8.1.

It is important to note that the most general VPγ couplings in Eq. (9.2) are energy de-
pendent, i.e. gVPγ(q2). In the conventional VMD model, pseudoscalar mesons do not couple
directly to photons but through the exchange of intermediate vectors; thus, in this framework,
a particular VPγ coupling constant times its normalised form factor is given by3

gVPγ F̂VPγ(q
2) =

∑
V ′

gVV ′P gV ′γ
M2
V ′− q2

, (9.6)

where gVV ′P are the vector-vector-pseudoscalar couplings, gV ′γ the vector-photon conver-
sion couplings andMV ′ the intermediate vector masses. In the SU(3)-flavour symmetry and
OZI-rule respecting limits, one could express all the gVPγ in terms of a single coupling con-
stant g and SU(3)-group factors [231]. On the other hand, in the context of RχT, for instance,
the VPγ effective vertex is made of a local VPγ vertex weighted by a coupling constant, hV ,
and a non-local one built from the exchange of an intermediate vector weighted by a second
coupling constant, σV , times the vector-photon conversion factor fV [232]

gVPγ F̂VPγ(q
2) = CVPγ |e|

4
√
2hV
fπ

(
1+

σV fV√
2hV

q2

M2
V ′− q2

)
, (9.7)

where CVPγ are SU(3)-group factors. Notwithstanding this, and down to the fact that the
outgoing photons in η(′)→ π0γγ and η′→ ηγγ are on-shell, the energy dependence of the
vertex form factors vanish in either model and the corresponding couplings become just
constants [233]. As has just been explained, in the approach followed in this chapter we
extract the values for these coupling constants directly from experiment not relying on any
specific model [231, 232], rendering our theoretical treatment of vector exchanges rather
model independent.

3Should q2 be timelike, that is q2 > 0, then an imaginary part would need to be added to the propagator; this
introduces the associated resonance width effects and rids the propagator from its divergent behaviour.
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FIGURE 9.1: Schematic diagram of the B-boson exchange mechanism for
the decay η→ π0γγ.

Moving on to the effects of scalar resonance exchanges on the decays under study, they
were explicitly assessed in Chapter 8 making use of the LσM, and it was found that the scalar
contributions are subdominant, whilst the exchange of vector resonances largely dominate.
Accordingly, it has been deemed not necessary to employ a more sophisticated theoretical
treatment, such as dispersive methods (see e.g. Refs. [97, 98]), to analyse the effect of the
scalar exchanges. This, of course, would not be possible for processes where the contribution
from scalar resonances is dominant, for instance in φ→ ηπ0γ [96, 234], and an improved
theoretical treatment would, therefore, be required in these cases.

9.2.2 Beyond the Standard Model: B-boson contribution

In analogy to the VMD contributions summarised in the previous subsection, we next define
the framework to include intermediate B-boson exchanges to the decay amplitude.

The diagrammatic representation of the decay process is depicted in Fig. 9.1 for the
η→ π0γγ case.4 This contribution can be assessed from the conventional VMD V VP and
Vγ Lagrangians (cf. Secs. 3.5.1 and 3.5.2)

LV VP =
G√
2
εµναβTr [∂µVν∂αVβP ] ,

LVγ = −4egf2
πA

µTr [QVµ] ,

(9.8)

where G= 3g2/4π2fπ, V µ and P are the matrices for the nonet of vector and pseudoscalar
meson fields, respectively, Aµ is the photon field, and Q = diag{2/3,−1/3,−1/3} is the
quark-charge matrix, supplemented by an effective Lagrangian that describes the VB interac-
tion. The latter is formally identical to the Vγ Lagrangian in Eq. (9.8) with the substitutions
Aµ→Bµ, e→ gB and Q→ diag{1/3,1/3,1/3}, and it is given by

LVB = −41
3
gBgf

2
πB

µTr [Vµ] . (9.9)

From the V VP and VB Lagrangians in Eqs. (9.8) and (9.9), respectively, along with the
corresponding V -meson propagators, it is straightforward to obtain expressions for the gBPγ
couplings in terms of the generic B-boson coupling gB . The gBPγ couplings are energy

4It should be mentioned that the same diagram where the B boson is replaced by a photon also exists. How-
ever, this is not considered in the present analysis given that this contribution is highly suppressed with respect
to the intermediate vector exchanges that has already been considered in Sec. 9.2.1 and introduces unnecessary
complexity.
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dependent and read

gBπ0γ(q
2) =

egB
4π2fπ

Fω(q
2) ,

gBηγ(q
2) =

egB
12π2fπ

[
cφPFω(q

2)+
√
2sφPFφ(q

2)
]
,

gBη′γ(q
2) =

egB
12π2fπ

[
sφPFω(q

2)−
√
2cφPFφ(q

2)
]
,

(9.10)

where φP is the η-η′ mixing angle in the quark-flavour basis [138] and the abbreviations
cφP ≡ cosφP and sφP ≡ sinφP have been employed. The functions FV (q2) in the previous
equations are form factors that account for the ω and φ propagation, and are given by

FV (q
2) =

M2
V

M2
V − q2− iMV ΓV

. (9.11)

Combining the gBπ0γ and gBηγ couplings from Eq. (9.10) with the propagator of the
B-boson, allows one to find the B-boson exchange contribution to the η→ π0γγ amplitude

ABboson
η→π0γγ = gBηγ(t)gBπ0γ(t)

[
(P · q2−M2

η ){a}−{b}
DB(t)

+

{
q2↔ q1

t↔ u

}]
, (9.12)

where DB(q2) = m2
B − q2− imBΓB is the B-boson propagator. The B-boson contribu-

tion to the amplitudes of the η′ → π0γγ and η′ → ηγγ decays have a similar structure to
that of Eq. (9.12) with the replacements M2

η →M2
η′ , and gBηγgBπ0γ → gBη′γgBπ0γ for the

η′→ π0γγ and gBηγgBπ0γ → gBη′γgBηγ for the η′→ ηγγ.
The decay widths for the radiative transitions η(′) → Bγ and B → π0γ,η(′)γ can be

calculated from Eq. (9.10) and the analogous to Eq. (9.5). They are given by

Γη→Bγ =
αemαBM

3
η

288π3f2
π

(
1−

m2
B

M2
η

)3

×
[
cφPFω(m

2
B)+

√
2sφPFφ(m

2
B)
]2

,

Γη′→Bγ =
αemαBM

3
η′

288π3f2
π

(
1−

m2
B

M2
η′

)3

×
[
sφPFω(m

2
B)−

√
2cφPFφ(m

2
B)
]2

,

(9.13)

for the B production from η(′) decays and

ΓB→π0γ =
αemαBm

3
B

96π3f2
π

(
1−M

2
π

m2
B

)3

|Fω(m2
B)|2 ,

ΓB→ηγ =
αemαBm

3
B

864π3f2
π

(
1−

M2
η

m2
B

)3

×
[
cφPFω(m

2
B)+

√
2sφPFφ(m

2
B)
]2

,

ΓB→η′γ =
αemαBm

3
B

864π3f2
π

(
1−

M2
η′

m2
B

)3

×
[
sφPFω(m

2
B)−

√
2cφPFφ(m

2
B)
]2

,

(9.14)

for the B-boson decays. The leptonic decays arise from the kinetic mixing of the B boson
with the photon, cf. Eq. (9.1), and read [197]

ΓB→`+`− =
αemε

2mB

3

(
1+

2m2
`

m2
B

)√
1−

4m2
`

m2
B

, (9.15)
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FIGURE 9.2: Limits on the leptophobic U(1)B-boson parameters αB and
mB from the η→ π0γγ BR measured by KLOE [182] (black line) and the
value reported by the PDG [1] (blue line). Also shown are the limits from the
BESIII measurements of η′→ π0γγ (red line) [172] and η′→ ηγγ (orange
line) [173]. Following the approach of Ref. [197], the SM contribution is set
to zero in all cases and the NWA is applied. The shaded regions are excluded.

whilst the B-boson decay to π+π−, which also depends on ε, is given by [197]

ΓB→π+π− =
αemε

2mB

12

(
1− 4M2

π

m2
B

)3/2

|Fπ(m2
B)|2 , (9.16)

where Fπ(q2) is the pion vector form factor. Finally, for the three-body decay ΓB→π+π−π0

we make use of the following amplitude

ABboson
B→π+π−π0 =

g2gB
π2fπ

εµναβ

(
pµ+p

ν
−p

α
0

Dρ0(s)
+
pµ−p

ν
0p
α
+

Dρ−(t)
+
pµ0p

ν
+p

α
−

Dρ+(u)

)
εβFω(m

2
B) , (9.17)

where εβ is the polarisation vector of the B boson, Dρ(q2) is the ρ propagator with energy-
dependent width defined in Eq. (9.4), p+, p− and p0 are the four-momentum vectors associ-
ated to the π+, π− and π0, respectively, and the Mandelstam variables s, t and u are defined,
in this instance, as s= (p++p−)2, t= (p−+p0)2 and u= (p++p0)2.

9.3 Limits on αB and mB

In this section, we make use of the theoretical expressions from Secs. II A and II B, along
with the available experimental data, to place limits on the B-boson parameters αB and mB .

As a preliminary step, we adopt the approach presented in Ref. [197] with the most
up-to-date experimental data to generate limits on the B-boson parameters from the de-
cays under study, η(′) → π0γγ and η′ → ηγγ, which are shown in the form of exclu-
sion plots in Fig. 9.2. That approach neglects the SM contribution and uses the NWA to
place limits upon requiring that the B-boson contribution does not exceed the total ob-
served branching ratio (BR) at 2σ. The curves for the η → π0γγ process come from the
(preliminary) value found by the KLOE Collaboration, BR = (1.23± 0.14)× 10−4 [182]
(black line), and the BR reported by the PDG, BR = (2.55± 0.22) × 10−4 [1] (blue
line); we also show the traces obtained from the BESIII Collaboration measurements for
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FIGURE 9.3: Normalised width of theB boson, ΓB(m2
B)/αB , as a function

of mB from Eq. (9.19).

the decays η′ → π0γγ, BR = (3.20±0.07±0.23)×10−3 [172] (red line), and η′ → ηγγ,
BR = (8.25±3.41±0.72)×10−5 [173] (orange line).

The above limits can clearly be improved by including the contribution from the SM in
the theoretical treatment. Taking this into account, the amplitude for these decay processes
is written as the coherent sum of the vector, scalar and B-boson exchange contributions,
A=AVMD+ALσM+ABboson (cf. Chapter 8, and Secs. 9.2.1 and 9.2.2). The corresponding
partial decay widths depend on a total of three parameters: i) the baryonic fine-structure
constant, αB , ii) the B-boson mass, mB , and iii) its total decay width, ΓB . However, given
that ΓB is not an independent parameter (that is, it can be expressed in terms of αB and
mB), we can reduce the number of free parameters from three to two. Accordingly, the
denominator in Eq. (9.12), DB(q2), is replaced by

DB(q2) =m2
B− q2− i

√
q2 ΓB(q2) , (9.18)

where ΓB(q2) =
∑

i Γ
i
B(q

2) is the energy-dependent width of theB boson, with the sum run-
ning over the partial widths of the various decay channels theB boson can decay into. For our
study, we include the partial widths of the decay channelsB→ π0γ, e+e−, µ+µ−, and π+π−

given, respectively, in Eqs. (9.14–9.16), whilst for the partial width of the B→ π0π+π− we
make use of the amplitude in Eq. (9.17) to obtain numerical results after squaring and numer-
ically integrating over its corresponding phase space. The energy-dependent width ΓB(q2)
can, therefore, be written as

ΓB(q2) = θ(q2−M2
π)

γB→π0γ(q
2)

γB→π0γ(m
2
B)

ΓB→π0γ

+ θ(q2−4m2
e)
γB→e+e−(q

2)

γB→e+e−(m
2
B)

ΓB→e+e−

+ θ(q2−4m2
µ)

γB→µ+µ−(q
2)

γB→µ+µ−(m
2
B)

ΓB→µ+µ−

+ θ(q2−4M2
π)

γB→π+π−(q
2)

γB→π+π−(m
2
B)

ΓB→π+π−

+ θ(q2−9M2
π)

γB→π+π−π0(q2)

γB→π+π−π0(m2
B)

ΓB→π+π−π0 ,

(9.19)
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FIGURE 9.4: Limits on the leptophobic B-boson coupling αB for different
mB masses from the η→ π0γγ BR measurements by KLOE [182] (black
line) and the PDG [1] (red line). The grey shaded region is excluded by
KLOE and the dashed lines correspond to the limits with the QCD contribu-

tions turned off.

where the γi(q2) parameters are given by the following expressions

γB→π0γ(q
2) = (q2)3/2

(
1−M

2
π

q2

)3

|Fω(q2)|2 ,

γB→`+`−(q
2) =

√
q2

(
1+

2m2
`

q2

)√
1−

4m2
`

q2
,

γB→π+π−(q
2) =

√
q2

(
1− 4M2

π

q2

)3/2

|Fπ(q2)|2 ,

(9.20)

whilst γB→π+π−π0(q2) must be evaluated numerically. In Fig. 9.3, the total normalised width
ΓB(m2

B)/αB is plotted as a function of mB .
Next, we proceed to calculate the constraints on the B-boson parameters αB and mB

set by experiment. We start with the η → π0γγ decay using the PDG reported value,
BR = (2.55±0.22)×10−4 [1], as well as the (preliminary) value from the KLOE Collab-
oration, BR = (1.23± 0.14)× 10−4 [182] (see also Ref. [183]). In Fig. 9.4, we show the
limits in the αB-mB plane, which are found by requiring our predictions to not exceed the
corresponding branching ratios at 2σ. The grey area is excluded by the data from KLOE,
which yield a more stringent limit than the resulting one from the PDG (solid red line). This
is as expected given that the BR from KLOE is found to be in good agreement with our SM
prediction from Chapter 8, BR = (1.35± 0.08)× 10−4, and thus the KLOE constraints on
theB boson turn out to be stronger. The dashed black line in the figure is found using the data
from KLOE but with the SM (or, equivalently, QCD) contributions set to zero. Clearly, these
contributions are not negligible as the limits on αB become an order of magnitude weaker
when their effects are turned off (labelled QCD off in the plots). The uncertainty in the ex-
clusion limits associated to the systematic errors of our theoretical treatment is presented in
Appendix D.

The shape and size of the excluded region in Fig. 9.4 contains key physical informa-
tion. In this figure, three different regions can be identified. The first one corresponds to
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FIGURE 9.5: Limits on the leptophobic B-boson coupling αB for differ-
ent mB masses from the BR measurements of the decays η′ → π0γγ (left
plot) [172] and η′→ ηγγ (right plot) [173] by BESIII. The grey shaded re-
gion is excluded and the dashed black line corresponds to the limit with the

QCD contributions set to zero.

mB .Mπ0 , where αB ∼ O(1). At mB ∼Mπ0 , the limit placed on the coupling plummets
by almost six orders of magnitude down to αB ∼ 10−6; it then moderately increases, to fi-
nally take a steep rise whenmB approachesMη, reaching αB ∼ 10−2. Finally, formB &Mη

the constraint on the coupling grows very smoothly as mB increases. Out of the three, the
Mπ0 .mB .Mη region deserves special attention and raises the question as to why αB is
constrained so strongly there. The answer to this is related to the fact that the B-boson width
is extremely small in this region of parameter space.

