
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: https://creativecommons.org/licenses/?lang=ca

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de
uso establecidas por la siguiente licencia Creative Commons: https://creativecommons.org/licenses/?
lang=es

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Design and Optimization of a
Low-Power RISC-V Processor for

NDIR Measurement of CO2 Levels

Microelectronics & Electronic Systems Department
Universitat Autònoma de Barcelona (UAB), Spain

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in Electronic and Telecommunication Engineering

— September 20, 2023 —

Author:
Ricardo Núñez Prieto

Directors:
Lluís Terés Terés

David Castells Rufas
Narcís Avellana Tarrats

I certify that I have read the dissertation “Design and Optimization of a Low-Power RISC-V
Processor for NDIR Measurement of CO2 Levels” and agree that it adequately fulfills all requirements
as a dissertation for the degree of Doctor of Philosophy.

Universitat Autònoma de Barcelona
Departament d’Enginyeria Electrònica

Programa de Doctorat en Enginyeria Electrònica i de Telecomunicació

This work was mainly carried out at Institut de Microelectrònica de Barcelona - Centre Nacional
de Microelectrònica, IMB-CNM (CSIC).

To my three precious sunshines,
Erik, Júlia, and Marta:

You are the joy, the pride,
and the love that light up my life.

Abstract

In various fields like environmental monitoring, smart sensors, and the
Internet of Things (IoT), the increasing demand for low-power devices
has led to growing interest in the development of high-performance and
energy-efficient processors. In this ongoing quest, the RISC-V architecture
emerges as a promising solution. In recent years, the RISC-V architecture
has gained popularity as an open-source and customizable alternative to
proprietary instruction set architectures (ISAs).

This thesis presents the comprehensive design, implementation, and
performance analysis of RisCO2, a custom-designed soft-core RISC-V pro-
cessor. It is specially optimized for energy-efficient IoT devices, with a
focus on its feasibility for Non-Dispersive Infrared (NDIR) CO2 sensors in
environmental monitoring and air quality control. The research builds on
the extensible and modular architecture of the RISC-V instruction set to
develop a processor core that is tailored for low-power applications. RisCO2
has also been integrated into the PULPino System-on-Chip (SoC), providing
a comprehensive system for evaluating its energy efficiency

The study employs an iterative design process using an FPGA implemen-
tation that incrementally incorporates architectural modifications aimed at
reducing both power consumption and computation time, all without sacri-
ficing performance. The process began with a basic RV32I core, allowing us
to understand the fundamental characteristics of the RISC-V ISA as well
as to acknowledge the flexibility provided by its modular design. As the
project progressed, we selectively incorporated more specialized extensions
and functional units into the processor.

We have placed heavy emphasis on the design’s verification and valida-
tion. Through Register-Transfer Level (RTL) simulations, we confirmed
the processor’s compliance with RISC-V ISA specifications and its func-
tional integrity. We further ensured consistency in instruction execution
by comparing RTL simulations in Vivado with RISC-V ISA simulations in

i

SEGGER Embedded Studio. In subsequent design stages, we engaged in a
meticulous process to prune extraneous hardware logic and simplify RTL
modules. These steps streamlined the processor’s architecture, aligning it
more closely with the unique requirements of CO2 sensing applications while
also reducing both area and energy consumption.

The application used for benchmarking the processor employs the well-
known digital quadrature demodulation technique to extract information
from the sensor’s digital samples. It then calculates the CO2 concentra-
tion based on the Beer-Lambert law, which governs the behavior of light
absorption in gases.

Additionally, the study conducts a comparative analysis with established
RISC-V reference processors: Ri5cy, CV32E40P, Zero-riscy, and Micro-riscy.
This comparison aims to assess how RisCO2 performs when integrated into
real-world SoC frameworks like PULPino, providing a more comprehensive
perspective on the design of energy-efficient processors. To perform this
assessment, distinct projects were created targeting each of these reference
processors. Through this approach, the processor’s performance, resource
utilization, and power consumption were scrutinized in detail.

Following implementation, in-depth power breakdown analyses were
conducted using switching activity data from circuit nets, offering precise
estimates of power consumption. This examination provided insights into
how power consumption is distributed across the various processor modules.
Finally, synthesis and area utilization were analyzed using TSMC’s 65nm
process technology library, utilizing the Cadence Genus synthesis tool for
the assessment.

The results show that RisCO2 achieves a significant reduction in en-
ergy consumption while delivering performance comparable to that of the
reference processors. These findings highlight the capability of custom
RISC-V processors like RisCO2 to serve as effective solutions in gas con-
centration sensing applications. Such processors not only offer meaningful
energy savings but also meet the requirements for efficient, low-power edge
computing. Moreover, the implications of this study extend to the design
of energy-efficient processors in diverse applications, including the IoT,
wearable technology, and mobile devices.

In summary, this work contributes to the ongoing efforts aimed at
improving processor energy efficiency and promoting sustainable computing.
It serves as a reference point for future investigations, offering both a
methodological approach and empirical data that can guide the development
of high-performance, low-power processors.

ii

Acknowledgements

First and foremost, I extend my gratitude to my thesis directors: Prof. Dr.
Lluís Terés at the Institute of Microelectronics of Barcelona (IMB-CNM),
Prof. Dr. David Castells at the Autonomous University of Barcelona
(UAB), and Dr. Narcís Avellana at NVISION Systems & Technologies.
Their invaluable mentorship made this journey not only possible but also
enlightening. I am especially grateful for their willingness to offer their
time, expertise, and guidance throughout my research. The opportunity to
enroll in this unique Industrial Ph.D. program has been a transformative
experience, and I owe a significant part of that to them.

Additional thanks are also due to Prof. Dr. David Castells, who
contributed to the development of main software tools used in this study.
His expertise in setting up and performing the power measurements on the
designed system was invaluable to the successful completion of this thesis.

My appreciation to Ricardo Martínez at IMB-CNM for his work in
generating the ASIC design synthesis results and for the floorplanning and
the chip layout of the system.

I want to express my thanks to the Barcelona Supercomputing Center
(BSC) for providing the FPGA cards essential for our power measurements.
Particular recognition is due to my workplace supervisors at BSC, Óscar
Palomar and Francesco Minervini, for their understanding and support,
enabling me to harmonize my academic and professional commitments.

Finally, my deepest gratitude goes to my wife and children, whose love
and support have been my cornerstone through all challenges. I also want to
extend heartfelt respect to my parents and brothers for their unconditional
esteem and for always being there for me.

Ricardo Núñez Prieto
Bellaterra, September 2023

iii

List of Acronyms

ADC Analog-to-Digital Converter. 67, 70, 71

ALU Arithmetic-Logic Unit. 65

ASIC Application-Specific Integrated Circuit. 10

BRAM Block RAM. 87, 91

CO2 carbon dioxide. xi, 1, 5, 7–10, 12, 14, 15, 17, 25, 46, 48, 49, 51, 63,
65, 67–70, 73–76, 78, 81, 83, 84, 88, 90

CSR Control and Status Register. 60, 61

DSP Digital Signal-Processor. 60, 87, 91

DVFS Dynamic Voltage and Frequency Scaling. 34

EX Execution. 57, 59, 60, 65

FF Flip-Flop. 87, 91

FMA fused multiply-add. 60, 65

FPGA field-programmable gate array. 1, 7, 9–11

FPU Floating-Point Unit. 60, 63, 65

GPR General Purpose Register File. 64

HDL hardware description languages. 9

ID Instruction Decode. 57, 58, 64

v

IF Instruction Fetch. 56, 64

IoT Internet of Things. 1, 3, 4, 26, 32, 67

IPC Instructions per Cycle. 61

IR Infrared. 67

ISA instruction set architecture. 1, 6–9, 18, 19, 60, 88

LED Light-Emitting Diode. 67

LPF low-pass filter. 71

LSU Load-Store Unit. 61

LUT Look-Up Table. 87, 91

MEM Memory Access. 57, 65

NDIR non-dispersive infrared. 12, 13

PC program counter. 65

RISC Reduced Instruction Set Computer. 20, 50

RTL Register-Transfer Level. 36, 88, 89

SAIF Switching Activity Interchange Format. 7, 11

SES SEGGER Embedded Studio. 83, 84

SoC System-on-Chip. 50

VFI Voltage-Frequency Island. 36

WB Write-Back. 57, 65

WSN Wireless Sensor Network. 50, 67

vi

Table of Contents

Abstract

Acknowledgements iii

List of Acronyms iv

1 Introduction 1
1.1 Background and Motivation 2
1.2 Thesis Goal . 4
1.3 Main Challenges . 6

1.3.1 Design and Optimization of the Processor for Energy Efficiency 7
1.3.2 Estimation of Processor’s Power and Energy Consumption 7
1.3.3 Evaluation of Processor’s Performance 8

1.4 Research Approach and Strategy 8
1.4.1 Design of a RISC-V Processor 8
1.4.2 Soft-Core Processor Approach 9
1.4.3 Hardware Platform 10
1.4.4 Benchmark Program for CO2 Concentration Measurement 12
1.4.5 Processor Implementation in PULPino SoC for Performance Com-

parison 15
1.5 Overview of the Thesis Structure 15

2 Review of the State-of-the-Art 17
2.1 Overview of the RISC-V Architecture and Related Work 18

2.1.1 History of the RISC-V ISA 18
2.1.2 Features and Design Principles 19
2.1.3 Advantages Over Other Architectures 19
2.1.4 RISC-V Standard Extensions 21
2.1.5 RISC-V Processors Available in the Public Domain 23
2.1.6 Proprietary RISC-V Processors 25

2.2 Review of Energy-efficient Processor Design Techniques 26

vii

2.2.1 Power Analysis and Energy Efficiency Considerations 26
2.3 Review of Optical Gas Sensors and their Applications 39

2.3.1 Working Principle (Beer-Lambert Law) 40
2.3.2 Types of Optical CO2 Sensors and Applications 42
2.3.3 Light Source Modulation in NDIR CO2 Sensors and Signal Demod-

ulation 45
2.3.4 Review of Wireless Sensor Network Nodes for CO2 Sensing 48

3 Processor Development and Evaluation Methodology 53
3.1 Review of the Design Process for our Custom Low-Power Processor 54

3.1.1 Initial Support for the Base ISA RV32I 55
3.1.2 The Classic 5-stage RISC Pipeline 56
3.1.3 Processor Pipeline Hazards and Optimizations 58

3.2 Hardware/Software Design Space Exploration of the Processor 59
3.2.1 Optimizations at Hardware Level 59
3.2.2 Optimizations at Software Level 63
3.2.3 Final Processor Design: RisCO2 64

3.3 Concentration Measurement Methodology and Benchmark Ap-
plication . 66
3.3.1 System Proposal 67
3.3.2 Asynchronous Quadrature Demodulation Technique 70
3.3.3 Simulation Environment and System Modeling 72
3.3.4 Analysis of Parameters in the Quadrature Demodulation Process 76
3.3.5 Building and Simulation of our RISC-V Application 83

3.4 Integration of RisCO2 in PULPino: A Comparative Analysis . 85
3.4.1 Overview of PULPino SoC 85
3.4.2 Comparison with Reference Processors 86
3.4.3 Key Considerations in the Integration 86
3.4.4 Analyzing Performance Metrics 87

3.5 RTL Simulation and Validation 88
3.6 Synthesis and Implementation 90
3.7 Post-Implementation Timing Simulation and Power Analysis . 91

4 Experimental Results and Discussion 93
4.1 Stage One: Initial Design and ISA Exploration 93
4.2 Stage Two: Fine-Grained Design Optimization 99
4.3 Integration and Comparative Analysis with PULPino SoC . . . 101
4.4 Real Power Consumption Measurements on FPGA Chip 110
4.5 ASIC Synthesis Results . 114

4.5.1 Synthesis Area Results 115
4.5.2 Power Estimation Results 116

4.6 ASIC Layout . 117

viii

5 Conclusions and Future Directions 119

References 125

ix

List of Figures

2.1 Basic components of a wireless sensor node in a WSN 49

3.1 Simplified block diagram of the RisCO2 core architecture showing
its five pipeline stages and all functional blocks. 64

3.2 Proposed block diagram of the sensing platform 68
3.3 Illustration of the quadrature demodulation technique and its

components. 71
3.4 The transmittance function follows an inverse exponential curve

(α = 0.023 cm-1 · ppm-1 and L = 10 cm). 73
3.5 carbon dioxide (CO2) absorbance spectrum in the range [4.19,

4.35] μm (T = 300 K, P = 1 atm, c = 400 ppm) 74
3.6 Transmitted radiation through a gas sample for different systems

with the same optical path length and absorptivity coefficient.
Constants k1, k2 and k3 represent different values for the incident
radiation I0. 75

3.7 Relative error vs. gas concentration obtained during model
simulation for a given set of parameters testing two signal-to-
noise ratio values: SNR = 0 dB (μ = 4.96%) and SNR = 20
dB (μ = 0.49%). 77

3.8 Block diagram of the customized PULPino platform used to
test the different cores. 87

3.9 Image composite made with screenshots of the simulations
performed with Vivado to test the RTL logic and SEGGER
Embedded Studio to simulate the compiled RISC-V application. 90

4.1 Processor’s resource utilization versus energy consumption and
Pareto frontier line. 98

4.2 Correlation between LUT utilization and the energy consumption
of the processor core, following the sequential implementation
of optimization actions listed above. 102

xi

4.3 LUT utilization and energy consumption of the different cores
tested in this study. 106

4.4 Dynamic power distribution among the main components of the
PULPino platform when integrating a RisCO2 processor. . . . 107

4.5 Dynamic power distribution among the various modules of the
RisCO2 processor. 108

4.6 Obtained power readings, along with the averaged power con-
sumption for each tested processor core. 111

4.7 Total power measurement of the FPGA chip including PULPino
SoC featuring different processors. 113

4.8 Comparison of simulated processor power consumption from
Vivado with estimated power measurements inferred from Vitis. 113

4.9 Conceptual layout of the PULPino SoC featuring a RisCO2
processor (TSMC’s 65 nm). 117

xii

List of Tables

3.1 Model simulation parameters 80

4.1 ISA support, number format, trigonometric function strategy,
and FPGA resource utilization for different processor design
variations. 95

4.2 Performance metrics, dynamic power, energy consumption, and
greenness factor of various processor design variations, all evalu-
ated at a clock frequency of 50 MHz. The total static power
consumption for the FPGA chip is a constant 99 mW across all
design variations. 96

4.3 Comparative summary of design improvement steps: evaluating
the impact on FPGA resource utilization, demodulation algo-
rithm runtime, and processor’s energy consumption at a clock
frequency of 50 MHz. 100

4.4 Comparison of RisCO2 with other RISC-V reference processors
in terms of supported ISA, pipeline stages, and FPGA resource
utilization. 103

4.5 Comparison of RisCO2 with other RISC-V reference processors
in terms of performance, dynamic power, energy consumed by
the processor, and greenness G for a clock frequency of 25 MHz.103

4.6 Measurement of the total power consumption of the Alveo U200
FPGA chip, including the PULPino SoC, for different processors
and using a clock setting of 25 MHz. 112

4.7 Synthesis area results of RisCO2 when integrated into the
PULPino SoC, using TSMC 65nm technology. 114

4.8 Synthesis area results of Zero-riscy when integrated into the
PULPino SoC, using TSMC 65nm technology. 115

4.9 Power estimations using a clock setting of 100 MHz. 116

xiii

Chapter 1
Introduction

The development of energy-efficient processors is becoming increasingly
important as the demand for low-power devices continues to grow in various
fields, such as the Internet of Things (IoT), wearables, and mobile devices.
In particular, battery-powered devices require processors that can operate
at low power levels to extend battery life.

This work explores the energy efficiency of RISC-V processors and their
potential for use in battery-powered devices as well as devices that use
energy-harvesting techniques. Energy-harvesting techniques refer to the
process of capturing energy from one or more renewable energy sources and
converting them into usable electrical energy [1]. The RISC-V architecture is
an open-source instruction set architecture (ISA) that has gained popularity
in recent years due to its flexibility, scalability, and low power consumption.

Our primary objective is to assess the applicability of RISC-V processors
in low-power CO2 concentration sensing, which is a critical application in
environmental monitoring and control. The evaluation includes performance
and energy consumption metrics of a custom-designed RISC-V processor in
comparison to existing RISC-V references, using a field-programmable gate
array (FPGA) implementation.

The outcomes of this work offer valuable insights into the development
of processors tailored for low-power applications across various domains.
Moreover, the methodologies employed can serve as a practical guide for
future design and implementation efforts in the area of energy-efficient
processing units.

1

2 Introduction

1.1 Background and Motivation

RISC-V is a free and open ISA that was developed at the University of
California, Berkeley, in 2010 [2]. It is designed to be simple and modular,
making it easy to customize for specific applications. The ISA is divided
into two parts: the base ISA and the optional extensions. The base ISA
includes the essential instructions required for executing a broad range
of programs. In contrast, the optional extensions are designed to offer
hardware-accelerated support for advanced functionalities, such as floating-
point operations, vector processing, bit manipulation, and atomic operations.
While these extensions do not introduce functionalities that could not be
implemented through software, they do significantly enhance performance
by reducing computational time and overhead.

The RISC-V ISA presents a flexible architecture that can be tailored
for various implementations, including those that prioritize low power con-
sumption. The ISA was designed with energy efficiency in mind, making it
particularly beneficial for battery-powered and IoT devices. Here are some
of these key aspects:

1) Large Register File: RISC-V has a large register file with 32 registers,
which can reduce the frequency of memory accesses, thus conserving energy.
Fewer memory operations not only save power but also enhance performance
by reducing data transfer times.

2) Orthogonality of Operations: The RISC-V ISA’s design allows for
any register to be used in any operation, providing greater flexibility in
instruction scheduling. This can lead to more efficient use of hardware and
therefore lower energy consumption.

3) Simplified Instruction Encoding and Decoding: RISC-V has a simple
and regular instruction set, making the instruction decoding process less
complex. A simpler decoding logic can be faster and consume less energy.
The compactness of certain instructions can also lead to energy savings
during instruction fetch operations.

4) Low-Power Instructions: Instructions like WFI (Wait For Interrupt)
can put the processor into a low-power state until an interrupt is received,
contributing to energy savings. This is particularly useful in event-driven
or interrupt-based systems, where the processor needs to be idle most of
the time, waiting for an event to occur.

5) Modular Design with Extensions: One of the key advantages of RISC-
V is its extensibility. Custom instructions tailored for specific workloads can

Introduction 3

be added, potentially reducing the number of cycles required to complete
operations and, hence, the energy consumed.

In addition, RISC-V is highly scalable, which means that it can be
used in a wide range of applications, from small embedded systems to
large-scale data centers. Another advantage of RISC-V is its flexibility. The
open-source nature of the ISA means that it can be customized to meet the
specific needs of different applications. This makes it an attractive option
for developers who want to create custom processors for their products.

As previously discussed, the flexibility of the RISC-V ISA allows for
implementations that are well-suited to meet the energy-efficiency require-
ments of IoT devices. As the IoT industry aims to achieve a 10-year battery
lifespan for these devices [3], power efficiency becomes crucial. RISC-V’s
design emphasis on energy efficiency aligns perfectly with this goal. By
leveraging the scalability of the RISC-V architecture, IoT developers can
create power-efficient solutions that meet the long battery life expectations.
Additionally, the flexibility inherent in RISC-V allows developers to tai-
lor the processor design to the specific needs of IoT applications, further
optimizing power consumption and extending battery life.

To gain a comprehensive understanding of the battery lifespan challenge,
according to EnABLES [4], an EU-funded project that is urging researchers
and technologists to take action to ensure that batteries outlive the devices
they power, about 78 million batteries powering IoT devices will be dumped
globally every day by 2025 if nothing is done to improve their lifespan.
Currently, the majority of devices are designed to have a lifespan of more than
ten years, yet the batteries that fuel them typically last for two years or even
less. This discrepancy leads to the recurring need for battery replacements,
resulting in significant economic and environmental implications. The
production and disposal of hundreds of millions of batteries on a daily basis
pose notable challenges in terms of cost and sustainability.

To make matters even more concerning, a recent report from 2019 by
Everactive, Inc., a spin-off company from the Massachusetts Institute of
Technology (MIT) specializing in batteryless IoT devices using energy-
harvesting techniques, highlights the daunting reality. Even if the IoT
industry manages to achieve its ambitious goal of a 10-year battery lifespan,
the projected number of daily battery replacements in a potential trillion-
device world (as predicted by IBM in 2012 [5]) would be astonishing. To be
precise, it would exceed a quarter of a billion battery replacements every
day.

The situation becomes even more worrisome if the industry falls short of

4 Introduction

this goal and settles for a two-year battery lifespan. In such a scenario, every
individual on the planet, with a population of approximately 7.4 billion,
would need to replace a battery every five days. Even in the best-case
scenario where all batteries reach their full 10-year life expectancy, the need
to replace over a quarter of a billion batteries daily to power 1 trillion IoT
devices is undoubtedly an impractical proposition.

Due to this pressing challenge, companies like Everactive are dedicating
their efforts to research and develop batteryless, self-powered sensors. These
sensors utilize ambient energy sources to operate, such as low-level indoor
solar, the thermoelectric effect, vibrations from piezoelectric materials, and
even radio waves present in the environment. Remarkably, these sensors
not only collect a wide range of data using multiple sensors but also process,
analyze, and wirelessly transmit that data, all within the constraints of a
batteryless power budget.

In conclusion, the main motivation behind this thesis work lies in the
urgent need for energy-efficient processors tailored for low-power IoT appli-
cations. As the IoT industry strives to achieve extended battery lifespans
and reduce power consumption, the role of efficient processors becomes
paramount. With its focus on low power consumption, scalability, and
customization, RISC-V emerges as a compelling solution to address these
challenges.

By exploring the potential of RISC-V in enabling energy-efficient proces-
sors, this thesis aims to contribute to the advancement of sustainable IoT
systems. Through hands-on design and advanced optimization strategies,
we seek to empower IoT developers with the means to create power-efficient
solutions, prolong battery lifespans, and reduce environmental impact. The
engineering efforts in this work aspire to shape the future of low-power IoT
applications by harnessing the full potential of RISC-V processors.

1.2 Thesis Goal

This work is conducted within the framework of an industrial Ph.D. pro-
gram, and as such, it merges both academic research and practical design
and implementation. The primary objective is to design, implement, and
evaluate an energy-efficient RISC-V processor tailored specifically for low-
power signal-processing applications in the IoT space. While the academic
component aims to explore and potentially introduce novel methodologies
for achieving energy efficiency, the industrial aspect mandates a focus on
practical, real-world applications and solutions. The study responds to

Introduction 5

the growing demand for efficient processors capable of performing signal-
processing tasks while minimizing power consumption.

Due to the lengthy cycle associated with ASIC production, which exceeds
the duration of a typical Ph.D. thesis, FPGA design serves as a practical
proxy for hardware implementation. This approach enables a more agile
route to a complete and testable design. Furthermore, we will estimate
power consumption through simulations carried out in both FPGA and
ASIC environments.

Our work extends beyond processor design to scrutinize the efficient
allocation of FPGA resources, affecting the feasibility of realizing RISC-V
processors on hardware platforms with constrained resources. This involves a
meticulous examination of how the processor utilizes resources and considers
the available resources on the hardware platform. The goal is to achieve the
best possible performance while operating within the given limitations. By
carefully managing resource utilization, our work aims to optimize the overall
performance of the RISC-V processor when deployed on resource-limited
hardware platforms.

To demonstrate the feasibility of using custom RISC-V processors for low-
power IoT applications, our focus narrows on a proof-of-concept application
centered around the measurement of carbon dioxide concentrations using
optical sensors. This specific application serves as a representative case to
showcase the effectiveness of the designed RISC-V processor in handling
signal processing tasks with minimal power consumption.

Target Application: Low-power CO2 Concentration Sensing

Typically, low-power CO2 concentration sensing applications are of interest
because they have important implications for environmental monitoring and
control since CO2 is a greenhouse gas that contributes to climate change,
and accurate monitoring of CO2 concentrations is essential for assessing the
impact of human activities on the environment and identifying potential
sources of pollution.

Moreover, CO2 sensors are used in a variety of applications, such as
industrial safety, where it is crucial for detecting leaks in gas pipelines and
preventing accidents, also in indoor air quality monitoring and control for
ensuring a healthy and comfortable indoor environment, as high levels of
CO2 can cause headaches, dizziness, and other health problems, and can
even be used as a low-cost tool to assess ventilation and risk of contagion
of COVID-19 for high occupancy spaces [6]. In many of these applications,

6 Introduction

the sensors are battery-powered and require low-power processors to extend
battery life. This is especially relevant in remote or hard-to-reach locations
where battery replacement or recharging may not be feasible.

Our strategy aims to transform a conventional gas sensor into a smart
sensor by incorporating components that enable functionalities beyond
simple measurement. Typically, a smart sensor integrates elements for
data conversion, data processing, and communication within a single unit.
Our primary focus is on optimizing the energy efficiency of the processor,
which handles tasks such as signal processing from the sensor and periodic
computation of gas concentrations.

Because smart sensors have the capability to analyze data locally, an-
other goal of ours is to significantly reduce the overall energy footprint.
This reduction will primarily come from minimizing the need for constant
communication with a central system, which can save energy in some appli-
cations.

Consequently, the design and implementation of energy-efficient proces-
sors for low-power CO2 concentration sensing emerge as a critical industrial
application with the potential for significant societal impact, contributing
to sustainable computing. Moreover, leveraging low-power processors may
unlock new device functionalities and applications previously hindered by
energy limitations.

1.3 Main Challenges

This section delves into the principal challenges that arise in the quest for an
energy-efficient and high-performance processor design. The development of
a customized RISC-V processor demands a meticulous optimization process
to achieve the desired balance between power efficiency and computational
capabilities. The section examines the intricacies involved in designing
and optimizing the processor for energy efficiency, considering specific ISA
features, custom instructions, and hardware accelerators to enhance signal-
processing capacities.

A more comprehensive approach to tackle these challenges is expounded
later in Chapter 3, "Methodology", where an in-depth exploration of the
design process and optimization techniques for energy-efficient processors is
presented.

Introduction 7

1.3.1 Design and Optimization of the Processor for Energy Effi-
ciency

One of the key challenges of this work is the development of a customized
RISC-V processor from the ground up, with a specific focus on optimizing
energy efficiency while maintaining high performance. It is worth empha-
sizing that the processor’s design will be highly optimized for the target
application, as mentioned in the previous section, which involves processing
the digital signal of low-power optical CO2 sensors. Therefore, our focus is
on creating an application-specific design for the processor. This involves
a thoughtful examination of the ISA features, exploring the potential uti-
lization of custom instructions and hardware accelerators to enhance the
processor’s efficiency in handling signal-processing tasks.

The initial design of this processor started with a basic RV32I architec-
ture featuring a 32-bit instruction set, an in-order execution model, and
a five-stage pipeline. To improve performance, incremental enhancements
were implemented, starting with the inclusion of integer multiplication
and division modules. Subsequently, a floating-point unit was integrated,
further augmenting the processor’s capabilities. Additionally, the adoption
of optional extensions offered by the RISC-V ISA (specifically the ’E’ and
’Zfinx’ extensions) played a crucial role in optimizing resource utilization
and maximizing energy savings. These extensions significantly reduced the
processor’s resource requirements while simultaneously enhancing its energy
efficiency.

By carefully considering the ISA features and leveraging specific func-
tional units, our aim is to create a highly efficient RISC-V processor that
strikes an optimal balance between energy efficiency and performance, cater-
ing to the specific requirements of signal-processing tasks.

1.3.2 Estimation of Processor’s Power and Energy Consumption

Accurately measuring the power consumption of the processor during appli-
cation runtime poses a significant challenge. This can be achieved through
two approaches: 1) Real-world power measurements, using a power analyzer
connected to the FPGA configured with our processor design; 2) Post-route
simulations to collect switching activity data across the entire circuit. These
simulations enable precise power consumption estimates, as they provide
detailed information on the switching activity of individual transistors over
time. This data is stored in Switching Activity Interchange Format (SAIF)
files, a format developed by Xilinx. By leveraging SAIF files, power analysis

8 Introduction

tools can assess the average power consumption of the entire circuit or
specific design sections. This enables designers to identify power-hungry
areas and make informed decisions to optimize power consumption in their
designs.

1.3.3 Evaluation of Processor’s Performance

Finally, an additional significant challenge is to assess the performance of our
RISC-V processor in comparison to other well-known reference processors
within the RISC-V community, such as Ri5cy or Zero-riscy, designed by
the PULP Team from ETH Zürich. For this purpose, we employed the
PULPino platform, also developed by the same group. In order to conduct a
comprehensive evaluation, it is essential to utilize a benchmark application
that encompasses typical signal processing tasks encountered in CO2 sensors
to ensure their relevance and representativeness in real-world applications.

1.4 Research Approach and Strategy

This section will provide further elaboration on the challenges discussed
earlier and describes the approach and strategies employed to address them.
It covers not only the specific methods but also the overall conceptual
framework or theoretical basis guiding this work, and it aims to offer
a concise overview of our practical engineering strategies and potential
innovations, which will be substantiated by detailed data and results in
subsequent chapters.

1.4.1 Design of a RISC-V Processor

First and foremost, the availability of a RISC-V processor is crucial to
meet the objectives laid out earlier. There are two pathways to consider:
adopting an existing processor from publicly available options or undertaking
the engineering challenge of creating a tailored processor from the ground
up. The first option entails carrying out a comprehensive analysis of the
processors available and selecting the most suitable one for the target
application but requires an extensive knowledge of the ISA in order to make
a well-informed decision. Moreover, certain processors utilize a Chisel-based
RTL description, such as the Rocket core [7] developed by the University
of Berkeley. Chisel is a relatively new hardware description language that
significantly differs from the widely used Verilog. Therefore, introducing

Introduction 9

modifications to enhance energy efficiency at later stages could be complex
if Chisel is not fully mastered. Furthermore, modifying a pre-existing
processor designed by a third party can be time-consuming as it requires
understanding the intricacies and interdependencies of the design. The
second option, which involved designing a custom processor from scratch
and walking the learning curve from the bottom up, provided not only
invaluable insights into the RISC-V ISA but also yielded remarkable success.
This approach deepened our understanding of the architecture and enhanced
our confidence in extending the processor’s capabilities by incorporating
additional functional units and available extensions offered by the RISC-V
ISA.

1.4.2 Soft-Core Processor Approach

We have chosen a soft-core processor approach to design our custom RISC-V
processor. Soft-core processors are typically implemented using hardware
description languages (HDL) like Verilog or VHDL. The processor’s ar-
chitecture and instruction set can be designed and programmed to meet
specific requirements or tailored for a particular application. This flexibility
allows for easy modifications and adaptations without the need for physical
changes in the hardware. Examples of soft-core processors include the Xilinx
MicroBlaze [8] and Intel (previously Altera) Nios II [9].

Using a soft-core processor approach for designing our RISC-V core
offers several advantages:

• Customization: It allows for customization of the processor’s archi-
tecture and instruction set to meet the specific requirements of the
application. This flexibility enables tailoring the processor to opti-
mize performance and energy efficiency for CO2 concentration sensing
applications.

• Iterative design: It enables rapid prototyping and iteration, allowing
designers to quickly make modifications and improvements to the
processor’s design. This iterative design process helps refine the core
and optimize its functionality.

• Hardware resource utilization: Soft-core processors are implemented
in programmable logic devices like FPGAs, which provide ample
resources for incorporating additional features and extensions. This
allows for the integration of hardware accelerators and specialized
instructions to enhance the performance and energy efficiency of our
processor.

10 Introduction

• Debugging and testing: It offers easier debugging and testing capa-
bilities compared to fixed hardware implementations. Designers can
use simulation and debugging tools specific to the chosen hardware
description language to identify and resolve any issues efficiently.

• Scalability: Soft-core processors are highly scalable, making them
suitable for a wide range of applications. Implementing our core as a
soft processor, it can be easily adapted and scaled for different CO2
sensing requirements, from low-power IoT devices to more powerful
embedded systems.

It is worth mentioning that soft-core processors play a crucial role in
the process of reaching the final Application-Specific Integrated Circuit
(ASIC) design, serving as an essential development phase for architectural
exploration and optimization. They serve as an intermediate stage, allowing
us to explore and optimize the processor’s architecture before moving on to
the ASIC implementation. Once the soft-core processor design is thoroughly
validated and optimized on the FPGA, the understanding gained from this
iterative process can be leveraged to create the final ASIC design. By
starting with a soft-core processor, we can fine-tune our architecture, ensure
that it meets performance targets, and reduce the risk of errors or costly
redesigns in the final ASIC implementation.

In summary, soft-core processors can harness the advantages of open-
source ISAs, such as RISC-V, to optimize our processor architecture for
specific applications. With the creative freedom that RISC-V offers, we can
implement the best possible architecture tailored to our needs. Through this
iterative process of soft-core exploration and optimization, we fine-tune the
core’s design, ensuring energy efficiency and scalability for low-power IoT
applications. As a result, the realization of an energy-efficient and scalable
32-bit RISC-V core for low-power IoT applications becomes feasible.

