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Abstract

In multi-image processing, leveraging semantic information is essential for content-
aware operations and ensuring consistency across images. However, this presents
challenges in obtaining high-precision semantic data quickly, tailoring semantic in-
formation to different tasks, and maintaining consistency across processing results.
This thesis addresses these challenges through several proposed approaches:

Slimmable semantic segmentation: We introduce a flexible framework for
training semantic segmentation models with knowledge distillation, enabling quick
adaptation between accuracy and efficiency trade-offs. To further improve the
accuracy of the compact models, boundary supervision is introduced to obtain
better object boundary details.

Semantic integration in recoloring: We explore the integration of semantic
features into palette-based image recoloring to enhance color consistency across
multiple images. Moreover, we propose to introduce color naming features in color
harmonization. We demonstrate that the integration of semantics improves image
color consistency and harmony, producing better perceptual visual effects.

Temporal impact analysis: We investigate the impact of temporal information
on multi-image restoration quality, highlighting the perception-distortion tradeoff
and the importance of alignment. We demonstrate that the perception-distortion
tradeoff still exists when introducing temporal information, and misalignment
worsens both perception and distortion. Our analysis provides a reference for
designing multi-frame restoration algorithms and potential shooting strategies.

Each approach contributes to overcoming the challenges of leveraging semantic
information in multi-image processing, aiming to enhance both efficiency and
effectiveness in various image processing applications.

Key words: deep learning, semantic segmentation, image recoloring, image
restoration, multi-image processing, perception-distortion tradeoff
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Resumen

En el procesamiento de múltiples imágenes, aprovechar la semántica es esencial pa-
ra operaciones basadas en el contenido y garantizar la consistencia entre imágenes.
Esto presenta desafíos en la obtención rápida de datos semánticos de alta precisión,
adaptar la información semántica a diferentes tareas y mantener la consistencia en
los resultados. Esta tesis aborda estos desafíos a través de varios enfoques:

Segmentación semántica adaptable: Introducimos un marco flexible para en-
trenar modelos de segmentación semántica con destilación de conocimientos, lo
que permite una rápida adaptación entre los compromisos de precisión y eficien-
cia. Para mejorar aún más la precisión de los modelos compactos, se introduce
supervisión de contornos para obtener mejores detalles de los límites de los objetos.

Integración semántica en la recoloración: Exploramos la integración de ca-
racterísticas semánticas en la recolorización de imágenes basado en paletas para
mejorar la consistencia del color en múltiples imágenes. Además, proponemos
introducir características de nombres de colores en la armonización del color. De-
mostramos que la integración de semántica mejora la consistencia y armonía del
color de la imagen, produciendo mejores efectos visuales perceptuales.

Análisis del impacto temporal: Investigamos el impacto de la información tem-
poral en la calidad de restauración de múltiples imágenes, destacando el compro-
miso entre percepción y distorsión y la importancia de la alineación. Demostramos
que el compromiso entre percepción y distorsión todavía existe al introducir infor-
mación temporal, y que la falta de alineación empeora tanto la percepción como la
distorsión. Nuestro análisis proporciona una referencia para diseñar algoritmos de
restauración de múltiples fotogramas y estrategias de filmación potenciales.

Cada enfoque contribuye a superar los desafíos de aprovechar la información
semántica en el procesamiento de múltiples imágenes, para mejorar tanto la eficien-
cia como la efectividad en diversas aplicaciones de procesamiento de imágenes.

Palabras clave: aprendizaje profundo, segmentación semántica, recoloración de
imágenes, restauración de imágenes, procesamiento de múltiples imágenes, compro-
miso percepción-distorsión
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Resum

En el processament de múltiples imatges, l’aprofitament de la informació semàntica
és essencial per a operacions conscients del contingut i per assegurar la consis-
tència entre les imatges. Tanmateix, això presenta desafiaments en obtenir dades
semàntiques d’alta precisió ràpidament, adaptar la informació semàntica a dife-
rents tasques i mantenir la consistència en els resultats del processament. Aquesta
tesi aborda aquests desafiaments mitjançant diversos enfocaments proposats:

Segmentació semàntica adaptable: Introduïm un marc flexible per a l’entre-
nament de models de segmentació semàntica amb destil·lació de coneixements,
permetent una adaptació ràpida entre els compromisos de precisió i eficiència. Per
millorar encara més la precisió dels models compactes, s’introdueix supervisió de
contorns per obtenir millors detalls dels límits dels objectes.

Integració semàntica en la recolorització: Explorem la integració de caracte-
rístiques semàntiques en la recolorització múltiples imatges. A més, proposem
introduir característiques de noms de colors en l’harmonització del color. Demos-
trem que la integració de la semàntica millora la consistència i harmonia del color
de la imatge, produint millors efectes visuals perceptius.

Anàlisi de l’impacte temporal: Investiguem l’impacte de la informació tempo-
ral en la qualitat de restauració de múltiples imatges, destacant el compromís entre
percepció i distorsió i la importància de l’alineació. Demostrem que el compromís
entre percepció i distorsió encara existeix en introduir informació temporal, i que
l’alineació empitjora tant la percepció com la distorsió. La nostra anàlisi proporcio-
na una referència per dissenyar algoritmes de restauració de múltiples fotogrames i
estratègies de filmació potencials.

Cada enfocament contribueix a superar els desafiaments de l’aprofitament de
la informació semàntica en el processament de múltiples imatges, amb l’objectiu
de millorar tant l’eficiència com l’eficàcia en diverses aplicacions.

Paraules clau: aprenentatge profund, segmentació semàntica, recolorit d’imat-
ges, restauració d’imatges, processament de múltiples imatges, compromís entre
percepció i distorsió
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1 Introduction

When presented with an image, the human brain quickly recognizes familiar ob-
jects in a mere 100 milliseconds. This rapid comprehension stems from a blend of
swift visual processing and cognitive analysis. As visual data reaches our eyes, it
is transmitted to the brain’s “Vision Center” located in the occipital cortex, where
it is interpreted into electric signals, forming a visual map. We interpret images
effortlessly and subconsciously, grasping their meanings without conscious effort.
Visual symbols and icons serve as useful tools for creators to convey messages
and meanings to audiences. However, beyond symbols, the interplay of complex
imagery and visual elements within an image, i.e. context, also plays a crucial
role. Familiar subjects or contexts facilitate rapid recognition and comprehension,
while less familiar elements may require deliberate interpretation. Our experiences
and acquired knowledge further inform our understanding, like building a mental
visual dictionary, such as recognizing familiar faces. Through processes encompass-
ing perception, processing, interpretation, understanding, and extrapolation, our
brains transform visual stimuli into semantically meaningful information, shaping
our thoughts and actions. In essence, decoding an image involves a multifaceted in-
terplay of rapid visual processing and cognitive interpretation. One of the essential
objectives of computer vision is to equip machines with similar processing capabili-
ties, enabling them to quickly and accurately decipher semantic information from
images.

What are semantics? Semantics is the study of the meaning of words, construc-
tions, and utterances, according to the definition from the book “Foundations of
Statistical Natural Language Processing” [119]. In computer vision, semantics de-
notes the comprehension and interpretation of the content embedded within visual
data, such as images or videos, at a higher conceptual level. This involves extracting
significant information about objects, scenes, and relationships portrayed within
the visual data.

Why are semantics so important? The connection between the image and
its semantics enables machines to comprehend the content of images in a way
that is closer to human understanding. Moreover, by discerning the relationships
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Chapter 1. Introduction

between different entities depicted in an image, deeper semantic insights beyond
mere recognition can be derived. Semantic information about image content finds
applications in various domains, including content-driven image editing tasks that
require high-level decision planning, such as robotics, autonomous driving, and
human-computer interaction.

How to obtain semantic information from an image? Obtaining semantic
information from an image typically involves using computer vision techniques and
statistical methods. Some common approaches involve image classification, object
detection, semantic segmentation, or instance segmentation. These methods can
obtain semantic information at different levels of granularity, with segmentation-
related tasks capable of achieving pixel-level semantic delineation, providing the
foundation for precise image editing.

What if there is more than one image? The situation with multiple images
can be divided into two types: temporally related images, such as rapid burst shots
or video sequences, wherein the frames capture a fixed scene with substantial
overlapping content. Here, motion typically follows a discernible pattern, and
inter-frame relationships can be established through techniques like optical flow
for motion estimation. The other scenario is when no temporal relationship exists
between images, but there might be some similarities, common objects or shared
visual attributes like colors and shapes. For such images, inter-image relationships
can only be established based on these shared characteristics.

This thesis endeavors to establish a comprehensive pipeline encompassing
semantic extraction and utilization. Corresponding methodologies are devised to
address challenges encountered at each stage of this pipeline, thereby fostering
intuitive, rapid, and human-perceptive image processing. Furthermore, strategies
for extracting and leveraging semantic associations across multiple images are
discussed, enhancing result consistency amid the requirement to process diverse
image datasets. Next, we will introduce the key aspects of the pipeline one by one,
including the current studies and their limitations, and the solutions we propose in
this thesis.

1.1 Semantic segmentation

Semantic segmentation is a computer vision task that involves assigning semantic
labels to each pixel in an image, thus dividing the image into meaningful segments
or regions. Unlike image classification, which classifies the entire image into a single
category, semantic segmentation aims to provide a detailed understanding of the
scene by labeling each pixel with the corresponding object or region it belongs to.
Traditional methods distinguish regions by finding the commonality of pixels in dif-
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ferent feature spaces [83, 155, 216]. In contrast, deep learning-based methods learn
features in high-dimensional feature spaces. After the proposal of Fully Convolu-
tional Network (FCN) [115], deep learning completely changed the development of
segmentation. Since then, the performance of semantic segmentation on the Pascal
VOC benchmark [40] has almost doubled (89% mIOU) [18, 22]. However, most exist-
ing deep learning-based segmentation models are still limited to a relatively small
number of classes and scenes. These models rely heavily on dense annotations and
cumbersome deep neural networks. In recent years, thanks to the development
of large language models (LLMs) [144], there has been an explosion in the devel-
opment of open-vocabulary [49, 97, 143, 183, 192, 193, 217], universal [26, 70, 87]
segmentation models. This trend has also to some extent altered the paradigm of
deep-learning-based semantic segmentation.

1.1.1 Limitations

High computational complexity. High-resolution images necessitate longer train-
ing times and increased memory consumption, posing challenges for edge de-
vices. Real-time applications, such as autonomous driving or interactive image
editing, require efficient algorithms capable of performing segmentation swiftly.
Current research primarily focuses on enhancing semantic segmentation efficiency
by developing compact backbone architectures [47, 88, 89, 137, 148, 165, 206, 221],
implementing effective model compression techniques [23, 90, 94, 101, 141, 220],
or leveraging reliable context and boundary information [23, 90, 94, 101, 141, 220].
However, these approaches typically accelerate inference using fixed network struc-
tures, which do not accommodate the varying resources across different devices.
Even within a single device, the availability of hardware resources can fluctuate over
time. To achieve an optimal accuracy-efficiency tradeoff, we could switch between
models of different sizes. A straightforward method is to train multiple independent
models with varied structures and parameters, then load the appropriate model
during inference. Nevertheless, this approach demands extensive training time and
substantial memory for storage.
Boundary ambiguity. Due to inherent pixel ambiguity at object boundaries, achiev-
ing fine distinctions poses challenges to semantic segmentation models. Addition-
ally, segmenting small objects with ambiguous details and rare features is inherently
challenging. Early methods improved edge segmentation through structured mod-
eling [8,9,21,78], which rely on Conditional Random Fields [83] as a post-processing
module to improve the semantic boundaries, hindering end-to-end optimization.
Many methods enhance edge details by fusing low-level features into high-level
features, such as U-Net [150] and Feature Pyramid Network (FPN) [103], which
merge high and low-level features through skip connections. This enables the
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recovery of clearer object contours by incorporating higher-resolution low-level
texture and color features on top of obtaining semantic information and the overall
object position contours from the image. Some other approaches add constraints
to edge regions during model training [1, 80, 92, 213], guiding the network to better
learn edge region features. This includes constraints such as the edge detection
loss functions [1, 92, 213] or resampling of edge pixels [80]. Cheng et al. [27] refine
the segmentation results in a cascaded fashion, with downsampled low-resolution
images first and with cropped high-resolution images to refine and correct local
boundaries progressively from coarse to fine. The common issue of these methods
is that they all introduce additional computational overhead to some extent.

1.1.2 Objectives and approach

Our goal is to design a simpler and more effective image semantic segmentation
method, effectively improving the computational efficiency and processing accu-
racy of current deep learning models, and making it suitable for various hardware
devices and requirements of different tasks, either to emphasize more accurate
details or high-speed inference.

Slimmable semantic segmentation with boundary supervision. Accurate se-
mantic segmentation models typically require significant computational resources,
inhibiting their use in practical applications. Recent works rely on well-crafted
lightweight models to achieve fast inference. However, these models cannot flexibly
adapt to varying accuracy and efficiency requirements. To solve the problems in
current semantic segmentation approaches, in Chapter 2, we propose a simple
but effective slimmable semantic segmentation method, which can be executed at
different capacities during inference depending on the desired accuracy-efficiency
tradeoff. More specifically, we employ parametrized channel slimming by stepwise
downward knowledge distillation during training. Motivated by the observation
that the differences between segmentation results of each submodel are mainly
near the semantic borders, we introduce an additional boundary guided seman-
tic segmentation loss to further improve the performance of each submodel. We
show that our proposed SlimSeg with various mainstream networks can produce
flexible models that provide dynamic adjustment of computational cost and better
performance than independent models. Extensive experiments on semantic seg-
mentation benchmarks, Cityscapes and CamVid, demonstrate the generalization
ability of our framework.
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1.2 Semantics based multi-image processing

Semantics plays a critical role in improving the accuracy and contextual awareness
of various computer vision applications, such as image reconstruction [181], image
editing [116], and image generation [139]. In these applications, semantics serve a
dual function in supporting different tasks. First, objects with distinct semantics
often exhibit unique features, including characteristics such as color, texture, and
shape. These distinctive features provide the algorithms with prior information
for the purposeful recovery and modification of image details. Second, semantics
aid in precise localization to their respective regions, allowing detailed processing
tailored to the identified semantics. For instance, through semantic segmentation,
semantics enable accurate selection and isolation of specific objects or regions
within an image. This facilitates selective editing, where modifications can be
applied solely to certain semantic classes, enhancing the precision and accuracy of
the editing process. Integrating semantics into multiple image processing leads to a
more comprehensive and context-aware understanding of visual data. It enables
more sophisticated decision-making processes and supports the development of
advanced applications.

1.2.1 Limitations

Rely on accurate semantics. The success of semantic-based image processing
is heavily based on an accurate semantic segmentation mask. If the segmenta-
tion maps have misclassified categories or rough boundaries, subsequent editing
tasks may produce undesirable results. The image processing approaches need
to be robust to subtle variations in semantic content to avoid artifacts or distor-
tions. We categorize existing semantic-based processing approaches into two types
according to how they integrate semantics: implicit and explicit. A majority of
implicit approaches treat semantics as the condition of a feature modulation mod-
ule [91,100,116,139,174,181,190], such as the spatially-adaptive normalization [139].
This approach implicitly utilizes semantic segmentation maps and adopts soft log-
its of each pixel as network input to mitigate the adverse effects of misclassified
semantic categories to some extent. Explicit approaches, on the other hand, directly
process different regions of the image separately based on semantic segmentation,
followed by fusion. Even with accurate segmentation results as guidance, separate
processing of different parts can result in abrupt boundaries and inconsistencies
between objects and their surroundings. Additional fusion modules are introduced
to optimize edge regions [62, 116].
Require task-specific semantics. Due to the broad concepts and object ranges
covered by semantics, different tasks often require different categories and forms of

5



Chapter 1. Introduction

semantic guidance. For instance, medical imaging [146], autonomous driving [91],
and facial editing [149] all require different semantic categories. Semantic segmen-
tation networks need to be designed and trained specifically for different tasks. Al-
though recent open-vocabulary segmentation models [49, 97, 143, 183, 192, 193, 217]
cover a wide variety of scenes and semantic categories, fine-tuning is generally
required for specific applications [172, 189]. The forms of semantic guidance are
also diverse, with text and semantic segmentation maps representing semantic
forms from coarse to fine. In addition to object categories, different colors [167,212],
shapes [57, 76], and movements [20, 156] also carry specific semantics. The wide
range of semantic forms and content necessitates the selection of appropriate
semantic guidance based on task requirements in specific applications.
Inconsistent and low-fidelity editing. Through semantic similarity, connections
can be established between different images, aiding algorithms in achieving consis-
tent image processing. For a set of images without temporal relationships, semantic
correspondence [51, 54, 59] between different instances of similar object categories
can be established. However, due to the intra-class semantic differences, e.g.the
appearance and shape variations of objects with the same semantics in different
images, these correspondences often provide only rough matching, resulting in
noticeable artifacts in practical applications. Additionally, current semantic-based
image processing methods mainly focus on editing the content of images [104, 116],
effectively utilizing semantic information. These methods are generally based on
generative models such as Generative Adversarial Networks (GANs) [104, 116] or
diffusion models [77], where the optimization objective is to generate images that
follow a distribution as close as possible to the general distribution of natural im-
ages. However, in tasks such as image enhancement or restoration, we need to
ensure fidelity to the original image while altering its appearance, i.e., consistency
with the content of the original image.

1.2.2 Objectives and approach

We explore the application of semantic information to the problem of image recol-
oring. We introduce high-level semantic features that include object category and
color-naming information. We design task-specific modules to address the issues,
including inaccurate semantic segmentation boundaries, perceptually-drastic and
inharmonious changes, thereby obtaining more consistent and harmonious colors
in the images.
Integrating high-Level features for consistent multi-image recoloring. Achieving
visually consistent colors across multiple images is important when images are
used in photo albums, websites, and brochures. Unfortunately, only a handful of
methods address multi-image color consistency compared to one-to-one color
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transfer techniques. Furthermore, existing methods do not incorporate high-level
features that can assist graphic designers in their work. To address these limitations,
in Chapter 3, we introduce a framework that builds upon a previous palette-based
color consistency method and incorporates three semantic-related features: white
balance, saliency, semantics, and color naming. We show how these features over-
come the limitations of the prior multi-consistency workflow and showcase the
user-friendly nature of our framework.
Palette-based color harmonization via color naming. Color harmony refers to
combinations of colors that look pleasing together. We present a novel strategy to
harmonize an image’s colors using color-palette manipulation and color naming.
Palette-based color manipulation is a method that extracts a small number of colors
to represent the image. Modifying the palette colors modifies the color appearance
of the image. A color-naming model is a mechanism to categorize colors into a fixed
number of basic color terms. Working from a color-naming model, in Chapter 4, we
derive a set of prototype colors and demonstrate that mapping an image’s extracted
color palette to the nearest prototype colors effectively harmonizes the image’s
colors. This straightforward approach yields visually compelling, outperforming
more color harmony complex methods.

1.3 Multi-image restoration

With the widespread use of mobile phone cameras and the growing popularity of re-
lated applications, the processing of videos and burst photos has gained significant
attention. Multiple frames offer additional information, greatly enhancing image
quality for tasks like video restoration and nighttime image enhancement. However,
video and burst processing are more complex than single-image processing due to
the temporal dimension of the data. Multiple frames provide several samples of the
same scene, helping to reduce image noise and recover image details. Nonetheless,
factors such as perspective changes during shooting, inevitable camera shake in
handheld devices, and object motion within the scene often cause displacement
between frames. If these movements are not corrected by aligning each frame, the
final processed result may exhibit artifacts like blurring and ghosting. Therefore, a
crucial challenge in time-series multi-frame image processing is how to effectively
align multiple frames.

1.3.1 Limitations

Require precise alignments. Precise flow estimation is always challenging. Early
video restoration methods typically involve two steps [106, 107]: first, estimating
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motion parameters through registration between frames, and then performing
restoration based on registered frames. Such approaches have high requirements
on the accuracy of flow estimation. For videos or burst captures taken over a short
period, inter-frame motion estimation is generally based on optical flow estimation
techniques [109, 157, 162, 175]. Xue et al. [198] reveal that standard optical flow
might not be the optimal motion representation for video restoration, and propose
a task-oriented flow (TOFlow) representation, utilizing an end-to-end trainable
convolutional network that simultaneously performs motion analysis and video
processing. DUF [73], TDAN [164], and EDVR [180] also circumvent this challenge
through implicit motion compensation, surpassing flow-based methods. EDVR, for
instance, performs implicit alignment using a pyramid and cascading architecture
to handle large motions, while TDAN and EDVR introduce deformable convolu-
tions [34] for alignment at the feature level. However, these implicit alignment
modules leverage the strong expressive power of complex networks. Along with
their benefits, they also pose challenges such as large model parameter sizes and
low computational efficiency, especially when dealing with high-resolution images.
Different optimizing targets. Image restoration aims to eliminate various degrada-
tions that adversely affect image quality, such as noise and blur, aiming at obtaining
a restored image as close as possible to the ground truth image. Traditionally, being
close to the ground truth meant having little distortion as measured for example in
dBs (PSNR). In recent years, generative models [24, 182] have played a significant
role in image restoration tasks. These models can generate images similar to real
images without a specific target image, making them visually natural and realistic.
When using generative models for image restoration, besides optimizing image
fidelity, better perceptual quality can also be achieved. Blau et al. [13] demon-
strate there exists a tradeoff between distortion and perceptual quality in image
restoration tasks, implying that it is not possible to simultaneously improve both
aspects. This perception-distortion tradeoff has been confirmed in single-frame
image restoration tasks, but it is unclear how the introduction of the temporal
dimension affects both aspects of image quality in restoration results.

