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Abstract

In autonomous driving, artificial intelligence (AI) processes the traffic environment
to drive the vehicle to a desired destination. Currently, there are different paradigms
that address the development of AI-enabled drivers. On the one hand, we find
modular pipelines, which divide the driving task into sub-tasks such as perception,
maneuver planning, and control. On the other hand, we find end-to-end driving
approaches that attempt to learn the direct mapping of raw data from input sensors
to vehicle control signals. The latter are relatively less studied but are gaining
popularity as they are less demanding in terms of data labeling. Therefore, in this
thesis, our goal is to investigate end-to-end autonomous driving.

We propose to evaluate three approaches to tackle the challenge of end-to-end
autonomous driving. First, we focus on the input, considering adding depth in-
formation as complementary to RGB data, in order to mimic the human being’s
ability to estimate the distance to obstacles. Notice that, in the real world, these
depth maps can be obtained either from a LiDAR sensor, or a trained monocular
depth estimation module, where human labeling is not needed. Then, based on
the intuition that the latent space of end-to-end driving models encodes relevant
information for driving, we use it as prior knowledge for training an affordance-
based driving model. In this case, the trained affordance-based model can achieve
good performance while requiring less human-labeled data, and it can provide in-
terpretability regarding driving actions. Finally, we present a new pure vision-based
end-to-end driving model termed CIL++, which is trained by imitation learning.
CIL++ leverages modern best practices, such as a large horizontal field of view and
a self-attention mechanism, which are contributing to the agent’s understanding of
the driving scene and bringing a better imitation of human drivers. Using training
data without any human labeling, our model yields almost expert performance in
the CARLA NoCrash benchmark and could rival SOTA models that require large
amounts of human-labeled data.

Key words: deep learning, autonomous driving, end-to-end, imitation learning,
multimodality, representation learning
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Resumen

En conducción autónoma, una inteligencia artificial (IA) procesa el entorno para
conducir el vehículo al destino deseado. En la actualidad, existen diferentes pa-
radigmas que abordan el desarrollo de conductores dotados de IA. Por un lado,
encontramos pipelines modulares, que dividen la tarea de conducción en subta-
reas como la percepción y la planificación y control de maniobras. Por otro lado,
encontramos enfoques de conducción extremo-a-extremo que intentan aprender
un mapeo directo de los datos en crudo de los sensores de entrada a las señales que
controlan la maniobra del vehículo. Estos últimos enfoques están relativamente
menos estudiados, pero están ganando popularidad ya que son menos exigentes en
términos de etiquetado manual de datos. Por lo tanto, en esta tesis, nuestro objetivo
es investigar la conducción autónoma basada en modelos de extremo-a-extremo.

Estudiamos tres aspectos. En primer lugar, nos centramos en los datos senso-
riales de entrada. Consideramos agregar información de profundidad como com-
plemento a la información de apariencia (imagen RGB), para así tener en cuenta la
capacidad del ser humano de estimar la distancia a los obstáculos. En el mundo
real, estos mapas de profundidad se pueden obtener de un sensor LiDAR o de
un modelo de estimación de profundidad monocular, de formar que, en ningún
caso, se necesita etiquetado manual de datos. En segundo lugar, basándonos en
la hipótesis de que el espacio latente de los modelos extremo-a-extremo codifica
información relevante para la conducción, usamos ese espacio latente como co-
nocimiento previo para entrenar un modelo de conducción basado en affordances.
Este modelo puede conducir correctamente, su entrenamiento requiere menos
datos etiquetados manualmente que los pipelines modulares, y mejora la inter-
pretabilidad de las maniobras ejecutadas. En tercer lugar, presentamos un nuevo
modelo de conducción de extremo a extremo basado en visión, denominado CIL++,
que se entrena mediante imitación. CIL ++ usa un campo de visión horizontal y
un mecanismo de auto-atención, que le ayudan a comprender mejor la escena
e imitar mejor a los conductores humanos. Así, usando datos de entrenamiento
sin etiquetado manual, CIL++ conduce casi al nivel de un experto, como demues-
tra en las pruebas CARLA NoCrash, rivalizando con modelos del estado del arte
que sí requieren grandes cantidades de datos etiquetados manualmente para su
entrenamiento.
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Palabras clave: aprendizaje profundo, conducción autónoma, modelos extremo-
a-extremo, aprendizaje por imitación, multimodalidad, representación del conoci-
miento
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Resum

En conducció autònoma, una intel·ligència artificial (IA) processa l’entorn per con-
duir el vehicle a la destinació desitjada. Actualment, hi ha diferents paradigmes
que aborden el desenvolupament de conductors dotats d’IA. D’una banda, trobem
sistemes modulars, que divideixen la tasca de conducció en sub-tasques com ara la
percepció i la planificació i control de maniobres. D’altra banda, trobem enfoca-
ments de conducció extrema-a-extrem que intenten aprendre un mapeig directe
de les dades en cru dels sensors d’entrada als senyals que controlen la maniobra
del vehicle. Aquests darrers enfocaments estan relativament menys estudiats, però
estan guanyant popularitat ja que són menys exigents en termes d’etiquetatge ma-
nual de dades. Per tant, en aquesta tesi, el nostre objectiu és investigar la conducció
autònoma basada en models d’extrem-a-extrem.

Estudiem tres aspectes. En primer lloc, ens centrem en les dades sensorials
d’entrada. Considerem afegir informació de profunditat com a complement a la
informació d’aparença (imatge RGB), per tenir en compte així la capacitat de l’ésser
humà d’estimar la distància als obstacles. Al món real, aquests mapes de profundi-
tat es poden obtenir d’un sensor LiDAR o d’un model d’estimació de profunditat
monocular, de formar que, en cap cas, no cal etiquetatge manual de dades. En
segon lloc, basant-nos en la hipòtesi que l’espai latent dels models extrem-a-extrem
codifica informació rellevant per a la conducció, fem servir aquest espai latent
com a coneixement previ per entrenar un model de conducció basat en affordances.
Aquest model pot conduir correctament, el seu entrenament requereix menys dades
etiquetades manualment que els sistemes modulars i millora la interpretabilitat de
les maniobres executades. En tercer lloc, presentem un nou model de conducció
extrem-a-extrem basat en visió, anomenat CIL++, que s’entrena mitjançant imitació.
CIL ++ utilitza un camp de visió horitzontal i un mecanisme d’auto-atenció, que
l’ajuden a comprendre millor l’escena i imitar millor els conductors humans. Així,
usant dades d’entrenament sense etiquetatge manual, CIL++ condueix gairebé al
nivell d’un expert, com demostra a les proves CARLA NoCrash, rivalitzant amb mo-
dels de l’estat de l’art que sí que requereixen grans quantitats de dades etiquetades
manualment per al seu entrenament.

Paraules clau: aprenentatge profund, conducció autònoma, models extrem-a-
extrem, aprenentatge per imitació, multi-modalitat, representació del coneixement
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1 Introduction

There is an increasing consensus about the need to progressively move towards new
models of mobility as a service, aiming at (1) reducing traffic accidents, congestion,
and pollution; (2) improving the mobility of temporary or permanent disabled
people, as well as the elderly; (3) achieving time efficiency when delivering goods
and transporting persons. Autonomous vehicles (AVs) are the core of such new
paradigms of mobility.

According to the Society of Automotive Engineers (SAE International), AVs are
mainly categorized into the following six levels:

• Level 0 - No Automation: driving is fully performed by humans;

• Level 1 - Driver Assistance: the vehicles have one automated system that helps
with steering or braking, but the vehicles are driven by humans;

• Level 2 - Partial Automation: the vehicles have advanced driving assistance
systems (ADAS) that can take steering, acceleration, and braking in certain
situations, but humans still are the drivers and should take over control if the
vehicles encounter situations that the automated systems cannot handle;

• Level 3 - Conditional Automation: the vehicles can perform most of the
driving, but human override is still required. Mainly this is designed for tasks
that do not require a lot of complex maneuvering, e.g., long highway driving;

• Level 4 - High Automation: the vehicles self-drive under specific circum-
stances. A human override is an option, but the vehicles are programmed to
stop themselves if the automatic driving systems fail;

• Level 5 - Full Automation: the vehicles fully perform the driving under all
conditions. No human attention or interaction is required, and the steering
wheel, brake/accelerator pedals are not even needed.

As of 2023, AVs operating at Level 3 and above remain a marginal portion of the
market.
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Chapter 1. Introduction

Developing AVs is a tremendous challenge involving multi-disciplinary topics,
e.g., cyber-security, vehicle-to-X communication, environment perception, loca-
lization, route planning, and maneuver control; all governed by ethical and legal
aspects. Focusing on the scientific-technical topics, one of the essential challenges
nowadays is how to exploit artificial intelligence (AI), in the form of machine/deep
learning, to efficiently process the vast amount of data for building up systems that
enable autonomous driving. Although some AVs were unveiled before the 1980s, it
was AI which made possible AVs with higher automation in the last three decades.

The first attempt at AI for autonomous driving can be traced back to the early
1980s, when Ernst Dickmanns and his team conducted self-driving experiments on
a Mercedes-Benz van named VaMoRs. VaMoRs was equipped with sensors and a
software system for translating sensory data into appropriate driving controls for
the steering wheel, throttle, and brake pedals. By 1987, it was capable of self-driving
at a speed of up to 96 kilometers per hour. In 1989, a model named ALVINN [131]
from Carnegie Mellon University (CMU) pioneered the use of neural networks to
predict steering for the task of the road following. In 1995, CMU NAVLAB completed
a cross-country journey for 3,100 miles, in which the 98% of the route was driven
autonomously. These models can be categorized as Level 1 since they only have one
automated system that helps with steering, while throttle and brake are still under
the control of human drivers for safety reasons. Another milestone of AI models
for AVs, named Stanley [171], came out in the second Defense Advanced Research
Projects Agency (DARPA) Autonomous Vehicle Challenge in 2005. Stanley relied on
a software pipeline with many individual modules powered by machine learning
techniques for intermediate tasks, e.g., finding the path, detecting obstacles, and
staying on the course while avoiding them. Stanley can be seen as an AV of Level
2 because it determined steering, throttle, and brake values for driving, but it can
only handle limited types of obstacles in static environments without interaction
with moving traffic. These pioneering works show the dawn of AI in autonomous
driving. Since that, AI has been the biggest force of breakthroughs in the creation of
AVs, drawing more interest and attentions on AVs of Level 3 or above.

1.1 Modular Pipeline and End-to-End

Accordingly, the research community is gradually exploring different approaches
for developing AI drivers. These approaches can be broadly summarized in two
paradigms, Modular Pipeline and End-to-End.

Modular Pipeline. The modular pipeline, which is also known as the perception-
planning-action pipeline, refers to a system that consists of clearly defined modules
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process

Figure 1.1: An autonomous driving system following the modular pipeline consists
of four modules: environmental perception and localization, global path planning,
local path planning, and control.

with particular responsibilities. More specifically, the system can be hierarchically
decomposed into four components [68], shown in Figure 1.1: (1) environmental per-
ception [57, 85] and localization: firstly, an AV should apprehend the environment
and localize itself; (2) global path planning: then, according to the starting location,
the road network should provide the best-planned route guiding the AV to the desti-
nation; (3) local path planning [6, 137, 177]: next, given the global planned route, a
set of continuous waypoints are generated taking into account the dynamic obsta-
cles and constraints to guide the future maneuver; (4) maneuver control [125, 153]:
finally, a control system (e.g., a PID controller) is designed for the execution of the
motion.

Just developing the environmental perception is already an especially complex
research topic, since we can find a plethora of associated sub-tasks, e.g., object
detection (2D image-based [110, 139, 140], 3D image-based [25, 117], 3D LiDAR-
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Figure 1.2: An end-to-end autonomous driving model takes images as input and
uses a neural network to directly output maneuver control signals for driving.

based [98, 135, 161, 190, 191, 201], and multimodal [10, 32, 51, 66, 96, 101, 129, 182]);
object tracking (image-based [18,36,115,132,156,180,184], multimodal [47]); traffic
sign recognition [203]; semantic segmentation (by class/category [111,122,195] and
object instances [13, 107, 174], usually based on images of the visual spectrum but
also on multimodal data [71,152]); monocular depth estimation [58,59,64,70]; stixel-
world representation (based on stereo images [12, 42, 78, 151], monocular [16, 23],
and multimodal [130]); as well as SLAM and place recognition [22, 33, 102, 136, 142,
158, 170, 193, 198, 202]. Apart from perception, there is also a plethora of different
approaches for motion planning with AI [6, 137, 163, 177].

All these sub-tasks are combined for building up the whole modular system
requiring great tuning and adaptation. On the one hand, this traditional divide-and-
conquer engineering principle holds its benefits of interpretability, i.e., being easier
to debug when unexpected failures occur in the system [168]. However, it usually
requires data from different modalities, which genuinely comes with a price of a
huge amount of cost and human effort on data labeling.

End-to-End. As an alternative to the modular pipeline, the end-to-end paradigm
has become another mainstream in the field of autonomous driving [20,28,38,40,80,
100,131,188,199]. This paradigm proposes to directly map the sensory inputs to the
maneuver control signals through a neural network, instead of using intermediate
modules to deal with specific tasks of perception, path planning, and vehicle control.
We show this paradigm in Figure 1.2. The outputs of the model will be the steering,
acceleration, and brake values that can be directly performed in actual driving.
These holistic sensorimotor driving models can be closer to human nature, since
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humans learn to perceive the environment and take actions simultaneously.
One obvious advantage of end-to-end models is that they are simpler and more

straightforward in training. Besides, the appealing advantage of this paradigm is
that the supervision required for training these models consists of the vehicle’s
state variables, which can be automatically collected from fleets of human-driven
vehicles without any need for human labeling. Due to the difficulty of interpreting
the relationship between image content and inferred driving actions, the reliability
of these models is controversial [44], which has become one of the main concerns.
In this thesis, we focus on this end-to-end paradigm.

1.2 Reinforcement and Imitation Learning

For an apprentice agent (i.e., an end-to-end model), its goal is to learn a policy
to accomplish a specific task. This policy refers to “what actions it should take,
given its current state and the state of the environment". For instance, in end-to-end
driving, the agent tries to learn a driving policy, i.e., given the observation from
the environment and vehicle’s state, how to control the steering wheel, throttle,
and brake pedals. In recent years, two strategies have been extensively studied for
apprentice agents to learn policies: Reinforcement Learning [29, 86, 128, 173, 199]
and Imitation Learning [28, 39, 80, 83, 126, 185]. Following reinforcement learning,
apprentice agents try to explore the policy in a self-discovery manner, while in
imitation learning, the agents try to mimic the behavior of expert agents who
provide demonstrations.

Reinforcement Learning (RL). It refers to an apprentice agent learning to perform
a task by making decisions and receiving feedback from its environment in the
form of a reward. Basically, most RL problems can be mathematically modeled as a
Markov Decision Process (MDP) [15], which is a mathematical framework describ-
ing a discrete-time stochastic control process. An MDP involves four elements:

• a set of agent states S;

• a set of actions A;

• a transition function providing the probability of reaching state st+1 from
state st as a consequence of action at ;

• a function providing a reward for the agent in case of reaching state st+1 from
state st as a consequence of action at .

In general, the transition and reward functions are often considered as modeling
the environment, since they govern its dynamics. Since these two functions are
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unknown, the apprentice agent needs to interact with the environment and estimate
the policy by trial and error. By maximizing the long-term cumulative rewards, the
agent iteratively fine-tunes the estimated policy to ultimately obtain an optimal
one.

Many agents trained with RL have already shown their potential of surpassing
human performance in several fields [29], e.g., robot manipulation [87, 121], game
playing [97, 116] and Go [159, 160]. However, in the field of autonomous driving,
most of the existing RL agents can only handle very simple scenarios or sub-tasks
[29]. We can find some works that focus on using RL to learn a policy for lane
following [90, 146], and also some works that aim at handling decision-making on
traffic light [30], as well as some works that put an effort on the control part [43,106].
RL models that are trained for end-to-end autonomous driving have not been
extensively studied so far.

One advantage of RL method is that the training of the agents does not rely
on expert data. Hence, they can bypass the pitfalls of dataset bias/distribution
shift [40] and causal confusion [44]. These RL-trained agents might explore more
innovative policies since even some dangerous cases that are out of the expert
data distribution can occur during training. Thus, RL allows apprentice agents to
explore new rules based on some concrete problems. In addition, it can be useful
when the task to be solved requires much more interaction with the environment.
However, RL comes with its challenges. Given the sparsity of the reward (e.g., we
only receive a reward when the game is won or lost), RL models usually require a
much larger amount of episodes for training, thus being more time-consuming. For
instance, AlphaGoZero [160] has gone through five million games of Go to beat the
human world champion. In addition, it is risky to train agents by trial-and-error,
specifically in more complex tasks such as robot manipulation and autonomous
driving. The high cost of maintenance and the lack of reproducibility are also the
major limitations of RL models. Moreover, sometimes it can be very hard, or even
impossible to manually design a reward function for certain environments.

Imitation Learning (IL). Unlike RL, IL does not need to specify an explicit reward
function to learn a policy. Instead, a set of demonstrations (i.e., observation-action
pairs) are provided by an expert agent, then the apprentice agent implicitly learns
the policy by mapping the observation to the action. Some previous works in
different domains, such as piloting an aircraft [148], robot manipulation [138, 165]
and autonomous driving [39,61,80,126] have shown that IL is a useful and promising
method that deserves further research.

IL does not face the issues of sparse rewards or manually defining an explicit
reward function to satisfy the desired behavior which can be extremely complicated
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in some scenarios. Certainly, the drawbacks of IL can not be ignored. As a data-
driven method, IL needs to address the dataset bias problem [40]. Specifically,
during training when the expert demonstrations are provided, the models try to
mimic the behavior of the expert agent only in universal samples, which makes it
hard to generalize well in rare cases for which demonstrations are not provided.

Collectively, there are two typical forms of IL that are highly mentioned [172]:
Behavior Cloning (BC) [147] and Inverse Reinforcement Learning (IRL) [120]. The
models trained via BC aim at directly learning the policy via the supervision of
expert demonstrations, without inferring an explicit reward function. Unlike BC,
IRL first leverages demonstrations to infer a reward function which is then used in
RL to learn the policy for generating the demonstrations. As its name suggests, IRL
is understood as the inverse of RL. This is because the goal of an RL model is to find
the optimal policy according to the rewards received from a reward function, while
in IRL, the optimal policy is provided in the form of demonstrations, and the goal
for the model is to recover the reward function. In other words, IRL can be seen as a
learning method in which a set of demonstrations from the expert are provided for
the apprentice agent to learn how to mimic the expert’s behavior. This is why IRL is
categorized as a form of IL.

After all, a part of IRL still involves RL, which means it is still expensive in
terms of computational time and safety because of the needed interaction between
the agent and the environment. Although some work [40, 143] have pointed out
that BC models can be unstable in performance due to the so-called covariate
shift problem [164], BC models hold obvious benefices such as simplicity (e.g.,
the training requires only demonstration data) and efficiency (e.g., no interaction
between the agent and the environment is needed), which makes this approach to
be more popular and studied for autonomous driving [39, 40, 145, 185, 186].

In recent years, Codevilla et al. [40] proposed to train an end-to-end autonomous
driving model by what they called conditional imitation learning (CIL). Specifically,
the model is trained by demonstrations based on expert driving, but, in addition,
the model is able to accept high-level commands such as turn left in the next
intersection, in order to be navigated toward the desired destination. In this thesis,
CIL is taken as the training approach for our proposals.

1.3 Supervision

Regarding the type of supervision required to train the deep models enabling au-
tonomous driving, we can find three cases: Pixel-based, Image-based, and Signal-
based. Figure 1.3 shows their differences.
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Figure 1.3: Three different levels of ground truth data used as supervision to train
deep models for autonomous driving. Top left: RGB image in a driving scene. Top
right: pixel-wise semantic supervision usually provided by human labeling. Bottom
left: Image-level driving affordances, also provided by human labeling. Bottom right:
supervision from vehicle signals, which can be automatically collected onboard,
thus not requiring offline human labeling.

Pixel-based Supervision. It refers to attaching supervision to each pixel/voxel of
the sensor raw data (images, point clouds, etc.) for training deep models, such as
semantic/instance segmentation [8, 54, 69, 108, 111, 169, 179, 194]. In autonomous
driving, examples are lane segmentation [5,119], pedestrian segmentation [109,175]
and dynamic objects tracking [103]. Sometimes this supervision is used just as an
auxiliary task for training models, for instance, for training sensorimotor models
[80, 199]. Although in practice, usually, the best performing models arise from
such pixel-based supervised training, this approach genuinely comes with a cost,
especially when we want to deploy the system in the physical world. In particular,
the data labeling is costly to collect and their accuracy is difficult to guarantee,
which has a great impact on training performance.

Image-based Supervision. Since densely human-labeled data is difficult to obtain,
some work [88, 91] focus on approaches that require sparser/weaker human label-
ing in the form of 2D bounding boxes, image tags, global constraints or scribbles
etc. This appealing idea has also inspired some work in autonomous driving. For
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instance, in [26, 150, 186], the authors propose image-based driving affordances as
labels to supervise a deep model in a direct perception approach, where an addi-
tional controller is then used for maneuvering an autonomous vehicle. Collectively,
such affordances can be understood as a relatively small set of interpretable vari-
ables describing events that are relevant for an agent acting in an environment [62],
which can bring better interpretability for a deep driving model. Compared to
pixel-based annotated data, to a certain extent, such image-based annotated data
indeed can ease the curse of human labeling.

Signal-based Supervision. In addition to the sensors used to access the envi-
ronment (e.g., cameras, LiDARs, etc), other onboard sensors (e.g., those providing
steering angle, acceleration/brake, waypoints, etc) can be used to supervise the
training of end-to-end models, which we term as signal-based supervision. In
autonomous driving [39, 80, 185, 199], these signal data monitor the interaction of
the driving expert and the AV. One typical example is CIL model, where the input
data are RGB images, speeds, and high-level commands, and the data used as super-
vision are control signals directly obtained from onboard sensors. It greatly reduces
the cost of human labeling, alleviating the problem of data hunger for training deep
models.

1.4 Waypoint-based and Action-based End-to-End

Regarding end-to-end autonomous driving models, the basic approach is to map
the raw images from RGB cameras to a low-level space. This output space can be
either a set of navigation waypoints or signals used to maneuver the vehicle. We
term these two kinds of methods as Waypoint-based End-to-End and Action-based
End-to-End.

Waypoint-based End-to-End. Waypoint-based end-to-end models are trained to
output a local trajectory indicating what waypoints in the next few time steps the
agent is supposed to follow. After that, with these predicted waypoints, additional
controllers are designed for further providing the proper control signals (i.e., steer-
ing, throttle, and brake) in driving. Several works [14, 27, 28, 35, 118, 133, 155] have
shown that this is a feasible method in autonomous driving. For instance, Chen et
al. [28] proposed to divide the training of an autonomous driving model into two
steps: first, a privileged agent who has access to bird-eye-view(BeV) information of
the environment was trained to predict some sets of waypoints according to differ-
ent commands. These corresponding waypoints are given to a low-level controller
to output the control signals. Then, the sensorimotor agent received RGB images
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from a forward-facing camera and produced waypoints in the reference frame of
the RGB camera, then, these waypoints are projected into the vehicle’s coordinate
frame and passed to a low-level controller.

On the one hand, this approach holds the benefit of taking into account short-
term time-series information (i.e., the trajectory prediction usually consists of
waypoints in a few future time steps), which provides the flexibility of adjustment.
For instance, an error correction system for future steps can be properly designed
to prevent the agent from going out of track. Also, such a system can be easier to
interpret since it is divided into two modules: perception&planing and control.
Moreover, this system can be used together with multi-agent trajectory prediction,
in order to consider the interaction between dynamic objects. However, on the other
hand, this approach requires tuning additional controllers to follow the predicted
trajectory. Moreover, generating waypoints on BeV coordinates for supervising a
model, involves 3D knowledge of the scene.

Action-based End-to-End. Action-based end-to-end models output control sig-
nals which can act on the vehicle either directly or after some signal-stabilizer
filtering (e.g., using a PID) [17, 39, 40, 80, 105, 126, 185, 199], thus, following a more
pure end-to-end style. Action-based end-to-end models are usually simpler, and
more straightforward in data collection, training and actual driving, and they do
not require parameters tuning for extra controllers. However, these models lack
diagnosability when they deviate from the desired trajectory and lack predictability
since they cannot provide a sequence of output for the short-term future.

