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Abstract

This doctoral thesis studies financial markets through the lens of networks theory. The three
chapters are united by a theoretical approach, highlighting particular issues in finance: asset pricing,
market structure, and information.

Chapter 1 is on market structure and financial networks. I study asset pricing when re-trade
can take place in co-existing and interconnected markets. In my framework, there is a divisible
asset and a finite set of traders. They are distributed over a trading network. Traders can acquire
shares at a common price, and then they may trade with their connections at possibly different
prices. I find that trading centrality, a novel network metric, is a sufficient statistic for the equilibrium.
Trading centrality processes information about expected re-trade equilibria, and maps it to traders
behavior before trade. A traders asset acquisition is proportional to his centrality, and the asset
common price is defined by aggregating centrality globally. For the re-trades in the network, a trader
demands the gap between his optimal level of asset and his centrality; while each price is defined
by aggregating centrality locally in the sellers network. I investigate what market outcomes and
welfare arise at different trading networks. Implications for asset issuance and interdealer markets
are examined.

Chapter 2 is about the dynamics of stock prices and social influence. I develop a dynamic
asset pricing model in which subject beliefs about stock price behavior are heterogeneous and
susceptible to peer effects. Two types of traders optimally learn from past price realizations and
share beliefs in a social network. I show that, at each period, the equilibrium price is a function
of traders’ beliefs and the network structure. As a result, booms and busts of the price-dividend
ratio emerge. The most (least) speculative trader is the most influential during booms (busts). More
connected networks exhibit less volatile price dividend ratio, booms and busts episodes last longer,
and the average price realization is higher. Also, there is less disagreement in beliefs. However, if
traders of the same type are highly interconnected stock market volatility is higher and booms and
busts are shorter. The model captures relevant empirical features of stock prices and returns, and
it is also consistent with the survey evidence on investor expectations.

Chapter 3, joint with Prof. Victoria Vanasco, investigates how social linkages interact with

asymmetric information about asset fundamentals to shape market outcomes. We consider a

market where traders are embedded in a social network and form beliefs about market size based

vi



on their connections. We distinguish two channels underpinning market outcomes: heterogeneous

information about asset fundamentals and social linkages. In equilibrium, the network structure

determines the information revealed and perceived by traders from price. What, in turn, pin down

optimal demands. Asset price is determined by a single network coefficient capturing the direct

effect of connections in traders beliefs. The model sheds new light on the implication of the

increasing presence of retail investors in financial markets and the emergence of social platforms

for engagement and investing.
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Chapter 1

Asset Pricing and Re-Sale in Networks

1.1 Introduction
For a variety of financial assets, traders first acquire shares in the primary market of

asset issuance and then go on to trade those shares in co-existing and interconnected
secondary markets. This is the case, for example, for fixed-income securities such as
corporate and government bonds. In the United States alone, issuance and trading values
of fixed-income markets have surmounted $7,189.9 billion and $931.1 billion, respectively,
in 2022 (SIFMA). Secondary markets typify the ubiquitous decentralized nature of modern
financial markets in that assets move around by being re-traded among different counter-
parties at different prices. In contrast, primary markets are centralized in the sense that
the traders bid for asset shares and pay a common price, the issuance price.

How asset price is affected by such dichotomy in trading configurations? This paper
examines how the primary market is affected by the trading network of secondary markets.
I study the decision of traders to acquire asset shares in anticipation of possibly being able
to trade those shares later in the trading network. I reveal that traders act strategically in
response to the interdependent terms of future re-trades. That’s because asset shares are
bought at issuance in anticipation of a variety of re-trade markets. But prices and demands
of re-trades depend on how many shares traders already hold. As a consequence, I show
that asset price in the (centralized) primary market is determined by the trading network
structure of the (decentralized) secondary markets.

In the model, a finite set of traders must decide how much of an asset to purchase in two
periods. The amount of asset shares available is exogenously-fixed. Traders have identical
single-peaked preferences and are distributed over an exogenous trading network. At
period one, everyone participates in the primary market (PM). Afterwards, trade happens
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in local markets (LM) described by the trading network.1 With some positive probability, at
most one trader is selected and forced to re-sell all his shares. This seller determines the
active local market at period two where his connections are the buyers. All markets operate
as a one-sided uniform-price auction.2 Local markets can be thought of as meeting places
where traders can trade, and the active local market as when exchanges are realized. The
probability of being the seller is referred as the re-sell shock, and it captures a sudden
need of liquidity.

My main contribution is to show that the equilibrium is described as a function of a
unique simple measure, Trading centrality. Trading centrality is a novel network metric
and a sufficient statistic for all market outcomes. Each trader’s PM demand is given by
his centrality and his LM demand is simply the gap between the his optimal holdings and
his centrality. PM price is defined by aggregating trading centrality globally, and each LM
price is defined by aggregating trading centrality locally in the network. Lastly, welfare is a
weighted sum of traders’ centrality with weights that are functions of the trading network
structure.

At the core of the model are the conflicting incentives to acquire asset shares in
anticipation of future re-trades. On the one hand, traders can secure a level of asset
holdings in the PM. On the other hand, they face higher competition there. I show that
this conflict is resolved by an endogenous substitutability of demands. A trader optimally
decides to invest in the opposite way of his direct and indirect connections.

As a buyer in the PM,3 a trader demand less when others demand more in expectation
of a lower price in period two. That’s because there will be i) more being sold - by his
connections; and ii) less being demanded - by his competitors (i.e. they will be closer to
their optimal holdings). Thus, traders defer asset consumption from the first to the second
period, and the extent they do so depends on the local markets they can participate.

Traders use their network position to conjecture the set of local markets equilibria
that could arise and, contingent on that, they strategically decide PM asset acquisition.

1The trading network describes secondary markets which are interliked through traders. It captures the fact
that traders can participate in many different types of trading venues for possibly nondisjoint subsets of
traders.

2As I explain later, traders are price-takers and thus truthful when submitting demand schedules in all
markets they can participate. This means that traders ignore the direct impact of their bids on prices, as
in Swinkels (2001) and Feldman et al. (2015). Price-taking assumption is the main departure from the
well-known imperfect competition framework (as in Kyle (1989), Vives (2011) and Malamud and Rostek
(2017)). However, it allows me to distill the equilibrium effects coming only from the structure of the trading
network. And it is enough to guarantee the existence and uniqueness of equilibrium.

3Notice that, at period one, traders make decisions anticipating they can be both a buyer and a seller.
However, as I show in the Section A.2, the selling motive is negligible in large enough networks - which I
focus on.
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Network position is the only dimension of ex-ante heterogeneity and it is the unique source
delivering difference in demands. The trading network enables trade and, at the same
time, constrains and correlates traders’ behavior. The environment boils down to a one-
shot, simultaneous-move network game of strategic substitutes played in the PM. Traders’
best-respond to each others’ demand schedule and the Nash equilibrium is given by the
trading centrality.

With trading centrality in hand, I am able to investigate what market outcomes to expect
across different and arbitrary trading networks. In term of prices, there are three main
findings. First, symmetric networks exhibit higher PM price than core-periphery networks.
In fact, PM price is bounded by its level on the extreme cases of such structures: the price
is the highest on the complete network, and the lowest in the star. Second, changes in the
degree distribution,4 as stochastic dominant shifts, lead to monotonic changes in trading
centrality and, in turn, in the PM price. Increasing connectivity unambiguously increases
PM price, while increasing degree inequality unambiguously decreases PM price. Third,
only the star trading network is stark enough to exhibit price increase over time. That’s
because its core trader is the unique one who obtains profits from re-selling. In all other
network structures, PM price is higher than any LM price. And so re-selling is costly.5

Welfare, in terms of total expected utility, conversely echoes the findings of PM price.
Thus, the network structure delivering lower (higher) PM price, the core-periphery (symmet-
ric), has higher (lower) welfare.6 All together, this reveals that reducing trading asymmetry,
either by increasing network connectivity and/or reducing degree inequality, must not
necessarily be welfare enhancing because of two opposing effects. On the one hand, more
connected and equal trading networks are allocative efficient, as traders have the same (or
complete) local market participation; on the other, prices are higher because competition
is greater and uniform.

My paper speaks to the behavior of dealers, the financial intermediaries for assets
traded off-exchange.7 Dealers often absorb substantial inventory position at issuance
or from their costumers, and then use the interdealer market to offload these positions.
I attend to two unaddressed questions regarding how the interdealer network structure
influences financial markets. I do so by leveraging the rationale that dealers’ willingness to

4In a trading network, degree refers to how many connections (i.e. counterparties) a given trader (node) has.
I define connectivity as the average degree, and degree inequality as degree variance.

5Duffie (2010) discusses the large body of research aiming to explain price reaction to supply (or demand)
shocks observed in several financial markets. He argues that price concessions are given by those who
have limited opportunities to trade with counterparties, in line with findings.

6Just as with PM price, I find that welfare is the highest (lowest) in the star (complete) network.
7Dealers are the backbone of trades for bonds (government, corporate and sovereign ones), derivatives,
commodities, and currencies - to name a few. (See He et al. (2017) among others).
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take on inventory is affected by their subsequent trading network; and prices and quantities
in the interdealer network are influenced by their current inventory holdings.

First, my findings provides a justification for the often observed core-periphery trading
network among dealers themselves.8 Such structure coordinates dealers’ inventory posi-
tions in a way that ensures the lowest average cost to take on asset shares, making them
all better off. This suggests that the core-periphery interdealer network supports dealers’
inventory management and guarantees market liquidity in secondary markets. Second,
I reveal a novel effect of the interdealer network structure: it determines the issuance
price of an asset, thus regulating credit provision for the issuers of securities (such as
governments and firms) in the primary markets.

To gain further insights on how my framework maps to the data, I proceed in two distinct
ways. I first layout the empirical implications to the interdealer market. Trading centrality
helps rationalize the inconclusive evidence on whether central dealers9 have better or
worse terms of trade. I show that the trading centrality can induce both centrality premium
and discount. But this ambiguity is resolved once we take into account the entire structure
of the interdealer network. Trading centrality also provides a novel liquidity measure that
only requires information about the trading network structure, and it is informative of prices
and quantities.10 Additionally, I illustrate the empirical application of the model with data
on the US Corporate bonds secondary markets.11 I document an interdealer network with
a core-periphery structure, and then I analyze how it relates to the observed interdealer
trades. As my theory predicts, I find central dealers sell more and at a higher price; and
buy less and at a lower price.

Outline: The rest of the paper is organized as follows. section 1.1 concludes with the
related literature. section 1.2 contextualizes my framework into the interdealer market
for off-exchange securities. section 1.3 introduces the model and section 1.4 solves it.
section 1.5 gives the main result. section 1.6 analyzes how the network structure affects
equilibrium and section 1.7 studies welfare. section 1.9 discusses different extensions.
section 1.10 concludes. Details and proofs are found in the Appendix.

8Recent empirical studies document that the interdealer market can be seen as a stable trading network with
a core-periphery structure. Such interdealer network has high trading frequency and volume, with spillover
effects on the overall market outcomes. See Section 1.2.

9In finance, essentially all studies so far define centrality by standard network metrics such as degree and
eigenvector centrality.

10As I show in Section 1.5, this liquidity measure quantifies the re-sell cost: the difference between PM price
and a LM price. It is similar to Kyle’s lambda (Kyle (1985)) in that it measures the equilibrium price impact
of a sell order flow.

11I use a restricted version of the TRACE data used by Friewald and Nagler (2019) which the authors made
publicly available for replication purposes.
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Related Literature: This paper is related to three areas of research: decentralized markets,
network games, and over-the-counter (off-exchange) financial markets.

I share the perspective of Malamud and Rostek (2017) of modelling markets as in-
complete and co-existing: traders cannot exchange with one another at all times and they
can participate in more than one trading venue. The novelty of my paper is to combine
both centralized and decentralized trades in a unified and dynamic framework.12 Most
importantly, decentralized markets are random realizations and only take place after the
centralized one. Moreover, several other features set my paper apart from theirs. Here
traders are price-takers, there is just one asset, and I restrict the pricing protocol to a
one-sided uniform-price auction.

My paper allows for any market structure “between" centralized and bilateral trading.13

A vast literature on decentralized markets makes the later extreme assumption. Here
there are two modelling approaches. Search models, with the seminal contribution of
Duffie et al. (2005) in finance; and network models, such as Kranton and Minehart (2001),
Corominas-Bosch (2004), Manea (2016). While suitable for many markets such as the
over-the-counter one between dealers and customers, in reality several assets are not
traded as pairwise exchanges. Treasure securities for instance, are sold in auctions to a
set of 20-30 dealers. Interdealer broker systems, electronic trading platforms for interdealer
trades, also work as auctions.

The multi-lateral aspect of trades is also a natural implication of auction as a trading
protocol. In my model, traders play a game by submitting demand schedules in each
sub-graph of the network. Allowing (not assuming) strategic behavior is central in my
framework. Here I build upon the game-theoretical view of decentralized trading with
imperfect competition - as in Kyle (1989), Vives (2011) Rostek and Weretka (2012) and
Rostek and Weretka (2015) to name a few. In this line of work, (finite) traders account
for their impact on price and, because of that, they strategically “shade” their bids in the
demand game.14 My paper, in contrast, assumes that traders are price-takers and thus
truthful.15 Although a strong departure, price-taking renders great tractability of the model
and ensures the equilibrium outcomes are driven solely by the trading network, without

12Somewhat related, Rostek and Yoon (2021) have unified imperfect competition and decentralized markets
in a framework.

13In section A.8 I show that restricting the model to bilateral trades would miss all the interesting forces
coming from the trading network that drives equilibrium outcomes.

14More specifically, imperfect competition means equilibrium is determined by a uniform-price (double)
auction with traders submitting demand schedules taking into account their endogenously-determined
price impact.

15My model accommodates imperfect competition, which I discuss in section 1.9. This is also work in
progress and available upon request.
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compromising the strategic aspect of trades.16

My paper is a novel application of games in networks. As I show later (section 1.4), the
model is set of network games of global strategic substitutes and I rely on the findings of
Bramoullé et al. (2014) and Bramoullé and Kranton (2016) to characterize equilibrium.

As aforementioned, a core motivation of this paper is the interdealer market and so my
paper relates to the research on off-exchange markets. Given this particular interest, I
devote section 1.2 to discuss recent empirical findings of the literature and my contributions

1.2 Interdealer Networks and Off-Exchange Securities
A substantial proportion of financial instruments - the so-called "off-exchange" assets

such as Treasury and corporate bonds, debt securizations, currencies, etc. - are traded
in primary and secondary markets. Primary markets are for asset issuance and serve to
raise capital. They are centralized in the sense that dealers bid to acquire shares, usually
in uniform-price auctions, and no trade happens among dealers themselves. Secondary
markets is where trades actually happen in a decentralized way, and asset prices are
dispersed. In the bonds market, for example, a firm or government (the issuer) creates
a new bond and allocates it to dealers17 at a common price; who then take the bond to
secondary markets.

Primary and secondary markets are paramount for the well-function of financial markets
and the economy. For instance, as of 2021, US fixed-income securities have issuance
value of roughly US$13.5 billion, outstanding value of US$52.9 trillion and average daily
traded value of US$969 billion (SIFMA). The backbone of such trading activity are dealers,18

the market-makers, who provide immediacy to other traders and ensure market liquidity.
There are currently 3,394 dealers registered with Financial Industry Regulatory Authority
(FINRA) in the US alone.

Dealers do not operate in a vacuum. Rather, when making markets, they rely on being
able to trade with one another. Thus, the existence of a trading network among dealers

16Strategic behavior in my model arises purely from the interaction of re-sale risk and trading frictions
imposed by the trading network. Not concerns about price impact as in the imperfect competition models.

17Usually investors do not participate in the primary market. The noteworthy example is the US Treasury
securities market where a group of more than 20 primary dealers commit to buy large quantities of
Treasuries every time the government issues debt, and stand ready to trade them in the otc market
(FINRA). The use of primary dealers is common across many countries and it has been in force since 1960
(Arnone and Ugolini (2005)).

18A dealer, or broker-dealer, is a financial institution in the business of buying or selling securities on behalf
of its customers or its own account or both. Dealers must be registered with a specific regulatory authority,
such as Financial Industry Regulatory Authority (FINRA).
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themselves.19 Interdealer trades are useful because dealers often absorb substantial
inventory position in primary markets or from their costumers, and then use the interdealer
market to offload these position and rebalance their inventory.20

In reality, most interdealer networks have a stable core-periphery structure.21 This
is the case, for instance, for US corporate bonds (Dick-Nielsen et al. (2020), Goldstein
and Hotchkiss (2020), Di Maggio et al. (2017b)); US foreign exchange (Hasbrouck and
Levich (2020)); US debt securization (Hollifield et al. (2017)); US municipal bonds (Li
and Schürhoff (2019)). This indicates that trading relationships exist and are persistent,
and typically, a few large dealers (the core) are responsible for large share of the trading
volume.

An extensive and growing empirical literature22 relates the dealers’ position in the
network to their trading behavior. The recurring finding is that a dealer’s centrality, his
”importance" in the network, is a determinant for his: bid-ask spreads; trade volume
and frequency; clientele characteristics; and trade execution speed. Moreover, there is
heterogeneity at the linkage (relationship) level: a dealer’s trading price, frequency and
volume depends on the identity of his counterparty: if it is a customer or another dealer,
and which customer/dealer is. Recent studies (Eisfeldt et al. (2018) and Di Maggio et al.
(2017b)) also show that changes in the interdealer network, by the exit of a dealer, has
significant impact in market outcomes.

However, evidence on whether centrality makes a dealer to have better or worse terms
of trade, in terms of bid-ask spread, is still inconclusive. Li and Schürhoff (2019) and
Di Maggio et al. (2017b) find a centrality premium: core (central) dealers charge a wider
spread than peripheral dealers. Di Maggio et al. (2017b) also document that more central
dealers pay lower spread. Meanwhile, Hollifield et al. (2017), Goldstein and Hotchkiss
(2020) and Dick-Nielsen et al. (2020) find centrality discount: core dealers charge a
narrower spread. Goldstein and Hotchkiss (2020) and Dick-Nielsen et al. (2020) are two
exceptions who also look at interdealer trades, and they both find centrality premium.

19By forming trading relationships, dealers can reduce trading frictions, such as different forms of trading
costs, funding constraints, search, and informational frictions. See Vayanos and Wang (2012).

20That’s because inventory is risky and costly, and interdealer trades are the main tool to manage it.
21In fact, the observed majority of financial networks are core-periphery. See Bech and Atalay (2010) for

evidence on US federal funds market;Boss et al. (2004), Craig and von Peter (2014), in ’t Veld and van
Lelyveld (2014) for interbank market in other countries. This is also true for the dealer-client networks. See
Hasbrouck and Levich (2020), Hendershott et al. (2020), Hollifield et al. (2017), Li and Schürhoff (2019),
Di Maggio et al. (2017b), Kondor and Pintér (2022) Czech et al. (2021) for otc markets; and Di Maggio
et al. (2017a) for the stock market.

22This is possible due to the structure of financial data and the decentralized nature of secondary markets
that allows us to identify different counterparties and construct trading networks.
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The next figures show examples of real core-periphery interdealer networks. The more
central dealers form the core, while the less central ones the periphery. Centrality is
measured by the standard network metrics of degree and/or eigenvector centrality.23 In the
US municipal bonds markets, Li and Schürhoff (2019) infer the interdealer network with
2,238 dealers and a core size of 10 to 30 highly interconnected dealers (Figure 1.1). In
the securization markets, Hollifield et al. (2017) document an interdealer network with 658
dealers (Figure 1.2). Both find that the most central dealers are more active and account
for the vast majority of trades - what can be seen in the right-hand side network in those
figures.

Figure 1.1: Hollifield et al. (2014)
On the left is the interdealer network: each node is a dealer and each arrow represents a directed order flow between a pair of dealers.
On the right is the same network but only with the most active dealers. The active network only keep links with at least 50 trades and
worth at least $10 million. Dealers are labeled by their degree; links with trades worth more than $100 million are shown in solid lines.

Figure 1.2: Li and Schürhoff (2019)
On the left is the interdealer network: each node is a dealer and each arrow represents a directed order flow between a pair of dealers.
On the right is the same network but only with the most active dealers. The active network only keep links that exceeds 10,000
transactions over the sample period.

23Degree centrality means that a dealer is more central the more connection he has. Eigenvector centrality
also accounts for indirect connections: a dealer is more central as he and his connections are more central.
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Figure 1.3 and Figure 1.4 display different interdealer networks in the US Corporate
bonds markets inferred by Dick-Nielsen et al. (2020) and Di Maggio et al. (2017b), respec-
tively. Dick-Nielsen et al. (2020) investigate immediacy provision from 2002 to 2013 in a
network with 3,499 dealers. In the right-hand side, the (inverse) distribution of eigenvector
centrality clearly reveals that most dealers are less central (the periphery) and only a
few (the core) are very central. The same is true for the interdealer network reported by
Di Maggio et al. (2017b) who look at the entire universe of trades from 2005 to 2011. In the
right-hand side, the cumulative distribution of trades as a function of a dealer’s centrality
shows that the top 50 dealers account for roughly 80% of all transactions.

Figure 1.3: Dick-Nielsen et al. (2020)
Interdealer network where the size of a node (dealer) reflects his eigenvector centrality. The inverse distribution of eigenvector centrality
is plotted on the right-hand side.

Figure 1.4: Di Maggio et al. (2017b)
On the left, the interdealer network; darker lines indicate higher number of transactions between a pair of dealers. On the right, the
cumulative distribution of dealer’s eigenvector centrality, measured by selling trades.

Even within the same market, the interdealer network and dealers’ behavior vary greatly
in the cross-section of assets. Hollifield et al. (2014) analyze various segments of the
securitization market during eight months in 2011-2012. Figure 1.5 depicts the interdealer
networks, dealer-customer trades, interdealer trades and prices for two securization
instruments in their sample. The networks have notable different structures. The left one

9



has roughly a monotonic evolution of prices, but the right one doesn’t. Also, bid,ask and
interdealer prices are similar in the left network; while in the right one interdealer prices
can be above and below costumer-trade prices. It also seems that the volume in each
dealer-customer and interdaler segments behave similarly: the right network with more
customer trades also have more interdealer trades.

Figure 1.5: Hollifield et al. (2014)
At each panel, on the left is the interdealer networks: darker lines indicate higher number of transactions between a pair of dealers; on
the right, the evolution of dealer-customer trade volume, interdealer trade volume and transaction prices.

The take-away so far is that the structure of the interdealer network shapes, to some ex-
tent, the market behavior of several financial assets. Perhaps surprisingly, the relationship
between primary markets and interdealer networks has received scant attention.24 After
all, dealers are the link between primary and secondary markets. The extent that a dealer
can successfully re-sell shares of the asset acquired at issuance relies on him being able
to manage his inventory in the interdealer market. At the same time, how much inventory
is accumulated at issuance influences liquidity need and provision in the interdealer trades.
Hence, there is a two-way feedback effect between primary markets and the interdealer
market.

Despite the vast theoretical and empirical literature,25 two questions remain unad-
dressed regarding the interdealer network. The first is its relation with the issuance price
of an asset. The second is how to explain the mixed evidence on dealers’ centrality effects
on market outcomes. My paper fills these gaps, and I show that both are related to how
the structure of the interdealer network conveys information about expected and correlated
24I am not aware of any study, either theoretical or empirical, that explores it.
25Over the last two decades, the center of attention has been on the otc markets, with the seminal contribution

of Duffie et al. (2005). Research has made great progress in advance our understanding of the bilateral
trading behavior and its implication for prices and liquidity, both at the dealer-to-client and dealer-to-dealer
segments.
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terms of trades among dealers themselves and, thus, determines dealers’ willingness to
take on inventory and asset issuance price.

1.3 The Model

Markets and the Trading Network

There are two periods t = {1, 2} and N > 2 traders. There exists a divisible asset in
exogenous and fixed supply Q > 026 All traders can acquire asset shares at t = 1 in the
primary market (PM) . Afterwards shares can be re-traded among traders themselves in
local markets.

There exists a trading network 27 in which nodes are the traders and connections
determine which traders have access to a particular local market jointly but not separately.
A link between i and j means that trade between i and j is possible. Formally, the trading
network is characterized by the adjacency matrix G such that [G]ij ≡ gij = 1 if i ∈ N and
j ∈ N are connected, and gij = 0 otherwise. By convention, gii = 0. The set of linkages
of trader i ∈ N is given by his neighborhood Ni = {j ∈ N : gij = 1}, and i’s degree is the
number of connections he has: di = |Ni| =

∑
j∈N gij > 0.28

Thus, the trading network summarizes the set of local markets at t = 2. There are N of
them. Each is defined by a trader’s neighborhood. I refer to the local market of trader i ∈ N
as when i sells his shares to his linked traders, his buyers, at an endogenously-determined
uniform price (more details below).

Market participation at t = 2 is random. With a probability φ > 0, which I refer as the
re-sell shock, only trader i ∈ N is selected and is forced to re-sell in his local market. This
happens at the same probability φ for each trader. The seller establishes the active local
market at t = 2. I make two assumptions:

Assumption 1. At most one trader experiences the re-sell shock: φ < 1
N

.

Assumption 2. Supply in any local market is inelastic: the seller does not choose his
supply.
26This specification may, for example, capture cases in which dealers face a common outside opportunity for

customer sell order, or when they allocate a new security at issuance.
27The trading network is unweighted, undirected, fixed, exogenous and known.
28I focus my analysis on trading networks with a minimum degree of one, i.e. every trader has at least one

connection. However, this is by no means a restrictive assumption, it is just the most interesting case.
It also does not mean that the trading network must be connected. In the Appendix, I provide my main
results for when there are “isolated” traders in the network. All the analysis and intuition presented in the
main paper hold.
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By Assumption 1, there is only one active local market or none.29 Local markets can
be thought of as meeting places where traders can trade, and the active local market as
when exchanges are realized.30

Assumption 2 means that all markets are one-sided. The decision of a trader is
how many shares to purchase in each market he has access to. The re-sell shock φ is
interpreted as a sudden need to unload shares to exit the market. Re-trade in the local
markets is for immediacy provision among traders themselves and, in turn, it enables the
increase or decrease of asset holdings (i.e inventory management - more details below).

Traders

Traders have initial wealth w > 0, and no one is endowed with asset shares. Traders’
goal is to build up asset inventory qi.31 Let qi,1 ≥ 0 denote how many shares trader i ∈ N
acquires in the PM, and qi,s ≥ 0 the amount bought in the local market of seller s ∈ Ni. By
assumption, if i and s are not connected they cannot trade and so qi,s = 0 ∀s 6∈ Ni. Also, if
i is the seller he must liquidate his position and so qi,i = −qi,1. At the end of period two, a
trader’s inventory qi is the sum of the shares purchased at each period, qi = qi,1 + qi,s.

Each trader receives the net payoff of his trading activity. It is defined as the total utility
derived from inventory qi minus the total payment. Purchasing quantities (qi,1, qi,s), he
enjoys a utility of

U(qi,1, qi,s) = (qi,1 + qi,s)− 1
2 (qi,1 + qi,s)2 (1.1)

and pays P1qi,1 − Psqi,s where P1 is the PM price and Ps the price of seller s.

Preferences are single-peaked and traders have an optimal inventory of 132 Intuitively,
a trader buys shares at each period to reduce the gap between the optimal inventory and
his current one. But holding inventory entails a cost of 1

2q
2
i . For dealers in financial markets,

the costly inventory can be due to several reasons (e.g. regulatory capital or collateral
requirements). Here it represents the expected cost of being forced to re-sell to raise

29In principle, there are 2N possible states of the world: Ω = ∅∪{ωs : s ∈
{

1, 2..., 2N−1}
}

. I assign probability
φ > 0 to each state s ∈ [1, N ], which represents the identity of the single trader i ∈ N who experiences
the re-sell shock; probability 1 −Nφ to the empty state, in which no trader experiences the shock; and
probability zero to the remaining s ∈ [N + 1, 2N−1] states, which represents the possible combinations of
more than one trader getting shocked.

30In other words, the re-sell shock “activates” a local network which is a subgraph of the entire network.
31For dealers in off-exchange markets, inventory is used to facilitate future trades with their customers in the

otc market.
32This is a normalization. The more general setup with individual asset valuation αi, possibly heterogeneous,

is presented in section 1.9.
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liquidity by quickly disposing inventory into a restricted, and possibly illiquid, local market
(Duffie (2010),Duffie and Zhu (2017)).

The role of having two consecutive markets is best understood by analyzing the partial
utility of the quantity traded in either period:

∂U(qi,1, qi,s)
∂qi,m

= 1− qi,1 − qi,s m = {1, s} (1.2)

This partial utility is the trader’s marginal willingness to pay for the asset in market
m given that he obtains qi,−m shares in the other market. It decreases in both quantities
traded. Demands are then substitutes across markets. That’s because more of the asset
is preferred rather than less only up to the optimal inventory, as inventory is costly33

Pricing Mechanism

Traders are price-takers34 and every market (local or otherwise) operates as a one-sided
uniform-price auction. Each trader i ∈ N submits a demand schedule qi,m(·;Pm) in every
market m = {1, {s}s∈Ni

} he can participate. Equilibrium price in a market is determined by
equating aggregate demand of the participant buyers with the asset inelastic supply.

The primary market features complete participation and a global market clearing
condition holds. The PM price P1, common to all traders, is given by

∑
i∈N

qi,1(·; P1) = Q (1.3)

The price of a local market is seller-specific. For a seller s ∈ N , his local market price
Ps is given by the local market clearing condition

∑
i∈Ns

qi,s(·; Ps) = qs,1(·; P1) (1.4)

The pricing mechanism indicates that a feedback effect across traders’ demands
emerge. There are two reasons for that. First, even though the asset supply is exogenous
in the PM, it is endogenous in every local market: the shocked trader re-sell his PM
holdings. Second, the buyers in a local market may already have acquired shares in the
PM what influences their willingness to pay for the seller’s supply.

33In financial markets, a dealer’s inventory is used in his intermediary activity with customers in the otc
markets. Inventory allows dealers to provide immediacy and liquidity to costumers. I abstain from the
discussion of dealer-customer trades as my focus is on inter-dealer trades.

34That is, traders are truthfull and ignore their direct price impact.
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Figure 1.6 depicts the timeline of the model.

Figure 1.6: Timeline

One attractive feature of the baseline model is that it can be solved in closed form
and is thus a parsimonious workhorse with which to develop intuition (section 1.4). The
tractability relies on the core assumptions I make. Although not very general, they capture
realistic features of the interdealer market, which I discuss in section A.3. In section 1.9 I
present extensions of my framework that allows for: heterogeneity in asset valuation and
risk preference; expected fundamental asset returns; and imperfect competition.

1.4 Equilibrium Analysis
Notation:

Bold lowercase letters refer to N -dimensional vectors and bold uppercase letter to
N -square matrices. All Primary Market variables ({qi,1(·)}i∈N , P1(·)) are conditioned on
the primitives of the model: the trading network G and the shock parameter φ. I omit such
notation for the sake of clarity

The model is solved backwards. I first characterize the local market equilibrium given a
shock realization. Then, the equilibrium in the primary market is determined. In section A.4
I solve in detail traders’ optimization problem.

Traders are rational and forward-looking. They decide their optimal demand schedules
in anticipation of the re-sell shock and the different local markets that can take place at
period two. Trader i ∈ N chooses (qi,1(·), qi,s(·)) to maximize his expected net payoff,
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max
qi,1(·),qi,s(·)

E

[
(qi,1 + qi,s)− 1

2 (qi,1 + qi,s)2 − (P1qi,1 + Psqi,s) + w

∣∣∣∣∣ G, φ

]
(1.5)

Each trader faces a trade-off: how many shares to purchase at each period. On the
one hand, he can acquire the asset with certainty in the PM but the price is likely to be
higher - due to higher competition - and he faces the risk of re-selling. On the other hand,
buying at period two is probably cheaper but he does not know if he will need to sell nor if
he will participate in the active local market.

Jointly, φ and G imply that each trader has three levels of uncertainty: i) if he will
participate in one or two markets; conditional on trading at t = 2, ii) if he will buy or sell
asset shares; and iii) if he is a buyer, with whom will he trade.

As it will be clear from the results (section 1.6), although buyers are not forced to
provide liquidity to the seller they optimally decide to do so. For two reasons. First, no
trader reaches his optimal inventory at t = 1. Second, buyers guarantee a price concession
to absorb seller’s supply in any local market, in any trading network.35 Thus, gains from
trade arise because local markets provides more and cheaper shares to the participants
buyers, and liquidity for the seller.

1.4.1 The Active Local Market

At t = 2, both the PM and the re-sell shock have realized. The seller identity s ∈ N
is common knowledge and so it is the fixed asset supply qs,1 ≤ Q (recall Assumption 2).
Notice that the PM at t = 1 can be seen as endogenously determining individual asset
endowment in the static market of a seller s.

Conditional on a level of current holdings qi,1, each trader i as a buyer in period-two
chooses his demand schedule qi,s(·) for a local market price Ps. i’s demand is given by36

qi,s(Ps; qi,1) = (1− qi,1)− Ps (1.6)

Since traders are price-takers, i’s demand eq. (1.6) is the same in every local market
he can participate. It is simply given by his willingness to pay more for the asset, i.e. his
current marginal utility eq. (1.2).

Using eq. (1.6) and local market clearing conditions eq. (1.4), the set of equilibria at
t = 2 can be found, one for each possible seller s ∈ N .

35The unique exception is the star network, which is in itself an interesting finding that I discuss later on
(section 1.6).

36This is simply the the first-order condition of (1.1) with respect to qi,s keeping qi,1 and P1 fixed.
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Lemma 1. Local Market Equilibrium

Consider a Primary Market asset allocation {qi,1}i∈N . The equilibrium in the local
market of seller s ∈ N with his network-induced set of buyers i 6= s : i ∈ Ns is given by the
selling price P ∗

s ,

Ps(qNs,1) = 1−
(∑

i∈Ns
qi,1 + qs,1

)
ds

(1.7)

and buyers’ asset allocation,

qi,s(qNs,1) = 1
ds

qs,1 +
∑

k 6=i,k∈Ns

qk,1

− ds − 1
ds

qi,1 ∀i ∈ Ns (1.8)

where qNs,1 ≡ (qs,1, {qi,1}i∈Ns).

Assumption 1 ensures there is a unique equilibrium at period two as there can be at
most one shocked trader.

Corollary 0.1. Active Local Market Equilibrium

For a given shock realization, equilibrium at period two is unique. The interior equilibrium
- that is, if trader s ∈ N is the one shocked - is given by Equation (1.7) and Equation (1.8).

If no trader is shocked, then no local market is active: qi,s = 0∀i, s ∈ N and qi,1 > 0.

The trading network directly affects the local market prices in two opposite ways. First,
trough the positive “participation effect": the seller’s degree ds determines how large his
market is. The higher ds, the higher is Ps(qNs,1). Second, through the negative “inventory
effect": PM holdings in the seller’s neighborhood, qs,1 and {qi,1}i∈Ns, determine his supply
and buyers’ willingness to pay. The higher are PM holdings, the lower is P ∗

s .

But that’s not the whole story because these effects are interdependent what results in
additional indirect effects. A larger pool of buyers (high ds) may imply higher aggregate PM
asset holdings just because there are more terms in the sum (∑i∈Ns

qi,1), what could drive
Ps(qNs,1) down. At the same time, a high ds may imply lower aggregate PM asset holdings
because the buyers anticipate the high competition and so ensured asset holdings in the
PM, what could drive Ps(qNs,1) up.