Let us investigate this effect in more detail. By noticing from Fig. 9.3 that within the
Mπ0 .mB .Mη mass range the NWA is valid, it allows us to write the squared modu-
lus of the B-boson propagator as π/(mBΓB)δ(t−m2

B), under the phase-space integral.
For a B boson whose squared mass falls within the kinematic space for the t variable,
i.e. tmin ≤m2

B ≤ tmax, the phase-space integral over dt places the B boson on-shell and
one is allowed to write

Γ(η→ π0γγ)∝
∫

α2
B dt

|DB(t)|2
→

α2
B π

mB ΓB(m2
B)

. (9.21)

As it can be seen in Fig. 9.3, ΓB(m2
B)/αB is very small within the kinematic region of

interest for the present discussion (i.e. Mπ0 . mB .Mη), which, in the ΓB(t)/αB → 0
limit, forces αB → 0 so that Γ(η→ π0γγ) remains finite.

Next, we show the exclusion plots associated to the two η′ decays in Fig. 9.5. On the left-
hand side, we display the region of the αB-mB plane excluded by the BESIII Collaboration
η′→ π0γγ measurement, BR = (3.20± 0.07± 0.23)× 10−3 [172], and, on the right-hand
side, the corresponding one for the η′→ ηγγ, BR = (8.25±3.41±0.72)×10−5 [173], both
at a confidence level of 2σ.

The shape of the excluded region for the η′ → π0γγ is clearly different to that of the
η→ π0γγ decay (cf. Fig. 9.4). In particular, the limits within the Mπ0 .mB .Mη mass
range, whilst still showing the shape resembling a keel, are about 4 orders of magnitude
weaker than those coming from η→ π0γγ. There are two contributing effects required to
explain this. On the one hand, there are inherent dynamical differences in the B-boson pro-
duction of the two decays [cf. Eq. (9.13)]. On the other hand, there are kinematic influences
that also need to be accounted for. Specifically, if one applies the NWA to both the B boson5

5This approximation is reasonable for mB . 600 MeV, as can be checked in Fig. 9.3. Beyond this point,
the use of the NWA may be questionable. As we are only attempting to provide a qualitative explanation, this
limitation does not really concern us here.
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FIGURE 9.6: m2
π0γ

distribution for the η→ π0γγ decay using our theoret-
ical SM (VMD and LσM) prediction from Chapter 8 and Ref. [165] (solid
black line). Also shown are the spectra including the B-boson contribution
using the two sets of representative values for αB and mB from Eqs. (9.22)

(dashed red line) and (9.23) (dotted green line).

and ω propagators, a factor like δ(t−m2
B)δ(t−M2

ω) is obtained, which under the phase-
space integral results in δ(M2

ω−m2
B).

6 This Dirac delta suppresses the contribution of the
B boson to the decay process when mB 6≈ Mω and, hence, forces the exclusion limit to
be weaker in this region. In contrast, the B-boson contribution is largely amplified when
mB ≈Mω and, therefore, the exclusion limit becomes much stronger in this area, which will
make it difficult to experimentally identify a B boson with a mass around the pole of the ω
resonance. The region Mη .mB .Mω is less constrained and, thus, appears to be a good
place to look for an enhancement in the π0γ invariant mass spectrum.

The limits from the η′→ ηγγ process (right plot in Fig. 9.5) in the mB &Mη region are
similar to the ones from η′→ π0γγ. Notwithstanding this, the keel shape appearing in the
Mπ0 .mB .Mη mass range of the η→ π0γγ and η′→ π0γγ exclusion plots is missing in
the η′→ ηγγ one, which is down to the fact that the phase space of the latter does not allow
the B boson to resonate in this range of B-boson masses and, therefore, the constraints turn
out to be weaker.

All in all, the η′ → π0γγ and η′ → ηγγ decays do not appear to be as powerful as the
η→ π0γγ at constraining the B-boson parameters.

The smoking gun signature of a B boson in the Mπ0 .mB .Mη region would be the
observation of a peak aroundmB in the π0γ invariant mass distribution. In Fig. 9.6, we show
the quantitative effect of a B boson on the η→ π0γγ decay using two sets of representative
values for αB and mB from the not-excluded region of parameter space

αB = 10−6 mB = 250 MeV, (9.22)

and
αB = 10−2 mB = 540 MeV. (9.23)

In this figure, the solid black line corresponds to our SM prediction from Chapter 8, whereas
the effect of including the B boson is shown by the dashed red and dotted green lines for

6There is no need to consider the φ propagator given that the available phase space does not allow the φ to
resonate.
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FIGURE 9.7: KLOE (green triangles) [183], A2 (blue circles) [181] and
Crystal Ball (red squares) [177] measurements of the m2

γγ spectrum for the
η→ π0γγ decay. Also shown is our SM (VMD and LσM) prediction from
Chapter 8 and Ref. [165] (solid black line), as well as our SM with B-boson

predictions using the fitted parameters from Eqs. (9.24) and (9.25).

the two sets of αB and mB values from Eqs. (9.22) and (9.23), respectively. As it can be
seen, the differences in the distribution introduced by the B-boson contribution are very
small and it is very difficult to distinguish the associated lines from the SM prediction. That
is, the allowed values for αB in the Mπ0 . mB .Mη region are so small that it makes
the B-boson signal strongly suppressed, rendering the task of experimentally identifying it
nearly impossible. For this reason, a B boson in the mass range Mπ0 .mB .Mη cannot
explain the normalisation offset that appears to be affecting the experimental γγ invariant
mass distribution from the A2 [181] and Crystal Ball [177] Collaborations with respect to
our VMD and LσM prediction.

Let us now to perform statistical fits to the available experimental diphoton spectra to
determine the region of the αB-mB plane (cf. Fig. 9.4) that is preferred by the data. From
the Crystal Ball γγ invariant mass spectrum [177], we obtain the following best fit values

αB = 0.40+0.07
−0.08 , mB = 583+32

−20 MeV, (9.24)

with a χ2
min/d.o.f = 0.42/5 = 0.08, whereas for the KLOE (preliminary) data [183]7 we

find
αB = 0.049+0.040

−0.027 , mB = 135+1
−135MeV, (9.25)

with a χ2
min/d.o.f = 4.46/5 = 0.89.8 Because of the large errors associated to the experi-

mental points from Crystal Ball, its χ2
min/d.o.f turns out to be extremely small. The χ2

min/d.o.f
of the fit to the KLOE data implies a good quality of the fit. The errors associated to the fit-
ted parameters have been estimated by perturbing one of the parameters at a time such that

7Whilst KLOE has published a BR for the η→π0γγ process in a conference proceedings [182], the diphoton
spectrum has not yet been published, although it was presented at The 10th International Workshop on Chiral
Dynamics 2021 [183]. For our analysis, we have retrieved the data points from their presentation’s figure. We
thank KLOE for the email communications [235].

8We also carried out fits to the A2 data but did not find convergent solutions using two free parameters. When
fits were attempted using the B-boson width as an additional free parameter, good convergence was achieved
though.
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FIGURE 9.8: BESIII (blue squares) [172] measurements of the m2
γγ spec-

trum for the η′→ π0γγ decay. Also show is our SM (VMD and LσM) pre-
diction from Chapter 8 and Ref. [165] (solid black line), as well as our SM
with B-boson prediction using the fitted parameters from Eq. (9.26) (dotted

red line).

χ2 = χ2
min + 1 [1]. The theoretical γγ invariant mass spectra using the parameters from the

fits in Eqs. (9.24) and (9.25) to the Crystal Ball and KLOE data are shown in Fig. 9.7 with
dashed and dotted black lines, respectively. Also plotted are the experimental data points and
our SM prediction [165] (solid black line) with an estimation of the uncertainty from the er-
ror propagation of the VPγ couplings. The different individual contributions to the invariant
mass spectra are shown in Appendix E.1. It is worth noticing that the inclusion of a non-
resonant B boson in the t- and u-channels, with parameters from Eq. (9.24), helps explain
the tension between the Crystal Ball spectrum and our SM result [165]. Notwithstanding
this, the best fit parameters from Crystal Ball in Eq. (9.24) are ruled out by the KLOE data
(cf. Fig. 9.4), whose measured BR continues the decreasing trend seen over the decades asso-
ciated to more precise measurements becoming available (see Ref. [196]). In turn, this trend
supports the theoretical treatment without a B boson, as our VMD and LσM approach from
Chapter 8 (cf. Ref. [165]) appears to be capable of successfully predicting the experimental
data for the three η(′)→ π0γγ and η′→ ηγγ decays simultaneously. Clearly, the experimen-
tal situation is far from conclusive and it may not be possible to make categorical statements
about the need for a B boson until the arrival of new and more precise data, e.g. from the
KLOE(-II) and JEF [225] experiments.

Next, we perform fits to the η′ → π0γγ diphoton spectrum from the BESIII Collabo-
ration [172], which may be used to explore larger B-boson masses. No distribution data
is available for the η′ → ηγγ process, so the constraints from this channel come from the
branching ratio only (see Fig. 9.5). The fit to the η′→ π0γγ data yields

αB = 0.005(1) , mB = 759(1) MeV, (9.26)

with χ2
min/d.o.f = 11.73/11 = 1.07. The distribution using the fitted parameters from

Eq. (9.26) is shown in Fig. 9.8 (dotted red line), together with the experimental data (blue
squares) and our SM prediction [165] (solid black line) with an estimation of its uncertainty.
It is worth noticing the sudden drop in the dotted red line (i.e. SM with B-boson distribution)
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FIGURE 9.9: KLOE measurements (green triangles) [183] of the m2
γγ spec-

trum for the η→ π0γγ decay together with our SM (VMD and LσM) predic-
tion from Chapter 8 and Ref. [165] (solid black line). Also shown is our SM
with B-boson prediction using the fitted parameters from Eq. (9.27) (dotted

red line).

at m2
γγ ≈ 0.33 GeV2.9 What is interesting about this is that, even though the χ2

min/d.o.f of
this fit is very good, the associated integrated branching ratio deviate from the experimental
counterpart due to the effect of the wiggle on the distribution. Also, the spectrum using the
fit parameters would lead to larger than observed bin values for the experimental points 10
and 11. Again, the different individual contributions to the γγ invariant mass spectrum are
presented in Appendix E.2.

Finally, a joint fit to the experimental invariant mass spectra from KLOE and BESIII for
the η→ π0γγ and η′→ π0γγ decays, respectively, is carried out. The joint fit yields

αB = 0.005(1) , mB = 759(1)MeV, (9.27)

with χ2
min/d.o.f = 19.61/18 = 1.09.10 The joint fit produces the same best fit parameters

as those from the fit to the η′ → π0γγ spectrum only. The theoretical distribution for the
η→ π0γγ decay using the parameters from the joint fit is shown in Fig. 9.9 (dotted red line),
which turns out to be indistinguishable from that of the SM (solid black line).

To conclude, it is worth highlighting that both our SM and SM with B-boson predictions
(using the joint fit parameters for the latter) agree well with both sets of experimental data
points. The largest differences between the theoretical predictions still show compatibility

9This sudden drop can be understood as follows: so long as tmin(s) ≤m2
B ≤ tmax(s) ∀ s ∈ [smin,smax],

then the available phase space allows the B boson to resonate; however, for values of s such that tmin(s)≥m2
B

or tmax(s)≤m2
B , then theB boson no longer resonates and its contribution to the amplitude suddenly plummets

producing the sudden drop in the distribution. It must be noted that this effect also applies to the ω meson and is
responsible for the sudden drop in the SM distribution around m2

γγ ≈ 0.30 GeV2. Given that this is a kinematic
effect, it will always be present in the spectrum so long as tmin(smin)≤m2

B ≤ tmax(smin), although it becomes
a relatively small effect and is difficult to detect beyond m2

γγ & 0.4 GeV2 for this particular decay.
10There is a secondary local minimum giving αB = 5(2) × 10−4 and mB = 780+3

−4 MeV, with
χ2min/d.o.f = 23.71/18 = 1.32. These values for the αB and mB parameters yield a B-boson width of
ΓB ≈ 5.1 MeV. For this particular solution, both mB and ΓB are effectively the same as those of the ω vector
meson. Accordingly, the end effect is to enhance the spectrum with respect to the SM prediction for m2

γγ . 0.30

GeV2, where the available phase space allows both the ω and B boson to resonate, and has no effect on the
spectrum beyond this point, i.e. m2

γγ & 0.30 GeV2.
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FIGURE 9.10: Limits on the leptophobic B-boson mass mB and coupling
αB from the branching ratio measurements of the decays η→ π0γγ (grey)
by KLOE [182], and η′→ π0γγ (red) [172] and η′→ ηγγ (blue) [173] by

BESIII.

at roughly the 1σ level. We, therefore, conclude that the experimental data from KLOE and
BESIII for the η → π0γγ and η′ → π0γγ decays, respectively, do not require a B-boson
contribution, in spite of the coupling αB being clearly non-zero.

This conclusion differs from that of the study in Ref. [236], where it is argued that the
simultaneous prediction of the three processes under study may require the presence of a
leptophobic B boson, which in turn was motivated by some of the conclusions from our
previous work in Ref. [165] (cf. Chapter 8). It should be noted, though, that in Ref. [236]
the B-boson mass and width were manually fixed to some values that the author deemed
reasonable, leaving the gBPγ couplings as free constant parameters that were subsequently
fitted to the experimental data. Contrary to this, in the work presented in this chapter ΓB
is not an independent variable but a function of both αB and mB (under the assumption
that the B boson decays to SM particles only), which are then left as free parameters in our
fits. It is worth noting that in our analysis the gBPγ couplings are not constant but energy
dependent. More importantly, Ref. [236] did not employ the most recent experimental data
for the η→ π0γγ decay from the KLOE Collaboration [183] in his analysis.

9.4 Conclusions

We have analysed in detail the sensitivity of the rare decays η(′) → π0γγ and η′ → ηγγ
to a leptophobic U(1)B boson in the MeV–GeV mass range. Adding the explicit B-boson
exchange contribution in the t- and u-channels, in addition to our SM (VMD and LσM) am-
plitudes, has allowed us to place stringent limits on the B-boson parameters mB and αB by
comparing with current experimental data. A visual summary of these limits is shown below
in Fig. 9.10. From the individual analysis of the η→ π0γγ decay, we have strengthened by
one order of magnitude the current constraints in the resonant mass regionMπ0 .mB .Mη,
reaching αB ∼ 10−6, as it can be seen in this figure. These constraints would make aB-boson
signature strongly suppressed, rendering the task of experimentally identifying it as a peak
around mB in the π0γ invariant mass distribution practically impossible.

Our analysis of the most recent experimental γγ invariant mass distribution from the
KLOE Collaboration supports the description of the processes studied in this chapter without
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contribution from a potential new leptophobic B boson, as our VMD and LσM treatment is
capable of simultaneously predicting the three η(′) → π0γγ and η′ → ηγγ decays with re-
markable agreement with the experimental data. However, a B boson with a mass mB &Mη

and non-negligible coupling αB may help explain the discrepancy between our SM predic-
tion and the experimental data from the A2 and Crystal Ball Collaborations (see Fig. 9.7).
The existing tension between the measurements by different experimental groups does not
allow us to make an absolute statement about the need for a B boson, as the branching ratio
observed by KLOE, whilst in agreement with our SM prediction, is about a factor of two
smaller than those from A2 and Crystal Ball. This highlights the need for new and more
precise data, e.g. from the KLOE(-II) and JEF experiments.