1.4.3 Hardware Platform

In line with our soft-core processor approach, we have decided to utilize
an FPGA as the hardware platform for implementing and evaluating our
custom RISC-V processor. This choice was made for several compelling
reasons.

Firstly, FPGAs are highly configurable and can be programmed to im-
plement custom logic circuits, making them well-suited for the development
of custom processors. This allows us to implement our proposed improve-

Introduction 11

ments and evaluate the performance of our processor in a realistic hardware
environment.

Secondly, FPGAs are widely used in the development of embedded
systems and IoT devices due to their low power consumption and high
performance. As such, they serve as an excellent testbed for scrutinizing
both the energy consumption and operational capabilities of processors
intended for low-power applications.

Thirdly, FPGAs provide a robust platform for prototyping and iterative
testing, offering high levels of flexibility and the ability to be reprogrammed
multiple times. This adaptability allows us to refine our design continuously
and evaluate various processor configurations to maximize performance and
energy efficiency.

Lastly, considering the lengthy production cycles associated with ASICs,
FPGAs offer a quicker route to a functional hardware implementation,
enabling timely iterations and evaluations. This accelerated timeline is
particularly beneficial when the goal is to swiftly move from concept to a
validated design.

We selected the Nexys-4 development board as our preferred choice,
which incorporates the XC7A100T-1CSG324C FPGA device. This general-
purpose board was specifically chosen for our design and implementation
process. The board has 4.860 Kib of block RAM, 63.400 LUTs, 126.800 FFs,
and 240 DSPs.

In addition to selecting the FPGA platform, the choice of a suitable
design environment suite is essential as it provides the necessary tools
to streamline the design tasks. For this purpose, we utilized the Vivado
Design Suite 2020.2 (HLx edition) developed by Xilinx. This comprehensive
suite served as our primary tool throughout the design and implementation
process. Furthermore, an additional compelling reason for choosing the
Vivado IDE is its robust power analysis tool. This tool plays a crucial role
in evaluating the power and energy consumption of our processor, providing
valuable insights into its efficiency and helping us optimize its performance.

To obtain a detailed estimation of the dynamic power consumed by our
processor and derive the energy, we need to obtain the switching activity of all
the gates of our circuit when executing our application. Xilinx Vivado allows
capturing this activity in post-implementation timing simulation, generating
SAIF files that are used to provide detailed power estimates for different
regions of the FPGA fabric. SAIF files typically contain information such as
the signal names, time values, and switching activity levels for each signal
in the design. The switching activity levels are represented as probabilities

12 Introduction

or counts of signal transitions, indicating how frequently a signal changes
state (from 0 to 1 or vice versa) over a given time interval. While Vivado is
capable of accurately obtaining switching activity for certain sections of the
design, it relies on a probabilistic approach to estimate power consumption
for other components, such as memories.

1.4.4 Benchmark Program for CO2 Concentration Measurement

To effectively measure and evaluate the performance and capabilities of
our custom RISC-V processor, the utilization of a benchmark program is
essential. A benchmark program is a standardized software application or
set of tasks specifically designed to assess and gauge the performance and
capabilities of a computer system or a specific hardware component. It
offers a consistent and reproducible workload that enables fair comparisons
between different systems or components operating under identical condi-
tions. As previously discussed, the selected application to showcase the
effectiveness of the proposed processor is CO2 concentration sensing. We
have thoroughly justified our choice of this application and its relevance in
previous sections.

CO2 Sensors Based on Infrared Absorption Spectroscopy

Gas concentration sensing encompasses various methods, and our focus is
on the optical techniques that exploit the phenomenon of light absorption
by the target gas. When the frequency of light aligns with the vibrating
electrons’ structure in materials, absorption occurs. As a result, different gas
molecules exhibit distinctive absorption profiles. Many gases of industrial
and environmental significance exhibit frequency absorbance peaks in the
near-infrared (NIR) and mid-infrared (MIR) spectrum regions, including CO,
CO2, NO2, NH3, among others. This characteristic has fostered extensive
research and development in systems operating within this frequency range.

After thorough consideration, we have determined that our benchmark
application will be tailored to a specialized gas sensor that utilizes non-
dispersive infrared (NDIR) spectroscopy. This advanced sensor technology
accurately measures gas concentration by analyzing the intensity of light
reaching the photodetector. The detected light intensity is directly influenced
by the gas quantity present in the sample, allowing for precise quantification
of gas concentration levels.

In contrast to alternative methods such as chemical sensors, optical
techniques based on infrared (IR) absorption spectroscopy offer fast mea-

Introduction 13

surement times in addition to high sensitivity. Moreover, these optical
techniques are highly suitable for miniaturization, making them ideal for
integration into IoT devices. An additional advantage of NDIR sensors is
their non-reactivity with the target gas, which is particularly advantageous
in harsh industrial environments. Specifically, NDIR sensors utilizing a
source-detector configuration with LED and photodiode components offer
the added benefit of low power consumption. This characteristic is particu-
larly beneficial for battery-powered IoT devices, ensuring efficient energy
usage.

A commonly employed technique in optical gas sensors involves modulat-
ing the light source used to interact with the sample gas. This modulation
typically occurs at a much lower frequency compared to the sampling fre-
quency used by the analog front end connected to the photodetector. The
primary reason for modulating the light source in NDIR sensors is to im-
prove the signal-to-noise ratio and enhance the accuracy of gas concentration
measurements. Modulation allows the sensor to distinguish the desired sig-
nal from ambient noise and interference. By modulating the light source,
the processor can extract the desired signal at the modulation frequency,
effectively filtering out any noise or interference that does not share the same
modulation characteristics. This modulation technique helps to enhance
the sensitivity, stability, and overall performance of NDIR gas sensors.

Benchmark Application and Dataset Generation

The demodulation technique employed to extract the signal from the sensor’s
sampled data is based on asynchronous quadrature demodulation. This pro-
cess occurs on the RISC-V microprocessor, utilizing a specialized software
algorithm that involves various algebraic operations, such as floating-point
addition, multiplication, division, and square root, as well as transcenden-
tal functions like trigonometric functions (sine and cosine) and natural
logarithm.

The asynchronous quadrature demodulation technique is a method used
to extract information from a modulated signal, typically used in digital
signal processing. It involves demodulating a signal by sampling it at specific
time intervals, which are not synchronized with the signal’s carrier frequency.
Instead of using a fixed clock, this technique uses variable sampling times
based on the signal’s characteristics. It is especially useful when dealing
with signals that may experience frequency drift or variations over time
or when synchronization with a fixed clock is challenging or impractical,
making it a flexible and efficient approach for demodulating signals in

14 Introduction

various applications, such as communication systems, radar, and digital
signal processing. The technique captures both the in-phase and quadrature
(90-degree phase-shifted) components of the modulated signal, which contain
valuable information about the original signal’s frequency and phase.

One significant advantage of employing digital demodulation instead of
analog demodulation is its capability to operate with a significantly lower
signal-to-noise ratio [10]. Digital systems are inherently less susceptible to
waveform distortion, enhancing the accuracy of signal extraction. Moreover,
digital demodulation can be efficiently implemented in software, making it
adaptable for execution on our application-specific processor. This versatility
enables precise and efficient signal processing, contributing to improved
overall performance.

Regarding the digital samples extracted from the gas sensor’s output
signal, which are typically obtained through an ADC in the analog front-
end, we have devised a streamlined approach. Instead of dealing with
real-time sensor readings during testing, we incorporated the digital sample
values into a file. This file is then compiled together with the application
algorithm, allocating specific space in the data memory. During run-time,
the processor can directly access the stored samples. This approach simplifies
data management and facilitates seamless integration of the samples into
the application.

The advantage of using this method is twofold. Firstly, it simplifies the
testing process by eliminating the need for physical gas sensors connected
to ADCs in a laboratory setup. Additionally, benchmark instruments
that provide precise control over CO2 concentration volumes are no longer
required. Instead, we opted for a software simulation approach using Python
scripts in an interactive computational environment (Jupyter Notebook) [11].
Through these scripts, we simulate the modulation process by combining
the sensor signal corresponding to a specific gas concentration with a carrier
wave having a designated modulation frequency.

The composite signal undergoes quantization and sampling at a specific
frequency, all accomplished through software. The resulting data is then
incorporated into a C header file. Subsequently, on the processor side,
the demodulation process takes place, extracting the CO2 concentration
value from the samples. This extracted value is then compared with the
designated value utilized in our Python script, which was initially employed
to generate the samples. By performing this comparison, we can validate the
accuracy and effectiveness of the demodulation process implemented in the
processor. This iterative approach allows us to fine-tune and optimize our
processor for precise and efficient CO2 concentration sensing applications.

Introduction 15

1.4.5 Processor Implementation in PULPino SoC for Performance
Comparison

As part of this effort, we aim to assess the capabilities and efficiency of
our custom RISC-V processor, optimized for low-power CO2 concentration
sensing applications. To achieve this objective, we turn to the PULPino
SoC platform [12], which provides a suitable environment for implementing
our processor and conducting performance comparisons.

The PULPino SoC, developed by the PULP Team from ETH Zurich [13],
serves as an excellent reference platform due to its flexibility, scalability,
and extensive use of the RISC-V ISA. With its customizable nature, the
PULPino SoC allows us to integrate our optimized processor and tailor it
to our specific application domain. Furthermore, leveraging the platform’s
integrated peripherals and memory hierarchy, we can thoroughly evaluate
the processor’s performance and energy efficiency in realistic scenarios.

By utilizing the PULPino SoC and comparing our custom processor with
other existing processor designs, including reference processors like Ri5cy
and Zero-riscy, which are provided as part of the PULPino SoC, we aim to
validate our processor’s capabilities, assess its performance, and demonstrate
its potential for low-power CO2 concentration sensing applications.

In this comparison, we utilize several key figures of merit to assess the
performance and efficiency of each processor. These metrics include the
FPGA resource utilization, the number of instructions needed to complete
the algorithm, the application execution time, and the estimated average
power and energy consumption. By analyzing these essential parameters, we
gain valuable insights into the strengths and weaknesses of each processor
design, enabling us to make informed decisions in optimizing our custom
RISC-V processor to achieve the desired energy efficiency and performance
targets.

1.5 Overview of the Thesis Structure

The structure of this thesis is designed to provide a comprehensive under-
standing of the design and optimization of energy-efficient processors for
IoT applications using the RISC-V ISA. This section provides an overview
of the main sections and chapters of the thesis.

The introductory chapter sets the stage, explaining the background
and motivation for this work. It underscores the importance of developing

16 Introduction

energy-efficient processors for IoT applications that require efficient process-
ing and low power consumption. The chapter also discusses the battery
problem in the potential 3-trillion IoT device scenario predicted by IBM and
presents RISC-V as a viable solution to such challenges. The primary aim
of this project, focused on crafting efficient low-power processors, is clearly
articulated, along with the selected target application as a case study for
the designed processor.

The second chapter of the thesis is a review of the current state of the
art, which provides an overview of the RISC-V architecture and related
work. It explains the RISC-V instruction set architecture, including its
design principles, features, and advantages over other architectures such
as RISC, MIPS, and ARM. The chapter also describes the ISA extensions
available so far, explaining the advantages and drawbacks and remarking
on the ones that have been implemented in our processor. Additionally, the
chapter lists and describes some of the most known processors used in the
RISC-V community, commenting on the supported architecture, pipeline
stages, bit-width of the data registers, target applications, etc.

Chapter three, the Methodology, outlines the processor’s design strategies
and techniques aimed at enhancing energy efficiency. It rationalizes the
choice of a pipelined architecture and delves into the technical aspects like
the impact of pipeline stages, hazard management, and data forwarding.
The chapter concludes with the various methodologies employed to estimate
the power and energy efficiency of the designed processor.

The fourth chapter, Results and Analysis, presents the performance
metrics related to the processor’s power and energy consumption. It also
offers a comparative study of the designed processor against other RISC-
V processors, focusing on parameters like power consumption, resource
utilization, and other relevant metrics.

The concluding fifth chapter synthesizes the major contributions and
findings of this work. It also identifies limitations and suggests avenues for
future enhancements to the processor’s performance.

Overall, this thesis contributes to the development of energy-efficient
processors for IoT applications, a pivotal aspect for the industry’s growth
and sustainability.

Chapter 2
Review of the State-of-the-Art

In this chapter, we review cutting-edge developments and knowledge perti-
nent to our project. The exploration encompasses several key areas, shedding
light on the state-of-the-art in various domains.

Firstly, we embark on an insightful journey through the realm of the
RISC-V architecture and its related work. Understanding its historical
evolution, design principles, and distinct features empowers us to grasp its
advantages over conventional architectures. Additionally, we explore the
extensions that empower RISC-V to embrace innovative techniques, making
it a preferred choice for modern computing systems.

Next, we delve into the realm of energy-efficient processor design tech-
niques. This section presents an array of state-of-the-art strategies employed
to achieve optimal energy consumption in contemporary processors. From
low-power design methodologies to dynamic voltage and frequency scaling,
we uncover a multitude of approaches adopted to enhance energy efficiency,
enabling us to comprehend the evolving landscape of processor design.

Finally, we venture into the domain of optical gas sensors and their
applications. By unraveling the underlying principles of optical gas sensing,
like the Beer-Lambert law, we gain insight into their operational mecha-
nisms. Further exploration leads us to discover the various types of optical
CO2 sensors and their diverse applications, from industrial processes to
environmental monitoring and beyond.

This comprehensive review of existing literature serves as the groundwork
for our subsequent analyses, offering crucial background for the empirical
and design-focused activities carried out in this work.

17

18 Review of the State-of-the-Art

2.1 Overview of the RISC-V Architecture and Related
Work

The RISC-V architecture has emerged as a revolutionary force in the domain
of processor design, redefining the landscape of open-source Instruction Set
Architectures. As a versatile and extensible ISA, RISC-V has captured the
attention of researchers, engineers, and developers alike, driving a wave of
innovation and exploration in the field of computer architecture.

This section presents an in-depth overview of the RISC-V architecture
and related work, delving into its historical evolution, design principles, key
features, and advantages over other well-established architectures such as
RISC, MIPS, and ARM. Additionally, we will explore the diverse extensions
that empower RISC-V to accommodate diverse applications, expanding its
capabilities beyond conventional boundaries.

The subsections within this section provide a comprehensive glimpse
into the fascinating journey of RISC-V, showcasing its adaptability and
scalability in different computing environments. From its historical roots to
its present-day prominence, the RISC-V architecture stands as a testament
to the collaborative spirit of the open-source community and its potential
to drive innovation in the world of processor design.

2.1.1 History of the RISC-V ISA

The RISC-V ISA was designed at the University of California, Berkeley.
The project was initiated in 2010 by Professor Krste Asanović, along with
his colleagues Andrew Waterman, Yunsup Lee, David Patterson, and others.
They aimed to create an open, free, and extensible ISA that could foster
innovation, research, and development in the field of computer architecture.
The team’s goal was to offer a versatile and efficient ISA that could be
customized and extended to suit various applications and target platforms.
Over time, RISC-V gained traction and evolved into a widely used and
influential open-source architecture, attracting interest from both academia
and industry.

The RISC-V Foundation, established in 2015, is a non-profit organization
that now oversees the development and promotion of the RISC-V ISA,
ensuring its continued growth and standardization, and it has become a
significant player in the processor ecosystem, with many companies and
institutions contributing to its advancement and adoption.

Review of the State-of-the-Art 19

2.1.2 Features and Design Principles

The RISC-V ISA was designed with several key principles in mind. First
and foremost, it aimed for simplicity, ensuring that the instruction set is
easy to implement, understand, and extend. It follows a modular approach,
allowing for different optional extensions to be added as needed for spe-
cific applications without affecting the core ISA. This modularity ensures
flexibility and adaptability for a wide range of use cases.

Another significant aspect of the RISC-V ISA is its support for both
32-bit (RV32) and 64-bit (RV64) address spaces. This flexibility enables
the architecture to cater to different target platforms and application re-
quirements. Moreover, the RISC-V ISA adheres to a load-store architecture,
where data transfer between memory and registers can only occur through
specific load and store instructions. This approach reduces instruction com-
plexity and enhances pipelining, leading to improved overall performance.

The instruction set of RISC-V is designed to be orthogonal, meaning
that instructions have a consistent format and can operate on any register.
This orthogonality simplifies the instruction decoding process and enables
more efficient code generation. Furthermore, RISC-V reduces the number
of addressing modes, which contributes to the overall simplicity and ease of
implementation.

2.1.3 Advantages Over Other Architectures

RISC-V is an open-source ISA that has gained popularity due to its several
advantages over other architectures like RISC, MIPS, and ARM. Here is an
extensive list of the key benefits of RISC-V:

• Open Source: One of the most significant advantages of RISC-V is
its royalty-free open-source nature, meaning anyone can access, use,
modify, and implement it without any licensing fees or restrictions.
This openness has encouraged widespread adoption and collaboration
in both academic and commercial settings.

• Customizability: This is another of RISC-V’s key highlights. Designers
can add optional instruction extensions tailored to specific application
needs, leading to more energy-efficient and performance-optimized
designs.

• Modularity: RISC-V’s modular design allows users to select the exact
set of instructions they need for their specific application, making it

20 Review of the State-of-the-Art

highly customizable and efficient.

• Scalability: RISC-V offers different instruction widths like 32-bit and
64-bit. This feature provides flexibility for various applications and
target platforms, making it suitable for both low-power embedded
systems and high-performance servers.

• Simplicity and Elegance: RISC-V follows the Reduced Instruction Set
Computer (RISC) philosophy, which aims to keep the instruction set
simple and easy to decode, execute, and pipeline. This simplicity
leads to efficient and power-conscious hardware implementations and
straightforward compiler design.

• Flexibility for Specialized Instructions: RISC-V provides a mecha-
nism for adding application-specific instructions, which can signif-
icantly accelerate specific tasks and improve overall performance for
specialized workloads.

• Standardization and Ecosystem: RISC-V is developed and maintained
by the RISC-V Foundation, which ensures a well-defined and standard-
ized ISA specification. This has led to the growth of a rich ecosystem
of tools, compilers, simulators, and development boards, making it
easier for developers to work with RISC-V.

• Research and Academia: RISC-V’s openness and simplicity have made
it a popular choice for research and academic projects. It enables
researchers to explore novel architectural ideas and experiment with
new designs without the limitations of proprietary architectures.

• Reduced Vendor Lock-In: Since RISC-V is an open standard, it re-
duces the risk of vendor lock-in that might occur with proprietary
architectures. Organizations can switch between different RISC-V
implementations without significant architectural changes.

• Community-driven Innovation: The open nature of RISC-V encour-
ages a collaborative and diverse community of developers, leading to
continuous innovation and improvement of the architecture.

• Security Considerations: RISC-V’s simplicity and modularity make it
easier to implement security features and extensions, allowing designers
to incorporate robust security mechanisms into their processors.

Overall, RISC-V’s open-source nature, flexibility, and simplicity have
made it a compelling choice for a wide range of applications, from low-power
Internet of Things (IoT) devices to high-performance computing systems.

Review of the State-of-the-Art 21

Its growing popularity and active community support have solidified its
position as a competitive alternative to other established architectures like
RISC, MIPS, and ARM.

2.1.4 RISC-V Standard Extensions

RISC-V offers a modular approach, allowing designers to tailor the pro-
cessor to specific needs while maintaining compatibility with a core set
of instructions. The architecture separates its features into ’unprivileged’
and ’privileged’ specifications. The unprivileged specification outlines the
base integer instruction set and standard extensions like floating-point op-
erations, atomic instructions, and others. These can be implemented or
omitted depending on design goals such as energy efficiency, performance,
or area optimization. On the other hand, the privileged specification de-
tails advanced functionalities, essential for system-level tasks like interrupt
handling and virtual memory management, which are accessible only in
privileged operating modes. This segregation into privileged and unprivi-
leged instructions allows for more secure and efficient system designs. For
comprehensive details on these specifications and extensions, RISC-V Inter-
national maintains an official website, and interested readers can refer to it
for more information [14].

Within the RISC-V ecosystem, the term ’ratified’ holds special signif-
icance. Ratified extensions have undergone rigorous review and testing
and have received official approval from RISC-V International. They are
considered stable and are recommended for widespread adoption, ensur-
ing that any implementations based on them will be both compatible and
maintainable over time.

Among the notable ratified extensions are:

• RV32I/RV64I - Base Integer Instruction Set: The RV32I and RV64I
extensions are the base integer instruction sets for 32-bit and 64-bit
RISC-V architectures, respectively. These are the basic integer instruc-
tion sets, which include essential operations for integer arithmetic,
logical operations, and control flow.

• RV32E - Base Integer Instruction Set (embedded): The RV32E exten-
sion is a variant of the base integer instruction set that is designed for
embedded systems with limited resources. It has a smaller register
file (16 registers instead of 32) and a smaller instruction set.

• M - Standard Extension for Integer Multiplication and Division: These

22 Review of the State-of-the-Art

extensions add hardware support for integer multiplication and division
instructions.

• A - Standard Extension for Atomic Instructions. The A extension in
the RISC-V architecture adds atomic instructions designed to facilitate
the construction of multi-threaded applications. This extension is
particularly important for implementing synchronization primitives
like locks and semaphores in a multithreaded environment. The
atomic operations read, modify, and write back a memory location
atomically, ensuring that no other instruction can access the given
memory location during the atomic operation.

• C - Standard extension for Compressed Instructions: The C extension
adds support for 16-bit compressed instructions, which can signifi-
cantly reduce code size while maintaining performance. These com-
pressed instructions can be used in place of their corresponding 32-bit
instructions without any loss in functionality.

• F/D - Standard Extensions for Single-Precision and Double-Precision
Floating-Point: These extensions add support for single-precision and
double-precision floating-point arithmetic and manipulation.

• Zfinx/Zdinx - Standard Extensions for Floating-Point in Integer Reg-
isters: Theses extensions provide similar instructions to those in the
standard floating-point F and D extensions but which operate on the
integer x registers instead of the floating-point f registers.

• Zicsr - The Zicsr extension stands for Control and Status Registers
and is part of the standard RISC-V instruction set extensions. This
extension adds instructions for reading and writing Control and Sta-
tus Registers (CSRs). These are special-purpose registers used to
configure or query various system settings or statuses. In the context
of an operating system, this extension is crucial for tasks like process
isolation, interrupt handling, and general system configuration.

• Zifence - The Zifence extension stands for Instruction-FENCE and
provides a way to ensure instruction stream synchronization. The
fence.i instruction is often used in this extension. In multiprocessor
systems, when software updates an instruction in memory (such as
self-modifying code or dynamic code loading), fence.i guarantees
that subsequent instruction fetches see the new value. This is crucial
for ensuring that all cores in a system have a consistent view of the
instruction memory.

Review of the State-of-the-Art 23

• G - Shorthand for the base and above extensions: This is not an
extension itself but rather a shorthand notation to indicate that all of
the above extensions (M, A, F, D) are included.

Each set of extensions can be added independently, allowing for cus-
tomizing the ISA to suit specific application needs, and they are backward
compatible with the base integer instruction sets (RV32I/RV64I). By pro-
viding this modular and extensible approach, RISC-V offers flexibility and
scalability while maintaining simplicity and ease of implementation.

Among the extensions that have not yet been ratified, the RV128I ISA
stands out as particularly noteworthy. Designed as a future addition to the
RISC-V architecture, RV128I aims to extend the integer support to 128
bits. This would mark a significant departure from the existing RV32I and
RV64I ISAs, which provide 32-bit and 64-bit integer support, respectively.

However, it is crucial to understand that RV128I is largely theoretical at
this stage and not yet actively implemented or standardized. The extension
faces numerous complexities, such as the need for vastly larger memory
subsystems and modifications to the instruction format to handle 128-
bit immediates or addresses. Due to these challenges, RV128I remains
unratified.

2.1.5 RISC-V Processors Available in the Public Domain

There is a wealth of publicly available RISC-V processors that offer open-
source RTL and cater to low-power requirements, allowing for free usage,
modification, and distribution in compliance with their respective licenses.

These processors can be categorized into two main groups:

1. General-Purpose Processors: Designed with a broad application scope,
these processors are versatile and can serve various use cases. Notable
examples include VexRiscv and SweRV.

2. Application-Specific Processors: Tailored for specific applications,
these processors address the unique demands of particular domains, such as
IoT. Examples in this category include Ri5cy, Zero-riscy, and Rocket, which
are optimized to meet the requirements of IoT devices.

Some of the well-known RISC-V processors available in the public domain
include:

VexRiscv [15] is a 32-bit configurable RISC-V soft-core processor writ-
ten in SpinalHDL and developed by C. Papon in 2019. It is designed for

24 Review of the State-of-the-Art

FPGA implementation and intended for use in embedded systems and
supports various configurations for custom instruction sets and peripheral
interfaces. Due to its low power consumption and high performance, it
is particularly well suited for FPGA-based embedded applications, such
as real-time control and data processing. It has a pipeline with a config-
urable number of stages, from 2 to 5 stages, and provides support for the
RV32I[M][F][C] instruction set.

SweRV [16] is a 32-bit, 9-stage, dual-issue, superscalar, mostly in-
order pipeline with some out-of-order execution capability that supports
the RV32IMC_Zicsr_Zifence ISA. The SweRV processor was developed by
Western Digital and it is intended for a wide range of applications, including
storage devices, embedded systems, and data centers.

Ri5cy and Zero-riscy processors are two open-source low-power RISC-V
processors designed specifically for embedded systems and IoT applications,
both written in SystemVerilog by the PULP team from ETH Zurich.

Ri5cy [17] is a 32-bit, 4-stage, in-order processor with a small and
efficient microarchitecture. Ri5cy aims to provide a balance between per-
formance and power efficiency, making it suitable for resource-constrained
embedded systems. It supports the RV32IMC[F] instruction set, which
includes the integer, multiplication, and compressed instruction set exten-
sions. This processor has been maintained by the PULP platform team
until February 2020, when it was contributed to OpenHW Group and de-
veloped further under the codename CV32E40P [18]. It supports the
RV32IMC[F][Zfinx] instruction set.

Zero-riscy and Micro-riscy [19] were designed to be a simplified
version of Ri5cy to demonstrate how small a RISC-V CPU core could
actually be. They are intended for ultra-low-power applications where
power consumption is critical, such as IoT devices and wearable electronics.
Zero-riscy features a 2-stage, in-order pipeline with a small footprint and
optimized power efficiency. It supports the RV32IMC instruction set and
includes various power-saving techniques, such as clock gating and dynamic
voltage and frequency scaling (DVFS). This processor is now maintained and
developed further by lowRISC, a not-for-profit company based in Cambridge,
and the processor is now known by the codename of Ibex. And Micro-riscy
differs from Zero-riscy in that it supports the embedded RV32EC instruction
set and drops the integer multiplication and division instructions.

Rocket [7] is an open-source RISC-V processor written in Chisel and
developed at the University of California, Berkeley. A 5-stage, in-order
scalar core that implements the RV32G and RV64G ISA, it has a highly

Review of the State-of-the-Art 25

configurable and extensible design that serves as a platform for research
and development in education and industry projects. Its open-source nature
and flexible design make it a popular choice for exploring new ideas in
computer architecture, prototyping novel processor features, and building
custom processor designs tailored to specific applications or domains.

It is worth mentioning that among the available processors, we have
carefully selected a set of reference processors for benchmarking and compar-
ison with our own design. The chosen processors include Ri5cy, Micro-riscy,
Zero-riscy, and CV32E40P, all of which are compatible with the PULPino
SoC and can be seamlessly integrated into the platform. Our objective is
to design a processor that shares the same pinout configuration as these
references, allowing us to integrate it into the PULPino SoC and conduct
a comprehensive performance evaluation. By running our specific target
application of measuring CO2 concentrations in the ambient environment,
we aim to analyze the efficiency and effectiveness of our processor compared
to the established reference designs.

2.1.6 Proprietary RISC-V Processors

While the RISC-V ISA is open-source and encourages collaboration and
innovation, it also allows for the development of proprietary RISC-V proces-
sors. Proprietary processors based on the RISC-V ISA offer companies the
flexibility to design customized solutions tailored to their specific require-
ments for internal use or specific markets without revealing the full details of
their implementations to the public. The design details of these processors
are often kept confidential and not publicly disclosed, providing a level of
intellectual property protection and allowing companies to differentiate their
products in the market.

Some examples of well-known proprietary RISC-V processors include:

SiFive Core IP (RISC-V Coreplexes): SiFive®, a leading RISC-V
processor IP provider, offers various proprietary RISC-V processor cores
designed to cater to different applications. Examples include the E21 series
(32-bit cores) and E51 series (64-bit cores). These cores can be customized
to meet specific performance, area, and power requirements for applications
such as AI accelerators, IoT devices, and high-performance computing [20].

AndesCore: Andes Technology provides a range of proprietary RISC-V
cores known as AndesCore™. Their offerings include the N25 and N45 series
(32-bit cores) and the NX25 and NX45 series (64-bit cores). These cores are
designed for applications in automotive, industrial, and IoT domains [21].

26 Review of the State-of-the-Art

Codasip IP cores: Codasip specializes in customizable processor IP
cores based on the RISC-V ISA. Their proprietary cores, such as Bk3 and
Bk5, allow customers to tailor the processor to their specific application
needs, offering a balance between performance and power efficiency [22].

In conclusion, proprietary RISC-V processors offer companies the ability
to design customized solutions tailored to their specific needs while capital-
izing on the benefits of the open-source RISC-V ISA. By keeping certain
design details confidential, companies can differentiate their products and
cater to a diverse range of applications in various industries.

2.2 Review of Energy-efficient Processor Design Tech-
niques

Energy efficiency has become a paramount concern in modern processor
design, driven by the escalating demand for low-power computing solutions
in diverse applications like mobile devices, IoT devices, and battery-operated
systems. In this section, we explore a selection of key energy-efficient pro-
cessor design techniques, representing the current state-of-the-art in the
field. These techniques have been developed and embraced to tackle the
pressing need for power-conscious computing. It is important to note that
the techniques presented here are not an exhaustive list of all the meth-
ods applied in our processor design; rather, they reflect the cutting-edge
approaches available today to achieve optimal energy efficiency while main-
taining high-performance computing capabilities. As the field continuously
evolves, novel techniques and innovations will continue to shape the land-
scape of energy-efficient processor design, enabling further progress in the
realm of power-conscious computing.

2.2.1 Power Analysis and Energy Efficiency Considerations

To understand power consumption in Complementary Metal-Oxide-Semi-
conductor (CMOS) circuits, it is crucial to first detail the parameters
influencing it. This will allow us to pinpoint potential areas for power
reduction. It is worth considering how these parameters might vary based
on the specific application in question. In the standard analysis of digital
integrated circuits, as discussed in [23], power dissipation in a CMOS circuit
arises from two main components: static power Psta and dynamic power
Pdyn.

Review of the State-of-the-Art 27

Dynamic power dissipation occurs due to the charging and discharging
of the output capacitance CL for each CMOS gate in the circuit. This
capacitance encompasses the drain diffusion capacitances of the NMOS
and PMOS transistors that constitute the gate, the capacitance from the
connecting wires, and the input capacitance of the gates that receive the
output (fan-out gates). A single switching cycle, which includes both low-
to-high and high-to-low transitions, consumes a consistent energy amount
sourced from the supply voltage V , amounting to CL ·V 2. Thus, for accurate
power consumption calculations, the frequency with which a circuit’s logic
gates switch must be factored in. The switching activity of a complex circuit
inherently relies on the characteristics and statistics of the input signals.
This consideration can be encapsulated in the formula for dynamic power
consumption as:

Pdyn = α · CT · V 2 · fclk (2.1)

where α is the probabilistic switching activity factor, CT is the total
capacitance of the circuit based on the number of transistors, fclk is the
maximum possible event rate of the inputs (which is often the clock rate),
and V is the supply voltage.

The static, often referred to as steady-state, power dissipation in CMOS
circuits is primarily attributed to the static or leakage current, denoted as
Ileak. This current flows between the supply rails even when there is no
switching activity taking place. It can be mathematically represented by
the relation:

Psta = V · Ileak (2.2)

In an ideal scenario, the static current of a CMOS gate should be
zero. This stems from the operational behavior of CMOS gates where
PMOS and NMOS devices are never simultaneously active during steady-
state operations. However, in the real-world setting, a leakage current
exists. It primarily flows due to the reverse-biased diode junctions of
the transistors. Although this leakage current has historically been a
minor contributor to power dissipation, its significance is growing with the
evolution of semiconductor technology. As chips continue to scale down in
size, following the trajectory of Moore’s law, this leakage current becomes a
more pronounced concern. The increasing influence of the leakage current
introduces additional challenges to maintaining energy efficiency, especially
as semiconductor devices move towards smaller technology nodes.