1.3.2 Objectives and approach

Our research focuses on the reconstruction of sequential multi-frame images, aim-
ing to explore both theoretical analysis and practical applications:
Burst perception-distortion tradeoff: analysis and evaluation. Burst image
restoration attempts to effectively utilize the complementary cues appearing in
sequential images to produce a high-quality image. Most current methods use
all the available images to obtain the reconstructed image. However, using more
images for burst restoration is not always the best option regarding reconstruction
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quality and efficiency, as the images acquired by handheld imaging devices suffer
from degradation and misalignment caused by the camera noise and shake. We
extend the perception-distortion tradeoff theory by introducing multiple-image
information. We propose the area of the unattainable region as a new metric for
perception-distortion tradeoff evaluation and comparison. Based on this metric, we
analyze the performance of burst restoration from the perspective of the perception-
distortion tradeoff under both aligned bursts and misaligned bursts situations. Our
analysis reveals the importance of inter-frame alignment for burst restoration and
shows that the optimal burst length for the restoration model depends both on the
degree of degradation and misalignment.

1.4 Goals and Outline

The primary objective of this thesis is to contribute to research by extracting and
leveraging semantics in low-level vision tasks, including image recoloring, and
image restoration. We not only apply semantics to enhance the performance of
optimizing single-frame image processing but also investigate how to establish
connections between images based on semantic relevance in multi-frame scenarios,
achieving consistent appearance in editing effects. We consider situations involving
burst, video, and unrelated temporal images with only semantic similarity. Through
these investigations, we validate the significance of semantic information in various
low-level computer vision tasks. In particular, our contributions are:

• In Chapter 2, We investigate a potential solution to “How to extract accu-
rate semantics more flexibly and efficiently?”. We investigate a flexible se-
mantic segmentation model architecture that can be adjusted according to
task requirements, switching between various accuracy and processing effi-
ciency. Each model comprises multiple sub-models of varying sizes, which
are trained simultaneously and share parameters but are capable of inde-
pendent inference. The unique structure of the model allows for knowledge
distillation from larger to smaller sub-models during training, further enhanc-
ing the segmentation accuracy of the smaller models. Our results highlight
that for CNN architectures, certain channels focus more on low-frequency in-
formation, such as image content and object outlines, while others prioritize
high-frequency information. Moreover, in dense prediction tasks, the scale of
the image decoder should match that of the encoder to avoid adverse effects
on processing accuracy and efficiency.

• In Chapter 3 and Chapter 4, we explore solutions to “How to utilize semantics
for obtaining consistent and harmonious colors in images?”. We believe that
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semantically related high-level features have a positive impact on image pro-
cessing, which we confirm in our experiments. In the two color-related tasks,
we introduce features such as saliency, object categories, and color names.
Instead of independently processing images based on different semantic
regions, we integrate semantics into a palette-based recoloring framework
and manipulate the colors in the palette according to the semantic features.
This allows for differential treatment of colors based on semantics, ensuring
the smooth appearance of the final recolored results. Moreover, we also find
that perceptual color names not only contribute to achieving more consistent
image colors but can also be applied to image harmonization. By mapping
the image palette to a set of prototype colors selected based on color names,
we obtain more harmonious image colors without artifacts. We show that
introducing high-level semantic information helps achieve more perceptually
natural image colors.

• In Chapter 5, we find a possible solution for “How temporal information affect
multi-frame restoration?”. Multi-frame images introduce more information
for recovering image details lost due to imaging system and noise limitations,
while the motion between frames can also introduce artifacts such as blurring
in the restored images. Through a series of experiments, we analyze and
demonstrate the perception-distortion tradeoff still exists when introducing
temporal information, and misalignment will worsen both perception and
distortion. In addition, our analysis provides a reference to the design of
multi-frame restoration algorithms and the potential shooting strategy. Our
results show that longer bursts (i.e. more images) do not always lead to higher
restoration quality, since misalignment will make the restoration result worse
with more frames. Thus, the key to multi-frame restoration lies in the infer-
frame alignment method. Furthermore, bursts provide a suitable starting
point to study more complicated sequences such as videos, and thus, our
theory, analysis, and evaluation method can also be extended to more general
video restoration scenarios.

Finally, in Chapter 6, we draw the global conclusions arising from the entire
Ph.D. work and prospect future work.
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2 Slimmable semantic segmentation with
boundary supervision*

2.1 Introduction

Semantic segmentation predicts the semantic category corresponding to each pixel
in an image. Various applications have benefited from advances towards more
accurate results, such as autonomous driving [23, 47, 53, 88–90, 93, 101, 137, 205,
206, 219, 220], image synthesis and manipulation [139, 178], and medical imaging
[86, 142]. Based on the pioneering fully convolutional network [115], previous
studies have made important achievements by greatly increasing the performance
on various challenging semantic segmentation benchmarks [15,32,40,224]. Despite
their superiority, these powerful models, built upon heavy deep neural networks,
suffer from the low inference speed and strict requirements for computing devices.

Most of the existing works mainly address efficient semantic segmentation
through (i) designing compact backbone architectures [47, 88, 89, 137, 148, 165, 206,
221], (ii) effective model compression methods [23,90,94,101,141,220], (iii) exploiting
reliable context and boundary information [53, 93, 113, 153, 205]. However, those
methods mainly speed up the inference with fixed network structures, while in
practice, the equipped resources are quite different across diverse devices. Even for
the same device, the availability of hardware resources varies over time. Suppose
we want to switch between models of different sizes according to the ideal accuracy-
efficiency tradeoff. One straightforward way is to train multiple independent models
with different structures and parameters and load a specific one during inference.
However, it requires a longer training time and more memory for storage. Unlike
previous works, we focus on improving the flexibility of the semantic segmentation
model.

The recent work [210] proposes a slimmable neural network that can adjust
the width of the network for different inference speeds. However, they mainly fo-
cus on image classification and only apply their slimmable models as backbones
on instance segmentation tasks, while the other parts (e.g., the decoder) are non-

*This chapter is based on a publication in the ACM International Conference on Multimedia
(ACMMM 2022) [197]
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Table 2.1: The FLOPs and number of parameters of semantic segmentation networks
(except for the backbone) and their proportions of the whole model, with image
size 1024×2048.

Networks SFNet [93] DeepLabv3+ [22]
Backbone ResNet50 ResNet18 ResNet50 MobileNetv2
GFLOPs 436.3 | 72% 107.5 | 55% 663.5 | 45% 6.3 | 34%
Params 7.7M | 25% 1.5M | 12% 16.8M | 40% 2.7M | 59.3%

slimmable. Due to the resolution of the output image, even if a relatively simple
structure is used in the decoder part, including up-sampling and multi-level fea-
ture aggregation etc, the decoder still requires a large amount of computation
during inference. We show the computation cost (in FLOPs) and the number of
parameters of several mainstream segmentation models, including SFNet [93]
and DeepLabv3+ [22], in Table 2.1. In these models, the Pyramid Pooling Module
(PPM) [222] and the decoder account for more than one-third of the overall calcula-
tion, while the parameters for most of them are the minority of the whole model.
Based on [210], we focus on semantic segmentation and aim to lower computa-
tional cost from the perspective of reducing the overall size of the network, rather
than just backbones. Motivated by this, we propose a slimmable semantic segmen-
tation network (SlimSeg) that leverages the slimming mechanism to dynamically
adjust the channel of features on every single layer. The network’s capacity can
be switched with the size of width according to the computational requirements,
thereby controlling the trade-off between accuracy and inference time. In addition,
we apply stepwise downward inplace distillation for training smaller subnetworks,
which means that smaller subnetworks are learned from the larger ones. This leads
to consistent results between different submodels.

Moreover, we also found that the differences between the predicted results
of slimmable subnetworks with different widths mainly exist along the semantic
boundaries. Previous works [213, 226] also report that most existing segmentation
models fail to make right predictions along the semantic boundaries. To further
improve the segmentation quality on the boundary and narrow the accuracy gap
between each subnetwork, we introduce a semantic boundary detection head
on the low-level features and additional supervision named semantic boundary
guided loss. This loss leverages the predicted boundaries as guidance to calculate
a weighted bootstrapped cross-entropy. The boundary detection head can be
removed during inference, so it does not introduce any additional computation.

Our SlimSeg is a general scheme that can adapt the existing segmentation
models to width switchable models without any new structural design. The ex-
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perimental results on Cityscapes [32] and CamVid [15] based on SFNet [93] and
DeepLabv3+ [22] demonstrate the slimmable model has comparable accuracy to
independent models. Furthermore, our method shows higher accuracy on smaller
subnetworks with the stepwise downward distillation and proposed boundary
guided loss. The contributions are summarized as follows:

• We propose a simple but effective slimmable semantic segmentation method
(SlimSeg) which can adjust the capacity of the model depending on the de-
sired trade-off between accuracy and efficiency.

• We present the boundary supervision, including a low-level boundary detec-
tion head and a boundary guided loss to improve the accuracy of semantic
segmentation in boundary regions, especially for the smaller subnetworks.

• Extensive experiments and analysis indicate the efficacy and generalization
ability of our proposed method, both quantitatively and qualitatively.

2.2 Related work

This section focuses on three main related topics: generic semantic segmentation,
efficient semantic segmentation and dynamic neural networks.

2.2.1 Generic semantic segmentation

A typical semantic segmentation architecture generally includes two parts: encoder
and decoder. The encoder module extracts image features through convolution and
downsampling. Generally, the encoder is adapted from image classification models
trained on ImageNet [35], such as VGG19 [154], ResNet [58], etc. Since semantic
segmentation conduct pixel-level classification, the typical fully connected layers
are replaced by convolutional layers [115]. To utilize the global context, the Pyramid
Pooling Module (PPM) [22, 222] is employed to increase the receptive field without
an increase in parameters. However, massive computations are introduced by PPM
and other feature fusion modules performed on high-resolution features neighbor
to the output. To pursue better global and local feature fusion, models [158, 223]
based on more powerful backbones, such as HRNet [173] and ViT [37], have been
proposed. These models have achieved higher accuracy, but are limited by the
hardware requirements in practice. Our approach takes advantage of the sophisti-
cated models and achieves variable capacity through width slimming, enabling fast
inference while maintaining accuracy.
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2.2.2 Efficient semantic segmentation

Efficient semantic segmentation needs to consider both accuracy and computa-
tional cost. Existing methods trade accuracy and speed along three different lines.
Hand-crafted compact backbone architecture. An effective backbone can greatly
improve the upper bound of performance. The works [47, 88, 89, 137, 148, 165,
206, 221] design lightweight backbone architectures from scratch to pursue more
efficient inference. Some works [89,137,221] devised multiscale image cascades and
feature fusion mechanisms to achieve a good accuracy-speed trade-off. Others [88]
improve existing network layers to create sufficient receptive field and densely
utilize the contextual information. BiSeNet [206] introduced a shallow spatial
branch to process full resolution images while learning context information by a
deep branch.
Machine-driven architecture optimization. Neural Architecture Search (NAS)
[227] is an effective technique to switch the labor-intensive architecture design
to an automatic machine-driven optimization process, and this technique has
been applied to semantic segmentation in recent years. From repeated cell struc-
ture [141, 220] to more flexible network structure [90], different types of network
(e.g. graph convolution network [101]), or explicitly taking latency into considera-
tion [23,94]. FasterSeg [23] introduces the teacher-student co-searching and flexible
multi-resolution branches aggregation structure. Although the latitude of the search
space is continuously improved [219], it still requires longer training time and more
effective search strategies.
Feature mining and aggregation. By exploiting the potential of existing lightweight
models, rather than building new architectures, these methods learn more favorable
context information. Knowledge distillation [61] has shown its effectiveness on
segmentation tasks by improving the accuracy of a lightweight student model and
speed-up its convergence by transferring learned knowledge from a sophisticated
teacher network. Liu et al. [113, 153] provide a comprehensive analysis of feature
distillation at different levels, from various cumbersome models to compact models.
Others investigate multi-level feature aggregation to alleviate the side effects of
up and down sampling [93] or enlarge the receptive field of lightweight networks
[53, 205].

Although these efficient semantic segmentation approaches improve the accuracy-
efficiency tradeoff from different perspectives, the resulting model is still limited
to fixed size and operates at a single tradeoff. Unlike these methods, we enable
adjustable computation with one single model and ensures good accuracy for each
submodel of different size.
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2.2.3 Dynamic neural networks

Dynamic neural networks [55] reduce average inference cost by adaptively changing
characteristics of the computational graph, including the resolution, depth, and
width. Reducing the resolution of the input image is the most straightforward way
to lower computational costs. For images with relatively simple context, equivalent
prediction accuracy can be achieved with lower resolutions. Some works [184, 204,
225] propose parallel training for multi-resolution inference with a single model.
Networks with dynamic depth speed up inference by skipping residual blocks
adaptively [96, 170, 179] or early exiting when shallower subnetworks have high
enough confidence [67, 82, 204]. The number of feature channels, i.e. width, is also
a key factor of efficiency. One way of enabling various channel inference is dynamic
pruning. By identifying and skipping the insignificant channels during inference [48,
66, 85] or training a hypernetwork to select the filters [25], the channel complexity
can be lessened. Moreover, [208–210] propose slimmable neural networks with
embedded submodels sharing parameters that are executable at different widths,
allowing immediate and adaptive accuracy-efficiency trade-offs at runtime. Based
on the success of slimmable neural network, Liang et al. [85] improve the hardware
efficiency by introducing a dynamic slimming gate that adaptively adjusts the
network width with negligible extra computation cost. Although dynamic neural
networks have shown their effectiveness on strategically allocating appropriate
computational resources, most works still focus on image classification and some
other low-level vision tasks, such as image compression [203], denoising [72] and
image generation [63]. Different from previous works, we study dynamic semantic
segmentation models through our analysis.

2.3 Methodology

In this section, we first introduce the pipeline of our proposed framework in Section
2.3.1. Then we describe the stepwise downward knowledge distillation and the
semantic boundary guided loss in the Section 2.3.2 and Section 2.3.3, respectively.

2.3.1 Slimmable segmentation framework

Image semantic segmentation requires assigning a category label to each pixel in the
image from several semantic categories. Given an image x, a segmentation network
S parameterized by θ implements a mapping p = S (x;θ), where each spatial
element of p is a probability vector indicating the probability of each semantic
category, from which the most probable is selected. Ideally, it should correspond
to the category indicated in the corresponding ground truth segmentation map y
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Figure 2.1: Overview of our slimmable semantic segmentation framework. (a) The
whole network, including the encoder, PPM, decoder and boundary detection head,
is slimmable. The boundary detection head can be removed during inference. (c)
Each slimmable unit includes a slimmable convolution layer, independent BNs for
each width and a ReLu layer. (b) The largest network with width wN is supervised
by the ground truth labels, and the smaller models with width wn are learned
from larger models with width wn+1 by stepwise distillation. (d) The predicted
boundaries are used to generate boundary masked probability maps for calculating
the boundary guided loss.

(coded as one-hot probability vectors per pixel). During training, the loss minimized
is the cross-entropy LC E

(
p, y ;θ

)
between the predicted probability and the ideal

one-hot label. In practice, this loss is averaged over the pixels in the image and the
image-segmentation pairs

(
x, y

)
in the training dataset.

In this work, we propose a flexible semantic segmentation framework, named
as SlimSeg, which can adapt its model capacity during inference via the slimming
mechanism to accommodate various levels of computing power. More specifically,
we define different sets of widths (i.e.number of channels in each convolutional
layer) of the segmentation network. Thus, the segmentation network contains N
subnetworks with parameters

{
θw1 ,θw2 , ...,θwN

}
with N increasing widths w1 <

w2 < ... < wN , respectively. For every convolutional layer implementing slimming,
the parameters are built as subsets of larger (sub)networks as θw1 ⊂ θw2 ⊂ ... ⊂
θwN = θ. Then, the objective of our task becomes optimizing all the subnetworks
with

∑N
n=1 LC E

(
pn , y ;θwn

)
, where pn is the predicted category probability vector of

the nth subnetworks with parameters θwn . The loss is also averaged over pixels and
training data, and then minimized over the parameters θ. Note that we could also
replace the (one-hot) ground truth label y with the soft label pn′ predicted by larger
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2.3 Methodology

subnetworks to distill its knowledge. We describe our loss functions in more detail
in Section 3.2 and 3.3. Henceforth, we will also omit the explicit dependencies on
the model parameters for the sake of simplicity.

The overall pipeline of our SlimSeg is illustrated in Fig. 2.1. We deploy width
slimming on the entire network, including the encoder for feature extraction, the
Pyramid Pooling Module (PPM) [222] and the decoder for feature aggregation and
classification. The number of channels is adjusted through the slimmable convolu-
tional layer [210], which produces different output feature channels by adjusting
the number of filters. The slimmable convolution will result in a different output
feature distribution. Following [210], we use independent batch normalization (BN)
layers for each width, which only introduces very few parameters to the overall
model.

2.3.2 Stepwise downward distillation

To utilize the knowledge learned by large submodels to guide the learning of the
smaller submodels, we apply inplace knowledge distillation from larger (sub-)
networks to smaller ones. Unlike previous knowledge distillation on segmenta-
tion [113, 153], we do not learn from an already trained (fixed) sophisticated model
to improve another independent compact model. We introduce stepwise downward
inplace distillation, where class probabilities estimated from the larger subnetwork
are used as soft targets for training the next smaller subnetwork. The largest subnet-
work is supervised by the ground truth labels. Note that the parameters of a smaller
subnetwork are also a subset of larger ones, which means that the smallest subnet-
work will learn the most important features implicitly to guarantee the accuracy of
larger submodels. This leads to the following loss function:

Lseg =LC E (pN
s , ys )+

N−1∑
n=1

LK D (pn
s , pn+1

s ), (2.1)

where LC E denotes the cross entropy loss, and pn
s , ys are the segmentation prob-

ability map predicted by the nth submodel and the ground truth semantic label,
respectively. Instead of computing the Kullback-Leibler divergence between two
probabilities, we use soft target cross-entropy loss (we denote it as LK D to distin-
guish it from LC E , which applied with ground truth supervision). We found that
the cross-entropy between two probabilities is more stable during training than
the Kullback-Leibler divergence, which is also a common setting for the knowledge
distillation in [113, 208–210].

In practice, stopping the gradients of the supervising tensor predicted by the
larger width is necessary, so that the loss of a subnetwork will never back-propagate
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Chapter 2. Slimmable semantic segmentation with boundary supervision

Figure 2.2: Difference maps between submodels. (a) Predicted semantic map of
the ×1.0 model. (b)-(d) Difference map between the smaller submodels and the
×1.0 model, where the consistent (inconsistent) predicted pixels are shown as black
background (ground truth color codes). Better view in color.

through the computation graph to larger subnetworks. We performed experiments
on the effectiveness of distillation and the type of optimal teachers. The results
show that using the probability map predicted by previous subnetworks as the soft
target can lead to better performance. For more details, see Section 2.4.3.

2.3.3 Semantic boundary guided loss

Based on the training framework and distillation method presented above, we
can already obtain varying amounts of computation of multiple subnetworks with
partially shared parameters. To further improve the performance, especially for
the smaller subnetworks, we compare the semantic labels predicted by different
subnetworks trained only with the loss Lseg . As illustrated in Fig. 2.2, the differences
between the segmentation results of subnetworks with different widths are mainly
near the borders between different semantic categories. Moreover, as the width
decreases, the gap between the predictions gets larger.

Motivated by this observation, we introduce extra boundary supervision to
improve the accuracy in those regions, especially for small subnetworks. Specifi-
cally, we introduce an additional boundary detection head with a simple structure,
including a slimmable unit (Fig. 2.1 (c)) and a slimmable convolution layer with
kernel size 1 followed by a sigmoid layer, on the low-level features. The output of
this head pN

b is supervised by the binary boundary masks generated by the semantic
segmentation ground truth labels yb . The pixels within 3 pixels from the semantic
border are marked as boundary regions. We apply binary cross-entropy loss to
constrain boundary detection with:
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2.3 Methodology

Lb =LBC E (pN
b , yb)+

N−1∑
n=1

LK D (pn
b , pn+1

b ), (2.2)

where we also leverage knowledge distillation to subnetworks with the soft bound-
ary labels predicted by the larger one, except for the largest width that uses the
boundary ground truth yb . Unlike [36], our boundary detection head is used only
on training and can be removed during inference, so it does not introduce any extra
computation. The head helps enhance the low-level features of boundary regions.

Besides, the estimated boundary also perform as a reference to resample the
misclassified pixels on the border to calculate the boundary guided segmentation
loss, which can be regarded as a hard sample mining strategy. As shown in Fig. 2.1
(d), taking the boundary probability map pb predicted by the boundary detection
head, we generate a confidence binary mask Mb to locate those pixels which might
be situated near to semantic boundaries:

Mb(u, v) =
{

val i d , pb(u, v) > τ
i nval i d , other wi se

. (2.3)

The values in Mb are element-wise calculated by comparing the boundary confiden-
tial score pb at each location (u, v) with a predefined threshold τ. We empirically
set τ to 0.7 in our experiments. Only valid pixels are included in the loss calculation.
Similar to Lseg , the cross-entropy loss and the knowledge distillation loss of the
masked semantic probabilities pn

ms = M n
b (pn

s ),n ∈ {1,2, · · · , N } are calculated with:

Lg =LC E (pN
ms , ys )+

N−1∑
n=1

LK D (pn
ms , pn+1

s ). (2.4)

Then, the loss function for training our SlimSeg is calculated as a summation of
the semantic segmentation loss Lseg , boundary detection loss Lb and the bound-
ary guided segmentation loss Lg :

L f ul l =Lseg +λ1Lb +λ2Lg (2.5)

where λ1,λ2 are hyperparameters, which are set to 10 and 1 in our experiments,
respectively.