At the buyer level, equilibrium asset allocation qi,s(qNs,1) is decreasing in the seller’s
degree, as price increases in the later. And it is increasing in other buyers’ (competitors)
PM holdings

(∑
k 6=i,k∈Ns

qk,1
)
, since the higher these are the higher is i’s residual supply
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and the lower is seller’s price. Moreover, local markets allocate asset shares in accordance
to who values it the the most at t = 2, to those who acquired the least shares in the PM.
Thus, the buyers who provide more liquidity are those who would need less liquidity if they
were to be hit by the re-sell shock.37

As I show next, traders understand that PM outcome determines liquidity supply and
demand in local markets, what in turn influences traders’ asset acquisition, and thus price,
in the PM. And that’s precisely why the trading network plays a crucial role in the PM. It
incorporates the two-way feedback effects across markets and traders.

1.4.2 Primary Market as a Trading Game

Recall that the only source of ex-ante heterogeneity among traders is on network
position. Different network positions mean that traders have different expected trades (i.e.
local market participation) and, consequently, their asset acquisition decision will differ.
More importantly, this decision depends on all other traders’ decision as well since they
determine the terms of trade in local markets.

In turn, the expected payoff (1.5) of each trader i ∈ N in the PM, before any trade takes
place, is only function of his and others PM holdings choice, qi,1 and q−i,1,38 parameterized
by the PM price P1, the trading network G, and the re-sell shock φ39:

πi
(
qi,1, q−i,1; P1,G, φ

)
= w+(1−P1) ·qi,1−

1
2vi(G,φ)

q2
i,1−φ

∑
j

g̃ij(G) ·qj,1qi,1 +φ
∑

j

ḡij(G) ·qj,1 (1.9)

Perhaps surprisingly, equation (1.9) coincides with the payoff function of a network game
of global strategic substitutes (notice that ∂qi,1

∂qj,1
≤ 0 ∀i 6= j). The “network coefficients”

{vi(G,φ), g̃ij(G), ḡij(G)}∀i,j∈N are endogenous, non-negative, and each is a function of the
trading network structure. They encapsulate the local market effects on qi,1 given i’s
network position (more details below).

Others’ PM holdings q−i,1 negatively impact trader i’s optimal choice while also having
positive externality. This is best understood if we put ourselves in the shoes of trader i
conjecturing his local market trades. Consider first the PM demand of i’s neighbors (i.e. his

37This apparent “coordination” between liquidity demand and supply of a trader reflects the strategic nature
of the environment. This is going to be clear when in the upcoming analysis of traders’ behavior in the PM
(subsection 1.4.2)

38As usual, the notation q−i,1 represents the demand of all traders but i, i.e. {qj,1}j 6=i,j∈N
39A quick way to see this result is just to replace local market variables in the expected payoff (1.5) with the

equilibrium result of local markets (Lemma 1). With a little algebra, the “clean” representation in (1.9) is
obtained. Full details are found in section A.4.
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direct connections), qNi
≡ {qk,1}k∈Ni

. As a seller, qNi
pushes i’s price down (the “inventory

effect”). So i demands less if he expects his buyers to demand more in the PM. As a buyer,
qNi

pushes down the price i faces (also the “inventory effect”). So i also demand less (to
afford more shares in local markets) if he expects his sellers and competitors to have high
PM demand.

However these are just first-order effects. The connections of i’s connections are also
i’s competitors and they offer alternative markets for i’s neighbors, thus influencing i’s PM
decision. This is also true for the connections of the connections of i’s neighbors, and so
on. In all cases, the same reasoning holds: i takes into account the effect of every other
trader when he acts a buyer and as a seller in local markets.

Bottom line is that the asset acquisition of each trader is negatively influenced by the
same decision of each and every other trader, irrespectively if they are connected or not.
This is the key insight of this paper because it reveals that the dynamic framework boils
down to a one-shot, simultaneous-move network game played in the PM.

Since traders are price-takers, each PM price P1 induces a game. In each game,
the strategy for trader i ∈ N is his asset acquisition decision in the PM. It is a map-
ping qi,1 : q−i,1 × P1 → R where q−i,1 is the strategy of all other traders different than i.
Traders simultaneously choose their demand schedules by best-responding to the demand
schedules of others. The equilibrium concept is pure-strategy Nash Equilibrium.40

Lemma 2. Primary Market Trading Game

For each PM game with price P1, a trader i’s asset demand schedule (best-response)
is

qi,1(q−i,1; P1φ,G) = vi(G, φ)

(1− P1)− φ
∑

j

g̃ij(G) · qj,1

 (1.10)

where

vi(G, φ) ≡
[2φ

di
+ 1− φ(di + 1) + φ

∑
j

gij ·
(2dj − 1)

d2
j

]−1
(1.11)

and

40An important step in the paper is to formulate the model as a game. Network games of global strategic
substitutes have been extensively studied - see Bramoullé et al. (2014) and Galeotti et al. (2010). I rely on
the advances of this literature to characterize the equilibrium in every possible game and for any network
graph G.

18



g̃ij(G) = gij ·
[

1
di

+ (dj − 1)
d2

j

]
+

∑
z 6=j

z

gizgjz
(dz − 1)

d2
z

 ≥ 0 (1.12)

The trading network determines the influence among traders’ strategies, while the
re-sell shock φ regulates the global degree of substituability among PM demands: the
higher φ, the greater is the chance of local market trading and thus the greater is the
feedback effect between traders’ demands.

The individual network effect, vi(φ) > 0, summarizes trader i’s interactions in local
markets, and it can be seen as the marginal benefit of acquiring shares in the PM.

Each global network coefficient ḡij ≥ 0 captures bilateral influences: it gives how
influential is trader j on i’s demand. Its value depends on how far apart i and j are41

Notice that it is increasing in the number of overlapping connections i and j have. Implying
that indirect connections can be more influential to i’s decisions than i’s neighbors. And
that neighbors with the same degree can have different effects.

Lastly, the first term in the demand schedule, (1−P1) ≥ 0, is common across all agents.
It represents the optimal action absent network interactions: (1 − P1) is the individual
demand in a Walrasian (competitive, static) market of size N .

In the section A.4 I derive the results above, and I discuss more deeply the functional
forms of the payoff function and demand schedule. I also prove the existence of a unique
interior equilibrium for each network game.42

It is useful to look at two traders’ optimal PM demand schedules to understand how
the Nash Equilibrium of each network game is found. The left-hand side of Figure 1.7
shows that, for a given P1, the Nash Equilibrium is given by the intersection of traders’ i
and j best-responses. The right-hand side of Figure 1.7 depicts how the primary market
equilibrium is one of the Nash equilibria such that equilibrium aggregate demand meets
the exogenous asset supply Q̄.

41That’s because, as I discussed before,there are three channels through which qj,1 impacts qi,1: as a buyer
from i or as a seller to i, if they are connected; and as a competing buyer to i if they share a common
linkage to another agent z (i.e. if i, j have overlapping connections).

42The existence and uniqueness is guaranteed by Assumption 1, i.e. as long as the shock probability
φ < 1/N (Proposition 21). Intuitively, φ > 1/N implies that traders expect more than one seller in the local
market. The anticipation of “too much” local market trading may lead traders to either demand too much
(qi,1 → 1) or too little (qi,1 → 0) in the PM. In the former case, local markets would collapse as buyers’
willingness to trade would be virtually small. In the latter case, the PM would collapse as the market would
not clear.
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Figure 1.7: The demand schedules of two traders

Relative to the related literature of imperfectly competitive trading models (i.e. demand
games, which Rostek and Yoon (2020a) provide an excellent review), the way I find the
equilibrium in the model is different. The key feature of imperfect competition is that traders
conjecture their endogenous (and unknown) price impact and have to do the same for
others’ price impact and demands, due to private information. As Rostek and Yoon (2020a)
show, the equilibrium is characterized by two conditions: market clearing and correct
price impacts. That is, each trader optimally chooses his demand schedule given his
price impact such that his price impact equals the slope of his residual inverse supply
function.43 With price-taker traders (as in my model), finding equilibrium is simpler because
traders only respond to each other demands and thus only one condition - market clearing -
characterizes equilibrium. Although this is a strong assumption, I view it as plausible given
the main goal of this paper: to distill the network effects on equilibrium. I obtain formal
and closed formed solutions and I can study the implications of the structure of the trading
network in isolation44

43More specifically, with imperfect competition, each trader chooses his demand as optimal pointwise for
each price realization against a family of the residual supply (all other trader’s demand schedule) with a
deterministic slope (price impact) and random intercept (due to other traders private information).

44However, my main methodological contribution, which is to derive a sufficient network metric for the
equilibrium (Theorem 1), is not limited by the price-taking assumption. In the Appendix, I derive and
show the equilibrium in a setting where markets are imperfectly competitive (see section 1.9 for further
discussion). As I will explain later on, if traders were strategic with respect to price, the endogenous price
impact would depend on the network structure and would also influence the equilibrium. Then, the PM
price would be determined by two related but distinct forces: price impact and network structure.
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1.5 Trading Centrality, a sufficient statistic for Equilib-

rium

The analysis so far has two main conclusions. First, the presence of local markets leads
to a substitution effect across PM demands qi,1(·) (eq. (1.10)). Second, for each trader,
how he reacts to others’ behavior is determined by his network position in complicated
ways.

The main contribution of this paper is that, by solving the model, I show that the unique
equilibrium can be described as a function of a simple measure, trading centrality. Trading
centrality, c(G, φ)N×1 : ci(G, φ) ∀i ∈ N , is a recursive network metric that produces a
“score” for each trader. In Section A.6 I provide the formal definition of trading centrality
and its analytical expression. However, the reason why trading centrality is a sufficient
statistic is best understood by simply using economic intuition for what it does.

The trading centrality score measures the trader’s endogenous valuation for the asset
in the PM. The higher is ci, the higher is i’s marginal utility for asset holdings and thus the
higher is he willingness to pay for shares in the PM. Moreover, it also implies that a trader
is more central as his direct and indirect connections are less central.

That is, the PM demand schedule qi,1(·) of each trader i (Equation 1.10) can be
expressed in terms of his centrality.45 ci,

qi,1(q−i,1; P1,G, φ) = (1− P1)ci(G, φ) (1.13)

And ci can be expressed in terms of other traders’ centralities {cj}j 6=i,

ci(G, φ) = vi(G, φ)

1− φ
∑

j

g̃ij · cj(G, φ)

 (1.14)

The recursive form of trading centrality is illustrated in Figure 1.7 by noticing that the
best-responses (i.e. demand schedules) depicted there are essentially Equation (1.14)
replacing ci(·), cj(·) with qi,1(·), qj,1(·) and setting P1 = 0.

The next figure depicts the demands of two traders with different centralities. The trader
with higher centrality (in green) has a more elastic demand curve than the one with lower
centrality (in orange). In turn, for any price P1, the more central trader will acquire more

45I use “trading centrality” and “centrality” interchangeably.
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shares than the less central one.

Figure 1.8: Demand schedules are determined by traders’ centrality
The orange demand is of a trader with lower trading centrality; and the green demand if of a trader with higher trading centrality.
In blue is the demand schedule if the trading network did not exist.

Throughout the paper, with abuse of notation, I omit the functional arguments of trading
centrality and write c = c (G, φ,Q).

Since trading centrality determines traders’ willingness to acquire the asset in the PM,
it defines the equilibrium demands and, in turn, the equilibrium PM price. Thus, the unique
equilibrium of the model is determined solely by the structure of the trading network and
the shock parameter φ.

Theorem 1. Primary Market Equilibrium and Trading Centrality

Given an asset supply Q, the unique and interior equilibrium in the PM is determined
by trading centrality c(G, φ).

Equilibrium PM price is given by

P ∗
1 (c;Q) = 1− Q

cA

(1.15)

where cA = ∑
i∈N ci is the aggregate trading centrality.

Each trader’s equilibrium PM asset allocation is

q∗
i,1(c;Q) = Q

ci

cA

(1.16)

Or in matrix notation, q∗
1 = Q

cA
c.

Trading centrality neatly characterizes equilibrium, and in an intuitive way. PM price is
simply defined by aggregating trading centrality globally, as all traders can participate in
that market. And each trader’s asset acquisition is proportional to his centrality.

In the same spirit, for each local market, equilibrium price is defined by aggregate
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trading centrality locally in the seller’s neighborhood. And each trader’s demand schedule
is simply determined by the gap between his optimal holdings and his centrality.

Corollary 1.1. Local Market Equilibrium and Trading Centrality

Given an asset supply Q, trading centrality c(G, φ) uniquely determines the equilibrium
in a local market.

A trader’s demand schedule is

qi,s(c; Ps) =
(

1− Q

cA
ci

)
− Ps ∀i ∈ N (1.17)

Each LM price is

Ps(c) = 1− Q

cA

(
cs +

∑
i∈Ns

ci

ds

)
∀s ∈ N (1.18)

The results above show how trading centrality is a sufficient statistic for market out-
comes. Given an arbitrary trading network and a shock parameter φ, trading centrality can
be computed. In turn, prices and demands in every possible market are found.

In equilibrium, traders always have a strictly positive demand in all markets they can
participate at. That’s due to three reasons. First, as the PM has more competing buyers, no
trader is able to reach his optimal inventory at t = 1. Second, the anticipated yet uncertain
re-sell shock also lowers PM demand to mitigate the risk of being a seller. Lastly, since the
likelihood of being a buyer is weakly greater than of being a seller, traders command lower
prices in local markets to compensate the shift from securing asset holdings in the PM at
t = 1 to the risky asset allocation at t = 2.

All this leads to PM price being greater than any local market price in any network. The
unique exception is for star network (Corollary 1.1).

Proposition 1. Price Dynamics

A trading network with a star structure is the unique one that can exhibit price increase
over time. For any other network structure, asset price drops from t = 1 to t = 2.

Thus, liquidity (re-selling) is costly for the seller. Analysing price dynamics then means
measuring traders’ liquidity cost. Just as with equilibrium prices, liquidity cost is determined
by the gap between the aggregate centrality in the seller’s neighborhood and the price he
would have in absence of PM holdings among his buyers (i.e. if his buyers had no asset
endowment when trading with him):

Pi − P1 = Q

cA

∣∣∣∣∣1− ci +
∑

j∈Ni
cj

di

∣∣∣∣∣ 6= 0 ∀i ∈ N (1.19)
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The next corollary of Proposition 1 reveals why price can increase in a star network. Its
core trader is the only one who make profits from re-selling. That’s because his price is
higher than the price in any other market within the star network. In fact, the core’s price is
higher than the prices in any trading network structure of the same size.

Corollary 1.1. Re-sell Cost

For a trader i ∈ N , re-selling is profitable, i.e. Pi−P1 > 0, if and only if i is the core of a
star network.

Looking at the aggregate centrality in a trader’s local market is advantageous because
it has a straightforward and monotonic relation with liquidity cost. The next natural question
is a trader’s selling price Pi and liquidity cost (P1 − Pi) relate to his trading centrality ci

alone. It turns out that the answer is non-trivial because the relation between di with Pi and
ci ambiguous.46 I find that in certain trading networks, ci and di are positively correlated
and, thus, so it is ci and Pi. But other networks exhibit the opposite relation..47

The non-monotonic relation between trading centrality and degree has two crucial
implications. First, in my model, central traders are not necessarily those highly connected.
Second, central traders do not always have better terms of trades. Although these
implications might be counter-intuitive, in reality they are observed in interdealer markets.
The growing empirical literature on interdealer networks find mixed evidence on whether
“central” dealers have higher or lower liquidity costs (section 1.2). My results suggest
that a reason for this inconclusiveness could be that all these studies use standard
network metrics such as degree and eigenvector centrality that are positively correlated to
degree. Consequently,“centrality” only reflects the extensive margin of trades and imply
that the centrality of a dealer is weakly increasing in the centrality of his connections
(and connections’ connections, etc.).48 My novel trading centrality measure reveals that
this might be misleading, particularly so when analyzing markets with endogenous and
correlated terms of trade.

In my model, central traders emerge as market makers only for particular trading
networks in which trading centrality and degree have a positive relationship. This is the
case, for instance, for “nicely behaved” networks such as symmetric and core-periphery
networks. In those cases, central dealers buy more in the PM to sell at a higher price in
the local market, compared to others.

The fact that liquidity is costly is reminiscent of the long-standing theoretical literature
46In the appendix, Lemma 8 provides a formal statement of this result.
47I illustrate this on a simple example on section A.1. See also section A.6 for more details.
48This is how we usually think of centrality, as a proxy for “prestige” and “influential power”.
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of inventory behavior in the interdealer market, pioneered by Ho and Stoll (1981) and Ho
and Stoll (1983). In these models, while interdealer trading enables inventory risk sharing,
the initiating dealer must give up some portion of the spread to his counterparty.49 It is also
a common phenomena across a variety of securities and markets (Duffie (2010)).

The rest of the paper explores how the structure of the trading network itself affects
PM price. I also study welfare. But in order to understand all my findings - including
Theorem 1 - it is crucial to distill what information trading centrality encapsulates. Before
proceeding, the next simple example distils what information trading centrality encapsulates.
In sequence, I discuss the information content and mathematical form of trading centrality
(subsection 1.5.2).

1.5.1 Example

The trading network structure is described by the G such that gij = {0, 1}, gij =
gji∀i, j ∈ N . It is essential to keep in mind the substituability of demands that arises
because of the feedback between the PM and local markets. This implies that the trading
network induces endogenous ”trading costs" for holdings asset shares that reflect local
market trades.

The implied trading network is given by the modified adjacency matrix G̃ such that
g̃ij ≥ 0, g̃ij 6= g̃ji∀i, j ∈ N (eq. (1.12)). G̃ is a weighted and asymmetric matrix and a
modified version of G.50 Take a trader i ∈ N . Each g̃ij is the marginal cost imposed by the
holdings of a trade counterparty j 6= i, j ∈ N . It accounts for when i and j trade as a seller
and a buyer to one another, and as competitors for a common linkage. On top of that, i
incurs a marginal cost from his own holdings given his possible trade participations (i.e.
every local market where he is a buyer, a seller or out of it), which is given by the individual
coefficient 1

vi
.

All these network-induced “trading costs” define i’s marginal benefit of holding asset
shares. Then, to optimally decide his PM demand, i equates it to the marginal cost of
acquiring the asset, i.e. the PM price P1. In matrix notation this gives,

49In these models, using interdealer trades to unwind inventory is a choice. However, as long as dealers
are farther from their optimal inventory, the benefits of risk sharing via the interdealer market outweigh the
trading costs. So dealers (almost) always choose to sell the inventory in the interdealer market if needed.
This is the main conceptual difference with my paper since I assume that the seller (the initialing dealer)
must sell. Interdealer trading in my model is a choice just for the buyers because they can demand zero.

50An interesting aspect of the forces in my model is that they turn the “plain” trading network, which is
undirected and unweighted, into a weighted and directed network graph. Moreover, a graph that is weakly
more connected than the trading network itself. See Figure 1.9
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1N −
(
V + φG̃

)
· q1︸ ︷︷ ︸

asset holdings marginal benefit

= P1N︸ ︷︷ ︸
asset holdings marginal cost

where VN×N ≡ diag( 1
v
) is the diagonal matrix with entries 1/vi.

Notice that the above is simply the system of first-order conditions of traders’ optimiza-
tion problem in the PM (eq. (1.9)). Since all traders have the same optimal holdings of 1,
the lower is the row-wise sum of

(
V + φG̃

)
(i.e. trading costs), the higher is the trader’s

marginal utility and thus the higher is his willingness to pay. Then, in equilibrium, the
trader’s demand - and share allocation - is higher.

This operation is exactly what trading centrality does. But it gives the information in
terms of marginal benefit instead of marginal costs:

c ≡
(
V + φG̃

)−1
1N (1.20)

Thus, the score of each trader is precisely his marginal utility of holdings asset shares.
Or, in other words, the marginal benefit of acquiring shares in the PM.

A

B C

A

B C

Figure 1.9: Orange links imply two trades (nodes) are buyers and sellers to one another (direct counterparties) in local markets. Blue
links imply they are competitors (indirect counterparties).

Now let’s look at a simple example. Consider N = 3 traders in the star trading network
with structure described by the adjacency matrix G below (left graph of Figure 1.9). The
implied star trading network is given by the modified adjacency matrix G̃ (right graph of
Figure 1.9):

G =


0 1 1
1 0 0
1 0 0

 , G̃ =


0 0.5 0.5

1.25 0 0.25
1.25 0.25 0


The core trader A has the same interaction with both B and C, and that’s why g̃AB =

g̃AC = 0.5. However, B and C interact differently with one another and with A. Not only
that, but they trade directly with A and indirectly with each other through A. That’s why
g̃BA = 1.25 > g̃BC = 0.25 and g̃CA = 1.25 > g̃CB = 0.25. The individual coefficients are
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1
v

= (1, 1.1875, 1.1875)′. A has a lower marginal cost of holding shares because he has
greater local market participation.

Traders’ marginal benefit of asset holdings is then51


1
1
1

−


1 0.125 0.125
0.3125 1.1875 0.0625
0.3125 0.0625 1.1875

 ·


qA,1

qB,1

qC,1

 q1 =


1
1
1

 · P1

Thus, trading centrality is

c =


1.067 −0.1067 −0.1067
−0.267 0.871 −0.0178
−0.267 −0.0178 0.871

 · 1N =


0.853
0.587
0.587


Letting the asset supply be one, the equilibrium asset allocation is q∗

1 = (0.421, 0.289, 0.289)′,
which is proportional to trading centrality c. The core trader is the most central and has
the highest asset holdings. The equilibrium PM price is given by the aggregate trading
centrality cA = 2.027, such that P ∗

1 = 1− 1
cA

= 0.5066.

1.5.2 The Information Content of Trading Centrality

Now it is clear that trading centrality process information about each and every local
market interaction, and maps it to the asset acquisition decision in the PM. Hence, trading
centrality defines traders’ behavior before trade and it implies that the centrality of a trader
is decreasing in all other traders’ centralities.52

The recursive representation in eq. (1.20) is reminiscent of the negative Bonacich cen-
trality53 with weights that are not a simple geometric series (as in the Bonacich measure),
but instead are endogenous and capture trading incentives. They are the network-induced
trading costs

(
{ 1

vi
} ∀i∈N , {g̃ij} ∀i,j∈N

)
that defines traders’ payoff function eq. (1.9).

The strength of effect between two traders’ centralities varies with how far apart they
are. On one hand, a trader i respond more negatively to the demand of traders at most

51Notice that
(
V + φG̃

)
· 1N = (1.25, 1.5625, 1.5625). That is, the core has lower trading cost compared to

the peripheries.
52This is makes sense as the framework is fundamentally a game of global strategic substitutes.
53The Bonacich centrality is a well-known network measure of node importance. Its common adoption

in economics has been with a positive scalar as it means an agent is more powerful (central) the more
powerful are his connections. This interpretation is meaningful in many economic scenarios that exhibits
local complementarities and it was first invoke by Ballester et al. (2006). My paper contributes to the less
explored network models in which Bonacich centrality with negative scalar is the appropriate measure of
node influence.
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two links apart (i.e direct connections or common connections). On the other, i respond
less negatively to traders further away.

1.6 Trading Network Structure and Equilibrium
The overall takeaway so far is that the trading network induces a complex relationship

between traders and markets what is encapsulated in the trading centrality, the sufficient
statistic for equilibrium and my main contribution. Now I investigate how changes in the
trading network structure affect equilibrium outcomes. In Section A.1 I illustrate the main
findings of this section with a relatively simple example.

A first natural question is which network structure, if any, delivers a maximum or
minimum value for PM price. I find that the complete trading network delivers the highest
PM price while the star trading network the lowest possible PM price.

Proposition 2. Bounds on Primary Market Price

Consider an arbitrary trading network of size N . The equilibrium primary market price
is bounded by its level on two specific networks of the same size: above by the complete
network, and below by the star network.

There are no trading frictions in a complete network. All traders are connected with one
another and everyone trades in both markets, either as a buyer or a seller. In equilibrium,
demand schedules and asset allocation are homogeneous across traders in every market,
and so are local market prices. From a buyer’s perspective, trading in a local market is as
competitive as in the primary market. For this same reason, the seller’s price is likely to be
higher. Both buyer and seller’s effects combined induce traders to demand more in the
primary market because i) as a buyer, higher PM demand lowers a seller’s price; and ii) as
a seller, a higher price will be obtained. Higher willingness to trade in the primary market
pushes price up, even though the equilibrium allocation q∗

i,1 = Q̄
N
∀i ∈ N is the same as in a

frictionless market.

The bounds on PM price might indicate that price is monotonically affected by metrics
about only the number of connections of each trader: connectivity, the average degree
of the trading network; and degree inequality, the variance of traders’ degree.54 That’s
because the complete (star) network has the highest (lowest) connectivity and lowest
(highest) degree inequality. However, this is not true.

Lemma 3. PM price is non-monotonic in connectivity and degree inequality.
54Notice that such effects are tightly interrelated. For instance, increasing the number of traders can affect

how traders are connected. Or changing (re-arranging, deleting or adding) linkages can reduce or increase
differences in traders’ degree.
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Put differently, much more information than just degree is needed to compare equilib-
rium outcomes in the cross-section of trading networks of the same size. Nonetheless,
degree is the simplest and a straightforward network concept. And very often we just
know the degree distribution of a network. In turn, I now show that the degree alone still
brings novel insights. In particular, I investigate how PM equilibrium is affected by specific
changes in the degree distribution of the trading network.

Consider, in particular, a change in the probability distribution over the degrees of
traders that reflects an unambiguous increase in connectivity, as given by the criterion of
First Order Stochastic Dominance (FOSD). Denote the degree distribution of two trading
networks as P and P ′. If P first-order stochastically dominates P ′, then the average degree
under P is higher than under P ′, the reverse not true.

Proposition 3. Changes in connectivity: FOSD

Suppose that P ′ FOSD P . Then the PM price under P ′ is unambiguously higher than
under P .

All traders’ demand are higher after the change.

Now consider an unambiguous increase in degree inequality, while keeping average
degree unchanged. This change is capture by a mean-preserving in the degree distribution.
If P ′ is a mean-preserving spread of P , then the variance under P ′ is higher than in P ,
reverse not true.

Proposition 4. Changes in degree inequality: Mean-preserving spread

Now suppose P ′ is a mean-preserving spread of P . Than PM price is lower under P ′

than under P .

Traders’ demand can increase or decrease depending on their network position. More
(less) connected traders have an increase (decrease) in demand.

In other words, if we weakly increase all traders’ degree - implying greater connectivity
- PM price also increases (Proposition 3). And if degree inequality increases, keeping
connectivity constant, PM price decreases (Proposition 4). It is worth pointing out that
the reverse does not necessarily hold (i.e., the above propositions are not if and only if
statements). As argued before, information on the number of traders’ connections (i.e.
degree distribution) is not enough to characterize equilibrium. Trading centrality - the key
statistic for equilibrium - reveals that one must look at the pattern of connectivity.

Lastly, straightforward changes in the trading network are to add/remove a link or a
trader. Both changes, when made alone and keeping everything else the same, lead to
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increase (decrease) in PM price. Moreover, changing the number of traders affects every
local market price in the same direction as the PM one. Both facts are useful for the coming
discussions.

Lemma 4. Removal and addition of a link

Everything else the same, adding (removing) a link from the trading network increases
(decreases) PM price unambiguously.

Lemma 5. Trading Network size

Everything else the same, PM price and local market prices are increasing in N .

In the rest of this section, I study the equilibrium for particular trading network structures:
symmetric and core-periphery. Doing so renders great tractability of the model because
one just needs to keep track of one or two trading centrality scores respectively. In turn, I
show that such networks contribute to understating the relationship between PM price and
the trading network.

1.6.1 Symmetric Networks

In symmetric networks (or regular graphs), all traders have the same number of
links and, thus, same network position. This means that a symmetric network is solely
characterized by the number N of traders in it and their degree d. Examples are the
complete network in which d = N − 1 and the ring network in which d = 2.

It immediate follows from Theorem 1 that prices and demands across traders and
markets are homogeneous55

Proposition 5. Equilibrium in Symmetric Networks

Consider a symmetric network with N traders and degree d. Then, Primary Market
equilibrium is

P ∗
1 = 1− Q̄

N

(
φ + d(1 + φ)

d

)
(1.21)

q∗
i,1 ≡ q∗

1 = Q

N
∀i ∈ N (1.22)

and the equilibrium in any Local Market is

55Notice that traders have the same demand and selling price if and only if they have the same network
position. These two facts make it easier to study symmetric networks. There is just one unknown, a single
trading centrality score; and four equilibrium values - the PM price, the single PM demand, the single LM
price, and the single LM demand.
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P ∗
s = 1− (d + 1)

d

Q

N
(1.23)

q∗
i,s ≡ q∗

2 = Q

Nd
∀i, s ∈ N (1.24)

In any symmetric network, asset supply is divided equally among buyers and it is the
as if no trading network exists, i.e in the perfectly (Walrasian) market. Although traders
have the same willingness to pay, their demand schedule56 q1 = (1− P1) d

φ+d(1+φ) is not the
same as in perfect competition, qce = (1− P1). Traders respond to the trading network and
the re-sell shocked by submitting a more inelastic demand.

In contrast, PM price varies considerably across symmetric networks and it is never
equal to the price of a perfectly competitive market. Thus, the distribution of asset shares
alone is not informative about PM price nor about the network structure (since all symmetric
networks have the same allocation). For financial market, this suggests that by looking
only at dealers’ inventories we could miss an important consideration for the cost of credit
for the issuers.

Comparing price across periods, while PM price is increasing in degree the LM is not.
In turn, more connected symmetric networks exhibits higher price drop.

Recall that the degree distribution of the trading network, although not fully informative
about the equilibrium, is useful to compare market outcomes across network structures. It
turns out that combining what the degree distribution tells us with the notion of symmetric
brings further insights on PM price.

Fixing N , we already know that the complete network has the highest PM price
(Proposition 2). Further fixing the number of linkages in the trading network, I find that the
PM price in every symmetric network is higher than in any other structure.

Proposition 6. Network Symmetry and Primary Market Price

Suppose there are N traders and a fix number of connections among them. Then, the
PM price in a symmetric network, if it exists, is higher than in any other network.

Benchmark cases:

The complete network is a special case of a regular network where no trading frictions
exist since all traders are connected with one another. Equilibrium prices are P ∗

1 =
1− Q̄

N(N−1)(N(1 + φ)− 1) and demand schedules are q1 = N−1
N(1+φ)−1 .

56This follows because trading centrality is ci ≡ c = d
φ+d(1+φ) < 1.
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The other two extremes cases of symmetry are i) the empty network (i.e. without any
trading relationships but with φ > 0); and ii) the static, competitive market (i.e. without a
trading network and/or φ = 0).

The competitive market PM price equilibrium is P ce
1 = 1− Q

N
and demand schedules

are q1 = 1 − P1. In an empty network traders could still face the re-sell shock even
though no local market actually exist. This risk makes demand schedules less elastic and
drives PM price down. In equilibrium, PM price and demand schedules are, respectively,
P ∗

1 = (1− φ)
(
1− Q̄

N

)
and q1(P1) = 1− 1

1−φ
P1.

1.6.2 Core-Periphery Networks

Empirical evidence suggests that several financial markets exhibit a core-periphery
structure (Section 1.2). We already know that the star network, a particular core-periphery
structure, has the lowest PM price (Proposition 2). A core-periphery network consists of
a well-connected set of nodes, the core, and the remainder nodes, the periphery, well
connected to the core but sparsely connected internally (Figure 1.10). Motivated by the
above, I now restrict my study of equilibrium in core-periphery trading networks. First, I
look at the star network (left in Figure 1.10). Then, I analyze how price changes as the
size of the core (right in Figure 1.10) and periphery grows.

I find that when the core consists of a single trader, he is the unique trader obtaining
capital gains (Proposition 7). And that, even though PM price is increasing in the size of
the core, the price drop monotonically decreases as the network grows (Proposition 8).

Figure 1.10: The figure depicts two core-periphery networks of the same size but with different cores

The star network is the simplest case of a core-periphery structure with a single core.
An arbitrary core-periphery network can be understood as adding more traders to the core
of the star network and keeping core’s connectivity the same57 The size of a core-periphery
network is altered in two ways: by changing the number of core nodes and peripheral
nodes.

57Core traders are fully connected among themselves, they have the same number of connections to
peripheral nodes, and each periphery is linked to a single core node.
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The core traders have incentives to increase their demand. They expect to sell at high
price and not be able to buy a lot in any local market, even though their buying prices are
likely to be low. The reverse logic holds for peripheral trader. The peripheries anticipate
a very low selling price and low marginal utility for their supply since they would only be
trading with a core trader. This drives their demand down. In equilibrium, the traders in the
core (periphery) have the highest (lowest) asset holdings.

What drives apart equilibrium proprieties of the star and other core-periphery networks
are two facts. First, deviating from a single core decreases core traders’ trading centrality.
Second, cores’ centrality is more affected than peripheries’ one. The reason being traders
in the core also trade with each other, who themselves are relatively more central than the
peripheries. Lower trading centrality drives core’s demand down and, thus, their selling
price decreases. At the same time, demand inequality decreases since the peripheries’
demand is greater.

First, as the size of the core increases, core traders’ trading centrality decreases.
Second, cores’ centrality is more affected than peripheries’ one. The reason being they
also trade with each other, who themselves are relatively more central than the peripheries.
Lower trading centrality drives core’s demand down and, thus, their selling price decreases.

The next proposition shows the asset pricing implication of such behavior.

Proposition 7. Prices and the size of the Core

Compared to any trading network with N traders, only the single core trader of the star
network has a selling price higher than the PM price.

For any core-periphery network different than the star, selling prices are lower than the
PM price for every trader. Although all prices are increasing in the size of the core.

The core trader of the star network, and only him, obtains capital gains from selling his
shares. His price is the highest across all markets with N traders, including the PM. The
deviation from a single core trader leads to higher PM price and lower local market prices,
including for the core. Consequently, price drops over time - in stark difference with the
star network.

Behind this result is the fact that cores’ centrality is more affected than peripheries’
once the network changes from a star to a core-periphery structure. Core traders’ trading
centrality decreases since they also trade with each other. Lower trading centrality drives
their demand down and, thus, selling price decreases.

As the size of the core increases, competition among core traders intensify, reducing
even further their centrality and demand. However, the market size effect dominates
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and all prices increases. Interestingly, the difference between core-periphery demands
becomes smaller. The next proposition summarizes how PM equilibrium changes as the
core-periphery network grows.

Proposition 8. Equilibrium in Core-Periphery Networks

As N and /or the number of core traders increase, the core-periphery network exhibits:

i) lower demand inequality (qcore,1 − qperiphery,1), and

ii) smaller price change over periods |P1 − Pi| ∀i ∈ N .

If there is one core trader, there is lower price raise. For any other core size, there is
lower price drop.

Summarizing, the star network has three interesting features: lowest PM price, highest
demand inequality and possibility of capital gains. Such properties do not hold for any
other core-periphery structure. Increasing the size of the core reduces demand inequality
and no seller can obtain capital gain.

In A.10, I provide analytical solutions and further details on the equilibrium for core-
periphery networks.

1.7 Welfare
I study welfare in terms of traders’ expected indirect utility. Similarly to equilibrium

prices (Theorem 1, Corollary 1.1), welfare is determined by aggregating trading centrality
in a particular way (as I show below).

