
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús 
establertes per la següent llicència Creative Commons:                     https://creativecommons.org/licenses/?lang=ca

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de 
uso establecidas por la siguiente licencia Creative Commons: https://creativecommons.org/licenses/?
lang=es

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en



Testing the ΛCDM Model:
Cross-Correlations of Cosmic Voids

and CMB Lensing

Umut Emek Demirbozan

Advisors:

Dr. Ramon Miquel

Dr. Seshadri Nadathur

A thesis submitted for the degree of
Philosophiae Doctor (PhD) Departament de Física

Universitat Autònoma de Barcelona



In loving memory of my grandmothers,

and with deep gratitude to my father and stepmother,
for their support and inspiration.

"For small creatures such as we, the vastness is bearable only through love."

— Carl Sagan

"Two things are infinite: the universe and human stupidity; and I am not sure

about the universe."

— Albert Einstein



I, Umut Emek Demirbozan, declare that this thesis titled, "Testing theΛCDM Model:

Cross-Correlations of Cosmic Voids and CMB Lensing" and the work presented in

it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research

degree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.



Abstract

Modern cosmology is undergoing a rapid transformation, driven by unprecedented

data from large-scale structure surveys of galaxies and observations of the cosmic

microwave background (CMB). Now more than ever, it is crucial to collectively

analyze multiple datasets to gain deeper insights and fully exploit the wealth of

available information. Consequently, the cross-correlation of large-scale structures

(LSS) of the universe with the CMB is becoming an increasingly vital and rapidly

advancing field.

The largest observable structures in the universe, known as cosmic voids, are

expansive regions characterized by a relative lack of galaxies. These cosmic voids

influence the CMB through gravitational lensing, causing a negative imprint on the

CMB convergence (𝜅). This effect provides insight into the distribution of matter

within voids, and can also be used to study the growth of structure. In addition, voids

are also the regions where we can observe secondary CMB anisotropies caused by

the Integrated Sachs-Wolfe (ISW) effect as colder than usual CMB temperature in

void positions. This effect is a direct probe of the acceleration of the Universe.

Motivated by ongoing discussions regarding the strength of the ISW effect caused

by voids and the possible connection of a large void to the CMB Cold Spot, this

thesis extends these studies to include the CMB lensing imprints of voids.

As the standard model of cosmology, Λ Cold Dark Matter (ΛCDM), fits a great

amount of different cosmological observations with incredible efficiency, our main

motivation is to test this model using superstructures in the LSS and the CMB with

the help of N-body simulations.

We begin by utilizing DES Year-1 data, employing two distinct void finder

algorithms— 2D and VIDE—along with a template fitting method which includes
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Gaussian filtering of the CMB lensing convergence (𝜅) map and stacking CMB

patches on void centers. Moreover, we also cross-correlate voids with the mass

maps produced by Dark Energy Survey Y3 data set to show the consistency of

produced mass maps.

We then measure this lensing imprint by cross-correlating the Planck CMB (𝜅)

map with voids identified in the DES Y3 data set, covering approximately 4,200

deg2 of the sky. We again use two distinct void-finding algorithms: a 2D void-finder

which operates on the projected galaxy density field in thin redshift shells, and a new

code, Voxel, which operates on the full 3D map of galaxy positions. We employ

an optimal matched filtering method for cross-correlation, using the MICE N-body

simulation both to establish the template for the matched filter and to calibrate

detection significances. Using the DES Y3 photometric luminous red galaxy sample,

we measure 𝐴𝜅, the amplitude of the observed lensing signal relative to the simulation

template, obtaining 𝐴𝜅 = 1.03±0.22 (4.6𝜎 significance) for Voxel and 𝐴𝜅 = 1.02±

0.17 (5.9𝜎 significance) for 2D voids, both consistent with ΛCDM expectations.

We additionally invert the 2D void-finding process to identify superclusters in the

projected density field, for which we measure 𝐴𝜅 = 0.87± 0.15 (5.9𝜎 significance).

