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Abstract
This thesis studies optimal monetary monetary and fiscal policy a government

should implement under different scenarios.
In the first chapter, I study the optimal discretionary monetary policy under

partial information (PI) where the central bank can only extract information from
an endogenous signal, price inflation. The signal is determined in equilibrium by
the policy rate and the unobserved supply and demand shocks. I solve for optimal
policy in a non-linear model where the Phillips curve is bent by asymmetric wage
adjustment costs and the “certainty equivalence" principal that prevails in linear
models cannot be applied. Optimal policy prescribes that the central bank should
raise the interest rate gradually when price inflation is low but respond strongly when
it is high. This non-linearity arises because signal extraction interacts differently
with optimal policy depending on the price inflation observed.

In the second chapter, I study the optimal fiscal policy in a model with two
types of agents who are different in their access to the financial markets: Ricardian
agents have full access to the financial markets while the hand-to-mouth agents are
constrained and could only consume their labor income in each period. I find that
the optimal labor-tax is more volatile compared with a representative-agent economy
without physical capital and the volatility is captured by the equilibrium condition
that these two types of agents are imposed with the same proportional labor tax.
When capital is introduced to this economy, we find that in the long run capital
tax should still be zero in the deterministic case. But the ex-ante capital tax in the
stochastic economy is again disturbed by the same proportional labor tax condition,
which makes it fluctuate around zero instead of staying there.

In the third chapter, I study the optimal debt issuance policy of a small open
economy. To circumvent curse of dimensionality, long-term bonds are usually mod-
eled as a perpetuity contract with coupon payments that decay geometrically in
macroeconomic models. I argue that this simplification actually exacerbates the
devaluation of the long bonds in the maturity analysis of sovereign debt. First, the
front-loaded payment structure of the geometric bond is mismatched with the persis-
tent income process when bad shocks hit; Second, the perpetual payment structure
extends the scope for diluting the value of current issuance and this effect is priced
in when the investors are rational. I find that zero coupon bond, which is a much



closer instrument to the real world sovereign debt, could mitigate the problems and
reduce the default probability.

Abstracte Esta tesis estudia la política monetaria monetaria y fiscal óptima
que un gobierno debería implementar bajo diferentes escenarios. En el primer capí-
tulo, estudio la política monetaria discrecional óptima bajo información parcial (PI)
donde el banco central solo puede extraer información de una señal endógena, es-
pecificamente, la inflación de precios. La señal se determina en equilibrio por la tasa
de interes y los choques de oferta y demanda no observados. Hago el calculo de la
política óptima en un modelo no lineal donde la curva de Phillips obtiene su cur-
vatura por costos de ajuste salarial asimétricos y no se puede aplicar el principio de
“equivalencia de certeza” que prevalece en los modelos lineales. La política óptima
prescribe que el banco central debe aumentar la tasa de interés gradualmente cuando
la inflación de precios es baja, pero responde fuertemente cuando es alta. Esta no
linealidad surge porque la extracción de señales interactúa de manera diferente con
la política óptima dependiendo de la inflación observada.

En el segundo capítulo, estudio la política fiscal óptima en un modelo con
dos tipos de agentes que son diferentes en su acceso a los mercados financieros:
los agentes ricardianos tienen pleno acceso a los mercados financieros mientras que
los agentes ’hand to mouth’ están restringidos y sólo pueden consumir sus rentas
laborales en cada período. Encuentro que el impuesto al trabajo óptimo es más
volátil en comparación con una economía de agente representativo sin capital físico y
que la volatilidad es capturada por la condicion de equilibrio que a estos dos tipos de
agentes se les imponga la misma tasa proporcional del impuesto al trabajo. Cuando
se introduce capital en esta economía, encontramos que, a largo plazo, el impuesto
sobre el capital debería ser igual a cero en el caso deterministico. Pero el impuesto
al capital ex-ante en una economía estocástica se ve nuevamente perturbado por la
misma condición proporcional del impuesto al trabajo, que lo hace fluctuar alrededor
de cero en lugar de permanecer allí.

En el tercer capítulo, estudio la política óptima de emisión de deuda de una
pequeña economía abierta. Para eludir la maldición de dimensionalides, los bonos a
largo plazo generalmente se modelan como un contrato a perpetuidad con pagos de
cupones que decaen geométricamente en los modelos macroeconómicos. Argumento
que esta simplificación en realidad exacerba la devaluación de los bonos largos en el
análisis de vencimiento de la deuda soberana. En primer lugar, la estructura de pago



anticipada del bono geométrico no coincide con el proceso de ingreso persistente
cuando se producen perturbaciones negativas; en segundo lugar, la estructura de
pagos perpetuos amplía el margen para diluir el valor de la emisión actual y este
efecto se valora cuando los inversores son racionales. Encuentro que el bono de cupón
cero, que es un instrumento mucho más cercano a la deuda soberana del mundo real,
podría mitigar los problemas y reducir la probabilidad de incumplimiento.
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Chapter 1

Introduction

The thesis focuses on how macro policy could maximize to households’ welfare.

To achieve this goal, I try to quantify the trade-offs faced by government in theo-

retical models and solve for the optimal monetary and fiscal policy under different

scenarios. This thesis consists of 4 chapters, including the present chapter (Chapter

1) of introduction to the research topic.

Chapter 2 is motivated by a practical issue in policy circle: macro policies have

to be made without knowing the state of economy in real time and policymakers

have to infer the underlying states from some observable signals or indicators. The

difficulties arise because the observed signals are, in general, endogenous to policy

decisions and depend on multiple shocks hitting the economy. For example, the cen-

tral bank may observe growing inflation but cannot be sure it is pushed by demand

or supply shock; Meanwhile it needs to react to it by changing the nominal rate

and the policy rate will in turn, affect the inflation observed. Therefore, the policy

optimization and the signal extraction problem need to be solved simultaneously.

This simultaneity problem is only addressed in linear model before and the method

developed in the literature cannot be applied when the model features important

nonlinear relationships, such as zero lower bound, financial frictions. I explore the

optimal monetary policy under partial information when the Phillips curve is bent

1



Chapter 1 Introduction 2

by asymmetric wage adjustment costs. I find that the central bank should raise

interest rate gradually when price inflation is low but respond strongly when it is

high, which is like Fed’s reaction to inflation in post COVID times. I argue that

the strength of monetary policy is determined by 2 factors: the uncertainty the cen-

tral bank faces and the effectiveness of the monetary policy generated by nominal

rigidity, both of which are changing along the Phillips curve.

Chapter 3 revisits a classical topic in fiscal policy: how should a government

finance its expenditures, debt, or tax? Ramsey optimal tax theory prescribes that

taxes on labor income should be smoothed and government should issue bonds to

buffer the shocks while long- run capital tax should be set to zero. But this result

assumes forward-looking representative agent, who could adjust their consumption

and labor supply based on both tax and interest rates. However the strong response

of aggregate consumption to interest rate changes is questionable in light of empirical

evidence. The inclusion of hand-to-mouth agents, who have no access to the financial

markets and cannot smooth their consumption, could explain the aggregate data

better. In this chapter I explore the optimal fiscal policy when these two types of

agents coexist in the economy. I find that the optimal labor-tax is more volatile

compared with a representative agent economy without physical capital and the

volatility is captured by the equilibrium condition that these two types of agents

are faced with the same proportional labor tax. The long-run capital tax is again

disturbed by the same proportional labor tax constraint, which makes it fluctuate

around zero instead of staying there.

Chapter 4 focuses on the debt issuances policy in a small open economy where

default could happen. I question the conventional way the literature models the

long bond, as a perpetuity contract with coupon payments that decay geometrically

at a constant rate. Although the curse of dimensionality could be circumvented

by this simplification, it exacerbates the financial condition of the sovereign. First,
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the front-loaded payment structure of the geometric bond is mismatched with the

back-loaded income process when bad shocks hit; Second, the perpetual payment

structure makes the claims to the new debt overlap with the old debt such that

new issuances “dilute” the old debt directly when the government cannot commit

to its future policy. This lack of commitment is effectively penalized by rational

investors, which makes the geometric bond price depreciate more than the short

bond. I employ a dynamic model to show how geometric bond affects the issuance

strategy and welfare of the sovereign compared with ordinary bonds in financial

markets. The model indicates that modelling long bonds as geometric bond is not

sufficient to analyze the maturity structure of sovereign debt.





Chapter 2

Optimal Monetary Policy with Signal

Extraction

2.1 Introduction

In the recent studies of monetary policy, simple policy rules such as Taylor rules

could achieve good results in simulated small macroeconomic models. At the same

time, many empirical studies report that the policy specifications of this kind fit the

actual behavior of the central banks in several countries.

But the central banks actually face much more complicated situation compared

with the set-ups in the model. In particular, they do not know the underlying

state of the economy in real time but only infer it from limited data set. This

poses a challenge to the central bank, the information constraint. This challenge is

twofold: how easy it is to get the relevant data and how accurate the indicators could

reflect the fundamentals of the economy. For example, the central bank can only

have very preliminary measure of current period GDP and update it at least one

period later. Another key indicator for monetary policy, wage inflation, is difficult

to observe because it is kept within employees and firms while the central bank can

5



Chapter 2 Optimal Monetary Policy with Signal Extraction 6

only rely on the survey data which is subject to large measurement error. Even

though some indicators are much easier to get with accuracy, the central bank may

still face great uncertainty when making monetary policy. A typical example is price

inflation, which can be driven by a high demand shock or by a supply shortage or a

combination of both. Different causes needs to be treated differently. The haziness

would not disappear even though the central bank knows the price inflation perfectly.

So the typical presumption in the macroeconomic models that policymakers know

the state of the system at a point in time generally does not hold in policy field, policy

decisions need to be made under partial information (PI) instead of full information

(FI).

Apart from information barriers mentioned above, the central bank also needs

to take into account that the signals it observes are endogenous to the policy rule.

Indicators like inflation, output are determined not only by the fundamentals in the

economy, but also by the monetary policy the central bank adopts. So the policy

optimization and the signal extraction need to be solved simultaneously.

To our knowledge, all existing results in the literature on optimal monetary

policy with PI circumvent this technical issue of simultaneity by introducing tim-

ing assumptions such that signal extraction and policy optimization can be solved

separately. While this literature has led to many interesting applications, it can

say nothing about how policy optimization and signal extraction interact with each

other. What is emphasized in the literature is policy optimization under PI or un-

certainty but what is missing is how policy choice affects the uncertainty the central

bank faces. Svensson and Woodford (2003) and Svensson and Woodford (2004)

address this simultaneity problem in linear model and develop a method called “cer-

tainty equivalence”, which allow them to solve the signal extraction and optimal

choice problems sequentially. But their method cannot be applied to many impor-

tant non-linear scenarios in monetary policy analysis, such as zero lower bound,



Chapter 2 Optimal Monetary Policy with Signal Extraction 7

models with financial frictions etc.

In this paper, we focus on the non-linearity of new Keynessian Phillips curve,

the substantial curvature in the relationship between money wage growth and un-

employment. Phillips (1958) conjectures that this curvature owed to the fact that

“... workers are reluctant to offer their services at less than prevailing rates when the

demand for labour is low and unemployment is high so that wage rates fall only very

slowly.” As is supported empirically and modelled theoretically in the literature, We

study the optimal discretionary monetary policy with signal extraction in such an

economy where the Phillips curve is bent by the asymmetric wage adjustment cost.

To the best of our knowledge, we are the first to study the optimal monetary policy

with signal extraction in non-linear models.

To make the model more transparent and tractable, we assume the only nominal

rigidity is asymmetric wage adjustment cost. When the central bank has full infor-

mation on the economy, the optimal policy calls for strict wage inflation targeting

and full stabilization of demand shocks. We introduce the information constraint

through an identification problem: every period the economy is hit by two exoge-

nous shocks, the supply and demand shocks, but the central bank can only infer

the state of the economy from one single indicator, price inflation. We find that

the responding rule of nominal rate to price inflation is quite non-linear: the cen-

tral bank should raise the nominal rate gradually when price inflation is low but

raise it sharply when price inflation is high. We argue that this non-linearity arises

because the signal extraction problem interacts differently with optimal monetary

policy depending the range of price inflation. In particular, the sluggish adjustment

around the low realization of price inflation is justified by the strong real effects of

monetary policy as small change of policy rate can make great influence on output.