Even so, welfare comparison across different trading networks is challenging. I find that
it is not necessarily true that welfare is enhanced by i) reducing the disparities between
traders’ number of connections and/or PM demand; or ii) increasing connectivity. That’s
because, since welfare depends on trading centrality, it inherits the non-trivial relation with
network connectivity and degree inequality.

Formally, the expected indirect utility EU∗
i of a trader i ∈ N can be written in terms of

his and others’ centrality,58

EU∗
i

(
c;G, φ, Q̄

)
= w +

(
Q

NcA

)2
ci −

1
2vi

c2
i − φci

∑
j

g̃ijcj

+ φ

(
Q

NcA

)∑
j
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58Recall that i’s expected indirect utility is given by EU∗
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and so EU∗
i is only a function of the trading network structure G and the parameters of

the model (φ,Q).
Welfare of a trading network G is defined as the sum of traders’ expected utility,

EU∗ ≡ ∑i EU
∗
i

(
G, φ, Q̄

)
. Not surprisingly, it is also determined by traders’ centrality and

given by
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To gain some insights on welfare, I now focus on the extreme cases of symmetric and
core-periphery networks59 - i.e. the complete, the ring, and the star structure - plus the
line network. All are depicted in fig. 1.11.

Welfare study in these network structures is facilitated because they all share the same
property of trading centrality being monotonically increasing in degree.60 I provide two
welfare rankings: traders’ expected utility within a trading network, and aggregate expected
utility across trading networks of the same size. Thus, it holds that central dealers are
those with i) higher PM demand (i.e. asset holdings); ii) lower liquidity costs (i.e. higher
re-selling prices); and iii) who face lower local market prices as buyers.

Figure 1.11: The star, the line, the ring and the complete trading network with five traders.

At the individual level, I find that a trader’s expected utility EU∗
i is increasing in his

centrality ci.61 Thus welfare ranking of traders is given by trading centrality: more central
traders achieve a higher expected utility.

Proposition 9. For N > 3 and if the trading network is either a complete, ring, line or star
graph, then a trader’s expected utility increases in his trading centrality.

At the aggregate level, higher connectivity leads to higher aggregate trading centrality
and, thus, higher PM price (eq. (1.15)). Not only that, but also higher local market prices

59In section A.12 I explicitly discuss the ring and the star networks. Their simplicity provides insights on how
network size and degree distribution interact with one another, and how it affects the equilibrium.

60Recall Lemma 8 that this is not always the case.
61This results from the fact that trading centrality is increasing in degree See Section A.13 and Lemma 10.
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since they are increasing in degree. As a consequence, I find that welfare decreases with
aggregate trading centrality - and connectivity.62

Proposition 10. For N > 3, welfare ranking across the following networks is:

Star > Line > Ring > Complete.

Thus welfare ranking of trading networks is according to the aggregate trading centrality,
and it is the reverse as the PM price rank. At a first glance this result seems odd. Welfare
increases with degree (and asset allocation) inequality, and decreases with connectivity.

However, keep in mind that traders in the model are natural buyers of the asset by
assumption. And each trader has a (weakly) greater probability of being a buyer of the
asset in both periods. In turn, the opposite effect of the degree distribution on prices
pushes them at such a greater level that is detrimental to traders’ utility. On top of that,
the likelihood of high local market price is higher in more connected and less unequal
networks, what also drives utility down. Ultimately, greater welfare is determined by traders
expecting lower prices in all markets - the PM and local markets.

It is worth emphasizing that asset allocation inequality is an equilibrium outcome.
Traders, by taking into account their own and others’ position in the trading network,
optimally decide their holdings. That’s why demand inequality is not necessarily detrimental
for welfare, but a reflection of the strategic response between traders themselves.

My welfare analysis concludes that the trading network delivering the highest (lowest)
PM price, the complete (star) structure, is the exact one delivering the lowest (highest)
welfare. I stress that Proposition 10 only compares the four network structures illustrated
in fig. 1.11. A more interesting exercise is to consider any arbitrary trading network and
investigate which trader(s) or linkages should be removed or added to increase welfare. I
leave this for future research.

In the literature of decentralized markets, a typical result argues that the absence of
frictions would correspond to maximal welfare. This is not the case in my model and it’s
similar to the result obtained in Malamud and Rostek (2017), Wittwer (2021) andGlode
and Opp (2020), who demonstrate that decentralized markets might be more efficient than
centralized markets. In contrast to these previous work, my framework is the first so show
that allocative efficiency in decentralized markets (i.e. local markets) does not lead to
greater (or maximal) welfare. Moreover, intertemporally, welfare is maximized by having
the two most extreme trading schemes: a centralized (PM) market followed by a market in
which one trader intermediate all trading flows (star network).
62See section A.13. There I show that this result follows from the previous ones regarding PM price bounds

(Proposition 2) and the price effect of the degree distribution (Proposition 3 and Proposition 4).

36



1.8 Empirical Exercise: Real-world Interdealer Network

An attractive feature of my model is that it has a straightforward empirical application
to off-exchange assets, and it generates generates a rich set of empirical predictions. In
this section, I give guidelines for future empirical work by an illustrative example on the US
Corporate Bonds market. Namely, conditioning on the inferred interdealer network, I use
trading centrality to compute dealers’ inventory, and interdealer trade prices and quantities.
Then I explore the sensitivity of various observable variables of interest with respect to
trading centrality.

I use a sample of the TRACE data provided by Friewald and Nagler (2019)63 with
information on secondary markets of US Corporate bonds.64 The TRACE database
contains detailed transaction information on the prices and volumes both between dealers
and customers (d2c trades)65 and among dealers themselves (d2d trades). Crucially, the
information is at the dealer-level. This allows me to recover one main ingredient needed
for the empirical exercise: the interdealer network.

I document an interdealer network with 201 dealers and 452 links. The distribution of
dealers’ number of trading relationships and trading centrality are highly skewed. There is
also great pair-wise heterogeneity of trading frequency and volume traded. I also document
that dealers sell more often to the customer, instead of buying from him; and that the more
central dealers have a greater volume of sell trades with the customer.

I find that, in the interdealer trades in the network, trading centrality has a positive effect
in sell volume, and a negative effect in buy volume. Thus, as the model predicts, central
dealers sell more and buy less in the interdealer market. For prices, trading centrality has
a positive effect on sell price and a negative effect on buy price. That is, central dealers
sell at a higher price and buy at a lower price, as implied by the model as well.

Section 1.8.1 depicts the inferred dealer network; and Section 1.8.2 discusses regres-
sions outcomes. All details and regression outputs tables are found in the Section A.16.

63The authors’ sample captures all trades executed by more than 2,600 dealers over the 2003 to 2013 period.
In this empirical exercise, I use a restricted version of it which the authors made available for replication
purposes.

64The ideal empirical exercise would combine data on primary markets, from the Mergent/FISD database
in the case of US Corporate bonds, and the secondary markets, from the TRACE data. This is work in
progress.

65Customers cannot be identified and d2c trades are all assigned to a representative “Customer”.
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1.8.1 The dealer network

There are 201 dealers in the sample, who trade 5 different bonds over 42 trading days
(what corresponds to two months, May and June 2009).66 I infer the interdealer network
from the realized trades between any pair of dealers (d2d trades). I link two dealers if they
trade with one another at least once during the sample period. I restrict the set of dealers
to those who trade both at the d2d and d2c markets.

I document an interdealer network with 201 dealers and 452 links, depicted below
(Figure 1.12).

Figure 1.12: Dealer network: trading centrality increases from darker to lighter colored nodes

The table 1.1 shows some network characteristics. Both degree and trading centrality
distribution skewed: the former is skewed to the right, and the latter to the left - as depicted
in fig. 1.13. There is also high asymmetry in pair-wise trading frequency and volume traded.
On average, two dealers trade less than six times. But there are few pairs that trade quite
frequently. This relates to the core-periphery structure of the network, which suggests that
just a few dealers intermediate most of the trades.

66My main analysis focuses on the trade data and model predictions using the full sample with all bonds.
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
degree 201 4.498 9.473 1 1 4 93
trading cent. 201 0.873 0.097 0.000 0.836 0.944 1.000
#path-two connections 201 105.000 101.900 0 38 130 483
pair frequency 452 5.872 21.480 1 1 3 320

Table 1.1: Interdealer network statistics

Figure 1.13: Trading centrality distribution, and degree distribution

Trading centrality and degree are negatively related. And so is my centrality with
eigenvector centrality (fig. 1.14). This is not surprising as, for trading centrality, a dealer’s
centrality is deceasing in the centrality of his direct and indirect connections.

Figure 1.14: Trading centrality and degree relationship (left); and Trading centrality and eigenvector centrality relationship (right)

1.8.2 Trading Centrality and Interdealer Trades

Through the lens of my model, trading centrality determines and prices and quantities
in the interdealer market, the empirical counterpart of period-two local markets. Is this the
case in the data as well? I investigate the relationship between the trades in the interdealer
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network and trading centrality. According to the model, more central dealers sell more in
the interdealer market. The relationship of trading centrality and selling price is ambiguous.

My analysis is at the daily level (i.e. a panel data). I estimate the following regressions
for trade volume and price, respectively:

voli,t = αi,t + βcitci + β′
iFi + εi,t (1.27)

pri,t = αi,t + βcitci + β′
iFi + εi,t (1.28)

where Fi is the vector of dealer i’s time-invariant observable characteristics such as
degree deg, net total d2c qi (i.e. inventory), average price of inventory pi.67 I also control
for the transaction price pr in the volume regression.

Regressing trade volume and trade price on trading centrality delivers significant results.
For trade volume, the sign of trading centrality coefficient varies depending on the set of
controls. Trading centrality alone has a positive effect on volume, and so it does when
controlling for inventory and trade price. However, adding degree and as control, turns the
centrality coefficient negative (Section A.16.3). This implies that central dealers trade more
volume in the network. Through the lens of my model, the change in sign when controlling
for degree can be explained as follows. In the inferred interdealer network,degree and
trading centrality are negatively related. Thus, since central dealers have less connections
they unavoidably have less participation in the interdealer trade and thus less trade volume.

For trade price though trading centrality is only significant when controlling for degree.
In this case, trading centrality has a positive effect on price: more central dealers face
higher interdealer prices (Section A.16.3).

In my framework, an important distinction in local markets regards the side at which
traders are, i.e., when traders are buyers and sellers. Because of that, I re-estimate
eq. (1.27) controlling for the transaction side: if the dealer is buying or selling.

Trading centrality has a negative, significant coefficient in all buy volume regression
specification. Thus, as the model predicts, central dealers buy less in the interdealer
market. However, the sign of the centrality coefficient varies in the sell volume regressions.
The coefficient is positive if degree is not added as a control. Thus, in general, central
dealers sell more in the interdealer market. Again, as implied by the model. Recall that in
the model, selling price decreases in centrality if one controls for the seller’s degree. This

67In Section A.16 I discuss dealer-customer trades and how I calculate dealers’ inventory.
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suggests that a more central trader would want to sell less, just as the regression results
with degree suggest (Section A.16.3).

Looking at prices, again centrality is only significant when degree is not added as
control. In this case, trading centrality has a positive coefficient on sell price and a negative
coefficient on buy price. Thus, central dealers sell at a higher price and buy at a lower
price, as implied by the model as well.

Moreover, for both buy and sell trades, inventory price (from customer trades, i.e.
primary market price) has a positive effect on prices. Through the lens of the model this
makes sense. As a seller, higher inventory price means it is more costly to sell. And as a
buyer, higher inventory price means it is relatively cheaper to buy in local markets, what
increases the demand from the seller and so pushes his price up (Table A.5).

1.9 Discussion
With the intuition for my results in place, I now establish that the model accommodates

pertinent extensions. In any of them, even though the model becomes less tractable, the
main finding still prevails: primary market price is characterized by the trading network.
The general formulation for trader’s optimal demand schedule (1.10) is given by

qi,1 (q−i,1; P1, φ, G, Ψ) = βi

ai − bP1 − φ
∑

j

βijqj,1

 (1.29)

where Ψ is the set of model parameters apart from the shock φ. Coefficients
({βi, ai}i∈N , b, {βij}∀i,j∈N) are endogenous and functions of one or all arguments (φ,G,Ψ).

What differs across model specifications is, apart from parameters,68 how the patterns
of trading linkages map into trading centrality and, thus, prices and demands. I point out
that the study of equilibrium outcomes and the trading network structure in section 1.6 and
section 1.7 do not hold in general. I leave this exploration for a companion paper.

All details and full analytical solution for each extension are found in Section A.14.

Heterogeneity in Preferences:

Consider the more general set up in which traders have different individual valuation
αi > 0 and risk-aversion γi in the quasilinear-quadratic utility,

Ui(Qi) = αiqi −
γi

2 q2
i

68Namely, i) the different individual valuations and risk aversion, and ii) the different beliefs.
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In financial markets, heterogeneity in αi captures the different and persistent close
relationships traders tend to form with their clients in OTC markets (Di Maggio et al.
(2017b)). The different cost γi may be related to fund outside investments, regulatory
capital or collateral requirements, which may vary across traders.

I find that the equilibrium is determined by a modified trading centrality that incorporates
the different levels of risk-aversion and asset valuation. While risk-aversion affects the
network effect across traders’ PM demand, the individual valuations only affects the level
of demand of each trader.

Expected Fundamental Returns

In reality, traders care about the fundamental return of an asset. They hold an asset
not just for the sake of holding it (i.e. to enjoy utility flow) but because they expect that the
asset itself is a good financial investment, with high intrinsic value. Suppose then the asset
has uncertain return f which is normally distributed with mean µ and variance σ2, and it is
realized after all trading activities take place69 traders have initial wealth w0 and choose
asset inventory qi to maximize the expected CARA utility of final wealth E [− exp (γW )]
given by W = f(qi,1 + qi,s)− (P1qi,1 + Psqi,s) + w0.

I find that, in equilibrium, asset price reflects both the traders’ beliefs on returns and
the trading network. Importantly, the way the former is incorporated into price depends
on the later. That’s because, a trader i’s PM demand depends on market price P1, his
information and the information and demand of all other traders, including those he is
not directly connected to but who are connected with his connections. This is in stark
difference with the canonical linear asset pricing model where individual demands depend
on all agents’ information set but not directly on other demands. That’s because in such
setting equilibrium price aggregate all useful information and so it is not necessary to know
other demands. In my model, however, even an anticipated shock and the fact the it leads
to different trading possibilities make agents to conditional on others demands, since this
is informative about the market structure.

Price Impact

In my model, traders are price-takers and strategic in terms of demands in the sense
that they understand that their PM demands directly affects prices in the trading network.
In other words, they do take into account the effect of their first-period choices on the
second period price, and vice-versa. In turn, traders’ do have price impact in the PM which

69The normality assumption is standard in this literature. See, for instance, Kyle (1989), Vives (2011), Rostek
and Weretka (2012), (Duffie and Zhu (2016)) and others.
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arises endogenously precisely because of intertemporal demand dependence.

Notice that this is different than saying that traders try to manipulate prices by “shading
their bids” in the PM, as in the models with imperfect competition such as Kyle (1989)
and Rostek and Weretka (2015). Nonetheless, my framework can be used to study the
economy with strategic traders that take into account their price impact, as Rostek and
Yoon (2020b). I find that the equilibrium with imperfect competition is determined by a
modified trading centrality that is only a function of the network structure - just as in my
model.

1.10 Conclusion

This paper shows why and how future re-sale market structures affect asset pricing
before trade, in what I call the primary market (PM). I develop a dynamic trading model
where re-sale of a divisible asset takes place in local markets of limited and random
participation, captured by a trading network. I show that to find the equilibrium is enough
to look at the structure of the trading network.

Trading centrality, a novel network metric, is a sufficient statistic for equilibrium. Behind
this result is the interdependency of demands across traders and markets due to the
interaction of re-sell risk and the interconnected local markets. The key insight is that my
network measure processes all the information driving traders’ behavior.

My results are of interest to regulators, scholars and participants of financial markets
alike. I argue that the interdealer network not just guarantee the well-functioning of over-the-
counter markets but determines the cost of credit in the economy. Also, trading centrality
offers a new measures of liquidity and “importance” in the interdealer market that only
require information about the interdealer network structure. Both can be useful in empirical
applications.

This paper allows for several and interesting extensions. Straightforward ones are
having multiple sellers, and to allow for the choice of trading venues or contemporaneous
access to all markets. One present limitation is that, due the two-period environment, I
do not study intermediation chains which have been pointed outed as important in otc
markets. However, having multiple periods natural extension of the model. Apart from
financial market applications, the model I develop is suitable for any environment in which
a good is initially priced by a large set of agents but subsequently it is only valued or can
only be traded by a restricted subset of them.

43



Chapter 2

Social Beliefs and Stock Price Booms
and Busts

2.1 Introduction
Motivated by recent booms and busts episodes in several asset markets, research has

been devoted to better understand why and how such behavior emerges. At the same
time, it is known that information and beliefs play a role in every model and every economic
choice. The existing literature on asset pricing mainly focus on agents having subjective
beliefs about market outcomes as an explanation for such phenomena of aggregate stock
market prices. Yet, the social structures where these agents directly interact with one
another have not been extensively explored. Social connections transmit information
through communication, exchange of opinions, and observations of others’ decisions. In
this paper I argue that, along with heterogeneity in beliefs, information sharing dictated by
investors’ social ties are an important ingredient for understanding asset price dynamics.

In this paper I explore the effects of communication in an asset pricing model introduce
by Adam et al. (2016) in which agents learn about stock-market price and are internally
rational. I extend their work by allowing agents to hold heterogenous subjective expecta-
tions about asset price behavior and diffuse beliefs through connections captured by an
exogenous social network of investors. At each period, agents hold private beliefs which
are susceptible to social influece. After interacting with others in their neighborhood, they
formulate public beliefs, which are a result of peer effects excerced by whom the agents
are connected to. Hence, social interaction renders a conformism in public beliefs.

I focus on the role of social network as facilitating social influence, specifically through
communication. People are constantly talking with each other, discussing opinions and
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seeking knwoledge. For instance, Calvó-Armengol et al. (2009) and Jackson (2010) argue
that the behavior of individual agents is affected by that of their peers. This ‘peer effect’
can shape human behavior in the sense that a person holds certain public beliefs because
his friends do so. Specifically in the financial markets, one can observe that investors tend
to seek financial advice, search for stock-market news and discuss with their mates before
making asset investment decisions. It is then natural to think that investors incorporate, at
least partially, some of this social engagement into their conduct towards economic activity
and tend to conform with those who they interact. Several studies in the network literature
have explored these concepts under a wide range of research area (To name a few: Bala
and Goyal (1998), DeMarzo et al. (2003), Banerjee et al. (2013), Banerjee and Fudenberg
(2004), Golub and Jackson (2010)).

In the model, agents formulate beliefs about risk-adjusted stock price growth using
optimal Bayesian filtering techniques and last-period observations of price and dividend.
They adjust beliefs upward (downward) if they underpredict (overpredict) the realized price
outcome. I characterize agents into two types, experienced (L) and inexperienced (H)
investors. Both types have the same optimal belief-updating equation except that H-agents
update their posteriors more heavily in response to forecast errors. Hence, inexperienced
agents have more volatile expectations than experienced ones. Evidence from U.S. stock-
market (Vissing-Jorgensen (2003), Adam et al. (2015)) shows that investors with less
experience in the stock market (in number of years) updated expectations about future
asset returns more strongly. This fact can be explained, for example, by investors having
different information sources. In this case, experienced agents, who have been trading
for longer, have access to certain pieces of valuable information before other investors;
while the inexperienced type rely more on publicly available information such as past
asset prices. Another plausible reason is that those with more experience have higher
self-confidence to trade and so rely less on last period observations. Finally, investors
can simply have different economic models in mind that lead them to interpret forecast
errors diferently. Hong and Stein (2007) extensively discuss sources of disagreement in
expectations in the stock market and corroborate their arguments with evidences from U.S.
data.

After the individual learning scheme takes place, investors engage in direct, truthfull
communication with others that are connected to them through an underlying social
network. Each agent attaches a weight to each belief he receives, and these weights are
type-specific. Hence, invidual weights are given by the proportion of H-type and L-type
friends each investor has. This information sharing results in a new revision of subjective
expectations. However, communication does not change agents’ private belief about price
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growth, given by his type, and so agents agree to disagree forever.

Private and public beliefs interplay between each other. Each agent’s private belief
is given by his type and determines the way the agent filters out information from past
observed market outcomes. This is an individual trait of the agent. In addition, each
investor is influenced by his neighbors and he has incentives to conform to his friends’
patterns of behavior. In the presence of such peer pressure, an agent formulates his public
opinion by averaging his friends’ beliefs. There is a large body of literature on the subject
of peer effects in different areas, such as economics, sociology, education and crime. One
challenge is how to capture such social influence. I choose a simple average of friends’
beliefs for simplicity but the model accomodates other sorts of weighted averages. For
instance, one alternative is De Groot Learning (DeGroot (1974)), in which each agent has
a social influence weight.

The timing of the model is as follows. At the beggining of each period and using
last-period observations, agents update private (initial) beliefs based on their forecast error.
Then, agents share private beliefs with others who are part of their neighborhood and
update their beliefs according to the weight their linkages imply. This results in investors’
public beliefs. At the end of the period, equilibrium is determined by agents exchanging
stock holdings and, since the stock market is perfectly competitive, the agent with the
highest public belief holds the asset and determines it price.

I show that, because agents formulate and share beliefs about asset price, the equilib-
rium is then determined by investors’ expectations. Differently from Adam et al. (2016),
equilibrium price is a function of only the most optimistic agent’s belief, defined as the one
with the highest public belief.The only sources of heterogeneity among agents concern
their perception about future stock-market behavior and who they are connected to. Since
the stock market is perfectly competitive, in equilibrium the asset is held by the investor
who is willing to pay the most for it which is precisely the agent with the highest expectation
about asset price growth.

The model gives rise to a feed-back loop between beliefs and realized price, resulting
in booms-and-busts phenomena of the price-dividend ratio. When asset price is increasing,
both types expect it to keep increasing, what feeds back into a higher equilibrium price.
This further increase in price makes agents revise beliefs upwards again, and realized
price is again higher, and so on. The reverse holds during a bust. This self-referential
aspect is similar to Adam et al. (2016). However, in my model the extent and frequency of
booms and busts depend on the social network. I also obtain different behavior of agents’
public beliefs which is a function of their network structure.
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I show that booms episodes are determined by agents with more social connections to
inexperienced investors. When price is increasing, and given that inexperienced agents
are more reactive, H-type initial beliefs are higher than L-type beliefs. Thus, agents who
interact more with inexperienced investors become more optimistic and so have higher
public beliefs. The contrary holds during busts, marked by experienced agents being more
optimistic. The periods inbetween boom and busts, referred as ‘recovery periods’, are
characterized by the stock price staying around its mean value and experienced agents
are the most influential, since H-type beliefs become too pessimistic after a bust.

The importance of modeling information sharing as weighting neighbors’ beliefs is two
fold. First, it captures the network structure. Second, equilibrium is a function of private
beliefs. Even though only the most optimistic agent determines asset price, his public belief
is a combination of others’ beliefs who are socially linked to him. Hence, the fluctuations
of the PD ratio hinge on the existence of correlated movements in agents beliefs and the
social effects agents are exposed to.

I find that the structure of the social network matters for asset price fluctuations and
price-dividend volatility. More connected networks exhibit less volatile price-dividend
ratio and booms and busts episodes last for longer periods. At the same time, in such
structures there is less dispersion in public beliefs and the average price realization is
higher. Nonetheless, if agents of the same type are more connected to each other, stock
market price fluctuates more and booms and busts have shorter duration.

I also evaluate the quantitative performance of the model by simulating the economy
with different network structures. As Adam et al. (2016), I find that the model can replicate
key empirical facts, specially the high volatility of the PD ratio and excessive return volatility.
The equity premium puzzle, which they have difficulty in matching, I cannot also fully
replicate. Overall, my model can account approximately half of the observed equity
premium, what is slightly above Adam et al. (2016)’ finding. Due to the lack of data, I am
not able to confront simulation results with other countries’ stock market, such as Japan
and te Euro-Area. Nonetheless, Adam et al. (2010) report evidence that these countries,
even though they all have experienced boom and busts, the frequency and timing of these
cycles, as well as the variation of the PD ratio differ across them. I argue that one of the
many reasons of why this is the case is their different social structures. I see this as a next
research avenue.

As a final exploration, I relax the assumption of the social network being exogenously
determined. I use a random graph approach, widely used in the network literature (Jackson
and Wolinsky (1996), ERDdS and R&wi (1959)), to infer what network would emerge if
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the only knowledge one has is the probabilities of agents to connect with each other. I
investigate the impact of homophily (Golub and Jackson (2012)) in stock market-equilibrium,
that is, I assume agents of the same type tend to share more connections. I assume
the network structure is captured by the homopholy index and that equilibrium is then a
function of homophily and private beliefs. I find that asset price volatility and the frequency
of booms and busts are positively related to homophily, whereas the duration of such
episodes is negatively related.

I provide a simple way to introduce social interaction into a standard asset pricing
model. The results show that stock market outcomes - namely, equibilibrium asset price,
price-dividend behavior and agents’ subjective beliefs - are all dependent on the underlying
network topology. To my knowledge, this paper is the first to combine adaptive learning
and social networks in the asset pricing literature. For instance, research on asset pricing
and learning, in which Adam et al. (2016) fits in, has not yet incorporate any form of
social dynamics or information sharing. Meanwhile, stock market models in information
networks such as Ozsoylev and Walden (2011) and Xia (2007) all share the standard
rational expectations assumption. Thus, this paper can serve as an initial step to better
comprehend the interdependency of the stock-market behavior and the social structure of
the economy.

Literature: My work relates to two fields of ongoing research about stock market
behavior: adaptive learning and asset pricing in networks.

Under the adaptive learning literature, agents learn about stock prices. The underlying
main hypothesis is that agents are not ‘perfectly rational’ in the sense of rational expecta-
tions (RE) but instead do not know exactly the pricing function that governs asset price
and so they take rational decisions given the information they are assumed to possess.
Adam and Marcet (2011) are the first to provide a microfoundation for these models and
introduce the concept of ‘internally rational’ agents who maximize discounted expected
utility under uncertainty given dynamically consistent subjective beliefs about the future.
They study a simple asset pricing model with risk-neutral investors and show that learning
about price behavior affects market outcomes, while learning about the discounted sum of
dividends, the case under RE, is irrelevant for equilibrium prices.

In this same line, Adam et al. (2016) study a simple variation of the Lucas Jr (1978) asset
pricing model in which agents hold subjective prior beliefs about risk-adjusted price growth.
They show that internally rational agents update their beliefs about stock price behavior
using observed stock price realizations. The setup gives rise to a model characterized by
large asset price fluctuations and volatile price dividend ratio. They are able to replicate
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some stylized facts of U.S. stock price data that previous RE models have not been able to
account for. Namely, the high persistence and volatility of the price-dividend (PD) ratio;
high volatility of stock returns; and the predictability of long-horizon excess stock returns.
As they explain, these results arise because there is a momentum of changes in beliefs
around the RE value and a mean-reverting behavior of beliefs. Nonetheless, their model
fail to reproduce the observed equity premium under reasonable degrees of risk aversion.

My model introduces an additional dimension to Adam et al. (2016). I let investors be
heterogenous in their beliefs about asset price behavior and assume the existence of a
social network connecting all agents. Given their linkages, agents are able to communicate
and share individual beliefs about risk-adjsuted price growth. In this sense, the present
framework captures how different stock price expectations and social interaction can affect
equilibrium asset pricing outcomes and agents market behavior.

The asset pricing literature has documented the relevance of heterogeneity and social
interaction among investors as influential to observed stock market outcomes. Vissing-
Jorgensen (2003) surveys evidence on the stock market behavior and actions. She
documents that an investor’s belief about future stock-market returns depends on the
investor’s own experience measured by age, years of investment experience, and own past
portfolio returns. She shows that expected returns are higher for those with low investment
experience for a given age than for those with more years of experience. The evidence
also suggests that investor beliefs do affect their stockholdings, and she concludes that
that understanding beliefs is in fact useful for understanding prices.

Adam et al. (2010) report evidence that different stock-markets historically experienced
substantial and sustained price increases that were followed by sustained and long lasting
price reversals. They show time-series data for the U.S., Japan and the Euro-Area since
1970 and all markets present PD ratio booms and busts. However, the frequency and
timing of these cycles, as well as the variation of the PD ratio differ across them. I argue
that one of the many reasons of why such pattern of the PD ratio is different among those
countries can be their social structure.

My work also fits in the strand of research about asset pricing in networks. Ozsoylev
and Walden (2011) study the impact of the properties of information networks on asset
pricing in a rational expectations equilibrium model. Agents communicate information
to each other about asset payoffs according to an exogenous information networt and
each agent has some information about her network neighbors payoff-related information.
They provide closed form solutions and find that aggregate properties of the market - for
example, price volatility, expected trading profits and agent welfare - are non-monotonic
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functions of network connectivity. Hong et al. (2005) use U.S. data on mutual fund holdings
from the late 1990’s and find that a mutual fund manager is more likely to buy (or sell) a
particular stock in any quarter if other managers in the same city are buying (or selling) that
same stock. They argue that this can be seen as the result of an epidemic model in which
investors spread information about stocks to one another by word of mouth. However,
their work is purely empirical and they do not estimate the underlying network per se. Xia
(2007) develops an strategic rational expectations asset pricing model with one-way direct
and truthful information transmission in circle and star networks. He finds that several
aggregate market outcomes, including trading volume and price volatility, are all higher
with communication than without.

The aforementioned studies share the same underlying assumption of rational expecta-
tions, which essentialy means that all agents have perfect knowledge about the pricing
function that maps fundamentals to asset price. On the contrary, the agents in my model
are ‘internally rational’ and hold a perceived law of motion for asset price while the realized
price derives from an actual (’true’) law of motion.

The role of communication, and more broadly social interactions, through social network
in economic models has been recognized in other fields. Bala and Goyal (1998) show that
communication in social networks play a major role in technology adoption. Banerjee et al.
(2013) show, theoretically and empirically, that information diffusion influences people’s
adoption decision, in their case, in the participation of a microfinance program. Golub and
Jackson (2012) explore how the speed of convergence of agents behaviors and beliefs
depends on network structure. DeMarzo et al. (2003) consider the spread of information
across a given network when individuals are subject to persuasion bias and show that
agents with particular network positions can have disproportionate influence. Jackson
(2010) presents a textbook on network economics.

I contribute to the stock-market behavior literature by aligning adaptive learning and
social interaction. I introduce a simple model of communication among socially connected
investors in an otherwise stadard asset pricing model where agents learn about prices. I
derive the equilibrium outcomes of the model as a function of the communication strucutre.
Also I quantitatively evaluate its perfomance to show that the model can replicate the
observed asset market booms and busts and that the characteristics of such cycles vary
considerably depending on social network.

The paper is organized as follows. Section 2.2, presents the model and Section 2.3
determines the equilibrium. Section 2.4 discusses agents’ learning problem. Section
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2.5 outlines the solution of the model and characterizes agents’ behavior. Section 2.6
explores the implications for asset price dynamics. Section 2.7 discusses equilibrium as
a function of network characteristics. Section 2.8 presents the results of simulating the
model. Section 2.9 extends the model to the case with an unkown network structure. In
Section 2.10 is a conclusion. The Appendix contains omitted proofs and discussions.

2.2 A Network Asset Pricing Model
I introduce an extended version of the model studied by Adam et al. (2016). It is a

Lucas Jr (1978) asset princing model in which agents hold heterogenous prior beliefs
about stock price behavior and are a part of an exogenously given social network. Those
who are socially connect share beliefs. The information sharing is truthfull and credible
(agents commit not to lie), and agents do not act stratigically towards price manipulation in
ones’ favor.1 Agents are susceptible to peer effects from those thet are connected to.

2.2.1 Model Enviroment

Consider a discrete-time economy with a large number of N of infinitely-lived agents
trading one unit of stock in a competitive stock market. At each period a stock yields a
stochastic divend Dt and investors receive an exogenous endowment Yt, both in the form
of perishable consumption goods.

Given Yt and Dt, aggregate consumption is such that economy’s feasibility constraint
holds: Ct = Yt +Dt.

The exogenous processes for dividends and aggregate consumption are, respectively

Dt

Dt−1
= aεd

t , log εd
t ∼ii N(−s

2
d

2 , s
2
d) (2.1)

Ct

Ct−1
= aεc

t , log εc
t ∼ii N(−s

2
c

2 , s
2
c) (2.2)

where a ≥ 1 and log εd
t , log εc

t are jointly normal. Let ρ = E
[
(εc

t+1)−γεd
t+1

]
= exp

(
γ(1 +

γ) s2
c

2

)
exp

(
− γρc,dsc, sd

)
.

There are two types of investors K = {h, l}: inexperienced (H) and experienced
(L). Types differ in their private expectations about the behavior of future stock prices:

1That is, agents do not wish to formulate beliefs in order to influence price in such a way to make them hold
asset in equilibrium.
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H−agents have more volatile private beliefs than L−agents.2 This characterization is
motivated by Adam et al. (2015), who documented evidence that investors with less stock
market experience are more heavily influenced by recent asset price realizations than
those with more years as traders.

The investment problem

The risk-averse and internally rational agents have standard time-separable consump-
tion preferences. Investor i ∈ N of type k ∈ {h, l} chooses consumption Cik

t , bonds Bik
t

and stock holdings Sik
t in order to maximize expected future utility3:

max
{Cik

t ,Sik
t ,Bik

t }∞
t=0

Eik
0

∞∑
t=0

δt (Cik
t )1−γ

1− γ (2.3)

Sik
t Pt + Cik

t +Bik
t ≤ Sik

t−1(Pt +Dt) + (1 + rt−1)Bik
t−1 + Yt (2.4)

where γ ∈ (0,∞) is the coefficient of relative risk aversion; rt−1 is the real interest rate
on riskless bonds issued in period t− 1 and maturing in period t; and Ei

0 denotes agent’s
subjective probability space that assigns probabilities to all external variables Pt, Dt, Yt.

Initial endowments of individual stock holdings and bonds are Sik
−1 = 1, Bik

−1 = 0. To
avoid Ponzi schemes and to guarantee a solution to the problem, assume the following
bounds hold, ∀i ∈ N, k ∈ K:

S ≤ Sik
t ≤ S̄ (2.5)

B ≤ Bik
t ≤ B̄ (2.6)

with S̄, B̄ <∞, S < 1 < S̄ and B < 0 < B̄.

Below I will specify agents’ subjective probabilities by a learining scheme describing
their view about the evolution of (Yt, Dt, Pt). Differently from what is implied by the RE as-
sumption, these subjective probabilities may or may not coincide with the true probabilities
governing the behavior of those variables.