28 Review of the State-of-the-Art

An important consideration in our analysis is the omission of direct-path
power consumption. This type of consumption arises during the dynamic
transition of transistors. CMOS gates are driven by input signals with a
finite slope that produces a temporary direct short-circuit current path
formed between the supply rails. During this transient phase of switching,
both NMOS and PMOS transistors might conduct simultaneously, leading
to a surge in power consumption, albeit for a very brief duration.

This short-circuit power consumption can be effectively mitigated at the
transistor’s physical design level. One established approach to address this
involves matching the rise and fall times of the input and output signals, as
explained in [24]. While making the input and output rise times of a gate
identical might not render the best results for every individual gate, it is
instrumental in keeping the overall short-circuit current within permissible
bounds. Furthermore, as semiconductor technology has advanced, the short-
circuit current has shown a tendency to reduce with decreasing supply
voltage. This trend implies that in modern deep submicron technologies,
the relative significance of short-circuit power dissipation is diminishing.

In summary, the comprehensive power consumption of a CMOS circuit
encompasses several components. It can be formally captured by the
equation:

Ptot = Pdyn + Psta = α · CT · V 2 · fclk + V · Ileak (2.3)

Since we are interested in how to enhance the energy efficiency of our
RISC-V processor, we turn our attention to a processor-centric approach
presented in [25]. This source introduces an energy efficiency metric, termed
G or greenness. Beyond encapsulating the parameters highlighted in the
previously discussed power consumption equations, G integrates another
vital computing performance measure: operations per cycle (OPC). Simply
put, greenness represents the number of operations executed every second
for each consumed unit of electrical power:

G = Op

T

1
P

(2.4)

Therefore G is expressed often expressed in operations per second per
Watt or one of its multiples. For instance, the well-known Green500 list [26],
the ranking of the most energy-efficient supercomputers in the world, uses
GFLOPS/W, i.e. the number of billions of floating-point operations per
second that can be executed with one Watt of electrical power.

Review of the State-of-the-Art 29

The number of operations per time unit can be more appropriately
expressed as operations per cycle (OPC) as follows:

Op

T
= OPC · fclk (2.5)

In the context of RISC-V we can conveniently use OPC as a synonym for
IPC (instructions per cycle). This is because the instruction set is designed
such that all instructions share the same latency. This consistent latency
ensures a uniform basis for comparing processors across various benchmark
applications. With this in mind, and by combining Equations 2.3, 2.4
and 2.5 we can reformulate G as:

G = IPC

α · CT · V 2 + V ·Ileak
fclk

(2.6)

From the above equation, it is evident that only IPC and clock frequency
exhibit a direct relationship with enhanced energy efficiency. Interestingly,
though it might seem counter-intuitive, higher clock frequencies can lead to
more energy-efficient designs. This is because quicker instruction execution
reduces the impact of static power. Such a correlation was previously
highlighted in [27], but its significance is often overlooked or misinterpreted.

By following, we will categorize a range of energy-efficient design strate-
gies based on the individual parameters highlighted in Equation 2.6. By
understanding the influence and role of each parameter, we aim to explore
how its strategic manipulation can enhance the energy efficiency of processor
designs. This approach will not only provide a systematic framework for
assessing energy-efficient techniques but will also offer insights into the
interdependencies between these parameters. The main goal is to find out
how alterations in one aspect can potentially benefit, or conversely, impact
the overall energy performance of a processor, allowing designers to make
more informed decisions in their optimization efforts.

Techniques to Increase IPC

Instruction Level Parallelism (ILP): One of the fundamental tech-
niques to enhance processor performance while maintaining energy efficiency
is exploiting Instruction Level Parallelism. This involves the execution of
multiple instructions in parallel, maximizing the utilization of functional
units and execution resources. Simply put, it is like having multiple tasks
being worked on simultaneously rather than in a sequence. The direct

30 Review of the State-of-the-Art

advantage of this is an increase in the number of instructions executed per
cycle, leading to faster computations using the same amount of energy.

Achieving high ILP can drastically reduce the time processors spend
idling or waiting for previous instructions to complete. When processors
finish tasks faster, they can enter low-power states more quickly or tackle
other tasks more efficiently, leading to energy savings. A review of strategies
that are commonly used to achieve ILP can be found in [28] and [29]. Some
of these strategies include:

Pipelining: This involves breaking instructions into multiple stages, with
each stage being processed in parallel. It is akin to an assembly line in a
factory where different parts of a product are assembled simultaneously.
This technique augments not only the ILP but also facilitates an increase
in the clock frequency. Consequently, it is elaborated upon in greater depth
within the clock frequency parameter category.

This technique also allows increasing the clock frequency and therefore
it is explained in more detail in the next parameter category.

Superscalar Execution: Here, multiple execution units are used, allowing
more than one instruction to be executed in parallel. A processor can
dispatch multiple instructions to appropriate execution units in one cycle.

Out-of-Order Execution: Processors equipped with this capability can
execute instructions as soon as their inputs are ready, rather than strictly
adhering to their original program order. This flexibility means that even
if one instruction is stalled, others can proceed, maximizing the use of
available resources.

Speculative Execution: To avoid stalls, processors guess or speculate the
outcome of conditional branches and execute instructions based on those
guesses. If the speculation is correct, time is saved; if not, the actions are
rolled back.

Loop Unrolling: This is a vital optimization technique where loops in
a program are expanded to execute multiple iterations in a single loop
cycle. By reducing the overhead of loop control instructions, processors
can execute more useful instructions in parallel. For instance, a loop set
to execute four times could be unrolled to execute all iterations in just one
or two cycles, accelerating the computation and benefiting from increased
parallelism.

With the integration of ILP and these accompanying strategies, micropro-
cessor designers can achieve significant advancements in both performance
and energy efficiency, setting new standards in computational capabilities.

Review of the State-of-the-Art 31

Application-Specific Optimization: For specialized applications with
unique requirements, application-specific optimizations are employed to
tailor the processor’s design to the specific workload. These optimizations
exploit the idea that not all tasks are created equal. By molding a proces-
sor to the peculiarities of a particular job, one can shave off superfluous
functionalities, reducing circuit complexity, and power wastage. A micropro-
cessor, thus tailored, can perform its intended task more swiftly, increasing
the number of instructions executed per cycle and saving energy. There
exist several prominent methodologies that emphasize application-specific
optimization:

Application-Specific Integrated Circuits (ASICs): These are non-reconfi-
gurable hardware entities crafted explicitly for specialized tasks. The preci-
sion and specificity of ASICs eliminate superfluous circuitry, subsequently
leading to reduced parasitic capacitance and minimized dynamic power
dissipation [30]. For instance, in the domain of cryptographic operations, es-
pecially in proof-of-work algorithms central to blockchain validation, ASICs
are valued for their computational throughput and energy efficiency.

Hardware Accelerators or Co-processors Attached to the Bus: These com-
putational units provide specialized hardware for specific tasks, enabling
the main processor to offload complex operations and reduce its power con-
sumption. These co-processors can be dynamically activated when needed
and deactivated when not in use, optimizing overall energy efficiency. An il-
lustrative example is Google’s Tensor Processing Units (TPUs). Specifically
designed for machine learning computations, TPUs demonstrate superior
computational efficiency in their domain when placed side by side against
general-purpose CPUs or GPUs, leading to energy savings. An extensive
review of hardware accelerators, their classification, trends, and challenges
can be found in [31].

Instruction Set Customization: By customizing the instruction set ar-
chitecture for particular tasks, a processor can execute code more efficiently.
Processors that implement domain-specific work by setting a dedicated
instruction set are known as ASIPs (Application-Specific Instruction Set
Processors). A survey on the design process of ASIPs and the generation of
the instruction set for a particular application is detailed in [32]. A case
in point is the ARM’s NEON technology. This advanced SIMD (Single
Instruction, Multiple Data) architecture is crafted to optimize tasks inherent
to media processing, providing faster, energy-efficient operations.

Custom Instructions: Custom instructions are tailored instructions
added to the processor’s instruction set to accelerate specific functions
commonly used in the target application. By executing these functions

32 Review of the State-of-the-Art

more efficiently, custom instructions contribute to energy savings and perfor-
mance improvement. Custom instructions, along with the required hardware
logic to execute them, can be conceptualized as custom functional units
or tightly-coupled co-processors. In contrast, hardware accelerators can be
viewed as loosely-coupled co-processors.

Compiler Optimizations: Compiler optimizations play a pivotal role in
enhancing the performance of software applications without necessitating
changes to the source code. By translating high-level code into machine code,
compilers have the crucial task of making this transformation as efficient
as possible. This translation, when optimized, can lead to significant
improvements in execution speed, power consumption, and memory usage.
For instance, compilers can take advantage of SIMD (Single Instruction,
Multiple Data) instructions available on a processor to parallelize operations
and boost performance. In this seminal paper [33], the authors introduce
an innovative methodology tailored for contemporary compilers that target
general-purpose architectures.

A few more concrete cases that illustrate this theme further can be found
in drones, for example, whose processors, often ASICs, are strictly optimized
for flight control and real-time video capture, ensuring both extended flight
durations and seamless video streams. Similarly, gaming consoles include
processors fine-tuned for the intricacies of graphics rendering and real-time
processing, thus facilitating an immersive gaming experience characterized
by fluidity and high frame rates. Lastly, in the domain of the IoT, edge
devices like security cameras employ processors optimized for continuous
surveillance, achieving proficient motion detection with a minimized energy
footprint.

In essence, application-specific optimizations are refining the micropro-
cessor design process, aligning architecture with specific workloads. This
alignment ensures that processors not only perform tasks more quickly but
also consume lesser energy, a dual advantage in our increasingly digital
world.

Techniques to Increase the Clock Frequency

Pipeline Optimization: In microprocessor design, pipelining is a primary
technique to enhance performance by allowing multiple instructions to be
processed concurrently at different stages. One of the main goals of pipelining
is to increase the clock frequency, thus improving the throughput of the
processor. The underlying concept of pipelining resembles an assembly line in
a factory where different stages of a product are handled simultaneously but

Review of the State-of-the-Art 33

in different phases of production. By breaking down instruction processing
into smaller tasks (stages), each task can be completed in a shorter clock
cycle, thereby potentially increasing the clock rate. At the same time, with
multiple instructions in different stages of execution, the CPU can handle
more instructions at once, increasing the overall instruction throughput.

However, designing an efficient pipeline is non-trivial. Ensuring that
instructions flow seamlessly through the pipeline stages demands careful
consideration of potential hazards. While extending the pipeline by adding
more stages can increase the clock frequency, a longer pipeline means more
stages where data dependencies (data hazards) can cause pipeline stalls.
These stalls occur when subsequent instructions are dependent on the results
of previous ones, causing the pipeline to wait. Also, as we increase the
number of stages, the overhead related to managing the pipeline, such as
checking for data hazards or control hazards, also increases. The ideal
pipeline depth for a microprocessor, both from theoretical and simulation
perspectives, is meticulously examined in [34]. In response to these inherent
challenges, advanced techniques have been developed:

Instruction Reordering: Compilers and hardware can sometimes reorder
instructions to ensure that dependent instructions are spaced apart, giving
the first instruction enough time to produce results before the second
instruction needs them.

Pipeline Hazard Handling: Techniques such as data forwarding (or haz-
ard forwarding) are used to reduce data hazards. In data forwarding, the
result is forwarded directly from one pipeline stage to another without
waiting for it to be written back to a register.

Branch Prediction: To mitigate control hazards, modern processors em-
ploy branch predictors. They guess the outcome of a branch based on
historical data and patterns, allowing the processor to fetch and execute
instructions from the predicted path. Modern branch predictors use sophis-
ticated algorithms to achieve high accuracy rates, ensuring that the pipeline
remains filled with useful instructions. However, no predictor is perfect.
When a prediction is wrong, the processor needs to flush the pipeline of
the wrongly fetched instructions and start fetching from the correct path.
This flushing process results in a pipeline "bubble" or stall, wasting cycles.
In processors with very long pipelines, the cost of a misprediction is even
higher because more stages are affected, making an efficient branch predictor
crucial for sustaining performance. In Smith’s seminal work [35], a variety
of branch prediction techniques are comprehensively discussed. However,
the quest for increased accuracy persists. Illustrative of this ongoing pursuit
is the innovative branch predictor detailed in [36], which exploits neural

34 Review of the State-of-the-Art

learning methodologies.

In conclusion, properly optimized pipelines significantly diminish the
occurrence of pipeline stalls, ensuring the processor’s resources are utilized
to their maximum potential. By minimizing stalls and maximizing the
concurrent processing of instructions, the energy expended per instruction
is reduced, leading to more energy-efficient microprocessor designs.

Techniques to Decrease the Supply Voltage V

Dynamic Voltage and Frequency Scaling (DVFS): Dynamic Voltage
and Frequency Scaling enables a processor to adapt its voltage and frequency
in real-time based on the computational demands of the task at hand. The
essential concept lies in providing just enough power to meet the workload
requirements, avoiding excess consumption. By dynamically scaling voltage
and frequency, the processor can match its performance to the application’s
requirements, leading to significant energy savings. During low-demand
tasks, the processor can run at lower frequencies and voltages, reducing
both dynamic and static power. A detailed exploration of this approach
and its application within the demanding environment of data centers is
provided in [37].

Considering again the relationship formulated in Equation 2.6, it is
clear that energy efficiency G is inversely proportional to the square of the
operating voltage and the frequency of operation. By reducing the voltage,
even slightly, we can achieve a significant increase in energy efficiency.
Lowering the voltage reduces the switching power in the transistors, leading
to less energy use. However, this comes with a trade-off in processing
speed, as lower voltage typically means slower transistor switching and thus
lower operational frequency. Voltage and frequency are closely intertwined
in a processor’s operation. Lowering the voltage requires lowering the
frequency to maintain stable operation while raising the voltage allows for
higher frequency (and thus performance). This interplay must be managed
carefully to achieve the desired balance between performance and power
consumption.

Power Gating: Power gating refers to the process of completely turning
off the power to specific areas of a microprocessor or an integrated circuit
(IC) when they are not in use. This is done by using special transistors
known as power switches or power gates to disconnect the power supply to
certain sections of the chip. Unlike Dynamic Voltage and Frequency Scaling
(DVFS), where the voltage is scaled down, power gating cuts off the power

Review of the State-of-the-Art 35

entirely to non-operating parts, also bringing the benefit of reducing leakage
power to almost zero. An exploration of the potential of architectural
techniques to achieve these reductions, specifically through the power gating
of processor execution units, can be found in [38].

This technique is particularly useful in designs where various functional
blocks or modules have different operating schedules, and not all of them
are required to be active simultaneously. By shutting down unused sections,
power gating ensures that only the parts of the chip actively performing
tasks are powered, leading to significant energy savings.

However, power gating does bring its challenges. Turning off a section of
the chip means that it will take some time to turn it back on when needed,
introducing latency. Proper management of the transitions between on and
off states is essential to minimize this latency and ensure that the power-
gated sections are ready when needed. This requires careful coordination
between hardware and software, considering both the performance require-
ments of the application and the power-saving goals. Another concern in
power gating is managing the state of the power-gated sections. When
power is completely cut off, the state of the power-gated area (e.g., the
values in its registers) may be lost. Strategies to preserve or restore this
state upon reactivation must be part of the power gating design.

Power gating has found extensive applications in low-power devices such
as mobile phones, tablets, and IoT devices, where battery life is a critical
concern. By selectively powering down parts of the chip when they are not
required, these devices can offer extended battery life while still delivering
the performance users expect.

In summary, power gating represents an effective power management
strategy by completely turning off power to unused parts of a chip. Its
implementation must be carefully managed to balance the benefits of reduced
power consumption with considerations for performance, latency, and state
preservation.

Techniques to Decrease the Switching Activity Factor α

Clock Gating: Clock gating works by selectively disabling the clock signal
to certain parts of the circuit when they are not in use. In a typical digital
circuit, the clock signal is continuously toggling, driving the sequential
elements of the design, such as flip-flops and registers. This constant
toggling contributes to dynamic power consumption, even when certain
parts of the circuit are idle or not in use. By implementing clock gating, the

36 Review of the State-of-the-Art

clock signal can be disabled to specific areas of the circuit, preventing them
from toggling and thereby reducing dynamic power consumption. This is
typically achieved through the addition of control logic that observes the
operational conditions and appropriately gates the clock signal.

Consider a functional unit within a processor that is only active during
specific operations. By employing clock gating, the clock to this unit can be
disabled when it is not required, significantly reducing power consumption.
The challenge in implementing clock gating is in determining when it is safe
to gate the clock without impacting the correct functionality of the system.
This requires careful analysis and possibly additional logic to ensure that
gating the clock does not lead to incorrect behavior.

The benefits of clock gating are most pronounced in systems where there
are considerable idle periods or functions that are not continuously utilized.
It is a key technique in modern processors to manage energy efficiency,
especially in battery-operated devices where power saving is crucial. In
complex systems, clock gating must be handled with caution, as incorrect
implementation might lead to synchronization issues or other functional
problems. The benefits in terms of energy efficiency need to be balanced
with the additional complexity and potential risk to the system’s robustness.
A comprehensive review of the various clock gating techniques that can be
used to optimize power in VLSI circuits at Register-Transfer Level (RTL)
level can be found in [39].

In the context of Equation 2.6, clock gating directly affects the switching
activity factor by reducing unnecessary transitions, which in turn lowers the
dynamic power component of the overall energy consumption. Therefore, it
is a vital technique in the toolkit of a designer aiming to improve the energy
efficiency of processor designs.

Voltage-Frequency Islands (VFIs): Voltage-Frequency Islands are an
advanced power management technique that complements methods such as
Dynamic Voltage and Frequency Scaling and clock gating to further reduce
power consumption, including the switching activity factor. In a complex
System-on-Chip (SoC) or processor, different functional units may have
different performance requirements at various times. While some parts of
the chip may be heavily utilized, others might be idle or only lightly loaded.
VFI takes advantage of these varying requirements by dividing the chip
into separate regions or "islands," each of which can operate at a different
voltage and frequency.

By recognizing that not all parts of the chip need to operate at the max-

Review of the State-of-the-Art 37

imum frequency and voltage at all times, VFI enables each island to operate
at an optimal voltage and frequency for its current workload. This can
significantly reduce both dynamic and static power consumption. Operating
an island at a lower frequency reduces the clock switching rate, directly
cutting down the switching activity factor. Combined with techniques like
clock gating, this can lead to substantial energy savings.

Furthermore, operating at lower voltages reduces not only dynamic
power but also leakage power, as leakage is often strongly dependent on the
operating voltage. VFI allows fine-grained control over different parts of
the chip, providing more flexibility in power management. For example, a
processor could have an island dedicated to real-time tasks running at a
high frequency, while other islands handling background tasks could run at
lower frequencies.

However, implementing VFI requires careful design and analysis. Each
island must be properly isolated, and data communication between islands
operating at different frequencies must be handled cautiously. Voltage
level shifting and synchronization mechanisms may be required. Despite
these complexities in implementation, VFI is commonly used in multi-core
processors and SoCs where different cores or functional units may have
disparate performance needs. This allows each core or unit to operate at an
independently optimized voltage and frequency, adapting to the dynamic
demands of various applications.

In [40], the authors present a design methodology for partitioning a
Network-on-Chip (NoC) architecture into multiple VFIs and assigning
supply and threshold voltage levels to each VFI. The method demonstrates
the effectiveness of the approach in reducing the overall system energy
consumption.

Techniques to Decrease Processor’s Total Capacitance and Leakage Current

Removing Logic Associated with Unused Instructions: Removing
logic associated with unused instructions can lead to notable improvements
in energy efficiency in processors. When certain instructions are not required
for a specific application, the logic associated with those instructions can be
completely removed or shaved off. This removal has two primary benefits:

1. Dynamic Power Reduction: By eliminating unnecessary logic gates
and interconnections, the total capacitance of the chip is reduced. Since
dynamic power consumption is directly related to the charging and discharg-
ing of capacitive structures within the circuit, this reduction in capacitance

38 Review of the State-of-the-Art

leads to lower dynamic power consumption.

2. Leakage Power Reduction: In addition to dynamic power, the removal
of unused logic also reduces leakage current. This reduction is achieved not
through power gating but by entirely eliminating the logic itself. As leakage
current is the small amount of current that flows even when a transistor
is turned off, removing unused transistors and associated structures means
that there are fewer sites for leakage to occur, further reducing the overall
power consumption.

The strategic elimination of unnecessary logic based on the specific needs
of an application is an example of application-specific optimization. By
tailoring the processor design to the requirements of the task at hand, both
dynamic and leakage power can be minimized, contributing to the overall
energy efficiency of the processor. This approach reflects a deeper integration
between hardware design and software requirements, emphasizing the need
for a holistic view of system optimization.

One illustrative example of this approach is the utilization of a One-
Instruction Set Computer (OISC)-based multicore processor designed specif-
ically for energy-efficient streaming data processing. This unique processor
consists of application-independent tiny cores and application-dependent
optimizable inter-core communications, which effectively execute applica-
tions on extensive streams of data in a pipeline fashion. The potential of
OISC for processing encrypted data is further investigated by the authors
in [41].

Cache Design and Memory Hierarchies: Cache design and memory
hierarchies play a crucial role in optimizing the power consumption of modern
processors. Memory hierarchies are established to exploit the temporal and
spatial locality in program behavior. By keeping frequently accessed data
close to the processor, memory hierarchies reduce the need to access off-
chip larger, slower memories, which usually have higher capacitance. Since
the capacitance associated with memory access is directly proportional
to dynamic power, accessing a smaller and closer cache results in energy
savings.

Cache size and configuration can be optimized to meet the specific
requirements of different applications. Reducing the cache size will reduce
the total circuit capacitance, hence lowering the dynamic power consumption.
However, there must be a careful balance to ensure that the reduced size does
not adversely affect the performance by increasing the miss rate. Techniques
like way-prediction allow the processor to access only the relevant parts of

Review of the State-of-the-Art 39

a set-associative cache, thus reducing the effective capacitance on a cache
access and also reducing energy consumption [42]. By selectively accessing
the cache, the switching activity is minimized, further reducing dynamic
power.

In some cases, using a scratchpad memory can be more energy-efficient
than using traditional caches [43]. Scratchpad memory is a programmer-
managed memory structure, where programmers explicitly control what data
is placed in the scratchpad. While this requires more effort, it can lead to
very efficient usage of the memory space, which can be more power-efficient
in certain applications. In contrast, caches are managed by hardware and
work transparently to the programmer. While they offer ease of use, caches
may include inefficiencies such as unnecessary data being loaded and power
consumed due to cache coherence mechanisms. In certain energy-critical
applications, a well-managed scratchpad can offer more precise control and
can be more energy-efficient than a cache. However, this comes at the cost
of increased programming complexity.

In conclusion, energy-efficient processor design is essential for meet-
ing the ever-increasing demand for power-conscious computing solutions.
The techniques mentioned above, along with continuous advancements in
semiconductor technology, play a crucial role in achieving optimal energy
efficiency while maintaining high-performance computing capabilities. By
leveraging these techniques intelligently and considering the specific require-
ments of target applications, designers can develop processors that strike
an optimal balance between performance and energy efficiency, driving the
progress of power-conscious computing in diverse domains.

2.3 Review of Optical Gas Sensors and their Applications

The development and widespread adoption of gas sensors have ushered
in a new era of environmental monitoring and safety across diverse in-
dustries [44]–[48]. Among the myriad sensing technologies, optical gas
sensors have garnered significant attention due to their exceptional accuracy,
sensitivity, and selectivity. These sensors harness the principles of light
absorption to quantify the concentration of specific gases, opening avenues
for various applications in industrial processes, environmental monitoring,
and healthcare [49]–[51].

This section presents a comprehensive review of optical gas sensors
and their applications. Through a detailed exploration of the underlying
principles and the diverse sensor types available, we aim to shed light on

40 Review of the State-of-the-Art

the cutting-edge advancements that drive the efficacy of optical gas sensing
technologies in a broad spectrum of real-world scenarios.

2.3.1 Working Principle (Beer-Lambert Law)

The Beer-Lambert law, also known as the Beer-Lambert-Bouguer law, is a
fundamental principle in optical gas sensing that enables the quantification
of gas concentration based on the attenuation of light passing through a
gas sample [52]–[56]. The law is expressed as:

A = α · L · c (2.7)

Where:

• A represents the absorbance of light by the gas sample. It measures
how much incident light is absorbed when it travels through a medium.

• α denotes the molar absorptivity, a constant specific to the gas be-
ing measured, indicating its ability to absorb light at a particular
wavelength.

• c stands for the concentration of the gas in the sample in ppm.

• L refers to the optical path length, which represents the distance the
light travels through the gas.

The Beer-Lambert law provides a direct relationship between the ab-
sorbance and the concentration of a gas, allowing accurate determination
of gas concentrations through spectrophotometric measurements. In the
context of CO2 concentration measurement, the law plays a pivotal role in
the operation of optical CO2 sensors.

We need to introduce the concept of transmittance T , which together
with absorbance, are two related but different quantities used in spectrom-
etry. The main difference between absorbance and transmittance is that
absorbance measures how much of an incident light is absorbed when it
travels through a material while transmittance measures how much of the
light intensity is transmitted. Due to the way they are defined, the two are
not complementary quantities, that is, adding transmittance to absorbance
directly does not give the total incident light.

The mathematical interrelation between transmittance and absorbance
is articulated in the subsequent expression:

Review of the State-of-the-Art 41

T = I

I0
= e−A = e−α·L·c (2.8)

where transmittance T is a unitless quantity defined as the ratio of the
transmitted light’s intensity I to the incident light’s intensity I0. From
Equation 2.8 we can derive the gas concentration c as:

c = ln(I/I0)
−α · L

(2.9)

To calculate the gas concentration, the sensor system relies on the
absorption of infrared light at specific wavelengths that correspond to
the CO2 absorption bands. The photodiode detects the intensity of light
transmitted through the gas sample and generates an electrical signal
proportional to it. This signal is used to determine the transmittance,
defined as the ratio of the transmitted light intensity I to the incident light
intensity I0, where I0 is obtained during a calibration process with a known
concentration of CO2. By knowing the molar absorptivity α of CO2 at those
specific wavelengths and the optical path length L, the concentration c can
be accurately determined.

Various factors can influence the accuracy of the sensor based on the
Beer-Lambert law:

1. Optical Path Length (L): The length of the optical path within
the gas sample affects the amount of light absorbed. A longer path
length leads to higher absorbance and, consequently, more accurate
concentration measurements.

2. Temperature: Temperature variations can impact the sensor’s per-
formance, especially if the gas sample’s density and pressure change.
Compensation mechanisms are employed to account for temperature
effects.

3. Reference Concentration (Fresh Air - 400 ppm): To ensure
accuracy, many CO2 sensors use fresh air with a known concentration
of CO2 (typically 400 ppm) as a reference point during calibration.

4. Interference from Other Gases: The presence of other gases in the
sample can interfere with the CO2 measurements. Cross-sensitivity to
other gases is a challenge that sensor designers address to maintain
specificity.

42 Review of the State-of-the-Art

5. Wavelength Selection: The choice of specific infrared wavelengths
is crucial to ensure the most significant absorption bands of CO2 are
targeted, optimizing accuracy and sensitivity.

In optical CO2 sensors, the most commonly used infrared wavelengths
are in the mid-infrared (MIR) range, as this is where CO2 exhibits its most
prominent absorption bands. The two main absorption bands for CO2 in
the MIR region are:

• 4.26 μm: this is known as the strong absorption band and is often used
in many CO2 sensors. It provides a significant and distinct absorption
peak that allows for accurate measurements.

• 2.0 μm: this is known as the weak absorption band but is still used in
some CO2 sensors. It provides an additional data point to improve
the accuracy of the measurements.

The choice of these wavelengths depends on the sensor’s design and applica-
tion requirements, and they play a crucial role in achieving high accuracy
and sensitivity in CO2 concentration measurements.

By carefully accounting for these specific wavelengths and the rest of
the factors mentioned above, optical CO2 sensors can achieve precise and
reliable measurements. The Beer-Lambert law’s versatility and robustness
make it a cornerstone of optical gas sensing, enabling applications in a wide
range of fields, from environmental monitoring to industrial process control.

2.3.2 Types of Optical CO2 Sensors and Applications

Optical CO2 sensors are versatile devices used in a wide range of applica-
tions, and their design and performance characteristics vary depending on
specific requirements. There are various classes of optical gas sensors, each
with their unique features and applications. These include Non-dispersive
Infrared (NDIR), Photoacoustic Spectroscopy (PAS), Tunable Diode Laser
Absorption Spectroscopy (TDLAS), and Spectrophotometry [57].

As the name suggests, in an NDIR gas detection system, optical dis-
persion of IR radiation is not needed. Therefore, dispersive elements like
diffraction gratings are absent in these types of sensors, making them simpler
and often more cost-effective. An ample review of NDIR sensors can be
found in [58].

Review of the State-of-the-Art 43

In Photoacoustic Spectroscopy (PAS), a gas sample is exposed to mod-
ulated light, usually from a laser, which it absorbs. The absorbed energy
then causes a localized temperature change, leading to a pressure change
within the gas sample. This pressure change manifests as sound waves,
which are detected to determine the gas concentration. Known for its high
sensitivity and selectivity, PAS is well-documented in the scientific literature,
as indicated by numerous studies [59]–[61].

Tunable Diode Laser Absorption Spectroscopy (TDLAS) employs a
tunable laser diode to scan a narrow wavelength range across an absorption
line of the gas to be detected. The gas concentration is then determined
based on the absorption of the laser light. TDLAS is highly accurate
and can be applied for both trace gas detection and high-concentration
measurements. For more comprehensive insights into the capabilities and
applications of TDLAS, influential works by Werle et al., Lackner, and Li
can be consulted in [62]–[64].

Spectrophotometry involves shining a light through a gas sample and
then measuring the intensity of light absorbed at each wavelength using a
detector. The absorbed wavelengths help identify the types of gas present
and their concentrations. Spectrophotometry is highly versatile but often
requires more complex instrumentation compared to other optical gas sensors.
Each of these optical gas sensor technologies offers different advantages and
trade-offs in terms of sensitivity, selectivity, and complexity, making them
suitable for varied applications. For a deeper understanding and further
comparisons, interested readers may consult the referenced studies [65], [66].

In this study, we will focus on NDIR gas sensors, which are both straight-
forward to implement and highly promising for environmental monitoring.
This is largely because many environmentally significant gases exhibit strong
absorption characteristics in the mid-infrared regime (2.5 μm – 14 μm). This
absorption is due to the fundamental transitions in molecular rotation and
vibration energy states, making it approximately 100 times more effective
than absorption in the near-IR region.

The history of NDIR sensors is relatively recent, tracing its advance-
ments to the development of optical bandpass filters in the 1970s. Since
then, research and interest in this technology have grown steadily. This tech-
nology has earned the trust of the general public, leading to its widespread
application across various sectors—ranging from oil and gas industries
to coal mines, pharmaceuticals, and automobile manufacturing. Initially
mechanical-optical in design, NDIR sensors have evolved into purely elec-
tronic systems, thanks to the integration with low-cost microprocessors.
Modern NDIR sensors offer numerous advantages, including high selectivity,

44 Review of the State-of-the-Art

sensitivity, and low power consumption.

A key consideration in the design and operation of NDIR gas sensors
is the selection of the light source, which typically falls into one of two
categories: broadband sources like lamps and narrowband sources such as
Light-Emitting Diodes (LEDs). Each category presents its own set of unique
advantages and challenges:

Broadband Source (Lamps): Broadband sources emit light across a
wide range of wavelengths. These sources are often based on incandescent
lamps or thermal emitters. One of the main advantages of using lamps is their
broad spectral output, which allows them to measure CO2 concentrations
over a wide range. However, they are sensitive to temperature variations,
and their power consumption tends to be higher compared to narrowband
sources.

Narrowband Source (LEDs): Narrowband sources, particularly
LEDs, emit light at specific wavelengths, precisely tailored to the CO2 gas
absorption bands. LEDs offer advantages such as high spectral purity, low
power consumption, and reduced sensitivity to temperature changes. This
makes them a popular choice for energy-efficient and temperature-stable
CO2 sensors. However, their narrowband nature limits their measurement
range compared to broadband sources.

Applications

Optical CO2 gas sensors serve as crucial tools across a diverse array of
applications, each demanding unique performance criteria. Below are some
key domains where these sensors are making an actual impact:

Indoor Air Quality Monitoring: Within buildings, offices, schools,
and homes, CO2 sensors are commonly used for gauging indoor air quality.
By monitoring CO2 levels, these sensors contribute to optimal ventilation
and air circulation, factors that directly influence the health and comfort of
occupants.

Industrial Process Control: In industrial applications like fermen-
tation, where CO2 production is a key process metric, precise monitoring
is essential. Proper control ensures optimal process conditions, thereby
enhancing efficiency and product quality.