We then show that the leading source of noise in our measurements is Planck noise,

implying that future data from the Atacama Cosmology Telescope (ACT), South

Pole Telescope (SPT) and CMB-S4 will increase sensitivity and allow for more

precise measurements.
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Resum

La cosmologia moderna està experimentant una ràpida transformació, impulsada per

dades sense precedents de les cartografies d’estructures a gran escala de galàxies i

les observacions del fons còsmic de microones (CMB). Ara més que mai, és crucial

analitzar col·lectivament múltiples conjunts de dades per obtenir una comprensió

més profunda i aprofitar plenament la riquesa d’informació disponible. En conse-

qüència, la correlació creuada de les estructures a gran escala (LSS) de l’univers

amb el CMB s’està convertint en un camp cada vegada més vital i en ràpida evolució.

Les estructures observables més grans de l’univers, conegudes com a buits

còsmics, són regions extenses caracteritzades per una falta de galàxies. Aquests

buits còsmics influeixen en el CMB a través del fenomen de lent gravitacional,

causant una impressió negativa en la convergència del CMB (𝜅). Aquest efecte

proporciona una visió de la distribució de la matèria dins dels buits i també pot ser

utilitzat per estudiar el creixement de l’estructura. A més, els buits també són les

regions on podem observar l’efecte Sachs-Wolfe integrat (ISW) com a temperatura

del CMB més freda del normal en les posicions dels buits. Aquest efecte és una

sonda directa de l’acceleració de l’Univers.

Motivats per les discussions en curs sobre la força de l’efecte ISW causat pels

buits i la possible connexió d’un gran buit amb el Cold Spot del CMB, aquesta tesi

amplia aquests estudis per incloure les empremtes de lent del CMB dels buits.

Com el model estàndard de cosmologia, el model de Matèria Fosca Freda

Lambda (ΛCDM), s’ajusta a una gran quantitat d’observacions cosmologiques difer-

ents amb una eficiència increïble, la nostra principal motivació és testejar aquest

model utilitzant superestructures en el LSS i el CMB amb l’ajuda de simulacions de

molts cossos.
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Comencem utilitzant dades del primer any de DES, emprant dos algoritmes

de cerca de buits distints: 2D i VIDE, juntament amb un mètode d’ajustament de

plantilles. Això implica filtrar gaussianament el CMB i reescalar retalls del CMB

centrats en posicions de buits. A més, també correlacionem creuadament els buits

amb els mapes de masses produïts pel conjunt de dades dels 3 primer anys de DES

per mostrar la consistència dels mapes de masses produïts.

Després mesurem aquesta empremta de lent correlacionant creuadament el mapa

de convergència de lent del CMB de Planck (𝜅) amb buits identificats en el conjunt

de dades DES Y3, cobrint aproximadament 4.200 graus quadrats del cel. Utilitzem

de nou dos algoritmes de cerca de buits distints: un cercador de buits 2D que opera

sobre el camp de densitat de galàxies projectat en closques de redshift fines, i un

nou codi, Voxel, que opera sobre el mapa complet en 3D de posicions de galàxies.

Emprem un mètode de filtratge òptim per a la correlació creuada, utilitzant la

simulació molts cossos MICE tant per establir la plantilla per al filtre com per calibrar

les significances de detecció. Utilitzant la mostra de galàxies roges lluminoses

fotomètriques a DES Y3, mesurem 𝐴𝜅, l’amplitud del senyal de lent observat en

relació amb la plantilla de simulació, obtenint 𝐴𝜅 = 1.03 ± 0.22 (significància de

4.6𝜎) per Voxel i 𝐴𝜅 = 1.02 ± 0.17 (significància de 5.9𝜎) per buits 2D, ambdós

consistents amb les expectatives de ΛCDM. A més, invertim el procés de cerca de

buits 2D per identificar supercúmuls en el camp de densitat projectat, per als quals

mesurem 𝐴𝜅 = 0.87±0.15 (significància de 5.9𝜎). Llavors mostrem que la principal

font de soroll en les nostres mesures és el soroll de Planck, la qual cosa implica

que futures dades del Telescopi de Cosmologia d’Atacama (ACT), el Telescopi del

Pol Sud (SPT) i el CMB-S4 augmentaran la sensibilitat i permetran mesures més

precises.
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Introduction

Modern cosmology has witnessed a significant evolution with the advent of large-

scale structure surveys and cosmic microwave background (CMB) telescopes, tran-

sitioning into a data-centric discipline. The discovery of the Universe’s accelerated

expansion has led to the widespread acceptance of the Λ Cold Dark Matter (ΛCDM

model, grounded in Einstein’s general relativity and the Friedmann-Robertson-

Walker metric) (Perlmutter et al., 1999, Riess et al., 1998). This model has undergone

rigorous testing, aligning closely with a wide array of observations (Eisenstein et al.,