Agent’s optimal choices are given by the first order conditions of his utility maximization
problem:

2I further disucss the characterization of types in Section 2.4
3For simplification, I assume agents have the same discount factor δ and coefficient of relative risk aversion
γ.
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(Cik
t )−γPt = δEik

t

[
(Cik

t+1)−γPt+1
]

+ δEik
t

[
(Cik

t+1)γDt+1
]

(2.7)

(Cik
t+1)−γ = δ(1 + rt)Eik

t

[
(Cik

t+1)−γ
]

(2.8)

As in Adam et al. (2016), I assume agent’s individual income Yt is high enough and
that expected future PD ration is bounded.4

Assumption 3. Given the individual maximization problem above, assume agents’ private
wealth Yt is sufficiently large and that Eik

t
Pt+1
Dt

< M̄ for all i, k and for some M̄ <∞, such
that individual consumption choices can be approximated by the aggregate consumption:
Cik

t+1
Cik

t
≈ Ct+1

Ct

Hence, the first-order conditions boil down to

(Ct)−γPt = δEik
t

[
(Ct+1)−γPt+1

]
+ δEi

t

[
(Ct+1)γDt+1

]
(2.9)

(Ct+1)−γ = δ(1 + rt)Eik
t

[
(Ct+1)−γ

]
(2.10)

Define subjective expectations of risk-adjusted stock price growth and dividend growth
to be, respectively

βik
t ≡ Eik

t

[(
Ct+1

Ct

)−γ
Pt+1

Pt

]
(2.11)

βd,ik
t ≡ Eik

t

[(
Ct+1

Ct

)−γ
Dt+1

Dt

]
(2.12)

Stock holdings first-order condition (2.9) can then be written as

Pt = δ

(
Ct+1

Ct

)γ

Eik
t

[
Pt+1 +Dt+1

]
= δβi

tPt + δβd,ik
t Dt (2.13)

RE as a special case

When one assumes agents know the exact mapping from both exogenous processes
(Dt, Yt) into equilibrium asset pricing Pt(Y t, Dt), beliefs and equilibrium are given by

4This is the Assumption 1 on Adam et al. (2016). Please refer to it for further details.
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βik
t = βd,ik

t = βRE ≡ a1−γρ (2.14)

Pt = δβRE

1− δβRE
Dt (2.15)

Hence, under RE, beliefs about both risk-adjusted price growth and divdend growth are
constant and so it is the price-dividend (PD) ratio. Asset price follows the same stochastic
process as dividend and the PD ratio is constant.

2.2.2 Types’ Private Beliefs

In order to focus on subjective expectations of stock market price, I endow agents
with perfect knowledge of risk-adjusted dividend growth, that is, all agents hold rational
expectations about these dividend processes:

βd,ik
t = βRE ∀i ∈ N, k ∈ K, ∀t (2.16)

Agents also know the consumption stochastic process. However, they do not know how
the equilibrium asset pricing function and they must formulate beliefs about risk-adjusted
price growth at every period. This implies that each agent has a subjective (and possibly
different) view about the price dividend ratio at each period.

Heterogeneity is characterized by different types having different private beliefs. That
is, βik

t = βjk
t for i 6= j, ∀t and βik

t 6= βjk′

t for i 6= j, k 6= k′,∀t. Denote beliefs of inexperience
and experience agents, respectively, as βh

t and βl
t.

2.2.3 The Social Network

Investors are located in an exogenously given network G of N nodes, each representing
an agent. The relation E ⊂ N ×N describes which investors are connected in the network.
(i, j) ∈ E means there is an edge (link) between agents i and j. I assume connections are
bidirectional, Eij = Eji, so that E is symmetric.

The distance between two agents i and j is represented by a function dE(i, j), which
defines the number of edges in the shortest path between agents i and j. I use the
convention that dE(i, j) = ∞ if there is no path between the two agents. An agent
neighborhood Nik is set of his closest nodes: Nik = {j : dE(i, j) = 1}. I shall refer to a
node in an agent’s neighborhood as a friend. The degree of investor ik is defined as the
investor’s number of neighbors, including himself: Dik = |Nik|.
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2.2.4 Social Dynamics

The main concern of this paper is to explore the effects of the network structure in
stock market price behavior. Investors are susceptible to social influence. They exchange
information about asset price through direct communication with those they are linked to.
Agents conform with their peers and so revise private beliefs after social interaction.

At the beggining of each period, each agent ik updates his type-specific private belief
βk

t , k = {h, l}. Then, he interacts with others who belong to his neighborhood Nik. Let the
weight an investor ik assigns to type-H private beliefs βh

t be λi and the one of type-L beliefs
βl

t be (1 − λi). Intuitivelly, λi captures the social influence of different types in investor
ik’s behavior. λi is a function of the investor’s social network, not of his type k, and it is
determined by the proportion of inexperienced friends he has:

λi =
∑

j∈Nik

1{j = H}
Di

= Dh
i

Di

(2.17)

where Dh
i = {#H friends}. Notice that λi accounts for investor’s own type (self-loop).5

After communication, agent formulates a public belief by averaging their neighbors’
expectations. Hence, at the end of each period agent’s risk-adjusted price growth belief is
given by

β̃i
t = λiβh

t + (1− λi)βl
t ∀i ∈ N, k ∈ K (2.18)

β̃i
t is agent ik’s public belief. Differently from his private belief, β̃i

t depends on the
investor’s set of friends, and not so much on his own-type. To make this point clearer, the
superscript i from βk

t , and the supersript k from β̃i
t are dropped.

Social dynamics is then incur peer effects and agents hold certain public beliefs because
their friends do so. The challenge of the model is then how social interaction and influence
affect stock price behavior.

2.3 Equilibrium
Since agents have heterogenous beliefs and do not hold rational price expectations, the

stochastic process for equilibrium price is different from agents’ perceived price process.
The latter is given by individual stock-holdings first-order condition (2.13). Since the asset

5The λi measure includes agent’s own type to capture the idea that individual beliefs matter. So that agents’
subjective expectations are not solely determined by who they are connected to but also depends on they
own type.

55



market is perfectly competitive, agents exchange stock holdings and the the asset is held
by the agent who is willing to pay the most for it. Hence, equilbrium is determined by the
marginal agent who holds the most optimistic public belief β̃i

t..6

Denote the most optimitic’s subjective belief about risk-adjusted stock price growth as

β̃o
t = max

i∈N
β̃i

t (2.19)

The equilibrium pricing function is then7

Pt = δa1−γρ

1− δβ̃o
t

Dt (2.20)

where a1−γρ ≡ βRE = βd
t , ∀t. This equation implies that agents’ beliefs explicity

determine equilibrium price. Asset price is increasing in both subjective expectations about
risk-adjusted price growth and dividend growth.

For realized price to be well-defined at all periods, for any set of beliefs, I impose the
existence of a maximum price-dividend value. This is justified by the fact that PD ratio
will be bounded in equilibrium and it is consistent with the behavior of internally rational
agents, and with asset pricing data..8

Assumption 4. There exists a maximum equilibrium price-dividend ratio ¯PD <∞.

2.4 The Learning Problem
In order to formulate subjective beliefs about the stock price behavior, investors make

use of two learning channels. Firstly, they use last-period price and dividends observations
applied to Bayesian filtering techiniques to infer about realized stock market outcomes.
Secondly, they share beliefs with their friends.

The former channel pins down private beliefs βk
t , while the later determines public

beliefs β̃i
t. Social interaction has been introduced in the previous section, and to close up

the model the individual learning scheme is specified below.

Recall that private beliefs are a function of agents’ type and so there are as many

6Adam and Marcet (2011) extensively discuss this result under a similar framework. Please refer to them for
more details.

7To see this, I can write

Pt = max
i∈N

[
δEi

t

(
Pt+1 + Dt+1

)]
and substitute out for β̃o

t .
8See the discussion under Adam and Marcet (2011) and Adam et al. (2017).
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βk
t as existing types in the economy. Each type, and therefore agent, perceives that the

process for risk-adjusted stock price growth is the sum of a persistent component bk
t and a

transitory component εk
t ,

(
Ct

Ct−1

)−γ
Pt

Pt−1
= bk

t + εk
t (2.21)

bk
t = bk

t−1 + ξk
t (2.22)

for k = h, l where εk
t ∼ii N(0, σ2

ε,k) and ξk
t ∼ii N(0, σ2

ξ,k), such that σ2
ε,h > σ2

ε,l and
σ2

ξ,h > σ2
ξ,l.

Let types’ prior beliefs bk
0 be centered around the RE belief9

bk
0 ∼ii N(a1−γρ, σ2

0,k)

βh
0 = βl

0

σ2
0,k =

−σ2
ξ,k +

√
(σ2

ξ,k)2 + 4σ2
ξ,kσ

2
ε,k

2

(2.23)

where σ2
0,k is the steady-state Kalman filter uncertainty about bk

t for k = h, l. Type’s
posterior belief at any time period t is distributed as

bk
t ∼ N

(
βk

t , σ0,k

)
∀k = h, l (2.24)

where σ0,h > σ0,l.

To learn about asset price growth, agents act as Bayesians and optimality filter out the
persistent component bk

t . Posterior beliefs are then given by

βk
t = βk

t−1 + gi

[(
Ct−1

Ct−2

)−γ
Pt−1

Pt−2
− βk

t−1

]
(2.25)

gk =
σ2

0,k + σ2
ξ,k

σ2
0,k + σ2

ξ,k + σ2
ε,k

(2.26)

where gk is the optimal Kalman gain and reflects how the type reacts to his forecast

9Following Adam et al. (2016), our framework constitute a small deviation from the RE case.
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error ek
t−1 ≡

(
Ct−1
Ct−2

)−γ
Pt−1
Pt−2
− βk

t−1. Comparing types learning scheme, H-agents update

more heavily their beliefs at each period and have more volatile expectations .

This setup means that both βh
t , β

l
t constitute a small deviation from RE beliefs in the

limiting case with vanishing uncertainty about the persistent component bt (σ2
0,k → 0,∀k). In

such scenario types share the same belief which converges in distribution to βRE. However
notice that RE beliefs are never actually attainable and agents are consistently wrong on
predicting price growth.

2.5 Solving the Model
It is important to keep in mind some important features of the model i) agents are

internally rational and, at every period, make inferences about the stock market behavior
by formulating subjective risk-adjusted stock price growth beliefs; ii) at each period, agents’
learning problem consists of two stages: an individual Kalman filter problem that pins down
private beliefs (type-specific) βk

t ; and communication, which pins down public specific
(agent-specific) β̃i

t ; iii) equilibrium price is determined by the most optimistic agent, defined
as the agent with the highest public belief β̃o

t .

Henceforth, the model timeline is:

1. at t, last-period beliefs βi
t−1, β̃

k
t−1 for i ∈ N , k = h, l are determined and agents

observe realized price Pt−1 and dividends Dt−1;

2. still at t and using past price observations, each type solves its learning problem by
applying Kalman filtering techniques. This pins downs time t private beliefs βh

t , β
l
t.

3. then and still at t, agents communicate and public beliefs are set: β̃i
t ,∀i ∈ N ;

4. at the end of period t, equilibrium price Pt is determined by the most optimistic agent:
β̃o

t ;

5. at t+ 1, this process is repeated.

Notice that agents beliefs βk
t , β̃

i
t are predetermined at time t, so that the economy

evolves according to a uniquely determined recursive process: the market-clearing price
for period t is determined given time t beliefs; then in the next period t + 1, beliefs are
updated following this observation, communication takes place and t+1 PD ratio is realized.

Even though the most optimistic agent sets price, both types’ private beliefs βk
t , k =

h, l directly impact equilibrium PD ratio. This is a novelty introduced by this framework
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compared to the baseline model studied by Adam et al. (2016). Communication plays
an important role since it determines the extent of each type’s influence on realized risk-
adjusted stock price growth: the type-belief with a higher weight (λi or 1− λi) will have a
higher impact on the price-setting equilibrium belief.

Solving the model consists on basically two stages, which are mutually influential: 1)
the Kalman filter problems, which deliver βh

t , β
l
t - this is essentially what Adam et al. (2016)

do and I refer to them for the details of the results; 2) determine equilibrium weight λ∗
t ,

which delivers equilibrium beliefs and price β̃o
t (λ∗

t ), Pt(λ∗
t ) - this is done by analyzing the

network structure.

2.5.1 First Stage: Individual Learning Problem

The individual learning problem entails different evolution of belief depending on agent’s
type. In order to study the dynamics of the model it is then crucial to know how beliefs
change through time and how distinct are these processes.

Bounded Beliefs

First-order condition (2.13) implies that subjective private beliefs must be bounded: to
guarantee a solution for individual opimization problem it must hold that10 βk

t < δ−1 ∀k, t.
Intuitively, private beliefs must not be too optimistic. Overly optimistic beliefs can give rise
to a situation where subjective expected utility is infinite, so that problem agents’ first order
condition does not have a well defined solution. In turn, bounded beliefs guarantee the
existence of a finite equilibrium PD ratio. Denote beliefs’ upper bound by βU

k .

For all i ∈ N , k = {h, l} and t with Pt < ∞, Dt < ∞, Ct < ∞, subjective expected
risk-adjused price growth is such that

βik
t < βU (2.27)

where βU
l = βU

h ≡ βU < δ−1.

Comovement of Beliefs

Intial beliefs βk
t are in a sense extrapolative expectations: if the stock market price has

been rising, investors expect it to keep rising; and if it has been falling, they expect it to
keep falling, that is,

10To see this notice that if βk
t = δ−1, then δβREDt = 0 which means there exists infinetely-many solutions to

the first-order contion. On the other hand, if βk
t > δ−1, then δβREDt < 0→ Dt < 0 which cannot hold.
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(
Ct

Ct−1

)−γ
Pt

Pt−1
> 1⇒ ek

t > 0 ∀k, t

where the same holds for reversed inequalities.

As a result, types’ beliefs tend to comove and so either both experience and inexperi-
enced agents believe stock price to increase or to decrease. Although this same expected
qualitative change holds for most periods, the existence of an upper bound of beliefs
implies that there could be times in which agents revise beliefs in opposite directions.
That’s because, depending on the difference between types’ beliefs when PD ratio is
approaching its upper limit, the price drop initiated by βh

t is not enough to make realized
price growth to be below βl

t, resulting in el
t > 0 and L-type increasing its belief. In general,

the comovement in beliefs holds as long as they are not sufficiently close to their upper
bounds βk

t << βU for k = h, l.

Regardless of its importance on shaping asset price behavior, the aforementioned case
depends on a fine set of parameter values and beliefs range, and I abstein from it for now.
For clarity, I impose the following assumption:

Assumption 5. All agents, indepedently of their type, change their belief in the same
direction. That is, eh

t−1 > 0 if anf only if el
t−1 > 0 ∀t. Hence, it must be that ∆βh

t > 0 if and
only if ∆βl

t > 0 ∀t. The same holds for reversed inequalities.

Forecast Errors

Firstly, intial beliefs updating equations (2.25) imply that agents revise βk
t ,∀k, t in

the same direction as the last forecast error: beliefs increase (decrease) if investors
underpredict (overpredict) risk-adjusted asset price growth. To infer about the magni-
tude of changes in beliefs one needs to compare realized and subjective price growth11:(

Ct

Ct−1

)−γ

Pt

Pt−1
× Ek

t

{(
Ct

Ct−1

)−γ

Pt

Pt−1

}
≡ βk

t .

Price equilibrium equation (2.20) shows that, for any equilibrium weight λ∗
t , a higher

(lower) βk
t , k = h, l delivers a higher (lower) realized PD ratio. In abscence of further

disturbances, this increases (decreases) risk-adjusted price growth. However, realized
price growth will always strongly exceed the initial implied expected price growth. That’s
because actual risk-adjusted price growth is a steeper function of beliefs and its subjective
expectations: when there is an increase in βk

t , equilibrium price growth increase by more
than 1 unit; the reverse holds for when subjective expectations decrease. This means that

11I will use the term price growth meaning risk-adjusted price growth for simplicity.
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|ek
t | > 0.12

To be precise, when both agents hold the RE belief it is true that their forecast errors will
be zero. Since the focus of this paper is to consider deviations from rational expectations, I
assume this scenario has probability zero of happening.

Forecast error across types differ. By the characterizion of experience and inexperi-
enced agents (see equations (2.22)-(2.25)), the latter has consistently more extrapolative
beliefs and thus exhibits greater errors. Formally.13

Proposition 11. At any period, the forecast error of inexperienced investors (H) have
greater magnitude when compared to experienced’s (L) error: |eh

t | > |el
t|. Since gh > gl, it

holds then that

|gheh
t−1| > |glel

t−1| ∀t (2.28)

In other words, difference in type’s reactions is suffciently high so that the absolute
change in beliefs of inexperienced agents is greater than the absolute change of experi-
enced agents at every period:

|∆βh
t | > |∆βl

t| ∀t (2.29)

Combining the previous Proposition 11 and Assumption 5, it is clear that agents agree
in which direction they will revise their beliefs to but disagree in the magnitude of this
change. The overall evolution of types’ beliefs βh

t , β
l
t is such that, at every period, change

in beliefs are qualitatively the same but quantitatively different across types.

2.5.2 Second-Stage: Social Interaction

After intial beliefs βh
t , β

l
t are set, agents communicate with their neighbors and formulate

their end-of-period beliefs β̃i
t = λiβh

t + (1− λ)iβl
t. Equilibrium price is then determined by

the agent(s) with the highest end-of-period belief β̃i
t , also referred to as the most optmistic

agent. Embodied in β̃o
t are equilibrium weights on type-specific beliefs βh

t , β
l
t denoted as

λ∗
t , 1− λ∗

t , respectively. Therefore, equilibrium belief is given by

12Proof in Appendix B.2.
13Proof in Appendix B.2
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λ∗
t =

maxi λ
i if βh

t > βl
t

mini λ
i if βh

t < βl
t

equilibrium weight (2.30)

β̃o
t = λ∗

tβ
h
t + (1− λ∗

t )βl
t equilibrium belief (2.31)

Notice that even though λ∗
t changes over time, λi’s are fixed. This is because the

network G is assumed to be exogenous and fixed. To determine equilibrium one must
know not only agents’ type but their location and neighborhood in the social network.
Besides agents’ degree of connectivity, the identity of one’s friends matter for pinning down
realized PD ratio.

Combining equilibrium equations (2.20), (2.30), (2.31) and belief updating equations
(2.25), realized risk-adjusted price growth is expressed as

(
Ct

Ct−1

)−γ
Pt

Pt−1
= (aεc

t)−γ

(
a+ aδ∆β̃o

t

1− δβ̃o
t

)
εd

t (2.32)

2.6 Price Dynamics
Together, the existence of a maximum for the PD ratio and beliefs are going to be key

in giving rise to booms and busts in stock market asset price. Realized price and beliefs
are consistently reinforcing each other and this constitutes a self-fulfilling mechanism that
magnifies asset price changes: if stock market price goes up, this price increase feeds into
investors’ expectations about future price changes, which leads them to push the current
price up even higher. This upward bid then makes realized asset price to increase further,
resulting again in investors pushing the current price still higher, and so on.

Consider a situation in which agents become optimistic, meaning they increase their
price growth expectations. This increase in expectations leads to an increase in the PD
ratio, and consequently, realized price growth is greater and exceeds its initial expectations.
The beliefs updating equations (2.25) then implies further upward revisions in price growth
expectations and thus asset price increases further. In abscence of any fundamental
shocks, this process leads to a sustained asset price boom in which the PD ratio and
risk-adjusted price expectations jointly move upward. The price boom comes to an end
when equilibrium PD function (2.20) gets closer to its maximum. At this point, realized price
growth fails to fulfill agents’ expectations which in turn leads to a reversal in the evolution
of beliefs. Agents start to decrease their beliefs and the opposite dynamics above is set in
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motion.

Hence, an upper pound in the PD ratio implicates the asset price boom must come to an
end. When this happen, price growth is compared to agents beliefs and such inconsistency
will shoot βk

t , k = h, l a very low value. Booms and busts are detailed discussed in Section
2.62.6.2.

I examine the asset price behavior from three prespectives: PD ratio volatility, booms
and busts dynamics and agents’ disagreement. In order to focus in the extent of the causal-
ity between PD ratio fluctuations and agents’ behavior, I abstein from major fluctations on
the dividend process. That’s to say that, even though it is true that a very negative/positive
dividend realization could cause a significant decrease/increase in asset price, I rule out
this scenario.

2.6.1 Price-Dividend Volatility

It is straightforward to see that changes in how agents perceive the stock market
contributes to PD volatity. From equation (2.32), I have

V ar

(
ln Pt

Pt−1

)
≈ V ar

(
ln 1− δβ̃o

t−1

1− δβ̃o
t

)
+ ln εd

t (2.33)

Also, for a given λ∗
t , equilibrium belief volatility is given by

V ar(β̃o
t ) = (λ∗

t )2V ar(βh
t ) + (1− λ∗

t )2V ar(βl
t) (2.34)

Thus, changes in type-beliefs βh, βl results in higher volatility of equilibium beliefs β̃o,
what contributes to greater price growth variation and thus, to higher PD ratio volatility.

2.6.2 Booms and Busts

I now show that a PD ratio boom and busts dynamics holds in the present framework
emerging from agents optimally learning about equilibrium price process and social in-
teraction. To begin with, suppose at time t investors expect a positive risk-adjusted price
growth, that is ek

t−1 > 0, k = h, l. Then it holds that

βk
t = βk

t−1 + gi

[(
Ct−1

Ct−2

)−γ
Pt−1

Pt−2
− βk

t−1

]
⇒ βk

t > βk
t−1 ∀k = h, l

Both types’ private belief increases and since experienced agents are more reactive
to price growth observations βk

t > βl
t. Communication results in end-of-period beliefs β̃i

t
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∀i ∈ N and equilibrium is determined by λ∗
t = maxi λ

i. Hence, realized PD ratio and price
growth are, respectively

Pt

Dt

= δβRE

1− δβ̃o
t

= δβRE

1− δ[λ∗
tβ

h
t + (1− λ∗

t )βl
t]

Pt

Pt−1
= [a1−γ(εc

t)−γεd
t ]
(

1− δβ̃o
t−1

1− δβ̃o
t

)

Since both βh
t , β

l
t are greater than the respective last period beliefs, Pt > Pt−1 no matter

the identity of the most optimistic agent in the the previous period β̃o
t−1. At t + 1, ek

t > 0
∀k, investors revise their beliefs upwards and asset price continues to increase. In the
aftermath, βh

t+s > βl
t+s for all s ≥ 1, equilibrium is pinned down by λ∗

t+s = maxi λ
i, and

realized price growth is greater than one, increasing and exceeds subjective expectations
ek

t−s > 0. Hence, a boom dynamics is in place in which future expectations and asset price
continues to increase, and the most optimistic agent is the one who has more inexperiend
friends.

Due to its greater reactivenes, H-type will be the ones firstly disappointed by price
realizations. As the PD ratio gets closer to its maximum value, equilibrium price growth
increase will fail to fulfill βh

t magnitude. At this point, H-expectation is bigger than re-
alized price growth which means they start revising beliefs downwards. Consequently,
price decreases and its drop is high enough to also make L-agents to revise their belief
downwards.14 A bust episode is in motion then.

The resulting price behavior is similar to what Adam et al. (2016) study but price
realizations themselves differ since now communication is crucial for price setting and
both types influence equilibrium. Nonetheless, the main mechanism behind the evolution
of subjective risk-adjuted price growth beliefs is the same15 As they show, the individual
learning problem (2.21)-(2.26) results in beliefs βh

t , β
l
t to stochastically oscilate the RE

value and their upper bound βU cannot be an absorbing point. This renders a momentum
and mean-reversion behavior into the PD ratio. I refer to them for the details and analytical
proofs of theses results.

The main difference between booms and busts is which type dictates equilibrium price.
Booms are characterized by inexperienced agents being more influential whereas in busts
experienced agents’ beliefs are the main driving source. These episodes impart a high

14This follows from Assumption 5
15This follows because both model, ours and Adam et al. (2016)’s, share pratically the same individual

learning scheme (2.21)-(2.26).
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volatily of the PD ratio, in line with standard asset price evidences that motivate this paper.

2.6.3 Recovery Periods

In the periods between booms and busts events and in asbecence of further distur-
bances, stock price return to its mean deterministic value and oscilate much less around it.
These recovery periods are marked by higher difference in private beliefs βh

t , β
l
t such that

βl
t > βh

t .

To see why that’s the case, consider the bust following a boom. Stock price is con-
tinuosly decreasing and both types are revising beliefs downwards. H-type changes
belief more aggresively and so βh

t is smaller than L-type beliefs. Even when price start
to increase again this continues to be true because of how further down inexperienced
investors have pushed their expectations. It takes some periods of underpredictions - that
is, ek

t > 0 k = h, l - for βh
t to catch up with βl

t.16 When that happens, the optimistic behavior
of investors has lead to such increase in asset price that a boom phase is in motion again.

The described stock price behavior implies that the speculative behavior of investors is
an important mechanism behind it. The expectation of more speculative investors (here
the H-type) influence others in the market and leads to a more rapidly increase/decrease
in asset price, since beliefs are mutually reinforcing each other and realized price growth.
Communication then results in they sharing similar expectations in booms/busts episodes.
When asset price returns to its mean behavior, beliefs differ more and the experienced
investors (L-type) are more influential in determining equilibrium price.

2.6.4 Duration of Booms and Busts

During a boom or a bust λ∗
t remains unchanged.17 Let λ∗

t = λ∗
t−1 ≡ λ∗ The effect of the

social variable on risk-adjusted price growth is:

∂
(

Ct

Ct−1

)−γ
Pt

Pt−1

∂λ∗ = δa1−γρt

[
(βh

t − βl
t)(1− β̃o

t−1)− (βh
t−1 − βl

t−1)(1− β̃o
t )

(1− β̃o
t )2

]
(2.35)

The above is positive whenever asset price and agents’ expectations are increasing.,
and negative in the opposite case. During a boom phase, when price keeps getting bigger,
a higher λ∗ results in a higher realized price growth. Consequently, price grows faster the

16Proof in Appendix B.3
17See equation 27. Booms are characterize by βh > βl

t and so λ∗
t = maxi λi for all in its duration. The

reverse holds for a bust:βh < βl
t and so λ∗

t = mini λi
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higher is λ∗ and the duration of the boom is smaller. In a bust episode the same result
holds but a higher λ∗ implies a lower realized price growth which implies price falls faster
and the bust duration is also smaller.

Agents’ social network is determinant of the duration of booms and busts. The greater
the change in equilibrium belief between two periods the more intense (smaller duration)
will be a boom episode since price growth realizations will be greater, and, consequently,
the PD ratio function will get closer to its maximum quicker. Intuitively, when agents are
heavily influenced by their more speculative friends - that is, when λi are relatively big -
they incorporate more of the latter expectations into their end-of-periods beliefs β̃i.

These results also imply that the magnitude of boom/busts, that is the volatility and
maximum value of realized PD ratio, are also influenced by λ∗. A social network that results
in a higher maxi λ

i when price is increasing will have shorter boom and bust durations,
greater PD ratio volatility and higher PD ratio maximum.

Finally, the change in equilibrium beliefs ∆β̃o
t is also a function of the communication

varible. During a boom or bust episode,it holds that

∂∆β̃o
t

∂λ∗
t

= (βh
t − βh

t−1)− (βh
t − βl

t−1)

> 0 if ek
t > 0

< 0 ek
t < 0if

(2.36)

Hence, during a boom (bust) equilibrium belief change is is greater (smaller) the bigger
is λ∗

t , and consequently the higher is realized PD ratio.

Keep in mind that λi gives how agents are proportionally connected to inexperienced
investors and λ∗

t is simple the maximum or minimum λi depending whether price is
increasing or not. A higher λi means that an agent has relatively more H-friends. Since in
booms episodes H-type private belief βh is always higher than the L-type one, a higher
λi (and consequently λ∗

t ) results in a higher weight to those greater belief βh
t and so

equilibrium price will be greater. However, if λ∗
t is relatively small, a greater weight in

equilibrium price is given to the smaller belief βl
t and that’s why realized PD ratio will be

comparatively smaller. The same reverse reasoning holds for when price growth is below
one.

2.7 Equilibrium and Network Topology
As discussed above, agents’ degree and the network strucure are determinant of

equilibrium prices and the characterization of booms and busts. To study price dynamics, I
need to know for any agent at any point of time his type-belief βi,k

t and his social structure
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λi. To know λi, all agents’ type ik ∀i ∈ N , their neighboors and these later identities jk ∈ Ni

must be known. Therefore define the state of each agent as xi = (ik, Dh
i , D

l
i) where i’s

degree is Di = Dih +Dil. Let the total degree of i be the actual number of friends of he has,
D̄i = Di − 1. Given individual states I can infer the stock market equilibrium outcome and
price behavior. A natural outcome of our model is then an algorithm to compute agents’
set of final beliefs and asset price outcomes (risk-adjusted price growth, price-dividend
ratio, stock return) for a given parametrization.

Next I present some simple examples of network graphs and how much information
about asset price behavior I can get out of their structure.

2.7.1 Some Useful Examples

Consider four different networks structures: a tree, a complete network, a star and
a circle. Apart from this, the economy is exactly the same in all of them, namely, equal
shares of H and L agents.

Graphicaly, H nodes are colored in red and L nodes in blue. I report network mean
degree, individual state, nodes’ communication variable λi and equilibrium belief equation
β̃o

t .

Tree

1 2 3 4

E(di) = 3
2

x1 = (H, 1, 1), x2 = (L, 1, 3), x3 = (L, 0, 3), x4 = (L, 0, 3)

λ1 = 1
2 , λ2 = 1

3 , λ3 = 0, λ4 = 0

et−1

> 0 λ∗
t = λ1 → β̃o

t = β̃1
t = βh

t +βl
t

2

< 0 λ∗
t = λ3 = λ4 → β̃o

t = β̃3
t = β̃4

t = βl
t

In a tree network, there is always two agents with just one link (those at the end
poitns) and all the reamining nodes have total degree equal to 2. This is a network
with a few connections. In general, for any network size N and any social structure
(types and neighboords), there will be only three possible values for end-point nodes’
weights λi = {0, 1/2, 1}, also three possible λi for nodes with degree 2: for H-type nodes
λi = {1/3, 2/3, 1} and for for L-type nodes λi = {0, 1/3, 2/3}. Hence end-of-period beliefs
β̃i

t do not vary greatly across agents.

In the above example, equilibrium price is given either by agent 1 - when asset price is
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increasing - or by agent 4 - for decreasing price.

Circle

1 2

3 4

E(di) = 2

x1 = (H, 1, 2), x2 = (L, 1, 2), x3 = (L, 1, 2), x4 = (L, 0, 3)

λ1 = 1
3 , λ2 = 1

3 , λ3 = 1
3 , λ4 = 0

et−1

> 0 λ∗
t = λ1 = λ2 = λ3 → β̃o

t = β̃1
t = β̃2

t = β̃3
t = βh

t +2βl
t

3

< 0 λ∗
t = λ4 → β̃o

t = β̃4
t = βl

t

In a circle network, all agents have the same total degree of order 2 and this is also a
network with a few connections. The set of values of λi is limited regarless the size of the
network: for H-type nodes λi = {1/3, 2/3, 1} and for for L-type nodes λi = {0, 1/3, 2/3}.
Hence end-of-period beliefs β̃i

t not dot vary greatly across agents.

In the example, it is clear that most agents sharethe same communication structure λi,
regardless of their types.

Complete

1 2

3 4

E(di) = 3

x1 = (H, 1, 3), x2 = (L, 1, 3), x3 = (L, 1, 3), x4 = (L, 1, 3)

λ1 = 1
4 , λ2 = 1

4 , λ3 = 1
4 , λ4 = 1

4
λ = λ1 = λ2 = λ3 = λ4

λ∗
t = λ→ β̃o

t = β̃t = βh
t + 3βl

t

4 ∀et−1, t

The complete graph is characterized by all agents beign connected to one another.
Because of this, they share the same degree of order N − 1. In fact, λi is the same
across agents and periods. Hence there is just one possible constant value for equilibrium
weight regardless of price behavior. This implies that end-of-period beliefs β̃i

t are the same
for all investors and I can think of this as a case of an representative agent with belief
characterized by λ∗.

The graph above illustrates the aforementioned characteristics: the degree of all nodes
is 3 and λ∗ = 1/4.
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Star

1

2

3

4

E(di) = 3
2

x1 = (H, 1, 1), x2 = (L, 1, 3), x3 = (L, 0, 2), x4 = (L, 0, 3)

λ1 = 1
2 , λ2 = 1

4 , λ3 = 0, λ4 = 0

et−1

> 0 λ∗
t = λ1 → β̃o

t = β̃1
t = βh

t +βl
t

2

< 0 λ∗
t = λ3 = λ4 → β̃o

t = β̃3
t = β̃4

t = βl
t

In a star network, all nodes have just one link except for the center which has a total
degree of (N−1). Thus, there are infinitely many possible λ∗

t realizations since the center’s
weight will depend on the size and structure of the network. For the end-nodes, there are
just three possible values for λi = {0, 1/2, 1} and depending on the center’s type this set of
values actually gets smaller: if the center is of H-type, λi = {1/2, 1} and if it is of L-type
λi = {0, 1/2}. Even though the center has the most connections, it will never be the unique
optimistic agent: eitheir its λi is not a maximum/minimum or it is equal to at least another
node’s λi.

The example shows that since the center is an experienced agent, equilibrium is always
given by the low-degree (equal to 1) nodes: when price is increasing, λ∗ is from agent 1 ,
and when price is decreasing λ∗ is given by agents 3 and 4.

2.7.2 On a Generic Network

Comparing events of a continuum increase and decrease of stock market price under
the networks examplified above enable us to draw some conclusion of price dynamics
as a function of the network structure.18 For a given proportion of H and L agents in the
economy, a more connected network results in lower disagreement - the dispersion of
end-of-period beliefs β̃i

t across agents - and lower PD ratio volatility. In turn, in such social
structure boom and bust episodes exhibits less strength - in terms of the magnitude of
price increase - and last for longer periods.

That’s because high connectivity increases the probability of different types sharing
more linkages. Also, agents’ types are less relevant the higher the mean degree. In the

18Refer to appendix B.4 for a detailed comparison of these examples.
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limit of a fully connected network, equilibrium communication weight λ∗
t is constant and the

same across agents. Equilibrium price is then determined solely by the proportion of H
and L nodes in the economy.

The following proposition summarizes this discussion.

Proposition 12. Consider a network (G,N) with Nh inexperienced investors and Nl

experienced ones. Denote the individual degree of a type k = {h, l} node as Dik. The
following are true:

• in the case G is fully connected, λi = λ∗
t = Nh

N
for all periods t, and all agents

regardless of their type.

• If E(Dih) > Nh − 1, then Prob(λ∗
t = 1) = 0. On the other hand, if E(Dih) ≤ Nh − 1,

then Prob(λ∗
t = 1) = 1

(Nh−1)Nl
.

• if E(Dil) > Nl − 1, then Prob(λ∗
t = 0) = 1. On the other hand, if E(Dil) ≤ Nl − 1,

then Prob(λ∗
t = 0) = 1

(Nl−1)Nh
.

• as long as Dik > Nk − 1, λi 6= {0, 1} ∀i ∈ N . Moreover, λih ∈ [ 1
Nh
, 1) and λil ∈ (0, 1

Nh
].

As long as there are no agent only connect with others of its type, λi 6= {0, 1} ∀i and
so high network connectivity results in lower equilibrium weight λ∗

t at any period such that
λ∗

t ∈ {0, 1}. In such case, investors of different types are more connected and thus share
more beliefs. This is captured by weighting beliefs similarly, that is a low λi.

2.8 Simulation
To evaluate the quantitative potential of the model on replicating the relevant empirical

asset price features, I simulate the model for different network structures.

I follow the calibration (see Table 2.1) and numerical algorithm of Adam et al. (2016).19

I also take advantage of their data sources to evalute the match of empirical findings (Table
2.2) and the model outcomes.

parameter δ γ a sd sc ρc,d βRE PDmax gh gl

value 1.0 5 1.001 0.0245 sd

7 0.02 0.9961 500 0.0091 0.0061

Table 2.1: Simulation Calibration
For types’ gain, I consider a 20% variation of the gain used in AMN.