Agriculture and Greenhouses: CO2 sensors are vital in agriculture
and greenhouse environments. Monitoring CO2 levels aids in maintaining
optimal conditions for plant growth, as CO2 plays a significant role in

Review of the State-of-the-Art 45

photosynthesis.

Safety and Environmental Monitoring: These sensors find use in
safety-related applications such as hazard detection in confined spaces and
underground mining. They also contribute to broader environmental efforts,
aiding in air quality assessments and climate change studies.

Vehicle Emissions Testing: CO2 sensors are utilized in vehicle emis-
sions testing to monitor exhaust gas emissions and ensure compliance with
environmental regulations.

Regarding the measurement range for CO2 sensors, the required scope
varies based on the specific application. For indoor air quality monitoring,
sensors usually measure up to 2000 ppm (parts per million). In industrial
settings, however, the need may arise to monitor concentrations that can go
up to several percent (e.g., 0-5%). In our targeted application, our primary
focus lies on ranges suitable for low-power IoT devices that measure CO2
concentrations pertinent to indoor air quality.

2.3.3 Light Source Modulation in NDIR CO2 Sensors and Signal
Demodulation

In NDIR CO2 sensors, the light source used to probe the gas absorption
is often modulated or chopped, employing either mechanical or electronic
techniques. This modulation is crucial to mitigate the impact of thermal
background signals, enhance the signal-to-noise ratio, and ultimately improve
the accuracy and sensitivity of the gas concentration measurement.

Mechanical Chopping: Mechanical chopping involves physically inter-
rupting the light path using a rotating chopper wheel or a vibrating mirror
placed in front of the light source. This causes the light to alternate between
the sensor and a reference path (without the gas sample) at a known fre-
quency. The alternating light signal is then detected by the photodetector,
resulting in a modulated electrical signal.

Electronic Modulation: Electronic modulation is an alternative ap-
proach to achieve the same effect without mechanical components. In this
method, the light source’s current or voltage is modulated at a specific
frequency, generating an intensity-modulated light signal. The modulated
light is then directed towards the gas sample, and the resulting signal is
detected by the photodetector.

46 Review of the State-of-the-Art

Demodulation Process (Asynchronous Quadrature Demodulation)

After the modulated light interacts with the CO2 gas sample, it is detected
by the photodetector as an intensity-modulated electrical signal. The next
step is to demodulate this signal to extract the gas concentration information
accurately.

Asynchronous quadrature demodulation is a widely used technique for
this purpose. It involves processing the modulated signal through a series of
digital filters to separate the in-phase (I) and quadrature (Q) components.
These components represent the real and imaginary parts of the signal,
respectively.

The demodulation process involves multiplying the modulated signal
with a reference sinusoid at the same frequency as the light modulation. This
multiplication results in a pair of signals, I and Q, which can then be low-pass
filtered to remove high-frequency components. The low-pass filtered signals
represent the amplitude and phase of the modulated signal, respectively. A
comprehensive review of demodulation techniques and various applications
can be found in [67]–[69].

From these amplitude and phase components, the gas concentration can
be accurately inferred using the Beer-Lambert law, taking into account the
known characteristics of the sensor, such as the optical path length, gas
absorption coefficient, and reference concentration.

Advantages of Light Source Modulation in CO2 sensors

Light source modulation in NDIR CO2 sensors offers several significant
advantages that improve the accuracy and reliability of gas concentration
measurements. These advantages include:

1. Enhanced Signal-to-Noise Ratio: It reduces the impact of back-
ground noise, resulting in a more accurate and reliable gas concentration
measurement. By separating the desired gas absorption signal from noise
and interference, the sensor can achieve better signal fidelity and higher
sensitivity.

2. Offset of Thermal Background: Modulation enables the system to
distinguish between the gas absorption signal of interest and the thermal
background signals. The alternate reference path or sinusoidal modulation
allows the sensor to accurately isolate the desired signal from temperature-
induced variations, leading to precise gas concentration determination.

Review of the State-of-the-Art 47

3. Reduced Interference: Light source modulation helps to mitigate
interference caused by ambient light variations and external sources. By
modulating the light at a specific frequency, the sensor can filter out un-
wanted external signals, improving the robustness of the measurement in
challenging environments.

4. Improved Sensitivity: It increases the sensor’s sensitivity, enabling
precise measurements even at low gas concentrations. The ability to amplify
and demodulate weak signals enhances the sensor’s detection capabilities,
making it suitable for applications where high sensitivity is essential.

By leveraging these advantages, light source modulation plays a crucial
role in the accurate and reliable measurement of CO2 concentrations in
various applications, including indoor air quality monitoring, industrial
process control, and environmental monitoring. These techniques are widely
adopted in optical CO2 gas sensors, ensuring the accurate monitoring of
CO2 levels for diverse purposes.

Advantages of Digital Demodulation

Using digital demodulation instead of analog demodulation offers several
significant advantages in various applications, especially in the context of
modern electronic systems. Here are some key advantages:

1. Noise Immunity: Digital demodulation is less susceptible to noise and
interference compared to analog demodulation. Digital systems can employ
error correction techniques, filtering, and signal processing algorithms to
effectively reduce the impact of noise and improve the signal-to-noise ratio,
resulting in more accurate and reliable measurements.

2. Flexibility and Configurability: It allows for greater flexibility and
configurability in signal processing. By implementing algorithms in software,
digital systems can easily adapt to different modulation schemes, frequencies,
and signal formats without the need for hardware modifications. This makes
digital demodulation highly versatile and suitable for a wide range of
applications.

3. Ease of Implementation and Debugging: It can be implemented using
software-based algorithms, which are generally easier to develop, test, and
debug compared to complex analog circuits. This simplifies the design
process and reduces development time, making digital demodulation a more
practical and efficient solution.

4. Scalability and Upgradability: It can be easily scaled and upgraded

48 Review of the State-of-the-Art

to accommodate changing requirements or improvements in demodulation
techniques. Software updates can be applied without the need for hard-
ware changes, allowing for seamless upgrades and advancements in the
demodulation process.

5. Cost-Effectiveness: It can be more cost-effective than analog demod-
ulation in many cases. Digital signal processing components are often more
affordable and readily available, and the use of software-based algorithms
reduces the need for specialized analog hardware components.

6. Signal Analysis and Post-Processing: Digital demodulation provides
more opportunities for signal analysis and post-processing. Digital data can
be easily stored, analyzed, and visualized, allowing for in-depth examination
and extraction of valuable information from the demodulated signals.

8. Adaptive and Intelligent Processing: It allows for the implementation
of adaptive and intelligent processing techniques. Advanced algorithms can
adapt to changing signal conditions, optimizing demodulation parameters
in real-time for improved performance.

In summary, digital demodulation offers superior noise immunity, flexi-
bility, ease of implementation, and scalability compared to analog demodu-
lation. These advantages make digital demodulation the preferred choice in
many modern electronic systems, ranging from communication systems and
wireless technologies to sensor applications and signal-processing tasks.

2.3.4 Review of Wireless Sensor Network Nodes for CO2 Sensing

Wireless Sensor Network (WSN) nodes, also known as sensor motes, play a
crucial role in environmental monitoring and data acquisition. These com-
pact and integrated devices combine sensors and microprocessors, enabling
them to monitor various environmental conditions or physical systems. One
of the key advantages of WSN nodes is their ability to perform on-edge
computing, which reduces the need to transmit large volumes of raw data
to centralized data centers. Instead, the onboard processor in a WSN node
performs preliminary data processing and filtering, sending only relevant
and preprocessed information to the data center.

As depicted in Figure 2.1, a typical wireless sensor node consists of four
main components: a sensor, a microprocessor, a radio transceiver, and a
power supply. The sensor is responsible for capturing specific environmental
parameters, such as CO2 concentration, temperature, humidity, or light
intensity. The microprocessor handles data processing tasks, enabling local
decision-making and reducing the power consumption associated with data

Review of the State-of-the-Art 49

transmission. The radio transceiver facilitates wireless communication
between sensor nodes and enables the formation of a self-organizing network.
Finally, the power supply provides the necessary energy to operate the
sensor node, and power efficiency is a critical consideration in WSN design.

Figure 2.1: Basic components of a wireless sensor node in a WSN

WSNs are infrastructure-less networks1, often deployed in an ad hoc
manner, where a large number of wireless sensor nodes collaboratively
monitor the physical or environmental conditions of interest. These net-
works find widespread applications in various fields, including environmental
monitoring, agriculture, industrial process control, smart buildings, and
healthcare.

In the context of CO2 sensing, WSN nodes equipped with CO2 sensors
hold significant promise for various applications. They can be deployed in
indoor environments to monitor air quality, allowing for timely interventions
to improve ventilation or reduce CO2 levels. In outdoor scenarios, WSN
nodes can be used to assess carbon dioxide emissions from industrial facilities,
urban traffic, or natural sources, aiding in environmental studies and climate
research. Additionally, the ability of WSN nodes to operate in remote and
challenging environments makes them suitable for monitoring CO2 levels in
areas with limited accessibility, such as forests or wildlife habitats.

Furthermore, the data collected by WSN nodes can be transmitted
to a central Base Station, which acts as the processing unit in the WSN

1Ad hoc Networks, or Infrastructure-less Networks, are comprised of independent
terminals that communicate with each other by forming a radio network. Wireless
networks typically have lower bandwidth compared to wired networks. In such networks,
each node acts as a router, and the network connection is distributed among nodes.

50 Review of the State-of-the-Art

system. The Base Station aggregates data from multiple nodes and, in
some cases, performs additional processing before forwarding the relevant
information to cloud-based servers through the Internet. This architecture
allows for scalable data management and real-time access to the monitored
parameters.

Related Work on WSN Nodes

There have been several surveys and comparative studies on wireless sensor
nodes [70]–[74] published after the inception of the RISC-V project in
2010. These studies provide an overview of numerous commercial and
academic wireless sensor nodes, commonly referred to as sensor motes, and
offer comparisons based on components, technologies, platforms, and other
relevant parameters. In examining these surveys, it becomes evident that
the processors employed in commercial nodes are predominantly based on
RISC architectures, ranging from 8-bit processors like ATMega128 to 32-bit
processors such as ARM Cortex M3, which is widely utilized [72].

Interestingly, none of the surveys mentioned above make reference to
devices based on RISC-V processors, despite RISC-V being an emerging
architecture with substantial potential, particularly in microcontroller de-
sign—a domain that currently witnesses significant RISC-V developments.
Notwithstanding the ecosystem around RISC-V not being entirely mature,
there are notable System-on-Chip (SoC) designs based on RISC-V specif-
ically tailored for low-power IoT edge processing. Many of these designs
have emerged after 2018 and are the work of the same research group at the
University of Zürich (ETH). Notable examples include GAP-8 [75], Mr.Wolf
[76], and Arnold [77]. These innovative RISC-Vbased SoCs represent a
progressive trend in the domain of wireless sensor nodes and underscore the
increasing relevance of RISC-V in this field.

Energy efficiency stands as the most critical concern for battery-powered
Wireless Sensor Network (WSN) nodes. The processors highlighted in the
aforementioned surveys are commercial cores whose source codes or schemat-
ics remain inaccessible to users. Consequently, modifying the microprocessor
or the hardware architecture becomes unfeasible, leading to limited scalabil-
ity of such sensor nodes. On the other hand, proprietary soft-core processors
demand substantial license fees, creating financial barriers for designers.

In contrast, open-source ISAs like RISC-V offer the prospect of creative
designs, empowering designers to implement optimal architectures tailored
to specific applications. This advantage extends further, enabling straight-
forward modifications to reuse the same core as the application evolves.

Review of the State-of-the-Art 51

Thus, the realization of an energy-efficient and scalable wireless sensor node
utilizing 32-bit RISC-V-based open cores becomes an attainable goal. The
inherent flexibility and openness of RISC-V pave the way for innovation
and optimized designs, presenting an attractive solution for developing
next-generation WSN nodes.

Regarding the hardware platforms employed in WSN nodes, a plethora
of systems exist, encompassing microcontrollers, FPGA/SoPC, DSP, ASIC/-
SoC, MPSoC, MPPSoC, or hybrid platforms. In this context, Vieira et al.
were pioneers in their 2003 survey [78], proposing the use of FPGA as a plat-
form to address architectural challenges arising from emerging applications.
These challenges encompass computational power, energy consumption,
energy sources, communication channels, and sensing capabilities.

For instance, some FPGA-based sensor motes leveraging 32-bit soft-
core processors are described in [79], where an OpenRISC 1200 processor
is employed, and in [80], where a Xilinx MicroBlaze processor is used
for vibration analyses in industrial machines utilizing FFT. These FPGA-
based solutions offer a versatile and flexible approach, allowing designers to
tailor the hardware architecture to the specific demands of the application,
thereby enhancing performance, energy efficiency, and adaptability. As
WSN technology continues to advance, exploring and innovating with diverse
hardware platforms, including FPGA-based implementations, remains a
promising avenue for further improvement and optimization.

Therefore, we believe that an FPGA platform for a RISC-V-based
WSN node is a highly suitable choice, as it offers fast prototyping, high
performance, and exceptional flexibility in both hardware and software
implementations. Moreover, new FPGA vendors now provide very low-
power FPGAs [81], which have already been successfully implemented in
low-power WSN nodes, such as HaLoMote [82]. This combination of features
makes FPGA-based solutions well-suited for WSN applications, enabling
designers to efficiently explore and optimize their designs while meeting the
stringent requirements of energy efficiency and performance demanded by
battery-powered wireless sensor nodes.

In summary, advancements in WSN nodes, especially in sensor technol-
ogy, power efficiency, and data processing, are pivotal for the success of
CO2 sensing applications. These nodes are key to addressing environmental
challenges and promoting sustainable development, making research in this
area extremely important given the extensive applications of WSNs across
various fields.

Chapter 3
Processor Development and
Evaluation Methodology

In this chapter, we delve into the methodology adopted to achieve the
objectives of this industrial-oriented work. The emphasis here is not merely
on academic exploration but also on delivering practical, energy-efficient
processor designs that could be deployed in real-world applications.

We provide a thorough review of the processor’s design process, touching
on various aspects and techniques that contribute to its energy-efficient
performance. We will navigate through the design space, meticulously
examining different options and considerations to optimize the processor’s
architecture.

Moreover, we identify the benchmark application that serves as a testbed
for assessing the real-world performance of the designed processor. Special
attention will be given to algorithmic tweaks and optimizations that bring
the performance closer to industrial application requirements. Following
this, the chapter discusses how this custom-designed processor is integrated
into the PULPino SoC, along with the validation of results obtained from
RTL simulations. Additionally, power analysis and energy consumption
estimations will be conducted to assess the processor’s energy efficiency.

Overall, this chapter offers a comprehensive guide to the design-oriented
and practical methodology employed throughout this study, giving detailed
insights into the processor’s design, operational efficiency, and energy met-
rics.

53

54 Processor Development and Evaluation Methodology

3.1 Review of the Design Process for our Custom Low-
Power Processor

In this section, we provide a comprehensive review of the custom-designed
processor architecture tailored for energy efficiency. The processor was
thoroughly crafted to meet the specific requirements of our target application,
which involves measuring CO2 concentrations in the ambient environment.

The design process of our custom low-power processor commenced with
a self-contained approach, where we focused on developing a processor and
memory-only system. This minimalistic design was aimed at understanding
the intricacies of the processor architecture without the complexities intro-
duced by peripheral devices or memory hierarchies. By starting with this
simple setup, we could gain deep insights into the processor’s behavior and
performance characteristics.

Then we proceeded with a meticulous exploration of the RISC-V ISA,
aiming to understand its intricacies and develop insights for efficient pro-
cessor design. Initially, we adopted a single-cycle design approach, which
provided a valuable understanding of the instruction set and its associated
complexities. A single-cycle processor design, also known as a single-cycle
architecture, is a simple and straightforward implementation of a processor
where each instruction is executed in a single clock cycle. Basically, all the
required steps of instruction fetching, decoding, executing, and memory
access are completed within one clock cycle. This approach allowed us to
gain familiarity with the RISC-V architecture, enabling us to experiment
with different optimizations to enhance energy efficiency.

In addition, in this self-contained design, we bypassed the incorporation
of a memory hierarchy, opting for a flat memory model that accessed
the single memory module directly, as in a sort of scratchpad memory.
The benchmark program, sample data set and lookup tables required to
calculate sine and cosine functions are all stored in this predictable and
straightforward memory space. This decision allowed us to focus solely on
the processor’s functionality and performance, disregarding the intricacies
associated with memory caching and hierarchy management.

Furthermore, our design targeted a purely embedded application, elim-
inating the need for an operating system. By designing the processor to
operate in a standalone manner, we could eliminate the overhead associated
with running an operating system, which is common in more complex com-
puting systems. This allowed us to allocate more resources and attention to
optimizing the processor’s core functionality and energy efficiency.

Processor Development and Evaluation Methodology 55

As the design evolved, we progressed to a pipelined architecture, recog-
nizing the numerous advantages it offers for low-power processors. Pipelining
allows the processor to execute multiple instructions simultaneously, greatly
improving performance while keeping power consumption in check. By
breaking down the instruction execution into multiple stages, we could
achieve higher throughput while still maintaining low power consumption.

The number of pipeline stages plays a crucial role in striking a balance
between performance and energy efficiency. Each pipeline stage introduces
latency and has its associated trade-offs. In general, more stages can lead to
better performance because it allows for more parallelism. However, there is
a trade-off between performance and complexity. A larger number of stages
can increase the complexity of the processor and introduce more hazards
and data forwarding complexities and potentially could lead to higher energy
consumption due to increased register file accesses. The optimal number of
stages depends on the specific application and design goals.

In our initial design, we chose to employ the classic 5-stage RISC pipeline,
which is a fundamental and well-established approach in RISC (Reduced
Instruction Set Computer) architectures. The 5-stage pipeline includes the
stages of instruction fetch, instruction decode, execution, memory access,
and write-back and some examples of RISC processors that use this pipeline
are MIPS, SPARC, and Motorola 88000. This design decision was made for
several reasons.

Firstly, the classic RISC pipeline offers a straightforward and structured
way to organize the execution of instructions, making it an excellent starting
point for academic purposes and learning about computer architecture
and processor design. Secondly, by using this pipeline, we can efficiently
explore and understand the core concepts of RISC architectures, such as
instruction-level parallelism and data hazards. This understanding is crucial
as we progress to more sophisticated pipeline designs and optimizations.

3.1.1 Initial Support for the Base ISA RV32I

In designing our custom low-power processor, we took a practical and
incremental approach. We started with a single-cycle design, initially
focusing on simple logic and arithmetic instructions from the RV32I ISA.
Then, we proceeded to implement more complex operations such as loads,
stores, and conditional jumps. This step-by-step incorporation allowed us
to verify the core’s functionality in a controlled environment, without the
complexity of more advanced features. Once we successfully implemented
the complete set of RV32I base instructions, we elevated the design by

56 Processor Development and Evaluation Methodology

adding pipeline stages to enhance performance and throughput.

With a stable and functional pipelined architecture in place, we then
turned our attention to extending the processor’s capabilities. We added
support for various ISA extensions by incorporating new hardware elements,
such as specialized functional units for integer multiplication and division,
and for floating-point operations. Each new feature was integrated carefully,
ensuring both compatibility and performance gains at each development
stage.

By starting with the RV32I ISA and a single-cycle design, we laid a strong
foundation that made it easier to iteratively develop, test, and optimize our
processor. This approach, aligned with the philosophy of RISC-V’s modular
and scalable design, not only simplified verification but also provided a
clear pathway for future enhancements and specialization. Additionally,
supporting the base ISA RV32I allowed us to evaluate the performance and
energy efficiency of our processor in its simplest form. This early assessment
served as a valuable baseline to measure improvements achieved through
subsequent optimizations and extensions.

While our initial design is based on a conventional RISC pipeline, we
acknowledge that contemporary processors often utilize deeper pipeline
stages to improve both performance and energy efficiency. Due to time
constraints, the evaluation of the benefits of adding more pipeline stages on
energy efficiency has been set aside for future work.

3.1.2 The Classic 5-stage RISC Pipeline

The classic 5-stage RISC pipeline is a fundamental architecture widely
used in many RISC processors, and is comprehensively described in the
seminal book by Patterson and Hennessy [83]. This architecture divides
the instruction execution process into five distinct stages, each responsible
for a specific task. By doing so, the pipeline enables multiple instructions
to be processed concurrently, thereby enhancing the processor’s overall
performance and efficiency.

The five stages of the classic RISC pipeline are as follows:

1. Instruction Fetch (IF): In this stage, the processor fetches the instruc-
tion from memory using the program counter (PC) as the address. The
PC is then incremented to point to the next instruction in memory. The
instruction fetched from memory is the one that will be executed in the
subsequent stages of the pipeline.

Processor Development and Evaluation Methodology 57

2. Instruction Decode (ID): In the ID stage, the fetched instruction is de-
coded to determine the operation to be performed and the operands involved.
The processor identifies the type of instruction (e.g., arithmetic, load/store,
branch) and extracts the necessary information from the instruction.

3. Execution (EX): The execution stage is where the actual operation
specified by the instruction is performed. This includes arithmetic operations
(e.g., addition, subtraction), logical operations (e.g., AND, OR), and other
computations. For arithmetic operations, the ALU (Arithmetic Logic Unit)
is responsible for carrying out the computations.

4. Memory Access (MEM): In the MEM stage, memory-related opera-
tions are performed, such as loading data from memory (load) or storing
data to memory (store). If the instruction is a load, the data is fetched from
memory and made available for the next stage. If it is a store, the data is
written to the specified memory address.

5. Write-Back (WB): In the final stage, the results of the execution are
written back to the appropriate register file or memory, depending on the
instruction type. For arithmetic operations, the results are typically stored
in a register. For load instructions, the loaded data may be written back to
a register, while store instructions do not produce any results for write-back.

The classic 5-stage RISC pipeline allows each stage to be dedicated to a
specific task, resulting in a simplified and streamlined instruction execution
process. It facilitates pipelining, where multiple instructions are in different
stages of execution simultaneously. This pipelining enables high instruction
throughput and improved performance.

However, the classic pipeline is not without challenges. Data hazards,
control hazards, and structural hazards may arise due to dependencies
between instructions or due to conflicts in accessing shared resources. These
hazards need to be managed effectively to ensure correct and efficient
execution of instructions.

Despite its simplicity, the classic 5-stage RISC pipeline serves as the
basis for more complex and optimized pipeline designs used in modern
processors. It provides a solid foundation for understanding the principles
of pipelining, which is crucial for developing energy-efficient and high-
performance processors for various applications.

58 Processor Development and Evaluation Methodology

3.1.3 Processor Pipeline Hazards and Optimizations

In a pipelined processor, hazards are situations where the proper execution
of instructions is hindered due to conflicts arising from the concurrent nature
of the pipeline stages. These hazards can lead to incorrect results and stall
the pipeline, reducing the processor’s efficiency. The three primary types of
pipeline hazards are:

1. Data Hazards: Data hazards occur when an instruction depends
on the result of a previous instruction that has not yet completed its
execution. This creates a conflict as the subsequent instruction requires
the data produced by the preceding one. Data hazards can be addressed
through techniques like data forwarding (also known as data bypassing)
or stalling the pipeline until the required data is available. Data forwarding
forwards the necessary data from the execution stage to the instruction that
needs it, reducing the stalls and improving performance.

2. Control Hazards: Control hazards arise from conditional branches
and jumps. When a branch instruction is in the execution stage, the target
address of the branch is not known yet. If the branch is taken, the instruction
fetch stage needs to be redirected to the new target address, leading to a
pipeline flush. Techniques like branch prediction and delayed branching
can mitigate control hazards by speculatively predicting the outcome of
branches and avoiding pipeline flushes.

3. Structural Hazards: Structural hazards occur when multiple instruc-
tions require access to the same hardware resource simultaneously. For
example, if two instructions want to access the memory at the same time, a
structural hazard arises. This can be resolved by resource duplication or
careful scheduling of instructions to avoid resource conflicts.

To tackle data hazards, we implemented data forwarding techniques
whenever possible, ensuring that the data needed for instruction execution
is available in the subsequent stages without introducing unnecessary stalls.
This approach reduced pipeline bubbles (or NOPs - no operation instructions
used to introduce delays or fill empty pipeline stages when no useful work
is being done) and helped to enhance the overall efficiency of the processor.
In other cases, for example, functional units that require several cycles to
produce results (e.g., integer division), we chose to stall the pipeline until
we obtained the result.

Another improvement in our design involved incorporating a dedicated
comparator in the ID stage to handle branch instructions and mitigate
control hazards. To enhance branch prediction efficiency, we adopted a

Processor Development and Evaluation Methodology 59

"not taken" prediction scheme. With this modification, we succeeded in
reducing the branch penalty by one clock cycle when the branch is taken. In
conventional designs, the branch decision comparison is usually performed
in the ALU on the subsequent stage (EX), resulting in an additional cycle
delay. By introducing a specialized comparator, we effectively eliminated
this penalty and significantly improved the overall performance of branch
instructions.

3.2 Hardware/Software Design Space Exploration of the
Processor

The hardware/software design space exploration of the processor involved a
careful and iterative process aimed at optimizing energy efficiency and per-
formance while meeting the specific requirements of the target applications.
This exploration covered both hardware and software levels and included a
wide range of design choices and configurations.

The primary goals of the design space exploration were to identify the
most efficient configurations for the processor, considering factors such as
the use of floating-point or fixed-point arithmetic, the adoption of specific
RISC-V ISA extensions, and the incorporation of hardware accelerators. The
exploration aimed to achieve a harmonious balance between performance,
energy efficiency, and application-specific requirements.

Hereafter, the comprehensive list of actions undertaken in our design
space exploration is presented, broadly categorized into optimizations at
the hardware level and optimizations at the software level.

3.2.1 Optimizations at Hardware Level

Exploration of RISC-V Standard Extensions and Specialized Func-
tional Units At the hardware level, we conducted extensive experiments
to explore various options for enhancing the processor’s capabilities. One
such experiment involved incorporating the M standard extension, which
enabled dedicated integer multiplication (MUL) and division (DIV) func-
tional units, thereby significantly improving integer arithmetic performance.
For the RTL description of the integer division module, we employed the
standard long division algorithm [84], which takes one cycle per bit, resulting
in 32 cycles to perform an integer division operation.

Furthermore, to facilitate floating-point operations, we integrated the F

60 Processor Development and Evaluation Methodology

standard extension, allowing for physical support for floating-point arith-
metic. The integration involved incorporating the Floating-Point Unit (FPU)
in the EX stage of the processor pipeline. To achieve this, we utilized the
FPnew [85] open-source IP, developed by the Digital Circuits and Systems
Group at ETHZ (PULP Team). FPnew is a parametric floating-point unit
that supports both standard RISC-V formats and operations, as well as
transprecision formats. It is implemented in SystemVerilog, successfully
integrated into our low-power processor pipeline, and thoroughly verified.

The addition of these standard extensions yielded significant benefits,
as evidenced by the reduction in the number of instructions required by the
benchmark algorithm during program compilation. This reduction, in turn,
resulted in improved runtime performance and reduced energy consumption,
aligning with our objectives of optimizing energy efficiency and achieving
enhanced processor capabilities.

Exploration of DSP Slices Utilization To further bolster computa-
tional capabilities, we also explored the possibility of leveraging FPGA
Digital Signal-Processor (DSP) slices to improve the efficiency of the MUL
unit and the fused multiply-add (FMA) operation in the FPU unit. To
achieve this, we utilized the DSP48E1 slice available in Xilinx FPGAs [86]
for the integer multiplication unit. This operation requires only one clock
cycle, and we had the option to pipeline the slice if desired. To guide
Vivado in using either the DSP48E1 slices or the FPGA logic in the multipli-
ers, we inserted the directive (* use_dsp48 = "yes/no" *) in the Verilog
description of the multiplier module. Through our experimentation, we
observed that the use of specialized DSP slices contributed to an average
30% reduction in power consumption, as evidenced by the results obtained
from the conducted experiments.

Elimination of Logic Related to Unused Instructions As part of
our energy optimization efforts, we conducted a thorough analysis of the
code to identify and remove unused ISA instructions, thereby eliminating
unnecessary circuitry. This analysis was facilitated by a specialized tool
developed by D. Castells, further details of which can be found in [87].

Specifically, as a result of this analysis, we targeted shifts and compar-
isons associated with the sra (arithmetic right shift) and slt[i] (signed
compare [with immediate]) instructions. Additionally, we removed logic re-
lated to the management of Control and Status Registers (CSRs), including
the csrrw[i] (swap values in the CSRs and integer registers), csrrs[i]
(read and set bits in CSR), and csrrc[i] (read and clear bits in CSR)

Processor Development and Evaluation Methodology 61

instructions. To maintain a minimal design, the CSR was retained with
only two registers: mcycle, the machine cycle counter, and minstret, the
machine instructions-retired counter. These registers are essential for per-
formance measurements and calculating the Instructions per Cycle (IPC)
metric of the processor.

Certainly, the list of instructions mentioned above is derived from the
analysis conducted on the code generated by the specific compiler utilized in
our study. Additionally, it is essential to note that the list of instructions may
vary depending on the characteristics and requirements of the application
being considered. Different applications may have distinct sets of instructions
that are utilized or remain unused, impacting the final list of instructions
identified for removal during the design process.

By removing the logic associated with these unused instructions, we
achieve a significant reduction in the utilization of FPGA resources, as
will be further discussed in Chapter 4, dedicated to the presentation and
analysis of the obtained results.

Eliminating Support for Misaligned Memory Access In addition
to removing logic associated with unused instructions, we also explored
the impact of eliminating support for misaligned memory accesses in the
Load-Store Unit (LSU), seeking to reduce resource utilization without
compromising performance. Misaligned memory accesses refer to situations
where a data item spans across multiple memory locations that are not
aligned on natural boundaries (e.g., accessing a 32-bit value that starts at an
address not divisible by four). Applications that deal with data structures
that are not naturally aligned can benefit from misaligned memory accesses.
These applications often involve complex data formats or structures that
require data to be accessed across multiple memory locations, with each
memory location not aligned to its natural boundary. Examples of such
applications include image and multimedia processing, compression and
encryption algorithms, and graphics rendering.

While the RISC-V ISA does not impose restrictions on microarchitecture,
chip designers have the freedom to choose whether to support misaligned
memory accesses or not. Nonetheless, the ISA defines a trap mechanism
to emulate these accesses in software, albeit with a time penalty. In our
case, since our application does not necessitate access to complex data
structures, we chose to remove support for misaligned memory accesses in
our LSU. This decision was driven by the significant benefits observed in
FPGA resource utilization upon eliminating this logic, making it an efficient
trade-off for our specific design requirements. By focusing on aligning the

62 Processor Development and Evaluation Methodology

processor’s features with the application’s needs, we could achieve a highly
optimized and specialized processor for our target use case.

Implementation of the Extensions E and Zfinx Furthermore, we
carefully considered the adoption of the standard RISC-V ISA extensions
E and Zfinx to harness their potential for improved energy efficiency and
resource utilization. The E extension, tailored for embedded systems, offers
a smaller and more energy-efficient alternative to the standard RISC-V ISA.
Similar to the I extension, the E extension features a smaller register file
and can be used in conjunction with other RISC-V extensions.

On the other hand, the Zfinx extension provides instructions for floating-
point operations in integer registers, which are not available in the base
RISC-V ISA. It serves a wide range of applications, including machine learn-
ing, scientific computing, and embedded systems. Additionally, adopting
the Zfinx extension conferred an extra advantage. Upon inspecting the
compiled code, we observed that no integer multiplication or division was
executed since these operations were efficiently realized in single-precision
floating-point by the FPU. Consequently, this enabled the removal of the M
extension and its specific instructions, namely mul (signed multiplication,
write lower 32-bits), mulh[u|su] (signed [unsigned|signed×unsigned], write
upper 32-bits), div[u] (signed [unsigned] division), and rem[u] (signed
[unsigned] remainder), further optimizing the processor design for energy
efficiency and reducing resource utilization.

Reduction of the Register File The integer register file x underwent
strategic modifications due to the integration of the E extension, specifically
designed for embedded applications, leading to a substantial reduction in
its size from 32 to 16 registers.

Additionally, the F extension typically uses a separate set of f registers
for floating-point computations, primarily aimed at alleviating register
pressure in wide superscalar processors that execute multiple instructions per
cycle in parallel to achieve higher performance. However, in our simplified
RISC-V implementation, adopting the Zfinx extension substantially reduces
the implementation cost by eliminating the whole floating-point f register file,
resulting in optimized resource utilization and improved energy efficiency.

Overall, through these carefully implemented optimizations, the register
file size was effectively reduced by a factor of 1/4 compared to a conventional
RV32IMF implementation.

