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“It requires a much higher degree of imagi-
nation to understand the electromagnetic field
than to understand invisible angels. […] I speak
of the EandB fields andwavemyarms and you
may imagine that I can see them […] but I can-
not reallymake a picture that is even nearly like
the true waves.”

Richard P. Feynman,
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Abstract

Microwave acoustic technology is a fundamental enabler of the now ubiquitous wireless commu-
nication devices (let them be smartphones, routers, sensing nodes or even small base stations, to
name a few): an unmatched miniaturization capability paired with excellent performance make it
the mainstay for the filtering stages of modern radio frequency front-end modules for mobile de-
vices. Even further, with the current deployment of 5G and the already ongoing development of 6G,
a bright future for the technology is foreseeable together with a plethora of challenges still to be
solved. In this context, this thesis aims at tackling the complexity of microwave acoustic filter and
multiplexer design building on concepts from a not very well known but very interesting research
field named network synthesis.

In thiswork, the discussion of network synthesis techniques in the context ofmicrowave acoustic
technology is constructed in two separated paths. Starting from the consideration of two-port net-
works, this thesis covers the exploitation of the input and output reflection phase of a filter describing
its impact in final device parameters and develops both the intrinsic considerations of ladder filters
starting in shunt resonator and the possibility to compose deviceswith two passbands by considering
reflection phases of two separate ladder structures. Building on the findings from such discussion,
an approach to compose ladder filters with transmission zeros at unexpected positions is discussed
and demonstrated with a fabricated prototype.

The second network synthesis discussion path in this work is devoted to extending the already
developed synthesis techniques to consider multiplexers. A core component in modern front-ends
implementing carrier aggregation, and a true design challenge. Themultiplexer synthesis technique
proposed for the first time in this thesis is based on computing how must a set of filter responses be
such that when connected together at a common port, the desired multiplexer response fulfilling
specifications is obtained.

From a technological perspective, in parallel to the developed network synthesis techniques, this
work also presents the results obtained from the initial manufacturing and characterization stages
of microwave acoustic resonators based on exploiting the zeroth-order shear horizontal mode on a
thin film of lithium niobate with the objective of developing a demonstration platform for some of
the synthesis techniques in this thesis. The discussion of such results is focused on the effects of
electrode thickness and transducer apodization patterns on the suppression of spurious modes both
in the longitudinal and transversal directions, respectively.
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Resum

La tecnologia acústica demicroones és el fonament que possibilita la gran quantitat de dispositius de
comunicació sense fils que ens envolta (siguin aquests des de telèfonsmòbils, encaminadors, sensors
o fins i tot petites estacions base): una capacitat de miniaturització sense precedents emparellada
amb un rendiment excel·lent fan d’aquesta tecnologia la base de les etapes de filtrat de les capçaleres
de radiofreqüència per a dispositius mòbils. Aquests fets, afegits al desplegament de la tecnologia 5G
i els treballs en el desenvolupament de 6G, permeten preveure tant un futur brillant per la tecnologia
com una llarga llista de reptes per resoldre. En aquest context, aquesta tesi aspira a enfrontar la gran
complexitat de dissenyar filtres i multiplexors microacústics construint sobre conceptes d’un camp
poc conegut però molt interessant anomenat síntesis de xarxes.

En aquesta tesi, la discussió sobre síntesi de xarxes en el context de la tecnologia microacústica
es desenvolupa en dos camins. Començant per considerar xarxes de dos ports, la tesi se centra en
com explotar la fase de reflexió tant a l’entrada com a la sortida d’un filtre per descriure l’impacte
que aquesta té sobre els paràmetres finals del filtre i desenvolupa les consideracions necessàries per
a sintetitzar un filtre en escala començant en ressonador paral·lel així com la possibilitat d’obtenir
dispositius implementant dues bandes de pas considerant les fases de reflexió de dos filtres en escala
diferents. A partir de les conclusions extretes en aquesta discussió, també es presenta la possibilitat
de sintetitzar filtres microacústics en escala amb zeros de transmissió en posicions no esperades i es
demostra un prototip fabricat.

El segon camí de discussió de la síntesi de xarxes en aquest treball se centra en estendre les
tècniques de síntesi ja conegudes i presentades a la tesi per a considerar també, per primera vegada,
multiplexors. Un tipus de dispositiu fonamental en les capçaleres modernes que permeten agregat
de portadores i que suposa un veritable repte de disseny. La tècnica de síntesi per a multiplexors
presentada en aquesta tesi es basa en calcular com han de ser les respostes d’un conjunt de filtres
per tal que quan es connecten junts en un port comú, la resposta de multiplexor obtinguda sigui la
desitjada i compleixi les especificacions.

En paral·lel a les tècniques de síntesi de xarxes desenvolupades, aquest treball també presenta els
resultats obtinguts en les fases inicials de fabricació i caracterització de ressonadorsmicroacústics ex-
plotant elmode transversal horitzontal d’ordre zero enuna làmina fina deniobat de liti amb l’objectiu
de desenvolupar una plataforma de demostració de les tècniques de síntesi presentades en aquesta
tesi. La discussió d’aquests resultats tecnològics se centra en els efectes del gruix de l’elèctrode i dels
patrons d’apoditzat del transductor interdigital en la supressió de modes espuris tant en la direcció
longitudinal com la transversal, respectivament.
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CHAPTER1

Introduction

At the moment of reading this introduction, the reader is completely surrounded by a rare, critical
and finite resource that is much more expensive than any other material on earth: the electromag-
netic (EM) spectrum. It cannot be observed or felt but plays amajor role inmost of our daily activities.
From the simple act of listening to FM radio or opening a car with a key fob to a video call using a
smartphone, spectrum is involved as the fundamental enabler resource. Given its criticality, manag-
ing it correctly and ensuring the coexistence of multiple communication systems in closely spaced
frequencies has historically been a topic of concern for microwave engineers. Radio frequency (RF)
filters, frequency-selective components that allow to reject portions of the spectrumwhile accepting
others, constitute a very intensive field of research that spans a wide range of microwave technolo-
gies and passbands located all along the frequency spectrum. RF filters are a cornerstone of almost
every system utilizing the electromagnetic spectrum and are found inside the great majority of RF
front end modules (RF-FEM).

The scope of this thesis is centered around a specific type of filters: those that are integrated inside
the now ubiquitous smartphones and many mobile devices. Without diving yet into the technolog-
ical details of such filters and the fascinating world they compose, let us first justify the important
role they play in many parts of our day to day life. While key fobs and FM radio might seem simple
systems and not specially spectrum-hungry, mobile communications have become a basic part of
daily life and are one of the most spectrum-demanding services. To exemplify it, considering statis-
tics from the Nov. 2022 Ericsson Mobility Report [1], mobile communications are responsible for
90 exabytes (EB) of monthly data traffic at the end of 2022 and are expected to generate 324 EB per
month at the end of 2028. Not only this is an enormous amount of data but also must be transmitted
as fast as possible and with minimum latency to allow real time applications. In this scope, consider
that channel capacity is directly related to usable bandwidth and signal to noise ratio (SNR) [2, 3]
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and such relation has a strong impact on the importance of spectrummanagement devices. It drives
the appetite for more bandwidth, thus requiring more bands dedicated to mobile communications,
and also, considering a denser network of base stations to increase SNRwithout increasing transmit
power due to mobile devices being battery-powered, the need to handle higher interference levels,
hence requiring enhanced rejection.

The increasing need for more bandwidth can be exemplified with the evolution of mobile
communication standards over the last decades: from the analog Advanced Mobile Phone System
(AMPS) operating a single band at 850 MHz to the currently under deployment fifth generation of
communications (5G) featuring 62 different frequency bands within frequency range 1 (FR1) from
410 to 7125 MHz [4] and up to 6 bands distributed along the frequency range 2 (FR2) from 24.25 to
71 GHz [5], meanwhile academia is already discussing technological approaches and applications of
6G. Higher bandwidths are not only achieved by the allocation of new bands to mobile communica-
tions and moving up to higher frequencies but also through additional techniques such as multiple
input/multiple output (MIMO) strategies allowing frequency re-use within the same mobile device
thanks to antenna diversity or carrier aggregation (CA) [6] (Ch. 4), the concurrent operation of mul-
tiple carriers both within and among frequency bands to achieve higher instantaneous bandwidth1.
Such strategies play an important role in defining the filtering requirements of a mobile device and
pose complex hardware design challenges. To name an example, CA is of specific interest for this
thesis because aggregation of carriers among different bands involves the joint connection of mul-
tiple filters to a single antenna forming a multiplexer. A very complex design problem to which a
chapter is devoted.

The brief description of the basic spectrum aspects of 5G in the above paragraph is intended
as a justification of why RF filters are an essential part of communication systems. Even further,
note that the number of bands inside FR1 mentioned above are only those specifically licensed for
mobile communications. Many other services using the spectrum in that frequency range such as
for example global navigation satellite systems (GNSS) (e.g., Galileo or GPS), unlicensed bands also
used forwireless communications such as those part of IEEE 802.11 (i.e.,WiFi) or terrestrial trunked
radio, to name a few, must coexist with cellular bands. The reader is encouraged to consult the FCC
Radio Spectrum Allocation chart [7] for a better understanding on how crowded the spectrum is
and the demanding performance requirements it poses on RF filters in terms of rejection to adjacent
bands and response selectivity.

1Up to 5 sub-channels of 20 MHz in LTE initial releases, achieving up to 100 MHz instantaneous bandwidth, and
extended to 32 aggregated carriers in Release 13 enabling up to 640 MHz bandwidth. Total bandwidth of 1 GHz can now
be achieved through the so-called Dual Connectivity in 5G [6] (Ch. 5).



Chapter 1. Introduction 3

Microwave 
Acoustic

Size

Q
Waveguide

Lumped 
element

Microstrip

SIW

Coaxial 
cavity

Dielectric 
resonator

LTCC

10

102

103

104

Figure1.1:Qualitativemapof commonmicrowave resonator technologies asa functionof achievable
Q and resonator size for a reference frequency of 3 GHz.

1.1 A Filter Technology for Mobile Devices

Having introduced the need for RF filters to manage the spectrum, the attention must now be di-
rected to two very critical assets from a mobile phone perspective: space and energy. The scarcity
of space might be described with a very simple example if one assumes a premium smartphone
equipped to work both in Europe, North America and China, featuring GNSS, Bluetooth and WiFi
connectivity both in the 2.4 and 5 GHz bands. From the brief introduction to 5G spectrum needs, the
total filter count inside such smartphone, without considering any advanced feature such as dupli-
cated bands for receiver diversity or MIMO, is well above 70. Clearly, for the device to comfortably
fit in the users hands and pockets, extreme miniaturization requirements must be imposed on the
filter side. However, miniaturization when dealing with RF usually involves a cost.

Let us briefly introduce here that the basic building blocks of RF filters are resonators. Elements
whose frequency-dependent electrical performance is characterized by frequencies at which they
behave as either an open or a short circuit depending on how the energy distributes inside the struc-
ture. From an EM point of view, at resonance, a resonator dynamically exchanges energy between
the electric and magnetic fields. In addition, an important figure of merit of resonators is the qual-
ity factor Q that describes the inherent losses in the resonator per oscillation cycle at the resonance
frequency. While this is an extremely simplified conceptual description of a resonator, it allows to
introduce that the losses experienced by the frequencies within the passband of an RF filter (i.e., in-
sertion losses) are ultimately related to the quality factor of the resonators that compose it. From this
fact, energy, the second scarce asset pointed out at the beginning of this section, gains importance.
Sincemobile devices are powered by batteries and lifetime is a priority, it is of the utmost importance
to minimize losses of transmitter power at the filters of RF-FEMs to avoid increasing battery con-
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(a) (b)

Figure 1.2: Pictures of two RF front‑end modules for mobile devices by Qorvo Inc. ©2017 (extracted
from [8]) both having a footprint of 45 mm2. (a) Low‑band RF‑FEM featuring 12 SAW filters (purple
dots). (b) Mid‑band RF‑FEM featuring 12 BAW filters (green dots).

sumption. Even further, resonator Q factor not only defines insertion losses but also has an impact
on the achievable selectivity of a given filter. A key figure in a crowded spectrum situation.

The challenge for mobile phone filters is then double: achieving miniaturization while keeping
a superior Q performance. To exemplify the trade-off between miniaturization and intrinsic losses,
Fig. 1.1 shows a qualitative map positioning the main microwave resonator technologies and their
achievable Q values at a given frequency as covered in [9] (Ch. 11). This map highlights two very
important facts. At first, the clear cost ofminiaturization in terms of losses is observedwith the dispo-
sition of grey boxes and the trend they depict. These technologies share the common characteristic
of all being EM resonators and show how volume is an important aspect in maximizing Q when
dealing with electromagnetic fields. On the other hand, the map shows a clear outlier to the trend
pointing out that microwave acoustic technology can achieve extrememiniaturization while provid-
ing Q factors in the order of thousands. For this reason, microwave acoustic or acoustic wave (AW)
resonators are the basic building block of RF filters for mobile devices due to enabling unmatched
degrees of miniaturization, for example, allowing the fabrication of several thousands of filters on
a 6-inch wafer, while providing very high Q values. No other microwave technology is capable of
achieving such performance and that is why AW filters have dominated the market of RF filters for
mobile devices since its introduction at GHz frequencies [10–13]. Fig. 1.2a and 1.2b exemplify the
degree of miniaturization provided by AW technology with two photographs of RF-FEMs by Qorvo
Inc. each featuring 12 acoustic wave filters in 45 mm2.

The superior performance of AW resonators is achieved by a complete change of the domain in
which waves propagate and resonance takes place: as the name indicates, they are based in acoustic
or mechanical waves propagating in solids to achieve the desired electrical performance. Resonant
structures of microscopic dimensions can be constructed via the proper confinement of mechani-
cal waves given that the velocity of such waves in solids is 105 times slower than electromagnetic
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waves in vacuum and thus, mechanical wavelengths lie in the order of magnitude of microns at
GHz frequencies. For such dimensions, manufacturing of AW devices involves processes common
to microelectronic and integrated circuit (IC) fabrication.

Nevertheless, since wireless communications are based on EM waves, the key enabler to attain
the mentioned change of domain is piezoelectricity, the capacity of a crystalline material of trans-
ducing mechanical energy into electromagnetic energy, and vice versa. Not all crystalline materials
are piezoelectric and not all piezoelectric materials are equally efficient in such transduction. The
specific properties of materials along with the fact that many acoustic propagation modes exist giv-
ing rise to different resonator structures make microwave acoustics a complete and complex field
of research. To dive into the different types of AW resonators currently in use in RF-FEMs and to
present the structures fabricated in this work, a complete chapter is devoted to microwave acoustic
resonators in this dissertation.

As is covered in forthcoming chapters, many types of acoustic wave resonators exist depending
on the mechanical wave they exploit. From an RF filter perspective, the two main resonator struc-
tures that fill themajority of theRF filtermarket formobile devices are the bulk acousticwave (BAW)
and surface acoustic wave (SAW) resonators, each based on a different piezoelectric material. Ad-
ditionally, in recent years a third type, namely plate wave resonators, have gained attention due to
their interesting capabilities in terms of achievable filter bandwidth, as is discussed in this thesis. For
the purpose of this introduction, let us remain in the electrical performance side and highlight that
irrespective of the type of resonator structure, the electrical response of an AW resonator can be cir-
cuitally represented, in its fundamental mode of resonance, with the Butterworth-Van Dyke (BVD)
model [14, 15] shown in Fig. 1.3a along with the traditional schematic symbol of an AW resonator
that is used throughout this thesis.

The BVD model is of paramount importance since it allows to abstract from the mechanical
domain and represent, in a completely electrical manner, the essential behavior of an AW resonator.
In its fundamentalmode of operation, the BVDmodel features the so-calledmotional arm composed
of a series LC resonator (circuital elements 𝐿𝑎 and 𝐶𝑎) that represents the resonance happening in
the mechanical domain. The motional arm is in parallel to the so-called static arm composed of
a capacitor 𝐶0 representing the natural capacitive nature of the piezoelectric transducer. The BVD
model, through its level of abstraction, is a fundamental tool in the early stages of filter design and
allows fast and simple evaluation of filter responses. Moreover, although the example shown here is
ideal and lossless, the complexity of the model can be scaled to reflect many physical parameters of
anAW resonator. The simplest upgrade of it is including losses, both in the electrical andmechanical
domains as in [16], but can also reflect spurious resonancemodes in themechanical domain through
additional motional branches in parallel, for example.

By simple inspection of the circuit, it is clear that an AW resonator features two distinct reso-
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Figure 1.3: Fundamental electrical representation of an acoustic wave resonator. (a) Schematic rep‑
resentation of an AW resonator and the Butterworth‑Van Dyke circuital model. (b) Input impedance
and phase of the input impedance of an ideal and lossless AW resonator connected to ground.

nances with opposite behavior: a series resonance (𝑓𝑠) at the frequency where the motional arm res-
onates and behaves as a short circuit and a parallel resonance (𝑓𝑝) at which the inductive behavior of
the motional arm at frequencies above 𝑓𝑠 resonates with capacitance 𝐶0, imposing an open circuit.
Their expressions are easily derived as in (1.1) and the input impedance of an ideal AW resonator
connected to ground is shown in Fig. 1.3b having 𝑓𝑠 = 1.975 GHz, 𝑓𝑝 = 2.030 GHz and 𝐶0 = 1.94
pF. Notice the fact that the AW resonator depicts a capacitive behavior away from resonances (due
to the nature of the capacitive transducer) and thus, it always holds that 𝑓𝑠 < 𝑓𝑝 and only between 𝑓𝑠
and 𝑓𝑝 the resonator shows an inductive behavior.

𝑓𝑠 =
1

2𝜋√𝐿𝑎𝐶𝑎
and 𝑓𝑝 =

1
2𝜋√

𝐶𝑎 + 𝐶0
𝐿𝑎𝐶𝑎𝐶0

= 𝑓𝑠√
1+ 𝐶𝑎

𝐶0
(1.1)

More importantly, Fig. 1.3b introduces another fundamental parameter of AW resonators that
has enormous implications in filter performance and is closely related to device physics, that is the
effective electromechanical coupling coefficient (𝑘2eff ) that throughout this thesis is defined (follow-
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Figure 1.4: The AW ladder filter. (a) Schematic representation of an 𝑁 = 3 ladder filter starting in
series resonator. (b) Ideal lossless response of an 𝑁 = 3 ladder filter with the input impedance of
each of its resonators superimposed.

ing the definition by J. Kaitila in [17] (Ch. 3) for BAW resonators and as discussed in [18]) as:

𝑘2eff =
𝜋
2
𝑓𝑠
𝑓𝑝
cot (𝜋2

𝑓𝑠
𝑓𝑝
) (1.2)

This coefficient, that relates the frequency separation between resonances, can be experimentally
obtained by measuring 𝑓𝑠 and 𝑓𝑝 for a given AW resonator and is physically related to the transduc-
tion efficiency between the electrical and mechanical domains of a given piezoelectric material and
strongly dependent on the direction of wave propagation and type of wave excited. At this point, to
provide a clear description of the impact of 𝑘2eff in the context of AW filters and the achievable filter
performance, let us briefly introduce the workhorse topology used for RF filters with AW resonators:
the ladder topology. A schematic representation of the topology, in this case starting in series res-
onator, is shown in Fig. 1.4a for a filter of order 𝑁 = 3.

The AW ladder filter is composed of AW resonators disposed in alternating series and shunt po-
sitions and implements filter responses of order𝑁, where𝑁 is the number of AW resonators. Notice
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that the AW ladder is an electrically connected filter, meaning that resonators form the filter via
connections made in the electrical domain while resonances physically happen in the mechanical
domain. Additionally, consider the presence of input and output shunt inductors 𝐿𝑖𝑛 and 𝐿𝑜𝑢𝑡. These
elements, as is discussed in this thesis, have a specific role directly related to the phase of the filter
and can only be avoided if a set of specific conditions are applied. Moreover, the ladder structure
can also start in shunt resonator and in that case, input and output inductors are connected in se-
ries. An specific study on the design of ladder filters starting in shunt resonator is provided in this
dissertation.

To conceptually describe the working principle of the ladder filter, Fig. 1.4b depicts an ideal loss-
less response of an 𝑁 = 3 AW ladder filter alongside the input impedance of each of the resonators
composing it. This filter has been designed to implement a passband between 1.970 and 2.030 GHz
and features three transmission zeros (TZs). That is, frequencies at which 𝑆21 is null. Considering
the disposition of resonators in the topology and the fact that 𝑓𝑠 > 𝑓𝑝, the origin of TZs in the ladder
filter is directly related to the resonances of the AW resonators: shunt resonators place TZs below
the passband at their 𝑓𝑠 (because they impose a short circuit to ground) and series resonators place
TZs above the passband at their 𝑓𝑝 (because they impose an open circuit on the main path of the
filter). This is highlighted in Fig. 1.4b where the blue line corresponds to the shunt resonator and
red and green traces correspond to the two series resonators. From this conceptual description, two
interesting observations can be easily highlighted: the type of filter response implemented by an AW
ladder features as many TZs as resonators, an important aspect with implications in a forthcoming
chapter, and an AW ladder filter has as many TZs above/below the passband as series/shunt res-
onators, respectively. This latter fact has been considered an unbreakable rule for many years and
has beenwidely exploited in the design of RF filters formobile devices. Although it holds true for the
vast majority of cases, this thesis demonstrates that under certain circumstances and taking careful
consideration of the phase of the filter such restriction can be overcome and ladder filters in which
some resonators place TZs in the opposite side of the passband can be designed.

To close this section, an important remark can be intuitively derived from the example shown in
Fig. 1.4b.While filter TZs are directly related to either𝑓𝑠 or𝑓𝑝 of shunt or series resonators, notice that
the remaining resonance of each of these resonators (i.e., 𝑓𝑝 of shunt and 𝑓𝑠 of series resonators) is ac-
tually in charge of forming the passband. At 𝑓𝑝 of a shunt resonator there is an open circuit between
the filtermainline and ground and therefore no signal can leak through the resonator to ground and,
similarly, series resonators at their 𝑓𝑠 act as short circuits allowing all signal to flow through the fil-
ter. Therefore, observe the clear relation between the achievable bandwidth of the ladder filter and
𝑘2eff, the relative distance between the two resonances of the acoustic wave resonators. This relation
is historically stated, as a rule of thumb, as requiring a 𝑘2eff around twice the fractional bandwidth
(FBW) of the filter in question [17] (Ch. 4). Such a relation has implications in selecting the piezo-
electric material and type of resonator that best suits each application, as is covered in the following
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chapter, and is the driver of research in new materials and resonator structures to cover the wider
bands introduced with 5G.

1.2 The Challenge of Acoustic Wave Filter Design

Up to this point, this introduction has provided an overview of the need for RF filters to manage
a crowded spectrum from a mobile device point of view along a brief description of acoustic wave
technology and some of its key characteristics required for a better comprehension of the purpose
of this dissertation. Although the working principle of the AW ladder filter has been conceptually
described, such description does not depict the true complexity of designing RF filters with acoustic
wave devices.

AW devices can be located at the intersection of material science and mechanics, microfabrica-
tion and microwave engineering. Although the ultimate performance of an AW resonator is eval-
uated from a microwave point of view, its behaviour has its roots in mechanical phenomena (i.e.,
acoustic waves) which in turn are strongly dependent on the physical properties of thematerial used
as a medium for propagation. Moreover, given the microscopic dimensions of acoustic waves in the
GHz frequency range, AW resonators are also tied to the fabrication capabilities in a clean room
environment such as photolithography, metal deposition or the epitaxial growth of thin films of
piezoelectric materials, to name a few. Clearly, the design and fabrication of an AW resonator with
outstanding performance is a complex task and thus, the complete design of an AW filter, a device
composed of many AW resonators at different frequencies, is directly a challenge if one also takes
into account that the filter is not only evaluated from a response perspective but also must consider
area requirements, power handling capabilities and non-linearities, among others.

On its own, microwave filter design constitutes an active field of research for the microwave
community to which great efforts have been devoted during the last century [9, 19, 20] and that is
very active given the ever-increasing performance requirements of RF filters today as spectrum is
more populated. A key topic within filter design, in which this dissertation is focused and that is
intensively used in the design of cavity and waveguide filters, is network synthesis. As opposed to
network analysis, the mathematical procedures to compute the response of a circuit fromwhich the
elements and their disposition are known, network synthesis deals with the opposite problem. Com-
puting the circuital elements and the disposition they must have to implement a desired response
that is defined, a priori, at the mathematical level. Network synthesis techniques have been of in-
terest since the beginning of the past century, as is covered with more detail in Chapter 3, and are
extremely useful in the design of RF filters because they analytically provide a circuital model that
implements a desired response and push the largest part of the effort into the physical realization
of such circuit using EM resonators (either with waveguide cavities or coaxial resonators, to name
a few). However, due to the relative novelty of the technology and the complexity outlined in the
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previous paragraph, AW filters have not been treated from a network synthesis point of view until
recent years with the works by the group hosting this thesis [21–26].

Building on network synthesis knowledge originally developed for traditional microwave filters,
it is possible to develop techniques applicable to ladder filters made of acoustic wave resonators and
exploit them to accelerate and improve AW filter design. At this point, let us highlight again the ab-
straction provided by the BVDmodel that accurately represents the electrical performance of theAW
resonator at the circuital level. Being able to represent each AW resonator with its equivalent circuit
model allows to approach the AW ladder filter from a network synthesis point of view and analyti-
cally compute how should those resonators be to compose a desired filter function. This analytical
approach to AW filter design is in complete contrast with approaches (e.g., as described in [11]) that
strongly rely on hard optimization stages at the circuital level to obtain the initial circuit seed from
which a design cycle starts.

To better justify the importance of an analytical approach to AW filter design, let us briefly re-
call here a very important requirement for an AW ladder filter to be feasible, that is later expanded
in Chapter 2. Since 𝑘2eff is tied to physical properties of the piezoelectric material and the type of
resonator, due to process complexity and also piezoelectric material limitations (the reader has to
consider that AW filters are fabricated on wafers already made of the piezoelectric material or on
which suchmaterial is deposited) all resonators composing an AW ladder feature approximately the
same electromechanical coupling coefficient [11]. To provide an example, for a BAW filter using alu-
minum nitride (AlN) as piezoelectric material, all resonators feature 𝑘2eff ≈ 6.7%, at most. Such cou-
pling factor is inherently defined by the piezoelectric characteristics ofAlN for vertically-propagating
longitudinal waves. Back to the example in Fig. 1.4b, the 𝑁 = 3 filter example is composed of three
resonators having 𝑘2eff = 6.7%.

For a brute-force optimization approach in which all BVD elements of a ladder filter are opti-
mized to fulfill a set of rejection specifications and area requirements, imposing that all resonators
must have evenly-distributed 𝑘2eff (i.e., the same relative frequency distance between resonances) is
an added degree of complexity that turns the process into a very time consuming task. Moreover, it is
easily seen that in such an optimization approach, many of the optimizer iterations might not even
be close to a filtering response andmight lead the process to fall into local minima. At this point, the
filter designer has lost part of control on the network and is tied to the output of the optimizer.

On the contrary, exploiting a network synthesis approach avoids hard optimization stages and
faces the problem in an alternative way. Given the synthesis provides the exact representation of
a filter response with the circuit implementing it, the initial design of an AW ladder filter can be
approached as surfing among all filter responses that already fulfill rejection specifications to find
those that fulfill a given set of technological constraints such as 𝑘2eff for all resonators or filter area,
among others. This philosophy becomes even more important by considering that an AW filter de-
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sign might involve going back to the initial circuital stage if the design needs to be reworked at a
later stage of the design cycle (let it be when evaluating non-linear effects or modifications of port
impedance, to name a few). All in all, synthesis techniques for AW ladder devices have demonstrated
their power both in industry and academia andmany players in the AW industry are currently using
network synthesis approaches.

More importantly, network synthesis not only serves as an analytical lever for filter design but
also can be exploited as a forensic tool to understand the behaviour of already manufactured filters.
One key example was demonstrated in [27, 28] by presenting the relation between electromagnetic
parasitic paths and response distortion in AW ladder filters, highlighting the ultimate control that
network synthesis provides on the role of all elements within a network. In Chapter 4 of this dis-
sertation, another example of post-fabrication analysis using synthesis is provided for an AW ladder
filter starting in shunt resonator.

Nevertheless, notice that synthesis has been presented to deal with an AW ladder filter. That is,
a single filter. This is the context in which network synthesis has been traditionally developed. Now,
as introduced in the initial paragraphs of this chapter, carrier aggregation schemes require multiple
filters connected together, at the same time, to a common antenna port. The design challenge then
involves the design of many AW ladder filters and must consider not only the response of each fil-
ter and the related technological constraints but also the reactive loading effects between the filters.
Thus, the complexity of multiplexer design is well beyond that of a single filter. To face such a chal-
lenge from a network synthesis perspective, Chapter 5 this thesis presents an analytical technique
to synthesize the entire multiplexer composed of AW ladder filters. A problem that had not been
analytically approached previously in the literature.

To finish this introduction, an important objective of this thesis is to provide a link between the
world of AW devices, diving into the fabrication of resonators and filters as a vehicle for demon-
stration, and the world of network synthesis to demonstrate its power and the important features it
offers both for standalone filters and multiplexer modules.

1.3 Structure of this Thesis

After this introductory chapter that has provided an initial description of acousticwave technologies,
highlighting the central role they play inmobile communication RF-FEMs along a brief explanation
of how network synthesis techniques provide an analytical way of facing the complexity of AW filter
design to accelerate design cycle time, this thesis is structured into four more chapters.

At first, Chapter 2 dives deeper into the physical side of this thesis and aims to provide a de-
scription of acoustic wave technology from a microwave engineering point of view starting from
the well-known SAW and BAW resonators and covering the more recent plate wave modes. Regard-
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ing the latter, this chapter presents manufactured results of resonators exploiting the zeroth-order
shear horizontal mode on thin films of lithium niobate (LiNbO3) that are used in other sections of
the thesis as a demonstration platform for the synthesis of AW filters.

Chapter 3 is devoted to a detailed description of themathematical side of this thesis and presents
the synthesis of AW filters providing a complete view to the synthesis cycle: from the definition of
the filter function to implement to the method that allows to compute the circuital elements that
compose the filter. At this point, the synthesis of AW filters is focused on single filters (i.e., two-port
networks).

After describing how network synthesis is applied to AW ladder filters, Chapter 4 is focused
around a very interesting feature of synthesis methods: the important role of controlling reflection
phase. Firstly, this chapter reviews the synthesis of the AW ladder topology when starting in shunt
resonator, highlighting interesting properties and outlining rules for the design of such filters, and
then expands the phase modification to describe how reflection phase can be exploited to design
dual-band filters by connecting two ladder filters in parallel. Finally, the chapter presents an inter-
esting exploit of reflection phase to achieve filter responses with transmission zeros in unexpected
positions. A manufactured example using the LiNbO3 on insulator (LNOI) technology presented in
Ch. 2 is provided in this chapter as a demonstration.

Finally, Chapter 5 is devoted to the problem of multiplexer synthesis. Going beyond the consid-
eration of two-port networks, this chapter faces the synthesis of an entire multiplexer composed of
AW ladder filters from an analytical point of view. The mathematical formulation to compute mul-
tiport functions is presented along the specific techniques that are needed to deal with high order
polynomials and provides examples of synthesized multiplexers.

This thesis is closed with a conclusions chapter that summarizes the most important aspects
developed throughout the text and also provides a set of recommendations regarding ongoing work
and future lines of research.

1.4 Research Results

This dissertation gathers the outcome of the work developed during the Ph.D. studies and as a re-
sult, articles have been published in academic journals and have been presented at international
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CHAPTER2

Microwave Acoustic Resonators: BAW, SAW and
Plate Waves

The introduction to this dissertation has outlined the importance of microwave acoustics in cur-
rent wireless communications RF-FEMs and the intrinsic role that piezoelectricity plays as the key
enabler. Thanks to the capacity of transducing electromagnetic energy into mechanical energy, ex-
treme miniaturization of devices at RF and microwave frequencies is enabled while maintaining
outstanding performance. However, such a change of domain also entails an increased level of com-
plexity in terms of device physics, performance and manufacturing. With that in mind, this chapter
aims at providing a microwave engineering view to the field of microwave acoustic resonators con-
sidering theirmain characteristics, types ofmechanical wave exploited, suitable applications and cir-
cuital models to represent their behaviour in the electromagnetic domain. The concepts provided in
this chapter are of great interest for the network synthesis contents covered in forthcoming chapters
sincemany particularities of the proposed synthesis techniques are directly related to characteristics
of microwave acoustic resonators and filters.

At first, this chapter provides a brief historical introduction to microwave acoustics to describe
the foundation references and other important contributions that allowed the field to attain its cur-
rent state of development. After the initial introduction, the chapter focuses on themain types of mi-
crowave acoustic resonator technologies, starting with bulk acoustic wave (BAW) and surface acous-
tic wave (SAW) resonators, those that currently fill modern RF-FEMs, down to to the more recently
proposed plate wave resonators that show very interesting performance for future applications. In
any case, the fundamental mechanism of operation and the main advantages and disadvantages of
each resonator technology are provided along their core application spaces.

It is important to consider that the scope of the first part in this chapter is to provide a conceptual
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description and a qualitative comparison of the main acoustic technologies in the RF-FEM industry.
A deep dive into the physical foundations and particularities of each resonator technology, a topic
that constitutes a complete field of research on its own, falls out of scope of this thesis but, in an
effort to provide a complete picture of the presented technologies, references for further reading are
provided along the chapter.

Finally, with the aim to connect the described technologies and concepts with a real world im-
plementation, this chapter is closed with the exploration and experimental validation of one of the
mentioned resonator technologies demonstrating manufactured resonators at the L band exploiting
the shear horizontal (SH0) mode on a thin film of lithium niobate (LiNbO3) bonded to a silicon (Si)
carrier substrate through a thin layer of silicon oxide (SiO2).

2.1 Historical Perspective of Microwave Acoustics

As already mentioned in the introduction to this chapter, the fundamental enabler of microwave
acoustic devices is piezoelectricity. A characteristic of solids that is only manifested if the crystal
structure of the material does not have a center of symmetry and, thus, enables the appearance of
electric dipole moments when the material is subject to a deformation. In this way a net electric
charge within the material is the result of an external force applied to it, attaining a transduction
between the mechanical and electrical domains through the piezoelectric effect. In the opposite
direction, material deformations are obtained by applying an electric potential across the material
through the inverse piezoelectric effect [29].

The phenomenon of piezoelectricity was first demonstrated by Pierre and Jacques Curie in 1880
and found its initial application in the context of electrical engineering in the proposal by Paul
Langevin of a submarine detectionmechanism in 1917 using a quartz-based device. In parallel, Wal-
ter G. Cady, who is now considered one of the fathers of modern piezoelectricity, developed a similar
concept in 1918 using Rochelle salt and started his prolific work in the field that led to proposing
and patenting the first piezoelectric resonator [30] in 1922. This contribution sparked the efforts by
many others but specially by Warren P. Mason at the Bell Telephone Laboratories that developed an
extensive work in quartz crystal resonators, their modeling and their application and proposed, for
the first time, the use of crystal resonators to design filter circuits [31]1. Another fundamental con-
tribution by Mason was the proposal of a transmission line analogy between electromagnetic and
mechanical waves to provide a one-dimensional model (i.e., Mason’s model) of waves propagating
through solids while incorporating the piezoelectric transduction [33]. A brief presentation of this
model, that is still a widely used tool in the context of BAW resonators, are briefly discussed in a fol-

1Although the first reference to the ladder structure is due to Espenschied [32], Mason’s patents are parallel in time.
Moreover, Mason was the first to provide a mathematical explanation of how to construct filters using crystals in the
referenced contribution.
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lowing section as a demonstration of the fundamental behaviour of a microwave acoustic resonator.
At this point, to provide a more accurate description of the mechanical waves exploited for quartz
resonators, it is interesting to mention that such resonators were initially developed by laying a top
and a bottommetal electrode at the two sides of a thinned down quartz plate thus exploiting a wave
propagating vertically through the bulk of thematerial (thus, similarly to what is later described as a
BAW resonator) butmany othermodes and resonator shapes were exploited such as the longitudinal
and thickness shear modes or the tuning fork resonators. In any case, such devices were developed
for very low frequencies.

In parallel to the work in quartz resonators and their application in oscillators and filters for
fixed telephony networks, the proposal of pulse-compression techniques for radar after World War
II lead to many efforts in developing delay devices that could provide delays in the order of tenths of
microseconds without incurring in prohibitively large physical sizes. For such reason, attention was
directed to acoustic devices that provided extremely reduced dimensions due to wave velocities be-
ing 105 times slower than in the electromagnetic domain while also allowing to design devices with
a strong dispersive behaviour as desired to achieve pulse compression [34]. A breakthrough contri-
bution was the invention of the interdigital transducer (IDT) byWhite and Voltmer [35] in 1965 that
allowed to efficiently excite a surface acoustic wave (SAW) or Rayleighwave (since theywere initially
demonstrated in an isotropic medium by Lord Rayleigh in 1885 in the context of seismology) while
concurrently enabling to control the dispersion of the device by introducing variations of the pitch
along the transducer. This can be considered the beginning of the SAW filter field since in parallel to
pulse compression, bandpass filtering responses could be attained by modifying the overlap lengths
of a constant-pitch IDT (a term that was ultimately known as apodization) through a control of the
time response of the transducer. The attained filter responses, that initially were in the order of 6
MHz bandwidth at a central frequency of 30 MHz, were specially interesting for the intermediate
frequency (IF) filtering stages of TV receivers [36]. Note that at this point filters using SAW were
based on the response of the IDT rather than the electrical connection of resonators as in the ladder.
However, with the introduction of the grating reflector by Ash [37] in 1970 to confine the surface
wave within the IDT region and achieve a resonant element, SAW resonators were developed to be
used also as building units of ladder filters.

A key aspect to consider is that the resonance frequency of SAW resonators is directly related to
the pitch of the IDTwhile the frequency in resonators that exploit bulk waves is tightly related to the
thickness of the piezoelectric material. Therefore, spurred by the need to scale up in frequency into
the UHF regime for wireless communications systems of the time, while SAW involved lithography
complexity to scale in frequency, material thinning techniques to compose bulk wave resonators
were at the limit [38]. In this scope, Ken Lakin proposed the monolithic integration of mechanical
resonators made of zinc oxide (ZnO) on a silicon substrate using integrated circuit (IC) fabrication
techniques for thin film processing [39] opening the path for the integration of acoustic wave de-



20 2.2. Resonator Characteristics

vices. The frequency scaling of BAW filters using microfabrication techniques opened two different
families of BAW resonators: the film bulk acoustic resonator (FBAR) industrially demonstrated by
Ruby andMerchant [40] inwhich the resonator is acoustically isolated at top and bottom through air
interfaces and the solidly-mounted resonator (SMR) initially mentioned by Newell in 1964 [41] but
later developed by Lakin [42] in which the resonator is isolated from the carrier substrate through a
Bragg reflector.

The development of the mentioned technologies was additionally driven by the development of
mobile telephony systems and the need to implement RF filtering stages inside portable phones.
While the Motorola DynaTAC x8000 featured a large ceramic-resonator duplexer as the only RF
filter stage when it was released in 1973, the need to reduce filter size and support more frequency
bands led to SAW and BAW filters becoming themainstay for mobile phone RF-FEMs. Interestingly,
it must be mentioned that SAW initially had a core position in GSM phones to implement IF filters
in heterodyne architectures, but the transition to homodyne architectures in the 2000s eliminated
the need for such devices. All in all, both BAWand SAWhave, for now, found their own space within
the mobile communications RF-FEMmarket and keep competing and complementing each other.

As a closing note it is important to stress that the aim of this brief historical introduction is
providing an image of the evolution ofmicrowave acoustic resonator technology rather than themost
accurate historical review, a topic towhich other contributions have already been devoted. Therefore,
it is possible that some topics are omitted or briefly mentioned. As a source for further reading,
references to specific works on the history of microwave acoustic resonators and applications are,
among others, [10, 17, 36, 43–46].

2.2 Resonator Characteristics

After the brief historical introduction to the field of microwave acoustic resonators, this section is
devoted to a brief review of the performance and behavior of acoustic wave resonators and to present
some important figures and parameters used for acoustic resonator characterization that are men-
tioned throughout this chapter to compare the available microwave acoustic technologies.

The fundamental behavior of an acoustic wave resonator in its fundamental mode, independent
of the type of resonator, is represented by the Butterworth-Van Dyke model as already introduced in
Ch. 1 to describe the basics of the ladder topology. This model, initially outlined by Butterworth [14]
when describing the mechanical oscillation of galvanometers and later demonstrated by Van Dyke
from the first resonator proposed by W. G. Cady [15], is a purely electrical representation of the
resonator and its resonances and is composed of lumped elements.

While such a purely electrical representation is very useful in the context of this thesis, for a
better justification of the origin of the two resonances shown in Fig. 1.3b and the relation between the
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Figure 2.1: Equivalence between a simple piezoelectric slab subject to an electric field across it and
the Masonmodel that joins both the electrical andmechanical domains of wave propagation.

effective electromechanical coupling coefficient and the strength of piezoelectric transduction, it is
interesting to briefly discuss the following situation: let us consider a slab of piezoelectric material of
thickness 𝑑, assuming an infinite extent in the lateral dimension, while considering the application
of an electric field across the slab.

It is not in the scope of this thesis to dive into the mathematical derivation of the proposed situ-
ation, since detailed descriptions of it can be found in many other references such as [29,33,47,48],
but let us state a key analogy, proposed by Mason, to attain a circuital model joining the electrical
excitation of the piezoelectric slab with the propagation of mechanical waves across it. To this end,
let us consider that while a distributed transmission line in the electromagnetic domain can be rep-
resented, by considering the voltage and current boundary conditions, with a T circuital equivalent
with impedance elements related to the characteristic impedance of the medium and the length of
the line, a mechanical wave propagating through a solid slab of a given length can be equivalently
modeled by treating force F (or tension) and particle velocity 𝑣 in themechanical equation ofmotion
as the voltage and current, respectively . This analogy, that in the case of a simple non-piezoelectric
slab would lead to a T equivalent circuit having two ports in the mechanical domain, can also in-
corporate the effect of piezoelectricity of the slab by considering a third port, now in the electrical
domain to consider the electric potential that builds across the slab, giving rise to the so-called Ma-
son model depicted in Fig. 2.1. Such model shows the two ports in the mechanical domain, one per
slab interface to allow the propagation of acoustic waves into other adjacent materials, and the third
port in the electrical domain.

In this case, let us assume that the piezoelectric slab is not in contact with any other material at
any of the interfaces and thus, assuming contact with air, note that there are no exerted forces on
any of the two mechanical ports. Thus, let us fix F1 = F2 = 0. With these conditions, following the
derivation in [47], the input impedance seen from the electrical port results in

𝑍in =
1

𝑗𝜔𝐶0
(1 − 𝑘2𝑡

tan (𝑘𝑑/2)
𝑘𝑑/2 ) (2.1)
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where 𝑘 is the wave number, 𝑑 is the plate thickness,𝐶0 is the intrinsic capacitance through the slab,
due to it being dielectric and having an electric field across it, and term 𝑘2𝑡 is the electromechanical
coupling constant directly related to the piezoelectric constants of the material. Undoubtedly, note
that such an input impedance expression has a zero and a pole, as depicted in the BVDmodel, whose
separation is completely defined by the electromechanical coupling constant. Thus, the expressions
and relations briefly introduced in Ch. 1 are demonstrated. Note here, that the effective electrome-
chanical coupling presented in (1.2) is related to measured resonances, thus the outcome of a given
resonator structure and design, while 𝑘2𝑡 in (2.1) is the electromechanical coupling constant defined
by the piezoelectric constants of the given piezoelectric material.

Although the brief presentation of the Mason model is just intended to relate the basic BVD
modelwith the underlyingmechanical and piezoelectric phenomena, note the importance of linking
the interpretation of acoustic waves in a resonator with a circuital form made of transmission lines.
A very common tool used by electrical engineers.Moreover, it is interesting tomention that although
the Mason model is in close relation to bulk acoustic wave resonators due to it directly representing
the excitation of waves in the thickness direction, such a one-dimensional interpretation was also
proposed by Smith [49] to model IDT excitation both introducing the in-line and the cross-field
models [29, 34, 47], yielding very good results for low frequency devices. For higher frequencies, as
mass loading effects become more important and scattering between electrodes of the IDT increase,
a more complex model is required and commonly, coupling-of-modes (COM) analysis is used for a
better representation of the entire IDT [50] (Ch. 7).

Another very important aspect of acoustic wave resonators is their Q factor, the loss mechanisms
that contribute to it and the methods used to characterize it from measured responses. While in an
EM resonator environment losses are related to the Joule effect due to electrical currents flowing
through finite resistivity metals or lossy dielectrics, for resonators combining both the electrical and
the mechanical domains, two main factors are considered to characterize losses [51] (Ch. 5): electri-
cal losses and mechanical or elastic losses.

On the one hand, electrical losses are those associated with the finite resistance of electrodes
and leads in a resonator and to the dielectric losses of the piezoelectric material, both contributing
to the generation of heat from electrical current. To consider them, resistive terms are commonly
added to the BVDmodel in the form of a resistance in series to model electrode conductivity and as
a parallel resistance to 𝐶0 to model the complex permittivity of the piezoelectric material [16]. On
the mechanical side, elastic losses include those related to the exchange of mechanical energy into
heat due to viscosity and also the leakage of mechanical energy from the resonator due to imperfect
confinement or due to unwanted wave excitation [17] (Ch. 8). Commonly, loss terms coming from
themechanical domain are added to the parallel resistive term collecting dielectric losses in the BVD.

In any case, theQvalue of an acousticwave resonator gathers the contribution of all loss factors to
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provide an overall figure that has a key role in filter design and performance. To characterize it, note
that considering fabricated resonators their characterization is possible from measured electrical
data such as their 𝑆 parameters and thus, perfectly separating the loss-contributing terms becomes
exceedingly complex. Nevertheless, computing the Q factor from measured 𝑆 parameters is a his-
torical topic with fundamental contributions in the field of EM resonators but with relatively recent
discussions on the field of acoustic wave resonators. In the context of this thesis, the Q factor of the
manufactured resonators is computed from the measured 𝑆11 parameter as proposed in [52,53] and
recently extended in [54], through the following expression based on the group delay:

𝑄(𝜔) = 𝜔𝜕𝜙𝜕𝜔
|𝑆11|

(1 − |𝑆11|)2
(2.2)

To close this section, it is interesting to consider the figure of TCF (temperature coefficient of
frequency)measured in ppm/∘C that considers the effect of temperature on the resonator. TCF canbe
mathematically described in terms of the linear and volumetric thermal expansion coefficients and a
term describing how the stiffness of the material changes with temperature [17] (Ch. 3). Commonly,
themost contributing factor is the latter and due tomostmaterials becoming softerwith temperature
the TCF of acoustic wave resonators is a negative value. From a filter perspective, TCF is a very
important factor since rejection specifications of a given filter must be fulfilled within a range of
operation temperatures (commonly from -25∘C to 85∘C ) and thus, very low TCF values are desired.