2005, Planck Collaboration et al., 2020b). Despite its remarkable success, recent

findings have highlighted notable discrepancies. Among these, some measurements

of the Integrated Sachs-Wolfe (ISW) effect in large cosmic voids have reported sig-

nals exceeding ΛCDM predictions derived from N-body simulations (Granett et al.,

2008, Kovács et al., 2022). However, this finding has not been replicated by other

studies (Hang et al., 2021, Nadathur & Crittenden, 2016). Moreover, the Cold Spot

in the CMB, potentially linked with the super-sized Eridanus void, has been a subject

of debate (Kovács et al., 2021, Mackenzie et al., 2017, Naidoo et al., 2016, Smith &

Huterer, 2010). While it has been suggested that the Cold Spot’s anomaly could be

attributed to the presence of a large supervoid rather than being an intrinsic temper-

ature fluctuation, no supervoid within the ΛCDM framework is considered capable

of inducing such a pronounced effect on the CMB (Nadathur et al., 2014, Owusu

et al., 2023). However, perhaps the biggest challenge to ΛCDM comes from the

well-documented Hubble tension—the discrepancy between the locally measured

expansion rate of the Universe and the rate predicted by ΛCDM based on early

Universe observations. This tension stands out as the most significant challenge (Di

Valentino et al., 2021, Freedman et al., 2024, Khalife et al., 2024, Riess et al., 2022,
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Verde et al., 2023)

Given these challenges, verifying ΛCDM predictions through observational data

has become critically important. Recent studies of CMB lensing effects in cosmic

voids, assessing their consistency with ΛCDM expectations, are key to this verifica-

tion process. If these studies reveal discrepancies, they could indicate new physics

emerging from these vast under-dense regions. Therefore, the utilization of cos-

mic voids in cosmological research has been gaining traction. Not only do they

serve as powerful tools for advancing cosmological studies, but they also provide

unique opportunities to constrain the sum of neutrino masses from particle physics

(Kreisch et al., 2019, Pisani et al., 2019, Verza et al., 2019, Zhang et al., 2019). Fur-

thermore, the examination of void abundance and density profiles offers a pathway

to differentiate between Modified Gravity (MG) theories and General Relativity,

particularly because voids have the capacity to circumvent screening mechanisms

in dense environments (Baker et al., 2018, Khoury & Weltman, 2004, Vainshtein,

1972). Therefore, it is of utmost interest to study the CMB lensing imprints of cos-

mic voids and their expectations within the current consensus cosmological model,

ΛCDM. This thesis is organized as follows: Chapter 1 presents the background

cosmological information. Chapter 2 details the void × CMB lensing results ob-

tained from the DES Y1 dataset using two different void finders. Chapter 3 presents

the cross-correlation of voids with DES Y3 weak lensing mass maps. Chapter 4

presents the void × CMB lensing results from the DES Y3 dataset by applying a

matched filter method. Finally, Chapter 5 provides the discussion and conclusions

of this thesis.
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Chapter 1

Background and Motivation

1.1 Cosmological Background

Since the time humans have evolved sufficiently on Earth, they have wondered about

their natural surroundings with strong curiosity. After the pre-historic eras, humans

developed sufficient mathematical reasoning and sophisticated tools to investigate

nature. Cosmology is the result of this investigation of nature at the largest possible

scales; as such, it asks some fundamental questions about the Universe as a whole,

such as how it started, how it has evolved, and how it will continue to evolve. To

answer these questions and develop models of the Universe, it is necessary to make

careful observations.

1.1.1 Expanding Universe

Starting with the beginning of the 20th century, for the first time in history, we

understood that we live in a Universe much larger than our Milky Way galaxy.