Finally, the η′ → π0γγ and η′ → ηγγ decays are not as powerful as the η → π0γγ at
constraining B-boson parameters below Mη but allow exploring larger B-boson masses. As
it can be observed in Fig. 9.10, the region in the αB-mB plane near the ω pole shows a sharp
dip, which would make the task of identifying a B boson with mB ∼Mω very challenging.
However, the mass regionMη .mB .Mω is less constrained and, thus, appears to be a good
place to look for an enhancement in the π0(η)γ invariant mass distributions, for example, at
BESIII or the JEF experiment.
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Chapter 10

A theoretical analysis of the semileptonic decays
η(′)→ π0l+l− and η′→ ηl+l−1

A complete theoretical analysis of the C-conserving semileptonic decays η(′)→ π0l+l− and
η′→ ηl+l− (l = e or µ) is carried out within the framework of the VMD model. An exist-
ing phenomenological model is used to parameterise the VMD coupling constants and the
associated numerical values are obtained from an optimisation fit to V → Pγ and P → V γ
radiative decays (V = ρ0, ω, φ and P = π0, η, η′). The decay widths and dilepton energy
spectra for the two η → π0l+l− processes obtained using this approach are compared and
found to be in good agreement with other results available in the published literature. The-
oretical predictions for the four η′ → π0l+l− and η′ → ηl+l− decay widths and dilepton
energy spectra are calculated and presented for the first time in this chapter.

10.1 Introduction

The electromagnetic and strong interactions conserve parity (P ) and charge conjugation (C)
within the well-established and well-tested Standard Model (SM) of particle physics. In this
context, the η and η′ pseudoscalar mesons are specially suited for the study of rare decay
processes, for instance, in search of C, P and CP violations, as these mesons are C and P
eigenstates of the electromagnetic and strong interactions [14].

Specifically, the semileptonic decays η(′)→ π0l+l− and η′→ ηl+l− (l = e or µ) are of
special interest given that they can be used as fine probes to assess if new physics beyond the
Standard Model (BSM) is at play. This is because any contribution from BSM physics ought
to be relatively small and the above decay processes only get a contribution from the SM
through the C-conserving exchange of two photons that is highly suppressed, as there is no
contribution at tree-level but only corrections at one-loop and higher orders. This small SM
contribution would presumably be of the same order of magnitude as that of physics BSM,
which in turn means that the η-η′ phenomenology might play an interesting role and be an
excellent arena for stress testing SM predictions [14, 174]. As an example, the η(′)→ π0l+l−

and η′→ ηl+l− decays could be mediated by a single intermediate virtual photon, but this
would entail that the electromagnetic interactions violate C-invariance (e.g. [237, 238]) and,
therefore, would represent a departure from the SM.

Early theoretical studies of semileptonic decays of pseudoscalar mesons date back
to the late 1960s. A significant contribution was made by Cheng in Ref. [239] where
he analysed the η → π0e+e− decay mediated by a C-conserving, two-photon intermedi-
ate state within the VMD framework. By setting the electron mass to me = 0 and ne-
glecting in the numerator of the amplitude terms that were second or higher order in the
electron or positron four-momenta, he found theoretical estimations for the decay width
Γ(η→ π0e+e−) = 1.3×10−5 eV, the relative BR Γ(η→ π0e+e−)/Γ(η→ π0γγ) ≈ 10−5,
as well as the associated decay energy spectrum. This was an enormous endeavour given

1This chapter is based on Ref. [233].



132
Chapter 10. A theoretical analysis of the semileptonic decays

η(′)→ π0l+l− and η′→ ηl+l−

the very limited access to computer algebra systems at the time. For this reason, a num-
ber of strong assumptions had to be made, as pointed out above, which may have had
an undesired effect on the accuracy of Cheng’s estimates. A different approach was fol-
lowed by Smith [240] also in the late 1960s, whereby an S-wave ηπ0γγ coupling and uni-
tary bounds2 were used for the calculation of the C-conserving modes associated to both
η→ π0l+l− decays. By neglecting p-wave contributing terms to simplify the calculations
and noting that the unknown ηπ0γγ coupling constant cancels out when calculating relative
branching ratios, Smith was able to find Γ(η→ π0e+e−)/Γ(η→ π0γγ) = 3.6× 10−8 and
Γ(η→ π0µ+µ−)/Γ(η→ π0γγ) = 6.0× 10−5, after estimating the real part of the matrix
element from a single dispersion relation and employing a cut-off Λ = 2Mη. Of course, the
calculation of the latter ratio was possible because Smith did not approximate the lepton mass
to zero.

Ng et al. [186] also found in the early 1990s lower limits for the decay widths of
the two η → π0l+l− processes by making use of unitary bounds and the decay chain
η→ π0γγ→ π0l+l−. The transition form factors associated to the η→ π0γγ decay, which
are required to perform the above calculation, were obtained using the VMD model sup-
plemented by the exchange of an a0 scalar meson. The lower bounds that they found
are Γ(η → π0e+e−)|VMD = 1.1+0.6

−0.5 µeV and Γ(η → π0µ+µ−)|VMD = 0.5+0.3
−0.2 µeV, mak-

ing use of VMD only. By adding the a0 exchange3 to the latter process, they obtained
Γ(η→ π0µ+µ−)|constr = 0.9+0.6

−0.5 µeV and Γ(η→ π0µ+µ−)|destr = 0.3+0.4
−0.2 µeV for a con-

structive and destructive interference, respectively. The real parts of the amplitudes were
estimated by means of a cut-off dispersive relation and the authors argued that the expected
dispersive contribution should be no larger than 30% of the absorptive one. A few months
later, Ng and Peters provided in Ref. [192] new estimations for the unitary bounds of the
η→ π0l+l− decay widths. This new contribution was two-fold: on the one hand, they cal-
culated the η→ π0γγ decay width within a constituent quark model framework and, on the
other hand, they recalculated the VMD transition form factors from Ref. [186] by perform-
ing a Taylor expansion and keeping terms linear in M2

η/M2
V , x1 and x2 (xi ≡ Pη · qγi/M2

η ),
which had been neglected in their previous work. Accordingly, their new findings were: (i)
Γ(η→ π0e+e−)|box ≥ 1.2± 0.2 µeV and Γ(η→ π0µ+µ−)|box ≥ 4.3± 0.7 µeV for a con-
stituent quark mass m = 330 MeV/c2; and (ii) Γ(η→ π0e+e−)|VMD ≥ 3.5± 0.8 µeV and
Γ(η → π0µ+µ−)|VMD ≥ 2.4± 0.8 µeV. It is important to highlight that their estimations
using the quark-box mechanism were strongly dependent on the specific constituent quark
mass selected, especially for the electron mode.

On the experimental front, new upper limits have recently been established by the WASA-
at-COSY Collaboration for the η→ π0e+e− decay width [241]. This is a useful contribution,
as the previous available empirical measurements date back to the 1970s, which provided an
upper limit for the relative branching ratio of the above process that was many orders of
magnitude larger than the corresponding theoretical estimations at the time. In particular,
Adlarson et al. [241] found from the analysis of a total of 3× 107 events of the reaction
pd→ 3He+ η, with a recorded excess energy of Q = 59.8 MeV, that the results are con-
sistent with no C-violating single-photon intermediate state event being recorded. Based
on their analysis, the new upper limits Γ(η→ π0e+e−)/Γ(η→ π+π−π0) < 3.28×10−5

and Γ(η→ π0e+e−)/Γ(η→ all) < 7.5×10−6 (CL = 90%) have been established for the
C-violating η→ π0γ∗→ π0e+e− decay. In addition, the WASA-at-COSY Collaboration is
currently analysing additional data from the pp→ ppη reaction collected over three periods
in 2008, 2010 and 2012 which should put more stringent upper limits on the η→ π0e+e−

2As it is well known, the Cutkovsky rules [125] allow one to calculate the imaginary part of a transition
amplitude by putting the intermediate virtual particles on-shell (see Chapter 5 for details).

3The a0ηπ0 and a0γγ couplings needed to perform this calculation were roughly estimated and the authors
acknowledged to be poorly known. As well as this, their signs were not unambiguously fixed.
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FIGURE 10.1: Feynman diagrams contributing to theC-conserving semilep-
tonic decays η(′) → π0l+l− and η′ → ηl+l− (l = e or µ). Note that

q = p++p− and V = ρ0,ω,φ.

branching ratio. The experimental state of play is expected to be further improved in the near
future with the advent of new experiments such as the REDTOP [15, 242], which will focus
on rare decays of the η and η′ mesons, providing increased sensitivity in the search for vi-
olations of SM symmetries by several orders of magnitude beyond the current experimental
state of the art.

The present chapter is structured as follows. In Sec. 10.2, we present the detailed calcu-
lations for the decay widths associated to the six η(′)→ π0l+l− and η′→ ηl+l− processes.
In Sec. 10.3, numerical results from theory for the decay widths and the corresponding dilep-
ton energy spectra are presented and discussed for the six decays. Some final remarks and
conclusions are given in Sec. 10.4.

10.2 Calculations of η(′)→ π0l+l− and η′→ ηl+l−

The calculations in this chapter assume that the η(′)→ π0l+l− and η′→ ηl+l− decays pro-
cesses are dominated by the exchange of vector resonances4 [239]; that is, they proceed
through the C-conserving virtual transition η(′)→ V γ∗ (with V = ρ0, ω or φ), followed by
V → π0γ∗ (or V → ηγ∗) and 2γ∗→ l+l− (see Fig. 10.1 for details).5

In order to perform the calculations, one first needs to select an effective vertex that has
got the appropriate structure. The VPγ interaction amplitude consistent with Lorentz, P , C
and electromagnetic gauge invariance can be written as [232]

M(V → Pγ) = gVPγ εµναβε
µ
(V )
pνV ε

∗α
(γ)q

βF̂VPγ(q
2) , (10.1)

where gVPγ is the coupling constant for the VPγ transition involving on-shell photons, εµναβ
is the totally antisymmetric Levi-Civita tensor, ε(V ) and pV are the polarisation and four-
momentum vectors of the initial V , ε∗(γ) and q are the corresponding ones for the final γ, and

F̂VPγ(q2)≡FVPγ(q2)/FVPγ(0) is a normalised form factor to account for off-shell photons
mediating the transition.6 In addition to this, the usual QED vertex is used to describe the

4It is worth highlighting that, based on the results presented in Chapter 8 (cf. [165]), contributions from
the exchange of scalar resonances can be safely discarded as they ought to be negligible for the first four
η(′)→ π0l+l− decays and relatively small for the last two η′→ ηl+l− processes.

5Note that anyC-violating contributions to these processes, such as e.g. the single-photon exchange channel,
would be associated to BSM physics. In this chapter, though, the focus is on the SM contribution from the C-
conserving two-photon exchange channel. In Chapter 11, we investigate potential CP -violating signatures in
these decays.

6For simplicity of the calculation, we neglect the q2 dependence of the transition form factor in Eq. (10.1).
This is not fully rigorous but, we understand, it is a tolerable approximation given that these form factors are
usually determined from on-shell photon processes.
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subsequent 2γ∗→ l+l− transition. Accordingly, there are six diagrams (two per vector me-
son) contributing to each one of the six semileptonic decay processes and the corresponding
Feynman diagrams are shown in Fig. 10.1.

The invariant decay amplitude in momentum space can, therefore, be written as follows

M= ie2
∑

V =ρ0,ω,φ

gV η(′)γ gV π0(η)γ

∫
d4k

(2π)4

1

k2 + iε

1

(k− q)2 + iε

× εµναβ

[
kµ(P −k)α(k− q)ρ(P −k)δ

(P −k)2−M2
V + iε

]
ερσδ

β

×u(p−)

[
γσ

/k−/p++ml

(k−p+)2−m2
l + iε

γν +γν
/p−−/k+ml

(k−p−)2−m2
l + iε

γσ

]
v(p+) ,

(10.2)

where q = p+ + p− is the sum of lepton-antilepton pair four-momenta, e is the electron
charge, and gV η(′)γ and gV π0(η)γ are the corresponding VMD coupling constants from
Eq. (10.1). Noting that the Levi-Civita tensors are antisymmetric under the substitutions
µ↔ α and ρ↔ δ, whilst the products of loop momenta kµkα and kρkδ are symmetric under
these substitutions, one finds that the terms in Eq. (10.2) containing these combinations van-
ish and that the superficial degree of divergence for the loop integrals of the two diagrams in
Fig. 10.1 is −1. Accordingly, both diagrams are convergent individually.

The numerator ofM can be simplified using the usual Dirac algebra manipulations and
the equations of motion. For these calculations, the mass of the leptons are not approximated
to zero, as we are interested in both the electron and muon modes of the η(′)→ π0l+l− and
η′→ ηl+l− decays. In order to manipulate and simplify the algebraic expressions, use of the
Mathematica package FeynCalc 9.2.0 [243, 244] is made.

Let us now proceed to calculate the loop integral. As usual, one first introduces the Feyn-
man parameterisation and completes the square in the new denominators ∆Vi (i = 1,2 and
V = ρ0,ω,φ) by shifting to a new loop momentum variable ` [3]. Therefore, the denomina-
tors become

∆V1 = 2yz(P · q)+ 2xy(p+ · q)+ (y−1)yq2 + 2xz(P ·p+)+x2m2
l

+ z
[
(z−1)M2

η(′)
+MV (MV − iΓV )

]
,

∆V2 ≡ ∆V1 with p+↔ p− .

(10.3)

Rewriting the numerators of the Feynman diagrams 1 and 2 (i.e. the t- and u-channel di-
agrams, respectively, from Fig. 10.1) in terms of the new momentum variable `, one finds

N1 =
[
A1`

2 +B1

]
u(p−)/Pv(p+)+ ml

[
C1`

2 +D1

]
u(p−)v(p+) ,

N2 =
[
A2`

2 +B2

]
u(p−)/Pv(p+)+ ml

[
C2`

2 +D2

]
u(p−)v(p+) ,

(10.4)

where the explicit expressions for the parameters Ai, Bi, Ci and Di (i = 1,2) are given in
Appendix F. Finally, we perform a Wick rotation and change to four-dimensional spherical
coordinates [3, 4] to carry out the momentum integral. The following expressions for the
amplitudes of the Feynman diagrams are found

MV
1 = αV

[
u(p−)/Pv(p+)

]
+βVml

[
u(p−)v(p+)

]
,

MV
2 = σV

[
u(p−)/Pv(p+)

]
+ τVml

[
u(p−)v(p+)

]
,

(10.5)



10.3. Theoretical results 135

where ml is the corresponding lepton mass, and the parameters αV , βV , σV and τV in
Eq. (10.5) are defined as

αV = e2
gV η(′)γgV π0(η)γ

16π2

∫
dxdydz

[
2A1

∆V1 − iε
− B1

(∆V1 − iε)2

]
,

βV = e2
gV η(′)γgV π0(η)γ

16π2

∫
dxdydz

[
2C1

∆V1 − iε
− D1

(∆V1 − iε)2

]
,

σV = e2
gV η(′)γgV π0(η)γ

16π2

∫
dxdydz

[
2A2

∆V2 − iε
− B2

(∆V2 − iε)2

]
,

τV = e2
gV η(′)γgV π0(η)γ

16π2

∫
dxdydz

[
2C2

∆V2 − iε
− D2

(∆V2 − iε)2

]
,

(10.6)

with x, y and z being the Feynman integration parameters. Therefore, the full amplitude can
now be expressed as

M =
∑

V =ρ0,ω,φ

MV
1 +MV

2 = Ω
[
u(p−)/Pv(p+)

]
+mlΣ

[
u(p−)v(p+)

]
, (10.7)

where Ω and Σ are defined as follows

Ω =
∑

V =ρ0,ω,φ

αV +σV ,

Σ =
∑

V =ρ0,ω,φ

βV + τV ,
(10.8)

and the unpolarised squared amplitude is

|M|2 = 4
{
2(P ·p+)(P ·p−)−M2

η(′)

[
(p+ ·p−)+m2

l

]}
×Abs(Ω)2

+ 8m2
l

[
(P ·p+)− (P ·p−)

]
Re(ΩΣ∗)+ 4m2

l

[
(p+ ·p−)−m2

l

]
Abs(Σ)2 .