The inertial behaviour in the intermediate range of price inflation can be seen as

policy cautiousness as the central bank faces more uncertainty in this regime. The
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strong response to high levels of price inflation is a choice under less uncertainty and

the fading real effects of monetary policy.

Our model provides a plausible explanation of the Fed’s monetary policy after

COVID-19. When the inflation rate is below 3 per cent, the Fed was not sure

about the cause of inflation, a supply shock or a demand shock. So it should move

cautiously in such haziness. On top of that, the Fed also believes that the monetary

policy is very powerful in inflation controlling as the Phillips curve is flat in this

interval. But after January 2022, the inflation rate grew even higher, the Fed is

more certain about the true cause behind it, the demand shock, so it raised the

interest rates without hesitation, considering also the steep Phillips curve in this

interval.

Figure 2.1: U.S. Inflation and Policy Rates

To highlight our contribution relative to the literature, we compare our results

with some alternative policy choices and show that the endogeneity of the signal and

the non-linearity of the wage Phillips curve bent by asymmetric wage adjustment
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cost are vital in monetary policy making and ignoring that could lead to great welfare

loss.

The remainder of the paper is organized as follows. We discuss the related

literature in Section 2.2. Section 2.3 introduces our main model and the solution

under full information. In Section 2.4 we present the result and interpretation of

the optimal monetary policy under partial information. Section 2.7 compares the

optimal policy with some alternative policy rules and their welfare implications.

For completeness, we present the solution for the case of serial correlated shocks in

Section 2.8. Section 2.9 concludes.

2.2 Literature Review

Optimal monetary policy with signal extraction is often considered in linear

models: Svensson and Woodford (2004) shows that in the case of a linear economic

model with a quadratic welfare loss function, a principle of “certainty equivalence"

applies: the government applies the policy under full information to its best estimate

of the state of the economy. Aoki (2003) applies their results to optimal monetary

policy with noisy indicators on output and inflation. Nimark (2008) applies them to

a problem of monetary policy where the central bank uses data from the yield curve

knowing that the chosen policy affects the very same data. Relatedly, Morris and

Shin (2018) analyze the optimal weight on an endogenous signal in a linear policy

rule.

But “certainty equivalence" cannot be applied to study the optimal monetary

policy under partial information when the economy features some important non-

linear relationships, a typical example of which is the substantial curvature in the

relationship between money wage growth and unemployment. As documented by

Phillips (1958), the curve is nearly vertical at high inflation and flattens out at
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low inflation, implying progressively larger output costs of reducing inflation. He

conjectures that this curvature owed to the fact that “... workers are reluctant

to offer their services at less than prevailing rates when the demand for Labour

is low and unemployment is high so that wage rates fall only very slowly." The

empirical evidence of downward nominal wage rigidity is provided in Akerlof et al.

(1996) and Daly and Hobijn (2014). Kim and Ruge-Murcia (2009) and Benigno and

Antonio Ricci (2011) study the optimal monetary policy in a dynamic stochastic

general equilibrium model and find that the optimal inflation rate is positive. Fahr

and Smets (2010) consider both nominal and real downward wage rigidity (DWR)

in a monetary union and find that optimal grease inflation may be dampened by

heterogeneity in the types of DWR in different regions.

We revisit Phillips’ hypothesis that downward nominal wage rigidities bend the

Phillips curve and consider how this non-linearity interacts with signal extraction

under partial information. To the best of our knowledge, our paper is the first

one to consider the optimal monetary policy with signal extraction in a non-linear

model. The solution method to our model is based on the work of Hauk et al. (2021),

which address the optimal fiscal policy with signal extraction problem from the first

principal.

2.3 The structure of the economy

The model developed in this section is a small-scale, dynamic stochastic general

equilibrium model with downward nominal wage rigidity.
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2.3.1 Firms

Firms operate in a perfectly competitive goods market and produce output

using the production function

Yt = AtNt (2.1)

Here At is average labor productivity, which evolves exogenously. The labor aggre-

gate, Nt, is a Dixit and Stiglitz (1977) aggregate over a continuum of labor types

j ∈ [0, 1] and is of the form

Nt =

(∫ 1

0

Nt(j)
1− 1

ϵ dj

) ϵ
ϵ−1

(2.2)

where Nt(j) is the quantity of type-j labor employed by the firm in period t. The

parameter ϵ represents the elasticity of substitution among labor varieties.

Let Wt(j) denote the nominal wage for type-j labor prevailing in period t, for

all j ∈ [0, 1]. As discussed below, nominal wages are set by workers of each type(or

a union representing them) and taken as given by firms. Given the wages effective

each period for different types of labor services, cost minimization by the firm yields

the demand for each type of workers, given the firm’s total employment Nt

Nt(j) =

(
Wt(j)

Wt

)−ϵ

Nt (2.3)

where

Wt =

(∫ 1

0

Wt(j)
1−ϵdj

) 1
1−ϵ

(2.4)

is an aggregate wage index. Because firms operate in a perfectly competitive goods

market, they set the goods price Pt equal to the marginal production cost,

Pt =
Wt

At
(2.5)
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which yields the relationship between price inflation and wage inflation:

Πp
t = Πw

t

At−1

At
(2.6)

where Πp
t+1 =

Pt+1

Pt
and Πw

t = Wt+1

Wt
denotes price inflation and wage inflation respec-

tively.

2.3.2 Households

The economy is populated by a large number of identical households. Each

household is made up of a continuum of infinitely-lived members specializing in a

different labor service and indexed by j ∈ [0, 1]. Income is pooled within each house-

hold, which acts as risk sharing mechanism. The representative household chooses

its path of consumption {Ct}∞t=0 and wages and labor supply {Wt(j), Nt(j)}∞t=0 to

maximize

E0

∞∑
t=0

βtU(Ct, Nt;Zt) (2.7)

and the utility function is defined by

U(Ct, Nt;Zt) = Zt

(
lnCt −

χ

η + 1

∫ 1

0

Nt(j)
η+1dj

)
(2.8)

where χ ≥ 0 and η ≥ 0 determine the dis-utility of labor supply. Et is the expectation

operator conditional on information at time t. β ∈ (0, 1) is the discount factor. The

preference shock Zt shifts overall utility level and disturbs the household’s inter-

temporal substitution of consumption. Households maximization problem is subject

to a sequence of flow budget constraints, expressed in real terms as

Ct+
Bt

Pt
≤

∫ 1

0

(1 + τ)Wt(j)Nt(j)

Pt
dj−

∫ 1

0

Φ(
Wt(j)

Wt−1(j)
)djNt+

1 + it−1

Pt
Bt−1+Tt (2.9)
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where Bt represents the quantity of one-period nominal riskless bonds purchased in

period t and maturing in period t+1. The nominal interest paid during period t on

the bonds held at the end of period t−1 is it−1. τ is an employment subsidy financed

by means of lump-sum tax Tt that corrects the distortions caused by monopolistic

competition in labor markets. τ is set to be equal to 1
ϵ−1

so that the marginal rate of

substitution between leisure and consumption equals to the real wage under flexible

wage setting.

As monopolistic competitors, households choose their wage and labor supply

taking as given the firm’s demand for their labor type. Labor market frictions

induce a cost in the adjustment of nominal wages. We assume the wage adjustment

cost takes the form of an altered linex cost function similar to Varian (1974):

Φ(
Wt(j)

Wt−1(j)
) =

ϕ− 1

2
(
Wt(j)

Wt−1(j)
− 1)2 +

exp(−ψ( Wt(j)
Wt−1(j)

− 1)) + ψ( Wt(j)
Wt−1(j)

− 1)− 1

ψ2

(2.10)

The parameter ϕ determines the degree of convexity and ψ the degree of asymmetry

in adjustment costs around zero wage inflation(Wt/Wt−1=1). When ψ > 0, ad-

justment costs for nominal wage increases are smaller than those for nominal wage

cuts of the same size, capturing asymmetries in nominal wage adjustments. The

specification nests a quadratic function, limψ→0Φ(
Wt(j)
Wt−1(j)

) = ϕ
2
( Wt(j)
Wt−1(j)

− 1)2. Fig-

ure 2.2 gives a visual impression of a symmetric and asymmetric adjustment cost

function. To simplify computations, we further assume the labor adjustment cost is

proportional to the aggregate employment Nt, instead of
∫ 1

0
Φ( Wt(j)

Wt−1(j)
)Nt(j)dj. The

households utility maximization yields the following optimality conditions:

Zt
Ct

= βEt
Zt+1(1 + it)

Πp
t+1Ct+1

(2.11)
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Figure 2.2: Adjustment cost functions

ϵχ(η + 1)ZtNt(j)

Wt(j)
+
(1 + τ)(1− ϵ)Zt

Ct
−
ZtΦ

′( Wt(j)
Wt−1(j)

)Nt

CtWt−1(j)
+βEt

Zt+1Φ
′(Wt+1(j)

Wt(j)
)Nt+1Wt+1(j)

Ct+1W 2
t

= 0

(2.12)

2.3.3 Symmetric Equilibrium

The model incorporates multiplicity of equilibria and we pick up the symmetric

case, where all households supply exactly the same amount of labor and demand the

same level of nominal wage, i.e. Wt(j) = Wt and Nt(j) = Nt. Dropping the index

j, the households optimality condition yields

ϵχZtN
η
t +

(1 + τ)(1− ϵ)WtZt
PtCt

− ZtΦ
′(Πw

t )Π
w
t

Ct
+ βEt

Zt+1Φ
′(Πw

t+1)Π
w
t+1Nt+1

Ct+1Nt

= 0

(2.13)

The economy-wide resource constraint is

Ct = (At − Φ(Πw
t ))Nt (2.14)
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Combining them with Pt = Wt

At
, one can get the wage Phillips Curve of the economy:

ϵχZtC
2
t

[At − Φ(Πw
t )]

2
+

(1 + τ)(1− ϵ)AtZt
At − Φ(Πw

t )
− ZtΦ

′(Πw
t )Π

w
t

At − Φ(Πw
t )

+ βEt
Zt+1Φ

′(Πw
t+1)Π

w
t+1

At+1 − Φ(Πw
t+1)

= 0

(2.15)

To illustrate how the downward nominal wage rigidity bends the Phillips curve, we

plot the Phillips curve with different wage adjustment costs in the same figure. The

point of zero inflation Πw = 1 marked in Figure 2.3 represents the natural level of

output and inflation. One can find that there is substantial curvature in the Phillips

curve associated with asymmetric adjustment cost and it would be misleading to log

linerize the model.

Figure 2.3: Wage Phillips Curve

2.3.4 Optimal discretionary monetary policy under full infor-

mation

We consider the optimal monetary policy under discretion. In this case, the

central bank cannot commit itself to any future action. The expectations in the Euler

equation and the wage Phillips curve is taken as given by the monetary authority

and will become a constant in equilibrium. We denote them as E and F respectively.
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Without loss of generality, we set At−1 and Zt−1 equal to their steady state value 1.

One can write the Euler equation and the wage Phillips curve as:

AtZt
Ct

= β(1 + it)E (2.16)

ϵχZtC
2
t

[At − Φ(Πw
t )]

2
+

(1 + τ)(1− ϵ)AtZt
At − Φ(Πw

t )
− ZtΦ

′(Πw
t )Π

w
t

At − Φ(Πw
t )

+ βF = 0 (2.17)

Under this assumption the central bank’s problem (2.18) becomes sequential opti-

mization.

max
{it,Ct,Nt,Πw

t }
U(Ct, Nt;Zt) (2.18)

s.t. (2.14), (2.16), (2.17)

choose the nominal interest rate it to maximize the household’s utility, subject to

the resources constraint, the dynamics IS curve and the wage Phillips curve.