2.3 Bulk Acoustic Wave Resonators

In its simplest form, a bulk acoustic wave resonator can be described as a slab of piezoelectric ma-
terial placed between two thin metal electrodes, similar to the case discussed to present the Mason
model. By applying an electric potential between the electrodes, an electric field is excited through
the piezoelectric slab thus allowing transduction of electromagnetic energy into the mechanical or
acoustic domain. With this configuration, a vertically propagating longitudinal wave can be effi-
ciently excited and, by imposing the proper boundary conditions both at the top and bottom inter-
faces of the structure, a resonant device can be achieved.

Let us initially consider the simplified structure of the BAW resonator, a slab sandwiched be-
tween two electrodes, from a purely mechanical perspective and let us theoretically assume a per-
fect reflection of the acoustic wave at both the top and bottom interfaces. In this situation, without
considering how the acoustic wave has been excited, a resonance is achieved whenever the slab
thickness is a multiple of 𝜆/2, where 𝜆 is here the wavelength of the acoustic wave. Therefore,

𝑓𝑟 =
𝑣𝑁
2𝑑 (2.3)

where 𝑣 is the wave phase velocity, 𝑑 is the thickness of the slab and 𝑁 is an integer to represent
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the multiple resonances due to wave periodicity. However, if one considers that the excitation of
the acoustic wave is due to the piezoelectricity of the slab, only for odd values of 𝑁 a mechanical
resonance can be excited by applying an electromagnetic excitation as demonstrated by [17, 55].
Nevertheless, in the majority of cases, a BAW resonator aims at exploiting the fundamental longi-
tudinal mode (𝑁 = 1), that is, implementing a piezoelectric layer of 𝜆/2 thickness. As an example,
assuming a longitudinal wave velocity in the order of 104 m/s, note that a resonator at 2 GHz in-
volves a piezoelectric layer of thickness 𝑑 = 3 𝜇m, what clearly highlights the importance of thin
film deposition techniques to manufacture filters at GHz frequencies2.

Having presented the basic description of a BAW resonator, consider that achieving the desired
wave confinement within the resonator is a key factor to attain resonator performance. From an
acoustic perspective, the ideal way to achieve a perfect reflection at the interfaces is having the elec-
trodes directly in contact with air, imposing a stress free surface condition and thus acting as an
acoustic short [56] (Ch. 3). While such a condition might be attainable above the resonator (i.e.,
for the top electrode), considering that the piezoelectric thin films involved need be deposited on a
carrier substrate, achieving acoustical isolation from the substrate involves a higher degree of com-
plexity. The two main approaches, that actually are the two main families of BAW devices in the
RF-FEM market, are the solidly mounted resonator, that achieves acoustical isolation by mount-
ing the resonator on an acoustic Bragg reflector, and the FBAR, in which a cavity is etched on the
substrate underneath the resonator to achieve an air interface also below the resonator.

In the context of BAW filters for communications, although the initial developments exploited
ZnO as the piezoelectric medium, aluminumnitride (AlN) is themost common choice for the piezo-
electric layer. Among its characteristics it is important to highlight that it is a CMOS compatible
material, thus interesting for development within an IC fab environment, and also a good thermal
conductor, what allows acceptable power handling capabilities of the resonator [56] (Ch. 4). From
the point of view of piezoelectricity, AlN is not a strong piezoelectric material but offers an achiev-
able coupling of 𝑘2eff ≈ 6.7% when exploiting the fundamental longitudinal mode [57, 58], what, if
one considers the filter bandwidth to electromechanical coupling relation stated in the introduction
of this thesis, is enough for the initial 3G and LTE frequency bands below 2.8 GHz such as n1, n3 or
n7 that have fractional bandwidths in the 3 ∼ 4% range.

Nevertheless, with the introduction of wider bands such as the n79 or some of the UNII bands,
to name a few, with fractional bandwidths in the order of 10% and above, the fundamental contribu-
tion by Akiyama et al. [59], that demonstrated the enhanced piezoelectricity of scandium aluminum
nitride (ScAlN) films and the ability to control it with the concentration of scandium in the mate-
rial, has resulted in ScAlN becoming another mainstay material for BAW resonators. However, it
must be mentioned that while enabling a higher electromechanical coupling, ScAlN also involves a

2As a source for further reading, works [17, 47] provide a deeper view of the physical foundations of BAW resonators
and their performance.
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Figure 2.2: Cross‑sectional drawing of an SMR resonator. The piezoelectric layer is commonly AlN or
ScAlN in the context of BAW resonators for wireless communications filters.

reduction of the achievable Q of the resonator [58].

In general terms, the application space for BAW technology in the context of filters for com-
munications lies in the range of frequencies above 1.5 GHz, approximately. This is the traditional
frequency transition between SAW and BAW technologies, as is discussed in the SAW section, and
is mainly due to material layers increasing in thickness for low frequencies, thus increasing pro-
cess complexity, and due to SAW requiring less manufacturing steps, what ultimately reduces the
cost-effectiveness of BAW for the lower frequency bands.

2.3.1 SMR

As introduced, the solidly mounted resonator is characterized by implementing an acoustic Bragg
reflector below the resonator to isolate it from the carrier substrate, commonly, a silicon wafer. To
provide a physical representation of an SMR, a simplified cross-section is depicted in Fig. 2.2 show-
ing a piezoelectric layer of 𝜆/2 thickness, let it be AlN, a pair of metal electrodes, commonly made
of tungsten (W) due to its high acoustic impedance, and a set of alternating high and low acoustic
impedance layers below the bottom electrode. These layers compose the acoustic reflector and, com-
monly, are made of tungsten and silicon oxide as the high and low acoustic impedance materials,
respectively [60, 61].

At first, a direct way of achieving high reflection for the longitudinal wave propagating vertically
through the resonator using such superposition of layers with different impedances is to directly set
the length of each layer to 𝜆/4, where 𝜆 is computed using 𝑣𝑙, the phase velocity of the longitudinal
mode. Considering the impedance inverter nature of 𝜆/4 layers, an almost perfect reflection can be
achieved by considering 5 to 7 layers.

Initially, the quarter-wavelength approach for the mirror was used for SMRs and Q values in the
order of 400 ∼ 600 were obtained. However, if one considers the phase velocity of the thickness lon-
gitudinal wave 𝑣𝑙 = 11250 m/s and the phase velocity of the thickness shear wave 𝑣𝑠 = 6329 m/s,
both on 𝑐-axis AlN [55], note that 𝑣𝑠 is roughly half of 𝑣𝑙. Therefore, a reflector structure made of
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Figure 2.3: Cross‑sectional drawing of an FBAR resonator. The piezoelectric layer is commonly AlN or
ScAlN in the context of BAW resonators for wireless communications filters.

𝜆/4 layers is perfectly reflective for the main longitudinal wave but acts as an almost perfect through
for any shear wave propagating in the vertical direction. This issue was investigated and solved by
Marksteiner et al. in [62] at Infineon by proposing to optimize the thickness of all layers in the re-
flector not only for reflection to the longitudinal mode but also for the shear waves and boosted the
Q value of SMR resonators up to 2000.

Themain advantages of an SMRare, among others, related to the fact that it is solidlymounted on
the carrier substrate: apart froman increased robustness of the structure, it depicts very good thermal
dissipation and thus, higher power handling capability, due to the reflector effectively providing a
thermal path towards the substrate.Moreover, considering that the topmost layer of the reflector can
be made of SiO2, that in its amorphous state has an inverted temperature behaviour with respect to
AlN, the TCF of SMR resonators is low, in the order of -20 ppm/∘C [63,64].

On the other hand, some disadvantages inherent to SMR resonators are an increased process
complexity regarding the multiple layers involved in the reflector and resonator and the need to
accurately control all their thicknesses due to their impact in resonator performance.

2.3.2 FBAR

In contrast to SMR, FBAR resonators achieve wave confinement within the resonator by effectively
releasing the resonator from its carrier Si substrate. By creating an air cavity below the resonator, as
depicted in Fig. 2.3, the same acoustic short condition achieved over the resonator can be replicated
below it achieving excellent wave confinement and thus, higher Q values than SMR resonators [65].
From a historical perspective, an interesting description of the industrial development of the FBAR
resonator is provided in [17] (Ch. 5).

To consider the advantages of FBAR, aside the higher Q values attainable, note that the material
deposition steps required are less than those of the SMR. However, in this case the complexity lies in
the process to isotropically etch the Si below the resonator creating an air cavity while maintaining
yield. Moreover, the fact that the resonator is a releasedmembrane has an effect on the robustness of
the structure when considering wafer dicing and packaging. In terms of power handling, consider
that heat can only be dissipated laterally and the fact that due to the anchor points between the
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Figure 2.4: Cross‑sectional drawing of a SAW resonator. The piezoelectric substrate is commonly
LiTaO3 or LiNbO3 in the context of filters for wireless communications.

resonator and the substrate being smaller than the total resonator circumference (because of the
opening of windows for the Si etching process), the thermal dissipation of FBAR resonators is worse
than that of SMRs and thus can handle slightly lower power levels.

As a closing remark, regarding the effects of temperature on performance, due to the lack of an
SiO2 layer below the resonator as in the acoustic reflector of SMRs, FBAR TCF is larger than that of
SMR resonators, in the order of -35 ppm/∘C. Although approaches to integrate an oxide layer above
the bottom electrode have been demonstrated [66], they involve a loss in resonator Q due to the
losses in the oxide, and most applications appear oriented to the oscillator and timing market and
not to RF filters.

2.4 Surface Acoustic Wave Resonators

As the name indicates, SAW resonators exploit a type of wave that propagates along the surface of
a solid, that in this case is the piezoelectric material. In brief, surface acoustic waves are character-
ized by depicting particle displacement in the plane containing the direction of propagation and the
surface normal and are composed by two wave components, a shear and a longitudinal term that
jointly generate an elliptical motion of the particles [34, 50]. As in the BAW case, wave properties
such as the phase velocity or the achievable electromechanical coupling are related to the material
in which the wave is excited and its crystalline orientation.

As in BAW, using the proper transducer and wave confinement mechanism, surface waves can
be exploited to obtain resonating elements to compose filtering devices. To this end, the key enablers
are the IDT, that allows to excite surface waves on piezoelectric materials, and the grating reflectors
that allow to confine the wave within the IDT to attain a resonator. To provide a physical description
of a typical SAW resonator, Fig 2.4 depicts a simplified drawing of a SAW resonator showing the
piezoelectric material, the IDT and a pair of grating reflectors, one at each side of the resonator.
In this case, the surface wave would propagate across the IDT between the two gratings and the
resonance frequency would be fixed by the pitch of the IDT, that is, the distance between the centers
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of two opposite-polarity fingers in the IDT, by setting it to half an acoustic wavelength.

In the scope of resonators for communications applications, the main materials used for SAW
devices are lithium tantalate (LiTaO3) and lithium niobate (LiNbO3) in a specific set of crystal cuts
that have been historically exploited because of their interesting properties. Among others, some
traditional cuts for SAW on LiNbO3 are the YZ cut (that means the surface normal is the crystal
Y axis and the wave propagates in the Z direction), the 128∘YX cut (surface normal is rotated 128∘

from the crystal Y axis and the wave propagates along the X axis), and the most common cut for
SAW on LiTaO3 is the 36∘YX cut [34,45,67]. Differences between them correspond to the attainable
electromechanical coupling, the ease with which surface waves couple to unwanted bulk waves and
also temperature behaviour. For example, both thementionedmaterials show strong piezoelectricity,
LiNbO3 being slightly higher, but 36∘YX LiTaO3 has a reduced temperature coefficient of frequency
of approximately -32 ppm/∘C [34] (Ch. 4), what makes it a very common material for SAW filters.
In any case, temperature compensation by depositing a thin layer of silicon oxide over the IDT and
gratings are available and widespread in the industry [68].

At this point, let us consider that a surfacewave ismathematically defined for a half space [34,50].
That is, the material through which it propagates is very thick with respect to the acoustic wave-
length. For this reason, SAW devices, until very recent times, have been manufactured directly on
the surface of thickwafers of the piezoelectricmaterial that have been cut to attain the desired crystal
orientation from a single-crystal ingot. On the one hand, this simplifies the SAW device manufac-
turing process down to deposition of IDTs and gratings on the surface of such a wafer but on the
other hand, has important implications. Although the wave propagates along the surface, part of its
shear component can also direct into the bulk of the material leading to some energy leakage in the
form of bulk waves. A leakage that is very dependent on the crystal orientation on which the wave
is excited.

In this direction, a ground breaking advancement by Murata [69, 70] is the so-called IHP (in-
credible high performance) SAW structure in which, thanks to Smart-Cut techniques that allow the
transfer of thin crystalline layers into carrier substrate [71], by thinning LiTaO3 thickness down to
the order 20𝜆 and transferring the piezoelectric layer into a carrier wafer with already deposited
layers of alternating high and low acoustic impedance to better confine energy leaking vertically,
resonator quality factors of 4000 along an increase of electromechanical coupling and a very low
TCF (-9 ppm∘C/) thanks to using SiO2 as a low impedance layer below LiTaO3, are obtained.

Nevertheless, for both traditional SAW and the more recent IHP approaches, in part due to the
need of an interdigitated electrode structure, the dominating application space in the context of
wireless communications is traditionally defined in the so-called low band range, from 700 to 1500
MHz, approximately. If one considers that phase velocity of surface waves for the mentioned cuts
in LiNbO3 and LiTaO3 range from 3000 ∼ 4000 m/s, scaling in frequency above 2 GHz (e.g., an
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electrode with of 875 nm for 𝑣𝑝 = 3500m/s at 2 GHz) results in an increased lithography complexity
that questions the cost-effectiveness of SAW. Moreover, the IDT and its dimensions also lead to one
of the main weak points of SAW resonators that is their power handling capabilities. Due to the thin
electrodes required for high frequency resonators and the strong electric fields that build up between
electrodes of opposite polarity, increasing power leads to electromigration of electrode metal and
finally, to catastrophic resonator failure. This fact, becomes more concerning as frequency increases
and IDT pitch reduces.

2.5 Lamb and Shear Waves on Thin Plates

After describing the two types of acoustic resonators currently dominating the RF-FEM industry,
this section directs the attention to a third type of waves, namely plate waves, that have received
a growing attention in recent years because of their interesting properties and also because of the
technical advances in process technology that have enabled their feasibility in the scope of resonators
for filtering devices.

To discuss plate waves, let us consider a situation similar to the initial slab used to exemplify
the BAW resonator, having a thickness in the order of 𝜆, but not considering the vertical propagation
through the slab as a pure thickness longitudinalmode, but in parallel to the two surfaces of the plate.
In 1917,mathematicianHorace Lambproposed thewave solutions propagating in a thin solid plate if
particlemotion is confined to the saggital plane (that containing the direction of propagation and the
normal to the surface of the plate) and derived two forms, the so-called Lamb waves: the symmetric
(S) or extensional mode, as depicted in Fig. 2.5a, and the asymmetric (A) or flexural mode, depicted
in Fig. 2.5b. In brief, two important facts about Lamb waves are that infinite modes of both types
can exist in a thin plate and that phase velocity of Lamb waves is strongly related to the thickness of
the plate [34, 72]. At the same time than Lamb waves, the plate allows for a third plate mode called
the shear horizontal (SH) wave, whose displacement is shown in Fig. 2.5c, that also propagates in
parallel to the surfaces of the plate but now with particle motion on a plane parallel to the plate
surface and in perpendicular to the direction of propagation. Such a mode is tightly related to the
excitation of Lamb waves when considering thin plates and has an important role in the present
chapter.

Although the properties and usage of plate waves was studied in parallel to the advancements of
SAW and BAW, and sometimes even as a by-product of them because of the need to avoid spurious
modes in SAW and BAW, manufacturing complexities related to thin plates and their handling was
the main barrier for their competition with the other two dominating technologies. At first, some of
their initial applications were in the field of sensors, delay lines and non-destructive testing. Never-
theless, contributions such as thework byAdler [73] and Jin and Joshi [74] regarding the coupling to
Lamb and shear horizontal modes in piezoelectricmaterials through IDT structures and the theoret-
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Figure2.5:Simplifieddepictionof the instantaneousdisplacementof aplate for Lambandshearhori‑
zontalwaves, red arrow indicates direction of propagation anddouble black arrow indicates direction
of plate displacement. (a) Zeroth‑order symmetric or extensional Lambwave. (b) Zeroth‑order asym‑
metric or flexural Lamb wave. (c) Zeroth‑order shear horizontal wave.

ical demonstration by Kuznetsova et al. [75] of the very high electromechanical coupling achievable
on different cuts of thin LiNbO3 and LiTaO3 highlighted the interesting properties of such waves
in the context of microwave acoustic resonators. Theoretically, 𝑘2eff values higher than 30% could
be achieved for certain propagation directions on X- and Y-cut LiNbO3, for example. However, the
main drawback to the advancement of these devices was the complexity of attaining the desired thin
plates with very specific crystalline orientations due to the lack of epitaxy methods for LiNbO3 and
LiTaO3.

Initial approaches exploited to possibility to deposit AlN thin films to develop Lamb wave res-
onators on AlN [76, 77], among others, showing high Q but very low 𝑘2eff values due to the weak
piezoelectricity of AlN for this type of waves. More recently, progress in manufacturing techniques
and layer transfer technologies has enabled other demonstrations of the very high 𝑘2eff attainable
with LiNbO3 such as the SH0 resonators by Kadota et al. [78–80] achieving 𝑘2eff = 30%, the works
in S0-mode resonators by Gong et al. [81–83] or the extension into higher frequencies using higher-
order Lambmodes [84], amongmany others. An interesting mention is the proposal of the so-called
XBAR [85], a LiNbO3 plate wave resonator exploiting the A1 mode attaining 𝑘2eff ≈ 25% proposed by
Resonant Inc., a company recently acquired byMurata. In all the above cases, the possibility transfer
very thin layers of the desired cuts of LiNbO3 through Smart Cut techniques has been a fundamental
enabler from the process perspective, allowing to compose resonators with plate thicknesses in the
order of hundreds of nanometers.

Clearly, plate waves show very interesting properties in the scope of resonators for communi-
cation filters because of the very high attainable coupling, thus fitting the need for wider filters,
but, in comparison with the main two technologies, still entail some drawbacks. From a plate per-
spective, releasing the piezoelectric membrane composing the resonator from its carrier substrate
is a very important step to attain the maximum achievable 𝑘2eff when considering Lamb waves. Re-
leasing the membrane involves etching through LiNbO3, a process known to be complex and prone
to generate by-products [51] (Ch. 4), to allow the isotropic etch of the Si and SiO2 underneath the
plate. Moreover, since the wave propagates parallel to the surface, wave confinement within the
resonator is imposed either in the form of grating reflectors or as an interface with air via openings
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through the piezoelectric layer, what also increases etching complexity since accurate control on the
interface steepness is required. As expected, since such waves are IDT-excited, suffer from the same
power handling limitations as SAW, even increased if the piezoelectric membrane is released due
to a smaller lateral thermal dissipation path, and lead, as well, to lithography challenges for higher
frequencies.

Interestingly, an alternative to overcome part of such process-related challenges while harness-
ing the properties of plate modes, approaches oriented towards solidly mounted structures such as
the IHP SAWexample but in this case exploiting a pure shear horizontal wave have received growing
interest in recent times and, in the context of this thesis, are chosen as a case of study and demon-
stration.

2.6 L‑Band Lithium Niobate on Insulator Resonators

Based on the brief description on the different microwave acoustic technologies provided in the
above sections, the forthcoming content focuses on the theoretical and practical description of res-
onators exploiting the SH0 mode on a thin film of LiNbO3 at 1.5 GHz, at the center of the L band.
The objective of this resonator development is double: on one side demonstrating the performance
of plate wave resonators and, on the other, attaining an experimental platform on which some of the
filter synthesis methodologies developed in this thesis can be physically demonstrated, as is done in
Ch. 4.

In this case the selected approach is to exploit a type of plate resonator structure that is receiving
attention due to a simplified manufacturing process that avoids having to release the plate from
its carrier substrate, that is commonly referred to as LiNbO3 on insulator (LNOI, note from here
onwards the reference to LiNbO3 as LN) [86–89]. It involves exciting the SH0 mode on a thin plate
that is solidly mounted on a thin layer of SiO2 with a pre-defined thickness that plays an acoustic
isolation role from the Si substrate, as is described in the forthcoming paragraphs. In this context,
the procedure to select the material orientation and decide on several parameters of the resonator
follows the seminal contribution by Zou et al. [90] that provides the theoretical analysis of resonators
exploiting the SH0 mode on LiNbO3 plates.

2.6.1 Physical Description and Analysis

As already introduced, Kuznetsova et al. [75] provide the theoretical demonstration that 𝑘2eff ≈ 35%
with a phase velocity of 4500 m/s are obtained on a Y-cut LiNbO3 plate with a thickness of h/𝜆 =
0.1 through the SH0 mode propagating in the X direction. In the mentioned work, the study only
considers the different directions of propagation possible in each of the three axis cuts of the mate-
rial. However, Kadota et al. demonstrate in [78] that even higher electromechanical coupling can be
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Figure 2.6: FEM simulation set‑up and data on a thin plate of LiNbO3. (a) Electrical boundary condi‑
tions used to simulate 𝑣𝑜 and 𝑣𝑚. (b) Open (free) and short (metallized) phase velocities with respect
to rotation angle from the Y axis on a plate of thickness h/𝜆 = 0.1. (c) Estimated intrinsic coupling co‑
efficient 𝐾2 from the simulated phase velocities, as a function of rotation angle from the Y axis. (d)
Simulated phase velocity with respect to plate thickness on a 30∘YX LN plate with a DF = 0.5 IDT.

attained with the SH0 mode propagating in the X direction if the cut is rotated approximately 30∘

with respect to the Y axis obtaining theoretical coupling values higher than 50%.

In this case, considering the LiNbO3 parameters in [67], an eigenmodes analysis via COMSOL of
a simple LN plate with thickness h𝐿𝑁/𝜆 = 0.1 both for a free surface condition (open circuit) on top
and bottom faces of the plate and for an infinitesimally thin electrode condition (short circuit) on
the top face, has been conducted for all rotation angles of LN with respect to the Y axis in the range
𝜃 = [0, 180]∘ considering the zeroth-order SH and Lamb modes [91]. The computed open and short
phase velocities are depicted in Fig. 2.6b and, from them, the intrinsic electromechanical coupling
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can be estimated through the following expression [75, 90, 92]:

𝐾2 = 𝑣2𝑜 − 𝑣2𝑚
𝑣2𝑜

(2.4)

where 𝑣𝑜 is the open circuit condition phase velocity and 𝑣𝑚 is the short circuit condition phase
velocity (where 𝑚 stands for metallized). The computed electromechanical coupling values with
respect to the rotation angle are depicted in Fig. 2.6c showing that for a rotation of 30 ∼ 35∘ with
respect to the Y axis, a maximum coupling is attained for the SH0 mode, in line with the results
in [78].

Let us then select the 30∘YX cut of LN as the one for the proposed experiment. In order to evalu-
ate the impact of the plate thickness, let us consider the selected cut and compute, the phase velocity
of the zeroth order SH and Lamb waves through FEM. In this case, the simulation is conducted as-
suming an IDT on the top face of the platewith 0.5 duty factor (DF) of the IDT (the ratio ofmetallized
surface in a plate cell of length 𝜆) with infinitesimally thin electrodes of 𝜆/4 width. The simulated
phase velocities are shown in Fig. 2.6d demonstrating that the SH0 shows no dispersion with re-
spect to plate thickness, a very important feature when considering thickness variations along the
wafer, and an ideal phase velocity 𝑣𝑝 = 4800 m/s. More importantly, for thickness plates of h/𝜆 =
0.3 and below, the two lowest order Lamb wave modes (A0 and S0) show phase velocities away from
that of the SH0 mode thus allowing to excite the latter with a given IDT pitch without exciting spu-
rious Lamb waves in the same frequency range. Moreover, as shown in [90], first-order Lamb and
SH modes show very high dispersion for the mentioned h/𝜆 range along very high phase velocities.
Given the simulation results, with the objective of resonator operation at 1.5 GHz, let us select an
LN thickness of hLN = 540 nm, thus h/𝜆 = 0.17.

Given the LN plate thickness, let us now consider the wave displacement of the SH0 mode. Due
to its shear nature, note that a wave excited on the plate, if not isolated from the carrier substrate,
leaks part of its energy in the form of shear waves propagating vertically towards the silicon, thus
reducing the Q of the resonator. While released membrane approaches avoid this leakage by effec-
tively creating an air cavity below the plate, in this case let us consider an SiO2 layer below the LN.
This oxide layer is already present in wafers with thin LN plates because it is used as a bonding oxide
when transferring the layer from the LN ingot into the Si carrier substrate. However, such a layer
can in this case be exploited with an acoustic role if one considers the phase velocity of shear waves
in SiO2 [93] 𝑣𝑝−SiO2 = 3966m/s and the low acoustic impedance of the material. For the oxide layer
to have an isolation role, let us use it to implement an impedance inverter, that is, a 𝜆/4 layer, to the
shear waves propagating vertically. Considering operation at 1.5 GHz, the desired thickness of the
SiO2 layer is hSiO2 = 660 nm.

Having computed the desired LN plate and oxide thicknesses, an LNOI wafer from the vendor
NanoLN is used as the technological platform in this thesis, with the only drawback that due to
availability reasons an oxide layer thickness of 620 nm is the closest possible value. For a clearer



34 2.6. L‑Band Lithium Niobate on Insulator Resonators

Figure 2.7: Drawing of the LNOI structure with layer thicknesses shown in the cross‑section inset.

view of the complete LNOI structure, a drawing of the multilayer structure is depicted in Fig. 2.7
with a cross-sectional inset highlighting the thickness of each layer. Notice here an important aspect
of the proposed structure: while the oxide layer provides isolation from the substrate, confinement
of the wave within the resonator is achieved through grating reflectors, as in SAW resonators. In
this case, gratings are composed of 𝜆/4-wide metal strips shorted through a bus bar at each side and
keeping a distance of 𝜆/2 between the centers of consecutive strips. As discussed in [90], a number
of gratings per reflector of 𝑁𝑔 = 40 is sufficient to achieve very high reflection.

From a process perspective, the only steps involved in the fabrication of these resonators is a
lift-off process to define the IDT, involving lithography and deposition of metal. Considering that
the electrode width to excite the SH0 mode at 1.5 GHz assuming 𝑣𝑝 = 4800 m/s is 800 nm, electron
beam lithography (EBL) through the RAITH-150 TWO tool at IMB-CNM3 is employed to define
the IDTs and gratings of resonators. On the other hand, probing pads are defined through laser
lithography due to their larger dimensions. Aluminum is selected as the metal for electrodes due to
its good conductivity, its reduced density to reduce mass loading on the resonator and the fact that
it is widely available in the clean room. Evaporation is chosen as the method to deposit metal on the
resonators with a Leybold UNIVEX 400 tool.

2.6.2 Effect of Electrode Thickness

At this point, the only remaining dimension to define is electrode thickness. A feature that, although
simple, has important implications in resonator performance since, as introduced in [90], it is a key
parameter to control the excitation of longitudinal modes. To demonstrate it, let us present the fol-
lowing experimental demonstration that consists in the comparison of two equal sets of resonators
for nine different frequencies around 1.5 GHz, from the set 𝜆𝑘 = [2.7, 3.5] 𝜇m, in steps of 100 nm.
All resonators are designed implementing 81 fingers per IDT and an aperture (the length of overlap
of each finger in the IDT with its adjacent finger of opposite polarity) of 60 𝜇m. With these dimen-

3Institut de Microeletrònica de Barcelona - Centre Nacional de Microeletrònica.



Chapter 2. Microwave Acoustic Resonators: BAW, SAW and Plate Waves 35

sions, resonators yield static capacitance values around 0.6 pF. Scanning electronmicroscope (SEM)
images of both an entire resonator with probing pads and a close-up of the IDT structure are shown
in Fig. 2.8a and 2.8b, respectively.

Having defined the resonator dimensions and frequencies, the same set of resonators is manu-
factured twice using two different electrode thicknesses and in both cases considering aluminum as
electrode material, as already introduced. In this case, the two selected thicknesses are 120 nm and
180 nmwhat in turn correspond to hAl/𝜆= [3.5, 6.5] %, respectively. As a demonstration of the layer
thicknesses and the deposited electrode thickness, Fig. 2.8c shows an SEM image of a focused ion
beam (FIB) cut performed in the IDT of one of the manufactured resonators and Fig. 2.8d shows the
SEM cross-section of the cut, in this case for hAl = 180 nm.

(a) (b)

(c) (d)

Figure2.8:SEM imagesof the LNOI resonators for the electrode thickness experiment. (a)Overviewof
a resonator showing IDT, gratings and probing pads. (b) Close‑up of the IDT body showing electrodes
and part of the top grating. (c) Overview of a resonator region where a focused ion beam (FIB) cut is
conducted. (d) Cross‑section of the cut through the LNOI structure with measured layer thicknesses.

The manufactured sets of resonators are measured with 150 𝜇m-pitch probes with beryllium
copper (BeCu) tips on an Agilent PNA-X network analyzer and the measured input impedance of
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Figure 2.9: Measured input impedance for the set of nine resonators with 𝜆𝑘 = [2.7, 3.5] 𝜇m in steps
of 100 nm. (a) Electrode thickness hAl = 120 nm. (b) Electrode thickness hAl = 180 nm.

each resonator is shown in Fig. 2.9a and 2.9b for the two electrode thickness cases. Focusing initially
on Fig. 2.9a, note the presence of both spuriousmodes between 𝑓𝑠 and 𝑓𝑝, modes that are discussed in
a forthcoming section, and a strong presence of spurious spikes above the anti-resonance frequency
𝑓𝑝. In contrast, Fig. 2.9b shows resonators that feature the same spurious modes between the two
resonances but with a greatly reduced spurious excitation above 𝑓𝑝 and so, amuch higher impedance
value at such resonance frequency. The presence of spurious mode above 𝑓𝑝 is due to the excitation
of longitudinal modes across the resonator that propagate between the two gratings of the structure.
This undesired modes, that are also discussed in [94] and [90], are already present in regular SAW
resonators due to the dispersive behaviour of gratings as introduced in [50] (Ch. 5) but, in the case
of plate wave resonators, their presence is more pronounced due to the wave being guided by the
lower interface of the plate. Due to the periodicity of the IDT structure, only odd-order longitudinal
modes are correctly confined.

To avoid the presence of such undesired modes, increasing electrode thickness is a way to re-
duce the wave phase velocity, thus shifting the resonator downwards in frequency and moving the
undesired longitudinal modes (that remain at the same frequency because the physical dimensions
of the IDT and gratings are notmodified) into the stopband bandwidth of the grating, thus hindering
their propagation. The measured phase velocity of the SH0 mode for the 120 nm electrode is 4090
m/s while a velocity of 3975 m/s is obtained for 180 nm electrodes. As clearly observed in Fig. 2.9b,
by increasing electrode thickness, resonance frequencies 𝑓𝑠 have shifted downwards (37 MHz) with
respect to the 120 nm case and longitudinal modes are partly suppressed.

With the purpose of resonator characterization, three resonators of the manufactured set are
selected for further analysis. They correspond to wavelengths 2.8, 2.9 and 3 𝜇m, those operating
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Figure 2.10: Three best resonators of the ℎAl = 180 nm set. (a) Close‑up of the measured input
impedance curve. (b) Computed Bode Q of the 𝜆 = 2.9 𝜇m resonator.

Table 2.1:Measured parameters of the three best resonators with hAl = 180 nm.

𝜆 (𝜇m) 𝑓𝑠 (MHz) C0 (pF) 𝑘2eff (%) Qmax Z𝑟 (dB)
2.8 1415 0.58 14.3 698 61
2.9 1369 0.57 14.3 614 63
3 1326 0.57 14.5 627 60

at the frequency where the SiO2 layer provides best isolation from the substrate and a close-up of
their input impedance curves is shown in Fig. 2.10a. Let us highlight that although longitudinal
modes have been greatly reduced, ripples between 𝑓𝑠 and 𝑓𝑝 can be observed stressing the need for
further design optimization. Such modes are related to transverse waves propagating through the
resonator and are discussed in the following subsection. Given the reduction in longitudinal mode
excitation thanks to increasing h𝐴𝑙, the quality factor of the resonator is enhanced. Fig. 2.10b depicts
the measured Bode Q of the 𝜆 = 2.9 𝜇m resonator, computed from its 𝑆11 parameter as introduced
previously in this chapter [52], yielding a maximum quality factor Qmax = 614.

As a summary, the measured parameters of the three selected resonators are shown in Table 2.1
stating frequency, static capacitance, attained 𝑘2eff , Q and impedance ratio. The latter parameter is
defined as 20log10(Z𝑓𝑝/Z𝑓𝑠) and is commonly used as a resonator performance figure. It is impor-
tant to highlight that the measured effective electromechanical coupling 𝑘2eff = 14.3 % is less than
the theoretically achievable results for this LN cut. While the simulation study on an ideal LN plate
has allowed to select the most favorable cut from an SH0 perspective, note that it has not consid-
ered the oxide layer and the silicon carrier, a fact known to reduce electromechanical coupling due
to the stress conditions imposed at the interfaces, nor the mechanical loading imposed by the elec-
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trode material. These two reasons lead to a reduction of the attainable coupling with respect to that
ideally achievable. Additionally, the demonstrated resonators still show undesired spurious modes
in-between the two resonances and thus, 𝑘2eff can be further improved if such modes are suppressed
to get to the already demonstrated values of around 20% [86]. Nevertheless, the achieved results
yield 𝑘2eff values higher than those of regular SAW and BAW and thus, the proposed LNOI approach
provides a very promising platform to develop AW filters.

2.6.3 Effect of Transducer Apodization

As demonstrated through the discussion of the effect electrode thickness has on the performance of
the proposed resonator structure, although unwanted modes above 𝑓𝑝 can be partially suppressed
through controlling electrode thickness, spurious modes between 𝑓𝑠 and 𝑓𝑝 are still present. While
the unwantedmodes above𝑓𝑝 are specially harmful for the shunt resonators in a ladder filter, because
𝑓𝑝 falls inside the passband and such modes add an unwanted ripple to it, modes between the two
resonances are even more harmful because all resonators in the ladder contribute to ripples in the
filter passband. In this direction, the effort in this subsection is focused on exploring a mechanism
to avoid the presence of such unwanted modes.

The presence of spurious modes between 𝑓𝑠 and 𝑓𝑝 in resonators with IDT excitation is a topic of
discussion to which many contributions have been devoted. In general terms, the unwanted modes
are due towaves propagating in the transverse direction of the resonator, that is, between the two bus
bars of the IDT. These unwantedmodes, as explained in [50] (Ch. 5) in the context of SAW resonators
and as discussed inmany other contributions such as [56,95–98], are caused by a wave guiding effect
due to the difference in phase velocity of the electrode in the transducer (lower velocity region) and
the gap between the end of the electrode and the busbar (higher velocity region). Interestingly, the
frequency and number of transverse modes are related to the transducer aperture [50] (Ch. 5). To
this end, several techniques have been proposed for SAW resonators in both LiNbO3 and LiTaO3

such as apodization of the IDT (i.e., the addition of a shape to the IDT by using the end position of
each electrode so to describe a desired shape, such as a rhomboid, along the transducer), addition
of dummy electrodes in each gap between electrode and bus bar or novel transducer layouts such as
the one in [96] to achieve the so-called piston mode or the one by Stettler and Villanueva in [98] for
released membrane SH0 resonators.

In the context of the proposed SH0 resonators, the proposed transverse mode suppresion tech-
nique is applying an apodization pattern to the IDTwhile considering dummyelectrodes. For a better
depiction of the proposed layout, Fig. 2.11a shows an SEM image of one of the manufactured res-
onators depicting a rhomboidal apodization pattern. In the proposed case, the distance between the
end of each electrode and the beginning of each dummy electrode is 1 𝜇m, as shown in the close-up
in Fig. 2.11b. The rhomboidal shape of apodization has already been proposed in [99] suggesting an
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(a) t (b) t

Figure 2.11: SEM images of an apodized resonator with AR = 40%. (a) General image of a resonator
including probing pads. (b) Close‑up view of the resonator showing electrodes with their respective
dummy electrodes.

optimal apodization ratio of 60%, with apodization ratio being defined as in [94]

𝐴𝑅 = (1 − 𝐴min
𝐴max

) ⋅ 100 (2.5)

where 𝐴min and 𝐴max are the minimum and maximum apertures of the IDT, respectively. In other
words, the electrode overlap length at the end of the resonator (last electrode before the grating) and
the electrode overlap length at the center of the resonator, respectively.

Considering the proposed apodization optimumbyKadota et al., let us take two of the resonators
analyzed in the previous section, let them be 𝜆 = 2.8 and 2.8 𝜇m, and let us manufacture them once
again, considering hAl = 180 nm but now applying a rhomboidal apodization pattern with a 60%
ratio. The manufactured resonators are measured with the same set-up used in the previous section
and the input impedance curve of the apodized resonators is shown in Fig. 2.12b while Fig. 2.12a
depicts the input impedance of the two same resonators but without apodization, for comparison
purposes. The inset in each figure highlights the IDT layout of each case.

At a first glance note clearly how the apodized reasonator is clean of unwanted spurious modes
between 𝑓𝑠 and 𝑓𝑝 and how, by simple inspection, such resonators show a higher impedance ratio
and a higher quality factor value. Such an increase in quality factor can be observed in Fig. 2.12c
that compares, for the 𝜆 = 2.9 𝜇m resonator, the measured Bode Q with and without apodization.
For completeness, Fig. 2.12d shows thewideband input impedance, up to 6GHz, of the two apodized
resonators. In this case, the spurious peak located at 1.15 GHz corresponds to the A0 Lambwave and
the peak at 1.9 GHz corresponds to the S0 Lamb wave. Such unwanted excitation of Lamb modes is
a common issue of plate wave resonators and avoiding it is an open topic of research.

From the measured impedance of the apodized resonators, the parameters summarized in Ta-
ble 2.2 can be computed. By direct comparison with Table 2.1, note that Q𝑚𝑎𝑥 has increased up
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Table 2.2:Measured parameters of the two resonators with AR = 60% and hAl = 180 nm.

𝜆 (𝜇m) C0 (pF) 𝑘2𝑡 (%) Qmax Z𝑟 (dB)
2.8 0.57 17.0 726 67
2.9 0.53 17.2 818 69

1.2 1.3 1.4 1.5 1.6 1.7
Frequency (GHz)

101

102

103

104

105

 = 2.8 m
 = 2.9 m

(a)

1.2 1.3 1.4 1.5 1.6 1.7
Frequency (GHz)

101

102

103

104

105

 = 2.8 m
 = 2.9 m

(b)

1.2 1.3 1.4 1.5 1.6 1.7
Frequency (GHz)

0

100

200

300

400

500

600

700

800

900

B
od

e 
Q

Apodized
Non-apodized

(c)

1 2 3 4 5 6
Frequency (GHz)

101

102

103

104

105

Z
in

 (
)

 = 2.8 m
 = 2.9 m

(d)

Figure 2.12: Measured impedance of the manufactured LNOI resonators with and without apodiza‑
tion for 𝜆 = [2.8, 2.9] 𝜇m. (a) Input impedance of non‑apodized resonators. (b) Input impedance of
apodized resonators with AR = 60%. (c) Comparison of Bode Q for the 𝜆 = 2.9 𝜇m resonator with and
without apodization. (d) Wideband input impedance of the apodized resonators.

to 800, the impedance ratio has increased 6 dB and, even further, electromechanical coupling 𝑘2eff
has increased to 17%. On the negative side, an important feature to improve is the excessively high
electrode resistance that can be observed in all the presented input impedance measurements con-
sistently showing a series electrode resistance of 7Ω. Such a high resistance is associated with poor
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Figure 2.13:Measured impedance of 𝜆 = 2.9𝜇mresonators for the apodization ratio sweepAR = [40%,
60%, 80%, 100%]. (a) Input impedance magnitude. (b) Input impedance phase.

film quality of the evaporated aluminum and efforts to improve sheet resistance are required.

Finally, once the usefulness of IDT apodization for SH0 resonators has been demonstrated, also
a discussion on the optimum apodization ratio can be provided. While the proposal of a 60% AR as
an optimum proposed by Kadota et al. has proven useful, a sample resonator of 𝜆= 2.9 𝜇mhas been
fabricated for the set of apodization ratios AR = [40%, 60%, 80%, 100%] to observe the differences
in resonator performance and assess the choice of 60% as an optimum point. The measured input
impedance of the fabricated set of resonators is depicted in Fig. 2.13a and the phase of the measured
input impedance is shown in Fig. 2.13b. The input impedance phase trace is very helpful to observe
the presence of unwanted spurious modes when their amplitude is not observable in the impedance
magnitude plot.

At first, let us clarify that the resonator corresponding to AR= 40% is slightly higher in frequency
(8MHz) due to a lithographic deviation but shows 𝑘2eff =17%, that of the resonator with 60% apodiza-
tion. However, notice in its corresponding phase trace that although transverse modes are partially
suppressed, ripples still appear within the two frequencies of the resonator. For this resonator, Qmax

= 625. On the other hand, for apodization ratios higher than 60% notice how the 𝑘2eff reduces in ex-
change of a higher Q. For example for an apodization ratio of 100%, 𝑘2eff = 16.5% and Qmax = 950.
Moreover, note also that for AR = 100%, spurious modes both above 𝑓𝑝 and 𝑓𝑠 are more pronounced.
All in all, this results confirm that the AR = 60% is the optimal choice in terms of 𝑘2eff and Q because
spurious modes are properly suppressed without incurring in any loss of 𝑘2eff .

As a last remark, notice an interesting observation from Fig. 2.13b that allows to highlight the
fact that spurious modes above 𝑓𝑝 are due to longitudinal modes that depend on the size of the
acoustic cavity created by the gratings and IDT. For the four 𝜆 = 2.9 𝜇m resonator, independent of
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the apodization ratio applied, such modes remain at the same exact positions.

2.6.4 Comparison with Other Literature

To close this chapter, as a means to compare the achieved resonator performance with other recent
contributions exploiting also the SH0mode onLN, a brief state of the art survey is provided analyzing
a traditional figure of merit in microwave acoustic resonators that is the 𝑘2eff ⋅𝑄 product. Due to wide
variety of LiNbO3 cuts being used to excite the SH0mode and the different approaches to obtainwave
confinement within the plate, this brief survey does not separate in terms of LN cut but distributes
results among four main implementation strategies, namely, LNOI (within which the results in this
thesis must be counted), released membrane approaches, LNOI on silicon carbide (SiC) and LNOI
with an additional polycrystalline silicon layer between the oxide and the silicon carrier. Survey
results are summarized in Table 2.3 and shown in terms of FoM with respect to frequency in Fig.
2.14.
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Figure 2.14: Figure ofmerit FoM = 𝑘2eff⋅Qas a function of resonance frequency for the examples of SH0
resonators on thin LiNbO3 found in the literature as of Dec. 2022.

2.7 Chapter Summary

This chapter provides a qualitative description of the main microwave acoustic resonator technolo-
gies and introduces some fundamental aspects on their performance and manufacturing that are
important to understand the filter synthesis methods provided in this thesis. Starting from a brief
historical introduction of how microwave acoustics have achieved their leading role in RF-FEM fil-
tering stages, the two main acoustic technologies that have reached industrial production, SAW and
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Table 2.3: Survey of SH0 resonators on LiNbO3

Reference Cut Type Frequency (GHz) 𝑘2eff (%) Q FoM
[100] X LNOI 550 21.2 1360 288.3
[87] 10∘YX LNOI 800 36.5 251 91.6
[101] 30∘YX LNOI 900 24.4 1092 266.4
[102] 30∘YX LNOI 900 24.8 1107 274.5
[86] X LNOI 1000 21.8 910 198.3
[103] 15∘YX LNOI 1050 23.9 331 79.1
[89] 15∘YX LNOI 1200 24 350 84

This work 30∘YX LNOI 1500 14 615 86.1
This work 30∘YX LNOI 1500 17.2 818 140.7
[104] 170∘YX Membrane 101 12.4 1300 161.2
[105] 10∘YX Membrane 120 20.6 1064 219.2
[106] X Membrane 240 41 1900 779
[99] 30∘YX Membrane 600 22 600 132
[107] 36∘YX Membrane 1050 28 645 180.6
[108] 15∘YX LNOI-SiC 1300 22 330 72.6
[88] X LNOI-SiC 2280 26.9 1280 344.3
[109] 32∘YX LNOI-PolySi 3760 23 1500 345

BAW, are presented with their main advantages and disadvantages and their application spaces.
Additionally, the more recently explored plate modes in strong piezoeletric material to achieve very
high electromechanical coupling values are also introduced.

After the conceptual presentation of the different technologies, the chapter focuses on the ex-
perimental validation of shear horizontal mode resonators on the so-called LNOI structure with the
main objective of attaining a platform on which the filter synthesis techniques developed in this
thesis can be demonstrated. The chapter provides a discussion on the role of electrode thickness
in the excitation of spurious modes above the anti-resonance frequency as well as on the impor-
tance of transducer apodization to avoid in-band spurious modes. Finally, the achieved results show
a promising performance with higher 𝑘2eff values than those of regular SAW and BAW and accept-
able Q values. As is demonstrated in Ch. 4 in this thesis, the developed LNOI platform is used to
implement a ladder filter exploiting some of the proposed synthesis techniques.
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CHAPTER3

Network Synthesis as Applied to Microwave
Acoustic Filters

Network synthesis can be described as the complete opposite of network analysis. While given a cir-
cuit and its component values one can apply a set of mathematical tools to analyze it and derive its
response, network synthesis faces the problem in the opposite direction: finding the element values
and their connection such that they implement a desired response that is expressed as a mathe-
matical function, for example, of frequency. Such a definition, although simple, opens the gate to a
complete field of research with many applications.

The objective of this chapter is to provide the theoretical foundations of the application of net-
work synthesis techniques to acoustic wave filters and to present the synthesis procedure that is
used throughout this thesis. Starting with a brief historical introduction to the field, this chapter
initially focuses on the first requirement in any network synthesis problem: the transfer function to
implement. Working in the so-called normalized domain of the complex variable 𝑠 = Σ + 𝑗Ω, the
properties of functions that can be implemented by acoustic wave ladder filters are described along
the specific method to compute the general class of Chebyshev filter functions, the optimal filter
function in terms of flexibility and achievable rejection and steepness.