19Details on the simulation algorithm can be found in Appendix B.5
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Fact Data
PD ratio Mean 123.91

PD ratio Variance 62.43
Stock return 2.25

Stock return Std. Dev 11.44
Bond return 0.15

Risk Premium 2.10
Dividend Growth Mean 0.41

Dividend Growth Std. Dev. 2.88

Table 2.2: U.S. Asset Pricing Facts, 1927:2 to 2012:2
Source: Adam et al. (2016)

I consider seven types of network structures by varying the social variable λi, given
the assumption that all social connections are known by the econometritian. Since I
know that only the maximum and minimum λi matter for pinning down equilibrium, it is
enough to impose two values for λi to analyze stock market behavior. Table 2.3 reports
the quantitative outcomes. The thinking exercise is to imagine the same economy - as
described in the previous sections - with many individuals who can be rewired differently.
The set of possible connections is captured by λ’s values, so in a sense λ is a parameter
and choosing its possible values means taking a stand on how the social connections look
like. Throughout all the simulations, the economy is exactly the same - equal exogenous
shocks, individual gains and aggregate proportion of types - the only parameter changing
is λ.

Firstly, figures 2.1, 2.2 and 2.3 show realizations of time-series outcomes of our
variables of interest generated from simulating the calibrated model specification of λ∗

t =
{1

2 , 1}. I display the evolution of the PD ratio, realized price growth, types’ risk-adjusted
price growth beliefs, equilbrium weight and belief. The simulated time series for the PD
ratio reproduce booms and busts similar those I observe in the data, reported by Adam
et al. (2016) and Adam et al. (2017) for example. Figure 2.1 display the fact that, even
though dividend follow an stochastic process, its growth rate oscilates around its mean
value of one which means a constant dividend growth process.20 Comparing equilibrium
belief and dividend fluctuations I see that the one responsible for the boom and busts are
the former: time series of β̃o

t and PDt move together.

Figure 2.2 displays some characteristics of the dynamics of our model: inexperienced
agents are more reactive and have more volatile beliefs; and outside of booms and
busts episodes the L-type agents is more optimistic. By looking at Figure 2.3 I see that

20This is clear by looking at the model dividend growth process speficiation (2.1)
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experienced investors are the most influencial across the simulated periods. H-type beliefs
matter the most for equilibrium under boom and busts. I do not report individual end-of-
period beliefs β̃i

t but it is known they are bounded by βh
t and βl

t, and so they would be
graphically located in between these time series in Figure 2.2.

Figure 2.1: PD Ratio Volatility Sources
Figure compares model resulting processes for PD ratio, dividend growth and equilibrium belief under the specification of λ = { 1

2 , 1}.
All x-axis are time periods in quarters.

Figure 2.2: Simulation Outcome
Figure shows model resulting processes for types and equiblrium beliefs, types’ forecasting errors, PD ratio and realized risk-adjusted
price growth (in this order) under the specification ofλ = { 1

2 , 1}. All x-axis are time periods in quarters.

The second exercise is to compare outcomes under different networks. The first four
rows of Table 2.3 picture scenarios in which λ∗ oscilates between two values and the

72



Figure 2.3: PD Ratio vs. Equilibrium Social Variable λ∗
t

Figure pictures the equilbrium λ∗
t at each PD ratio realization under the specification of λ = { 1

2 , 1}. The x-axis is time periods in
quarters.

highest (lowest) one holds when price is continously increasing (decreasing). For example,
λ = {1

2 , 1} implies that β̃o
t = βh

t if βh
t > βl

t, that is during a boom, and β̃o
t = βh

t +βl
t

2 if βh
t < βl

t,
that is, during the bust. Consider first the cases where λ varies. Not surprisinly, the social
structure exhibiting greater PD ratio volatility is the one assigning higher weight to βh at
any period (first and fourth rows). These same specifications delievers a lower PD ratio
mean. Booms have shorter duration and recovery periods are greater for higher values of
λ.

For the cases when λ is constant, PD ratio volatily increases significantly compared to
the cases discussed above. Interestingly, the PD ratio is most volatile when both agent’s
types equally influece asset price and booms last the longest.

λ PDt rs
t rs

t − rb boom recovery
{1

2 , 1} 117.8340 (78.6245) 1.0161(0.1469) 1.0133 (0.1397) 3.7500 46.125
{0, 1} 132.9476 (70.4948) 1.0109 (0.1166) 1.0081 (0.1075) 4.7143 52.4286
{0, 1

2} 140.0370 (73.9671) 1.0104 (0.1121) 1.0075 (0.1025) 5 44.8750
{1

4 ,
2
3} 130.8282 (79.7531) 1.0126 (0.1236) 1.0098 (0.1150) 5 44.7500

0 139.0173 (73.5757) 1.0105 (0.1115) 1.0077 (0.1019) 5.1250 45.1250
1
2 125.1482 (85.4103) 1.0147 (0.1337) 1.0119 ( 0.1258) 5.5000 44.2500
1 106.4490 (82.6147) 1.0205 ( 0.1540) 1.0176 (0.1471) 4 45.7500

Table 2.3: Simulation Results
Risk-free interest rate is rb

t = 0.0048 under all specifications. The implied dividend process have a mean dividend growth of 1.0012 and
standard deviation of (0.0262). In brackets are the standard deviations of each varible. Boom and recovery variables are measured in
quarters.
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Comparing stock return across the different social structures I see that the major
difference concerns its volatility. More volatile return coincides with more volatile PD ratio.
There seems to be no evidence of neither higher PD ratio mean nor higher PD ratio volatility
resulting in higher asset return. The resulting excess volatility of stock returns, defined as
the much higher volatility of rs

t compared to dividend growth volatility, matches the data.
The equity premium outcome varies little across specifications and it is about half of its
empirical mean value.

These results can be counterintuitive since one could expect that the more influential
are inexperienced investors, what leads to a more volatile stock market, would require a
higher equity premium to compensate for a higher risk. In fact, Barberis et al. (2015) find
that, in a different framework where agents know the price process, the equity premium
rises as the fraction of agents with more volatile beliefs about future asset price changes
in the economy goes up. Under the baseline model of Adam et al. (2016), they are able
to reproduce the empirical risk premium only at a sufficiently high level of risk aversion
(γ = 80).21Thus, contrasting our result to the aforementioned ones suggests that a better
understading of what are the roots of such observed high risk premium in the stock market
is an important research avenue.

Notice that the dividend process in our framework has a lower mean value and variance,
compared to the process implied by the data. Also, the simulated bond return is significantly
smaller than its observed counterpart. The above suggests then the the main driving
source of stock return outcome in the model is due to PD ratio behavior.22

Overall, the specifications replicate the empirical evidence of highly volatile PD ratio
which can be found in Table 2.3. It is also in line with empirical PD ratio mean and excessive
volatility of stock returns. Accounting for the existence of different types of investors seems
to be an important feature of modeling stock market behavior.

2.9 Unkown Network Structure
The ongoing discussion has been focusing on what price dynamics would emerge for

an exougenously given network. Some might argue that having the full knowledge of the
underlying social connections of the stock market is overwhelming. Yet (partially) true,
network theory comes in hand to overcome this obstacle and it enables the study of market
outcomes when one does not know the full social structure. Instead of characterizing
all existing edges among agents, I will assume that what is known are the probabilities

21Adam et al. (2016) quantitative results can be found in the Appendix B.5
22To see this notice that I can write rs

t = 1+P Dt

P Dt−1
Dt

Dt−1
.
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of linkages between and across types. In this sense, I take a step back on the model
framework and consider a more general setup.

The main idea behind random graph models is to suppose a random process is
responsible for the formation of the links and then to randomly choose a network out of
all the possible networks with such linkages, each network having an equal probability of
being chosen. The properties of such random networks serve as a useful benchmark and
provide some insights into the properties that some social and economic networks have.

I analyze a variation of the well-known Erdos-Reny Random Graph Model (ERDdS and
R&wi (1959))23 with heterogenous links. But instead of modeling the network formation as
a purely random process, I assume it results from a strategic behavior of agents. In our
context, agents tend to be connected with those who share the same type. Hence, this
simplified version of so-called Islands-Connections Model of Jackson and Wolinsky (1996)
and our goal is to study the impact of homophily on stock market equilibrium.

Homophilly is the tendency to disproportionally stabilish connections with those having
similar traits. It has been the objective under analysis the network literature. For example,
Golub and Jackson (2012) study a model of friendship formation and the pattern of
linkages that emerges from homophily. Golub and Jackson (2012) study homophily under
the context of social learning and investage it effects on the convergence of consensus.

An Equal-Sized Two-Island Model

Under a similar framework as above, let agents be divided in two groups k = h, l

each with mass µk, such that µh + µl = 1. For simplicity, assume groups are of the same
size with µk = µ = 0.5 for all k = h, l. The network formation is such that links within a
type are more probable than links across types, and the probability of those across types
does not depend on the specifics of the types in question. An agent only distinguishes
between agents of his own type and agents of a different type same-type; and they are all
symmetric in how they do this. In a sense, other individual characteristics do not matter for
a connection to exist.

The probability that an individual of type k has an (undirected) link to an individual
of a different type k′ is given by pkk′ = pout, ∀k 6= k′ and the probability that a link is
formed with an individual of the same type is given by pkk = pin, ∀k. All links are formed
independently.

A measure of homophily is to compare the difference between same and different
23The Erdos-Reny model is the simplest random graph model in which edges are i.i.d. random varibales. All

edges are independent and are formed with the same probability p. Hence, the distribtuion of all edges is a
Binomial Bin(n, p)
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linking probabilities to the average linking probability, with a normalization of dividing by
the number of groups24:

p = pin + pout

2 (2.37)

H̃ = pin − pout

2p ∈ [0, 1] (2.38)

where pin ≥ pout If nodes only links to same-type nodes (so that pout = 0), then H̃ = 1
and if nodes do not pay attention to type when linking (pin = pout), then H̃ = 0.5.

The proportion of agents’ neighbors of a given type is then a function of network
homophily. In turn, the social variables λk, k = h, l are given by25

λh = pin

pin + pout

& λl = pout

pin + pout

(2.39)

The above can be written in terms of the homophily index H̃:

λh = 1 + H̃

2 → ∂λh

∂H̃
> 0 (2.40)

λl = 1− H̃
2 → ∂λl

∂H̃
< 0 (2.41)

As homophily increases, communication variable λk increases for the H-type and
decreases for the L-type.26 Connections are mainly within groups, agents do not share
their beliefs and the equilibrium is either determined by inexperienced investors in the case
of a boom, or by experienced one, during a bust, that is, equilibrium weight tend to its
extremum values: λ∗ → 1 if ek

t > 0 and λ∗ → 0 if ek
t < 0.

Proposition 13. For any degree of homophily and any set of private beliefs βh
t , β

l
t such

that λh ≥ λl, equilibrium belief β̃o
t is given by inexperienced investors network structure λh

whenever asset price is increasing, and by λl when price is decreasing:

β̃o
t =

λhβ
h
t + (1− λh)βl

t if Pt > Pt−1

λlβ
h
t + (1− λl)βl

t if Pt < Pt−1

(2.42)

24This homophily measure is based on the work of
25Please refer to the Appendix for the derivation,
26This is a trivial result since λh + λl must sum up to 1.
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Homophily implication for stock market outcome easily follows then: PD ratio volatity
and the frequency of boom/busts are positive related to H̃, whereas the duration of such
episodes decreases as H̃ increases. This means that economies with segregated groups
tend to exhibit a more espculative behavior in the stock market.

In fact, I can characterize asset price equilibrium behavior as a function of homophily.

Theorem 2. Consider the learning asset pricing model characterized by equations (2.1),(2.13),
(2.25), (2.26) with an unknown network structure. In the context of an equal-sized two-type
random graph network formation model, define the homophily index H̃ as the normalized
difference between same and different linking probabilities to the avarage linking probability
and let λh = 1+H̃

2 , λl = 1 − λh. For any set of linkages probabilities and any degree of
homophily, the price-dividend equilibrium equation is given by

PDt = βRE

λφt

h λ
1−φt

l βh
t + λ1−φt

h λφt

l β
l
t

∀t, βh
t , β

l
t (2.43)

where φt is an indicator variable given by φt = 1{βh
t −βl

t>0} and zero otherwise, and
βRE ≡ a1−γρ.

2.10 Concluding Remarks
This paper presents a simple asset pricing model with agents who have heterogenous

subjective expectations about risk-adjusted price growth and socially interact, by sharing
beliefs, through an exogenous given network. I show that the equilibrium asset price is a
function of agents’ beliefs and network structure. The model gives rises to boom and busts
in the price-dividend ratio and such episodes characteristics, such as the duration and PD
ratio volatility, depend on how communication among agents takes place. A key insight
highlighted by the present framework is that booms (busts) are more influenced by agents
who hold more (less) speculative beliefs.

One limitation of our study is our lack of asset pricing data apart from the U.S. stock-
market. I also do not estimate the social network and take it as pre-determined. A next
step of this research is then to estimate a network structure and apply its properties to the
model, for different stock-markets.

An interesting avenue for future research could be to endogeneize the upper bound on
agents’ beliefs that it is needed in our model to guarantee a finite equilibrium price.
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Chapter 3

Asset Pricing and Information on Social
Networks

with Victoria Vanasco

3.1 Introduction
Recent years have seen a proliferation of social media platforms (e.g. Twitter and

Reddit) and online trading platforms (eg. Robinhood and eToro) that allow investors to
connect with each other, share information about financial markets, and even copy trading
strategies. This has led to an increasing interest among academics and practitioners in
understanding how social networks affect financial markets.1 In this paper, we develop
a model to investigate how social linkages among investors interact with asymmetric
information about asset fundamentals to shape market outcomes. We propose that
investors act upon the observation of who is trading in their social network: any given
trader finds the market larger when more of his peers participate.

We build on the noisy rational expectation equilibrium (NREE) model but incorporate a
social network connecting all agents. We introduce a new concept called "social market".
A social market is the fraction of an investor’s social network that trades the asset. Or, in
other other words, an investor’s belief about the market size. Each investor uses a private
signal and his social market information to form his belief about the unknown value of the
asset. The key feature of our framework is that the network pins down the importance
1For example, the FT recently wrote in Meme mania is reshaping US markets publish that “After all, that
digital genie known as social media networks cannot be stuffed back into the bottle any time soon, in politics
or finance. The real lesson for investors is that, in finance as in politics, they need to study attention patterns
in cyber space as much as economic fundamentals to grasp where markets are moving, at least in the short
term.”
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of each information source - private signals and social linkages - on the belief updating
process and, ultimately, on asset demand decisions.

We find that investors’ social markets determine the level and precision of information
they extract from the public clearing price. The larger it is a trader’s social market, the more
informative (more precise) it is for him the public information. As a result, he places more
weight on the clearing price because he believes it is a good reflection of the true value
of the asset. Ultimately, individual demands are a deviation from the perfect information
benchmark (when market size is known). Whenever the price is above (below) the prior
expectation of the asset value, traders decrease (increase) their demand. Traders who
deviate the most are those with smaller social markets.

In equilibrium, the asset price is determined by a unique coefficient that aggregates all
traders’ social markets. This coefficient is a measure of “collective precision” and it is given
by the harmonic mean of traders’ price signal precision.2 This means that traders with
higher information precision (i.e., larger social markets) are less influential in the harmonic
mean compared to traders with lower information precision. Intuitively, this occurs because
traders with lower social markets rely more on their private signals,3 and therefore their
beliefs are more informative and carry more weight in the equilibrium price.

A trader’s "social market " is determined by two factors: his number of connections
(degree) and how many of those are also traders and participate in the market.4 That’s
because there exists “non-traders” in the social network who prevent traders to infer
perfectly the (true) market size just by looking at their peers. Non-traders capture the idea
that connections can still influence behavior even if they themselves do not actively trade.

We also explore how the equilibrium changes with the social network structure. We
find that networks that lead to a higher level of collective precision are associated with
lower price informativeness and higher price volatility. Intuitively, higher collective precision
reflects that traders rely more on the public price information and less on their heteroge-
neous private signal about asset. This makes the equilibrium price itself less informative
as it reveals to a lesser extent all the available information (i.e. private signals). This result
suggests that a trade-off emerges when considering social networks: information diversity

2The harmonic mean can be thought of as a weighted average of individual price information precisions,
where the weights are inversely proportional to the precisions.

3Traders’ private signal on asset fundamental share the same exogenous precision; only the signal values
differ.

4Specifically, in the model a finite number of agents are connected in a social network. And each agent can
be classified as either a trader or a non-trader. Only traders are willing to trade the asset and the ones
making demand decisions. Thus social connections do not necessarily reflect how the aggregate market
looks like.
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and precision. The former refers to the extent that social connections include both traders
and non-traders. The latter refers to the size of social markets.

An interesting avenue for further exploration is to understand how changes in the
degree distribution and the location of traders in the network influence market outcomes.
This is not trivial as the collective precision is non-linear in network connectivity and it
depends crucially on the location of non-traders in the network.

Literature: The traditional framework in asset pricing assumes decisions are made
in a social vacuum in which agents only account for others information indirectly through
observing equilibrium market prices or quantities. This view is being challenged by
growing empirical literature that shows the significant impact of social interactions on the
decisions of individual investors, professional investors, and firms. In his AFA Presidential
Address, Hirshleifer (2020) calls attention to a new intellectual paradigm, social economics,
and finance, which studies how social interactions can shape economic and financial
outcomes. Indeed, the recent meme stock phenomenon showcases the power of social
media platforms. These stocks have experienced rapid and dramatic price increases,
driven in part by retail investors who are influenced by social media hype and coordination.

Our paper contributes to the literature by providing a novel and simple framework to
study social interaction in the canonical noisy rational expectations (NREE) framework. The
model yields closed-form beliefs, demands, and price. Closest to our paper, is Pedersen
(2022). However, he studies a dynamic environment and focuses on how social networks
affect the dissemination of information and how this, in turn, affects market outcomes.
We instead model social network effects by simply arising from the observation of peers’
market participation. Nonetheless, our model is flexible enough to accommodate other
sources of network effects. We view this as a strength of our framework as social influence
can take many forms. For example, information and belief sharing (communication), and
conformism where investors change actions to behave as others do.

Several studies find evidence that social media can provide investment value (Chen et al.
(2014),Jame et al. (2016),Farrell et al. (2022)), whereas other work suggests that social
media may spread stale news or intensify behavioral biases (Heimer (2016), Cookson
et al. (2022a), Bali et al. (2199)). Barber et al. (2022) and Eaton et al. (2022) document
herding by Robinhood investors which are often inexperienced investors. Both studies
find herding is associated with large price movements and reversals, and liquidity. Barber
et al. (2022) also show that Robinhood investors are more likely than other retail investors
to herd into certain stocks; while Eaton et al. (2022) that the market effect of Robinhood
traders is different than traditional retail brokers Cookson et al. (2022b) measure retail
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investor disagreement using StockTwits, and they find that disagreement is associated with
greater liquidity that facilitates trading by activist investors.

Our findings highlight the important role of social networks in shaping market out-
comes and provide insights into the complex interactions between social and fundamental
(economic) factors in these markets.

3.2 The Model
There is a short-lived, risky asset in the economy paying a random (unknown) return d

at the future date. The asset is traded within a period and its supply is random and given
by n ∼ N(0, κ−1

n ).5

Investors and Preferences There are i = 1, 2, ...N risk-averse agents, each with
measure N−1. Agents maximize expected utility over end-of-period wealth6 wi = (p− d)xi

of buying xi units of the risky asset at price p. They have CARA preferences with risk-
aversion coefficient γ > 0,

u(wi) = −e−γwi (3.1)

Only a subset of agents is “interested in the asset”. We model this by assuming that
agents have types. There are two types: a “trader” T and a “non-trader” NT . The type
indicates an agent’s interest in the risky asset: if ti = tT , i is a market participant and
trades the asset, otherwise he is inactive. Individual types are exogenously determined.

Denote λT ≡ λ such that λ ≡ |i∈N :ti=tT |
N

as the proportion of type-T in the economy, and
so λNT = 1− λ. For simplicity, normalize tT = 1 and tNT = 0 so that ti = {0, 1} and

λ =
∑

i∈N ti

N
(3.2)

We are interested in the equilibrium market outcomes for the risky asset. Because of
that, we focus on the behavior of type-T agents i.e. the market participants. We refer to
them as investors and/or traders interchangeably.

Network There is a social network G that determines the connections among all agents

5For completeness, there is also a riskless asset with unitary return.
6The nonrandom initial wealth of traders is normalized to zero (this is without loss of generality with CARA
preferences).
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(regardless of their types). G is fixed, exogenous and not known. The variable gij = {0, 1}
describes network linkages between a pair i and j such that gij = 1 if i and j are connected.
Let Ni = {j 6= i : gij = 0} be i’s neighborhood (the set of all the agents he’s connected to),
and gi = |Ni| =

∑
j gij be i’s degree, i.e. the number of connections he has.

Traders do not know the market size λ. Instead, they form beliefs about the type
distribution based on their local network. We assume that:

1. Traders believe they live in a full information world, and their inference about λ is
given by a fraction of agents in their network that participate in market:

E[λ|Ni] = λi (3.3)

where

λi =
∑

j∈Ni
ti

gi

(3.4)

2. The posterior about λ is perceived to be perfectly precise.

We refer to λi as trader i’s “social market”. The network conveys information only about
how many people are trading. If gi = N ∀i (or equivalently Ni = G ∀i), then agents
effectively know the market size. Since traders are “myopic", i.e. they do not know the
entire network G, information about λ is “noisy" and heterogeneous.

Notice that the only relevant information from the other type NT -agents, who are not
trading, is captured through λ, {λi}ti=1.

Information Let prior beliefs be given by d ∼ N(µ, κ−1
d ). Before markets open, traders

(type-T agents) receive a noisy signal about asset fundamental returns (as they are
interested in it). Mathematically, for all i ∈ N

ti = 1 : si = d+ εi, εi ∼ N(0, κ−1
e )

ti = 0 : no signal
(3.5)

There is no information sharing and each trader observes only his private signal.

Information sets are individual-specific. Each trader i’s information set Ii consists of
his social network, private information, and the price (public) information of the asset:
Ii = {λi, si, p}.
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3.3 Equilibrium with Socially Myopic Traders
Traders are rational and Bayesian. They optimally decide their asset demand conditional

on all information they have. We define first the rational expectations equilibrium.

Definition A rational expectations equilibrium is a set of trades, contingent on the
information that traders have, {xi(si, λi, p)}, and a price functional p(d, n,G) such that

(i) traders i ∈ N : ti = 1 optimize given price p

xi(si, λi, p) ∈ arg maxE
[
−e−γ((p−d)·xi)

∣∣∣si, λi, p
]

(ii) market clears:

X ≡
∑

i:ti=1
xi(si, λi, p) = n

Individual demand of i is given by

xi = E[d|Ii]− p
γV [d|Ii]

(3.6)

To formulate beliefs about fundamental return d, traders use their private signal si,
social market size λi, and also public price p. The key characteristic of our environment
is that each trader extracts different information from the price, which we denote by zi.
This is because they have different beliefs about market size λ depending on their social
connections.

Specifically, we suppose that each trader i conjectures that the equilibrium price
(perceived price) is as follows:

pi = Ai +Bi · d̂i + Ci · n (3.7)

where
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d̂i ≡
1
λiN

∑
j:tj=1

sj = d+ 1
λiN

∑
j:tj=1

εj (3.8)

is the private information aggregated by i. As a result, the price signal zi(p) extracted
by i is

zi(p) ≡
p− Ai

Bi

= d̂i + Ci

Bi

n

= d+ 1
λiN

∑
j:tj=1

εj + Ci

Bi

n
(3.9)

which is distributed normally distributed with mean d and variance κ−1
zi
≡
(

1
λiκe·N +

(
Ci

Bi

)2
· 1

κn

)−1
.

Thus although p is public information, its interpretation is determined by traders’ local
networks. Traders understand the relationship between price and market size but they do
not correctly conjecture the market size per se. In turn, the equilibrium typically will not be
fully revealing.

Given the above, the return expectation and variance of trader i is

E[d|si, p] = κd · µ+ κe · si + κzi
· zi(p)

κd + κe + κzi

(3.10)

V [d|si, p] = 1
κd + κe + κzi

(3.11)

Thus i’s demand is then

xi (si, λi, zi(p)) =

κd · µ+ κe · si + κzi
· zi(p)

κd + κe + κzi

− p

γ(κd + κe + κzi
)−1

(3.12)

3.3.1 Asset Price and Optimal Demands

See section C.1 for details on solving the Model.

To solve for the equilibrium, we follow the standard approach of the method of unde-
termined coefficients. First, given her expectation and market clearing condition, i finds
coefficients {Ai, Bi, Ci} by supposing that others extract the same information from price
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as she does (i.e., that others also conjecture price is given by (3.7)). This delivers i’s
demand.

Proposition 14. Investors’ demand Equilibrium demand is

xi(si, λi, p) = κe · (si − p)−
κe · κd

κe + κzi

· (p− µ) (3.13)

where individual price signal precision7 is

κzi
= λiκe

(
1
N

+ γ2

(λiκe)κn

)−1

(3.14)

Second, to find the equilibrium price, we conjecture that the price is actually p =
A+ Bd̂+ Cn. Using market clearing condition and equilibrium demands Equation 3.13,
true coefficients {A,B,C} are determined.8 This delivers the equilibrium asset price.

Proposition 15. Asset Price

Equilibrium price is

p = 1
(κd + κh)

[
κdµ+ κhd̂− κh

γ

λκe

n
]

= 1
(κd + κh)

κdµ+ κhd+ κh

 1
λN

∑
ti

εi −
γ

λκe

n

 (3.15)

where

κh ≡
1
λN

∑
ti

1
κe + κzi

−1

(3.16)

There are two channels through which the network influences asset price: i) market
size λN ; and ii) the endogenous coefficient κh. The latter is a measure of “collective

7An equivalent way to write is κzi
= (κeλi)2

[
Nκn

(κeλi) · κn + Nγ2

]
8See the Appendix for the specific equations for coefficients {Ai, Bi, Ci} and {A, B, C}.
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precision”, and it is the harmonic mean of the individual price information precision {κzi
}i.

We denote such harmonic mean9 by10

h(G) =
∑

ti

1
κe + κzi

−1

(3.17)

and so κh = 1
λN
h(G). Importantly, the collective precision κh (i.e. the harmonic mean)

summarizes how the structure of the network affects aggregate outcomes.

The economic implication is that the traders that extract less precise information from
price are more influential on price (higher impact). When calculating the harmonic mean
of individual precisions, the reciprocal values are used as weights. Since traders with
lower individual precision have higher reciprocal values, their weights are higher in the
harmonic mean calculation. This implies that their beliefs contribute more significantly to
the collective precision measure.

As it will become clear later on, the intuition behind this is that traders with lower
individual precision rely more on their private signals when forming beliefs compared to
traders with higher individual precision. As a result, their demands are relatively more
informative and, consequently, exert a more substantial influence on the overall market.

In essence, traders with lower individual precision, despite having less precise price
information individually, play a critical role in shaping market outcomes because their
beliefs and demands have a larger impact on price discovery. Their influence in the
collective precision of the market reflects the importance of incorporating heterogeneous
information on fundamentals to capture the full range of information (private and public) in
the marketplace.

Later we show that traders with less precise information from price are exactly those
with smaller social markets (i.e. low λi).

9The harmonic mean appears from aggregation in market models and assigns higher weights to smaller
elements.

10We could have alternatively defined the harmonic mean as h(κzi
) =

[∑
ti

(κe + κzi
)−1

λN

]−1

=

λN

[∑
ti

1
κe + κzi

]−1

as h(κzi
). This definition does not alter our result as it only implies that κh would be

scaled by 1
λN , i.e. κh = 1

λ2N2 h(G)
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3.3.2 Equilibrium Benchmark

Before proceeding, it is useful to look at the equilibrium when λ is known by all agents.
That is when social networks do not matter. In this case, equilibrium price and demand are
- respectively,

pF = d̂− γ

λκe

n (3.18)

xF
i = κe

γ
(si − p) (3.19)

With perfectly informed traders, price does depend on market size λ. But demands do
not (only though prices).

Using (3.19), we can write equilibrium demand as a deviation of the perfect information
case:

(
xF

i − γxi

)
= κdκe

κe + κzi

(p− µ) (3.20)

Proposition 16. .

Social markets make traders deviate their behavior from the perfect information bench-
mark. Traders who deviate the most are those who myopically believe the asset market is
small; those with low λi (smaller social markets).

Compared to the perfect information benchmark, traders decrease (increase) their
demand whenever p > µ (p < µ).

A low λi implies that the information extracted from price is less precise, leading to a
greater change in demand compared to the case when market size is known. Traders
decrease (increase) demand when the price is above (below) the prior expectation of the
asset value.

Notice though that the result above does not depend on the true market size λ. That’s
because, at the individual level, a trader’s behavior is only directly influenced by his social
network - not the entire network structure.

3.4 Market Outcomes and the Network Structure

The network structure gives each investor “social market”, λi. Two features of the
network determine the social markets: the degree distribution {gi}i, and the type distribution
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{ti}i. Market outcomes, in turn, are influenced by the social markets distribution {λi}i.

3.4.1 Price Information

The price information extracted by each trader zi is different from the (true) public
information11 z. The difference between the (true) public signal z and the perceived one zi

is given by,

z − zi = κd

[
1
κh

− 1
(κe + κzi

)

]
(p− µ)

= κd

λN
∑

j 6=i

1
κe + κzj

+ 1
(κe + κzi

)(λN − 1)
 (p− µ)

(3.21)

where λN − 1 ≥ 0←→ λ ≥ 1
N

.12

Although both signals are normally distributed around d, they have different - but similar
- precisions. Individual price precision is κzi

= λiκe

(
1
N

+ γ2

(λiκe)κn

)−1
(3.14). But true signal

precision κz is

κz ≡ λκe

(
1
N

+ γ2

(λκe)κn

)−1

(3.22)

Thus the difference relies on how the network is accounted for. That is, whether it is
the true λ or individual λi that goes in the equation.

Inspection of the equilibrium reveals that the network plays a role only in the information
revealed and perceived by traders from price, both the level {zi}i and z and the precision
κzi
, κz. Such influence comes about through the (true) market size λ and social markets

{λi}. What, in turn, pin downs equilibrium demands and price.13 Moreover, the way the
network influences equilibrium is independent of signal realization.14

11Similar to (3.9), public information z is defined as z ≡ p−A
B . More details on zi, zp in the Appendix.

12The only case when λN − 1 < 0 is when none of the agents are traders. Obviously, this case is not
interesting as it means no market exists.

13It is also straightforward to write equilibrium price (3.15) in terms of z,

p = 1
κd + κh

(κhz + κdµ) (3.23)

14This is because we assume private information has the same precision for all agents, κεi = κεj = κε.
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3.4.2 The Role of Social Markets

Each trader is directly affected by his social market - and not by the entire network
structure. A trader’s social market λi is determined by two factors: how many friends i has,
gi, and how many of those are trading the asset, tNi

≡ ∑j∈Ni
tj.

However, gi and tNi
affect λi in opposite ways. Keeping gi fixed, the more friends i has

that are trading the asset, the higher his λi. Conversely, keeping tNi
fixed, the more friends

i has, the lower is his λi. It turns out though that the former effect dominates: increasing
both gi and tNi

leads to a higher λi. At this point, we focus on traders’ social market λi. We
discuss the role of gi, tNi

on market outcomes later on.

We find that the greater a trader’s social market (higher λi), the more precise the
information he extracts from price κzi

. This leads him to increase his demand xi whenever
realized price exceeds the expected return µ (i.e. p − µ > 0). A higher λi also delivers
lower variance in expected returns, V [d|Ii].

Proposition 17. .

- Individual price signal precision κzi
is increasing in λi

- Individual price signal zi is decreasing in λi

- If p− µ > 0, individual demand is increasing in λi. If p− µ < 0, the opposite holds.

Traders trade for two reasons. First, they speculate on their private information, buying
or selling depending on whether the price is larger or smaller than their private signal
on return. The responsiveness to private information, given by the precision of private
information κe, is independent of his social market. This is so since network connections are
not for information sharing, learning or imitation. A trader simply observes the composition
of his local network and is influenced by the extensive margin of trading, i.e. if his friends are
traders or non-traders. The second component of trade is related to their market-making
capacity with associated trading intensity given by a trader’s social market. Such trading
intensity depends negatively on the size of a trader’s social market and, consequently, on
the precision of his price signal. The larger is λi, the more precise information trader i
extracts from price and thus with less intensity he trades for market-making purposes.

Thus, traders who myopically believe in a greater social market, demand more whenever
price is greater than the expected fundamental return µ. These results may seem odd at
first. However, this increase in demand is driven by relying more on the price signal (since
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the latter is more precise, i.e. κzi
is higher) and less on the private signal. In turn, this

increase in demand pushes the price up - consistently with it being higher than µ.

Recall that social markets are encapsulated in the collective precision κh, which is
the network-dependent coefficient of the pricing equation. Traders’ social networks affect
aggregate market outcomes through the true price signal precision κh. Since κh is the
harmonic mean individual precisions {κzi

}i:ti=1, the following proposition holds.

Proposition 18. .

The smaller a trader’s social market λi, the more influential he is on the collective
precision κh.

3.4.3 Price Volatility and Informativeness

In equilibrium, the way the network influences asset price and price information is
captured by the market size λ and the harmonic mean h(G). Both also affect the volatility
of price V (p):

V (p) =
(

κh

κd + κh

)2
[

1
κd

+ 1
λκeN

+
(
γ

λκe

)2 1
κn

]
(3.24)

Notice that E(p) = µ as expected since we assume on average a zero supply of shares,
E[n] = 0.15

Proposition 19. .

Asset price is increasing in market size λ and decreasing in the collective precision κh.

For price volatility, the opposite holds. It is decreasing in λ and increasing in κh.

It also holds that the true price signal precision κz is increasing in λ.

The information content of the price can be defined as the difference between the
equilibrium price and the information extracted from it (public signal), p− z,

p− z = κd

κh

(µ− p) (3.25)

It follows then that price informativeness is positively affected by κh which in turn is
increasing in both {λi}i∈N , λ.

Proposition 20. .

15See Vives (2008) pg 120
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Price informativeness |p − z| is increasing in market size λ and decreasing in the
collective precision κh.

Thus networks that lead to a higher level of collective precision are associated with
lower price informativeness and higher price volatility. Intuitively, higher collective precision
reflects that traders rely more on the public price information and less on their heteroge-
neous private signal about asset. This makes the equilibrium price itself less informative
as it reveals to a lesser extent all the available information (i.e. private signals). This result
suggests that a trade-off emerges when considering social networks: information diversity
and precision. The former refers to the extent that social connections include both traders
and non-traders. The latter refers to the size of social markets.

3.5 Conclusion
This paper investigates the impact of social networks on financial markets by developing

a model that incorporates heterogeneous information and social linkages among traders.

In our framework, a finite number of traders look at their social connections to infer the
size of the market. We refer to this individual inference as a trader’s social market. Traders
form their beliefs about the true value of the asset based on a combination of a private
signal and his social market.

The model yields closed-form solutions for beliefs, demands, and price. A trader’s social
market influences the level and precision of information they extract from the public clearing
price, which in turn affects their demand decisions. Equilibrium asset price aggregates all
traders’ social markets - not only traders’ private information.