Finally, to clarify the training procedure of our proposed SlimSeg, we provide a
Pytorch-style pseudo-code in Algorithm 1.

19



Chapter 2. Slimmable semantic segmentation with boundary supervision

Algorithm 1: Slimmable semantic segmentation

Ensure: Dataset D, width list W = {w1, w2, ..., wN }
Require: Slimmable semantic segmentation network S

1: for i = 1,2, ..., i ter ati on do
2: Get a mini-batch of image x, semantic label ys , boundary label yb from D.
3: Clear gradients of weights, opti mi zer.zer og r ad().
4: for w in sor ted(W ,r ever se = Tr ue) do
5: Switch the BN layers to current width.
6: Execute current subnetwork, ps , pb =S (x;θw ).
7: Compute the masked probability, pms = Mb(ps ).
8: if w = wN then
9: Compute loss with ground truth,

l oss =C E(ps , ys )+BC E(pb , yb)+C E(pms , ys ).
10: else
11: Compute distillation loss,

l oss = K D(ps , y t
s )+K D(pb , y t

b)+K D(pms , y t
s ).

12: end if
13: if w > w1 then
14: Save predicted probability ps , pb as teachers y t

s , y t
b .

15: end if
16: Compute gradients, loss.backw ar d().
17: end for
18: Update weights, opti mi zer.step().
19: end for
20: return S

2.4 Experiments

2.4.1 Benchmarks and evaluation metrics

Cityscapes. Cityscapes [32] is a first-person perspective street-scene dataset with
19 semantic categories, 5000 fine annotated images with 2,975, 500 and 1,525 images
for training, validation and testing, respectively. The high resolution of the images
(1024×2048 pixels) poses a great challenge to real-time semantic segmentation. For
a fair comparison, we only use the fine annotated images for training.
CamVid. CamVid [15] is a road scene dataset from the perspective of a driving
automobile. It consists of 367, 101 and 233 images for training, validation and
testing with resolution 720×960. Following the pioneering work [42,206], we use the
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subset of 11 semantic classes from the 32 provided categories for a fair comparison
with existing methods. The pixels out of the selected classes are ignored.
Evaluation metrics. For quantitative evaluation, we report the mean of class-wise
intersection-over-union (mIoU) for accuracy comparison. The floating-point oper-
ations per second (FLOPs) and frames per second (FPS) are adopted for efficiency
comparison. Besides, we also give the number of parameters for model size.

2.4.2 Implementation details

Training. We use the stochastic gradient descent (SGD) algorithm to train our
models with the batch size of 8, stochastic momentum of 0.9 and weight decay of
5e-4. As a common practice, the “poly” learning rate strategy is applied, in which

the initial rate is multiplied by
(
1− i ter

i termax

)power
at each iteration with the power of

0.9. All the models are trained for 100K iterations with an initial learning rate of 0.01
and Online Hard Example Mining (OHEM) [103] on two NVIDIA GeForce 3090Ti
GPUs Data augmentation includes random horizontal flip, random resizing with
the scale range of [0.5, 2.0], and random cropping to 768×768 for Cityscapes and
720×720 for CamVid.
Inference. For inference, we use the whole image as an input to report performance,
unless explicitly mentioned. Evaluation tricks such as sliding window inference and
multiscale testing are not adopted. The measurement of inference time is executed
on a single NVIDIA GeForce 2080Ti with CUDA 10.1, CUDNN 7.0, and we report the
FPS without TensorRT acceleration.
Architectures. We conduct the experiments based on two mainstream semantic
segmentation networks: SFNet [93] and DeepLabv3+ [22]. SFNet is based on the Fea-
ture Pyramid Network [103] architecture with a backbone network pre-trained on
ImageNet classification [35] as encoder, a pyramid pooling module and a decoder ag-
gregating multi-level features from the encoder. Similarly, DeepLabv3+ [22] includes
a feature encoder, an atrous spatial pyramid pooling module and a simple decoder
with only several convolutional layers and upsampling. For SFNet, we use the
slimmable ResNet50 [210] pre-trained on ImageNet [35], and slimmable ResNet18,
DFNetV1, DFNetV2 [94] without pre-training as encoder. For DeepLabv3+, we re-
port the results using the slimmable ResNet50 and MobileNetv2 [210] (both are
pre-trained on ImageNet) as encoder. The input of the boundary detection head is
the low level features output by the second stage of the backbones. The resolution
of the input features are down-sampled 4 times compared to the original image.
We apply four width multipliers [0.25,0.5,0.75,1.0] in our experiments, except for
Deeplabv3+-MobileNetv2 with [0.35,0.5,0.75,1.0].
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Chapter 2. Slimmable semantic segmentation with boundary supervision

2.4.3 Ablation study

We conduct ablation experiments to validate the effectiveness of our width slimming
training scheme, knowledge distillation method and the proposed boundary guided
loss.

Width slimming training scheme

We compare the slimmable model with their independently trained counterparts to
demonstrate the effectiveness of the width slimming segmentation training scheme.
The independent models have the same architecture as the slimmable subnet-
works, but can only operate on a single width. Note that both the independent
and slimmable models are trained with the loss L f ul l in Eq.2.5 for fair comparison,
and the independent models are supervised by ground truth. We report the mIoU,
number of parameters (M) and FLOPs (GMac) in Table 2.2. The slimmable models
outperform the independent models of all width on SFNet (ResNet50, ResNet18)
and DeepLabv3+ (ResNet50, MobileNetv2), while for SFNet (DFNetv, DFNetv2), the
larger independent models are better than the slimmable one. We think this is
because DFNet [64] is a compact backbone designed for best speed accuracy trade-
off by neural architecture search, which have very little space to be compressed.
Therefore, the gap between slimmable SFNet-DFNets submodels with different
widths is also larger than ResNets. In terms of the amount of computation, with
about 56% of the whole FLOPs, the submodel with width×0.75 achieves compara-
ble performance as the full model. Besides, a slimmable model saves about 50%
memories for storing the parameters compared with several independent models,
and number will increase if we have more switchable width.

Globally slimmable v.s. Partially slimmable

In this section, we present specific experimental results to illustrate why we choose
to slim the entire segmentation framework instead of just a part of it. In addition to
computational considerations, it is also because the use of more complex decoders
cannot significantly improve the accuracy of submodels.

Yu et al. [210] has applied their slimmable ResNet50 backbone on instance
segmentation task, but except for the slimmable ResNet50, the other parts of the
Mask-RCNN (i.e. the lateral layers and the decoder) are non-slimmable. While
in our work, we set the entire network to be adjustable in width, even the for the
Pyramid Pooling Module, the lateral layers and the decoder. We report the mIoU
and FLOPs of the globally slimmable models, the partially slimmable models
(with only the slimmable backbone), and their independent counterparts in Table
2.3. Two kinds of structures, including SFNet [93] and Deeplabv3+ [22], both with
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Table 2.2: Comparison of independent and slimmable models on Cityscapes val.
Bold numbers indicate the better mIoUs.

Network Width
Independent Slimmable

FLOPs
mIoU Param mIoU Param

SFNet
ResNet50

×1.0 78.3 31.20 78.4 (0.1↑)

31.29

607.9
×0.75 77.3 17.57 77.9 (0.6↑) 343.4
×0.5 76.3 7.82 77.4 (1.1↑) 153.9
×0.25 73.2 1.97 74.4 (1.2↑) 39.4

SFNet
ResNet18

×1.0 75.0 12.87 75.6 (0.6↑)

12.89

243.4
×0.75 74.0 7.24 74.8 (0.8↑) 137.4
×0.5 71.4 3.22 72.5 (1.1↑) 61.5
×0.25 65.5 0.79 67.3 (1.8↑) 15.7

SFNet
DFNetv2

×1.0 73.6 17.88 73.1 (0.5↓)

17.91

80.2
×0.75 71.4 10.06 71.1 (0.3↓) 45.2
×0.5 70.0 4.48 69.8 (0.2↓) 20.2
×0.25 62.5 1.12 64.2 (1.7↑) 5.2

SFNet
DFNetv1

×1.0 70.0 8.42 69.4 (0.6↓)

8.44

32.8
×0.75 67.8 4.74 67.0 (0.8↓) 18.6
×0.5 65.0 2.11 65.3 (0.3↑) 8.4
×0.25 57.8 0.52 59.8 (2.0↑) 2.2

DeepLabv3+
ResNet50

×1.0 78.0 40.35 78.4 (0.4↑)

40.44

1463
×0.75 77.6 22.71 78.2 (0.6↑) 824.3
×0.5 76.7 10.11 77.6 (0.9↑) 347.6
×0.25 74.0 2.54 75.6 (1.6↑) 92.9

DeepLabv3+
MobileNetv2

×1.0 66.9 4.53 67.9 (1.0↑)

4.58

18.5
×0.75 63.3 2.57 67.0 (3.7↑) 12.2
×0.5 58.6 1.16 64.3 (5.7↑) 5.7
×0.35 56.1 0.57 61.1 (5.0↑) 3.3

slimmable ResNet50 [210] pretrained on ImageNet as backbone, are tested. For the
partially slimmable models, the number of channels in non-slimmable parts is fixed
and the same as that of subnetwork with width ×1.0 in globally slimmable model.
As illustrated in Fig. 2.3, the computation reduction brought by seldom slimming
the backbone is relatively small. For partially slimmable models, the mIoU gap
between submodels of different width is smaller than the gap between globally
slimmable submodels, and the range of FLOPs is narrower, due to the fixed non-
slimmable parts in partially slimmable submodels. At the same time, compared
with partially slimmable models, globally slimmable models have more obvious
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Figure 2.3: FLOPs-mIoU spectrum of globally and partially slimmable networks on
Cityscapes val.

advantages on mIoU than corresponding independent models. Since the number
of parameters of the non-backbone part in SFNet accounts for higher percentage
than that in DeepLabv3, the difference on mIoU and FLOPs between globally and
partially slimmable models is also larger.

Overall, comparing the mIoU-FLOPs curves of the globally and partially slimmable
model, the globally slimmable model can achieve higher mIoU than the partially
slimmable model with the same amount of computation, especially for smaller
submodels. Therefore, we believe that globally slimmable semantic segmentation
network leads to a better accuracy-efficiency tradeoff.

Stepwise downward distillation

To make the most of the knowledge learned by larger submodels, we test different
distillation settings and demonstrate the effectiveness of our distillation method.
Does inplace knowledge distillation work? We compare the mIoUs of training
the slimmable model with and without stepwise downward distillation in Table 2.4.
For the smallest subnetwork with width×0.25, the mIoUs consistently improve with
distillation under all combinations of loss functions. With the distillation strategy
proposed by our work, mIoUs improve on all subnetworks, and among them, the
smallest subnetwork with width×0.25 has the largest increase (0.8%) from 73.6% to
74.4%.
Which is the best teacher for small submodels? We train our slimmable model
with soft targets predicted by different models as teachers in knowledge distilla-
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Table 2.3: Comparison between globally slimmable models and partially slimmable
models on Cityscapes val. *Note that both the independent and slimmable models
are trained with the sum of the three losses in Equation 2.5 for fair comparison.

Network Slim-Part Width
Independent* Slimmable*

GFLOPs
mIoU Param mIoU Param

SFNet
ResNet50

Backbone
(Partially)

×1.0 78.3 31.2 78.3 (0.0↑)

31.3

608.0
×0.75 77.8 20.2 78.0 (0.2↑) 529.9
×0.5 76.4 12.1 76.8 (0.4↑) 472.6
×0.25 75.4 6.9 75.7 (0.3↑) 436.0

Backbone
+PPM
+Decoder
(Globally)

×1.0 78.3 31.3 78.4 (0.1↑)

31.3

607.9
×0.75 77.3 17.6 77.9 (0.6↑) 343.4
×0.5 76.3 7.8 77.4 (1.1↑) 153.9
×0.25 73.2 2.0 74.4 (1.2↑) 39.4

DeepLabv3+
ResNet50

Backbone
(Partially)

×1.0 78.3 40.4 78.4 (0.1↑)

40.4

1462.8
×0.75 78.2 26.3 78.3 (0.1↑) 993.7
×0.5 77.1 15.1 77.4 (0.3↑) 623.7
×0.25 75.5 6.9 75.8 (0.3↑) 352.7

Backbone
+PPM
+Decoder
(Globally)

×1.0 78.0 40.4 78.4 (0.4↑)

40.4

1462.8
×0.75 77.6 22.7 78.2 (0.6↑) 824.3
×0.5 76.7 10.1 77.6 (0.9↑) 347.6
×0.25 74.0 2.5 75.6 (1.6↑) 92.9

tion. For the student subnetwork S (θwn ), ’prev’, ’largest’, ’mean’ indicates that the
soft target is the predicted probability pn+1 of the last larger subnetwork S (θwn+1 ),
pN of the largest subnetwork S (θwN ) [209] and the average of all the predictions

1
N−n

∑N
j=n+1 p j by the subnetwork larger than the current model S (θwn+1 ), ...,S (θwN ),

respectively. Different from the setting of ’mean’, ’larger’ represents using the aver-
age loss of all the larger submodels’ distillation. The mIoU of our slimmable model
under different teacher settings are reported in Table 2.5. Note that all the models
are trained with the sum of the three losses proposed. Our ’prev’ setting, the step-
wise downward distillation, outperform others by higher mIoU 74.4% and 77.37%
on width ×0.25 and ×0.5. Using the average loss of all larger submodels results in
better mIoUs on the larger submodels with width ×0.75 and ×1.0, but even lower
mIoU than models trained without distillation on width ×0.25 and ×0.5. The results
are consistent with the phenomenon that student network’s performance degrades
when the gap between student and teacher is too large [125].
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Table 2.4: Ablation of knowledge distillation (KD) with different loss function by
Slim-SFNet-ResNet50 on Cityscapes val.

KD
GT Soft Target mIoU (%)

Lseg Lb Lg Lseg Lb Lg ×0.25 ×0.5 ×0.75 ×1.0

w/o

! 71.82 75.97 76.92 77.90

! ! 73.08 76.34 77.12 78.14

! ! 72.49 76.47 77.82 78.35

! ! ! 73.63 76.92 77.77 78.26

w

! ! 71.94 75.86 76.64 77.55

! ! ! ! 73.12 76.04 77.21 78.21

! ! ! ! 72.94 76.16 77.41 78.37

! ! ! ! ! ! 74.40 77.37 77.87 78.43

Table 2.5: Ablation of different knowledge distillation (KD) strategies with Slim-
SFNet-ResNet50 on Cityscapes val. Bold numbers and italic numbers indicate the
best and second best results.

KD Teacher Loss
mIoU (%)

×0.25 ×0.5 ×0.75 ×1.0
w/o - LC E/BC E (pn , y) 73.63 76.92 77.77 78.26

w

prev LK D (pn , pn+1) 74.40 77.37 77.87 78.43
largest LK D (pn , pN ) 73.64 76.72 77.04 78.38
mean LK D (pn , 1

N−n

∑N
j=n+1 p j ) 73.24 76.25 77.53 77.85

larger 1
N−n

∑N
j=n+1 LK D (pn , p j ) 73.25 75.87 78.02 78.61

Boundary supervision

Accuracy on boundary. As shown in Table 2.4, with boundary detection loss Lb , the
mIoUs on all widths are improved, especially for the smallest submodels, with 1.2%
increase from 71.94% to 73.12%. For slimmable models trained without Lb but with
the boundary guided segmentation loss Lg , we use the binary boundary ground
truth label as a mask to generate a masked probability map pms . The boundary
guided segmentation loss with ground truth labels also helps on improving the
mIoUs on all width. With all the losses together, we get the best performance on all
the submodels.

To demonstrate the improvements on semantic borders, we illustrate the his-
togram of the error pixels in Fig. 2.4. It shows the statistics of error pixels numbers
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Figure 2.4: Comparison of the distribution of error pixels between slimmable mod-
els trained with and without boundary supervision (BS) on Cityscapes val. The
model with boundary supervision has less error predictions on the boundary.

and their Euclidean distances to the nearest boundaries on 500 Cityscapes val im-
ages. Overall, the improved pixels are mainly distributed on the semantic borders.
The improvement number of pixels within the range of 5 pixels along the borders
accounts for about 50% of the total. Some qualitative results on Cityscapes val are
shown in Fig. 2.5. With the boundary supervision, the predicted segmentation
maps of each width model are more consistent, especially on the boundary regions.
Segmentation results for some interior regions are also improved.
Boundary groundtruth. Boundary segmentation ground truth labels are generated
based on the semantic segmentation ground truth labels, since we only focus on the
boundaries between different semantic categories rather than the obvious image
edges inside the regions with the same semantic category. In the experiments
presented in other tables, we set the radius of the boundary region to 3 pixels.
Here we compare the mIoUs of the Slim-SFNet-ResNet50 models using different
boundary ground truth labels in Table 2.6. When radius equals to 3 pixels, the mIoU
of each subnetwork is the optimal. Smaller boundary regions benefit to exploit hard
samples, but when the number of boundary samples is too small, it is not conducive
to the network to fully learn the characteristics of boundary samples.
Input of the Boundary Detection Head. The input of our boundary detection head
is the low-level features extracted by the first few layers of the backbone networks.
We report the mIoUs of models trained with different low-level features as boundary
detection input. As shown in Table 2.8, ‘conv1’, ‘conv2_x’, ‘conv3_x’ represent the
first three stages of ResNet50 [58], where ‘x’ indicates the numbers of the residual
blocks. According to Table 2.7, slimmable models trained with boundary supervi-
sion, including the boundary detection head and the loss functions Lb and Lg ,
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Figure 2.5: Visual comparison of our boundary supervision on Cityscapes val, in
terms of errors in predictions, where correctly predicted pixels are shown as black
background while wrongly predicted pixels are colored with their ground truth label
color codes. Submodels with boundary supervision perform better on small objects
and semantic borders.

Table 2.6: mIoUs of slimmable models trained with different boundary detection
groundtruth.

Radius
(pixels)

mIoU (%)
×0.25 ×0.5 ×0.75 ×1.0

1 74.10 76.63 77.59 77.91
3 74.40 77.37 77.86 78.43
5 73.63 76.02 76.93 77.38

28



2.4 Experiments

Table 2.7: mIoUs of slimmable models trained with different low-level features as
the input of boundary detection head.

Boundary
Head

Input
Features

mIoU (%)
×0.25 ×0.5 ×0.75 ×1.0 Ave

w/o - 71.94 75.86 76.64 77.55 75.50

w
conv1 73.56 76.99 77.54 78.18 76.57

conv2_3 74.40 77.37 77.86 78.43 77.02
conv3_4 74.12 76.72 77.57 78.32 76.68

outperform the slimmable model without boundary supervision. Using the features
output by layer ‘conv2_3’ of ResNet50 lead to higher overall mIoU.

The layer ‘conv1’ contains only one convolutional layer. Although the extracted
features can identify image edges, what we need is boundaries between different
semantic categories, which contains semantic information to a certain extent. More-
over, as our main task is to perform semantic segmentation, in addition to exploiting
the boundary pixels, the context information of the object itself is more important.
If edge constraint is added to the feature output by the layer ‘conv1’, it will have a
greater impact on subsequent features, so we add the boundary supervision on the
deeper features. The features output by the layer ‘conv3_4’ have been processed
by three stages of convolutions, and contain some semantic information, so the
overall mIoU outperforms the model using ‘conv1’. However, since the resolution of
the features output by the layer ‘conv3_4’ are down-sampled by 8 times compared
to the original image, boundaries and details have been lost, so using the output
features of the layer ‘conv3_4’ as input for boundary detection is worse than layer
‘conv2_3’.
More visualization results. To show the effectiveness of the boundary supervision,
we present more visualization results of both features and segmentation results
on Cityscapes val [32]. As shown in Fig. 2.6, the features in the regions near the
boundary and the textured details of the objects, such as the head of the truck,
are enhanced with boundary supervision, so the corresponding segmentation re-
sults in these areas have fewer errors. In Fig. 2.7, we compare the error maps of
segmentation predictions between slimmable models with and without bound-
ary supervision. As we can see, not only the semantic boundaries are improved
with boundary supervision, but also the thin small objects, such as the pole, fence,
traffic sign, have better results especially for small submodels. The gaps between
the predictions of submodels with different width are narrowed with boundary
supervision.
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Chapter 2. Slimmable semantic segmentation with boundary supervision

Table 2.8: Architectures of ResNet50 [58]. Down-sampling is performed by conv3_1,
conv4_1, and conv5_1 with a stride of 2. The input image size is 3×1024×2048.