The Lagrangian representation of the Ramsey problem is

L =U(Ct, Nt) + λt(Ct − (At − Φ(πwt ))Nt)

+ µt(β(1 + it)ECt − AtZt)

+ νt(ϵχZtC
2
t + (1 + τ)(1− ϵ)AtZt(At − Φ(Πw

t ))− ZtΦ′(Πw
t )Π

w
t (At − Φ(Πw

t ))

+ βF (At − Φ(Πw
t ))

2)

(2.19)

The first order necessary conditions associated with it is:

µtβECt = 0 (2.20)

and it is evident that µt = 0. The intuition is that the central bank can always

choose an interest rate level consistent with the Euler equation, in the absence of
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zero lower bound. The F.O.Cs associated with Ct,Πt, Nt are:

[Ct] : UC + λt + 2νtϵχZtCt = 0 (2.21)

[Nt] : UN − λtΦ(Πw
t ) = 0 (2.22)

[Πw
t ] :− λtNtΦ

′(Πw
t )− νt[(1 + τ)(1− ϵ)AtZtΦ′(Πw

t )

− ZtΦ′(Πw
t )(1 + Πw

t )(At − Φ(Πw
t )) + ZtΠ

w
t Φ

′(Πw
t )

2 − βFZtΦ′(Πw
t )(At − Φ(Πw

t ))] = 0

(2.23)

These three F.O.Cs together with the resources constraint and the Phillips curve

characterize the solution Ct, Nt,Π
w
t , νt, λt and the nominal rate can be solved from

the Euler Equation. When the distortions caused by monopolistic competition is

corrected through an employment subsidy, one cannot do better than to set Πw
t = 1

and it =
Zt

β
− 1 so that there are no losses to wage adjustment and the economy

achieves its first best.

2.4 Optimal discretionary policy with signal extrac-

tion

The implementation of the optimal monetary policy requires the central bank

to have accurate measure of demand shock or the wage inflation. But the former

one cannot be observed directly from the data and the latter one can only rely on

survey data, which is subject to large measurement error. Prices are public data and

the central bank have much easier access to it. So a natural problem is to explore

the optimal monetary policy contingent on price inflation. Now we assume that the

only signal the central bank could observe is the price inflation and the monetary
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policy is a feedback rule which vary interest rates responding to the observed signal,

the inflation.

2.4.1 Information structure and the timing

We first consider the case where the supply and demand shocks are i.i.d and

uniformly distributed on a support [Amin, Amax] and [Zmin, Zmax] respectively. Sup-

pose the central bank observes at time t the price level Pt, simultaneously with the

choice of nominal interest rate it. The output Yt cannot be observed in the current

period but will be revealed next period. This implies the information set It of the

central bank at time t is given by

It = {Pt, it, Yt−1} ∪ It−1 (2.24)

where It−1 = {Pt−1, it−1, Yt−2, Pt−2, it−2, Yt−3 · · · } and I0 = {P0, i0, Y−1, P−1, i−1}.

Given this information set, the central bank could identify the supply and de-

mand shocks At−1, Zt−1 of the previous period, In order to focus our analysis on

the implications of policy making with partial information, we abstract from any

information constraint faced by private agents. They are assumed to have complete

knowledge about the states of the economy, including the realization of supply and

demand shocks, consumption and wage inflation. The justifications for this assump-

tion are twofold, as pointed out by Aoki (2003): on the one hand, consumption and

wages are the choice variable of the private agents, which is based on the agents’

own preference and the firm’s production capacity. On the other hand, consumption

and production decisions of private sectors are not as dependent on the availability

of aggregate data as is the policy decision of the central bank.

To be precise, we assume the following time sequence. At the beginning of

time t, the output of the previous periods Yt−1 is revealed. Combining this with the
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information in It−1, the central bank is able to identify the true value of past supply

and demand shocks At−1 and Zt−1. Then the central bank announces its policy rule

it = R(Πp
t ) (2.25)

according to a policy function R : P → T . P and T denote the set of possible policy

rate and the price inflation observed, i.e. Πt ∈ P and it ∈ T . Once the supply and

demand shock At, Zt are realized, the economy arrivesits equilibrium.

Now the central bank cannot observe the fundamental shocks, At and Zt in real

time, but only infer the underlying state of the economy from the endogenous signal

ΠP
t , taking into account that the policy variable it maps into the endogenous signal

ΠP
t through the following reaction function

Πp
t = h(it, At, Zt) (2.26)

which is defined as an implicit function from Euler equation (2.16) and wage Phillips

curve (2.17):

AtZt
β(1 + it)E

=

√
At(At − Φ(AtΠ

p
t ))(Φ

′(AtΠ
p
t )Π

p
t − (1 + τ)(1− ϵ))

ϵχ
− βF (At − Φ(AtΠ

p
t ))

2

ϵχZt
(2.27)

The utility function can be expressed in terms of policy variables, endogenous signals

and fundamental shocks as:

U(it,Πp
t , At, Zt) = U(

AtZt
β(1 + it)E

,
AtZt

β(1 + it)(At − Φ(AtΠ
p
t ))E

;Zt) (2.28)

The central bank’s optimization problem can be stated formally as:

max
R:P→T

E[U(it,Πp
t , At, Zt)] (2.29)
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s.t. (2.25), (2.26)

Notice that, mathematically, the only difference with the FI-problem (2.18) is the

presence of constraint (2.25), which requires monetary policy to be a feedback rules

which vary interest rate responding to price inflation Πp
t .

2.4.2 Solution of optimal monetary under discretion

We denote the solution to the central bank’s optimization problem (2.41) as

R∗. According to Hauk et al. (2021), R∗ satisfies the following necessary optimality

condition: ∫
A(Πp,R∗(Πp))

U∗
i + U∗

Πh
∗
i

|h∗Z |
fZ(Z∗(Πp, a))fA(a)da = 0 (2.30)

for almost all a ∈ [Amin, Amax]. Here A(Πp, i) denotes the support of [Amin, Amax]

conditional on observing Πp and i, i.e. A(Πp, i) = {a | Π = h(i, a, z) for some a ∈

[Amin, Amax] and z ∈ [Zmin, Zmax]}. U∗
i , U∗

Π, h∗i denote the functions evaluated at the

optimal solution. Z∗(Πp, a) is a function satisfying Πp = h(R∗(Πp),Z∗(Πp, a), a).

Note that the value of the expectation E and F interacts with the optimal policy

rule. To solve the model, we can apply the algorithm proposed in Hauk et al.(2021)

with slight modification:Given the optimal policy under full information, iFI(A,Z) =

Z
β
−1, one can find the pairs (Πp, i) for all possible realizations of (A,Z). Then follow

the following steps:

Algorithm 1 (1) Discretize the set of possible values for Πp, which is [ 1
Amax

, 1
Amin

]

in our model;

(2) Guess an initial value for E and F , denoted as E0 and F 0;

(3) Taking E = E0 and F = F 0, for each value Πp on the grid created in step 1, one

can find the value i∗ that solves the non-linear equation

∫
A(Πp,i∗))

Ui(i∗,Πp, a, z∗) + UΠ(i∗,Πp, a, z∗)hi(i
∗, a, z∗)

|hZ(i∗, a, z∗)|
fZ(z

∗)fA(a)da = 0 (2.31)
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where z∗ denote the value of z solving the equation Πp−h(i∗, a, z) = 0 at a given a.

A(Πp, i∗)) is the set of realizations of A with positive density given a pair (Πp, i∗);

(4) Given the policy rule found in step 3, one can find the updated value for E

and F , denoted as E ′ and F ′; If |E − E0| < ε and |F − F 0| < ε, where ε is the

convergence criterion, stop; If not, take E0 ← E ′, F 0 ← F ′ and go back to step (3).

2.5 Calibration

In order to solve the model numerically, it needs to be calibrated and we sum-

marize the parameter values in Table 2.1.

Preferences and Production The household’s discount factor β is set to 0.99,

reflecting a real interest rate of 3.3%. The elasticity of labor supply η takes value 1

and χ is chosen such that value of leisure in the non-stochastic steady state equals

to 30% of time endowment. The demand shock Zt ranges from 0.99 to 1.1, so that

the lowest optimal nominal rate is 0 and the highest around 10%. The supply shock

At is assumed to fluctuate between ±10% of the mean.

Labor Markets The elasticity of substitution among labor varieties ϵ is set to

equal 4.5, to be consistent with an average unemployment rate of 5% when labor

is indivisible, in line with Galí (2011). Wage rigidity is captured by the convexity

parameter ϕ and the asymmetry parameter ψ in the adjustment cost function (2.10).

ϕ is set to be 32, which can be translated in a Calvo probability of not changing

wages of 0.76 per quarter. We set ψ equal to 1,077,970 (Kim and Ruge-Murcia

(2009)).
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Table 2.1: Parameters of New Keynessian Model

value Target
discount factor β = 0.992 U.S. annual interest rate 3.3%
elasticity of labor supply η = 1

χ = 2 30% leisure time
supply shock At ∈ [0.9, 1.1] ±10% from 1
demand shock Zt ∈ [0.99, 1.1] iFI ∈ [0, 10%]
elasticity of substitution of labor ϵ = 4.5 natural unemployment rate 5%
Convexity in wage adj. cost function ϕ = 32 Calvo probability 0.76
Asymmetry in wage adj. cost function ψ = 1, 077, 970 Kim and Ruge-Murcia (2009)

2.6 Results

We now show the computational solution of the optimal policy under partial

information in the model of Section 2.4.

Figure 2.4: Optimal policy under FI and PI. Thick red line: R∗; yellow region:
set of FI pairs (Πpt , it) for all possible realizations of (At, Zt); black dashed line:

zero policy rate

We plot the optimal policy under full information and partial information in

the same figure for comparison purpose. In Figure 2.4 the yellow region is the set
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of all equilibrium pairs (Πp
t , it) that could have been realized under full information.

The central bank adopt strict wage inflation target under full information, so Πw
t =

1 always holds. Since the price setting is flexible, the firm always set Pt = Wt

At
.

As a result, Πp
t ranges from At−1

Amax
to At−1

Amin
, which means in equilibrium under full

information, any price inflation(deflation) is purely caused by supply shock and

demand shock plays no role in it. Then for any given level of price inflation, any

level of demand shock could be realized, accompanied with the central bank’s policy

rate iFIt = Zt

β
− 1 to fully stabilize it. That is why the set of all equilibrium pairs

(Πp
t , it) consists of a rectangle.

As for the case of partial information, the red line plots the policy rate it against

Πp
t according to it = R∗(Πp

t ), computed using Algorithm 1. The intuition for the

results is as follows.

First, we can find that the policy rule is an increasing function of price inflation

Πp
t , i.e. R′(Πp) > 0. We know that the central bank should fully stabilize demand

shock if it has full information about the economy. But under the scenario of partial

information, the central bank can only infer it from the signal, Πp
t . Therefore,

the responding rule of nominal rate to price inflation is hinged on how the signal

Pipt reveals about the demand shock Zt. From the reaction function defined from

Equation (2.27), one can get hZ > 0 by applying implicit function theorem. The

mechanism behind this can be explained by the Euler equation (2.11) and the wage

Phillips curve (2.15): higher demand shocks will boost aggregate consumption and

move the wage inflation upwards along the wage Phillips curve hence increase price

inflation. To stabilize the demand shock, R∗ should also be an increasing function

of Πp
t .

Apart from being increasing, we see R∗ is non-linear: the higher the price

inflation is, the more forcefully the central bank will respond to it. We argue that

how strongly the central bank should respond to the price inflation is decided by two
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(a) Set of admissible supply shocks A(Πp
t ,R∗(Πp

t )))

(b) Set of admissible demand shocks Z(Πp
t ,R∗(Πp

t )))

Figure 2.5: Set of admissible fundamental shocks consistent with R∗
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factors: the informativeness of the signal and the effectiveness of the policy. The

informativeness means how accurate the price inflation signals the demand shock.

The more confidence the central bank has on the accuracy of the signal, the more

determined it should respond to price inflation. The effectiveness means how easily

the changes of policy rate can affect the economy. The more effective the policy rate

is, the more cautious the central bank should move.