(10.9)

Finally, the differential decay rate for a three-body decay can be written as [1]

dΓ =
1

(2π)3

1

32M3
η(′)

|M|2 dm2
l+l−dm

2
l−π0(η) , (10.10)

where m2
ij = (pi+pj)2.

10.3 Theoretical results

Making use of the theoretical expressions that have been presented in Sec. 10.2, one can
find numerical predictions for the decay widths of the η(′) → π0l+l− and η′→ ηl+l− pro-
cesses, as well as their associated dilepton invariant mass distributions. Both, the integral
over the Feynman parameters as well as the integral over phase space, must be carried out
numerically, as algebraic expressions cannot be obtained. In addition to this, the numeri-
cal integrals over the Feynman parameters are to be performed using adaptive Monte Carlo
methods [245], which is driven by the complexity of the expressions to be integrated and
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their multidimensional nature.7

In the conventional VMD model, pseudoscalar mesons do not couple directly to photons
but through the exchange of intermediate vectors. Thus, in this framework, a particular VPγ
coupling constant times its normalised form factor, cf. Eq. (10.1), is given by Eq. (10.11),
which takes the form

gVPγ F̂VPγ(q
2) =

∑
V ′

gVV ′P gV ′γ
M2
V ′− q2

, (10.11)

where gVV ′P are the vector-vector-pseudoscalar couplings, gV ′γ the vector-photon conver-
sion couplings and MV ′ the intermediate vector masses. In the SU(3)-flavour symmetry
and OZI-rule respecting limits, one could express all the gVPγ in terms of a single coupling
constant and SU(3)-group factors [231]. However, to account for the unavoidable SU(3)-
flavour symmetry-breaking and OZI-rule violating effects, we make use of the simple, yet
powerful, phenomenological quark-based model first presented in Ref. [140], which was de-
veloped to describe V → Pγ and P → V γ radiative decays (see also Chapter 7). According
to this model, the relevant decay couplings can be expressed as [cf. Eq. (8.11)]

gρ0π0γ =
1

3
g , gωπ0γ = g cosφV , gφπ0γ = g sinφV ,

gρ0ηγ = gzNS cosφP , gρ0η′γ = gzNS sinφP ,

gωηγ =
1

3
g
(
zNS cosφP cosφV −2

m

ms
zS sinφP sinφV

)
,

gωη′γ =
1

3
g
(
zNS sinφP cosφV + 2

m

ms
zS cosφP sinφV

)
,

gφηγ =
1

3
g
(
zNS cosφP sinφV + 2

m

ms
zS sinφP cosφV

)
,

gφη′γ =
1

3
g
(
zNS sinφP sinφV −2

m

ms
zS cosφP cosφV

)
,

(10.12)

where g is a generic electromagnetic constant, φP is the pseudoscalar η-η′ mixing angle
in the quark-flavour basis, φV is the vector ω-φ mixing angle in the same basis, m/ms is
the quotient of constituent quark masses, and zNS and zS are the non-strange and strange
multiplicative factors accounting for the relative meson wavefunction overlaps [137, 140].
By performing an optimisation fit to the most up-to-date VPγ experimental data [1], we find
the best fit values from Eq. (8.24) for the parameters of the model

g = 0.70±0.01 GeV−1 , zSm/ms = 0.65±0.01,

φP = (41.4±0.5)◦ , φV = (3.3±0.1)◦ ,

zNS = 0.83±0.02 .

(10.13)

Given the very wide decay width of the ρ0 resonance, which in turn is associated to its
very short lifetime, the use of the usual Breit-Wigner description for the ρ0 propagator is not
justified. Instead, the energy-dependent width from Eq. (8.10) ought to be considered for the

7It is worth mentioning that comparison between the numerical results for Ω and Σ in Eq. (10.8) using
the approach presented in this chapter and Passarino-Veltman reduction techniques implemented in software
packages such as, for example, LoopTools [246] was carried out for different points of phase space to assess
the performance of our method. It was found that our results were in agreement with those from the above
package for points far from the edge of phase space, which provides a level of confidence in our approach, but
in sharp disagreement for points near the edge of phase space. This is, however, a well-known drawback of the
Passarino-Veltman reduction and variants due to the appearance of Gram determinants in the denominator, which
spoils the numerical stability when they become small or even zero giving rise to spurious singularities (see, e.g.,
Refs. [247–249]). For processes with up to four external particles, this usually happens near the edge of phase
space [247], which is consistent with our findings.
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Decay Γth BRth BRexp

η→ π0e+e− 2.7(1)(1)(2)×10−6 eV 2.0(1)(1)(1)×10−9 < 7.5×10−6 (CL=90%) [241]

η→ π0µ+µ− 1.4(1)(1)(1)×10−6 eV 1.1(1)(1)(1)×10−9 < 5×10−6 (CL=90%) [1]

η′→ π0e+e− 8.7(5)(6)(6)×10−4 eV 4.5(3)(4)(4)×10−9 < 1.4×10−3 (CL=90%) [1]

η′→ π0µ+µ− 3.3(2)(4)(3)×10−4 eV 1.7(1)(2)(2)×10−9 < 6.0×10−5 (CL=90%) [1]

η′→ ηe+e− 8.3(0.5)(0.1)(3.5)×10−5 eV 4.3(0.3)(0.2)(1.8)×10−10 < 2.4×10−3 (CL=90%) [1]

η′→ ηµ+µ− 3.0(0.2)(0.1)(1.1)×10−5 eV 1.5(1)(1)(5)×10−10 < 1.5×10−5 (CL=90%) [1]

TABLE 10.1: Decay widths and branching ratios for the six C-conserving
decays η(′) → π0l+l− and η′ → ηl+l− (l = e or µ). First error is experi-
mental, second is down to numerical integration and third is associated to

the model dependence.

ρ0 propagator, which for a generic q̂2 takes the form

Γρ0(q̂
2) = Γρ0×

(
q̂2−4M2

π±

M2
ρ0
−4M2

π±

)3/2

×θ(q̂2−4M2
π±) , (10.14)

where θ(x) is the Heaviside step function. Strictly, one would now need to plug Eq. (10.14)
into Eq. (10.2) and perform the loop integral, which represents a computation challenge in
its own right and is outside of the scope of this chapter.8 With this in mind, and for the sake
of simplicity, we resolve to stick to the Breit-Wigner approximation for the ρ0 propagator
despite being a potential source of error. The energy-dependent propagator is not needed,
though, for the ω and φ resonances, as their associated decay widths are narrow and, there-
fore, use of the usual Breit-Wigner approximation suffices.

Using the most recent empirical data for the meson masses and total decay widths from
Ref. [1], together with all the above considerations, one arrives at the decay width results
shown in Table 10.1 for the six η(′) → π0l+l− and η′ → ηl+l− processes. The total de-
cay widths associated to the electron modes turn out to be larger than the ones correspond-
ing to the muon modes despite the second and third terms in the unpolarised squared am-
plitude [cf. Eq. (10.9)] being helicity suppressed for the electron modes. This suppres-
sion, though, does not overcome the phase space suppression for the muon modes, yielding
Γ(η(′)→ π0e+e−) > Γ(η(′)→ π0µ+µ−) and Γ(η′→ ηe+e−) > Γ(η′→ ηµ+µ−).

Let us now look at the contributions from the different vector meson exchanges to the
total decay widths. For the first decay, i.e. η→ π0e+e−, we find that the contribution from
the ρ0 exchange is∼ 26%, the contribution from the ω is∼ 22%, whilst the one from the φ is
negligible, i.e. ∼ 0%. The interference between the ρ0 and the ω is constructive, accounting
for the∼ 49%; similarly, the interference between the ρ0 and the ω with the φ is constructive
and about∼ 3%. The contributions to the second decay, i.e. η→ π0µ+µ−, are∼ 25%,∼ 23%
and∼ 0% from the ρ0, ω, and φ exchanges, respectively. As before, the interference between
the ρ0 and the ω is constructive, weighing∼ 48%, and the interference between the ρ0 and the
ω with the φ is constructive and accounts for approximately the ∼ 4%. For the third decay,
i.e. η′ → π0e+e−, the contributions from the ρ0, ω and φ turn out to be ∼ 16%, ∼ 39%
and ∼ 0%, respectively; the interference between the ρ0 and the ω exchanges is constructive

8One could write, for example, the ρ0 energy-dependent propagator f(s) =
M2
ρ

M2
ρ−s−iMρΓρ(s)

as a once-

subtracted dispersion relation, f(s) = f(s0)+
s−s0
π

∫∞
sth

Imf (s′) ds′

(s′−s0)(s′−s−iε) , where sth is the particle production

threshold, in this case sth = 4M2
π , and s0 is the subtraction point such that s0 < sth, e.g. s0 = 0 (see Sec. 5.3 for

details). One would then perform the loop integral in the usual way, leaving the dispersion integral to the end of
the computation.
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and accounts for the ∼ 47%, whilst the interference between the ρ0 and ω with the φ is
destructive and weighs approximately ∼ 2%. The contributions to the fourth decay, i.e. η′→
π0µ+µ−, from the ρ0, ω and φ exchanges are ∼ 20%, ∼ 35% and ∼ 0%, respectively. The
interference between the ρ0 and the ω is constructive, representing a ∼ 53% contribution,
whilst the interference between the ρ0 and the ω with the φ is destructive and accounts for the
∼ 8%. The fifth decay, i.e. η′→ ηe+e−, gets contributions from the exchange of ρ0, ω and φ
resonances of approximately∼ 76%,∼ 1% and∼ 2%, respectively; the interference between
the ρ0 and the ω is constructive weighing ∼ 29%, and the interference between the ρ0 and
the ω with the φ is destructive and contributes with roughly the ∼ 8%. Finally, for the sixth
decay, i.e. η′ → ηµ+µ−, we find that the contribution from the ρ0 exchange is ∼ 94%, the
contribution from the ω is∼ 2% and the one from the φ is∼ 3%; the interference between the
ρ0 and the ω is constructive and accounts for the ∼ 26%, whilst the interference between the
ρ0 and the ω with the φ is destructive weighing close to ∼ 25%. The tiny contribution from
the φ exchange to the decay widths of the six processes is explained by the relatively small
product of VMD VPγ coupling constants. Likewise, the comparatively minute contribution
from the ω exchange to the decay widths of the last two reactions is down to the significantly
smaller product of coupling constants, if compared to that of the ρ0 exchange.

In order to assess a systematic error associated to the model dependency of our predic-
tions, we repeat all the above calculations in the context of RχT. As explained in the previous
chapter, in this framework the VPγ effective vertex is made of two contributions, a local VPγ
vertex weighted by a coupling constant, hV , and a non-local one built from the exchange of
an intermediate vector which, again, is weighted by a second coupling constant, σV , times
the vector-photon conversion factor fV . For a given VPγ transition, this effective vertex can
be written in the SU(3)-flavour symmetry limit as [232]

gVPγ F̂VPγ(q
2) = CVPγ |e|

4
√
2hV
fπ

(
1+

σV fV√
2hV

q2

M2
V ′− q2

)
, (10.15)

where CVPγ are SU(3)-group factors and, depending on the process, the exchanged vector
is or is not the same as the initial vector (see Refs. [232, 250] for each particular case). To
fix the VPγ couplings in this second approach, we make use of the extended Nambu–Jona-
Lasinio (ENJL) model, where hV is found to be hV = 0.035 [232]. The VVP coupling σV
obtained using the ENJL model turns out to be σV = 0.28. However, σV can also be ob-
tained from the analysis of the dilepton mass spectrum in ω→ π0µ+µ− decays, where one
finds σV ≈ 0.58 [251]. Due to the fact that σV is poorly known and the dispersion of the
above estimations is large, we do not consider the q2 dependence of the form factors in the
subsequent calculations. An alternative model to fix the normalisation of the form factors,
gVPγ , is the hidden gauge symmetry (HGS) model [78], where the vector mesons are consid-
ered as gauge bosons of a hidden symmetry (see Sec. 3.5.1 for details). Within this model,
a VPγ transition proceeds uniquely through the exchange of intermediate vector mesons.
In this sense, it is equivalent to the conventional VMD model with the relevant exception
of including direct γP 3 terms (P being a pseudoscalar meson), which are forbidden in the
conventional VMD [252]. Due to this similarity, we will not make use of the HGS model to
assess the systematic model error and refer the interested reader to Ref. [231] for a detailed
calculation of the gVPγ couplings in this model.

In what follows, our results for the semileptonic decays η(′)→ π0l+l− and η′→ ηl+l−

in the conventional VMD framework using the VPγ couplings from the phenomenological
quark-based model in Eq. (10.13) are discussed and, if available, compared with previous
literature. These predictions include a first experimental error ascribed to the propagation of
the parametric errors in Eq. (10.13), a second error down to the numerical integration, and
a third systematic error associated to the model dependence of our approach. The latter is
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calculated as the absolute difference between the predicted central values obtained from the
VMD and RχT frameworks (cf. Table 10.1).

Our prediction for the decay width Γ(η→ π0e+e−) = (2.7±0.1±0.1±0.2)×10−6 eV
is about an order of magnitude smaller than the one provided by Cheng in Ref. [239],
i.e. Γ(η→ π0e+e−) = 1.3×10−5 eV; however, by plugging into our expressions the cou-
plings that Cheng used in his work, we find a decay width Γ(η→ π0e+e−) ≈ 2.8×10−5 eV,
which is approximately a factor of two larger than Cheng’s result, and the difference
is thought to be down to the simplifications that he had to carry out in his calcula-
tions, as well as the propagators that have been employed in the present work.9 In ad-
dition to this, one can also obtain from our calculations a prediction for the ratio of
branching ratios10 Γ(η→ π0e+e−)/Γ(η→ π0γγ) = (8.0±1.6)×10−6, which is not far
from Cheng’s model independent estimation of Γ(η→ π0e+e−)/Γ(η→ π0γγ) ≈ 10−5,
but more than two orders of magnitude larger than Smith’s estimate11 from Ref. [240]
Γ(η→ π0e+e−)/Γ(η→ π0γγ) = 3.6×10−8; as well as this, for the muon mode we
find the relative branching ratio12 Γ(η→ π0µ+µ−)/Γ(η→ π0γγ) = (4.2±0.8)×10−6,
which is in the neighbourhood of one order of magnitude smaller than Smith’s estimation
Γ(η→ π0µ+µ−)/Γ(η→ π0γγ) = 6.0×10−5 [240].

Moreover, our results for the decay widths of the η→ π0e+e− and η→ π0µ+µ− pro-
cesses are in good agreement with the lower bounds provided by Ng et al. in Ref. [186],
i.e. Γ(η→ π0e+e−)|VMD = 1.1+0.6

−0.5 µeV and Γ(η→ π0µ+µ−)|VMD = 0.5+0.3
−0.2 µeV (where

use of the VMD model was made only), and Γ(η→ π0µ+µ−)|constr = 0.9+0.6
−0.5 µeV and

Γ(η→ π0µ+µ−)|destr = 0.3+0.4
−0.2 µeV (where the VMD model was supplemented with the

exchange of an a0 scalar meson). Using the quark-box diagram and a constituent quark mass
m = 330 MeV/c2, Ng et al. provided in Ref. [192] an estimation for the electron mode,
Γ(η→ π0e+e−)|box ≥ 1.2±0.2 µeV, which is in accordance with our result, and an estimate
for the muon mode, Γ(η→ π0µ+µ−)|box ≥ 4.3±0.7 µeV, which in this case is incompatible
with our calculation.13 Additionally, Ng et al. also presented in Ref. [192] a recalculation of
their previous VMD results from Ref. [186], yielding Γ(η→ π0e+e−)|VMD ≥ 3.5±0.8 µeV
and Γ(η→ π0µ+µ−)|VMD ≥ 2.4±0.8 µeV, which are consistent with our results if one con-
siders the associated errors.