Layer Name
Output Size
(C×H×W)

ResNet50

conv1 64×512×1024 7×7, stride 2

conv2_x 256×256×512
3×3 max pool, stride 2 1×1,64

3×3,64
1×1,256

×3

conv3_x 512×128×256

1×1,128
3×3,128
1×1,512

×4

conv4_x 1024×64×128

 1×1,256
3×3,256

1×1,1024

×6

conv5_x 2048×32×64

 1×1,512
3×3,512

1×1,2048

×3

2.4.4 Comparisons with real-time models

We compare our method with other existing state-of-the-art real-time methods on
Cityscapes and CamVid. All the methods are evaluated by single-scale inference
with the input image sizes listed for fair comparison. Our speed is tested on one
GTX 2080Ti GPU with full image resolution as input, and we report the speed of
without TensorRT acceleration.
Results on Cityscapes. We present the mIoU and inference speed of our slimmable
SFNet-ResNet50 and SFNet-ResNet18 (both backbones are pretrained on ImageNet)
and other real-time segmentation methods in Table 2.9. Our Slim-SFNet-ResNet50
achieves result (77.3%) with FPS 23.8. With ResNet18 as backbone, our method
achieves 74.3% mIoU with 51.4 FPS.
Results on CamVid. Since the inference speed of different models is measured
under different conditions, we list the corresponding GPU type. Table 2.10 shows
the comparison results on CamVid between our method and SoTA methods. Our
network achieves competitive trade-off between performance and speed by 80.1%
(72.5% without ImageNet pretraining) mIoU with 55.7 FPS, which outperforms the
original independently trained SFNet.
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Table 2.9: Comparison with state-of-the-art on Cityscapes val. ‡indicates the model
is not pretrained on ImageNet.

Method Resolution Backbone mIoU FLOPs FPS Param
BiSeNetV1 [207] 768×1536 Xception39 69.0 14.8 105.8 5.8
BiSeNetV1 [207] 768×1536 ResNet18 74.8 55.3 65.5 49
CAS‡ [220] 768×1536 Searched 71.6 - 108 -
GAS‡ [101] 767×1537 Searched 72.4 - 163.9 -
DF1-Seg [94] 1024×2048 DFNetv1 74.1 - 106.4 -
DF2-Seg1 [94] 1024×2048 DFNetv2 75.9 - 67.2 -
DF2-Seg2 [94] 1024×2048 DFNetv2 76.9 - 56.3 -
SFNet [93] 1024×2048 ResNet18 78.7 247 18 12.9
BiSeNetV2‡ [206] 1024×2048 None 73.4 21.3 - -
BiSeNetV2-L‡ [206] 512×1024 None 75.8 118.5 47.3 4.6
FasterSeg‡ [23] 1024×2048 Searched 73.1 28.2 108.4 4.4
STDC2-Seg75 [42] 768×1536 STDC2 77.0 54.9 97† 16.1
MSFNet [53] 1024×2048 ResNet18 77.2 96.8 41 -
CABiNet [205] 1024×2048 MBNetv3-s 76.6 12 76.5 2.64
CABiNet [205] 1024×2048 ResNet18 76.7 66.4 54.5 9.2
DDRNet-Seg [137] 1024×2048 DDRNet-23 79.5 143.1 37.1 20.1

Slim-SFNet
×[0.25,0.5,0.75,1.0]

(Ours)
1024×2048 ResNet50

74.4 39.4 46.2 2.0
77.3 153.9 23.8 7.8
77.8 343.4 13.2 17.6
78.4 607.9 9.0 31.2

Slim-SFNet
×[0.25,0.5,0.75,1.0]

(Ours)
1024×2048 ResNet18

70.4 15.7 74.9 0.8
74.3 61.5 51.4 3.2
76.7 137.4 30.8 7.2
77.9 243.6 21.8 12.9
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Table 2.10: Comparison with state-of-the-art on CamVid test with image size
720×960. IM and CS represent using extra data, ImageNet and Cityscapes, for
pretraining, respectively. †indicates the FPS is measured with TensorRT accelera-
tion.

Method Extra Backbone mIoU FPS GPU
BiSeNetV1 [207] IM Xception39 65.6 175 GTX1080Ti
BiSeNetV1 [207] IM ResNet18 68.7 116.3 GTX1080Ti
CAS [220] None Searched 71.2 169 TitanXp
GAS [101] None Searched 72.8 153.1 TitanXp
SFNet [93] IM ResNet18 73.8 36 GTX1080Ti
MSFNet [53] None None 75.4 91 GTX2080Ti
STDC1-Seg [42] IM STDC1 73.0 198† GTX1080Ti
STDC2-Seg [42] IM STDC2 73.9 152† GTX1080Ti
BiSeNetV2 [206] CS None 76.7 124.5 GTX1080Ti
BiSeNetV2-L [206] CS None 78.5 32.7 GTX1080Ti
DDRNet-Seg [137] CS DDRNet-23 80.6 94 GTX2080Ti

Slim-SFNet
×[0.25,0.5,0.75,1.0]

(Ours)
CS ResNet50

78.0 57.1

GTX2080Ti
80.6 47.9
81.6 31.7
81.7 21.8

Slim-SFNet
×[0.25,0.5,0.75,1.0]

(Ours)
IM ResNet18

71.0 102.8

GTX2080Ti
73.6 98
74.8 72.6
75.2 55.7

Slim-SFNet
×[0.25,0.5,0.75,1.0]

(Ours)
CS ResNet18

75.0 102.8

GTX2080Ti
77.9 98
79.5 72.6
80.1 55.7
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Figure 2.6: Visual comparison of our boundary supervision on Cityscapes val, in
terms of the average feature maps of the output of layer ’conv2_3’ in ResNet50.
Column 1 and 3 are the colored semantic segmentation maps and average features
predicted by slimmable submodels without boundary supervision. The brighter
color indicates the larger number of features. Column 2 and 4 are the results with
boundary supervision. With boundary supervision, the features in boundary and
textured regions are enhanced, which results in better segmentation results of these
area.
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Chapter 2. Slimmable semantic segmentation with boundary supervision

Figure 2.7: Visual comparison of our boundary supervision on Cityscapes val, in
terms of errors in predictions, where correctly predicted pixels are shown as black
background while wrongly predicted pixels are colored with their ground truth
labels color codes. Models with boundary supervision performs better on small
objects, such as poles and traffic signs, and semantic borders. Please zoom in for
better viewing.
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2.5 Concluding remarks

In this chapter, we propose a general slimmable semantic segmentation method,
which enables adjustable accuracy-efficiency tradeoff through a width-swicthable
segmentation network. We demonstrate the effectiveness of stepwise downward
distillation on improving the performance of smaller subnetworks, and with less
amount of features saved during training compared with other distillation strate-
gies. Based on the observation of the difference between the predictions of each
subnetwork, we introduce boundary supervision on low-level features of the net-
work and propose a boundary guided loss to further improve the segmentation
results of pixels along semantic borders. We demonstrate the effectiveness of the
proposed method through extensive experiments with different mainstream seman-
tic segmentation networks on the Cityscapes and CamVid. Our proposed method
improves the accuracy of the smaller submodels without significant accuracy drops
in large submodels.

Our work tackles the design of efficient and adjustable segmentation methods.
In contrast to the SoTA real-time semantic segmentation methods, the performance
of our methods do not rely on well-crafted compact network architectures. The
experimental results demonstrated that our method can be directly applied to the
mainstream segmentation frameworks and turn the fixed-computation models into
adjustable ones. In this work, we use globally consistent width multipliers, but the
optimal width of can be different for each layer, so we believe that the accuracy-
efficiency tradeoff still has room for improvement. Furthermore, combining with
image content, input resolution, and depth of the network, the dynamic inference
can be further explored.
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3 Integrating high-level features for consistent
palette-based multi-image recoloring*

3.1 Introduction

The need for color uniformity among a collection of images is relevant for appli-
cations such as photo collection editing and manipulation of images to have a
coherent look and feel for use in websites and brochures. Achieving color consis-
tency among a collection of images is a challenging problem.

Most existing works targeting color consistency focus on transferring colors
between a single source image and a target image [160]. However, these color
transfer methods often prove inadequate when dealing with multiple images that
require a cohesive color theme. Alternatively, there are methods aimed at editing
collections of photos [52, 138], but they come with specific prerequisites, such as
the presence of identical objects (people, buildings, etc.) across the different images
for feature matching. Furthermore, these methods are not designed to replace the
original set of colors with a completely new color scheme.

In recent years, researchers have leveraged palette-based image recoloring [38,
69, 134, 218] to address challenges in multi-image color consistency. These ap-
proaches extract a color palette for each input image (source palettes) and generate
a combined palette that represents all the images together (group palette). Recol-
oring is performed by matching individual images’ source palette colors to colors
in the group palette. Such techniques naturally allow the incorporation of palettes
containing colors that were not originally present in the images (e.g.a color palette
describing a brochure or website).

Existing palette-based image recoloring methods rely on low-level color statis-
tics and often overlook high-level features related to visual perception. To address
this limitation, we propose a comprehensive framework for multi-image recoloring
that incorporates state-of-the-art palette-based techniques [134] and high-level
visual features. By integrating these high-level elements, our framework aims to
achieve image collections with enhanced color consistency and perceptually natural
results. Specifically, we propose to include three modules—white balance correc-

*This chapter is based on a publication in Computer Graphics Forum, 2023 [194]
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Figure 3.1: Our multi-image color consistency framework uses a palette-based
recoloring strategy where each input image’s palette colors are mapped to a group
palette. The estimation of the source palettes, group palette, and their associations
are factors in three high-level features: white balance, saliency, and color naming.
The recolored collection is visually pleasing and shares visually consistent colors.
Top: Input image collection with inconsistent colors. Bottom: Our recolored results.
Images are from [17].

tion, saliency-guided palette grouping, and color naming association—to complete
the current palette-based multi-image recoloring framework. These individual
modules contribute as follows:
White balance correction. Noticeable color differences of photos captured of
similar scenes often arise due to different (or incorrect) white balance settings.
Strong color casts can adversely affect both individual and group color palette
extraction. To ameliorate such color casts, we introduce a white balance correction
model to identify and correct the wrong white balance in the image.
Saliency-guided palette grouping. Existing multi-image consistency algorithms
often ignore the importance of salient regions when establishing color associations
between the source and group palettes. Consequently, while the overall color
consistency of the image collection improves, it may lead to inconsistencies in the
colors of salient areas due to the influence of non-salient regions. To address this
issue, we propose using a saliency module that detects saliency regions to ensure
consistent colors across both prominent (salient) and less prominent (non-salient)
areas.
Color-naming association. Although we often think of colors sharing similar hues
as being visually similar, they can be perceived as distinctly different colors. To
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avoid unnatural color changes, we introduce a color-naming association procedure,
which compares the similarity between the image color palette and the group color
palette through the probability of each of the colors belonging to each of the 11
basic color names [6, 167].

As shown in Fig. 3.1, by incorporating these three high-level features into a multi-
image consistency framework, we showcase significant improvements over relying
solely on low-level color statistics. To validate the effectiveness of our framework,
we conduct a user study that demonstrates a strong preference for images recolored
using our approach.

3.2 Related work

Related works are presented for the following: photo-collection editing, palette-
based recoloring, color naming, and saliency-aware image editing.

3.2.1 Photo-collection editing

Popular image editing software like Adobe Photoshop and Lightroom offer batch
processing functionality to apply editing operations to an entire image collection.
However, this approach often falls short in adapting to the collection’s varying scene
content and lighting conditions.

Many prior color consistency approaches leverage shared content among the im-
age coloration, such as recurring architectural structures or people. These methods
employ techniques to adjust color transformation curves [52, 138, 191] or optimize
white balance and gamma correction parameters [138] to enhance color consistency
across the collection. Such methods, however, can be ineffective when the input
collection lacks common content. To address this challenge, Nguyen et al. [134]
introduced a palette-based framework for generic multi-image recoloring to adapt
to different image contents within a collection. Their method focuses on palette
manipulation, allowing users to intuitively adjust image colors. By operating in
the Lab color space, it effectively avoids the issue of over-saturation. In a similar
vein, addressing the challenge of scene changes in videos, Du et al. [38] proposed
a 4D skew polytope with a limited number of vertices. This polytope serves as an
approximate enclosure for video pixels across color and time dimensions, implicitly
defining time-varying palettes.

In this paper, we build upon the framework proposed by Nguyen et al. [134].
Our key contribution is to incorporate high-level features into Nguyen et al. ’s
basic framework. As described in Sec. 3.1, these high-level features focus on white-
balance correction, salient region considerations in individual palette extraction,
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and color naming as a way to make associations between individual and group
palettes.

3.2.2 Palette-based image recoloring

The palette-based image recoloring approach was introduced by Shapira et al. [152].
This approach simplifies image manipulation by summarizing an image with a small
set of colors (a color palette). This technique allows for easy adjustments to the
image by modifying the individual palette colors (i.e., changing a palette color to a
new color). This straightforward, user-friendly approach does not rely on extensive
professional knowledge or reference images. The technique’s success depends on
extracting a good representative palette and adjusting the palette colors correctly.
Palette extraction methods are typically categorized into two types: clustering-
based and geometry-based. Clustering-based methods [19, 218] determine palette
by the frequency of color occurrence. Geometry-based approaches [159–161, 185]
construct convex hulls in various color spaces, with the vertices serving as the
palette colors.

Clustering algorithms for palette extraction can be adversely impacted by strong
color cast due to scene illumination (i.e. white balance) and locally distinctive
colors with low occurrence. To address the illumination problem, Iwasa et al. [69]
and Liu et al. [112] perform intrinsic color decomposition and limit recoloring to
the reflectance image. However, inaccurate decomposition methods can adversely
affect the final recoloring result, and recoloring only the reflectance image may not
be intuitive as the color of the composed image changes when the illumination
image is combined. Some k-means-based methods utilize color histograms for
clustering, which may overlook small but significant colors, resulting in a non-
representative palette. Kang et al. [75] enhance palette extraction by computing
patch uniformity for local patches.

In contrast to the methods described earlier, our framework has a distinct
objective of achieving color consistency across a complete set of images by merging
the palettes of each individual image. To address the challenge of varying color casts
due to illumination among images, our framework incorporates a white balance
correction module to remove strong color casts from images when needed.

3.2.3 Color naming

Color names are the words used to describe and differentiate colors. Color naming
systems can vary across cultures and languages. Seminal work by Berlin and Kay [7]
found that most societies and cultures share a set of 11 linguistic distinct color
names: red, orange, brown, yellow, blue, pink, purple, green, black, gray, white. Color
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naming is crucial in design, industries, and vision research. Recent color naming
models involve probabilistic graphical models [60, 114], deep neural networks [211],
and statistical approaches [6] to map physical color stimuli to corresponding color
names. The goal is to improve the accuracy and consistency of color naming pre-
dictions. The representations of the color name are also constantly being expanded,
from the primary 11 colors to more detailed color classifications [212]. Other stud-
ies [129] are exploring the cultural and linguistic factors influencing color naming
systems across different languages and cultures.

Color names can be considered features that are connected to human percep-
tion. By ensuring the consistency of color names between the source color and
target color, we can mitigate unnatural color transitions to a certain degree.

3.2.4 Saliency-aware image editing

Salient objects of an image are those on which our attention focuses first. In par-
ticular, the salient part of the image stands out from its surround because of a
difference in one or more physical factors, discontinuities, or lack of correlation [74].
Saliency is widely used in image editing based on the natural perception difference
of human vision to different regions of the image. The key details and saliency
structures can be preserved by distinguishing the optimization target of salient and
non-salient areas, improving the perceptual visual quality. The different methods
differ in how they focus on highlighting the salient region desired by users: color
transferring [121, 123, 168], cropping [166], or object removal [71].

In this chapter, we propose using saliency as a reference to differentiate promi-
nent colors in salient areas from those in other regions. This strategy categorizes
palette colors as belonging to salient or non-salient regions. When applying the
group palette to recolor individual images, the two categories can be treated sep-
arately, minimizing the influence of improper color combinations on the salient
objects in the image.

3.3 Methodology

In this section, we first introduce the pipeline of our proposed framework in Section
3.3.1. Then we describe the three proposed modules including the white-balance
correction module, the saliency-guided palette grouping module and the semantics-
guided palette grouping module in the Section 3.3.2, 3.3.3 and 3.3.4, respectively.
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3.3.1 Multi-image recoloring framework

Consider a collection of images {I i
s }n

i=1, where n represents the number of images.

The objective of multi-image recoloring is to obtain a set of recolored images {I i
t }n

i=1
that retain the same content but exhibit improved perceptual color consistency.
Palette-based image collection recoloring typically encompasses three primary
steps: (1) extraction of the source palette for each image, (2) generation and match-
ing of a group palette to each image, and (3) recoloring the images based on the
palette adjustments.

In the initial step, we aim to derive a source palette for each image, denoted

as P i
s = {c1

s ,c2
s , ...,ck i

s }. These palettes comprise the primary colors specific to each
image. The source palette is extracted by k-means clustering. The number of
cluster centers ki is determined by the percentage of explained variance, calculating
the ratio between the total distortion and within-group distortion for different
ki values. During the process, the k-means clustering is performed varying ki

from 2 to 7. The optimal ki value is chosen when the ratio is lower than 0.1, and
the cluster centers are the source palette colors. Next, we proceed to the second
step, where a unified group palette for the entire image collection, denoted as
P g = {c1

g ,c2
g , ...,ckg

g }, is generated. The group palette is determined using a weighted
k-means clustering method that incorporating two additional terms [134]. The
first term aims at avoiding palette reduction, where multiple colors in the source
palette are assigned to the same color in the group palette. The second term aims
at accommodating unassociated colors, that is, colors in the source palette that
are not assigned to the group palette. An optimization is performed until a group
palette is obtained and source color associations to the group palette no longer
change (see [134] for more details). Finally, this matching solution is then utilized
to produce the recolored images. Color mapping is performed in the Lab color
space’s ab channels, determined by the matching between each source palette color
cs and its corresponding group color cg . The weights are determined by an inverse
distance weighting function, assigning larger weights to closer palette colors.

The process described above relies solely on the statistical color information
present in the images, enabling its applicability to image collections encompassing
diverse content. However, it is important to acknowledge that color perception
extends beyond pixel-level attributes [41] and that higher-level cues significantly
shape our perception of color [135].

We present a comprehensive framework to address the limitations of existing
multiple image recoloring approaches (illustrated in Fig. 3.2). As previously dis-
cussed, our framework incorporates three modules based on high-level features
into the recoloring processing: white-balance correction, saliency-guided palette
grouping, and color-naming association.
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Figure 3.2: Our image collection recoloring framework. Given the input collection
of images, I i

s . Step 1: the source palette P i
s of each image I i

wb is extracted by
k-means clustering. White-balance correction (either automatic or manual) is
applied before the clustering procedure. Step 2: Colors in each source palette P i

s
are categorized based on the saliency map Si into two groups: a sub-palette for the
salient regions, and a sub-palette for the non-salient regions. The group palette
Pg is computed based on the salient and non-salient source palettes of all the
input images, respectively. The colors in each source palette match the color in the
group palette. Color associations between the source and the group palette with
inconsistent color names are removed. Step 3: The images are recolored based on
the mapping between source palette P i

s and group palette Pg .

3.3.2 White-balance correction module

White balance is a critical process applied by digital cameras. White balance aims
at mimicking the color constancy ability of the human visual system. This ability
allows us to perceive the color of an object the same, even when viewed under
different illuminations. For example, we can perceive a sheet of paper as “white”
under yellowish tungsten or bluish outdoor light. Significant research efforts have
been dedicated to developing white-balancing methods within camera pipelines
[4, 16, 50, 65, 169]. However, relatively little attention has been directed toward
addressing the issue of enhancing images with incorrect white balance.

The presence of incorrect white balance can significantly impact the overall
color distribution of an image. This, in turn, poses challenges when using palette-
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based image recoloring techniques, as the extracted source palette and group
palette may be biased towards the illuminant color (refer to Fig. 3.2). Our frame-
work incorporates a pre-processing step to address images with strong color casts to
ensure a collection with natural-looking colors. Specifically, we employ the method
proposed by Afifi et al. [3]. In our framework, we allow users to manually select
which images undergo white balance correction and which do not. For the auto-
matic processing of images, we evaluate the color difference for all the images in the
input collection to determine whether white balance correction should be applied.
In particular, we compute the following metric:

∆E = 1

n

n∑
i=1

√(
Li

s −Li
wb

)2 + (
ai

s −ai
wb

)2 + (
bi

s −bi
wb

)2
, (3.1)

between the original input image Is (Ls , as ,bs ) and the image after white-balance
correction Iwb(Lwb , awb ,bwb), where n is the number of pixels of the image. If
the average color difference ∆E of all the pixels in the image is larger than the set
threshold dwb , we consider the white balance of the original image to be inaccurate.
In this case, we use the white balance corrected image as input for the subsequent
processing. Note that the white balance correction is only applied to images deemed
improperly white-balanced since well-white-balanced images do not impact the
overall result, and therefore, leaving them uncorrected has little influence on the
final output.

3.3.3 Saliency-guided palette grouping module

Salient regions play an important role in the initial stages of our visual system, as
they are prioritized for further processing in the visual cortex, shaping our overall
understanding of an image. During the process of group recoloring, it is important
to try to preserve salient regions, even though their colors contribute to only a small
portion of the images. Failure to do so can lead to a deviation in the perceived
collection of images from the intended representation.