After presenting the transfer functions to use, the focus is set on the prototype networks capable
of implementing certain types of transfer functions. In this thesis, attention is paid to inline net-
works composed of extracted pole sections and such structures are presented along with their nodal
representation to allow the introduction of the normalized prototype equivalent of the Butterworth
- Van Dyke model. This equivalent was originally derived in works [22, 23] and is the workhorse of
microwave acoustic filter synthesis and design. Having discussed functions and the circuits that can
implement them, this chapter describes the mathematical procedure to compute the circuital ele-
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ments that implement a desired transfer function. To join all the concepts in the chapter, examples
of synthesized AW ladder filters are presented in the last section.

The contents of this chapter only constitute a summarized version of the vast knowledge that can
be found in basic references such as [9, 110–112], among others, but represent the basis on which
forthcoming chapters are built.

3.1 Brief Historical Note

Key names in network synthesis such as Darlington and Belevitch [113, 114] trace the foundation
of the field back to the 1920s with the contribution by Cauer [115] regarding the realization of one-
port networks whose response is defined as a function of frequency and the publication of Foster’s
reactance theorem [116]. From such contributions, a growing interest in circuit theory along the
wide deployment of telephony networks led to many advances by important names such as H. W.
Bode, O. Brune, S. Butterworth, to name a few, highlighting the one by Darlington from the Bell
Telephone Laboratories [117] proposing a general method to obtain a two-port reactance network
with a prescribed insertion loss. This work, along with the demonstration by Cauer of the use of
elliptic functions as the optimal base for transfer functions, led to establishing network synthesis as
an important topic in electrical engineering1.

At first, state-of-the-art frequency-selective circuits aimed to operate at very low frequencies, ini-
tially in the order of hundreds of kHz extending to the MHz range duringWorldWar II and circuital
implementations using lumped inductors, capacitors and resistors were common. As the capability
to operate at higher frequencies evolved, the scaling of networks only using lumped components
became very difficult when not impossible and distributed structures became the standard thanks
to Richard’s transformation [118]. At that point, the need of immitance inverters to avoid the im-
plementation of complex distributed structures was highlighted in the fundamental contribution by
Cohn [119] establishing their interpretation as electromagnetic coupling between resonators. From
that point onwards, network synthesis for microwave filters became a topic in close relation with
applied electromagnetics and part of the microwave filter design field.

With the availability of computing power and advances in electromagnetic simulation, many
contributions provided methods to easily compute transfer functions without relying on tabulated
data and increased the complexity of state-of-the-art microwave filters. Such advances, among oth-
ers, are summarized in the reference book by Cameron, Kudsia and Mansour [9] and nowadays,
synthesis techniques are an important research topic with impact across many technologies ranging
from dielectric, coaxial cavity and waveguide filters for base stations and satellite communications

1While this note and this thesis focus on the aspects of network synthesis related to filters, other contributions have
also directed the field of network synthesis towards techniques for networks including active devices such as operational
amplifiers.
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to acoustic wave technologies for integrated RF-FEMs. In all these cases, synthesis techniques act as
the initial step in any design flow linking the desired response with a circuital implementation of it.

3.2 Transfer Function Characteristics

As already introduced in the first paragraphs, the first requirement in any network synthesis proce-
dure is to define the transfer function that the networkmust implement as a function of the complex
variable 𝑠 = Σ + 𝑗Ω, where 𝑗Ω is the frequency axis. Let us highlight here that instead of defining
transfer functions directly in the frequency range where the filter passband is implemented, filter
synthesis techniques usually work in the so-called normalized frequency domain such that the filter
passband is defined from 𝑠 = −𝑗 to 𝑠 = 𝑗. Such normalization also assumes that the load impedances
at each port of the filter are normalized to 1 Ohm and is useful since the circuital output after syn-
thesizing such normalized function is the so-called lowpass or normalized prototype circuit. From
it, via a frequency transformation expression that is presented in a forthcoming section, the filter
response is brought into the so-called bandpass domain where the lower and upper passband edges
are located at 𝑓1 and 𝑓2, respectively, allowing to define different filter networks all along the elec-
tromagnetic spectrum from the same synthesized prototype. Alternatives to this, proposing direct
synthesis of filters in the bandpass domain have already been discussed for microwave acoustic fil-
ters in [23,24,120] but resulting in amore complex scenario regarding the computation of the transfer
function and numerical stability issues due to high order polynomials.

Before diving into the mathematical formulation of filter functions it is important to consider
some general aspects of the transfer functions implemented by acoustic wave ladder filters. Consid-
ering the electrical response of AW resonators, already presented with the Butterworth - Van Dyke
model in Ch. 1, and the example response of a ladder filter depicted in Fig. 1.4b, interesting conclu-
sions can be drawn. At first, notice that an AW ladder filter has as many finite transmission zeros as
resonators, giving rise to the concept of fully canonical functions, that is described in this chapter.
An inherent characteristic of such functions is their finite out-of-band rejection level.Moreover, con-
sidering that transmission zeros are directly related to the resonance frequencies of AW resonators
composing the ladder (TZs above the passband are defined by the anti-resonance of series resonators
and TZs below the passband are the resonance frequency of shunt resonators), filter functions for
AW ladder filters are asymmetric by nature. In other words, there is no response symmetry with
respect to the central frequency (𝑓0) of the filter. These two facts have important implications in the
mathematical formulation that follows and are discussed in detail along this chapter.

To begin, let us define the transfer function of a given two-port2 lossless network in terms of how

2Microwave filters are generally two-port networks and thus, the mathematical framework for filter synthesis is de-
voted to them. In the context of the present chapter, two-port networks are the object under study while extending this
synthesis framework for multiport networks is the purpose of Ch. 5 in this thesis.
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power injected in the network is transmitted or reflectedwith respect to the frequency. Consider from
transmission line theory that parameters defining transfer and reflection of energy are the reflection
𝜌(𝑠) and transmission 𝑡(𝑠) coefficients, both a function of the normalized input impedance of the
network, let it be 𝑧in(𝑠).

𝑧in(𝑠) =
𝑛(𝑠)
𝑑(𝑠) (3.1)

From the fact that a filter is a passive network composed of reactive elements, the derivation in [9]
(Ch. 2) and [110] (Ch. 3), states that the input impedance 𝑧in(𝑠) of a network whose response is sym-
metric about the zero frequency is a positive real function. That is, its numerator and denominator
polynomials have real and positive coefficients. However, from the fact that response asymmetry is
required for AW ladder filters, it is necessary that both numerator and denominator of 𝑧in(𝑠) have
complex coefficients imposing 𝑧in(𝑠) to be a positive function [9] (Ch. 3).

From (3.1), let us revisit the basic definition of the reflection coefficient,

𝜌(𝑠) = 𝑧𝑖𝑛(𝑠) − 1
𝑧𝑖𝑛(𝑠) + 1 =

𝑛(𝑠) − 𝑑(𝑠)
𝑛(𝑠) + 𝑑(𝑠) =

𝐹(𝑠)
𝐸(𝑠) (3.2)

where two characteristic polynomials 𝐹(𝑠) and 𝐸(𝑠) can be defined.

From the lossless assumption of the network, let us impose, along the frequency axis,

|𝜌(𝑗Ω)|2 + |𝑡(𝑗Ω)|2 = 1 (3.3)

and stating that 𝑡(𝑗Ω) = 1 − 𝜌(𝑗Ω), polynomial 𝑃(𝑠) related to the transmission of the network can
be introduced,

|𝑡(𝑗Ω)|2 = 1 − |𝜌(𝑗Ω)|2 = 𝐸(𝑠)𝐸(𝑠)∗ − 𝐹(𝑠)𝐹(𝑠)∗
𝐸(𝑠)𝐸(𝑠)∗ = 𝑃(𝑠)𝑃(𝑠)∗

𝐸(𝑠)𝐸(𝑠)∗ (3.4)

yielding the polynomial definition of transmission coefficient:

𝑡(𝑠) = 𝑃(𝑠)
𝐸(𝑠) (3.5)

At this point, it is important to mention that operator ∗ located after the variable dependency of
the polynomial refers to the para-conjugation operation in complex-variable polynomials. A further
detail of this operation, as stated in [9] (Ch. 6) is provided in appendix A.1 for completeness.

From the above derivation, it is demonstrated that a given network response can be represented
by a set of so-called characteristic polynomials 𝑃(𝑠), 𝐹(𝑠) and 𝐸(𝑠). These polynomials, in order to
represent an implementable filter function, must fulfill the following properties:

• 𝐸(𝑠)must be an 𝑁-th order Hurwitz polynomial to ensure system stability, being 𝑁 the order
of the filter. Polynomial 𝐸(𝑠) has all its roots in the left half of the 𝑠-plane as a consequence of
the Routh-Hurwitz criterion that states that the real part of all roots of 𝐸(𝑠)must be negative
so that when excited with a driving function, all exponential terms 𝑒𝛼𝑡 are decreasing (being
𝛼 the real part of a root of 𝐸(𝑠)).
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• 𝐹(𝑠) is an 𝑁-th degree polynomial with, in the context of this chapter, purely imaginary roots.
Reflection zeros (i.e. frequencies at which reflected power is null) are the roots of 𝐹(𝑠).

• 𝑃(𝑠) is an 𝑛tz-th order polynomial, being 𝑛tz the number of finite transmission zeros of the
filter. The roots of 𝑃(𝑠) lie on the imaginary axis, in the context of this thesis, but might as
well lie as conjugate pairs in the real axis or as complex quads in the 𝑠-plane [9]. For all-pole
networks (those where all TZs are located at infinity) 𝑃(𝑠) is a constant.

In general terms, when working on filter networks, it is desired that all roots of 𝐹(𝑠) lie within
the passband, i.e., inside the 𝑠 = [−𝑗, 𝑗] interval of the normalized domain, as reflection zeros, and
all roots of 𝑃(𝑠) lie outside the passband as transmission zeros to provide rejection.

Having presented the three characteristic polynomials composing the response of a network,
let us now switch to a more convenient notation for microwave engineers in terms of scattering
parameters. Given the network is connected to normalized reference impedance loads, it can be
stated that 𝜌(𝑠) = 𝑆11(𝑠) and 𝑡(𝑠) = 𝑆21(𝑠). Then, considering that a filter is a passive, lossless and
reciprocal two-port network, the 𝑆-parameters of the filter function can be defined as follows, where
terms 𝜀 and 𝜀𝑟 are normalization constants used to express 𝑃(𝑠) and 𝐹(𝑠) in monic form (i.e., to set
their highest-degree coefficient to unity).

𝑆11(𝑠) =
𝐹(𝑠)/𝜀𝑟
𝐸(𝑠) (3.6)

𝑆22(𝑠) =
𝐹22(𝑠)/𝜀𝑟
𝐸(𝑠) (3.7)

𝑆21(𝑠) = 𝑆12(𝑠) =
𝑃(𝑠)/𝜀
𝐸(𝑠) (3.8)

Revisiting the lossless condition imposed in (3.3), let us impose conservation of energy through
the unitarity of 𝑆-parameters,

𝑆11(𝑠)𝑆11(𝑠)∗ + 𝑆21(𝑠)𝑆21(𝑠)∗ = 1 (3.9)

𝑆22(𝑠)𝑆22(𝑠)∗ + 𝑆12(𝑠)𝑆12(𝑠)∗ = 1 (3.10)

and impose orthogonality
𝑆11(𝑠)𝑆12(𝑠)∗ + 𝑆21(𝑠)𝑆22(𝑠)∗ = 0. (3.11)

By imposing conservation of energy with (3.9) and (3.10) a very important expression known as
Feldtkeller’s equation is obtained,

𝐸(𝑠)𝐸(𝑠)∗ = 𝐹(𝑠)𝐹(𝑠)∗
𝜀2𝑟

+ 𝑃(𝑠)𝑃(𝑠)∗
𝜀2 (3.12)

having an important role in the computation procedure of many filter functions since it allows to
obtain polynomial𝐸(𝑠) if the other twopolynomials,𝑃(𝑠) and𝐹(𝑠), and their normalization constants
are known.
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Let us now focus in (3.11) to provide a deeper description of phases, both reflection and transmis-
sion, of the filter function, a fundamental topic for the next chapter in this thesis. Transforming the
expression to its polar form, dropping the 𝑠 dependence here for formulation simplicity and applying
the reciprocity of the network (i.e., 𝑆21(𝑠) = 𝑆12(𝑠)), the following expression can be obtained:

|𝑆11|𝑒𝑗𝜃11 ⋅ |𝑆21|𝑒−𝑗𝜃21 + |𝑆21|𝑒𝑗𝜃21 ⋅ |𝑆22|𝑒−𝑗𝜃22 = 0 (3.13)

Also through reciprocity, this time on (3.9) and (3.10), notice that |𝑆11| = |𝑆22|, yielding

|𝑆11||𝑆21| (𝑒𝑗(𝜃11−𝜃21) + 𝑒𝑗(𝜃21−𝜃22)) = 0 (3.14)

what consequently implies that the expression only holds if

𝑒𝑗(𝜃11−𝜃21) = −𝑒𝑗(𝜃21−𝜃22). (3.15)

Note that the negative sign in the right-hand side of the expression can be replaced by 𝑒𝑗(2𝑘±1)𝜋.
By taking only the exponents, a fundamental relation on the phase of the filter function can be stated:

𝜃21 −
𝜃11 + 𝜃22

2 = −𝜋2 (2𝑘 ± 1) (3.16)

Since scattering parameters 𝑆11(𝑠), 𝑆22(𝑠) and 𝑆21(𝑠) share the common denominator 𝐸(𝑠), their
phases can be interpreted as the subtraction of two phases, one from the numerator and one from
the denominator (e.g. 𝜃21(𝑠) = 𝜃𝑛21(𝑠) − 𝜃𝑑(𝑠)). This fact, allows an interesting rewriting of (3.16),
considering that denominator phase terms 𝜃𝑑(𝑠) cancel out, as

−𝜃𝑛21(𝑠) +
𝜃𝑛11(𝑠) + 𝜃𝑛22(𝑠)

2 = 𝜋
2 (2𝑘 ± 1) (3.17)

where 𝑠 dependency has been re-introduced to clarify that as the right-hand side is an odd multiple
of 𝜋/2 and has no dependence in frequency, the difference between the average of phases of 𝑆11 and
𝑆22 numerator polynomials and the phase of 𝑆21 numerator, must be orthogonal at all frequencies.
From (3.17) and following a fine mathematical development of the roots of 𝐹(𝑠) detailed in [9], one
can reach an interesting equation,

(𝑁 − 𝑛tz)
𝜋
2 − 𝑘′𝜋 = −𝜋2 (2𝑘 ± 1) (3.18)

where𝑁 is the order of the filter, 𝑛tz is the number of transmission zeros and 𝑘′ and 𝑘 integers. Here,
for the right-hand side to be satisfied, it is mandatory that 𝑁 − 𝑛tz is odd. Therefore, notice that
for networks where this quantity is even, for example fully canonical ones (where 𝑛tz = 𝑁, those
implemented by acoustic wave ladder filters) an extra 𝜋/2 radians must be added to the right-hand
side of the above equation to fulfill the orthogonality condition in (3.11). This is attained by adding
a shift of 𝜋/2 to 𝜃𝑛21(𝑠) or, equivalently, multiplying polynomial 𝑃(𝑠) by 𝑗.
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Additionally, the same development allows to define that 𝐹22(𝑠) = (−1)𝑁𝐹(𝑠)∗. Given these two
results, the 𝑆-parameters in (3.8) can be rewritten in their matrix form for the two cases:

S = [𝑆11(𝑠) 𝑆12(𝑠)
𝑆21(𝑠) 𝑆22(𝑠)

] = 1
𝐸(𝑠) [

𝐹(𝑠)/𝜀𝑟 𝑗𝑃(𝑠)/𝜀
𝑗𝑃(𝑠)/𝜀 (−1)𝑁𝐹(𝑠)∗/𝜀𝑟

] for 𝑁 − 𝑛tz even (3.19a)

S = [𝑆11(𝑠) 𝑆12(𝑠)
𝑆21(𝑠) 𝑆22(𝑠)

] = 1
𝐸(𝑠) [

𝐹(𝑠)/𝜀𝑟 𝑃(𝑠)/𝜀
𝑃(𝑠)/𝜀 (−1)𝑁𝐹(𝑠)∗/𝜀𝑟

] for 𝑁 − 𝑛tz odd (3.19b)

Following the derivations up to this point, the fundamental relations of how a set of characteris-
tic polynomials represent the 𝑆-parameters of a desired network response are presented. Moreover,
note that through Feldtkeller’s equation (3.12), it is possible to obtain the common denominator
polynomial 𝐸(𝑠) if polynomials 𝑃(𝑠) and 𝐹(𝑠) have been defined. To clarify the importance of this
relation, let us go back to the reflection and transmission coefficients to relate the reflected and
transmitted power through the so-called characteristic function 𝐾(𝑠):

|𝐾(𝑠)|2𝑠=𝑗Ω = |𝜌(𝑗Ω)|2

|𝑡(𝑗Ω)|2
(3.20)

Considering again that 𝜌(𝑗Ω) = 1 − 𝑡(𝑗Ω), one can get to the following expression

|𝑡(𝑗Ω)|2 = 1
1 + |𝐾(𝑠)|2𝑠=𝑗Ω

(3.21)

and realize, from (3.20), that
𝐾(𝑠) = 𝐹(𝑠)

𝑃(𝑠) . (3.22)

A given transmission response is ultimately described by a characteristic function, that already
includes both the information of reflection zeros and transmission zeros, if any. Once this charac-
teristic function is split into its numerator and denominator polynomials, it is Feldtkeller’s equation
that yields the common denominator polynomial that ensures the three polynomials describe a uni-
tary and orthogonal response. In other words, the problem of computing a desired filter function lies
into finding an adequate characteristic function and then obtain its characteristic polynomials. Even
further, the different types of filter functions are classified with respect their characteristic function:
starting from the maximally flat, also called Butterworth filter, that makes use of the polynomials
of the same name and shows a maximally flat passband, through elliptic function filters, also called
Cauer filters due to Wilhelm Cauer, that describe an equiripple (equalized ripple) response both in
the stopband and the passband, to Chebyshev filters, whose characteristic function is a Chebyshev
polynomial and depict equiripple passbands (type I) or equirriple stopbands (type II). Interestingly,
Chebyshev filter are a limit case of Cauer filters since elliptic functions lead to Chebyshev polyno-
mials when the stopband ripple of a Cauer filter is reduced to zero [112].
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Figure 3.1: Chebyshev polynomials of the first kind 𝑇𝑁(𝑥) for𝑁 = 1, 3, 5, 6.

Although Cauer filters are proven to provide the highest rejection with the least amount of
circuital elements, they do not allow transmission zeros to be set freely. To this end, the funda-
mental contribution by Cameron [121] that generalized the computation of Chebyshev filter func-
tions to place transmission zeros as desired, overcoming the previous approaches by Orchard and
Temes [122] and Rhodes and Alseyab [123], has elevated such functions to be the standard in mi-
crowave filter design. From an AW ladder filter perspective, the ability to freely set the position of
finite transmission zeros is key due to the direct relation between zeros and resonances of resonators
in the ladder. In that direction, previous contributions [22, 23, 124] by the group hosting this thesis
demonstrated that a generalized Chebyshev function can be perfectly implemented by a ladder of
AW resonators.

3.2.1 A General Class of the Chebyshev Filter Function

This subsection focuses on the procedure to compute the generalized Chebyshev filter function fol-
lowing themethod byCameron. Presenting the characteristic function to synthesize and the iterative
procedure to find polynomial 𝐹(𝑠) once a set of transmission zeros are defined in 𝑃(𝑠), the discussion
is focused on fully canonical functions, those implemented by AW ladder filters.

Prior to diving in the generalized case, let us revise the basic rationale behind the use of Cheby-
shev functions in the scope of all-pole microwave filters (without finite transmission zeros, 𝑛tz = 0)
those commonly presented in microwave engineering references such as [125]. The main reason to
exploit Chebyshev functions for a filter is to achieve a steeper rejection than that provided by But-
terworth filters: exchanging the flat passband of the latter for a certain level of ripple within the
passband allows to achieve a higher steepness of the filter skirt. To do so, the historical approach is
to fix 𝐾(𝑗Ω) = 𝜀𝑇𝑁(Ω) where 𝑁 is the order of the filter and 𝑇𝑁 is the 𝑁-th degree Chebyshev poly-
nomial of the first kind, as shown in Fig. 3.1 for 𝑁 = 1, 3, 5, 6. Since for all pole filters, polynomial
𝑃(𝑠) is a constant, 𝜀, parameters 𝑆21(𝑠) and 𝑆11(𝑠) are directly defined through (3.21) and the roots of
𝐹(𝑠) are directly found as the zeros of 𝑇𝑁 .

However, aiming to implement a filter function with equiripple return loss while having up to
𝑁 arbitrary transmission zeros, the problem requires a new procedure such that the characteristic
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function 𝐾(𝑠) of the network is a generalized version of the Chebyshev polynomial of the first kind
(𝐶𝑁 instead of 𝑇𝑁) but now subject to 𝑃(𝑠) having 𝑁 finite roots outside the 𝑠 = [−𝑗, 𝑗] interval3.

Polynomial synthesis of generalized Chebyshev functions

Let us start by expressing parameter 𝑆21(Ω) in terms of the generalized Chebyshev characteristic
function 𝐶𝑁(Ω),

|𝑆21(Ω)|2 =
1

1 + |𝑘𝐶𝑁(Ω)|
2 =

1

1 + |||
𝜀
𝜀𝑟
𝐹(Ω)
𝑃(Ω)

|||
2 (3.23)

where, as expected, poles and zeros of 𝐶𝑁(Ω) are transmission and reflection zeros respectively, that
is, the roots of 𝑃(Ω) and 𝐹(Ω). Function 𝐶𝑁(Ω) is the expression of the Chebyshev polynomials of
the first kind, namely 𝑇𝑁(𝑥), but stating 𝑥 as a function of frequency, 𝑥𝑛(Ω), instead of a simple
variable4.

𝐶𝑁(Ω) = cosh [
𝑁
∑
𝑛=1

cosh−1(𝑥𝑛(Ω))] (3.25)

As proposed by Cameron, function 𝑥𝑛(Ω)must fulfill some properties such that𝐶𝑁(Ω) describes
a generalized Chebyshev function:

• 𝑥𝑛(Ω𝑛) = ±∞ where Ω𝑛 is either a transmission zero or infinity.

• In-band (i.e., −1 ≤ Ω ≤ 1), 1 ≥ 𝑥𝑛(Ω) ≥ −1 (𝑥𝑛 is bounded between ±1).

• At Ω = ±1, namely the passband edges, 𝑥𝑛(Ω) = ±1.

By developing the three conditions above, the function is found to be

𝑥𝑛(Ω) =
Ω − 1

Ω𝑛

1 − Ω
Ω𝑛

(3.26)

and Fig. 3.2 shows an example of the function 𝑥𝑛(Ω) for a transmission zero atΩ = 1.4. The vertical
lines in the plot mark the edges of the passband.

3From this point onwards, the formulation is brought from the 𝑠-plane into the Ω-plane (i.e. setting 𝑠 = 𝑗Ω, where
Ω is the real lowpass frequency variable) for simplicity. This lowpass frequency is referred as Ω not to mess with the
bandpass angular frequency, commonly termed, 𝜔.

4Note that the interval of arccosh(𝑥) is [1,∞). Therefore for a correct analysis of 𝐶𝑁(Ω), one might make use of the
identity cosh𝜃 = cos 𝑗𝜃 [9] yielding the following expression forΩ ≤ 1

𝐶𝑁(Ω) = cos [
𝑁
∑
𝑛=1

cos−1(𝑥𝑛(Ω))] (3.24)
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Figure 3.2: Function 𝑥𝑛(Ω) forΩ𝑛 = 1.4

Having presented the characteristic function to compute, the first step of the computation proce-
dure is to define polynomial 𝑃(Ω) from the set of transmission zeros of the filter, that are prescribed
as an input to the method, as

𝑃(Ω) =
𝑁
∏
𝑛=1

(Ω − Ω𝑛) (3.27)

yielding a monic polynomial.

Once 𝑃(Ω) is known, the method to find 𝐹(Ω) is a recursive computation of 𝑁 steps developed
in [121] and refined in the book by Cameron et al. in Section 6.3 [9]. Starting from (3.25), replacing
the cosh(𝑥) term by its logarithmic identity and after some simplification that is not replicated here,
the expression can be broken down to a multiplication of sums and subtractions of two terms,

𝑐𝑛 = (Ω − 1
Ω𝑛

) and 𝑑𝑛 = Ω′
√
1− 1

Ω2𝑛
(3.28)

where Ω′ = √Ω2 − 1.

Additionally, the recursive technique defines two auxiliary polynomials 𝑈(Ω) and 𝑉(Ω), used
along the𝑁 iterations: at each iteration, a new value of𝑈 𝑖(Ω) and 𝑉 𝑖(Ω) is computed from𝑈 𝑖−1(Ω)
and 𝑉 𝑖−1(Ω), and the 𝑖-th root of 𝑃(Ω), namely Ω𝑖. If there are less than 𝑁 transmission zeros, the
𝑁 − 𝑛tz remaining iterations use input Ω𝑖 = ∞.

The first iteration, 𝑖 = 1, starts as follows

𝑈1(Ω) = 𝑐1 and 𝑉1(Ω) = 𝑑1 (3.29)

and from 𝑖 = 2 to 𝑖 = 𝑁, the polynomials are computed as:

𝑈 𝑖(Ω) = 𝑐𝑖𝑈 𝑖−1 + 𝑑𝑖𝑉 𝑖−1(Ω) (3.30a)
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𝑉 𝑖(Ω) = 𝑐𝑖𝑉 𝑖−1 + 𝑑𝑖𝑈 𝑖−1(Ω) (3.30b)

After 𝑁 iterations, polynomial 𝑈𝑁(Ω) has the roots of the numerator of 𝐶𝑁(Ω), that is, the roots
of 𝐹(Ω), and thus, monic polynomial 𝐹(Ω) can be directly built. All roots of 𝐹(Ω), as expected, lie
on the real axis of Ω (i.e., on the imaginary axis of 𝑠).

Computation of 𝜀 and 𝜀𝑟

At this point, monic polynomial 𝑃(Ω) has been defined from a set of input transmission zeros and
𝐹(Ω) has been computed such that function 𝐶𝑁(Ω) is a generalized Chebyshev function. With the
objective to compute common denominator polynomial 𝐸(Ω) via (3.12), their normalization con-
stants 𝜀 and 𝜀𝑟 need to be computed. As stated in (3.8), such normalization constants ensure 𝑃(𝑠)
and 𝐹(𝑠) are monic and at the same time play a role in defining the return loss level of the function.
In the case of Chebyshev functions, their value can be found by prescribing a desired return loss
level at the edges of the passband (i.e., 𝑠 = ±𝑗, equivalently Ω = ±1) as

𝜀 = 1
√1 − 10−𝑅𝐿/10

|||
𝑃(Ω)
𝐸(Ω)

|||Ω=±𝑗
. (3.31)

However, since 𝐸(Ω) is found through (3.12) and not known yet, a more useful expression can
also be found by looking at the definition of the 𝑆-parameters:

𝜀
𝜀𝑟
= 1
√10−𝑅𝐿/10 − 1

|||
𝑃(Ω)
𝐹(Ω)

|||Ω=±1
(3.32)

Note that constant 𝜀𝑟 that can be assessed from parameter 𝑆11 and that for a network featuring
transmission zeros at infinity (i.e., 𝑁 − 𝑛tz > 0), 𝑆21(±∞) = 0 and because of the conservation of
energy condition (3.9) 𝑆11(±∞) = 1. Therefore, for those networks, it is clear that 𝜀𝑟 = 1. On the
other hand, for fully canonical networks the evaluation of transmission at infinite frequency has a
finite value and therefore, the conservation of energy at Ω = ±∞ yields,

𝜀𝑟 =
𝜀

√𝜀2 − 1
(3.33)

thus finding a set of equations to find both normalization constants once 𝑃(Ω) and 𝐹(Ω) are known.

Derivation of the common denominator polynomial

The only remaining unknown to complete the computation of the generalized Chebyshev function
is common denominator polynomial 𝐸(Ω). Exploiting Feldtkeller’s equation in (3.12) there exist two
options to find it: either compute the double-degree polynomial 𝐸(Ω)𝐸(Ω)∗ that has 2𝑁 roots and
apply the Hurwitz condition to take only those roots on the upper half of theΩ-plane (equivalently,
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Figure 3.3: Comparison of the roots of 𝜀𝑟𝑃(Ω) + 𝜀𝑗𝐹(Ω) and 𝐸(Ω) on theΩ‑plane.

the left hand side of the 𝑠-plane) or apply what is known as the alternating pole method, proposed
in [123].

This interesting method arises from the expansion of (3.12), here in the 𝑠-domain for simplic-
ity when considering paraconjugation operations, grouping the conjugated and the non-conjugated
terms separately. For example, assuming a fully canonical network,

𝜀2𝜀2𝑟𝐸(𝑠)𝐸(𝑠)∗ = [𝜀𝑟𝑗𝑃(𝑠) + 𝜀𝐹(𝑠)] [𝜀𝑟𝑗𝑃(𝑠)∗ + 𝜀𝐹(𝑠)∗] + 𝑗𝜀𝜀𝑟 [𝐹(𝑠)𝑃(𝑠)∗ − 𝑃(𝑠)𝐹(𝑠)∗] (3.34)

where the 𝑗 term on 𝑃(𝑠) comes from fulfilling orthogonality because 𝑁 − 𝑛tz is even. Notice that
the rightmost term of (3.34), i.e., 𝐹(𝑠)𝑃(𝑠)∗ −𝑃(𝑠)𝐹(𝑠)∗, would be the orthogonality condition (3.11)
only if 𝐹(𝑠) = 𝐹22(𝑠). Such equality only holds if all the roots of 𝐹(𝑠) lie on the imaginary axis of 𝑠 (on
the real axis of Ω) because the roots of 𝑃(𝑠) have already been constrained to lie on the imaginary
axis or in complex conjugate pairs. For generalized Chebyshev functions, this is the case and thus,
(3.34) simplifies to the product of two terms, one the conjugated of the other. With that, it is possible
to recover 𝐸(Ω) by only rooting the expression 𝜀𝑟𝑃(Ω) + 𝜀𝑗𝐹(Ω), thus avoiding to compute the roots
of a polynomial of degree 2𝑁, to obtain a set of roots like the one shown in Fig. 3.3 with red crosses.
To finally achieve the roots of 𝐸(Ω) the Hurwitz criterion must be imposed by changing the sign of
the imaginary part of all roots on the lower half of theΩ-plane. The depicted roots correspond to an
example fully canonical function of 7-th order with RL = 18 dB and transmission zeros Ω𝑡𝑧 = [1.2,
-2.5, 1.7, -1.6, 3.3, -2.1, 2.1] rad/s, whose polynomial response evaluation is shown in Fig. 3.4a along
its characteristic function 𝐶(Ω) in Fig. 3.4b.

The alternating pole method is here highlighted since in the chapter of this thesis devoted to
multiplexer synthesis, the fact that roots of polynomials become complex impedes the application
of this concept and justifies a discussion on the numerical stability of the overall synthesis method.



Chapter 3. Network Synthesis as Applied to Microwave Acoustic Filters 57

-5 -4 -3 -2 -1 0 1 2 3 4 5
-100

-80

-60

-40

-20

0

S
ij
 (

dB
)

S
21

S
11

(a)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

C
7(

)

(b)

Figure 3.4: Example of a generalized Chebyshev fully canonical function of 7‑th order, RL = 18 dB and
Ω𝑡𝑧 = [1.2, ‑2.5, 1.7, ‑1.6, 3.3, ‑2.1, 2.1] rad/s. (a) Evaluated 𝑆‑parameters. (b) Normalized characteristic
function 𝐶7(Ω) = 𝐹(Ω)/𝑃(Ω).

3.3 Asymmetric Transfer Function Impact on Prototype Networks

Following the procedure described in the previous section, the set of characteristic polynomials
composing an arbitrary generalized Chebyshev function can be computed. At this point, consider
that from (3.2) it is simple to obtain a relation between the polynomials and the normalized input
impedance of the filter function and thus the objective of the synthesis could be stated as finding the
circuital elements that implement such input impedance. However, before diving into the synthesis
methods that allow to do so, let us discuss some details regarding themathematical domain inwhich
synthesis takes place.

It has already been stated that filter synthesis is performed in a normalized frequency domain,
also commonly called the lowpass domain, in which transfer functions are functions of the com-
plex variable 𝑠, centered around the zero frequency and defining the passband to span the range
𝑠 = [−𝑗, 𝑗] rad/s (that is, both negative and positive pulsation frequencies) and related to network
parameters through a normalized reference impedance of 1 Ohm. As a result, working in such a
normalized domain entails that circuits implementing the computed transfer functions of the vari-
able 𝑠 need be composed of normalized lumped reactive elements5, i.e., capacitors and inductors,
whose units are farads and henries, respectively. Moreover, considering that the impedances of the
mentioned reactive elements are first-degree functions of 𝑠 it is clear that the circuit implementing
an arbitrary filter function of degree 𝑁 is composed of 𝑁 such reactive elements.

However, the objective of filter synthesis is to finally obtain the circuital components that im-
5For lossless passive networks. If lossy networks are considered, resistors other than the unitary terminating

impedances should be considered.
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plement a desired filter response in the bandpass domain (a response centered around 𝑓0) and to
connect both domains, a bilateral frequency transformation function is devised as follows,

Ω = 𝜔0
𝜔2 − 𝜔1

( 𝜔𝜔0
− 𝜔0

𝜔 ) (3.35)

being 𝜔 the bandpass angular frequency variable, 𝜔1 and 𝜔2 the passband edge frequencies and 𝜔0

the center frequency of the passband that is computed as the geometric mean of the edges. Com-
monly, the term 𝜔0/(𝜔2 − 𝜔1) is grouped under variable 𝛼, namely the inverse of the relative or
fractional bandwidth.

Such a transformation between the two domains has very interesting consequences that need to
be reviewed to completely describe the synthesis of acoustic wave filters in the normalized domain.
At first, to illustrate the use of (3.35), let us observe the case of a lumped inductor of value 𝐿 in the
normalized domain whose impedance is 𝑍(Ω) = 𝑗Ω𝐿. By simply applying (3.35) to such impedance
assuming an arbitrary bandwidth and central frequency, note that a simple lumped inductor in the
normalized domain becomes a second degree function of frequency after transformation:

𝑍(𝜔) = 𝑗𝛼𝜔𝐿
𝜔0

+ 𝛼𝜔0𝐿
𝑗𝜔 (3.36)

By simple inspection, such an impedance is that of a series LC tank, whose resonance frequency
𝜔𝑟 is 𝜔0 and whose elements are

𝐿𝑟 =
𝛼𝐿
𝜔0

and 𝐶𝑟 =
1

𝛼𝜔0𝐿
. (3.37)

On the other hand, by direct analysis, a lumped capacitor in the normalized domain becomes a
parallel LC tank with 𝜔𝑟 = 𝜔0 after transformation.

Although the scope of this thesis is focused on bandpass filters, it is worth mentioning that if
instead of a bilateral transformation as in (3.35), a simple scaling in terms of frequency is used,
for example stating Ω = 𝜔/𝜔𝑐 where 𝜔𝑐 is the cutoff frequency, a lowpass filter can be obtained.
Equivalently, the inverse of the mentioned scaling would lead to a highpass filter. Notice that such
frequency scaling, that ultimately expands the transfer function in the normalized domain to have
Ω = 1 exactly at𝜔𝑐 does not imply any change of function order and so, lowpass filters are composed
of reactive elements and not resonators. Moreover, note also that (3.35) is a bilateral transformation
and thus, it also translates the transfer function into the negative half of the spectrum. While such
a negative part does not have a material meaning when using the expression to transform the syn-
thesized lumped components to the bandpass domain, it has mathematical effects when facing the
synthesis of filters directly in the bandpass domain. To completely represent the filter, a transfer
function computed directly on variable 𝜔 must incorporate all roots corresponding to the filter re-
sponse in the negative half of the spectrum, thus drastically increasing polynomial order and leading
to numerical stability issues, as mentioned at the beginning of this chapter.
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Back to the original discussion, an important conclusion from (3.35) is that lumped elements in
the normalized domain translate into resonators whose resonance is at the central frequency of the
filter, 𝑓0. This, a fundamental aspect of the design of synchronous all-pole filters [9, 19, 20], entails
also a very important limitation. Consider, for example, a synthesized prototype network that is
composed only of 𝑁 elements, capacitors and inductors. Irrespective of their disposition, a concept
also known as the network topology, from the fact that only capacitors and inductors are present
it is observable that such a network can only implement functions that are symmetric with respect
to the zero frequency: either all-pole or having finite transmission zeros but in symmetric pairs.
That is because given 𝑍𝐿 = 𝑠𝐿 and 𝑍𝐶 = 1/𝑠𝐶, the resulting impedance function, can only have
purely real coefficients in the variable 𝑠 (purely complex in Ω) and thus only have roots distributed
symmetrically along the imaginary axis.

However, it is known that asymmetric responses exist and, in this case, are the ones of interest for
acoustic wave ladder filters. From a mathematical standpoint, introducing asymmetry in a transfer
function, for example, to have independent control of the transmission zeros above and below the
passband, entails that both polynomials 𝑃(𝑠) and 𝐹(𝑠) must have complex coefficients (alternating
between real and imaginary if all roots lie on the imaginary axis). Assuming this fact, it is clear
that a network implementing such an asymmetric response cannot be only composed of capacitors
and inductors. To this end, Baum introduced a fictitious element, the frequency-invariant reactance
(FIR) commonly noted 𝑗𝐵 as admittance or 𝑗𝑋 as impedance, as a mathematical tool [126] that due
to its lack of frequency dependence does not increment total transfer function order but allows to
set complex coefficients on the impedance due to its reactive nature. As an example of their use,
let us think of the normalized domain prototype circuit of a parallel LC resonator whose resonance
frequency is not located at 𝑓0 but at an arbitrary in-band position. In the normalized domain, that
would mean a circuit whose admittance is null at a frequency different than 𝑠 = 0. Considering
a simple shunt capacitor, resonance would take place exactly at 𝜔0 because the admittance of the
capacitor is null at 𝑠 = 0. However, by adding a FIR element in parallel to the capacitor, let it be 𝑗𝐵,
the resulting admittance would have the form 𝑌𝑐 = 𝑠𝐶 + 𝑗𝐵, yielding a null admittance at 𝑠 = −𝑗𝐵.

Whereas FIR elements enable the fundamental property of transfer function asymmetry, they
entail an important limitation due to their lack of a circuital equivalent in the bandpass domain.
While frequency-dependent reactive elements in the normalized domain become LC resonators in
the bandpass domain through (3.35), there is no way to implement a reactance that is constant with
respect to frequency, as stated by Foster’s theorem [116]. As a consequence, in the bandpass domain,
an FIR can atmost be approximated by a reactive element, achieving exact reactance equality only at
a single point in frequency (the frequency of transformation) and thus, with such an approximation
being valid only in a narrow bandwidth around it. It is a commonly accepted within the microwave
filter community that such an approximation is valid for filter fractional bandwidths up to 5%.

As a simple depiction of the narrowband approximation of FIRs in the bandpass domain, Fig.
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Figure 3.5: Reactance versus frequency of an ideal FIR 𝑗𝑋 = −𝑗41.3 Ohm and a 2 pF capacitor that
approximates the FIR at 𝑓 = 1920 MHz.

3.5 shows the reactance of both a FIR and a 2 pF capacitor that approximates it at 𝑓 = 1920MHz. As
expected, notice that the further from the frequency of reactance equivalence, the larger the devia-
tion from the desired reactance to implement, a fact that ultimately defines the narrowband nature
of the transformation in (3.35) when dealing with asymmetric responses. More importantly, the se-
lection of the frequency of reactance equivalence between FIR and their reactive counterparts in the
bandpass domain must also be carefully considered due to its impact on the final response obtained
in the bandpass domain: the frequency to which FIR are transformed into reactive elements defines
the point at which the normalized response is exactly replicated in the bandpass domain. Therefore,
if FIRs are transformed at 𝑓0, it is the in-band response (insertion and return loss equiripple) that
suffers no deviation from the ideal transfer function, while the exact position of transmission zeros
in the bandpass domain might differ slightly due to them being further away from 𝑓0. In general
terms, also in the context of this thesis, it is common to use the central frequency of the filter as the
transformation frequency for FIRs, to maintain the in-band response of the filter unaltered.

3.4 Normalized Prototype Network of the Acoustic Wave Resonator

After discussing the effects of transfer function asymmetry and themathematical foundation behind
frequency-invariant reactance elements, it is necessary to present the normalized prototype that rep-
resents the Butterworth - Van Dykemodel (the circuital representation of the electrical performance
of an acoustic wave resonator) in the normalized domain so that fully canonical transfer functions
can be synthesized in the form of acoustic wave ladder filters.

Let us recall that the BVD model features two resonances, series (𝑓𝑠) and parallel (𝑓𝑝), the first
being directly related to the motional arm composed of a series LC tank with elements 𝐶𝑎 and 𝐿𝑎.
From this observation, and considering the frequency transformation in the previous section, it can
be stated that the motional arm must be represented with a lumped inductor in the normalized do-
main. However, notice also that such a series resonance, defined by the thickness of the piezoelectric
material for BAW resonators or by the pitch of the interdigital transducer for SAW resonators, is not



Chapter 3. Network Synthesis as Applied to Microwave Acoustic Filters 61

CaLa

C0

jXmLm

jX0
Figure 3.6:Butterworth ‑ Van Dykemodel of an acoustic wave resonator (left) and its normalized pro‑
totype network (right). FIR elements are circuitally represented as white rectangular boxes.

placed at the central frequency of the filter but at the position of transmission zeros below the pass-
band (those placed by shunt AW resonators) or at different positions inside the passband (in the case
of series AW resonators). Therefore, with the objective of representing resonators with different 𝑓𝑠
values within a filter, an FIR element in series with the mentioned inductive element is required in
the motional arm of the normalized prototype.

Regarding the static arm of the BVD, notice that it does not feature a resonance per se and
therefore cannot be composed of a frequency-dependent element in the normalized domain. Con-
sequently, the static capacitor 𝐶0 is modeled as an FIR 𝑋0 in the normalized domain, yielding the
normalized prototype network shown in Fig. 3.6 whose normalized input impedance can be com-
puted as follows:

𝑍in(Ω) =
𝑗𝑋0 (Ω𝐿𝑚 + 𝑋𝑚)
Ω𝐿𝑚 + 𝑋𝑚 + 𝑋0

(3.38)

Observe the interesting fact that since the AW ladder filter is a fully canonical network of order
𝑁, the normalized prototype network of each AW resonator must implement a rational impedance
function with numerator and denominator polynomials of at most first degree and thus, can only
feature a frequency-dependent element, in this case inductor 𝐿𝑚.

At this point, to find the relation between the BVD and the normalized prototype elements, let
us separately equate the impedance of each arm of each model at the central frequency of the filter,
as discussed in the previous section. Starting with the static branch let us equate6 bothmodels intro-
ducing 𝑍0, the reference impedance, so as to denormalize the prototype from the assumed unitary
loads:

𝑍𝑠(Ω)𝑍0 = 𝑍𝑠(𝜔)

𝑗𝑋0𝑍0 =
1

𝑗𝜔𝐶0
|||𝜔=𝜔0

(3.39)

thus obtaining an expression for the static capacitance 𝐶0,

𝐶0 = − 1
𝜔0𝑍0𝑋0

. (3.40)

6Stating 𝑍𝑠 from static to avoid confusion with reference impedance 𝑍0.
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In terms of the motional arm, following the same equation procedure, two unknowns 𝐿𝑎 and 𝐶𝑎
are considered.

𝑍𝑚(Ω)𝑍0 = 𝑍𝑚(𝜔)

𝑗(𝑋𝑚 +Ω𝐿𝑚)𝑍0 = 𝑗 (𝜔𝐿𝑎 −
1

𝜔𝐶𝑎
)

[𝑋𝑚 + 𝛼𝐿𝑚 ( 𝜔𝜔0
− 𝜔0

𝜔 )]𝑍0 = (𝜔𝐿𝑎 −
1

𝜔𝐶𝑎
)

(3.41)

A second equation can be obtained by differentiating (3.41) with respect to 𝜔 and then, one can
isolate the two unknowns by evaluating 𝜔 = 𝜔0:

𝐿𝑎 =
𝑍0
2 (2𝛼𝐿𝑚 + 𝑋𝑚

𝜔0
) (3.42)

𝐶𝑎 =
2
𝑍0

1
𝜔0(2𝛼𝐿𝑚 − 𝑋𝑚)

(3.43)

With the above expressions, the normalized prototype of the AW resonator has been presented
in its circuital form, that is, as a set of connected lumped elements. However, in order to facilitate
the forthcoming description of the synthesis procedure, and to understand the different nature that
series and shunt AW resonators have from a network synthesis perspective, it is interesting to revisit
the normalized prototype circuit by introducing immitance inverters. In brief, in this case taking its
admittance version for convenience, an admittance inverter of value 𝐽 Siemens is a two-port network
whose input admittance is 𝑌in = 𝐽2/𝑌 𝐿 when a load admittance 𝑌 𝐿 is connected at its output [125].

To introduce admittance inverters into the equivalent circuit, let us connect one of the terminals
of the presented normalized prototype to ground, as is the case of a shuntAWresonator. Note that the
motional arm, composed of inductor 𝐿𝑚 and FIR𝑋𝑚 can be also interpreted, in admittance terms, as
a unit capacitor in parallel with an FIR of susceptance value 𝑏 that is dangling from the static branch
FIR of susceptance value 𝐵 through an admittance inverter of value 𝐽𝑟. The equivalence between the
BVD, its normalized prototype and this interpretation introducing admittance inverters is shown
in Fig. 3.7. To describe the complete equivalence of both representations of the prototype, note the
input admittance of the proposed circuit is

𝑌in(𝑠) = 𝑗𝐵 + 𝐽2𝑟
𝑠 + 𝑗𝑏 (3.44)

yielding the same behaviour of the normalized BVD model: at 𝑠 = −𝑗𝑏 the admittance becomes
infinite, placing a transmission zero at Ω = −𝑏, and similarly there is a position where the admit-
tance is zero. The position of the TZ is only dependent on the value of FIR 𝑏, that can either be
positive or negative. This structure, that is not only exploited for acoustic wave resonators but for
other microwave structures, is commonly called an extracted pole section since the structure itself
is responsible for placing a transmission zero. In this case, the choice of assuming a shunt AW res-
onator is not arbitrary but important since it allows to state that the motional arm of such resonator
is responsible for a transmission zero below the passband, that is, at Ω < 0, thus setting 𝑏 > 0.
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Figure 3.7: Nodal interpretation of the Butterworth ‑ Van Dyke model in the normalized domain for
the case of a shunt resonator.