Our decay width calculations for the other four processes, i.e. η′ → π0l+l− and
η′→ ηl+l−, cannot be compared with any previously published theoretical results, as these
decays have been calculated, to the best of our knowledge, for the first time in this chap-
ter. Likewise, comparison with the most up-to-date empirical data provides limited value
given that the corresponding current experimental upper bounds, though consistent with our
theoretical predictions, are many orders of magnitude larger (cf. Table 10.1).

Finally, theoretical predictions for the dilepton invariant mass distributions of the six C-
conserving semileptonic decays are presented in Fig. 10.2. The energy spectra of the three

9Note that in Ref. [239] Cheng used vector propagators without total decay widths (i.e. Feynman propaga-
tors) for the vector exchanges whilst we use Breit-Wigner propagators.

10Here, we are using the experimental value for the decay width Γ(η→ π0γγ) provided in Ref. [1]. Alterna-
tively, one could use the theoretical prediction from Ref. [165] (cf. Chapter 8), Γ(η→ π0γγ)|th = 0.17±0.01 eV,
to obtain Γ(η→ π0e+e−)/Γ(η→ π0γγ) = (1.6±0.3)×10−5.

11The discrepancy with Smith’s relative branching ratio might be explained, though, by the effect of p-wave
terms that he neglected after admitting that they are not necessarily small.

12Once again, if one were to use the theoretical prediction from Chapter 8 (or, alternatively, Ref. [165]),
Γ(η→ π0γγ)|th = 0.17±0.01 eV, the result Γ(η→ π0µ+µ−)/Γ(η→ π0γγ) = (8.3±1.5)×10−6 would be
obtained.

13Note, however, that as part of their calculation they had to estimate the decay width of the η → π0γγ
process using their quark-box model and found Γ(η→ π0γγ) = 0.60± 0.10 eV for a constituent quark mass
m = 330 MeV/c2, which is approximately a factor of two larger than the current experimental value from
Ref. [1]. Therefore, it is no surprise that their estimates for the associated η→ π0l+l− processes are at the upper
end of the spectrum of estimations.
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FIGURE 10.2: Dilepton energy spectra corresponding to the six C-
conserving semileptonic decay processes η(′) → π0l+l− and η′ → ηl+l−

(l = e or µ) as a function of the dilepton invariant mass q2.

electron modes, which are displayed in Figs. 10.2a, 10.2c and 10.2e, take off as the dilepton
invariant mass q2 approaches zero. This is in line with Cheng’s and Ng et al.’s energy spectra
for the η→ π0e+e− (Refs. [239] and [186], respectively), which exhibit the same behaviour
at low q2. It appears as though the electron modes prefer to proceed through the emission
of (relativistic) collinear electron-positron pairs (i.e. θe+e− ' 0, where θe+e− is the electron-
positron angle). The reason for this can easily be understood from dynamics14 if one assumes

14It must be noted, though, that the kinematics of the electron modes also contribute to this particular shape
of the energy spectra, producing a somewhat synergistic effect.
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the electron and positron to be massless, me ≈ 0; then, by inspection of Eq. (10.9), one
can determine that the unpolarised squared amplitude is maximised when q2 → 0, which
occurs when θe+e− ' 0.15 Physically, it may be explained to some extent by the fact that
the diphoton invariant mass distributions of the three η(′) → π0γγ and η′→ ηγγ processes
peak at low m2

γγ (cf. Chapter 8). On the other hand, the dilepton energy spectra of the
muon modes, shown in Figs. 10.2b, 10.2d and 10.2f, are bell-shaped, which is driven by the
kinematics of the processes. This, once again, seems to be consistent with Ng et al.’s [186]
mass spectrum for the η → π0µ+µ−. It is interesting to observe that the energy spectra
of the η → π0µ+µ− and η′ → π0µ+µ− are skewed to the left (i.e. small values of θµ+µ−
are favoured, where θµ+µ− is the muon-antimuon angle), whilst the energy spectrum of the
η′ → ηµ+µ− is skewed to the right (i.e. somewhat larger values for θµ+µ− are preferred).
This is more difficult to explain16 given that this effect, which is connected to the fact that
Mη >Mπ0 , is a consequence of the complex dynamical interplay between the different terms
in Eq. (10.9). Surprisingly, the kinematics of the reactions do not seem to play a significant
role in this difference in skewness.

10.4 Conclusions

In this chapter, the C-conserving decay modes η(′)→ π0l+l− and η′→ ηl+l− (l = e or µ)
have been analysed within the theoretical framework of the VMD model. The associated
decay widths and dilepton invariant mass distributions have been calculated and presented
for the six decay processes. To the best of our knowledge, the theoretical predictions for the
four η′→ π0l+l− and η′→ ηl+l− decays that we have presented are the first that have been
published.

The decay width results that we have obtained from our calculations, which are sum-
marised in Table 10.1, have been compared with those available in the published literature
and, in general, the agreement is reasonably good considering that the previous analysis ei-
ther contained important approximations or consisted of unitary lower bounds. As well as
this, our predictions for the dilepton energy spectra of the six processes, which are shown in
Fig. 10.2, have also been compared with those available in the literature.

Experimental measurements to date have provided upper limits to the decay processes
studied in this chapter. These upper limits, though, are still many orders of magnitude larger
than the theoretical results that we have presented. For this reason, we would like to en-
courage experimental groups, such as the WASA-at-COSY and REDTOP Collaborations, to
study these semileptonic decays as we believe that they can represent a fruitful arena in the
search for new physics beyond the Standard Model.

15Note that q2 ' 2pe+pe− ' 2|pe+ ||pe− |(1− cosθe+e− ) in the leptonic massless limit, i.e. me ≈ 0.
16A qualitative explanation could be given from a statistical mechanics viewpoint, whereby high momentum

η mesons in the final state would be Boltzmann suppressed compared to high momentum π0 states.
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Chapter 11

New-physics signatures via CP violation in
η(′)→ π0µ+µ− and η′→ ηµ+µ− decays1

In this chapter we investigate the prospect of observing new-physics signatures via CP vi-
olation in η(′) → π0µ+µ− and η′→ ηµ+µ− decays at the REDTOP experiment. We make
use of the Standard Model effective field theory (SMEFT) to parameterise the new-physics
CP -violating effects and find that the projected REDTOP statistics are not competitive with
respect to neutron electric dipole moment (nEDM) experiments. This reasserts the leptonic
η→ µ+µ− decay process as the most promising channel to find CP -violation at this experi-
mental facility.

11.1 Introduction

Over the past few decades, high-energy particle colliders have not succeeded in the quest
for finding evidence for physics beyond the Standard Model (BSM). The purpose of large
experiments such as the Large Hadron Collider (LHC), apart from settling down the question
around the source of electroweak symmetry breaking, was to provide experimental evidence
for either supersymmetric particles or extra dimensions or both, as they enjoy from good
theoretical motivation based on naturalness arguments, but this has not happened.

The current lack of experimental evidence for new physics in direct searches, that would
help guide theoretical effort, is forcing the community to increase their focus on low-energy,
high-luminosity precision measurements that attempt to find effects from BSM physics by
looking for small discrepancies between SM predictions and measurements. To this end, one
focuses on processes whose SM contribution is very precisely known or that have a very small
SM background, hence, any positive experimental finding would be a confirmation for new
physics. Accordingly, interest in BSM searches in meson factories has significantly increased
in recent years,2 as they can very precisely measure branching ratios of rare decays and test
for violations of the basic symmetries. As an example, the observation of CP violation in
processes mediated by the strong or electromagnetic interactions would be an unambiguous
sign of new physics, and the study of the η and η′ decays represents the perfect laboratory for
this endeavour. This is because both mesons are eigenstates of the C, P , CP andG operators
(i.e. IGJPC = 0+0−+) and their additive quantum numbers are zero, which amounts to all
their decays being flavour-conserving. As a consequence, and unlike flavoured meson decays,
they can be used to test C and CP symmetries, provided a large sample of η and η′ mesons
is available. Furthermore, their strong and electromagnetic decays are forbidden at lowest
order, increasing their sensitivity to rare decays.

1This chapter is based on Ref. [253].
2Another example of a low-energy experiment that has recently attracted much interest is the Muon g-2 at

Fermilab [254].
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In this context, the REDTOP experiment has been proposed [15, 242, 255], which aims
at producing the largest sample of η and η′ mesons envisaged thus far, and is considering im-
plementing dedicated detectors to perform muon polarimetry. In order to set their priorities,
it is crucial to assess the most promising channels and the physics within reach. In Ref. [256],
the possibility of observing new-physics signatures via CP -violating effects at REDTOP was
assessed using muon polarisation observables in η leptonic decays. In particular, the purely
leptonic channels µ+µ−, µ+µ−γ and µ+µ−`+`− were studied, finding that CP violation in
the µ+µ− final state could be observed at REDTOP, while evading nEDM constraints.

In this chapter, we investigate the suitability of some η and η′ semileptonic decays, which
were not covered in Ref. [256] as they require a dedicated analysis of hadronic matrix ele-
ments. In particular, we investigate the η(′) → π0µ+µ− and η′→ ηµ+µ− decays using the
SMEFT as the general theoretical framework to capture new physics. Using muon polar-
isation observables, we quantify the sensitivity that could be achieved at REDTOP for the
relevant CP -violating Wilson coefficients. Our results show that these decays are not com-
petitive when confronted against the stringent bounds derived from nEDM and D−s → µν̄µ
decays. This contrasts with the η → µ+µ− decay that evades these bounds and ought to
receive the highest priority.

This chapter is structured as follows. In Sec. 11.2, we discuss the general properties of
the decay amplitudes and narrow down the range of SMEFT operators that are relevant to our
study. In Sec. 11.3, we present the theoretical expressions for the required hadronic matrix
elements obtained using large-NC chiral perturbation theory (large-NC χPT). The polarised
decay widths and the asymmetries that quantify the CP -violating effects in η(′)→ π0µ+µ−

and η′ → ηµ+µ− decays are analysed in Sec. 11.4. The results from our investigation are
presented in Sec. 11.5 and we briefly discuss their implications. Finally, in Sec. 11.6 we
provide a summary of the work carried out in this chapter and some final conclusions.

11.2 Decay amplitudes

We begin by defining the following momenta q = pµ+ +pµ− = pη(′) +pπ(η), q̄ = pµ+−pµ− ,
and k = pη(′)−pπ(η). With these definitions, the most general form factor decomposition for
the matrix element 〈µ+µ−|iT |η(′)π0(η)〉= iM(2π)4δ(pµ+ +pµ−−pη(′) −pπ(η)) takes the
form

M=mµ(ūv)F1 +(ūiγ5v)F2 +(ū/kv)F3 + i(ū/kγ5v)F4 , (11.1)

where the Fi ≡ Fi(q2, q̄ · k) form factors have been introduced. Note that the connection
to the η(′)→ π0µ+µ− and η′ → ηµ+µ− decays is obtained via crossing symmetry with
k→ pη(′) +pπ(η).

General considerations on discrete symmetries can be used to show that electromagnetic
interactions can only contribute to the F1(q2, [q̄ ·k]2n) and F3(q2, [q̄ ·k]2n+1) form factors,
with n = 0,1,2 . . ., and that they can in turn be expressed in terms of the Σ and Ω pa-
rameters from Chapter 10 [cf. Eq. (10.8)] as F1 = Σ and F3 = 1

2 Ω (see also Ref. [233]).
Furthermore, tree-level electroweak contributions appear via intermediate Higgs-boson ex-
change only, which contribute to the C- and P -conserving F1 form factor, providing an
unimportant correction to the present study. At higher orders, electroweak contributions to
F2,4(q2, [q̄ ·k]2n+1) of C- and P -odd nature can appear via γZ boxes, but these are CP -even
and are, once again, irrelevant to the observables in this study.

Turning to the BSM CP -violating contribution, which requires a careful study of the
underlying hadron dynamics, one starts by assuming that the SMEFT provides a correct de-
scription of Nature. Accordingly, the new physics degrees of freedom are expected to lie
above the electroweak scale and, therefore, only the SM particle spectra are considered (see
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Sec. 3.7 for details). In addition, the new-physics effects come from higher dimension oper-
ators, that are suppressed by increasing powers of a large energy scale, starting with D = 6
so long as B-L number conservation is assumed. In particular, the contribution from the
different operators were outlined in Ref. [256] and we briefly recapitulate here. Quark and
lepton EDM operators are highly constrained by nEDM bounds; likewise, CP violation in
the hadronic sector requires CP -violating form factors with an additional electromagnetic α
suppression, required in order to couple hadrons to leptons, which renders any such contribu-
tion not competitive. In addition, vector, axial and tensor operators have a vanishing coupling
to the η(′)π0 and η′η systems based on discrete symmetries. Finally, Fermi operators involv-
ing quarks and leptons (cf. Sec. 3.7.1) provide the most significant contribution and, thus, the
operators that are considered in this study are3

Oprst`edq = ( ¯̀i
per)(d̄sq

i
t) , O(1)prst

`equ = ( ¯̀i
per)(q̄

j
sut)εij , (11.2)

where prst are family indices (i.e. p,r,s, t = 1 or 2) [109]. These operators produce a non-
vanishing CP -odd F2 form factor4

F2 =
[
Imc2211

`edq 〈0| d̄d |η(′)π0(η)〉+ Imc2222
`edq 〈0| s̄s |η(′)π0(η)〉

− Imc
(1)2211
`equ 〈0| ūu |η(′)π0(η)〉

]
/v2 , (11.3)

where v2 = 1/(
√
2GF ) and the corresponding hadronic matrix elements need a careful treat-

ment that we discuss in the following section within the framework of large-NC χPT. To
conclude this section, it is worth highlighting that at this order in the SMEFT there is no
contribution to F4.

11.3 Hadronic matrix elements

The scalar-current matrix elements appearing in Eq. (11.3), which are required for the calcu-
lation of the longitudinal and transverse asymmetries [see Eqs. (11.21) and (11.22) below],
can be calculated within the framework of large-NC χPT, see Refs. [57, 116, 118, 257, 258].
In the following, we evaluate them at NLO, after renormalising the fields and diagonalising
the mass matrix (see, e.g., Appendix B from Ref. [58] for a detailed account of the proce-
dure). To simplify the expressions, we adopt the approach followed in Ref. [161], assum-
ing that the q2 dependence of the associated form factors is saturated by the corresponding
scalar resonances, and make use of the RχT prediction 4L5/F 2

0 = 8L8/F 2
0 = 1/M2

S from
Refs. [60, 63, 259]. Furthermore, to obtain non-vanishing 〈0| s̄s |π0η(′)〉 matrix elements,
one needs to take into account isospin-breaking effects.5 To this end, we follow the proce-
dure from Chapter 7 (cf. Ref. [137]) keeping only the leading isospin-breaking terms. Our
results for the ηπ0 matrix elements are

〈0| ūu/d̄d |ηπ0〉= ±B0

[(
1−

M2
η −M2

π

M2
S

)
(cosφ23± ε13 sinφ23)

−
(
cosφ23−

sinφ23√
2

)
Λ̃
3

](
M2
S

M2
S−s

)
,

(11.4)

3Interestingly, these operators generate the desired CP -odd contribution to our processes at tree level whilst,
for the nEDM, contributions appear at the two-loops order weakening the nEDM bounds.

4Since our focus is on CP -violating effects, we are only concerned with the corresponding imaginary parts,
as in Ref. [256].