Figure (2.5) depicts the informativeness of the signal by showing the possible

values of shocks that are compatible with each given level of price information Πp
t

and the policy rule R∗. One can find that the set of the possible shocks that are

compatible with a given signal, A(Πp
t ,R∗(Πp

t ))) and Z(Πp
t ,R∗(Πp

t ))) are narrowed

down when Πp
t moves towards its two extreme values. For the lowest and highest

observation of price inflation, there is full revelation. The minimum value of Πp
t is

only consistent with the lowest possible Zt and highest possible At. Given R∗(Πp
t =

1
Amax

) = Zmin

β
−1, any demand shock Zt > Zmin will lead to Πw > 1 hence Πp

t >
1

Amax
,

which is inconsistent with the signal. But when Πp
t =

Πw
t

At
increases, the central

bank is uncertain about the true cause of the price inflation, an underact to the

demand shock resulting higher Πw
t or lower supply shock At. That is why we have

more fundamental shocks that are compatible with the policy and the signal in the

intermediate region. As Πp
t gets high enough, the central bank becomes confident

that wage inflation is happening and increase the policy rate sharply. When Πp
t

arrives its maximum 1
Amin

, the central bank also raises the interest rate to the highest

level Zmax

β
− 1. Conditional on observing Πp

max, Zmax is the only possible realization

of demand shock. Any Zt < Zmax will lead us to observe a lower price inflation Πp
t .

Since the monetary policy aims to stabilize the demand shock, one can also

interpret the monetary policy as a “mixed stategy” to the possible demand shocks.

If we plot the optimal policy and the endogenous information set of demand shock,

we can find that the nominal rate is more or less a weighted average of the possible
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demand shocks, as is shown in Figure 2.6.

Figure 2.6: Optimal policy: a weighted average of possible demand shocks. The
left y-axis (blue) is the scale for demand shocks and the right y-axis (red) is the

scale for nominal rates

The other factor affecting the slope of the policy function is the effectiveness.

The real effects of monetary policy is changing along the Phillips curve shown in

Figure (2.3). When the wage inflation is low, the wage Phillips curve is flatten, the

monetary policy is less transmitted as wage inflation and has a larger real effect

on output. When the wage inflation is high, the wage Phillips curve is steep, the

monetary policy is less effective and more transmitted as wage inflation. The real

effect of monetary policy is determined by nominal wage rigidity. The higher the

rigidity is, the more effective the monetary policy is. Downward nominal wage

rigidity bends the Phillips curve and makes the monetary policy diminishing as

wage inflation increases. So accordingly the central bank raises interest rate slowly

when the monetary policy is very powerful but raises it more quickly when its real

effect on aggregate demand is weak.
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We can have a better understanding of the policy rule if we take both factors

into account. When observing low level of price inflation, the central bank could

extract a good signal about the demand shock Zt, but still raise the policy rate

slowly because the monetary policy has large real effects. In the intermediate region

of Πp
t , the monetary policy is less powerful but the central bank chooses to respond to

price inflation mildly because it now faces much more uncertainty. When Πp
t is high

enough, the corresponding monetary policy rises sharply as there is less uncertainty

now and the monetary policy is not so effective as it is in the low inflation regime.

2.7 Policy Comparison

In this section, we compare the optimal policy under partial information with

some alternative policy rules, a simple Taylor rule, “certainty equivalence” and a

“standard recipe" which can be seen as the expectation of the optimal policy rate

under the probability measure of exogenous shocks. We plot these policies in Figure

2.7.

A simple Taylor rule it = (Πp
t )
ω − 1 where ω = 1.5 captures how strongly the

central bank responds to the inflation. Compared with optimal policy, the Taylor

rule overreacts to price inflation and will lead to greater welfare loss as inflation gets

higher.

The “standard” recipe,plotted in green line, can be seen as the expectation of

the optimal policy rate under the measure of exogenous shocks

∫
(U∗

i + U∗
Πh

∗
i )fZ(z)fA(a)dzda = 0 (2.32)

One can find that its deviation from optimal policy becomes larger as inflation rate

moves to the two extremes, which is not surprising as the “standard” recipe fails to
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take into account the endogeneity of the signal.

The certainty equivalence means that the central bank still adopts the func-

tion form the optimal policy under full information but replace the realizations of

fundamental shocks with its best estimate, iCE = E[Zt]
β
− 1. One can find that the

“certainty equivalence" prescribes an almost linear policy rule, which will cause great

distortions in the middle region.

Figure 2.7: Policy comparison. Thick red line: R∗; blue line: simple Taylor
rule; dashed line: "Standard recipe", which treats signals to be exogenous; yellow
region: set of FI pairs (Πpt , it) for all possible realizations of (At, Zt); dotted line:

zero policy rate

2.7.1 The endogeneity of the signal

In this economy, the monetary policy aims for stabilizing demand shocks and

can be seen as a weighted average of the latter. On the other hand, price inflation,

the signal observed by the central bank is endogenous to the policy adopted, hence

the set of possible of realizations of fundamental shocks is shaped by the monetary
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policy. In Figure 2.8, we plot the possible realizations of demand shocks that are

consistent with the policy rules and the observations, represented by green color

bars. At each given level of price inflation observed (x-axis), the height of the green

bar represents the range of demand shocks could have been realized. The higher

(wider) the bar is, the greater uncertainty the central bank faces. When the signal

is taken as exogenous, policy choice has no effect on it and that is why we see a

rectangle in the middle panel. As for the optimal policy and “certainty equivalence"

principal, they have something in common: full revelation in extreme points, the

signal of highest and lowest price inflation. But in the intermediate level of price

inflation, the degree of uncertainty does not change much for the case of CE, in

contrast to the case of optimal policy.

2.7.2 Welfare

To further evaluate different policy rules, we now compute the unconditional

mean of welfare for each policy rule (denoted as W ) and their percentage differences

with the welfare in an economy where the nominal rigidity is absent (denoted as

Wflex), defined formerly as:

∆W = 100 · [exp(EWflex − EW )− 1] (2.33)

We can interpret this as a welfare loss from wage rigidity. The optimal policy under

full information achieves its first best and therefore has 0 welfare loss. Table (2.2)

presents the welfare loss for all the candidates policy rules under partial information.

One can find that the optimal policy rule performs much better than the alternative

choices.
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(a) Set of admissible demand shocks Z(Πp
t ,R∗(Πp

t )))

(b) Set of admissible demand shocks with “standard Recipe"

(c) Set of admissible demand shocks with “Certainty Equivalence"

Figure 2.8: Set of admissible demand shocks consistent with alternative policy
rules
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Table 2.2: Welfare loss

Full Information Optimal Certainty Equivalence Taylor Rule Standard Recipe

0 0.16 0.28 0.34 0.45

2.8 Serial correlated shocks

In our main example, the supply and demand shocks are independent identically

distributed. The assumption of i.i.d. process for the exogenous variables is made

for simplicity and illustrative purpose. To be consistent with empirical evidence, we

solve the optimal monetary policy with serial correlated fundamental shocks.

2.8.1 Optimal policy under full information

To be more precise, we now assume the supply shock At and demand shock Zt

follow the AR(1) process with non-stochastic means normalized to unity:

lnAt = ρa lnAt−1 + εa,t (2.34)

lnZt = ρz lnZt−1 + εz,t (2.35)

The autoregressive parameters, ρa and ρz, lie between zero and one. The inno-

vations, εa,t and εz,t are drawn from normal distributions of mean 0 and standard

deviations σa and σz.

Under rational expectations, one can find the dynamic IS curve and the new

Keynessian Phillips curve:

A1−ρa
t Z1−ρz

t

Ct
= β(1 + it)Et

exp(εz,t+1) exp(εa,t+1)

Ct+1Πw
t+1

(2.36)
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ϵχZ1−ρz
t C2

t

[At − Φ(Πw
t )]

2
+
(1 + τ)(1− ϵ)AtZ1−ρz

t

At − Φ(Πw
t )

−Z
1−ρz
t Φ′(Πw

t )Π
w
t

At − Φ(Πw
t )

+βEt
exp(εz,t+1)Φ

′(Πw
t+1)Π

w
t+1

Aρat exp(εa,t+1)− Φ(Πw
t+1)

= 0

(2.37)

The optimal policy under full information can be stated formerly as:

max
{it,Ct,Nt,Πw

t }
U(Ct, Nt;Zt) (2.38)

s.t. (2.14), (2.36), (2.37)

As shown in the appendix, the optimal policy sets Πw
t = 1 and it =

Z1−ρz
t

β
− 1.

2.8.2 Optimal policy under partial information

Note that the expectation part of the Phillips curve is not a constant any more

but depends on the supply shock At. We denote this part as F (At). The expectation

part of the IS curve is still a constant in equilibrium, which is denoted as G. Now

one can find the function mapping from the policy variable it to the signal Πp
t :

Πp
t = g(it, At, Zt) (2.39)

as an implicit function from:

Z1−ρz
t

β(1 + it)G
=

√
At(At − Φ(AtΠ

p
t ))(Φ

′(AtΠ
p
t )Π

p
t − (1 + τ)(1− ϵ))

ϵχ
− βF (At)(At − Φ(AtΠ

p
t ))

2

ϵχZ1−ρz
t

(2.40)

and the optimal policy problem under partial information can be stated as

max
R:P→T

E[U(it,Πp
t , At, Zt)] (2.41)
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s.t. (2.25), (2.39)

The optimal policy rule R∗ satisfies the first-order condition:

∫ +∞

−∞

U∗
i + U∗

Πg
∗
i

|g∗Z |
fZ(Z∗(Πp, a))fA(a)da = 0 (2.42)

To solve out the optimal policy, we use a linear function to approximate the ex-

pectation part in (2.40), i.e. F (At) ≈ F1 lnAt + F2 and then apply the following

algorithm:

Given the optimal policy under full information, iFI(A,Z) = Z1−ρz

β
− 1, one

can find the pairs (Πp, i) for all possible realizations of (A,Z). Since now we have

unbounded shocks At and Zt, the pairs (Πp, i) fill the whole R2 space. Then follow

the following steps:

Algorithm 2 (1) Discretize the set of possible values for Πp. Here we choose

to discretize the interval A = [exp((1− ρa)at−1 − 3σa), exp((1− ρa)at−1 + 3σa)];

(2) Guess an initial value for G and F1, F2, denoted as G0 and F 0
1 , F

0
2 ;

(3) Taking G = G0 and F1 = F 0
1 , F2 = F 0

2 , for each value Πp on the grid created in

step 1, one can find the value i∗ that solves the non-linear equation

∫
A

Ui(i∗,Πp, a, z∗) + UΠ(i∗,Πp, a, z∗)gi(i
∗, a, z∗)

|gZ(i∗, a, z∗)|
fZ(z

∗)fA(a)da = 0 (2.43)

where z∗ denote the value of z solving the equation Πp− g(i∗, a, z) = 0 at a given a;

(4) Given the policy rule found in step 3, one can find the updated value for G and

F1, F2, denoted as G′ and F ′
1, F

′
2; If |G− G0| < ε and |F1 − F 0

1 | < ε, |F2 − F 0
2 | < ε,

where ε is the convergence criterion, stop; If not, take G0 ← G′, F 0
1 ← F ′

1, F
0
2 ← F ′

2

and go back to step (3).
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2.8.3 Results

Now we show the computational solution of optimal policy under partial in-

formation when the shocks are serial correlated in Figure 2.9. The yellow region

Figure 2.9: Optimal policy under FI and PI. Thick red line: R∗; yellow region:
set of FI pairs (Πpt , it) for all possible realizations of (At, Zt); black dashed line:

zero policy rate

represents the set of all equilibrium pairs (Πp
t , it) that could have been realized un-

der full information as before. Recalling that all equilibrium pairs (Πp
t , it) consist of

a rectangle when shocks are uniformly distributed. But this is not the case when

we have serial correlated shocks. Now the equilibrium pairs (Πp
t , it) fill the whole R2

space. For convenience, we plot the area when εa,t and εz,t falls within 3 standard

deviations of their mean 0.

One can find that the optimal policy rate is still an increasing function of price

inflation as before. This is because higher price inflation signals higher demand

shock unambiguously as the i.i.d. case and the monetary policy aims for stabilizing

the demand shock. The non-linearity of the policy rule can also be attributed to the
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changing nominal rigidity and uncertainty along the Phillips curve and lead inertial

behavior responding to low inflation and strong reaction to high inflation.