We introduce a module that generates a content-aware group palette, utilizing
the saliency map as a reference. Specifically, we categorize the source palette into
two distinct sub-palettes: the salient palette Ps,sal i ent and the non-salient palette
Ps,non−sal i ent . One approach to obtain these sub-palettes is by extracting palettes
separately from the image’s salient and non-salient regions, respectively. This can
be achieved using the masked image regions, as illustrated in Fig. 3.3 (a). However,
this method may result in overlapping foreground and background palettes due to
deficiencies in the saliency map. These deficiencies can include inaccurate edge
segmentation and the presence of spurious regions.
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Figure 3.3: Saliency-based source palette grouping. The method in (a) uses the
saliency map as a reference to extract the palette from the salient and non-salient
regions, which may produce similar colors. (b) Our approach combines the saliency
map and color segmentation to obtain palettes of salient colors, reducing the impact
of inaccurate edges and missing areas in the saliency map.

To avoid such artifacts, we first extract the source palette by k-mean clustering
following [134] and assign each pixel of the image with a color from the source
palette to get a color segmentation map L. The value of each pixel in L represents
the color of its corresponding cluster center. As shown in Fig.3.3 (b), the sub-
palettes are then decided by comparing the proportions of the number of pixels
with the same color label in the salient and non-salient regions using the following
expression:{

ck
s ∈ Ps,sal i ent ,

A (L=ck
s ∩S>γ)

A (S>γ) > A (L=ck
s ∩S⩽γ)

A (S⩽γ)

ck
s ∈ Ps,non−sal i ent , elsewhere

, (3.2)

where A indicates the area of the region. L is the color segmentation map, where
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L = c i
s indicates the region with color c i

s . The saliency map S encodes a per-pixel
probability of that pixel belonging to the salient region. To distinguish between
salient and non-salient pixels, we use a threshold γ. Specifically, when S > γ, it
indicates the presence of salient regions. This approach effectively assesses the
importance of colors in different areas and facilitates the separation of salient and
non-salient colors. In our framework, we use a CNN-based saliency object detection
method [187] to obtain the saliency map—alternative approaches could also be
used.

After organizing the original palette into salient and non-salient colors, the
group palette is generated for each category. This avoids inconsistencies in the
colors of salient and non-salient areas due to the influence of another region. The
matching process between each image’s source palette and the group palette is
performed considering both salient and non-salient colors. This matching can be
done in two different ways.

• Both salient and non-salient. To color match the salient and non-salient
parts of the palette separately. In this case, our saliency module performs
consistency in the salient and non-salient colors separately.

• Non-salient only. To only color match the non-salient while allowing the
salient part to be kept as it was originally. In this way, salient regions are left
unmodified, while the images’ background is consistent.

Note that we use the first approach unless mentioned otherwise. The second
method is suitable for some special scenarios where users want to maintain the
diversity of the salient area.

3.3.4 Color-naming association module

In specific scenarios, there may be noticeable differences between the colors se-
lected in the source palette and the group palette, resulting in unnatural recoloring.
For example, in Fig. 3.10, the colors of the feather (column 1) and the clouds (col-
umn 3) underwent significant changes. These unnatural color transformations are
easily noticeable to observers due to their large shifts in hue [105].

To address these issues, we propose a module in the group recoloring process
that considers color naming. Specifically, our approach constrains the recoloring
to only those colors that share the same color name based on the 11 basic color
terms (red, orange, brown, pink, purple, yellow, green, blue, black, grey, white) [7].
This means that an orange color from the source palette, for instance, will not
be transformed into a yellow color in the group palette. By incorporating color
names as relevant perceptual features to assess the color differences between the

46



3.3 Methodology

Green

Yellow

Brown

Orange

Red

Blue

Purple

Pink

Black

Grey

White
White

Black

Source 𝑐𝑠
𝑖

“Green” “Blue”≠
Do not 

associate
colors Group 𝑐𝑔

𝑗 Source 𝑐𝑠
𝑖 Source 𝑐𝑠

𝑖

Source 𝑐𝑠
𝑖

“Green” “Green”=

Group 𝑐𝑔
𝑗 Source 𝑐𝑠

𝑖 Group 𝑐𝑔
𝑗

Associate
colors

Figure 3.4: Color-naming association. The matched source color and group color
are not associated if they have different color names.

matched colors in the source and group palettes, our aim is to maintain perceptual
consistency between the input image and the recolored image. Compared to di-
rectly applying a threshold in perceptual color spaces, such as Lab, our approach
greatly minimizes unnatural hue shifts with the incorporation of color-naming
associations.

We employ a color naming identification model to determine the association
between the source palette color c i

s and the corresponding matched group palette

color c j
g . This model generates a probability vector indicating the likelihood of

each RGB color belonging to specific color names (specifically, we utilize the model
described in [167]). Subsequently, we calculate the Euclidean distance between the
probability distributions of the source color pc i

s
and the group palette color p

c
j
g

. If

this distance exceeds a certain threshold, denoted as dname , we consider the color
match inappropriate; therefore, the source color remains unchanged. By adjusting
the value of dname , we can control the extent of color modification in the recolored
image as associate match (c i

s ,c j
g ),

∥∥∥∥pc i
s
−p

c
j
g

∥∥∥∥
2
⩽ dname

do not associate match (c i
s ,c i

g ), other wi se
. (3.3)

An example of this procedure is shown in Fig. 3.4.
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3.4 Experiments

3.4.1 Experimental setting

As previously described, our framework adds three modules to the basic framework
proposed by Nguyen et al. [134]. The modules can be used independently or to-
gether to solve the hard cases in multi-image recoloring. The framework can be
run in automatic mode, or interactively to obtain different recolored collections for
different needs.

All results presented in this section were obtained using our automatic pro-
cessing. To ensure a fair comparison, we limited the number of group colors and
kept the parameters for our model unchanged. Specifically, we set the values for
dwb , γ, and dname to 20, 0.9, and 0.8 respectively. For the automatic process, the
number of group palette colors is the average of the number of source palette colors.
Thresholds used in the automatic process were chosen experimentally through
parameter search (visually guided grid search). While adaptive variables could be
a better way, implementing them is challenging since some inputs will inevitably
require a user in the loop. Note that our interactive framework also allows the user
to manually select images for white-balance correction, adjust the thresholds for
each module, and apply different group palette numbers. The images used for these
experiments were sourced from the MIT-Adobe FiveK Dataset [17] and Flickr [44].
Our multi-image recoloring framework is implemented with Python, and the user
study computations are implemented using MATLAB’s Psychotoolbox.

We compare against the two versions presented in the Nguyen et al. ’s algorithm:
the basic framework and the “unassigned” version. The latter one breaks connec-
tions among colors by penalizing large distances between the source and group
colors. In both cases, we use the same parameters as proposed in [134].

3.4.2 Qualitative results

White-balance Correction Module

Color cast due to incorrect white balance is particularly noticeable when images
contain people, as our perception is highly sensitive to the appearance of faces. An
example showcasing the effectiveness of our white-balance module is illustrated
in Fig. 3.5. In the first row, the original images are displayed in (a)-(e). In the
second and third rows (versions of Nguyen’s method), the dominant yellow color
in (e) influences the palette extraction, resulting in the exclusion of the blue colors
present in (a) and (e) from the palette selection. As a consequence, non-realistic
outcomes are produced for these two images. However, this problem is resolved
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Figure 3.5: Results after applying the white-balance correction module are pre-
sented in the following order: input images, results from two versions by Nguyen et
al., and our results. In the images, red boxes are used to highlight unsatisfactory
recolored images and palette colors. We obtain better color consistency among the
recolored images by incorporating the white balance correction. The images used
for this demonstration were sourced from Flickr [44].

by incorporating our white-balance correction module. In particular, a significant
improvement can be observed in the last column of the first row. This correction
enables the group palette to represent the blue colors present in the images better,
leading to a more consistent set of recolored images that exhibit natural and vibrant
tones across different skin tones—as shown in the last row.

Saliency-guided Module

Our method can distinguish salient and non-salient areas even when the saliency
map is inaccurate. This is shown in Fig. 3.6, where the saliency map—shown in the
second row—does not completely distinguish the salient objects (in this case, the
buildings), but our salient colors—shown in the third row—do correctly distinguish
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Figure 3.6: Results of introducing saliency-guided palette grouping. Even when
inaccurate saliency maps are used (second row), our saliency colors procedure
(third row) can cover all the salient elements, producing recolored images (last row)
with consistency in both the salient and the non-salient regions. Images are from
Flickr [44].

them. The results obtained by our method—last row—improve due to the correct
categorization of the salient and non-salient regions at the palette level. In this
way, the salient color obtained with our approach covers the common architecture,
while the non-salient one covers the sky region.

Fig. 3.7 provides an illustrative example of the two types of matching options
that can be performed using saliency information. Looking at the row that presents
the result for the method that matches both salient and non-salient regions, we
can observe that all the flowers (salient regions) are modified to a more consistent
red color, while the leaves (non-salient regions) are recolored into a more consis-
tent green color. The results show that the separation of salient and non-salient
palettes avoids inconsistent color caused by unwanted associations between salient
and non-salient colors. For the standard version of Nguyen’s approach without
separation, the salient region in Fig. 3.7 (a), (c), and (e) will produce inconsistent
recolored results due to the association with the non-salient color palette green. On
the other hand, in Fig. 3.7-last row where only the non-salient region undergoes
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Figure 3.7: Example for our two approaches for saliency recoloring. From top to
bottom: Original image, the two versions of Nguyen et al., the starting saliency map,
the salient colors obtained by our procedure, and the results from our two versions.
Red boxes mark the unsatisfactory recolored images. In our first result, we can see
how the flowers are all converted to red by making both salient and non-salient
regions consistent, and the leaves get a more middle green tone. In our second
result, as we only match the non-salient regions, the flowers keep the same colors as
in the original images, while the leaves are modified as in the previous case. We can
see how we can obtain results that look natural in both of our results, in contrast to
the results in Nguyen’s approach. Images are from Flickr [44].

consistency adjustments, our method results in a more uniform green color for
the leaves, while the flowers retain their original colors. For this non-salient-only
setting, the unassigned version of Nguyen’s approach achieves a result similar to
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our last case. Nevertheless, it is worth mentioning that Nguyen’s approach relies on
the color differences in the ab channels of Lab space, making it difficult to unassign
unnatural color changes, as will be further explained in the subsequent module and
user experiments.

Semantics-guided module

The results of saliency detection can be considered as a binary classification, effec-
tively distinguishing prominent foreground objects from the background, which
is more suitable for scenes with relatively simple image content. However, for spe-
cific scenarios and applications, it may be necessary to divide the image into more
complex regions or alter the colors of semantically significant objects. Therefore,
building upon the saliency-guided module, we also do experiments on multi-image
recoloring guided by semantic segmentation results.

To better demonstrate the results of semantic segmentation-based processing,
we randomly selected several groups of images from various autonomous driving
datasets, Viper [147] and Cityscapes [32], for experiments. For the corresponding
semantic guidance, we utilize the groundtruth labels and the predictions from
the SlimSeg model proposed in Chapter 2. Following the same approach as the
saliency-guided module, we first extract the color palette of all the images in the
input collection, and then classify the colors into several groups where the color is
dominant in the region of this group. This method is the most straightforward way
to extend binary classification results (saliency map) to multi-class classification
results (semantic segmentation map). In Fig. 3.8 and Fig. 3.9, we illustrate the
recoloring images under similar autonomous driving scenes but in a quite differ-
ent style, such as different cities, illumination, etc. We take the common classes
including “car”, “sky”, “road”, and “building” into consideration for recoloring. With
the category-wise group palette solving, our approach gets more consistent color,
especially in the sky and road region (see Fig. 3.9). Meanwhile, even if the semantic
map predicted by the model is not accurate, it will not have a catastrophic impact
on the results (see Fig. 3.8). It is worth mention that our approach could be ap-
plied to domain adaptation tasks as an augmentation method to narrow the color
distribution gap between different domains.

Color-naming association module

In Fig. 3.10, we show from top to bottom the input images, the results for both
versions of Nguyen, and the results applying our color naming association module.
As we can see in the figure, the standard module of Nguyen presents unrealistic
colors in (a)-(c), while the unassigned version only solved the problem for (b), but it
does not prevent the method from obtaining a greenish bird in (a) and blue clouds
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Figure 3.8: Results of adding the semantics-guided module. From top to bottom:
Input images from Cityscapes [32], the result of Nguyen et al., the input semantic
maps predicted by the Slim-DeepLabv3 model in Chapter 2, and our recoloring
results. There is noticeable noise in the “road” region of the semantic segmentation
prediction. However, our method is still able to achieve color-consistent recoloring
results under the guidance of such noisy semantic maps. Particularly, in the regions
of the “car” in column (a) and (c), our method obtains more consistent colors
compared to the results without semantic guidance.

in (c). The reason is that, for this last version of Nguyen, the assignment is solved by
minimizing the cost function giving a small penalization to the unassigned colors.
However, this optimization does not consider any high-level perceptual features.

When applying our color naming association procedure, the results show how
it addresses the previously mentioned problems. This is obtained by the ability
of our module to break any matching in which the source palette and the group
palette represent a different color name. Our method breaks a gray-green link in (a),
a purple-blue link in (b), a gray-blue link in (c), and a brown-green link in (f).

Color naming helps mitigate drastic color changes (often due to hue shifts) in
the recolored images. This restriction is well-suited for images containing objects
with strong memory color associates, like skin tones, skies, and foliage/plants.
Alternatively, relaxing the color name constraints or using no restrictions prioritizes
larger consistency within the recolored collection, making it more suitable for
creative applications like graphic design (Fig. 3.14). In such cases, applying color-
naming association might limit the extent of achievable color transformations.
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Figure 3.9: Results of adding the semantics-guided module. From top to bottom:
Input images from Viper [32], the result of Nguyen et al., the input groundtruth
semantic labels, and our recoloring results. After incorporating semantic guidance,
the hues of the sky and buildings in column (d) and (e) have shifted from warm
tones to cool tones, resulting in a more consistent overall color tone of the images.

Our color-naming association operates as a binary choice between source and
target colors. Applying this association can compromise color consistency among
the recolored collection in some specific scenarios. This said, our approach is
still better than methods that directly interpolate between the source and group
colors. Using direct interpolation might work for some cases (for example the
flower image in Fig. 3.10 (b)) as “blue” and “purple” are similar enough colors;
but direct interpolation drastically fails when it is required to mix complementary
colors, resulting in gray hues. An example of this is the red flower in Fig. 3.7 (a): the
interpolation between “red” and “green” cannot produce a pleasant output.

Modules Combination

We show the results of combining the saliency module with the other modules in
Fig. 3.11. In the first two rows of the figure, the input images and the result for the
unassigned version of Nguyen are shown. We can see how this last method presents
washed-out colors in the t-shirts in (a) and how the yellow t-shirt and the yellow
numbers in (c) are turned green.

The third and fourth rows show the saliency map and the salient colors used by
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Figure 3.10: Results of adding the color-naming association module. From top to
bottom: Input images, the two versions by Nguyen et al., and our result. Red boxes
highlight the unsatisfactory recolored images. In our results, we can see how the
color-naming association module breaks matches in the (a), (b), (c), and (f), due
to them having different color names in the source and the group palettes. This
allows our method to obtain more natural images, avoiding the problems of the
Nguyen’s approach, namely in the green color of the bird in (a) and the blue color of
the clouds in (c). Images are from Flickr [44].

our method. The last three rows show the results of using only our saliency module,
both the saliency and the color naming modules, and all three modules. In Fig. 3.11
we use the saliency approach that matches both salient and non-salient regions.

We can see that using only the saliency module might not be enough, and
some colors can still be changed in undesirable ways (see the white t-shirt in (d)).
But combining the saliency module with the color-naming and the white-balance
modules can reduce such problems, providing more color consistency images
across the image collection.

3.4.3 User study

Given the subjective nature of our framework, we perform a user study to determine
preferences among the different images. We created ten groups of images and
computed the color consistency results by the two versions of Nguyen et al. [134]
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Figure 3.11: Results for the combination of all our modules. From top to bottom we
show the input images, the unassigned version of Nguyen, the starting saliency map,
our salient colors, and our results with saliency, with saliency and color naming,
and with all the three modules. Red boxes highlight the unsatisfactory recolored
images. We can see how our approach is able to improve the results of Nguyen,
especially in (a) and (c) -see the colors of the t-shirts in (a), and the yellow of the
t-shirt and the numbers in (c)-. Images are from Flickr [44].

(standard and unassign) and three versions of our approach (only saliency, saliency
+ color naming, and saliency + color naming + white balance). The groups of
images were selected to represent challenging scenarios for the baseline approach
proposed in [134]. We also included in the experiment the input not-consistent
images. Therefore, the number of comparisons was 10×15 = 150, where 15 is the
number of combinations of 6 methods chosen in sets of 2.

The experiment consisted of a forced-choice pairwise paradigm, in which the
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(a) with Morovič et al. [133] (b) with Montag et al. [130]

Figure 3.12: Results of the psycho-physical experiment using the Thurstone Case V
test. S stands for saliency, CN for color naming, WB for white balance and “un” for
unassigned. (a) and (b) shows the results of using two different methods to compute
confidence intervals. Our method is statistically significantly better than the two
versions of [134]. With (b) [130] the statistical significance of our results stands with
a larger difference.

groups of images obtained by any two of the methods were randomly shown on
the left and right sides of the screen. The experiment was conducted on a DELL
P2317H monitor with the following x, y primaries—red: 0.6513, 0.3383; green:
0.3246, 0.6182; blue: 0.1556, 0.0441; white: 0.3114, 0.3328—with a peak white of
177.65 nits. The display was viewed at a distance of approximately 70 cm so that 40
pixels subtended 1 degree of visual angle. The experiment was conducted in a dark
room.

The study consisted of 15 observers. All observers had normal color vision
(tested using the Ishihara color blindness test). The observers were asked to select
the most color-consistent group of images while penalizing for both artifacts and
unnatural colors.

We have analyzed the result of our experiment in terms of the Thurstone Case V
Law of Comparative Judgment. Fig. 3.12 presents the results for the whole set of 150
comparisons. For readers unfamiliar with Thurstonian analysis [163], a raw scoring
matrix (that records the number of times each of the methods is preferred/not
preferred against the others) is recorded. Various assumptions are made that allow
the raw scores to be translated into a standardized (z-score) unit together with
confidence intervals. The higher the z-score, the more a given algorithm is preferred.
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In Fig. 3.12, we combine all the observers’ results and convert the raw score
matrix to the standardized z-score representation and the confidence intervals
following the approaches of Morovič et al. [133] and Montag et al. [130]. The average
score is indicated by the yellow bars’ top (or bottom). The vertical lines show the 95%
confidence intervals. Clearly, Fig. 3.12 shows that our method delivers preferred
outputs and, importantly, that both our method with saliency and color naming and
our method with the three high-level features are statistically significantly better
(at the 95% level) than the two versions from Nguyen et al. because the confidence
intervals do not overlap.

3.5 Applications

3.5.1 Interactive multi-image recoloring

The framework presented in this chapter is a fully working interactive system based
on Python and Tkinter (see Fig. 3.13). Using our software, users can view and
interact with the image recoloring process. Once the user loads a collection of
images, the system automatically initiates the processing and provides visual repre-
sentations of the source palette for each image, the group palette, and the resulting
recolored image collection.

Our system allows users to choose between utilizing the modules described in
this chapter and manually selecting colors to manipulate the palettes. For a detailed
demonstration of the interface, please refer to the supplemental materials, which
include a screen recording.

3.5.2 Example of brochure design

Finally, Fig. 3.14 shows the ability of our method when used to prepare images for
use in a brochure that uses an external color palette. We show in (a) the original
brochure and in (b) and (c) two brochures in which the images have been modified
by our framework using two different color palettes. In this example, the original
images lack color consistency among themselves and with the brochure. Using
our framework, the final brochure has a more consistent color appearance. In
addition, Our method can adapt to different brochure color palettes. This example
was computed by directly considering the given external color palette as the group
palette of our framework.
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Figure 3.13: Our GUI for interactive palette-based multi-image recoloring.

Figure 3.14: Application of multi-image recoloring with different group palettes on
brochure design. (a) shows the original brochure. (b) and (c) show the brochures
produced by images recolored with two different group palettes.
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3.6 Concluding remarks

We have introduced an interactive framework for achieving multi-image color con-
sistency. Our framework incorporates white balance, saliency, and color naming
within a general palette-based recoloring system. The combination of these ad-
ditional high-level constraints significantly improves overall results and produces
recolored collections free of unwanted artifacts. Through qualitative examples
and a user study, we have established that our approach surpasses the current
state-of-the-art methods in terms of both visual quality and user preference.

We currently mainly focus on utilize saliency for its generalization ability and
efficiency. As a binary classification, saliency detection forms the basis for incorpo-
rating complex semantic categories while maintaining computational efficiency.
Future directions for this research will involve incorporating new modules that go
one step further in prioritizing semantic information within the images. One poten-
tial avenue is to leverage open-vocabulary semantic segmentation methods [79,110]
to identify and match similar semantic concepts. By integrating these techniques,
we can enhance the recoloring process by considering the underlying meaning and
context of the image content. This incorporation of semantic-based modules holds
promise for further improving the overall quality and coherence of the recolored
images.