5This is particularly important in this study since the Wilson coefficients associated to the strange quark are
comparatively far less constrained by the nEDM bounds than the light-quark ones, see Ref. [256].
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and

〈0| s̄s |ηπ0〉= −2B0ε13

[(
1−

M2
η + 3M2

π −4M2
K

M2
S

)
sinφ23

+
Λ̃
3

(
cosφ23√

2
− sinφ23−

ε12 sinφ23√
2ε13

)](
M2
S

M2
S−s

)
,

(11.5)

where we have introduced the scale invariant parameter Λ̃ = Λ1−2Λ2, φ23 is the η-η′ mixing
angle in the quark-flavour basis, ε12 and ε13 are first order approximations to the correspond-
ing φ12 and φ13 isospin-breaking mixing angles in the π0-η and π0-η′ sectors, respectively
(see Chapter 7 or Ref. [137] for further details), and MS is the mass of a generic octet
scalar resonance. The corresponding expressions for η→ η′ can be obtained by substituting
cosφ23 → sinφ23, sinφ23 → −cosφ23 and Mη →Mη′ . For the η′ → ηµ+µ− decay, the
matrix elements read

〈0| ūu/d̄d |η′η〉= B0

[(
1−

M2
η′+M2

η −2M2
π

M2
S

)(
sin2φ23

2
∓ ε13 cos2φ23

)

−
(
cos2φ23√

2
+ sin2φ23

)
Λ̃
3

](
M2
S

M2
S−s

)
, (11.6)

〈0| s̄s |η′η〉= −B0

[(
1−

M2
η′+M2

η + 2M2
π −4M2

K

M2
S

)
sin2φ23

+
(√

2cos2φ23− sin2φ23

) Λ̃
3

](
M2
S

M2
S−s

)
. (11.7)

The numerical inputs to our computations are B0 =m2
π0/2m = 2.64+0.11

−0.42 GeV at a renor-
malisation scale of µ= 2 GeV,MS = 980 MeV [1], Λ̃=−0.46±0.19 from lattice QCD [260]
which is in agreement with other phenomenological results [116, 118, 119, 261], and the
mixing parameters φ23 = (41.5± 0.5)◦, ε12 = (2.4± 1.0)% and ε13 = (2.5± 0.9)% from
Chapter 7 (cf. Ref. [137]). For the other masses we also take the PDG values.

Before concluding this section, two remarks are in order: first, the matrix elements of the
strange quark scalar current with η(′)π0 are suppressed by the isospin symmetry-breaking
parameter ε13 and, second, the contribution of the Λ̃ parameter is in general significant for
the matrix elements involving the η′.

11.4 Polarised decays and asymmetries

Let us now compute the squared amplitude from Eq. (11.1), |M(λn, λ̄n̄)|2, for the polarised
decays that we are investigating. Using the conventions for the kinematics and the phase
space given in Appendix G, and neglecting any contribution from the F4 form factor as
already mentioned at the end of Sec. 11.2, we find

|M(λn, λ̄n̄)|2 = 1

4

[
c1|F1|2 + c2|F2|2 + c3|F3|2 + cR13ReF1F

∗
3 + cI13 ImF1F

∗
3

+ cR12ReF1F
∗
2 + cI12 ImF1F

∗
2 + cR23ReF2F

∗
3 + cI23 ImF2F

∗
3

]
, (11.8)
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where n(n̄) is the µ+(µ−) spin-polarisation axis defined in the µ± rest frames and λ = ±
denotes the two spin states. Note that terms in the first and second lines are CP conserving
and violating, respectively, provided that F1,2 ≡F1,2(s, [q̄ ·k]2n) and F3 ≡F3(s, [q̄ ·k]2n+1).
The coefficients in Eq. (11.8) are given in Appendix H and are the necessary input for imple-
mentation in the GEANT4 software [262]. The polarisation of the muons, however, cannot
be directly measured and must be inferred from the velocities of the e± associated to the
corresponding µ± decays. Using the expressions provided in Appendix H and making use of
the spin-density formalism [263], one finds

dΓ =
dsdcθ

64(2π)3

λ1/2
K βµ

M3
η(′)

[
dΩ
4π

dx n(x)

][
dΩ
4π

dx̄ n(x̄)

][
c̃1|F1|2 + c̃3|F3|2

+ c̃R13ReF1F
∗
3 + c̃I13 ImF1F

∗
3 + c̃2|F2|2 + c̃R12ReF1F

∗
2 + c̃I12 ImF1F

∗
2

+ c̃R23ReF2F
∗
3 + c̃I23 ImF2F

∗
3

]
, (11.9)

where the 3-body phase-space description from Appendix G has been employed for the ini-
tial η(′) → π0µ+µ− and η′ → ηµ+µ− decays, and the first two brackets account for the
phase space of the subsequent µ± decays, cf. Appendix I. The coefficients in Eq. (11.9) are
calculated from those in Appendix H and read

c̃1 = 2β2
µm

2
µs(1+ bb̄[βLβ̄L−βT ·β̄T ]) , (11.10)

c̃2 = 2s(1+ bb̄[β·β̄]) , (11.11)

c̃3 = 2λK

{
(1−β2

µc
2θ)(1+ bb̄[βLβ̄L−βT ·β̄T ]) (11.12)

+ 2s2θbb̄ [(βT ·nkT )(β̄T ·nkT )−βLβ̄L]

−4sθcθmµs
−1/2bb̄ [(βT ·nkT )β̄L+(β̄T ·nkT )βL]

}
, (11.13)

c̃R13 = 4βµλ
1/2
K mµ

{
2mµcθ(1+ bb̄[βLβ̄L−βT ·β̄T ])

−
√
ssθbb̄ [(βT ·nkT )β̄L+(β̄T ·nkT )βL]

}
, (11.14)

c̃I13 = 4βµλ
1/2
K mµ

√
ssθ [b(βT×nkT )− b̄(β̄T×nkT )] , (11.15)

c̃R12 = 4βµmµsbb̄(βT×β̄T ) , (11.16)

c̃I12 = 4βµmµs(bβL+ b̄β̄L) , (11.17)

c̃R23 = 4λ1/2
K bb̄

{√
ssθ [(βT×nkT )·β̄L− (β̄T×nkT )·βL]+ 2mµcθ(βT×β̄T )

}
, (11.18)

c̃I23 = 4λ1/2
K

{√
ssθ [b(βT ·nkT )+ b̄(β̄T ·nkT )]−2mµcθ(bβL+ b̄β̄L)

}
, (11.19)

where we have used the shorthand notation b(x) ≡ b and b(x̄) ≡ b̄. As expected, integration
over dΩdΩ results in the vanishing of all the terms involving spin correlations. Next, we
make use of the identity

∫
dΩ/(4π)n(x)dx = 1, which allows one to write the total decay

width as

dΓ =
dsdcθ

64(2π)3Mη(′)

λ1/2
K βµ

M2
η(′)

2
[
β2
µm

2
µs|F1|2 + s|F2|2 +λK(1−β2

µcθ
2)|F3|2

+ 4βµλ
1/2
K m2

µcθRe(F1F
∗
3 )
]
.

(11.20)
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In order to quantify the CP -violating effects, one needs to construct the appropriate asym-
metries that arise as a result of the interference of the SM CP -even and the SMEFT CP -odd
amplitudes. Accordingly, we define the longitudinal and transverse asymmetries as follows6

AL =
N(cθe+> 0)−N(cθe+< 0)

N(cθe+> 0)+N(cθe+< 0)

= − 2

3

∫
dsdcθλ1/2

K βµmµ

[
βµs ImF1F

∗
2 + 2λ1/2

K cθ ImF3F
∗
2

]
64(2π)3M3

η(′)

∫
dΓ

, (11.21)

AT =
N [s(φ̄−φ)> 0]−N [s(φ̄−φ)< 0]

N [s(φ̄−φ)> 0]+N [s(φ̄−φ)< 0]

=
π

18

∫
dsdcθλ1/2

K βµmµ

[
βµsReF1F

∗
2 + 2λ1/2

K cθReF3F
∗
2

]
64(2π)3M3

η(′)

∫
dΓ

, (11.22)

where the polar angles θe± refer to those of the e± in the µ± rest frames, φ(φ̄) correspond
to the azimuthal e± angles in the µ± rest frames, and N refers to the number of η(′) decays.
It is important to highlight that only the terms associated to c̃R,I

12 and c̃R,I
23 contribute to the

above asymmetries.

11.5 Results and discussion

In this section, we present quantitative results for the longitudinal and transverse asymmetries
by plugging into Eqs. (11.21) and (11.22) the theoretical expressions for F1 and F3 from
Chapter 10 (or Ref. [233]), and the hadronic matrix elements from Sec. 11.3, which in turn
are required to compute F2. The asymmetries for the three semileptonic processes read

Aη→π
0µ+µ−

L = −0.19(6) Imc
(1)2211
`equ −0.19(6) Imc2211

`edq −0.020(9) Imc2222
`edq , (11.23)

Aη→π
0µ+µ−

T = 0.07(2) Imc
(1)2211
`equ + 0.07(2) Imc2211

`edq + 7(3)×10−3 Imc2222
`edq , (11.24)

Aη
′→π0µ+µ−

L = −0.04(8) Imc
(1)2211
`equ −0.04(8) Imc2211

`edq + 10(3)×10−3 Imc2222
`edq , (11.25)

Aη
′→π0µ+µ−

T = 3(6)×10−3 Imc
(1)2211
`equ + 3(6)×10−3 Imc2211

`edq

−7(2)×10−4 Imc2222
`edq , (11.26)

Aη
′→ηµ+µ−
L = −5(39)×10−3 Imc

(1)2211
`equ + 5(46)×10−3 Imc2211

`edq

−0.08(1) Imc2222
`edq , (11.27)

Aη
′→ηµ+µ−
T = 7(50)×10−5 Imc

(1)2211
`equ −6(65)×10−5 Imc2211

`edq

+ 1(19)×10−3 Imc2222
`edq , (11.28)

where the error quoted accounts for both the numerical integration and the model-dependence7

uncertainties, with the latter strongly dominating over the former.

6Note that the C- and P -odd SM contributions that may appear in the F2 form factor are odd in (q̄ ·k) and,
therefore, in cosθ, which vanishes for the defined asymmetries. The same would apply to F4.

7In particular, we use the difference between the large-NC χPT LO and NLO results as an estimation for
the residual error associated to truncating the perturbative series. This in turn is used to, rather conservatively,
quantify the error corresponding to the model.



11.5. Results and discussion 149

TABLE 11.1: Summary of REDTOP sensitivities to (the imaginary parts of)
the Wilson coefficients associated to the SMEFT CP -violating operators in
Eq. (11.2) for the processes studied in this chapter, as well as the η→ µ+µ−

decay analysed in Ref. [256]. In addition, the upper bounds from nEDM
experiments are given in the last row for comparison purposes.

Process Asymmetry Imc
(1)2211
`equ Imc2211`edq Imc2222`edq

η→ π0µ+µ−
AL 0.0695 0.0720 0.686

AT 0.194 0.203 1.93

η′→ π0µ+µ−
AL 2.36 2.56 10.96

AT 33.1 35.8 154

η′→ ηµ+µ−
AL 67.5 78.5 4.46

AT 5264 5549 328

η→ µ+µ− AL 0.007 0.007 0.005

nEDM - ≤ 0.001 ≤ 0.002 ≤ 0.02

Next, in order to assess the sensitivity to new physics, one starts by estimating the
expected number of events at REDTOP, which can be obtained from the projected statis-
tics8 of 5× 1012 η/yr and 5× 1010 η′/yr, and the SM branching ratios for the three
muonic semileptonic processes from Table 10.1. Accordingly, the estimated (statistical)
SM backgrounds at the 1σ level, which can be assessed using σ = 1/

√
N , are found to

be ση→π0µ+µ− = 1.35× 10−2, ση′→π0µ+µ− = 0.105 and ση′→ηµ+µ− = 0.354. It is now
straightforward to estimate the REDTOP sensitivity to each of the SMEFT CP -violating
Wilson coefficients from Eq. (11.2) by setting to zero two out of the three coefficients in
Eqs. (11.23–11.28). The corresponding results for the three decays studied in this chapter
are summarised in Table 11.1. We also show in this table the REDTOP sensitivity to the
same coefficients from η→ µ+µ− [256], as well as the bounds set by nEDM experiments
using the most recent measurement from Ref. [266] (the bounds derived fromD−s → µν̄µ de-
cays are weaker and, thus, we do not quote them [265]). It must be highlighted that, strictly
speaking, the nEDM experiments set bounds on a particular linear combination of the three
Wilson coefficients, which raises the question about possible cancellations that may weaken
the nEDM bounds. From Eqs. (4.17) and (4.20) in Ref. [256], one can clearly see that partial
cancellations are possible for c(1)2211

`equ ∼ c2211
`edq , which would weaken the nEDM bounds by an

order of magnitude.9 Even in such scenario, REDTOP would still not be competitive.
Clearly, the most competitive observable amongst those studied in this chapter is the

longitudinal asymmetry of the η→ π0µ+µ− decay. As well as this, it can be seen that the
constraints imposed by the η′ semileptonic decays are comparatively much weaker, which is
down to the η′ REDTOP projected statistics being two orders of magnitude smaller than that
of the η. If one compares the sensitivities obtained from the η(′)→ π0µ+µ− and η′→ ηµ+µ−

decays to the CP -violating Wilson coefficients with the bounds extracted from nEDM exper-
iments, one must conclude that the projected REDTOP statistics are not competitive enough
for the above semileptonic processes, which can be attributed to the isospin-breaking sup-
pression in the hadronic matrix elements, subject to the assumption that new physics can
be parameterised by the SMEFT. Consequently, the leptonic η → µ+µ− decay studied in
Ref. [256] remains the most promising channel to be studied at REDTOP.

8A total production of 2.5×1013 η/yr and 2.5×1011 η′/yr is expected [264], with assumed reconstruction
efficiencies of approximately 20% [265].

9More drastic cancellations would require what it seems to us a large degree of fine-tuning. Furthermore, it
seems unlikely that these cancellations would remain stable at higher-order corrections.
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11.6 Conclusions

In this chapter, we have analysed in detail possible effects of physics BSM via CP viola-
tion in η(′) → π0µ+µ− and η′ → ηµ+µ− decays. This is particularly timely at present as
the REDTOP experiment is studying the possibility of using polarisation techniques to study
CP -violating new-physics effects. Assuming that BSM CP -violation appears in Nature via
new heavy degrees of freedom, the use of the SMEFT is justified, which in turn provides a
convenient connection to different observables, such as those from nEDM experiments and
D−s → µν̄µ decays. The outcome of the present work is that the predicted statistics at RED-
TOP will fall short to detect any CP -violating effects in the semileptonic η(′) → π0µ+µ−

and η′ → ηµ+µ− decays, should one take into account the constraints set by nEDM and
D−s → µν̄µ. This stands in contrast with the η→ µ+µ− decay studied in Ref. [256] and can
be understood by the fact that the less constrained strange-quark contribution (cf. Table 11.1)
is of isospin-breaking origin, which is very small in Nature. Accordingly, the purely leptonic
η→ µ+µ− decay is still the most promising channel to be investigated at REDTOP in search
of new-physics signatures via CP -violating effects using muon polarimetry.
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Conclusions

The phenomenology of the neutral η and η′ pseudoscalar mesons represents a perfect play-
ground for testing the low-energy domain of QCD, including phenomena such as the sponta-
neous and explicit chiral-symmetry breaking, as well as the axialU (1)A anomaly. In addition
to that, since these two mesons are eigenstates of the C, P , CP and G-parity operators, their
additive quantum numbers are zero, and their decays do not receive SM contributions at tree
level, the phenomenology of the η and η′ turns out to be a great probe to search for discrep-
ancies with SM predictions and, therefore, new physics BSM.