2.9 Conclusion

This paper explicitly analyzes the optimal monetary policy with signal extrac-

tion in a non-linear model with asymmetric wage adjustment cost. We find that

the asymmetric wage adjustment cost and the signal endogeneity are the two forces

shaping the responsiveness of policy rate to price inflation. The asymmetric wage

adjustment cost changes the effectiveness of the monetary policy along the Phillips

curve via changing the nominal rigidity. The signal endogeneity changes the central

banks certainty level about the economy as the price inflation varies. These two

factors make the monetary policy exhibits non-linear behavior.





Chapter 3

Optimal Fiscal Policy with Ricardian

and Hand-to-mouth Agents

3.1 Introduction

How should a government use the fiscal instruments when faced with shocks

to the government expenditure? Ramsey optimal tax theory gives two important

insights into this question: taxes on labor income should be smoothed and govern-

ment should issue bonds to buffer the shocks (Barro (1979); Lucas Jr and Stokey

(1983); Kingston (1991); Zhu (1992)), while long- run capital tax should be set to

zero (Chamley (1986); Judd (1985)). These cornerstone results are all based on

the assumption of a representative agent in the economy. Therefore they are all

forward-looking and supposed to adjust their consumption and labor supply based

on the tax and interest rates. However the strong response of aggregate consumption

to interest rate changes that accounts for the large direct effects in representative

agent models is questionable in light of empirical evidence. Macro-econometric anal-

ysis of aggregate time-series data finds a much smaller sensitivity of consumption to

changes in the interest rate. The aggregate data should be viewed as generated by

37
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two types of agents: one forward-looking and consuming their permanent income;

the other, behaving impatiently and spending its current income (Campbell and

Mankiw (1989), Campbell and Mankiw (1991)).

If a significant fraction of agents are constrained in the financial markets, then

they will only adjust their consumption to tax changes but not to the interest rate.

Then what confidence can we have that tax recommendations obtained in a repre-

sentative economy can minimize the total cost of distortion? Because equating taxes

over time does not mean equating the marginal cost of distortions over time, which

is not optimal any more. Then what is the optimal fiscal policy in an economy with

forward-looking agents and hand-to- mouth agents? We try to answer this question

in this chapter.

The model economy is inhabited by agents that differ in their access to the

financial markets. Hand-to-mouth agents are constrained in the financial markets

while Ricardian agents are not. Lump-sum tax is ruled out. In the first scenario, we

study the optimal fiscal policy in an economy without capital described by Lucas Jr

and Stokey (1983). Government uses flat-rate labor income tax and state-contingent

bond to finance its expenditures. We find that, when government is not allowed to

levy discriminatory labor tax, the optimal tax rate is not constant any more, even if

we adopt the utility function that is homogeneous of consumption and labor supply

and generates perfect constant tax rate in the representative economy. We also

find that the more social planer cares about the hand-to-mouth agents, the more

positively the optimal tax rate responds to the government expenditure. Government

uses taxes to manipulate the prices of government bond and necessarily affects the

inter temporal budget constraints of the Ricardian agents. If government is sided

with the Ricardian agents, they will borrow at a low interest rate and lend at a high

rate and vice versa.
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In the second scenario, when capital is introduce to the model, we have inde-

terminacy of capital income tax and bond issuing. Follow Zhu (1992), we study the

ex-ante capital tax rate in this economy and find that the fluctuations of capital tax

is again captured by the equality condition of labor-income tax rates across agents.

My paper is related to two main strands of the literature. On the one hand,

the paper builds on the earlier literature on the optimal policy, including Lucas Jr

and Stokey (1983), Zhu (1992) ,Chari et al. (1994). The closest forebears to our

framework is Bassetto (2014). He studies how the relative political power of “tax-

payers” affect the fiscal policies of a country in peace time and war time. Werning

(2007) focuses on the distributional effects of distortionary taxes. In his paper,

the introduction of hand-to- mouth agents solves the indeterminacy problem arised

by lump-sum tax. On the other hand, the literature that links high MPC with

hand-to-mouth agents. Campbell and Mankiw (1989) provides empirical evidence

of the hand-to-mouth agents. Kaplan and Violante (2014) show that uninsurable

risk, combined with the co-existence of liquid and illiquid assets in financial portfo-

lios leads to the presence of a sizable fraction of poor and wealthy hand-to-mouth

households, as in the data. Cloyne et al. (2016) show that households with mortgage

debt exhibit large and significant consumption responses to tax changes.Debortoli

and Galí (2017) try to study the monetary transmission mechanism with a simple

two-agent economy.

The rest of the chapter proceeds as follows. In Section 2, we study the optimal

proportional labor tax in the complete market, which follows Lucas Jr and Stokey

(1983) in an economy without capital; In Section 3, we solve the model numerically.

In section 4, we study the optimal long run capital tax in a deterministic case

(Chamley (1986)) and stochastic case (Zhu (1992)) respectively. Section 5 concludes.
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3.2 The Model

We consider an economy with two types of households: The first type of house-

holds are hand-to-mouth. They have no access to the financial markets and consume

their after-tax labor income every period, which are denoted by “K”. The second

type of agent have full access to the financial markets, which are denoted by “R”.

Both types of households have the same preferences, which are given by a utility

function:

E0

∞∑
t=0

βtU(Ct, Nt) (3.1)

where Ct is consumption and Nt is labor supply. We adopt the following utility

function:

U(C,N) = u(Ct) + v(Nt) = log(Ct)−D
Nγ+1
t

γ + 1
(3.2)

so that the optimal labor tax rate is perfect constant in the representative agent

economy described by Lucas and Stokey(1983). It would be convenient for us to

compare the results.

The fraction of constrained households and unconstrained households are λ

and 1−λ respectively.The technology follows the same spirit of Lucas Jr and Stokey

(1983). Firms are operated in a perfect competitive market with linear production

function of labor input yt = f(lt) = lt. Let gt denote government purchases at time

t. Then the resources constraint is

gt + λCk
t + (1− λ)CR

t = λNK
t + (1− λ)NR

t (3.3)

The government could levy a proportional tax on the labor income τnt and issue

the government debt bgt (gt+1) contingent on future spending. I also assume that the

tax rate is constrained to be equal across both types of agents and the marginal tax
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rate is constant on all labor income. The government budget constraint is

gt + bgt−1(gt) = λτnt N
K
t + (1− λ)τnt NR

t +
∑
gt+1|gt

pt(gt+1)bt(gt+1) (3.4)

The hand-to-mouth agents’ budget constraint is:

CK
t = (1− τnt )NK

t (3.5)

The Recardian agents could buy state-contingent government bonds, so their

budget constraint is

CR
t + pgt (gt+1)b

R
t (gt+1) = bRt−1(gt) + (1− τNt )NK

t

Note that since the population of Ricardian agents is 1−λ, the bonds held by them

satisfies (1− λ)bRt = bgt .

3.2.1 Competitive Equilibrium and Ramsey outcome

The household first-order-condition require that the price of government bonds

satisfies

pgt (gt+1) = β
u′(CR

t+1(g
t+1))

u′(CR
t )

prob(gt+1|gt) (3.6)

and that taxes satisfy

1− τNt = −v
′(NR

t )

u′(CR
t )

= −v
′(NK

t )

u′(CK
t )

(3.7)

We use these expressions to eliminate the prices and taxes in the hand-to-mouth

agents’ budget constraints, i.e. CK
t = (1− τNt )NK

t = −v′(NK
t )

u′(CK
t )
NK
t

u′(CK
t )CK

t + v′(NK
t )NK

t = 0 (3.8)
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The special utility function (3.2) allows us to eliminate CK
t and solve NK

t ex-

plicitly from (3.8), which is invariant to tax rate change, NK
t = NK = D− 1

γ+1 . They

only adjust their consumption level to respond tax rate change. In other words,

their marginal propensity to consume (MPC) equals 1. Since markets are complete,

the Ricardian agents can choose their optimal contingent plans based on a single

Arrow-Debreu budget constraint:

E0

∞∑
t=0

βt[u′(CR
t )C

R
t + v′(NR

t )N
R
t ] = bR−1(g0)u

′(CR
0 ) (3.9)

where bR−1(g0) is the amount of government bonds held by each Ricardian agent and

the total quantity of government bond bg−1(g0) = (1− λ)bR−1(g0).

DEFINITION 1 Given initial bond holdings bR−1(g0) by the Ricardian agents,

a competitive equilibrium is a sequence of taxes τNt , prices {pgt (gt+1), wt}, and non-

negative quantities {cKt , NK
t }, {cRt , NR

t , b
R
t (gt+1)} such that

(i) hand-to-mouth agents choose {cKt , NK
t } to maximize their expected utility (3.2)

subject to the budget constraint (3.8), taking prices and taxes as given;

(ii)Ricardian agents choose {cRt , NR
t , kt bt(gt+1)} to maximize the same utility form

(3.2), taking {pgt (gt+1), wt} as given;

(iii) Firms maximize profits: the equilibrium wage wt = 1;

(iv) the government budget constraint (3.4) holds;

(v) markets clear: the resource constraints (3.3) hold for all periods t and histories

{gt}∞t=0.
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The Lagrangian for the Ramsey problem can be represented as:

L = E0

∞∑
t=0

βt{α[u(CK
t ) + v(NK

t )] + (1− α)[u(CR
t ) + v(NR

t )]

+ νt[u
′(CK

t )CK
t + v′(NK

t )NK
t ]

+ µt[u
′(CK

t )v′(NR
t )− u′(CR

t )v
′(NK

t )]

+ θt[gt + (1− λ)CR
t + λCK

t − (1− λ)NR
t − λNK

t ]

+ ϕ[u′(CR
t )C

R
t + v(NR

t )N
R
t − b−1(g0)u

′(CR
0 )]}

The government budget constraint is not explicitly included because it is redundant

when the agents’ budget constraints are satisfied and the resources constraint holds.

To avoid the time inconsistency problem and make model easier, I assume that

the outstanding government debt in the initial period b−1 is 0. So the first order

conditions for the Ramsey problem are:

[CK
t ] : αu′(CK

t ) + νt[u
′′(CK

t )CK
t + u′(CK

t )] + µtv
′(NR

t )u
′′(CK

t ) + λθt = 0 (3.10)

[NK
t ] : αv′(NK

t ) + νt[v
′′(NK

t )NK
t + v′(NK

t )]− µtu′(CR
t )v

′′(NK
t )− λθt = 0 (3.11)

[CR
t ] : (1−α)u′(CR

t )+ϕ[u
′′(CR

t )C
R
t +u

′(CR
t )]−µtv′(NK

t )u′′(CR
t )+(1−λ)θt = 0 (3.12)

[NR
t ] : (1− α)v′(NR

t ) + ϕ[v′′(NR
t )N

R
t + v′(NR

t )] + µtu
′(CK

t )v′′(NR
t )− (1− λ)θt = 0

(3.13)

We can solve the competitive allocation Ci
t , N

i
t , i = K,R as a function of gt and

ϕ from these four first order conditions and equations (3.3), (3.8) and (3.9) . That

means, if government purchases are equal after two histories gt and gt̃ for t, t̃ > 0,

i.e.,

gt+1 = gt̃+1
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then the Ramsey choices of consumption and leisure, {Ci
t+1, N

i
t+1} and {Ci

t̃+1
, N i

t̃+1
},

are identical, which asserts that the optimal allocation is a function of the currently

realized government purchases gt only and does not depend on the specific history

preceding realizations of gt. Combining Ricardian agents’ F.O.C.s (3.12) and (3.13):

(1− α)[u′(CR
t ) + v′(NR

t )] + ϕ[u′′(CR
t )C

R
t + u′(CR

t ) + v′′(NR
t )N

R
t + v′(NR

t )]

+µt[u
′(CK

t )v′′(NR
t )− v′(NK

t )u′′(CR
t )] = 0

(3.14)

and the equilibrium conditions of labor market 1 − τNt = −v′(N i
t )

u′(Ci
t)

for i = {N,K}.