Processor Development and Evaluation Methodology 63

3.2.2 Optimizations at Software Level

Floating-point vs. Fixed-point Emulated Support During the
software-level optimization phase, we thoroughly examined the advantages
of using fixed-point versus floating-point representations, both with emulated
support. For the floating-point representation, we utilized the emFloat C
runtime library developed by SEGGER [88], while the fixed-point support
was implemented using a C++ template class created by P. Schregle [89].

In our investigations, we found that when emulating these number
representations in the design versions supporting RV32I and RV32IM, the
fixed-point representation outperformed the emulated floating-point version
by a factor of 4 in terms of execution time and total energy consumption.
However, an interesting outcome emerged when we introduced the FPU in
the RV32IMF processor version. The hardware-integrated FPU significantly
outperformed the software-emulated fixed-point approach, reducing both
the execution time and energy consumption by a substantial factor of 2/5.

Consequently, based on these comparative results, we concluded that the
use of the fixed-point support in software was not as efficient as incorporating
the FPU directly into the pipeline of our custom processor. As a result, we
decided to proceed with the exploration of the FPU-integrated design for
its superior performance and energy efficiency gains.

Look-Up-Table-Based Trigonometric Functions Another crucial
aspect of software optimization involved exploring different strategies for
trigonometric computations and comparing the advantages and drawbacks of
using trigonometric functions versus employing Look-Up-Tables (LUTs). To
achieve this, we created a file containing pre-calculated values of a full sine
and cosine wave, which was then included during compilation with the rest of
the application files. Since our benchmark application assumes a modulation
frequency of 128 Hz and a sampling rate of 16,384 samples per second (128
times 128), the file comprises an array of 128 pre-calculated points for both
the sine (in quadrature component) and cosine wave (in-phase component)
with a frequency equal to the modulation frequency, i.e., 128 Hz. These
arrays are accessed circularly by the application, effectively functioning as a
look-up table, and are multiplied point-wise with the sampled signal from
the CO2 sensor to filter out undesired frequency components.

By opting for LUTs instead of making calls to trigonometric functions
provided by the standard library, we achieved significant improvements. For
instance, in the RV32EM_Zfinx processor version, we observed a reduction in
the number of instructions by a factor of 1/20, along with a remarkable 1/25

64 Processor Development and Evaluation Methodology

reduction in energy consumption. The utilization of LUTs as a mechanism
for trigonometric computations has proven highly effective, significantly
enhancing both performance and energy efficiency in our target application.

3.2.3 Final Processor Design: RisCO2

The culmination of our iterative hardware/software design space exploration
efforts yielded the realization of our custom RISC-V processor, which we
have named RisCO2 to reflect that it has been tailored for low-power
embedded systems in CO2 concentration measurements.

The ultimate version of RisCO2 presents a 5-stage, single-issue, in-
order processor based on the RV32E_Zfinx instruction set. Our primary
focus throughout the design process was to optimize for energy efficiency,
making it ideal for integration into NDIR CO2 sensors that require signal
demodulation to infer gas concentration.

IF
ID

ID
EX

EX
MEM

RisCO2 core

GPR

DI

rB
rA DA

DB
DCrC

ALUOpB
OpC

RD
OpA

FPU
OpA
OpB RD
OpC

data_wdata_o

data_addr_o
data_rdata_i

ins_addr_o

ins_rdata_i

PCEN

instr

MEM
WB

LSU
+

OpB
OpC

OpA
ADMEM
ADEX

ad_ex ad_mem

IMM
GEN

rdata

alu

lui

Hazard Unit

stall_pc

Control Unit

Func7
OpCode

Func3

CSR
mcycles
minstret

pc
instr

Commit
 Unit

stall_pc

st
al

l_
pc

Figure 3.1: Simplified block diagram of the RisCO2 core architecture
showing its five pipeline stages and all functional blocks.

The simplified block diagram of the core is depicted in Figure 3.1,
illustrating the RisCO2 pipeline composed of five stages through which
instructions pass during execution. These stages are Fetch (IF), Decode
(ID), Execute (EX), Memory (MEM), and Writeback (WB).

In the IF stage, instructions are fetched from memory and stored in an
instruction register. The ID stage then decodes the instruction in the Control
Unit, identifies operands, and retrieves them from the General Purpose
Register File (GPR). To address potential instruction dependencies, a
Hazard Unit is employed, which detects and resolves hazards. This involves

Processor Development and Evaluation Methodology 65

inserting pipeline bubbles or forwarding data between stages, ensuring
accurate execution order and error-free operation.

A notable enhancement in the Control Unit is the inclusion of a dedicated
comparator for branch instructions. This addition allows for earlier detection
of branch outcomes and reduces latency in case a branch is taken. In
situations where a branch is taken, the processor only needs to flush one
instruction upon misprediction. This is achieved by inserting a bubble or
no-operation instruction in the EX stage. The presence of the dedicated
comparator contributes to improved branch performance and mitigates
potential performance penalties associated with branch mispredictions.

Within the EX stage, the Arithmetic-Logic Unit (ALU) performs basic
integer arithmetic and logic operations, while the FPU handles floating-
point operations such as addition, subtraction, multiplication, division,
square root, and FMA on single-precision (32-bit) floating-point numbers.
Notably, the FPU exhibits varying latency depending on the operation,
often spanning multiple cycles. To maintain correct program execution, the
unit includes an output to stall both the program counter (PC) and the
pipeline when needed.

In the MEM stage, data is read from or written to memory via the Load
Store Unit (LSU). The Control and Status Register Unit (CSR) contains
only two registers, namely mcycle and minstret, utilized for performance
measurements.

Lastly, the WB stage handles writing the operation results back to
the registers. The Commit Unit verifies when an instruction has reached
the final pipeline stage, and its output is used to increment the minstret
counter in the CSR.

The RisCO2 processor’s final iteration showcased significant enhance-
ments in energy efficiency and performance, making it ideally suited for
real-world deployment in low-power optical gas sensors designed to measure
CO2 concentrations. These results not only fulfill the objectives of our
industry-focused project but also contribute to academic discourse. An
initial investigation into our design space exploration, specifically the per-
formance metrics and results achieved during the early design iterations
leading up to RisCO2, was published in a conference paper available on
IEEE Xplore [90]. Building on that foundational work, our findings and the
detailed description of the RisCO2 processor were further elaborated in a
scholarly journal publication entitled "RisCO2: A Customized RISC-V Pro-
cessor for Low-Power Optical CO2 Sensors." This latter article was featured
in Micromachines [91], an international, peer-reviewed, open-access journal

66 Processor Development and Evaluation Methodology

on the science and technology of small structures, devices, and systems,
published monthly online by MDPI.

Summary of Architectural Explorations and Improvements

To sum up, throughout this iterative design exploration process, we exam-
ined various alternatives, evaluating the impact of different architectural
decisions and software configurations. Notably, we investigated the effects
of employing floating-point or fixed-point representations, with emulated or
physical support via the FPU unit. Moreover, we examined the influence
of augmenting the processor with a MUL/DIV unit, affording the incorpo-
ration of the M extension, and explored the prospect of leveraging FPGA
DSPs to empower the hardware multiplication functional unit. Addition-
ally, we engaged in an in-depth analysis of the utilization of trigonometric
computations versus look-up-table methods, as well as the integration of
the E and Zfinx standard RISC-V ISA extensions. Aware of the importance
of resource optimization, we evaluated the elimination of logic associated
with unused ISA instructions, including those associated with control and
status register (CSR) operations and unused integer arithmetic and logical
instructions. Concurrently, we sought opportunities for streamlining the
processor’s Load-Store Unit (LSU) by considering the impact of removing
support for misaligned memory accesses. The design space exploration
proved instrumental in unveiling an array of possibilities, thereby providing
valuable insights into the potential trade-offs between various design alter-
natives. It enabled us to refine the processor’s architecture, optimizing it
to proficiently handle the computational tasks intrinsic to our target appli-
cations while adhering to the principal objective of attaining a reasonable
balance between energy efficiency and performance.

All the results obtained from these experiments can be checked out in
Chapter 4, "Results and Discussion", where they will be discussed more
thoroughly.

3.3 Concentration Measurement Methodology and Bench-
mark Application

In the development of our custom RISC-V processor, one of the critical
considerations was the execution environment for applications. We adopted
a bare-metal execution model, wherein applications run directly on the
logic hardware of the processor without the involvement of an intervening

Processor Development and Evaluation Methodology 67

operating system. This approach offers several advantages, including reduced
overhead, lower power consumption, and enhanced responsiveness, making
it well-suited for embedded systems targeting specific applications like CO2
concentration sensing.

To effectively evaluate the performance of our processor during the
design space exploration process, it was imperative to design a benchmark
program that closely represents the target application. We focused on
an IoT application dedicated to CO2 concentration sensing. Such sensing
applications have far-reaching implications across diverse domains, including
industrial process control, safety monitoring, environmental monitoring, and
public health.

Our choice to employ low-power optical sensors for this application was
rooted in their exceptional suitability for low-power embedded systems. As
discussed in previous sections, optical sensors, particularly those utilizing
the principles of absorption-based infrared gas sensing, offer high sensitivity,
accuracy, and energy efficiency. The energy-efficient nature of these sensors
aligns seamlessly with the goals of our processor design, which prioritizes
energy efficiency to cater to the power constraints of battery-operated or
energy-sensitive applications.

With the rationale behind our choice of application and sensor technology
well-established in previous chapters, this section will delve into the concen-
tration measurement methodology and the specific design considerations
for the benchmark application.

3.3.1 System Proposal

We propose the utilization of a WSN node as the system model for scripting
a benchmark application tailored to our custom processor. Figure 3.2
illustrates the block diagram of the envisioned sensing platform, which
takes clear inspiration from the Wireless Sensor Network (WSN) nodes
described in Chapter 2. The system represents a wireless sensor node
specifically designed for measuring and monitoring CO2 concentration levels.
It integrates several essential components, including an Infrared (IR) (IR)
light-emitting diode (Light-Emitting Diode (LED)) serving as the emitter,
a photodiode acting as the detector, an analog-to-digital converter (Analog-
to-Digital Converter (ADC)), a RISC-V processor responsible for executing
the digital demodulation algorithm, a radio transceiver for communication
purposes, and a battery to provide power to the entire system.

Below, we provide a concise description of each component:

68 Processor Development and Evaluation Methodology

Figure 3.2: Proposed block diagram of the sensing platform

1. IR LED: The IR LED emits light at a specific wavelength (4.25 μm)
that corresponds to the absorption spectrum of CO2. This absorption of
light by the gas molecules enables the measurement of the concentration of
CO2 in the air.

2. Photodiode: The photodiode detects the light transmitted through
the gas sample and converts it into an electrical signal. It must possess
good sensitivity to accurately detect low light levels, as well as high linearity
to ensure that the converted electrical signal precisely represents the light
intensity.

3. RISC-V processor: The FPGA is utilized to implement the RISC-V
processor and the demodulation algorithm. The RISC-V processor controls
the system’s operation, while the demodulation algorithm extracts the
CO2 concentration information from the electrical signal generated by the
photodiode.

4. ADC: The ADC is responsible for converting the analog signal
generated by the photodiode into a digital signal that can be processed
by the RISC-V processor. To ensure accurate and timely readings, it
is important to select an ADC with adequate resolution and sampling
frequency. The resolution determines the granularity of the signal and is
crucial for accurately capturing the slight changes in light intensity detected
by the photodiode. Higher resolution, expressed in bits, allows for a more
precise digital representation of the analog signal. On the other hand, the
sampling frequency must be high enough to capture the variations in the

Processor Development and Evaluation Methodology 69

analog signal over time, ensuring that no critical information is lost. These
two parameters are carefully considered in our model simulation, and their
effects on the accuracy of concentration level measurements are examined.

5. Demodulation algorithm: The demodulation algorithm is a software
application loaded into the instruction memory of the RISC-V processor
and is used to extract the CO2 concentration information from the electrical
signal generated by the photodiode. The algorithm employs digital signal
processing techniques for this purpose.

6. Radio Transceiver: The radio transceiver enables wireless communi-
cation between the sensing platform and external devices or base stations.
It facilitates data transmission and reception, allowing the sensor node to
communicate its measurements to other nodes or data processing units.

7. Battery: The battery provides the necessary power to operate the
entire sensing platform. It serves as the energy source, ensuring that
the system can function autonomously without the need for a continuous
external power supply. The choice of an appropriate battery is critical to
achieve long-term and reliable operation in battery-powered wireless sensor
nodes.

The sensor is based on an IR LED/photodiode optopair, which allows for
a much higher modulation frequency compared to other types of detectors
that use an IR lamp/thermopile couple [92], [93]. In the latter case, the
modulation frequency is very low, typically in the range of 1 to 5 Hz,
leading to poor noise filtering capability, and the output signal is highly
temperature-dependent. In contrast, the IR LED/photodiode optopair in
our sensor enables a higher modulation frequency, which enhances noise
filtering and provides improved stability. While Figure 3.2 shows a wireless
communication module, our primary focus in this work is on optimizing the
processor design and the demodulation algorithm.

The path reflections experienced by the IR light in the drawing are
caused by the reflective walls of the waveguide or the housing containing
the sensor. These reflections lead to multiple interactions between photons
and the target gas molecules [94], [95], effectively increasing the accuracy
and sensitivity of the sensor.

In summary, the system depicted in Figure 3.2 serves as a CO2 concen-
tration sensing platform designed to demonstrate the effectiveness of the
processor optimizations implemented during the design phase. The primary
objective is to achieve a low-power RISC-V processor optimized for signal
processing in wireless CO2 sensor motes.

70 Processor Development and Evaluation Methodology

3.3.2 Asynchronous Quadrature Demodulation Technique

Asynchronous quadrature demodulation is a fundamental technique em-
ployed in optical gas sensors based on light absorption spectroscopy. This
technique plays a central role in extracting the gas concentration information
from the electrical signal generated by the photodiode, allowing precise and
accurate measurements of the target gas.

Digital demodulation offers significant advantages over analog demodula-
tion. It operates effectively with lower signal-to-noise ratios [10], enhancing
signal extraction accuracy and minimizing waveform distortion. Moreover,
digital demodulation can be efficiently implemented in software, making
it adaptable for execution on our application-specific processor, providing
the precision and efficiency needed for signal processing. This capability is
crucial for achieving reliable and accurate gas concentration measurements
in low-power IoT applications with stringent accuracy requirements. By
using advanced digital processing capabilities, our processor becomes a pow-
erful tool that can be used in various applications, including environmental
monitoring and industrial safety.

Given the significance of the demodulation process in gas concentration
sensing, we have selected it as a prime benchmark application to evaluate
the energy efficiency and overall performance of our custom processor.
By subjecting the processor design to the demands of the demodulation
algorithm, we can assess its performance metrics, power consumption, and
efficiency in handling signal processing tasks relevant to CO2 concentration
sensing.

Figure 3.3 illustrates the quadrature demodulation process and its un-
derlying components. At the front-end side, we have the gas sensor and the
ADC, responsible for converting the electrical signal into digital samples.
In the digital domain, the demodulation process occurs on the RISC-V mi-
croprocessor, utilizing dedicated demodulation software to extract valuable
information from the digital samples.

The symbols employed in the figure to depict the demodulation pro-
cess are equivalent to those utilized in analog demodulation, symbolizing
physical components like the local oscillator (LO), mixers, 90◦ phase shifter,
low-pass filters (LPF), and magnitude detector. In the context of digital
demodulation, these components translate into specific software processes
within the digital domain.

Let us now delve into the quadrature demodulation technique and its
constituent components. Quadrature demodulation involves the separation

Processor Development and Evaluation Methodology 71

Figure 3.3: Illustration of the quadrature demodulation technique
and its components.

of the input signal into its in-phase (I) and quadrature (Q) components,
with I representing the signal’s amplitude and Q representing its phase.
This separation is achieved by employing a reference signal generated by
the local oscillator along with its 90◦ phase-shifted counterpart.

The incoming sampled signal from the photodiode undergoes processing
through point-wise multiplication with a reference sinusoid having the same
frequency used for light modulation in the emitter (IR LED). In the digital
domain, the reference signal can be obtained by computing the sine function
at the modulation frequency for each discrete time point. The discrete
time, in this case, is determined by the sampling rate used in the ADC.
Similarly, the phase shifter generates a 90◦ phase-shifted version of the
reference signal, corresponding to a cosine wave, which can be achieved
digitally by computing the cosine function at different discrete time points.

Subsequently, both mixers shown in the diagram perform point-wise
multiplication of the sine and cosine signals with the input samples. This
operation filters out undesired frequency components, effectively yielding the
in-phase (I) and quadrature (Q) components. These components are then
subjected to further mathematical operations to extract the relevant data.

Following this, a first-order low-pass filter (LPF) is employed to remove
high-frequency components from the I-Q components. The LPF employs a
digital integrator, which is essentially a variable that accumulates partial
products over a specified integration interval.

Finally, the magnitude detector block computes the modulus of the
resulting complex I-Q vector, which is used to accurately infer the gas

72 Processor Development and Evaluation Methodology

concentration utilizing the Beer-Lambert law, and taking into account the
known characteristics of the sensor, such as the optical path length, gas
absorption coefficient, and the reference concentration.

In summary, the asynchronous quadrature demodulation technique,
along with the corresponding demodulation application, represents a critical
and demanding workload, serving as a fitting assessment tool for evaluating
the energy efficiency and performance of our custom processor in low-
power IoT applications, especially those involving signal processing for gas
concentration sensing.

3.3.3 Simulation Environment and System Modeling

For system modeling, we turned to Jupyter Notebook[11], an interactive
computational platform known for its compatibility with Python scripting.
Within its framework, Jupyter Notebook offers plenty of libraries tailored
for data processing and visualization. Being open-source, it serves as a
valuable tool for researchers and data scientists, offering a unified environ-
ment that puts together code, text, equations, and visualizations in one
cohesive document. The underlying purpose of Jupyter Notebook is to
streamline data analysis, numerical simulations, and research, making these
processes both interactive and reproducible. While it provides support for
various programming languages, our emphasis was on Python, given its
rich ecosystem of libraries like NumPy, SciPy, and Pandas. These tools
have proven to be indispensable for numerical computations and data vi-
sualization. Furthermore, the ability of Jupyter Notebook to execute code
cells on-the-fly and instantly display results facilitates a smoother workflow,
especially when analyzing data or experimenting with algorithms.

To model our system in Jupyter Notebook, we refer back to the Beer-
Lambert law, presented in Equation 2.7 and the concept of transmittance
expressed in Equation 2.8. This law establishes that the absorbance A of a
gas sample is proportional to its concentration c and the optical path length
L through which the light passes. Additionally, the absorbance is related
to transmittance, which is defined as the ratio of the transmitted light’s
intensity I to the incident light’s intensity I0. For the sake of clarity, we
revisit the equation presented in a previous chapter:

T = I

I0
= e−A = e−α·L·c (3.1)

The inverse exponential relationship between transmittance and gas

Processor Development and Evaluation Methodology 73

concentration is illustrated in Figure 3.4.

Figure 3.4: The transmittance function follows an inverse exponential
curve (α = 0.023 cm-1 · ppm-1 and L = 10 cm).

Transmittance is a unitless quantity ranging between 0 and 1. A value
of 1 indicates 100% transmission of light. Absorbance, on the other hand, is
logarithmically related to transmittance. This relationship can be expressed
in terms of either the neperian or decadic logarithm. Consequently, the ab-
sorptivity coefficient α must be adjusted in alignment with this relationship.

The value of α is influenced by the wavelength of the incident radiation
used in the sensor. To determine this coefficient, we reference spectral
absorbance plots generated through simulation software. Specifically, we
utilized SpectraPlot [96], a free web tool that simulates spectroscopic data
using the HITRAN database [97]. HITRAN, short for high-resolution
transmission molecular absorption database, serves as a comprehensive
repository housing spectroscopic parameters [98]. These parameters find
applications in various computer codes designed for predicting and simulating
light emission and transmission within the atmosphere.

Figure 3.5 displays the absorbance spectrum of CO2 for a specified
concentration. The absorbance is not uniform across the spectrum; instead,
distinct peaks corresponding to various wavelengths are evident. These
peaks arise from the unique vibrational modes associated with the covalent
bonds of the molecule.

A typical IR LED operating in the 4.3 μm absorption band of CO2 has
its emission spectrum centered around this wavelength, spreading to include

74 Processor Development and Evaluation Methodology

Figure 3.5: CO2 absorbance spectrum in the range [4.19, 4.35] μm
(T = 300 K, P = 1 atm, c = 400 ppm)

all absorbance peaks depicted in the plot. Given this, it is necessary to
determine an average absorbance value across the frequency range aligned
with the IR LED’s emission spectrum. While one approach would be to
integrate the curve across the x-axis, the pronounced peaks suggest an
alternative strategy: identifying peak values on the plot using a script or
spreadsheet tool, summing these values, and then calculating their average.
We have successfully employed this latter approach in our study. By deriving
the average absorbance, we can deduce the absorptivity coefficient α for
a given optical path and concentration. This coefficient is consistently
used in our simulations to calculate the CO2 concentration according to
Equation 2.9.

To determine the gas concentration, another essential measurement is
the transmitted intensity I of IR radiation through the gas sample. This
can be derived from Equation 3.1. The value of I is influenced by both
the absorbance at a specific concentration and the initial intensity of the
incident radiation I0:

I = I0 · e−α·L·c (3.2)

In Equation 3.2, certain quantities, such as the optical path L and the
average absorptivity coefficient α, are constants dictated by the system’s
design. These constants have been discussed earlier. Additionally, the
incident radiation I0 can also be considered a constant in our system, and
its value can be derived mathematically, eliminating the need for external
measurement devices. With this in mind, we can rephrase Equation 3.2 as
follows:

Processor Development and Evaluation Methodology 75

I = k1 · e−k0·c (3.3)

Here, k0 represents the product α ·L and k1 denotes the I0 of the system.
Given varying values of I0, the transmitted intensity through the gas sample
will follow the profile illustrated in Figure 3.6, which resembles an inverse
exponential curve. By characterizing the constant k1 for our system, we can
effectively deduce the CO2 concentration in the sample from the measured
transmitted intensity I:

c = ln(I/k1)
−k0

(3.4)

It is important to highlight that the LED’s gradual aging and degra-
dation, which leads to a reduction in emission intensity, combined with
voltage fluctuations from the power source—particularly in battery-operated
devices—can adversely influence the stability of radiation incident on the
gas sample. Such variations compromise the sensor’s accuracy, challenging
the assumption that k1 remains a constant within our system. To address
these effects, periodic recalibration of the device is essential to update the
value of k1 and ensure the sensor’s optimal operation.

Figure 3.6: Transmitted radiation through a gas sample for different
systems with the same optical path length and absorptivity
coefficient. Constants k1, k2 and k3 represent different values
for the incident radiation I0.

Sensor Calibration Using Fresh Air To determine k1, the sensor must
be calibrated against a known CO2 concentration, denoted as cref . Using

76 Processor Development and Evaluation Methodology

Equation 3.4 we can obtain the value of k1 as follows:

k1 = Iref

e−k0·cref
(3.5)

Here, Iref denotes the transmitted intensity that corresponds to the
reference concentration cref . Our method is to capture this value at the
output of the software-based quadrature demodulator, in the magnitude
detector as illustrated in Figure 3.3. Based on this measurement, the
derived value, even though in arbitrary units, is proportional to the infrared
radiation transmitted within the sensor cell.

A practical alternative to the laboratory calibration procedure leverages
the known fact that the average CO2 concentration of outdoor air is roughly
400 ppm. Many commercial CO2 household sensors utilize this assumption
for auto-calibration [99], simply by exposing the sensor to fresh outdoor air.
While this method is efficient, it may not match the precision achievable
in controlled laboratory conditions. Measuring the Iref value in these
conditions, and taking cref as 400 ppm, we can approximately determine
the k1 constant for our system. This then allows us to estimate indoor
concentrations using Equation 3.6:

c =
ln(I

Iref
· e−k0·cref)
−k0

= cref + ln(Iref) − ln(I)
k0

(3.6)

3.3.4 Analysis of Parameters in the Quadrature Demodulation
Process

In parallel to determine necessary equations that will enable our algorithm
to calculate the CO2 concentration of the sample, we also need to put in
place a model of the quadrature demodulator. We analyze the different
parameters that intervene in the signal demodulation process and their
effect on the sensor accuracy. The parameters that have been identified and
are worthy of consideration are the measuring range, the sensor’s optical
path length L, modulation frequency fm, sampling frequency fs, system’s
signal-to-noise ratio (SNR), ADC resolution (bit count), and the LPF’s
integration interval T .

We employ a Python script to explore these parameters. Structured
around a set of nested loops, the innermost loop iterates through the con-
centration in 1 ppm increments, influencing the light intensity transmitted
through the sensor optical path. The exterior loops are designated to tra-

Processor Development and Evaluation Methodology 77

verse the other parameters, specifically the SNR level, sampling frequency,
modulation frequency, and quantization bit count.

In every loop iteration, we generate a random white noise signal, integrate
it with the transmitted intensity, then proceed to quantize and demodulate
the resultant signal, enabling us to estimate the gas concentration. We
also evaluate the relative error in every iteration, and upon completing the
simulation, we determine the mean error across the whole measuring range.
This allows us to contrast the average errors arising from various scenarios
that employ different parameter sets. The visualizations we generate via
Jupyter Notebook, such as the one depicted in Figure 3.7, include two
scenarios with very low SNR levels to assess the immunity of the digital
quadrature demodulator against signal noise.

Figure 3.7: Relative error vs. gas concentration obtained during
model simulation for a given set of parameters testing two signal-
to-noise ratio values: SNR = 0 dB (μ = 4.96%) and SNR = 20
dB (μ = 0.49%).

By following, we describe the parameters that we have used in our
simulations to better understand the intricacies of the signal demodulation
process. The parameter analysis helps to underscore their collective impact

78 Processor Development and Evaluation Methodology

on the overall accuracy and performance of the CO2 concentration measure-
ments. Particularly, we aim to highlight how variations in each parameter
might influence the robustness of our system, especially in challenging con-
ditions such as those with low SNR levels. Our ultimate goal is to optimize
these parameters to achieve the most reliable and efficient detection of CO2
concentrations, taking into account both real-world scenarios and potential
edge cases.

Measuring range The operational range of a sensor is tailored to its
intended application. For indoor air quality monitoring, sensors typically
measure up to 0.5% (5,000 ppm) of CO2. However, atmospheric CO2
tracking demands sensors with capacities extending up to 1% (10,000 ppm).
Distinct sectors necessitate varying sensitivities. Restaurants, breweries,
indoor farming, and industrial environments typically deploy a 5% (50,000
ppm) sensor for CO2 safety oversight. Conversely, specialized domains like
modified atmosphere packaging, laboratory environments, cryogenics, and
fire suppression systems may require sensors calibrated for 5% to 100%
CO2 concentrations. Building upon our introductory chapter’s rationale
for selecting indoor air quality monitoring as the target application for our
low-power RISC-V processor, our study focuses specifically on this domain,
necessitating a measurement range from 400 to 5,000 ppm.

Modulation frequency In our simulation exploration, the values for
the modulation frequency fm were restricted to 2, 8, 16, 128, and 1024 Hz.
Our experiments suggest that variations in modulation frequencies do not
significantly influence the accuracy of the measurements. Nonetheless, it is
important to highlight that our model primarily accounts for white noise
with consistent power spectral density, omitting the influence of 1/f noise
(also known as pink noise) that predominates at lower frequencies. The
exclusion of this noise from our model was deliberate, given its intricate
characterization. However, from a practical standpoint, we recognize the
importance of selecting a modulation frequency that is both distant from DC
and surpasses the 50/60 Hz interference. As a result, 128 Hz was determined
to be an optimal choice for the modulation of the IR LED emission.

Sampling frequency and filter integration time The sampling fre-
quency plays a crucial role in the accuracy of the system. Intuitively, higher
frequencies are preferred as they offer more sample points of the signal,
enhancing the resolution. However, this is closely tied to the integration
time T of the LPF, which we have established as 1 second in our setup.

Processor Development and Evaluation Methodology 79

Should there be a need to reduce this integration time, in order to lessen
the measurement latency, a proportional increase in the sampling frequency
would be required to ensure the LPF integrates an equivalent number of
samples. In our model, we opted for a sampling frequency fs of 16,384 Hz,
a value that is precisely 128 times our chosen modulation frequency. We
further realize that extending the integration time, while keeping a constant
sampling rate, can enhance the accuracy of low-concentration readings. The
trade-off here is that the system benefits from increased samples but at the
expense of a longer latency.

ADC resolution Our simulations explored ADC resolutions between
8 and 24 bits, specifically assessing 8, 9, 10, 11, 12, 16, 20, and 24-bit
configurations. In our simulation script, floating-point values were converted
to signed fixed-point format, designating 5 bits for the integer part (with an
additional bit for the sign). This allocation ensures adequate representation,
especially when confronted with the amplitude variations introduced by
random noise at low SNR values. From our observations, resolutions of 12
bits or above yielded similar accuracy. On the other hand, utilizing fewer
bits compromised the results. Consequently, we identified 12 bits as an
optimal trade-off and moreover is a resolution frequently found in many
cost-effective FPGAs.

System’s SNR levels In our simulations, we meticulously varied the
Signal-to-Noise Ratio (SNR) to study its impact on system performance. The
selected SNR values spanned from -5 to 40 dB, specifically incorporating
values of -5, 0, 5, 10, 20, 30, and 40 dB. Our primary objective was
to ascertain the immunity of our digital quadrature demodulator in the
presence of signal noise. It is crucial to understand that noise can emanate
from various sources. Predominantly, thermal noise, originating from the
random motion of electrons in a conductor, is ubiquitous in electronic
systems. Other potential contributors include pink noise, which dominates at
lower frequencies, and electromagnetic interference from external electronic
devices. Additionally, imperfect components, manufacturing variabilities,
and operational imperfections can introduce noise into the system. Therefore,
evaluating our system across a wide range of SNR levels ensures robustness
against the myriad noise sources inherent in practical settings.

Optical path length The optical path length of the sensor is a pivotal
parameter, directly influencing the sensor’s sensitivity. A longer optical path
facilitates increased interactions between photons and gas molecules, thereby

80 Processor Development and Evaluation Methodology

enhancing measurement accuracy, especially at lower concentration levels.
However, selecting the optical path length is not solely about maximizing
sensitivity; it is also about adhering to physical dimensions and design
considerations. Practical limitations might dictate the feasible length,
especially when the goal is to maintain a compact sensor size. Ingenious
design strategies, such as the utilization of a reflective waveguide, can help
achieve a balance between sensor size and performance. In our simulations,
we evaluated various optical path lengths to compare the average error across
the operational range under different scenarios. We selected a 7 cm optical
path length, as it consistently delivered the best precision for measurements
in the 400 to 5,000 ppm range. This choice is further corroborated by the
waveguide design study cited in [95], which also identified this length as
offering optimal precision within that range.

Summary of the Selected Parameter Values

Table 3.1 provides an overview of the selected parameters for our model
simulation following a comprehensive exploration process. These parameters
have been optimized to ensure reliable performance when implemented in
the benchmark application for our RISC-V processor.

Table 3.1: Model simulation parameters

Parameter Value

Measuring range 400 – 5,000 ppm
Optical path length L 7 cm
Frequency modulation fm 128 Hz
Sampling frequency fs 16,384 Hz
Filter integration interval T 1 s
Bit resolution 12 bits
Signal-to-noise ratio (SNR) 20 dB

Additional Observations

Here, it’s important to discuss additional findings from various experiments
conducted during the system simulation. While our quadrature demodulator
employs a sine wave as the reference signal, we explored the alternative
of using a square wave to modulate the IR LED emission. The rationale
behind this experiment is rooted in the fact that a perfect square wave
comprises both a sine wave and an infinite sum of its odd harmonics. The
primary frequency, or first harmonic, which accounts for 81% of the total

Processor Development and Evaluation Methodology 81

signal power, remains closely correlated with the demodulation signal. As a
result, it still facilitates accurate information extraction from the carrier.

It is worth noting that generating a square wave is notably simpler,
requiring only the toggling of the digital output that drives the LED on
and off, as opposed to the intricate trigonometric calculations necessary
for generating a sine wave. Interestingly, our observations revealed that
this alteration had an impact on reading accuracy, particularly at lower
concentrations. This alteration led to an increase in the relative error
of measurements, although it remained within an acceptable range. To
counterbalance this effect, we found that doubling the integration time from
1 to 2 seconds helped mitigate the deviation. This trade-off highlights that
using a square wave for signal modulation offers implementation simplicity
at the expense of sacrificing some degree of accuracy.

Furthermore, it is important to note that our approach did not involve
a physical front-end encompassing a gas sensor and an ADC to acquire
samples for the digital demodulator. Instead, we opted for a synthetic
sample generation method using a Python script. This script simulated
the modulation of LED emission, computed the transmitted emission based
on the Beer-Lambert law, introduced random white noise, and quantized
the resultant signal at the designated sampling rate, mimicking an ADC’s
behavior.