Shapley and Curtis had a famous debate on whether the observed "nebulae" were

part of our own galaxy or not (NASA, 2020). "The Great Debate" was later resolved

by the observations of Edwin Hubble, who used the Cepheid variable stars in these

nebulae to measure their distances and showed that they are actually very distant,

extra-galactic objects (Hubble, 1926).

Moreover, Hubble’s meticulous observations revealed a direct linear correlation
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1.1. Cosmological Background

between the distances to extragalactic objects and their recession velocities. This is

shown in Equation 1.1 and illustrated in Edwin Hubble’s original diagram in Figure

1.1. It is important to note that the 𝐻0 referred to here is the Hubble Constant as

observed today, and its value is subject to one of the most significant tensions in

cosmology at the time of writing this thesis. This issue will be elaborated in more

detail in subsequent chapters.

𝐻0 =
𝑣gal

𝑑gal
(1.1)

Therefore, in modern cosmology distances are usually quoted in comoving coordi-

Figure 1.1: The pioneering 1929 Hubble diagram, showcasing the initial empirical
evidence for the expansion of the Universe. This graph demonstrates the direct
proportionality between the distances of galaxies and their respective velocities of
recession, providing concrete support for the concept of an expanding cosmos as
independently described by Hubble Hubble (1929) and Lemaître Lemaître (1927).
On the right, a modern version of the diagram is shown as comparison. Credit:E.
Hubble; R. Kirshner, PNAS, 2004

nates which are insensitive to the expansion of the Universe. Due to the uniformity

of cosmic expansion, the coordinates of individual points in space remain invariant.

The interval between these coordinates is termed the comoving distance (𝑥) while

the physical distance, which represents the real measurable separation between two

15



1.1. Cosmological Background

points in the Universe, is shown as

𝑑 = 𝑎(𝑡)𝑥. (1.2)

In cosmology, the scale factor 𝑎(𝑡) is standardized by defining its current value as

unity (𝑎(𝑡0) = 1), with 𝑡0 symbolizing the current age of the Universe. To describe

the time variation in the scale factor, we introduce the Hubble rate

𝐻 (𝑡) ≡ ¤𝑎
𝑎

(1.3)

The current value of the Hubble rate, denoted as 𝐻0, is parameterized using the

dimensionless Hubble parameter, ℎ. This relationship is expressed as follows:

𝐻0 = 100ℎ km s−1Mpc−1.

Therefore, the natural units of the comoving system is Mpc/h and through this thesis

the sizes and distances of the voids will be based on this framework of the comoving

distance.

Moreover, the velocities of galaxies measured by Hubble in 1929, as well as

those obtained from contemporary large-scale structure surveys, are derived by

analyzing the spectra of galaxies. By assuming a Doppler shift for receding galaxies

in an expanding Universe, the observed spectra can be compared to a non-moving

reference spectrum on Earth. This allows for the calculation of the Doppler shift.

Due to the expansion of the Universe, this shift typically appears towards the red

end of the visible spectrum, a phenomenon known as redshift. The redshift, 𝑧, of a

galaxy is defined as:

1 + 𝑧 =
𝜆𝑜

𝜆𝑒
, (1.4)

where 𝜆𝑜 and 𝜆𝑒 refer to the observed and emitted wavelengths, respectively. It is

important to note that in reality, peculiar velocities of galaxies can affect these mea-

surements, leading to Redshift Space Distortions (RSD) (Hamilton, 1998, Kaiser,

1987).

Furthermore, redshift is related to the radial velocity via the equation derived
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1.1. Cosmological Background

from Einstein’s special relativity:

𝑧 + 1 =

√︄
1 + 𝑣

𝑐

1 − 𝑣
𝑐

, (1.5)

where 𝑣 is the radial velocity of the galaxy relative to the observer, and 𝑐 is the speed

of light.

However, on cosmological scales, redshift occurs as a consequence of the ex-

pansion of the Universe’s fabric, and it is quantitatively related to the scale factor

by:

1 + 𝑧 =
𝑎0

𝑎(𝑡) (1.6)

We will use this equation in Section 1.1.2 within the framework of Friedmann

Equations.