With this, the relation between elements 𝑏, 𝐵 and 𝐽𝑟 and the normalized prototype of the BVD
for a shunt resonator are, as developed by Giménez in [23, 124]:

𝑋0−SH = −1𝐵 (3.45a)

𝐿𝑚−SH = 1
𝐽2𝑟

(3.45b)

𝑋𝑚−SH = 𝑏
𝐽2𝑟

(3.45c)

Moreover, given the proposed interpretation of the normalized prototype of the BVD including
an admittance inverter, the so-called nodal representation of the network can also be introduced
as shown at the right end of Fig. 3.7 where white dashed circles are FIRs, black lines correspond
to admittance inverters and black nodes are capacitors to ground that might have an FIR in parallel
setting their frequency of null admittance at a frequency different than zero. Letter 𝑏 above the black
node states the value of such FIR and so, the frequency where the node imposes zero admittance.

While the circuital view of the prototype as in Fig. 3.6 is closely related to the final BVD model,
from a network synthesis perspective it is interesting to introduce the concept of nodal represen-
tation since it has become a common method of network description in the microwave filter com-
munity due to its capability of easily representing the network in terms of resonators and couplings
between them7. Although no electromagnetic couplings between resonances are involved in the
construction of AW ladder filters, the presence of the introduced inverters is absorbed by circuital
transformations but is very interesting to face the synthesis of acoustic wave filters with concepts
originally developed for electromagnetic resonators.

At this point, note that the equivalence between the nodal interpretation of the normalized BVD
7As a brief justification, such a nodal view of the network stems, among many other factors, from the introduction of

immitance inverters in the design of microwave filters to represent electromagnetic coupling between resonators, popu-
larized by Cohn in [119] and later generalized by Levy in [127], and also from the proposal of the coupling matrix by Atia,
Williams and Newcomb in [128, 129] to deal with the synthesis of multicoupled cavity filters.
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Figure 3.8: Nodal interpretation of the Butterworth ‑ Van Dyke model in the normalized domain for
the case of a series resonator. Underscriptml refers to the main line of the filter.

with a shunt resonator has been derived by considering that the motional arm is the one in charge
of placing the transmission zero and thus, it can be directly related with the value 𝑏 of the FIR in
the dangling section. However, for a series AW resonator, that places a transmission zero above the
passband with its 𝑓𝑝, such an equivalence requires an additional step, as shown in Fig. 3.8. Such
step is related to the serialization of the extracted pole section since given the behavior of admit-
tance inverters, it can be easily demonstrated that an arbitrary series impedance can be equivalently
implemented as a shunt admittance placed between two admittance inverters of same value and
opposite sign. While this structure is very similar to that of a shunt AW resonator except for the two
extra admittance inverters, in this case the dangling section is not directly the motional arm of the
normalized BVD since the transmission zero is placed by 𝑓𝑝 of the resonator and so, 𝑏 < 0.

Taking the above facts into the analysis, the equivalence between the nodal elements and the
normalized BVD is defined as follows:

𝑋0−SE =
𝐵
𝐽2𝑚𝑙

(3.46a)

𝐿𝑚−SE =
𝐵2
𝐽2𝑟 𝐽2𝑚𝑙

(3.46b)

𝑋𝑚−SE =
𝐵
𝐽2𝑚𝑙

(𝑏 𝐵
𝐽2𝑟
− 1) (3.46c)

Note that now the resonance frequency of the motional arm is not directly related to 𝑏 but to a
combination of 𝐵, 𝐽𝑟 and 𝑏, as expected since the dangling section is now related to 𝑓𝑝 instead of 𝑓𝑠.
More importantly, considering the natural behavior of an AW resonator as stated by the BVDmodel,
note that for𝑋0 to become a negative FIR and thus be approximated by a capacitor𝐶0, a given nature
or sign of FIR element 𝐵 is required, yielding 𝐵 < 0 for shunt resonators and 𝐵 > 0 for series. This
fact, that has very important implications in the synthesis of AW filters, is discussed in detail in Ch.
4.

Once the nodal equivalents of both series and shunt resonators are known, the complete nor-
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Figure 3.9: Equivalence between the nodal representation (top) and the final ladder topology (bot‑
tom) of an N=5 AW filter starting in series resonator. Solid underlined sections are shunt resonators
and dashed overlined sections are series resonators. Input and output FIR elements 𝐵𝑆 and 𝐵𝐿 are
input and output inductors 𝐿𝑖𝑛 and 𝐿𝑜𝑢𝑡.

malized prototype of an AW ladder filter can also be represented in nodal terms as shown in Fig. 3.9
for a 5th order filter starting in series resonator, noting that series resonators can only be represented
in this way if 𝐽1 = −𝐽2, 𝐽3 = −𝐽4 and 𝐽5 = −𝐽6. This yields the nodal form of the complete filter that is
exploited to perform the extraction of synthesized elements with the synthesis procedure presented
in a forthcoming section of this chapter. Notice that the network features two FIR elements 𝐵𝑆 and
𝐵𝐿 at the source and load nodes, approximated as shunt input and output reactive elements after
prototype de-normalization as either capacitors or inductors depending on the sign of 𝐵𝑆/𝐿, that are
inherent to networks placing transmission zeros through extracted pole sections.

3.4.1 The Role of Source and Load FIRs

In the previous equivalence between the AW ladder filter and its nodal form in the normalized do-
main, the presence of source and load FIR nodes 𝐵𝑆 and 𝐵𝐿 has been introduced. Although the need
of such elements is a widely accepted fact in the microwave acoustics community [17,130–133] that
is commonly associated to impedance matching issues, their role is in fact an inherent aspect of an
inline network that is composed of 𝑁 extracted pole sections each independently responsible for a
finite transmission zero. To justify this aspect it is important to carefully consider input reflection
phase (i.e., phase of parameter 𝑆11(𝑠) also noted as ∠𝑆11(𝑠)), a sometimes forgotten feature of filter
transfer functions.

Let us start the discussion directly from a nodal perspective, by taking the diagram of Fig. 3.9 as
an example, and considering the elements that compose the first series resonator. That is, mainline
inverters 𝐽1 and 𝐽2, FIR 𝐵1 and the dangling section composed of 𝐽𝑟1, 𝑏1 and a unit capacitor. If one
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Figure 3.10: Intrinsic input reflection phase of the 7‑th order generalized Chebyshev transfer function
depicted in Fig. 3.4a.

inspects the input admittance of such structure (looking inwards from the left port of 𝐽1, neglecting
NRN 𝐵𝑆) exactly at the frequency 𝑠 = −𝑗𝑏1, in this case a positive frequency because 𝑏1 < 0 since it
corresponds to a seriesAWresonator, the result is𝑌in = 0, an open circuit, and thus a reflection phase
of zero degrees. This is, as expected, congruent with the fact that such transmission zero represents
the anti-resonance frequency of a series AW resonator. However, let us also consider the intrinsic
reflection phase of a generalized Chebyshev function, the one to implement with an AW ladder
filter, as shown in Fig. 3.10 for the example function of 7th order computed in Fig. 3.4a. Notice
that while there is a horizontal asymptote towards zero degrees as 𝑠 tends to infinity, at frequencies
outside the passband 𝑠 ∈ (−∞,−𝑗]∪[𝑗,∞),∠𝑆11 is different than zero. Therefore, if one assumes the
network starts directly at the left port of 𝐽1 and the first transmission zero is located at, for example,
𝑠 = 𝑗1.2 rad/s, note that the reflection phase imposed by the transfer function and the reflection
phase intrinsic to the first series AW resonator do not match.

Clearly, to fulfill such a transfer function reflection phase with the presented structure, an addi-
tional FIR element is required at the input port (also at the output regarding the last resonator of the
filter if the filter is observed from the load node) such that it acts as a phase matching element and
accommodates the remaining reflection phase of the generalized Chebyshev function at the position
of the first transmission zero. Following this rationale, note that the role of mainline FIRs (e.g., 𝐵1),
although ultimately part of each AW resonator, is that of phase matching elements to their adjacent
resonators.

However, let us review a very important mathematical property related to the phase of com-
plex numbers. Recalling the definition of 𝑆11 in (3.19), note that by multiplying 𝑆11(𝑠) by a complex
number of unitary modulus and phase 𝜃add, the magnitude of 𝑆11(𝑠) is maintained while its phase is
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shifted, what allows to modify the reflection phase of the transfer function as follows,

𝑆11(𝑠) =
𝐹(𝑠)/𝜀𝑟
𝐸(𝑠) 𝑒𝑗𝜃add (3.47)

where 𝜃addmust be in radians. Such an additional phase term has very important implications in the
synthesis and design of acoustic wave filters, as is discussed in detail in Ch. 4, but, as an introduction
related to the role of source and load FIR elements, note that source element 𝐵𝑆 is required as long
as ∠𝑆11(𝑗Ω1) ≠ 0∘ when starting in series resonator. However, notice that it is possible to find an
additional phase term 𝜃add such that it ensures a reflection phase of zero degrees at the exact position
𝑠 = 𝑗Ω1 and is computed as:

𝜃add = − arg (𝐹(𝑠)/𝜀𝑟𝐸(𝑠)
|||𝑠=𝑗Ω1

) . (3.48)

Applying such a shift would yield a synthesized network implementing the same transfer func-
tion, in magnitude terms, as the originally computed through the method in Sec. 3.2, but without
requiring source element 𝐵𝑆 because of the imposed reflection phase.

To close this brief discussion, that is re-taken in detail in Ch. 4, it is interesting to mention that
it is common practice to apply such phase shift term directly to polynomial 𝐹(𝑠), yielding 𝐹′(𝑠) =
𝐹(𝑠)𝑒𝑗𝜃add , and that through the definition of scattering parameters from the characteristic polyno-
mials in (3.19) and (3.17), reflection phase modification at the input port results in a modification of
output reflection phase, i.e., ∠𝑆22(𝑠), in an antisymmetric manner. That is, 𝜃add−11 = −𝜃add−22.

3.5 Available Network Synthesis Techniques

After describing the procedure to compute a generalized Chebyshev transfer function and the nor-
malized prototype of the acoustic wave ladder filter along some of its particularities, the only re-
maining point is to introduce themathematical techniques that allow to transform the set of charac-
teristic polynomials of the transfer function into the circuital elements that implement it. In general
terms there are two main approaches to filter synthesis, each with its own features and specific ap-
plications, that are the coupling matrix and the extracted pole techniques. In both cases, the set of
characteristic polynomials describing the transfer function is used to obtain an immitance function
on which mathematical operations are performed to obtain the final circuital form of the network.
In the case of the coupling matrix, such operations involve initially obtaining an initial topology
called transversal network and then sequentially transform it until the desired topology is reached,
while with the extracted pole technique, the procedure is based on sequentially extracting circuital
elements from the overall impedance function, similar to the original approach by Darlington [117].
Although the one exploited in this thesis is the latter, both techniques deserve a description to un-
derstand their main advantages and applications.
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The extracted pole technique was initially proposed by Rhodes and Cameron in [134] exploiting
phase shifters to enable the realization of sections that were directly responsible of a transmission
zero in the network. This technique was later extended with the introduction of non-resonant nodes
(NRNs) [135], network nodes that are solely composed of an FIR as the case of element 𝐵 shown
in Fig. 3.7, and their application to the synthesis of inline filter including extracted pole sections
in [136] without resorting to phase shifters8. This method, that initially could handle at most two
transmission zeros was later extended by Amari and Macchiarella [137] to enable even inline fully
canonical networks. This latter contribution is the basis onwhich the synthesismethod forAWfilters
in [124] is built. The aforementioned contributions all extract network elements from an overall
admittance function of 𝑠, in the form of an inline network, what ultimately limits the synthesis of
networks that require couplings other than the main line. To this end, Tamiazzo and Macchiarella
extended the method to include cross-couplings in [138] by using the ABCD or chain matrix as the
vehicle for element extraction, as is described in the next section of this chapter.

On the other hand, the concept of coupling matrix was initially proposed by Atia, Williams and
Newcomb in [128,129] as a method to represent and synthesize microwave filters composed of mul-
ticoupled resonators. Such a coupling matrix is interpreted from an admittance point of view and
can be understood as the adjacencymatrix of a graph since it includes all information related to how
all nodes in the network are coupled to each other. As covered in detail in [9] (Ch.8 and 9), a funda-
mental reference regarding couplingmatrix synthesis, this method starts by computing the so-called
transversal topology, in which all nodes are in parallel to each other and only coupled to source
and load, as the eigenvalue decomposition of the overall admittance of the filter function. Such a
transversal topology, that already implements the desired response, can then be reconfigured into
alternative topologies by applying similarity transformations in the form of rotations to the matrix
since such transformations do not affect matrix eigenvalues and thus, neither the network response.
This is a crucial implication of this approach since at any point through the process the response
provided by the coupling matrix is the desired transfer function defined at the beginning. Thanks to
this, it is possible to assess if a given transfer function can be accommodated by a desired topology
and, if not, highlight the additional elements that need to be considered to implement it.

Interestingly, note the fact that considering an arbitrary fully canonical transfer function of or-
der 𝑁, the initial transversal topology obtained through eigenvalue decomposition of such function
features 𝑁 resonant nodes. Thus, considering source and load nodes, yielding a coupling matrix of
dimensions𝑁+2 x𝑁+2. However, for an inline topologymade of extracted pole sections as the one
shown in Fig. 3.9 implementing the same transfer function, note that the addition of NRNs gives rise
to a network with 2𝑁 + 2 nodes, thus being described with a coupling matrix of dimensions 2𝑁 + 2
x 2𝑁 + 2. Even further, the 𝑁 eigenvalues of both matrices are not equal what clearly indicates that

8From this point onwards, terms NRN and FIR might be used interchangeably as is commonly done in the literature.
The term non-resonant node contrasts with resonant node (RN) a common term to refer to black nodes in nodal diagrams,
those nodes that ultimately transform into LC resonators.
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Figure 3.11: Subnetwork considered at the 𝑘‑th step of the recursive synthesis procedure.

obtaining the inline extracted pole topology through coupling matrix rotations implies non-similar
matrix transformations. Initially, this was the main reason that impeded the synthesis of AW lad-
der filters through the coupling matrix method and extracted pole techniques were fundamental.
However, recent contributions by Caicedo Mejillones [139, 140] have broken the barrier between
both methods and Acosta [141] has extended such concepts to synthesize AW ladder filters through
coupling matrix rotations.

3.5.1 Extracted Pole Technique

The synthesismethod implemented in the context of this thesis is the extracted pole technique based
on ABCD matrix extractions as in the work by Tamiazzo and Macchirella [138], that allows to syn-
thesize networks including resonant and non-resonant nodes not only as pure inline but also in the
form of cross-coupled topologies. Although the cross-coupling synthesis feature is not exploited in
this thesis, it has been already applied to AW filters to explore the effects of electromagnetic feed-
through through the package of a filter in [27, 28].

The proposed synthesismethod is a recursive process of𝑁+1 steps thatmove along the topology,
extracting prototype elements at each step, and that can be applied from source to load, load to source
or alternating source and load extractions following a set of indices 𝑀𝑘, 𝑁𝑘 and 𝑃𝑘, as proposed
by Tamiazzo, that can be exploited to face alternative topologies that include cross-couplings, such
as, for example, the quadruplet. Such indices are depicted in Fig. 3.11, that represents the network
situation that is faced at each step of the recursive extraction:𝐻𝑘 is the subnetwork considered at the
𝑘-th step, and 𝐻𝑘+1 is the remaining network for step 𝑘 + 1. 𝐽𝑘 is the main line admittance inverter,
𝑗𝐵𝑘 is the FIR element of the main line NRN (𝐵𝑖 in the nodal network in Fig. 3.9, 𝐽𝑐𝑘 is a cross-
coupling embracing the main line of the network from node 𝑀𝑘 to node 𝑁𝑘, and inductance 𝐿𝑘
and FIR 𝑗𝑋𝑘 are the serialized equivalent of a dangling resonator branch shown in Figs. 3.8 and 3.7
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originally composed of 𝐽𝑟𝑘, 𝑏𝑘 and a unit capacitor, through the simple equivalence:

𝐿𝑘 =
1
𝐽2𝑟

𝑋𝑘 =
𝑏
𝐽2𝑟

(3.49)

Note the equations are those presented in (3.45) for a shunt AW resonator but here let us highlight an
important feature of the extraction procedure that is closely related to the role that main line FIRs
have in terms of phase matching between extracted pole sections. Elements extracted at the 𝑘-th
iteration, i.e., FIR 𝑗𝐵𝑘 and the dangling section 𝐿𝑘 and 𝑗𝑋𝑘 do not belong to the same AW resonator
but to different sections. For example, considering 𝑘 = 1, the first extraction of the procedure, 𝐵1
would be the inputNRN𝐵𝑆 and𝐿1 and 𝑗𝑋1would correspond to the first AW resonator because these
are the remaining elements that can be extracted when evaluating the overall immitance function
at the frequency where the extracted section places a transmission zero. Moreover, this clarification
is important not to confuse numbering in Fig. 3.9 with the subindex 𝑘 used to indicate the iteration
of the process.

As already introduced, the mathematical form in which the computed transfer function is used
for element extraction is the ABCDmatrix, a common tool in network theory, that can be expressed
in the following form,

[𝐴𝐵𝐶𝐷] = 1
𝑗𝑃(𝑠)/𝜀 [

𝐴(𝑠) 𝐵(𝑠)
𝐶(𝑠) 𝐷(𝑠)] (3.50)

where polynomials 𝐴(𝑠), 𝐵(𝑠), 𝐶(𝑠) and 𝐷(𝑠) are related to the polynomial coefficients of 𝐹(𝑠)/𝜀𝑟 and
𝐸(𝑠), as described in appendix A.2.9 Therefore, after computing the generalized Chebyshev transfer
function, the ABCD polynomials can be computed and the extraction procedure can start.

Extraction of an Extracted Pole section

Since AW ladder filters implement fully canonical functions the following explanation focuses on
the case of extracted pole sections that place transmission zeros at exactly the roots of 𝑃(𝑠) but, for
completeness, it must be mentioned that this method allows to extract also either resonant nodes
at infinity, extracted pole sections at arbitrary frequencies 𝑗Ω𝑘 that are not roots of 𝑃(𝑠) using cross-
couplings and even dual transmission zeros as proposed in [142]. Therefore, following the network
perspective depicted in Fig. 3.11, the first thing to extract in any synthesis step is cross-coupling 𝐽𝑐𝑘,
a step that is included here for completeness. The value of such cross-coupling can be computed as

𝐽𝑐𝑘 = −𝑃𝑘(𝑗Ω𝑘)
𝐵𝑘(𝑗Ω𝑘)

(3.51)

where 𝑗Ω𝑘 is the transmission zero implemented by the set of elements to be extracted at the 𝑘-
th iteration. Note that as long as TZ Ω𝑘 is a root of 𝑃(𝑠), 𝐽𝑐𝑘 = 0. If such cross-coupling exists, the
overall ABCD polynomials should be updated to reflect the fact that the coupling has been extracted,

9The usage of𝐵𝑘 as the nomenclature for the FIR element at the𝑘-th iterationmight lead to confusionwith polynomial
𝐵(𝑠). Hence, frequency dependence on 𝑠 is always depicted to avoid confusion.
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following the expressions in [138], not noted here because 𝐽𝑐𝑘 = 0 for AW ladder filters. However, to
maintain notation consistency, let us call the remaining chain matrix as [𝐴𝐵𝐶𝐷]′𝑘. At this point, the
element to be extracted is FIR element 𝐵𝑘, in charge of ensuring the proper reflection phase for the
forthcoming extracted pole section. Such an FIR element is computed as follows:

𝐵𝑘 =
𝐷′
𝑘(𝑗Ω𝑘)

𝐵′𝑘(𝑗Ω𝑘)
. (3.52)

After computing 𝐵𝑘, it must be extracted from the remaining network by updating the ABCD
polynomials as

[𝐴𝐵𝐶𝐷]″𝑘 =
1

𝑗𝑃″𝑘 (𝑠)
[𝐴

″
𝑘(𝑠) 𝐵″𝑘(𝑠)

𝐶″
𝑘 (𝑠) 𝐷″

𝑘(𝑠)
] = 1

𝑗𝑃′𝑘 (𝑠)
[ 𝐴′

𝑘(𝑠) 𝐵′𝑘(𝑠)
𝐶′
𝑘(𝑠) − 𝐵𝑘𝐴′

𝑘(𝑠) 𝐷′
𝑘(𝑠) − 𝐵𝑘𝐵′𝑘(𝑠)

] . (3.53)

At this point, the next element to extract is main line admittance inverter 𝐽𝑘 between nodes𝑀𝑘

and 𝑃𝑘. For reasons that are discussed after this method, the value of suchmain line inverters is fixed
to unity and alternates in sign between adjacent extracted pole sections. Therefore, imposing 𝐽𝑘 = 1,
the remaining ABCD polynomials need be updated to [𝐴𝐵𝐶𝐷]‴𝑘 , as follows:

[𝐴𝐵𝐶𝐷]‴𝑘 = 1
𝑗𝑃‴𝑘 (𝑠) [

𝐴‴
𝑘 (𝑠) 𝐵‴𝑘 (𝑠)

𝐶‴
𝑘 (𝑠) 𝐷‴

𝑘 (𝑠)
] = 1

𝑗𝑃″𝑘 (𝑠)
[−𝑗𝐶

″
𝑘 (𝑠) −𝑗𝐷″

𝑘(𝑠)
−𝑗𝐴″

𝑘(𝑠) −𝑗𝐵″𝑘(𝑠)
] . (3.54)

Once at node 𝑃𝑘, elements 𝐿𝑘 and 𝑗𝑋𝑘 remain as the last to be extracted at this 𝑘-th synthesis
step. Considering the equivalence with the dangling section elements in (3.49) and knowing that the
section being extracted places TZ 𝑗Ω𝑘, it is already known that 𝑏𝑘 = −Ω𝑘. Moreover, let us inspect
the input admittance as in (3.44), now from node 𝑃𝑘 and evaluated at 𝑗Ω𝑘,

𝑌 𝑖𝑛(𝑗Ω𝑘) =
𝐷‴
𝑘 (𝑗Ω𝑘)

𝐵‴𝑘 (𝑗Ω𝑘)
= 𝐽2𝑟𝑘
𝑠 − 𝑗Ω𝑘

|||𝑠=𝑗Ω𝑘

(3.55)

yielding the typical partial fraction expansion form of a residue divided by a pole. With this inter-
pretation, applying the Heaviside cover-up method such residue, i.e., 𝐽𝑟𝑘, can be computed as,

𝐽2𝑟𝑘 =
𝐷‴
𝑘 (𝑠)

𝐵‴𝑘 (𝑠)/(𝑠 − 𝑗Ω𝑘)
|||𝑠=𝑗Ω𝑘

= 𝐷‴
𝑘 (𝑗Ω𝑘)
̃𝐵𝑘(𝑗Ω𝑘)

(3.56)

where term ̃𝐵𝑘 is the result of dividing 𝐵‴𝑘 over the root 𝑗Ω𝑘.

After computing 𝐽𝑟𝑘 all elements of the dangling section are known because 𝑏𝑘 = −Ω𝑘 and
the ABCD polynomials must be updated so to extract the computed dangling section, yielding the
[𝐴𝐵𝐶𝐷]matrix of the remaining subnetwork 𝐻𝑘+1:

[𝐴𝐵𝐶𝐷]𝑘+1 =
1

𝑗 ̃𝑃𝑘(𝑠)
[
̃𝐴𝑘(𝑠) ̃𝐵𝑘(𝑠)
̃𝐶𝑘(𝑠) �̃�𝑘(𝑠)

] = (𝑠 − 𝑗Ω𝑘)
𝑗𝑃‴𝑘 (𝑠)

⎡⎢⎢⎢
⎣

𝐴‴
𝑘 (𝑠)

(𝑠 − 𝑗Ω𝑘)
𝐵‴𝑘 (𝑠)

(𝑠 − 𝑗Ω𝑘)
𝐶‴
𝑘 (𝑠) − 𝐽2𝑟𝑘 ̃𝐴𝑘(𝑠)
(𝑠 − 𝑗Ω𝑘)

𝐷‴
𝑘 (𝑠) − 𝐽2𝑟𝑘 ̃𝐵𝑘(𝑠)
(𝑠 − 𝑗Ω𝑘)

⎤⎥⎥⎥
⎦

(3.57)
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Figure 3.12: Nodal view of the elements faced at the last iteration of the synthesis. In grey are those
elements that have already been extracted.

At this point, the degree of all ABCD polynomial has reduced by one and thus, an extracted
pole section has been synthesized completing one step of the recursive synthesis procedure. For a
network of order 𝑁 composed of 𝑁 extracted pole sections, this same procedure should be repeated
𝑁 times. After that, step 𝑘 + 1 is reached and the focus directs to how to end the synthesis after all
roots of 𝑃(𝑠) have been considered.

Final step

Once all extracted pole sections have been extracted, notice from Fig. 3.9 that the only remaining
elements are a main line admittance inverter (𝐽𝑁+1) placed between two NRNs 𝐵𝑁 and 𝐵𝐿, the load
node, as in Fig. 3.12.

Let us chain the ABCD matrix of each element, to observe the composition of the remaining
ABCD matrix after the 𝑁-th step of the synthesis,

[𝐴𝐵𝐶𝐷]𝑁+1 =
1

𝐽𝑁+1
[ −𝐵𝑁 𝑗
𝑗(𝐽2𝑁+1 + 𝑗𝐵𝑛𝐵𝐿) −𝐵𝐿

] = 1
𝑗𝑃𝑁+1(𝑠)

[𝐴𝑁+1(𝑠) 𝐵𝑁+1(𝑠)
𝐶𝑁+1(𝑠) 𝐷𝑁+1(𝑠)

] (3.58)

noting that now 𝑃𝑁+1(𝑠) has no remaining roots and thus, is a constant. Therefore, since the𝑁 trans-
mission zeros of the network have already been used, the evaluation of the three remaining elements
is done at infinite frequency.

The first element to be extracted is main line admittance inverter 𝐽𝑁+1, that, due to the lack of
a dangling section after it, must be computed as a cross-inverter, similar to (3.51) but as a limit to
infinite frequency,

𝐽𝑁+1 = lim
𝑠→∞

−𝑃𝑁+1(𝑠)
𝐵𝑁+1(𝑠)

= −𝑃𝑁+1
𝐵𝑁+1

(3.59)

and such inverter must be extracted from the remaining ABCD matrix as follows:

[𝐴𝐵𝐶𝐷]′𝑁+1 =
1

𝑗𝑃′𝑁+1(𝑠)
[𝐴

′
𝑁+1(𝑠) 𝐵′𝑁+1(𝑠)

𝐶′
𝑁+1(𝑠) 𝐷′

𝑁+1(𝑠)
] =

= 1
𝑗(𝑃𝑁+1(𝑠) + 𝐽𝑁+1𝐵𝑁+1(𝑠))

[ 𝐴𝑁+1(𝑠) 𝐵𝑁+1(𝑠)
𝐶𝑁+1(𝑠) + 2𝐽𝑁+1𝑃𝑁+1(𝑠) + 𝐽2𝑁+1𝐵𝑁+1(𝑠) 𝐷𝑁+1(𝑠)

] .
(3.60)
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Figure 3.13: Nodal elements faced in the 𝑘‑th iteration of the synthesis.

At this point, only two NRNs remain. At first, let us compute 𝐵𝑁 , the FIR located at 𝑀𝑘, also
evaluated at infinity10.

𝐵𝑁 = lim
𝑠→∞

𝐷′
𝑁+1(𝑠)

𝐵′𝑁+1(𝑠)
= 𝐷′

𝑁+1
𝐵′𝑁+1

(3.61)

As before, the ABCD matrix must be updated to extract 𝐵𝑁 :

[𝐴𝐵𝐶𝐷]″𝑁+1 =
1

𝑗𝑃″𝑁+1(𝑠)
[𝐴

″
𝑁+1(𝑠) 𝐵″𝑁+1(𝑠)

𝐶″
𝑁+1(𝑠) 𝐷″

𝑁+1(𝑠)
] =

= 1
𝑗𝑃′𝑁+1(𝑠)

[ 𝐴′
𝑁+1(𝑠) 𝐵′𝑁+1(𝑠)

𝐶′
𝑁+1(𝑠) − 𝐵𝑁𝐴′

𝑁+1(𝑠) 𝐷′
𝑁+1(𝑠) − 𝐵𝑁𝐵′𝑁+1(𝑠)

] .
(3.62)

Finally, only the loadFIR𝐵𝐿 remains.However, to face it, the networkmust be flipped. To achieve
this turn of the network, [138] proposes exchanging polynomials 𝐴(𝑠) and 𝐷(𝑠) in the matrix. After
exchanging these polynomials, the computation of 𝐵𝐿 involves applying (3.61) and (3.62) once again.
After updating this final extraction, the remaining ABCD matrix is empty and therefore the whole
network is fully synthesized.

3.5.2 Unitary Main Line Admittance Inverters

During the description of the synthesis procedure, main line admittance inverters have been set as
unitary and alternating in sign between adjacent extracted pole sections. To explain the origin of
such imposition and the consequences it has, let us consider an extracted pole section extraction
step, as the one shown in Fig. 3.13, assuming that FIR element 𝐵𝑘−1 has already been extracted.

The input admittance of such section can be written as follows,

𝑌in(𝑠) =
𝐽2𝑘

𝑗𝐵𝑘 +
𝐽2𝑟𝑘

𝑠 + 𝑗𝑏𝑘
+ 𝑌rem(𝑠)

(3.63)

10In (3.61) 𝐵′
𝑁+1 is polynomial 𝐵′

𝑁+1(𝑠) but as it is of zero degree, has no frequency dependence. Must not be confused
with any FIR element.
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with 𝑌rem(𝑠) being the admittance of the subsequent sections of the network. In fact, the expression
can be reordered as,

𝐽2𝑘
𝑌in(𝑠)

= 𝑗𝐵𝑘 +
𝐽2𝑟𝑘

𝑠 + 𝑗𝑏𝑘
+ 𝑌rem(𝑠) (3.64)

what in turn can be expressed in a partial fraction expansion form, where the dangling section ad-
mittance inverter 𝐽𝑟𝑘 can be obtained as,

𝐽2𝑟𝑘 = 𝐽2𝑘 residue (
1

𝑌in(𝑠)
)|||𝑠=𝑗Ω𝑘

(3.65)

that is, the general form of (3.56) for an arbitrary value of mainline inverter 𝐽𝑘.

Clearly, the value of inverters 𝐽𝑘 and 𝐽𝑟𝑘 cannot be separately computed, but only their ratio, what
in fact allows a degree of freedom to set onewith respect to the other. In the scope ofAW ladder filters,
Fig. 3.8 has already introduced that main line admittance inverters are used for the serialization
of extracted pole sections placing TZs above the passband into series AW resonators, what is only
attainable if both inverters are of same magnitude and opposite sign. Therefore, imposing 𝐽2𝑘 = 1
simplifies the computation.

However, one important issue related to the final step of the synthesis procedure must be con-
templated. As stated in (3.59), the last main line inverter cannot be assumed as unity and has to be
extracted as a cross-coupling evaluating at infinite frequency. While this is a mandatory step for a
proper conclusion of the synthesis, it imposes that this last admittance inverter 𝐽𝑁+1 might not be
unitary what in turnmight impede the serialization of its adjacent extracted pole section into a series
AW resonator.

To ensure the proper value of this last inverter, 𝐽2𝑁+1 = 1, let us analyze the input admittance of
the last step in Fig. 3.12,

𝑌in = 𝑗𝐵𝑁 + 𝐽2𝑁+1
𝑗𝐵𝐿 + 𝐺𝐿

(3.66)

where 𝐺𝐿 is the output port conductance that has been originally defined as 𝐺𝐿 = 1. Having this
expression and having finished the synthesis procedure (i.e., all elements are known), let us try to
find a new set of elements 𝐵𝑁 and 𝐵𝐿 that hold the equation while imposing 𝐽𝑁+1 = 1. At first, the
expression can be separated in real and imaginary parts,

Re(𝑌in) =
𝐺𝐿

𝐵2𝐿 + 𝐺2
𝐿

(3.67a)

Im(𝑌in) = 𝐵𝑁 − 𝐵𝐿
𝐵2𝐿 + 𝐺2

𝐿
(3.67b)

and the new values of FIRs 𝐵𝑁 and 𝐵𝐿 can be isolated as

𝐵𝐿 = ±√
𝐺𝐿 − 𝐺2

𝐿 Re(𝑌in)
Re(𝑌in)

(3.68)
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Table 3.1: BVDmodel elements of the n7 uplink filter without phase modification.

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE) 8 (SH) 9 (SE)
𝐿𝑎 (nH) 61.77 20.12 101.78 20.22 103.29 20.21 101.78 20.12 61.77
𝐶𝑎 (fF) 62.86 209.14 38.66 206.18 38.14 206.25 38.66 209.14 62.86
𝐶0 (pF) 1.08 3.59 0.66 3.54 0.65 3.54 0.66 3.59 1.08
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 4.58 𝐿out (nH) 4.58
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Figure 3.14:Simulatedmagnitude andphase response of the n7 uplink filter synthesizedwithout any
reflection phase modification.

and

𝐵𝑁 = Im(𝑌in) +
𝐵𝐿

𝐵2𝐿 + 𝐺2
𝐿
. (3.69)

If a unitary load conductance is assumed to maintain the desired impedance match, note that it
must hold that Re(𝑌in) < 1. Otherwise, if Re(𝑌in) > 1, 𝐵𝐿 becomes purely imaginary what in turn,
considering its reactive nature, translates into a purely resistive element. To avoid such situation,
cases where equating 𝐽𝑁+1 = 1 is not possible are addressed by mismatching the network at the
output node by imposing 𝐺𝐿 = 1/Re(𝑌in) and leaving 𝐵𝐿 = 0.

It must be mentioned that the equivalence in terms of admittance of the originally synthesized
values and the new FIR elements found through setting 𝐽𝑁+1 = 1 only holds in magnitude but not
in terms of phase. While this does not impose any distortion of the filter response, output reflection
phase is different than that fixed originally in the transfer function due to this admittance redistri-
bution. Such an impact in phase, that has interesting implications in this thesis in Ch. 4, is studied
in deep in [25].
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3.6 Synthesized Filter Example

After presenting the complete procedure to synthesize an AW ladder filter implementing a general-
ized Chebyshev response, this section provides examples of synthesized filters and, throughout the
discussion, introduces the importance of reflection phase as a design parameter. To lead the discus-
sion, let us take the case of a 5G n7 uplink band, that spans from 2500 to 2570 MHz, as an example
vehicle and let us assume that the AW technology to implement this example are aluminum nitride
(AlN) BAW resonators. As introduced along the previous chapter, such AlN BAW resonators are
capable of providing 𝑘2eff up to 6.7% and thus, let us take it as the electromechanical coupling co-
efficient that all the resonators in the example filter need to comply with. Note that this choice is
made for this demonstrative example but the proposed synthesis methodology is equally applicable
to any AW resonator technology and electromechanical coupling value. To complete the boundary
conditions for this example section, the modified BVD model in [16] is used to include the finite
quality factor of AW resonators in the simulation by assuming 𝑄AW = 1500 and a quality factor of
𝑄L = 50 is assumed for input and output inductors. In this context, the implemented loss model
is a simplified version that considers a finite quality factor for both resonances in the form of a se-
ries resistance in the motional arm and an additional resistance in parallel to 𝐶0, yielding very good
results for demonstration purposes. Nevertheless, refined versions of the modified BVD that model
loss dependencies with respect to resonator area, frequency and geometry also exist but are tightly
related to resonator technology and commonly fall within the intellectual property of the main AW
device manufacturers. Finally, in terms of topology, let us assume a 9th order filter starting in series
resonator, that is, having 5 series and 4 shunt resonators.

As described throughout this chapter, the input parameters to the proposed synthesis method-
ology are a given ladder topology order, a set of 𝑁 TZs, a return loss value and the passband edge
frequencies. From them, themethod provides the BVDmodels that implement the response defined
by such parameters. Leveraging on this connection between the desired response and the resonators
that implement it, the synthesis process of an AW ladder filter complying with a set of specifications
and technological constraints (e.g., the fact that all resonators require 𝑘2eff = 6.7% so that they can
be AlN BAW resonators), can be faced as a search among all possible filters of order 𝑁 to select the
one with highest compliance with specifications and constraints. As an example of this, let us search
for an n7 uplink filter compliant with the conditions above, in this case, without altering the filter
function reflection phase in any form. The input parameters of this example filter areΩ𝑡𝑧 = [2.1092,
-1.9554, 1.6825, -1.6731, 1.6508, -1.6733, 1.6827, -1.9554, 2.1092] rad/s, RL= 25 dB and the aforemen-
tioned passband edges of the n7 uplink band, and yield the synthesized elements shown in Table 3.1,
clearly showing how all resonators require the same 𝑘2eff and the presence of 𝐿𝑖𝑛 and 𝐿𝑜𝑢𝑡 as the im-
plementation of source and load NRNs. Given the synthesized values and the mentioned Q values,
the response of the synthesized filter can be simulated providing the response depicted inmagnitude
and reflection phase terms in Figs. 3.14a and 3.14b, respectively. Notice that since no phase shift has
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Table 3.2: BVDmodel elements of the previous n7 uplink filter with 𝜃add = −68.7∘.

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE) 8 (SH) 9 (SE)
𝐿𝑎 (nH) 33.90 29.53 149.40 29.68 151.62 29.67 149.41 29.53 34.15
𝐶𝑎 (fF) 119.07 142.47 26.34 140.47 25.98 140.52 26.34 142.47 118.15
𝐶0 (pF) 1.17 2.45 0.45 2.41 0.44 2.41 0.45 2.45 1.16
𝑘2eff (%) 11.1 6.7 6.7 6.7 6.7 6.7 6.7 6.7 11.1
𝐿in (nH) - 𝐿out (nH) -
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Figure 3.15: Simulated magnitude and phase response of the n7 uplink filter synthesized with same
parameters as Fig. 3.14a but adding shift 𝜃add = −68.7∘ to 𝐹(𝑠) to avoid the presence of the input
reactive element.

been added to 𝐹(𝑠), reflection phase depicts the same shape outlined in Fig. 3.10 but now, due to the
narrowband approximation of FIRs after frequency transformation, without depicting a horizontal
asymptote towards 0∘ but a clear phase slope for frequencies far from 𝑓0. Additionally, notice that
in this case, ∠𝑆11 = ∠𝑆22 due to the network being physically symmetric with respect to the central
resonator (resonator 5), a case that is known to yield 𝐽𝑁+1 = 1 by nature thus not imposing any
phase difference in output reflection with respect to the phase defined at the transfer function level.

Considering the previous synthesized result and observing the need to implement input and
output shunt inductors, an undesired aspect due to the large size of inductors either on laminate
or as lumped elements, let us recall the content of Sec. 3.4.1 regarding the use of reflection phase
at the transfer function level through adding a shift 𝜃add to polynomial 𝐹(𝑠), to avoid the presence
of source FIR following (3.48). To capture the impact of modifying the reflection phase of the filter,
let us take the same n7 uplink example parameters just synthesized (i.e., same TZs and RL value)
and let us compute the necessary phase shift through (3.48) yielding 𝜃add = −68.7∘. A negative shift
since the first resonator is series, thus placing a TZ above the passband, and the intrinsic phase of
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Table 3.3: BVD model elements of a new n7 uplink filter without input reactive element and all AlN
resonators.

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE) 8 (SH) 9 (SE)
𝐿𝑎 (nH) 35.60 29.49 134.80 27.71 134.04 27.86 133.97 27.67 81.72
𝐶𝑎 (fF) 111.65 142.48 29.23 150.68 29.42 149.83 29.42 151.77 47.96
𝐶0 (pF) 1.92 2.45 0.50 2.59 0.50 2.57 0.50 2.60 0.83
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) - 𝐿out (nH) 10.9
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Figure3.16:Simulatedmagnitudeandphase responseof thenewn7uplink filter synthesized toavoid
the presence of the input reactive element while requiring 𝑘2eff = 6.7% for all resonators.

the generalized Chebyshev function is positive at that position. Taking this phase shift and adding it
to polynomial 𝐹(𝑠), note that the obtained function is the same in terms of magnitude but the mod-
ification of the phase leads to the synthesis output depicted in Table 3.2 and the simulated response
shown in Figs. 3.15a and 3.15b.

At first, in terms of response, notice that the magnitude response is that of Fig. 3.14a, with the
only differences in RL shape being related to the circuital element differences and their impact in
narrowband approximation effects, while the reflection phase response showsnowa clear horizontal
asymptote towards the applied phase shift. However, as the most interesting aspect of this example,
notice the differences in synthesized elements with respect to those in Table 3.1. With the simple
modification of reflection phase, note that the same magnitude response is implemented now with
a set of resonators whose𝐶0 has changed, in this case being smaller than the previous example, what
in turn results in less resonator area, and now with the first and last resonators requiring a larger
electromechanical coupling. While this result might seem better than the previous one, avoiding
input and output reactive elements and requiring less resonator area, note that it would not be feasi-
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ble with AlN BAW technology due to the filter requiring more than one electromechanical coupling
value (i.e., more than one piezoelectric material). However, such an example highlights the impor-
tant role that reflection phase can play in the synthesis of AW ladder filters.

At this point, to demonstrate that such an n7 uplink filter can still comply with AlN BAW tech-
nology without implementing the input reactive element, let us search for a filter again but now
also imposing the phase condition to avoid 𝐿𝑖𝑛 from the very beginning. Imposing the same out-of-
band rejection specs and having TZs and RL value as degrees of freedom, input parameters Ω𝑡𝑧 =
[1.3464, -1.7826, 1.5974, -1.5962, 1.5738, -1.5916, 1.5959, -1.7696, 1.7509] rad/s, RL = 15.3 dB and
𝜃add = −86.6∘, yield the synthesized results in Table 3.3 and the simulated response in Figs. 3.16a
and 3.16b, respectively. Note that now the response is slightly different in magnitude than before
due to the fact that TZs and RL have changed to comply with all resonators having 𝑘2eff = 6.7% and
that, due to the network being asymmetric in this case, now input and output reflection phases do
not depict the same value due to the redistribution of 𝐽𝑁+1. From an implementation perspective,
consider that now 𝐿𝑜𝑢𝑡 is different than zero but has a very large value that at the n7 frequencies can
be neglected with minor implications in output matching and that as observed before, the obtained
resonators are smaller than those of the initial n7 example.

3.7 Chapter Summary

This chapter provides an introduction to the basics of the synthesis procedure for AW ladder filters,
from the initial step of computing the transfer function to implement to the extraction of the ele-
ments implementing such response and their transformation in the form of BVD models. Stating
the fundamental expressions to formulate the general form of Chebyshev filter functions and justi-
fying the introduction of frequency invariant reactances as a necessary step to implement asymmet-
rical responses, the normalized equivalent of the BVDmodel is introduced both from a circuital and
a nodal perspective allowing to interpret the AW ladder filter as an inline extracted pole network.
From such an interpretation, the extracted pole technique is introduced as the method to compute
the elements implementing a given admittance function.

Moreover, the extracted pole nature of the network is also fundamental to understand the role of
input and output non-resonant nodes and their intrinsic relation to reflection phase. Exploiting the
fact that a phase shift can be added to 𝐹(𝑠)without affecting the magnitude of the transfer function,
the three n7 uplink example filters demonstrate that reflection phase becomes a key parameter for
AW ladder filter design and justify the discussion to which the following chapter is devoted.
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CHAPTER4

Reflection Phase as a Key Design Parameter

The present chapter provides a detailed description of how the analytical control of the reflection
phase of a filter function at the polynomial level is a key design parameter with important implica-
tions in the context of acoustic wave ladder filters. In Ch. 3 the application of network synthesis to
AW filters is introduced highlighting transmission zeros and return loss as the main degrees of free-
dom in the definition of the filter function to synthesize, whereas the role of phase is briefly outlined
through the inherent relation between the extracted pole nature of the AW ladder and the presence
of input and output non-resonant nodes in the network. In that specific case, the addition of a phase
shift term to polynomial 𝐹(𝑠) is proposed to avoid their presence. While simple, such an operation
opens the path to include reflection phase as a degree of freedom to tailor the filter function and
exploring its impact is the main driver of the findings described in this chapter.

Starting from extending the phase modification to avoid the input and output FIRs to enable the
direct synthesis of duplexer-oriented filters (that is, filters that are ready to be connected in a du-
plexer configuration), this chapter then focuses in the specific considerations related to AW ladder
filters starting in shunt resonator and their close relation with reflection phase. After that, the chap-
ter revisits a phase modification definition that allows to independently control ∠𝑆11 and ∠𝑆22 and
exploits it to describe an application of the synthesis method to compose dual-band devices through
the parallel connection of two ladder filters. Finally, the chapter explores how to exploit phase re-
flection modification to break the alternation in sign of transmission zeros in AW ladder filters and
presents a manufactured prototype filter using the LNOI platform presented in Ch. 2.

81
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Figure 4.1: Basic schematic of a duplexer and its circuital form in the context of acoustic wave ladder
filters.

4.1 Duplexer‑oriented Filters

In the presentation of the synthesis procedure in the previous chapter, the filter is faced as a stan-
dalone two-port network connected between two reference impedance loads. While such an ap-
proach is already very useful, let us focus here in the specific case of duplexers, a commonly used
configuration in RF-FEMs, and how the proposed network synthesis procedure is applicable to
their design. In the context of wireless communications, duplexers are a widely used structure for
frequency-division duplex (FDD) bands, those inwhich the transmit (TX) and receive (RX) channels
are at different frequencies and used concurrently. Therefore, the objective of composing duplexer
devices is being able to connect a pair of filters to a single antenna, as shown in the schematic in Fig.
4.1, while maintaining the performance of both filters.

While at first such structure might seem straightforward, the construction of a duplexer is not as
simple as connecting two individually-designed filters to a common port. Since each filter is not only
connected to the antenna impedance but also to the impedance that each filter imposes on the other,
impedance loading is a fundamental aspect to address. Using a simple example, at a frequency 𝑓0,𝑅𝑋 ,
i.e., the central frequency of the RX band, if one observes into the antenna port of the duplexer, two
paths exist: the RX and the TX. Although at that frequency the RX filter is matched to the antenna
impedance and the TX filter is practically a perfect reflect condition, with magnitude approaching
unity and an arbitrary phase term, the superposition of the signal directly flowing from the antenna
into the RX and the signal reflecting off the TX interface can produce a destructive interference and
thus lead to degradation of the RX filter response. Equivalently, this behavior is replicated when
considering a signal coming from the TX port that must be radiated through the antenna, but then
considering the reflect condition that the RX filter is imposing at the TX passband frequencies. Inter-
estingly, note that the key to thementioned interference is the arbitrary phase term of the practically
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perfect reflection condition imposed by the rejecting filter and clearly, if two filters are not designed
carefully to compose a duplexer, this interference is the cause of a dramatic distortion of the filter
responses.