One can find a more intuitive expression for the optimal tax rate. Assume first

µt = 0, so that government can levy agent specific tax, then the optimal taxation is

similar to the results in Lucas and Stokey economy:

τKt =
νt(1 + γ)

α

τRt =
ϕ(1 + γ)

1− α

i.e. the labor tax for Ricardian agents would still be a constant and the government

use tax only to adjust the hand-to-mouth agents’ consumption and labor supply.

But equation (3.7) imposes equality of labor-income tax rates across agents, so

the optimal tax rate is not constant any more and its volatility is captured by

the second line of equation (3.14), where µt is the Lagrange multiplier associated

with the equality constraint of labor income tax rate across 2 agents. Another

way to analyze the problem is to find out the competitive allocation associated

with a perfect constant tax rate. In this case, the hand-to-mouth agents achieves

perfect consumption and leisure smoothing. Considering the resources constraint
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(3.3) under this assumption:

gt + λCK + (1− λ)CR
t = λNK + (1− λ)NR

t

All the shocks of government expenditures would be born by the Ricardian agents,

which is not optimal from the perspective of a benevolent government.

3.3 Quantitative Analysis

3.3.1 Calibration

To provide a quantitative illustration of the role of heterogeneity, we consider a

calibration of the model where the share of hand-to-mouth agents is set to λ = 0.5,

following Campbell and Mankiw (1989). The parameter D is calibrated so that

in the non-stochastic steady state with government debt and deficit equal to zero,

the labor supply is 70 per cent of the time endowment.We assume the government

spending follows an AR(1) process:

gt = (1− ρ)ḡ + ρgt−1 + ϵt

The rest of the parameters are calibrated as following:

Table 3.1: Parameters of 2-agents Model

Parameters Values
share of Keynessian agents λ 0.5
discount rate β 0.99
D 2
γ 1
time endowment 1
ḡ 0.175
ρ 0.95
variance of shock σ2(ϵ) 0.0122
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3.3.2 Fiscal policy of a benevolent government

First, we consider the fiscal policy of a benevolent government, which sets the

Pareto weight of different agents equal to their population share. Figure 3.1 shows

the simulated paths of government expenditures, competitive allocations and the

tax rate, in contrast to two alternative “extreme” policy: one is to balance the

budget period by period without issuing any bonds, the other is to impose a perfect

constant tax rate, as the government does in a representative economy. When the

Figure 3.1: Competitive allocations under alternative policies

government balances its budget constraints period by period, it cannot issue public

debt to buffer the expenditure shock. As a result, all the agents in the economy

would be hand-to-mouth and they work for a fixed amount of time every period.

In such an economy, the government expenditures perfectly correlate with tax rates

and consumption, positive and negative respectively. We would observe the most

volatile consumption in this no-bond world.
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Now let’s evaluate the constant tax rate policy. Since only a fraction of the

population could hold the public debt which helps to buffer the expenditure shock,

the government has to levy a slightly higher tax rate (0.2415-0.2398=0.0017) to

achieve perfect insurance. Why is it not optimal? Because the government could

use tax rate to change states prices and distribute the distortions more evenly across

time. When the expenditure is high, government lowers labor tax rate and encourage

the Ricardian agents to work more and lowers state price. That’s why we could

observe more volatile labor supply of the Ricardian agents when government adopt

the optimal policy.

3.3.3 Debt or tax? a redistribution concern

Government will choose different strategies to buffer the expenditure shock when

it favors different agents. Since only the Ricardian agents hold public debt, the

government could affect their welfare by distorting the state prices when they save

or disave. We can define the Ricardian agents’ net savings as

St = (1− τt)NR
t + bt−1(gt)− CR

t

If the government sides with the Ricardian agents, it increases the state prices when

Ricardian agents save (St > 0) and lowers state prices when St < 0, i.e. the Ricardian

agents sell high and buy cheap. In Figure 3.2, I plot the reaction functions when

the government put different weights on the agents. α is the Pareto weight on the

hand-to-mouth agents. Lower α (yellow line) corresponds to the policy beneficial to

the Ricardian agents, who save when the government expenditure gt is low and vice

versa. One can find that the consumption of Ricardian agents is relatively low when

they save, which means higher state price determined by u′(CR
t ) of their savings.
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The implication of fiscal policy here is that the government employs taxes to distort

inter-temporal prices to affect agents’ wealth.

Figure 3.2: Reaction functions with different Pareto weights

3.4 Extensions to an economy with capital

This section extends the analyses of Ramsey taxation to an economy with capi-

tal accumulation. I use a stochastic version of a one-sector neoclassical growth model

in discrete time and infinite horizon. The households’ preferences are ordered by:
∞∑
t=0

∑
gt

βtπt(g
t)(u(Ct) + v(Nt)) (3.15)

We follow the same spirit before: the hand-to-mouth agents have no access to the

financial markets and could only consume their after-tax labor income in each period.

The Ricardian agents could either buy government bonds or invest in the capital

market.

3.4.1 Endowment and Technology

The Ricardian agents bring the initial capital k−1 to this economy and they

supply labor together with the hand-to-mouth agents to the production firm. There
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is only one final good which can be either consumed or invested. The production

function is constant to scale:

yt = F (Kt−1, Nt)

There is a government in this economy and the government expenditure in units of

consumption good in period t is denoted by gt, which is assumed to be an exogenous

stochastic process and the only source of uncertainty. The technology constraint

follows:

λCK
t +(1−λ)CR

t + gt+(1−λ)(kt− (1− δ)kt−1) = F ((1−λ)kt−1, λN
K
t +(1−λ)NR

t )

(3.16)

where δ is the depreciation rate of capital.

There are three perfectly competitive markets in the economy: the labor mar-

kets, the capital market, and the government bond market. The firm rents capital

from consumers and the government trades one-period state-contingent claims with

consumers. Given the government expenditure {gt}∞t=0, the government finances its

exogenous purchase and debt obligation by levying flat-rate taxes on earnings from

capital labor, at rates τKt and τNt respectively, and by issuing state-contingent bonds.

I also assume that the tax rate in labor income is constrained to be equal across

agents. Then the government budget constraint follows:

gt + bgt−1(gt) = τNt wt(λN
K
t + (1− λ)NR

t ) + τKt−1rt(1− λ)kt−1 +
∑
gt+1|gt

pgt (gt+1)b
g
t (gt+1)

(3.17)

The timing of trading is a crucial issue in this economy. In period t = 0,

the supply of capital is inelastic and the tax on the capital income is therefore not

distortionary. So the government wants to tax the capital income in the initial

period as heavily as possible to minimize distortion caused by other distortionary

taxes. If it happens that the revenue collected from this tax is big enough to finance
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all the current and future government expenditures, then there is no need to use

distortionary taxes. To make the exercise interesting we impose an upper bound on

the period 0 capital tax so that the government does need to tax labor and capital

income in the future periods. To avoid policy indeterminacy, capital taxes are not

state-contingent but decided one period in advance. Only Arrow securities are used

to complete the markets.

The hand-to-mouth agents do not have access to capital markets and could only

consume their labor income, so their budget constraints remain unchanged:

CK
t = (1− τNt )wtN

K
t (3.18)

However the Ricardian agents’ sequential budget constraints follows:

CR
t +kt+

∑
gt+1|gt

pgt (gt+1)b
R
t (gt+1) = (1−τKt−1)rtkt−1+(1−τNt )wtN

R
t +(1−δ)kt−1+b

R
t−1(gt)

(3.19)

where (1 − λ)bRt (gt+1) = bgt (gt+1) and (1 − λ)kt = Kt, i.e. they have equal share to

the government bonds and the capital.

3.4.2 Competitive equilibrium

Firms Since the factors markets are perfectly competitive, the firm’s F.O.C im-

plies:

rt = FK((1− λ)kt−1, λN
K
t + (1− λ)NR

t ) (3.20)

wt = FN((1− λ)kt−1, λN
K
t + (1− λ)NR

t ) (3.21)

Households The households problem is to maximize their expected utility func-

tion under the budget constraints, the solutions are characterized by the following
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first order conditions:

(1− τNt )wt = −
v′(NR

t )

u′(CR
t )

= −v
′(NK

t )

u′(CK
t )

(3.22)

pgt (gt+1) = β
u′(CR

t+1(g
t+1))

u′(CR
t )

prob(gt+1|gt) (3.23)

u′(CR
t ) = βEtu′(CR

t+1(g
t+1))[1 + (1− τKt )rt+1 − δ] (3.24)

Under complete market condition, the Ricardian agents budget constraints

could be summed into a single one:

E0

∞∑
t=0

βt[u′(CR
t )C

R
t + v′(NR

t )N
R
t ] = u′(CR

0 )[(1 + r0 − δ)k−1 + bR−1(g0)] (3.25)

where r̃ is the after-tax interest rate. The non-arbitrage condition implies

1 =
∑
gt+1|gt

pgt (gt+1)[1 + (1− τKt )rt+1(g
t+1)− δ] (3.26)

DEFINITION 3.3 Given initial capital and bond holdings {K−1, b−1(g0)}, a

competitive equilibrium is a sequence of taxes {τKt , τNt }, prices {pgt (gt+1), rt, wt}, and

non-negative quantities {cKt , NK
t }, {cRt , NR

t , kt} such that

(i) Hand-to-mouth agents choose {cKt , NK
t } to maximize their expected utility (15)

subject to the budget constraint (18) taking prices and taxes that satisfy (21) as

given;

(ii) Ricardian agents choose {cRt , NR
t , kt, b(gt+1)} to maximize their utility, taking

{pgt (gt+1), rt, wt} as given;

(iii) Firms maximize profits: the first-order conditions (20) and (21) hold;

(iv) Government budget constraint (17) holds;

(v) Markets clear: the resource constraints (16) hold for all periods t and histories
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{gt}∞t=0

3.5 Analytical results

To simplify the problem, we further assume b−1 = 0 and τK−1 = 0. The La-

grangian for the Ramsey problem is:

L = E0

∞∑
t=0

βt{α[u(CK
t ) + v(NK

t )] + (1− α)[u(CR
t ) + v(NR

t )]

+ νt[u
′(CK

t )CK
t + v′(NK

t )NK
t ]

+ µt[u
′(CK

t )v′(NR
t )− u′(CR

t )v
′(NK

t )]

+ θt[gt + λCK
t + (1− λ)CR

t + (1− λ)(kt − (1− δ)kt−1)

− F ((1− λ)kt−1, λN
K
t + (1− λ)NR

t )]

+ ϕ[u′(CR
t )C

R
t + v′(NR

t )N
R
t ]} − ϕk−1(FK,0 + 1− δ)u′(CR

0 )

The first order conditions for t > 0:

[CK
t ] : αu′(CK

t ) + νt[u
′′(CK

t )CK
t + u′(CK

t )] + µtv
′(NR

t )u
′′(CK

t ) + λθt = 0 (3.27)

[NK
t ] : αv′(NK

t )+ νt[v
′′(NK

t )NK
t + v′(NK

t )]−µtu′(CR
t )v

′′(NK
t )−λθtFN,t = 0 (3.28)

[CR
t ] : (1−α)u′(CR

t )+ϕ[u
′′(CR

t )C
R
t +u

′(CR
t )]−µtv′(NK

t )u′′(CR
t )+(1−λ)θt = 0 (3.29)

[NR
t ] : (1−α)v′(NR

t )+ϕ[v
′′(NR

t )N
R
t +v′(NR

t )]+µtu
′(CK

t )v′′(NR
t )− (1−λ)θtFN,t = 0

(3.30)

[kt] : θt − βEtθt+1(1 + FK,t − δ) = 0 (3.31)
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and t = 0:

[CK
0 ] : αu′(CK

0 ) + ν0[u
′′(CK

0 )CK
0 + u′(CK

0 )] + µ0v
′(NR

0 )u
′′(CK

0 ) + λθ0 = 0 (3.32)

[NK
0 ] : αv′(NK

0 )+ν0[v
′′(NK

0 )NK
0 +v′(NK

0 )]−µ0u
′(CR

0 )v
′′(NK

0 )−λθ0FN,0 = 0 (3.33)

[CR
0 ] :(1− α)u′(CR

0 ) + ϕ[u′′(CR
t )C

R
t + u′(CR

t )]− µ0v
′(NK

0 )u′′(CR
0 ) + (1− λ)θ0

− ϕk−1(FK,0 + 1− δ)u′′(CR
0 ) = 0

(3.34)

[NR
0 ] :(1− α)v′(NR

0 ) + ϕ[v′′(NR
0 )N

R
0 + v′(NR

0 )] + µ0u
′(CK

0 )v′′(NR
0 )− (1− λ)θ0FN,t

− ϕk−1FKN,0u
′(CR

0 ) = 0

(3.35)

[k0] : θ0 − βE0θ1(1 + FK,1 − δ) = 0 (3.36)

Steady state in the non-stochastic case Consider the special case in which

there exists a T ⩾ 0 for which gt = g for all t ⩾ T , i.e. no more uncertainties after

period T . Assume that there exists a solution to the Ramsey problem and that

it converges to a time-invariant allocation, so that C,N, k are constant after some

time. Then the steady state version of equation (3.31) implies:

1 = β(1 + FK − δ)

while the non-arbitrage condition for capital is 1 = β(1 + (1 − τK)FK − δ), so the

optimal capital tax in the long run is zero. Indeed it is not a surprising result if

we look at Judd (1985), where the agents are divided into two class. Capitalists

do not work and workers do not save. The result of this extreme case shows that
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the long-run capital tax should be zero even if the government only consider the

workers.