The nature of our task is to compromise some color diversity of an individual
image for better consistency. Additionally, due to the clustering-based color palette
extraction, if there are too many different colors in the image, the clustering-based
method tends to extract grayish colors in the palette. A potential alternative is to
use geometry-based palette extraction methods or add an extra restriction on group
palette solving.
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4 Palette-based color harmonization via color
naming*

4.1 Introduction

Color modification is a crucial cornerstone in graphic design, where color coher-
ence [134] and harmony [30] play a vital role in various applications like advertise-
ments and brochures. However, most methods for color manipulation focus on
applying color themes to meet specific design requirements, while often overlook-
ing the preservation of the image’s natural and harmonious color composition. In
this work, we take a different approach by revisiting two widely used color modifi-
cation methods: palette-based image recoloring and color naming. Specifically, we
demonstrate how enhancing an extracted color palette considering a color-naming
model leads to more harmonious image colors. This improvement is evident com-
pared to a method explicitly designed for color harmonization.

Palette-based color manipulation allows for intuitive adjustments of different
colors, empowering designers to establish specific color schemes for achieving
color harmony and enhancing visual appeal [134]. The process begins with palette
extraction, where a set of representative colors, known as a color palette [152], is
identified from an image. This palette can be manually selected [2, 102] or auto-
matically generated using algorithms like k-means clustering [19, 218] or convex
hulls [159, 161]. Once the color palette is obtained, it serves as a reference for
modifying the colors in the image. Modifications may include color correction,
recoloring [19, 75, 134, 218], or creating color harmonies [160].

Different from image enhancement approaches that aim to enhance colors
[31, 145, 177], color harmonization is a technique intended to create balance and
coherence among different colors within an image. Color harmonization typically
follows specific color schemes to produce visually pleasing compositions. Cohen-Or
et al. [30] have defined harmonious colors as those that adhere to a pre-defined
hue distribution represented by harmonious templates. By mapping the colors in
an image to this distribution using defined rules, the resulting image aligns with
aesthetic design principles. Following this idea, methods have targeted improving
the harmonic template search via predominant hue colors [5, 68, 95, 171] or color
histograms [151]. Color harmonization is a common practice used to enhance

*This chapter is based on a publication in IEEE Signal Processing Letters, 2024 [196]
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Figure 4.1: Comparison between the results of color harmonization (Cohen-Or et
al. [30]) and our approach. For each image, the optimal harmonious template (i.e.
gray areas) on the hue wheel is shown. The collection of colors inside the gray areas
is considered to be harmonious. Lower F-score and higher MITS and PIT indicate
more harmonious colors. Our proposed method produces harmonized and realistic
colors without few artifacts.

visual aesthetics, particularly in fields such as graphic design.
Color naming is the practice of associating names or labels with specific colors.

The seminal work by [7] established that basic color terms that are universally
recognized: red, orange, brown, yellow, blue, pink, purple, green, black, gray, white.
Different models [6, 140, 167, 212] explored how to parameterize RGB values into
probabilities, which indicate the likelihood that the RGB values belong to each of
these color names. Color naming categories are related to the human naming of
specific objects, helping to ensure the relationship between content and colors by
constraining color names.

It is important to note that both saturation and color distribution play crucial
roles in achieving color harmony [30]. For this reason, we introduce the concept
of color-name stability as a reference in image color adjustment. The goal is to
enhance the image while maintaining its original color names. Our palette-based
method achieves this by modifying color distribution to obtain a representative
palette with the same color names while enhancing image saturation. This ap-
proach, unlike directly increasing overall image saturation, does not compromise
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color harmony. We demonstrate how the color-name stability hypothesis within an
extracted palette results in an output image with harmonized image colors (see Fig.
4.1). Our experimental results demonstrate that our method can improve image
color harmonization aesthetically and statistically.

4.2 Related work

4.2.1 Color harmonization

C-Harmony [30] is the groundbreaking work for color harmonization. Many ap-
proaches are derived from it, performing modifications focusing on specific as-
pects. For example, to speed up the template searching process of C-Harmony,
[68, 95, 151, 171] use the predominant hue color or the color histogram for op-
timal harmonious template searching. Wan et al. presents a component-based
pre-harmonization strategy to preserve the hue distribution of the harmonized
images [171]. Baveye et al.considers saliency when estimating the harmonious
template and color mapping to preserve the color of the most attractive visual
areas [5]. Yang et al. [201] propose a palette harmony score estimation approach
based on neural networks. Marino et al. [120] apply color harmonization on recolor-
ing augmented reality content according to the real background. These approaches
are not deep-learning-based and follow the scheme of searching for the best color
palette and mapping the color outside the template to the color inside, while our
method harmonizes the image differently. We recolor the image using a pair of
source and target palettes. The target palette is sourced from a group of prototype
colors selected by the color naming model. In short, our method does not minimize
any harmony metric.

4.2.2 Color naming

Color naming approaches can be divided into two categories based on the data
used: color-naming chips [6, 140] and real-world images [167, 212]. Benavente and
Parraga et al. [6, 140] developed a parametric model for automatic color naming
using labeled color chips, where each color category is represented as a fuzzy set
with a parametric membership function. Unlike color-naming chips, which consist
of isolated colors, real-world images exhibit a richer and continuous spectrum
of colors from pixel to pixel. Color-naming chips, typically under ideal lighting
on a color-neutral background, present a stark contrast to the challenges posed
by real-world images, which lack a neutral reference color and involve physical
variations like shading and different light sources [167]. Van De Weijer et al. [167]
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explored learning color names from noisy internet images using probabilistic latent
semantic analysis. Yu et al. [212] expanded the set of color terms by adding 28
new color names and computed highly discriminative color name representations
of arbitrary length. While color naming has extensive applications in design, no
previous studies have examined its role in color harmonization.

4.2.3 Image enhancement

Image enhancement is the process of adjusting digital images so that the results are
more suitable for display or further image analysis. Most studies focus on making
images more visually appealing by adjusting various parameters, like brightness,
sharpness, saturation, and etc. Due to the powerful capabilities of deep learning,
current image enhancement methods are mainly based on supervised learning
to minimize the difference between expert-retouched images. Meanwhile, they
also incorporate some classical traditional image processing methods as references,
such as histogram equalization [145], color curve adjustments [132], filter-based
enhancement [131], 3D Look-Up Tables [177, 202, 214], etc. Rahman et al. [145]
introduces an improved histogram equalization method to enhance low-contrast
images. The method only focuses on gray-tone images and does not consider
the relationship between image content and color. CURL [132] learns to adjust
global image properties such as color, saturation, and luminance using human-
interpretable image enhancement curves. DeepLPF [131] learns to automatically
enhance images with learned spatially local filters of three different types. 3D Look-
Up Tables (LUTs) provide a way to apply complex color transformations consistently
across images, by mapping input color values to desired output color values in the
three-dimensional color space. The core idea of [177, 202, 214] is to learn a set
of LUTs as a basis, and they achieve fast transformations by predicting a set of
weights through a network using downsampled low-resolution images and then
enhancing the images with the weighted basic LUTs. These approaches focus more
on how to produce visually appealing images rather than on making the overall
color distribution of the image conform to specific color design principles.

4.3 Methodology

Our approach involves four key steps: color prototype generation with color nam-
ing (Section 4.3.1), color palette extraction (Section 4.3.2), color matching (Section
4.3.3), and palette-based image recoloring (Section 4.3.4). Color prototype gener-
ation with color naming and color matching are the most crucial, as they involve
deriving the new set of colors that will form the “basis” of the image. Our method

64



4.3 Methodology

Input
image

Recolored 
image

(a) Prototype Palette Generation

Prototype Palettes

(c) Color Matching

Color Space

Target
Palette

Source
Palette Color Naming

(b) Palette Extraction (d) Image Recoloring

ClusteringColor Naming
…

‘Pink’

‘Blue’

‘Green’

‘Pink’
‘Green’

‘Green’

‘Grey’

…

‘Pink’

Color-
naming
model

Color-
naming
model

Green
Yellow

Brown

Orange
Red

Blue

Purple

Pink

Black

Grey

White
White

Black

Highest
saturation

11 color names

Distance measuring

Figure 4.2: The proposed palette-based color modification framework. All colors in
the color space are categorized into 11 classes by a color-naming model, and colors
with the same color name are clustered. The color with the highest saturation in
each cluster is selected as a color in the prototype palettes. Given an input image,
the source palette of the image is extracted. Then, the color name of each color
in the source palette is identified by the same color-naming model. By searching
for the color with the smallest difference from the source color in the prototype
palette with the same color name, the target color is obtained. Finally, the image is
recolored based on the target palette to achieve the color modification.

mainly focuses on these steps by identifying a suitable target palette, ensuring
that the recolored image based on this palette exhibits increased saturation while
minimizing hue shifts. Fig. 4.2 shows an overview of our approach.

4.3.1 Color prototypes generation with color naming

The objective of this step is to generate the set of candidate colors to be the prototype
palettes. Our method is based on keeping the names of the colors in the palette,
and therefore, we enforce that the names of the colors in the source palette are
unchanged in the final target palette. To identify the color name, we apply a color-
naming model [167], which assigns 11 color probabilities to any input value in
the sRGB color space. These probabilities represent the extent to which the RGB
values can be named with a specific term. We first run the color-naming model for
the possible values in the whole sRGB color space, where R,G ,B ∈ [0,255], with a
8×8×8 grid. In this way, the color space is divided into 11 different parts, one per
color term. Then, k-means clustering is applied to these color values at each part,
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resulting in n distinct partitions per color name. Due to the varying sizes of the
regions covered by different color terms, we select the number of candidate colors
for each color term based on the area they cover. Specifically, we select a basic 10
colors for each term. Besides, among all the 11 color names, “green”, “blue” and
“purple” have the highest counts, so we add an extra 5 colors for each of these 3
color names. Additionally, to ensure consistency in human skin tones in portraits,
we also add 5 more colors for “red” and “pink”.

Up to this point, we have ensured that the colors in each prototype palette are
of homogeneous color term. Next, to guarantee a large saturation value from each
constructed partition, we select the color with the highest saturation in the cluster
as the candidate color for the prototype. Therefore, we end up with a prototype of
candidate colors per color term P p = {cp

1 ,cp
2 , ...,cp

n }, which have both stable color
names and high saturation.

4.3.2 Color palette extraction

For an input image, we extract a color palette P s = {c s
1,c s

2, ...,c s
l } that represents

the primary colors of the image. To reduce computational complexity, we first
compute the color histogram of the image and extract the color palette P s by k-
means clustering based on this histogram, where the cluster centers are selected
as the colors in the palette. The color histogram is computed on ab channels in
the Lab color space to avoid the influence of regions with excessively low or high
lightness on the clustering results. In most cases, the number of the cluster center l
is typically set to a fixed value, with l = 5 being the most common choice in graphic
design. However, since the richness of colors varies among different images, the
optimal number of colors may vary for each image. To avoid an excessive number of
similar colors in the palette, we determine the optimal number of clustering centers
based on the percentage of explained variance [134]. For each value of l , ranging
from 2 to 7, we calculate the within-group distortion. This involves the summation
of the distance dl of each point in the cluster to its center. The total distortion d1 is
the summation of distances between each color point and the overall mean color.

We select the optimal value of l when d1−dl
d1−d7

> γ, γ= 0.93.

4.3.3 Color matching

This stage defines the target palette by selecting the best representative among
the candidate colors for each color in the source color palette. To this end, given
the RGB values of the source palette color, we run the color naming model and
select possible colors for the target palette those in the prototype that share the
same color name. Then, among all these colors, we choose the one that has the
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smallest difference to the source color as the target one. Here, we compute the
RGB Euclidean distance for color distance measurement. Note that as there might
be some source colors having similar probabilities of belonging to multiple color
names, a relaxed search space is applied for the target color search. More in detail,
instead of only getting the prototype colors for a single color term, we select the
prototype colors for any color term that 1) has a probability greater than 15%, and
2) is among the top three color names in terms of probability.

4.3.4 Palette-based image recoloring

Finally, we recolor the input image with the target palette. With the matched source
and the target colors, color mapping is executed by inverse distance weighting,
where larger weights are assigned to closer colors [134]. More specifically, given
the pixel value of the input image I s , source palette P s = {c s

1,c s
2, ...,c s

l } and the
corresponding target palette P t = {c t

1,c t
2, ...,c t

l }, the pixel in the recolored image I t

with coordinate (x, y) is determined by

I t (x, y) = I s (x, y)+
l∑

i=1
wi (c s

i − c t
i ), (4.1)

where the weight factor wi (x, y) is

wi = 1∑l
i=1 |I s (x, y)− c s

i |2 +ε
, ε= 10−4. (4.2)

The recolored image has higher saturation and a more distinct color for color
naming.

4.4 Experiments

4.4.1 Experimental setup

Dataset. MIT-Adobe FiveK (FiveK) [17] contains 5,000 raw images taken with DSLR
cameras, covering a broad range of scenes, subjects, and lighting conditions. This
dataset provides raw image data in .DNG format, while most image enhancement
or color retouching tasks are typically performed on 8-bit sRGB images. Therefore,
preprocessing of the original raw format data is necessary. In the main paper, we
present the results on Camera Raw version of FiveK. We used the Camera Raw tool
in Photoshop, which preprocesses image colors based on the metadata of the raw
images, automatically selecting configuration files such as “ACR 4.4”, “ACR 4.6”, or
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“Adobe Standard” depending on the camera model. This preprocessing method
produces images with more vibrant colors, consistent with the sRGB images saved
directly from camera shots. While most current color enhancement methods are
based on pair learning, and they use DPE version [24] of FiveK in their experiments.
The raw images are resized and converted to the sRGB space through Adobe Light-
room without additional adjustments, resulting in images that appear grayish color.
For fair comparison with deep learning based approaches, we present the results
of the test set—last 500 images. Kodak [81] contains 24 8-bit sRGB images. The
test images of FiveK and Kodak are resized with the shorter side set to 512 pixels.
Portrait Photo Retouching (PPR10K) [98] contains 11,161 portrait photos. We use
the validation split (the last 2,286 images) of the source 360p 16bit sRGB images,
and convert them to 8 bits to fit the color naming model.
Competing methods. We compare our results versus recent deep-learning ap-
proaches, CURL [132], DeepUPE [176], 3DLUT [214], and AdaInt [202] that aim to
minimize the intent of a photographer, for FiveK, we use the pretrained models
target to the Expert C in sRGB color space, for PPR10K, we use the pretrained models
target to the Expert A in sRGB color space; an unsupervised deep-learning-based
image enhancement approach, CLIP-LIT [99]; a traditional image enhancement
method, SRIE [46]; and the color harmonization approach, C-Harmony [30].
Image Quality Metrics. Our image modification paradigm does not have any real
ground-truth, since our goal is not to approximate the user intent, e.g. Expert C in
FiveK. We quantitatively evaluate the method by two non-reference image quality
assessment metrics: NIQE [128] and BRISQUE [126]. These two metrics assess the
perceptual naturalness of images.
Color Harmony Metrics. We evaluate color harmonious degree with three metrics:
F-score [30], Mean Inside-Template Saturation (MITS), and Percentage of Inside-
Template pixels (PIT). These metrics measures color harmony of an image I by
comparing hue distribution H and saturation S with respect to a certain harmonious
scheme (m,α), where Tm is the template and α is the associated orientation. x ∈ Ii n

and x ∈ Iout indicates the pixels inside and outside the scheme, respectively. F-score
is calculated as:

F (I , (m,α)) = ∑
x∈Iout

∥∥H(x)−ETm (α)(x)
∥∥ ·S(x), (4.3)

where ETm (α)(x) indicates the template border hue of Tm(α) that is closest to the
hue of the pixel of the image.

∥∥H(x)−ETm (α)(x)
∥∥ denotes the hue distance from a

pixel to the nearest boundary of the harmonic scheme Tm(α), measured in radians,
on the hue wheel. A smaller F-score indicates that there are fewer pixels with hues
outside the template, and that those out-of-template pixels have lower saturation.
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With the same optimal harmonious scheme found by F-score, we compute PIT
that quantifies the proportion of pixels within the template:

PI T (I ) = N (x ∈ Ii n)

N (x ∈ I )
, (4.4)

where N () denotes the number of pixels that meet the specified criteria.
MITS calculates the average saturation of pixels within the template:

M I T S(I ) =
∑

x∈Ii n
S(x)

N (x ∈ Ii n)
. (4.5)

Larger PIT and MITS suggests more pixels with higher saturation values inside the
optimal template, respectively, therefore complementing the F-score metric.

4.4.2 Quantitative results

Table 4.1 and Table 4.2 look at the results for three different datasets. It shows that
for traditional blind quality assesment metrics (NIQE, BRISQUE), both our method
and C-Harmony are competitive against traditional state-of-the-art enhancement
models. It is important to remember that our goal is to not only obtain an image
that is enhanced but also better in terms of its color scheme. For the ability of
color harmonizing, our method is the best for both MITS and PIT and second for
F-score in these datasets, which indicates that our results exhibit a distribution
that aligns more closely with the harmonic template and possess higher saturation.
Also, we should remark that C-Harmony [30] is optimized to minimize the F-score,
the only one of the three harmonization metrics where it outperforms us. Also,
since the image enhancement methods (SRIE, CURL, DeepUPE, CLIP-LIT, 3DLUT,
and AdaInt) do not target to optimize color harmony, their performance on PIT is
somehow lacking (aound 90%), while our method and C-Harmony are over 98%.

4.4.3 Ablation study

In this subsection, we conduct the ablation study on both the Camera Raw version
and DPE version of the FiveK, including the ablation of prototype color numbers
(Table 4.3) and the ablation of color similarity measures (Table 4.4). The results
follow the same trend for the two versions.

Number of prototype colors

The prototype palette determines the richness of colors in the recolored image. We
therefore compare the differences in image quality and color harmonious score
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Table 4.1: Comparison of image quality and harmony score on the camera raw
version [17] and DPE version [111] of FiveK. ■, ■ indicates smaller and larger values
are better, respectively.) Bold, italic indicate the best and second best results.

Data FiveK (Camera Raw) FiveK (DPE)
Metrics NIQE BRISQUE F-score MITS PIT(%) NIQE BRISQUE F-score MITS PIT(%)

Expert C - - - - - 3.35 37.21 3465 0.393 87.18
SRIE [46] 3.32 41.09 1477 0.368 90.97 3.48 38.13 1466 0.280 90.37

CURL [132] 3.46 41.85 2841 0.440 87.93 3.43 35.61 2500 0.404 89.66
DeepUPE [176] 3.40 40.88 1502 0.399 91.38 3.45 36.96 1374 0.334 91.42
CLIP-LIT [99] 3.36 44.18 1489 0.366 91.03 3.37 40.47 1466 0.280 90.39
3DLUT [214] 3.48 41.98 2406 0.453 88.90 3.44 36.94 2637 0.428 90.22
AdaInt [202] 3.44 42.50 2379 0.455 89.21 3.44 36.93 2574 0.426 90.14

C-Harmony [30] 3.52 38.17 58 0.368 98.39 3.80 36.51 42 0.280 98.21
Ours 3.56 39.51 312 0.558 98.59 3.79 37.17 119 0.506 99.34

Table 4.2: Comparison of image quality and harmony score on PPR10K [98] and
Kodak [81]. ■, ■ indicates smaller and larger values are better, respectively.) Bold,
italic indicate the best and second best results.

Data PPR10K Kodak
Metrics NIQE BRISQUE F-score MITS PIT(%) NIQE BRISQUE F-score MITS PIT(%)

SRIE [46] 4.00 43.59 412 0.372 93.13 2.90 49.36 1104 0.320 91.86
CURL [132] 4.24 46.32 928 0.419 90.30 3.06 51.58 1909 0.442 89.00

DeepUPE [176] 4.09 45.23 318 0.408 94.55 3.08 51.93 895 0.371 92.52
CLIP-LIT [99] 3.72 46.14 414 0.370 93.03 3.24 55.23 1100 0.319 91.77
3DLUT [214] 4.29 46.53 688 0.432 91.08 3.06 50.00 1674 0.465 88.70
AdaInt [202] 4.20 45.60 671 0.446 90.48 3.07 49.87 1709 0.463 88.47

C-Harmony [30] 4.07 42.23 14 0.375 98.20 3.06 48.95 8 0.316 98.44
Ours 4.26 44.46 104 0.509 98.50 3.05 48.72 80 0.473 99.28

when varying the number of prototype colors, from 5 to 50 for each color name. As
the number of prototype colors decreases, the color harmony-related metrics of
the images improve. This is because, with a limited color palette, the color range
of the recolored images is constrained, making it easier to map different source
colors to the same target color. With 10 prototype colors for each color name and
5 additional colors to the largest area ones, most of the harmony metrics showed
improvement. Moreover, these extra colors help reduce hue shifts to some extent,
particularly in the case of skin tones.
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Table 4.3: Ablation of the number of prototype colors.

Number Names
FiveK (Camera Raw) FiveK (DPE)

NIQE BRISQUE F-score MITS PIT(%) NIQE BRISQUE F-score MITS PIT(%)
5 top1 3.573 39.374 987 0.643 97.01 3.760 37.118 677 0.605 97.79

10 top1 3.564 39.668 890 0.608 96.95 3.760 37.124 476 0.560 98.00
15 top1 3.559 38.842 1278 0.549 93.11 3.775 37.049 946 0.472 94.23
20 top1 3.545 38.905 1699 0.530 91.87 3.771 37.015 1290 0.451 92.93
50 top1 3.531 38.654 1679 0.458 92.15 3.788 36.998 1409 0.370 92.62

10+5 top1 3.568 39.608 427 0.602 98.11 3.775 36.950 265 0.559 98.75
10+5 top2 3.559 39.508 318 0.563 98.56 3.797 37.184 121 0.511 99.34
10+5 top3 3.556 39.510 312 0.558 98.59 3.793 37.166 119 0.506 99.34

Table 4.4: Ablation of color similarity measures.