However, focusing on the reflection phase of each filter and considering that it can be tailored
to impose a null phase at the position of the first transmission zero of a filter to avoid implementing
the input reactive element (as covered in Ch. 3), notice that the same rationale can be applied to the
synthesis of filters that are ready to perform in a duplexer configuration now by tailoring the phase
such that each filter has a null reflection phase at the central frequency of their counterpart filter,
namely 𝑓CB, where CB stands for counter band. Note that such a null reflection phase is equivalent
to stating that each filter behaves as an open-circuit at 𝑓𝐶𝐵.

To this end, let us then revisit expression (3.48) from the previous chapter, but now at another
evaluation point 𝑠 = 𝑗Ω𝐶𝐵, namely the normalized counter band frequency, resulting in

𝜃CB = − arg (𝐹(𝑠)/𝜀𝑟𝐸(𝑠)
|||𝑠=𝑗ΩCB

) (4.1)

where equivalently, −𝜃CB is the inherent phase of the generalized Chebyshev filter function at the
center frequency of the counter band. To compute the frequency 𝑗ΩCB, one can easily map a fre-
quency 𝑓CB to its respective position in the normalized domain through the well-known bilateral
frequency transformation (3.35) considering that the passband edges of the filter being synthesized
are at Ω = ±1.

With this definition, polynomial 𝐹(𝑠) can then be shifted as

𝑆11(𝑠) =
𝐹(𝑠)/𝜀𝑟
𝐸(𝑠) 𝑒𝑗𝜃add (4.2)

for 𝜃add = 𝜃𝐶𝐵 and the synthesis procedure can be applied seamlessly. It is important to state that
through this phase modification, since null phase is imposed at a frequency that is different than
𝑗Ω1, the input reactive element cannot be avoided. However, a duplexer can then be implemented
with a single reactive element at the common port, as shown in Fig. 4.1 without resorting to more
complex phase shifting structures as in [143].

Let us finally highlight some aspects of this phase modification application by noticing that that
applying a shift 𝜃add = ΩCB imposes a null phase only at a single frequency but cannot be imposed
along the entire counter band passband.However, the deviation from a perfect null phase is slight (in
the order of ± 20∘) and thus the obtained duplexer response only suffers a very moderate deviation
from the originally synthesized equiripple return loss obtained if the filter is evaluated as standalone.
On top of this fact, consider also the narrowband nature of the frequency transformation due to the
use of FIRs to represent the AW ladder filter. As already explained in the previous chapter, since
the equivalence between FIRs and reactive elements is imposed at the filter central frequency 𝑓0 to
ensure the least deviation from the ideal function inside the passband, at frequencies far away from
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Table 4.1: Butterworth ‑ Van Dykemodel elements of the n7 duplexer example.

n7 uplink - 𝜃add-UL = −39.83∘

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE)
𝐿𝑎 (nH) 69.46 28.98 132.26 29.20 132.26 28.98 69.46
𝐶𝑎 (fF) 56.56 144.94 29.79 142.97 29.79 144.93 56.56
𝐶0 (pF) 0.97 2.49 0.51 2.45 0.51 2.49 0.97
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 13.91 𝐿out (nH) 13.91

n7 downlink - 𝜃add-DL = 38.67∘

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE)
𝐿𝑎 (nH) 79.27 13.55 88.85 13.66 88.85 13.55 79.27
𝐶𝑎 (fF) 44.50 282.27 40.44 278.60 40.44 282.27 44.50
𝐶0 (pF) 0.76 4.85 0.69 4.79 0.69 4.85 0.76
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 3.31 𝐿out (nH) 3.31

it there is a considerable deviation specially in reflection phase terms. Therefore, one must consider
the relative distance between the bands being duplexed to assess the application of this method. In
any case, the proposed phasemodification for duplexers is best suited for closely spaced bands, those
that are actually harder to match.

Moreover, for completeness, notice that the duplexer shown in Fig. 4.1 features two filters that
start in series resonator. While the fact that an open circuit loading condition is required to compose
a duplexer independent of the resonator configuration each filter starts with, filters starting in shunt
resonator need a specific handling of reflection phase as is covered in a forthcoming section.

4.1.1 Duplexer Example

To quickly demonstrate the usefulness of the proposed approach to duplexer-oriented synthesis, an
n7 duplexer (uplink 2500 - 2570MHz, downlink 2620 - 2690MHz) is synthesized to be implemented
with AlN BAW resonators (i.e., 𝑘2eff = 6.7 %) using the following as synthesis input parameters: for
a 7th order n7 uplink filter, RL = 16 dB, Ω𝑈𝐿 = [1.6704, -1.7771, 1.5884, -1.5947, 1.5884, -1.7771,
1.6704] and phase shift 𝜃add-UL = −39.83∘ and for a 7th order n7 downlink filter, RL = 18.5 dB,
Ω𝐷𝐿 = [2.4581, -1.9995, 1.8150, -1.8150, 1.8150, -1.9995, 2.4581] and phase shift 𝜃add-DL = 38.67∘.

After synthesis and transformation of each filter, the BVD model elements that compose both
filters of the duplexer are summarized in Table 4.1. Notice that the input inductors of both filters are
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Figure 4.2: Simulated response of the n7 duplexer synthesized by modifying the reflection phase of
each channel. (a)Magnitude response of the duplexer assumingQAW = 1500 andQL = 50. (b) Simulated
reflection phase of each filter evaluated as a two‑port network.

merged into a single inductor of value 𝐿DPX = 2.67 nH and also that the shunt inductor at the output
of the n7 uplink channel can be neglected due to its large value. With the computed elements, as-
suming a quality factor 𝑄AW = 1500 for acoustic resonators and 𝑄L = 50 for inductors, the response
of the duplexer is simulated and depicted in Fig. 4.2a. The achieved value of reflection phase after
synthesis is shown in Fig. 4.2b that depicts the reflection phase of both filters when evaluated as
standalone devices.

4.2 Acoustic Wave Ladder Filters Starting with Shunt Resonator

Up to this section, all examples of AW ladder filters and even the equivalence between the normal-
ized prototype network and the ladder filter have been presented through filters starting in series
resonator. Although historically that is the traditional representation of the ladder [17, 144], ladder
filters starting in shunt resonator are also of interest. For example, since each resonator in the ladder
is directly responsible for a transmission zero of the filter and odd-order series-starting filters depict
one more zero above than below the passband, shunt-starting filters are an interesting asset when
aiming for higher rejection at the lower stopband of the filter. That might be the case of a downlink
filter requiring high rejection to its adjacent uplink band.

Prior to diving into the details of this section and to justify the origin of this study, let us in-
troduce an interesting observation derived from the revision of shunt-starting filter examples both
from industry and academia: in many occasions, the implementation of shunt-starting AW ladder
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Figure 4.3: Equivalence between the ladder topology starting in shunt resonator (top) and its nodal
representation (bottom). Solid underlined sections are shunt resonators, long‑dashed overlined sec‑
tions are series resonators and short‑dashed overlined sections are the input and output series ele‑
ments. SinceBS andBL are shunt admittances, are serialized between two inverters Ji of opposite sign
and equal magnitude.

filters requires two reactive elements at the input of the filter. A shunt element followed by a se-
ries element. One clear example is the Band 25 duplexer in [11] in which both filters start in shunt
and feature two reactive elements at their input ports1. Interestingly, AW ladder filter cases that
sometimes required more than a single input element were already mentioned in direct bandpass
synthesis studies [120, 145], without diving in deep into the root cause.

To understand the reason behind the need ofmore than one reactive element at the input and the
specific role of phase in it, let us initially revisit the nodal prototype of the networkwhen considering
a shunt resonator at the input. Going back to Fig. 3.9 from the previous chapter showing the equiv-
alence between the normalized nodal representation and the ladder topology, notice that due to the
first resonator being series, admittance inverters 𝐽1 and 𝐽6 are absorbed by their adjacent extracted
pole sections for serialization purposes. Therefore, input and output NRNs, 𝐵𝑆 and 𝐵𝐿 become shunt
reactive elements after frequency transformation. In the case of a filter starting in shunt resonator
(equivalent situation to ending in shunt) note that the admittance inverter connecting 𝐵𝑆 with 𝐵1
(the first extracted pole section) is not absorbed when transforming the first resonator and so, after
transformation, NRN 𝐵𝑆 and an admittance inverter would remain to be implemented. Since the
implementation of that remaining inverter, either in the form of a 𝜋 or a 𝑇 reactive network, is not
acceptable due to size constraints, such an inverter must be absorbed in a circuital transformation.

1While the uplink filter clearly features two reactive elements at the input, the downlink filter appears to feature a
single one but the authors comment that an input shunt capacitor has been merged into the the first resonator of the
uplink filter.
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Figure 4.4:Nodal view of the elements faced at the last iteration of the synthesis when the filter ends
in shunt resonator. In grey are those elements that have already been extracted.

4.2.1 Nodal Representation and Additional Extraction Steps

To attain such objective, the nodal equivalent of a ladder filter starting in shunt is shown in Fig. 4.3
depicting a general case of order 𝑁. Notice here that in order to achieve complete serialization of
all elements and feature series input and output reactive elements, additional admittance inverters
must be considered at the input and output ports. Therefore, source (𝑆) and load (𝐿) nodes are now
unitary conductance (𝐺 = 1 S) nodeswith no zero imaginary part and are connected toNRNs𝐵𝑆 and
𝐵𝐿, respectively, via two additional admittance inverters. Note that inverters 𝐽1 and 𝐽2 are absorbed
in the serialization of NRN 𝐵𝑆 and so, as already introduced in the previous chapter, must be of equal
magnitude and opposite sign.

Considering this nodal equivalent, the synthesis procedure described in Ch. 3 requires a slight
modification to account for the additional admittance inverters specifically at iterations 𝑘 = 1 and
𝑘 = 𝑁 + 1. Regarding the first iteration, the only modification is to extract a unitary inverter 𝐽1 with
expression (4.3) (replicated here for clarity) prior to proceeding as in Ch. 3 with the only consider-
ation that the sign of the inverter 𝐽2 extracted after finding NRN 𝐵𝑆 must have the opposite sign of
𝐽1.

[𝐴𝐵𝐶𝐷]′𝑘 =
1

𝑗𝑃𝑘(𝑠)
[−𝑗𝐶𝑘(𝑠) −𝑗𝐷𝑘(𝑠)
−𝑗𝐴𝑘(𝑠) −𝑗𝐵𝑘(𝑠)

] (4.3)

Regarding the last iteration, the requiredmodification involves adding two steps and the remain-
ing network to extract is depicted in Fig. 4.4. As already introduced in the previous chapter, in this
last extraction step, all elements are extracted as an evaluation at infinity due to the remaining admit-
tance having zero degree. While in the case of ending in series resonator, only elements 𝐵𝑁 , 𝐵𝐿 and
the inverter connecting them remained, in this case an additional inverter connecting 𝐵𝐿 and load
node 𝐿 needs to be considered. Note also that the last inverter should be evaluated as a cross-inverter
at an infinite frequency to ensure the complete extraction of the network. However, note that in this
case, if such cross-inverter is evaluated at the beginning of this last iteration, it would connect NRN
𝐵𝑁 with output terminal 𝐿, imposing an actual cross-coupling bypassing NRN 𝐵𝐿. Therefore, to cor-
rectly extract the inverter between 𝐵𝑁 and 𝐵𝐿, admittance inverter 𝐽𝑁+3 must be extracted prior to
any other element.
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Table 4.2: Normalized prototype elements of the example N=7 shunt‑starting network.

Section 1 2 3 4 5 6 7
𝐵𝑘 -0.1261 -7.2909 1.4959 -14.1572 2.0471 -14.1179 -0.0685
𝑏𝑘 1.7 -1.97 2.5 -3 3.3 -4 1.8
𝐽𝑟𝑘 0.8244 3.5159 1.9526 6.4863 2.6182 7.3840 0.4170
𝐵𝑆 -1.4332 𝐵𝐿 -0.5108 𝐽10 -0.6963

As already described and as proposed by Tamiazzo [138], a turn in the reference point of the
network is equivalent to exchanging polynomials 𝐴(𝑠) and 𝐷(𝑠) and thus, when facing this last iter-
ation, the first step is to turn the network, then extract a unitary 𝐽𝑁+3 again with (4.3) taking its sign
in consideration with respect to the sign imposed for 𝐽𝑁+1 and then turn the network another time
to go back to the position of 𝐵𝑁 . At this point, 𝐽𝑁+2 can be extracted as a cross-inverter at an infinite
frequency following the same procedure outlined in the previous chapter for the final extraction step
of the synthesis. With this, following the mentionedmodifications, a shunt-starting AW ladder filter
can be completely synthesized, in this case considering single input and output reactive elements.

4.2.2 Reflection Phase and Feasibility Regions

Having described the nodal representation of a filter starting in shunt resonator and the ad-
ditional steps required to accurately synthesize it, it is possible to compute the elements of
an example. Let us define a 7th order network with prescribed transmission zeros Ω𝑇𝑍 =
[−1.7, 1.97, −2.5, 3, −3.3, 4, −1.8] (note that the first and last TZs are negative, thus the filter starts
and ends with a shunt AW resonator), return loss RL = 18 dB and leaving the intrinsic phase of
the generalized Chebyshev function unaltered (i.e., 𝜃add = 0∘), to obtain the normalized elements
summarized in Table 4.2 after synthesis.

Focusing on the synthesized elements notice the fact that the sign of NRNs 𝐵1 and 𝐵7, those that
ultimately become the C0 of the first and last resonators, have the opposite sign to that expected.
Following the expressions relating 𝐵𝑘 elements and their correspondence with the static branch of
the BVD model (3.45) (3.46), note that C0 is related to 𝐵𝑘 as follows,

𝐶0−𝑆𝐸 = − 1
𝜔0𝐵𝑘

1
𝑍0

(4.4a)

𝐶0−𝑆𝐻 = 𝐵𝑘
𝜔0

1
𝑍0

(4.4b)

stating that the sign of 𝐵𝑘 elements is of paramount importance to allow the transformation of the
synthesized model into BVD models: for series resonators, 𝐵𝑘 < 0 and conversely, for shunt res-
onators 𝐵𝑘 > 0. Therefore, in a ladder topology, the sign of 𝐵𝑘 elements alternates. However, the
synthesized elements of the example network depict an unexpected behaviour in the first and last po-
sitions and such 𝐵𝑘 would transform into the following set of capacitors 𝐶0 = [-0.218, 0.237, 2.584,
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Figure 4.5: Feasibility map of the example 7th order filter starting in shunt. Binary (1) indicates all C0
values are feasible in terms of AW technology. (0) means first and/or last resonator C0 are negative.
Red cross is placed at 𝜃add‑CB for duplexer‑oriented synthesis assuming counter band is n3 uplink.

0.122, 3.537, 0.122, -0.118] pF if using the central frequency of an n3 downlink band (1805 - 1880
MHz), for example. Notice that the static branch of the first and last resonators transforms into a
negative capacitor, what can also be interpreted as a capacitor with positive reactance value or an
inductive nature. Clearly, such behavior is not feasible in terms of AW resonators because it con-
tradicts the capacitive nature of the piezoelectric transducer and thus cannot be represented with a
BVD model.

It is interesting to highlight that the elements depicted in Table 4.2 correspond to the output of
the synthesis before applying the last inverter redistribution explained in the previous chapter and
thus, the value of such last inverter is stated in the table as 𝐽10. Since the redistribution of the non-
unitary inverter involves a new value for elements 𝐵𝑁 and 𝐵𝐿 and its equations, (3.68) (3.69), already
assume the correct sign of element𝐵𝑁 to be feasible, the fact that both first and last resonators feature
an inductive behavior could be masked. More importantly, note that such redistribution entails a
modification of the output phase, as introduced in Ch. 3 and thus points at the relation between
phase and the unexpected sign of the two NRNs.

As already outlined in the discussion of two synthesized filters with different reflection phase
modifications in the previous chapter and as initially covered by Silveira in [26] (Ch. 3) for series
starting filters, tailoring the reflection phase of a filter has an impact on all𝐶0 of the filter. Therefore,
at this point let us bring reflection phase into play to inspect the filter example starting in shunt
resonator for different values of the phasemodification term 𝜃add. By synthesizing the networkwhile
sweeping for all possible values of reflection phase, i.e., 𝜃add ∈ [−180∘, 180∘], a feasibility binarymap
can be obtained as shown in Fig. 4.5, where 1 stands for all 𝐶0 > 0 and 0means that 𝐶01 and/or 𝐶07
are negative. Additionally, assuming once again an n3 downlink case, let us consider that the counter
band (n3 uplink) is located at Ω𝐶𝐵 = −2.36 rad/s and so, note the map features a red cross at the
𝜃add value that is required to impose ∠𝑆11 = 0∘ at the center of the counter band.

While it is already clear that for 𝜃add = 0∘ (i.e. leaving the intrinsic phase of the Chebyshev
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Figure 4.6: Feasibility map of the example 7th order filter starting in shunt sweeping the first TZ. Red
cross is placed at 𝜃add‑CB for duplexer‑oriented synthesis assuming counter band is n3 uplink.

function) the network is not feasible, trying to synthesize such shunt-starting filter as a duplexer-
oriented filter with the proposed set of TZs and RL leads to a non-feasible solution, as well. Clearly,
there is a wide region of phases, centered around 𝜃add = 0∘, where the network is not feasible, but
the filter becomes feasible for large values of 𝜃add.

To complete the observation, let us take the same analysis with respect to 𝜃add and repeat it for
different positions of the first transmission zero departing further from the passband (i.e., more neg-
ative values of Ω1) again considering the same network example than before and taking Ω1 = [-1.7,
-3.4, -4.8, -6.7, -9.2]. Note that the first transmission zero corresponds to the resonance frequency 𝑓𝑠
of the first resonator of the filter. The result of this second experiment is depicted in the feasibility
maps in Fig. 4.6 showing that the upper edge of the feasibility region (the phase addition at which the
filter becomes feasible) is closely related to the position of the first TZ, coming closer to 𝜃add = 0∘ as
the TZ moves further from the passband, at some point allowing feasibility of the duplexer-oriented
filter, and thus narrowing the range of phases for which the filter is non-feasible. Interestingly, no-
tice that the transition edge in the left half of the map (that for negative values of 𝜃add) is invariant,
what highlights the relation of that edge with the last TZ of the network (again, the 𝑓𝑠 of the last
resonator) that is kept unaltered in this experiment.

Revisiting the orthogonality conditions derived in the previous chapter and inspecting the re-
sults, the edges of the feasibility regions can actually be computed in advance with (4.5), where
𝜃up-SH and 𝜃low-SH are, respectively, the positive and negative values of 𝜃add at the transition from fea-
sible to non-feasible when starting in shunt resonator, and Ω1 and Ω𝑁 are the normalized position,
in rad/s, of the first and last TZs. Interestingly, these values are the ones proposed by Giménez [124]
to avoid the external reactive elements at input and output for filters starting in series resonator be-
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cause by adding a shift of 𝜃up to 𝐹(𝑠), then ∠𝑆11(𝑗Ω1) = 0∘ and therefore no source element 𝐵𝑆 is
required. In the case of shunt-starting filters, these phase values represent the border from capacitive
to inductive behaviour of the static branch of the first and last resonators.

𝜃up-SH = −∠𝑆11(𝑗Ω1) 𝜃low-SH = ∠𝑆22(𝑗Ω𝑁) (4.5)

Therefore, for a shunt-starting AW filter with arbitrary TZs and RL, the following condition on
the 𝜃add value that yields feasible solutions can be derived:

𝜃add ∈ [−180∘, 𝜃low-SH] ∪ [𝜃up-SH, 180∘] (4.6)

Additionally, revisiting now the intrinsic reflection phase of a generalized Chebyshev function
(as depicted in Fig. 3.10) note that the closer a lower stopband TZ is to the passband, the more
negative the phase at its position is. From (4.2) and (4.6) it is clear that a shunt-starting filter is feasible
as long as∠𝑆11(𝑗Ω1) ≥ 0∘. Therefore, since to design a duplexer the condition∠𝑆11(𝑗ΩCB) = 0∘must
be imposed, it is easily seen that only when the first TZ is placed below the center frequency of the
counter band (for the case in which the counter band is below the passband), the filter starting in
shunt resonator and featuring a single input element will be feasible, because the two restrictions
above must hold.

This allows to define the condition in the normalized domain as

Ω1 ≤ ΩCB (4.7)

or more specifically in terms of the actual resonator frequencies, as

𝑓𝑠1 ≤ 𝑓CB (4.8)

where 𝑓𝑠1 is the series resonance of the first resonator and 𝑓CB is the central frequency of the counter
band.

Finally, let us highlight that the appearance of negative 𝐶0 values is not only a phenomenon
of filters starting in shunt and the same situation can be analyzed for filters starting with series
resonator. For simplicity, let us take the same example network but now switching the sign of all
TZs (i.e.,Ω= [1.7, -1.97, 2.5, -3, 3.3, -4, 1.8] rad/s and RL = 18 dB) so that it starts in series resonator
and let us repeat the same sweep computation, synthesizing for all 𝜃add and moving the first TZ
away from the passband. In this case to larger values, or equivalently, moving the antiresonance
frequency (𝑓𝑝) of the first resonator up in frequency. For consistency, the counter band is assumed to
be n3 uplink again. The results of this analysis are shown in Fig. 4.7 depicting that for 𝜃add = 0∘ the
filter has all 𝐶0 > 0 by nature and that the feasibility regions with respect to phase have an opposite
behaviour to those of shunt-starting cases.
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Figure 4.7: Feasibility map of the example 7th order filter starting in series sweeping the first TZ. Red
cross is placed at 𝜃add‑CB for duplexer‑oriented synthesis assuming counter band is n3 uplink.

A series-starting filter is feasible without modifying the reflection phase and is naturally capable
of accommodating the duplexer-oriented phase condition. Again, the edges, now 𝜃up-SE and 𝜃low-SE,
bounding the feasibility region of these filters can be computed as 𝜃up-SE = 180 − ∠𝑆11(𝑗Ω1) and
𝜃low-SE = −180 + ∠𝑆22(𝑗Ω𝑁) yielding the interval of feasible phases for AW filters starting in series:

𝜃𝑎𝑑𝑑 ∈ [𝜃𝑙𝑜𝑤−𝑆𝐸, 𝜃𝑢𝑝−𝑆𝐸]. (4.9)

From this result, a curious but also interesting conclusion might be drawn. When designing a
filter starting in series, feasible solutions arise intrinsically without anymodification to the reflection
phase of the filter function. Therefore, in an optimization-based design that does not take control of
the phase, solutions will by nature be away from the cases where the first and last resonators require
an inductive behavior.

Moreover, since for most duplexer band pairs the reflection phase required to reduce loading ef-
fects is closer to 0∘ than to 180∘, filters starting in series are directly feasible without considering con-
ditions on the position of TZs or the addition of extra input elements. Again, an optimization-based
design will require less computational effort to find a duplexer filter solution with single reactive
elements. This might partly be the reason why the initial AW ladder filter examples started in series
resonator [17] and thus might have influenced the industrial trend since, as explained in [11], the
design process is sometimes started with an optimization over an already marketed design.

In general, the point to highlight is that an AW ladder filter starting with series resonator featur-
ing single input and output reactive elements is capable of implementing a generalized Chebyshev
function by nature without the need of any reflection phase modification.

From the shunt-starting filters viewpoint, the key aspect is that an AW ladder starting in shunt
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Figure 4.8: Feasibility map of the example 6th order filter starting in shunt sweeping the first TZ. Red
cross is placed at the duplexer phase requirement.

cannot accommodate a generalized Chebyshev function unless its reflection phase is modified in
accordance with the proposed feasible values, also affecting the design of duplexer-oriented filters.

It is important to highlight that the examples discussed in this section are all odd-order filters,
that is, that start and end in the same resonator configuration. However, since even-order filters are
also possible implementations, an equivalent evaluation of the feasibility of such filters is interesting.
For a filter of even order, the first and last resonators are connected in opposite configuration, that is
starting in shunt and ending in series, or vice versa. Hence, when analyzing the feasibility of the filter
with respect to 𝜃add results depict a more complicated scenario, as shown in Fig. 4.8. The network
for this experiment is a 6-th order filter with RL = 18 dB and TZs Ω = [-1.7, 1.97, -2.5, 3, -3.3, 4],
again synthesized as an n3 downlink filter.

Notice that now the resulting feasibility regions are a superposition of two different behaviors.
Around 𝜃add = 0∘ the network is not feasible because the shunt resonator at the beginning of the
network requires an inductive static branch and, again, since the network starts in shunt, the condi-
tions for duplexer feasibility apply. On the other hand, for 𝜃add = 180∘ the network is also not feasible
because for such reflection phases, it is the final resonator (now in series) that requires an inductive
static branch (as seen in Fig. 4.7). Therefore, for even order networks starting in shunt, selection of
the reflection phase is more complicated than for those of odd order. The general description of the
feasible values of 𝜃add is in this case also related to the rest of TZs and requires further research.
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4.2.3 Double‑element Solution for Shunt‑starting Duplexers

The study in this section is driven by the fact that it is common to find shunt-starting filters featuring
two input elements when part of a duplexer and the findings attained through a synthesis approach
show that condition (4.8) must hold for a shunt-starting filter with a single input element to be
feasible when imposing the phase required to avoid loading effects.

In terms of AW technology, fulfillment of such condition on 𝑓𝑠1 (the resonance frequency of
the first resonator) has important implications in material and resonator specifications. Placing 𝑓𝑠1
below the central frequency of the counter band entails enlarging the effective electromechanical
coupling coefficient (𝑘2eff) to obtain a resonator whose 𝑓𝑠 is below 𝑓𝐶𝐵 while its antiresonance 𝑓𝑝 is in
band. To exemplify this situation, consider AlN for BAW offering a 𝑘2eff ≈ 6.7% [146], two situations
arise: either the duplexer spacing is small enough to technologically fulfill (4.8) or the uplink (UL)
and downlink (DL) are spaced apart and the required pole-zero distance exceeds resonator capabil-
ities, as might be the case of an n66 pair (1710 - 1780 MHz UL, 2110 - 2200 MHz DL). As a solution
for those cases where 𝑘2eff is not enough to place 𝑓𝑠1 where required, it is possible to use an additional
reactive element at the input port so that an arbitrary set of TZs is feasible to design a shunt-starting
duplexer-oriented filter.

To provide the synthesis view of this element, start by considering the reflection phase shift im-
plemented by a shunt FIR 𝐵𝑆1 with (4.10). If this shunt admittance is placed at the source node 𝑆
in Fig. 4.3, it can be used to implement a phase such that the remaining network after its extraction
has the desired sign of NRNs 𝐵𝑘 to yield all positive 𝐶0. Element 𝐵𝑆1 thus transforms into a shunt
reactive element and its role is to ensure feasibility while 𝐵𝑆2 (previously 𝐵𝑆 in Fig. 4.3) transforms
into the common series reactive element in shunt-starting filters, whose role is phase matching to
the first AW resonator.

𝜃𝑆1 = arctan ( −2𝐵𝑆1
1 − 𝐵2𝑆1

) (4.10)

Solving (4.10) for a given value of 𝜃S1 yields two solutions of different sign and hence, two ele-
ments of different nature after transformation. The positive sign transforms to a shunt capacitor and
the negative to a shunt inductor. Therefore, the type of element can also be chosen to convenience.
The procedure to synthesize this additional element is to compute its admittance value from the
expression, giving a value to 𝜃𝑆1 and then extracting it from the overall ABCD matrix, as done with
𝐵𝑆, prior to the extraction of main-line inverter 𝐽1.
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4.2.4 Solution for Stand‑alone Odd‑order Shunt‑starting Filters

In the case the filter to synthesize is not aimed to compose a duplexer, it must not implement an
specific reflection phase and therefore the availability of solutions increases. Since the phase is now
liberated, one interesting option for stand-alone filters is to avoid the input reactive element to reduce
filter footprint and avoid the drawbacks of low Q inductors on laminate or as surface mount devices
(SMD). To do so, the reflection phase can be tailored so that the value of element 𝐵𝑆 is zero. In this
case, inverters 𝐽1 and 𝐽2, that are of opposite sign, neutralize each other and the filter network starts
directly at the first shunt resonator. To obtain 𝐵𝑆 = 0 after the extraction of 𝐽1, the phase addition to
the filter function is the one that fixes that ∠𝑆11(𝑗Ω1) = ±180∘. Therefore,

𝜃add = −180∘ − ∠𝑆11(𝑗Ω1) (4.11)

and as already shown in (4.6), this phase shift value falls inside the feasible region of a shunt-starting
filter.

On the other hand, the reflection phase can be brought as a free design parameter if the in-
put/output reactive elements are allowed. Since the role of 𝐵𝑘 elements is phase matching between
extracted-pole sections, modifying the reflection phase has an effect in the values of all C0 elements
and can help find solutionswith specific objectives such asminimumarea. If it is not used as a design
variable, selecting a phase of 𝜃add = 180∘ ensures feasibility, as a rule of thumb.

4.2.5 Examples and Experimental Validation

With the objective of validating the findings regarding shunt-starting AW ladder filters, this section
provides two different examples. At first, the proposed phase rules are validated through a post-
manufacturing analysis of a filter at 4.5 GHz and secondly, the synthesis procedure applied to shunt-
starting filters is demonstratedwith an n7 duplexer inwhich the downlink filter features two reactive
elements at the input port.

Validation on a C-Band Filter

The synthesis analysis of an already manufactured filter is proposed as a validation vehicle of the
phase conditions derived in the previous section. The filter is a third order C-Band device presented
in [83, 147] as a novel demonstration of the potential of Lamb wave modes on thin film LiNbO3

plates [81, 148] in the context of attaining high electromechanical coupling values. These resonator
designs, in this case exploiting the first order asymmetric mode (A1), achieve 𝑘2eff in the order of 20%,
fitting the requirements of new 5G bands with fractional bandwidths above 10%. The proposed filter
starts in shunt resonator, is physically symmetric (first and last resonators are equal) and is originally
designed through optimization, thus becoming a clear example to demonstrate the validity of the
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Figure 4.9: (a) Schematic of the 4.5 GHz third order filter fabricated in [83]. (b) C0 with respect to 𝜃add
for the synthesis model of the filter. The grey area marks the reflection phase modification required
to obtain the values of the fabricated filter.

Table 4.3: Synthesized BVDmodel elements of the 4.5 GHz filter.

Resonator 𝐿𝑎 (nH) 𝐶𝑎 (fF) 𝐶0 (fF) 𝑘2eff (%)
1 and 3 12.12 135.52 642.4 20.5

2 15.62 81.15 388.9 20.5
𝐿in (nH) 0.1865 𝐿out (nH) 0.1865

proposed conditions. The schematic of the filter is shown in Fig. 4.9a, highlighting that the shunt
resonators, having a total 𝐶0 = 640 fF have been implemented as two equal resonators in parallel
(320 fF each) to ease manufacturing and to achieve a more compact filter layout. On the other hand,
the series resonator has a capacitance 𝐶0 = 380 fF.

As already discussed, a shunt-starting filterwhose reflection phase is left unaltered, that is, show-
ing a horizontal asymptote towards 0∘, should depict negative-valued capacitances in the first and
last resonators. Considering the values of the manufactured filter it is clear that its reflection phase
must depict an asymptote towards a value within the feasible region in (4.6). Hence, the synthesis
method can be exploited to explore which phase modification 𝜃add is required to obtain the values
of the fabricated device. For fitting purposes, the passband of this filter is defined as having edges
at (4045 − 4640) MHz and center frequency 𝑓0 = 4332 MHz, thus a FBW of 13.7 %. Through de-
normalization using the proposed passband specs, the input parameters that define the objective
generalized Chebyshev function are RL = 15.1 dB and a TZs Ω = [-1.59, 2.18, -1.59].

At first, let us compute the synthesis without altering the reflection phase of the function (𝜃add =
0∘), what yields, as expected, static capacitors 𝐶01 = −82.6 fF, 𝐶02 = 137.7 fF and 𝐶03 = 500.7 fF.
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Figure 4.10: Reflection phase comparison between the fabricated filter in [148] and the synthesized
filter.

The fact that the last resonator already yields a positive 𝐶0 is due to the redistribution of the non-
unitary inverter after the synthesis, that actually imposes the correct sign of NRN 𝐵𝑁 through the
redistribution equations (3.68)(3.69). To analyzewhich is the required phase addition let us compute
a sweep along all possible values of 𝜃add for the static capacitance of each resonator, yielding the result
shown in Fig. 4.9b.

Note that the larger variation of 𝐶0 with respect to phase is observed for the first and last res-
onators, the first becoming negative around 𝜃add = 0∘ (i.e. no added phase). The phase shift value
for which the values estimated by the original authors of the filter [83,148] is highlighted in grey in
Fig. 4.9b showing that they are only achieved for a phase addition of 𝜃add = −119∘ on 𝑆11. With this
information, the generalized Chebyshev function can be shifted in terms of refleciton phase and can
be synthesized, obtaining the BVD model elements summarized in Table 4.3.

The synthesized response can be simulated using the BVDmodels and the measured Q factor of
the resonators, that is estimated to be 200 on average [148]. With the simulated response, a direct
comparison of the reflection phase of the measurement and the synthesized filter is depicted in Fig.
4.10 showing a good agreement. Clearly, the fabricated filter shows the mentioned asymptote at the
phase of −119∘ that is needed to obtain a feasible filter with the given 𝐶0 and the same 𝑘2eff on all
resonators.

The comparison in terms of magnitude is shown in Fig. 4.11a, showing the measurement, and
Fig. 4.11b showing the simulated response using again the computed BVD reactance model of the
synthesized filter with the mentioned Q factor. The measured and simulated magnitude responses
agree in terms of the obtained out-of-band rejection levels and the shape of the passband but show
considerable differences in the in-band region. To justify such disagreement it is important to con-
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Figure 4.11: Magnitude response of the shunt‑starting 4.5 GHz filter. (a) Measured magnitude re‑
sponse. (b) Simulated response of the synthesized BVD reactance model assuming QAW = 200.

sider that the filter is originally designed through optimization and not following the output of the
synthesis and also that there are multiple effects regarding parasitics and layout that need to be
considered for a correct assessment of the response. Among other, the authors consider that some
distortions of the response in Fig. 4.11a are related to layout parasitics at 4.5 GHz adding inductance
in series to shunt resonators (thus widening the obtained 𝑘2eff) and to the lithography accuracy in the
definition of the resonator pitch, among others. For example, the absence of clear reflection zeros
may be caused by deviations in the antiresonance frequency (𝑓𝑝) of the series resonator. However,
while the phase does not describe the in-band shape of a traditional equiripple response, preserves
the horizontal asymptote that is the key factor of the proposed discusion, since the reflection phase
at frequencies away from the passband is mainly defined by the static capacitance of resonators. Ad-
ditionally, one must consider that the loss model used for simulation with the BVDmodels is rather
simplified as an initial approximation and an advanced characterization of the technology could pro-
vide a more complex loss model along with spurious modes modeling to obtain a simulation result
closer to the measured performance.

Synthesized n7 Duplexer

To demonstrate the synthesis of duplexer-oriented shunt-starting filters featuring two reactive ele-
ments at the input let us a consider an n7 duplexer example (uplink 2500-2570 MHz and downlink
2620-2690 MHz) with the objective of implementing the downlink filter starting in shunt resonator
to attain large rejection towards the uplink filter. Even further, to highlight the versatility of duplexer-
oriented synthesis, the uplink filter of this example is re-used from the duplexer presented in Section
4.1, whose synthesized values are shown in Fig. 4.1. For consistency, the downlink filter for this ex-



Chapter 4. Reflection Phase as a Key Design Parameter 99

R1-UL

Lin-UL R2-UL R6-UL

R7-UL

R4-UL

TX

R3-UL R5-UL

Lout-UL

ANT
R1-DL R5-DL

R6-DL

RX

R2-DL R4-DL

R3-DL R7-DL

Lout-DLLin-DL

Cin-DL

Figure 4.12: Schematic view of the n7 duplexer with n7 downlink filter starting in shunt and featuring
two input reactive elements Cin and Lin.
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Figure 4.13: Simulated response of the synthesized n7 duplexer with n7 downlink filter starting in
shunt and featuring two input reactive elements.

ample is synthesized to be implemented with AlN BAW resonators as well (i.e., 𝑘2eff = 6.7%).

The input parameters for the synthesis method of the n7 downlink filter areΩn7-DL = [-2.75, 2.11,
-1.94, 1.95, -1.94, 2.11, -2.24] and RL = 17.7 dB with a phase modification term 𝜃add = 34.5∘. The
double element is extracted to implement a reflection phase of 𝜃𝑆1 = −86.7∘ using (4.10) selecting
the positive solution as 𝐵𝑆1 = 0.9446 to obtain an input shunt capacitor. Finally, the synthesized
BVD model elements of the filter are shown in Table 4.4. Let us highlight that from the downlink
perspective, in the normalized domainΩCB = −3.51 rad/s and thus, the first TZ (-2.75 rad/s) does not
fulfill (4.7) but thanks to the double element solution, the obtained filter is feasible. The schematic of
the duplexer, showing the two input elements of the downlink branch and a single shunt inductor at
the uplink branch, is shown in Fig. 4.12 and the simulated response of the duplexer, assuming Q𝐴𝑊

= 1500, Q𝐿 = 50 and Q𝐶 = 100, is shown in Fig. 4.13.
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Table 4.4: Butterworth ‑ Van Dykemodel elements of the n7 downlink filter with two input elements.

n7 downlink - 𝜃add-DL = 34.5∘

Resonator 1 (SH) 2 (SE) 3 (SH) 4 (SE) 5 (SH) 6 (SE) 7 (SH)
𝐿𝑎 (nH) 20.34 160.89 20.19 162.04 20.20 157.71 30.79
𝐶𝑎 (fF) 191.03 22.23 188.41 22.17 188.31 22.68 124.55
𝐶0 (pF) 3.28 0.38 3.24 0.38 3.23 0.39 2.14
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐶in (pF) 1.13 𝐿in (nH) 3.30 𝐿out (nH) 1.32

4.3 Dual Band Parallel‑Connected AW Ladder Filters

The discussion on reflection phase control as an enabler of duplexer-oriented filters in this chapter
is centered around the application of the duplexer phase condition at the input port of the two fil-
ters to be duplexed. While this is the most common situation and duplexers are an important filter
implementation in the context of mobile communications, the possibility to also control reflection
phase at the output port might be of interest as an approach to dual band applications. Although
there are methods to synthesize and design filters implementing two (or more) passbands, specially
in the context of waveguide and coaxial cavity filters, [9,149–152] and also some synthesis methods
have been proposed in the context of acoustic wave technologies [153, 154], a simple approach to
compose a dual band device is the direct parallel connection of two AW ladder filters provided that
both filters do not interfere each other in terms of reflection at neither of the ports, as observed in
some commercial examples [155] and in the schematic in Fig. 4.14.

Clearly, composing the proposed parallel-connected structure while attaining the desired dual
band performance has important implications in the reflection phase of both filters, as already dis-
cussed in this chapter, but not only at the input port but on both simultaneously. However, note that
the discussion up to this point has exploited the modification of reflection phase by directly apply-
ing a shift to polynomial 𝐹(𝑠) (4.2) and, as also introduced in Ch. 3, considering the orthogonality
condition of 𝑆-parameters and their definition in terms of characteristic polynomials (3.19), directly
shifting the phase of polynomial 𝐹(𝑠) entails imposing a predefined phase both on input reflection
phase (∠𝑆11) and output reflection phase (∠𝑆22) since 𝐹22(𝑠) is directly the paraconjugate of 𝐹(𝑠).

Therefore, with the phasemodification procedure in (4.2) there is no degree of freedom to control
the output reflection phase and thus, an alternative method to tailor reflection phase of the transfer
function while fulfilling the orthogonality of 𝑆-parameters is required. To this end let us exploit a
specific definition of the phase initially proposed in [156] with the purpose of imposing extracted
pole sections on a transversal coupling matrix, that was later exploited in [25,157] to study the rela-
tions between reflection phase and the last non-unitary admittance inverter in inline fully canonical
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Figure 4.14: Schematic view of the proposed dual band device composed by two parallel‑connected
AW ladder filters where subscripts LO and UP refer to the lower and upper passbands of the final re‑
sponse.

networks.

Let us start by revisiting the definition of the transfer function 𝑆-parameters with respect to char-
acteristic polynomials (3.8),

𝑆11(𝑠) =
𝐹′11(𝑠)/𝜀𝑟
𝐸′(𝑠) (4.12a)

𝑆22(𝑠) =
𝐹′22(𝑠)/𝜀𝑟
𝐸′(𝑠) (4.12b)

𝑆21(𝑠) = 𝑆12(𝑠) =
𝑃(𝑠)/𝜀
𝐸′(𝑠) (4.12c)

where the dashed polynomials are modified versions of the original polynomials as,

𝐹′11(𝑠) = 𝐹(𝑠)√𝑎/𝑏 (4.13a)

𝐹′22(𝑠) = (−1)𝑁𝐹(𝑠)∗√𝑏/𝑎 (4.13b)

𝐸′(𝑠) = 𝐸(𝑠)
√𝑎𝑏

. (4.13c)

Terms 𝑎 and 𝑏 are complex numbers of unitarymodulus that come defined, similar to (4.2), from
the phase shifts 𝜓 and 𝜙 to the input and output reflection phases, respectively, as:

𝑎 = 𝑒𝑗𝜓 𝑏 = 𝑒𝑗𝜙 (4.14)

Note that this modification is able to control both input and output reflection phases by intro-
ducing a phase modification of polynomial 𝐸(𝑠) thus altering also, to comply with orthogonality, the
transfer phase (i.e., ∠𝑆21).

Considering the proposed phase definition, as already developed for duplexers, if two filters need
to be connected in parallel at both ports, the most important condition to fulfill is imposing that
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Table 4.5: Butterworth ‑ Van Dykemodel elements of the n66‑n25 dual band device example.

n66 uplink

Resonator 1/7 (SE) 2/6 (SH) 3/5 (SE) 4 (SH)
𝐿𝑎 (nH) 81.31 50.05 127.87 56.44
𝐶𝑎 (fF) 101.32 177.91 64.93 156.38
𝐶0 (pF) 1.74 3.06 1.11 2.68
𝑘2eff (%) 6.7 6.7 6.7 6.7

𝐿in/out (nH) 11.11

n25 uplink

Resonator 1/7 (SE) 2/6 (SH) 3/5 (SE) 4 (SH)
𝐿𝑎 (nH) 122.56 27.02 139.99 27.99
𝐶𝑎 (fF) 57.38 281.43 50.99 270.10
𝐶0 (pF) 0.98 4.84 0.87 4.64
𝑘2eff (%) 6.7 6.7 6.7 6.7

𝐿in/out (nH) 6.16

each of the filters depicts a reflection phase of 0∘ at the central frequency of its partner filter. That
is, for the lower band (LO) filter with respect to the upper band (UP) filter, 𝑆11−𝐿𝑂(𝑓0−𝑈𝑃) = 0∘ and
𝑆22−𝐿𝑂(𝑓0−𝑈𝑃) = 0∘ and vice versa. By inspection, note that such condition at both ports implies
that ∠𝑆11 = ∠𝑆22.

At this point, note also an additional fact that has been outlined in previous sections. Since the
presence of a non-unitary admittance inverter at the end of the network is avoided through an admit-
tance redistribution and such operation has an effect on the output reflection phase, to maintain the
phase imposed on 𝑆22 through (4.12c) at the transfer function level, an additional condition must be
imposed on the parameters that define the network to synthesize. The work in [157] demonstrates
that the only possibility to obtain all unitary mainline admittance inverters while imposing that
∠𝑆11 = ∠𝑆22 implies that the network be physically symmetric. In terms of the AW ladder filter that
entails resonators need be equal in pairs, [(1,𝑁), (2,𝑁-1), (3,𝑁-2), ...] where𝑁 is the order of the filter
and 𝑁 is odd, with respect to the center resonator of the filter. Equivalently, the set of transmission
zeros must be symmetric with respect to the central TZ.

To exemplify the proposed approach, let us present the example of an n66 uplink (1710 - 1780
MHz) and n25 uplink (1850 - 1915 MHz) dual band device composed of two filters, individually
synthesized with their reflection phases tailored with (4.13c). This situation, a dual band device
implementing two uplink passbands is of interest, for example, in the context base stations in which
the two bands feed the same low noise amplifier path, as is the case of the n1 and n3 uplink dual
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Figure 4.15: Simulated response of the n66n25 uplink dual band device.

band device by Qorvo [155]. For this example, the filters have been designed to implement AlN BAW
resonators (i.e., 𝑘2eff = 6.7 %) and the synthesized BVDmodel elements are depicted in Table 4.5. The
input parameters for the synthesis of each filter areΩn66-UL=[1.5244, -1.5363, 1.3344, -1.3240, 1.3344,
-1.5363, 1.5244], RL = 15.8 dB and phase terms 𝜓n66-UL = 𝜙n66-UL = −28.75∘, for the n66 uplink, and
Ωn25-UL = [2.1023, -1.8098, 1.6410, -1.6382, 1.6410, -1.8098, 2.1023], RL = 15.2 dB and phase terms
𝜓n25-UL = 𝜙n25-UL = 21.74∘, for the n25 uplink. Note the symmetry of the transmission zero sets. The
simulated response of the obtained dual band device after connecting both filters in parallel at input
and output and merging port inductors into 𝐿in/out = 3.96 nH, is shown in Fig. 4.15. This simulation
assumes Q𝐴𝑊 = 1500 for AW resonators and Q𝐿 = 50 for the input and output shunt inductors.

The obtained response requires a detailed description to introduce the main limitation of this
approach to dual band responses. Clearly, both passbands are clearly constructed and well matched
(within the passband, 𝑆11 < −15𝑑𝐵)). However, note the clear distortion of the response in the out-
of-band region, both away from the passbands and between them, since the deep transmission zeros
expected from each AW ladder filter are not present. The observed fading of TZs when the two filters
are connected in parallel is related to the presence of a reactive cross-coupling between the filters as
introduced in [27]. Considering the capacitive nature of the AW ladder in the OoB region, although
reflection phase has been set to depict an open-circuit at the central frequency of the partner filter,
each filter acts as a capacitive path to its partner given its finite OoB rejection level. While the pres-
ence of such reactive path could ideally be considered when synthesizing each filter [138] to obtain
the desired response when both filters are connected in parallel, due to its strength it triggers the
appearance of complex roots of the filter function (complex TZs), that cannot be implemented by
extracted pole sections and thus, by AW resonators [27, 28, 136]. Similarly, note that the parallel-
connected approaches in [150, 151] also describe such OoB distortion but, since they cover cases of
filters placing TZs at infinite frequency, the strength of the undesired cross-coupling is minimal and
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Figure 4.16: Simulated response of the n66n25 uplink dual band device when considering ground
inductors joining shunt resonators 2 and 4.

distortion is highly reduced.