We find that traders with larger social markets place more weight on the clearing price
and have more accurate beliefs about the true state of the market. We also explore
how the equilibrium changes with the social network structure, finding that networks with
higher collective precision are associated with lower price informativeness and higher price
volatility and that there is a trade-off between information diversity and precision in social
networks.
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Appendix A

Chapter 1

A.1 Illustrative Example of the Main Results
Consider five traders A,B,C,D and E, and six different trading networks depicted in

Figure A.1. The networks are arranged in descending order of connectivity from left to
right, as the first row of Table A.1 shows.
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Figure A.1: Trading networks 1, 2 3, 4, 5 and 6 - respectively

Net 1 Net 2 Net 3 Net 4 Net 5 Net 6

connectivity 2.8 2.4 2 2 2 1.6

inequality 1.2 0.8 0 0.5 0.5 1.8

PM price (P ) P2 > P1 > P3 > P4 > P5 > P6

liquidity cost (PD) PD6 > PD5 > PD4 > PD3 > PD1 > PD2

welfare (EU) EU6 > EU3 > EU5 > EU4 > EU2 > EU1

Table A.1: Characteristics and equilibrium outcomes of Figure A.1.
Connectivity is the average degree and inequality degree variance.

Liquidity cost is the average difference between PM price and
local market prices. Welfare is the aggregate expected utility.
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We can first compare the structural proprieties of the trading networks - i.e. connectivity
and degree inequality - and PM price. Network 2, the second most connected one, has
the highest PM price. This reveals the non-monotonicity of PM price with respect to
connectivity (Lemma 3). PM price is the lowest on network 6, the star network, what
turns out to be the lower bound of PM price across all networks of the same size N = 5
(Proposition 2). Not depicted in fig. A.1 is the complete network, which has the highest PM
price. Indeed, as Proposition 2 shows, the complete network imposes the upper bound on
PM price level.

Comparison of networks 2 and 3 depicts that (weakly) increasing all traders’ degree
results in a higher price: every trader in network 2 is at least as connected as in network 3
(despite the former having higher degree inequality) and, consequently, P2 > P3 (Proposi-
tion 3).1 Comparison of networks 3 and 4 (and/or 5) shows that, keeping connectivity fixed,
the higher is degree inequality (network 4), the lower is PM price (Proposition 4).2 Finally,
notice that networks 4 and 5 have the same connectivity and degree inequality (degree
distribution) but different PM prices.

We’ve also seen that asset price almost always drop over time (Proposition 1). Just as
with PM price, such price dynamics is non-monotonic in connectivity and degree inequality.
Interestingly, the rank of the trading networks with respect to PM price is the reverse to
their rank with respect to price drop (3rd and 4th rows of table A.1). This means that a
higher price for acquiring asset shares does not lead to higher liquidity cost on average.

Welfare comparison offers additional insights (Section 1.7). Network 6, the star network,
delivers the highest welfare. That’s because its lowest PM price compensates its highest
liquidity cost. Network 1, the most connected one, exhibits the lowest welfare. Actually, the
complete network delivers the lowest welfare. Moreover, just as with trading centrality and
PM price, connectivity and inequality are not sufficient information to analyze welfare - for
example, look at networks 3, 4 and 5.

Lastly, we can compare traders within a network based on trading centrality and degree
(Theorem 1, Lemma 8).3 Network 2 is an example of when centrality and degree are
negatively related: d1 > d2 = d4 = d5 = d3 ↔ c1 < c2 = c4 = c5 = c3. In turn, central
dealers in network 2 have higher asset holdings and higher liquidity cost (lower re-selling

1Formally, the degree distribution of 2 FOSD the distribution of 3 and thus price in the former is greater.
2Formally, the degree distribution of network 4 is a mean-preserving spread of the degree distribution of
network 3 and thus price in the former is lower.

3Recall that (as discussed when solving for the equilibrium) the relationship between trading centrality and
degree plays an important role in shaping individual outcomes (i.e. demands and re-selling prices), although
it is non-trivial. That’s because certain network structures deliver a positive relationship between trading
centrality and degree, while other structures deliver the opposite.
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price). In the other networks of fig. A.1, central dealers are market makers - they acquire
more shares in the PM and have lower liquidity cost - because centrality and degree
are positively related. Even so, this relationship is not the same across networks. For
instance, networks 1 and 5 are the only cases when centrality is monotonically increasing
in degree..4

In sum, this example illustrates the non-trivial relationship between welfare, connectivity
and degree inequality.

A.2 Buyer and Seller Effects
At period one, traders make decisions anticipating they can be both a buyer and a

seller. However, I focus in the environment in which the seller effect is minor. This holds for
all networks of at least size four. As the network grows, the probability of being a seller
vanishes - and it does so at a higher rate than the probability of being a buyer (Figure A.2).
Because of that, traders expect to be buyers, and this is what drives their behavior in the
model - that is, why asset acquisition is postponed. The seller exists simply to create
supply at period two. Indeed, the results showcase perfectly why the model is all about
buying incentives. The highest welfare is on the network structures that exhibit the lowest
prices in expectation. And, in equilibrium, re-selling is costly but for the core trader of a
star network.

Figure A.2: Probability of being a seller φ versus being a buyer diφ as the network size N grows.
I plot φ = 1

N+1 .

In small networks (with two or three traders) the seller effect is not dominated by the
buyer effect, an equilibrium might not exists. That’s because the probability of being a
seller is just as large as being a buyer for all traders. For example, in networks depicted in

4That is, in network 1 we have d1 > d2 = d4 = d5 = d3 ↔ c1 > c2 = c4 = c5 = c3; and in network 5
d1 > d2 = d4 = d5 = d3 ↔ c1 > c2 = c4 = c5 = c3. However, in network 3, centrality is positively related to
degree, but non-monotonically: d1 > d2 = d4 = d5 > d3 ↔ c2 > c1 > c4 = c5 > c3.
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fig. A.3. With two traders these probabilities are literally the same. With three traders, they
can either be equal for all traders or be equal for most traders.

1

23

1

23 1 2

Figure A.3: Networks A, B and C (respectively) where the probability of being a seller φ and a buyer dφ are similar.

A : φ = 1
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A.3 Modelling Assumption and the Real-World Interdealer

Market
In the context of off-exchange markets, the timing of the model captures the idea that

dealers often absorb substantial inventory position in primary markets of asset issuance
or from their costumers, and then use the interdealer market to offload these positions.
Interdealer trades is how dealers provide liquidity to one another.

The re-sell shock5 is interpreted as the risk of selling under pressure or the risk of
having inventory imbalances resulting from unexpected and large customer orders. In
either scenario, a dealer is forced to raise liquidity by quickly disposing his inventory in a
possibly illiquid market (Duffie and Zhu (2017)), the interdealer market. This rationalizes
why the shocked trader must sell all his holdings. And why I do not allow for the choice
of being a seller, nor that two traders can be shocked at the same time. Such views of
the re-sell shock have been empirically documented, and it turns out that they are not
uncommon events.6

The quadratic utility function in the quantity traded7is microfounded in the mean-
variance trade-off of a trader (CAPM theory), and it is equivalent for trading behavior to

5The use of a random shock to generate trade is common both in the finance (Duffie et al. (2005), Vayanos
and Weill (2008)) and network literature (Gale and Kariv (2007), Condorelli et al. (2021)).

6See Di Maggio et al. (2017b), Balasubramaniam et al. (2020) among others.
7See, for instance, Kyle (1989) Vives (2011), Rostek and Weretka (2012), Rostek and Yoon (2020a) among
others.
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the the classic CARA-Normal setting. Apart from that, it is the standard in the literature
and it contributes to the tractability of the model. Specifically, it leads to linear equilibria
that have proved to be useful as a basis for empirical analysis and are supported in the
empirical literature on single-sided multi-unit auction - which is the main mechanism of
asset issuance in primary markets and electronic interdealer trades.8 Moreover, this utility
representations reflects the fact that dealers are risk-averse with respect to inventory (Ho
and Stoll (1983)). Because of that, they often have a desired but costly inventory position,
and they trade such to avoid large deviations from this target.

The trading network captures trading frictions that have been extensively explored in
the OTC markets literature, both theoretical and empirically. The premise is that different
traders must be sufficiently close on some dimension to be able to trade. This could be
justified by having lower trading costs, or similar clientele so that both value the asset being
issued. One possible interpretation is that linkages are due to previous investments in
relationships: traders may invest time and resources to contact other traders and to know
them better. An alternative view is that trading is costly, and linkages capture parties with
an easiness to trade. In any case, I’m agnostic on how the network linkages have aroused
and I assume it boils down to a pre-determined and fixed set of trading relationships, the
trading network.

A.4 Solving the Model

A.4.1 Pricing Mechanism

It is convenient to visualize trades, i.e. the local market stage, as involving three steps.
First, the shocked trader s ∈ N - the seller - hands over his entire holding of the asset, qs,1,
to an auctioneer. Then, the auctioneer solicits bids from all available traders9 - the buyers -
in the form of demand schedules: combinations of price and quantity. A typical buyer i’s
trading strategy, as a function of the equilibrium seller’s price and and his own pre-trading
position, is the quantity that is awarded to him by the auctioneer. The equilibrium single
price of the seller, Ps, is determined by equating demand and supply. After the auctioneer
collects payment from all buyers, the total proceeds are returned to the seller and are his
to keep. Note that, when the active local market closes, the seller’s holding is zero while a
buyer’s total position is qi,1 + qi,s. In other words, the seller exits the market while buyers

8For example, Hortacsu (2199), using data from Turkish Treasury auctions, shows that linear demands fit
actual bidding behavior quite closely

9This means that the seller is inactive at the local market stage. Later in the Appendix I consider allowing the
seller to choose his supply as well.
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increase their asset holdings.

The assumption of a unique active local market ensures there is a single equilibrium
price at period two, even though multiple prices are ex-ante possible. This is a distinct
feature of the dealership market nowadays which are conducted through an inter-trader
broker. The brokerage system guarantees anonymity and that a transaction takes place at
a single price among those participating in it.

A.4.2 Optimal Demand Decisions

At t = 1, trader i submits demand schedule qi,1(·) considering the probability of future
local markets he could participate. His optimization problem is

max
qi,1(·):RN →R

φ {w + qi,1 (Pi − P1)}+ φ
∑

s∈Ni

{
(qi,1 + qi,s)−

1
2 (qi,1 + qi,s)2 + w − (P1qi,1 + Psqi,s)

}

+ (1− φ(di + 1)) ·
{
qi,1 −

1
2q

2
i,1 + w − P1qi,1

}
(A.1)

The first component of (A.1) is the what i gets when she is the seller in the local market.
The second term accounts for every possible payoff i gets from trading as a buyer with
each of her network-implied sellers. The last term is the payoff of just trading in the primary
market, when i is not shocked nor connected to the shocked agent.

All traders face the same idiosyncratic shock φ and so they all have the same probability
of being a seller. However, the likelihood of being a buyer is determined by how many
connections i has. The network also dictates trader i’s willingness to trade at t = 2, since
buying in the PM brings i’s closer to his target portifolio. Because of that, the choice of qi,1

affects and is affected by local market demands {qi,s}i∪s∈Ni
and prices {Ps}i∪s∈Ni

.

The first order condition of (A.1) is

φ ·
{
Pi − P1 + qi,1

∂Pi

∂qi,1

}

+ φ ·
∑

s∈Ni

{
1 + 1∂qi,s

∂qi,1
− (qi,1 + qi,s)

(
1− ∂qi,s

∂qi,1

)
− P1 − Ps

∂qi,s

∂qi,1
− qi,s

∂Ps

∂qi,1

}

+ (1− φ(di + 1)) · {1− qi,1 − P1} = 0

(A.2)

At t = 2, both the PM and the re-sell shock have realized. The seller identity s ∈ N
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is common knowledge and, by assumption, he does not make any decision in the local
market: he supplies all his PM shares, qs,1 ≤ Q. Each buyer i ∈ Ns chooses how many
shares to buy from the seller s, qi,s, taking into account his PM holdings:

max
qi,s(·):R→R

(qi,1 + qi,s)−
1
2 (qi,1 + qi,s)2 + w − (P1qi,1 + Psqi,s) (A.3)

Notice that (w− P1qi,1) is the capital available to invest after trading at t = 1. First-order
condition delivers buyer i’s demand schedule for seller s ∈ Ni:

qi,s(Ps; q) = (1− qi,1)− Ps (1.6)

Buyer i’s downward-slopping demand qi,s does not directly depend on the network, and
it is negatively related to his PM holdings. That’s because a buyer’s willingness pay for qs

(i.e. his marginal utility from trading with the seller) is given only by how far he is from the
target inventory, (1− qi,1) (See section 1.3 ). The higher is qi,1, the more satisfied i is with
his current amount of asset shares and so he will be less willing to trade with the seller for
any possible price.

Demand (1.6) confirms that the local market is perfectly competitive with heterogeneous
valuations: buyers’ demands differ only by their asset holdings coming into t = 2.10 As so,
the local market can be interpreted as a static Walrasian market with heterogeneous asset
endowment.

A.4.3 Active Local Market

The immediate corollary of Proposition regards positive price.

Corollary 20.1. Seller’s Price and Excess Demand

Any seller s ∈ N has positive equilibrium price if and only if there exists an excessive
average demand in his neighborhood:

Ps > 0↔
∑

i∈Ns

(1− qi,1)
ds

>
qs,1

ds

In principle, Ps could be negative. To ensure weakly positive prices Ps ≥ 0, there must
be an excessive average demand in the seller’s neighborhood, i.e the neighborhood’s
valuation of the asset is greater than the supply :

∑
i∈Ns

(1−qi,1)
ds

≥ qs,1
ds

. This constraint
ensures that buyers are willing to trade with the seller since their asset holdings at t = 2,
10Two different buyers demand the same amount if and only if their first-period demand are them same.
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{qi,1}i∈Ns , are low enough. To secure their optimal inventory - that is, to reduce 1−(qi,1+qi,s)
- a buyer’s demand schedule is positive at the seller’s equilibrium price.

From pricing equation (1.7) we can draw three conclusions. First, P ∗
s is determined by

the total average PM asset holdings, including the selling quantity. Equivalently, seller’s
price is given by the difference between the average of target inventories of his buyers and
his per-link supply: Ps = 1

ds

∑
i∈Ns

(1− qi,1)− 1
ds
qs,1. Second, seller’s price is constrained by

the buyers’ total amount of PM shares: P ∗
s ∈ [(1− qs,1)− qmax

Ns,1, (1− qs,1)− qmin
Ns,1], where qmax

Ns,1

is the highest first-period consumption of a buyer and qmin
Ns,1 is the lowest PM consumption

of a buyer. Thus, the more heterogeneous buyers’ asset holdings, the wider the range of
possible prices for a given seller s. Finally, two cases can make Ps to be zero (negative): if
buyers have high too much bond holdings (i.e., too high PM demand); and if the supply is
much greater than seller’s aggregate demand (i.e. excessive supply is large enough). In
both cases, Ps has to be low enough to induce buyers to demand from the seller.

A.5 The Trading Network Game
It turns out that the model is in essence a network game of strategic substitute. This

is the key insight of this paper as it allows the equilibrium characterization in the Primary
and all Local markets. Moreover, the game belongs to a particular class of games:
those with quadratic payoff function and linear best replies. The networks literature has
extensively studied this type of games.11 In this Appendix section, I derive in details the
characterization of the game as a result of the model and prove the equilibrium outcomes. I
start by describing the model as a network game, comprised of the degree distribution and
each agent’s action and payoffs. I then discuss the equilibrium concept, Nash Equilibrium,
and provide equilibrium results for the game.

A.5.1 Actions, Links and Payoffs

Traders i = {1, 2, ..., N} simultaneously choose actions: each trader i chooses his PM
demand qi,1 ≥ 0. Traders are embedded in the fixed Trading Network represented by the
matrix G ∈ {0, 1}N×N with gij = 1 implying a link between agents i, j.

Each trader’s payoff is a function of own action, qi,1, others’ actions, q−i,1, the network
G, and the shock parameter φ ∈ (0, 1

N
):

πi

(
qi,1, q−i,1;G, φ

)
= w + (1− P1) · qi,1 −

1
2vi(φ)q

2
i,1 − φ

∑
j

g̃ijqj,1qi,1 + φ
∑

j

ḡijqj,1 (1.9)

11See Bramoullé et al. (2014) and Galeotti et al. (2010).
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where

vi(φ) ≡
[

2φ
di

+ 1− φ(di + 1) + φ
∑

j

gij ·
(2dj − 1)

d2
j

]−1

(1.11)

g̃ij = gij ·
[

1
di

+ (dj − 1)
d2

j

]
+

∑
z 6=j

z

gizgjz
(dz − 1)
d2

z

 (1.12)

ḡij = gij ·
1

2d2
j

+
∑

z 6={i,j}
gizgjz ·

1
d2

z

(A.4)

The endogenous coefficients {vi(φ), g̃ij, ḡij}∀i,j∈N , all non-negative, are determined by
network graph G such that

∂g̃ij

∂di

≤ 0, ∂ḡij

∂di

= 0

∂g̃ij

∂dj

≤ 0, ∂ḡij

∂dj

≤ 0 for dj ≥ 2

∂g̃ij

∂dz

≤ 0, ∂ḡij

∂dz

≤ 0 for dz ≥ 2, z 6= {i, j} : giz = gjz = 1

Individual payoff function (1.9) is strictly concave in own-action ∂2π
∂2q2

i,1
= (2vi(φ))−1 > 0

for all i ∈ N . The re-sell shock probability φ > 0 regulates the global interaction effect
among agents. As φ increases, the payoff externalities of agents’ action become globally
stronger. That’s because, the higher φ, the greater is the chance of being both a buyer and
a seller in the local market. And so, the greater is the feedback effect between markets.

The term multiplying individual action qi,1, (1 − P1) ≥ 0 is common across all agents
and represents an agent’s optimal action absent network interactions. That is, (1 − P1)
corresponds to the individual demand in a competitive market of size N , when future
trading does not opportunity exists.

The individual network effect vi(φ) is increasing in both i and his connections’ degree,
di, {dj}j∈Ni

. The higher di, the higher is i’s selling price and thus the more he consumes in
the PM. The higher dj, the higher the prices i will face in a local market, thus also inducing
more demand in the PM.

The global network coefficients g̃ij ≥ 0 captures bilateral influences. Traders’ actions
are strategic substitutes since ∂2πi

∂qi,1∂qj,1
= −g̃ij ≤ 0.

The individual payoff equation (1.9) is exactly the individual expected utility (1.5) in
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the baseline model. Hence, payoff maximization is equivalent to trader’s expected utility
maximization problem.

A.5.2 Best Replies and Nash Equilibrium

The solution concept considered is pure-strategy Nash Equilibrium. Bramoullé et al.
(2014) and Bramoullé and Kranton (2016) give the conditions that guarantee a unique
interior equilibrium of a quadratic-linear network game of strategic substitutes. As I show,
such conditions are met in the model and thus market outcomes are unique and interior.

Given the quadratic linear payoff function (1.9), an interior Nash equilibrium in pure-
strategies q∗

i,1 > 0 is such that ∂πi/∂ai(a∗) = 0 and q∗
i,1 > 0 for all i ∈ N .

Lemma 6. For a given price level P1, each trader i’s best-response to others’ demands is
given by the first order condition of (1.9):

qi,1(q−i,1;P1, φ,G) = max
0, vi(φ)

(1− P1)− φ
∑

j

g̃ijqj,1

 (1.10)

Optimal demand qi,1(q−i,1;P1, φ,G) is linear in others’ demands and qi,1(q1) ∈ [0, 1−P1]
Define the following matrices: V is the N -diagonal matrix with entries {vi}i; G̃ is te
N -square, not symmetric matrix with entries {g̃ij}i,j; 1N is the N -vector of ones.

The existence of a unique interior equilibrium for each game is guaranteed as long as
the shock probability φ is no greater than 1/N .

Proposition 21. Primary Market Equilibrium Demand

Denote V G̃S the symmetric part of the N -square matrix V G̃. For each price P1, a
unique and interior Nash equilibrium exists if and only if φ < −1/λmin

(
V G̃S

)
. Then, the

vector of optimal PM demands q1 is

q1 = (1− P1)
(
I + φV G̃

)−1
V 1 (A.5)

Traders’ demands q1 is a linear function of the weighted adjacency matrix of global
network effects G̃ and the vector of individual effects v.

The equilibrium PM price is determined by the market clearing condition (1.3). It is
a particular Nash Equilibrium of the set of equilibria characterized by (1.10) such that
aggregate demand meets exogenous asset supply Q̄. Thus, equilibrium PM price follows
directly from Proposition 21.
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Theorem 3. Assume conditions of Proposition 21 hold. Then, given asset supply Q̄ > 0,
the unique and positive equilibrium primary market price is

P ∗
1 = 1− Q̄

(
v′
((

I + φV G̃
)−1

)′
1N

)−1
(A.6)

where v′
((

I + φV G̃
)−1

)′
1N is a strictly positive scalar.

As argued, the crucial demand decision is the primary market one and it allows us to
determine i) traders’ inventory at the end of period 2; ii) the PM (issuance) price of the
bond, and so the cost of credit for the issuer; iii) all possible market outcomes in the local
market.This last point is a corollary of Theorem 3.

Corollary 21.1. Secondary Market Outcomes

If conditions of Theorem 3 hold, equilibrium outcomes in the secondary market are
determined by the network graph G, the shock φ and issuer’s asset supply Q̄. They are
characterized by the price vector (pd)N×1 and square matrix of demands QN×N :

pd = 1N −D−1
(
G + I

)
q∗
1 (A.7)

Qd = diag

(
1N − q∗

1

)
G−Gdiag

(
pd

)
(A.8)

where D = diag
(
d
)

is the diagonal matrix of individual degrees

The demand matrix Qd gives the amount of asset shares traded between two agents
at each possible market in period 2: rows indicate the buyer and columns the seller. For
example, [Qd]ij = qi,j is agent i’s demand when j is the seller. Clearly, if i and j don’t share
a connection then qi,j = 0. Qd has a zero-diagonal as it does not include asset supply.

A.6 Trading Centrality
Two crucial features sets my trading centrality measure apart from the typical graph-

theoretic measures of network centrality that are not suitable for the model. First, it
captures not only first and higher-order inter-connectivity (friends, friends of friends, etc..)
but also it encodes how such connections interact in local markets (as buyers, sellers, and
competitors). Second, the relationship between centrality and individual degree depends
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on the structure of the trading network. Some networks - like symmetric and core-periphery
graphs, and lines - have trading centrality increasing in individual degree. For arbitrary
networks the reverse can hold. For example, if the network exhibits high-degree nodes
connected to one another, than low-degree traders are the central ones.

Definition 4. Trading centrality is N -dimensional vector c defined as12

c (G, φ) =
(
V (G, φ) + φG̃(G)

)−1
1N (1.20)

where V (G, φ) is the N -diagonal matrix with entries {1/vi}i; G̃(G) is the N -square,
not symmetric matrix with entries {g̃ij}i,j; and 1N is the N -vector of ones.

Equivalently, trader i’s trading centrality ci is

ci(G, φ) = vi

(1− φ
∑

j

g̃ij · cj(G, φ)
 (1.14)

Trading centrality fixed point representation (1.20) and recursive representation (1.14)
are related as follows:

c =
(
V + φG̃

)−1
1N =

(
I + φV G̃

)−1
V 1N

or

c = V 1N − φV G̃c

= V 1N − φV G̃
(
V 1N − φV G̃c

)
= V 1N − φV G̃V 1N + φ2

(
V G̃

)2
c

= V 1N − φV G̃V 1N + φ2
(
V G̃

)2 (
V 1N − φV G̃c

)
= V 1N − φV G̃V 1N + φ2

(
V G̃

)2
V 1N − φ3

(
V G̃

)3
c...

...

=
[ ∞∑

t=0
(−φ)t

(
V G̃

)t
]
V 1N

That is
12More precisely, trading centrality is a measure c : G → RN , where ci(G, φ) is the trading centrality of

trader (node) i in the trading network G.
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ci = vi

1 +
∞∑

t=0
(−φ)t

vi

∑
j

g̃ij

t+1


The trading network adjacency matrix G describes all linkages among traders: it is
symmetric and unweighted. But the crucial matrix for the model is the global network
effect matrix G̃ such that g̃ij ≥ 0 : it is asymmetric and weighted and it describes traders’
interaction in any the Secondary Market. G̃ itself induces a graph. Denote the trading
network graph by G and the global network graph by G̃, both undirected. It holds that
G ⊆ G̃.

Matrix G̃ has entries in the [0, 1] interval except when di = 1 and dj > 1. The centrality
matrix (I + φV G̃)−1 has positive diagonal and negative off-diagonal. The diagonal is
increasing in one’s connectivity and neighbor’s connectivity.

Lemma 7. Centrality Matrix

The centrality matrix (I + V G̃) has diagonal equals to 1 and off diagonal elements in
[0, 1). Off-diagonal entry is zero iff (i, j) are not connected nor share a path-two link.

The inverse centrality matrix (I + V G̃)−1 is a N -square matrix with positive diagonal.
Off-diagonal elements can be a) negative, if (i, j) are connected or share a path-two link;
b) positive, if (i, j) are not connected nor share a path-two link

To grasp the intuition behind Lemma 7, take trader i ∈ N . Traders j, k at most two link
apart from i directly influence i’s local market trading. If i is a buyer, he demands less in
the PM when j, k demand more. In this way, i can buy more shares at a lower price in local
markets. The same logic holds when i responds to j (or k) as a competitor for k (or j). As
a seller, i also lowers his PM demand in response to higher PM demand from j, k. In this
way, i sells less at a lower price. For a trader z further apart, i still responds negatively to
z’s demand. But this response is not as strong since z does not influence directly i’s local
market trading. Trader z only affects i because z’s PM demand determines the terms of
trade in other local markets (i has no access to) and, consequently, the PM demand of
other traders. What ultimately determines the equilibrium PM price and asset allocation.

Trading centrality translates the above discussion into the matrix
(
V + φG̃

)−1
. The sign

of
(
V + φG̃

)−1
varies with how far apart traders are. If traders i, j are directly connected

or have one common connection, then the (i, j) entry is negative. However, if i, j are more
than two links apart, then (i, j) entry is positive.
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A.6.1 Trading Centrality and Degree

As discussed in section 1.5, the relationship between trading centrality and individual
degrees is non-trivial. The centrality measure encapsulates information above and beyond
connectivity. And connectivity by itself is not enough to understand the feedback effect
between the primary market and subsequent local markets. Meanwhile, as the network
structure defines trading centrality, it also defines te relationship between centrality and
degree. In some networks, being more central means being more connected. In others,
the opposite holds.

Lemma 8. Trading Centrality and Degree

The relationship between trading centrality c and individual degree d depends on the
structure of the trading network.

Consider an arbitrary trading network. If corr(c,d) > 0, then local markets (re-selling)
prices {Pi}∀i∈N are increasing in both (c,d).

If (c,d) < 0, the opposite holds.

A.6.2 Centrality and the Adjacency Matrix

Trading centrality is a function of the adjacency matrix G defining the trading network.
To express trading centrality in terms of G alone, it is useful to introduce some notation.
The vector of degrees is d = G1. Define the following Nvectors which are functions of
individual degrees:

d1 = (G1)−1

d2 = (G1)−1 − (G1)−2

d3 = 2(G1)−1 − (G1)−2

so that the entries of each vector are d1
i ≡ 1

di
, d2

i ≡ di−1
d2

i
and d3

i ≡ 2di−1
d2

i
= di

d2
i

+ (di−1)
d2

i
=

d1
i + d2

i .

Let D1,D2,D3 denote the diagonal matrix with entries d1,d2,d3, respectively:
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D1 = diag(d1) = diag
(
(G1)−1

)
=
(
(G1)−1

)
1T I

D2 = diag(d2) = diag
(
G1)−1 − (G1)−2

)
=
(
(G1)−1 − (G1)−2

)
1T I

D3 = diag(d3) = diag
(
2(G1)−1 − (G1)−2

)
=
(
2(G1)−1 − (G1)−2

)
1T I

The global network matrix G̃ has zero-diagonal and non-negative entries everywhere
else. It is useful to decompose it into direct and indirect effects:

G̃ = G̃1 + G̃2

where

G̃1 ≡D1G + GD2

G̃2 ≡ GD2G− diag
(
GD2G

)

Then

G̃ = D1G + GD2 (I + G)− diag
(
GD2G

)
= (G1)−11T IG + G

(
(G1)−1 − (G1)−2

)
1T I(I + G)

−
(
G
(
(G1)−1 − (G1)−2

)
1T IG

)
1T I

The matrix of indirect effects G̃2
13 is a weighted count of the paths of length two in

the network. This path plays an important role in determining a trader trading centrality
because it captures competition in the local market.

Now I turn into the individual effect vector v(φ)−1,

v(φ)−1 = (1− φ)1N + 2φd1 − φd + φGd3

The diagonal matrix V has entries v(φ)−1, and so in terms of G and φ,

13The matrix of path-two is given by P2 = G2 − diag(G2).

113



V = diag
(
v(φ)−1

)
=
(
(1− φ)1 + 2φ(G1)−1 − φ(G1) + φG

(
2(G1)−1 − (G1)−2

))
1T I

Hence, trading centrality c(G, φ) (eq. (1.20)) is given by

c =
((1− φ)1 + 2φ(G1)−1 − φ(G1) + φG

(
2(G1)−1 − (G1)−2

))
1TI

+ φ
(

(G1)−11TIG + G
(
(G1)−1 − (G1)−2

)
1TI(I + G)

−
(
G
(
(G1)−1 − (G1)−2

)
1TIG

)
1TI

)−1

1

(A.9)

A.6.3 Local Trading Centrality

From Lemma 1 and Theorem 1, the selling price of trade i is given by his and his
buyers’ centralities, ci, {cj}j∈Ni

respectively:

P ∗
i = 1− Q̄

NcA

(
ci +∑

j∈Ni
cj

)
di

(A.10)

Then, i’s trading cost is

P1 − Pi =
(

1− Q̄

NcA

)
−

1− Q̄

NcA

(
ci +∑

j∈Ni
cj

)
di


= Q̄

NcA

(
ci +∑

j∈Ni
cj

di

− 1
) (A.11)

It is useful to denote c̃i ≡
ci+
∑

j∈Ni
cj

di
as the local centrality of trader i, that is, the sum of

his local market participants’ centrality, including himself, controlled for his degree. With
that, there is a straightforward relation between trading cost and local centrality.

Proposition 22. Trading Cost and Centrality

The trading cost of trader i ∈ N is increasing in his local centrality c̃i:
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P1 − Pi = Q

NcA

(c̃i − 1) > 0 (A.12)

Moreover, P1 − Pi < 0 if and only if i is the core of a star network of size N ≥ 3.

Local centrality captures both participation and inventory effects. And that’s the reason
it’s a sufficient statistic for liquidity cost.

A.7 Comparative Statics
Best-replies:

Trader i’s response to changes in behavior of others is independent of PM price. In the
best-replies space, varying price P1 corresponds to parallel shifts of the demand schedules.
As a trader j 6= i changes his PM demand qj,1(·), i reacts by changing his demand qi,1

according to

∂qi,1(·)
∂qj,1(·)

= −φvi(φ)g̃ij (A.13)

As expected, the partial derivative (A.13) is negative as the game is one of strategic
substitutes. It is also asymmetric: the way j affects i is not the same as i affects j. That’s
because i and j can have different positions in the network and so they will face different
sets of potential sellers, buyers and competitors. This is precisely the reason that just
looking at how many connections (degree) of a trader is not enough to understand his
behavior. Lastly, it only depends on the trading network and shock parameter since, as
shown in Theorem 3, these are necessary and sufficient information to find PM equilibrium
(along with the exogenous supply level Q̄). Mathematically, the matrix G̃ is asymmetric
and individual coefficients {vi(φ)}i are heterogeneous.

The shock effect:

P1 only affects how demands change in response to the shock. To see this, first notice
that φ has a direct and indirect effect on qi,1:

∂qi,1(·)
∂φ

= ∂vi

∂φ

(1− P1)− φ
∑

j

g̃ijqj,1

− vi

∑
j

g̃ijqj,1

The indirect effect comes trough vi(φ):
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∂vi

∂φ
= −v2

i · ψi > 0 if ψi < 0⇐⇒ (d2
i + di − 2)

di︸ ︷︷ ︸
>0

>
∑

gij ·
(

2dj − 1
d2

j

)
︸ ︷︷ ︸

>0

< 0 if ψi > 0⇐⇒ (d2
i + di − 2)

di︸ ︷︷ ︸
>0

<
∑

gij ·
(

2dj − 1
d2

j

)
︸ ︷︷ ︸

>0

(A.14)

where, to simplify notation, I let

ψi ≡

 2
di

− (di + 1) +
∑

j

gij ·
(

2dj − 1
d2

j

)
ψi is a measure of relative connectivity between i and his neighbors. When i is, loosely,

more (less) well-connected than his friends then ψi < 0 (ψi > 0). In turn, the total effect of
φ on qi,1 is positive (negative). Thus an increase in the shock probability makes a trader i
to increase his demand only if he is more connected than his neighbors:

∂qi,1(·)
∂φ

= −v2
i · ψi > 0 if ψi < 0

As the secondary market becomes more likely, i expects to sell relatively more asset
shares at a high price if he is shocked, and to buy relatively few shares at low price is he is
connected to the seller.

The individual degree effect:

Individual degrees {di}i∈N appear in all PM demand’s network components (vi(φ), {g̃ij}j 6=i.
Their effect is can be broken down by a trader’s own degree, his neighbors’ degrees, and
his neighbors’ connections degrees.

First, individual degree di has a positive effect on vi and a negative effect on {g̃ij}j 6=i

∂vi

∂di

= −
(
−2φ
d2

i

− φ
)
· v2

i =
(

2φ
d2

i

+ φ

)
· v2

i > 0

∂g̃ij

∂di

= − 1
d2

i

< 0 ∀j s.t. gij ≥ 1

(A.15)
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Both effects combined imply that qi,1 is increasing in individual degree di.

Second, each direct connection’s degree dj has a direct and indirect effects, the latter
coming from common friends:

∂vi

∂dj

= −φ
(
− 2
d2

j

+ 2
d3

j

)
· vi2 = φ

(
2(dj − 1)

d3
j

)
· v2

i ≥ 0

∂g̃ij

∂dj

= −(dj − 2)
d3

j

1 +
∑

z 6={i,j}
gijgjz


≤ 0 dj ≥ 2

> 0 dj = 1

(A.16)

Lastly, purely indirect connections’ degrees, i.e. those who are connected to i only
trough a common friend, have an effect on i’s demand that depends only on he common
friend’s degree. That is, the effect of trader k’s degree dk such that gij = 1, gjk = 1, gik = 0
for all j, k ∈ N is

∂g̃ik

∂dk

= −
∑

j 6={k,i}
gjkgij

(dj − 2)
d3

j

≤ 0 since dk ≥ 2 (A.17)

The price effect:

The elasticity of demand of each trader is given by his individual network effect vi(φ):

∂qi,1

∂P1
= −vi(φ) (A.18)

This has two implications. First, the higher vi(φ), the more elastic is a trader’s PM
demand. Traders respond negatively but in different magnitude to changes in the PM
price. Second, the slope of a trader’s demand schedule changes as P1 varies. This is
precisely because each P1 induces a different network game and traders’ best-replies are
game-specific.