Ex-ante capital tax in the stochastic case We consider the capital tax that

is not contingent on the realization of current state but is already set in the previous

period. We define the ex-ante capital tax:

τ̄Kt+1 =
Etp

g
t (gt+1)τ

K
t+1rt+1

Etp
g
t (gt+1)rt+1

To study the ex-ante capital tax in a stationary equilibrium, we now assume that

the process {gt} follows a Markov process with transition probabilities π(g′|g) =

Prob(gt+1 = g′|gt = g). An economy converges to a stationary if the stochastic

process {gt, kt} is a stationary, ergodic Markov process on the compact set G × K

and the allocations can be described by time-invariant rule C(g, k), n(g, k), k′(g, k).

Propositon Let P∞(·) be the probability measure over the outcomes of the sta-

tionary equilibrium. If there exists a stationary Ramsey equilibrium allocation, the

ex-ante capital tax rate satisfies P∞(τK > 0) > 0 and P∞(τK < 0) > 0

Proof By the definition of ex ante capital tax:

τ̄Kt+1 ⩾ (⩽)0⇐⇒
∑
gt+1

pgt (gt+1|gt)τKt+1rt+1 ⩾ (⩽)0⇐⇒
∑
gt+1

pgt (gt+1|gt)[rt+1 + 1− δ] ⩽ (⩾)0

⇐⇒ u′(CR
t ) ⩽ (⩾)Etβu

′(CR
t+1)[1 + FKt+1 − δ]

(3.37)

From the first order condition of equation (3.29) and (3.30), we can solve

−θt =
(1− α)u′(CR

t ) + ϕ[u′′(CR
t )C

R
t + u′(CR

t )]− µtv′(NK
t )u′′(CR

t )

1− λ
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Define

Ht ≡
−θt

u′(CR
t )

=
1− α + ϕ(1− γC)

1− λ
− µtv

′(NK
t )u′′(CR

t )

(1− λ)u′(CR
t )

(3.38)

Then Equation (3.31) could be rewritten as:

u′(CR
t )Ht = βEtu

′(CR
t+1)Ht+1FKt+1 (3.39)

From the last equivalent condition of equation (3.37), we can get

Ht ⩾ (⩽)
Etωt+1Ht+1

Etωt+1

(3.40)

where ωt+1 ≡ u′(CR
t+1)(1 + FK,t+1 − δ)

Since a stationary Ramsey equilibrium has time-invariant allocation rule for

C,N, k, equation (3.37) could be rewritten as:

τ̄(gt, kt) ⩾ (⩽)0⇐⇒ H(gt, kt) ⩾ (⩽)

∑
gt+1

π(gt+1|gt)ωt+1(gt+1, k
′(gt, kt))Ht+1(gt+1, k

′(gt, kt))∑
gt+1

π(gt+1|gt)ωt+1(gt+1, k′(gt, kt))

≡ ΓH(gt, kt)

(3.41)

Here the operator Γ is a weighted average of H with the property that ΓH∗ = H∗ for

any constant H∗. Under some regularity conditions, H(gt, kt) attains its maximum

H+ and minimum H− in the stationary equilibrium. Follow Zhu (1992) proof, there

must exist a constant H∗ such that ΓH∗ = H∗

We can find that H consists of two part: the first part is a constant which

is identical to that in the representative agent economy and implies zero long-run

capital tax with probability 1; the second part comes from the equilibrium condition

of same proportional labor tax for the agents again, which makes the ex-ante capital

tax in the stationary economy fluctuate around 0. So if the planner are allowed to
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levy agent-specific proportional labor tax, the ex-ante long-run capital tax would be

zero.

3.6 Conclusion

When two types of agents co-exist in the economy, homogeneous labor tax rate

imposes an additional constraint to the government, apart from the implementability

and resources constraints. Then the optimal tax prescription of constant labor tax

and long-run 0 capital tax does not hold any more, which mirrors the classical result

that incomplete tax system overturns the uniform commodity taxation.



Chapter 4

Misuse of Geometric-decaying Bonds

in Sovereign Default Literature

4.1 Introduction

Short-term debt is often cast as the villain in sovereign debt crises, leaving the

economy to sharp swings in interest rates and rollover crisis. However, as docu-

mented by Broner et al. (2013), emerging markets actively shift to shorter-maturity

debt in a crisis and issue longer term debt in normal times. This favoritism towards

short-term debt during periods of crisis appears puzzling to economists.

So why do emerging economies borrow short term in financial stress time? A

spontaneous answer to this question is the relative cheaper borrowing cost associated

with short-term debt. When a country is in bad economic condition, its sovereign

debt depreciates, reflecting increasing default risk. Moreover the price of long-term

debt falls more than the price of short-term debt, shifting the sovereign debt issuance

to short term. There are two possible explanations for this relative price change in

financial stress time. The first one, proposed by Broner et al. (2013), argues that

shocks to lender’s risk aversion raise the risk premium on long-term bonds more than

57
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on the short-term bonds. The second one, proposed by Arellano and Ramanarayanan

(2012) and Hatchondo et al. (2016), highlights the role of long-term debt "dilution",

that is, new issuance reduces the value of outstanding stock of debt. Because of

the pari passu clause of the sovereign debt, a bondholder’s right to be repaid is not

subordinated to the rights of others. When issuing long-term debt, the borrower

cannot commit to a future sequence of debt issuances, and the probability of default

increases with these future issuances. When the creditors anticipate this lack of

commitment, the price of long-term debt effectively penalizes this “dilution” effect.

What needs to be noted here is that the “dilution” of long bonds cannot alleviate

the sovereign’s debt burden but only increase the borrowing cost associated with

long bonds. As long as the sovereign repays its debt, it needs to pay back the

predetermined coupons or par value of the bonds. Depreciation of long bonds does

not mean that it could repay less, on the contrary, is reflected in the issuance price,

leads to higher borrowing cost.

But how the literature quantifies the “dilution” effect is questionable. Specif-

ically, modelling long-term debts as a perpetual contract with geometric series of

coupons changes the payment structure of long-term debt and exaggerates this effect.

A typical long bond issued by emerging economies pays coupons (semi-)annually,

and the principal payments arrive at the predetermined maturity dates. Because

the coupon payments are much smaller than the principal, most long-term debt can

be roughly seen as zero-coupon bonds. The geometrical bond, however, does not

pay the principal but only a geometrical series of coupons. Such a payment schedule

makes the claims of geometrical bonds issued in different periods overlap with each

other, which means the claims of the new issuances crowd in to that of existing

debts and increase the default probability directly. But the principal payments of

long-term debts issued in different periods can be aligned to different periods. For

example, a 10-year bond issued in 2022 matures in 2032 and this year’s 10-year
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bond matures in 2033, which will not affect the default probability in 2022 directly

as the overlapping case of geometrical bonds. So sovereign debts issued with ordi-

nary instruments do not suffer so much as the geometric debt from the “dilution"

effect.

The other problem brought by this special payment schedule is maturity mis-

match between income process and liability process. The debt portfolio consists of

1-period short-term bond and geometric bond can only generate a descending debt

profile, i.e. the outstanding debt is a decreasing function of time to maturity and it is

front-loaded. But once the country is in recession, considering that GDP shocks are

highly persistent, the income is expected to be low in the near future and revert in

the far future, hence back-loaded. The mismatch between front-loaded liability and

back-loaded income process makes it harder for the country to smooth consumption

across states.

To illustrate how different debt instruments affect the emerging markets port-

folio choice, I employ a dynamic model to study the optimal maturity of sovereign

debt based on Arellano and Ramanarayanan (2012), which captures various essen-

tial elements of sovereign debt markets: an infinitely-lived sovereign with concave

utility borrows by short- and long-term debts in global financial markets. Investors

are risk neutral. The sovereign makes decisions sequentially, with no commitment

to its future actions. Importantly, this includes both its decision to repay or de-

fault and its debt management decisions. The country can default on debt at any

point in time but faces costs of doing so, in the form of lower income and exclusion

from international financial markets. When the sovereign is highly indebted, a risk

of default arises. In equilibrium, default tends to occur in low-income, high-debt

times, when the cost of debt payments outweighs the costs of default. Bond prices

are functions of the levels of each maturity of debt and income, which determine the

borrower’s probability of repaying in the future.
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When the government only issues 1-period bond and the geometric bond. The

price the latter is very sensitive and drops to zero quickly as the amount of issuance

grows when the GDP is low. As a result, the total amount of funds raised by issuing

long-term debt is very limited when the country is in recession.

But the pricing function of long-term debt looks totally different when the

government issues zero-coupon bond. It is still a decreasing function of the issuance

units, but less steep than before, which means the borrower can now raise more

funds. With different debt instrument, the default probability is smaller and the

sovereign’s expected utility is higher under the same calibration. Therefore geometric

bond actually makes the sovereign face more constraints in the financial market.

4.2 Model

The basic set-up for the model follows Arellano and Ramanarayanan (2012).

They model the long-term debt as geometric bond and I will show the case of zero-

coupon bond.

A small open economy receives a stochastic stream of income {y}∞t=0 with com-

pact support Y and follows a Markov process with transition function f(y, y′). The

representative in this economy has preference:

E0

∞∑
t=0

βtu(ct)

The borrower issues short- and long-term debt. Short-term debt is a one-period

discount bond. If the country defaults, all outstanding debt is erased but there

would be an output cost in the period of default:

ydeft =

 yt if yt ≤ (1− λ)y

(1− λ)y if yt > (1− λ)y
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where ȳ is the mean level of income. In addition the economy would temporarily

stay in financial autarky and θ is the probability that it could regain the access to

international financial markets every period. The state of the economy at time t is

given by (B, y).