In this thesis, we have studied several phenomenological aspects of the η and η′ mesons.
We began in Chapter 7 by showing that the quality of the most up-to-date experimental
data on VPγ radiative transitions is sufficiently good to reveal discrepancies between the
predictions from the phenomenological model based on the conventional quark model with
two sources of flavour SU(3)-symmetry breaking from Ref. [140] and experiment. As a
result of this, we have enhanced the model by allowing for isospin symmetry-breaking effects
and have performed new statistical fits to the empirical data. The quality of the new fits
is good, with e.g. χ2

min/d.o.f. ' 1.9, and the estimations for the parameters of the model
appear to be very robust across fits. Moreover, the fitted values for g = 0.69±0.01 GeV−1,
φ23 = (41.5±0.5)◦, φV = (4.0±0.2)◦ andms/m= 1.17±0.06 are in good agreement with
those from other analyses in the published literature. In contrast to this, our estimates for the
parameters controlling the mixing in the π0-η and π0-η′ sectors, i.e. ε12 = (2.4± 1.0) %
and ε13 = (2.5± 0.9) %, disagree with those provided in Refs. [156] and [161]. All in
all, the results from this chapter indicate that the above phenomenological model, based
on simple quark model ideas with an enhancement to allow for violations of the isospin
symmetry, suffices to describe the VPγ radiative decays, and the rich and complex mixing
phenomenology in the pseudoscalar meson sector.

A thorough theoretical analysis of the doubly radiative decays η(′)→ π0γγ and η′→ ηγγ
has been presented in Chapter 8, where the scalar and vector meson exchange contributions
have been assessed within the LσM and VMD frameworks, respectively. A summary of the
predicted decay widths, theoretical branching ratios and contributions to the total signals for
the three processes is given in Table 8.2, and a discussion of how they compare to available
experimental data is provided in Sec. 8.5. Furthermore, the predicted m2

γγ invariant mass
distributions of the three processes can be found in Figs. 8.2, 8.3 and 8.4, where we have made
use of the model-based VMD couplings. It is worth noting that the theoretical predictions for
the η′→ π0γγ and η′→ ηγγ decays that we have presented in this chapter are the first that
have been published in the peer-reviewed literature. We have found that, whilst vector meson
exchanges vastly dominate over the scalar contributions for the two η(′)→ π0γγ decays, the
scalar meson effects turn out to be sizeable for the η′→ ηγγ, specially that of the σ meson,
which represents an opportunity for learning about this poorly understood scalar state. Our
predictions from theory for the η′→ π0γγ and η′→ ηγγ decays are in good agreement with
recent measurements carried out by BESIII [172, 173]. However, the situation is not as clear
for the η → π0γγ: whilst our prediction is in very good agreement with the very recent
measurement by KLOE [183], it appears to be approximately a factor of two smaller than
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the measurements from A2 [181] and Crystal Ball [177]. Clearly, the experimental situation
needs to be resolved before it is deemed necessary to improve the theoretical treatment.

The sensitivity of the radiative decays studied in Chapter 8, i.e. η(′) → π0γγ and
η′ → ηγγ, to a hypothetical leptophobic U (1)B boson in the MeV–GeV mass range has
been investigated in detail in Chapter 9. In this analysis, we explicitly added a B-boson
exchange contribution to the t- and u-channels of our SM (VMD and LσM) amplitudes.
From the analysis of the η→ π0γγ decay, the current constraints in the resonant mass region
Mπ0 .mB .Mη have been strengthened by one order of magnitude, reaching αB ∼ 10−6

(cf. Fig. 9.4), which renders the task of experimentally identifying the B-boson as a peak
aroundmB in the π0γ invariant mass distribution effectively impossible. The η′→ π0γγ and
η′ → ηγγ decays, on the other hand, are not as powerful as the η→ π0γγ at constraining
B-boson parameters below Mη but allow, instead, exploring larger B-boson masses. That
being said, the region in the αB-mB plane near the ω pole shows a sharp dip (see Fig. 9.5),
which, once again, makes the process of identification of a B boson with mB ∼Mω very
challenging. It is important to note that the most recent experimental diphoton invariant mass
distribution from the KLOE Collaboration supports the description of the three decays with-
out contribution from a leptophobic B boson, although, a B boson with a mass mB &Mη

and non-negligible coupling αB may help explain the discrepancy between our SM predic-
tion for η→ π0γγ and the experimental data from the A2 and Crystal Ball Collaborations
(see Fig. 9.7). The existing tension between the measurements by different experimental
groups highlights the need for new and more precise data, e.g. from the KLOE(-II) and JEF
experiments.

The SM contribution through the C-conserving exchange of two photons to the semilep-
tonic decays η(′) → π0l+l− and η′ → ηl+l−, with l = e or µ, have been investigated in
detail in Chapter 10 using the VMD model. We have presented a set of theoretical expres-
sions for the decay widths (cf. Sec. 10.2) and the corresponding numerical results, which
are summarised in Table 10.1. To the best of our knowledge, our theoretical predictions for
the four η′→ π0l+l− and η′→ ηl+l− processes are the first ones that have been published.
A thorough discussion of our results, including a comparison with estimations from other
analyses available in the literature and the contribution to the total signals from the different
exchanged vectors, can be found in Sec. 10.3. In addition to this, predictions for the dilep-
ton invariant mass distributions associated to the six decay processes have been presented in
Fig. 10.2. The experimental measurements to date have only provided upper limits to these
decays and these limits are still many orders of magnitude larger than the corresponding the-
oretical counterparts. On this account, we hope that the results from this chapter are relevant
for future measurements by experimental groups such as the WASA-at-COSY and REDTOP
Collaborations.

Potential new-physics via CP -violating signatures in the three semileptonic decays
η(′)→ π0µ+µ− and η′→ ηµ+µ− have been analysed in Chapter 11, which turns out to be
particularly relevant to the REDTOP experiment as they are at present contemplating the pos-
sibility of implementing muon polarimetry to study BSM effects through CP -violation. For
the analysis, we have assumed that CP -violating BSM physics appears in Nature through
new heavy degrees of freedom, thus, justifying the use of the SMEFT as the theoretical
framework to capture new physics. This in turn provides a convenient connection to different
observables, such as those arising from nEDM experiments and D−s → µν̄µ decays. The out-
come of this investigation is that the predicted REDTOP statistics is insufficient to allow for
the detection of any CP -violating effects in the semileptonic processes η(′)→ π0µ+µ− and
η′→ ηµ+µ−, if one takes into account the constraints already set by nEDM and D−s → µν̄µ
on the associated Wilson coefficients. This result contrasts with the conclusions obtained in
Ref. [256] for the purely leptonic η→ µ+µ− decay, which is down to the fact that the less
constrained strange-quark contribution (cf. Table 11.1) is of isospin-breaking origin and this
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is, of course, very small in Nature. Consequently, the η→ µ+µ− process remains the most
promising channel to be investigated at REDTOP in search of new-physics signatures via
CP -violating effects.
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Appendix A

Mathematical bases for the mixing in the meson sector

Mixing phenomena of neutral states in the meson sector is directly associated to the explicit
flavour-SU(3) symmetry breaking, which in turn is a consequence of the strange quark being
much heavier than the up and down quarks, i.e. ms�mu ≈md, as well as electromagnetic
effects. As a result of this, the physical neutral mesons become linear combinations of the
mathematical SU(3) states and one can parameterise the admixtures by means of rotations
with one or several mixing angles.

In particular, in the pseudoscalar meson sector two different mathematical bases are
widely used in the literature:

• on the one hand, one has what is known as the octet-singlet basis, which becomes
exact in the mu =md =ms limit. In this basis, one uses |η8〉 = 1√

6
|uū+dd̄−2ss̄〉

and |η1〉= 1√
3
|uū+dd̄+ ss̄〉 as the basis states, such that1(

η
η′

)
=

(
cosθP −sinθP
sinθP cosθP

)(
η8

η1

)
, (A.1)

where θP is the mixing angle in the octet-singlet basis, and η and η′ are the physical
pseudoscalar states;

• on the other hand, we have the so-called quark-flavour basis, which becomes exact in
the ms→∞ limit. This basis employs |ηNS〉 = 1√

2
|uū+dd̄〉 and |ηS〉 = |ss̄〉 as the

basis states, so that (
η
η′

)
=

(
cosφP −sinφP
sinφP cosφP

)(
ηNS

ηS

)
, (A.2)

with φP being the mixing angle in the quark-flavour basis.

The two mathematical bases are related by the following linear transformation(
η8

η1

)
=

1√
3

(
1 −

√
2√

2 1

)(
ηNS

ηS

)
. (A.3)

Furthermore, the relationship between the two mixing angles in the pseudoscalar sector is
θP = φP − arctan

√
2 ≈ φP − 54.7◦. Of course, we have assumed the isospin limit in this

discussion.
In the vector meson sector, where the spins of the quark-antiquark bound states are paral-

lel, the mixing in the ω-φ system is usually described in the quark-flavour basis by means of(
ω
φ

)
=

(
cosφV −sinφV
sinφV cosφV

)(
ωNS

ωS

)
, (A.4)

1Note that the correct description of the mixing in the pseudoscalar sector using the singlet-octet basis gen-
erally requires two mixing angles, whilst a single mixing angle suffices in the quark-flavour basis [119–122].
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where |ωNS〉 = 1√
2
|uū+dd̄〉 and |ωS〉 = |ss̄〉 are the basis states, and φV is the associated

mixing angle in this basis.
In complete analogy with the above, one can parameterise the mixing of neutral states in

the scalar meson sector using the quark-flavour basis(
σ
f0

)
=

(
cosφS −sinφS
sinφS cosφS

)(
σNS

σS

)
, (A.5)

where the basis states are |σNS〉= 1√
2
|uū+dd̄〉 and |σS〉= |ss̄〉, and φS is the mixing angle

of the σ-f0 system in this basis.
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Appendix B

Mapping of states for the π0-η-η′ mixing

The theoretical expressions for the mathematical states π3, ηNS and ηS in Sec. 4.4, Chapter 4,
as functions of the physical states π0, η and η′ at NLO in large-NC χPT are

π3 =

[
1− 4L5

F 2
(
◦
M2

3 − ε12

◦
M2

NS3)

]
π0

+

[(
1− 4L5

F 2

◦
M2

3

)
ε13 sinφ23−

(
ε12−

4L5

F 2
(
◦

M2
NS3 + ε12

◦
M2

3 )

)
cosφ23

]
η

−

[(
1− 4L5

F 2

◦
M2

3

)
ε13 cosφ23 +

(
ε12−

4L5

F 2
(
◦

M2
NS3 + ε12

◦
M2

3 )

)
sinφ23

]
η ,

ηNS =

[
ε12−

Λ1

3
√
2
(
√
2ε12 + ε13)+

4L5

F 2
(
◦

M2
NS3− ε12

◦
M2

NS)

]
π0

+

[(
Λ1

3
√
2
+

4L5

F 2
ε13

◦
M2

NS3

)
sinφ23 +

(
1− Λ1

3
− 4L5

F 2
(
◦

M2
NS + ε12

◦
M2

NS3)

)
cosφ23

]
η

−

[(
Λ1

3
√
2
+

4L5

F 2
ε13

◦
M2

NS3

)
cosφ23−

(
1− Λ1

3
− 4L5

F 2
(
◦

M2
NS + ε12

◦
M2

NS3)

)
sinφ23

]
η′ ,

ηS =

[
ε13−

Λ1

6
(
√
2ε12 + ε13)−

4L5

F 2
ε13

◦
M2

S

]
π0

−

[
Λ1

3
√
2
cosφ23 +

(
1− Λ1

6
− 4L5

F 2

◦
M2

S

)
sinφ23

]
η

−

[
Λ1

3
√
2
sinφ23−

(
1− Λ1

6
− 4L5

F 2

◦
M2

S

)
cosφ23

]
η′ .

(B.1)
These relations are also relevant for Sec. 11.3.
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Appendix C

Complete one-loop propagators

The complete one-loop propagators for the σ, f0 and a0 scalar resonances in Chapters 8 and 9
are defined as follows

D(s) = s−M2
R+ReΠ(s)−ReΠ(M2

R)+ iImΠ(s) , (C.1)

where MR is the renormalised mass of the scalar meson and Π(s) is the one-particle irre-
ducible two-point function. Note that the ReΠ(M2

R) term is introduced to regularise the di-
vergent behaviour of Π(s). This propagator is well behaved when a threshold is approached
from below, thus, improving the usual Breit-Wigner prescription, which is not particularly
suited for spinless resonances (see Ref. [126] for details).

The real and imaginary parts of Π(s) for the σ resonance in the first Riemann sheet1 can
be written as

R(s) =
g2
σππ

16π2

[
2−βπ log

(
1+βπ
1−βπ

)
θπ−2β̄π arctan

(
1

β̄π

)
θ̄π

]
+
g2
σKK

16π2

[
2−βK log

(
1+βK
1−βK

)
θK −2β̄K arctan

(
1

β̄K

)
θ̄K

]
,

I(s) = − g
2
σππ

16π
βπθπ−

g2
σKK

16π
βKθK ,

(C.2)

whereR(s)≡ReΠ(s) and I(s)≡ ImΠ(s). In addition, βi =
√

1−4M2
i /s for i= (π,K),

β̄i =
√
4M2

i /s−1, θi = θ(s−4M2
i ), and θ̄i = θ(4M2

i −s). The couplings of the σ to pions

and kaons in the isospin limit2 take the form

g2
σππ =

3

2
g2
σπ+π− =

3

2

(
M2
π −M2

σ

fπ
cosφS

)2

,

g2
σKK

= 2g2
σK+K− =

1

2

[
M2
K −M2

σ

fK
(cosφS−

√
2sinφS)

]2

.

(C.3)

The renormalised mass of the σ meson for our calculations is fixed to Mσ = 498 MeV.3

1We follow the convention from Ref. [130] for the definition of the first Riemann sheet of the complex square
root and complex logarithm functions.

2In our analysis, the isospin limit is observed and, thus, the mass difference between K0 and K+ is not
taken into account for the KK threshold.

3This value is obtained by solving the corresponding pole equationD(sP ) = 0 in the second Riemann sheet,
with sP =M2

P − iMP ΓP . In addition, one needs to ensure that the pole mass and width are consistent with
experimental data.
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For the f0 exchange, the real and imaginary parts of the two-point function in the first
Riemann sheet are

R(s) =
g2
f0ππ

16π2

[
2−βπ log

(
1+βπ
1−βπ

)
θπ−2β̄π arctan

(
1

β̄π

)
θ̄π

]

+
g2
f0KK

16π2

[
2−βK log

(
1+βK
1−βK

)
θK −2β̄K arctan

(
1

β̄K

)
θ̄K

]
,

I(s) = −
g2
f0ππ

16π
βπθπ−

g2
f0KK

16π
βKθK ,

(C.4)

where βi, β̄i, θi and θ̄i are defined as before. Once again, the couplings of the f0 to pions and
kaons in the isospin limit are

g2
f0ππ =

3

2
g2
f0π+π−

=
3

2

(
M2
π −M2

f0

fπ
sinφS

)2

,

g2
f0KK

= 2g2
f0K+K− =

1

2

[
M2
K −M2

f0

fK
(sinφS+

√
2cosφS)

]2

.