The pseudo-code in Algorithm 1 describes a procedure that systemat-
ically analyzes the impact of different modulation frequencies, sampling
frequencies, SNR levels, and CO2 concentrations on the signal from an IR
LED emitter used for CO2 concentration measurements.

1. Modulation frequency analysis: it starts by looping over a set of
predefined modulation frequencies.

2. Sampling frequency analysis: for each modulation frequency, it then
loops over a range of sampling frequencies. For a given modulation
frequency and sampling frequency, it defines the number of samples
based on the sampling frequency and a predefined integration interval.
It then calculates the modulated source signal using a square wave
and the predefined initial amplitude for the source signal.

3. Demodulation waveform definition and calibration: for demodula-
tion, both sine and cosine waveforms are generated for the current
modulation frequency. These waveforms are then used to perform an
autocalibration using a reference CO2 concentration (typically fresh
air). This provides a reference measurement value that corresponds

82 Processor Development and Evaluation Methodology

Algorithm 1 Simulation Parameter Analysis
1: start_time = 0, stop_time = 1 � Units in seconds
2: interval = stop_time - start_time = 0
3: for modulation_freq in [2, 8, 16, 128, 1024, 4096] do
4: for sampling_frequency in [8192, 16384, 32768, 65536] do
5: num_samples ← sampling_frequency × interval
6: time_points ← linspace(start_time, stop_time, num_samples)
7: � Modulate source LED emission
8: chopper ← createSquareWave(modulation_freq, time_points)
9: mod_signal ← source_amp × chopper

10: � Define demodulation waveforms
11: Sine ← createSineWave(modulation_freq, time_points)
12: Cosine ← createCosineWave(modulation_freq, time_points)
13: � Compute reference magnitude @400 ppm
14: ref400PPM ← computeRefVal(mod_signal, Sine, Cosine)
15: � Compute power of modulated source signal
16: sig_avg_db ← computeSignalPowerInDB(mod_signal)
17: for target_snr_db in [60, 40, 20, 10, -5] do
18: � Compute required noise power
19: noise_avg_db ← sig_avg_db - target_snr_db
20: noise_power ← convertDBtoWatts(noise_avg_db)
21: for x from 0 to CO2span with step STEP do
22: � Compute transmitted intensity
23: signal ← applyAbsorption(CO2val[x], mod_signal)
24: � Noise up the original signal
25: noise ← genWhiteNoise(noise_power, len(mod_signal))
26: noisy_signal ← signal + noise
27: � 1st Stage: Mixer
28: mixer_I ← Sine × noisy_signal
29: mixer_Q ← Cosine × noisy_signal
30: � 2nd Stage: LPF
31: sum_I ← sum(mixer_I)
32: sum_Q ← sum(mixwe_Q)
33: � IQ magnitude detector
34: magnitude ← computeMagnitude(sum_I, sum_Q)
35: � Regression of measured magnitude
36: CO2ppm ← computeCO2(ref400PPM, magnitude)
37: end for
38: end for
39: end for
40: end for

Processor Development and Evaluation Methodology 83

to the Iref in Equation 3.6.

4. Signal power calculation: the average power of the modulated source
signal is computed in dB, which is necessary to subsequently generate
the noise signal based on the specified SNR level.

5. SNR level analysis: for each combination of modulation and sampling
frequencies, the algorithm analyzes a set of signal-to-noise ratios. For
each target SNR, it calculates the corresponding average noise in dB.

6. CO2 Measurement range analysis: for a given SNR, the algorithm sim-
ulates the process of measuring CO2 concentrations over a predefined
range. It introduces white noise to the modulated signal to simulate
real-world disturbances. This noisy signal is then passed through a
mixer, which mixes it with both the sine and cosine demodulation
waveforms. The mixed signals are then filtered (through a Low Pass
Filter or LPF) to isolate the in-phase and quadrature components.
The magnitude of the resulting signal is then computed using the
in-phase and quadrature components. Lastly, the algorithm estimates
the CO2 concentration by regressing the measured magnitude against
the reference value obtained during autocalibration.

The overall goal of this algorithm is to evaluate the impact of various
parameters on the accuracy of CO2 measurements using an IR LED modu-
lated by different waveforms, in the presence of noise, and across a range of
CO2 concentrations.

3.3.5 Building and Simulation of our RISC-V Application

For the development and testing of our RISC-V application, we utilized SEG-
GER Embedded Studio (SES) [100], a comprehensive commercial develop-
ment environment designed specifically for open RISC-V architecture-based
devices. SES provided a powerful and streamlined integrated development
environment (IDE) that facilitated the building, testing, and debugging of
our custom RISC-V applications.

SEGGER Embedded Studio for RISC-V offers a whole C/C++ develop-
ment system for 32-bit and 64-bit RISC-V microcontrollers and micropro-
cessors. The IDE includes a robust source code editor and a user-friendly
build system that enables the seamless building of our applications with a
single key press.

Moreover, SES offers a complete RISC-V toolchain for compiling appli-
cations tailored to specific ISA extensions. However, for the relatively recent

84 Processor Development and Evaluation Methodology

Zfinx extension, SES does not provide built-in support. Nevertheless, SES
allows for the utilization of an external toolchain by specifying the binary’s
location. In response, we took the initiative to generate our own GNU
compiler toolchain for the Zfinx extension, leveraging the publicly available
repository [101] maintained by the RISC-V Foundation. Subsequently, we
successfully employed this custom toolchain to compile our application,
ensuring compatibility and support for the Zfinx ISA extension.

Additionally, one of the most valuable features of SES is its core simulator
and debugger, which offers a PC-based, fully functional simulation of the
target RISC-V microprocessor. This simulator allowed us to execute and
debug parts of our RISC-V application without the need for hardware,
significantly speeding up the development process.

Throughout the processor optimization process, we created a new project
for each different processor design, with each project targeting distinct
RISC-V ISA extension combinations that we wanted to explore. The
objective was to simulate the RISC-V application, specifically compiled for
the ISA that we had implemented in our processor design.

The task involved translating the Python scripts used in Jupyter Note-
book to model and simulate the quadrature demodulation process into
C/C++ files. Additionally, we incorporated the sample datasets and the
discrete sine and cosine waves used as a reference in the quadrature demod-
ulator, all of which were also generated using Python scripts in Jupyter
Notebook.

Our primary objective was to simulate the RISC-V application targeting
the specific RISC-V ISA that we implemented in our design. During the
simulation, we thoroughly validated the computation of the CO2 concentra-
tion, ensuring that it corresponded with the expected value and fell within
the acceptable error margin.

By leveraging the capabilities of SEGGER Embedded Studio, we suc-
cessfully built, tested, and simulated our RISC-V application. This compre-
hensive development environment proved to be a valuable tool in verifying
the correctness and accuracy of our implementation, ultimately ensuring the
reliable performance of our custom RISC-V processor for CO2 concentration
sensing applications.

Processor Development and Evaluation Methodology 85

3.4 Integration of RisCO2 in PULPino: A Comparative
Analysis

In this section, we detail the integration process of RisCO2, our custom
soft-core RISC-V processor, into the PULPino reference platform. PULPino
is an open-source single-core RISC-V SoC developed by the PULP team,
designed to be a flexible and efficient platform for various applications.
The primary goal of integrating RisCO2 into PULPino was to assess its
performance, resource utilization, and power consumption against other
well-established RISC-V processors.

3.4.1 Overview of PULPino SoC

PULPino is designed as a lightweight, low-power platform for embedded
systems with modularity and versatility in mind. It features a compact yet
powerful architecture with several key components:

• RISC-V Cores: PULPino supports different RISC-V cores, including
the Ri5cy and Zero-riscy cores, each optimized for specific use cases
and performance requirements.

• Memory System: The SoC includes separate single-port data and
instruction RAMs, each with a size of 32 kB. These RAMs are non-
contiguous in the address space, providing flexibility for different
memory accesses.

• Boot ROM: The platform incorporates a boot ROM with a boot
loader capable of loading a program via Serial Peripheral Interface
(SPI) from an external flash device. This feature simplifies the process
of booting the system and loading initial programs.

• Peripherals: PULPino includes various peripherals such as UART,
GPIO, and SPI Master.

• Advanced Debug Unit: The platform supports JTAG and SWD
interfaces through its advanced debug unit.

• SoC Control: A small and simple APB peripheral provides platform
information and allows pad muxing on the ASIC.

The integration of RisCO2 into PULPino aimed to leverage the platform’s
rich set of features and facilitate a comprehensive comparison with other
RISC-V processors.

86 Processor Development and Evaluation Methodology

3.4.2 Comparison with Reference Processors

To conduct a fair and accurate assessment of RisCO2’s performance, we
followed a systematic approach. We created separate projects for each of
the reference processors supported by PULPino, including Zero-riscy, Micro-
riscy, Ri5cy, and CV32E40P. This approach allows us to test and evaluate
each integration independently, enabling a fair and detailed comparison of
the resulting outcomes.

The chosen reference processors present a diverse set of characteristics.
On one hand, Zero-riscy and Micro-riscy are well-known processors renowned
for their small size and energy efficiency. They are commonly employed in
low-power embedded systems, IoT devices, and wearable technology. On the
other hand, Ri5cy and CV32E40P are more complex RISC-V cores, designed
to cater to more powerful embedded systems with higher performance
requirements.

By integrating RisCO2 with these processors, we sought to assess
RisCO2’s scalability and competence in meeting the demands of complex
applications.

3.4.3 Key Considerations in the Integration

The integration process involved important considerations to optimize the
PULPino SoC platform for our testing purposes. Firstly, we merged the
two separate 32 kB single-port data and instruction RAMs into a single
256 kB BRAM (Block RAM) with true dual-port memory. This unification
provides a streamlined and efficient memory structure, enabling seamless
access to both data and instruction programs within the unified address
space. Secondly, the boot ROM was eliminated from the design as part of
our optimization process. By preloading the BRAM with the benchmark
program and the sample dataset offline, the boot ROM became unneces-
sary. This ensured that the necessary code and data were readily available
during the processor’s initialization, streamlining the system’s startup and
improving overall efficiency.

Figure 3.8 illustrates a block diagram of the customized PULPino plat-
form, showcasing the customized modifications made for the integration
of RisCO2. This adapted configuration allowed us to efficiently compare
the performance of RisCO2 with other RISC-V processors within a well-
established, versatile SoC framework.

Processor Development and Evaluation Methodology 87

Figure 3.8: Block diagram of the customized PULPino platform used
to test the different cores.

3.4.4 Analyzing Performance Metrics

Throughout the integration process, we conducted an in-depth analysis of
several performance metrics to comprehensively assess the capabilities of
the RisCO2 soft-core processor. Key metrics closely examined include:

• Resource Utilization: Thorough evaluations were conducted to
gauge RisCO2’s efficiency in utilizing FPGA hardware resources, in-
cluding DSP blocks, memory Block RAM (BRAM), Look-Up Tables
(LUTs), and Flip-Flops (FFs). By comparing its resource utiliza-
tion with other cores, we gained insights into how effectively RisCO2
leverages the available FPGA resources.

• Performance Analysis: To assess the overall performance of RisCO2,
we designed and implemented a customized application tailored to
the quadrature demodulation process. This application performed

88 Processor Development and Evaluation Methodology

the extraction of CO2 concentration levels from the sample dataset
that we generated. By employing this application, we were able
to measure a series of standard performance metrics and evaluate
RisCO2’s computational capabilities effectively. The comparisons
with other RISC-V cores supported by PULPino offered valuable
insights into the relative performance of RisCO2 in practical scenarios.

• Power Consumption Estimation: Power efficiency is of paramount
importance in many embedded applications. We estimated average en-
ergy consumption during the application’s runtime to assess RisCO2’s
energy efficiency. Such comprehensive power estimation enabled us
to make informed comparisons with other processors and understand
RisCO2’s energy efficiency in practical operating conditions.

By considering these crucial factors and conducting a comprehensive
evaluation, we gained valuable insights into RisCO2’s strengths and areas
for further optimization. The integration of RisCO2 into the PULPino
platform allowed us to perform a fair and insightful comparison against
well-established RISC-V processors. The resulting comprehensive analysis of
resource utilization, power consumption, and performance metrics provided
valuable data to guide future optimizations and highlighted RisCO2’s poten-
tial as a viable candidate for a wide range of embedded systems applications,
including energy-efficient wireless sensor nodes, thereby contributing to the
development of cutting-edge technologies for environmental monitoring and
scientific research.

3.5 RTL Simulation and Validation

Before proceeding with the design synthesis, it is essential to verify and
validate its functionality and correctness through RTL simulations. RTL
simulations are used to model and simulate the digital circuit at the register-
transfer level, representing how data is transferred between registers in the
hardware.

In this work, we performed RTL simulations using the Vivado IDE
from Xilinx, Inc., a popular development environment for FPGA and SoC
designs. The RTL simulations were a crucial step in ensuring that our
custom RISC-V processor design behaved as intended and adhered to the
specifications of the RISC-V ISA that we implemented.

To ensure the correctness and accuracy of our custom RISC-V processor
design, we conducted thorough comparisons between the ISA simulation in

Processor Development and Evaluation Methodology 89

SEGGER Embedded Studio and the RTL simulation in Vivado IDE. The
purpose of these comparisons was to verify that the processor executed in-
structions correctly and consistently in both simulations. Any discrepancies
or deviations from the expected behavior would be carefully analyzed and
addressed, ensuring that the processor design was robust and reliable.

During the comparisons, we inserted breakpoints at specific locations
in the program and checked various critical aspects. First, we verified that
both simulations matched the program counter (PC) and the number of
retired instructions. Additionally, we carefully inspected the content of both
the integer x and floating-point f register files in both simulations. The
registers should hold identical values in both simulations, proving that the
program’s execution in the RTL simulation is correct, at least at the register
file level. Another important check involved comparing the content of the
RAM memory in the RTL simulation after executing store instructions. This
comparison ensured that the stored content was accurate and consistent with
the debugger RAM. These validations ensured that the processor progressed
through the program as expected, without any discrepancies.

To exemplify this verification process, we present Figure 3.9, which
consists of a composite image created by overlaying screenshots from both
the Vivado simulator and the SES simulator. This simulation corresponds
to the RV32IMF implementation, enabling a thorough comparison and
validation of the RTL operation. In the SEGGER simulator, a total of
279,979 instructions were executed, perfectly aligning with the core’s CSR
counter of retired instructions csr_minstret. Furthermore, the values
stored in the integer registers (depicted on the left side of the picture)
and floating-point registers (on the picture’s right side) exhibit precise
correspondence between both simulations.

The debug terminal in SES provides the expected output, including the
calculated CO2 value of 1000.16 ppm, which is loaded in the fa0 register
in IEEE754 format (value 0x447a0988). The simulation runtime in Vivado
was 12.16 ms, utilizing a frequency of 50 MHz. To obtain the instructions
per cycle (IPC), the csr_minstret value is divided by csr_mcycles. By
comparing the data obtained from both simulations, we validate the precise
functioning of the RTL design.

In conclusion, besides ensuring the correct behavior of the processor, the
important metrics that we extract from the RTL simulations for comparison
with other reference processors include:

1. Number of cycles and retired instructions: These metrics are
obtained from the mcycles and minstret CSRs. By analyzing these

90 Processor Development and Evaluation Methodology

Figure 3.9: Image composite made with screenshots of the simula-
tions performed with Vivado to test the RTL logic and SEGGER
Embedded Studio to simulate the compiled RISC-V application.

counters, we can infer the number of instructions per cycle (IPC), a
crucial metric for performance comparison.

2. Application execution time: This metric allows us to estimate the
energy consumption during the application runtime. By multiplying
the estimated power by the execution time, we gain valuable insights
into the processor’s energy efficiency.

Once the RTL simulation aligns with the RISC-V application simulation,
we can confidently proceed to synthesis and implementation, and annotate
FPGA resource utilization for each design version. This verification process,
bolstered by the comparison of key metrics, assures the reliability and
effectiveness of our custom RISC-V processor for CO2 concentration sensing
applications.

3.6 Synthesis and Implementation

During the synthesis phase, we followed Vivado’s default strategy to convert
our RTL (Register-Transfer Level) design into a gate-level netlist. For
implementation, we chose the Performance_ExplorePostRoutePhysOpt
strategy. This strategic option integrates physical optimization techniques

Processor Development and Evaluation Methodology 91

and employs diverse algorithms for optimizing placement and routing. The
objective was to enhance the final implementation’s performance and ensure
it meets the required timing constraints.

For a clock frequency setting of 25 MHz, all the different designs passed
the timing analysis, validating their functionality and compliance with
timing specifications.

The critical metrics we gathered after implementation included FPGA
resource utilization, such as LUTs, FFs, DSPs, and BRAM. These metrics
provide valuable insights into the efficient utilization of FPGA resources.

Additionally, we performed power estimation using Vivado’s power
analysis tool. However, it is essential to note that the power estimation at
this stage lacks statistical information regarding the switching activity of
transistors. Consequently, it offers a medium level of confidence. To achieve
a more precise power analysis, we must run a post-implementation timing
simulation to generate a Switching Activity Interchange Format (SAIF) file.
This file contains essential switching activity information, which we can
then utilize for a more accurate and reliable power consumption estimation.

3.7 Post-Implementation Timing Simulation and Power
Analysis

After completing the implementation, we conducted timing simulations
to obtain precise power consumption estimations based on the Switching
Activity Interchange Format (SAIF) information.

As explained in Section 2, the dynamic power consumption Pdyn in
CMOS circuits is typically represented by the Equation 2.1. In this equation,
α stands for the probabilistic switching activity factor, CT denotes the total
capacitance of the circuit, fclk is the switching frequency, and V represents
the supply voltage. Our primary focus is on measuring the total energy
consumption during the application’s runtime, as defined by Equation 3.7,
where Psta represents the static power consumption.

E =
∫

t
Pdyn + Psta (3.7)

To obtain a detailed estimation of Pdyn and E, we need to capture the
switching activity of all gates in our circuit while executing our application.
Vivado IDE allows capturing this activity during post-implementation timing
simulation, generating SAIF files used to provide detailed power estimates for

92 Processor Development and Evaluation Methodology

different regions of the FPGA fabric. For certain parts of the design, Vivado
can acquire accurate switching activity, while for others like memories, it
resorts to a probabilistic approach to estimate power consumption.

To perform the analysis efficiently, capturing the switching activity for
the entire demodulation algorithm’s runtime is unnecessary. Instead, we set
the simulation interval to 1 ms, allowing us to capture multiple iterations
of the main loop within the demodulation algorithm. This time setting
yields a fair average power value that can be extrapolated to the entire
program execution, as over 95% of the program runtime occurs within the
demodulation loop.

Furthermore, the power simulation tool annotated over 92% of the
nets in all different SoC implementations accurately, using probabilistic
computations for the remaining nets. This methodology allowed us to obtain
precise power estimates for each of the five RISC-V processors implemented
in the PULPino SoC, providing valuable insights into their respective energy
efficiency and resource utilization.

Chapter 4
Experimental Results and
Discussion

In this chapter, we delve into the comprehensive experimental evaluation
that led to the development of RisCO2, a processor designed with a focus
on energy efficiency. The first stage focuses on selecting standard ISA
extensions to optimize the RISC-V architecture. The second stage involves
more granular adjustments, including specialized ISA extensions and the
removal of unnecessary logic to further enhance energy efficiency. Following
these design phases, we incorporate RisCO2 into the reference SoC platform,
PULPino, to compare its performance against other processors under the
same testing environment.

Through a process of careful experimentation and iterative design, this
chapter aims to shed light on how RisCO2 compares favorably in terms of
energy efficiency with other processors in similar benchmarking conditions.

4.1 Stage One: Initial Design and ISA Exploration

In the initial stage of our design exploration, we developed a simplified,
self-contained system that included only the processor and memory. This
approach provided a controlled testbed for evaluating the impact of differ-
ent architectural variations on energy efficiency, each integrating various
standard extensions of the baseline ISA.

It is important to note that the results and considerations presented
here apply specifically to the 5-stage pipelined processor design, as detailed

93

94 Experimental Results and Discussion

in Section 3.1.2. This processor version evolved from our initial single-cycle
design and serves as the foundation for the ISA exploration conducted in
this first stage. The findings offer critical insights into the performance
metrics and energy efficiencies of this more complex pipeline architecture,
setting the stage for further design enhancements and optimizations.

This stage also served as an experimental arena for testing different
software adaptations of the target application. This included using software
emulation for fixed-point and floating-point arithmetic to acquire initial
insights into which architectural features and software adjustments would
best serve our application.

At the hardware level, we examined giving support for specific operations,
such as integer multiplication, division, and floating-point calculations. We
also assessed the potential advantages of integrating DSPs available in the
FPGA to improve energy-efficient performance. This initial stage laid the
groundwork for the more detailed design explorations that followed.

The performance outcomes of our design exploration are comprehensively
detailed in Tables 4.1 and 4.2. The first column in each table provides
each unique design with a version number, making it easier for subsequent
visual analysis which will be presented in a graph later. Following this, in
Table 4.1 the next four columns specify key design choices that characterize
each experimental setup. These columns include: the implemented RISC-V
architecture variant, either RV32I, RV32IM, or RV32IMF; the numerical
format used by the algorithm, which is either single-precision floating-point
or fixed-point; the kind of support allocated for arithmetic instructions,
whether they are emulated in software or executed through dedicated
hardware support; and lastly, the computational strategy employed for
trigonometric functions, which is either based on C-Runtime libraries or
leverages lookup tables. The remaining columns in the table present the
measured FPGA resource utilization metrics, including Lookup Tables
(LUT), Flip-Flops (FF), and Digital Signal Processors (DSP).

In Table 4.2, the columns are organized to present performance metrics
derived from the combination of the design variables previously outlined.
The metrics include: the total number of instructions, denoted as N.Instr.×
106, and the clock cycles required by the benchmark application to both
demodulate the signal and calculate the CO2 concentration; the Instructions
Per Cycle (IPC), an essential metric for assessing computational efficiency;
the total execution time, termed as Exec. Time, which indicates the total
time in seconds required for the benchmark program to complete its tasks;
the processor’s dynamic power and energy consumption, as estimated by
the simulation’s power analysis tool, offers quantitative insights into its

Experimental Results and Discussion 95

power efficiency. The energy consumption is computed by multiplying the
dynamic power by the application’s execution time. The power analysis
tool also provides the overall non-disaggregated static power consumption
Psta, which accounts for the total static power consumption of the FPGA
chip, measured at 0.099 W; and finally, the greenness factor represents
the computational performance per unit of power consumed, measured in
GOPS/W (Giga Operations Per Second per Watt). It serves as an index of
how energy-efficient a processor is while performing its tasks.

Version
ISA Variable

Type
Support

FloatP/FixP
Trigo.
Funct. LUT FF DSP

1 RV32I SP float SW Emul. C-Rnt. 2661 2158 2
2 RV32I SP float SW Emul. C-Rnt. 2695 2158 0
3 RV32I SP float SW Emul. LUT 2661 2158 2
4 RV32I SP float SW Emul. LUT 2695 2158 0

5 RV32I Fixed-p. SW Emul. C-Rnt. 2661 2158 2
6 RV32I Fixed-p. SW Emul. C-Rnt. 2695 2158 0
7 RV32I Fixed-p. SW Emul. LUT 2661 2158 2
8 RV32I Fixed-p. SW Emul. LUT 2695 2158 0

9 RV32IM SP float SW Emul. C-Rnt. 3010 2290 10
10 RV32IM SP float SW Emul. C-Rnt. 4637 2290 0
11 RV32IM SP float SW Emul. LUT 3010 2290 10
12 RV32IM SP float SW Emul. LUT 4637 2290 0

13 RV32IM Fixed-p. SW Emul. C-Rnt. 3010 2290 10
14 RV32IM Fixed-p. SW Emul. C-Rnt. 4637 2290 0
15 RV32IM Fixed-p. SW Emul. LUT 3010 2290 10
16 RV32IM Fixed-p. SW Emul. LUT 4637 2290 0

17 RV32IMF SP float HW FPU C-Rnt. 7085 4188 12
18 RV32IMF SP float HW FPU C-Rnt. 9057 4193 0
19 RV32IMF SP float HW FPU LUT 7085 4188 12
20 RV32IMF SP float HW FPU LUT 9057 4193 0

Table 4.1: ISA support, number format, trigonometric function
strategy, and FPGA resource utilization for different processor
design variations.

In a close examination of the data provided in Tables 4.1 and 4.2, a
number of pivotal observations come to light. First and foremost, config-
urations utilizing the RV32IM architecture consistently outperform their

96 Experimental Results and Discussion

RV32I-based counterparts. The key to this improved performance lies in
the additional M extension in the RV32IM architecture, which provides
hardware-level support for integer multiplication and division. This elimi-
nates the need for software emulation of these operations, thereby reducing
the total instruction count and, consequently, lowering both execution time
and energy consumption.

Secondly, within the context of RV32I and RV32IM processors—which
do not natively support hardware-accelerated floating-point arithmetic—we
can see that fixed-point emulation consistently surpasses emulated single-

Ver.
#

N. Instr.
×106

Clock
Cyc.×106 IPC Exec.

Time [s]
Pdyn

[W]
Energy

[mJ]
G

[GOPS/W]

1 117.7 144.0 0.82 2.88 0.036 104 1.1
2 117.7 144.0 0.82 2.88 0.029 83.5 1.4
3 10.2 13.2 0.77 0.263 0.038 10.0 1.0
4 10.2 13.2 0.77 0.263 0.037 9.74 1.0

5 39.9 46.8 0.85 0.936 0.042 39.3 1.0
6 39.9 46.8 0.85 0.936 0.043 40.3 1.0
7 6.62 7.53 0.88 0.151 0.037 5.57 1.2
8 6.62 7.53 0.88 0.151 0.036 5.42 1.2

9 38.6 49.7 0.78 0.994 0.062 61.6 0.6
10 38.6 49.7 0.78 0.994 0.177 176 0.2
11 4.59 6.3 0.72 0.127 0.051 6.46 0.7
12 4.59 6.3 0.72 0.127 0.094 11.9 0.4

13 1.99 2.03 0.98 0.041 0.074 3.82 0.7
14 1.99 2.03 0.98 0.041 0.221 11.4 0.2
15 1.38 1.45 0.95 0.029 0.043 1.25 1.1
16 1.38 1.45 0.95 0.029 0.110 3.19 0.4

17 2.80 7.00 0.40 0.140 0.058 8.12 0.3
18 2.80 7.00 0.40 0.140 0.127 17.8 0.2
19 0.28 0.61 0.46 0.012 0.037 0.45 0.6
20 0.28 0.61 0.46 0.012 0.056 0.68 0.4

Table 4.2: Performance metrics, dynamic power, energy consumption,
and greenness factor of various processor design variations, all
evaluated at a clock frequency of 50 MHz. The total static
power consumption for the FPGA chip is a constant 99 mW
across all design variations.

Experimental Results and Discussion 97

precision floating-point calculations in both speed and energy efficiency.
This is predominantly due to the dramatic decrease in the total number
of required instructions. For instance, a comparison between version #9,
which utilizes floating-point emulation and consumes 61.6 mJ, and version
#13, which employs fixed-point emulation and consumes a mere 3.82 mJ,
illustrates an impressive energy saving—reducing consumption by a factor of
1/16. Both versions rely on C-runtime libraries for trigonometric operations.
Even more compelling is that further reductions in execution time and
energy consumption can be achieved by replacing runtime trigonometric
calculations with a lookup table. This results in a notable algorithmic
speed-up, primarily due to the substantial reduction in the number of code
instructions. Importantly, this lookup table is stored in the data memory,
explaining why the number of LUTs remains constant in Table 4.1 across
those specific design variations.

Lastly, the utilization of DSP48E1 slices in the FPGA for the integer mul-
tiplication module—in both the RV32IM and RV32IMF architectures—leads
to an observable reduction in power consumption. This is an expected out-
come given that DSP48E1 slices are highly specialized and efficient hardware
modules for integer multiplication tasks. Combining all these improvements,
we succeeded in developing an RV32IMF-based system that boasts a remark-
ably low energy consumption of just 1.25 mJ in version #15, as opposed to
the 104 mJ observed in version #1.

In our pursuit of minimizing energy consumption further, we explored
the impact of integrating an FPU directly into the execution stage of
the processor pipeline. These configurations correspond to the RV32IMF
versions listed in the table. Our analysis reveals that configuration #19
stands out with the lowest energy consumption of 0.45 mJ. This represents a
remarkable 64% reduction in energy consumption when compared to version
#15, which already had a notably low energy consumption.

However, it is crucial to acknowledge the trade-offs involved. The
integration of the FPU into the processor’s execution stage results in a
substantial increase in FPGA resource utilization—specifically, a 135%
increase in the number of look-up tables (LUTs) and an 83% rise in flip-flops
(FFs). Therefore, while the inclusion of the FPU significantly boosts energy
efficiency, it does so at the cost of increased hardware resource consumption.

Understanding the relationship between hardware design choices and the
greenness factor G (Equation 2.6) can shed light on how to optimize energy
consumption. For instance, designs utilizing DSPs (those versions with odd
numbering) require fewer LUTs compared to their non-DSP counterparts,
thereby reducing the overall capacitance CT . This decrease in CT leads to

98 Experimental Results and Discussion

a reduction in dynamic power consumption, subsequently improving the
greenness factor. Conversely, incorporating an FPU increases CT and thus
the dynamic power. This design choice worsens G due to an increase in
power consumption coupled with a decrease in IPC, attributed to the longer
latency associated with floating-point operations. However, it is worth
noting that this lower IPC is offset by the requirement for fewer instructions
to complete the same tasks, thus completing computations more quickly.

When dynamic power, energy, and greenness are considered in tandem,
they offer a comprehensive view of a processor’s efficiency. For instance, a
processor may have low dynamic power consumption but also offer reduced
performance, leading to a mediocre greenness factor. Alternatively, a
processor with higher dynamic power could significantly outperform in
computational tasks, resulting in an elevated greenness factor.

In summary, version #19 demonstrates that integrating an FPU into the
processor pipeline can achieve exceptional energy savings, albeit with in-
creased demands on FPGA resources and a worse greenness factor compared
to a more simple processor that only supports the RV32I ISA. This finding
presents an interesting design choice for subsequent design explorations,
where the benefits in energy savings need to be carefully weighed against
the increased hardware footprint.

Figure 4.1: Processor’s resource utilization versus energy consump-
tion and Pareto frontier line.

Experimental Results and Discussion 99

In order to facilitate a more comprehensive understanding of the key data
listed in Tables 4.1 and 4.2, we have created Figure 4.1, which plots energy
consumption against FPGA resource utilization for each processor design
variation. The Pareto frontier line has been superimposed on the graph to
identify the configurations that represent the most optimal trade-offs between
energy efficiency and resource utilization. This Pareto analysis serves as
a valuable guide for making design choices, revealing the point(s) where
incremental gains in energy efficiency start to demand disproportionately
high resource investment.

It is worth mentioning that the design versions with odd numbering
make use of DSP blocks, leading to a decrease in LUT utilization compared
to their even-numbered counterparts that do not utilize DSPs. An inter-
esting observation can be made regarding the RV32IMF architecture when
integrated with a hardware FPU. While it shows a dramatic reduction in
the processor’s energy consumption (down to 0.45 mJ with version #19), it
also exhibits a considerable increase in FPGA resource utilization (LUTs
increased to 7085 and FFs to 4188 plus 12 DSPs). This scenario highlights
the classic engineering dilemma of a trade-off, where achieving higher energy
efficiency comes at the cost of increased resource requirements. As such, the
decision to integrate an FPU should be carefully weighed based on specific
application requirements and resource constraints.

4.2 Stage Two: Fine-Grained Design Optimization

After successfully identifying a top-performing design during stage one,
stage two shifts towards a fine optimization of this chosen architecture. The
aim is to optimize both specialized application requirements and energy
efficiency. For this fine-tuning stage, we selected the RV32IMF version #19
design with an energy consumption of 0.45 mJ.

The specific optimizations undertaken are comprehensively detailed in
the Methodology section, which can be found under Section 3.2.1. For the
sake of clarity and to facilitate a better understanding of the results yielded
by these particular actions, a summarized review of these optimizations is
provided below:

1. E Extension Support: This reduces the integer register count from 32
to 16, effectively halving the storage requirement for integer variables.

2. Zfinx Extension Support: The introduction of this extension eliminates

100 Experimental Results and Discussion

the necessity for a dedicated floating-point register file by permitting
the shared use of the integer register file for both integer and floating-
point data. Overall, these enhancements reduce the register file size
by a quarter when compared to an RV32IMF setup.

3. Removal of Unused Arithmetic Instructions: Through a targeted
analysis, we identified integer arithmetic instructions from the ISA
that were not utilized in our specific application. These included
integer multiplication, division, and remainder instructions like mul,
mulh[u|su], div[u], and rem[u]. By removing the hardware logic
associated with these unused instructions, we were able to reduce
the FPGA resource utilization further. This action also resulted in
the effective elimination of the M extension, bringing the design into
tighter alignment with the application-specific requirements of our
project.