Figure A.4 depicts the price effect. In the left-hand graph, each colored line is a
trader’s demand curve for a given price P1. For example, the orange line is the schedule
when P1 = 0.9. Clearly, as P1 increases the demand curve becomes steeper. The right-
hand panel compares demand curves to two traders i (orange) and j (blue) such that
vi(φ) > vj(φ).

117



Figure A.4: Best-replies and Primary market price

A.8 Bilateral Trading Comparison
In this section, I discuss the equilibrium outcomes if only bilateral trade was allowed.

Maintaining the assumptions of the model, this would be the case of a regular network
with degree two, that is, a network with regular components of size two. Using the results
for regular networks, PM equilibrium price and asset consumption are P ∗

1 = 1− Q̄
N

(1 + 2φ)
and q∗

1 = Q̄
N
∀i ∈ N , respectively. Any local market equilibrium is given by price and asset

consumption, P ∗
2 = 1− 2 Q̄

N
and q∗

2 = q∗
1 ∀i ∈ N .

Bilateral trade delivers the lowest possible prices in the primary market and all local
markets. In equilibrium, asset consumption is the same in both periods even though their
demands are different. A trader’s demand schedule in the PM is q1 = 1−P1

1+2φ
and in the local

market is q2 = P1
1+2φ

− Ps.

Traders’ expected total asset holdings is simply the average supply Q̄
N

. Also, traders’
expected utility is given by

EU = w + (1− P ∗
1 )q∗

1 −
1 + 2φ

2 (q∗
1)2

= w + (1 + 2φ)
2

(
Q̄

N

)2

With bilateral trade, if the restriction in the shock φ < 1
N

is discarded, local market price
can be greater than the primary price.

Proposition 23. Bilateral Trade and Difference in Prices

If the trading network only allows for bilateral trades, equilibrium prices in the PM and
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any local market are P ∗
1 = 1− Q̄

N
(1 + 2φ) and P ∗

2 = 1− 2 Q̄
N

, respectively. Traders consume
the same amount of asset shares in both periods.

The negative demand shock φ controls the capital gain/loss of the seller. Selling
bilaterally delivers capital loss (gain) if φ is less (greater) than 1

2 . If φ = 1
2 , prices are equal.

It is useful to see the equilibrium in matrix notation for a direct comparison with my
main result. First, demand schedule coefficients are vi(φ) = (1 + φ)−1 ∀i and g̃ij = 1 ∀i, j :
gij = 1 and zero otherwise. This means that the global network matrix G̃ equals the
adjacency matrix G and that V G̃ is simply (1 + φ)−1G. Trading centrality simplifies to
C = 1

1+φ

(
1 + φ

1+φ
G
)−1

1N .

A.9 Results

Degree Distribution

I study changes in the trading network structure by changing its degree distribution:
that is, the number of connections of each trader. I do two exercises based on stochastic
dominance: varying the average degree and the degree variance. Specifically, I compare
two degree distributions such that i) one is a first-order stochastic shift of the other; and ii)
one is a mean-preserving spread of the other.

Recall the stochastic dominance definition: a cumulative distribution F first-order
stochastically dominates (FOSD) another distribution G iff F (x) ≤ G() for all x. Note that if
F FOSD G, then F necessarily has a strictly larger expected value than G, EF (x) > EG(x)
(the reverse not true). Recall also the mean-preserving spread definition: F is a mean-
preserving spread of G if and only if EF (x) = EG(x) and

´
F (x)dx ≤

´ c

∞ G(x)dx for all c.
Note that if F is a mean-preserving spread of G than F necessarily has a larger variance
than G.

Denote the degree distribution of the trading network as P . Consider a change in the
probability distribution over the degrees to P ′ that reflects an unambiguous increase in
connectivity. In particular, suppose that P ′ FOSD P . Then, the average degree under P ′ is
higher than under P . Moreover, each trader’s degree under P ′ is at least as large as his
degree under P ′. I am interested in how traders’ demands, and hence price, changes as
the trading network shifts from P to P ′.

Looking at network coefficients in (1.11) and (1.12), we know that vi(φ) weakly in-
creases while g̃ij weakly decreases for all i, j ∈ N (see section A.7). Then, from the
demand function (1.10), each trader demands more at each possible price level, i.e. his
demand schedule becomes flatter. Since PM price is increasing in traders’ demands, PM
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price increases as well.

Network Symmetry

A symmetric network, or regular graph, is such that degree of each node is equal. A
graph is called k-regular if degree of each node is k. Regular graphs have useful properties.
First, the necessary and sufficient conditions for a k-regular graph with N nodes to exist
are that N ≥ k + 1 and that Nk is even. Second, the number of links E is given by Nk

2 . It is
also known that for any undirected graph E also relates the the sum of individual degrees
such that

∑
i di = 2E. These four facts, combined to the findings regarding the degree

distribution, lead to Proposition 6.

Take a k-regular network with N traders and, thus, Nk
2 links. Now consider any other

network structure with the same number of traders and links. It must hold that the average
degree in this network is such that 1

N

∑
i di = 2k

2 = k, i.e. the same as the in k-regular
graph. And that its degree variance is positive, otherwise it would be a regular network (i.e.
with zero variance). Thus, from Proposition 4, it holds the PM price in this network is lower
than the one in the k-regular network.

A.10 Core-Periphery Networks
A core-periphery network structure typically consists of a well-connected set of nodes,

the core, and the remainder nodes, the periphery, well connected to the core but sparsely
connected internally. The most common example is the star network in which one node is
fully connected to all other nodes, who themselves are only connected to the core.

Proposition 7 shows that the star network is the unique structure delivering capital gains
for a seller while exhibiting the lowest primary market price. At the same time, empirical
evidence has documented a core-periphery structure for different inter-trader markets.
Motivated by these two facts, in this section of the Appendix I provide detailed results and
proof for the class of core-periphery networks. In particular, I focus on the star graph,
regular core-periphery networks, and the most extreme cases of a fully connected core
(the complete case) and the sparsely connected core (the ring case).

A.10.1 Star Network

In this part of the appendix, I prove the following lemmas.

Lemma 9. Across all markets and across networks of the same size N , the core’s price of
the star network is the highest.
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Another interesting feature of the star network is that it is the most unequal: it delivers
the highest dispersion in asset allocation. Traders located in the periphery shift their asset
consumption relatively more to the local market even though the seller’s price is high.
That’s because, if a periphery is shocked, his selling price is so low that his capital loss
would be larger than the difference in prices between the two markets he can act as a
buyer. The next proposition state this result.

Proposition 24. Inequality in a Star Trading Network

Across trading networks of the same size N , the star structure delivers the highest
dispersion in asset allocation. The core (periphery) has the highest (lowest) possible
primary market demand.

Proposition 25. Demand inequality is decreasing in the size of the star network N .

Core’s network coefficients are

v−1
c = 2φ

N − 1 +N(1− φ) = 2φ+ (N2 −N)()1− φ
N − 1

g̃cp = 1

and his demand function is then

qc = vc (1− P1 − φ(N − 1)qp) (A.19)

Peripheries’ network coefficients are

v−1
p = 1 + φ

(2N − 3)
(N − 1)2

g̃pc = 1 + (N − 2)
(N − 1)2 = N2 −N − 1

(N − 1)2

g̃pc = N − 2
(N − 1)2

and their demand function is then

qp = vp (1− P1 − φg̃pcqp − φ(N − 2)g̃ppqp) (A.20)
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Now I can write the system of demands in 2-by-2 matrix format in which the first
row/column refers to the core and the second row/column to a periphery. Matrices V, G̃
are given by

(
V−1 + φG̃

)
=
 1

vc
φ(N − 1)

φg̃pc
1
vp

+ φ(N − 1)g̃pp

 (A.21)

and trading centrality is then

TC ≡

Cc

Cp

 =
(
V−1 + φG̃

)−1
1 = 1

∆

 1
vp

+ φ(N − 1)g̃pp − φ(N − 1)
1
vc
− φg̃pc

 (A.22)

where ∆ ≡ det
((

V−1 + φG̃
)−1

)
and it holds that 1

vp
+φ(N−1)g̃pp−φ(N−1) > 1

v
−φg̃pc

Equilibrium is determined by the weighted sum of centralities,

CT ≡
1
∆
(

1
vp

+ φ(N − 1)g̃pp − φ(N − 1) 1
v
− φg̃pc

) 1
N − 1

 (A.23)

Thus primary market price and asset allocation are, respectively

P ∗
1 = 1 Q̄

CT

q∗
i = Q̄

CT

Ci i = {c, p}

A.10.2 Core-Periphery Networks

Growing the size of the core:

The next figures depicts Proposition 8. Figure A.5 shows the equilibrium of the model
for growing core-periphery networks by increasing the number of N traders. The number
of core traders, with the same connectivity to 2 peripheries, increases.
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Figure A.5: Growing a Core-Periphery network: increasing N by adding more core traders with the same number of peripheral
connections.

Similarly, Figure A.6 shows the equilibrium for different core-periphery network with the
same number of N = 12 traders and different core sizes. The dashed lines are equilibrium
outcomes for the star network of the same size N = 12.

Figure A.6: Growing a Core-Periphery network: for a fixed N = 12 traders, the core size increases by moving a peripheral node to the
core while keeping cores’ connectivity to the periphery homogeneous

To make it clear the difference in the two exercises above, the first is moving from
network B to C below. The second is moving from network A to B.
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Figure A.7: Growing a Core-Periphery network: from left to right - network A, B and C

A.10.3 Regular Core-Periphery Network

A regular core-periphery network structure is quite tractable since cores’ share the
same demand, and so do peripheries. Thus I just need to keep track of two variables, a
core’s demand q,1c and a periphery’s demand q,1p.

The primitives for an arbitrary core-periphery structure are i) the number of cores nc; ii)
the number of peripheries per core np. So there are (ncnp) peripheries and N = nc(1 + np)
nodes. Notice that core’s degree is then dc = np + (nc − 1) = N − (nc − 1)np.

Suppose nc ≥ 2. Let g̃ ≡ (dc−1)
d2

c
, g̃c = g̃dcc + 1

dc
. Then, cores and peripheries’ demand

schedules (1.10) are, respectively

qc = vc [1− P1 − φg̃c (dccqc + npqp)]

qp = vp [1− P1 − φg̃p ((dcc + 1)qc + (np − 1)qp)− φqc]
(A.24)

The network-induced coefficients in (1.10), {(vi, g̃ij)}i,j∈N , become for a core

vc =
[

2φ
dc

+ 1− φ(dc + 1) + φdcc

(
g̃ + 1

dc

)
+ φnp

]−1

g̃cc = g̃cdcc

g̃cp = g̃np

and for a periphery

vp =
[
1 + φ

(
g̃ + 1

dc

)]−1

g̃pc = g̃(dcc + 1) + 1

g̃pp = g̃(np − 1)
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That is, demands are qc = vc [1− P1 − φg̃ccqc − g̃cpqp] ∀c ∈ N and
and qp = vp [1− P1 − φg̃pcqc − g̃ppqp] ∀p ∈ N .

Now I can write the system of demands in matrix format. Define 2-by-2 matrices Ψ1,Ψ2

in which the first row/column refers to a core and the second row/column to a periphery,

Ψ1 =
ψ1c 0

0 ψ1p

 Ψ2 =
 0 ψ2c

ψ2p 0

 (A.25)

such that ψ1c ≡
[

1
vc

+ φg̃cdcc

]
, ψ1p ≡

[
1
vp

+ φg̃(np − 1)
]
, and ψ2c ≡ g̃cnp, ψ2p ≡

g̃(dcc + 1) + 1.

Then the system of demands is

Ψ1q = (1− P1)12 − φΨ2q

(Ψ1 + φΨ2) q = (1− P1)12

q = (Ψ1 + φΨ2)−1 12(1− P1)

(A.26)

(A.26) is the counterpart of (A.5). Since Ψ1,Ψ2 are 2-by-b2 taking the inverse is easy:

(Ψ1 + φΨ2)−1 = 1
ψ1cψ1p − ψ2cψ2p

 ψ1p −φψ2c

−φψ2p ψ1c


Trading centrality (1.20) is now given by

c = (Ψ1 + φΨ2)−1 12

= 1
ψ1cψ1p − ψ2cψ2p

ψ1p − φψ2c

ψ1c − φψ2p

 (A.27)

where it holds that core’s centrality is higher than periphery’ centrality:

ψ1p − φψ2c > ψ1c − φψ2p

The next proposition gives the equilibrium for a regular core-periphery network with nc
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cores, dcnp peripheries and connectivity among cores of dcc.

Proposition 26. Equilibrium in a Regular Core-Periphery Network

Consider regular core-periphery network with nc cores, dcnp peripheries and connec-
tivity among cores of dcc. Suppose nc ≥ 3 and dcc ≥ 2. Then, trading centrality is given
by

C = (Ψ1 + φΨ2)−1 12 (A.28)

Primary Market equilibrium price and demands are, respectively

P ∗
1 = 1− Q̄ 1

Ccnc + Cpnp

(A.29)

qi,1 = Q̄
Ci

CT

i = {c, p} (A.30)

where CT = Ccnc + Cpnp.

To understand how equilibrium change as we change the structure of the core-periphery
graph one must look at the trading centrality. One can show that: i) cores’ (peripheries’)
centrality is decreasing (increasing) in cores’ connectivity; ii) both centralities are increasing
in the number of cores and/or peripheries.

Focusing on the extremes structures - complete and ring cores, cores’ (peripheries’)
centrality is decreasing (increasing) in in the number of the cores and/or peripheries.

Complete and Ring Cases

The two most extreme cases of regular core-periphery networks are i) when the core is
fully connected (complete); and ii) when each core is connected to other two (ring). I now
compare primary market equilibrium in these two core-peripheries structure. In particular, I
show that:

• Price is higher in the complete core than in the ring core, for any number of cores
and peripheries (from the main result)

• Cores’ (peripheries’) centrality is lower (higher) in the complete structure

• Cores’ (peripheries’) demand is lower (higher) in the complete structure

• Demand dispersion (inequality) is lower (higher) in the complete (ring) structure
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In addition, I study how the comparison changes as the number of peripheries changes.
Increasing the number of peripheries results in

• Lower price difference between the complete and ring structures - even though price
increases in both

• Lower difference in demand dispersion - inequality decreases in both

I obtain these results using Proposition 26 that shows that characterizing the equilibrium
in any core-periphery structure is quite straightforward. One only needs to determine two
variables: the demand schedules for a core and a periphery. For the complete case, notice
that dcc = nc − 1 and g̃c = (nc − 1)g̃ + 1

dc
. Then, cores and peripheries’ demands are,

respectively

qc = vc [1− P1 − φg̃c ((nc − 1)qc + npqp)]

qp = vp [1− P1 − φ (g̃nc + 1) qc − φg̃(np − 1)qp]
(A.31)

For the ring case, dcc = 2 g̃c = 2g̃+ 1
dc

. Then, cores and peripheries’ demand schedules
are, respectively

qc = vc [1− P1 − φg̃c (2qc + npqp)]

qp = vp [1− P1 − φg̃p (3qc + (np − 1)qp)− φqc]
(A.32)

The next proposition shows that as the number of cores become too large, price in
these structure converge to the same level.

Proposition 27. As nc → ∞, then P complete
1 − P ring

1 → 0 irrespective of the number of
peripheries.

A.11 Symmetric Networks
In regular networks, all nodes have the same number of links and position in the

network. It immediate follows from Theorem 1 that traders have the same demand and
selling price if and only if they have the same network position. These two facts make it
easier to study regular networks. Equilibrium asset allocation is independent of the network
structure, and it is the same as in the Walrasian market. PM and local market demands are,
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respectively, q∗
i,1 ≡ q∗

1 = Q
N
, q∗

i,s ≡ q∗
2 = Q̄

Nd
. The local market price is exclusively determined

by traders’ degree d, P ∗
s = 1− (d+1)

d
Q̄
N

.

Proposition 28. Primary Market in Regular Networks

In regular networks, PM price is increasing in the size and degree of the network.

Differently, primary market equilibrium allocation is independent of the network. It is the
same as in the Walrasian market: all traders demand Q̄

N
in the primary market, and Q̄

Nd
in

any local market.

Proposition 28 shows that, for a fixed number of N traders, the higher is traders’ degree
the higher is the PM price. Similarly, for a fixed degree d, increasing the size of the network
increases PM price.

The demand schedule in every market is homogeneous across traders: any asset
supply is divided equally among buyers, as they have the same willingness to pay. In other
words, asset allocation is the same as in a perfectly competitive market. As I show next,
PM price varies considerably across regular networks and it is never equal to the price
of a perfectly competitive market. The results in this section highlights that if we ignore
asset issuance price and only look at traders’ inventories in OTC we are missing important
considerations of funding costs.

Using market clearing conditions, equilibrium asset allocation in the PM and local
market are, respectively: q∗

i,1 ≡ q∗
1 = Q̄

N
and q∗

i,s ≡ q∗
2 = Q̄

Nd
. The local market price is

exclusively determined by traders’ degree as d: P ∗
s = 1− Q̄

N

(
d+1

d

)
Turning to primary market equilibrium, first notice that individual network coefficient

vi becomes v−1
i = v−1 = φ+d(1+φ−φd)

d
and, in turn, trading centrality for every trader is ci =

d
φ+d(1+φ)∀i ∈ N . Then, the traders’ demand schedule is q1 = v(1− P1 − φdq1) = d

φ+d(1+φ) .

And equilibrium PM is thus P ∗
1 = 1− Q̄

N

(
φ+d(1+φ)

d

)
. As P ∗

1 is increasing degree d, it is easy
to compare different regular networks.

A.11.1 Complete Graph

The complete network is a special case of a regular network with degree d = N − 1.
No trading frictions exist since all traders are connected with one another. Everyone trade
in both markets, either as a buyer or a seller. Using the result from Proposition 28, primary
market price is P ∗

1 = 1− Q̄
N(N−1)(N(1 + φ)− 1), and any local market equilibrium price is

P ∗
s = 1− Q̄

N−1 . Demands in each market are, respectively,q1 = Q̄
N

and q2 = Q̄
N(N−1) .

It is easier to see that the complete network delivers the highest primary market price.

Proposition 29. Complete Network
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For a fixed network size N and in comparison with other regular networks, the Complete
Network exhibits the highest primary market price.

It is worth pointing out that the static, competitive market is different than an economy
with an empty network, i.e. without any trading relationships Even though there is no local
market in both scenarios, in an empty network agents still face the negative demands
shock. This risk makes demand schedules less elastic and drives PM price down. In
equilibrium, PM demand and price are, respectively, qi,1(P1) = q1(P1) = 1− 1

1−φ
P1 ∀i ∈ N

and P ∗
1 = (1− φ)

(
1− Q̄

N

)
.

A.12 Ring versus Star Trading Networks
The conclusion from the study of core-periphery networks (Section 1.6.2) is that prices

and demands are tightly related to the number of traders in the core of core-periphery
networks. Meanwhile, PM price is increasing the number of traders and it is determined
by how they are connected among themselves. This suggest that the effect of growing
the trading network on equilibrium outcomes depends on the way new traders and their
linkages are added in the network. That is, there exists a size effect - increasing N , and a
network effect - changing the degree distribution.

One way to differentiate between the size effect and network effect on PM price is to
look on how price changes as we grow a ring network and a star network. The former
is a regular network.14 It exhibits no inequality in terms of degree and asset allocation:
all traders have the same demands and selling price as they have the same degree and
network position. The star network is the most unequal one with respect to both degree
and demand.

Figure A.8: A ring and a star network of the same size N = 6 traders.

The unique effect of growing the ring network is about market size. The growth of
the star network, apart from capturing the size effect, carries network effect because the
degree distribution changes. Adding one trader in either case means adding just one more
14section A.11 provides equilibrium outcomes for the general class of regular networks.
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link. However, degree inequality and connectivity increase in the star network, while the
degree distribution remains unchanged in the ring.15

It is useful to first compare market outcomes as the networks grow. By Lemma 5, we
know that PM and local market prices in both networks increase. The difference is that in
the ring price drops while in the star price can either increase or decrease: price increase
if the core is selling and drops if one of the peripheries is the seller.

Even though PM price increases as the network becomes larger, it does so as dimin-
ishing rates. More importantly, it grows faster in the star network.

The results above are depicted in the next figure. It shows PM price drop and PM price
growth rate as each structure grows.

Figure A.9: Growing Networks: Ring versus Star structures

If we divide the star growth rate by the ring growth rate we isolate the network effect.
I find that the network effect is positive any finite N , and that it is greater the smaller the
size of the trading network.

15Notice that the number of linkages in the ring network is N and in the star network N − 1, and connectivity
is higher in the ring network.
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Figure A.10: PM price growth ratio: Star/Ring

This finding is important. The network effect in the star network makes its price diverge
from the one in the ring. The importance of this effect though diminishes as the network
grows.

More details

Even though PM price increases as both network structures becomes larger, its growth
rate differs. To see this, look at how price grows as each structure grows:

Figure A.11: PM Price growth as the network becomes larger: Ring versus Star structures

Another way to see this is to look at the price ratio of the PM price in star growth by the
one in the ring:

Figure A.12: PM price ratio: Star/Ring
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Figure A.13: Growing a Star Network

Mathematically, price growth ratio is

(
P star

1,N+1 − P star
1,N

P star
1,N

)/P ring
1,N+1 − P

ring
1,N

P ring
1,N

 =
P star

1,N+1 − P star
1,N

P ring
1,N+1 − P

ring
1,N

·
P ring

1,N

P star
1,N︸ ︷︷ ︸
>1

We already know that P ring
1,N > P star

1,N . We now find that, due to the change in the network
degree distribution, price increases more in the star network than in the ring network as the
structure grows. Notice that, in both structures, the price growth is positive but decreasing:
price grows with the network at a diminishing rate.

A.12.1 Growing the Star Network

Even though growing the star leads to a more unequal network in terms of degree,
the opposite occurs for demand inequality. The peripheral traders buy relatively more,
i.e. become relatively more important in the PM, when this group is large. Difference in
demands become smaller. Thus, core’s capital gain decreases.

Proposition 30. Growing a Star Trading Network

For N > 3, core’s capital gain and demand inequality decreases as the star network
grows.

A.12.2 Comparing with the Complete network

I find that:

• Complete local market price and the core’s price are the same. That’s because,
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Figure A.14: Demand change and the size of the star network

the increase in core’s demand and the reduction in peripheries’ demand exactly
compensate each other.

That is, for a network with N traders,

|q1,regular − q1,core| = (N − 1) · |q1,regular − q1,periphery|

• Complete and ring’s demands are the same. And both less than the core’s and
higher than the peripheries’.
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Figure A.15: Growing Networks: Ring versus Star structures

A.13 Welfare
The expected indirect utility EU∗

i of each trader i ∈ N is given by eq. (1.25)

EU∗
i

(
c;G, φ, Q̄

)
= w +

(
Q

cA

)2
ci −

1
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c2
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(
Q

cA

)∑
j

ḡijcj

 (1.25)

I analyze welfare as the sum of traders’ indirect expected utility, EU∗ ≡ ∑i EU
∗
i

(
c;G, φ, Q̄

)
:
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The above can be simplified to
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(A.33)

Hence, welfare EU
(
c;G, φ, Q̄

)
in a trading network G, given a shock and supply

parameters φ, Q̄, is given by

EU
(
c;G, φ, Q̄

)
= Nw + Q2

2cA

− φQ
2

c2
A

∑
i

ci

3φ
2 +

∑
j 6=i

ḡji

− 3φ
2
c2

i

vi

 (1.25)

The welfare analysis is focused on four network structures depicted in fig. 1.11: the
complete graph, the line, the star and ring. The following results are used to proof the main
results in section 1.7.

Welfare comparison across these network structures is easier because we can invoke
Proposition 3 and Proposition 4. Notice that the degree distribution of the complete network
FOSD all the other ones; the degree distribution of the ring network FOSD the line and the
star ones; and the degree distribution of the line FOSD the star one. Moreover, degree
distribution of the star is mean-preserving spread of the line one. It is straightforward then
that PM price rank is: complete > ring > line > star.

When trading centrality is increasing in degree, a trader’s expected utility is increasing
in his centrality. In turn, we can rank traders’ welfare within a network: more central traders
achieve higher expected utility.

Lemma 10. Individual Welfare and Degree

If trading centrality ci of trader i ∈ N is monotonically increasing in his degree di, then
i’s indirect expected utility EU∗

i is monotonically increasing in his centrality ci and, thus, his
degree di.

We can compare the complete network and the ring (or any other regular structure).
The complete network has higher (average) trading centrality and thus prices. In turn, PM
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price in the complete network is higher than in the ring. And so is welfare.

For the structural effect, take the complete and the star. The trader in core of the star
is fully connected in both networks. But in the star his connections are poorly connected,
which pushes his centrality up and others’ centrality down. Consequently, a trader as the
core has higher expected utility in the complete network.

Lemma 11. Welfare and Trading centrality

Aggregate expected utility is decreasing in the aggregate trading centrality cA.

High aggregate trading centrality implies high PM price. This is the main reason behind
Proposition 10.

Another interesting question is to find the welfare maximizing trading network G∗

delivering the highest aggregate expected utility. G∗ is the solution to the following
maximization problem,

G∗ = arg max
G

EU∗ (G, φ, Q) (A.34)

Solving (A.34) is hard. Due to its dependence on trading centrality, welfare shares the
property of non-monotonicity with respect to connectivity and degree inequality. Moreover,
since trading centrality is a recursive measure (eq. (1.14)), it is affected by a trader’s own
degree and also the centrality and degree of other traders. It holds that, for all i, j ∈ N ,
∂ci

∂cj
< 0 but ∂ci

∂dj
can be positive or negative depending on all traders’ degree, since trading

centrality is determined by the distribution of individual degrees {di}∀i∈N . I leave this
inspection for future research.

A.14 Extensions

A.14.1 Heterogeneous Preferences

The baseline model is the homogeneous version of the general setup of each trader
i ∈ N having quasilinear-quadratic utility over inventory with parameters of individual
valuation αi > 0 and risk-aversion γi

Ui(Qi) = αiqi −
γi

2 q
2
i (A.35)

so that traders are ex-ante heterogeneous. From building up inventory qi a trader
obtains a marginal value αi and has a marginal cost of γi

2 qi. Heterogeneity in αi captures
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the different and persistent close relationships traders tend to form with their clients in OTC
markets (Di Maggio et al. (2017b)). The different cost γi may be related to fund outside
investments, regulatory capital or collateral requirements, which may vary across traders.

The unique and interior Nash Equilibrium is characterized by the demand schedule

qi,1 = βi (γ;φ,G)×


mi (γ;φ,G)αi + φ

∑
j

mij (γ; G)αj


︸ ︷︷ ︸

ai

−P1 − φ
∑

j

βij (γ; G) · qj,1


where now the endogenous network-induced coefficients also depend on the risk

aversion of traders, and b = 1. In subsection A.14.1 give the full specification of coefficients
above. An important observation is that individual valuations αi only affects the level of
demand.

The key feature of this extension is that it permits heterogeneous interdependencies
among values {αi}i∈N that arises endogenously, as described next.16

Lemma 12. local market Equilibrium

Equilibrium price of seller s is

P ∗
s =

∑
i∈Ns

1
γi

−1

·

∑
i∈Ns

αi

γi

−
∑

i∈Ns

qi,1 + qs,1

 (A.36)

and equilibrium allocation of each buyer i ∈ Ns is

q∗
i,s =

(
αi

γi

− qi,1

)
− 1
γi

·


∑

i∈Ns

1
γi

−1

·

∑
i∈Ns

αi

γi

−
∑

i∈Ns

qi,1 + qs,1


 (A.37)

Denote Γs ≡
∑

i∈Ns

1
γi

. Then network coefficients become

16This setup follows Rostek and Weretka (2012). The difference is that in that paper the valuations are
unknown and traders have private signals on their own and others valuations. Here, however, agents can
infer others valuation in the PM through the network
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vi(φ) ≡
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2
Γi

+ φ
∑

j

gij ·
1

γiΓ2
j

(2γiΓj − 1)


−1

mi(φ) ≡
(1− φ− φdi) + 1

γi

· φ
∑

j

gij ·
[

1
Γ2

j

+ 2(γiΓj − 1)
γiΓ2

j

]

g̃1
ij ≡

gij ·
(

1
Γi

+ 1
Γj

− 1
γiΓ2

j

)
+
∑

k 6=i,j

gikgjk ·
(

1
Γk

− 1
γiΓ2

k

)

g̃2
ij ≡

gij ·
1
γj

1
Γi

+
∑

k 6=i,j

gikgjk ·
1
γj

(
1
Γk

− 1
γiΓ2

k

)
The next lemma characterized PM equilibrium demands.

Lemma 13. PM Equilibrium Demand

qi,1 = vi (γ;φ,G)×
mi (γ;φ,G)αi − P1 − φ

∑
j

g̃1
ij (γ;G) · qj,1 + φ

∑
j

g̃2
ij (γ;G)αj


Assuming further that traders have the same level of risk-aversion, γi = γ∀i ∈ N , the

equilibrium turns out to be quite similar to the baseline model. PM demand is given by

qi,1 = 1
γ
vi(φ)×

mi(γ, φ)αi − P1 − γφ
∑

j

g̃1
ij · qj,1 + φ

∑
j

g̃2
ijαj

 (A.38)

where vi(φ), g̃ij are the same as in the baseline model, and mi(φ, γ = 1 − φ − φdi +
φ
∑
gij

1
d2

j
[γ + (2dj − 2)] and g̃2

ij = gij · 1
di

+∑
k gikgjk ·

(
1

dk
− 1

d2
k

)
.

A.14.2 Expected Fundamental Returns

In reality, traders care about the fundamental return of an asset. They hold an asset
not just for the sake of holding it (i.e. to enjoy utility flow) but because they expect that
the asset itself is a good financial investment, with high intrinsic value. My framework
accommodates asset-related information and with that, as I show next, asset price reflects
both the traders’ beliefs on returns and the trading network. Importantly, the way the former
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is incorporated into price depends on the later.

To understand this results a brief description of this extension is enough (See appendix
for all the details). Suppose the asset has uncertain return f which is normally distributed
with mean µ and variance σ2, and it is realized after all trading activities take place17 traders
have initial wealth w0 and choose asset inventory qi to maximize the expected CARA utility
of final wealth E [− exp (γW )] given by

W = f(qi,1 + qi,s)− (P1qi,1 + Psqi,s) + w0 (A.39)

The counterpart Nash Equilibrium demand of Equation 1.10 is

qi,1 = βi(φ)

µ · (1 + φmi(G))
γσ2︸ ︷︷ ︸

ai

− 1
γσ2︸ ︷︷ ︸

b

P1 − φ
∑

j

βijqj,1



where the coefficients only depend on the trading network G. As before, see subsec-
tion A.14.2 for a detail the full analytical solution.

The equilibrium implies that trader i’s PM demand depends on market price P1, his
information and the information and demand of all other traders, including those he is
not directly connected to but who are connected with his connections. This is in stark
difference with the canonical linear asset pricing model where individual demands depend
on all agents’ information set but not directly on other demands. That’s because in such
setting equilibrium price aggregate all useful information and so it is not necessary to know
other demands. In my model, however, even an anticipated shock and the fact the it leads
to different trading possibilities make agents to conditional on others demands, since this
is informative about the market structure.

Buyer i’s demand from seller s is qi,s = µ−Ps

γσ2 − qi,1.

Lemma 14. Local market Equilibrium

17The normality assumption is standard in this literature. See, for instance, Kyle (1989), Vives (2011), Rostek
and Weretka (2012), (Duffie and Zhu (2016)) and others.

139



P ∗
s = µ− γσ2

ds
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q∗
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∑

k 6=i,k∈Ns

qk,1

− (ds − 1)
ds

qi,1

Network coefficients become
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(1− φ)− φ(di − 2)
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Define vectors v = [vi(φ)]g̃N×1 : [vi(φ) · g̃i] and matrices VN×N = diag(v), G̃N×N : [g̃ij].
Then the system of PM demands can be written in matrix form.

Lemma 15. PM Equilibrium Demands

q∗
1 =

(
I + φV G̃

)−1
·
(
µ

γσ2 (v + φg̃)− 1
γσ2P1v

)

A.14.3 Price Impact

My framework is essentially a static demand game because a trader’s PM demand
depends on expected local market trades, not on realized trade. This is the crucial feature
of the model. And it is the reason local market trading induces a set of games in the PM.
In equilibrium, prices and demands are not independent across markets. If they were, the
markets would operate as independent venues and this is clearly not the case here.

Price impact in the PM arises endogenously in the model precisely because of intertem-
poral demand dependence. That is, it comes from all the possible local market exchanges
in the trading network. Moreover, PM asset marginal utility is dictated by participation in
the SM, and vice-versa.

Following the imperfect competition literature, the framework can be used to study the
economy with strategic traders, as Rostek and Yoon (2020b).
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Suppose di ≥ 3∀i ∈ N . In every local market, a buyer i ∈ Ns trades taking into account
his price impact λs ≡ ∂Ps

∂qi
. In equilibrium, I show that λs = 1

ds−2 and so price impact is equal
across buyers in a given local market. Buyer i’s demand is qi,s = 1

λs+1(1 − qi,1 − Ps) =
ds−2
ds−1(1− qi,1 − Ps).

Lemma 16. Local Market Equilibrium

The local market or seller s ∈ N has equilibrium price,

P ∗
s = 1− 1

ds

∑
i

ai −
1 + λs

ds

as

= 1− 1
ds

∑
i

ai −
ds − 1

ds(ds − 2)as

(A.40)

and asset allocation

q∗
i,s = 1

ds(1 + λs)
qNs−i,1 + 1

ds

qs,1 −
(

ds − 1
ds(λs + 1)

)
qi,1

Lemma 17. Primary Market Equilibrium

qi,1 = ψi

(1− P1)− φ
∑

j

ψijqj,1

 (A.41)

where

ψi =
1 + φ(di + 1) + 2φ (di − 1)

di(di − 2) + φ
∑

j

gij
2
dj

−1

ψij = gij ·
[

1
di

+ 1
dj

]
+

∑
z 6={i,j,k}

gizgjz ·
(dz − 2)
dz(dz − 1)

A.15 Local Markets with Outside Traders
I assume that all traders participate in the primary market. However, this is not a

restrictive assumption. The results are robust to incorporating outside traders who may
only participate in a local market. In this section, I introduce a representative outside trader
with demand qt for each local market. This trader has the same quadratic-quasilinear
preference but only one asset demand. The outside trader is interpreted as investors who
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only learn about the asset after the first trading round, or that due to financial constraints
do not participate in the primary market.

The outsider demand schedule is qt = 1 − Ps. By market clearing, seller s’ price is
P ∗

s = 1− 1
ds+1 (qNs,1 + qs).

From the local market equilibrium, one can already see that the only increasing price
denominator by 1. In other words, the seller’s effective degree is ds + 1. Since this holds
for every local market, all results remain unchanged.

The more realistic approach would be to include outside traders just in some local
markets, or to allow for preference heterogeneity. The model accommodates all these
extensions. Even though it remains tractable, it becomes harder to disentangle the network
effects from preference and outside traders’ effects. As I mentioned in the Introduction,
the goal of this paper is to provide a benchmark framework in which the network effects
are the only driver of equilibrium outcomes. The extensions presented in section 1.9 are
pertinent are interesting. I leave them for future work.
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A.16 Empirical Exercise

A.16.1 Bond-level Dealer Network

In Section 1.8 I explore the sample of trades of all bonds. But the same analysis can
be done at the bond-level. As I show next, each bond in the sample has a different trading
network. That’s because the main take-away of my paper is that different assets have
different prices because each has a different underlying trading network structure.