Notice, therefore, that in the case of AW ladder filters the observedOoB distortionwhen connect-
ing the filters in parallel cannot be tackled through the synthesis and the obtained fly-back levels
in the OoB region correspond to those of the least rejecting filter. This is an intrinsic limitation of
this dual band approach. However, there is still the possibility of improving the final response by
trying to reduce the strength of the mentioned reactive path in parallel. An interesting method to
achieve that is to exploit the additional TZs provided by the coupling of two shunt resonators via
a small inductor in their ground path as proposed in [158]. A very common practice in AW ladder
filters. Given the many available combinations between the shunt resonators of both filters, let us
propose an example in this case adding two small inductors of 0.2 nH connecting the second and
fourth shunt resonators of each filter to ground (i.e., a 0.2 nH inductor joining the ground terminals
of R2-LO with R4-LO and another 0.2 nH inductor joining R2-UP and R4-UP given the schematic in Fig.
4.14). The simulated response of the structure with the simple addition of these two inductors is
shown in Fig. 4.16 for the same simulation conditions above. Notice the increase in OoB rejection (6
∼ 8 dB) in both fly-back levels and note the appearance of additional transmission zeros both below
the n66 band and between the passbands.

In general, the parallel-connected approach to dual-band AW filters is the most straightforward
solution and offers some advantages: a simplified design process since it can be seen as the design
of two independent ladder filters and the possibility to reuse already fabricated devices along with
external matching elements to impose the described phase conditions that allow to connect both
filters in parallel. However, the limitations of this approach need to be considered. First, this ap-
proach does not provide full control of the final response of the structure since it is composed of
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two independent AW ladder filters. Although the final response is effectively dual-band, is not the
implementation of a synthesized dual-band filter function rather than the best-effort combination
of two individual filters.

Additionally, there is a limitation in terms of achievable rejection given the cross-coupling effect
provided by the finite OoB rejection of the individual filters, as exposed above. In terms of device di-
mensions this approach directs to the least compact solution given the need to fabricate two separate
ladder filters to be connected at the package level, what might yield increased packaging complexity
as well. In general, this approach provides filter design simplicity in exchange of performance in
terms of the achievable steepness and rejection using AW technology.

To close this brief discussion on dual band devices, the proposal in this thesis is framed within
the discussion of applications of reflection phase control in AW filter synthesis. However, the topic of
dual band devices composed of acoustic wave resonators is originally introduced in [159] by propos-
ing the so-called double-ladder topology from a circuital perspective and is later reviewed to provide
a synthesis method for it in [152], exploiting a nodal equivalent composed of double dangling res-
onator sections. Moreover, going beyond the synthesis solution to the double ladder topology, the
recent contribution [154] by the group hosting this thesis closes the complete discussion on acoustic
wave dual band filters by proposing the synthesis of a regular ladder topology implementing a dual
band response and provides a comparison between the parallel-connected approach in this thesis,
the double ladder and the regular ladder case.

4.4 Breaking the Ladder

The complete discussion in Sec. 4.2 is centered around the fact that if reflection phase is not prop-
erly considered and controlled, unfeasible filters might be obtained as the output of the synthesis
procedure. As a summary, the findings demonstrate that filters showing negative values of C0 (in-
ductive behaviour of the static branch of the BVD) at the first and/or last resonators are obtained
when series-starting filters depict reflection phases tending to ± 180∘ or when shunt-starting filters
feature reflection phases towards 0∘. The discussion has, therefore, focused on how to avoid such
situations and has provided a set of rules on how to handle the synthesis of shunt-starting filters
since, for them, the natural reflection phase of a Chebyshev function yields unfeasible results.

Moreover, note that such discussion is supported on considering a widely accepted fact that has
already been introduced in Ch. 1 and 3. A series AW resonator in the ladder topology places a trans-
mission zero above the passband with its 𝑓𝑝, keeping its 𝑓𝑠 in-band, while a shunt resonator places a
transmission zero below the passbandwith its 𝑓𝑠, while keeping its 𝑓𝑝 inside it. This brief explanation
is the fundamental paradigm of AW ladder filter design and is also the driving argument of some of
the findings in this thesis. To mention some literature examples providing that fundamental view
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of the ladder, consider [11, 17, 31, 160], among many others. At the same time, while the AW ladder
topology is very useful since it directly ties resonator frequencies with transmission zeros of the re-
sponse, it is also a rigid configuration in terms of achieving more advanced responses. For example,
it entails a limitation in the number of TZs at each side of the passband for a given filter order due
to the alternating disposition of resonators along the ladder, what ultimately limits the achievable
skirt steepness of the filter.

If ones tries go beyond this framework, for example trying to impose that a series resonator of
the filter actually places a transmission zero below the passband, maintaining the other resonance,
𝑓𝑠, inside the passband clearly results in a resonator for which 𝑓𝑠 > 𝑓𝑝. As introduced in this chap-
ter, such statement has an effect in terms of the BVD model, requiring an inductive static branch
or, equivalently, a negative C0, what has already been demonstrated from a synthesis perspective
showing that extracted pole sections placing TZs at positive normalized frequencies are related to
𝐵𝑘 < 0 and vice versa in (4.4).

Interestingly, diving into an exercise of logical double negation, let us observe that the undesired
feature of reflection phase that leads to unfeasible filters and that is widely discussed in Sec. 4.2 to
highlight phase regions where a change in the sign of C0 appears, can actually be exploited here to
counteract the fact that a series resonator placing a TZ below the passband should be unfeasible,
and vice versa. In other words, one can exploit reflection phase control to violate the ladder rules
twice and synthesize filters in which the first and/or the last resonators place transmission zeros in
unexpected positions, hence allowing novel responses such as, for example, 7th order filters starting
in series placing five zeros below the passband and two above. Nevertheless, note that at the expense
of achieving advanced responses with a simple AW ladder topology one has to consider that since
phase is used to ensure the proper sign of C0, it cannot be exploited for the other purposes such as
avoidance of the input reactive element or duplexer-oriented filters.

Since the particular relations between phase and feasibility have been discussed in detail in Sec.
4.2 in this chapter, let us introduce this interesting exploit of reflection phase through the direct
discussion of examples, both in the case of series-starting and shunt-starting filters, each of them
having its own particularities. To complete the discussion, a manufactured example is demonstrated
on the LNOI platform presented in Ch. 2 implementing an 𝑁=3 filter starting in shunt with two
transmission zeros above the passband and a single one below.

4.4.1 Series‑starting Case

Considering a filter starting in series resonator, Fig. 4.7 shows that such a filter becomes unfeasible
for reflection phases closer to ± 180∘. With this fact in mind, let us take an 𝑁=7 filter example and
consider the following set of transmission zeros ΩSE = [-1.4035, -1.8887, 1.8771, -1.6688, 1.8771, -
1.8887, -1.4035] rad/s and RL = 20 dB, noticing that the first and last TZs are negative (i.e., below
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Table 4.6: Butterworth ‑ Van Dyke model elements of the 3820 ‑ 3980 MHz filter with 5 TZs below the
passband.

3820 - 3980 MHz - 𝜃add = −139.8∘

Resonator 1/7 (SE) 2/6 (SH) 3/5 (SE) 4 (SH)
𝐿𝑎 (nH) 4.32 3.66 19.69 3.67
𝐶𝑎 (fF) 440.05 492.26 83.87 486.59
𝐶0 (pF) 5.80 6.49 1.10 6.42
𝑘2eff (%) 8.5 8.5 8.5 8.5

𝐿in/out (nH) 1.18
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Figure 4.17: Example of series‑starting filter featuring 5 TZs below the passband and 2 TZs above. (a)
Simulatedmagnitude response of the filter. Dashed resonators in the schematic inset place TZs below
the passband and solid resonators place them above. (b) Evolution of C0 values with respect to 𝜃add
for this example filter. The rectangle highlights the selected phase region where the filter is feasible.

the passband) while positive values for these TZs are expected for series-starting filters. Note also the
symmetry of TZs with respect to the center of the array. In this case, this is a condition to impose if
both the first and the last resonators are to implement a TZ in the opposite stopband since to attain
the, now desired, change of sign in C0 on both resonators, reflection phase must be controlled both
at input and output. As discussed in the dual band device section, to control output reflection phase
one must avoid redistribution of the last admittance inverter and therefore must consider physically
symmetric networks such that the inverter has a unitary value by nature.

With the proposed set of TZs and RL, considering a phase modification of 𝜃add = −139.8∘ and
an arbitrary passband defined between 3820 and 3980 MHz, the BVD model elements summarized
in Table 4.6 compose the response shown in Fig. 4.17a assuming QAW = 1500 and Q𝐿 = 50. In this
occasion, the filter has been synthesized for a 𝑘2eff = 8.5% on all resonators, what can be the case
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of BAW resonators made of ScAlN (Scandium Aluminum Nitride) [59, 146] or also of LiTaO3 SAW
resonators [50], for example. It is worth highlighting the skirt slope and the rejection attained at the
lower stopband due to imposing the presence of 5 TZs. Note also, from the BVD elements in the
table that resonators 1 and 7 have 𝑓𝑝 = 3783 MHz (the actual transmission zero) while having 𝑓𝑠 =
3647MHz, far below the passband. Since the filter has been synthesized for this specific purpose, all
resonators have the necessary impedance such that they compose the desired transfer functionwhile
depicting such an unexpected distribution of frequencies that contradicts the traditional paradigm
of the AW ladder filter.

To demonstrate the impact of phase in the proposed example, the relation between reflection
phase and C0 is depicted in the plot in Fig. 4.17b showing the evolution of C0 with respect the mod-
ification applied to reflection phase of the filter function of the example TZs and RL. The black box
indicates the required phase modification to attain feasibility and same 𝑘2eff on all resonators. It is
interesting to highlight that internal resonators (2 to 6) do not see a change in the reactive nature of
their static branch along the entire range of phases, but their value is modified. Following the con-
tent derived in Sec. 4.2, one would expect a series-starting filter to be feasible for 𝜃add values close to
0∘ but, in this case, due to imposing that resonators 1 and 7 place TZs below the passband, the filter
is not feasible at such phases (as expected) but shows a feasible phase region for negative 𝜃add values.
Note that in a regular series-starting case, the now feasible phase region is the range of phases for
which the filter becomes unfeasible in terms of AW technology. For completeness, notice also that
values of C01 and C07 with respect to 𝜃add in Fig. 4.17b show a different behavior although they cor-
respond to two resonators placing the same transmission zero. Although the network is physically
symmetric and redistribution of the last admittance inverter is avoided, as stated by the orthogonal-
ity condition of S-parameters, a phase addition as in (4.2) affects input and output reflection in an
asymmetric manner.

To conclude the discussion, the passband of the selected synthesized example, arbitrarily defined
between 3820 and 3980MHz, is chosen to demonstrate an interesting feature of this double violation
of reflection phase rules, when applied to series-starting cases. Note that although the band is high
in frequency the synthesized resonators require large values of C0, something slightly contradictory
if one considers that as frequency increases, capacitors must be smaller to match a reference 50 Ω
load. Since higher values of C0 can be obtained, the proposed effect of reflection phase modifica-
tion appears as an interesting option for very high frequency filters (above 10 GHz) at which AW
resonators might become prohibitively small. As a last remark, note that this approach can be ap-
plied not only to both the first and last resonators of the network, thus having to impose physical
symmetry of the network, but also on only one of them, opening the possibility to have the first se-
ries resonator placing its TZ below the passband and the last resonator acting as an average series
resonator, thus having freedom on the TZ it implements above the passband.
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Table 4.7: Butterworth ‑ Van Dyke model elements of the 1480 ‑ 1550 MHz filter with 5 TZs above the
passband.

1480 - 1550 MHz - 𝜃add = −36.4∘

Resonator 1/7 (SH) 2/6 (SE) 3/5 (SH) 4 (SE)
𝐿𝑎 (nH) 525.16 720.51 138.98 655.84
𝐶𝑎 (fF) 19.67 15.15 85.96 16.82
𝐶0 (pF) 0.25 0.20 1.13 0.22
𝑘2eff (%) 8.5 8.5 8.5 8.5

𝐿in/out (nH) 10.53
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Figure 4.18: Example of series‑starting filter featuring 5 TZs above the passband and 2 TZs below. (a)
Simulatedmagnitude response of the filter. Dashed resonators in the schematic inset place TZs below
the passband and solid resonators place them above. (b) Evolution of C0 values with respect to 𝜃add
for this example filter. The rectangle highlights the selected phase region where the filter is feasible.

4.4.2 Shunt‑starting Case

In contrast to the example in the above paragraphs, let us consider a filter starting in shunt resonator
but now imposing that the first and last resonators place their transmission zeros above the passband
with their 𝑓𝑠. As already introduced, to accomplish this change in nature of both resonators, physical
symmetry of the network must be imposed and thus, let us define the set of TZs as ΩSH = [1.4118,
1.8353, -1.7630, 1.5869, -1.7630, 1.8353, 1.4118] rad/s with RL = 17.5 dB to obtain, considering a
passband defined between 1480 and 1550 MHz and a phase shift addition 𝜃add = −36.4∘, the BVD
model elements depicted in Table 4.7. Again, this shunt-starting example is synthesized to require
𝑘2eff = 8.5% on all resonators.

The simulated response of the synthesized filter considering the quality factors of the previous
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example is shown on Fig. 4.18a, showing very high rejection and a steep skirt at the upper band-
edge of the filter. To highlight the role of the first and last resonators, notice their 𝑓𝑠 is at 1565 MHz,
the position of the TZ that is closer to the upper band-edge, while their 𝑓𝑝 lies at 1624 MHz, out-
side the passband, and consider the behavior of C0 against the phase shift added depicted in Fig.
4.18b. Clearly, the evolution of all C0 is opposite to that shown for series-starting filters, offering a
feasible region for negative 𝜃add values close to 0∘ (thus closer to the intrinsic phase of a generalized
Chebyshev function). Note that in this case, the obtained capacitance values are smaller than those
expected for this frequency range offering the possibility to design low frequency filters that do not
require very large resonator areas, an issue that is common for the bands that lie below 1 GHz.

Nevertheless, the presence of large input and output inductors, in this case in series configu-
ration, must be commented as an intrinsic drawback of the method since they cannot be avoided
because reflection phase is being exploited to attain feasibility of the first and last resonators. By
nature, this approach to place TZs in unnatural positions is strongly related with reflection phase
regions that trigger large values of NRNs 𝐵𝑆 and 𝐵𝐿 and results in an increased complexity to imple-
ment input and output inductors.

4.4.3 Demonstrative Example on LNOI

To demonstrate the actual implementation of the discussed synthesis approach to filters implement-
ing responses originally not attainable with the AW ladder topology, this section presents amanufac-
tured example of third order ladder filter starting in shunt resonator but featuring two transmission
zeros above the passband and a single one below. The technology of implementation is the LNOI
platform presented in Ch. 2 and thus considers an electromechanical coupling of approximately
17%. For this example, let us propose a set of transmission zeros ΩLNOI = [1.5093, 2.9893, -4.4804]
rad/s, therefore only imposing a change of nature on the first resonator, a return loss level of 20 dB
and a required phase shift of 𝜃add = −32.69∘. Note the consistency of this phase value to the range
highlighted in Fig. 4.18b. Regarding frequency transformation, considering the frequency range at
which the proposed LNOI structure shows the highest performance let us define the passband be-
tween 1440 - 1530 MHz, hence a fractional bandwidth of 6.5%. With the proposed parameters, the
application of the synthesis method yields the BVD model elements shown in Table 4.8.

From the synthesized parameters and considering a phase velocity of the SH0 mode of 3975
m/s in the proposed LNOI platform with the characteristics discussed in Ch. 2, the transducer pitch
(𝜆/2) of the resonators can be computed as shown in Table 4.8 along the number of fingers and
IDT aperture of each resonator. The layout of the proposed filter is shown both in drawing and in an
SEM image in Fig. 4.19a. Themeasurement of the filter is conducted with GSG probes and thus a co-
planar probing structure is implemented around the filter. Additionally, note that due to resonator
3 requiring a larger C0, its implementation is split into two resonators of half the capacitance to
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(a) (b)

Figure 4.19: Images and schematic of themanufactured filter on LNOI. (a) Drawing and SEM image of
the complete filter layout showing the co‑planar probing pads, ground leads and resonators. Dimen‑
sions are highlighted in the layout drawing. (b) SEM image of the second shunt resonator, composed
as the parallel connection of two equal resonators. The IDT apodization pattern is observable.

Table 4.8: Butterworth ‑ Van Dyke model elements and physical resonator parameters of the 1440 ‑
1530 MHz LNOI filter. NF stands for number of fingers and Ap. stands for IDT aperture.

1440 - 1530 MHz - 𝜃add = −32.69∘

Resonator 𝐿𝑎 (nH) 𝐶𝑎 (fF) 𝐶0 (pF) 𝑘2eff (%) 𝑓𝑠 Pitch (𝜇m) NF / Ap. (𝜇m)
1 (SH) 127.10 82.07 0.49 16.9 1558 1.27 81 / 65
2 (SE) 133.02 84.40 0.50 16.9 1502 1.32 81 / 65
3 (SH) 16.75 872.00 5.30 16.9 1316 1.51 2x (201 / 100)
𝐿in (nH) 3.68 𝐿out (nH) 3.61

ease layout distribution as shown in Fig. 4.19b where the apodization of the IDT pattern is clearly
observable. As discussed at the beginning of this thesis, an apodization ratio of 60% is selected.

After measuring the filter on a probe station, input and output inductors of 3.6 nH have been
considered a posteriori through co-simulation with the S-parameter models of Murata’s SMD RF
inductors. Finally, the measured response of the proposed filter is shown in Fig. 4.20a superim-
posed with the simulated response using the synthesized BVD models. Additionally, the wideband
measured response of the filter up to 6 GHz is shown in Fig. 4.20b and both the input and output
reflection phases, both from measurement and simulation, are shown in Fig. 4.20c and 4.20d. Let
us highlight the agreement between measurement and simulation, clearly depicting the required
reflection phase to allow the first shunt resonator to place a TZ above the passband. Nevertheless,
it is important to state that the difference in insertion loss between simulation and measurement is
related to the high sheet resistance of both electrodes and leads, that is not accurately considered in
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Figure 4.20:Measurement and synthesis simulation of the LNOI prototype. (a) Narrowband response
measurement and synthesis simulation assuming QAW = 400. (b) Wideband measured response from
100 MHz to 6 GHz. (c) Input reflection phasemeasurement and synthesis. (d) Output reflection phase
measurement and synthesis.

the simulation model.

Interestingly, themonotonically increasing rejection towards higher frequencies observed in Fig.
4.20b is related to the inherently lowpass behavior of the underlying structure of the filter. Consid-
ering the large inductors in series at the input of the filter with the shunt capacitance that each
shunt resonator implements at frequencies far from resonance, a rudimentary lowpass filter struc-
ture (series inductance and shunt capacitance) is composed effectively enhancing rejection at higher
frequencies.
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4.5 Chapter Summary

This chapter provides an overview of the key role of reflection phase in the synthesis of acoustic
wave ladder filters. Starting from its use as a degree of freedom to design duplexer-oriented filters,
i.e., filters implementing an open circuit condition at the center of their partner filter in the duplexer,
the phase is used as a discussion vehicle to explore the feasibility of shunt-starting filters and the
intrinsic relation they havewith reflection phase. Thanks to it, rules on how to handle shunt-starting
filters when designing a duplexer and the necessary steps to synthesize a filter featuring two input
elements are proposed along synthesized examples.

Building on the use of phase to design duplexers, the approach to achieve a dual band device by
duplexing a pair of filters both at input and output is reviewed from a synthesis perspective, exploit-
ing an additional method to modify both the input and output reflection phases of a filter function
in an independent manner. Finally, a curious application of the relation between filter feasibility
and reflection phase is exploited to attain filters where some resonators place transmission zeros at
unnatural positions. Such an approach allows to compose responses with for example 5 zeros below
the passband and 2 zeros above, using a 7th order ladder starting in series resonator. This approach
is in the end demonstrated on a manufactured filter using the lithium niobate on insulator platform
introduced at the beginning of this thesis.
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CHAPTER5

Analytical Synthesis of Star Junction Acoustic
Wave Multiplexers

Extending from the content of previous chapters that have covered the synthesis of standalone filters,
that is, two-port networks, this chapter is devoted to a network synthesis method for a fundamen-
tal type of devices in mobile communications: multiplexers (MUXs). As presented in Ch. 1, carrier
aggregation schemes introduced in LTE represent a key technique to increase usable bandwidth
and thus achieve higher channel capacity. These CA approaches, in which multiple bands are pro-
cessed concurrently, rely on the possibility of havingmultiple filters, one per each of the bands being
aggregated, connected to the same antenna node. Therefore, the challenge for AW technology is to
providemultiplexer devices that implementmultipleAW filters all sharing the same input port while
maintaining the desired performance. The importance of multiplexer modules has been extensively
described [11,13,70,161,162] and represents a true design challenge when considering not only size
and performance specifications of each filter but also the added complexity of reactive loading be-
tween filters, now 𝐾 for a 𝐾-channel multiplexer, as already presented for duplexer-oriented filters
in Ch. 4.

Previous works have been devoted to techniques for AW multiplexer design such as the addi-
tion of extra reactive elements at the junction node as in [163], only applicable to sufficiently spaced
bands and based on optimization, or the more recent work in [164] based on optimization and re-
sponse fitting with arbitrary BVD circuital models. From a network synthesis perspective, the topic
has also been faced in [26, 165] through the concept of minimum susceptance networks but indi-
vidually considering the filter function of each channel and only evaluating the interaction between
channels after their separate synthesis, thus not providing a complete analytical description of the
multiplexer behaviour. This chapter, however, describes the methodology to face multiplexer syn-
thesis using multiport filter functions that completely contain the loading effects of the multiplexer

115
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already in the normalized domain. This proposed method builds on the fundamental contributions
by Tammiazzo and Macchiarella in [166–169] originally developed for coaxial cavity duplexers and
later extended to multiplexers, and extends them into fully canonical functions for acoustic wave
technologies. Other interesting contributions to the field of multiplexer synthesis directed to waveg-
uide and coaxial cavity technologies are [170–173], all with assumptions that hinder their application
to microwave acoustic filters.

This chapter initially provides a brief discussion of the main multiplexer configurations used
with AW devices and then presents the mathematical framework and rationale of the proposed
method alongwith a brief discussion of previous synthesis approaches tomultiplexers. After that, the
chapter dives deep into the computation of fully canonical multiport functions to represent the AW
multiplexer response with polynomials of the 𝑠 variable and also describes foundations of cepstral
analysis applied to the the computation of high order polynomials. This chapter is then completed
with synthesized examples of multiplexers in AW technology, a discussion of the implications of
prototype denormalization in the context of multiplexer devices and with remarks on the numerical
stability of this method and proposals for its further extension.

5.1 Current AWMultiplexer Configurations

Many multiplexer configurations are available in the field of microwave filters, most of them spe-
cially developed for coaxial andwaveguide cavity filters since the 1970s, and a detailed description of
them is provided in [9] (Ch. 18). In general terms, multiplexer configurations can be divided among
those using extramicrowave devices such as hybrid couplers or circulators tominimize filter interac-
tion, sometimes called directional configurations, and the so-called manifold multiplexers in which
the device is only composed of channel filters and appropriate phase lengths among them and the
common port.

From an AW technology perspective, however, given the achievable degree of miniaturization
and the stringent requirements in terms of space, not all of them are applicable and the predominant
configuration is the star junction, a sub-type of the manifold in which all channel ladder filters are
connected directly to the common node without any additional phase length. A schematic represen-
tation of a star junction multiplexer is shown in Fig. 5.1a for a quadplexer configuration (four chan-
nels). Additionally, due to space reasons and to allow an optimal footprint of the multiplexer also
the so-called herringbone configuration, another sub-type of the manifold, is employed although in
a lesser extent than the star junction and is characterized by having the filters connected in pairs
to a common node and then using appropriate phase lengths between each pair to distribute them
along the manifold, as shown in Fig. 5.1b for the same quadplexer example. Examples by AW device
manufacturers of these two configurations can be found, among others, in [174, 175] regarding the
star junction and in [162, 176] as examples of the herringbone configuration. It must be noted that
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Figure 5.1: Schematic representations of the twomost used configurations for AWmultiplexers for an
arbitrary quadplexer example. (a) Ideal star junction and (b) ideal herringbone configurations.

due to the reduced dimensions of AW filters with respect to electromagnetic wavelengths, the imple-
mentation of phase lengths in the form of transmission lines is not feasible due to space restrictions
and phase shifters such as in Fig. 5.1b are implemented with lumped elements in the laminate, as
depicted in [176].

For the purpose of this thesis, the proposed synthesis method is focused on the star junction
multiplexer, the most common configuration, but the mathematical formulation developed and the
computation of fully canonical multiport functions are applicable to the derivation of a method for
the herringbone configuration. A topic that is left as a future line of research.

5.2 Comparison with Previous Methods

As introduced, and also as outlined all throughout this thesis, there is a clear interest for synthesis
techniques that transform the early stages of AW filter design into an analytical process. Multiplex-
ers, along with their core role inside mobile device RF modules, have now the entity of a complete
device rather than the connection of individually designed filters and so, there is growing interest
in developing their own synthesis and design techniques. To this end, the methodology proposed in
this chapter is specifically developed to fill such gap.

Let us start by recalling the duplexer design procedure depicted in Ch. 4 with which a duplexer
avoiding reactive loading between filters is obtained via the precise modification of the reflection
phases (i.e., ∠𝑆11) of the two filters composing it. Notice that this procedure is based on adding an
extra step, the modification of the phase, to the synthesis of two standalone filters, one for each
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band, with each filter implementing a generalized Chebyshev function with the added feature that
they are duplexer-oriented. That is, they depict a reflection phase of zero (an open circuit) at the
center frequency of their counter-band and thus, minimize their reactive interaction. Although this
approach is demonstrated and widely applied, notice that it is not a completely analytical solution
of the duplexer per se but a loading mitigation approach exploiting the degree of freedom provided
by reflection phase.

For MUXs, at a first glance one could think of a brute-force approach in which the 𝐾 filters com-
posing the multiplexer are synthesized independently to implement a Chebyshev function, each
with a particular phase shift 𝜃add−𝑘 on polynomial 𝐹(𝑠), such that the loading between filters is the
least possible. However, note that such method leads to an optimization loop in which each filter
only has one extra degree of freedom (the added phase term) and that can only provide a best-effort
solution. Moreover, take into account that a MUX covers multiple bands, thus encompassing a wide
bandwidth, and consider that an exact value of reflection phase can only be fixed at a single frequency
point given the horizontal asymptote behaviour of reflection phase in the OoB region of each filter.
On top of that, considering the narrowband nature of the transformation from normalized to band-
pass domain has a direct impact on the exactitude to which such phase value can be controlled, such
a solution based on finding 𝐾 suitable added phase values lends itself to a brute-force optimization
approach after the independent synthesis of the 𝐾 filters.

To improve the results of the latter approach, previous works on the application of filter syn-
thesis to AW multiplexers by Silveira in [26] studied the use of minimum susceptance networks
(as introduced in [177]), the ones providing the least reactive loading to adjacent channels, either
in the form of singly terminated functions [165, 178] or as generalized Chebyshev functions whose
reflection phase is not altered (i.e., 𝜃add = 0∘). However, notice that this approach, althoughmore so-
phisticated than the initial brute-force scheme, is not an analytical method to synthesize the entire
multiplexer and can be considered also as a loading mitigation method1. By considering the syn-
thesis of each channel independently, the method does not provide any a priori information of the
MUX response when channels are connected (e.g., cannot independently define the RL at the com-
mon port of each channel nor can predict the obtained OoB rejection level) and thus lacks a direct
connection between the mathematical description of the multiplexer response to implement and its
circuital implementation. It is based on the use of the functions that are known to provide the least
loading to adjacent bands and in relying on a post optimization stage on the final MUX response
that must try to obtain the better possible response from the one obtained after the synthesis of each
filter.

1Whereas the first approach involves 𝐾 phase terms, one per filter, such that at 𝑓0,𝑘, the central frequency of the
𝑘-th filter, the superposition of reflection phases of all other filters compose an open circuit condition, the minimum
susceptance network approach directly exploits networks whose reflection phase is as close to zero as possible to naturally
impose an open circuit condition. Both approaches are analytical when considering the independent synthesis of each
channel but do not provide any analytical information of the entire multiplexer bandwidth.
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To face AW multiplexer synthesis from a completely analytical point of view considering the
entire multiplexer bandwidth, this thesis proposes a method capable of defining the entire multi-
plexer response, including loading effects and considering the channel frequency spacing, already
at the normalized frequency domain. To this end, the proposed method is capable of computing the
characteristic polynomials of the entire multiplexer through an iterative procedure in the form of a
multiport function that implements an equiripple return loss response at the common port with all
reflection zeros located on the imaginary axis. From it, the method derives a new set of polynomials
for each of the channel filters comprising themultiplexer, that are distorted (compared to an equirip-
ple Chebyshev function) when evaluated as a two-port function but in the exact way such that they
implement an equiripple response when all the channels are connected together at the star junction.
The fact that the channel filter functions need be distorted, for example showing complex-valued re-
flection zeros, to implement an equiripple return loss in the multiplexer, and that the distortion of a
given channel is fixed by the rest of channels composing the multiplexer indicates that only modify-
ing the reflection phase of a set of Chebyshev channels leaving all reflection zeros unaltered, yields
a result far from optimal.

In the proposed method, from the distorted channel transfer functions, the synthesis of each
ladder filter can be performed separately from the rest by exploiting the known techniques for AW
ladder filters in [124, 141]. Such an analytical procedure allows to search among many multiplexer
responses (all of them equiripple) for the desired function that accommodates both the technology
and response requirements. It must be highlighted that, as opposed to previous works, themultiport
function incorporates all the loading effects between channel filters (e.g., the increase in out-of-band
rejection and the appearance of additional transmission zeros) what allows a complete evaluation of
the multiplexer response at the polynomial level. This complete consideration yields better results
than trying to minimize channel interaction by controlling the reflection phase of each channel
filter. The proposed method acts as a key step in the design of AW multiplexers since it allows to
decompose the multiplexer design challenge into the design of 𝐾 channel filters that implement the
distorted responses computed with the method.

5.3 Framework for Star Junction Multiplexer Synthesis

Before diving into the mathematical framework of the proposed method, it is important to briefly
provide a clearer view to the star junction topology of AW multiplexers, to which the method is
applied. Fig. 5.2 depicts an schematic view of such MUX configuration, in this case using the stan-
dard symbol of AW resonators, depicting a ladder topology in each of the channels. The fact that
each channel filter starts in series resonator is not a random choice but an important condition to
mention. As it has been extensively covered in Ch. 4, AW ladder filters starting in series or shunt
resonator differ in the fact that their reflection phases have opposite behaviours. A series-starting
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filter depicts a reflection phase assymptote towards 0∘ and a shunt-starting filter depicts it towards
180∘. Therefore, it is to be expected that the most favorable channel filter topology when aiming to
construct a MUX is that all channels start in series resonator such that their reflection phases are
already close to behaving as open-circuits in the out-of-band region. This fact was already demon-
strated by Silveira when proving that a Chebyshev function whose phase is unaltered (thus able to
be implemented as a series-starting AW ladder filter) is a minimum susceptance network. For this
reason, the method presented in this chapter is initially developed by assuming that all channels in
the MUX are series-starting ladder filters. Nevertheless, this does not imply that no shunt-starting
filters can be part of a MUX by using this method. Following the findings described in Ch. 4 for
shunt-starting duplexer-oriented filters, having a shunt-starting AW filter whose reflection phase
tends to 0∘ is possible if two reactive elements are used at the input of the filter.

Additionally, the star-junction schematic in Fig. 5.2 depicts the presence of a shunt inductor
Lin at the common port of the multiplexer, also called the MUX inductor and already observed in
many examples in the literature such as [163,176], among others, that in this method is the result of
merging the input shunt inductor of each of the channel filters. Accordingly, each channel features
its output reactive element required by nature in AW ladder filters2. For completeness, notice that
this is the simplified reactive model from which the synthesis is derived but at subsequent stages of
the multiplexer design where EM effects need to be considered, the star-junction features additional
effects. For example, although the miniaturization provided by AW technology leads to very small
electrical lengths of traces connecting the ladder filters to the common node, their EM effect should
be considered in a complete full-wave simulation of the device.

Having presented the details of the MUX configuration, the first step of any synthesis method
is modeling the transfer function to realize in terms of rational polynomial functions. To ease the
comparison with the multiplexer formulation, let us recall that the response of an 𝑁-th order AW
ladder filter (a two-port network) is modeled in the normalized frequency domain 𝑠 = 𝜎 + 𝑗Ω with
the characteristic polynomials 𝐹(𝑠), 𝑃(𝑠) and 𝐸(𝑠) that define the 𝑆-parameters as

𝑆11(𝑠) =
𝐹(𝑠)/𝜀𝑟
𝐸(𝑠) 𝑆21(𝑠) =

𝑃(𝑠)/𝜀
𝐸(𝑠) (5.1)

where 𝜀 and 𝜀𝑟 are normalization constants different than unity. The roots of 𝐹(𝑠) correspond to the
reflection zeros, the roots of 𝑃(𝑠) are the transmission zeros and the roots of 𝐸(𝑠) are the poles. Thus,
for a fully canonical function, 𝑑𝑒𝑔 (𝐹(𝑠)) = 𝑑𝑒𝑔 (𝑃(𝑠)) = 𝑑𝑒𝑔 (𝐸(𝑠)) = 𝑁. For a standalone filter, the
passband is defined in the 𝑠 = [−𝑗, 𝑗] interval and the polynomials, considering a fully canonical
(FC) generalized Chebyshev filter function, are computed following the procedure in Ch. 3 to find
𝐹(𝑠) and the alternating pole method in [123] to determine 𝐸(𝑠). After synthesis, the 𝑠 domain is
transformed to the bandpass domain via the well-known bilateral transformation function in Ch. 3

2As already discussed in Ch. 3 the input and output reactive elements of each AW ladder filter have a fundamental
phase role and are present in multiplexers since reflection phase cannot be freely exploited to avoid them.
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Figure 5.2: Schematic depiction of an AW star junctionmultiplexer: AW ladder filters connected to an
ideal star junction with a multiplexer inductor 𝐿𝑖𝑛.

considering the filter fractional bandwidth (FBW) and central frequency (𝑓0) establishing 𝑠 = −𝑗 as
the lower corner frequency (𝑓 = 𝑓1) and 𝑠 = 𝑗 as the upper corner (𝑓 = 𝑓2).

However, the objective of this method is to analytically find the characteristic polynomials in 𝑠
that define each channel filter such thatwhen connected together they compose an equiripple return
loss (RL) response. That is, channels that are defined to be equiripple when subject to the loading of
their partner filters but that depict a clearly distorted response when observed as independent two-
port functions. As introduced, to find these polynomials it is necessary to compute a polynomial
representation of the entire multiplexer itself. That is, a set of characteristic polynomials that model
a network of 𝐾 + 1 ports in the 𝑠 domain.

Let us then consider an ideal star junction, a set of 𝐾 FC channels and let 𝑁𝑘 be the order of the
𝑘-th channel3. Following the rationale of (5.1), it is clear that the numerator polynomial defining
the reflection zeros at the input port of the network (the equivalent of 𝐹(𝑠)) and the common de-
nominator polynomial (the equivalent of 𝐸(𝑠)) must be of order𝑀 = ∑𝐾

𝑘=1𝑁𝑘. Then, following the
nomenclature introduced in [168], the 𝑆-parameters of a 𝐾-channel multiplexer can be defined as

𝑆11(𝑠) =
𝑢0𝑈(𝑠)
𝐷(𝑠) 𝑆𝑘1(𝑠) =

𝑡𝑘𝑇𝑘(𝑠)
𝐷(𝑠) (5.2)

where 𝑢0 is the normalization constant of monic polynomial 𝑈(𝑠)whose roots are the reflection ze-
ros at the input port, 𝑇𝑘(𝑠) are themonic transmission polynomials whose roots are the transmission
zeros (TZs) of each channel plus the additional TZs that appear due to the loading, 𝑡𝑘 is the normal-

3As a convention, from this point onward, channels are assigned an index 𝑘 with respect to their frequency position
within the multiplexer in a low to high manner.
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Figure 5.3: Conceptual map of the polynomial computation procedure within the multiplexer syn‑
thesis framework. Starting from an ideal Chebyshev seed per channel, a multiport function can be
computed to describe an ideal multiplexer response. From the multiport function, a set of distorted
channel polynomials can be derived and then synthesized independently. The synthesized channels
compose the AWmultiplexer response when connected to an ideal star junction.

ization constant of each 𝑇𝑘(𝑠) and 𝐷(𝑠) is the common denominator polynomial whose roots are the
poles of the multiport network. For a multiplexer composed of fully canonical channels, thus imple-
menting a fully canonical multiport function, 𝑢0 ≠ 1 and 𝑡𝑘 ≠ 1. Interestingly, although the 𝑘-th
channel features 𝑁𝑘 transmission zeros the order of each 𝑇𝑘(𝑠) polynomial is also𝑀, as is justified
in the following section, because it includes additional TZs that appear due to loading effects. It is
important to state that the polynomial definition in (5.2) defines 𝐾 passbands within the original
𝑠 = [−𝑗, 𝑗] interval, each in its respective position such that their equivalence with the bandpass
domain is 𝑠 = −𝑗 → 𝑓 = 𝑓1−𝐿𝑂, where 𝑓1−𝐿𝑂 is the lower corner frequency of the lowest frequency
channel and 𝑠 = 𝑗 → 𝑓 = 𝑓2−𝑈𝑃, where𝑓2−𝑈𝑃 is the upper corner frequency of the highest frequency
channel.

The key of the proposed method is that if the multiport function defined in (5.2) is known, a
set of channel polynomials, following (5.1), can be derived. These new channel functions are the
ones to be synthesized and that describe the response of each channel when evaluated as a two-
port network. To describe the complete rationale of this chapter, Fig. 5.3 depicts a conceptual map
with the complete procedure to compute the distorted channel polynomials. Starting by assuming an
ideal fully canonical Chebyshev response at each channel (i.e. 𝐹0𝑘 (𝑠), 𝐸0𝑘(𝑠), 𝑃0𝑘 (𝑠), 𝜀0𝑘, 𝜀0𝑟𝑘, noted with
an upperscript zero) the multiport function is computed through an iterative method. The initial
channel polynomials of the 𝑘-th channel can be computed given the input parameters 𝑁𝑘, 𝑅𝐿𝑘 and
Ω𝑧𝑘 (the 𝑘-th set of transmission zeros in the normalized frequency domain) following the procedure
in Ch. 3 and the objective of the iterativemethod is to find the set of polynomials𝐷(𝑠),𝑈(𝑠) and 𝑇𝑘(𝑠)
along with 𝑢0 and 𝑡𝑘 that describe an ideal multiport response whose common port RL is equiripple
within each channel. From the computed multiport polynomials, a new set of channel polynomials
and normalization constants (𝐹𝑘(𝑠), 𝐸𝑘(𝑠), 𝑃𝑘(𝑠), 𝜀𝑘 and 𝜀𝑟𝑘, now noted without upperscript) can be
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derived and independently synthesized.

5.4 Fully Canonical Multiport Polynomials

This section is devoted to the polynomial formulation of the multiport function, the iterative proce-
dure to compute it and the mathematical steps to derive the distorted channel polynomials from it.
The proposed formulation builds on the pioneering method in [168] following a similar nomencla-
ture and revisits part of its content to provide a particular formulation for fully canonical channels.

At first, let us justify why the formulation in (5.2) and the proposed polynomial degrees are ade-
quate for a multiport function. At this point, assume that 𝐹𝑘(𝑠), 𝐸𝑘(𝑠), 𝑃𝑘(𝑠), 𝜀𝑘 and 𝜀𝑟𝑘, the distorted
channel polynomials of an arbitrarymultiplexer with𝐾 channels and the related normalization con-
stants are already known. Given the distorted channel functions and considering the star-junction
topology in Fig. 5.1a, let us define the input admittance of the multiport network as

𝑌in(𝑠) =
𝐾
∑
𝑘=1

𝑌in,𝑘(𝑠) =
𝐾
∑
𝑘=1

1 − 𝑆11,𝑘(𝑠)
1 + 𝑆11,𝑘(𝑠)

(5.3)

where 𝑌in,𝑘(𝑠) and 𝑆11,𝑘(𝑠) are the input admittance and 𝑆11 parameter of the 𝑘-th channel, re-
spectively.

Considering the relation between 𝑆-parameters and characteristic polynomials stated in (5.1),
and defining term 𝑓𝑘 = 1/𝜀𝑟𝑘 as the normalization constant of 𝐹𝑘(𝑠) for simplicity [179], the input
admittance of each channel can be expanded as

𝑌in,𝑘(𝑠) =
1 − 𝑆11,𝑘(𝑠)
1 + 𝑆11,𝑘(𝑠)

= 𝐸𝑘(𝑠) − 𝑓𝑘𝐹𝑘(𝑠)
𝐸𝑘(𝑠) + 𝑓𝑘𝐹𝑘(𝑠)

= 1 − 𝑓𝑘
1 + 𝑓𝑘

𝐸𝑘(𝑠) − 𝑓𝑘𝐹𝑘(𝑠)
1 − 𝑓𝑘

𝐸𝑘(𝑠) + 𝑓𝑘𝐹𝑘(𝑠)
1 + 𝑓𝑘

= 𝑔𝑘
𝐷𝑘(𝑠)
𝑆𝑘(𝑠)

. (5.4)

Where, dropping the 𝑠 dependence henceforth for simplicity and reserving upper case letters for
polynomials and lower case letters for constants, polynomials 𝐷𝑘 and 𝑆𝑘 along new normalization
constant 𝑔𝑘 are defined as follows:

𝐷𝑘 =
𝐸𝑘 − 𝑓𝑘𝐹𝑘
1 − 𝑓𝑘

(5.5)

𝑆𝑘 =
𝐸𝑘 + 𝑓𝑘𝐹𝑘
1 + 𝑓𝑘

(5.6)

𝑔𝑘 =
1 − 𝑓𝑘
1 + 𝑓𝑘

(5.7)
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Notice that due to the fully canonical nature of each channel, all 𝑓𝑘 ≠ 1 and that polynomials
𝐷𝑘 and 𝑆𝑘 are both monic and of degree 𝑁𝑘 since 𝐸𝑘 and 𝐹𝑘 are both monic and of degree 𝑁𝑘.

By bringing (5.5), (5.6) and (5.7) into (5.3) and expanding the sum to find a commondenominator,
the overall input admittance of the multiplexer, 𝑌in, is

𝑌in =
𝐾
∑
𝑘=1

𝑌in,𝑘 =
𝐾
∑
𝑘=1

𝑔𝑘
𝐷𝑘
𝑆𝑘

=
∑𝐾

𝑘=1 𝑔𝑘𝐷𝑘∏
𝐾
𝑖=1,𝑖≠𝑘 𝑆 𝑖

∏𝐾
𝑘=1 𝑆𝑘

(5.8)

providing an expression linking a network of 𝐾 ports with the characteristic polyomials of each
channel filter composing it. Notice the fact the numerator term is the sum of 𝐾 terms, one per filter,
each of which results from the multiplication of polynomial 𝐷𝑘 and polynomials 𝑆 𝑖, indicating how
this formulation incorporates information of how one channel is affected by the rest of channel
filters.

Joining (5.8) with the definition of 𝑆11 from 𝑌in, the channel polynomials are then related to the
multiport polynomials defining the common port 𝑆11 in (5.2):

𝑆11 =
1 − 𝑌in
1 + 𝑌in

=
1 −∑𝐾

𝑘=1 𝑔𝑘
𝐷𝑘
𝑆𝑘

1 +∑𝐾
𝑘=1 𝑔𝑘

𝐷𝑘
𝑆𝑘

=
∏𝐾

𝑘=1 𝑆𝑘 −∑𝐾
𝑘=1 𝑔𝑘𝐷𝑘∏

𝐾
𝑖=1,𝑖≠𝑘 𝑆 𝑖

∏𝐾
𝑘=1 𝑆𝑘 +∑𝐾

𝑘=1 𝑔𝑘𝐷𝑘∏
𝐾
𝑖=1,𝑖≠𝑘 𝑆 𝑖

= 𝑢0𝑈(𝑠)
𝐷(𝑠) (5.9)

The normalization constant 𝑢0 of the common port 𝑆11 is related to all terms in (5.9) since 𝐷𝑘 and
𝑆𝑘 are both of the same degree and is defined as follows:

𝑢0 =
1 −∑𝐾

𝑘=1 𝑔𝑘
1 +∑𝐾

𝑘=1 𝑔𝑘
(5.10)

Up to this point, evaluating the star-junction configuration assuming that the distorted channels
are known has provided two expressions that can be directly related to polynomials 𝑈(𝑠) and 𝐷(𝑠)
(the numerator and denominator of (5.9)) and so, the common port return loss is obtained as a
relation between all 𝐹𝑘 and 𝐸𝑘 polynomials in the multiplexer. Going back to (5.2), applying the
same reasoning but now on the transmission term, i.e., 𝑆𝑘1, yields

𝑆𝑘1 =
𝑡𝑘𝑇𝑘(𝑠)
𝐷(𝑠) = 𝑆21,𝑘(1 + 𝑌in,𝑘)

1 + 𝑌in
=

𝑝𝑘𝑃𝑘
𝐸𝑘

(1 + 𝑌in,𝑘)

1 + 𝑌in
(5.11)

where term 𝑝𝑘 is the normalization constant of 𝑃𝑘(𝑠) defined as 𝑝𝑘 = 1/𝜀𝑘.