Similarity
FiveK (Camera Raw) FiveK (DPE)

NIQE BRISQUE F-score MITS PIT(%) NIQE BRISQUE F-score MITS PIT(%)
Angular 3.541 38.83 980 0.502 95.14 3.788 37.229 719 0.419 95.52

Probability 3.538 38.90 893 0.510 95.25 3.788 37.216 627 0.435 96.01
Euclidean 3.556 39.51 312 0.558 98.59 3.793 37.166 119 0.506 99.34

Color similarity measures

We also compared different color similarity measurement methods, including
Euclidean distance, angular distance [43], and color-naming probability similar-
ity [167] for color matching. The first two directly measure color distance in the
color space, while the latter assesses similarity in color-naming space by calculating
cross-entropy between color probability distributions for different color names.
Table 4.4 shows that the Euclidean distance-based method outperforms others in
color harmony-related metrics. However, this approach may occasionally alters the
image’s warm or cool tones (see Fig. 4.3), something that is avoided by using the
angular distance.

Color-naming models

We compare three different color naming methods, Párraga et al. [140], Van De
Weijer et al. [167] and Yu et al. [212]. As shown in Fig. 4.4, the overall color name
distributions of the three methods are similar. The main difference between the
three methods lies in the probability distribution of colors belonging to different
color names (Fig. 4.5), where [140] yields sharp probabilities, while [167] and [212]
produces a soft distribution. Therefore, when applying [167] and [212] on deter-
mining color names, we adopt the approach mentioned in Section II-C to expand
the search range of the target palette appropriately. Table 4.5 shows the results
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(a) Input image (b) Euclidean (c) Angular (d) Probability

(a) Input (b) Euclidean (c) Angular (d) Probability

Figure 4.3: Comparisons between the results of applying different color distance
measures to search for the target palette.

Table 4.5: Ablation of different color name on FiveK (Camera Raw).

Methods NIQE BRISQUE F-score MITS PIT(%)
Ours (w [140]) 3.56 38.77 1410 0.51 91.44
Ours (w [167]) 3.56 39.51 276 0.53 98.11
Ours (w [212]) 3.55 39.23 817 0.48 95.48

of applying different color naming methods. [167] and [212] have better harmony
scores than [140]. The difference between these kinds of approaches is that [167]
and [212] learn from real-world images, while [140] learn color names from labeled
color chips. Color naming chips under ideal lighting on a color-neutral background
greatly differ from the challenge of color naming in images coming from real-world
applications without a neutral reference color and with physical variations such as
shading effects and different light sources [167]. Color naming chips are isolated
colors, while the real-world image covers richer colors that continuously change
from pixel to pixel.

Color space for color matching

The main motivation for searching in the RGB space is that the color naming models
operate in the RGB space. So, we directly compute prototype colors and search for
matching colors in the RGB space, thus avoiding implementing further color space
conversions. Also, searching in the RGB space also shows quantitative superiority.

Regarding effectiveness, we present the results of performing prototype color
computing and color search in the Lab color space and the RGB color space, re-
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Figure 4.4: The distribution of the amount of colors for each color name with
different color naming methods, Párraga et al. [140] Van De Weijer et al. [167] and
Yu et al. [212].
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Figure 4.5: The probability distributions of each color name. Blue, red and orange
for Párraga et al. [140] Van De Weijer et al. [167] and Yu et al. [212], respectively.

spectively, in Table 4.6. Performing both clustering and search in the RGB color
space shows the best results in harmonic scores, while searching in the ab channels
of the Lab space results in better image quality.

Regarding efficiency, after solving for the prototype palette, we save both the
RGB and the Lab prototype colors as a dictionary for subsequent color search and
matching of each image. The color search is based on the source palette, which
contains only 2 to 7 different colors. In our workflow, we only need to perform the
color transformation once for each color in the palette: we transform the source
color from the Lab space to the RGB space to compute its color name and find
its match in the corresponding prototype palette. The time required for these
conversions is almost negligible compared to pixel-wise color mapping.
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Table 4.6: Ablation of color searching space on FiveK (Camera Raw).

clustering search NIQE BRISQUE F-score MITS PIT(%)
RGB RGB 3.56 39.51 276 0.53 98.11
RGB Lab (ab) 3.52 38.48 1395 0.40 91.84

Lab (ab) Lab (ab) 3.54 38.63 1063 0.47 93.17

4.4.4 Speed

We implement C-harmony [30] and our method with Python 3.8. We compared the
computational speed of C-harmony [30] and our method on the FiveK testset with
Ubuntu 20.22 with Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz. The input images are
resized with the shorter side set to 512 pixels. For C-harmony, it takes 37 seconds per
frame on average to find the optimal template and angle, and another 0.5 seconds
per frame to modify the image color based on the optimal template. Our method
takes around 0.6 seconds per frame to complete the whole process. Table 4.7 shows
the processing time required for each stage of our method. The first stage, “Color
Prototypes Generation with Color Naming” needs to be computed only once, and
then the prototype palette can be saved and used for all the images. While stages
“Color Palette Extraction”, “Color Matching”, and “Palette-based Image Recoloring”
need to be processed separately for each image. Currently, we have not introduced
parallel computation for acceleration.

Table 4.7: Average run time of our method.

Stage Step Time (s)
pre-computation 1) Prototypes Generation 7.532

per-image processing
2) Palette Extraction 0.397
3) Color Matching 0.002
4) Image Recoloring 0.147

Average step 2)+3)+4) 0.547

4.4.5 Qualitative results

Compared to other methods, our approach does not produce artifacts in regions
with high brightness, which happens in CURL (see Fig. 4.6 (c)). Additionally, in
most cases, our approach aims to increase image saturation while minimizing
significant hue shifts, thus avoiding the unnatural color changes that happen in
color harmonization methods (in Fig. 4.6 (e)). CLIP-LIT [99] tends to increase the
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(a) Input (b) SRIE (c) CURL (d) DeepUPE (e) CLIP-LIT (f) 3DLUT (g) AdaInt (h) C-Harmony (i) Ours

Figure 4.6: Comparison of images against other methods on FiveK dataset (Camera
Raw). Our method produce more saturated colors while preventing unnatural color
shifts. Most samples processed by C-Harmony [30] have noticeable artifacts.

brightness of the image, so it produces over-bright images. The images from PPR10K
dataset are shown in Fig. 4.7. DeepUPE [176] tends to increase the brightness of the
image, so sometimes it may produce an image that is over-bright, for instance, the
portrait of the boy in Fig. 4.7. Among them, ours can produce images with smooth
gradient change. CURL [132], DeepUPE [176], 3DLUT [214], and AdaInt [202] and
our approach can produce naturally enhanced images, while ours have higher
harmonic scores.
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4.4.6 Application on multi-image recoloring

In Chapter 3, we propose a multi-image recoloring method that improves the color
consistency through recoloring a group of images with a group palette. The color
palette of individual image and the common group palette of the input image group
are computed through color clustering. However, such palette extraction methods
often suffer from a common issue: when there are many colors in the image, the
color in the extracted palette tends to an average solution, i.e.the color is grayer,
resulting in recolored images appearing less saturated than the original images and
diminishing their visual appeal. Here, we introduce a color harmonization method
proposed in this chapter to mitigate the inherent drawbacks of cluster-based palette
extraction methods. Specifically, we map the obtained group palette to the extracted
prototype palettes, thereby enhancing color saturation. Certainly, this approach can
also be applied to each individual image or its respective palette. However, to ensure
color consistency across a set of images and reduce computational overhead, we
opt to directly adjust the group palette and then apply the optimized group palette
for recoloring each image. As illustrated in the Fig. 4.8, compared to not performing
color mapping, applying the color harmonization method proposed in this chapter
effectively enhances image saturation and alleviates the issue of image desaturation.

4.4.7 Limitations

Although we have taken some measures to avoid color shifts, e.g., increasing the
number of prototype colors for some color names, expanding the color searching
space, the recolored images will still have some color shifts, especially in portraits.
This is because of the smaller range of natural skin colors, and the human percep-
tion is more sensitive to such kind of objects, making colors outside the natural
range easily noticeable, and our method exacerbates this problem by increasing
the saturation of the image (see Fig. 4.9(a)). This is a common problem of the ap-
proaches that edit image colors without considering image semantic information.

Another problem is the decrease in color diversity. It usually occurs when there
are several similar colors in the source palette, and the prototype color matched
with these colors is the same one (see Fig. 4.9(b)).

76



4.4 Experiments

(a) Input (b) SRIE (c) CURL (d) DeepUPE (e) CLIP-LIT (f) 3DLUT (g) AdaInt (h) C-Harmony (i) Ours

Figure 4.7: Comparison of images against other methods on PPR10K dataset.
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Figure 4.8: An example of application on multi-image recoloring. The images
recolored with the mapped group palette can effectively increase the saturation and
keep the color consistency among multiple images.

(a) Color shift (b) Color diversity loss

Figure 4.9: Examples of failure cases. (a) shows the output image with unnatural
skin tone, (b) shows the output image losing color diversity.
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4.5 Concluding remarks

In this chapter, we propose an image color modification method based on palette.
Our method uses color name as a reference to increase the saturation without
compromising the perceptual color name of the original colors in the image. Our
method is particularly well-suited for image modification in graphic design, where
adhering to a color scheme becomes paramount. The experiments demonstrate
the generalization ability of our approach.

The perception of color names is a complex issue, since a color’s name is not only
related to its hue, but is also greatly influenced by other factors, such as saturation,
since all the color goes to either gray, white, or black when adjusting saturation or
value to an extreme value. So in this chapter, we only map the color in ab channel
in Lab color space, and keep the lightness channel always unchanged.

For image quality evaluation, most of the metrics focus on the image quality
under different levels of distortion, while there are almost no dedicated models or
metrics available to evaluate the perceptual quality and realism of image colors, and
we believe that this is crucial for image color optimization. Therefore, the quality
assessment metrics especially for fine-grained perceptual color naturalness is a
possible direction.
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5 Burst perception-distortion tradeoff: analy-
sis and evaluation*

5.1 Introduction

Image restoration aims, given an image that has experimented some degradation
process, to restore it to obtain the original image. This problem has been widely
studied in the literature for many years and relates to several sub-problems, such
as denoising, super-resolution, deblurring, etcRecently, the trend has moved to-
wards burst image restoration. Burst is a sequence of images captured in rapid
succession. The main reason for this shift is the current ubiquity of smartphones,
since these devices can easily acquire this sequential data and process it to pro-
duce better-quality images. Burst image restoration has the advantage that mul-
tiple frames provide complementary information to the reference one, leading to
higher resolution [11, 12, 39, 117, 118, 188], lower noise level [12, 124], and higher
dynamic range [56], while also introducing uncertainty caused by motion or camera
shake [10]. This misalignment problem introduced by multiple images may lead to
restored images with ghost artifacts, and blurry [199]. Recent works [11,12] explicitly
align burst images by estimating optical flows [157], or implicitly by deformable
convolutions [39, 117, 118]. In practice, even after these alignment methods, two
images are rarely perfectly aligned due to the degradation and the appearance of
artifacts.

The evaluation of image restoration is generally carried out from two aspects:
the perceptual quality and the distortion. Blau et al. [13] first characterized the
Perception-Distortion (P-D) Tradeoff in single image restoration. More specifically,
they proved that distortion and perceptual quality are at odds with each other so
that no image restoration algorithm can optimize the two indicators to the best
at the same time in practice. The P-D curve comprehensively shows the upper
bound and range of continuous changes of two types of evaluation criteria. The
generative-adversarial-nets (GANs) provide a principled way to approach the P-
D bound by varying the hyperparameter between distortion loss and perception
loss, thus producing estimators along the P-D curve, and therefore obtaining the
P-D tradeoff curve. In [45, 200] authors prove that the P-D curve can be acquired

*This chapter is based on a publication in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2022) [195]
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Original Degraded Restored

Image

Burst

Figure 5.1: Single Image Restoration versus Burst Restoration. Burst introduces
the problem of misalignment between images in the burst. See details in Section 2.

by linear interpolation between two models, which greatly simplifies the steps to
obtain the P-D curve. Similar tradeoffs are also proved existing in classification [108]
and image compression [14]. However, these works only focus on single-image
tasks, and the perception-distortion tradeoff in the case of multiple images has not
been studied yet.

Our work studies the perception-distortion tradeoff from multiple images, thus
generalizing the case of a single image. In particular, we focus on the case of burst
image restoration with relatively stable noise and camera shaking. Through the
analysis, we found that using more images does not always lead to better recon-
struction quality due to the misalignment between each image. The optimal burst
length (i.e.the number of images in a burst) for restoration depends on the shake
and noise levels.

Burst image restoration (BIR) enables higher quality images without resorting
to better imaging equipment. In addition to low distortion, current algorithms also
pay attention to the perceptual quality of the restored images. Unlike single-frame
image restoration, bursts have an additional time dimension. The motivation of this
chapter is to understand how temporal information and, in particular, temporal
misalignment due to camera shake, will affect the restoration quality, and how this
impact affects perception and distortion, and their tradeoff.

To the best of our knowledge, despite the progression of BIR algorithms in
recent years, there is no work that analyses multi-frame restoration from the per-
spective of P-D tradeoff. Our work verifies that the P-D tradeoff still exists when
introducing temporal information, and misalignment will worsen both percep-
tion and distortion. In addition, our analysis provides a reference to the design of
multi-frame restoration algorithms and the potential shooting strategy. Our results
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show that longer bursts (i.e.more images) do not always lead to higher restoration
quality, since misalignment will make the restoration result worse with more frames,
Thus, the key of multi-frame restoration lies in the infer-frame alignment method.
Furthermore, bursts provide a suitable starting point to study more complicated
sequences such as videos, and thus, our theory, analysis, and evaluation method
can also be extended to more general video restoration scenarios.

In summary, the contribution is threefold:

• We propose the Burst Perception-Distortion Tradeoff by introducing multiple-
frame information.

• We propose AUR as a new method for multi-frame restoration evaluation,
which comprehensively reflects the perception and distortion quality of the
restored image.

• We analyse the Burst P-D tradeoff under the influence of image noise and
shake, and found the effect of inter-frame misalignment on burst restoration.

And two main conclusions are drawn:

• When all the frame in the sequence are perfectly aligned, and the noise level
in each frame is lower than the signal itself, using more frames for burst
restoration lead to better reconstruction quality.

• When the frames are not well-aligned, there exist an optimal frame num-
ber for restoration depending on the content of the image, noise level and
displacement level.

5.2 Related work

5.2.1 Burst image restoration

Various restoration tasks can benefit from burst data, such as denoising [12, 124],
based on the assumption that the noise in each frame is independent. If the images
in a burst are taken with different exposure time, the images can be merged for
HDR imaging [33, 56, 186]. Burst super-resolution [11, 12, 28, 39, 84, 117, 118, 122]
has received a lot of attention recently, since [188] has demonstrated that the subtle
misalignment between each frame can provide multiple aliased samplings of the
underlying scene. Burst restoration also provides a more practical way to alleviate
the problems of insufficient dynamic range and high-resolution textures due to
limited camera aperture and sensor size [188]. However, the main problem needs to
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be solved is the misalignment between the images caused by natural hand motion
[10]. Although a certain degree of spatial shift is beneficial for super-resolution,
when the shift is large, the restoration results may appear blurry or ghost artifacts
[199]. Recent works [11, 12] conduct alignment explicitly by estimating optical
flows [157], or implicitly by deformable convolutions [39, 84, 117, 118]. Although
the flow estimation methods are adopted, some artifacts still appear in practical
applications, since the displacement between some repeating textures is difficult to
be estimated accurately.

5.2.2 The Perception Distortion (P-D) tradeoff

In image restoration tasks, the tradeoff is proved existing between the perceptual
quality of the restored image and the degree of distortion between the restored
image and the original one [13]. The P-D curve comprehensively shows the upper
bound and range of continuous changes of two types of evaluation criteria. The
generative-adversarial-nets (GANs) provide a principled way to approach the P-D
bound by varying the hyperparameter between distortion loss and perception loss,
thus producing estimators along the P-D curve. [45, 200] proves that the P-D curve
can be acquired by linear interpolation between two models, which greatly sim-
plifies the steps to obtain the P-D curve. This provides an efficient approach for
getting the P-D curve without independently training several models with different
hyperparameter between distortion and perception loss. The P-D tradeoff has also
been extended to other tasks, including image compression [14] and image classi-
fication [108], proving that similar tradeoffs also exist between compression ratio,
and classification accuracy. However, the existing works only consider the tradeoff
in single-frame image processing, and do not consider the impact of sequential
information on perceptual quality and distortion.

5.2.3 Learning-based frame selection for burst restoration

Although the introduction of multi-frame information helps to improve the qual-
ity of the restored image (i.e.richer details, less noise, and higher dynamic range).
However, affected by various factors, such as the restoration method, image content
and degradation level, it not always true that the more images are used for pro-
cessing, the better the image quality will be. Moreover, since the current methods
are mostly based on large deep learning models, using multi-frame processing
will not only reduce the processing efficiency but also prolong the training time.
Recent work [215] proposes a new concept of image restoration potential (IRP),
which reflects how much the quality of an image can be improved by restoration. To
some extent, IRP proves that different images can be restored to different degrees of
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quality improvement. Therefore, it is necessary to design corresponding methods to
guide the setting of shooting parameters and the selection of images for restoration.
Many approaches focus on designing optimal shooting mode selection methods,
especially exposure length [33, 136, 186]. We conduct experiments on the burst
super resolution task, and our work focus more on the theoretical analysis. Our
experiments also provide references for selecting the number of frames in burst
restoration tasks.

5.3 Preliminaries

5.3.1 The perception distortion tradeoff

The original P-D tradeoff formulation considers the case of a single degraded image
y , which is observed according to some conditional distribution pY |X , where x ∼ pX

would be the underlying true original image. This formulation assumes that the
degradation is not reversible, i.e.cannot be estimated from y without error, which is
typically the case in image restoration. Thus, given the degraded image y , a restored
image x̂ is estimated according to the conditional distribution p X̂ |Y . The problem
setting is described in Fig. 5.1 (top).

Two performance metrics are defined: distortion E [∆(x̂, x)] that measures how
similar the restored image is to the actual original image, and perception (i.e.perceptual
quality) d(p X̂ , pX ) that measures the divergence between the distribution of recon-
structed images p X̂ and the distribution of natural images pX . The perception-
distortion function of the restoration task is given by

P (D) = minp X̂ |Y d(pX , p X̂ ) s.t. E [∆(X , X̂ )] ≤ D. (5.1)

The main finding in this formulation is that the region under the P-D function
is not attainable, and the P-D function represents points where an improvement of
one metric implies a worsening of the other.

5.3.2 Burst image restoration

We focus on the burst restoration with three degradation factors: noise, camera
shake and downsampling. In this case, the i th observed image in a burst with n
images is related to the (unknown) original image via the following relation

yi [u] = x [αu+νi ]+ϵi [u] , (5.2)

where u represents the coordinates in the low resolution grid, in contrast to
the high resolution grid u′ in which x

[
u′] is represented. α is the subsampling
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factor, vi represents the displacement due to camera shake, and ϵi represents the
camera noise. We assume they are independent and identically distributed. The
single image case corresponds to n = 1, which implies no misalignment, i.e.y [u] =
x [αu]+ϵ [u].

Given a sequence of n degraded images {y1, y2, ..., yn} taken continuously, the
burst image restoration estimator G : Y → Z utilizes the information of each ob-
served frame together to reconstruct an image z close to the original high-quality
image x. The discriminator D : Z → [0,1] learns to distinguish the reconstructed
examples generated by the estimator from real data. In contrast, the goal of the
generator is to fool the discriminator by mimicking real data. Formally, the objective
function of this GAN based restoration framework is formulated as follows:

min
G

max
D

Ez∼PZ

[
log (D(z))

]
+Eyi∼PY

[
log (1−D(G(y1, y2, ..., yn)))

]︸ ︷︷ ︸
per cepti on

+Eyi∼PY ||G(y1, y2, ..., yn)−x||1︸ ︷︷ ︸
di stor t i on

,

(5.3)

The difficulty of burst restoration is mainly about dealing with misalignment be-
tween each frame. In existing methods, inter-frame alignment can be performed
in image space or in feature space. Here we think that the alignment module is
included in the estimator and is not listed separately.

5.4 Burst perception distortion tradeoff

In our case, we generalize the previous formulation to the case in which a burst
of n degraded images {y1, y2, ..., yn} is observed from the same underlying image
x, each yi being a sample from the distribution pYi |X = pY |X , since we assume
them independent and identically distributed. Critically for our analysis, there
exists camera shake that may result in small misalignment between the images.
Then, given the sequence of degraded images {y1, y2, ..., yn}, a restoration algorithm
estimates a restored image x̂ according to the conditional distribution p X̂ |Y1,Y2,...,Yn

(see Fig. 5.1 (bottom)). The burst perception-distortion function is thus defined as

P (D) = minp X̂ |Y1,Y2,...,Yn
d(pX , p X̂ ) s.t. E [∆(X , X̂ )] ≤ D. (5.4)

Note that this formulation generalizes the single image P-D function and introduces
the new misalignment problem between images in the burst.
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Figure 5.2: Illustration of the Area of the Unattainable Region (AUR) within the
ranges [Pmi n ,Pmax ] and [Dmi n ,Dmax ]. The P-D curve is extended when derivative
is 0 or inf (from the light blue curve to the dark blue curve) to avoid the ill effects
caused by model training.