4.2.1 Recursive Problem

we can define the economy’s optimal problem recursively:

v(B, y) = max
{c,d}
{vc(B, y), vd(y)} (4.1)

where vc is the value associated with not default and stay in the contract:

vc (B, y) = max
{c,B’}

[
u(c) + β

∫
y′
v(B′, y′)f (y, y′) dy′

]
(4.2)

where vd is the default value and irrelevant of the current period outstanding debt:

vd(y) = u
(
ydef

)
+ β

∫
y′

[
θv (0, y′) + (1− θ)vd (y′)

]
f (y, y′) dy′ (4.3)

Lenders are risk-neutral and the risk-less interest rate is r∗. So the short-term debt

price is

q1(B’, y) =
1

1 + r∗

∫
R(B’)

f(y, y′)dy′

where R(•) is the repayment set of y and defined as

R(B) = {y ∈ Y | vc(B, y) ⩾ vd(y)}

and the default set is the complement

D(B) = {y ∈ Y | vc(B, y) < vd(y)}
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when y ∈ R(B), optimal new issuance takes form B’ = B̃(B, y)

Geometric Bond If the sovereign’s debt instruments are 1-period bond and

geometric bond, the outstanding debt portfolio should read B = (bst−1, b
l
t−1). Let

the new issuance of geometric debt be lt, which pays δn−1lt units of consumption

goods in every future period t+n, then the total stock of long-term debt, conditional

on not defaulting, follows the law of motion:

blt = δblt−1 + lt

the sovereign’s budget constraint is

ct + bst−1 + blt−1 = yt + qst b
s
t + qltlt

the geometric bond price is defined

qlt(B’, y) =
1

1 + r∗

∫
R(B’)

1 + δqlt+1

(
B̃(B’, y), y′

)
f(y, y′)dy′

Zero-coupon Bond If both of the short- and long-term debts are zero-coupon

bonds with maturity 1 and L, then the outstanding debt portfolio should read B =

(b1t−1 + bLt−L, b
L
t−L+1, b

L
t−L+2, . . . , b

L
t−1). The time-flow budget constraint conditional

on not defaulting is :

ct + b1t−1 + bLt−L = yt + q1t b
1
t + qLt b

L
t

the long-term debt price could be written in recursive form as:

q2(B’, y) =
1

1 + r∗

∫
R(B̃(B′,y))

q1(B̃(B’, y), y′)f(y, y′)dy′
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q3(B’, y) =
1

1 + r∗

∫
R(B̃(B′,y))

q2(B̃(B’, y), y′)f(y, y′)dy′

. . .

qL(B’, y) =
1

1 + r∗

∫
R(B̃(B′,y))

qL−1(B̃(B’, y), y′)f(y, y′)dy′

Government dynamically chooses its policies without commitment. They can

default or issue new short and long bonds every period as a function of the pay-

off relevant variables only, i.e. the outstanding debts B and income shock y. The

government takes into account that its choices affect the future debt. Investors

rationally anticipate future policies and their expectation are in turn reflected in

current bond prices.

A Markov Perfect competitive equilibrium (MPCE) is a set of policy

functions for consumption c(B, y), default decision D(B, y) and repayment and is-

suance decision R(B, y), B’ = B̃(B, y) and price functions q(B’, y) such that

1. Given the bond price functions q1(B’, y), ql(B’, y), the policy functions D(B, y),

R(B, y), b′1 = b̃1 (B, y), b′l = b̃l (B, y) solve the borrower’s optimization problem (1),

(2) and (3);

2. The bond price functions satisfies the recursive form.

4.2.2 Equilibrium Condition

For simplicity, I assume the distribution function f is continuous and the bond

price functions and the value of repay vc are differentiable. The the first order

conditions w.r.t. short and long issuances are:

Zero-coupon case:

u′(ct)

(
q1t +

∂q1t
∂b1t

b1t +
∂qLt
∂b1t

bLt

)
= βEt

[
u′(ct+1)I{yt+1∈R(B’)}

]
(4.4)
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u′(ct)

(
qLt +

∂qLt
∂bLt

bLt +
∂q1t
∂bLt

b1t

)
+Et

L−1∑
k=1

[
βku′(ct+k)

(
∂q1t+k
∂bLt

b1t+k +
∂qLt+k
∂bLt

bLt+k

) k∏
j=1

I{yt+j∈R(Bt+j)}

]

= βlEt
[
u′(ct+L)

L∏
j=1

I{yt+j∈R(Bt+L)}

]
(4.5)

Geometric case:

u′(ct)

(
qst +

∂qst
∂bst

bst +
∂qlt
∂bst

lt

)
= βEt

[
u′(ct+1)I{yt+1∈R(B’)}

]
(4.6)

u′(ct)

(
qlt +

∂qlt
∂blt

lt +
∂qst
∂blt

bst

)
= βEt

[
u′(ct+1)(1 + δqlt+1)I{yt+1∈R(B’)}

]
(4.7)

The optimal maturity structure equates the marginal gain in utility from issuing

one more unit of debt at present to the marginal reduction in utility from repaying

in the future. The marginal gain from issuance looks similar: qmt is the funds raised

by issuing one unit of debt, ∂qmt
∂bnt

< 0 for m,n ∈ {1, L, s, l} captures how issuance

price changes with issuing quantity. The left hand side, as a whole, is the net effect

of issuing one unit of debt, measured by the marginal utility of consumption at time

t. One can find that the optimal conditions for short-term debt, Eq. (4.4) and (4.6),

look similar in two cases and they quantify the trade-off between utility gain from

issuance today t and disutility from repaying tomorrow t+ 1.

Eq. (4.7) gives us a hint on why geometric bonds are issued less in difficult

times. Comparing the RHS of Eq. (4.6) and (4.7), one can find that issuing more

debt not only shrinks the repayment set of R(B’), but also lowers the future price of

geometric debt qlt+1. Considering that the income process is persistent, lower income

shock today implies lower income tomorrow, hence higher u′(ct+1). The claims to

geometric debt is fixed 1 unit of consumption, lower qlt+1 only pushes the sovereign

to borrow at higher costs in bad states.
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Zero-coupon long bonds play a different role from others. On the one hand,

issuing zero-coupon long bond not only affect the bonds’ prices at current period

t, but also affect the issuance prices afterward before its maturity, from t + 1 to

t+L− 1, which is captured by the second line of Eq. (4.5). On the other hand, the

disutility of repayment is measured by u′(ct+L), which means the claims are aligned

to the far future, L periods later, when recover is more likely to happen than the

near future t+ 1.

The distinctive trade-offs of the geometric bond and zero-coupon bond shows

that geometric bond is a bad approximation for the long bond in maturity analysis

of sovereign debt, and I will show the numerical result in the following section.

4.3 Quantitative Analysis

Solving the long zero-coupon bond will encounter the dimensional curese, so

here we only solve an infinite horizon model with 1 period and 2 periods bond.

4.3.1 Calibration

We follow Arellano and Ramanarayanan (2012) to calibrate the parameters.

Table 4.1: Parameters

value Target
Risk-free interest rate r∗ = 3.2% U.S. interest rate
Borrower’s risk aversion σ = 2 Standard value
Stochastic structure ρ = .9, η = .017 Brazil GDP
Probability of Reentry θ = .17 Benjamin and Wright(2009)
Calibrated parameters:
Output after default λ = .045
Borrower’s discount factor β = .935 spread and volatility of trade balance
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4.3.2 Bond Prices and Policy Functions

First, I present the price functions of zero-coupon case in 3D model. Figure (4.1)

shows the zero-coupon bond price as a function of 1-period and 2-periods issuances,

controlling the current income shock y at high level and low level respectively. All the

functions decrease with respect to the issuance, reflecting higher default probability

when the debt burden is high.

(a) 1-period bond price q1(b1′, b2′, yhigh) (b) 1-period bond price q1(b1′, b2′, ylow)

(c) 2-period bond price q2(b1′, b2′, yhigh) (d) 2-period bond price q2(b1′, b2′, ylow)

Figure 4.1: Zero-coupon bond price

In Figure (4.2), I compare the price functions of zero-coupon bond with those

in geometric bond model. What Arellano and Ramanarayanan (2012) do is to show

a 2D graph, the short-term debt price as a function of short issuance, controlling

long-term issuance at 0; the long-term debt price against geometric bond issuance,
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controlling short-term issuance at 0. So I show the graph in the same way for

convenience. It is clear that the bond price depreciates more slowly as the issuance

units grow if the government issues zero-coupon bonds, which means lower borrowing

cost and default probability, 0.46% compared with 2.5% of geometric bond.

(a) 1-period bond price q1(b1′, 0), 0-coupon bond (b) 1-period bond price q1(b1′, 0), geometric bond

(c) 2-period bond price q2(b1′, b2′) (d) Geometrical bond price q2(0, b2′)

Figure 4.2: Price function comparison

The price functions for long bonds are totally different for the two cases, so do

the issuance strategies. I plot the policy function of short- and long-term issuances

as a function of short-term outstanding debt in Figure 4.3, controlling long-term

debt to be 0. One can find that geometric bond is hardly issued when the current

income yt is low. But when the debt instruments are zero-coupon bonds, both

short- and long-term debts are traded more in the markets. The optimal policy even
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prescribes to issue more 2-periods bonds when relatively high level of short-term

debt is matured.

(a) b1′(b1, 0), 0-coupon case (b) b2′(b1, 0), 0-coupon case

(c) b1′(b1, 0), geometric bond case (d) bl′(b1, 0), geometric bond case

Figure 4.3: Issuance Policy Functions

4.3.3 Highlight the constraints brought by geometrical bond

The reason why geometrical bond increase the sovereign’s borrowing cost and

default probability is that it actually brings more constraints for the borrower. In

real world, the fiscal authority can issue debts with different maturities, which can

be seen as a portfolio of multiple zero-coupon bonds, say b1, b2...bn chosen freely by

the government. Geometric bond actually imposes additional constraint on each

maturity, which must satisfy b1t = δb2t = δ2b3t ... = δnbnt . The issuance portfolio at

time t has n degrees of freedom without this constraint but now has only one degree
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of freedom if issued in geometrical bond. When the geometric bond is applied to

analyze the maturity structure of emerging market, it exacerbates two problems:

Maturity mismatch If a government is only allowed to issue 1-period short-term

debt and geometrical bond, the outstanding debt portfolio can only be a decreasing

function of time to maturity. Bt = (b1t + bLt , δb
L
t , δ

2bLt , ...δ
nbLt , ...), I plot this debt

profile in Figure 4.4. One can see that the debt burden is always front-loaded, which

means the sovereign can only borrow more from the near future than the far future.

This is not the way those emerging economies want to align their payments when

the economy is in recession. On the contrary, they want to borrow more from the

far future than the near future when the current GDP level is low because income

shocks are persistent and the recession is not likely to end in short time. But the

geometrical bond actually imposes the government to borrow more from the near

future than the near future, causing a mismatch between the maturity of debt and

income, hence increases the default probability and borrowing cost.

Figure 4.4: Outstanding debt as a function of time to maturity (2 units of 1-
period short-term bonds and 3 units of geometrical bonds)
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Overlapping of claims The second problem brought by the special payment

schedule of geometric bond is the overlapping of claims of old and new debt, which

makes new debt “dilutes" the existing debt directly. In table 4.2, I list the payment

schedules of geometric debts issued in periods t − 1 and t. One can find that the

geometric bond issued in period t needs to be repaid with the same schedule as

that issued in period t− 1, which means issuances at period t increases the default

probability of the bonds issued in t − 1 directly. Actually all the geometric bond

issuances overlaps, which means the long bonds issued in any period have to be

diluted by the later issuance.

Table 4.2: Payment schedule of geometric bond

Periods t− 1 t t+ 1 t+ 2 t+ 3 ...
Old Debt issue date 1 δ δ2 δ3 ...
New Debt issue date 1 δ δ2 ...

But the “dilution" effect of zero-coupon bonds is less severe. In Table 4.3, one

can find the payment schedule for a 10-year zero-coupon bond. The long bond issued

at period t−1 matures and needs to be repaid at t+9, the one issued 1 period later

is supposed to be repaid 1 period later. Such debt instrument enables the sovereign

to align the payments to different periods such that the claims of the later issuances

will not crowd in to the maturity date of the old debt. But this does not mean

the removal of “dilution" effect by issuing zero-coupon bonds. The effect still exists,

since the accumulation of debt maturing at t + 1 will lower the issuance price of

short-term debt at t, increasing the default probability at t indirectly.

Table 4.3: Payment schedule of zero-coupon bond

Periods t− 1 t ... t+ 9 t+ 10 ...
Old Debt issue date 0 0... 1 0 ...
New Debt issue date 0... 0 1 ...
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4.4 Conclusion

Geometric bond actually imposes additional constraints on government’s debt

issuance and will lead to greater default probability and welfare loss. The special

payment schedule of it will exacerbate the debt “dilution" effect priced in long-term

debt. Although modelling long-term debt as geometric debt could circumvent the

curse of dimensionality in solving dynamic models, it is not sufficient to analyze the

maturity structure of sovereign debt. More persuasive theorem is needed to explain

why emerging economies borrow in short terms in financial stress time.
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