Given their pros and cons, in end-to-end autonomous driving, there is no
clear conclusion on which of these two approaches is better. In [181], both of
them are combined. The actions applied in driving are a weighted combination
of two output branches of the model: one for the control signals, and the other
for the waypoints that are further processed by a controller, in order to achieve
complementary advantages. In this thesis, considering the fact that the Action-
based End-to-End is closer to pure end-to-end driving, we focus on this approach.

1.5 Offline and Online Evaluation

Nowadays, we can find many public datasets in the field of autonomous driving, e.g.,
Cityscapes [41], KITTI [60], ApolloScape [81], nuScenes [24] and Waymo [53, 167],
involving sensor data such as RGB images, LiDAR and Radar point clouds. For some
perception tasks, the evaluation of the respective models can be satisfied using these
static datasets. For instance, for a model trained for pedestrian detection, we can use
the ground truth and the bounding box predictions on the static data to compute

10



1.6 Goal and Outline

the Average Precision (AP) and mean Average Precision (mAP), in order to know how
well the model is performing; for a model trained for road semantic segmentation,
we can use the pixel-wise ground truth and the segmentation predictions on the
static data to compute their overlap as a metric. In general, these evaluation metrics
are correlated to the performance of the model. This kind of evaluation allows us
to test the effectiveness of the model with static information, thus it can be named
Offline Evaluation.

However, to develop an end-to-end autonomous driving model, using static
datasets to assess models is not sufficient. This is because driving actions at time
step t might lead to different observations at time step t +n, which most probably
differ from those in the static datasets. In this case, defining evaluation metrics
using static datasets can not correlate well with actual driving performance [38].
Considering this, there are many works [27, 28, 39, 80, 155, 181, 185] rely on driving
simulators to assess the performance of end-to-end models, which is named as
Online Evaluation. In fact, even though the performance of individual modules
from modular pipelines can be assessed by offline evaluation, online evaluation is
still required to assess the driving performance of the full modular system.

As in many recent works on end-to-end driving [39, 80, 104, 105, 118, 141, 150,
178, 185, 199], all experiments in this thesis are conducted on the CARLA simulator
platform [50]. CARLA is an open-source simulator that provides training and testing
environments and facilities for developing autonomous driving systems. It includes
multiple towns with single- and multi-lane roads and supports various traffic con-
ditions (e.g., we can set a different amount of dynamic objects) and scenarios (e.g.,
we can define corner cases) under different lighting and weathers. Moreover, we
can generate a large range of available sensor data, which can be efficiently used
for initial experiments of the models that might be further developed in the physi-
cal world. With the development of the CARLA simulator, three benchmarks (the
CARLA original, NoCrash, and Leaderboard) have been presented for researchers to
compare their autonomous driving systems through Online Evaluation.

1.6 Goal and Outline

The overall objective of this thesis is to contribute to the research on pure vision-
based end-to-end autonomous driving leveraging the CIL model. This model was
trained in an end-to-end approach, using RGB images, speed, and high-level com-
mands as inputs, and control signals (i.e., steering, acceleration/brake) collecting
during expert driving as supervision. In this way, the training data does not re-
quire any human labeling, and the trained driving model is able to output control
signals that can directly maneuver the vehicle, without explicitly human-defined
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controllers. We leverage the simplicity of this end-to-end driving model, aiming at
improving its performance. In particular, our contributions are:

• Chapter 2: we address the question Can an end-to-end driving model be im-
proved by using multimodal sensor data over just relying on a single modality?
We assume color images (RGB) and depth (D) as single modalities, and RGBD
as multimodal data. Specifically, we explore RGBD from the perspective of
early, mid, and late fusions of the RGB and D modalities. The presented
results show that multimodal RGBD end-to-end driving models outperform
their single-modal counterparts. Moreover, early fusion shows better perfor-
mance than mid and late fusion schemes. In addition, multisensory RGBD
(i.e., based on camera and LiDAR) outperforms monocular RGBD; however,
we conclude that it is worth pursuing the special case of single-sensor multi-
modal end-to-end models.

• Chapter 3: we address the question Can an action-based end-to-end driving
model encode useful driving-related information in its latent space? We be-
lieve this encoded latent space may be an effective pre-training strategy for
learning a direct perception model. Specifically, we first train several kinds of
action-based end-to-end models as representation learning encoders. In the
second stage, these learned encoders are used to train deep models that focus
on predicting driving affordances, from which an additional controller was
designed to maneuver the AV. The presented results show that this strategy en-
ables a significant reduction in the number of human-labeled data required
to train an interpretable driving affordance model, thus, keeping a major
advantage of modular pipelines. Further, our approach improves over other
recent pre-training proposals such as contrastive methods and even over
ImageNet (supervised) pre-training. We also show that expert driving data
(i.e., coming from human drivers) is an important source for learning a good
representation. To the best of our knowledge, this work is the first to show that
expert demonstrations can act as an effective action-based representation
learning technique.

• Chapter 4: we address the question Can an end-to-end model be improved
by considering conditions closer to human driving? We propose a model
termed CIL++, which is improved on the basis of CIL, providing a new strong
pure vision-based end-to-end driving baseline. First, we drastically increase
the image view by using a horizontal field of view (HFOV) similar to human
drivers, which runs on 180◦ to 220◦. Further, we propose to use a visual
transformer [49] as a mid-level attention mechanism for associating feature
map patches across different views. These changes allow CIL++ to perform

12



1.6 Goal and Outline

at the expert level on the CARLA NoCrash benchmark. To the best of our
knowledge, CIL++ is the first pure vision-based end-to-end driving model
capable of obtaining competitive results on complex CARLA towns compared
to SOTA driving models that require large amounts of human-labeled data.

Finally, in Chapter 5, we draw the global conclusions arising from the whole
Ph.D. work and prospect future work.
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2 Multimodal End-to-End Autonomous Driv-
ing

2.1 Introduction

Autonomous vehicles (AVs) are core for future mobility. Along with many machine
learning techniques that have been proposed in the past few decades, developing
artificial intelligence (AI) for driving AVs is seen as a promising topic. Two main
paradigms are under research, namely, modular pipelines and end-to-end driving.

The modular paradigm attaches to the traditional divide-and-conquer engi-
neering principle since AI drivers rely on modules with identifiable responsibilities;
for instance, to provide environmental perception [57, 85], as well as route plan-
ning and maneuver control [125, 153]. As for the perception, it involves many
specific complex sub-tasks, including but not limited to semantic segmentation
[71, 111, 122, 152, 174, 195], monocular depth estimation [58, 59, 64, 70], object de-
tection [10, 101, 129, 135, 140, 191], tracking [18, 36, 47, 180, 184], SLAM and place
recognition [22, 33, 136, 158, 170, 193, 202] and traffic sign recognition [203], etc.

The end-to-end driving paradigm focuses on learning holistic models that are
able to directly map raw sensor data into control signals for maneuvering AVs
[20, 100, 131, 188], i.e., without forcing explicit sub-tasks related to perception or
planning. In other words, it advocates learning to perceive and act simultaneously,
as humans do. Such sensorimotor models are obtained through a data-driven
supervised learning process, which is characteristic of modern AI. End-to-end
driving models can accept high-level navigation commands [39, 82, 105, 178], or
be restricted to specific navigation sub-tasks such as lane keeping [34, 52, 83] and
longitudinal control [61].

Driving paradigms highly rely on convolutional neural networks (CNNs). In
this context, one of the main advantages of the modular paradigm is the ability to
explain the decisions of AI drivers in terms of its modules, which is more difficult
for pure end-to-end driving models [21, 93, 104]. However, developing some of the
critical modules of the modular paradigm requires hundreds of thousands of super-
vised data samples [79, 166], e.g., raw sensor data with ground truth (GT). Mostly
the GT is provided manually (e.g., human labeling of object bounding boxes [60],
pixel-level delineation of semantic classes [41]), thus being a major bottleneck
for this paradigm. Conversely, end-to-end approaches enable CNN-based mod-
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els to learn driving from raw sensor data (i.e., without human-labeled GT) and
associated supervision in terms of vehicle’s variables (e.g., steering angle, speed,
geo-localization, and orientation [113, 149, 188]); note that such supervision does
not require human intervention in terms of explicitly labeling the content of the
raw sensor data. Moreover, end-to-end models are demonstrating an unreasonable
effectiveness in practice [20, 34, 39, 61], which makes this research worthy of further
exploration.

Although AVs will be multisensory platforms, equipping and maintaining on-
board synchronized heterogeneous sensors are quite expensive nowadays. As a
consequence, most end-to-end driving models rely only on vision [20, 26, 34, 39, 61,
83, 100, 118, 150, 188, 192], i.e., which are visuomotor models. This idea is inherently
reasonable since human drivers mainly rely on vision. However, multimodality
has shown better performance in key perception sub-tasks such as object detec-
tion [10, 32, 65, 66, 96, 101, 129, 135, 182], tracking [47], and semantic segmenta-
tion [71, 152]. Thus, exploring multimodality for end-to-end driving is worthwhile.

Accordingly, in this chapter, we address the question Can an end-to-end driving
model be improved by using multimodal sensor data over just relying on a single
modality? In particular, we assume color images (RGB) and depth (D) as single
modalities, and RGBD as multimodal data. Due to its capability of accepting high-
level commands, this study is based on the CNN architecture known as conditional
imitation learning (CIL) [39]. We explore RGBD from the perspective of early, mid,
and late fusion of the RGB and D modalities. Moreover, as in many recent works
on end-to-end driving [39, 104, 105, 118, 141, 150, 178], our experiments rely on the
CARLA simulator [50].

The presented results show that multimodal RGBD end-to-end driving models
outperform their single-modal counterparts. Moreover, the early fusion scheme
shows better performance than the mid and late fusion schemes. In addition,
multisensory RGBD (i.e., RGB and D are from camera and LiDAR) outperforms
monocular RGBD (i.e., D is generated from a monocular depth estimation model);
however, we conclude that it is worth pursuing this special case of single-sensor
multimodal end-to-end models.

We present the work as follows: Section 2.2 reviews the related literature. Section
2.3 presents the used CIL architecture from the perspective of early, mid, and late
fusion schemes. Section 2.4 summarizes the experimental setting and the obtained
results. Finally, Section 2.5 draws the main conclusions and future work.
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2.2 Related Work

This section focuses on two main related topics: multimodal perception and end-to-
end driving models learned by imitation.

2.2.1 Multimodality

Object detection is one of the perception tasks for which multimodality has received
the most attention. Enzweiler et al. [51] developed a pedestrian detector using hand-
crafted features and shallow classifiers combined as a mixture of experts (MoE),
where multimodality relies on image luminance and stereo depth. Gonzalez et
al. [66] detected vehicles, pedestrians, and cyclists (vulnerable road users (VRUs)),
using a multimodal MoE based on space-time calibrated RGB and LiDAR depth.
Chen et al. [32] used calibrated RGB and LiDAR depth as input for a CNN-based
detector of vehicles and VRUs, which is a current trend [10, 32, 96, 129, 182]. Some of
these works are inspired by Faster R-CNN [140], since they consist of a first stage
for proposing regions potentially containing objects of interest, and a second stage
performing the classification of those regions to provide final object detection; i.e.,
following a mid-level (deep) fusion scheme where CNN layers of features from the
different modalities are fused in both stages [32,96,182]. Other alternatives are early
fusion at raw data level [129], the late fusion of independent detectors [10, 129], or
just using different modalities at separated steps of the detection pipeline [135].
Other approaches focus on multispectral appearance, as in Li et al. [101], where
different fusion schemes for RGB and Far Infrared (FIR) calibrated images are
compared.

All these studies and recent surveys [9, 55] show that detection accuracy in-
creases with multimodality. Therefore, more perception tasks have been addressed
under the multimodal approach. Dimitrievski et al. [47] proposed a pedestrian
tracker that fuses camera and LiDAR detections to solve the data association step
of their tracking-by-detection approach. Schneider et al. [152] proposed a CNN
architecture for semantic segmentation that performs a mid-level fusion of RGB
and stereo depth, leading to a more accurate segmentation of small objects. Ha
et al. [71] proposed a mid-level RGB and FIR fusion approach in a CNN architec-
ture for semantic segmentation. Piewak et al. [130] used a mid-level fusion of
LiDAR and camera data to produce a Stixel representation of the driving scene,
showing improved accuracy in terms of geometry and semantics of the resulting
representation.

In this chapter, rather than focusing on individual perception tasks such as
object detection, tracking, or semantic segmentation, we challenge multimodality
in the context of end-to-end driving, exploring early, mid, and late fusion schemes.
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2.2.2 End-to-End Driving

Three decades ago, Pomerleau et al. presented ALVINN [131], a shallow sensori-
motor neural network that was able to perform end-to-end road following without
obstacles in scene. ALVINN controlled a CMU’s van, NAVLAB, along a 400m straight
path at ∼ 2 Km/h and under good weather conditions. Although the addressed
scenario is extremely simple compared to driving in real traffic, it was already nec-
essary to simulate data for training the sensorimotor model. In fact, in their work,
camera images (30×32 pixels, blue channel) were already combined with laser
range finder data (8×32 depth cells) via an early fusion scheme. LeCun et al. [100]
trained an end-to-end 6-layer CNN for off-road obstacle avoidance using image
pairs (from a stereo rig) as input. Such CNN was able to control a 50cm-length
four-wheel truck, DAVE, for avoiding obstacles at a speed of ∼ 7 Km/h. During
data collection for training, the truck was remotely controlled by a human operator,
thus, the CNN was trained according to imitation learning (teleoperation-based
demonstration [7]). More recently, Bojarski et al. [20] developed a vision-based
end-to-end driving CNN which was able to control the steering wheel of a real car in
different traffic conditions. In this case, since throttle and brake are not controlled,
neither lane and road changing are considered, nor stop-and-go maneuvers.

These pioneering works inspired new proposals based on imitation learning
for CNNs. Eraqi et al. [52] applied vision-based end-to-end control of the steering
angle (neither throttle nor break), focusing on including temporal reasoning by
means of long short-term memory recurrent neural networks (LSTMs). Training
and testing were done in the Comma.ai dataset [149]. George et al. [61] applied
similar ideas for controlling the speed of the car. Xu et al. [188] presented the BDD
dataset and focused on vision-based prediction of the steering angle using a fully
convolutional network (FCN) and an LSTM, forcing semantic segmentation as an
auxiliary training task. Innocenti et al. [83] performed vision-based end-to-end
steering angle prediction for lane keeping on private datasets, and Chen et al. [34]
in the Comma.ai dataset.

Affordances have been proposed as intermediate tasks between environmental
perception and prediction of the vehicle control parameters [26, 150]. Affordances
do not need to solve perception sub-tasks such as explicit object detection, etc; but
they form a compact set of factors that influence driving according to prior human
knowledge. Chen et al. [26] evaluated them on the TORCS simulator [183], thus in
car racing conditions (no pedestrians, no intersections, etc.) under clean and dry
weather; while Sauer et al. [150] used the CARLA simulator, which supports regular
traffic conditions under different lighting and weather [50]. Muller et al. [118]
developed a vision-based CNN with an intermediate road segmentation task for
learning to perform vehicle maneuvers in a semantic space; the driving policy
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consists of predicting waypoints within the segmented road and applying a low-
level PID controller afterward. Training and testing are done in CARLA, but neither
other vehicles nor pedestrians are included. Using LiDAR data, Rhinehart et al.
[141] combined imitation learning and model-based reinforcement learning to
predict expert-like vehicle trajectories, relying on CARLA but without dynamic
traffic participants.

These end-to-end driving models do not accept high-level navigation instruc-
tions such as turn left at the next intersection (without providing explicit distance
information), which can come from a global planner or as voice commands from
passengers of AVs. Hubschneider et al. [82] proposed to feed a turn indicator in the
vision-based CNN driving model by concatenating it with features of a mid-level
fully connected layer of the CNN. Codevilla et al. [39] proposed a more concrete
method, in which a vision-based CNN consisting of two blocks: 1) an initial block
common to all navigation instructions for processing input and extract features;
2) a second block branched from the initial block according to a subset of navi-
gation instructions (at next intersection turn-left/turn-right/go-straight, or just
keep lane). In the first block, the state of the vehicle is also incorporated as part
of the mid-level feature of the CNN; in particular, the current speed is encoded
since it highly relates to the output of steering angle, throttle, and break (Yang et
al. [192] have reported the usefulness of speed feedback in end-to-end driving). The
overall approach is termed Conditional Imitation Learning (CIL). Experiments were
performed in CARLA for different traffic situations (including other vehicles and
pedestrians), lighting, and weather conditions. There are many works leveraged
from CIL, such as Muller et al. and Sauer et al. that we mentioned above. Apart
from them, Liang et al. [105] used CIL as an imitation learning stage before refining
the resulting model by applying reinforcement learning. Wang et al. [178] used
CIL incorporating ego-vehicle heading information at the same CNN-layer level
as speed. All these works focus on vision-based end-to-end driving. In our work,
we explore multimodal end-to-end driving based on RGB and depth, which can be
complementary to most of the cited papers. Without losing generality, we chose
CIL as the core CNN architecture due to its effectiveness and increasing use.

Focusing on multimodality, Sobh et al. [162] used CARLA to propose a CIL-based
driving approach modified to process camera and LiDAR data. In this case, the
information fusion is done by a mid-level approach; in particular, before fusion,
RGB images are used to generate a semantic segmentation which corresponds
to one of the information streams reaching the fusion layers, and there are two
more independent streams based on LiDAR, one encoding a bird view and the
other a polar grid mapping. Khan et al. [92] used CARLA to propose an end-to-end
driving CNN based on RGB and depth images, which predicts only the steering
angle, assuming that neither other vehicles nor pedestrians are present. In the first
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Figure 2.1: CIL architecture: vehicle maneuvers (actions) in the form of the triplet <
steering angle, throttle, brake>, depend on a high-level route navigation command
(branch selector) running on turn-left, turn-right, go-straight, continue , as well as
observations in the form of perception data (e.g., an RBG image) and vehicle state
measurements (e.g., speed).

step, the CNN is trained by only depth information (taken as the Z-buffer produced
by UE4, the game engine behind CARLA). This CNN has an initial block of layers
(CNN encoder) that outputs depth-based features, which are later used to predict
the steering angle with a second block of fully connected layers. In the second step,
this angle-prediction block is discarded and replaced by a new fully connected one.
This new block relies on the fusion of the depth-based features and a semantic
segmentation produced by a new CNN block that processes the RGB image paired
with the depth image. During training, semantic segmentation is conditioned to
depth-based features due to the fusion block and back-propagation. This approach
can be considered a type of mid-level fusion.

In contrast to these multimodal end-to-end driving approaches, we assess early,
mid, and late fusion schemes without forcing intermediate representations which
are not trivial to obtain (e.g., semantic segmentation is an open problem in itself).
Moreover, we run CARLA benchmark [50], which includes dynamic obstacles (vehi-
cles and pedestrians) and generalization conditions (unseen town and weather).
We show that CIL with the early fusion scheme produces state-of-the-art results.

2.3 Multimodal Fusion

We first detail CIL [39], and then show how we adapt this model to leverage multi-
modal perception data.
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2.3.1 Base CIL Architecture

Figure 2.1 shows the CNN implementing CIL. The observations (the input of CIL)
are twofold, perception data, p, and vehicle’s state measurements, m. The action,
a (the output of CIL), consists of vehicle controls for maneuvering. CIL includes
a CNN block to extract perception features, P (p), and a block of fully connected
layers to extract measurement features M(m). A joint layer of features is formed by
concatenating P (p) and M(m), which is further processed by a new fully connected
layer to obtain the joint features J(<P (p), M(m)>), which is simplified as J(p,m).
So far, the processing of observations by the neural network is common to any
driving maneuver/action. However, many times, the autonomous vehicle reaches
ambiguous situations which require the incorporation of informed decisions. For
instance, when reaching a cross intersection, without incorporating a route nav-
igation command (e.g., from a global trajectory plan), the vehicle can only take a
random decision about turning or going straight. Thus, the end-to-end driving CNN
must incorporate high-level commands, c , such as ‘in the next intersection turn left’,
‘turn right’, or ‘go straight’. Moreover, a will take very different values depending on
c. Thus, provided c takes discrete values, having specialized neural network layers
for each maneuver can be more accurate. All this is achieved in the CIL proposal by
incorporating fully connected maneuver/action branches, Ac , selected by c (both
during CNN training and the actual driving test).

We follow the CIL architecture proposed in [39]. Therefore, p is an RGB image of
200×88 pixels and 8 bits at each color channel, m is a real value with the current
speed of the vehicle, and a consists of three real-valued signals which set the next
maneuver in terms of steering angle, throttle, and brake. The idea is to perform
vision-based end-to-end autonomous driving, as well as taking into account the
vehicle speed to apply higher/lower throttle and brake for the same perceived traffic
situation. In [39], the focus is on handling intersections, thus the considered c
values are {turn-left, turn-right, go-straight, continue}, where the last refers to just
keep driving in the current lane and the others inform about what to do when
reaching the next intersection. Accordingly, there are four branches Ac . If we term
by F the end-to-end driver, then we have F (p,m,c) = Ac (J(p,m)). We detail the
parameters of CIL in Table 2.1, which has the same architecture as the multimodal
model we term early fusion in this work.
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Input Output Num. of
Module Dimension Channels Kernels Stride Dropout

200 × 88 × M* 32 5 2 0.0
98 × 48 × 32 32 3 1 0.0
96 × 46 × 32 64 3 2 0.0
47 × 22 × 64 64 3 1 0.0

Perception 45 × 20 × 64 128 3 2 0.0
22 × 9 × 128 128 3 1 0.0
20 × 7 × 128 256 3 2 0.0
9 × 3 × 256 256 3 1 0.0
7 × 1 × 256 512 - - 0.0

512 512 - - 0.0

Measurement 1 128 - - 0.0
(speed) 128 128 - - 0.0

Join 512+128 512 - - 0.3

512 256 - - 0.5
Action Branch 256 256 - - 0.5

256 3 - - 0.0

512 256 - - 0.5
Speed Branch 256 256 - - 0.5

256 1 - - 0.0

Table 2.1: The parameters of original CIL network. Notice that the multimodal
model with the early fusion scheme has the same architecture as CIL, the only
difference being the input dimension.

2.3.2 Fusion Schemes

Figure 2.2 illustrates how we fuse RGB and depth information following early, mid,
and late fusion schemes. In addition to the parameters of the original CIL network
that we provided in Table 2.1 (which is the same as the multimodal model following
the early fusion scheme), we also detail the parameters of the other two schemes,
mid fusion and late fusion in Table 2.2 and Table 2.3, respectively.

*Depending on single- or multimodal input, dimension M could be either 3 (RGB only), 1 (Depth
only) or 4 (RGBD)
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Input Output Num. of
Module Dimension Channels Kernels Stride Dropout

200 × 88 × 3 32 5 2 0.0
98 × 48 × 32 32 3 1 0.0
96 × 46 × 32 64 3 2 0.0
47 × 22 × 64 64 3 1 0.0

Perception (RGB) 45 × 20 × 64 128 3 2 0.0
22 × 9 × 128 128 3 1 0.0
20 × 7 × 128 256 3 2 0.0
9 × 3 × 256 256 3 1 0.0
7 × 1 × 256 512 - - 0.0

512 512 - - 0.0

200 × 88 × 1 32 5 2 0.0
98 × 48 × 32 32 3 1 0.0
96 × 46 × 32 64 3 2 0.0
47 × 22 × 64 64 3 1 0.0

Perception (Depth) 45 × 20 × 64 128 3 2 0.0
22 × 9 × 128 128 3 1 0.0
20 × 7 × 128 256 3 2 0.0
9 × 3 × 256 256 3 1 0.0
7 × 1 × 256 512 - - 0.0

512 512 - - 0.0

Measurement 1 128 - - 0.0
128 128 - - 0.0

Join 512+512+128 512 - - 0.3

512 256 - - 0.5
Action Branch 256 256 - - 0.5

256 3 - - 0.0

512 256 - - 0.5
Speed Branch 256 256 - - 0.5

256 1 - - 0.0

Table 2.2: The parameters of multimodal CIL network following mid fusion scheme.