5.4.1 Area of the unattainable region

While the P-D plane and P-D functions are the main tools to compare the perfor-
mance of restoration algorithms, we propose the area of the unattainable region
(AUR), that is, the area under the P-D function as metric for more convenient com-
parison (see Fig. 5.2). This metric summarizes the performance in one single value.
While AUR can be applied to the single image case, it is particularly convenient to
study the influence of factors, such as burst length, in the burst case.

Since the AUR could be infinite, we define it within a range of perception and
distortion values of interest [Pmi n ,Pmax ] and [Dmi n ,Dmax ], respectively, as

AUR =
∫ Dmax

Dmi n

P̂ (D)d x (5.5)

where P̂ (D) is P (D) clamped to the range [Pmin,Pmax].

5.4.2 Toy examples

Following [13], we present two toy examples of burst restoration only considering
noise, and burst with both noise and displacement, respectively.

Burst without displacement

Suppose that in a burst with n images, the i th observed image Yi = X +Ni , where the
original perfect image X ∼ N (0,σ2) and the noises Ni ∼ N (0,σ2

Ni
) are independent.

Take MSE(·, ·) to be the Mean Square Error (MSE) distortion and dK L(·, ·) to be the
Kullback-Leibler (KL) divergence representing the perceptual quality. For simplicity,
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we assume that the final restored image with the input burst is

X̂ = 1

n

n∑
i=1

ai Yi = 1

n

n∑
i=1

ai (X +Ni ). (5.6)

Since X̂ is a zero-mean Gaussian random variable, the KL divergence between two
zero-mean normal distributions is given by

dK L(pX ||p X̂ ) = l n

(
σX̂

σX

)
+ σ2

X

2σ2
X̂

− 1

2
, (5.7)

and the MSE between X and X̂ is given by

MSE(X , X̂ ) = E [(X − X̂ )2] =σ2
X −2σX X̂ +σ2

X̂
. (5.8)

Substituting Equation 5.6, we obtain that

σ2
X̂
=V ar

[
1

n

n∑
i=1

ai (X +Ni )

]

= 1

n2

n∑
i=1

a2
i σ

2
X + 1

n2

n∑
i=1

a2
i σ

2
Ni

+2
n∑

i ̸= j
Cov(

1

n
ai X ,

1

n
a j X )

+2
n∑

i ̸= j
Cov(

1

n
ai X ,

1

n
a j X )+2

n∑
i , j=1

Cov(
1

n
ai X ,

1

n
a j N j )

= 1

n2

n∑
i=1

a2
i σ

2
X + 1

n2

n∑
i=1

a2
i σ

2
Ni

+ 2

n2

n∑
i ̸= j

ai a jσ
2
X ,

(5.9)

σX X̂ =Cov(X X̂ ) = E((X −µX )(X̂ −µX̂ )) = E
[

X X̂
]

= E

[
X · 1

n

n∑
i=1

ai (X +Ni )

]
= E

[
1

n

n∑
i=1

ai X 2

]
+E

[
1

n

n∑
i=1

ai X ·Ni

]

= 1

n

n∑
i=1

ai
(
V ar (X )+E(X )2)

= 1

n

n∑
i=1

aiσ
2
X .

(5.10)

Substituting σ2
X = 1, we obtain

dK L(pX ||p X̂ ) = l n

(
σX̂

σX

)
+ σ2

X

2σ2
X̂

− 1

2
= ln

(
1

n

√
Ai

)
+ n2

2Ai
− 1

2
, (5.11)
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MSE(X , X̂ ) = E [(X − X̂ )2] =σ2
X −2σX X̂ +σ2

X̂
= 1− 2

n

n∑
i=1

ai + 1

n2 Ai . (5.12)
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i +2

n∑
i ̸= j

ai a j +
n∑
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a2

i σ
2
Ni

)
. (5.13)

Then we can derive a closed-form solution to

P (D) = mindK L (ai )) s.t. MSE(ai ) ≤ D. (5.14)

We start from a simple case, where X̂ is reconstructed from 2 degraded samples
Y1, Y2, so X̂ = a1Y1 +a2Y2 and n = 2, then

ammse
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For 3 degraded observations Y1, Y2, Y3, then we have X̂ = a1Y1 + a2Y2 + a3Y3

and n = 3, so

ammse
1 =

3σ2
N2
σ2

N3

σ2
N1
σ2

N2
σ2

N3
+σ2

N1
σ2

N2
+σ2

N2
σ2

N3
+σ2

N1
σ2

N3

,

ammse
2 =

3σ2
N1
σ2

N3

σ2
N1
σ2

N2
σ2

N3
+σ2

N1
σ2

N2
+σ2

N2
σ2

N3
+σ2

N1
σ2

N3

,

ammse
3 =

3σ2
N1
σ2

N2

σ2
N1
σ2

N2
σ2

N3
+σ2

N1
σ2

N2
+σ2

N2
σ2

N3
+σ2

N1
σ2

N3

.

(5.17)

Considering the most extreme case when n →+∞, then we get a → 1, MSE (X , X̂ ) →
0, dK L(X , X̂ ) → 0, which means the perception distortion curve will get closer to
the origin when introducing more images without displacement. We illustrate the
curves with one, two and three observations in Fig. 5.3.

89



Chapter 5. Burst perception-distortion tradeoff: analysis and evaluation

0 0.5 1 1.5 2
MSE

0

0.05

0.1

0.15

K
L

 d
iv

er
ge

nc
e

  n=1

  n=2

n=3

Figure 5.3: Perception distortion curve of burst image. As we get more observations
Yi , the reconstruction X̂ will be infinitely approaching the original sharp image X ,
the perception distortion curve is approaching the origin.

Burst with displacement

For the more complex situation with misalignment between images, suppose
that the degraded image Yi = Bi ∗ X (t +di )+Ni , where the original sharp image
X ∼ N (0,σ2I), the blur kernel Bi ∼ N (0,σ2

Bi
I) and the noise Ni ∼ N (0,σ2

Ni
I) are

independent, and di indicates displacement. In order to analysis the perception
and distortion of burst restoration with interframe motion, we try to analyze this
problem in the frequency domain with Yi (ω) = Bi (ω)X (ω)e jωdi +Ni (ω).

Substituting X̂ = 1
n

∑n
i=1 ai Yi , we obtain that

X̂ (ω) = 1

n

n∑
i=1

ai Yi (ω) = 1

n
X (ω)ρe jωθ+ 1

n

n∑
i=1

ai Ni (ω) (5.18)
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√√√√ n∑
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2ai ak |Bi (ω)| |Bk (ω)|cos(di −dk ) (5.19)
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(5.20)

Substituting σ2
X = 1, we can obtain

dK L(pX ||p X̂ ) = ln
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σX̂
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2
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(5.21)

MSE(X , X̂ ) = E [(X − X̂ )2] =σ2
X −2σX X̂ +σ2

X̂
= 1− 2

n

√
Ai + Ai

n2
(5.22)
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ai a j cos(di −d j )+
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i σ
2
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As the displacement di −d j between Yi and Y j increases, both dK L(pX ||p X̂ )
and MSE(X , X̂ ) increase. This indicates that increasing displacement between
frames in a burst negatively impacts both the perceptual quality and distortion of
the restoration results.

5.5 Experiments

For the experiments, we focus on the particular restoration problem of burst super-
resolution under camera noise, which is a common and representative problem
with three degradation factors: noise, camera shake and downsampling.

5.5.1 Experimental setting

Dataset. Describable Textures Dataset (DTD) [29] is a natural texture database
consisting of 5640 images with 47 categories (120 images for each). Image sizes
range between 300×300 and 640×640. The data is split into three equal parts for
training, validation, and testing, with 40 images per class, for each split.

We generate a synthetic burst super-resolution dataset based on the DTD
dataset. Each image is center-cropped to 128 × 128 to get the high-resolution
(HR) ground truth, and the low-resolution (LR) image is obtained by bilinear in-
terpolation with a scaling factor of ×4. Following the burst synthesizing process
provided by [10], in each burst, we randomly add Poisson noise (i.e. shot noise)
np ∼ P (λp ) and Gaussian noise (i.e. readout noise) ng ∼ N (0,σg ) to each LR image.
The first image in each burst is the reference frame aligned with HR. For the rest
images in the burst, we add random translation on both vertical and horizontal axis
∆xs ∼ N (0,σs ),∆ys ∼ N (0,σs ).
Training details. We look at burst super-resolution methods to analyse the quality
of the reconstructed image. In order to navigate the Perception-Distortion Tradeoff,
we consider the ESRGAN [182] network trained with two stages, where the first stage
is distortion-oriented and the second is perception-oriented. We linear interpolate
the parameters of these two models by θi nter p = (1−α)θD +αθP to obtain a contin-
uous P-D curve. We repeat this training for each different noise and shake levels
given in Table 5.1.

More specifically, we first train the distortion-oriented model only with L1 loss.
The learning rate is initialized as 2×10−4 and decayed by a factor of 2 every 50 epochs.
Then this model is employed as initialization for the generator. We fine-tune the
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Item Value
Gaussian Noise (σg ) [0,10,20,30,40]
Poisson Noise (λp ) [0,1,2,3,4]

Shake (σs ) [0,1,2,3,4] (pixel)
Burst Length (n) [1,5,10,20,30,40,50]

Table 5.1: Experimental settings for degraded burst images. For σs = 0, only the
single-frame models are trained.

generator with adversarial loss and perceptual loss to optimize the perceptual
quality. The learning rate is set to 1×10−4 and halved at every 25 epochs. Our model
contains 23 residual blocks, and all the images in a burst are concatenated as input.
We optimize using Adam with β1 of 0.9 and β2 of 0.99, batch size of 16. We train and
test the models using PyTorch on an NVIDIA GeForce 3090Ti GPU.
Modification of P-D curve. In addition, before calculating ADO and AUC, there are
two problems that need to be solved, including the problem of inflection points in
the curve and the problem of scale gaps between different metrics.

Firstly, in the training process, we first train a model that only optimizes the
distortion loss to get the initial anchor point A1 of the curve, and then add the
perception loss and adversarial loss on this basis, optimizing the perceptual quality
and reducing the distortion, to get the end anchor point Ak of the curve. The
interpolation anchor points in the curve are obtained through image interpolation.
Since the distortion is also optimized during the second stage, the MSE model
obtained on the first stage is not always the optimal on distortion. The distortion of
the interpolation anchor points may be better than the initial point, so the curve
will produce the first kind of inflection point. When training with the adversarial
loss, GAN will generate some unpleasant artifacts, these artifacts will make the
perceptual quality of the image worse, so it will cause the second inflection point.
[13] proves that there is a tradeoff between the optimal perception and distortion,
and the perceptual quality will get worse as the distortion getting better, and vice
versa. We therefore consider the result of the shaded area (shown in Figure 5.2) to be
the reach of the model. In order to reduce the impact of model training problems,
we modified the curves with inflection points.

Secondly, since there are different metrics to measure the perception and distor-
tion, the value ranges of different metrics are quite different. For example, NIQE
ranges from 2 to 100, while RMSE is generally less than 0.2 on our dataset. Therefore,
it is necessary to normalize the value first to get rid of the influence of scale gaps
and fairly considering both two dimensions.

Bursts are generally collected in a very short period. Therefore, the content
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Figure 5.4: P-D curves of perfectly aligned bursts. Columns 1-3 compare the P-
D curves with different levels of Gaussian noise, Poisson noise, and burst length,
respectively. Column 4 shows the AUR. When images are perfectly aligned, and the
noise level in each image is lower than the signal itself, using more images for burst
restoration leads to better restoration quality. Note that the black dash line in the
P-D planes indicates the modified P-D curves.

and imaging conditions of a burst are basically the same. The main differences
between each frame are degrees of noise and misalignment. Since image noise
is unavoidable in the imaging process, we analyse two common cases: when all
images in a burst are perfectly aligned and when the images are not aligned.

For evaluation, we measure perceptual quality using the no-reference metrics
NIQE [127] and BRISQUE [126], and for distortion, we measure RMSE. We calculate
AUR of LPIPS-RMSE, NIQE-RMSE and BRISQUE-RMSE with [Dmi n ,Dmax ] = [0,0.3],
[Pmi n ,Pmax ] = [0,150].

5.5.2 Perfectly aligned bursts

This setting covers two cases: (1) The burst is captured in a stable condition, i.e.there
is no shake or motion during imaging. (2) The accurate motion parameters or flow
between frames can be measured by equipment or estimated by algorithms. In this
case, we only consider the impact of noise on the quality of restoration results.

Foremost, the P-D curves in Fig. 5.4 prove that the P-D tradeoff still exists in
burst restoration. As the noise level of the input image increases, for both Gaussian
noise and Poisson noise, the P-D curve lies further from the origin, which indicates
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that both the perceptual quality of the restoration image and distortion are getting
worse (See Fig. 5.4 column 1-2). At a certain noise level, perception and distortion
improve as the input burst length increases. When the burst length reaches a certain
number, the benefit of using more images for processing decreases, since most
information has already been restored. As illustrated in Fig. 5.4 column 3, the two-
frame P-D curve shows a wide margin over the single-frame curve, but the gap
between 10 and 100 images is quite narrow. The AUR value (see Fig. 5.4 column
4) also indicates the same tendency, proving the AUR curve captures well the P-D
plane. The analysis of a perfectly aligned burst proves the importance of alignment
for multi-frame processing. When a burst is well aligned, the more images the input
has, the higher the image quality obtained for both perception and fidelity.

5.5.3 Misaligned bursts

For bursts taken by a handheld camera, shake is almost an unavoidable problem.
Misaligned bursts result from two possible conditions: (1) Direct restoration without
any alignment. (2) Misalignment resulting from inaccurate motion or flow estima-
tion. In our case, we consider the impact of both shake and noise. Here we assume
that the entire burst is acquired in a very short period, so only the random shake is
considered. Let us also note that this case can also be understood as a proxy for the
error of alignment methods.
Level of alignment errors. As shown in Fig. 5.5, as the burst length increases, the
restoration results gradually get better at first, and after reaching the optimum
quality at a certain burst length, the image quality gradually gets worse. When
the displacement between images is relatively small, complementary information
between different images helps recover more image details. However, when the
displacement between images is too large, using more images to restore will worsen
the quality. As illustrated in Fig. 5.5 column 2, when λp = 1,σg = 10, i.e.the AUR
curves for the first image column, 20 is the optimal length for burst with shake
σs = 1,2,3. As the noise level increases (column 3, λp = 3,σg = 30), the larger the
length of the input burst is, the better the quality of the restored image is. Therefore,
the optimal burst length is determined by both the shake and the noise level.
Types of alignment errors. We study a more realistic case where the handshake
can be temporal correlated by adding linear-increased translation in one direction
and random translation in another. Fig.5.6 (left) shows the comparison between
the burst with random displacement and temporal-correlated displacement. In ad-
dition, the alignment error is related to the alignment method. Fig.5.6 (right) shows
the AUR of using different alignment methods, including image-level alignment
with estimated optical flow [157], and feature-level alignment with deformable con-
volution [180], to cover various alignment errors. Inaccurate optical flows introduce
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Figure 5.5: P-D curves of misaligned bursts. Column 1 compares the P-D curves
with different levels of shake. Column 2,3,4 shows the AUR under different levels of
noise and shake. When the burst is imperfectly aligned, an optimal burst length for
restoration exists, depending on the noise level and displacement level.
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Figure 5.6: Results of burst with different types of displacement (left) and alignment
error (right).

a certain level of alignment errors, which may even worsen the image quality, while
still with the existence of optimal burst lengths. Deformable convolution can better
align the features, so it shows the similar trend as the perfectly aligned burst, the
more images the better. In these more realistic and diverse cases, the results show
the same tendency as the implicit motion represent.

5.6 Concluding remarks

In this chapter, we extend the theory of single-frame perception-distortion tradeoff
to multiple images, in particular to bursts. We analyze the impact of noise and shake
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on multi-frame restoration from the perspective of the P-D tradeoff and determine
the importance of alignment for burst restoration. On this basis, we propose a new
metric for evaluating and comparing P-D curves. Our work provides a reference for
the design of multi-frame restoration methods. In the case of estimable image noise
and camera shake, the analysis results can also be used as a reference for selecting
the optimal burst length.

We focus on fast-captured burst image restoration tasks. Therefore, we only
consider misalignment caused by short-term camera movements, limiting our anal-
ysis to global rigid body motion. However, real-world applications can be more
complex, involving factors such as object motion-induced blur and inconsistent
global motion of different objects. Additionally, many models currently employ
implicit motion estimation methods, simplifying our experiments to primarily focus
on idealized camera angle changes and simple analyses of optical flow estimation
errors. For future research directions, designing better inter-frame alignment meth-
ods is undoubtedly crucial for multi-frame image processing. Additionally, if we
consider more subtle differences, misalignment can be beneficial for tasks like
super-resolution, as multiple differently captured photos provide more scene sam-
pling, aiding in better-recovering image detail information. However, no studies
have yet focused on analyzing this subtle misalignment.
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6 Conclusion and future work

6.1 Conclusions

In this thesis, we introduce various semantic priors in low-level vision tasks and
investigate different ways to acquire and integrate the semantics in single-image and
multi-image processing tasks. We always consider both the accuracy and efficiency
of the algorithm to ensure that our proposed approaches can adapt to different
devices and scenarios, providing a better interactive experience and interpretability.

In Chapter 2, we propose a general slimmable semantic segmentation method,
which enables an adjustable accuracy-efficiency trade-off through a width-switchable
segmentation network. We demonstrate the effectiveness of stepwise downward
distillation on improving the performance of smaller subnetworks, and with less
amount of features saved during training compared with other distillation strate-
gies. Based on the observation of the difference between the predictions of each
subnetwork, we introduce boundary supervision on low-level features of the net-
work and propose a boundary-guided loss to further improve the segmentation
results of pixels along semantic borders. We demonstrate the effectiveness of the
proposed method through extensive experiments with different mainstream seman-
tic segmentation networks on the Cityscapes and CamVid. Our proposed method
improves the accuracy of the smaller submodels without significant accuracy drops
in large submodels.

In Chapter 3, we introduce an interactive framework for achieving multi-image
color consistency. Our framework incorporates white balance, saliency, and color
naming within a general palette-based recoloring system. The combination of these
additional high-level constraints significantly improves overall results and produces
recolored collections free of unwanted artifacts. Through qualitative examples
and a user study, we have established that our approach surpasses the current
state-of-the-art methods in terms of both visual quality and user preference.

In Chapter 4, we propose an image color modification method based on the
palette. Our method uses color names as a reference to increase the saturation
without compromising the perceptual color name of the original colors in the
image. Our method is particularly well-suited for image modification in graphic
design, where adhering to a color scheme becomes paramount. The experiments
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demonstrate the generalization ability of our approach.
In Chapter 5, we extend the theory of (single-frame) perception-distortion

tradeoff to multiple images, in particular to bursts. We analyze the impact of noise
and shake on multi-frame restoration from the perspective of the P-D tradeoff and
determine the importance of alignment for burst restoration. On this basis, we
propose a new metric for evaluating and comparing P-D curves. We believe that
our work provides a reference for the design of multi-frame restoration methods. In
the case of estimable image noise and camera shake, the analysis results can also
be used as a reference for selecting the optimal burst length.

6.2 Future direction

Although we strive to provide better solutions to address existing research issues,
even the most comprehensive approaches always have limitations. Moreover, due to
the rapid development of computer vision and deep learning technologies, results
obtained from studies three years ago are now far from the state-of-the-art. We have
summarized the limitations of our methods and potential avenues for improvement
in future work.

In terms of semantic extraction, we explored more flexible network architec-
tures and proposed corresponding training methods. However, our compression
was limited to adjusting the network width, i.e.number of channels of the conven-
tional layers, and the compression parameters were globally consistent. Future
exploration is needed to achieve flexible architecture adjustments in new model
architectures, such as transformer-based segmentation models, which can better
model global context relationships and achieve more accurate segmentation results.
Moreover, the relationship between image semantics and natural language is closely
intertwined. Exploring how to leverage information from large language models
for semi-supervised or unsupervised semantic segmentation model training, or
directly incorporating language models to assist low-level vision tasks, could be an
interesting direction.

In terms of image color editing, although our method achieved better color
effects by integrating semantics, it is limited by issues with palette extraction meth-
ods based on clustering. Additionally, to avoid degradation in image quality due
to brightness changes, our method only considers hue during recoloring, which
may not adapt well to scenes with large brightness differences between images,
such as those containing both daytime and nighttime conditions. To address these
issues, more complex semantic understanding and recoloring frameworks may be
necessary.

In video or burst restoration and reconstruction, we demonstrated the im-
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portance of accurate inter-frame motion estimation for image quality restoration.
However, most current methods still rely on optical flow estimation, which may
result in the loss of globally consistent motion information. This problem has gar-
nered more attention, and introducing canonical space or 3D information may
be future directions. Moreover, further exploration of the relationship between
segmentation accuracy, perception, and distortion. Figuring out the relationship
between semantics and image quality can deepen our understanding of the role of
semantics in image restoration tasks.

Furthermore, there are many directions worth exploring in semantic under-
standing and image editing, including specific attribute understanding and gen-
eration based on diffusion models, such as color and motion. We hope that the
methods and experimental results provided in this thesis could offer some insights
for future research.
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