Substituting (5.8), (5.4) and (5.9) into (5.11):

𝑆𝑘1 =

𝑝𝑘𝑃𝑘
𝐸𝑘

(1 + 𝑔𝑘
𝐷𝑘
𝑆𝑘

)∏𝐾
𝑘=1 𝑆𝑘

∏𝐾
𝑘=1 𝑆𝑘 +∑𝐾

𝑘=1 𝑔𝑘𝐷𝑘∏
𝐾
𝑖=1,𝑖≠𝑘 𝑆 𝑖

=
𝑝𝑘𝑃𝑘 (

𝑆𝑘 + 𝑔𝑘𝐷𝑘
𝐸𝑘𝑆𝑘

)∏𝐾
𝑘=1 𝑆𝑘

𝐷(𝑠)

=
𝑝𝑘𝑃𝑘 (

𝑆𝑘 + 𝑔𝑘𝐷𝑘
𝐸𝑘

)∏𝐾
𝑖=1,𝑖≠𝑘 𝑆 𝑖

𝐷(𝑠)

(5.12)
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Therefore, transmission polynomials 𝑇𝑘(𝑠) and their respective normalization constants 𝑡𝑘 can
be related to the distorted channel polynomials as follows:

𝑇𝑘 = 𝑃𝑘
𝐾
∏

𝑖=1,𝑖≠𝑘
𝑆 𝑖 (5.13)

𝑡𝑘 = 𝑝𝑘
1 + 𝑔𝑘

1 +∑𝐾
𝑘=1 𝑔𝑘

(5.14)

The expressions above are a very interesting result that confirms that transmission polynomial
𝑇𝑘(𝑠) is also of order𝑀 and depicts 𝑁𝑘 zeros that come from the original transmission zeros of 𝑃𝑘(𝑠)
and additional 𝑀 − 𝑁𝑘 zeros that are due to the reactive loading between the filters of the multi-
plexer. Therefore, notice that a multiport function contains, already in the normalized frequency
domain, the complete representation of the multiplexer. To exemplify the appearance of these extra
TZs, observe that the response of the duplexer presented in [180] or in the example in Ch. 4 in this
thesis depicts extra zeros when the two filters are connected at the common port.

Observation of the obtained expressions allows to highlight an interesting characteristic of the
distorted polynomials. Since the objective is to compute a multiport function whose common port
return loss is equiripple and similar to a generalized Chebyshev response, all reflection zeros of the
multiplexer common port (i.e., the roots of 𝑈(𝑠)) must lie on the imaginary axis of 𝑠, what implies
that all coefficients of 𝑈(𝑠)must be real. From such observation and inspecting the denominator of
(5.9) it can be inferred that the coefficients of polynomials 𝐹𝑘 composing the equiripple multiplexer
will be complex and thus their roots will be on the complex plane. Thus, implementing a distorted
response when evaluated as a two-port network.

5.4.1 Iterative Procedure

The formulation presented in the prior paragraphs demonstrates the soundness of defining a multi-
port response using (5.2) by assuming the distorted channel polynomials 𝑓𝑘𝐹𝑘(𝑠), 𝐸𝑘(𝑠), 𝑝𝑘𝑃𝑘(𝑠) are
known. However, as outlined in the diagram in Fig. 5.3, the objective it to derive the channel poly-
nomials from a knownmultiport function. Thus, the objective now is computing themultiport poly-
nomials𝐷(𝑠),𝑈(𝑠) and 𝑇𝑘(𝑠) that implement our desired multiplexer response: as introduced above,
a common port return loss that is as equiripple as possible within the passband of each channel
to obtain the highest OoB rejection and best passband ripple. In contrast with two-port generalized
Chebyshev functions for which there is a closed solution for a given set of TZs and return loss [9,121]
as has been discussed in Ch. 3, there is no exact solution (as noted in [179]) to find the roots of 𝑈(𝑠)
for a set of multiplexer TZs such that the response is perfectly equiripple. To overcome this, an itera-
tive method is proposed starting by computing a set of ideal generalized Chebyshev polynomials for
each channel. As demonstrated in this work, the result is very close to being perfectly equiripple.
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Let us consider 𝐾 independent channel polynomials that are ideal fully canonical Chebyshev
functions, namely𝑓0𝑘 𝐹0𝑘 (𝑠),𝐸0𝑘(𝑠),𝑝0𝑘𝑃0𝑘 (𝑠), for the𝑘-th channel. By computing these initial ideal func-
tions, the set of transmission zeros and the desired return loss of each of the channels, have already
been set. However, since themultiport polynomials define𝐾 passbands within the 𝑠 = [−𝑗, 𝑗] range,
the starting channel polynomials need to be linearly mapped to their respective position within that
frequency range considering each channel fractional bandwidth and central frequency, 𝑓0,𝑘. Since
𝐾 functions must be placed inside a general 𝑠 = [−𝑗, 𝑗] range, each function must be compressed
and displaced. This can be easily achieved by solving an equation (5.15) relating 𝑠, the normalized
frequency variable of the multiplexer, and 𝑠′, the normalized frequency variable of each ideal chan-
nel function, by using the relative position of each channel within the 𝑠 = [−𝑗, 𝑗] range. Knowing
the compression and displacement factors 𝑎 and 𝑏, the roots of polynomials 𝐹0𝑘 , 𝐸0𝑘 and 𝑃0𝑘 can be
mapped.

𝑠 = 𝑎𝑠′ − 𝑏 (5.15)

Having the starting polynomials, the solution to achieve a practically equiripple result is assum-
ing that the 𝑀 roots of 𝑈(𝑠) are the roots of all 𝐹0𝑘 (𝑠) polynomials, namely {𝑧𝐹0𝑘 } [168]. With this
decision, 𝑈(𝑠) can be uniquely defined and the iterative method can start.

𝑈(𝑠) =
𝐾
∏
𝑘=1

(
𝑁𝑘

∏
𝑖=1

(𝑠 − 𝑧𝐹0𝑘,𝑖)) (5.16)

Knowing 𝑈(𝑠) and having 𝑓0𝑘 𝐹0𝑘 (𝑠), 𝐸0𝑘(𝑠) and 𝑝0𝑘𝑃0𝑘 (𝑠), let us compute a first estimate of monic
polynomial 𝑆0(𝑠), the product of all 𝑆0𝑘(𝑠) polynomials, as:

𝑆0(𝑠) =
𝐾
∏
𝑘=1

𝑆0𝑘 =
𝐾
∏
𝑘=1

𝐸0𝑘(𝑠) + 𝑓0𝑘 𝐹0𝑘 (𝑠)
1 + 𝑓0𝑘

(5.17)

Sub-polynomials 𝑆0𝑘(𝑠) can be obtained by computing the roots of 𝑆0(𝑠) and sorting the roots in
ascending imaginary part (i.e., in ascending normalized frequency): the first 𝑁1 roots build 𝑆01(𝑠),
the following 𝑁2 roots correspond to 𝑆02(𝑠) and so on. Having all 𝑆𝑘(𝑠), the first iteration of monic
polynomial 𝑇0𝑘 (𝑠) can be computed with (5.13) since the roots of 𝑃𝑘(𝑠) are the same of 𝑃0𝑘 (𝑠). This
latter assumption is clear since reactive loading between channels in a multiplexer does not alter
the position of the intrinsic TZs of each channel filter.

At this point, constants 𝑢00 and 𝑡0𝑘 and common denominator polynomial𝐷0(𝑠) remain unknown
in this first iteration. Notice that 𝑢00 and 𝑡0𝑘 are responsible for setting the desired return loss value at
the passband edges of each filter (let them beΩ𝑐𝑘) and therefore, an equation regarding themodulus
of 𝑆11(𝑠) at the band edges can be obtained by imposing the desired RL.

|𝑆11(𝑗Ω𝑐𝑘)|
2 = (𝑢00)2 |𝑈(𝑗Ω𝑐𝑘)|

2

|𝐷0(𝑗Ω𝑐𝑘)|
2 = 10

−𝑅𝐿𝑘
10 (5.18)
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However, since𝐷0(𝑠) is not known yet, one can resort to Feldtkeller’s equation regarding unitar-
ity of 𝑆-parameters (avoiding the 0-th superscripts for formulation simplification):

𝐷(𝑠)2 = 𝑢20𝑈(𝑠)𝑈∗(−𝑠) +
𝐾
∑
𝑘=1

𝑡2𝑘𝑇𝑘(𝑠)𝑇∗𝑘 (−𝑠) (5.19)

Substituting (5.19) into (5.18), after setting ratios 𝑟0𝑘 = 𝑡0𝑘/𝑢00 as the unknowns and applying some
manipulation, the following equation can be derived.

𝐾
∑
𝑘=1

(𝑟0𝑘 )
2 ||𝑇0𝑘 (𝑗Ω𝑐𝑘)||

2 = (10
𝑅𝐿𝑘
10 − 1) |𝑈(𝑗Ω𝑐𝑘)|

2 (5.20)

Since 𝐾 ratios are unknown, only 𝐾 edge frequencies are required to evaluate (5.20). As recom-
mended in [168], Ω𝑐𝑘 is selected as the lower edge frequency for the first ⌈𝐾/2⌉ channels and the
upper edge frequency is selected for the remaining channels.

From (5.20), a linear system of equations can be constructed as

r = A−1 ⋅ b (5.21)

where r is a 𝑘 x 1 array, A is a 𝑘 x 𝑞matrix and b is a 𝑞 x 1 array whose elements are

𝑟𝑘 = ( 𝑡
0
𝑘
𝑢00
)
2

(5.22)

𝐴𝑘𝑞 = ||𝑇0𝑞 (𝑗Ω𝑐𝑘)||
2 (5.23)

𝑏𝑞 = (10
𝑅𝐿𝑞
10 − 1) ||𝑈(𝑗Ω𝑐𝑞)||

2 (5.24)

being 𝑘, 𝑞 = 1, ..., 𝐾.

Having ratios (𝑟0𝑘 )2, notice that (5.19) can be revisited, yielding

(𝐷(𝑠)
𝑢00

)
2
= 𝑈(𝑠)𝑈∗(−𝑠) +

𝐾
∑
𝑘=1

(𝑟0𝑘 )
2 𝑇𝑘(𝑠)𝑇∗𝑘 (−𝑠) (5.25)

what in turn allows to obtain 𝐷(𝑠). Notice that the roots of 𝐷(𝑠)2 and 𝐷(𝑠)2/𝑢20 are the same and
thus, to find 𝐷0(𝑠) one can compute the right hand side of (5.25), find its roots (2𝑀 roots since it is a
polynomial of double degree) and then reconstruct 𝐷0(𝑠) by taking only those roots whose real part
lies in the left-half plane of 𝑠 (Hurwitz stability criterion).

Root factorization of polynomial 𝐷(𝑠)2 can directly be obtained by using general methods such
as the roots command in Matlab that computes the eigenvalues of the Frobenius companion matrix
of the polynomial. However, such approach is known to be ill-conditioned and therefore suffers of
numerical instabilities for high order polynomials due to the finite numerical accuracy of double
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precision arithmetics. In this thesis, the recommendation is to use cepstral analysis tools to compute
𝐷(𝑠) and extend the numerical stability of the method by avoiding the factorization of 2𝑀-degree
polynomials for multiplexers of total order𝑀. Since a complete section of this chapter (namely Sec.
5.5) is devoted to the use of the cepstrum method as applied to Feldtkeller’s equation as proposed
in [181, 182], a deeper discussion of the detailed cepstrum method is not provided here and it is
assumed that 𝐷(𝑠) has been accurately computed via (5.25).

Knowing monic polynomial 𝐷(𝑠), the only remaining step is to split ratios (𝑟0𝑘 )2 into 𝑢00 and 𝑡0𝑘
separately. To do so, a linear system of equations can be found by imposing unitarity of 𝑆-parameters,

||𝑆011(𝑠)||
2 +

𝐾
∑
𝑘=1

||𝑆0𝑘1(𝑠)||
2 = 1 (5.26)

noticing that by solving the system in (5.23) and (5.24), a desired return loss value has been imposed
at a set of corner frequencies Ω𝑐𝑘. Thus,

||𝑆011(𝑗Ω𝑐𝑘)||
2 = 10

−𝑅𝐿𝑘
10 (5.27)

what combined with (5.26) and the definition of 𝑆𝑘1 in (5.11), yields

𝐾
∑
𝑘=1

||𝑆0𝑘1(𝑠)||
2 =

𝐾
∑
𝑘=1

|||
𝑡0𝑘𝑇0𝑘 (𝑠)
𝐷0(𝑠)

|||

2

= 1 − 10
−𝑅𝐿𝑘
10 (5.28)

what allows to find constants 𝑡0𝑘.

The system of equations is defined as

t = J−1 ⋅w (5.29)

where t is a 𝑘 x 1 array, J is a 𝑘 x 𝑞matrix andw is a 𝑞 x 1 array whose elements are

𝑡𝑘 = (𝑡0𝑘)
2 (5.30)

𝐽𝑘𝑞 =
|||
𝑇𝑞(𝑗Ω𝑐𝑘)
𝐷(𝑗Ω𝑐𝑘)

|||

2

(5.31)

𝑤𝑞 = (1 − 10
−𝑅𝐿𝑞
10 ) (5.32)

being 𝑘, 𝑞 = 1, ..., 𝐾.

Clearly, coefficient 𝑢00 can now be obtained from any combination of 𝑡0𝑘 and its related ratio 𝑟0𝑘
isolating 𝑢00 from (5.22).

Following all the previous steps, up to this point the procedure has found the 0-th iteration of the
multiport polynomials and their related normalization constants. Then, notice again an interesting
relation in (5.9): the numerator and the denominator of the expression directly relate to 𝑈(𝑠) and
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𝐷(𝑠), respectively. Since the 0-th iteration of these two polynomials is known, notice that by sum-
ming numerator and denominator of (5.9) and considering the leading coefficient 𝑢0 in (5.10), the
following expression is obtained:

𝐷(𝑠) + 𝑢0𝑈(𝑠) = 2𝑆(𝑠) (5.33)

What leads to the computation of a new version of polynomial 𝑆(𝑠). Notice that since the multi-
port polynomials at their 0-th iteration have been obtained by assuming an initial 𝑆0(𝑠) polynomial
using a set of ideal Chebyshev channel functions and then multiple conditions have been imposed
to derive the rest, the 𝑆(𝑠) polynomial obtained via (5.33) differs from the initial guess 𝑆0(𝑠). There-
fore, let it be 𝑆𝑚(𝑠) and so, let us derive again a new set of sub-polynomials 𝑆𝑘(𝑠), under superscript
𝑚, by sorting the roots of 𝑆𝑚(𝑠) in ascending order and applying the same procedure presented to
compute a new iteration of the multiport polynomials, i.e. 𝑢𝑚0 , 𝑡𝑚𝑘 , 𝑇𝑚𝑘 (𝑠) and 𝐷𝑚(𝑠). Notice that nu-
merator polynomial 𝑈(𝑠) is not altered throughout the procedure as has been uniquely defined in
(5.16). Based on such assumption, a refined version of the multiport polynomials that implement an
equiripple return loss with reflection zeros at the position of the zeros introduced in𝑈(𝑠) is obtained
at each iteration of the presented procedure. At the end, the proposed iterative procedure is halted by
comparing the evolution of the roots of 𝑆𝑚(𝑠) with respect to 𝑆𝑚−1(𝑠) once they reach a predefined
degree of convergence. For the purpose of this thesis, let such convergence be 10−3. As a summary
of the entire iterative process to compute the multiport function, Fig. 5.4 depicts the flowchart of the
procedure.

5.4.2 Derivation of the Distorted Channel Polynomials

Referring back to the conceptual map in Fig. 5.3, the transition between the first and second parts
of this multiplexer synthesis method has been described in detail in section 5.4.1. Starting from an
ideal Chebyshev function for each channel, a complete multiport function of the multiplexer has
been computed and is now in its polynomial form. As described at the beginning of this chapter, the
rationale behind computing the multiport function is being able to derive a new set of channel poly-
nomials that already incorporate the inter-channel loading information (i.e., a deliberate distortion)
so that each channel filter can be independently synthesized with the network synthesis techniques
already presented in this thesis. Therefore, at this point, given the computed 𝑢0, 𝑈(𝑠), 𝑡𝑘, 𝑇𝑘(𝑠) and
𝐷(𝑠), the objective is to separate the multiport response into the distorted channel polynomials that
compose it.

Let us trace back to expression (5.4) that relates the 𝑘-th distorted channel polynomials𝐸𝑘(𝑠) and
𝐹𝑘(𝑠) with sub-polynomials 𝐷𝑘(𝑠) and 𝑆𝑘(𝑠). Notice that 𝑆(𝑠) is known as an output of the iterative
procedure to find the multiport function and thus can be split into the 𝑆𝑘(𝑠) sub-polynomials by
sorting its roots in ascending imaginary part as done throughout all iterations. Therefore, the two
unknowns to find a relation between the distorted channel polynomials are constants 𝑔𝑘 (related to
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Figure 5.4: Flowchart of the iterative procedure to compute the fully canonical multiport function
starting from ideal Chebyshev functions per channel.

the normalization constant 𝑓𝑘 in (5.7)) and sub-polynomials 𝐷𝑘(𝑠).

At first, let us focus on the derivation of constants 𝑓𝑘. At this point, constant 𝑢0 is known and
is ultimately composed by all 𝑔𝑘 terms in (5.10). At the same time, notice that constant 𝑡𝑘 is also
related both to the 𝑔𝑘 terms and to the unknown normalization constants 𝑝𝑘 of polynomials 𝑃𝑘(𝑠) in
(5.14). To find the unknowns it is useful to consider that the distorted channel polynomials describe
a two-port network and so, conditions regarding the unitarity of 𝑆-parameters for lossless two-port
networks can be used. Resorting to an expression already presented in Ch. 3, the normalization
constants of 𝑃𝑘(𝑠) and 𝐹𝑘(𝑠) can be related as:

𝜀𝑟𝑘 =
𝜀𝑘

√𝜀2𝑘 − 1
(5.34)

resorting to 𝑓𝑘 = 1/𝜀𝑟𝑘 to ease formulation, one can easily derive the following expression:

𝑝𝑘 = √−𝑓2𝑘 + 1 (5.35)

Substituting (5.35) into (5.14), the following expression is obtained:

𝑡𝑘 = √−𝑓2𝑘 + 1 1 + 𝑔𝑘
1 +∑𝐾

𝑘=1 𝑔𝑘
(5.36)
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Taking into account that 𝑔𝑘 is related to 𝑓𝑘 in (5.7) and that the summation term can be related
to 𝑢0 from (5.10) as

𝐾
∑
𝑘=1

𝑔𝑘 =
1 − 𝑢0
1 + 𝑢0

(5.37)

expression (5.36) has 𝑓𝑘 as its single unknown and has the following solution:

𝑓𝑘 =
(𝑡𝑘 (1 +∑𝐾

𝑘=1 𝑔𝑘))
2
− 4

− (𝑡𝑘 (1 +∑𝐾
𝑘=1 𝑔𝑘))

2
− 4

(5.38)

Once all 𝑓𝑘 are known, all 𝑝𝑘 terms can be obtained by simply applying the relation in (5.35).

At this point, notice that all 𝑔𝑘 terms are already known (from 𝑓𝑘 and (5.7)) along all 𝑆𝑘(𝑠)
sub-polynomials. Therefore, the objective is finding sub-polynomials 𝐷𝑘(𝑠) to retrieve the channel
polynomials from (5.4). From its definition in (5.5), 𝐷𝑘(𝑠) is a monic polynomial of degree 𝑁𝑘 and
thus, from its 𝑁𝑘 + 1 coefficients, only 𝑁𝑘 are unknown. To find them, one can resort to finding 𝑁𝑘

points at which the value of 𝐷𝑘(𝑠) is known to enable polynomial interpolation.

To this end, let us take the monic polynomial 𝐷𝑘(𝑠) and define, for the 𝑘-th channel,

𝐷′
𝑘(𝑠) = 𝐷𝑘(𝑠) − 𝑠𝑁𝑘 . (5.39)

In order to find 𝑁𝑘 points in which to evaluate 𝐷′
𝑘(𝑠) consider that (5.9) defines 𝐷(𝑠) as follows:

𝐷(𝑠) =
𝐾
∏
𝑘=1

𝑆𝑘(𝑠) +
𝐾
∑
𝑘=1

𝑔𝑘𝐷𝑘(𝑠)
𝐾
∏

𝑖=1,𝑖≠𝑘
𝑆 𝑖(𝑠) (5.40)

Notice that knowing 𝑆𝑘(𝑠), the 𝑁𝑘 roots of 𝑆𝑘(𝑠) (let them be called 𝑧𝑆𝑘) are known and that
evaluating (5.40) at 𝑧𝑆𝑘 would yield

𝐷(𝑧𝑆𝑘) =
𝑔𝑘

1 +∑𝐾
𝑘=1 𝑔𝑘

((𝐷′
𝑘(𝑧𝑆𝑘) + 𝑧𝑆𝑁𝑘

𝑘 )
𝐾
∏

𝑖=1,𝑖≠𝑘
𝑆 𝑖(𝑧𝑆𝑘)) (5.41)

where the denominator of the leading normalization term is the denominator of 𝑢0 in (5.10), needed
here since 𝐷(𝑠) has been defined monic and 𝑢0 contains both the numerator and denominator lead-
ing coefficients.

From (5.41), notice that the value of 𝐷′
𝑘(𝑠) at 𝑧𝑆𝑘 can be formulated as

𝐷′
𝑘(𝑧𝑆𝑘) =

𝐷(𝑧𝑆𝑘)
𝑔𝑘

1 +∑𝐾
𝑘=1 𝑔𝑘

∏𝐾
𝑖=1,𝑖≠𝑘 𝑆 𝑖(𝑧𝑆𝑘)

− 𝑧𝑆𝑁𝑘
𝑘 (5.42)
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therefore, allowing to construct a linear system of 𝑁𝑘 equations with the matrix form

d′k = V−1
k ⋅ hk (5.43)

where d′k is an 𝑁𝑘 x 1 array containing the 𝑁𝑘 unknown coefficients of 𝐷′
𝑘(𝑠), namely

𝑑′𝑙 = 𝑑𝑁𝑘−𝑙 (5.44)

and hk is an 𝑁𝑘 x 1 array whose elements are the evaluation of 𝐷′
𝑘(𝑠) at the 𝑙-th root of the set 𝑧𝑆𝑘

using (5.42)
ℎ𝑙 = 𝐷′

𝑘(𝑧𝑆𝑘,𝑙) (5.45)

for 𝑙 = 1, ..., 𝑁𝑘.

Interestingly, the 𝑁𝑘 x 𝑁𝑘 Vk matrix is a Vandermonde matrix, a well-known matrix used in
polynomial interpolation [183], defined as

𝑉 𝑙𝑚 = (𝑧𝑆𝑘,𝑙)
𝑁𝑘−𝑚 (5.46)

for𝑚, 𝑙 = 1, ..., 𝑁𝑘.

At this point, solving the proposed system of equations for d′k and appending to it a unitary
leading coefficient uniquely defines the monic polynomial 𝐷𝑘(𝑠). Then, considering (5.5) and (5.6),
the expression of polynomials 𝐸𝑘(𝑠) and 𝐹𝑘(𝑠) is obtained by summing and subtracting 𝑆𝑘(𝑠) and
𝐷𝑘(𝑠) from each other as

𝐸𝑘(𝑠) =
(1 + 𝑓𝑘) 𝑆𝑘(𝑠) + (1 − 𝑓𝑘) 𝐷𝑘(𝑠)

2
𝐹𝑘(𝑠) =

(1 + 𝑓𝑘) 𝑆𝑘(𝑠) − (1 − 𝑓𝑘) 𝐷𝑘(𝑠)
2𝑓𝑘

(5.47)

what allows to compute the distorted polynomials of channel 𝑘. As stated at the beginning of this sec-
tion, polynomial 𝑃𝑘(𝑠) is already known to implement the same roots as 𝑃0𝑘 (𝑠) and its normalization
constant 𝑝𝑘 has already been found through (5.35).

As indicated by the subscript 𝑘 along subsection 5.4.2, this procedure must be computed for
each of the channels in the multiplexer. Once the polynomials of each channel are computed, the
synthesis of each prototype filter is performed separately, either through the well-known method
in [124] based on element extraction from the input admittance, theABCDmatrixmethod presented
in Ch. 3 or through the method based on coupling matrix rotations in [139,141]. After obtaining the
lowpass prototype of each channel filter the synthesized elements must be de-normalized in terms
of impedance and frequency to obtain the circuital parameters of each filter in terms of BVDmodels.

As is covered in the synthesis examples in this chapter, it is worth mentioning that the obtained
channel polynomials define a two-port filter function in which the roots of polynomial 𝐹𝑘(𝑠) are not
purely imaginary anymore, as happens for an equiripple Chebyshev function, but lie on the complex
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plane. This displacement of 𝐹𝑘(𝑠) roots into the complex plane is the manifestation of the loading
between channels of the multiplexer. Additionally, it must be noted that an acoustic wave ladder
filter can perfectly implement a transfer function with complex roots of 𝐹𝑘(𝑠).

5.5 Cepstral Analysis of Feldtkeller’s Equation

A key step in the iterative procedure presented in Section 5.4 is the computation of polynomial 𝐷(𝑠)
from the already knownpolynomials𝑇𝑘(𝑠) and ratios 𝑟𝑘 = 𝑡𝑘/𝑢0. As stated through (5.19), such com-
putation is possible by applying Feldtkeller’s equation, a consequence of applying the unitarity of
𝑆-parameters to the characteristic polynomials of a lossless transfer function, and computing 𝐷2(𝑠),
a polynomial of double-degree. Such a polynomial can be factorized into its roots and by applying
the Hurwitz stability criterion, that is, taking the roots on the left-hand side of the complex plane,
stable polynomial 𝐷(𝑠) is uniquely defined. However, this procedure entails limitations related to
the fact that the method deals with multiplexers. As stated at the beginning of the formulation, mul-
tiport functions entail dealing with polynomials of degree𝑀, the sum of the order of each channel
filter composing the MUX. Therefore, computing the roots of a polynomial of degree 2𝑀 becomes a
challenge by itself.

It has already been briefly introduced that the most common way to compute the roots of a poly-
nomial is computing the eigenvalues of a matrix whose characteristic polynomial is the monic poly-
nomial to factor. A straightforward way to find a matrix with a desired characteristic polynomial
is the so-called Frobenius companion matrix and the most common method to find its eigenval-
ues is the computing its Cholesky decomposition. However, since the companion matrix is a sparse
matrix by nature, its decomposition is an ill-conditioned problem. Moreover, consider that the mul-
tiport function problem imposes that all roots of 𝐷(𝑠) are within the unit circle of the 𝑠-plane and
diposed close to the 𝑗𝜔 axis. Thus, as the order of themultiplexer increases, roots cluster even further
and the more clustered roots are, the more significant digits are required to factor the roots of 𝐷(𝑠)
appropriately.

The exposed facts lead to the presentedmultiport synthesismethod only beingnumerically stable
up to a total multiplexer order of𝑀 = 18 if resorting to the computation of the roots of 𝐷2(𝑠). This
maximumdegree is even lower than that demonstrated byMacchiarella andTammiazzo in [168] due
to the channels being fully canonical, what adds a degree of asymmetry with respect to the center of
the band into the reflection roots of each channel filter (as comparedwith the all-pole functions used
in most cases in the cited reference) what in turn leads to more digits being necessary to correctly
compute all roots of 𝐷(𝑠).

However, an acoustic wave multiplexer is commonly composed of high-order filters (7-th or
higher) to achieve high rejection levels and thus, it is necessary to find a way to extend the numerical
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stability of the proposed method. To do so, this section covers the application of cepstral analysis, a
mathematical tool commonly applied in digital signal processing of echoes in voice processing and
radar [184–186], to the use of Feldtkeller’s equation as was proposed in [181,182]. This method, also
called the cepstrum method is discussed in detail here since some steps are missing in the original
contributions by Oldoni and Macchiarella and require a careful derivation.

To justify the application of cepstral analysis to the computation of multiport functions consider
(5.25) and notice that after finding ratios 𝑟𝑘 one could compute the module or magnitude of poly-
nomial 𝐷(𝑠) over 𝑢0 (i.e., |𝐷(𝑠)/𝑢0|). At the same time, since 𝐷(𝑠) is the common denominator poly-
nomial of the multiport function, it is already known that it is a stable polynomial. Therefore, it is
only the imaginary part of 𝐷(𝑠) that is actually unknown.

Let us introduce the complex cepstrum h̃ of a sequence x as the inverse Fourier transform (IFT)
of the natural logarithm of the spectrum of the sequence or, equivalently if the sequence is stable
and causal (that is, has all its singularities within the unit circle of 𝑧), the inverse 𝑍-transform of the
logarithm of the 𝑍-transform of the sequence.

̃ℎ[𝑛] = ℱ−1 {ln (ℱ {𝑥[𝑛]})} (5.48)

The equivalence of this expression with its 𝑍-transform version can be demonstrated by analyzing
the aspect of 𝐻(𝑧), the 𝑍-transform of a sequence, as having a numerator composed of a product of
terms (zeros) in the form (1−𝑞𝑚𝑧−1) and a denominator composed of a product of poles in the form
(1−𝑝𝑛𝑧−1). By taking the logarithm of such division the expression turns into the subtraction of two
summations of terms of the form ln(1/(1 − 𝑞𝑚𝑧−1)). By considering the McLaurin expasion of each
of these terms and considering all poles and roots lie inside the unit circle (because the sequence is
stable and causal) the resulting expression is the definition of the inverse 𝑍-transformwhat in turn is
equivalent to the inverse Fourier transform since the region of convergence of the sequence includes
the unit circle. From this, it can also be concluded that the complex cepstrum is purely stable if the
sequence is stable, causal and finite.

Now, consider the case of taking the logarithm of the magnitude of the spectrum, what in fact
is equivalent to taking only the real part of the complex logarithm. This is the definition of the real
cepstrum

̃ℎ𝑟[𝑛] = ℱ−1 {ln (|ℱ {𝑥[𝑛]})|} (5.49)

and, as demonstrated by Oppenheim and Schafer [184], is anticausal by nature and is the even part
of the complex cepstrum.

̃ℎ𝑟[𝑛] =
̃ℎ[𝑛] + ̃ℎ[−𝑛]

2 (5.50)

Therefore, if one computes the real cepstrumof a stable sequence and removes its anticausal part,
that is, padding with zeros the second half of the computed cepstrum (i.e., what would correspond
to the negative frequencies of a Fourier transform), the complex cepstrum of the stable part of the
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sequence is obtained. Notice here that the complex cepstrum ̃ℎ includes both themagnitude and the
phase information of the sequence and thus, it becomes a method to retrieve the phase information
of a sequence when only its magnitude part is known.

Having the complex cepstrum, it is simple to direct back to the spectrum 𝑋[𝑛] of the original
sequence by simply computing

𝑋[𝑛] = 𝑒ℱ( ̃ℎ[𝑛]) (5.51)

where 𝑒 is used because the complex cepstrumhas beendefined through thenatural logarithm (5.48).

Note that at this point 𝑋[𝑛] is the spectrum (including phase information) of a sequence from
which the phase information was originally unknown. The objective then is to recover the coeffi-
cients of a polynomial, let us call it𝐷(𝑧) for convenience,whose spectrum is𝑋[𝑛]when it is evaluated
along the unit circle of 𝑧 (i.e., 𝑧 = 𝑒𝑗Ω).

Here, it is important to recall the definition of a root of unity as any number 𝑧 for which 𝑧𝑛 = 1
holds. When on the 𝑧 domain, notice that evaluating a polynomial on variable 𝑧 along the roots
of unity is equivalent to computing its Fourier transform, or, in terms of a sequence, its Discrete
Fourier Transform (DFT). Then, if one has the DFT of a sequence and the objective is to compute
the polynomial that originated such DFT, the properties of the roots of unity allow to compute it in
an efficient way and allow to demonstrate that by computing the DFT of the spectrum, since such
spectrum is an evaluation of a polynomial along the roots of unity, the coefficients of the original
polynomial are recovered.

After the brief mathematical justification of why cepstral analysis can be exploited to completely
recover a polynomial from which the magnitude is known, let us present the cepstrum application
to Feldtkeller’s equation, as summarized in the flowchart in Fig. 5.5.

Starting from (5.25) the first step is to map polynomials 𝑈(𝑠) and 𝑇𝑘(𝑠) into the 𝑧-domain using
the bilinear transform:

𝑧 = 1 + 𝑠
1 − 𝑠 (5.52)

To keep polynomial 𝑈(𝑠) monic along the computation, ratio 𝑟𝑘 is directly merged under constant
𝑡𝑧𝑘 in the 𝑧-domain.

Once polynomials𝑈(𝑧) and 𝑡𝑧𝑘𝑇𝑘(𝑧) are known, the 𝑧-domain version of (5.25) can be evaluated
along𝐾 points (take a power of 2 for maximum efficiency of the FFT algorithm, e.g., 215) 𝑧 = 𝑒𝑗2𝜋𝑘/𝐾

to obtain a sequence y of 𝐾 samples corresponding to the DFT of |𝐷(𝑧)/𝑢0|. Then, compute the real
cepstrum hr by taking the inverse Fourier transform of the logarithm of y and impose causality
to obtain the complex cepstrum h by setting the second half of the 𝐾 samples of hr to zero and
multiplying the remaining samples by 2 to conserve the total energy of the sequence. Having the
causal complex spectrum, return to the spectrum (now of 𝐷(𝑧)/𝑢0) by applying (5.51).

From the computed spectrum, the coefficients of polynomial 𝐷(𝑧)/𝑢0 can be recovered by com-
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Figure 5.5: Flowchart of the cepstrum procedure to compute polynomial 𝐷(𝑠) without resorting to
factorization of a double‑degree polynomial.

puting the DFT of that spectrum and dividing by the amount of samples 𝐾 of the sequence. The
result of such operation is a 𝐾-sample sequence where all positions except the last and the 𝑁 − 1
first samples are zero. From the non-zero samples, the last corresponds to the leading coefficient
of 𝐷(𝑧)/𝑢0 and the remaining 𝑁 − 1 are the rest of coefficients in descending order. Having these
coefficients the only remaining step is computing the𝑀 roots of polynomial 𝐷(𝑧)/𝑢0 and map them
back to the 𝑠-domain through the bilinear transformation in (5.52). At this point, monic polynomial
𝐷(𝑠) can be obtained from its set of roots.

This application of cepstrum analysis to the specific case of Feldtkeller’s equation effectively
allows to compute the roots𝑀 of polynomial 𝐷(𝑠)without having to compute 2𝑀 roots of a double-
degree polynomial and thus extends the numerical stability of the multiplexer synthesis proposed
in this thesis to a total order of𝑀 = 35.

5.6 Synthesis Examples

After presenting the mathematical formulation of the proposed multiplexer synthesis method, this
section provides synthesized examples as a demonstration and as a vehicle to highlight interesting
aspects of the attained solutions. At first, a synthesized quadplexer (i.e., four channels) is presented
providing a detailed description of each of the steps to clarify computation and ease the reproduction
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of this method. After the quadplexer example, this section discusses the comparison of a duplexer
when synthesized with the proposed multiport method with respect to synthesizing it as two inde-
pendent filters with controlled reflection phase (as proposed inCh. 4). As a brief closing example, the
multiport filter function of a pentaplexer composed of 7-th order channels is depicted as a demon-
stration of the current capabilities of the proposed method.

5.6.1 Band 3 ‑ Band 1 LTE Quadplexer

A common carrier aggregation set is the combination of FDD LTE bands 3 and 1 (n3 and n1 in 5G
nomenclature) and thus a quadplexer (𝐾 =4) example in these bands is an interesting demonstration
vehicle for the proposed synthesismethod. The corner frequencies of the channels in this quadplexer
are 1710 - 1785MHzB3 uplink (UL), 1805 - 1880MHzB3 downlink (DL), 1920 - 1980MHzB1 uplink
and 2110 - 2170 MHz B1 downlink and, for the sake of simplicity, 7-th order channels (𝑁𝑘 = 7 for
all 𝑘, thus 𝑀 = 28) are assumed. Moreover, the objective is to attain a minimum common port
return loss (CPRL) of 10 dB. Without loss of generality, this example has been searched aiming to
be implemented using standard aluminum nitride BAW resonators (i.e., 𝑘2𝑡 = 6.7%), but as already
introduced, synthesis methodologies for AW technology are completely applicable to either type of
resonator and electromechanical coupling value. As already stated at the beginning of this chapter,
let us assume all channels start in series resonator.

Table 5.1: Synthesis input parameters of the Band 3 ‑ Band 1 quadplexer.

𝑘 1 (B3 UL) 2 (B3 DL) 3 (B1 UL) 4 (B1 DL)

𝑁𝑘 7 7 7 7
RL𝑘 14.65 14.76 13.77 16

𝑗Ω𝑘

−0.5677𝑗 −0.1609𝑗 0.3295𝑗 1.1626𝑗
−1.0862𝑗 −0.6540𝑗 −0.1982𝑗 0.5514𝑗
−0.5692𝑗 −0.0947𝑗 0.2712𝑗 1.0595𝑗
−1.0514𝑗 −0.6334𝑗 −0.1849𝑗 0.5484𝑗
−0.5701𝑗 −0.1034𝑗 0.2717𝑗 1.0605𝑗
−1.0906𝑗 −0.6706𝑗 −0.2039𝑗 0.5863𝑗
−0.5711𝑗 −0.1644𝑗 0.3307𝑗 1.1636𝑗

Given the corner frequencies of each channel, the central frequency of the quadplexer is
𝑓0−𝑀𝑃𝑋 = √2170 ⋅ 1710 = 1926.3 MHz and the overall fractional bandwidth of the quadplexer is
FBW𝑀𝑃𝑋 = (2170−1710)/𝑓0−𝑀𝑃𝑋 = 0.2388. Hence, the respective positions of each channel within
the normalized frequency domain are Band 3 UL [−𝑗, −0.6387𝑗], Band 3 DL [−0.5452𝑗, −0.2039𝑗],
Band 1 UL [−0.0275𝑗, 0.2302𝑗] and Band 1 DL [0.7639𝑗, 𝑗] as computed with (5.15). The input pa-
rameters required to start themultiport function synthesis procedure are the transmission zeros and
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return loss value of each channel and are summarized in Table 5.1. Notice the method allows to set
the RL level of each channel independently, what is an important asset to exploit to search for fil-
ters that comply with a given type of acoustic wave resonator technology. Array 𝑗Ω𝑘 contains the
transmission zeros of each channel, already mapped to the overall [−𝑗, 𝑗] range of 𝑠 that contains
themultiport function. These input parameters allow to compute the initial Chebyshev functions for
each of the channel filters to start the iterative procedure described in subsection 5.4.1. By following
the proposed method, after 4 iterations a convergence of 10−3 is achieved on 𝑆(𝑠) and the multiport
function is completely computed obtaining𝑀 = 28 polynomials 𝑢0𝑈(𝑠),𝐷(𝑠) and 𝑡𝑘𝑇𝑘(𝑠). For repro-
ducibility purposes and to discuss the nature of the roots of transmission polynomials, coefficients
of polynomials 𝑇1(𝑠), 𝑈(𝑠) and 𝐷(𝑠) are depicted in Table 5.2, in descending powers of 𝑠. From the
computed polynomials, the multiport transfer function in the normalized domain can be evaluated
using (5.2) to obtain the response depicted in Fig. 5.6.
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Figure 5.6:Multiport transfer function response of the B3/B1 quadplexer using the computed multi‑
port polynomials 𝐷(𝑠), 𝑢0𝑈(𝑠) and 𝑡𝑘𝑇𝑘(𝑠). (a) Overall response and (b) return loss close up to high‑
light the quasi equiripple response.
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As expected, the multiport transfer function describes a quasi equiripple return loss within each
of the passbands, whose level can be independently prescribed. The term quasi equirriple is used
since, as already introduced, there is no closed solution to find the roots of 𝑈(𝑠) for a perfectly
equiripple response and such roots are a-priori defined in the first step of the procedure. The re-
sult is the slight deviation that can be observed within each passband in Fig. 5.6b. Notice that the
deviation is always slight (well below, 0.5 dB from 𝑓1,𝑘 to 𝑓2,𝑘) because the roots of 𝑈(𝑠) are directly
the set of roots of the initial Chebyshev polynomials assumed per each channel (i.e., all 𝐹0𝑘 (𝑠)) and
at each iteration, the desired value of RL is fixed at one of the filter corner frequencies. This fact also
states that the roots of 𝑈(𝑠) are thus purely imaginary, as depicted in Fig. 5.7a and so, the common
port return loss describes deep and clear reflection zeros.
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Figure 5.7: Distribution of roots on the 𝑠‑plane of (a) polynomial 𝑈(𝑠), (b) polynomial 𝐷(𝑠) and (c)
polynomial 𝑇1(𝑠). Axes on the latter plot are extended since transmission zeros can be placed outside
the unit circle of 𝑠.

From the point of view of transmission polynomials, notice that the multiport response not only
depicts the set of transmission zeros defined as an input to the synthesis (those TZs related to the
resonance frequencies of AW resonators) but also each channel incorporates 𝑀 − 𝑁𝑘 additional
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Table 5.2: Coefficients of the B3/B1 quadplexer common denominator 𝐷(𝑠), numerator polynomial
𝑈(𝑠) and transmission polynomial 𝑇1(𝑠).

𝐷(𝑠) 𝑈(𝑠) 𝑇1(𝑠)
1 1 1

1.03936005 + 2.16834946𝑗 2.16867590𝑗 0.37766634 + 2.02523447𝑗
3.57906717 + 2.15959595𝑗 3.03789843 3.56697575 + 0.83347212𝑗
3.10977772 + 11.01032612𝑗 9.93752675𝑗 1.06609130 + 9.81462929𝑗
2.45491245 + 9.45692322𝑗 1.01016367 3.07711405 + 3.57989699𝑗
1.36359836 + 22.67889836𝑗 18.46517927𝑗 0.24985128 + 19.45370981𝑗
−6.78230298 + 16.65528499𝑗 −7.29215084 −4.11058274 + 6.14304776𝑗
−5.61623489 + 23.89254436𝑗 17.31406210𝑗 −2.39218025 + 19.92100136𝑗
−15.404946369 + 14.74625216𝑗 −13.22383613 −10.87521232 + 5.23064705𝑗
−9.90553667 + 12.83966355𝑗 7.74675580𝑗 −3.80176950 + 10.60153787𝑗
−13.75828905 + 6.36865908𝑗 −10.47137938 −9.78054204 + 2.0901762𝑗
−7.25562645 + 2.28380927𝑗 0.39599697𝑗 −2.6309333 + 2.0728039𝑗
−6.36652942 + 0.63524989𝑗 −4.3062260 −4.4436214 + 0.1049349𝑗
−2.72480074 − 0.98676254𝑗 −1.13501733𝑗 −0.9286489 − 0.5921175𝑗
−1.48243147 − 0.52897135𝑗 −0.82669184 −0.9936167 − 0.2168253𝑗
−0.49200956 − 0.58561019𝑗 −0.46629618𝑗 −0.1514563 − 0.3822849𝑗
−0.119596649 − 0.21041228𝑗 −0.02017704 −0.0693474 − 0.0740161𝑗
−0.02378223 − 0.10502164𝑗 −0.06619433𝑗 −0.0044099 − 0.0651516𝑗
0.00902995 − 0.02760414𝑗 0.01308077 0.0074511 − 0.0086907𝑗
0.00319191 − 0.00605052𝑗 −0.00186662𝑗 0.00126489 − 0.00298265𝑗
0.00129138 − 0.00103949𝑗 0.00085407 0.0007656 − 0.0002817𝑗
0.00024907 − 0.00009393𝑗 0.00002844𝑗 0.0000844 − 0.0000227𝑗
(4.4799 − 5.9879𝑗) ⋅ 10−5 1.8142 ⋅ 10−5 (2.1946 + 0.0271𝑗) ⋅ 10−5

(5.4715 + 1.3025𝑗) ⋅ 10−6 1.5969 ⋅ 10−6𝑗 (1.6955 + 1.1070𝑗) ⋅ 10−6

(5.3805 + 2.5349𝑗) ⋅ 10−7 1.3044 ⋅ 10−7 (2.1938 + 1.1273𝑗) ⋅ 10−7

(3.6332 + 3.6572𝑗) ⋅ 10−8 1.5877 ⋅ 10−8𝑗 (0.9603 + 1.9003𝑗) ⋅ 10−8

(1.4330 + 2.8007𝑗) ⋅ 10−9 7.3707 ⋅ 10−11 (0.3780 + 1.0061𝑗) ⋅ 10−9

(0.1004 + 1.4008𝑗) ⋅ 10−10 3.3199 ⋅ 10−11𝑗 (−0.6170 + 5.8127𝑗) ⋅ 10−11

(1.361 + 2.663) ⋅ 10−12 4.08 ⋅ 10−13 (−7.41 + 7.73𝑗) ⋅ 10−13

𝑢0 𝑡1
0.99903503 0.03866209

TZs, mainly complex, that are completely related to the reactive loading between channels as stated
in (5.13). This is clearly observable in Table 5.2 since the coefficients of 𝑇1(𝑠) are complex. The root
distribution of this transmission polynomial is shown in Fig. 5.7c depicting𝑁𝑘 = 7 purely imaginary
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Table 5.3: Coefficients of the B3 uplink channel polynomials of the B3/B1 quadplexer.

𝐸1(𝑠) 𝐹1(𝑠) 𝑃1(𝑠)
1 1 1

0.30472075 + 5.64914609𝑗 −0.02008927 + 5.64539232𝑗 5.50626669𝑗
−13.5590953 + 1.46263724𝑗 −13.59767161 − 0.08617433𝑗 −12.77345718
−2.90251358 − 17.92379421𝑗 0.15052164 − 18.09857803𝑗 −16.179211645𝑗
14.09328138 − 3.04795799𝑗 14.37543392 + 0.13645387𝑗 12.08723276
1.78641632 + 6.59191494𝑗 −0.06728439 + 6.81347661𝑗 5.32989100𝑗
−1.69849049 + 0.55414454𝑗 −1.78423244 − 0.01693619𝑗 −1.28569662
−0.07108855 − 0.18601199𝑗 0.00166910 − 0.19914300𝑗 −0.13103100𝑗

𝜀𝑟1 𝜀1
1.00074838 25.86232102

roots (the prescribed TZs), located at the bottom region of the plot since 𝑘 = 1 is the B3 uplink
filter, and 21 extra complex roots that are closely related to the reflection zeros of all other filters
in the multiplexer. At frequencies far away from a given filter of the multiplexer, let it be 𝑘 = 1 in
this case, once the response has reached the finite OoB rejection level intrinsic to fully canonical
functions, all other reflection zeros at the common port of the multiplexer result in all available
energy at the junction flowing through the filter implementing each reflection zero (perfect match)
and thus, all other filters experience an increase in their rejection at those exact frequencies. Through
the proposed methodology, the mathematical description of the function already takes into account
all these points by adding complex-valued transmission zeros to each transmission polynomial 𝑇𝑘(𝑠)
and thus allows a perfect estimation of the attainable rejection level directly at the polynomial level.
To complete the description of the polynomials composing the multiport function, notice that 𝐷(𝑠)
is a complex-valued polynomial and thus all of its roots are located on the complex plane, as depicted
in Fig. 5.7b. As expected, all roots lie on the left-half plane since stability has been imposed.