Early Fusion. With respect to the original CIL, we only change the number of
channels of p from three (RGB) to four (RGBD). The CIL network only changes the
first convolutional layer of P (p) to accommodate for the extra input channel, the
rest of the network is equal to the original.
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Mid Fusion. We replicate twice the perception processing P (p). One of the P (p)
blocks processes only RGB images, and the other one only has depth maps. Then,
we build the joint feature vector <P (RGB),P (D), M(m)> which is further processed
to obtain J (RGB,D,m). From this point, the branched part of CIL is the same as in
the original architecture.

Late Fusion. We replicate twice the full CIL architecture. Thus, RGB and depth
channels are processed separately, but the speed measurement is shared as input.
Hence, we run Ac (J (RGB,m)) and Ac (J (D,m)), and their outputs are concatenated
and further processed by a module of fully connected layers, the output of which
conveys the final action values. Note that this is a kind of mixture-of-experts ap-
proach, where the two experts are jointly trained.

As is common practice in the literature, we assume a pixel-level correspondence
of all channels and normalize all of them to be in the same magnitude range (we
normalize depth values to match the range of color channels, i.e., from 0 to 255).

2.3.3 Loss Function

Given a predicted action a, its ground truth ag t , and a vector of weights w, we use
the L1 loss ℓact (a,ag t ,w) = ∑n

i |wi (ai − ag t
i )|, with n = 3 (steering angle, throttle,

brake). Note that when computing a, only one Ac branch is active at a time. In
particular, the one selected by the particular command c that is associated with the
current input data (p,m). We make this fact explicit by changing the notation to
ℓact (a,ag t ,w;c).

In addition, as in other computer vision problems addressed by deep learn-
ing [48, 89], we empirically found that using multi-task learning helps to obtain
more accurate CIL networks. In particular, we add an additional branch of three
fully connected layers to predict current vehicle speed from the perception data
features P (p). This prediction relies on an L1 loss ℓsp (s, sg t ) = |s − sg t |, where s is
the predicted speed and sg t is the ground truth speed which, in this case, is already
available since it corresponds to the measurement used as input. Speed prediction
is only used during training.

Thus, all networks, i.e., both single- and multimodal, are trained according to
the same total loss:

ℓ(a,ag t ,w;c; s, sg t ) =βℓact (a,ag t ,w;c)+ (1−β)ℓsp (s, sg t ), (2.1)

where β is used to balance the relevance of ℓact and ℓsp losses.

†Depending on RGB or Depth input, dimension N could be either 3 (RGB) or 1 (Depth)
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Input Output Num. of
Module Dimension Channels Kernels Stride Dropout

200 × 88 × N† 32 5 2 0.0
98 × 48 × 32 32 3 1 0.0
96 × 46 × 32 64 3 2 0.0
47 × 22 × 64 64 3 1 0.0

Perception (RGB/Depth) 45 × 20 × 64 128 3 2 0.0
22 × 9 × 128 128 3 1 0.0
20 × 7 × 128 256 3 2 0.0
9 × 3 × 256 256 3 1 0.0
7 × 1 × 256 512 - - 0.0

512 512 - - 0.0
512 512 - - 0.0

Measurement (RGB/Depth) 1 128 - - 0.0
128 128 - - 0.0

Join (RGB/Depth) 512+128 512 - - 0.3

512 256 - - 0.5
Action Branch (RGB/Depth) 256 256 - - 0.5

256 3 - - 0.0

Join (Streams) 3+3 256 - - 0.0

256 128 - - 0.0
Final Action 128 128 - - 0.0

128 3 - - 0.0

512 256 - - 0.5
Speed Branch (RGB/Depth) 256 256 - - 0.5

256 1 - - 0.0

Join (Speeds) 1+1 256 - - 0.0

256 128 - - 0.0
Final Speed 128 128 - - 0.0

128 1 - - 0.0

Table 2.3: The parameters of multimodal CIL network following late fusion scheme.
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Figure 2.2: Network Architectures - we explore RGBD from the perspective of early,
mid, and late fusion of the RGB and Depth (D) modalities. (1) Early Fusion: the raw
RGB and D channels are concatenated as one input for the CIL architecture; (2) Mid
Fusion: intermediate CIL feature layers from RGB and D streams are fused; (3) Late
Fusion: the output (maneuver controls) of the RGB and D CIL streams are fused to
output the final values after further neural processing.

2.4 Experiments

We start by summarizing the environment we use for our experiments, i.e., CARLA
simulator in Section 2.4.1. Next, we describe the dataset we use for training our AI
drivers in Section 2.4.2, the training protocol that we follow in Section 2.4.3, and
the driving benchmark available in CARLA in Section 2.4.4. Finally, we present and
discuss the obtained results in Section 2.4.5.

2.4.1 Environment

In order to conduct our experiments, we rely on the open-source driving simulator
CARLA [50]. There are several reasons: 1) many previous works on end-to-end driv-
ing rely on CARLA [39, 104, 105, 118, 141, 150, 178], thus it facilitates the comparison
between our results and the previous literature; 2) developing AVs requires a lot of
supports from humans and material resources. In particular, for some dangerous
scenarios, directly collecting data or conducting experiments by human drivers in
the physical world are very risky, which encourages research that relies on simula-
tors for preliminary assessments; 3) it is demonstrated in [38] that current offline
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Figure 2.3: Bird-eye View road maps of Town 1 (left) and Town 2 (right).

Training Validation Testing
(dataset) (episodes) (episodes)

Wet cloudy noon
Soft rainy sunset
Clear noon

Towns
1 & 2

Clear after rain
Clear sunset
Heavy rain noon

Town 1

Towns
1 & 2

Table 2.4: Training, validation, and testing settings. Training is based on a pre-
recorded dataset. Validation and testing are based on actual driving episodes. Grey
means ‘not used’.

evaluation metrics (i.e., based on static datasets) for assessing end-to-end driving
models do not correlate well with actual driving, which is also observed in [17]. With
the above considerations, it is necessary to perform driving models in an onboard
driving regime, which is possible in a realistic simulator such as CARLA.

Briefly, CARLA (version 0.8.6) contains two towns, called Town 1 and Town 2
(Figure 2.3), which are based on two-directional roads (single-lane) with turns and
intersections, buildings, vegetation, urban furniture, traffic signs, traffic lights, and
dynamic objects such as vehicles and pedestrians. Town 1 deploys 2.9 km of road
and 12 intersections, while Town 2 contains 1.4 km of road and 8 intersections. The
different towns are set to be traveled under six different weather conditions (Figure
2.4): ‘clear noon’, ‘clear after rain’, ‘heavy rain noon’, and ‘clear sunset’, ‘wet cloudy
noon’ and ‘soft rainy sunset’.
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Figure 2.4: Top, from Town 1: clear noon (left) and clear after rain (right). Middle,
from Town 1: heavy rain noon (left) and clear sunset (right). Bottom, from Town 2:
wet cloudy noon (left) and soft rainy sunset (right).
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2.4.2 Training Dataset

In order to train our CNNs, we use the same dataset as in [38] which corresponds
to 25 hours of driving in Town 1, balancing weather conditions (Table 2.4). Briefly,
this dataset was collected by a hard-coded autopilot with access to all the privileged
information of CARLA required for driving like an expert. The autopilot kept a
constant speed of 35 km/h when driving straight and reduced the speed when
making turns. Images were recorded at 20fps from three cameras: a central forward-
facing one and two lateral cameras facing 30◦ left and right. The central camera
is the only one used for the actual driving test, while the images coming from the
lateral cameras are used during data collection and only at training time to simulate
episodes of recovering from driving errors as can be done with real cars [20] (the
protocol for injecting noise follows [39]). Overall, the dataset contains ∼ 2.5 millions
of RGB images of 800×600 pixels resolution, with associated ground truth (see Figure
2.5) consisting of corresponding images of dense depth and pixel-wise semantic
classes (semantic segmentation), as well as meta-information consists of the high-
level commands provided by the navigation system (continue in the lane, at next
intersection go straight/turn left/turn right), and the state measurements of the
vehicle such as speed, steering angle, throttle, and brake. In this work, we use perfect
semantic segmentation to develop an upper-bound driver. Since we focus on end-
to-end driving, the twelve semantic classes of CARLA are mapped to five which
we consider sufficient to develop such an upper-bound. In particular, we keep the
original road-surface, vehicle, and pedestrian, while lane-marking and sidewalk are
mapped as lane-limits (Town 1 and Town 2 only include two-directional (single-
lane) roads, separated by double solid lines), and the remaining seven classes are
mapped as other.

Focusing on depth information, as is common in the literature, we assume that
RGB images have associated dense depth information; for instance, Premebida et
al. [134] obtained depth information from LiDAR point clouds. In CARLA, the depth
ground truth is extremely accurate since it comes directly from the Z-buffer used
during simulation rendering. In particular, depth values run from 0 to 1,000 meters
and are codified with 24 bits, which means that depth precision is of ∼ 1/20 mm.
This distance range coverage and depth precision are far beyond what even active
sensors can provide. Therefore, we post-process depth data to make it more realistic.
In particular, we take as a realistic sensor reference the Velodyne information of the
KITTI dataset [60]. First, we trim depth values to consider only those within the 1
to 100 meters interval, i.e., pixels of the depth image with values outside this range
are considered as not having depth information. Second, we re-quantify the depth
values to have an accuracy of ∼ 4 cm. Third, we perform inpainting to fill in the
pixels with no information. Finally, we apply a median filter to avoid having perfect
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Figure 2.5: Top: original RGB image and semantic segmentation ground truth
(for the five considered classes); Bottom from left to right: CARLA depth ground
truth, post-processed to be closer to the capabilities of an active depth Sensor, and
monocular depth estimation from a model trained using such a depth.

depth boundaries between objects. The new depth images are used both during
training and testing. Figure 2.5 shows an example of a depth image from CARLA
and its corresponding post-processed version.

2.4.3 Training Protocol

All CIL models in this work rely on the same training protocol, partially following [39].
In all CIL models, original sensor channels (R/G/B/D) are trimmed to remove the
sky and very close areas (top and bottom part of the channels), and down-scaled to
finally obtain channels of 200×88 pixel resolution. In our initial experiments, we
found that traditional photometric and geometric recipes for data augmentation
were not providing better driving models, thus, we do not use them. Dropout is
not used in convolutional layers, while it is used in some fully connected layers as
detailed in Table 2.1, Table 2.2 and Table 2.3.

During the training, we use the Adam optimizer with 120 training samples per
iteration (minibatch), an initial learning rate of 0.0002, which decreased to half each
50K iterations. Minibatches are balanced in terms of per Ac branch samples. We set
w = (0.5,0.45,0.05) to weight the control signals (action) in the loss function. Action
and speed losses are balanced by β = 0.95. For selecting the best intermediate
model of a training run, we do 500K iterations monitoring a validation performance
measurement, VP , each 100K iterations (thus, five times). The intermediate model
with the highest VP is selected as the resulting model of the training run. Since CIL
models are trained from scratch, variability is expected in their performance. Thus,
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for each type of model, we perform five training runs, finally selecting the model
with the highest VP .

Using Table 2.4 as a reference, we define VP to balance training-validation
differences in terms of town and weather conditions. In particular, we use VP =
0.25Vw +0.25Vt +0.50Vw t ; where Vw is the success rate when validating in Town 1
and ‘soft rainy sunset’ weather (not included in training data), Vt is a success rate
when validating in Town 2 (not included in training data) and ‘clear noon’ weather
(included in training data), and Vw t stands for success rate when validating in
Town 2 and ‘soft rainy sunset’ (neither town nor weather is part of the training data).
Therefore, note that VP is a weighted success rate based on 75 episodes.

2.4.4 Driving Benchmark

CARLA was deployed as a benchmark with infrastructures for assessing the per-
formance of AI drivers [50], which has been widely used in the related literature.
For comparison, we test our models on the same benchmark. Four driving tasks of
increasing difficulty are defined:

• straight: the destination point is straight ahead from the starting point, with
no dynamic objects;

• one turn: the destination is one turn away from the starting point, with no
dynamic objects;

• navigation: the route of the episodes consists of more turns, with no dynamic
objects;

• navigation with dynamic obstacles: the route of the episodes consists of more
turns, as well as dynamic objects.

For each driving task, an AI driver is assessed over a total of ET driving episodes.
Each episode has different starting and destination points with an associated topo-
logical route. An episode is considered as successful if the AI driver completes the
route within a time budget. Collisions do not lead to the termination of an episode
unless the AV runs in time-out as a consequence. If we term as ES the total number
of successfully completed episodes by the assessed AI driver, then its success rate
is defined as 100× (ES /ET ). ET is determined by the selected town and weather
conditions.

Table 2.4 shows how the benchmark organizes towns and weather conditions
for training, validation, and testing. Irrespective of the town and weather, validation
and testing are always based on episodes, but not in pre-recorded datasets, while
training requires pre-recording a dataset. Validation is performed to select a driving
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RGB Active Estimation
D EF MF LF D EF

1 48 74 91 61 60 51 42
2 36 67 71 71 63 49 44
3 46 73 75 58 67 46 51
4 40 68 71 74 60 59 46
5 36 68 77 52 62 51 49

Table 2.5: VP for five training runs for RGB only, Depth (D) only, and RGBD com-
bined by early (EF), mid (MF), or late (LF) fusion. Depth: from an active sensor or
estimated from RGB images.

model among those trained as different trials from the same training dataset, while
testing is performed by actually running the benchmark for the selected models.

Regarding town and weather conditions, the benchmark establishes four main
town-weather blocks under which the four driving tasks need to be tested, assuming
25 episodes for each considered weather. Therefore, for each block, the ET value is
different as we can deduce from Table 2.4. In particular, these are the town-weather
blocks defined in the benchmark with their respective ET value:

• Training conditions.: driving (i.e., running the episodes) in the same condi-
tions as the training set (Town 1, four weather conditions), thus, ET = 100;

• New town: driving under the four weather conditions of the training set but
in Town 2, ET = 100;

• New weather: driving in Town 1 but under the two weather conditions not
seen at training time, ET = 50;

• New town & weather: driving in conditions not included in the training set
(Town 2, two weather conditions), ET = 50.

2.4.5 Experimental Results

We start the analysis of the experimental results from Table 2.5, which is produced
during training and selection of the best-trained CIL models. We focus first on
RGB data, as well as depth based on the post-processed CARLA depth ground truth,
termed here as active depth (Section 2.4.2) since its accuracy and covered depth
range is characteristic of active sensors (e.g., LiDAR). We see that the best (among
five training runs) validation performance VP is 48% when using RGB data only.
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Active Estimated
Task SS RGB D EF MF LF D EF

Training Conditions

Straight 98.00±1.73 96.33±1.53 98.67±1.53 98.33±0.58 92.33±2.08 99.00±0.00 92.33±1.15 97.33±1.15
One turn 100.00±0.00 95.00±0.00 92.00±0.00 99.00±0.00 91.67±2.08 90.33±0.58 84.67±1.15 96.33±1.53
Navigation 96.00±0.00 89.00±2.00 89.33±2.08 92.67±1.15 90.67±1.15 93.67±0.58 75.33±1.15 94.33±0.58
Nav.Dynamic 92.00±1.00 84.00±2.00 82.67±0.58 89.33±0.58 78.33±2.89 89.00±2.65 71.00±1.00 89.67±1.15

New Weather

Straight 100.00±0.00 84.00±0.00 99.33±1.15 96.00±2.00 94.67±3.06 96.00±0.00 92.00±2.00 84.67±1.15
One turn 100.00±0.00 76.67±4.16 94.67±2.31 94.67±2.31 94.00±2.00 92.00±2.00 93.33±2.31 80.67±1.15
Navigation 95.33±1.15 72.67±2.31 89.33±1.15 91.33±2.31 90.67±3.06 96.00±0.00 73.33±2.31 80.67±5.03
Nav.Dynamic 92.67±1.15 68.67±4.62 90.00±2.00 86.00±4.00 80.67±3.06 92.67±3.06 76.67±4.16 77.33±6.11

New Town

Straight 100.00±0.00 84.00±2.00 94.33±0.58 96.33±0.58 87.00±1.00 77.00±0.00 78.33±1.53 71.67±2.08
One turn 96.67±0.58 68.00±1.00 74.33±2.52 79.00±1.73 78.00±2.65 58.67±2.08 46.33±1.15 47.00±1.00
Navigation 96.00±0.00 59.67±3.06 85.33±1.15 90.00±2.00 80.67±0.58 52.33±0.58 45.67±3.06 46.67±3.06
Nav.Dynamic 99.33±0.58 54.33±3.79 70.33±1.15 84.33±2.52 73.67±2.52 55.67±2.31 44.33±2.52 46.67±4.04

New Town & Weather

Straight 100.00±0.00 84.67±1.15 97.33±1.15 97.33±2.31 88.67±1.15 97.33±1.15 78.00±0.00 89.33±1.15
One turn 96.00±0.00 66.67±4.62 72.67±1.15 82.67±2.31 69.33±3.06 67.33±2.31 62.67±1.15 64.00±3.46
Navigation 96.00±0.00 57.33±6.11 84.00±3.46 92.67±3.06 78.67±3.06 72.67±1.15 55.33±6.11 60.67±2.31
Nav.Dynamic 98.00±2.00 46.67±6.43 69.33±2.31 94.00±0.00 73.33±3.06 73.33±2.31 54.00±4.00 49.33±3.06

Table 2.6: Mean and standard deviation of success rates on the original CARLA
Benchmark, by running it three times. CIL based on perfect semantic segmentation
(SS) acts as an upper bound. Excluding SS, for models tested under the same envi-
ronment and traffic conditions, we show in bold the higher means and underline
similar success rates considering standard deviations as well.

Thus this corresponding CIL model is used as an RGB-based driver in the following
experiments. Analogously, for the case of using only active depth (D), the best
CIL reports performance of 74%. The best performances for early fusion (EF), mid
fusion (MF), and late fusion (LF) are 91%,74%, and 67%, respectively. Analogously,
the corresponding CIL models are taken as drivers for the following experiments.

Table 2.6 reports the performance of the selected models according to the orig-
inal CARLA benchmark. We have included a model trained on perfect semantic
segmentation (SS) according to the five classes considered for autonomous driving
(see Figure 2.5). This model is considered the upper-bound model. Indeed, its
performance is most of the time ≥ 96, reaching 100 several times. This also confirms
that provided there is a proper input, the CIL model is able to drive properly in
CARLA conditions. We can see that only active depth is already powerful informa-
tion for end-to-end driving, clearly outperforming RGB in non-training conditions.
However, in most cases, RGBD outperforms the use of only RGB or only D. The
clearest case is for new town and weather with dynamic objects, i.e., for the most
challenging conditions, where using only RGB as input reaches a success rate of
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Task MP RL CAL CIRL MT Active EF MP RL CAL CIRL MT Active EF

Training Conditions New Town

Straight 98 89 100 98 98 98.33±0.58 92 74 93 100 100 96.33±0.58
One turn 82 34 97 97 87 99.00±0.00 61 12 82 71 81 79.00±1.73
Navigation 80 14 92 93 81 92.67±1.15 24 3 70 53 72 90.00±2.00
Nav.dynamic 77 7 83 82 81 89.33±0.58 24 2 64 41 53 84.33±2.52

New Weather New Town & Weather

Straight 100 86 100 100 100 96.00±2.00 50 68 94 98 96 97.33±2.31
One turn 95 16 96 94 88 94.67±2.31 50 20 72 82 82 82.67±2.31
Navigation 94 2 90 86 88 91.33±2.31 47 6 68 68 78 92.67±3.06
Nav.dynamic 89 2 82 80 80 86.00±4.00 44 4 64 62 62 94.00±0.00

Table 2.7: Success rate comparison with previous methods (see main text).

Km per Event RGB Active D Active EF

Infraction
Sidewalk 0.86±0.10 35.80±1.30 16.76±5.54

Opposite lane 0.73±0.04 1.65±0.24 3.29±1.96

Driven Km (Perfect driving: 17.30 Km) 13.62±0.67 35.80±1.30 20.22±0.54

Table 2.8: Infractions on dynamic navigation in new town & weather.

46.67±6.43, and using only D as input reaches 69.33±2.31, but the multimodal one
following early fusion scheme achieves the success rate of 94.00±0.00. For a new
town (irrespective of the weather conditions) early fusion clearly outperforms mid
and late fusion. In any case, it is clear that multimodality improves CIL performance
with respect to a single modality, which is the main question we want to answer in
this work.

In order to further analyze the goodness of multimodality, we compare it to
previous single-modality methods (see Section 2.2). Not all the corresponding pa-
pers provide details about the training methodology or training datasets; thus, this
comparison is solely based on the reported performances on the original CARLA
benchmark and can only be taken as an additional reference about the goodness
of multimodality. Consider that early fusion is the smaller CNN architecture in
terms of parameters, thus, we take this model for comparison. Table 2.7 shows
the results. MP and RL stand for modular perception and reinforcement learning,
respectively. The reported results are reproduced from [50]. CAL stands for condi-
tional affordance learning and the results are reproduced from [150]. CIRL stands
for controllable imitative reinforcement learning and the results are reproduced
from [105]. Finally, MT stands for multi-task learning, and the results are repro-
duced from [104]. We see how, in the presence of dynamic traffic participants, the
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RGBD early fusion (with active depth) is the model with a higher success rate on the
original CARLA benchmark. On the other hand, such an early fusion approach can
be combined with CAL or CIRL methods, since they are totally compatible. We think
that this comparison with previous works reinforces the idea that multimodality
can help end-to-end driving.

Once it is clear that multimodality is beneficial for end-to-end driving, in this
context we can raise the question of Whether monocular depth estimation [64, 70,
112, 187] can be as effective as depth coming from active sensors? In the former
case, it corresponds to a multisensory multimodal approach, while the latter case
corresponds to a single-sensor multimodal approach in which both RGB and depth
come from the same camera sensor (depth is estimated from RGB). In order to carry
out a proof-of-concept, we use a monocular depth estimation model [70] (which
was a SOTA model at the moment of its publication) fine-tuned on the CARLA
training dataset. More specifically, the dataset used for training the multimodal
CIL models is also used to fine-tune our monocular depth estimation model, i.e.,
using the post-processed depth channels and corresponding RGB images. Figure
2.5 shows an example of monocular depth estimation.

Analogously to the experiments shown so far, we train a CIL model based on
the estimated depth as well as on the corresponding multimodal (RGBD) fusion. In
order to reduce the burden of experiments, we use early fusion since it achieves the
best performance for the active depth case. The training performances for model
selection can be seen in Table 2.5. We use the CIL models of VP 59% and 51%,
respectively. In validation terms, such performances are already clearly worse than
the analogous based on active depth. Table 2.6 shows the results of the original
CARLA benchmark. Indeed, these are worse than using active depth, however, when
remaining in the training conditions, monocular-based EF outperforms depth and
RGB alone, and in fact, shows similar performance as active depth. This is not the
case when we change from training conditions to the others, since monocular depth
estimation itself does not perform equally well in this case, and so happens to EF.
However, we think that this single-sensor multimodal setting is worth pursuing.
Moreover, although it is out of the scope of this work, we think that performing
end-to-end driving may be a good protocol for evaluating depth estimation models
beyond the static metrics currently used, which are agnostic to the task in which
depth estimation is going to be used. Note that even for evaluating the driving
performance of end-to-end driving models, it has been shown that relying only on
static evaluations may be misleading [17, 38].

Finally, for the RGB, Active D, and EF models, we assess additional infractions
for the new town and weather with dynamic objects. Table 2.8 shows the driven Km
per infraction of each model. Note that not all such infractions imply an accident
stopping the AV. For instance, the AV can run into an opposite lane a bit without
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crashing with other vehicles. As a reference, we also show the amount of driven
Km on which these measurements are based. All models are supposed to complete
the same testing routes (i.e., same total Km), termed as perfect driving in Table 2.8.
However, if a model fails to follow the right path at an intersection the route would
be recomputed, thus, it needs to drive more Km to reach the destination. On the
contrary, if it fails to complete the routes, the driven Km will be lower. We see that
RGB and Active EF models are not far, but Active D fails very much at taking the
right path at intersections. RGB performs the worst in all metrics. The Active D
model does not run over the sidewalk and uses the curbside as a cue, which also
helps with lane keeping except at intersections. Active EF shows a good equilibrium
between RGB and Active depth single-modality models.