4. Control and Status Register Logic Removal: Unnecessary control and
status register management instructions (csrrw[i], csrrs[i], and
csrrc[i]), along with unused shift and comparison instructions (sra,
slti, and slt), were pruned from the architecture.

5. Removal of Support for Misaligned Memory Access: To further stream-
line resource utilization, we eliminated all logic designed to handle
misaligned memory accesses. This simplification of the load-store unit
is based on the assumption that the compiler will generate only 4-byte
aligned memory addresses.

Step ISA LUT(%1) FF(%1) DSP(%1) Time (%1)
[ms]

Energy (%1)
[mJ]

Initial RV32IMF 7,085 4,188 12 12.2 0.45

1, 2 RV32EM_Zfinx 6,518 (0.92) 2,693 (0.64) 12 (1.0) 10.3 (0.84) 0.42 (0.93)

3 RV32E_Zfinx 5,307 (0.75) 2,545 (0.61) 2 (0.17) 10.3 (0.84) 0.32 (0.71)

5 RV32E_Zfinx 5,126 (0.72) 2,478 (0.59) 2 (0.17) 10.3 (0.84) 0.31 (0.69)

4 (RisCO2) RV32E_Zfinx 4,692 (0.66) 2,293 (0.55) 2 (0.17) 10.3 (0.84) 0.28 (0.62)
1 % are calculated as the factor between the current result and the initial one.

Table 4.3: Comparative summary of design improvement steps: eval-
uating the impact on FPGA resource utilization, demodulation
algorithm runtime, and processor’s energy consumption at a
clock frequency of 50 MHz.

Through the careful application of these optimizations, we achieved
significant improvements in our initial RISC-V RV32IMF processor. This

Experimental Results and Discussion 101

led to the development of RisCO2, a 5-stage, single-issue, in-order processor
specifically tailored for energy-efficient operations. This finalized version is
based on the RV32E_Zfinx instruction set and is intended for deployment in
NDIR CO2 sensors that require signal demodulation for gas concentration
detection. The benefits of these design adjustments are manifest in reduced
energy consumption and resource utilization, compared to our original
processor.

Table 4.3 provides a comprehensive step-by-step breakdown of the various
improvements made. It highlights changes in FPGA resource utilization, the
algorithm’s execution time, and the processor’s energy consumption. The
results particularly underline the remarkable reduction in energy consump-
tion from the initial design to the final RisCO2 configuration, highlighted
by a drop from 0.45 mJ to 0.28 mJ. The table also indicates a consistent
decrease in LUT and FF utilization across the various design iterations,
culminating in an optimized version with improved energy efficiency. It is
noteworthy that the time required for the demodulation algorithm remains
largely unchanged, indicating that the optimizations have not compromised
the processor’s runtime performance. This indicates that the removed logic
was indeed superfluous, serving only to waste energy rather than contribute
to system functionality. Interestingly, in contrast to our initial design explo-
ration results shown in Tables 4.1 and 4.2, reduced resource utilization in
this case did not lead to longer execution times.

The graphical representation presented in Figure 4.2 provides a visual
summary of the cumulative performance gains achieved through the sequence
of design iterations delineated in Table 4.3. The plot reveals a nearly directly
proportional relationship between reductions in energy consumption and
decreases in LUT utilization. This suggests that optimizing the hardware
utilization effectively contributes to lowering the processor’s energy demands.

4.3 Integration and Comparative Analysis with PULPino
SoC

Once we finished our design exploration process, the primary objective
was to evaluate the real-world performance and efficiency of our optimized
RisCO2 processor. To achieve this, RisCO2 was integrated into an existing
SoC framework, specifically the PULPino platform. PULPino is a well-
known SoC platform that is often used as a benchmark in processor design
and performance studies. This integration served a dual purpose: first, it
provided a standard environment for experimental validation of RisCO2;

102 Experimental Results and Discussion

Figure 4.2: Correlation between LUT utilization and the energy
consumption of the processor core, following the sequential
implementation of optimization actions listed above.

second, it allowed for direct comparison with other reference processors that
have been implemented on the PULPino platform.

The integration process involved replacing the existing CPU core in the
PULPino SoC with the RisCO2 processor. To facilitate seamless integration,
we made additional adjustments to achieve pinout compatibility within the
core region of the PULPino system. Specifically, these adjustments involved
adapting the memory bus to align with the three-level handshake interface
(request, grant, valid) used by PULPino. This allowed RisCO2 to operate
under the same conditions as the reference processors, ensuring that any
performance differences were due to the processor design itself, rather than
variations in the test environment.

After integration, RisCO2 underwent testing using the benchmark appli-
cation outlined in Chapter 3 (Methodology). This application, specifically
designed to demodulate a set of data samples and determine the CO2 con-
centration, offers an assessment of the processor’s performance under its
intended operational conditions. For a fair and direct comparison, the same
benchmark was applied to all other reference processors integrated into the
PULPino SoC. Special attention was focused on estimating power and en-

Experimental Results and Discussion 103

ergy consumption metrics from the post-implementation timing simulations,
given their critical importance for RisCO2’s intended application.

Core ISA Pipeline
stages LUT FF DSP Variable

Type

Micro-riscy RV32E 2 2,225 1,276 0 Fixed-point
Zero-riscy RV32IM 2 3,171 1,928 1 Fixed-point
Ri5cy RV32IMF 4 11,912 4,249 8 SP Floating
CV32E40P RV32IM_Zfinx 4 9,072 2,553 7 SP Floating
RisCO2 RV32E_Zfinx 5 4,889 2,354 2 SP Floating

RisCO2(*) RV32E_Zfinx 5 4,795 2,031 2 SP Floating
(*) Final version of RisCO2 after optimizing the FPU pipeline.

Table 4.4: Comparison of RisCO2 with other RISC-V reference
processors in terms of supported ISA, pipeline stages, and FPGA
resource utilization.

Tables 4.4 and 4.5 provide a comparative performance analysis of five
RISC-V processors: RisCO2, Zero-riscy, Micro-Riscy, Ri5cy, and CV32E40P.
These processors are evaluated based on several metrics, including FPGA
resource utilization (i.e., LUT, FF, DSP), number representation in the
application algorithm (either fixed-point or single-precision floating-point),
and computational performance metrics such as the number of instructions
and clock cycles required for signal demodulation and CO2 concentration
calculation. Additionally, the table reports the IPC, execution time for
the demodulation algorithm, as well as the dynamic power and energy
consumption of each processor. All measurements are taken at a clock
frequency of 25 MHz.

Core N.Instr.
×106

Clock
Cyc.×106 IPC Exec.

Time [ms]
Pdyn

[mW]
Energy

[mJ]
G

[GOPS/W]

Micro-riscy 7.244 9.328 0.78 373.13 15 5.60 1.29
Zero-riscy 1.380 1.693 0.82 67.71 20 1.35 1.02
Ri5cy 0.280 0.379 0.74 15.15 52 0.79 0.36
CV32E40P 0.251 0.318 0.79 12.73 49 0.62 0.40
RisCO2 0.252 0.518 0.49 20.71 14 0.29 0.87

RisCO2(*) 0.252 0.387 0.65 15.47 5 0.08 3.35
(*) Final version of RisCO2 after optimizing the FPU pipeline.

Table 4.5: Comparison of RisCO2 with other RISC-V reference
processors in terms of performance, dynamic power, energy con-
sumed by the processor, and greenness G for a clock frequency
of 25 MHz.

104 Experimental Results and Discussion

The tables include an additional set of results for RisCO2. This is a
noteworthy inclusion driven after its direct comparison with CV32E40P,
which is an architecture closely resembling RisCO2 and also uses the FPnew
FPU IP. While RisCO2 excelled in terms of energy efficiency, it lagged in IPC,
with a score of 0.49 compared to CV32E40P’s 0.79. These findings led us to
undertake a targeted design revision aimed at IPC improvement. The initial
lower IPC in RisCO2 can be traced back to the use of superfluous pipeline
registers within the FPU. Initially, these were included to meet timing
requirements when operating at a clock frequency of 50 MHz. However, we
reduced the clock frequency to 25 MHz because we could not achieve timing
closure with Ri5cy for performance comparison. At this lower frequency,
we found the additional registers to be not just unnecessary, but actively
detrimental to performance. After their removal, both the application
runtime and dynamic power consumption saw significant reductions—from
19 mW to 5 mW. Given the extent of these improvements, we felt compelled
to include these last-minute results in the current work.

From the data presented in Table 4.5, it is evident that RisCO2 exhibits
superior energy efficiency compared to its counterparts. Specifically, it
demonstrates a 90% and 87% reduction in energy consumption relative to
the next best-performing processors, Ri5cy and CV32E40P, respectively.
This significant energy savings is particularly noteworthy given that RisCO2
also exhibits lower FPGA resource utilization when compared to these
two processors, making it a more economical choice for energy-sensitive
applications.

In contrast, Micro-riscy, despite its low resource utilization and power
consumption comparable to that of RisCO2, consumes over 70 times more
energy. This discrepancy is primarily due to its considerably longer execution
time, which can be attributed to its lack of specialized functional units
capable of performing complex arithmetic operations beyond basic addition
and subtraction. This limitation hampers its computational efficiency and
results in inflated energy consumption figures. Conversely, Ri5cy, which has
the highest resource utilization among the five processors, consumes nearly
10 times more energy than RisCO2. It is worth noting, however, that Ri5cy
and CV32E40P do offer better instruction throughput or IPC rate. While
this can indicate more performant cores in terms of computational speed, it
comes at the cost of significantly increased energy consumption and resource
utilization, making them less suitable for this energy-constrained specific
application.

Notably, based on the table, the greenness factor (G) for RisCO2 is
3.35 GOPS/W, which is significantly higher than the other listed RISC-V

Experimental Results and Discussion 105

reference processors. To put this into perspective, the next highest G factor
is for Micro-riscy at 1.29 GOPS/W, which is more than 2.5 times less
efficient in terms of greenness compared to RisCO2.

The G factor represents a form of energy efficiency, quantifying the num-
ber of Giga Operations Per Second per Watt (GOPS/W) that a processor
can achieve. A higher G factor means that the processor can perform more
computations for a given amount of power, making it more energy-efficient.
Certainly, the high greenness factor of RisCO2 has several interconnected
implications that make it a compelling choice across a range of applica-
tions. Its energy efficiency not only makes it suitable for battery-powered or
energy-sensitive devices but also reduces its environmental impact through
lower heat generation and electricity consumption, contributing to a reduced
carbon footprint. A higher G factor also implies a more "green" or environ-
mentally friendly processor, which could be an appealing factor in markets
or sectors that prioritize sustainability. Finally, its high level of energy
efficiency makes it particularly well-suited for IoT and edge computing
applications, which often operate under constrained power conditions.

Figure 4.3 extends the analysis of Figure 4.2 by incorporating the
reference processors under scrutiny in this study. RisCO2 occupies an
advantageous position within this multi-dimensional design space, combining
beneficial features from different architectures.

On one front, RisCO2 aligns itself with the design philosophies of Micro-
riscy and Zero-riscy, both processors that are engineered for minimal resource
utilization and low power consumption. This characteristic positions RisCO2
as a resource-efficient choice, particularly beneficial for applications where
conserving FPGA resources is paramount.

Conversely, RisCO2 also embodies some of the performance-oriented
attributes of Ri5cy and CV32E40P, processors that are geared towards
extracting the highest possible computational performance within a fixed
power envelope. This multifaceted design approach makes RisCO2 ver-
satile, and capable of balancing both power efficiency and computational
performance.

It is important to clarify a particular point highlighted in the graph. The
initial version of RisCO2 already outperforms both Ri5cy and CV32E40P
in terms of efficiency despite being an early-stage design. One contributing
factor is its greater usage of DSP blocks—12 in total—compared to the
other reference processors. This architectural choice not only minimizes
the use of LUTs and FFs but also capitalizes on the specialized DSP48
blocks available in Xilinx FPGAs. These DSP48 blocks are inherently more

106 Experimental Results and Discussion

Figure 4.3: LUT utilization and energy consumption of the different
cores tested in this study.

power-efficient, thereby enhancing the overall energy efficiency of RisCO2.

The power analysis report generated by Vivado serves as an insightful
resource for understanding the power dynamics within our system. It not
only estimates the total power consumption for the complete SoC but also
offers a granular breakdown of power usage across the various RTL modules
comprising our design. Figure 4.4 visually captures this data in the form of
a segmented pie chart. This chart outlines the dynamic power distribution
among the main components of the PULPino SoC when it is augmented
with the RisCO2 processor and is running the demodulation test program.

According to Vivado’s analysis, the total dynamic power consumption
for the PULPino platform, under these conditions, amounts to 19 mW at
a clock frequency of 25 MHz. The pie chart presents this total as a set of
relative percentages, attributing portions of the overall consumption to each
component within the SoC. Additionally, the total static power consumption
is noted to be 94 mW.

As depicted in the pie chart, the core region is the largest consumer
of power, accounting for 47.4% of the total. This region encompasses the
components situated above the AXI interconnect as depicted in Figure 3.8.

Experimental Results and Discussion 107

47.4%

21.0%

26.3%

3.1%
2.2%

Core region

Memory

Peripherals

Leaf cells

AXI interconnects

Figure 4.4: Dynamic power distribution among the main components
of the PULPino platform when integrating a RisCO2 processor.

This includes the processor core and the multiplexors controlling the data
flow for both the data and instruction memories. The instruction and data
memory, which are represented separately in the pie chart, consume an
additional 16% of the total power. Cumulatively, the processor and memory
components alone are responsible for 68.4% of the system’s total power
consumption.

The peripherals on the PULPino platform, although not utilized by the
test program, still consume 26.3% of the power. These peripherals enhance
the system’s functionality and enable connectivity, facilitating seamless
communication with a range of external devices like sensors, actuators, and
various communication interfaces.

AXI interconnects, serving as the communication backbone that links
the processor, peripherals, and other key components, account for 2.2%
of the total power consumption. While these interconnects play a criti-
cal role in ensuring efficient data transfer within the system, their power
consumption is relatively low in this specific case due to the application’s
lack of communication with peripherals. Additionally, another 3.1% of the
power consumption is attributed to leaf cells. These cells are crucial for
interfacing the FPGA with external hardware and for maintaining optimal
signal integrity.

The pie chart shown in Figure 4.5 provides a more granular breakdown of
the dynamic power consumption during the execution of the demodulation
test program, focusing specifically on the power consumption within the

108 Experimental Results and Discussion

various RTL modules of the RisCO2 processor. The chart delineates how the
5 mW of dynamic power consumption, as indicated in Table 4.5, is distributed
among these individual components. This level of power breakdown analysis
provides us with invaluable insights into the inner workings and efficiency
of the RisCO2 processor. It helps in pinpointing not only the most energy-
consuming modules but also offers clues for potential optimization strategies.

23.0%
21.2%

12.5%

11.3%

10.0% 7.3%

5.7%

3.0%
2.9%
3.1%

FP unit
GP Register file

ID_EX registers

MEM_WB registers

EX_MEM registers

IF_ID registers

CSR unit

Retired instr. unit

PC unit

Rest of modules

Figure 4.5: Dynamic power distribution among the various modules
of the RisCO2 processor.

The dynamic power breakdown analysis for the RisCO2 processor offers
significant insights into its power distribution. Most notably, the Floating-
Point Unit and the General-Purpose (GP) Register file emerge as the most
power-intensive components, accounting for 23.0% and 21.2% of total power
consumption, respectively. The FPU’s high consumption is understandable
in the context of the demodulation test program. The algorithm relies heavily
on floating-point calculations at each loop iteration, which underscores the
necessity for a high-performance FPU in the system. Similarly, the GP
Register file is a key repository for the processor’s general-purpose registers,
essential for temporarily storing data during program execution.

The FP unit and the GP Register file together consume nearly 44.2% of
the power, suggesting that any efforts to optimize these specific components
could have a substantial impact on overall energy efficiency. However, these
are also some of the most functionally critical parts of the processor, so
any optimizations would need to be carefully balanced to avoid sacrificing
performance.

Pipeline stage registers, with ID_EX, MEM_WB, EX_MEM, and

Experimental Results and Discussion 109

IF_ID registers each account for 12.5%, 11.3%, 10.0%, and 7.3% of the
power consumption, respectively. Cumulatively, they contribute to 41.1% of
the overall power usage. These registers are instrumental in orchestrating
the instruction execution pipeline, facilitating the flow of data and control
signals between different stages. Their relatively high power consumption
can be attributed to the need for fast and efficient data transfer within the
pipeline. Interestingly, even though the pipeline stage registers collectively
consume a significant chunk of the power, the power distribution among
them is not uniform. Specifically, the ID_EX and EX_MEM registers
consume twice as much power as the MEM_WB and IF_ID registers. This
could imply a heavier data transfer load or more complex control logic
at these particular stages, warranting a closer examination for possible
optimizations.

The pipeline stage registers also contribute significantly, with the ID_EX,
MEM_WB, EX_MEM, and IF_ID registers collectively accounting for
41.1% of the total power consumption, making the pipeline the most signifi-
cant consumer as a group. This could be an area to explore more granular
power-saving techniques, perhaps by optimizing the way instructions are
queued or data is transferred. These registers are vital for ensuring seamless
data and control signal flow between different pipeline stages, hence their
substantial contribution to power usage.

Further down the list, the Control Status Register (CSR) unit, responsi-
ble for a variety of control and status functions, accounts for 5.7% of the
power consumption. Following that, the Retired Instruction Unit, which
generates a pulse every time an instruction is completed or retired (and
serves to increment the minstret performance counter in the CSR), takes
up 3.0% of the total power. Lastly, the Program Counter (PC) unit, which
manages the sequence of instructions being executed, consumes 2.9% of
the power. The CSR, PC, and Retired Instruction units combined take up
11.6% of the power. Although these units perform essential control and
management tasks, their comparatively lower consumption might indicate
already efficient design or fewer opportunities for optimization without
functional compromises.

Finally, a catch-all category labeled as ’Rest of modules’ constitutes the
remaining 3.1%. This category includes various auxiliary circuits, control
logic, and other components necessary for the full functionality of the
processor that individually does not consume much power. Exploring this
category further might uncover low-hanging fruit for easy power-saving
optimizations.

All these values are observed under the execution of a specific test

110 Experimental Results and Discussion

program (the demodulation test program). The power consumption charac-
teristics might vary with different types of workload and understanding the
dynamic power breakdown for different types of tasks helps identify areas of
the processor design that are particularly power-hungry. This type of analy-
sis provides the foundation for targeted optimizations, such as implementing
power-saving techniques in the FPU when not in use, optimizing data flow
in the pipeline registers, or exploring alternative register file architectures
to further reduce power consumption.

4.4 Real Power Consumption Measurements on FPGA
Chip

The objective of this section is to outline the methodology employed for
measuring real-time power consumption on the Xilinx Alveo U200 FPGA
board. The focus of this analysis is the implementation of the PULPino
SoC, with particular attention to the reference cores included in our study.
We have limited our measurements to the three most energy-efficient cores,
as listed in Table 4.5: Ri5cy, CV32E40P, and RisCO2.

The Alveo U200 [102] is a high-end FPGA board designed by Xilinx,
primarily for accelerating data center tasks such as machine learning, video
processing, and other data-intensive activities. We chose to transition from
the Nexys4 board to the Alveo U200 due to the advanced features it offers,
which are particularly useful for real-time power consumption measurements.
These features include a built-in satellite controller that can communicate
directly with a power regulator. This eliminates the need for external
measuring instruments, thereby streamlining the process of assessing power
usage while the PULPino SoC runs our benchmark application on one of the
selected cores. Additionally, the Alveo U200 board is fully compatible with
Xilinx’s Vitis unified software platform, simplifying design deployment. It
also supports kernels developed in OpenCL, offering a more straightforward
transition from software to hardware implementations. The Vitis unified
software platform [103] is more geared towards data center acceleration tasks
and typically targets Xilinx’s more advanced hardware platforms, such as
the Alveo series of data center accelerator cards and the Zynq UltraScale+
series of SoCs.

The methodology that we followed to get the power measurements is
outlined in the following steps:

1. RTL design of a self-contained PULPino SoC system: The first step
involves designing a self-contained PULPino system for each processor we

Experimental Results and Discussion 111

intend to evaluate. This design integrates a specific version of the core under
examination, ROM memory containing the test program, RAM memory for
general storage during the test, and I/O pins for external communication.

2. Integration into Vitis RTL kernel: The next phase involves the
encapsulation of the RTL design into a Vitis RTL Kernel. This kernel
allows for the execution of our tests on the Alveo U200 board, offering direct
access to the hardware features that facilitate precise power measurement
functionalities.

3. Output configuration: To complete the design process, one of the I/O
pins is configured as an output used by the kernel. This is accomplished by
performing a logical OR with the ‘ap_done‘ signal. This serves as a flag to
indicate to the host system that the kernel has completed its execution.

Figure 4.6: Obtained power readings, along with the averaged power
consumption for each tested processor core.

4. Host application development: We developed a custom host appli-
cation, running on an x86 architecture, to boot the FPGA kernel. This

112 Experimental Results and Discussion

step is crucial because RTL kernels in Vitis include a "satellite controller,"
an embedded system that communicates with an onboard power regulator.
This regulator has a built-in power meter whose real-time data can be
extracted using the command xbutil –report electrical.

5. Python program for data collection: Finally, to automate the data
collection process, we implemented a Python program that invokes the
xbutil command at regular intervals. This script calculates the average
power consumption based on these collected readings, in order to compensate
for the variability in instantaneous power values. We have modified the
test program so that the algorithm runs in an infinite loop, but we limit
the test to run for a duration of 100 seconds. During this interval, periodic
power measurements are taken for the FPGA chip, not the entire board.
These measurements are then averaged to smooth out the variability in
the readings. The obtained power readings, along with the averaged power
consumption for each tested processor core, are presented in Figure 4.6.

By following this methodology, we ensure that we obtain accurate,
consistent, and reliable data on power consumption for different processor
cores when implemented on the FPGA platform. This data then serves as a
basis for comparative analysis aimed at optimizing power efficiency, which
is a core objective of this thesis.

Core FPGA
Power [W]

Estimated Core
Power [mW]

Ri5cy2 9.217 70
CV32E40P 9.207 60
RisCO2 9.152 5

Table 4.6: Measurement of the total power consumption of the Alveo
U200 FPGA chip, including the PULPino SoC, for different
processors and using a clock setting of 25 MHz.

Table 4.6 presents the total power consumption values for the Alveo U200
FPGA as measured by the Vitis software platform. Each entry in the table
corresponds to a distinct project setup, in which the FPGA incorporates
both the PULPino SoC and the targeted processor under evaluation. All the
projects operate at a clock frequency of 25 MHz. The data from Table 4.6
is visually represented in Figure 4.7.

The real power measurements from the FPGA can be conceptualized as
comprising two components: one component that remains relatively constant
irrespective of the processor design, and another that varies depending on

Experimental Results and Discussion 113

Figure 4.7: Total power measurement of the FPGA chip including
PULPino SoC featuring different processors.

the specific processor in use. For instance, in the case of the RisCO2
processor with a dynamic power consumption of 5 mW, we can estimate the
constant part of the power to be 9.152W − 0.005W = 9.147W . Subtracting
this constant value from the measured power allows us to isolate the power
consumption attributable to the processor, as demonstrated in the third
column of Table 4.6.

Upon comparing these adjusted power values with the simulation data
in Table 4.5, we find a reasonable agreement between the two datasets. This
concurrence is visually represented in Figure 4.8.

Figure 4.8: Comparison of simulated processor power consumption
from Vivado with estimated power measurements inferred from
Vitis.

The alignment between the real and simulated power values serves to
validate the simulation results, which in turn have been instrumental in
guiding the design optimization of the RisCO2 processor.

114 Experimental Results and Discussion

4.5 ASIC Synthesis Results

In a final push to gather comprehensive data, we succeeded in acquiring
synthesis results for both the RisCO2 and Zero-riscy processors when in-
tegrated into the PULPino SoC. The synthesis process was carried out
using Cadence’s Genus synthesis solution [104], targeting TSMC’s 65nm
technology.

Module Cell
Count

Cell Area
[μm2]

Net Area
[μm2]

Total Area
[μm2]

pulpino_top 28379 332879.5 56495.7 389375.2
core_region 19591 285399.1 39190.2 324589.3

RisCO2 14407 66500.4 29825.6 96326.0
FP_unit 7358 31542.0 14969.7 46511.7
reg_file 525 5832.0 211.8 6043.8
rf_mux 1068 2882.4 1796.9 4679.3
ID_EX 242 2569.2 137.1 2706.3
EX_MEM 174 1839.6 100.5 1940.1
MEM_WB 158 1701.6 86.8 1788.4
FPU_ctrl 181 563.6 153.4 717.0
hazard_unit 152 457.2 238.5 695.7
decoder 100 235.2 139.4 374.6
forward_unit 68 208.0 79.2 287.2
rf_decoder 26 60.0 24.7 84.7

instr_mem 7 94545.0 21.0 94566.0
data_mem 7 94545.0 21.0 94566.0
instr_mem_axi 1210 8129.6 2024.2 10153.8
data_mem_axi 1189 7923.2 1995.0 9918.2

peripherals 6885 40163.2 12809.6 52972.8
axi_intercnct 1898 7273.2 3135.5 10408.7
clk_rst_gen 5 44.0 4.3 48.3

Table 4.7: Synthesis area results of RisCO2 when integrated into the
PULPino SoC, using TSMC 65nm technology.

The primary objective of this exercise is to offer a side-by-side comparison
of the two cores under conditions that simulate their implementation in an
actual silicon chip. By doing so, we aim to provide a clearer understanding
of how each processor performs in terms of key metrics such as resource
utilization when deployed in real-world applications.

Experimental Results and Discussion 115

Module Cell
Count

Cell Area
[μm2]

Net Area
[μm2]

Total Area
[μm2]

pulpino_top 20253 297100.7 39562.7 336663.4
core_region 11277 248797.9 21703.4 270501.3

Zero-riscy 6048 29662.4 12084.1 41746.5
reg_file 2755 16302.4 5337.9 21640.3
if_stage 1028 4819.2 1881.8 6701.0
cs_regs 467 1988.4 790.8 2779.2
ex_alu 538 1774.0 901.8 2675.8
load_store 435 1821.6 703.3 2524.9
debug_unit 232 1230.4 293.5 1523.9
hazard_unit 152 457.2 238.5 695.7
id_decoder 159 366.4 221.4 587.8
id_controller 68 208.0 79.2 287.2
id_int_ctrl 13 90.8 12.2 103.0

instr_mem 7 94545.0 21.0 94566.0
data_mem 7 94545.0 21.0 94566.0
instr_mem_axi 1223 8161.6 2050.6 10212.2
data_mem_axi 1189 7919.6 1995.0 9914.6

peripherals 7035 40912.8 13041.4 53954.2
axi_intercnct 1936 7346.0 3196.0 10542.0
clk_rst_gen 5 44.0 4.3 48.3

Table 4.8: Synthesis area results of Zero-riscy when integrated into
the PULPino SoC, using TSMC 65nm technology.

4.5.1 Synthesis Area Results

Tables 4.7 and 4.8 summarize the synthesis results obtained for each core.
The overall area for the PULPino with RisCO2 is about 15.7% larger than
the PULPino with Zero-riscy. Within these configurations, the core region of
RisCO2 exceeds that of Zero-riscy by about 20%. Remarkably, the RisCO2
processor core itself is more than twice as large as the core of Zero-riscy.
This substantial size is due in part to RisCO2’s Floating-Point Unit, which
alone occupies 46,511.7 μm2. This accounts for nearly 48.3% of RisCO2’s
total core area, corroborating the resource utilization observed in FPGA
implementations. However, this large allocation for the FPU does limit the
area available for other components, such as the register file.

In contrast, Zero-riscy lacks an FPU, which is the primary reason for
its smaller overall area. However, Zero-riscy compensates by dedicating a

116 Experimental Results and Discussion

significantly larger area to its register file—21,640.3 μm2, which is approx-
imately 3.6 times larger than RisCO2’s register file of 6,043.8 μm2. This
confirms a different architectural approach to register management and
may lead to reduced memory access times. The larger register file could
offer performance gains, although potentially at the cost of increased power
consumption.

To summarize, RisCO2’s larger footprint is primarily due to its added
complexity, including an FPU and a deeper pipeline. Zero-riscy, despite
being smaller overall, allocates more area to its register file, highlighting
how the two are optimized for different types of workloads and thus exhibit
different performance characteristics as a result.

4.5.2 Power Estimation Results

The power estimations presented below were generated by the synthesis
tool, using a clock setting of 100 MHz:

Core Leakage
[μW]

Internal
[mW]

Switching
[mW]

Total
[mW]

RisCO2 14.90 15.00 4.64 19.66

Table 4.9: Power estimations using a clock setting of 100 MHz.

The term ’leakage’ power is essentially synonymous with ’static’ power,
as previously detailed in Chapter 2. Both terms describe the power consumed
by a digital circuit when it is not actively switching but remains powered
on. The terms ’internal’ power and ’switching’ power refer to two distinct
components that make up the total dynamic power consumption of a digital
circuit.

’Internal’ power refers to the power consumed due to internal node
capacitances in the logic gates as they charge and discharge, typically
during transitions between logic states. This is also sometimes termed
’short-circuit power,’ as it accounts for the power consumed when the PMOS
and NMOS transistors in a CMOS gate are both momentarily conducting,
creating a brief short-circuit current path from VDD to ground.

’Switching’ power refers to the power consumed while driving the outputs,
which entails charging and discharging the load capacitances—often input
capacitances of subsequent gates or interconnect capacitances. Switching
power is directly proportional to both the switching frequency and the

Experimental Results and Discussion 117

square of the supply voltage.

4.6 ASIC Layout

Figure 4.9 provides a schematic or conceptual representation of the ASIC
generated as a result of the synthesis process using TSMC’s 65 nm technology.
This illustrative layout is aimed at providing the spatial distribution and
area allocation of each of the main constituents within the PULPino SoC;
this specific example features the RisCO2 processor core.

Figure 4.9: Conceptual layout of the PULPino SoC featuring a
RisCO2 processor (TSMC’s 65 nm).

By describing the layout as ’conceptual,’ it should be clarified that not
every potential pin associated with the PULPino SoC is depicted, but only
a subset is included. This is done to simplify the visual narrative and
make it more accessible for viewers to grasp the relative proportions of area
utilization.

118 Experimental Results and Discussion

Understanding area utilization is critical not only for evaluating the
efficiency of the design but also for assessing how well the system components
integrate with each other. This area overview thus serves as an informative
visual guide for stakeholders, offering insights into the balance between
computational capability and physical dimensions.

The key elements detailed in this layout are the core region, which is
the nexus of computational activity and includes the RisCO2 processor core
itself; the memory blocks, which provide the necessary storage facilities;
the peripherals, which add specific capabilities and interfaces; and the AXI
interconnect, which serves as the communication backbone among these
various elements.

Chapter 5
Conclusions and Future Directions

In the landscape of increasing demand for low-power devices across fields
such as wearables, smart sensors, and the Internet of Things, energy-efficient
processor design has emerged as a pivotal research focus. The experimental
results presented in this work demonstrate the effectiveness of custom-
designed RISC-V processors for low-power applications, particularly in the
context of energy-efficient signal processing in NDIR gas sensors. The
study also provides insights for optimizing processors in energy-constrained
embedded systems.

In the initial stage, we developed a self-contained system that featured
a basic RV32I processor with a 5-stage pipeline. The processor was directly
connected to program and instruction memory, minimizing resource uti-
lization. This basic setup was capable of performing only simple integer
addition and subtraction operations, necessitating software emulation for
the required floating-point operations. In this initial state, operating at 50
MHz, the processor consumed 104 mJ of energy and took 2.88 seconds to
compute the CO2 concentration level in our benchmark application. By
implementing targeted improvements, such as the incorporation of the stan-
dard ’M’ and ’F’ ISA extensions and the corresponding functional units, we
were able to provide hardware support for more computationally demanding
floating-point instructions. As a result, the energy consumption was dramat-
ically reduced to just 0.45 mJ, and the computation time was slashed to 12
ms. Although these optimizations doubled the FPGA resource utilization,
the trade-off is deemed acceptable in the context of energy-constrained
applications.

In the second stage of our design exploration study, we focused on

119

120 Conclusions and Future Directions

further optimizing our best-performing RV32IMF processor. Our goal was
to minimize the increase in area utilization necessary for the energy-saving
optimizations while maintaining the achieved energy performance levels.
Remarkably, the strategies we adopted to reduce resource utilization not
only achieved that goal but also led to an additional reduction in energy
consumption. This near-proportional correlation between reduced resource
utilization and decreased energy use is illustrated in Figure 4.2.