Once the multiport function is computed, the distorted channel polynomials 𝐸𝑘(𝑠), 𝑃𝑘(𝑠) and
𝐹𝑘(𝑠) along with normalization constants 𝜀𝑘 and 𝜀𝑟𝑘 can be derived following the steps described in
Sec. 5.4.2. For this quadplexer example, as a tool to allow evaluation of the method, the coefficients
of the distorted polyomials of the 𝑘 = 1 channel are depicted in Table 5.3, again in columns for
descending powers of 𝑠. Additionally, Fig. 5.8 shows the polynomial response of the four recovered
channels evaluated separately as two-port networks directly through (5.1).

It is interesting to highlight the fact that while polynomial 𝑃1(𝑠) retains its originally prescribed
purely imaginary transmission zeros, polynomial 𝐹1(𝑠) now implements complex roots, as can be ob-
served from its complex-valued coefficients, and, due to 𝐹1(𝑠) being a numerator polynomial, can lie
on both sides of the 𝑠-plane. Notice in Fig. 5.8, that the response obtained when evaluating the chan-
nel polynomials as two-port networks, is clearly distorted if compared to an equiripple Chebyshev
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function. Such distortion, the one required by each channel to implement an equiripple response
when connected to the junction is directly related to the compensation of loading between channels
and materializes in the roots of polynomial 𝐹𝑘(𝑠) moving into the complex plane and the roots of
𝐸𝑘(𝑠) departing from their classical semi-elliptical disposition with respect to the 𝑗𝜔 axis if the roots
of 𝐹𝑘(𝑠) had been purely imaginary. This is observable in the root pattern in Fig. 5.8e that shows the
roots of both 𝐹𝑘(𝑠) and 𝐸𝑘(𝑠) of the example quadplexer. Note that thanks to the proposed synthesis
method, such a disposition of roots for each of the channels is obtained analytically and not resorting
to brute-force optimization.

Once the distorted channel polynomials are derived, the lowpass prototype of each channel fil-
ter can be synthesized as a two-port network using one of the synthesis methods mentioned along
this thesis, either the extracted pole technique or coupling matrix rotations, along with the lowpass
prototype equivalent of the BVD model presented in [124] and in Ch. 3. Once the synthesis is com-
plete, the normalized prototype elements need to be transformed in frequency and scaled in terms
of impedance to obtain the BVD models of the resonators that compose each filter. Since a specific
discussion is devoted to frequency denormalization formultiplexers in the next section, let us briefly
state that each channel is denormalized to its own central frequency and fractional bandwidth and
switch directly to the obtained elements that are summarized in Table 5.4. As stated at the begin-
ning of the chapter, all ladder filters start in series resonator and therefore each filter features a shunt
inductor at the input and output ports. From the four shunt inductors, one at the input of each fil-
ter, the MUX inductor at the junction in Fig. 5.2 is obtained as a merger of all of them in this case
obtaining 𝐿MUX = 1.82 nH.

As stated, this quadplexer example is synthesized to be feasible using standard aluminumnitride
(AlN) BAW resonator technology (𝑘2eff = 6.7%). Having the BVD elements of the entire multiplexer,
assuming an AW quality factor 𝑄AW = 1500, modeled as in [16], and 𝑄L = 50 for the input and
output inductors, the simulated bandpass response of the entire multiplexer after transformation is
shown in Fig. 5.9a depicting a CPRL better than 10 dB for antenna and output port impedances of
50Ω. For completeness, and to provide a precise representation of how the channels are ready to be
matched with each other at the common port, Fig. 5.10a depicts the 𝑆11 of each channel filter when
seen as a two-port network and Fig. 5.10b shows the 𝑆11 of the quadplexer, both on Smith charts and
plotting only for the in-band frequencies (i.e., from 1710 MHz to 2170 MHz).

To complete the presentation of this example, it is important to highlight the differences in terms
of 𝑆11 observable between the original response of the multiport function in the normalized domain
in Fig. 5.6b and the common port return loss simulated in the bandpass domain in Fig. 5.9a. Al-
though the obtained CPRL complies with the expected 10 dB value, it is distorted with respect to
the ideal equiripple return loss depicted by the multiport function. As is covered in a forthcoming
section, these differences are strictly related to the inherent narrowband nature of the frequency
transformation required to compute the resonator circuital elements from their normalized proto-
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Figure 5.8: Channel polynomials response of the B3/B1 quadplexer example when each channel is
evaluated as an individual two‑port network. (a) 𝑘 = 1 (B3 UL), (b) 𝑘 = 2 (B3 DL), (c) 𝑘 = 3 (B1 UL), (d)
𝑘 = 4 (B1 DL) and (e) Root pattern of the distorted channel polynomials of the B3/B1 quadplexer. The
dashed black lines are the axes and the contour of the unit circle on the 𝑠 = Σ + 𝑗Ω plane.
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Table 5.4: Butterworth ‑ Van Dykemodel elements of the B3/B1 quadplexer.

Band 3 uplink

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE)
𝐿𝑎 (nH) 66.04 59.44 128.94 64.66 126.31 58.76 54.43
𝐶𝑎 (fF) 125.20 149.21 64.11 136.09 65.43 151.11 151.73
𝐶0 (pF) 2.14 2.56 1.10 2.34 1.12 2.59 2.61
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 6.19 𝐿out (nH) 18.57

Band 3 downlink

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE)
𝐿𝑎 (nH) 115.23 45.27 97.04 50.72 101.59 42.31 93.79
𝐶𝑎 (fF) 63.74 175.56 76.75 155.92 73.25 188.53 78.17
𝐶0 (pF) 1.09 3.01 1.31 2.67 1.25 3.23 1.33
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 8.72 𝐿out (nH) 7.02

Band 1 uplink

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE)
𝐿𝑎 (nH) 152.64 24.88 157.24 24.88 157.95 24.56 139.89
𝐶𝑎 (fF) 43.04 284.27 42.35 283.39 42.15 288.34 46.95
𝐶0 (pF) 0.73 4.87 0.72 4.86 0.72 4.94 0.80
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 10.28 𝐿out (nH) 6.18

Band 1 downlink

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE)
𝐿𝑎 (nH) 76.93 24.69 64.37 29.18 64.85 24.44 74.43
𝐶𝑎 (fF) 69.15 236.15 84.57 198.18 83.93 238.75 71.46
𝐶0 (pF) 1.18 4.05 1.45 3.40 1.43 4.10 1.22
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 5.71 𝐿out (nH) 3.81
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Figure 5.9: Simulated response of the synthesized B3/B1 quadplexer using the BVD model of each
resonator and assuming𝑄AW = 1500 and𝑄𝐿 = 50. (a) Common port return loss and channel through
response and (b) output return loss.

type equivalents.While this narrowband nature has already been discussed in this thesis in the scope
of single filters, given the intrinsic wideband nature of multiplexers, its effect is more pronounced.
Notice, for example, that the channel with the most return loss distortion is Band 1 downlink, the
furthest one in terms of frequency. However, such deviation from the ideal return loss does not
prevent the method from providing a useful solution.

In general terms, the obtained result directly after synthesis is the starting point from which a
multiplexer design can be scaled into more complex circuital models such as BVDmodels including
resonator area dependencies or featuring extra motional branches to model spurious modes or the
addition of EM effects from layout, among others. Such higher-order effects impose changes to the
response obtained from the synthesis and surely imply design optimization stages to consider all of
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Figure 5.10: Smith chart plot of (a) the reflection coefficient of each channel filter when evaluated as
an individual two‑port network between and (b) the input reflection coefficient of the entire quad‑
plexer at the antenna port, in both cases for frequencies from 1710 MHz to 2170 MHz and for 50 Ω
loads.

them. However, the presented synthesis method provides the seed from which subsequent design
stages can start and allows to quickly and analytically find a new seed design with another set of
input constraints if needed.

5.6.2 Application to Duplexer Synthesis

To complement the description of a multiport function approach to synthesis, it is interesting to
revisit the case of duplexers. A specific case that now can be faced using two different synthesis
approaches: either through the correct modification of the reflection phase (∠𝑆11) of each filter as
described in Ch. 4 or analytically as a three-port function with the method presented in this chapter.

Let us take the Band 3 pair of bands and synthesize one filter per band using the traditional phase
modification approach, that is, independent synthesis of each filter using a Generalized Chebyshev
function with a phase shift added to polynomial 𝐹(𝑠), with the objective of using 𝑘2eff = 6.7% res-
onators and imposing a counter band rejection of at least 45 dB and 15 dB return loss. With these
requirements, a solution is found using, RL = 15.22 dB, Ω𝑈𝐿 = [1.5183, -1.5922, 1.3975, -1.4006,
1.4046, -1.6129, 1.2746] and phase shift 𝜃add-UL = −38.79∘ for Band 3 uplink and RL = 15 dB,Ω𝐷𝐿 =
[2.0348, -1.6415, 1.4647, -1.4519, 1.4647, -1.6415, 2.0348] and phase shift 𝜃add-DL = 36.33∘. The syn-
thesized BVD models from such parameters are summarized in Table 5.5 and the inductors at the
input of each filter can be merged into a duplexer inductor 𝐿DPX = 3.62 nH. Having obtained this



Chapter 5. Analytical Synthesis of Star Junction Acoustic Wave Multiplexers 147

Table 5.5: Butterworth ‑ Van Dyke model elements of the B3 duplexer using reflection phase modifi‑
cation.

Band 3 uplink - 𝜃𝑎𝑑𝑑−𝑈𝐿 = −38.79∘

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE)
𝐿𝑎 (nH) 84.98 49.30 150.48 52.39 152.39 51.66 43.88
𝐶𝑎 (fF) 97.02 179.74 55.05 167.89 54.34 171.66 189.69
𝐶0 (pF) 1.66 3.09 0.94 2.88 0.93 2.95 3.26
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 15.48 𝐿out (nH) -

Band 3 downlink - 𝜃𝑎𝑑𝑑−𝐷𝐿 = 36.33∘

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE)
𝐿𝑎 (nH) 103.74 26.25 96.98 29.07 96.98 26.25 103.74
𝐶𝑎 (fF) 70.39 303.20 76.86 271.92 76.86 303.20 70.39
𝐶0 (pF) 1.21 5.21 1.32 4.67 1.32 5.21 1.21
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 4.74 𝐿out (nH) 4.74

solution for the duplexer, notice that using the same set of TZs and RL on the multiport function
method would lead to an output result not complying with all resonators having the same 𝑘2eff. Since
the channel functions derived from the multiport function are distorted, the circuital elements im-
plementing them must differ from those obtained from the synthesis of a generalized Chebyshev
response. In general the impact is mostly noticed in the first, second and last resonators.

Therefore, to synthesize the duplexer through the multiport function approach and to allow a
fair comparison, let the RL of each channel bemaintained (i.e., RL𝑈𝐿 = 15.22 dB and RL𝑈𝐿 = 15 dB)
and let us modify the TZs slightly so to achieve same 𝑘2𝑡 on all resonators. Such slight tweak yields
(listing them renormalized to the two-port function 𝑠-domain, for comparison purposes) Ω𝑈𝐿 =
[1.5099, -1.5698, 1.3923, -1.3983, 1.4039, -1.6121, 1.2817] andΩ𝐷𝐿 = [2.0010, -1.5892, 1.4570, -1.4493,
1.4640, -1.6407, 2.0070]. Notice the great similarity of this set of TZs with respect to the set used for
the independent synthesis of each filter, with the larger differences observable in TZs 1, 2 and 7. In
otherwords, resonators 1, 2 and 7 of each filter being the oneswhose resonance frequency is different
when comparing both solutions. Circuital elements in Table 5.6 correspond to the two channel filters
of the Band 3 duplexer obtained through the analytical method in this chapter, in this case merging
both input inductors into 𝐿𝐷𝑃𝑋 = 4.00 nH.

To complement the comparison, Fig. 5.11 depicts the response comparison of each channel of
the two synthesized duplexers (Figs. 5.11a and 5.11b for B3 uplink and B3 downlink, respectively)
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Table 5.6: Butterworth ‑ Van Dyke model elements of the B3 duplexer using the multiport function
approach.

Band 3 uplink

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE)
𝐿𝑎 (nH) 99.22 50.65 149.34 52.58 152.19 51.63 44.89
𝐶𝑎 (fF) 83.12 174.81 55.48 167.26 54.42 171.77 185.37
𝐶0 (pF) 1.43 3.00 0.95 2.87 0.93 2.95 3.19
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 7.92 𝐿out (nH) -

Band 3 downlink

Resonator 1 (SE) 2 (SH) 3 (SE) 4 (SH) 5 (SE) 6 (SH) 7 (SE)
𝐿𝑎 (nH) 114.44 27.99 100.03 30.43 101.28 27.50 105.11
𝐶𝑎 (fF) 63.88 283.81 74.53 259.72 73.59 289.46 69.53
𝐶0 (pF) 1.09 4.88 1.28 4.46 1.26 4.98 1.19
𝑘2eff (%) 6.7 6.7 6.7 6.7 6.7 6.7 6.7
𝐿in (nH) 8.13 𝐿out (nH) 5

along with the common port return loss in 5.11c, where dashed lines correspond to the phase modi-
fication approach and solid lines correspond to the multiport synthesis approach. In both cases, the
synthesized BVDmodels have been simulated assuming𝑄AW = 1500 and𝑄𝐿 = 50 for the inductors.

From a performance perspective, notice that both solutions implement almost exact responses
both complying with 15 dB return loss with the small detail that the Band 3 uplink filter synthe-
sized through the multiport function method depicts 1.2 dB better OoB rejection towards the Band
3 downlink filter. However, notice from the comparison in Tables 5.5 and 5.6 that the two filters
synthesized through the multiport function method require smaller 𝐶0 what ultimately is related to
smaller resonator areas. Although it is a small difference (total capacitance with respect to the phase
modification solution is 3% and 6.5% smaller for the uplink and downlink filters, respectively) it is
worth amention because the solution obtained through themultiport functionmethod is not attain-
able with the phase modification approach: notice the latter always imposes a Chebyshev function
to each filter while the first directs to distorted filters that perform as desired only when connected
together. Nevertheless it must also be mentioned that the required common port inductor for the
multiport function solution is slightly larger than the one required by the phase-modified duplexer.

In general terms, the comparison between the two approaches is not meant to conclude that one
outperforms the other when applied to duplexer synthesis but is interesting to point out that two dif-
ferent solutions can be attained, effectively providing additional cases to consider. While on the one
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Figure 5.11: Simulated response comparison of the Band 3 duplexer synthesized with both ap‑
proaches: solid is multiport approach (A stands for analytical) and dotted is reflection phase modi‑
fication (P stands for phase) using 𝑄AW = 1500 and 𝑄𝐿 = 50. (a) Band 3 uplink response, (b) Band 3
downlink response and (c) common port return loss.

hand the multiport solution directs to slightly smaller capacitance values, the phase modification
approach offers an added degree of filter reusability since the filter already implements an equirip-
ple return loss response without being connected to its partner filter in the duplexer and could be
used as a standalone filter, while channel filters obtained through the multiport synthesis method
implement distorted responses when evaluated as individual two-port networks.

5.6.3 M = 35 Pentaplexer Example

As a final example, to illustrate the capabilities of the proposed synthesis method to scale in total
multiplexer order, let us briefly present the multiport function of an example pentaplexer composed
of 7-th order channels to compose an 𝑀 = 35 multiport function. In this case, an arbitrary band
between Band 1 uplink and downlink channels has been added.

Such multiport polynomials can be decomposed into distorted channel functions and then be
synthesized as presented. It is interesting to highlight that the small deviation from equirripple re-
turn loss is in this case slightly more noticeable due to𝑀 = 35 being right at the limit of numerical
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Figure 5.12:Multiport transfer function response of an example pentaplexer composed of 7‑th order
channels (i.e.,𝑀 = 35) from the computedmultiport polynomials𝐷(𝑠), 𝑢0𝑈(𝑠) and 𝑡𝑘𝑇𝑘(𝑠).

stability when computing the roots of𝐷(𝑠)what results in more difficulty for the iterative procedure
to find convergence into themultiport function. In this case, computing the pentaplexer function re-
quires 45 iterations to achieve the same degree of convergence on 𝑆(𝑠). A large contrast with respect
to the 4 iterations required to converge into the quadplexer function in the example above.

5.7 Discussion of the Method

After presenting both the mathematical foundations of the method and a synthesized example of a
quadplexer, this section is devoted to the discussion of details that play a fundamental role in the
described procedure.

5.7.1 Implications of Frequency Transformation

As introduced in Ch. 3, the synthesis of circuital elements implementing a given transfer function
of variable 𝑠 takes place in the normalized frequency domain. In the case of two-port functions, the
passband is defined inside the 𝑠 = [−𝑗, 𝑗] rad/s interval and the transformation of elements from
the normalized frequency domain to the actual bandpass domain is computed with the well-known
bilateral transformation (5.53) already introduced:

Ω = 𝜔0
𝐹𝐵𝑊 ( 𝜔𝜔0

− 𝜔0
𝜔 ) (5.53)
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Clearly, the above expression establishes a relation between 𝑠 = [−𝑗, 𝑗] rad/s and 𝑓 = [𝑓1, 𝑓2] Hz
(the filter corner frequencies). However, from a multiplexer point of view, recall that a multiport
filter function describes 𝐾 passbands within the 𝑠 = [−𝑗, 𝑗] interval and so, the distorted channel
polynomials that are derived, each describe a passband in its own sub-interval within 𝑠 = [−𝑗, 𝑗], as
required by each channel’s own fractional bandwidth within the entire multiplexer bandwidth, as
is shown in the example polynomials in Fig. 5.8.

Let us briefly recall, as discussed in Ch. 3, that the lowpass prototype of an AW resonator due
to its intrinsic equivalence with an extacted pole section is based on the use of frequency invariant
reactance (FIR) elements. As already stated, FIRs are only a mathematical artifact needed in the
normalized domain to represent non-resonant nodes [137,138] and due to the impossibility to phys-
ically implement FIRs in a real circuit [116], can only be approximated using reactances that only
implement the desired value at a single point in frequency. This traditional assumption in the field
of synthesis leads to a slight distortion of the response after it is transformed to the real frequency
domain, but is considered valid for narrow bandwidths (i.e., FBW< 5%).

Clearly, this assumption becomes a point to discuss when considering multiplexer synthesis.
When facing the de-normalizaton of an entire multiplexer, two options can be considered: either
transform the entire multiplexer as a block, let us take the previous quadplexer example and so
𝑓0 = 1926.3MHz and FBW= 23.88% or transform each channel to its respective central frequency
𝑓0,𝑘 and FBW𝑘. To implement the first, channels must be synthesized directly in the form they are
derived from the multiport function (i.e., as in Fig. 5.8) and for the second, channel polynomials
must be re-normalized so that each channel passband is defined within 𝑠 = [−𝑗, 𝑗] with (5.15) and
then synthesized as common two-port functions.

To better illustrate the effects of both options, let us take an arbitrary triplexer composed of Band
3 uplink, Band 3 downlink and Band 1 uplink and let us synthesize and transform it following both
alternatives. Fig. 5.13a depicts the triplexer multiport function in the normalized domain and Figs.
5.13b and 5.13c show the simulated response (using lossless BVD models) transforming the proto-
types to the full multiplexer FBW and central frequency and to 𝑓0,𝑘 and FBW𝑘 respectively.

It is clearly observable in Fig. 5.13b how the result of transforming all channels to the entire FBW
and the central frequency of the multiplexer does not yield an acceptable result because the two
extreme channels are completely distorted. However, the central channel shows an almost perfectly
equiripple return loss. That is because in this case the reactances that approximate the FIR elements
of all filters are perfectly implementing the desired value of reactance exactly at the central frequency
of the central filter (i.e., the central frequency of the multiplexer). Therefore, the further away from
such central frequency, the higher the distortion suffered by the filters due to transformation. On the
other hand, notice in Fig. 5.13c that through the second approach to frequency transformation all
channels suffer the least distortion. That is because with this choice, each channel is transformed to
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Figure 5.13: Response comparison of an arbitrary Band 3 uplink, Band 3 downlink and Band 1 uplink
triplexer. (a) Triplexermultiport function response, (b) simulated triplexer response assuming lossless
BVDmodels and transformingprototypes to the themultiplexer FBWand𝑓0 and (c) simulated triplexer
response assuming lossless BVDmodels transforming each channel prototype to its ownFBWand𝑓0𝑘.

its own FBW (commonly, FBW𝑘 < 5%) and the best in-band performance is maintained. Therefore,
that is proposed approach to follow for the presented method.

Finally, notice that the fact that FIR elements are approximated at each filter central frequency,
is imposing the return loss degradation with respect to the multiport function response that is com-
mented at the end of the quadplexer example discussion. The key of the proposedmethod is that the
filters require the loading by their partner filters in the MUX to implement the desired equiripple
response. However, due to such approximation of FIRs, the out-of-band reactive loading imposed by
each of the filters slightly deviates from the originally prescribed loading in the normalized domain.
This deviation results in the outermost channels of the MUX suffering the higher distortion. This
is clearly observable in the Band 1 downlink filter of the presented quadplexer example. Given its
displaced positionwith respect to the other three filters, it is subject to the deviations in terms of OoB
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loading of the three other filters and thus depicts the most distorted return loss. In general terms,
the closer the channels, the least the effects of frequency transformation are.

To close the discussion, consider that although frequency transformation imposes some degra-
dation in the obtained multiplexer response, the originally prescribed return loss level values can be
easily recovered, if desired, via a slight tuning of the first and second resonator 𝐶0 of each channel
filter to compensate for the deviated OoB loading.

5.7.2 Channels Starting in Shunt Resonator

The quadplexer example presented in this chapter, and also the discussed duplexer case, have com-
plied with a condition stated at the very beginning of the chapter: all channels of the multiplexer are
series-starting AW ladder filters. This condition, although also justified from many literature cases
and from the concept of minimum susceptance networks, has been imposed at the moment of de-
riving the channel polynomials using (5.4) when normalization constant 𝑓𝑘 has been defined as a
real positive number and the expression has been fixed such that sub-polynomial 𝐷𝑘(𝑠) is monic.

Such an assumption is required since once the multiport function is known and channels are
derived, decomposition of polynomial𝐷(𝑠) to find its𝐷𝑘(𝑠) sub-polynomials is only solvable if𝐷𝑘(𝑠)
is known to be monic and thus, its highest degree coefficient is not an unknown. The impact of this
fact is channel polynomial 𝐹𝑘(𝑠) computed through (5.47) has a real and positive leading coefficient
and therefore, as already discussed in detail in Ch. 4, imposes a reflection phase whose horizontal
asymptote is located at 0∘. As an example, Fig. 5.14 depicts the reflection phase of the Band 1 uplink
channel polynomials from the quadplexer example showing the distinctive horizontal asymptote
towards a null phase. As already discussed, such a reflection phase is inherently related to feasible
filters starting in series resonator while a horizontal asymptote towards ±180∘ would be required to
obtain a feasible shunt-starting filter.

Therefore, in the case a shunt-starting filter is required in the multiplexer module (for example,
to achieve a higher rejection on the lower stopband of a given channel), directly trying to synthe-
size a shunt-starting filter with the obtained function would lead to the first and last resonators of
the filter to be unfeasible. Since the distorted channel polynomials incorporate the necessary distor-
tion to perfectly accommodate the reactive loading between channels, their reflection phase cannot
be freely modified a posteriori by adding a phase shift to polynomial 𝐹𝑘(𝑠), if the joint multiport
response is to be conserved. However, following the content derived in Ch. 4 some specific consid-
erations can be applied: for cases where a shunt-starting filter must implement a function whose
reflection phase has a horizontal asymptote towards 0∘, more than a single reactive element at the
input port are required.

Thus, the only possible option to implement a shunt-starting AW filter having a reflection phase
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Figure 5.14: Reflection phase (∠𝑆11 and∠𝑆22) of the Band 1 uplink channel distorted polynomials.

asymptote at 0∘ is to proceed with the synthesis of two input reactive elements (one shunt and one
series) as already demonstrated in this thesis. Not to increase component count at the common port,
the shunt reactive element at the input of the channel must be fixed to be inductive while the series
element can be chosen to be capacitive or inductive. Thus, the shunt inductor of the shunt-starting
channel can be included in the MUX inductor.

While this rationale holds true for the presented formulation, the possibility to reformulate the
initial polynomial definition to allow 𝑓𝑘 to be complex and thus define channel polynomials whose
reflection phase is a free parameter is left as an open topic for further research aiming for the possible
implementation of multiplexers with shunt-starting channels without the need of two input reactive
elements.

5.7.3 MaximumMultiplexer Order and Numerical Stability

Section 5.5 has outlined the use of cepstral analysis in the context of Feldtkeller’s equation to over-
come the numerical limitations inherent to polynomial root finding. As described throughout this
chapter, the multiport synthesis method strongly relies in operations with the roots of polynomi-
als of high degree to compute the multiport function and such operations are the ultimate factor
limiting the maximum multiplexer order 𝑀 that can be synthesized with this method. Thanks to
the cepstrum, by avoiding the rooting of a double-degree polynomial, the proposed methodology is
stable up to a maximum order of𝑀 = 35.

Themain limiting factor that leads to numerical instabilities is the clustering of roots as themul-
tiplexer order grows. This fact adds to fully canonical functions required for AW ladder filters adding
an additional degree of asymmetry in the roots of 𝐸(𝑠) and 𝐹(𝑠) of each channel if compared to all-
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pole channels [168] and increases the complexity of the problem. With the objective of extending
the stability of this method beyond the current degree allowed by cepstral analysis, extended preci-
sion arithmetics approaches have been tested through the symbolic arithmetic engine inMatlab that
allows to set an arbitrary number of significant digits. The main drawbacks of this approach are a
noticeable increase in computation time (estimated to be 10 times slower) and the fact that the FFT
algorithm is not yet available for extended precision, what entails computing the roots of polynomial
𝐷2(𝑠).

For the purpose of this thesis, since such details are more related to the actual numerical im-
plementation of this synthesis method inside a tool and concern trade-offs between computation
time and maximum multiplexer order, extending the numerical stability of the proposed synthesis
method is left as a future research topic, highlighting the promising option of using specific numeri-
cal toolboxes that allow extended precision FFT computation to exploit the cepstrummethod along
with symbolic operations.

5.7.4 Applications and Open Topics

Providing a general perspective of the proposed synthesis method, since it provides an analytical
connection between a desiredmultiplexer response and its circuital implementation, let us highlight
its capacity to provide seed designs at the circuital level that can be further expanded by including
more complex features such as EM effects from layout or AW resonator models that include physical
dependencies such as area or resonator geometry. A synthesized design, that implements a desired
response defined at the mathematical level and fulfills technological constraints in terms of elec-
tromechanical coupling and area, among others, is the baseline fromwhich further design decisions
can be assessed. Additionally, such decisions can be rapidly re-evaluated and a new seed design can
be obtained if any of the input requirements is modified.

In this sense, this method not only can be exploited as a way to obtain seed designs but also as
an analysis tool to estimate the required technological parameters and filter characteristics to fulfill
a given set of specifications. Thanks to being able to include all the interaction and loading between
filters already at the normalized frequency domain by means of a multiport function, attainable
rejections can be directly assessed and estimated having return loss level and channels transmission
zeros as knobs.

Considering the content derived in this chapter, it is interesting to point out that the formula-
tion of the multiport function serves as an starting vehicle to extend research in the direction of the
analytical synthesis of the herringbone topology presented at the beginning of this chapter. Starting
from themultiport function to implement the challenge lies in developing a novel formulation to de-
rive the channel polynomials such that they are placed after suitable phase lengths. This approach,
that is left as an open topic for further research, is of interest in the context of acoustic wave mul-
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tiplexers to enable solutions in which laminate elements implement the required phase shift stages
between portions of the multiplexer, in lumped form as in [176], yielding more favorable solutions
from a technology point of view such as smaller areas of first and last resonators and more suitable
values of electromechanical coupling.

Moreover, an interesting topic for further research in this method is the consideration of ex-
tended numerical precision techniques to extend the maximum multiport order that can be com-
puted following the cepstrum approach.

5.8 Chapter Summary

In brief, this chapter provides an analytical methodology to synthesize a complete multiplexer com-
posed of acoustic wave ladder filters connecting a multiport function definition in the normalized
frequency domain with a set of distorted channel polynomials that are prepared to implement the
desired multiplexer response only when they are connected with the partner filters of the synthe-
sized multiplexer.

In parallel to the formulation of the method and the concepts that allow to describe a multiport
network, due to the increased complexity of the proposed methodology that involves handling high
order polynomials representing the entiremultiplexer function, specificmethods to avoid numerical
issues when computing the roots, such as the cepstrummethod, are presented in this chapter in the
context of Feldtkeller’s equation. Moreover, thanks to a division approach in which the functions to
synthesize are distorted two-port networks, the synthesis methods known for standalone filters can
be seamlessly applied without the need for multiport circuital extraction techniques.

The proposed methodology is thoroughly discussed, highlighting its main limitations in terms
of maximum numerical order and frequency transformation, and examples are provided to demon-
strate its application in the context of a set of carrier-aggregated LTE bands.



CHAPTER6

Conclusions and Future Work

As discussed in the very initial chapters of this thesis, microwave acoustic resonators are the core
technology for filtering devices in modern mobile communications RF-FEMs and, in the author’s
opinion, a bright future for them is expected as 5G is under deployment and 6G is already being de-
veloped. The ever-increasing number of filters per mobile device with the increasingly stringent size
and performance requirements call for many years of competition between the already mature SAW
and BAW technologies and promise an increasing number of challenges to solve. From a resonator
performance standpoint some might be the already mentioned need of higher electromechanical
coupling values to fulfill the larger bandwidths of new bands, fulfilling more stringent power han-
dling requirements as new power classes are enabled or scaling up in frequency into the microwave
region. In parallel, considering the system perspective, technical challenges are expected with the
introduction of more complex multiplexing structures or even novel front-end architectures and
the introduction of more carrier aggregation combinations, among others. It is in this context, to
address current and future challenges that the connection between the fields of network synthesis
and microwave acoustics provided in this thesis proves very useful both for industry and academia.
As an example, the analytical techniques to synthesize microwave acoustic filters and multiplexers
developed in this thesis cannot only be exploited directly as design tools to face current designs in
an industrial environment but can also be used in the exploration and feasibility analysis of more
complex solutions.

In general terms, the core of the discussion in this work is located in the application of network
synthesis techniques to microwave acoustic technology filters and multiplexers, thus building the
discussion both from the two-port and the multiport network perspective, but also considers the
physical side of microwave acoustics by briefly presenting the main features of each resonator tech-
nology and discussing the performance of fabricated devices on a thin-film lithiumniobate platform.
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At the intersection of both the synthesis and physical sides of this thesis, a demonstrative filter ex-
ploiting a novel synthesis concept is presented and discussed as a demonstration of the impact of
synthesis techniques in the complete design cycle from resonator design and mathematical compu-
tation of the transfer function to implement, to the fabrication of the filter prototype. Furthermore, it
is important to state that the theoretical contributions to the synthesis of microwave acoustic filters
and multiplexers have materialized in different software tools used for filter and multiplexer design
and analysis.

As a first step, Ch. 2 is devoted to the technology side of this thesis and provides a description
and discussion of the main types of microwave acoustic resonators. Starting from describing the
two technologies that currently populate mobile devices RF-FEMs, BAW and SAW, to the more re-
cent plate wave resonators exploiting Lamb and shear horizontal waves, the description presents the
main advantages and disadvantages of each resonator type along their main frequency ranges of ap-
plication. In line with the mentioned open challenges in microwave acoustics, the consideration of
plate wave resonators is mainly driven by the possibility to attain higher electromechanical coupling
values than those obtained with regular AlN BAW or LiTaO3 SAW. In this context, with the double
objective of diving into the physical considerations of acoustic resonator design and to characterize a
platform to demonstrate the synthesis techniques proposed in this thesis, this chapter also presents
fabricated examples of lithium niobate on insulator resonators exploiting the zeroth order shear
horizontal mode at 1.5 GHz and discusses the design process from selecting the crystalline cut to
the impact of both electrode thickness and IDT apodization on spurious mode excitation. The main
outcomes of this discussion are that electrode thickness is a key factor to attain resonators without
spurious modes above 𝑓𝑝, thanks to a reduction in phase velocity of the SH0 mode for thicker elec-
trodes hence leading unwantedmodes into the stopband of the gratings, and that IDT apodization at
a ratio of 60% is an optimumchoice to suppress spurious transversemodeswithin the IDTwithout af-
fecting the achievable electromechanical coupling. The overall performance figures of the proposed
L-band resonators are 𝑘2eff = 17% and Qmax ∼ 750, very promising results for further development of
the resonator platform.

After the discussion of the physical side of this thesis, Ch. 3 provides the conceptual introduction
to network synthesis techniques applied to acoustic wave filters presenting the circuital extraction
technique that is exploited along the subsequent chapters of the work. At first, the chapter provides
a brief historical introduction to network synthesis to accurately situate the development of the field
and then presents themathematical foundations that allow to extract the BVDmodel elements of all
resonators that compose a filter implementing a given transfer function defined at the polynomial
level. Besides the circuital extraction technique based on ABCD matrices the chapter also focuses
on the generalized Chebyshev function as the filter function to be implemented and the method
to compute it. Therefore, the chapter provides the connection between microwave networks and
the mathematical representation of their responses. After presenting these concepts, examples of
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acoustic wave ladder filters are provided to demonstrate that the key input variables to obtain a
synthesized filter in which all resonators require the same 𝑘2eff value are not only transmission zeros
and return loss value but also reflection phase.

Having briefly introduced the fact that controlling reflection phase has an impact on the outcome
of the synthesis procedure, thus enabling to obtain two exact filter responses in terms of magnitude
with different BVD elements, as demonstrated, Ch. 4 dives deep into the many impacts reflection
phase has on AW filter synthesis and proposes methods in which they can be exploited. At first,
the traditional case of duplexer-oriented design by controlling the input reflection phase of the two
transfer functions to be duplexed is discussed but only for filters starting in series. The most com-
mon case. However, the chapter then discusses the synthesis of filters starting in shunt resonator
and demonstrates that for them to be feasible in terms of microwave acoustic technology, that is,
requiring all resonators to have a capacitive static arm, the intrinsic phase of a generalized Cheby-
shev function requires a modification. Through the discussion of the so-called feasibility plots, this
work demonstrates that shunt-starting ladder filters require reflection phases towards 180∘ and then
proposes rules to design shunt-starting duplexer-oriented filters. In line with many examples in the
literature that show shunt-starting ladder filters featuring two reactive elements at the input port, the
discussion demonstrates that such a double-element approach is necessary when facing a duplexer
design with a shunt starting filter and proposes the method to synthesize it.

Building on the concepts extracted from the previous discussion, the chapter then proposes an
alternative use of reflection phase that allows to compose dual band devices. In this case, by care-
fully considering the input and output reflection phases of two ladder filters, each implementing a
given passband, through an specific formulation that allows to modify the phase term of 𝑆11 and
𝑆22, independently, the duplexer-oriented phase condition introduced at the beginning of the chap-
ter is exploited to duplex both at input and output and thus effectively achieve a device with two
passbands. The main drawback to this approach is the fact that the out-of-band rejection of the final
dual band response is not controlled from a synthesis perspective and is dominated by the least re-
jecting filter of the two ladders being connected. As a closing remark on this topic, the chapter also
references a contribution by the group hosting this thesis that extends this view to dual band devices
by proposing a complete synthesis of a dual band response with a simple ladder topology of acoustic
resonators.

The final part of Ch. 4 is devoted to an interesting exploit of reflection phase that originates in
the feasibility considerations derived for shunt-starting ladder filters. As demonstrated in the initial
discussion, if the reflection phase of the generalized Chebyshev function is not properly considered,
unfeasible BVD elements are obtained for the first and/or last resonators of the filter. Similarly, un-
feasible BVD elements are also obtained if one tries to impose that a series resonator, for example,
places a transmission zero below the passband while keeping its resonance frequency inside it. Con-
sidering the two facts, the discussion demonstrates how both reasons for resonator unfeasibility can
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counter each other, in an exercise of double negation, to achieve ladder filters showing transmis-
sion zeros at uncommon positions. This interesting behaviour, that also shows promising features
in terms of the achieved impedance values for resonators, is demonstrated with examples and with
a manufactured filter using the lithium niobate on insulator platform discussed in Ch. 2. The filter
is a third order device starting in shunt resonator that features two transmission zeros above the
passband and a single one below.

Finally, Ch. 5 is devoted to a multiport network view of synthesis to propose a multiplexer syn-
thesis methodology extending the current synthesis techniques that focus on two-port networks.
The proposed technique is based on the computation of the complete multiplexer response in the
normalized domain instead of a single passband response such that from the normalized multiport
network a set of distorted channel functions can be derived. The distorted response is the one that
each channel connected in the multiplexer must have such that when all channels are connected
together, the desired multiplexer response is achieved. To this end, the formulation in this chapter is
derived assuming a star junction topology, the most common topology in AW multiplexers, and an
iterativemethod to compute the desiredmultiplexer response in the normalized domain is provided.
From themultiport function, themethod to derive the channel polynomials is provided and demon-
strated with a Band 3 and Band 1 quadplexer example. In parallel to the method, the chapter also
discusses the application of cepstral analysis to the computation of Feldtkeller’s equation in order
to achieve a maximum stable order of 35, allowing to synthesize pentaplexers with seventh order
channels. The results obtained with the multiplexer synthesis method are very promising and open
a long list of open topics for further research.

6.1 Future Work

In contrast to more traditional approaches to filter design based on brute-force optimization, syn-
thesis techniques have demonstrated very powerful capabilities and are currently in use by some in-
dustrial players in the RF-FEM market. Backed by such interest, this thesis demonstrates advances
in acoustic filter synthesis techniques and further extends them to consider even more complex net-
works with multiple ports. Whereas a closed theoretical description of the proposed techniques is
provided in this thesis, multiple paths for further research need to be considered and are listed below
as topics for further work.

Starting from a synthesis perspective, note that the process begins by the computation of the
transfer function to implement. Because the generalized Chebyshev function is the optimum func-
tion in terms of flexibility in transmission zero definition and achievable out-of-band rejection it has
traditionally been the function to exploit in any synthesis method for acoustic wave filters. However,
note also that the proposedmultiplexer synthesismethod entails departing from perfectly equiripple
filters and implementing clearly distorted responses. In the case of multiplexers, such distortion is
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mandated by the loading of other filters at the common port. However, considering the particulari-
ties of microwave acoustic technology (consider homogeneous 𝑘2eff within the filter or size reduction,
to name a few) departing from the generalized Chebyshev function is a path to explore with the aim
of attaining responses that might be more attractive and, to this end, approaches such as the Remez
algorithm have gained attention in recent times within microwave filter community.

Regarding the proposed multiplexer synthesis method, many open topics can be considered for
further development. While some of them are already mentioned throughout Ch. 5, let us highlight
the most important two. As discussed in the chapter, the proposed multiport synthesis technique
derives the computation to obtain the distorted channel polynomials from themultiport function by
assuming that the multiplexer topology to implement is a star junction. Such an assumption is the
most common multiplexer configuration in the context of acoustic wave devices but the so-called
herringbone topology, in which some channels are placed after suitable phase shifting sections, is
also very interesting. In this scope, generalizing the method to allow the derivation of channels to
be connected in a herringbone configuration with phase shift section of predefined value, is a very
important topic to be addressed.

In parallel to multiplexer configuration, the other important topic to address is the numerical
stability of the method and the maximum function order it can handle. Thanks to the cepstrum
technique, numerical accuracy problems with root computation can be avoided up to order 35 but
extending such maximum order is important to allow the consideration of higher order channels
in the already considered quadplexer structures and to extend the number of bands considered in
the multiport function. Extended numerical precision techniques are interesting for this objective
but need careful consideration due to the use of FFT for the cepstrum method. Therefore, a careful
mathematical consideration of the optimal method to compute the roots of the multiport function
is a very interesting topic to consider.

Considering the manufactured devices presented in this thesis, the possibilities to improve res-
onator performance aremultiple. At first, improving electrode conductivity and filmquality is funda-
mental to improve resonator Q specially at the resonance frequency. Moreover, for a more complete
depiction of the possibilities of the proposed platform, more complex responses with higher order
can be addressed.

From a resonator structure perspective, to depart from the solidly-mounted structure already
considered, further work is required to attain releasedmembrane SH0 resonators by etching through
lithium niobate to etch the silicon underneath the resonator. In this case, the electrode thickness
and IDT apodization conclusions provided in this thesis apply and improved 𝑘2eff and Q values are
expected due to a better confinement of the wave. As a closing point, having explored the platform at
the L band to avoid additional manufacturing complexities, scaling the SH0 resonators up into the
7 to 10 GHz range is a topic of interest.
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APPENDIXA

A.1 Polynomial Para‑conjugation

Consider an 𝑁-th degree polynomial 𝑄(𝑠) on 𝑠 = Σ + 𝑗Ω and complex coefficients 𝑞𝑖 for 𝑖 =
0, 1, 2, ..., 𝑁. Then, operation 𝑄(𝑠)∗ is equivalent to 𝑄∗(−𝑠). That is conjugating coefficients and
changing sign on variable 𝑠. For example,

𝑄(𝑠)∗ = 𝑄∗(−𝑠) = 𝑞∗0 − 𝑞∗1𝑠 + 𝑞∗2𝑠2 + ... + 𝑞∗𝑁𝑠𝑁for 𝑁 even

𝑄(𝑠)∗ = 𝑄∗(−𝑠) = 𝑞∗0 − 𝑞∗1𝑠 + 𝑞∗2𝑠2 + ... − 𝑞∗𝑁𝑠𝑁for 𝑁 odd (A.1)

As the conjugation operation, noted 𝑄∗(𝑠) reflects the roots of 𝑄(𝑠) about the real axis, the para-
conjugation operation, namely 𝑄(𝑠)∗ reflects the roots of 𝑄(𝑠) about the imaginary axis. If the 𝑁
complex-plane roots of𝑄(𝑠) are 𝑟𝑘, for 𝑘 = 0, 1, 2, ..., 𝑁, then the para-conjugated roots will be−𝑟∗𝑘 .
Then, during the construction of 𝑄(𝑠)∗ from the para-conjugated roots, term (−1)𝑁 must multiply
the resulting polynomial to ensure the correct sign of the leading coefficient.

𝑄(𝑠)∗ = 𝑄∗(−𝑠) = (−1)𝑁
𝑁
∏
𝑘=1

(𝑠 + 𝑟∗𝑘 )

A.2 ABCD Polynomials

The transfer function of a two-port network connected between unitary terminations can be ex-
pressed in terms of an [ABCD] matrix as

[𝐴𝐵𝐶𝐷] = 1
𝑗𝑃(𝑠)/𝜀 [

𝐴(𝑠) 𝐵(𝑠)
𝐶(𝑠) 𝐷(𝑠)]
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where polynomials 𝐴(𝑠), 𝐵(𝑠), 𝐶(𝑠) and 𝐷(𝑠) are closely related to the coefficients of characteristic
polynomials 𝐸(𝑠) and 𝐹(𝑠)/𝜀𝑟.

In [9] (Ch.7), the following expressions are outlined to construct the [ABCD] polynomials for
networks that might include FIRs.

𝐴(𝑠) = 𝑗Im(𝑒0 + 𝑓0) + Re(𝑒1 + 𝑓1)𝑠 + 𝑗Im(𝑒2 + 𝑓2)𝑠2 +⋯+ 𝑗Im(𝑒𝑁 + 𝑓𝑁)𝑠𝑁 (A.2a)

𝐵(𝑠) = Re(𝑒0 + 𝑓0) + 𝑗Im(𝑒1 + 𝑓1)𝑠 + Re(𝑒2 + 𝑓2)𝑠2 +⋯+ Re(𝑒𝑁 + 𝑓𝑁)𝑠𝑁 (A.2b)

𝐶(𝑠) = Re(𝑒0 − 𝑓0) + 𝑗Im(𝑒1 − 𝑓1)𝑠 + Re(𝑒2 − 𝑓2)𝑠2 +⋯+ Re(𝑒𝑁 − 𝑓𝑁)𝑠𝑁 (A.2c)

𝐷(𝑠) = 𝑗Im(𝑒0 − 𝑓0) + Re(𝑒1 − 𝑓1)𝑠 + 𝑗Im(𝑒2 − 𝑓2)𝑠2 +⋯+ 𝑗Im(𝑒𝑁 − 𝑓𝑁)𝑠𝑁 (A.2d)

for 𝑁 even, and

𝐴(𝑠) = Re(𝑒0 + 𝑓0) + 𝑗Im(𝑒1 + 𝑓1)𝑠 + Re(𝑒2 + 𝑓2)𝑠2 +⋯+ Re(𝑒𝑁 + 𝑓𝑁)𝑠𝑁 (A.3a)

𝐵(𝑠) = 𝑗Im(𝑒0 + 𝑓0) + Re(𝑒1 + 𝑓1)𝑠 + 𝑗Im(𝑒2 + 𝑓2)𝑠2 +⋯+ 𝑗Im(𝑒𝑁 + 𝑓𝑁)𝑠𝑁 (A.3b)

𝐶(𝑠) = 𝑗Im(𝑒0 − 𝑓0) + Re(𝑒1 − 𝑓1)𝑠 + 𝑗Im(𝑒2 − 𝑓2)𝑠2 +⋯+ 𝑗Im(𝑒𝑁 − 𝑓𝑁)𝑠𝑁 (A.3c)

𝐷(𝑠) = Re(𝑒0 − 𝑓0) + 𝑗Im(𝑒1 − 𝑓1)𝑠 + Re(𝑒2 − 𝑓2)𝑠2 +⋯+ Re(𝑒𝑁 − 𝑓𝑁)𝑠𝑁 (A.3d)

for 𝑁 odd.

On the other hand, if the characteristic polynomials are defined using the asymmetric definition
of the phase exploited in Ch. 4, the computation of the [ABCD] polynomials is redefined as follows
[25]:

𝐴(𝑠) = (𝐸′(𝑠) + 𝐹′11(𝑠)) (𝐸′(𝑠) − 𝐹′22(𝑠)) + 𝑃2(𝑠)
2𝐸′(𝑠) (A.4a)

𝐵(𝑠) = (𝐸′(𝑠) + 𝐹′11(𝑠)) (𝐸′(𝑠) + 𝐹′22(𝑠)) − 𝑃2(𝑠)
2𝐸′(𝑠) (A.4b)

𝐶(𝑠) = (𝐸′(𝑠) − 𝐹′11(𝑠)) (𝐸′(𝑠) − 𝐹′22(𝑠)) − 𝑃2(𝑠)
2𝐸′(𝑠) (A.4c)

𝐷(𝑠) = (𝐸′(𝑠) − 𝐹′11(𝑠)) (𝐸′(𝑠) + 𝐹′22(𝑠)) + 𝑃2(𝑠)
2𝐸′(𝑠) (A.4d)
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