The next figure depicts the dealer network for each bond. Notice that, according to my
definition, 2 bonds do not have a dealer network because only one dealer trade with the
customer.

Figure A.16: Dealer networks for different bonds

Each bond in the data exhibits a different inventory price distribution, as the next figure
shows.
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Figure A.17: Distribution of prices of dealer-customer trades

A.16.2 Dealers’ Inventory

By trading with the customer, dealers accumulate inventory (bond holdings) over time.
So, in my analysis, inventory is the empirical counterpart of PM demand. I compute
inventory from net d2c trades. A positive (negative) inventory means that a dealer is a net
buyer from (seller to) the customer. Through the lens of my model, a positive inventory
would lead the dealer to trade in the interdealer network.

I calculate a dealer’s (net) inventory at the end-of sample, referred as net total inventory
(NTI), and its nominal and absolute values (qi, aqi).18 NTI gives me a dataset with one
observation per dealer with inventory as bond holdings at the end of the 42 trading days.
As the figure below shows, inventory is concentrated around zero, indicative that most
dealers trade in a way to off-set portfolio imbalances.

The relationship between dealers’ inventory and trading centrality is depicted next.
Since the attribution of trading centrality is highly skewed, at a first glance it does not have
a clear relation with net bond holdings. Even so the graph reveals that the least central
dealers have roughly zero net inventory - while the reverse is not true.

18I also calculate inventory at the daily level: net daily inventory (NDI) nominal and absolute values (qid, aqid).
This gives me an unbalanced panel data with multiple observations per dealer over 42 trading days. See
appendix.
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A.16.3 Regressions: Interdealer trades and Trading Centrality

Regressing trade volume or trade price on trading centrality delivers significant results.
For trade volume, the sign of trading centrality coefficient varies depending on the set of
controls. Trading centrality alone has a positive effect on volume, and so it does when
controlling for nominal net total inventory (from customer trades) and trade price. However,
adding degree and as control, turns the centrality coefficient negative.

Table A.2: D2D trade volume

Dependent variable:
vol

(1) (2) (3) (4) (5) (6)
tcn 38.6∗∗∗ −296.6∗∗∗ 87.2∗∗∗ 84.9∗∗∗ −150.2∗∗

(11.7) (59.6) (12.4) (12.4) (61.0)
deg −0.6∗∗∗ −3.9∗∗∗ −2.7∗∗∗

(0.1) (0.7) (0.7)
qi 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(0.001) (0.001) (0.001)
pr 4.0∗∗ 4.1∗∗

(1.6) (1.6)
Constant 38.3∗∗∗ 84.1∗∗∗ 395.1∗∗∗ 23.7∗∗∗ −370.0∗∗ −133.2

(8.7) (6.4) (62.8) (8.7) (162.6) (173.2)
Observations 5,308 5,308 5,308 5,308 5,308 5,308
Adjusted R2 0.002 0.003 0.01 0.02 0.02 0.03

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For trade price though trading centrality is only significant when controlling for degree.
In this case, trading centrality has a positive effect on price: more central dealers face
higher interdealer prices.
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Table A.3: D2D trade price

Dependent variable:
pr

(1) (2) (3) (4) (5) (6)
tcn 0.5∗∗∗ 1.1∗∗ 0.1 0.6∗∗∗ 0.5

(0.1) (0.5) (0.1) (0.1) (0.5)
deg −0.01∗∗∗ 0.01 0.01

(0.001) (0.01) (0.01)
pi 0.2∗∗∗ 0.2∗∗∗

(0.02) (0.02)
qi 0.000

(0.000)
Constant 98.8∗∗∗ 99.4∗∗∗ 98.3∗∗∗ 84.2∗∗∗ 98.8∗∗∗ 83.8∗∗∗

(0.1) (0.1) (0.5) (1.7) (0.1) (1.7)
Observations 5,308 5,308 5,308 5,308 5,308 5,308
Adjusted R2 0.01 0.01 0.01 0.02 0.01 0.02

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Conditioning on side

Table A.4: D2D trade volume conditional on side

Dependent variable:
buy volume

(1) (2) (3) (4) (5) (6)
tcn −136.8∗∗∗ −194.2∗∗∗ −118.4∗∗∗ −118.9∗∗∗ −153.5∗∗

(29.7) (67.1) (31.4) (31.4) (72.1)
deg 1.2∗∗∗ −0.7 −0.4

(0.3) (0.7) (0.8)
qi 0.002∗ 0.002∗ 0.002∗

(0.001) (0.001) (0.001)
pr 4.8∗∗ 4.9∗∗

(2.3) (2.3)
Constant 182.2∗∗∗ 43.9∗∗∗ 243.5∗∗∗ 176.2∗∗∗ −303.1 −268.4

(26.5) (8.0) (69.5) (26.7) (232.8) (241.8)
Observations 2,654 2,654 2,654 2,654 2,654 2,654
Adjusted R2 0.01 0.005 0.01 0.01 0.01 0.01

Dependent variable:
sell volume

(1) (2) (3) (4) (5) (6)
tcn 120.5∗∗∗ −1, 939.0∗∗∗ 107.6∗∗∗ 104.8∗∗∗ −1, 542.0∗∗∗

(16.5) (154.8) (16.0) (16.2) (157.4)
deg −1.6∗∗∗ −24.0∗∗∗ −19.3∗∗∗

(0.2) (1.8) (1.8)
qi 0.02∗∗∗ 0.02∗∗∗ 0.01∗∗∗

(0.001) (0.001) (0.001)
pr 2.7 2.5

(2.3) (2.2)
Constant 11.0 154.2∗∗∗ 2, 234.0∗∗∗ 1.2 −265.1 1, 537.0∗∗∗

(9.3) (12.1) (166.5) (9.1) (225.2) (279.4)
Observations 2,654 2,654 2,654 2,654 2,654 2,654
Adjusted R2 0.02 0.03 0.1 0.1 0.1 0.1

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.5: D2D trade prices conditional on side

Dependent variable:
sell price

(1) (2) (3) (4) (5) (6)
tcn 1.0∗∗∗ 0.9 0.7∗∗∗ 1.0∗∗∗ 2.1

(0.1) (1.3) (0.1) (0.1) (1.3)
deg −0.01∗∗∗ −0.002 0.02

(0.002) (0.02) (0.02)
pi 0.2∗∗∗ 0.2∗∗∗

(0.02) (0.02)
qi −0.000

(0.000)
Constant 98.7∗∗∗ 99.9∗∗∗ 98.9∗∗∗ 84.1∗∗∗ 98.8∗∗∗ 82.1∗∗∗

(0.1) (0.1) (1.4) (2.2) (0.1) (2.8)
Observations 2,654 2,654 2,654 2,654 2,654 2,654
Adjusted R2 0.02 0.02 0.02 0.04 0.02 0.04

Dependent variable:
buy price

(1) (2) (3) (4) (5) (6)
tcn 0.2 0.7 −0.7∗∗ 0.1 −0.7

(0.2) (0.6) (0.3) (0.3) (0.6)
deg −0.001 0.01 −0.000

(0.003) (0.01) (0.01)
pi 0.2∗∗∗ 0.2∗∗∗

(0.03) (0.03)
qi −0.000

(0.000)
Constant 99.0∗∗∗ 99.2∗∗∗ 98.5∗∗∗ 80.1∗∗∗ 99.0∗∗∗ 80.1∗∗∗

(0.2) (0.1) (0.6) (2.7) (0.2) (2.7)
Observations 2,654 2,654 2,654 2,654 2,654 2,654
Adjusted R2 -0.000 -0.000 -0.000 0.02 0.001 0.02

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A.16.4 The Sample

Primary Market: D2C data

I calculate a dealer’s (net) inventory at two different periods, daily and at the end-of
sample, and their nominal and absolute values. That is, I compute:

• net daily inventory (NDI) nominal and absolute values (qid, aqid), which gives me an
unbalanced panel data with multiple observations per dealer over 42 trading days;

• net total inventory (NTI) nominal and absolute values (qi, aqi), which gives me a
dataset with one observation per dealer with inventory as bond holdings at the end
of the 42 trading days.

As the figure below shows, both inventory measures are concentrated around zero,
indicative that most dealers trade in a way to off-set portfolio imbalances.
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The concentration of trading centrality values is also reflected in the graph relating it
with the price of inventory. The lest central dealers have lower prices, although the reverse
is not true.
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Interdealer Market: D2D data

The following table summarizing trading frequency and market outcomes (prices and
quantities) in the observed D2D trades. There are 2, 654 trades.

Table A.6: N = 5, 308

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max
trd_dpair 5.619 6.180 1 1 8 30
trd_mpair 49.950 58.080 1 4 106 182
trd_pair 84.350 104.600 1 6 113 320
trd_ddealer 19.210 20.650 1 4 26 92
trd_mdealer 259.500 234.000 1 57 501 673
trd_dealer 466.400 387.600 1 135 849 1,006
vol 63.520 310.600 1 10 30 5,985
pr 99.190 2.571 91.230 98.300 100.300 116.600

Dealer-level information on transactions:

Table A.7: Buy and sell trades per dealer

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
qs 201 0.000 2,957.000 −24,843 10 151 14,884
qs.mean.all 201 188.300 611.400 3.000 16.250 75.000 5,000.000
ps.mean.all 201 98.990 2.232 93.550 98.020 100.000 112.400
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Table A.8: Sell trades per dealer

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
qs.mean 85 −329.900 866.700 −5,000 −177.5 −22.5 −3
ps.mean 85 99.490 3.962 93.360 97.640 100.000 114.400
trd_side 85 31.220 122.800 1 1 12 870

Table A.9: Buy trades per dealer

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
qs.mean 176 114.300 435.000 4.000 15.000 63.540 5,000.000
ps.mean 176 98.930 1.875 94.300 98.020 100.100 107.000
trd_side 176 15.080 56.060 1 1 7 638
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Appendix B

Chapter 2

B.1 RE as a special case
If the RE assumption holds, then all agents know exactly what price outcome will be

for any given history of realizations of the exogenous processes (Dt, Y t). In other words,
Eik

t = Et ∀t, i, k where Et(.) is the expectation of the ‘true’ stochastic price process. Agents
then can interate forward on equation (2.9):

Pt = δEt

[(
Ct+1

Ct

)−γ

Pt+1

]
+ δEt

[(
Ct+1

Ct

)−γ

Dt+1

]

= δEt

[(
Ct+1

Ct

)−γ{
δEt+1

[(
Ct+2

Ct+1

)−γ

Pt+2

]
+ δEt+1

[(
Ct+2

Ct+1

)−γ

Dt+2

]}]
+ δEt

[(
Ct+1

Ct

)−γ

Dt+1

]
...

= Et

[ ∞∑
s=1

δs

(
Ct+s

Ct

)−γ

Dt+s

]
+ lim

s→∞
Et

[(
Ct+s

Ct

)−γ

Pt+s

]

Assuming a no-rational-bubble requirement, it is common knowledge that

lim
s→∞

Et

[(
Ct+s

Ct

)−γ

Pt+s

]
= 0

Hence, the equilibrium asset price is equal to the expected discounted sum of dividends
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Pt = Et

[ ∞∑
s=1

δs

(
Ct+s

Ct

)−γ

Dt+s

]

= Et

[ ∞∑
s=1

δs

(
as

s∏
j=1

εc
t+j

)−γ

Dt(as
s∏

j=1
εd

t+j)
]

= Dt

[ ∞∑
s=1

δs(a1−γ)s

]
s∏

j=1
Et

(
εc

t+j

)−γ

Et

(
εd

t+j

)

= Dt

[ ∞∑
s=1

δs(a1−γ)sρs

]

= δa1−γρ

1− δa1−γρ
Dt

where I use definition (2.12), ρ = E[(εc
t+1)−γεd

t+1] ∀t, and exogenous processes (2.1)
and (2.2).

Thus, defining βRE ≡ a1−γρ I get the rational expectations equilibrium asset price in
equation (2.15).

B.2 Proposition 11 - Inexperienced agents are more reac-

tive
First, to see why forecast errors are different than zero at any time period, look at

risk-adjusted price growth and its subjective expectations as a function of βk
t :

∂

(
Ct

Ct−1

)−γ

Pt

Pt−1

∂βk
t

= βREδλk,∗
t

(1− δβ̃o
t−1)

(1− δβ̃o
t )2

> 1 (B.1)

∂Ek
t

{(
Ct

Ct−1

)−γ

Pt

Pt−1

}
∂βk

t

= 1 (B.2)

Clearly, a change βk
t implies a one-to-one change in agents’ beliefs (by definition) but

results in a greater change for realized price growth. Hence, the later always exceeds its
initial expectations.

Now, Proposition 11 easily follows from Assumption 5. To see this consider an arbitrary

period t in which price is increasing. So it holds that
(

Ct

Ct−1

)−γ

Pt

Pt−1
> 1 and ek

t−1 > 0. By
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types’ belief updating equation (2.25), it must be that agents revise beliefs updward at
t+ 1: ∆βk

t+1 > 0 ∀k = h, l.

Since gheh
t > glel

t, it must be that ∆βh
t+1 > ∆βl

t+1 > 0. Consequently, βh
t+1 − βl

t+1 >

βh
t − βl

t > 0 and thus it must be that βh
t > βl

t and βh
t+1 > βl

t+1.

On the other hand, consider a period when price is decreasing such that
(

Ct

Ct−1

)−γ

Pt

Pt−1
<

1 and ek
t−1 < 0. Again, by equation (2.25) it must be that agents decrease their beliefs next

period: ∆βk
t+1 < 0 ∀k = h, l.

Since gheh
t < glel

t < 0, it must be that ∆βh
t+1 < ∆βl

t+1 < 0. That is, βh
t+1 − βl

t+1 <

βh
t − βl

t < 0 and thus it must be that βh
t < βl

t and βh
t+1 < βl

t+1.

As pointed out, these results follow from the Kalman filter equation of each type. The
gains are sufficiently different to guarantee that |gheh

t | > |glel
t| ∀t. In fact, the difference

in forecast errors eh
t − el

t ∀t is virtually small because, for both types, beliefs are just
small deviations of the RE value (which is the same for both). Consequently, the range of
difference in beliefs is also sufficiently small so that the comparison of each with realized
price itself is virtually the same. The optimal Kalman gains then are what make H-type
beliefs to be more reactive to the forecast error and so to guarantee |∆βh

t | > |∆βl
t| ∀ t.

This discussion is also clear by looking at simulation results in Section 2.8 (Figure
2.2). Importantly, despite the fact that beliefs oscilate around the RE value, these small
deviations are sufficient to render the fluctuation in the PD ratio I obtain from the model.
Adam et al. (2016) discuss this result in details and they argue that it is a strength of the
model, since just slight departures from rational expectations are enough to reproduce
stylized asset pricing facts.

B.3 Recovery Periods
Let t be the period after a sharp continuous decrease in asset price following the boom

- that is, at the bottom of the bust - it holds that eh
t−1 < el

t−1 < 0 and βh
t < βl

t. Price (and so
the PD ratio) returns to its mean value. In absecence of further shocks, price growth is
approximately constant which implies that agents find themselves too pessimistic and start
revising beliefs upwards according to the updating equations (2.25):

βh
t+1 = βh

t + gheh
t

βl
t+1 = βl

t + glel
t

such that ek
t > 0 k = h, l
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Then ∆βk
t+1 > 0 ∀k = h, l. By mean reversion of the PD ratio,

(
Ct

Ct−1

)−γ

≈ 1 during the

recovery periods. Then, I can rewrite the above as

βh
t+1 ≈ βh

t (1− gh) + gh

βl
t+1 ≈ βl

t(1− gl) + gl

Since, βl
t > βh

t and gh > gl it holds that (1− gl) > (1− gh). Because I consider gains
to be small (see equation (2.26)), it must be that βl

t+1 > βh
t+1. And so, for all period during

recovery in which the PD ratio is approximately constant, βl > βh. After beliefs have
consistently been increasing, price starts to increase sharply and so a boom episode is in
motion.

B.4 Network Graphs examples
To the extent of comparison between the examples presented above, let private beliefs

βh
0 = βl

0 = β0 be the same across structures and assume dividend and consumption
shocks are also equal across networks.

Consider first a price growth greater than one as initial condition so that P0 > P−1,
e0 > 0 and this constitues a boom episode. At t = 1, βk

1 k = l, h is the same for all
networks and βh

1 > βl
1. Price is increasing and so equilibrium belief is pinned down by

the highest λi. Realized PD ratio is P1
D1

= δβD

1−δβ̃o
1

where β̃o
1 = λmaxβ

h
1 + (1 − λmax)βl

1. The
maximum λi is greater under the tree/star structure, followed by the circle and the complete
structures, respectively: λ∗

tree/star > λ∗
circle > λ∗

complete. Thus, equilibrium belief and realized
price at t = 1 also follow this magnitude relation. That is

β̃
o,tree/star
1 > β̃o,circle

1 > β̃o,complete
1

P
tree/star
1
D1

>
P circle

1
D1

>
P complete

1
D1

Since λ∗
t has a positive effect on price growth during a boom, the higher is the former

the greater will be the forecast error ek
1 =

(
C1
C0

)−γ

P1
P0
− βk

1 > 0 for k = h, l. Thus ek
1,tree/star >

ek
1,circle > ek

1,complete > 0. In the next period t = 2, it holds then that βk,tree/star
2 > βk,circle

2 >

βk,complete
2 ∀k with βh

2 > βl
2. Equilibrium belief and price will follow the above relation across

networks so that PD ratio is the highest in the tree/star graph and lowest in the complete
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structure.

These results holds for all periods whenever expected price growth is positive, and
under this scenario I can conclude that:

• the lower the network mean degree (tree, star) the higher is realized price and
equilibrium belief at any period;

• less connected networks (tree, star) have greater price volatility when compared to
more connected ones (circle and complete graphs)

• higher network mean degree implies lower dispersion of agents’ public beliefs β̃i
t

The analysis is analogous for a bust episode but results are qualitatively different.
Let initial conditions be of a negative realized and expected price growth P0 < P−1 and
e0 < 0. In the first period intital beliefs are the same across networks such that βh

1 < βl
1.

Price is determined by the lowest λi and so P1
D1

= δβD

1−δβ̃o
1

where β̃o
1 = λminβ

h
1 + (1− λmin)βl

1.
Equilibrium λ∗ is lower in the tree/circle/star networks and higher in the complete graph
and thus

β̃
o,tree/star/circle
1 > β̃o,complete

1

P
tree/star/circle
1

D1
>
P complete

1
D1

Because λ∗
t has a negative effect on price growth when price is decreasing, the higher

is λ∗
t the lower (or greater in absolute value) will be forescast errors ek

1 =
(

C1
C0

)−γ

P1
P0
−βk

1 < 0

for k = h, l since
[(

C1
C0

)−γ

P1
P0

]
complete

<

[(
C1
C0

)−γ

P1
P0

]
tree/star/circle

< βk
1 < 0. Thus ek

1,complete <

ek
1,tree/star/circle < 0. In the next period t = 2 then, it holds that βk,tree/star/circle

2 > βk,complete
2 ∀k

with βh
2 < βl

2. Equilibrium belief and realized price will follow the above relation across
networks so that PD ratio decrease is greater under the complete network compared to
the tree/star/circle graphs.

These results holds for all periods whenever price is expected to decrease and I can
infer that:

• more connected networks have higher equilibrium social weight λ∗
t and thus exhibits

lower realized price
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• price decrease is greater the higher the mean degree and so it is PD volatility

Notice that even though the tree and star graphs have different structure, both share the
same expected degree and consequently they face the same price dynamics. In this sense,
individual nodes’ degree is not as relevant as the overall degree of network connectivity.

B.5 Details on the Simulation
Under the calibrated parameters (Table 2.1), I simulated the model 1000 times through-

out 500 quarters.

Our simulation method is close to Adam et al. (2016). The main difference is in our
specification of agents’ subjective beliefs. As explained by them, to guarantee beliefs’
bound holds at all periods and equilibrium price always exist a differentiable projection
facility in belief updating equation is introduced. Specifically, equation (2.25) becomes

βk
t = ω

(
βk

t−1 + gk

[(
Ct

Ct−1

)−γ
Pt

Pt−1
− βk

t−1

])
∀k = h, l & t > 0 (B.3)

where ω(x) =


x x ≤ βL(

x−βL

x+βU −2βL

)
βU +

[
1−

(
x−βL

x+βU −2βL

)]
βL x > βL

(B.4)

where βL = 1
δ
− 2(1

δ
− βU) and βU is such that the PD ratio doesn’t exceed 500. ω(x) is

a dampening function that applies only to few observations - when beliefs are close tho
their upper bounds. The upper bound on the PD ratio is chosen such that it is higher but
close to its maximum value found in the U.S. data (which is approximately 375).

Booms are calculated as the number of time periods the PD ratio stays above its RE
value at each cycle. Recovery periods are calculated as the number of time periods the
PD ratio stays below its RE value at each cycle.

Since one of our study motivation is Adam et al. (2016), I specify their main set of
results in Table B.1. I are able to repoduce similar empirical fact as them, but our model
exhibit greater PD ratio volatility and mean depending on the social strcuture. Moreover,
AMN do not discuss the lenght of booms and busts, but by looking at their results I can
infer that the present model is able to account for the duration of these episodes. I consider
this a relevant result since it implies that the presence of different investors in the market
and how they behave are also determinant of the length and magnitude of booms and
busts.
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Fact AMN
γ = 5 γ = 80

PD ratio Mean 122.50 115.75
PD ratio Std. Dev. 67.75 71.15

Stock return 1.27 2.11
Stock return Std. Dev. 10.85 16.31

Bond return 0.39 0.11
Risk Premium 0.88 2.0

Dividend Growth Mean 0.00 0.16
Dividend Growth Std. Dev. 2.37 4.41

Table B.1: Adam et al. (2016) Estimation Outcomes
Source: Adam et al. (2016)

B.6 Unkown Network Structure
Define the expected number of links between types k and k′ as

Qkk′ = µkµk′pkk′ =

µ
2pout k 6= k′

µ2pin k = k′
(B.5)

and the expected sum of degrees of nodes of type k as

dk =
∑
k′
Qkk′ = Qkk +Qkk′ = µ2(pin + pout) (B.6)

By the definition then λ for each type is given by

λh = Qhh

dh

= pin

pin + pout

(B.7)

λl = Qlh

dl

= pout

pin + pout

(B.8)

Proposition

By definition λh ≥ λl, due to homophily. Recall the equilibrium equations (2.30) and
(2.31) for the model with a known network strucute. The propostion statement is simply
the most-optimistic belief equation β̃o

t replacing the communication variable.

To make the point clear, notice that during an price increase βh
t ≥ βl

t. Since λh ≥ λl, it
must be that the higher weight is given to the higher type-belief and so β̃o

t = λhβ
h
t +(1−λh)βl

t

during a boom. Whereas during a bust, βh
t ≤ βl

t and because λl < (1− λl), it must be that
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β̃o
t = λlβ

h
t + (1− λl)βl

t.

Theorem

Look at equations (2.20), (2.30) and (2.31) along with the proposition above. Since
λh > λl, it holds that

φt = 1↔ βh
t > βl

t ⇒ β̃o
t = λh

t β
h
t + (1− λh

t )βl
t

φt = 0↔ βh
t < βl

t ⇒ β̃o
t = λl

tβ
h
t + (1− λl

t)βl
t

Writting price equilibrium equation (2.20) as a function of φt, λh, λl delivers the Theorem.
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Appendix C

Chapter 3

C.1 Solving the Model
Individual Demands Trader i decides her demand using all information she has, i.e.

si, λi, zi. Given her beliefs on fundamental (3.10) and her perceived price (3.7), i’s demand
is determined by

xi =

κd · µ+ κe · si + κzi
· zi

κd + κe + κzi

− p

γ(κd + κe + κzi
)−1

= 1
γ

(κd + κe + κzi
) ·
κd · µ+ κe · si + κzi

·
(

p−Ai

Bi

)
κd + κe + κzi

− p


= 1
γ

(κd + κe + κzi
) ·
κd · µ+ κe · si − κzi

· Ai

Bi

κd + κe + κzi

−
(

1− κzi
/Bi

κd + κe + κzi

)
p


= 1
γ
·
[
κd · µ+ κe · si − κzi

· Ai

Bi

−
(
κd + κe + κzi

· (Bi − 1)
Bi

)
p

]

(C.1)

Individual MUC Trader i finds coefficients {Ai, Bi, Ci} using MUC by supposing that
all traders extract the same information from price as she does. That is, i thinks others
demand function xj(·) ∀j 6= i : tj = 1 depends on λi (not on λj, which we assume i

does not know). Using her demand function (C.1) and market clearing condition (C.3), i
computes price p by equating aggregate demand with the noisy supply n,
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1
N

∑
i:ti=1

κd·µ+κe·si+κzi ·
(

p−Ai
Bi

)
κd+κe+κzi

− p
γ(κd + κe + κzi

)−1 = n

1
γN

(λiN)κdµ+ κe

∑
j

sj − (λiN)κzi

Ai

Bi

− (λiN)
[
κd + κe + κzi

(Bi − 1)
Bi

]
p

 = n

[
κd + κe + κzi

(Bi − 1)
Bi

]
p = κdµ+ κe

1
λiN

∑
j

sj − κzi

Ai

Bi

− γ

λi

n

p =
(
κd + κe + κzi

(Bi − 1)
Bi

)−1 [
κdµ+ κed̂i − κzi

Ai

Bi

− γ

λi

]

The above must then equal her price guess (3.7), p = Ai +Bi · d̂i + Ci · n:

κd · µ+ κe · d̂i − Ai

Bi
· κzi
− γ

λi
· n

κd + κe + Bi−1
Bi
· κzi

= Ai +Bi · d̂i + Ci · n (C.2)

Matching coefficients

κd · µ− Ai

Bi
· κzi

κd + κe + Bi−1
Bi
· κzi

= Ai ⇒Ai = κd · µ
κd + κe + κzi

κe

κd + κe + Bi−1
Bi
· κzi

= Bi ⇒Bi = κe + κzi

κd + κe + κzi

− γ
λi

κd + κe + Bi−1
Bi
· κzi

= Ci ⇒Ci = − γ

λi · κe

· κe + κzi

κd + κe + κzi

With this, we can compute agent it’s demand:

xi (si, λi, p) = κd · µ+ κe · si − κzi
· Ai

Bi

−
(
κd + κe + κzi

· Bi − 1
Bi

)
p (3.13)

= κd · µ+ κe · si −
κzi
· κd

κe + κzi

· µ−
(
κd + κe −

κzi
· κd

κe + κzi

)
· p

= κe · (si − p)−
κe · κd

κe + κzi

· (p− µ)

Aggregate MUC
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To find the equilibrium price, we conjecture that the price function is p = A+Bd̂+ Cn.
Given equilibrium demands (3.13), aggregate demand is

X(p) = 1
N

∑
i:ti=1

κe · (si − p)−
κe · κd

κe + κzi

· (p− µ) (C.3)

Market clearing delivers

n = 1
N

∑
i:ti=t

(
κe

γ
· (si − p)−

κe · κd

γ (κe + κzi
) · (p− µ)

)

n =κe

γ
·
( 1
N

∑
i : ti = tsi − λp

)
− κe · κd

γ

(
1
N

∑
i : ti = t

1
κe + κzi

)
· (p− µ)

(C.4)

Let1

κz̄ ≡
1
λN

∑
ti

1
κe + κzi

−1

− κe (C.5)

Then we can write

n =κe

γ
·
(
λ · d̂− λp

)
− λ · κe · κd

γ · (κe + κz̄) · (p− µ)

p =
κe

γ
· λ · d̂+ λ·κe·κd

γ·(κe+κz̄) · µ− n
κe

γ
· λ+ λ·κe·κd

γ·(κe+κz̄)

p =
λ · d̂+ λ·κd

(κe+κz̄) · µ−
γ
κe
· n

λ
(

κe+κz̄+κd

κe+κz̄

)
(C.6)

and find the equilibrium price

p = κd

κe + κd + κz̄

· µ+ κe + κz̄

κe + κd + κz̄

· d̂− γ

λ · κe

· κe + κz̄

κe + κd + κz̄

· n (3.15)

Matching the above with our conjectured price function, we can find the true price
coefficients {A,B,C}:

1Another way to derive κz̄ is to notice that 1
κe+κz̄

= 1
λN

∑
i : ti = t 1

κe+κzi
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A = κd · µ
κd + κe + κz̄

B = κe + κz̄

κd + κe + κz̄

C =− γ

λt · κe

· κe + κz̄

κd + κe + κz̄

(C.7)

C.2 Network Effect

Connectivity & Social Market

To understand this result, we can first decompose how the network determines λi. That
depends on how many friends i has, gi and how many of those are trading the asset,
tNi
≡ ∑j∈Ni

tj. Moreover, gi and tNi
affect λi in opposite ways.

1. holding tNi
fixed: ↑ gi ⇒↓ λi

“I have more friends”

2. holding gi fixed: ↑ tNi
⇒↑ λi

“More of my friends are trading”

3. ∆tNi
·∆gi?

• ↑ tNi
↓ gi ⇒↑ λi

“I have few but like-minded friends, all trading the stock” (assumption: agent is
trading)

• ↓ tNi
↑ gi ⇒↓ λi

“I have lots but different-minded friends”

On (3) notice that the “type effect” dominates the “size effect”:

∣∣∣∣∣∂λi

∂gi

∣∣∣∣∣ =
∣∣∣∣∣tNi

g2
i

∣∣∣∣∣ <
∣∣∣∣∣ ∂λi

∂tNi

∣∣∣∣∣ =
∣∣∣∣∣ 1gi

∣∣∣∣∣
since gi > tNi

≡
∑

j∈Ni

tj

that is, if I have one more friend who is also trading then ↑ λi ←→ “I myopically believe
the stock market is greater (more participants)”
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Demand & Social Market

1. holding tNi
fixed: ↑ gi ⇒↓ λi ⇒↓ xi

“I have more friends thus I believe market is relatively smaller and thus I buy LESS” ?

2. holding gi fixed: ↑ tNi
⇒↑ λi ⇒↑ xi

“More of my friends are buying thus I believe market is larger and thus I buy MORE”?

3. ∆tNi
·∆gi

• ↑ tNi
↓ gi ⇒↑ λi ⇒↑ xi

“I have few but like-minded friends thus I buy MORE”

• ↓ tNi
↑ gi ⇒↓ λi ⇒↓ xi

“I have lots but different-minded friends thus I by LESS”

Harmonic Mean

Consider the individual coefficients (κzi
+ κe) that appear in each agent’s equilibrium

demand (3.13). These coefficients are positive real numbers. The harmonic mean of
{(κzi

+ κe)}i is defined as

H =
λN∑

ti=1

(
1

κzi +κe

) (C.8)

Looking at the definition of public information precision (3.16) it is clear that κz̄ is a
function of H:

κz̄ := 1
λN

∑
ti=1

(
1

κzi
+ κe

)−1

− κe

= 1
λ2N2H − κe

(C.9)

For simplicity, we use the following equality to refer to the harmonic mean

h =
1∑

ti=1

(
1

κzi +κe

) (3.17)
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which is equivalent to 1
λN
H. That is, we write

κz̄ = 1
λN

h− κe (C.10)

C.3 Comparative Statics

Network Effect

Individual level:

At the individual level, we find that λi positively affects price precision κzi
,
∂κzi

∂λi

> 0.

∂κzi

∂λi

= −
[
− 1
λ2

i

1
Nκe

− 1
λ3

i

2γ2

κnκ2
e

] [ 1
λiN

κ−1
e + κ−1

n γ2 (λiκe)−2
]−2

=
(

1
λ2

iκe

)−2 [ 1
N

+ 1
λi

2γ2

κnκe

]
κ2

zi

= λ4
iκ

2
e

[
1
N

+ 1
λi

2γ2

κnκe

]
κ2

zi

> 0

Aggregate Level:

∂κz̄

∂λ
= − 1

λ2N

∑
ti

1
κe + κzi

−1

= −1
λ
κz̄

< 0

and

∂κz̄

∂λi

= −λN
∑

ti

1
κe + κzi

−2 (
−1

(κe + κzi
)2

)

= 1
(κe + κzi

)2κz̄

> 0
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∂p

∂κh

= − 1
κd + κh

[
p−

(
d̂− γ

λκe

n
)]

< 0

if p >
(
d̂− γ

λκe

n
)

Individual Demand

A larger social market, and thus more precise price information, leads to higher demand
when p > µ.

p > µ :
∂xi

∂κzi

= κdκe

(κe + κzi
)2 (p− µ)

> 0

l
∂xi

∂λi

= ∂xi

∂κzi

∂κzi

∂λi

= (> 0) · (> 0)

> 0

C.4 Price Information
The price information extracted by each trader i, zi (3.9), is different from the (true)

public information z. On one hand, the individual price signal is

zi = d+ 1
λiN

∑
ti

εi −
γ

λiκe

n

= κd

(κe + κzi
) (p− µ) + p

(C.11)

On the other hand, the “true” information content in price (i.e. the “true public signal”) is
given by2

2Recall (C.7) that gives coefficients (A, B, C): z ≡
p−A

B
= d +

1
λN

∑
ti

εi +
C

B
n
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z = d+
1
λN

∑
ti

εi −
γ

λκe

n

= κd

κh

(p− µ) + p

(C.12)

Individual Price Signal

When p > µ, a larger social market, and thus more precise price information, leads to a
lower level of inferred price (price signal). That is, zi is decreasing in κzi

when p > µ:

∂zi

∂κzi

= 1
κe + κzi

· p− 1
(κe + κzi

)2 [(κe + κd + κzi
)p− κdµ]

= − κd

(κe + κzi
)2 (p− µ)

= 1
κe + κzi

(p− zi)

(C.13)

Alternatively, we can write zi in terms of private signals {si}: zi = d+ 1
λiN

∑
ti
εi − γ

λiκe
n

(C.11).Then

∂zi

∂λi

= 1
λ2

i

 γ

κe

n− 1
N

∑
tj

εj

 (C.14)

Public Information Distance

Now we look at the distance from the true price signal z.

x-axis: κzi ; L: p − µ < 0, R: p − µ > 0

Thus lower κzi
delivers a higher |z − zi|.
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∂(z − zi)
∂κzi

= ∂κzi

∂λi

×
{

1
(κe + κzi

)2κd · µ−
(κpi

+ κe + κzi
)

(κe + κzi
)2 · p

}

= ∂κzi

∂λi

× 1
(κe + κzi

)2︸ ︷︷ ︸
↑κzi →↓(.)

[κdµ− (κpi
+ κe + κzi

)p]︸ ︷︷ ︸
↑κzi →↓(.)

= p

(
κd + κe + κzi

(κe + κzi
)2 −

1
κe + κzi

)
− κdµ

(κe + κzi
)2

= κd(p− µ)
(κe + κzi

)2

(C.15)

From the previous results, we find that traders with greater social market extract more
precise price information. When p > µ (p < µ) this implies:

• higher (lower) demand

• lower perceived price

• price signal further to the truth

When p > zi (p < zi)

• perceive higher (lower) price when p > zi (p < zi)

• perceive a price signal closer to the truth

That is

p > µ : ↑ λi ←−↑ κzi
←−


↑ xi

↓ zi

↓ (z − zi)

At the same time,

p > zi : ↑ λi ←−↑ κzi
←−↑ zi
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