Our main approaches for reducing resource utilization centered on two
strategies. First, we substantially decreased the size of the register file by
a factor of 1/4 through the adoption of more specialized ISA extensions,
namely ’E’ and ’Zfinx’. Second, we removed any logic or hardware support
for instructions or features not required by our specific application. The
linear relationship observed between the reduction of resources and energy
consumption underscores the superfluous nature of the hardware that was
eliminated. It also indicates that more streamlined architectures can lead
to more energy-efficient results.

The resultant optimized processor design, which we have named RisCO2,
demonstrates substantial energy savings. Compared to the RV32IMF de-
sign from the first stage of our design exploration study, RisCO2 shows
an 82% reduction in energy consumption. Even more remarkably, when
RisCO2 is benchmarked against general-purpose reference processors like
Ri5cy and CV32E40P, it exhibits a 90% and 87% reduction in energy con-
sumption, respectively. These savings are achieved without compromising
the application’s runtime performance.

In summary, our findings demonstrate the viability and advantages
of using specialized RISC-V architectures like RisCO2 for energy-critical
applications across a diverse range of low-power devices—be it in the Internet
of Things, wearables, or mobile technology. The gains in both energy and
performance that RisCO2 offers make it a compelling solution for a variety
of energy-constrained environments, from embedded systems with limited
hardware resources to battery-powered devices where energy efficiency is
crucial.

This study not only contributes to the ongoing efforts in energy-efficient
computing but also aligns with the broader agenda for sustainable technol-
ogy. Through the development of RisCO2, we have addressed the need to
enhance energy efficiency in computing platforms, confirming the RISC-V
architecture as a promising avenue for meeting these challenges.

Conclusions and Future Directions 121

Future Directions

Looking ahead, there are several avenues for extending this work, which
can be categorized into two broad areas. The first focuses on specific
improvements at the processor level, particularly applicable to RisCO2. The
second goes beyond RisCO2 and involves adapting the processor architecture
to suit specific software applications, aiming for additional energy and area
savings.

Despite RisCO2 featuring a deeper pipeline with an additional stage
and utilizing the same FPU as CV32E40P, our findings show that its
IPC performance falls slightly short. Specifically, RisCO2’s IPC is 18%
lower than that of CV32E40P. This discrepancy warrants further study to
better optimize performance. Additionally, the impact of extending the
pipeline depth on energy efficiency deserves closer examination. While
deeper pipelines may seem beneficial, they can introduce issues such as
pipeline hazards and stalls, potentially reducing the processor’s overall
performance.

Another potential avenue for processor optimization lies in the integra-
tion of custom instructions that support hardware loops. Such features
are already found in processors like CV32E40P and Ri5cy. Implementing
hardware loops could significantly expedite the demodulation algorithm,
whose main processing loop goes through as many iterations as there are
samples produced by the ADC. However, this improvement could add to the
processor’s hardware complexity and potentially offset any gains in energy
efficiency. The implementation would also require compiler modifications to
generate code that employs the new instruction opcodes.

A further area to explore could involve the addition of a second Floating
Point Unit that operates in parallel with the existing one. This additional
unit would have reduced functionality, capable only of performing addition
and multiplication operations. This setup would effectively double the
number of processed samples per loop iteration, achieving this increase
through a loop unrolling technique enabled by the additional FPU. An
important aspect to examine would be how the increased power consumption
from this additional FPU interacts with the potential halving of application
runtime to affect overall energy consumption.

To transition RisCO2 into the sensor industry, several key steps must be
taken to ensure it integrates effectively with the PULPino SoC and performs
reliably in real-world conditions. Specifically, the following actions and tests
are required:

122 Conclusions and Future Directions

1) Sensor Integration: First, we need to connect a physical NDIR CO2
sensor to the PULPino SoC through the SPI bus via an ADC. The software
should be modified to read from the ADC and either store the samples or
process them in real-time for CO2 level calculations. Moreover, we should
explore the adaptability of the platform for measuring concentrations of
gases other than CO2 using NDIR sensors and proper methods for sensor
calibration.

2) Wireless Communication: The next step involves adding a wireless
communication module to the PULPino platform to enable the transmis-
sion of real CO2 measurements to the cloud. Regarding radio frequency
transceivers, new ultra-low power solutions are available that can further
justify the energy optimization on the processing side. For example, a new
low-power RF transceiver based on the HaLow protocol (IEEE 802.11ah)
has a power consumption of just 0.117 mW at 3.6 V [105]—more than two
orders of magnitude lower than the processor’s power consumption.

3) Real-World Power Measurements: Finally, it is essential to carry out
new power measurements under these more realistic conditions, collecting
samples from an actual sensor and sending data to the cloud.

By undertaking these actions, we can more thoroughly validate RisCO2
and assess its suitability as a reliable platform for applications such as
wireless gas sensors.

Expanding our view beyond RisCO2, one of the most interesting research
directions lies in developing a systematic methodology for designing highly
parameterizable, generic processors. These processors could be swiftly
customized to align with the specific energy requirements of the applications
they are intended for. Such an approach would take into account the
individual computational demands and energy constraints, allowing for
more fine-tuned, application-specific energy optimization.

The urgency of this research is accentuated by the anticipated prolif-
eration of embedded applications, particularly in the rapidly expanding
landscape of IoT devices. According to various forecasts, we are looking
at an expected deployment of 30 billion IoT devices by 2030 [106]–[108],
and some even more optimistic estimates by ARM Ltd. suggest this could
balloon to as many as 1 trillion devices by the same year [109].

We believe that the inherent modularity and flexibility of the RISC-V
ISA could play a pivotal role in reducing the energy consumption of the
rapidly growing number of connected devices. RISC-V not only allows
for the integration of custom extensions and specialized instructions to
enhance processor energy efficiency but also enables the removal of unused

Conclusions and Future Directions 123

logic. This eliminates unnecessary energy consumption, particularly in
application-specific designs.

In this manner, RISC-V can serve as a foundational technology to sub-
stantially mitigate the energy demands of the next generation of connected
devices, making it pivotal for sustainable technology development.

References

[1] N. Garg and R. Garg, “Energy harvesting in IoT devices: A survey,”
in 2017 International Conference on Intelligent Sustainable Systems
(ICISS), 2017, pp. 127–131. doi: 10.1109/ISS1.2017.8389371.

[2] K. Asanović and D. A. Patterson, “Instruction sets should be free:
The case for RISC-V,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2014-146, 2014. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-
146.html.

[3] X. Lu, I. H. Kim, A. Xhafa, J. Zhou, and K. Tsai, “Reaching 10-
years of battery life for industrial IoT wireless sensor networks,”
in 2017 Symposium on VLSI Circuits, 2017, pp. C66–C67. doi:
10.23919/VLSIC.2017.8008550.

[4] EnABLES - European Research Infrastructure Powering the Internet
of Things, EnABLES Research Infrastructure Position Paper, https://
www.enables-project.eu/wp-content/uploads/2021/02/EnABLES_
ResearchInfrastructure_PositionPaper.pdf, Accessed: 2023-07-07,
2019.

[5] A. Nordrum, “Popular Internet of Things Forecast of 50 Billion
Devices by 2020 Is Outdated,” IEEE Spectrum, Jul. 2016. [Online].
Available: https://spectrum.ieee.org/popular- internet-of-things-
forecast-of-50-billion-devices-by-2020-is-outdated.

[6] Peng, Z. et al., “Practical Indicators for Risk of Airborne Transmis-
sion in Shared Indoor Environments and their application to COVID-
19 Outbreaks,” medRxiv, 2021. doi: 10.1101/2021.04.21.21255898.
[Online]. Available: https://www.medrxiv.org/content/early/2021/
05/07/2021.04.21.21255898.

125

126 REFERENCES

[7] K. Asanovic, R. Avizienis, J. Bachrach, et al., “The Rocket Chip
Generator,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, vol. 4, 2016.

[8] Xilinx, Inc., MicroBlaze Soft Processor Core — xilinx.com, https:
//www.xilinx.com/products/design-tools/microblaze.html, [Accessed
09-Jul-2023], 2023.

[9] Intel Corp., Nios® Processor for FPGAs - Intel® FPGA — intel.com,
https://www.intel.com/content/www/us/en/products/details/
fpga/nios-processor.html, [Accessed 09-Jul-2023].

[10] D. Large and J. Farmer, “Chapter 11 - Emerging Architectures,” in
ser. The Morgan Kaufmann Series in Networking, 2009, pp. 321–346.
doi: https://doi.org/10.1016/B978-0-12-374401-2.00011-5.

[11] Jupyter: Free software, open standards, and web services for interac-
tive computing across all programming languages, https://jupyter.
org/, Accessed: 2022-07-25.

[12] A. Traber, F. Zaruba, S. Stucki, et al., “PULPino: A small single-core
RISC-V SoC,” in 3rd RISCV Workshop, 2016.

[13] PULP Team, PULP Platform. Open hardware, the way it should be!
https://pulp-platform.org/team.html, Accessed: 2022-07-25.

[14] RISC-V International, RISC-V Specifications, https://riscv.org/
technical/specifications, Accessed: 2023-09-06.

[15] C. Papon, VexRiscv: A FPGA friendly 32-bit RISC-V CPU im-
plementation, http://github.com/SpinalHDL/VexRiscv, Accessed:
2023-07-28.

[16] Western Digital, EH1 SweRV RISC-V Core, http://github.com/
westerndigitalcorporation/swerv_eh1, Accessed: 2023-07-28.

[17] M. Gautschi, P. D. Schiavone, A. Traber, et al., “Near-threshold RISC-
V core with DSP extensions for scalable IoT endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, 2017. doi: 10.1109/TVLSI.2017.2654506.

[18] OpenHW Group, CV32E40P User Manual, https://docs.openhwgroup.
org/projects/cv32e40p-user-manual/en/latest/index.html, Accessed:
2023-07-28.

[19] P. D. Schiavone, F. Conti, D. Rossi, et al., “Slow and steady wins the
race? A comparison of ultra-low-power RISC-V cores for Internet-
of-Things applications,” in 2017 27th International Symposium on
Power and Timing Modeling, Optimization and Simulation (PAT-
MOS), IEEE, 2017, pp. 1–8. doi: 10.1109/PATMOS.2017.8106976.

REFERENCES 127

[20] SiFive, Inc., SiFive E3 Coreplex Series Manual, https://static.dev.
sifive.com/SiFive-E3-Coreplex-v1.1.pdf, Accessed: 2023-09-07.

[21] S. Jiang and F. lin, “The best SoC solution with AndesCore and
Andes’s platform,” in Proceedings of Technical Program of 2012 VLSI
Design, Automation and Test, 2012, pp. 1–4. doi: 10.1109/VLSI-
DAT.2012.6212638.

[22] Codasip, Codasip RISC-V processors, https://codasip.com/products/
codasip-risc-v-processors/, Accessed: 2023-09-07.

[23] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated
circuits- A design perspective, 2ed. Prentice Hall, 2004.

[24] H. J. M. Veendrick, “Short-circuit dissipation of static CMOS cir-
cuitry and its impact on the design of buffer circuits,” IEEE Journal
of Solid-state Circuits, vol. 19, pp. 468–473, 1984.

[25] D. Castells-Rufas, A. Saà-Garriga, and J. Carrabina, “Energy Effi-
ciency of Many-Soft-Core Processors,” CoRR, vol. abs/1601.07133,
2016. arXiv: 1601.07133. [Online]. Available: http://arxiv.org/abs/
1601.07133.

[26] T. Scogland, B. Subramaniam, and W.-C. Feng, “The Green500 List:
Escapades to Exascale,” Comput. Sci., vol. 28, no. 2–3, pp. 109–117,
May 2013, issn: 1865-2034. doi: 10.1007/s00450-012-0212-6. [Online].
Available: https://doi.org/10.1007/s00450-012-0212-6.

[27] T. Burd and R. Brodersen, “Energy efficient CMOS microprocessor
design,” in Proceedings of the Twenty-Eighth Annual Hawaii Inter-
national Conference on System Sciences, vol. 1, 1995, 288–297 vol.1.
doi: 10.1109/HICSS.1995.375385.

[28] S. Arya, H. Sachs, and S. Duvvuru, “An Architecture for High
Instruction Level Parallelism,” in Proceedings of the Twenty-Eighth
Annual Hawaii International Conference on System Sciences, vol. 1,
1995, 153–162 vol.1. doi: 10.1109/HICSS.1995.375398.

[29] S. Misra, A. A. Alfa, M. O. Olaniyi, and S. O. Adewale, “Exploratory
Study of Techniques for Exploiting Instruction-Level Parallelism,”
in 2014 Global Summit on Computer & Information Technology
(GSCIT), 2014, pp. 1–6. doi: 10.1109/GSCIT.2014.6970103.

[30] R. Puri, L. Stok, J. Cohn, et al., “Pushing ASIC Performance in a
Power Envelope,” in Proceedings of the 40th Annual Design Automa-
tion Conference, ser. DAC ’03, Anaheim, CA, USA: Association for
Computing Machinery, 2003, pp. 788–793, isbn: 1581136889. doi:
10.1145/775832.776032. [Online]. Available: https://doi.org/10.1145/
775832.776032.

128 REFERENCES

[31] B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini, “A survey
on hardware accelerators: Taxonomy, trends, challenges, and perspec-
tives,” Journal of Systems Architecture, vol. 129, p. 102 561, 2022,
issn: 1383-7621. doi: https://doi.org/10.1016/j.sysarc.2022.102561.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1383762122001138.

[32] M. K. Jain, M. Balakrishnan, and A. Kumar, “ASIP design method-
ologies: survey and issues,” in VLSI Design 2001. Fourteenth Inter-
national Conference on VLSI Design, 2001, pp. 76–81. doi: 10.1109/
ICVD.2001.902643.

[33] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. August,
“Compiler optimization-space exploration,” in International Sympo-
sium on Code Generation and Optimization, 2003. CGO 2003., 2003,
pp. 204–215. doi: 10.1109/CGO.2003.1191546.

[34] A. Hartstein and T. Puzak, “The optimum pipeline depth for a mi-
croprocessor,” in Proceedings 29th Annual International Symposium
on Computer Architecture, 2002, pp. 7–13. doi: 10.1109/ISCA.2002.
1003557.

[35] J. E. Smith, “A Study of Branch Prediction Strategies,” in Proceedings
of the 8th Annual Symposium on Computer Architecture, ser. ISCA
’81, Minneapolis, Minnesota, USA: IEEE Computer Society Press,
1981, pp. 135–148.

[36] D. A. Jiménez and C. Lin, “Neural Methods for Dynamic Branch
Prediction,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 369–397,
Nov. 2002, issn: 0734-2071. doi: 10.1145/571637.571639. [Online].
Available: https://doi.org/10.1145/571637.571639.

[37] P. Arroba, J. M. Moya, J. L. Ayala, and R. Buyya, “Dynamic Volt-
age and Frequency Scaling-aware dynamic consolidation of virtual
machines for energy efficient cloud data centers,” Concurrency and
Computation: Practice and Experience, vol. 29, 2017.

[38] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. V. Zyuban, H. M. Ja-
cobson, and P. Bose, “Microarchitectural techniques for power gating
of execution units,” Proceedings of the 2004 International Symposium
on Low Power Electronics and Design (IEEE Cat. No.04TH8758),
pp. 32–37, 2004.

[39] J. R. Shinde and S. S. Salankar, “Clock gating — A power optimizing
technique for VLSI circuits,” 2011 Annual IEEE India Conference,
pp. 1–4, 2011.

REFERENCES 129

[40] Ü. Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu,
“Voltage-Frequency Island Partitioning for GALS-based Networks-
on-Chip,” 2007 44th ACM/IEEE Design Automation Conference,
pp. 110–115, 2007.

[41] N. G. Tsoutsos and M. Maniatakos, “Investigating the Application of
One Instruction Set Computing for Encrypted Data Computation,”
in Security, Privacy, and Applied Cryptography Engineering, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 21–37, isbn: 978-3-
642-41224-0.

[42] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative
cache for high performance and low energy consumption,” Proceed-
ings. 1999 International Symposium on Low Power Electronics and
Design (Cat. No.99TH8477), pp. 273–275, 1999.

[43] R. M. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Mar-
wedel, “Scratchpad memory: A design alternative for cache on-chip
memory in embedded systems,” Proceedings of the Tenth Interna-
tional Symposium on Hardware/Software Codesign. CODES 2002
(IEEE Cat. No.02TH8627), pp. 73–78, 2002.

[44] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey
on Gas Sensing Technology,” Sensors (Basel, Switzerland), vol. 12,
pp. 9635–9665, 2012.

[45] A. Dey, “Semiconductor metal oxide gas sensors: A review,” Materials
Science and Engineering B-advanced Functional Solid-state Materials,
vol. 229, pp. 206–217, 2018.

[46] N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira, and L. Lin,
“A review on chemiresistive room temperature gas sensors based
on metal oxide nanostructures, graphene and 2D transition metal
dichalcogenides,” Microchimica Acta, vol. 185, pp. 1–16, 2018.

[47] R. Alrammouz, J. Podlecki, P. Abboud, B. Sorli, and R. Habchi, “A
review on flexible gas sensors: From materials to devices,” Sensors
and Actuators A: Physical, vol. 284, pp. 209–231, 2018, issn: 0924-
4247. doi: https://doi.org/10.1016/j.sna.2018.10.036. [Online].
Available: https : //www.sciencedirect . com/science/article/pii /
S0924424718308100.

[48] Á. Molina, V. A. Escobar-Barrios, and J. Oliva, “A review on hybrid
and flexible CO2 gas sensors,” Synthetic Metals, vol. 270, p. 116 602,
2020.

[49] R. Bogue, “Detecting gases with light: a review of optical gas sensor
technologies,” Sensor Review, vol. 35, pp. 133–140, 2015.

130 REFERENCES

[50] T. Yamate, G. Fujisawa, and T. Ikegami, “Optical Sensors for the
Exploration of Oil and Gas,” Journal of Lightwave Technology, vol. 35,
pp. 3538–3545, 2017.

[51] D. Popa and F. Udrea, “Towards Integrated Mid-Infrared Gas Sen-
sors,” Sensors, vol. 19, no. 9, 2019, issn: 1424-8220. doi: 10.3390/
s19092076. [Online]. Available: https : / / www . mdpi . com / 1424 -
8220/19/9/2076.

[52] D. F. Swinehart, “The Beer-Lambert Law,” Journal of Chemical
Education, vol. 39, p. 333, 1962.

[53] L. Kocsis, P. Herman, and A. Eke, “The modified Beer–Lambert law
revisited,” Physics in Medicine & Biology, vol. 51, N91–N98, 2006.

[54] K. Fuwa and B. L. Vallé, “The Physical Basis of Analytical Atomic
Absorption Spectrometry. The Pertinence of the Beer-Lambert Law.,”
Analytical Chemistry, vol. 35, pp. 942–946, 1963.

[55] T. G. Mayerhöfer, S. Pahlow, and J. Popp, “The Bouguer-Beer-
Lambert Law: Shining Light on the Obscure,” Chemphyschem, vol. 21,
pp. 2029–2046, 2020.

[56] G. Casasanta, F. Falcini, and R. Garra, “Beer–Lambert law in pho-
tochemistry: A new approach,” Journal of Photochemistry and Pho-
tobiology A: Chemistry, vol. 432, p. 114 086, 2022, issn: 1010-6030.
doi: https://doi.org/10.1016/j.jphotochem.2022.114086. [Online].
Available: https : //www.sciencedirect . com/science/article/pii /
S1010603022003100.

[57] J. Hodgkinson and R. P. Tatam, “Optical Gas Sensing: A Review,”
Measurement Science and Technology, vol. 24, no. 1, p. 012 004, Nov.
2012. doi: 10.1088/0957-0233/24/1/012004. [Online]. Available:
https://dx.doi.org/10.1088/0957-0233/24/1/012004.

[58] R. K. Jha, “Non-Dispersive Infrared Gas Sensing Technology: A
Review,” IEEE Sensors Journal, vol. 22, pp. 6–15, 2022.

[59] A. Rosencwaig, “Photoacoustic spectroscopy.,” Annual review of
biophysics and bioengineering, vol. 9, pp. 31–54, 1980.

[60] C. Haisch, “Photoacoustic spectroscopy for analytical measurements,”
Measurement Science and Technology, vol. 23, p. 012 001, 2011.

[61] A. Fathy, Y. Sabry, I. Hunter, D. Khalil, and T. Bourouina, “Direct
Absorption and Photoacoustic Spectroscopy for Gas Sensing and
Analysis: A Critical Review,” Laser & Photonics Reviews, vol. 16,
May 2022. doi: 10.1002/lpor.202100556.

REFERENCES 131

[62] P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in
atmospheric trace-gas monitoring by tunable diode-laser absorption
spectroscopy (TDLAS),” Applied Physics B, vol. 57, pp. 131–139,
1993.

[63] M. Lackner, “Tunable Diode Laser Absorption Spectroscopy (TD-
LAS) in the Process Industries – A Review,” Reviews in Chemical
Engineering, vol. 23, pp. 147–65, 2007.

[64] J. Li, B. Yu, W. Zhao, and W. Chen, “A Review of Signal En-
hancement and Noise Reduction Techniques for Tunable Diode Laser
Absorption Spectroscopy,” Applied Spectroscopy Reviews, vol. 49,
pp. 666–691, 2014.

[65] S. Khan, D. Newport, and S. Le Calvé, “Gas Detection Using
Portable Deep-UV Absorption Spectrophotometry: A Review,” Sen-
sors, vol. 19, no. 23, 2019, issn: 1424-8220. doi: 10.3390/s19235210.
[Online]. Available: https://www.mdpi.com/1424-8220/19/23/5210.

[66] S. Khan, D. Newport, and S. Le Calvé, “Development of a Toluene
Detector Based on Deep UV Absorption Spectrophotometry Using
Glass and Aluminum Capillary Tube Gas Cells with a LED Source,”
Micromachines, vol. 10, no. 3, 2019, issn: 2072-666X. doi: 10.3390/
mi10030193. [Online]. Available: https ://www.mdpi .com/2072-
666X/10/3/193.

[67] M. G. Ruppert, D. M. Harcombe, M. R. P. Ragazzon, S. O. R. Mo-
heimani, and A. J. Fleming, “A review of demodulation techniques for
amplitude-modulation atomic force microscopy,” Beilstein Journal
of Nanotechnology, vol. 8, pp. 1407–1426, 2017.

[68] C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, “Instrument-
Based Noncontact Doppler Radar Vital Sign Detection System Using
Heterodyne Digital Quadrature Demodulation Architecture,” IEEE
Transactions on Instrumentation and Measurement, vol. 59, pp. 1580–
1588, 2010.

[69] D. Zheng, S. Zhang, S. Wang, C. Hu, and X. Zhao, “A Capacitive Ro-
tary Encoder Based on Quadrature Modulation and Demodulation,”
IEEE Transactions on Instrumentation and Measurement, vol. 64,
pp. 143–153, 2015.

[70] S. Gajjar, N. Choksi, M. Sarkar, and K. Dasgupta, “Comparative
Analysis of Wireless Sensor Network Motes,” in 2014 International
Conference on Signal Processing and Integrated Networks (SPIN),
2014, pp. 426–431. doi: 10.1109/SPIN.2014.6776991.

132 REFERENCES

[71] R. P. Narayanan, T. V. Sarath, and V. V. Vineeth, “Survey on
Motes Used in Wireless Sensor Networks: Performance & Parametric
Analysis,” Wireless Sensor Network, vol. 8, pp. 67–76, Apr. 2016.
doi: 10.4236/wsn.2016.84005.

[72] F. Karray, W. Jmal, A. Garcia-Ortiz, M. Abid, and A. Obeid, “A
Comprehensive Survey on Wireless Sensor Node Hardware Plat-
forms,” Computer Networks, vol. 144, 2018. doi: 10.1016/j.comnet.
2018.05.010.

[73] P. Kumar and S. Reddy, “Wireless Sensor Networks: A Review of
Motes, Wireless Technologies, Routing Algorithms and Static De-
ployment Strategies for Agriculture Applications,” CSI Transactions
on ICT, 2020. doi: 10.1007/s40012-020-00289-1.

[74] A. W. Bhat and A. Passi, “Wireless Sensor Network Motes: A Com-
parative Study,” in 2022 9th International Conference on Computing
for Sustainable Global Development (INDIACom), 2022, pp. 141–144.
doi: 10.23919/INDIACom54597.2022.9763269.

[75] E. Flamand, D. Rossi, F. Conti, et al., “GAP-8: A RISC-V SoC for
AI at the Edge of the IoT,” in 2018 IEEE 29th ASAP International
Conference, 2018, pp. 1–4. doi: 10.1109/ASAP.2018.8445101.

[76] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr.Wolf:
An Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT
Edge Processing,” IEEE Journal of Solid-State Circuits, vol. 54, no. 7,
2019. doi: 10.1109/JSSC.2019.2912307.

[77] P. D. Schiavone, D. Rossi, A. Di Mauro, et al., “Arnold: An eFPGA-
Augmented RISC-V SoC for Flexible and Low-Power IoT End
Nodes,” IEEE Transactions on VLSI Systems, vol. 29, no. 4, 2021.
doi: 10.1109/TVLSI.2021.3058162.

[78] M. Vieira, C. Coelho, D. da Silva, and J. da Mata, “Survey on Wireless
Sensor Network Devices,” in EFTA 2003. 2003 IEEE Conference on
Emerging Technologies and Factory Automation. Proceedings (Cat.
No.03TH8696), vol. 1, 2003, 537–544 vol.1. doi: 10.1109/ETFA.2003.
1247753.

[79] J. Wei, L. Wang, F. Wu, Y. Chen, and L. Ju, “Design and Imple-
mentation of Wireless Sensor Node based on Open Core,” in 2009
IEEE Youth Conference on Information, Computing and Telecom-
munication, 2009. doi: 10.1109/YCICT.2009.5382416.

REFERENCES 133

[80] B. Bengherbia, M. Ouldzmirli, A. Toubal, and A. Guessoum, “FPGA-
based Wireless Sensor Nodes for Vibration Monitoring System and
Fault Diagnosis,” Measurement, vol. 101, Jan. 2017. doi: 10.1016/j.
measurement.2017.01.022.

[81] IGLOO: The Industry’s Low-Power FPGAs, https://www.microsemi.
com/product-directory/fpgas/1689-igloo, Accessed: 2023-08-04.

[82] A. Engel and A. Koch, “Heterogeneous Wireless Sensor Nodes that
Target the Internet of Things,” IEEE Micro, vol. 36, no. 6, 2016.
doi: 10.1109/MM.2016.100.

[83] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design RISC-V Edition: The Hardware Software Interface, 1st. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2017, isbn:
0128122757.

[84] D. G. Bailey, “Space efficient division on FPGAs,” in Electronics
New Zealand Conference (EnzCon’06), 2006, pp. 206–211.

[85] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “FPnew: An open-
source multiformat floating-point unit architecture for energy-proportional
transprecision computing,” IEEE Transactions on VLSI Systems,
vol. 29, no. 4, 2020.

[86] Xilinx, Inc., 7 Series DSP48E1 Slice - User Guide, https://docs.xilinx.
com/v/u/en-US/ug479_7Series_DSP48E1, Accessed: 2023-07-30,
2018.

[87] D. Castells-Rufas, RISC-V ISA Coverage, https ://github .com/
davidcastells/riscvisacoverage, Accessed: 2023-08-27.

[88] SEGGER, emFloat — The floating-point library, https://www.segger.
com/products/development - tools/runtime- library/technology/
floating-point-library/, Accessed: 2023-07-31.

[89] P. Schregle, A C++ template class for fixed point math, https://
www.codeproject.com/Articles/37636/Fixed-Point-Class, Accessed:
2023-07-31, 2009.

[90] R. Núñez–Prieto, D. Castells–Rufas, N. Avellana, R. Martínez, and
L. Terés, “Processor Optimization of an Energy-Efficient NDIR
CO2 Wireless Sensor Node,” in 2022 37th Conference on Design
of Circuits and Integrated Circuits (DCIS), 2022, pp. 01–06. doi:
10.1109/DCIS55711.2022.9970089.

134 REFERENCES

[91] R. Núñez-Prieto, D. Castells-Rufas, and L. Terés-Terés, “RisCO2:
Implementation and Performance Evaluation of RISC-V Processors
for Low-Power CO2 Concentration Sensing,” Micromachines, vol. 14,
no. 7, 2023, issn: 2072-666X. doi: 10.3390/mi14071371. [Online].
Available: https://www.mdpi.com/2072-666X/14/7/1371.

[92] Y. Wang, M. Nakayama, M. Yagi, M. Nishikawa, M. Fukunaga,
and K. Watanabe, “The NDIR CO2 monitor with smart interface
for global networking,” IEEE Transactions on Instrumentation and
Measurement, vol. 54, no. 4, pp. 1634–1639, 2005. doi: 10.1109/TIM.
2005.851474.

[93] J. A. Seitz and C. Tong, “Texas Instruments LMP 91051 NDIR CO2
Gas Detection System,” 2013.

[94] L. Scholz, A. Ortiz Perez, B. Bierer, P. Eaksen, J. Wöllenstein, and
S. Palzer, “Miniature Low-Cost Carbon Dioxide Sensor for Mobile
Devices,” IEEE Sensors Journal, vol. 17, no. 9, pp. 2889–2895, 2017.
doi: 10.1109/JSEN.2017.2682638.

[95] D. Gibson and C. MacGregor, “A Novel Solid State Non-Dispersive
Infrared CO2 Gas Sensor Compatible with Wireless and Portable
Deployment,” Sensors, vol. 13, no. 6, pp. 7079–7103, 2013, issn:
1424-8220. doi: 10.3390/s130607079.

[96] SpectraPlot v2.0, https://spectraplot.com/absorption, Accessed:
2023-08-12.

[97] HITRAN - High-resolution Transmission Molecular Absorption Database,
https://hitran.org/, Accessed: 2023-08-12.

[98] L. S. Rothman, I. E. Gordon, Y. L. Babikov, et al., “The HITRAN
2008 molecular spectroscopic database,” Journal of Quantitative
Spectroscopy & Radiative Transfer, vol. 96, pp. 139–204, 2005.

[99] A. Borodinecs, A. Palcikovskis, and V. Jacnevs, “Indoor Air CO2
Sensors and Possible Uncertainties of Measurements: A Review and
an Example of Practical Measurements,” Energies, vol. 15, no. 19,
2022, issn: 1996-1073. doi: 10.3390/en15196961. [Online]. Available:
https://www.mdpi.com/1996-1073/15/19/6961.

[100] SEGGER, Embedded Studio for RISC-V, by SEGGER, https ://
www.segger.com/products/development-tools/embedded-studio/
editions/risc-v/, Accessed: 2023-06-22.

[101] Specification for the Zfinx RISC-V extension, https://github.com/
riscv/riscv-zfinx/tree/main, Accessed: 2023-08-08.

REFERENCES 135

[102] AMD, Inc. Xilinx, Alveo U200 Data Center Accelerator Card, https:
//www.xilinx.com/products/boards-and-kits/alveo/u200.html,
Accessed: 2023-09-17.

[103] AMD, Inc. Xilinx, Vitis Unified Software Platform, https://www.
xilinx.com/products/design-tools/vitis/vitis-platform.html, Ac-
cessed: 2023-09-17.

[104] Cadence Design Systems, Inc., Genus Synthesis Solution: Massively
parallel RTL synthesis and physical synthesis, https://www.cadence.
com/content/dam/cadence - www/global / en_ US/documents/
tools/digital-design-signoff/genus_rebrand_ds-v1.pdf, Accessed:
2023-08-29.

[105] I.-G. Lee, D. B. Kim, J. Choi, et al., “WiFi HaLow for Long-Range
and Low-Power Internet of Things: System on Chip Development and
Performance Evaluation,” IEEE Communications Magazine, vol. 59,
no. 7, pp. 101–107, 2021. doi: 10.1109/MCOM.001.2000815.

[106] Statista GmbH, Number of Internet of Things (IoT) connected devices
worldwide from 2019 to 2023, with forecasts from 2022 to 2030, https:
//www.statista.com/statistics/1183457/iot- connected- devices-
worldwide/, Accessed: 2023-08-31.

[107] Fabio Duarte (Exploding Topics), Number of IoT Devices (2023),
https://explodingtopics.com/blog/number-of-iot-devices, Accessed:
2023-08-31.

[108] Transforma Insights, Global IoT connections to hit 29.4 billion in
2030, https://transformainsights.com/news/global-iot-connections-
294, Accessed: 2023-08-31.

[109] ARM Ltd., White Paper: The economics of a trillion connected
devices, https://community.arm.com/arm-community-blogs/b/
internet-of-things-blog/posts/white-paper-the-route-to-a-trillion-
devices, Accessed: 2023-08-31.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

	Títol de la tesi: Design and Optimization of aLow-Power RISC-V Processor forNDIR Measurement of CO2 Levels
	Nom autor/a: Ricardo Núñez Prieto