(C.5)

The renormalised mass of the f0 meson for our calculations is fixed to Mf0 = 990 MeV.
Finally, the real and imaginary parts of Π(s) for the a0 resonance in the first Riemann

sheet are given by

R(s) =
g2
a0KK

16π2

[
2−βK log

(
1+βK
1−βK

)
θK −2β̄K arctan

(
1

β̄K

)
θ̄K

]

+
g2
a0πη

16π2

[
2−

m2
η−m2

π

s
log

(
mη

Mπ

)
−β+πηβ−πη log

(
β−πη+β+πη

β−πη−β+πη

)
θπη

−2β̄+πηβ
−
πη arctan

(
β−πη

β̄+πη

)
θ̄πη+ β̄+πηβ̄

−
πη log

(
β̄+πη+ β̄−πη

β̄+πη− β̄−πη

)
¯̄θπη

]
,

I(s) = −
g2
a0KK

16π
βKθK −

g2
a0πη

16π
β+πηβ

−
πηθπη ,

(C.6)

where β±πη =
√
1− (Mπ±Mη)2/s, β̄±πη =

√
(Mπ±Mη)2/s−1, θπη = θ[s−(Mπ+Mη)2],

θ̄πη = θ[s− (Mπ−Mη)2]× θ[(Mπ+Mη)2− s] and ¯̄θπη = θ[(Mπ−Mη)2− s]. The cou-
plings of the a0 to kaons are also written in the isospin limit

g2
a0KK

= 2g2
a0K+K− =

1

2

(
M2
K −M2

a0

fK

)2

g2
a0πη =

(
M2
η −M2

a0

fπ
cosφP

)2

.

(C.7)

For our calculations, the renormalised mass of the a0 meson is fixed to Ma0 = 980 MeV.
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Appendix D

Models uncertainty analysis

In this appendix, we provide an estimation of the uncertainty associated to the effective mod-
els that we employ in our theoretical treatment, and corresponding results, of Chapter 9.

In particular, and based on the arguments laid out in the last two paragraphs of Sec. 9.2.1,
one can assess the uncertainty of our predictions by propagating the errors of the VPγ cou-
plings in Table 8.1 to the final results. In Fig. D.1, we show the limits on the leptophobic
B-boson coupling αB for different mB masses corresponding to the η → π0γγ branching
ratio measurement from KLOE (black line), along with an error band associated to the un-
certainties of the VPγ couplings (grey band). Despite the error band being rather large, the
corresponding limits are clearly different from those with the QCD contributions turned off
(dashed line).
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FIGURE D.1: Limits on the leptophobic B-boson coupling αB for different
mB masses from the η → π0γγ BR measurement by KLOE [182] (black
line), along with an error band due to the uncertainties of the VPγ couplings

in Table 8.1.





163

Appendix E

Individual contributions to the invariant mass
distribution

In this appendix, we summarise the different contributions from vector, scalar and B-
boson exchanges, as well as their interference, to the invariant mass distributions of the two
η(′)→ π0γγ processes of Chapter 9.

E.1 η→ π0γγ decay

In Fig. E.1 below, the different individual contributions to the γγ and π0γ invariant mass
distributions of the η→ π0γγ decay are presented, where we have employed the B-boson
parameters from Eqs. (9.24) and (9.25), which in turn are obtained from the fits to the Crystal
Ball and KLOE experimental datasets, respectively. The entire contribution to the spectra
(solid black), together with the separate VMD (dashed black), LσM (dotted black) and B-
boson (dot-dashed black) contributions, as well as their interferences, are displayed.

The exchange of vector mesons contribute with 49% to the entire signal of the Crystal
Ball spectra. The interference between vector and B-boson exchanges is constructive and
almost as large as the VMD contribution, with 38% of the signal. The remaining 13% comes
from the individual effect of the B boson, which accounts for 8%, the interference between
vector and scalar exchanges, accounting for 4%, and the interference between scalar and B-
boson exchanges, which is constructive and around 1%. The contribution of scalar meson
exchanges is very small.

The contributions to the KLOE spectra are rather different. Vector meson exchanges
completely dominate the entire signal, accounting for 114%. The contribution of scalar ex-
changes accounts for less than 1%, whilst the contribution from the B boson is only 1.9%,
making their separate effects very challenging to isolate even with the arrival of new and
more precise data. The interference between vector and scalar exchanges is constructive and
accounts for about 8%, whereas the interference between vector and B-boson exchanges
is destructive, −23%, with a visible effect in the distributions at low γγ and π0γ invariant
masses. The interference between scalar andB-boson exchanges is tiny, with less than−1%,
and destructive.
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(A) m2
γγ invariant mass distribution using B-boson parameters from Eq. (9.24) (fit to Crystal Ball data)

(B) m2
γγ invariant mass distribution using B-boson parameters from Eq. (9.25) (fit to KLOE data)

(C) m2
π0γ invariant mass distribution using B-boson parameters from Eq. (9.24) (fit to Crystal Ball data)

(D) m2
π0γ invariant mass distribution using B-boson parameters from Eq. (9.25) (fit to KLOE data)

FIGURE E.1: Individual contributions to the m2
γγ and m2

π0γ
invariant mass distributions

of the η→ π0γγ decay corresponding to the fit results presented in Eqs. (9.24) and (9.25).
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FIGURE E.2: Individual contributions to them2
γγ invariant mass distribution

of the η′→ π0γγ decay using the fit result in Eq. (9.26) obtained from the
BESIII experimental data.

E.2 η′→ π0γγ decay

In Fig. E.2, the different individual contributions to the γγ invariant mass distribution of the
η′→ π0γγ decay using the fit result in Eq. (9.26) are presented. The entire contribution to the
spectrum (solid black), together with the separate VMD (dashed black), LσM (dotted black)
and B boson (dot-dashed black) contributions, as well as their interferences, are shown. The
exchange of vector mesons dominate, accounting for 76% of the entire signal. The individual
contribution of the B boson is about the same as VMD and the rest comes from the interfer-
ence terms, out of which the destructive interference between vector and B-boson exchanges
dominates with −66%. The contribution of scalar mesons is insignificant.
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Appendix F

Definition of parameters Ai, Bi, Ci and Di

The parameters Ai, Bi, Ci and Di (i = 1,2) from Eq. (10.4), Chapter 10, are defined as
follows

A1 = − (x+ y+ 2z)(P ·p+)− (y+ 2z−1)(P ·p−)+ (−x+ y+ 1)(p− ·p+)

+m2
l (2x+ y+ 1)+

3zM2
η(′)

2
,

(F.1)

A2 ≡ −A1 with p+↔ p− , (F.2)

B1 = −2z(x+ y)(x+ y+ z−1)(P ·p+)2−2yz(y+ z−1)(P ·p−)2

−2xy(x+ y−1)(p− ·p+)2 +(P ·p−)
{
−2z

[
x(2y+ z−1)+ 2y(y+ z−1)

]
(P ·p+)

+ 2y(p− ·p+)(−2xz+x+ y+ z−1)+m2
l

[
x2(1−2z)+ 2xy+ 2y(y+ z−1)

]}
+(P ·p+)

{
m2
l

[
x2(2z−1)+ 2xy(2z−1)−2y(y+ z−1)

]
−2y(p− ·p+)(x+ y+ z−1)

}
−x3m2

l (p− ·p+)

+ zM2
η(′)

{
(p− ·p+)

[
x(4y+ z−1)+ 4y(y+ z−1)

]
+m2

l

[
2x2 +x(4y+ 3z−3)+ 4y(y+ z−1)

]}
+xm4

l

[
x2 + 2xy+ 2(y−1)y

]
,

(F.3)

B2 ≡ −B1 with p+↔ p− , (F.4)

C1 = (x+ 1)(P ·p−)+ (4x+ 1)(P ·p+)−
(5
2
x+ 1

)
M2
η(′)

, (F.5)

C2 ≡ C1 with p+↔ p− , (F.6)

D1 = 2
[
x3 +x2(2y+ 2z−1)+xy(y+ 2z)+ y(y+ z−1)

]
(P ·p+)2

+ 2y(xy+ y+ z−1)(P ·p−)2 +x(P ·p+)
{
−2(x2−y2 + y)(p− ·p+)

+m2
l

[
x2 + 2(y−1)y

]
+(z−1)zM2

η(′)

}
+(P ·p−)

{
x
[
−2(y−1)y(p− ·p++m2

l )

+x2m2
l − (z−1)zM2

η(′)

]
+ 4(x+ 1)y(x+ y+ z−1)(P ·p+)

}
−M2

η(′)

{
(p− ·p++m2

l )
[
x2(4y+ 2z−1)+ 4xy(y+ z)+ 4y(y+ z−1)

]
+ 2x3m2

l

}
,

(F.7)
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and

D2 ≡D1 with p+↔ p− , (F.8)

where x, y and z are Feynman integration parameters, Mη(′) is the mass of the decaying
η(′) particle, ml is the mass of the final leptons, and the four-momenta P , p+ and p− are as
defined in Fig. 10.1.
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Appendix G

Kinematics and phase space conventions

In Chapter 11, the phase space is described in terms of invariant masses and the µ+ angle
in the dilepton rest-frame, as shown in Fig. G.1 below. This choice is convenient for the
computation of the scalar products involving spin directions. The independent momenta for
the η→ π0µ+µ− decay can be written as

q = pµ+ +pµ− = pη−pπ , q̄ = pµ+ −pµ− , k = pη+pπ . (G.1)

The relevant scalar products can in turn be expressed as

q2 = s , q̄2 = 4m2
µ−s , k2 = 2(M2

η +M2
π)−s , q · q̄ = 0, (G.2)

q ·k =M2
η −M2

π , q̄ ·k = βµλ
1/2
K cθ , (G.3)

with β2
µ = 1−4m2

µ/s, λK ≡ λ(M2
η ,M

2
π ,s) and λ(a,b,c) = a2 + b2 + c2−2ab−2ac−2bc.

Like in many other places in this thesis, we employ the shorthand notation cθ ≡ cosθ and
sθ ≡ sinθ. With these conventions, the differential decay width is

dΓ =
1

64(2π)3Mη

λ1/2
K βµ
M2
η

|M|2 dsdcθ . (G.4)

It is also useful to quote all four-momenta in the dilepton rest frame

q∗ = (
√
s,0,0,0) , q̄∗ = (0,0,0,

√
sβµ) , p∗± =

√
s/2(1,0,0,±βµ) , (G.5)

n∗ = (+γβµnL,nT ,γnL) , n̄∗ = (−γβµn̄L, n̄T ,γn̄L) , (G.6)

k∗ =
1√
s
(M2

η −M2
π ,λ

1/2
K sθnkT ,−λ1/2

K cθ) , (G.7)

p∗η(π) =
1

2
√
s
(M2

η ±s−M2
π ,λ

1/2
K sθnkT ,−λ1/2

K cθ) , (G.8)

where nT (n̄T ) and nL(n̄L) are, respectively, the transverse and longitudinal µ± spin compo-
nents with respect to the µ+ direction, and nkT is a unit vector representing the k momentum
transverse to the µ+ direction. Note that nT , n̄T and nkT are 2-dimensional objects. The
corresponding expressions for the other two processes are found by substituting η→ η′ for
η′→ π0µ+µ−, and η→ η′ and π0→ η for η′→ ηµ+µ−.

The spin projectors, required when one does not sum over spins, are given here for com-
pleteness

u(p, λ̄n̄)ū(p, λ̄n̄) =
1

2
(/p+m)(1+ λ̄γ5/̄n) , (G.9)

v(p,λn)v̄(p,λn) =
1

2
(/p−m)(1+λγ5/n) . (G.10)



170 Appendix G. Kinematics and phase space conventions

p−

pπ

q
p+

θ̃
p∗−

p∗η,π

p∗+ ẑ

θ

FIGURE G.1: Left: the coordinates in the η rest frame. Right: the coor-
dinates in the dilepton frame. Note that the longitudinal (ẑ) axis is chosen
along the µ+ direction and that θ 6= θ̃. Only ~p± sin θ̃ = ~p ∗± sinθ is preserved

in the boost.

Note that the results obtained from the above equations are easily adapted to the Bouchiat-
Michel formulae, Refs. [267, 268], required in the spin-density formalism (see Ref. [263],
Sec. 1.6).
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Appendix H

Polarised amplitudes

The ci coefficients in Eq. (11.8), Chapter 11, are used as an intermediate step in our calcula-
tion but are relevant for implementing the decay processes in a Monte Carlo program, where
the subsequent polarised µ± decays are taken care of by GEANT4. On these grounds, we
provide them here for completeness

c1 = 2β2
µm

2
µs(1+nT ·n̄T −nLn̄L) , (H.1)

c2 = 2s(1−n·n̄) , (H.2)

c3 = 2λK

{
(1−β2

µc
2θ)(1+nT ·n̄T −nLnL)+ 2s2θ [nLn̄L− (nT ·nkT )(n̄T ·nkT )]

+ 4sθcθmµs
−1/2 [(nT ·nkT )n̄L+(n̄T ·nkT )nL]

}
, (H.3)

cR13 = 4βµλ
1/2
K mµ

{
2mµcθ(1+nT ·n̄T −nLn̄L)

+
√
ssθ [(nT ·nkT )n̄L+(n̄T ·nkT )nL]

}
, (H.4)

cI13 = −4βµλ
1/2
K mµ

√
ssθ [(nT×nkT )+ (n̄T×nkT )] , (H.5)

cR12 = −4βµmµs(nT×n̄T ) , (H.6)

cI12 = 4βµmµs(n̄L−nL) , (H.7)

cR23 = −4λ1/2
K

{√
ssθ [(nT×nkT )·n̄L− (n̄T×nkT )·nL]+ 2mµcθ(nT×n̄T )

}
, (H.8)

cI23 = −4λ1/2
K

{
2mµcθ(n̄L−nL)+

√
ssθ [(nT ·nkT )− (n̄T ·nkT )]

}
, (H.9)

where the shorthand notation λn→ n and λ̄n̄→ n̄ has been employed.





173

Appendix I

Polarised muon decay

In order to study the relevant asymmetries of Chapter 11, it is necessary to supplement the
η(′)→ π0µ+µ− and η′→ ηµ+µ− processes with the subsequent µ± decays. The correspond-
ing result reads [256] ∣∣M(

µ+,λn
)∣∣2 = 64G2

Fkα(pβ+λmµnβ)q
α
1 q

β
2 . (I.1)

Including the phase space and integrating over the neutrino spectra (note that the muon rest
frame is employed), the above result becomes1,2

dΓ(µ+,λn)
dxdΩ

=
mµ

24π4
W 4
eµG

2
Fβx

2n(x,x0) [1−λb(x,x0)β ·n] , (I.2)

dBR(µ+,λn) =
dΩ
4π

2x2β

1−2ε
n(x,x0) [1−λb(x,x0)β ·n]dx , (I.3)

where n(x,x0) = (3− 2x− x2
0/x) and n(x,x0)b(x,x0) = 2− 2x−

√
1−x2

0. Further-
more, Weµ = (m2

µ +m2
e)/2mµ is the maximum positron energy, x = Ee/Weµ is the

reduced positron energy, x0 = me/Weµ is the minimum reduced positron energy and
β =

√
1−x2

0/x2. Typically, the approximation me/mµ → 0 is employed, which results
in the simpler expression

dBR(µ+,λn) =
dΩ
4π

n(x) [1−λb(x)β ·n]dx , (I.4)

with x= 2Ee/mµ, n(x) = 2x2(3−2x) and b(x) = (1−2x)/(3−2x). The corresponding
expressions for the µ− are found by replacing n→−n̄ or n→−n̄ on the right hand side of
Eqs. (I.1–I.4).

1In the second line, the result of integrating over dΩdx has been employed, which in turn introduces
ε=m2

e

{
m2
e(m

2
µ−m2

e)
2+ 6m6

µ+ 2m2
em

4
µ[1+ 6ln(me/mµ)]

}
/(m2

e+m
2
µ)

4.
2Note that Eq. (I.3) is the SM result from Ref. [1], as well as the expression implemented in GEANT4, though

this simulation package includes, in addition, radiative corrections.
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