2.5 Conclusion

In this chapter, we compare single- and multimodal perception data for end-to-
end driving. As for multimodal perception data, we focus on RGB and depth,
since they are usually available in autonomous vehicles through the presence of
cameras and active sensors such as LiDAR. As for the end-to-end driving model, we
use branched conditional imitation learning (CIL). Relying on a well-established
simulation environment, CARLA, we assess the driving performance of single-
modal (RGB, depth) CIL models, as well as multimodal CIL models according to
early, mid, and late fusion schemes. In all cases, the depth information available in
CARLA is post-processed to obtain a more realistic range of distances and depth
accuracy. This depth is also used to train a depth estimation model so that the
experiments cover multimodality not only based on a multisensory setting (RGB
and active depth) but also based on a single-sensor setting (RGB and estimated
depth). Overall, the experiments clearly lead us to conclude that multimodality
(RGBD) is indeed a beneficial approach for end-to-end driving. In the future, we
plan to follow this line of work, considering other sources of multi-modality usually
available in modern vehicles, such as GNSS information, which even though usually
noisy, eventually can complement direct scene sensing.
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3 Action-based Representation Learning for
Autonomous Driving

3.1 Introduction

The development of autonomous vehicles (AVs) is a significant multidisciplinary
challenge. Currently, the main paradigm being pursued in developing AVs follows a
traditional divide-&-conquer engineering strategy. In particular, modular pipelines
are proposed with key modules for perception, route planning, and maneuver con-
trol, among others [197]. In turn, these modules may be composed to deal with
different tasks, e.g., perception encompasses object detection and tracking, seman-
tic class/instance segmentation, etc. [85]. These tasks rely on models trained from
data using modern deep learning techniques [68]. Following such a data-driven
approach is not a problem in itself since it is possible to collect petabytes of onboard
data (raw sensor data, vehicle state variables, etc). Continuously, not only from fleets
of AVs under development but also from sensorized human-driven vehicles under
naturalistic driving. However, in practice, the best-performing models arise from
supervised deep learning, and this means that the raw data must be augmented
with ground truth, which is collected through time-consuming and costly human
labeling (e.g., bounding boxes, object silhouettes, etc).

The data labeling bottleneck associated with these approaches has caused the
idea of end-to-end driving [100,131] to receive renewed interest [3,20,39,40,77,188].
In this paradigm a deep model is trained to directly control an AV from input raw
sensor data (mainly images), i.e., without a clear separation between perception
and maneuver planning, and without explicit intermediate perceptual tasks to
be solved. In this pure data-centered approach, the supervision required to train
deep end-to-end driving models does not come from human labeling; instead, the
vehicle’s state variables, which can be automatically collected from fleets of human-
driven vehicles, are used as supervision (e.g., speed, steering angle, acceleration,
braking). These models are mainly trained by behavior cloning (BC) of human
driving experiences. However, despite the undeniable good performance shown
by end-to-end driving models, their reliability is controversial, due in particular to
the difficulty of interpreting the relationship between inferred driving actions and
image content [44], as well as training instabilities [40].

A different paradigm, conceptually midway between pure modular and end-to-
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end driving, is the so-called direct perception approach [26, 150], which focuses
on learning deep models to predict driving affordances, from which an additional
controller can maneuver the AV. In general, such affordances can be understood as
a relatively small set of interpretable variables describing events that are relevant for
an agent acting in an environment [62]. Driving affordances bring interpretability
while only requiring weak supervision, in particular, human labeling just at the
image level (i.e., not pixel-wise).

In this chapter , we show that action-based methods, that focus on predicting
the control actions, such as end-to-end driving trained with BC, can be an effective
pre-training strategy for learning a direct perception model (Figure 3.2). This strat-
egy enables a significant reduction in the number of labeled images required to train
such a model. Overall, this means that we can leverage the data collected by fleets
of human-driven vehicles for training interpretable driving models, thus, keeping a
major advantage of modular pipelines while reducing data supervision (i.e., human
labeling). Further, our approach improves over other recent pre-training proposals
such as contrastive methods [4] and even over ImageNet (supervised) pre-training.
We also show that learning from expert data in our approach leads to better rep-
resentations compared to training inverse dynamics models using the approach
in [1]. This shows that expert driving data (i.e., coming from human drivers) is an
important source for representation learning. As is a common practice nowadays,
we run our experiments in the CARLA simulator [50]. To the best of our knowledge,
we are the first to show that expert demonstrations can act as an effective action-
based representation learning technique. This constitutes the primary contribution
of this work.

We present the work as follows. First, we review the related work in Section
3.2. Then, we present our main method of learning representation using end-
to-end models with action-based supervision in Section 3.3. In Section 3.4, we
summarize the experimental setting and the obtained results. Finally, we draw the
main conclusions and future work in Section 3.5.

3.2 Related Work

Since human-based data labeling is a general problem for all kinds of new data-
intensive applications, not only for autonomous driving, learning representations
for deep models with the support of weak supervision and self-supervision are open
challenges that attract great interest.

In the autonomous driving context, the use of driving affordances [26, 150]
allows for weak supervision since only human labeling at the image level is required.
Based on these interpretable affordances a controller is tuned to drive. Since [150]
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focuses on urban driving using the CARLA simulator, inspired by this work, we have
defined four affordances to consider the explicit detection of hazards involving
pedestrians and vehicles, respecting traffic lights, and considering the heading of
the vehicle within the current lane. Defining the best set of affordances to drive is
not the focus of this work , but we have chosen a reasonable set.

In order to solve visual tasks, we can find self-supervision based on auxiliary
and relatively simple (pretext) tasks such as learning colorization [99], rotations
[56, 63, 189], shuffling cues [114], or solving a jigsaw puzzle of image parts [123]; it
has been shown that self-supervision can match traditional ImageNet (supervised)
pre-training provided one works with large enough CNNs [95], although it has been
argued that these proxy tasks are not sufficiently hard so as to fully exploit large
unsupervised datasets [67]. Another branch of self-supervised learning is based
on contrastive methods [31, 72, 124], which learn representations by comparing
data pairs. While in these methods, supervision is based on different ways of
transforming or comparing the input data itself, in this work, supervision comes in
the form of expert driver actions. In fact, we include in our study a recent contrastive
method, ST-DIM, designed in the context of playing Atari games [4], adapted to
actions required for driving. We will see how action-based representation learning
outperforms ST-DIM as a representation learning strategy to infer affordances.

In fact, in a perceive-&-act context, dynamics learning [37, 73] and inverse dy-
namics [1, 127, 157] can be used as action-based supervision strategy. Broadly
speaking, being able to predict the next states of an agent or the action between
state transitions, yields useful representations. This action-centric approach to
supervision is in line with our work. Thus, our study includes experiments with
different inverse and forward dynamics supervision strategies. We show the im-
portance of those strategies in the autonomous driving context. However, different
than previous work, we empirically demonstrate that expert actions yield a better
representation learning than random actions used in [1].

Finally, it is also worth mentioning teacher-student strategies [28, 200] which
allow one to train an end-to-end driving student model from a teacher model. In this
case, even if the student is end-to-end, the data labeling bottleneck arises during the
supervised training of the teacher, which requires bounding boxes and/or semantic
segmentation. Since the student is still an end-to-end driving model, the issue of
interpretability once this model is deployed in the AV still would remain open.
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Vehicle Orientation
Lane Orientation

True

False

Pedestrian Hazard (        ) Relative angle (      )

      = 0.00

       = -0.50

Classification Regression

Red Traffic Light (        ) Vehicle Hazard (        )

Figure 3.1: Our affordances illustrated on images from CARLA. Classification ones
are binary variables (t/f), and regression runs on [−π,π]rad. See Section 3.3.3 for
details.

(a) Action-based supervised training stage (end-to-end driving)

(b) Weakly supervised training stage (direct perception)

Figure 3.2: Approach overview: (a) an encoder is trained following an end-to-end
driving setting (e.g., using BC or inverse model); (b) this pre-trained encoder and a
multi-layer perceptron (MLP) are used for predicting affordances. The affordances
are used as input to a simple PID controller to drive the vehicle.

3.3 Action-based Representation Learning

3.3.1 Overall Approach

As can be seen in Figure 3.2, we study our action-based representation learning
strategy by learning affordances in two stages. The first stage relies on non-manually
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labeled data to learn a representation (encoder). We will consider different methods
to learn this representation (Section 3.3.2), all of them based on predicting driving
actions from onboard data. The second stage uses this pre-trained representation
together with a multi-layer perceptron (MLP) to learn the considered affordances
(Section 3.3.3).

Therefore, for the first stage of our approach, we assume that we have access to
a sequence of Nu data samples Du = {dt }Nu

t=1, which have been acquired on board
a human-driven sensorized vehicle but without human labeling. Thus, we have
dt = {ot , at }, where ot and at are respectively, at a certain time t , the observation
acquired by the vehicle’s sensors and the driving action taken by the expert driver.
We must understand that at is the expert reaction to the environment when ot

was acquired. In general, we will have different Du sequences acquired at different
driving runs, however, without losing generality and for the sake of keeping a
simpler notation, we can assume all of them appended in one single sequence. In
this work, we assume that each observation ot contains an image capture of the
driving environment, the vehicle speed (vt ) at the moment the image is acquired,
and a high level navigation command such as continue in the same lane, or in
the next intersection go straight/left/right, i.e., as introduced in the so-called
conditional imitation learning (CIL) [39] in the form of one-hot vector ct . The
corresponding action at is defined in terms of the steering angle, acceleration, and
break values that must be applied to maneuver the vehicle.

For the second stage of our approach, we assume a relatively small dataset
of on-board images with image-level affordance labeling (weak supervision), i.e.,

Dl = {x j }Nl
j=1, with x j = {o j , y j }, being o j the observation and y j the corresponding

affordance labeling. In particular, y j contains variables indicating situations such as
a pedestrian hazard, a vehicle hazard, a red traffic light, and a relative heading angle
(Figure 3.1). In this setting, we can assume that the images used in Dl come from
sub-sequences of Du , but are selected so that Nu ≫Nl . Accordingly, the two stages
can be summarized as follows: (1) use Du to train a deep encoder hθ ; (2) use hθ and
Dl to train a projection network, gφ, for predicting affordances. For actual driving,
we develop a controller C : gφ(hθ(ot )) → ât ; i.e., given the affordances gφ(hθ(ot ))
predicted from an observation ot , C estimates the action ât to maneuver the vehicle.
In order to show driving results, we will use a simple PID controller.

3.3.2 Action-based Supervised Stage

At the action-based supervised stage the objective is to train an encoder hθ to
produce a set of features zt (encoder’s bottleneck) given an input observation ot .
With this purpose, we have studied some alternatives illustrated in Figure 3.3. At
training time, all of them rely on Du , but they use different inputs and losses to be
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Method Architecture Loss

(a)
Behavior
Cloning

(BC)
sbc = || fa(zt )−at ||

(b)
Inverse
Model

si m = || fi m(zt , zt+1)−at ||

(c)
Forward

Model
s f m =

si m +|| fwd (zt , at )− zt+1||

Figure 3.3: Proposed action-based supervised losses based on expert actions. To
train the encoder hθ, these are minimized over the dataset Du .

minimized. We summarize these alternatives in the following.

Behavior cloning (BC). Common deep architectures trained by BC consist of an
encoder hθ extracting features zt from observations ot (i.e., zt = hθ(ot )), and a fully-
connected projection network, fa(zt ), which predicts an expert action ât from such
features. In this work , we follow the architecture presented in [40]; however, instead
of using the high-level command (ct ) for branching to different projection functions,
since our goal is to pre-train a useful representation not performing actual driving
with it, we use ct as part of ot . Therefore, the encoder of [40] is modified to input
the high-level command the same way as the speed variable (vt ). The input image
is processed by a ResNet34 backbone. We detail the architecture of our BC encoder
in Figure 3.4. The following alternatives also rely on this encoder architecture.

Inverse model. By considering not only ot but also the subsequent observation
ot+1 as input, we turn BC into an Inverse model [1, 157]. In this case, thinking of
the encoder’s bottleneck as encoding an agent (driver) internal state, the problem
to solve consists of predicting the action that transforms the state zt into the state
zt+1. Differently than BC, with an inverse model, the actions can come from either
an expert driver or just random roaming (or poor driving).

Forward model. In this case, we want to learn an encoder that is able to output
a state zt = hθ(ot ) such that, given an action at , we can predict the future state as
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ResNet 34

speed

command

Image

Figure 3.4: The architecture of the encoder hθ . The blue rectangles indicate that the
features are concatenated. The white rectangles indicate fully connected layers.

zt+1 = fwd (zt , at ). However, this can lead to the trivial solution zt = 0 from which
fwd can still produce zt+1. Such degenerated encoders hθ are of course not of
interest. Therefore, we use the regularization strategy of [1], consisting of adding
also the Inverse model so that the encoded observation zt is able to predict the
action too. Again, the actions can come from either an expert driver or just random
roaming.

3.3.3 Weakly Supervised Stage: Learning Affordances

The affordances used in this work (Figure 3.1) consider explicit detection of hazards
involving pedestrians and vehicles, respecting traffic lights, and considering the
heading of the vehicle within the current lane. More specifically, we have considered
the following four affordances:

• Pedestrian hazard (hp t ). This variable is set to one if there is a pedestrian in
our lane at a distance lower than 10 m; otherwise, is set to zero.

• Vehicle hazard (hv t ). This variable is set to one if there is a vehicle in our
lane at a distance lower than 10 m; otherwise, is set to zero. Vehicles refer to
cars, vans, motorbikes, and cyclists.

• Red traffic light (hr t ). This variable is set to one if there is a traffic light in red
affecting our lane at a distance lower than 10 m; otherwise, is set to zero.
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• Relative heading angle (ψt ). This variable accounts for the relative angle of
the longitudinal vehicle axis with respect to the lane in which it is navigating.
The variable runs on [−π,π] rad with ψt = 0 when the vehicle and lane are
aligned (no matter the lateral vehicle position within the lane).

Note that {hp t ,hv t ,hr t } are binary variables, so predicting them is a binary
classification problem, while ψt is a real number, thus, predicting it is a regression
problem. These binary variables are critical to performing stop-&-go maneuvers
by any controller relying on these affordances, while the regressed angle is critical
to properly navigating without going out of the lane. Overall, the idea behind
these affordances is that those relevant visual competencies for driving emerge
when training the corresponding models; for instance, some kind of pedestrian and
vehicle detection, red traffic light detection, and localization of the vehicle within
the lane for proper navigation.

The affordance prediction model, gφ, that predicts {hp t ,hv t ,hr t ,ψt } is ob-
tained by training a MLP, which receives the output from the pre-trained hθ(ot ) as
input. In Table 3.1, we detail the parameters of network architectures for differ-
ent action-based representation learning approaches, as well as the network for
affordance projection.

3.4 Experiments

3.4.1 Environment

As in most previous works addressing autonomous driving, we perform our experi-
ments and data collection in the CARLA simulator [50], in particular, using version
0.9.6. We rely on the widely used Town 1 for training and the unseen new town
Town 2 for testing.

3.4.2 Training Dataset

In order to collect the action-based supervised dataset (Du) and the weakly super-
vised dataset (Dl ), we modified the default CARLA’s autopilot for not only recording
ot and at but also our image-level labeled affordances (yt ). We collected ∼ 50 hours
of image sequences in Town 1 for training purposes, balancing the training weather
conditions, at 20 fps. In this data collection process, we have three cameras, a
forward-facing (central) camera from which we will drive at testing time, and two
lateral cameras only used for training purposes as in [20, 39]. Thus, in terms of
samples to train hθ, we have Nu ∼ 10,800,000. This dataset plays the role of Du ,

*Classification: M = 2; Regression: M = 1)
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Input Output Num. of
Module Dimension Channels Dropout

ResNet 34 200 × 88 × 3 512 0.0

Speed 1 128 0.0
128 128 0.0

Command 4 128 0.0
128 128 0.0

Join 512+128+128 512 0.0

512 256 0.0
Action Branch 256 256 0.5

256 3 0.0

512 256 0.0
Speed Branch 256 256 0.5

256 1 0.0

Input Output Num. of
Module Dimension Channels Dropout

ResNet 34 200 × 88 × 3 512 0.0

Speed 1 128 0.0
128 128 0.0

Command 4 128 0.0
128 128 0.0

Join 512+128+128 512 0.0

Join (Zt ,Zt+1) 512 + 512 512 0.0

512 256 0.0
Action (at ) 256 256 0.0

256 3 0.0

(a) Behavior Cloning (BC) (b) Inverse model

Input Output Num. of
Module Dimension Channels Dropout

ResNet 34 200 × 88 × 3 512 0.0

Speed 1 128 0.0
128 128 0.0

Command 4 128 0.0
128 128 0.0

3 512 0.0
Action (at ) 512 256 0.0

256 512 0.0

Join 512+128+128 512 0.0

Join (Zt , Zt+1) 512 + 512 512 0.0

512 256 0.0
Action (at ) 256 256 0.5

256 3 0.0

Join (Zt , Action) 512 + 512 512 0.0

Input Output Num. of
Module Dimension Channels Dropout

512 512 0.0
Affordances 512 256 0.0

256 M* 0.0

(c) Forward Model (d) Affordances Network

Table 3.1: Network architecture details for the encoders hθ: (a) Behavior Cloning,
(b) Inverse model, (c) Forward model and (d) the affordance projection network gφ
when fine-tuned for driving.

while to play the role of Dl we selected Du ’s sub-sequences corresponding to 1%
(30 minutes) and 10% (5 hours) of the total amount. In this case, we only con-
sider images acquired by the central camera; thus, totaling Nl ∼ 36,000 for 1%
and Nl ∼ 360,000 for 10%. These sub-sequences were selected semi-randomly to
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ensure that jointly form a dataset where the relative heading angle approximates
a Gaussian distribution centered at ψt = 0. Finally, for testing purposes, two new
datasets were collected, namely, by driving ∼ 1 hour in Town 1 and also ∼ 1 hour
in Town 2. This driving was balanced among all weather conditions, and only the
central camera is considered; thus, for each town we have ∼ 72,000 images.

Figure 3.5: The histogram and distribution of affordances on the ∼ 30 minutes
training dataset.

For reference, in Figure 3.5, we show the histogram and distributions of the 1%
(30 minutes) Dl dataset, which was used for training the affordances prediction
network gφ. This dataset is a subset of the full 50 hours dataset, carefully sampled
to maintain similar distribution as the full dataset. Note that for the hazard cases in
traffic, the samples of False are more than True, which is reasonable since it is the
norm in actual daily driving.

3.4.3 Training Protocal

Baselines. In Section 3.3.2 we have presented the action-based pre-training strate-
gies for hθ that we want to study. In addition, we have incorporated ST-DIM [4], a
contrastive representation learning baseline used by agents playing Atari games.
We have modified the code provided by the authors just to include ResNet34 as
the backbone, i.e., as for the rest of the pre-training strategies. In short, ST-DIM is
trained to answer if two frames are consecutive or not, without any action-related
information involved. Moreover, for the Inverse, Forward, and ST-DIM strategies,
we have included seldom variants that require collecting additional ∼ 20 hours of
image sequences in Town 1. However, in this case, instead of relying on our expert
driver autopilot, the driving was random; thus, eventually running into accidents,
driving over the sidewalk, in the wrong lane, etc. In short, navigating by random ac-
tions. As additional baselines, we have used ImageNet and no pre-training (random
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initialization).

Training Details. We train the encoder hθ for 100K iterations (mini-batches) using
Du . Then, using Dl we train the affordance prediction model, gφ, for 20K iterations,
no matter if this stage relies on linear classification/regression or fine-tuning. These
iteration values were found by preliminary experiments where we monitored train-
ing convergence. When Dl assumes 10% of the dataset, we iterated 100K. In all
cases, we used the Adam optimizer with an initial learning rate of 0.0002 and batch
size of 120. Moreover, for any kind of training, after 75K iterations, the learning rate
becomes half. As observed in [40], we saw a meaningful random seed variation
for training the encoders. Thus, for obtaining reliable results, we repeat both the
encoder and affordance training over three different random seeds and pick up the
model with the best performance on training town for driving.

3.4.4 Evaluation Metrics

Linear Probing. We start by evaluating the representation learning capabilities
of action-based methods using the commonly applied linear probing technique
[2, 31, 74, 124]. This can be seen as an offline evaluation to assess the trained
encoder hθ. More specifically, using a frozen hθ as a feature extractor, we train a
linear classifier to predict affordances with an affordance dataset Dl = 1%. Each
trained model is tested in the ∼ 1 hour static testing sets for both Town 1 and Town 2,
while we take Town 2 results as our main analysis since it is an unseen town during
training. In order to assess the performance of binary-affordance models we use
the F1-score, while for assessing the performance of the relative heading angle, we
use MAE. For better analysis, we divide the relative heading angle into three cases,
left turn, straight and right turn, according to the navigation situation. We consider
as left regime those cases where the relative heading angle ground truth is lower
than −0.1 rad, as right regime when it is larger than 0.1 rad, and as straight regime
otherwise.

NoCrash Benchmark. For online evaluation, we fine-tune the encoder network hθ
using three layers as the projection gφ to output the affordances needed for a PID
controller. We assess the driving performance on the CARLA NoCrash benchmark
[40], which mainly focuses on the capabilities of models to drive in the presence
of pedestrians and vehicles. The objective is to complete a set of goal-oriented
episodes without crashing. In other words, once the AI driver crashes an obstacle
(i.e. pedestrian, vehicle, or static asset), the episode is terminated and considered a
failure case. This makes the biggest difference from the original CARLA benchmark,
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where the AI driver was still able to continue driving even if it hit other objects.
Moreover, instead of assessing four tasks of Straight, One Turn, Navigation, Dynamic
Navigation from the CARLA default benchmark, NoCrash consists of three tasks
with increasing levels of difficulty: Empty, Regular, and Dense, according to the
number of dynamic objects in the scene (i.e., pedestrians and vehicles).

We updated the CARLA NoCrash benchmark to CARLA 0.9.6 version augmented
with the new pedestrian crossing algorithms (recently incorporated into the last
CARLA version). CARLA 0.9.6 version has some differences compared with CARLA
0.8.4, in which the main one is related to pedestrians. More specifically, at present,
pedestrians are capable to cross roads at intersections, which was not possible in
the old version. In addition, they are able to cross roads in groups and are more
equally spread over the town. As a consequence, it is necessary to change the
number of pedestrians spawned in the town in order to reproduce the benchmark
from version 0.8.4. For the regular task, we increased the number of pedestrians
from 50 to 125 for Town 1, and 50 to 100 for Town 2. In dense task, we increased
from 250 to 400 for Town 1, and from 150 to 300 for Town 2.

The routes have been also changed since the new API allowed a much more
controlled sampling of the routes to be used on the benchmark. Thus, we made
some changes in the routes to guarantee they followed the restrictions described
in [50]. We restrict at least 1000 meters distance between the start and end points
for Town 1 and 500 for Town 2.

The visuals also have been slightly changed especially with respect to the dy-
namic obstacles. We can see in Figure 3.6 some new features of the benchmark that
are present in version 0.9.6. At present, the vehicles include bikes, motorbikes, and
infant pedestrians. Our update was analogous to the one done by [28], however,
instead of implementing it ourselves, we added to version 0.9.6 the pedestrian
navigation algorithm provided by the official CARLA 0.9.7 version. Note that for this
work, the version used was still CARLA 0.9.6, while only the pedestrian navigation
from 0.9.7 was added. We decided to stay on version 0.9.6 since newer versions of
CARLA have incorporated major differences in traffic management that drastically
changed vehicle behavior.

Controller. In order to perform driving evaluations, we have tuned a PID controller
that takes the estimated affordances as input and outputs the action commands
(at ) to control the AV. Given a set of perfect affordances (i.e., those labeled as
ground truth) at time t , {ψ(t ),hv(t ),hp(t ),hr (t )}, the controller outputs an action
a(t) defined by {S(t),T (t),B(t)}, i.e., steering, throttle, and break, respectively. In
particular, for lateral control (i.e., S(t)) and for longitudinal control (i.e., T (t) and
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Figure 3.6: New types of vehicles and pedestrians present on the updated CARLA
0.9.6 version of the benchmark. Left: motorbikes were not included in the previous
benchmark. Middle: children are added as part of pedestrians. Right: pedestrians
are able to better agglomerate when crossing roads.

↑ Binary Affordances ↓ Relative Angle (ψt )
Pre-training Pedestrian (hp) Vehicle (hv) Red T.L. (hr ) Left Turn Straight Right Turn

No pre-training 26±0 50±1 42±0 11.38±0.18 1.85±0.03 24.68±0.03
ImageNet 37±2 75±0 47±0 11.69±0.57 2.83±0.07 25.55±0.10

Contrastive (ST-DIM) 47±1 53±0 53±0 10.43±0.21 2.62±0.03 18.75±0.23

Forward 50±0 63±0 60±0 5.35±0.03 0.52±0.00 6.61±0.03
Inverse 49±0 78±0 70±0 3.57±0.03 0.46±0.00 3.78±0.06
Behavior Cloning (BC) 47±0 81±0 75±0 4.89±0.03 1.24±0.03 6.25±0.10

Table 3.2: Linear probing results in unseen Town 2. Left: F1 score for the binary
affordances (higher is better). Results are scaled by 100 for visualization purposes.
Right: MAE of the relative angle (lower is better), shown for different navigation
maneuvers. MAE is shown in degrees for an easier understanding.

B(t )) we use the following PID-based equations:

S(t ) = PI D(ψ(t )) = Kpψ(t )+Ki

∫ t

0
ψ(τ)dτ+Kd

∂ψ(t )

∂t
,

B(t ) = max(hr (t ), hp(t ), hv(t )),

T (t ) = PI D(0 if B(t ) > 0, v otherwise),

where the hazard functions either equal to 1 or 0, and v is the target maximum speed,
20Km/h in these experiments. We tuned the constants Kp ,Ki , and Kd in Town 1 to
obtain a perfect driving (no errors, all episodes completed) for the dense condition
of the NoCrash benchmark provided we use ground truth (perfect) affordances. We
did it in that way to provide a driving evaluation directly depending on the quality
of the affordance predictions, not in the controller itself since it is not the focus of
this work.
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↑ Binary Affordances ↓ Relative Angle (ψt )
Pre-training Pedestrian (hp) Vehicle (hv) Red T.L. (hr ) Left Turn Straight Right Turn

No pre-training 26±0 50±1 42±0 11.38±0.18 1.85±0.03 24.68±0.03

Contrastive (ST-DIM) 41±0 62±1 63±1 9.01±0.46 2.77±0.18 18.37±0.45
Contrastive Random (ST-DIM) 39±1 73±1 47±0 9.70±0.41 2.98±0.11 15.89±0.41

Forward 50±0 51±0 58±0 4.87±0.00 0.52±0.00 6.07±0.06
Forward Random 20±1 38±0 16±0 11.54±0.03 1.20±0.00 19.14±0.00

Inverse 45±0 66±0 73±0 3.02±0.03 0.42±0.03 5.06±0.17
Inverse Random 26±0 49±0 59±0 8.50±0.53 1.45±0.03 13.14±0.34

Table 3.3: Linear probing results comparing encoders trained with random policy
training data versus expert demonstration data. Note that, to provide a fair compar-
ison, the encoders here were trained with 20 hours of data, which are different than
the ones from Table 3.2.

RGB Input

ImageNet 
pre-training

BC (50-hours) 
pre-training

Pedestrian Hazard                      Vehicle Hazard                         Red Traffic Light                             Navigation

Figure 3.7: Attention heatmaps. Top: RGB input images from a town unseen
during training. Mid: attention heatmaps of ImageNet pre-trained encoder. Bottom:
attention heatmaps of a BC encoder pre-trained with 50 hours of expert driving data.
From left to right, we show some cases involving different affordances: pedestrian
hazard, vehicle hazard, red traffic light detection, and navigation.

3.4.5 Experimental Results

Linear probing. Table 3.2 shows the F1/MAE scores for the affordances predic-
tion. For each pre-training strategy, we repeat linear classifier training with three
random seeds and compute its mean and standard deviation. Note that those
results consist of zero-shot generalization to an unseen town (Town 2). The main
observation is that action-based pre-training (Forward/Inverse/BC) outperforms
all the other reported pre-training strategies. However, we see that the action-based
pre-training is mostly beneficial to help reliably estimate the vehicle’s relative angle
with respect to the road. The contrastive method, ST-DIM, shows promising results
for the binary affordances but results on very poor relative angle estimations. We
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↑ Binary Affordances ↓ Relative Angle (ψt )
Pre-training Pedestrian (hp) Vehicle (hv) Red T.L. (hr ) Left Turn Straight Right Turn

No pre-training 38±1 59±0 45±0 10.03±0.06 1.80±0.03 17.57±0.03
ImageNet 35±1 67±0 54±1 14.46±0.35 2.31±0.09 19.06±0.18

Contrastive (ST-DIM) 38±0 57±1 76±1 6.72±0.03 2.65±0.03 13.12±0.11

Forward 56±0 62±0 55±0 6.97±0.12 0.17±0.00 5.88±0.03
Inverse 57±1 82±0 89±0 3.84±0.06 0.21±0.03 2.96±0.09
Behavior Cloning (BC) 46±0 83±0 86±0 3.76±0.03 0.63±0.00 4.35±0.06

Table 3.4: Linear probing results on Town 1 testing set. Left: F1 score for the binary
affordances (higher is better). Results are scaled by 100 for visualization purposes.
Right: MAE of the relative angle (lower is better), shown for different navigation
maneuvers. MAE is shown in degrees for an easier understanding.

also observed a poor generalization capability for ImageNet pre-training. These
results suggest that a useful scene representation is learned by training encoders
with expert demonstration data. Additional evidence is presented in Figure 3.7,
which shows examples of attention heatmaps from an ImageNet encoder, and a BC
encoder that was trained with 50 hours of data. These attention maps are calculated
by the simple average of the feature maps from the third ResNet34 block. We can
see that the necessity to imitate expert demonstrations creates activations on useful
objects such as pedestrians, vehicles, traffic lights, and lane markings; which is in
agreement with the fact that a linear classifier can predict well the set of affordances
with the action-based pre-training.

We also further study if the source data needs to come from expert driving or
from random actions as in [1]. The general intuition is that the Inverse model can
learn a good representation by learning the dynamics of the scene. We show on
Table 3.3 that inverse model can, indeed, outperform the no pre-training condition
even when using random actions. However, we show that there is a lot more benefit
for representation learning obtained from expert action information than from
random action. For ST-DIM, as expected, the difference between the random and
expert policy is smaller since it is not based on action.

As a reference, we also provide results the linear probing evaluation results of
models tested on the ∼ 1 hour Town 1 testing set in Table 3.4 and Table 3.5. This
testing set has a similar appearance to the training data. We observe a similar
tendency to the results obtained on Town 2.

Driving results We report the success rate (higher is better) on the driving tasks
and the percentage of traffic lights crossed in red (lower is better). For each model,
we repeat driving three times and compute its mean and standard deviation. Table
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↑ Binary Affordances ↓ Relative Angle (ψt )
Pre-training Pedestrian (hp) Vehicle (hv) Red T.L. (hr ) Left Turn Straight Right Turn

No pre-training 38±1 59±0 45±0 10.03±0.06 1.80±0.03 17.57±0.03

Contrastive (ST-DIM) 36±1 60±2 67±1 7.43±0.17 2.79±0.18 12.11±0.18
Contrastive Random (ST-DIM) 34±2 78±1 52±2 11.10±0.52 2.02±0.09 14.65±0.29

Forward 52±0 53±0 60±0 3.95±0.00 0.11±0.00 4.37±0.03
Forward Random 5±0 27±0 2±0 19.10±0.03 0.63±0.00 17.97±0.03

Inverse 48±1 71±0 90±0 2.03±0.07 0.21±0.03 2.54±0.03
Inverse Random 34±0 53±0 55±0 12.49±0.45 0.84±0.03 13.22±0.54

Table 3.5: Linear probing results on Town 1 testing set, comparing encoders trained
with random policy training data versus expert demonstration data. Note that, to
provide a fair comparison, the encoders here were trained with 20 hours of data.

Training Town New Town
Technique Empty Regular Dense T.L. Empty Regular Dense T.L.

No pre-training 78±4 79±7 48±4 12±1 57±1 37±4 10±1 18±2
Image Net 86±1 89±3 66±1 12±0 21±3 19±3 13±5 23±2

Contrastive (ST-DIM) 73±2 84±4 71±3 10±1 66±5 49±2 17±0 21±1

Forward 68±3 84±3 68±8 9±1 49±5 37±3 18±5 13±2
Inverse 73±4 82±2 61±3 8±1 83±2 67±8 26±8 8±0
Behavior Cloning (BC) 91±1 91±4 68±5 8±1 83±3 61±4 25±4 8±1

CILRS 0.8.4 [40] 97±2 83±0 42±2 47 66±2 49±5 23±1 64
LBC [28] 97±1 93±1 71±5 N/A 100±0 94±3 51±3 N/A

Table 3.6: Comparison of the success rate of action-based pre-training with base-
lines (top) and other methods from the literature (bottom). We are able to surpass
ImageNet pre-training and the CILRS baseline. Results are from the CARLA 0.9.6
NoCrash benchmark.

3.6 compares the performance (success rate) of the action-based methods with the
baselines and other methods from the literature. For all implemented methods, we
considered fine-tuning with Dl = 10%. Firstly, we see that the Inverse model and BC
are the best representation learning strategies to pre-train the encoder, especially in
the new town. Both models also clearly outperform the contrastive-based baseline
(ST-DIM) in the new town. However, in the training town, the contrastive method
obtained relevant results, especially under dense traffic. As a reference, we report
results from Learning by Cheating (LBC) [28] and the CILRS method [40], presented
at the bottom of Table 3.6. Shown results are copied from the corresponding papers.
Our proposed approaches also achieved very close results to the LBC method [28]
and outperform CILRS especially when reacting to traffic lights. Note that the LBC
method requires high supervision for training a teacher network, which teaches a
student network to drive end-to-end. Our method uses much less densely labeled
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Training Town New Town
(D l ) (Du ) Empty Regular Dense T.L. Empty Regular Dense T.L.

0.5 hours

No Data 25±4 11±3 3±2 51±2 1±1 1±1 0±0 57±4
5 hours 68±5 58±5 27±5 10±1 14±1 7±1 3±1 23±2

20 hours 98±1 93±2 61±6 10±1 17±2 12±2 2±2 15±2
50 hours 95±2 87±2 47±2 12±1 25±3 20±4 6±1 10±1

5 hours

No Data 78±4 79±7 48±4 12±1 57±1 37±4 10±1 18±2
5 hours 58±6 80±4 69±5 9±1 68±6 55±5 23±3 12±2

20 hours 74±2 81±4 70±5 10±1 82±2 66±5 34±0 12±1
50 hours 91±1 91±4 68±5 8±1 83±3 61±4 25±4 8±1

Table 3.7: Driving performance ablation study of the BC pre-training encoder inves-
tigating the quantity of expert driving data (Du) given a smaller amount of labeled
affordances (D l ).

Technique Empty Regular Dense T.L.

Training
BC driving 72±5 47±2 20±3 74±2

BC pre-training 91±1 91±4 68±5 8±1

New Town
BC driving 71±2 42±7 12±3 63±1

BC pre-training 83±3 61±4 25±4 8±1

Table 3.8: We compare the behavior cloning (BC) technique used as driving tech-
nique (BC driving) to it used as a pre-training technique (BC pre-training) for an
affordances-based model.

data and does not use dataset aggregation (Dagger [144]). Moreover, note that
reported results from CILRS are on CARLA version 0.8.4, the benchmark from the
newer version is considerably more difficult.

An important observation is that using expert demonstration as pre-training
seems to be more beneficial than training a model end-to-end to directly perform
control. In Table 3.8, we show a behavior cloning encoder trained with 50 hours
of expert demonstrations. We compare two different uses of this encoder: directly
producing driving controls and serving as representation learning for an affor-
dance prediction model. With our pre-training strategy and the complementary
affordance training, our model (BC pre-training) is able to greatly outperform the
end-to-end driving results (BC driving). This difference is expressive especially
when comparing the capability to stop at red traffic lights. Finally, note that the “BC
driving" results from Table 3.8 are in practice a re-training of the CILRS [40] baseline
to work on version 0.9.6.
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Ablation study In Table 3.7, we analyze the data amount impact of both supervised
data and expert demonstrations. We used the simplest pre-training encoding, BC.
We observe a clear correlation between performance improvement and the quantity
of action-based supervised data Du . We can see that with only 30 minutes (0.5
hours) of labeled data, the pre-trained network has a performance close to our best-
reported results in training town. For the generalization conditions, however, only
0.5 hours of labeled data are not enough to obtain satisfactory results. Pre-training
is useful also when using higher amounts of labeled data (5 hours), as shown on the
bottom of Table 3.7. However, the impact of pre-training when more labeled data is
available is clearer in New Town. Note that when comparing 50 hours with 20 hours,
on pre-training, the results are similar, since 20 hours driving seems to be sufficient
to capture the inherent variability of Town 1.

3.5 Conclusion

In this chapter, we have shown that representations learned by using action-based
methods (BC or Inverse model) are promising as pre-trained representations for
autonomous driving controllers based on affordances. Moreover, we have found
that most of the benefit comes when the driving experiences (actions) are captured
from proper driving (humans). In other words, expert driving outperforms random
roaming for representation learning. While considerable future research is needed
to improve the raw performance of the methods explored here, the fact that the
required data can be easily obtained by simply recording the actions of good drivers,
highlights the potential of action-based methods for learning representations for
autonomous vehicles beyond pure end-to-end autonomous driving models.

It would be relevant to explore if the pre-training strategy presented here can be
also helpful for training labeling-intensive visual models, such as those for semantic
class/instance segmentation or object detection. Further, it would be interesting to
examine other strategies to use the expert driver data in order to further improve
performance.
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4 Scaling Vision-based End-to-End Au-
tonomous Driving with Multi-View Attention
Learning

4.1 Introduction

End-to-end autonomous driving (EtE-AD) refers to deep models trained to process
sensor data for performing maneuvers that imitate human (expert) driving [168].
Broadly, we can classify these models according to their training supervision require-
ments. Some models only require vehicle signals (e.g., steering angle, acceleration)
as supervision. Eventually, they can be directly trained from millions of human
driving experiences. Other models also require costly human-based sensor data
labeling as supervision (e.g., pixel/voxel-wise semantic labels, or 2D/3D object
bounding boxes). In fact, these models follow a kind of hybrid approach leveraging
from pure EtE-AD and traditional AD pipelines [68, 197].

Despite the appealing idea of developing vision-based pure EtE-AD models,
their progress has mostly stalled, giving space to hybrid models supervised by a
significantly large amount of labeled sensor data [27, 28, 35, 80, 105, 118, 133, 155,
181, 199], or by privileged information from the driving environment as required by
reinforcement learning [173, 199]. This situation may be due to the apparent lack
of scalability of pure EtE-AD models raised in a few works [44, 164]; including [40],
where the model known as CILRS is proposed. CILRS was developed in suboptimal
conditions: limited driving episodes based on a single and rather deterministic
expert driver, very low-resolution images depicting a relatively narrow horizontal
field of view (on-board images roughly display a single lane), and without applying
any attention mechanism. Overall, this gives rise to poor performance in newer
benchmarks, eventually misleading non-expert readers and new practitioners in
the field regarding the potential of vision-based pure EtE-AD.

Since having strong baselines is important to avoid illusory gains when devel-
oping new models, we present CIL++, a strong vision-based pure EtE-AD model
trained by conditional imitation learning, i.e., CILRS. We improve on CILRS key lim-
itations, rising the performance of CIL++ to be on par with top-performing hybrid
methods. First, we drastically increase the image view by using a horizontal field
of view (HFOV) similar to human drivers, which runs on 180◦−220◦. Further, we
propose a visual transformer-based architecture [176] which acts as a mid-level at-
tention mechanism for these views, allowing CIL++ to associate feature map patches
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(tokens) across different views. These changes allow CIL++ to perform at the expert
level on the CARLA NoCrash metrics. Moreover, CIL++ is the first vision-based pure
EtE-AD model capable of obtaining competitive results on complex CARLA towns.

We present the work as follows. Section 4.2 reviews the papers relating to this
work. Section 4.3 presents the CIL++ which is a vision-based EtE-AD baseline with
multi-view attention learning. In Section 4.4, we summarize the experimental
setting and the obtained results. Finally, Section 4.5 draws our main contributions
and conclusions.

4.2 Related Work

Learning a driving policy from experts, instead of handcrafting it, is a really appeal-
ing idea. Accordingly, in EtE-AD, a deep model is trained by imitation learning,
which has become an active research topic [168]. Pioneering works following this
approach are [20, 21, 100, 131]. However, it was the public release of the CARLA
simulator [50], together with a vision-based pure EtE-AD model trained and tested
on CARLA [39], that attracted great attention to this paradigm [14, 17, 27, 35, 40, 80,
118, 133, 155, 181, 185, 199].

Basically, we can find two ways of approaching EtE-AD according to the out-
put of the underlying deep model. On the one hand, different proposals output
waypoints on bird-eye-view (BeV) coordinates [14, 27, 28, 35, 118, 133, 155]. These
are then used by a controller for providing the proper steering and acceleration
in driving. Note that generating BeVs involves 3D knowledge of the scene. On
the other hand, other proposals directly output the ego-vehicle signals (steering,
acceleration) [17,39,40,80,105,126,185,199], which act on the vehicle either directly
or after some signal-stabilizer filtering (e.g., using a PID). Both approaches were
combined, e.g., in [181], where a branch of the EtE-AD model is used to predict
waypoints and another to predict ego-vehicle signals, being the model output a
combination of both, weighted according to the perceived road curvature.

Another important difference among EtE-AD models is the type of required
supervision for their training. For instance, some models require semantic segmen-
tation labels at training time [28, 35, 80], sometimes together with object bounding
boxes (BBs) [133], or BBs and HD maps [14]. Other models are only supervised by
ego-vehicle available signals [20, 21, 40, 100, 131], thus no human-labeled sensor
data is required. EtE-AD models can also fuse multi-modal sensor data such as
RGB image and depth from either LiDAR [27, 133, 155] or monocular depth estima-
tion [185].

In recent literature, vision-based pure EtE-AD models, such as CILRS [39], are
clearly outperformed by those using additional supervision (pixel-wise semantic
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labels, object BBs, etc). For instance, the currently top-performing hybrid model,
termed as MILE [80], relies on a training procedure requiring ≈ 3M images labeled
for semantic segmentation. Another top-performing hybrid model, NEAT [35], re-
quires ≈ 130K of those. In addition, Roach [199] leverages the teacher/student mech-
anism. First, a teacher model (Roach RL) is trained using environment-privileged
information and reinforcement learning. Then, it supervises the training of a stu-
dent model (Roach IL) by applying imitation learning. In this work, we refer to the
student model as RIM.

CILRS was developed under completely different conditions than we have today:
only using single-lane towns in the CARLA simulator (Town 1 and Town 2), using
very low-resolution images depicting a narrow horizontal field of view (roughly,
one-lane-width views), without including any attention mechanism, and relying
on the default CARLA’s expert driver, which follows handcrafted rules. Overall, this
drives it to perform poorly on newer benchmarks.

Our model, CIL++, is a direct successor of CILRS, aiming at bringing back the
competitiveness of vision-based pure EtE-AD. For training and testing CIL++, we
use the multi-town setting available from CARLA 0.9.13. Moreover, as in recent
works [80], to collect training data (images and ego-vehicle signals), we use an
expert [199] with better driving performance than the CARLA’s default one. Note
that, in simulation, this expert plays the role of a human driver in the real world,
who would drive to collect onboard data. In addition, we use a wider horizontal
field of view (HFOV=180◦), in the range of human drivers. This kind of inductive
bias is crucial to avoid injecting undesired causal confusion when training the
model. For instance, while collecting driving episodes for training, the ego-vehicle
may be stopped at a red traffic light because the expert driver has access to the
privileged information of the environment. However, this red light may not even be
captured by the onboard camera due to a narrow HFOV. This was observed in CILRS
which was using HFOV=100◦. In fact, using wide HFOVs has become a common
practice to develop EtE-AD models (e.g., [35, 80, 133, 155, 199]). As we would do in
the real world to minimize image distortion, we use three forward-facing cameras
with HFOV=60◦ each. Finally, in order to jointly consider the image content from
the three cameras (views), we propose to use Transformer [176] which acts as a
mid-level attention mechanism for these views. All these improvements over CILRS
make CIL++ competitive.

Like CILRS, we use the current ego-vehicle speed and high-level navigation
commands as input signals to the model. However, unlike CILRS, we also consider
left/right lane changes as possible command values at testing time. Note that
some supervised methods such as MILE use as input the road shape pattern to be
expected according to the current position of the ego-vehicle, instead of processing
a high-level navigation command. In CILRS and CIL++, high-level commands (e.g.,
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continue in this lane) are equivalent to those from a navigation system for global
planning. In fact, such navigation commands together with the ego-vehicle speed
are the only information that CIL++ uses beyond the multi-view images. This is
in contrast with other models such as NEAT [35], which use explicit traffic light
detection at testing time.

As we will see, even CIL++ is not using supervision at all, it outperforms RIM
and is quite on par with MILE.

4.3 Building CIL++: Vision-based EtE-AD with Multi-
view Attention Learning

4.3.1 Problem Setup

CIL++ is trained by imitation learning, which we formalize as follows. Expert demon-
strators (drivers) produce an action ai (ego-vehicle maneuver) when encountering
an observation Oi , (sensor data, signals) given the expert policy π⋆(Oi ) (driving
skills, attitude, etc). The basic idea behind imitation learning is to train an agent
(here CIL++) that mimics an expert by using these observations.

Prior to training an agent, we need to collect a dataset comprised of observa-
tion/action pairs D = {(oi ,ai )}N

i=1 generated by the expert. This dataset is in turn
used to train a policy πθ(oi ) which approximates the expert policy. The general
imitation learning objective is then

argmin
θ

E(oi ,ai )∼D [L (πθ(oi ),ai )] . (4.1)

During testing time, we assume that only the trained policy πθ(oi ) will be used
and no expert will be available.

4.3.2 Architecture

Figure 4.1 overviews the architecture of CIL++. Our model is mainly comprised of
three parts: state embedding, transformer encoder, and action prediction module.

State Embedding. At the time t , the current state Xt consists of a set of images
from the left, central, and right cameras Xt = {xl ,t ,xc,t ,xr,t }, the ego vehicle’s forward
speed st ∈R, and a high-level navigation command ct ∈Rk which is encoded as a
one-hot vector.

As discussed in [49], the lack of inductive biases makes transformer models
require more data to achieve good performance. In order to possess the inherent
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…

…

Figure 4.1: CIL++’s architecture: it is mainly comprised of three parts: state embed-
ding, transformer encoder, and action prediction. Specifically, the input observation
consists of multi-view RGB images Xt , ego-vehicle’s speed st , and high-level naviga-
tion command ct . The output is action at , which is directly applied to maneuver the
ego-vehicle. Since at consists of the ego vehicle’s steering angle and acceleration,
CIL++ is a vision-based pure EtE-AD model. Note that these action components are
automatically read and associated with the captured images during data collection.

properties of CNNs (i.e., exploiting locality and translation equivariance), as well
as leveraging the attention mechanism of transformers, we propose to adapt the
hybrid model suggested in [49] to our case. At time t , each image xv,t ∈ RW ×H×3

from the multi-view camera setting is processed by a share-weight ResNet34 [76],
pre-trained on ImageNet [45]. Then, for each view v , we take the resulting feature
map fv,t ∈ Rw×h×c from the last convolutional layer of ResNet34, where w ×h is
the spatial size and c indicates the feature dimension. Each feature map is then
flattened along the spatial dimensions, resulting in P ×c tokens, where P = w ∗h
is the number of spatial features per image. Since we will set our cameras to a
resolution of W ×H = 300×300 pixels, for each one we obtain P = 100 patches with
c = 512 from the ResNet34 backbone.

Since we use |Xt | = 3 views (left, central, and right cameras), we take the flat-
tened patches for each view and tokenize them as the whole sequence with length
S = |Xt |∗w ∗h for further feeding into the transformer model. To provide the posi-
tional information for each token, we apply the standard learnable 1D positional
embedding p ∈RS×c as done in [49], which is added directly to the token.

The forward speed st and command ct are linearly projected to Rc using a fully
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Module Input Output Normal- Non-
Size Size ization linearity

ResNet34 3×300×300×3 3×10×10×512 BN ReLu

Flatten 3×10×10×512 300×512 / /

Command 1×4 / 1×6 1×512 / /

Speed 1 1×512 / /

300×512 / /
Addition 1×512 300×512 / /

1×512 / /

Positional 300×512 300×512 / /
Embedding

Transformer 300×512 300×512 LN ReLu
Encoder

Average Pooling 300×512 1×512 / /

1×512 1×512 / ReLu
Action 1×512 1×256 / ReLu

1×256 1×2 / /

Table 4.1: Architecture details of CIL++. Dimensions are per timestep and channel-
last (N HW C or NC , when applicable). Dropout was not used in any layer or module
(i.e., set to 0.0 when applicable). For normalization, we use either BatchNorm
(BN) [84] or LayerNorm (LN) [11].

connected layer. The resulting state embedding zt is obtained by the addition of
these input embeddings. Formally, we define the state encoder of the current state
Xt = (Xt , st ,ct ), parameterized by θ, as

eθ :R|Xt |×W ×H×3 ×R×Rk →RS×c . (4.2)

In CIL [39] and CILRS [40], ct is treated as a switcher (condition) to trigger
different MLP branches for predicting at . Here we treat ct as an input signal to be
later processed by a transformer. This is because we have not observed obvious
differences between these two approaches while treating ct as input signal simplifies
the training.

Attention Learning. To naturally associate intra-view and inter-view information,
we adopt the attention mechanism of transformers [176]. We expect it to be effective
to learn the mutual relevance between distant image patches (tokens), helping our
model to associate feature map patches across views (i.e., coming from visual
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information to the left, center, and right of the ego-vehicle).
Over the embedded space Zt , we learn a scenario embedding using a trans-

former encoder that consists of L multi-head attention layers. Each one includes
Multi-headed Self-Attention (MHSA) [176], layer normalization (LN) [11], and feed-
forward MLP blocks. The final output is a linear projection of the concatenated
output of each attention head, which is then fed into the action prediction module.
We use L = 4 layers, with 4 heads each. The hidden dimension D of the transformer
layer is set to be equal to the ResNet output dimension, i.e., D = 512.

Action Prediction The output of the transformer encoder with a size of S × c is
average-pooled and fed into an MLP. The MLP consists of three fully connected
layers (FC) with ReLu non-linearity applied between each FC. The final output
action at ∈R2 comprises of the steering angle and acceleration (brake/throttle), i.e.,
at = (as,t , aacc,t ).

For a deeper understanding of the architecture, we present the input and output
dimensions of each module used in our entire pipeline in Table 4.1. The pipeline
flow is row-wise, that is, we start with 3 RGB images at 300×300 resolution, and our
final output is of shape 1×2, corresponding to the acceleration and steering angle
that the ego vehicle should apply at a given timestep.

4.3.3 Loss Function

At time t , given a predicted action at and a ground truth action ât , we define the
training loss as:

L (at , ât ) =λacc∥aacc,t − âacc,t∥1 +λs∥as,t − âs,t∥1 , (4.3)

where ∥·∥1 is the L1 distance, λacc and λs indicate the weights given to the accelera-
tion and steering angle loss, respectively. In our case, we consider steering angle
and acceleration to be both in the range of [−1,1]. Negative values of the accelera-
tion correspond to braking, while positive ones to throttle. The weights are set to
λacc =λs = 0.5.

In CILRS [40], speed prediction regularization is applied in the training loss to
avoid the inertia problem caused by the overwhelming probability of ego staying
static in the training data. We do not observe this problem in our case, thus the
speed prediction branch is not applied in our setting. Our result suggests that a
simple L1 loss is able to provide compelling performance, even in a new town.
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4.4 Experiments

4.4.1 Environment

For performing the driving evaluation, we updated the NoCrash benchmark to work
with the latest CARLA version, 0.9.13. Given we have compared CIL++ with RIM and
MILE, both of which were validated in CARLA 0.9.11, we provide some of the main
differences between these two versions:

• Pedestrians Seed. The latest CARLA version (0.9.13) added a new API function
“set pedestrians seed" for better reproducibility. In our experiments, we keep
the same pedestrian and traffic manager seeds for all models’ running.

• Weather Parameters. The default weather setting parameters have been
slightly changed between versions (such as ClearNoon, ClearSunset, etc). We
provide an example in Figure 4.2, showing some appearance differences of the
same scene between these two versions under the same weather condition,
ClearNoon. In Table 4.2 we show an example of the changes in the weather
parameters for each version of CARLA.

4.4.2 Training Datasets

As recent top-performing methods [80], for on-board data collection in CARLA,
we use the teacher expert driver from [199], termed as Roach RL since it is based
on reinforcement learning and was trained with privileged information. Roach RL
shows a more realistic and diverse behavior than the default (handcrafted) expert
driver in CARLA. Note that in real-world experiments we would use different human
drivers as experts. We use the default settings of [199], so as in the student driver
of [199] (RIM) as well as in [80] (MILE), the ego-vehicle is the Lincoln 2017 available
in CARLA. Each of our three forward-facing cameras on board the ego-vehicle has a
resolution of W ×H = 300×300 pixels, covering an HFOV of 60◦. They are placed
without overlapping so that they jointly cover an HFOV=180◦ centered in the main
axis of the ego-vehicle.

With the expert driver, ego-vehicle, and onboard cameras, we collect data for in-
creasingly complex experiments. First, we collect a dataset from Town01 in CARLA,
which is a small town only enabling single-lane driving, i.e., lane change maneu-
vers are not possible. In particular, we collect 15 hours of data at 10 fps (∼540K
frames from each camera view), under four training weather conditions, namely,
ClearNoon, ClearSunset, HardRainNoon, and WetNoon. In this case, CARLA’s
Town02 is used for generalization testing under SoftRainSunset and WetSunset
weather conditions. Second, we collect a dataset from multiple CARLA towns to
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include more complex scenarios such as multi-lane driving, entering and exiting
highways, passing crossroads, etc. In order to keep the same setting as [80], we hold
Town05 for testing and collect 25 hours of data at 10 fps from Town01 to Town06
(5 hours per town; ∼900K frames from each camera). Training and testing weather
conditions are the same for both Town 1 and Town 2.

For each episode, we spawn the expert vehicle and its attached sensor suite
in a random location on each map and assign a random route to it. The expert
will follow this route until it has driven for the predefined episode duration. Each
town has a random range which the number of pedestrians and vehicles will be
(uniformly) drawn from. The route settings and towns used to collect the dataset are
further detailed in Table 4.3. In Figure 4.3, we show the data distributions for both
the steering angle and acceleration, for the datasets collected for training CIL++.
The two datasets are of 15 and 25 hours of driving, corresponding, respectively, to
the smaller, single-lane towns and multi-lane towns.

The road layouts of each town mainly influence the steering angle distribution.
The concentration around 0.0 of steering angle for both datasets is due to the fact
that most of the driving is done following the straight lane, i.e.in the towns used, the
roads are mainly comprised of straight roads. Note that all of the towns in CARLA
are designed with right-hand traffic, that is, in bidirectional traffic, the ego vehicle
drives on the right side of the road. This results in right turns needing a higher
steering angle (turning radius will be small) and left turns needing a lower steering
angle (turning radius will be large).

In contrast, the acceleration distribution is mainly affected by other dynamic
objects in the scene. Concretely, the red traffic light or Stop sign, pedestrians
crossing the road, and other leading vehicles will force the expert vehicle to stop
or adjust its speed, hence leading to the large concentration of around −1.0 in
the acceleration distribution for both datasets. The other concentrations around
1.0 and 0.4 are the acceleration after coming to a stop (either by blockage by other
dynamic objects or traffic lights/Stop signs) and the acceleration needed to maintain
a constant driving speed.

4.4.3 Training Details

To optimize Eq. (4.3), we use the Adam [94] with an initial learning rate of 10−4 and
weight decay of 0.01. We train for 80 epochs on 2 NVIDIA A40 GPUs in parallel, with
a batch size of 120. The learning rate decays by half at epochs 30, 50, and 65. More
details on the training hyperparameters can be found in Table 4.4.
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(a) A typical urban scene in Town 5 on CARLA 0.9.11.

(b) The same scene as (a) on CARLA 0.9.13. Note the difference in shadow length,
clouds, and general lightning.

Figure 4.2: The same ClearNoon weather condition in two versions of CARLA.

CARLA 0.9.11 CARLA 0.9.13

cloudiness 15.0000 5.0000
precipitation 0.0000 0.0000
precipitation_deposits 0.0000 0.0000
wind_intensity 0.3500 10.0000
sun_azimuth_angle 0.0000 −1.0000
sun_altitude_angle 75.0000 45.0000
fog_density 0.0000 2.0000
fog_distance 0.0000 0.7500
fog_falloff 0.0000 0.1000
wetness 0.0000 0.0000
scattering_intensity N/A 1.0000
mie_scattering_scale N/A 0.0300
rayleigh_scattering_scale N/A 0.0331

Table 4.2: We take ClearNoon as an example to show weather settings
differences between different versions of CARLA. Note that the last three
parameters, namely scattering_intensity, mie_scattering_scale, and
rayleigh_scattering_scale are available only since CARLA 0.9.12. For the full
explanation and usage of each variable, please refer to the CARLA documentation.
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Item Value

RGB views 3
Cameras Resolution 300×300

Field of view 60◦
Position (x, y, z) (0.0,0.0,2.0)
Rotation (φ,θ,ψ) View Roll Pitch Yaw

left 0.0◦ 0.0◦ −60.0◦
central 0.0◦ 0.0◦ 0.0◦
right 0.0◦ 0.0◦ 60.0◦

Lens circle None
Frequency 10Hz

Episode Dynamic Objects Town Pedestrians Vehicles
(random choice) Town 1 U (80,160) U (80,160)

Town 2 U (60,80) U (60,80)
Town 3 U (50,120) U (50,120)
Town 4 U (40,160) U (60,160)
Town 6 U (60,160) U (60,160)

Duration 300s
Spawn point Random
Route plan Random
Pedestrian crossing 1.0
factor

Table 4.3: Camera and episode settings for data collection with the expert driver.

Figure 4.3: Top left to right: 15 hours single-lane-town dataset distribution of
steering angle and acceleration; Bottom left to right: 25 hours multi-town dataset
distribution of steering angle and acceleration. Regarding the steering angle and
acceleration, negative values correspond to turning left and braking, and positive
values correspond to turning right and accelerating, respectively.
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Category Name Value

Training GPUs 2×NVIDIA A40
batch size 120
seed 1314
epochs 80

Optimizer name Adam
weight decay 0.01
β1 0.9
β2 0.999
ε 1×10−8

initial learning rate 1×10−4

learning rate decay ×0.5 at epochs 30, 50, and 65
minimal learning rate 1×10−5

Input image resolution 300×300
normalization mean: [0.485, 0.456, 0.406]

stdev: [0.229, 0.224, 0.225]
pre-training ImageNet

Speed Input normalization [-1.0, 12.0]

Transformer number of encoder layers 4
heads per layer 4

Loss action weights λacc = 0.5 (acceleration)
λs = 0.5 (steering angle)

output ranges steer angle [−1.0,1.0]
acceleration [−1.0,1.0]

Table 4.4: Training hyperparameters of CIL++.
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4.4.4 Driving Benchmark

We follow the NoCrash benchmark [40] and the offline CARLA leaderboard bench-
mark [80, 199] for experiments on small single-lane towns (Sec. 4.4.5) and multiple
towns (Sec. 4.4.5), respectively.

NoCrash Metrics. It consists of three tasks with increasing levels of difficulty:
Empty, Regular, and Dense, according to the number of dynamic objects in the
scene (i.e., pedestrians and vehicles). In the Dense case, the default traffic density
set in NoCrash always leads to congestion deadlocks at intersections [199]. Thus, we
follow the Busy case as redefined in [199]. Each task corresponds to 25 goal-directed
episodes under 2 new kinds of weather. The episode will be terminated and counted
as a failure once a collision occurs. For the other infractions, the driving score will
be deduced according to the penalty rule in NoCrash.

The main metric to compare driving models is the success rate (SR), which is
the percentage of episodes successfully completed. For a fine-grained comparison,
in addition, we provide the strict success rate (S.SR). It reflects the percentage of
successful episodes under zero tolerance for any traffic infraction, such as failing
to stop at a red traffic light, route deviation, etc. As a complement, we also include
additional infraction metrics: T.L is the number of times not stopping at a red traffic
light; C.V is the number of collisions with other vehicles; R.Dev is the number
of route deviations, i.e., when the high-level command is not well-executed; O.L
accounts for the ego-vehicle driving out-of-lane (e.g., in the opposite lane or in the
sidewalk); C.L is the number of collisions with the town layout. All infraction values
are normalized per driven kilometer.

Offline Leaderboard Metrics. To align our evaluation with [80], we use the offline
CARLA’s Leaderboard metrics for multiple towns. The most important metrics
are the average driving score (Avg.DS) and the average route completion (Avg.RC).
Avg.DS is based on penalizing driving performance according to the terms defined
in CARLA’s Leaderboard, while Avg.RC is the average distance towards the goal that
the ego-vehicle is able to travel.

High-level Navigation Commands As in CILRS [40], at training time we use simple
navigation commands such as continue in the lane, or go-straight/turn-left/turn-
right next time an intersection is reached. However, in complex towns, after crossing
an intersection in any direction, we may legally enter any of the multiple lanes. Thus,
since this can be known by the global navigation system when the ego-vehicle enters
a lane out of the pre-planned global trajectory, a corrective command is forced,
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Figure 4.4: Top: when the ego-vehicle is entering a new road segment from an
intersection, the go-straight navigation command is ambiguous. The ego vehicle
can legally move to any of the highlighted lanes. Bottom: four aerial views at
different times with the pre-planned global trajectory shown in orange. They
illustrate how the high-level navigation command changes to move-to-right-lane,
to inform how to get back to the desired trajectory.

like move-to-left-lane or move-to-right-lane as soon as possible. This corrective
mechanism is used only at testing time. Figure 4.4 provides an example.

Intersection deadlock detection We observe that occasionally there are some
intersection deadlocks, even though the dynamic density is not set to a high level.
This could be caused by the random spawning and autopilot setting of the other
vehicles in CARLA. To eliminate these cases for better comparison, we applied traffic
detection. Once the traffic manager detects that some other vehicles stop within an
intersection that is 10 meters from the ego-vehicle for more than 90 seconds, the
vehicles will be re-spawned to other points. As an illustration, we show an example
of traffic deadlocks in Figure 4.5.
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Figure 4.5: An example of traffic deadlocks in Town 5 that could lead to a timeout in
route completion.

Global route re-planning As mentioned in our main paper, we applied real-time
calibration on high-level navigation commands. When the ego-vehicle enters a
lane out of the pre-planned global trajectory, a corrective command is forced, like
move-to-left-lane or move-to-right-lane as soon as possible. However, in some cases,
the ego-vehicle could not perform a lane change since there might be some other
vehicles on the target lane, which forces the ego-vehicle to maintain on the driving
lane. In this case, we apply the global route re-planning: once the traffic manager
detects that the ego-vehicle deviates from the pre-planned route for more than
30 meters, a new route to the destination is computed, along with a new set of
high-level commands to provide the ego-vehicle for driving.

4.4.5 Experimental Results

We compare CIL++ with two SOTA vision-based EtE-AD models, namely, the Roach
IL model (here RIM) [199] and MILE [80]. CIL++ does not require human-labeled
sensor data for training. In contrast, MILE is trained with semantic BeV as supervi-
sion, while RIM requires teaching from the Roach RL expert which was trained with
privileged information.

Small Single-lane Towns We first use CARLA’s Town 1 and Town 2 along with the
NoCrash metrics (Sec. 4.4.4) for initial experiments. Town 1 is used for training
and Town 2 for testing (Sec. 4.4.2). MILE only provides a model trained on CARLA’s
multiple towns, but there is no model trained only on Town 1, while RIM has
versions trained on Town 1 and multiple towns. Thus, for a fair comparison, we
only use RIM’s single-town trained model. We show in Table 4.5 SR and S.SR for the
considered traffic densities (Empty, Regular, Busy). In order to have a more focused
evaluation, we show T.L only for the Empty and Regular cases, while C.V is shown
only for the Busy case. Note that scenarios with no or few dynamic obstacles can
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Empty Regular Busy
↑ SR(%) ↑ S.SR(%) ↓ T.L ↑ SR(%) ↑ S.SR(%) ↓ T.L ↑ SR(%) ↑ S.SR(%) ↓ C.V

RIM 100±0.0 85±1.2 66±5.0 97±2.3 86±7.2 66±54 81±5.0 68±7.2 63±52.7
CIL++ 100±0.0 100±0.0 0±0.0 99±2.3 97±3.1 7±7.9 83±7.6 77±7.6 45±21.5

Expert 100±0.0 100±0.0 0±0.0 100±0.0 97±0.0 13±4.6 84±2.0 82±2.0 37±14.1

Table 4.5: Town 2 NoCrash results. RIM stands for Roach IL and the Expert is Roach
RL [199]. All models are tested on CARLA 0.9.13. Mean and standard deviations are
computed using three runs with different seeds. For ↑, the higher the better, while
for ↓ is the opposite.

better show the ego-vehicle reaction to red traffic lights, while collisions are better
evaluated in scenarios with more dynamic objects.

In general, CIL++ achieves the best results in all the tasks. In the Empty case,
CIL++ clearly outperforms RIM in avoiding traffic light infractions, which also
contributes to a better S.SR. We reach the same conclusion in the Regular case. In
the Busy case, CIL++ reaches almost the expert’s performance, again, being clearly
better than RIM for S.SR and producing fewer collisions with vehicles. For the
expert, the failure cases in Busy scenarios are due to traffic deadlocks, which lead to
a timeout in route completion. Thus, its performance still can be considered as a
proper upper bound.

Traffic lights tend to be on sidewalks, so detecting them from a close distance
requires a sensor setting with a proper HFOV. Otherwise, causal confusion can
appear. We think that the poor performance of RIM on the T.L metric is due to
a narrow HFOV as illustrated in Fig. 4.6. To confirm this hypothesis, we conduct
experiments using two HFOV settings for CIL++, 100 and 180. As seen in Table 4.6,
we note that the number of infractions(T.L, C.L, O.L, R.Dev) increase when we use a
lower HFOV=100◦ compared to HFOV=180◦. For HFOV=100◦, we have observed that
the track of the road shoulder is easily out-of-observation at intersections, leading
to more O.L, C.L, and R.Dev. For HFOV=180◦, the ego-vehicle can better perform
the right driving maneuver, thanks to having the road shoulder as a reference.

Multi-town Generalization In this section, we assess the performance of CIL++
in much more complex scenarios, as provided by CARLA’s multiple towns. As
mentioned in Sec. 4.4.2, for a fair comparison, we align the training and testing
settings with MILE [80], using CARLA’s offline Leaderboard metrics (Sec. 4.4.4). The
results for all models trained on multi-town data are shown in Table 4.7. RIM shows
the worst performance among the three models, incurring more infractions, thus
obtaining a significantly lower Avg.DS. CIL++ achieves 98% Avg.RC, which is on
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(a) Roach RL [199]: using semantic BeV as input during training time

(b) CIL++: only images from three views as input

Figure 4.6: Top Left: The expert we use for data collection is the teacher agent Roach
RL [199], which has access to semantic BeVs. Note that, in simulation, this expert
plays the role of a human driver in the real world, who would drive to collect onboard
data. Top Right: Using an insufficient FOV, the red traffic light is not observable
in the image when the expert stops close to it, which may cause causal confusion
when applying imitation learning to train the student agent RIM. Bottom: CIL++
avoids this causal confusion by using a larger HFOV based on three complementary
images (from different cameras). More specifically, RIM uses HFOV=100◦, while
CIL++ uses HFOV=180◦.

↑ SR(%) ↑ S.SR(%) ↑ Avg.RC(%) ↑ Avg.DS ↓ C.L ↓ T.L ↓ O.L ↓ R.Dev

HFOV 100◦ 52 40 83 69.1 428.6 19.6 339.6 10.7
HFOV 180◦ 100 98 100 99.2 7.3 0.0 0.0 0.0

Expert 100 100 100 100.0 0.0 0.0 0.0 0.0

Table 4.6: Impact of sensor suite HFOV in the NoCrash Regular case. For HFOV=100◦
we use a single camera with a resolution of W × H = 600× 170 pixels, while for
HFOV=180◦ we use the multi-view setting detailed in the main text.
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↑ Avg.RC(%) ↑ Avg.DS ↓ C.V ↓ C.L ↓ T.L ↓ O.L ↓ R.Dev

RIM 92±3.1 51±7.9 7.5±1.3 4.3±1.6 26.0±8.9 5.4±2.7 3.0±3.2
MILE 98±2.2 73±2.9 6.0±3.7 0.0±0.0 3.6±3.8 3.5±1.5 0.0±0.0
CIL++ 98±1.7 68±2.7 6.0±0.5 3.8±0.7 5.8±5.1 6.1±2.2 9.4±3.6

Expert 99±0.8 89±1.7 3.2±1.1 0.0±0.0 1.3±0.4 0.0±0.0 0.0±0.0

Table 4.7: Town 5 results according to CARLA’s offline metrics. All models are tested
on CARLA 0.9.13. Mean and standard deviations are computed using three runs
with different seeds. For ↑, the higher the better; for ↓, the opposite.

par with MILE. In terms of Avg.DS, MILE remains the best scoring, yielding a 73%
while CIL++ achieves a 68%. We observe that this is because MILE seldom drives
outside the pre-planned lane, given the route map as input. On the contrary, CIL++
lacks the explicit use of this route map since it only receives high-level navigation
commands.

Visualizing CIL++’s Attention We are interested in the image content to which
CIL++ pays attention. Following Grad-CAM [154], gradients flow from the action
space to the final convolutional layer of the ResNet backbone. This should produce
a map that highlights the important image areas for action prediction. However,
since CIL++ solves a regression task, its output could be either negative or positive
values, while Grad-CAM is originally designed for image classification tasks which
always provide positive outputs. To adapt Grad-CAM to our case, we cannot merely
take into account the positive gradient of the feature map. The computation should
be divided into two cases depending on the sign of the output value. Negative
gradients are used to calculate the weights for the feature map when the acceleration
or steering angle value is lower than zero, otherwise, the positive gradient is used.

Fig. 4.7 shows the activation map at an intersection. Three image areas are
highly activated: the traffic light in the right image, the crossing pedestrians in the
central one, and the lane shoulder in the left one. Thus, we believe that CIL++ shows
a proper understanding of this scene, and a clear causality between observation
and action since it decides to brake due to the pedestrians, even though the traffic
light is in green and a turn-left navigation command is given.

Ablation Study To inspect the impact of some components of CIL++, we provide
an ablation study. Specifically, we are interested in the fusions of input data and
multi-view.

• Input Data Fusion. EtE-AD models require not only sensor data but also
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Figure 4.7: Activation maps of CIL++ at an intersection in Town 2. Three image
areas from different views are highly activated: the traffic light in the right image,
the crossing pedestrians in the central one, and the lane shoulder in the left one.
Causality between observation and action is shown as strong braking (0.794) due to
the pedestrians, even though the traffic light is green and the turn-left command.

signal information, like the ego-vehicle speed and a high-level navigation
command. It is interesting to study how to properly fuse these inputs. To com-
pare, we implement several types of input data fusion in Table 4.8: adding,
concatenation, and tokenization. In the first, the speed and command fea-
tures are simply added to the image features. This addition could be done
either before (the default operation in CIL++) or after the Transformer En-
coder block. We name the latter as late fusion adding (LF.A). Another common
data fusion method is concatenation, which firstly stacks all the features and
takes an extra join FC layer to fuse them, which we term late fusion concate-
nation (LF.C). Since the transformer model uses a self-attention mechanism
to fuse features between tokens, we can tokenize the speed and navigation
command features and feed them into the transformer block along with the
image features; which we term Token in Table 4.8. Our results suggest that
there is no obvious difference between tokenization and early adding fusion.
These two approaches show better results than the late fusion.

• Multi-view Fusion. CIL++ uses attention layers to fuse multi-view informa-
tion. To understand their contribution, we remove the transformer block and
simply use the ResNet34 which retains the average pooling and an FC layer for
embedding each image view. The embedding outputs are then stacked and
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↑ SR(%) ↑ S.SR(%) ↑ Avg.RC(%) ↑ Avg.DS

LF.A 72 62 86 78.1
LF.C 76 66 88 80.6
Token 88 80 93 88.4
CIL++ 88 84 93 88.8

Table 4.8: Results of different data input fusion approaches for NoCrash Busy sce-
narios.

↑ SR(%) ↑ S.SR(%) ↑ Avg.RC(%) ↑ Avg.DS

GAP 64 46 87 75.1
VS 70 62 89 78.6
CIL++ 88 84 93 88.8

Table 4.9: Results of different multi-view fusion approaches for NoCrash Busy
scenarios.

fed to the FC join layers for fusion. We term this approach as view stacking
(VS) in Table 4.9. The speed and command features are added to the joint
embedding before feeding into the action prediction MLP. We see that with-
out the self-attention layers, the SR drops from 88% to 70%. We think this is
because the average pooling layer causes a loss of spatial information, while
this information is very important for actual driving. The agent should take
different actions according to the location of dynamic obstacles. We also use
a transformer block to process the output of the ResNet average pooling layer
(GAP), instead of using the flattened feature map from the last convolutional
layer of ResNet34. The results drop significantly, e.g., and the SR goes from
88% to 64%.

Failure Cases We show one of our failure cases in Figure 4.8. The lane change
command is given when the ego is close to the intersection while there is already
another green vehicle on the right side lane. The ego agent could not make the
right turn and change lanes since it recognizes there is an obstacle. As the ego
proceeds, the green vehicle also turns right and continues to occupy the space that
is needed for the ego to turn right. Eventually, when the ego arrives at the center of
the intersection, the ego does not have enough space to turn right and stops.
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Figure 4.8: One failure case of CIL++ at intersection caused by a dilemma situation:
the move-to-right-lane navigation command is provided around the intersection,
while there is another vehicle blocking the target lane. As the ego proceeds a right
turn, the other vehicle also turns right and occupies the space required for the ego
vehicle to make a right turn, which leads to a failure.

4.5 Conclusion

We have presented CIL++, which aims at becoming a new strong baseline represent-
ing vision-based pure EtE-AD models trained by imitation learning. This is required
because recent literature may lead to the conclusion that such approaches are
poorly performing compared to those relying on additional and costly supervision.
We have argued that previous vision-based pure EtE-AD models were developed in
sub-optimal conditions. Thus, we have developed a model which relies on three
cameras (views) to reach an HFOV=180◦ and a more realistic expert driver to collect
onboard data in the CARLA simulator. We have proposed a visual transformer that
acts as a mid-level attention mechanism for these views, allowing CIL++ to associate
feature map patches (tokens) across different views. CIL++ performs at the expert
level on NoCrash metrics and is a pure EtE-AD model capable of obtaining compet-
itive results in complex towns. We have presented an ablative study showing the
relevance of all the components of CIL++. In future work, we plan to add rear-view
cameras, to improve lane change maneuvers.
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5.1 Conclusions

In this thesis, we aim at leveraging a large amount of sensor data that do not require
human labeling, as well as deep learning techniques, to develop visuomotor driving
models by applying human behavior cloning (BC), which is a type of imitation
learning (IL).

In Chapter 2, we propose to fuse depth (D) and appearance (RGB) information as
input for end-to-end conditional imitation learning (CIL) models, where the depth
maps can be obtained either from active sensors such as LiDAR or from a trained
monocular depth estimation model. We perform experiments based on single-
modal models (i.e., the input is either RGB images or depth maps) and multimodal
models (i.e., RGBD being their input) on the CARLA simulation environment. As for
the multimodal model, we train models with different fusion schemes, namely, early,
mid, and late. The obtained results clearly lead us to conclude that multimodality,
no matter in which fusion scheme outperforms the single-modality. Moreover, early
fusion outperforms mid and late fusion schemes.

In Chapter 3, we propose a two-step training protocol that leverages end-to-end
models (such as BC) for learning a representation of driving knowledge to develop
driving models based on affordances. The training data required for learning a
representation can be easily obtained by simply recording the actions of drivers,
thus, reducing the cost of human labeling. The results show that an affordance
model trained on BC pre-training performs better than using random initialization,
and even better than using the widespread supervised pre-training on ImageNet.
The presented results also lead us to conclude that, compared to the data collected
by random roaming, expert driving data (i.e., coming from human drivers) is an
important source for good representation learning. Moreover, to some extent,
affordance models can improve the interpretability of driving actions compared to
pure end-to-end models.

In Chapter 4, we propose a model named CIL++, which aims at being a new
strong baseline for pure vision-based end-to-end autonomous driving models
trained by imitation learning. Compared to the sub-optimal pioneer CIL model, we
enriched CIL++ with some new elements, e.g., setting up three cameras (views) to
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reach an HFOV=180◦, and using a more realistic expert driver to collect on-board
data in CARLA simulator. In addition, we propose to use a visual transformer that
acts as a mid-level attention mechanism to associate feature map patches (tokens)
across different views. Our experimental results in the CARLA simulator show that
CIL++ performs at an expert level on NoCrash metrics (single-lane towns) and
obtains competitive results in complex (multi-lane) towns when compared to those
models that require pixel-wise labeled data for their training.

5.2 Behind the scenes

Overall, all this work aims at improving the stability and performance of pure
vision-based end-to-end autonomous driving models. For such a data-driven
training approach, one of the advantages is that of being possible to easily collect
petabytes of onboard data (raw sensor data, vehicle state variables, etc). However,
it also brings a series of challenges, a key one of which is: how to prepare suitable
datasets to train models for good driving performance? We found that beyond the
architecture and methodology, an easily overlooked consideration to deliver good
driving performance is the training dataset. Usually, the following aspects are very
important:

• Image Data Diversity. As we all know, the generalization problem has always
been a difficult problem in deep learning models. Some work [19, 75, 196]
have already shown that using diverse data can improve the stability or/and
performance of models to some extent. This is why the training of models is
always based on some large pre-training proposals, such as ImageNet [45]
for images, BERT [46] for languages. Thus, in order to improve the stability
of driving models, we always consider increasing the diversity of our data
appearance, including adding different kinds of weather, towns, obstacles,
and even the density of dynamic obstacles (i.e., the number of pedestrians and
vehicles). We believe that having a diverse dataset is an important prerequisite
for training good-performing end-to-end driving models.

• Image Data Configuration. Compared to pioneer CIL, the data configuration
in CIL++ has been changed, both in resolution (from 200×88 images captured
from one central camera to 900×300 images captured from three cameras)
and HFOV (from 100◦ to 180◦). These changes have been possible during
the last period of my Ph.D., due to the improvement in computing resources
in our research team. The presented results lead us to conclude that these
settings are essential to improve the performance of driving models. Due to
the limitation of experimental time, this thesis cannot exhaustively search
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more hyperparameters of CIL++, such as using multiple frames to capture
temporal information, applying augmentation such as cropping and adding
noise, etc, which we leave as part of future work.

• Signal Data Distribution. CIL models directly learn how to drive from the
demonstrations coming from expert drivers, thus their performance can be
vulnerable to corner cases that are rarely presented in the training dataset.
The distribution statistics of signal data used as training supervision is cru-
cial, such as 1) balancing the proportion of high-level commands (i.e., going
straight, turning left/right, lane following) since it has a great impact on the
steering angle distribution; 2) collecting as many driving scenarios as possible
that lead to different driving behaviors, such as suddenly stopping, following
a leading vehicle at a certain speed, avoiding a collision with a pedestrian
rushing into the lane; 3) using several expert drivers who provide different
driving policies; 4) adding artificial disturbance or applying techniques like
Dagger during data collection to improve the models’ ability to handle unseen
scenes and ease the long-tail cases.

In addition to the training dataset, another concern is how to efficiently come
across the limited computational resources characteristic of academic environ-
ments. For instance, at the beginning of my Ph.D., the available resources for train-
ing and testing models were four NVIDIA GEFORCE RTX 2080 (the latest-generation
GPU at that time). Training all models that are mentioned in Chapter 2 (eight types
in total) requires ten days of full-time usage of these GPUs, not to mention the
time spent on the upfront hyperparameters searching, and the online driving test
on CARLA benchmarks. Therefore, training protocol and model architecture need
to be reasonably designed considering the available computational capacity. For
instance, the input images need to be down-scaled to 200 × 88 pixel resolution, the
batch size is set to below 120, and the dimension of FC layers can not be too high,
etc. The situation becomes more concerning when training multimodal models
that require more memory than single-modal models, due to the increase of model
parameters.

Moreover, to assess variability in performance, all the models need to be trained
and tested several times. Specifically, this variability comes from two sources: 1)
Due to training convergence of the underlying CNNs, we Follow standard machine
learning good practices to train each model five times and select the best in each
case based on the offline validation; 2) Due to different circumstances of each
driving on CARLA benchmark, for each model, we run for three times and report
the mean and standard deviation of the success rate. In fact, the benchmark already
segregates the most important sources of variability for a better understanding
of the performance of a given model: four environment conditions (training and
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new, town and weather), and four traffic conditions (one straight, making one turn,
navigation, navigation with dynamics). In other words, one single model is tested
in 16 different situations, and each of those tests over either 100 or 50 driving runs,
depending on the environmental condition. Completing the benchmark for one
single model takes around 10 to 12 hours on a single GPU.

After that, due to the increase in the number and capacity of GPUs in our re-
search group, some sub-optimal conditions for model training have been improved,
allowing for more extensive research. We can try more hyperparameters search-
ing, such as using larger batch sizes, scaling up the resolution of RGB input, as
well as adding more layers, or even using a visual transformer model that requires
considerable computing power at training time. Nevertheless, regarding the time
required for training, it is still challenging to explore large-capacity deep models.
For instance, training a CIL++ model in Chapter 4 requires around 5 days of full-
time usage of an NVIDIA A40 (a new-generation powerful GPU with a memory
size of 48 GB). In fact, for some large models, the computational resource is still
the main bottleneck. For instance, the ViT [49] needs to be trained by a standard
cloud TPUv3 with 8 cores for approximately 30 days, which is huge and beyond the
computational capacities of many groups.

While developing the research in this Ph.D., the CARLA simulator has been
constantly changing for improvements. From Chapter 2 to Chapter 4, the driving
test for models is always carried out on the latest benchmark at that time, ranging
from the original CARLA benchmark to the later NoCrash and Leaderboard. In the
meantime, dealing with the compatibility of different CARLA versions has been
another inevitable ordeal in the research process. For one thing, the hardware and
software required for installation and compilation may change; and for another,
comparing model results with peers can be complicated due to the experimental
environment of different CARLA versions and benchmarks. For maximum fairness,
in our work, we always provide clear baselines, and compare our models with those
most relevant SOTA models which are tested in the same or close versions.

5.3 Future work

Delivering autonomous vehicles requires extensive efforts, ranging from obtaining
the permission of relevant departments and passing relevant legal procedures
to preparing capital costs, etc. Due to the constraints of human resources and
equipment costs, all of the experiments in this thesis were performed on the CARLA
simulator. For future work, we are interested in conducting driving experiments of
our CIL++ model in the physical world. To evaluate the model, a qualitative metric
and systematic tests will be designed, considering various weather and driving
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route conditions. Apart from this, based on the existing computing resources, we
believe it is also worth exploring the multi-frame input setting for CIL++, with
the intuition that the temporal information is somehow useful for taking driving
decisions. Another possible direction to extend this work is to train a monocular
depth estimation module to generate depth maps for real car driving. From the
conclusion in Section 2.5, we believe that with the assistance of depth information,
the performance of our current CIL++ model can be further boosted and achieve
better driving performance, even compared to other models that require costly
human-labeled data for training.

81





Publications

1. Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, Antonio M. López.
Multimodal End-to-End Autonomous Driving. IEEE Transactions on Intelli-
gent Transportation Systems (IEEE T-ITS), 2019.

2. Yi Xiao, Felipe Codevilla, Christopher Pal, Antonio M. López. Action-based
Representation Learning for Autonomous Driving. Conference on Robot
Learning (CoRL), 2020.

3. Yi Xiao, Felipe Codevilla, Diego Porres, Antonio M. López. Scaling Vision-
based End-to-End Autonomous Driving with Multi-View Attention Learning.
Under review.

83





Bibliography

[1] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine.
Learning to poke by poking: Experiential learning of intuitive physics. In
Advances in Neural Information Processing Systems (NIPS), 2016.

[2] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers
using linear classifier probes. In Inter. Conf. on Learning Representation
(ICLR) Workshops, 2017.

[3] Alexander Amini, Wilko Schwarting, Guy Rosman, Brandon Araki, Sertac
Karaman, and Daniela Rus. Variational autoencoder for end-to-end control
of autonomous driving with novelty detection and training de-biasing. In
Inter. Conf. on Intelligent Robots and Systems (IROS), 2018.

[4] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre
Côté, and R Devon Hjelm. Unsupervised state representation learning in
Atari. In Advances in Neural Information Processing Systems (NIPS), 2019.

[5] David C Andrade, Felipe Bueno, Felipe R Franco, Rodrigo Adamshuk Silva,
João Henrique Z Neme, Erick Margraf, William T Omoto, Felipe A Farinelli,
Angelo M Tusset, Sergio Okida, et al. A novel strategy for road lane detection
and tracking based on a vehicle’s forward monocular camera. In IEEE Trans.
on Intelligent Transportation Systems, 2018.

[6] Szilárd Aradi. Survey of deep reinforcement learning for motion planning
of autonomous vehicles. IEEE Trans. on Intelligent Transportation Systems,
2020.

[7] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A
survey of robot learning from demonstration. Robotics and Autonomous
Systems, 57(5):469–483, 2009.

[8] Anurag Arnab and Philip HS Torr. Pixelwise instance segmentation with
a dynamically instantiated network. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

85



Bibliography

[9] Eduardo Arnold, Omar Y. Al-Jarrah, Mehrdad Dianati, Saber Fallah, David
Oxtoby, and Alex Mouzakitis. A survey on 3D object detection methods for
autonomous driving applications. IEEE Trans. on Intelligent Transportation
Systems, January 2019.

[10] Alireza Asvadi, Luis Garrote, Cristiano Premebida, Paulo Peixoto, and Ur-
bano J. Nunes. Multimodal vehicle detection: fusing 3D-LIDAR and color
camera data. Pattern Recognition Letters, 115:20–29, November 2018.

[11] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization,
2016.

[12] Hernán Badino, Uwe Franke, and David Pfeiffer. The stixel world - a com-
pact medium level representation of the 3D-world. In DAGM: Joint Pattern
Recognition Symposium, 2009.

[13] M. Bai and R. Urtasun. Deep watershed transform for instance segmentation.
In Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[14] Mayank Bansal, Alex Krizhevsky, and Abhijit S. Ogale. ChauffeurNet: Learning
to drive by imitating the best and synthesizing the worst. In Robotics: Science
and Systems (RSS), 2019.

[15] RichardE Bellman. A markovian decision process. Journal of Mathematics
and Mechanics, 6(5):679–684, 1957.

[16] Rodrigo Benenson, Timofte Radu, and Luc Van Gool. Stixels estimation
without depth map computation. In Inter. Conf. on Computer Vision (ICCV)
CVVT Workshop, 2009.

[17] Alex Bewley, Jessica Rigley, Yuxuan Liu, Jeffrey Hawke, Richard Shen, Vinh-
Dieu Lam, and Alex Kendall. Learning to drive from simulation without real
world labels. In Inter. Conf. on Robotics and Automation (ICRA), 2019.

[18] Goutam Bhat, Joakim Johnander, Martin Danelljan, Fahad Shahbaz Khan,
and Michael Felsberg. Unveiling the power of deep tracking. In European
Conf. on Computer Vision (ECCV), 2018.

[19] Yijun Bian and Huanhuan Chen. A survey of end-to-end driving: Architec-
tures and training methods. IEEE Trans. on Cybernetics, 52(9):9059–9075,
2022.

86



Bibliography

[20] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end learning for
self-driving cars. arXiv:1604.07316, 2016.

[21] Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choromanski,
Bernhard Firner, Lawrence Jackel, and Urs Muller. Explaining how a deep neu-
ral network trained with end-to-end learning steers a car. arXiv:1704.07911,
2017.

[22] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sebastien Glaser. Simultaneous
localization and mapping: A survey of current trends in autonomous driving.
IEEE Trans. on Intelligent Vehicles, 2(3):194–220, 2017.

[23] Fabian Brickwedde, Steffen Abraham, and Rudolf Mester. Mono-stixels:
Monocular depth reconstruction of dynamic street scenes. In Inter. Conf.
on Robotics and Automation (ICRA), 2018.

[24] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuscenes: A multimodal dataset for autonomous driving. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.

[25] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teuliere, and T. Chateau. Deep
MANTA: A coarse-to-fine many-task network for joint 2D and 3D vehicle
analysis from monocular image. In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.

[26] Chenyi Chen, Ari Seff, Alain L. Kornhauser, and Jianxiong Xiao. DeepDriving:
Learning affordance for direct perception in autonomous driving. In Inter.
Conf. on Computer Vision (ICCV), 2015.

[27] Dian Chen and Philipp Krähenbühl. Learning from all vehicles. In Int. Conf.
on Computer Vision and Pattern Recognition (CVPR), 2022.

[28] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning
by cheating. In Conf. on Robot Learning (CoRL), 2019.

[29] Jianyu Chen, Shengbo Eben Li, and Masayoshi Tomizuka. Interpretable end-
to-end urban autonomous driving with latent deep reinforcement learning.
IEEE Trans. on Intelligent Transportation Systems, 2021.

87



Bibliography

[30] Jianyu Chen, Zining Wang, and Masayoshi Tomizuka. Deep hierarchical
reinforcement learning for autonomous driving with distinct behaviors. In
Intelligent Vehicles Symposium (IV), 2018.

[31] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
simple framework for contrastive learning of visual representations. In Inter.
Conf. on Machine Learning (ICML), 2020.

[32] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3D object
detection network for autonomous driving. In Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2017.

[33] Xieyuanli Chen, Hui Zhang, Huimin Lu, Junhao Xiao, Qihang Qiu, and Yi Li.
Robust SLAM system based on monocular vision and LiDAR for robotic urban
search and rescue. In Safety, Security and Rescue Robotics (SSRR), 2017.

[34] Zhilu Chen and Xinming Huang. End-to-end learning for lane keeping of
self-driving cars. In Intelligent Vehicles Symposium (IV), 2017.

[35] Kashyap Chitta, Aditya Prakash, and Andreas Geiger. NEAT: Neural attention
fields for end-to-end autonomous driving. In Inter. Conf. on Computer Vision
(ICCV), 2021.

[36] Wongun Choi. Near-online multi-target tracking with aggregated local flow
descriptor. In Inter. Conf. on Computer Vision (ICCV), 2015.

[37] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep
reinforcement learning in a handful of trials using probabilistic dynamics
models. In Advances in Neural Information Processing Systems (NIPS), 2018.

[38] Felipe Codevilla, Antonio M. López, Vladlen Koltun, and Alexey Dosovitskiy.
On offline evaluation of vision-based driving models. In European Conf. on
Computer Vision (ECCV), 2018.

[39] Felipe Codevilla, Matthias Müller, Antonio M. López, Vladlen Koltun, and
Alexey Dosovitskiy. End-to-end driving via conditional imitation learning. In
Inter. Conf. on Robotics and Automation (ICRA), 2018.

[40] Felipe Codevilla, Edgar Santana, Antonio M. López, and Adrien Gaidon. Ex-
ploring the limitations of behavior cloning for autonomous driving. In Inter.
Conf. on Computer Vision (ICCV), 2019.

88



Bibliography

[41] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
The Cityscapes dataset for semantic urban scene understanding. In Int. Conf.
on Computer Vision and Pattern Recognition (CVPR), 2016.

[42] Marius Cordts, Timo Rehfeld, Lukas Schneider, David Pfeiffer, Markus En-
zweiler, Stefan Roth, Marc Pollefeys, and Uwe Franke. The stixel world: A
medium-level representation of traffic scenes. Image and Vision Computing
(IV), 68:40–52, December 2017.

[43] Xiaohui Dai, Chi-Kwong Li, and Ahmad B Rad. An approach to tune fuzzy
controllers based on reinforcement learning for autonomous vehicle control.
IEEE Trans. on Intelligent Transportation Systems, 6(3):285–293, 2005.

[44] Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in im-
itation learning. In Conf. on Neural Information Processing Systems (NeurIPS),
2019.

[45] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2009.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv:1810.04805, 2019.

[47] Martin Dimitrievski, Peter Veelaert, and Wilfried Philips. Behavioral pedes-
trian tracking using a camera and LiDAR sensors on a moving vehicle. Sensors,
19(2), 2019.

[48] Carl Doersch and Andrew Zisserman. Multi-task selfsupervised visual learn-
ing. In Inter. Conf. on Computer Vision (ICCV), 2017.

[49] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. In Inter.
Conf. on Learning Representation (ICLR), 2021.

[50] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio López, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Conf. on Robot Learning
(CoRL), 2017.

89



Bibliography

[51] Markus Enzweiler and Dariu M. Gavrila. A multilevel mixture-of-experts
framework for pedestrian classification. IEEE Trans. on Image Processing,
20(10):2967–2979, 2011.

[52] Hesham M. Eraqi, Mohamed N. Moustafa, and Jens Honer. End-to-end deep
learning for steering autonomous vehicles considering temporal dependen-
cies. In Advances in Neural Information Processing Systems (NIPS)ML for ITS
WS, 2017.

[53] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao,
Sabeek Pradhan, Yuning Chai, Ben Sapp, Charles R Qi, Yin Zhou, et al. Large
scale interactive motion forecasting for autonomous driving: The waymo
open motion dataset. In Inter. Conf. on Computer Vision (ICCV), 2021.

[54] Mingyuan Fan, Shenqi Lai, Junshi Huang, Xiaoming Wei, Zhenhua Chai,
Junfeng Luo, and Xiaolin Wei. Rethinking bisenet for real-time semantic
segmentation. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2021.

[55] Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein, Claudius
Glaeser, Fabian Timm, Werner Wiesbeck, and Klaus Dietmayer. Deep multi-
modal object detection and semantic segmentation for autonomous driving:
Datasets, methods, and challenges. IEEE Trans. on Intelligent Transportation
Systems, 22(3):1341–1360, 2020.

[56] Zeyu Feng, Chang Xu, and Dacheng Tao. Self-supervised representation
learning by rotation feature decoupling. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

[57] Uwe Franke. Autonomous driving. In Computer Vision in Vehicle Technology.
2017.

[58] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao. Deep ordinal re-
gression network for monocular depth estimation. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018.

[59] Yukang Gan, Xiangyu Xu, Wenxiu Sun, and Liang Lin. Monocular depth esti-
mation with affinity, vertical pooling, and label enhancement. In European
Conf. on Computer Vision (ECCV), 2018.

[60] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the
KITTI vision benchmark suite. In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2012.

90



Bibliography

[61] Laurent George, Thibault Buhet, Emilie Wirbel, Gaetan Le-Gall, and Xavier
Perrotton. Imitation learning for end to end vehicle longitudinal control with
forward camera. In Advances in Neural Information Processing Systems (NIPS)
Imitation Learning WS, 2018.

[62] James J Gibson. The ecological approach to visual perception: classic edition.
Psychology Press, 2014.

[63] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised repre-
sentation learning by predicting image rotations. In Inter. Conf. on Learning
Representation (ICLR), 2018.

[64] C. Godard, O.M. Aodha, and G.J. Brostow. Unsupervised monocular depth
estimation with left-right consistency. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

[65] Alejandro González, Zhijie Fang, Yainuvis Socarras, Joan Serrat, David
Vázquez, Jiaolong Xu, and Antonio M. López. Pedestrian detection at
day/night time with visible and fir cameras: A comparison. Sensors, 16(6),
2016.

[66] Alejandro González, David Vázquez, Antonio M. López, and Jaume Amores.
On-board object detection: Multicue, multimodal, and multiview random
forest of local experts. IEEE Trans. on Cybernetics, 47(11):3980–3990, 2017.

[67] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and
benchmarking self-supervised visual representation learning. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[68] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A
survey of deep learning techniques for autonomous driving. Journal of Field
Robotics, 37(3):362–386, 2020.

[69] Rui Guo, Jianbo Liu, Na Li, Shibin Liu, Fu Chen, Bo Cheng, Jianbo Duan, Xin-
peng Li, and Caihong Ma. Pixel-wise classification method for high resolution
remote sensing imagery using deep neural networks. ISPRS International
Journal of Geo-Information, 7(3):110, 2018.

[70] A. Gurram, O. Urfalioglu, I. Halfaoui, F. Bouzaraa, and Antonio M. Lopez.
Monocular depth estimation by learning from heterogeneous datasets. In
Intelligent Vehicles Symposium (IV), 2018.

91



Bibliography

[71] Qishen Ha, Kohei Watanabe, Takumi Karasawa, Yoshitaka Ushiku, and Tat-
suya Harada. MFNet: Towards real-time semantic segmentation for au-
tonomous vehicles with multi-spectral scenes. In Inter. Conf. on Intelligent
Robots and Systems (IROS), 2017.

[72] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by
learning an invariant mapping. In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2006.

[73] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,
Honglak Lee, and James Davidson. Learning latent dynamics for planning
from pixels. In Inter. Conf. on Computer Vision (ICCV), 2019.

[74] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.

[75] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-
training. arXiv:1811.08883, 2019.

[76] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[77] Simon Hecker, Dengxin Dai, and Luc Van Gool. End-to-end learning of
driving models with surround-view cameras and route planners. In European
Conf. on Computer Vision (ECCV), 2018.

[78] Daniel Hernández-Juarez, Lukas Schneider, Antonio Espinosa, David
Vázquez, Antonio M. López, Uwe Franke, Marc Pollefeys, and Juan C. Moure.
Slanted Stixels: Representing San Francisco’s steepest streets. In British Ma-
chine Vision Conference (BMVC), 2017.

[79] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo
Jun, Hassan Kianinejad, Md Patwary, Mostofa Ali, Yang Yang, and Yanqi Zhou.
Deep learning scaling is predictable, empirically. arXiv:1712.00409, 2017.

[80] Anthony Hu, Gianluca Corrado, Nicolas Griffiths, Zak Murez, Corina Gurau,
Hudson Yeo, Alex Kendall, Roberto Cipolla, and Jamie Shotton. Model-based
imitation learning for urban driving. In Conf. on Neural Information Process-
ing Systems (NeurIPS), 2022.

92



Bibliography

[81] Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou, Peng
Wang, Yuanqing Lin, and Ruigang Yang. The apolloscape dataset for au-
tonomous driving. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR) Workshop, 2018.

[82] Christian Hubschneider, Andre Bauer, Michael Weber, and J. Marius Zollner.
Adding navigation to the equation: Turning decisions for end-to-end vehicle
control. In Intelligent Transportation Systems Conference (ITSC) Workshops,
2017.

[83] Christopher Innocenti, Henrik Lindén, Ghazaleh Panahandeh, Lennart Svens-
son, and Nasser Mohammadiha. Imitation learning for vision-based lane
keeping assistance. In Intelligent Transportation Systems Conference (ITSC),
2017.

[84] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Inter. Conf. on Ma-
chine Learning (ICML), 2015.

[85] Joel Janai, Fatma Güney, Aseem Behl, Andreas Geiger, et al. Computer vision
for autonomous vehicles: Problems, datasets and state of the art. Foundations
and Trends in Computer Graphics and Vision, 12(1–3):1–308, 2020.

[86] Maximilian Jaritz, Raoul de Charette, Marin Toromanoff, Etienne Perot, and
Fawzi Nashashibi. End-to-end race driving with deep reinforcement learning.
In Inter. Conf. on Robotics and Automation (ICRA), 2018.

[87] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog,
Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Van-
houcke, et al. Scalable deep reinforcement learning for vision-based robotic
manipulation. In Conf. on Robot Learning (CoRL), 2018.

[88] Tsung-Wei Ke, Jyh-Jing Hwang, and Stella X Yu. Universal weakly supervised
segmentation by pixel-to-segment contrastive learning. arXiv:2105.00957,
2021.

[89] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using un-
certainty to weigh losses for scene geometry and semantics. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018.

[90] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda,
John-Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to
drive in a day. In Inter. Conf. on Robotics and Automation (ICRA), 2019.

93



Bibliography

[91] Hoel Kervadec, Jose Dolz, Shanshan Wang, Eric Granger, and Ismail Ben Ayed.
Bounding boxes for weakly supervised segmentation: Global constraints get
close to full supervision. In Medical Imaging with Deep Learning, 2020.

[92] Qadeer Khan, Torsten Schön, and Patrick Wenzel. Towards self-supervised
high level sensor fusion. arXiv:1902.04272, 2019.

[93] Jinkyu Kim and John Canny. Interpretable learning for self-driving cars by
visualizing causal attention. In Inter. Conf. on Computer Vision (ICCV), 2017.

[94] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In Inter. Conf. on Learning Representation (ICLR), 2015.

[95] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-
supervised visual representation learning. In Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

[96] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander. Joint 3D proposal
generation and object detection from view aggregation. In Inter. Conf. on
Intelligent Robots and Systems (IROS), 2018.

[97] Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep
reinforcement learning. In Conf. on Artificial Intelligence (AAAI), 2017.

[98] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and
Oscar Beijbom. Pointpillars: Fast encoders for object detection from point
clouds. In Int. Conf. on Computer Vision and Pattern Recognition (CVPR),
2019.

[99] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Colorization as
a proxy task for visual understanding. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

[100] Yann LeCun, Urs Muller, Jan Ben, Eric Cosatto, and Beat Flepp. Off-road
obstacle avoidance through end-to-end learning. In Advances in Neural
Information Processing Systems (NIPS), 2005.

[101] Chengyang Li, Dan Song, Ruofeng Tong, and Min Tang. Illumination-aware
Faster R-CNN for robust multispectral pedestrian detection. Pattern Recogni-
tion, 85:161–171, January 2019.

[102] L. Li, Z. Liu, O. Ozgüner, J. Lian, Y. Zhou, and Y. Zhao. Dense 3D semantic
SLAM of traffic environment based on stereo vision. In Intelligent Vehicles
Symposium (IV), 2018.

94



Bibliography

[103] Peiliang Li, Tong Qin, et al. Stereo vision-based semantic 3d object and ego-
motion tracking for autonomous driving. In European Conf. on Computer
Vision (ECCV), 2018.

[104] Zhihao Li, Toshiyuki Motoyoshi, Kazuma Sasaki, Tetsuya Ogata, and Shigeki
Sugano. Rethinking self-driving: Multi-task knowledge for better generaliza-
tion and accident explanation ability. arXiv:1809.11100, 2018.

[105] Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. CIRL: Controllable
imitative reinforcement learning for vision-based self-driving. In European
Conf. on Computer Vision (ECCV), 2018.

[106] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning, 2015.

[107] S. Liu, J. Jia, S. Fidle, and R. Urtasun. SGN: sequential grouping networks for
instance segmentation. In Inter. Conf. on Computer Vision (ICCV), 2017.

[108] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation
network for instance segmentation. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

[109] Tianrui Liu and Tania Stathaki. Faster r-cnn for robust pedestrian detection
using semantic segmentation network. Frontiers in neurorobotics, 12:64,
2018.

[110] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg. SSD:
single shot multibox detector. In European Conf. on Computer Vision (ECCV),
2016.

[111] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for seman-
tic segmentation. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2015.

[112] Yue Luo, Jimmy Ren, Mude Lin, Jiahao Pang, Wenxiu Sun, Hongsheng Li, and
Liang Lin. Single view stereo matching. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

[113] W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1 Year, 1000 Km: The
Oxford RobotCar dataset. Inter. Journal of Robotics Research (IJRR), 36(1):3–15,
2017.

95



Bibliography

[114] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn:
unsupervised learning using temporal order verification. In European Conf.
on Computer Vision (ECCV), 2016.

[115] Dennis Mitzel and Bastian Leibe. Taking mobile multi-object tracking to the
next level: People, unknown objects, and carried items. In European Conf. on
Computer Vision (ECCV), 2012.

[116] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning, 2013.

[117] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka. 3D bounding box estima-
tion using deep learning and geometry. In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

[118] Matthias Müller, Alexey Dosovitskiy, Bernard Ghanem, and Vladen Koltun.
Driving policy transfer via modularity and abstraction. In Conf. on Robot
Learning (CoRL), 2018.

[119] Davy Neven, Bert De Brabandere, Stamatios Georgoulis, Marc Proesmans,
and Luc Van Gool. Towards end-to-end lane detection: an instance segmen-
tation approach. In Intelligent Vehicles Symposium (IV), 2018.

[120] Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement
learning. In Inter. Conf. on Machine Learning (ICML), 2000.

[121] Hai Nguyen and Hung La. Review of deep reinforcement learning for robot
manipulation. In Inter. Conf. on Robotic Computing (IRC), 2019.

[122] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic
segmentation. In Inter. Conf. on Computer Vision (ICCV), 2015.

[123] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual represen-
tations by solving jigsaw puzzles. In European Conf. on Computer Vision
(ECCV), 2016.

[124] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning
with contrastive predictive coding. arXiv:1807.03748, 2018.

[125] Brian Paden, Michal Cáp, Sze Zheng Yong, Dmitry S. Yershov, and Emilio
Frazzoli. A survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Trans. on Intelligent Vehicles, 1(1):33–55, 2016.

96



Bibliography

[126] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan,
Evangelos A Theodorou, and Byron Boots. Agile autonomous driving using
end-to-end deep imitation learning. In Robotics: Science and Systems (RSS),
2018.

[127] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2017.

[128] Etienne Perot, Maximilian Jaritz, Marin Toromanoff, and Raoul de Charette.
End-to-end driving in a realistic racing game with deep reinforcement learn-
ing. In Int. Conf. on Computer Vision and Pattern Recognition (CVPR) Work-
shops, 2017.

[129] Andreas Pfeuffer and Klaus Dietmayer. Optimal sensor data fusion architec-
ture for object detection in adverse weather conditions. In Inter. Conf. on
Information Fusion (FUSION), 2018.

[130] Florian Piewak, Peter Pinggera, Markus Enzweiler, David Pfeiffer, and Marius
Zöllner. Improved semantic stixels via multimodal sensor fusion. In German
Conf. on Pattern Recognition (GCPR), 2018.

[131] Dean Pomerleau. ALVINN: An autonomous land vehicle in a neural network.
In Advances in Neural Information Processing Systems (NIPS), 1989.

[132] Daniel Ponsa, Antonio M. López, Joan Serrat, Felipe Lumbreras, and Thorsten
Graf. Multiple vehicle 3D tracking using an unscented kalman. In Intelligent
Transportation Systems Conference (ITSC), 2005.

[133] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion
transformer for end-to-end autonomous driving. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021.

[134] C. Premebida, J. Carreira, J. Batista, and U. Nunes. Pedestrian detection
combining rgb and dense LiDAR. In Inter. Conf. on Intelligent Robots and
Systems (IROS), 2014.

[135] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frustum
PointNets for 3D object detection from RGB-D data. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018.

[136] K. Qiu, Y. Ai, B. Tian, B. Wang, and D. Ca. Siamese-ResNet: implementing
loop closure detection based on siamese network. In Intelligent Vehicles
Symposium (IV), 2018.

97



Bibliography

[137] Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip.
Motion planning networks. In Inter. Conf. on Robotics and Automation (ICRA),
2019.

[138] Nathan D. Ratliff, James A. Bagnell, and Siddhartha S. Srinivasa. Imitation
learning for locomotion and manipulation. In Inter. Conf. on Humanoid
Robots (HUMANOIDS), 2007.

[139] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[140] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. In Advances in Neural Information
Processing Systems (NIPS), 2015.

[141] Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep imitative
models for flexible inference, planning, and control. arXiv:1810.06544, 2018.

[142] G. Ros, A.D. Sappa, D. Ponsa, and A.M. López. Visual SLAM for driverless cars:
A brief survey. In Intelligent Vehicles Symposium (IV) Workshops, 2012.

[143] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning.
In Inter. Conf. on Artificial Intelligence and Statistics (AISTATS), 2010.

[144] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Inter. Conf.
on Artificial Intelligence and Statistics (AISTATS), 2011.

[145] Saumya Kumaar Saksena, B Navaneethkrishnan, Sinchana Hegde, Pra-
gadeesh Raja, and Ravi M Vishwanath. Towards behavioural cloning for
autonomous driving. In Inter. Conf. on Robotic Computing (IRC), 2019.

[146] Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yoga-
mani. End-to-end deep reinforcement learning for lane keeping assist.
arXiv:1612.04340, 2016.

[147] Caude Sammut. Behavioral Cloning. Springer US, 2010.

[148] Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie. Learning to
fly. In Machine Learning Proceedings 1992, pages 385–393. Elsevier, 1992.

[149] Eder Santana and George Hotz. Learning a driving simulator.
arXiv:1608.01230, 2016.

98



Bibliography

[150] Axel Sauer, Nikolay Savinov, and Andreas Geiger. Conditional affordance
learning for driving in urban environments. In Conf. on Robot Learning
(CoRL), 2018.

[151] Lukas Schneider, Marius Cordts, Timo Rehfeld, David Pfeiffer, Markus En-
zweiler, Uwe Franke, Marc Pollefeys, and Stefan Roth. Semantic stixels: Depth
is not enough. In Intelligent Vehicles Symposium (IV), 2016.

[152] Lukas Schneider, Manuel Jasch, Björn Fröhlich, Thomas Weber, Uwe Franke,
Marc Pollefeys, and Matthias Rätsch. Multimodal neural networks: RGB-D
for semantic segmentation and object detection. In Scandinavian Conf. on
Image Analysis (SCIA), 2017.

[153] W. Schwarting, J. Alonso, and D. Rus. Planning and decision-making for
autonomous vehicles. Annual Reviews of Control, Robotics, and Autonomous
Systems, 1:187–210, May 2018.

[154] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Inter. Conf. on Com-
puter Vision (ICCV), 2017.

[155] Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and Yu Liu. InterFuser:
Safety-enhanced autonomous driving using interpretable sensor fusion trans-
former. In Conf. on Robot Learning (CoRL), 2022.

[156] Sarthak Sharma, Junaid Ahmed Ansari, J. Krishna Murthy, and K. Madhava
Krishna. Beyond pixels: Leveraging geometry and shape cues for online
multi-object tracking. In Inter. Conf. on Robotics and Automation (ICRA),
2018.

[157] Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is
its own reward: Self-supervision for reinforcement learning. In Inter. Conf. on
Learning Representation (ICLR), 2017.

[158] Young-Sik Shin, Yeong Sang Park, and Ayoung Kim. Direct visual SLAM
using sparse depth for camera-LiDAR system. In Inter. Conf. on Robotics and
Automation (ICRA), 2018.

[159] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

99



Bibliography

[160] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. Nature,
550(7676):354–359, 2017.

[161] Martin Simony, Stefan Milzy, Karl Amendey, and Horst-Michael Gross.
Complex-yolo: An euler-region-proposal for real-time 3d object detection
on point clouds. In European Conf. on Computer Vision (ECCV) Workshops,
2018.

[162] Ibrahim Sobh, Loay Amin, Sherif Abdelkarim, Khaled Elmadawy, Mahmoud
Saeed, Omar Abdeltawab Valeo, Mostafa Gamal, and Ahmad El-Sallab. End-
to-end multi-modal sensors fusion system for urban automated driving. In
Advances in Neural Information Processing Systems (NIPS) MLITS WS, 2018.

[163] Sheng Song, Xuemin Hu, Jin Yu, Liyun Bai, and Long Chen. Learning a
deep motion planning model for autonomous driving. In Intelligent Vehicles
Symposium (IV), 2018.

[164] Jonathan Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian Ziebart,
and J Andrew Bagnell. Feedback in imitation learning: The three regimes of
covariate shift. arXiv:2102.02872, 2021.

[165] Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta
Baral, and Heni Ben Amor. Advances in neural information processing sys-
tems. In Advances in Neural Information Processing Systems (NIPS), 2020.

[166] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable ef-
fectiveness of data in deep learning era. In Inter. Conf. on Computer Vision
(ICCV), 2017.

[167] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai
Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al.
Scalability in perception for autonomous driving: Waymo open dataset. In
Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.

[168] Ardi Tampuu, Tambet Matiisen, Maksym Semikin, Dmytro Fishman, and
Naveed Muhammad. A survey of end-to-end driving: Architectures and
training methods. IEEE Trans. on Neural Networks and Learning Systems,
33(4):1364–1384, 2022.

[169] Ning Tang, Fei Zhou, Zhaorui Gu, Haiyong Zheng, Zhibin Yu, and Bing Zheng.
Unsupervised pixel-wise classification for chaetoceros image segmentation.
Neurocomputing, 318:261–270, 2018.

100



Bibliography

[170] K. Tateno, F. Tombari, I. Laina, and N. Navab. CNN-SLAM: Real-time dense
monocular SLAM with learned depth prediction. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[171] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, An-
drei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel
Hoffmann, et al. Stanley: The robot that won the darpa grand challenge.
Journal of field Robotics, 23(9):661–692, 2006.

[172] Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation
learning from observation. In Inter. Joint Conf. on Artificial Intelligence (IJCAI),
2019.

[173] Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-end model-
free reinforcement learning for urban driving using implicit affordances. In
Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.

[174] J. Uhrig, M. Cordts, U. Franke, and T. Brox. Pixel-level encoding and depth
layering for instance-level semantic labelling. In German Conf. on Pattern
Recognition (GCPR), 2016.

[175] Mohib Ullah, Ahmed Mohammed, and Faouzi Alaya Cheikh. Pednet: A spatio-
temporal deep convolutional neural network for pedestrian segmentation.
Journal of Imaging, 4(9):107, 2018.

[176] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Conf. on Neural Information Processing Systems (NeurIPS), 2017.

[177] Hengli Wang, Peide Cai, Yuxiang Sun, Lujia Wang, and Ming Liu. Learning
interpretable end-to-end vision-based motion planning for autonomous driv-
ing with optical flow distillation. In Inter. Conf. on Robotics and Automation
(ICRA), 2021.

[178] Q. Wang, L. Chen, and W. Tian. End-to-end driving simulation via angle
branched network. arXiv:1805.07545, 2018.

[179] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen. Solov2:
Dynamic and fast instance segmentation. In Conf. on Neural Information
Processing Systems (NeurIPS), 2020.

[180] N. Wojke, A. Bewley, and D. Paulus. Simple online and realtime tracking with
a deep association metric. In Inter. Conf. on Image Processing (ICIP), 2017.

101



Bibliography

[181] Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li, and Yu Qiao.
Trajectory-guided control prediction for end-to-end autonomous driving: A
simple yet strong baseline. In Conf. on Neural Information Processing Systems
(NeurIPS), 2022.

[182] Yingying Wu, Huacheng Qin, Tao Liu, Hao Liu, and Zhiqiang Wei. A 3D object
detection based on multi-modality sensors of USV. Applied Sciences, 9(3),
2019.

[183] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis,
Rémi Coulom, and Andrew Sumner. TORCS, The Open Racing Car Simulator.
http://www.torcs.org.

[184] Yu Xiang, Alexandre Alahi, and Silvio Savarese. Learning to track: Online
multi-object tracking by decision making. In Inter. Conf. on Computer Vision
(ICCV), 2015.

[185] Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, and Antonio M
López. Multimodal end-to-end autonomous driving. IEEE Trans. on Intelli-
gent Transportation Systems, 23(1):537–547, 2020.

[186] Yi Xiao, Felipe Codevilla, Christopher Pal, and Antonio Lopez. Action-based
representation learning for autonomous driving. In Conf. on Robot Learning
(CoRL), 2021.

[187] Dan Xu, Wei Wang, Hao Tang, Hong Liu, Nicu Sebe, and Elisa Ricci. Structured
attention guided convolutional neural fields for monocular depth estimation.
In Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[188] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning of
driving models from large-scale video datasets. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[189] Jiaolong Xu, Liang Xiao, and Antonio M. López. Self-supervised domain
adaptation for computer vision tasks. IEEE Access, 7:156694–156706, October
2019.

[190] Yan Yan, Yuxing Mao, and Bo Li. SECOND: Sparsely embedded convolutional
detection. Sensors, 18(10), 2018.

[191] B. Yang, W. Luo, and R. Urtasun. PIXOR: Real-time 3D object detection
from point clouds. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

102

http://www.torcs.org


Bibliography

[192] Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-
end multi-modal multi-task vehicle control for self-driving cars with visual
perceptions. In Inter. Conf. on Pattern Recognition (ICPR), 2018.

[193] H. Yin, L. Tang, X. Ding, Y. Wang, and R. Xiong. LocNet: global localization in
3D point clouds for mobile vehicles. In Intelligent Vehicles Symposium (IV),
2018.

[194] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong
Sang. Bisenet: Bilateral segmentation network for real-time semantic seg-
mentation. In European Conf. on Computer Vision (ECCV), 2018.

[195] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions.
In Inter. Conf. on Learning Representation (ICLR), 2016.

[196] Yu Yu, Shahram Khadivi, and Jia Xu. Can data diversity enhance learning
generalization? In Inter. Conf. on Computational Linguistics (ICCL), 2022.

[197] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A sur-
vey of autonomous driving: Common practices and emerging technologies.
IEEE Access, 8:58443–58469, 2020.

[198] Xinzheng Zhang, Ahmad B. Rad, and Yiu-Kwong Wong. Sensor fusion of
monocular cameras and laser rangefinders for line-based simultaneous loca-
lization and mapping (SLAM) tasks in autonomous mobile robots. Sensors,
12(1):429–452, 2012.

[199] Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu, and Luc Van Gool.
End-to-end urban driving by imitating a reinforcement learning coach. In
Inter. Conf. on Computer Vision (ICCV), 2021.

[200] Albert Zhao, Tong He, Yitao Liang, Haibin Huang, Guy Van den Broeck, and
Stefano Soatto. Lates: Latent space distillation for teacher-student driving
policy learning. arXiv:1912.02973, 2019.

[201] Y. Zhou and O. Tuzel. VoxelNet: End-to-end learning for point cloud based 3D
object detection. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

[202] J. Zhu, Y. Ai, B. Tian, D. Cao, and S. Scherer. Visual place recognition in
long-term and large-scale environment based on CNN feature. In Intelligent
Vehicles Symposium (IV), 2018.

103



Bibliography

[203] Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, and Shimin Hu.
Traffic-sign detection and classification in the wild. In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2016.

104


	Abstract
	List of figures
	List of tables
	Introduction
	Modular Pipeline and End-to-End
	Reinforcement and Imitation Learning
	Supervision
	Waypoint-based and Action-based End-to-End
	Offline and Online Evaluation
	Goal and Outline

	Multimodal End-to-End Autonomous Driving
	Introduction
	Related Work
	Multimodality
	End-to-End Driving

	Multimodal Fusion
	Base CIL Architecture
	Fusion Schemes
	Loss Function

	Experiments
	Environment
	Training Dataset
	Training Protocol
	Driving Benchmark
	Experimental Results

	Conclusion

	Action-based Representation Learning for Autonomous Driving
	Introduction
	Related Work
	Action-based Representation Learning
	Overall Approach
	Action-based Supervised Stage 
	Weakly Supervised Stage: Learning Affordances

	Experiments
	Environment
	Training Dataset
	Training Protocal
	Evaluation Metrics
	Experimental Results

	Conclusion

	Scaling Vision-based End-to-End Autonomous Driving with Multi-View Attention Learning
	Introduction
	Related Work
	Building CIL++: Vision-based EtE-AD with Multi-view Attention Learning
	Problem Setup
	Architecture
	Loss Function

	Experiments
	Environment
	Training Datasets
	Training Details
	Driving Benchmark
	Experimental Results

	Conclusion

	Conclusions and Future Work
	Conclusions
	Behind the scenes
	Future work

	Publications
	Bibliography

	Títol de la tesi: Advancing Vision-based End-to-EndAutonomous Driving
	Nom autor/a: Yi Xiao