1.1.2 FLRW Metric and Friedmann Equations

As explained in previous sections, the beginning of the 20th Century was a pivotal

moment in the history of cosmology. Einstein’s general relativity and Hubble’s

observations rapidly changed the picture of the Universe. Perhaps, one of the most

fundamental equations in cosmology was also discovered at this time.

The Cosmological Principle, also affirmed during this period, postulates that

the Universe is isotropic and homogeneous on very large scales. This implies

that no observer occupies a privileged position in the Universe, and the Universe

appears uniform when viewed on large scales. It is noteworthy that this differs

from the Perfect Cosmological Principle, wherein the Universe is supposed to be

homogeneous and isotropic across both space and time, a postulate fundamental to

steady-state cosmologies. Given the evident temporal evolution of the Universe, the

Cosmological Principle is applicable solely in the space domain.

It is surprising to know that Friedmann’s equations can also be derived from

Newton’s Mechanics, Newton himself had all the tools to derive this equation. The

same equation can also be derived from Einstein’s GR equations.

The most general isotropic and homogeneous metric of an expanding Universe
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1.1. Cosmological Background

is given by the Friedmann-Robertson-Walker (FRW) metric:

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑎(𝑡)2
(

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜙2
)

(1.7)

where spherical coordinates are used, 𝑐 is the speed of light and 𝑎(𝑡) is the scale

factor. The parameter 𝑘 represents the curvature of the Universe and can take one

of three values: 𝑘 = 1, 𝑘 = 0, or 𝑘 = −1, corresponding to a closed, flat, and open

universe, respectively.

• 𝑘 = 1: Indicates a positive curvature, corresponding to a closed universe that

is spatially finite. This model suggests that if you travel far enough in one

direction, you would eventually return to your starting point, analogous to the

surface of a sphere.

• 𝑘 = 0: Indicates zero curvature, corresponding to a flat universe. This is

the critical case between a closed and open universe and suggests that the

geometry of the universe follows the rules of Euclidean geometry, where

parallel lines never meet.

• 𝑘 = −1: Indicates negative curvature, corresponding to an open universe

that is spatially infinite. In this model, the universe expands forever, and the

geometry is hyperbolic, meaning parallel lines diverge.

These curvature parameters play a critical role in the dynamics of the universe’s

expansion and its ultimate fate, influencing theories and observations in cosmology.

By setting 𝑘 = 0 in Equation 1.7 and integrating with Equation 1.6, considering

that for light 𝑑𝑠2 = 0, the comoving distance traversed by light can be determined;

𝑟 (𝑧) =
∫ 𝑧

0

𝑑𝑧

𝐻 (𝑧) . (1.8)

The Friedmann Equations can be written as;(
¤𝑎
𝑎

)2
=

8𝜋𝐺
3

𝜌 − 𝑘

𝑎2 + Λ

3
(1.9)
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and
¥𝑎
𝑎
= −4𝜋𝐺

3

(
𝜌 + 3𝑝

𝑐2

)
+ Λ

3
(1.10)

From the Friedmann Equation 1.9, there is a certain density 𝜌 for which the

universe would be flat without a cosmological constant, i.e., 𝑘 = 0:

𝜌𝑐𝑟𝑖𝑡 =
3𝐻2(𝑧)

8𝜋𝐺
(1.11)

The Hubble parameter is time-dependent, so the critical density also varies with

cosmic time. A very useful and common definition is the density of all fluids together

relative to the critical density, called the density parameter:

Ω𝑡𝑜𝑡 (𝑡) =
𝜌𝑇𝑂𝑇 (𝑡)
𝜌𝑐𝑟𝑖𝑡 (𝑡)

(1.12)

Using 1.11 and 1.12, we then obtain the Friedmann Equation 1.9 expressed in

terms of the density parameters, scale factor, and the Hubble parameter is given by:

𝐻2(𝑎) = 𝐻2
0

(
Ω𝑟0

(𝑎0

𝑎

)4
+Ω𝑚0

(𝑎0

𝑎

)3
+Ω𝑘0

(𝑎0

𝑎

)2
+ΩΛ

)
(1.13)

where:

• 𝐻 is the Hubble parameter at any time 𝑡,

• 𝐻0 is the current value of the Hubble parameter,

• Ω𝑟0 , Ω𝑚0 , Ω𝑘0 , and ΩΛ are the present-day density parameters for radiation,

matter, curvature, and dark energy, respectively,

• 𝑎 is the scale factor at any time 𝑡,

• 𝑎0 is the present-day scale factor, usually normalized to 1.

and therefore we obtain:

Ω𝑟0 +Ω𝑚0 +Ω𝑘0 +ΩΛ = 1 (1.14)
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1.1. Cosmological Background

1.1.3 Einstein and General Relativity (GR)

Newtonian physics governed all physical laws up until the beginning of the 20th

century, successfully explaining many phenomena but faltering with larger speeds,

masses, and energies. Einstein’s introduction of Special Relativity in 1905, through

his Annus Mirabilis papers, challenged the Newtonian view of constant space-

time (Einstein, 1905). A decade later, he further revolutionized physics with the

introduction of General Relativity (GR) in 1915, proposing that gravity is not a force

but the curvature of spacetime caused by mass-energy (Einstein, 1915).

General Relativity is based on the equivalence principle, which states that grav-

itational and inertial mass are equivalent. This principle led to the prediction of

several new phenomena such as the bending of light by gravity, confirmed dur-

ing the 1919 solar eclipse by Sir Arthur Eddington (Dyson et al., 1920), and the

perihelion precession of Mercury’s orbit (Verrier, 1859), resolving longstanding

astronomical puzzles.

General Relativity has important implications for cosmology. It forms the the-

oretical framework for understanding diverse cosmic phenomena, including the

expansion of the universe as described by the Friedmann-Lemaître-Robertson-

Walker(FLRW) metric which we explained in Section 1.1.2, the existence of black

holes, and the theoretical prediction of gravitational waves, observed a century later

in 2015 by LIGO collaboration (Abbott et al., 2016).

General Relativity (GR) extends the principles of Special Relativity to include

gravity. Unlike Newtonian mechanics, GR does not conceptualize gravity as a

force but rather as a curvature of spacetime. This concept is articulated through

the equivalence principle, which posits that the effects of gravitational attraction

are indistinguishable from the effects of acceleration. GR incorporates Lorentz

invariance, foundational to Special Relativity, into its framework.

The flat spacetime in GR is mathematically represented using the Minkowski
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1.1. Cosmological Background

spacetime metric, where the line element 𝑑𝑠 is given by:

𝑑𝑠2 = 𝜂𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = 𝑐2𝑑𝑡2 − (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) (1.15)

= 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 sin2(𝜃)𝑑𝜙2 (1.16)

where (𝑥, 𝑦, 𝑧) and (𝑟, 𝜃, 𝜙) represent Cartesian and spherical coordinates, respec-

tively. This describes spacetime without any curvature due to mass or energy.

Therefore, Minkowski metric describes spacetime only in regions where gravita-

tional effects are negligible.

The core of General Relativity is encapsulated in the Einstein field equations:

𝐺𝜇𝜈 =
8𝜋𝐺
𝑐4 𝑇𝜇𝜈 − Λ𝑔𝜇𝜈, (1.17)

where 𝐺𝜇𝜈 denotes the Einstein tensor that describes spacetime curvature, 𝑇𝜇𝜈

represents the energy-momentum tensor that accounts for mass-energy distribution,

Λ is the cosmological constant, and 𝑔𝜇𝜈 is the metric tensor of spacetime.

These equations suggest that the fabric of the universe is dynamically shaped by

its matter-energy content. This could be summarized by John Archibald Wheeler’s

famous aphorism: "Spacetime tells matter how to move; matter tells spacetime

how to curve." This interdependence indicates that the universe’s geometry and

its temporal evolution are directly influenced by the distribution and properties of

matter and energy within it.

The original cosmological constant (Λ) was initially proposed to allow for a

static universe since Friedmann equations have no static solutions, but has gained

modern relevance in explaining the accelerated expansion of the universe observed

in contemporary cosmology as explained in next sections.

Despite its successes, it should be mentioned that General Relativity does not

integrate well with quantum mechanics, and research is still ongoing into quantum

gravity and theories like string theory that seek to unify gravity with other fundamen-

tal forces. The unresolved issues of dark energy and dark matter in contemporary

cosmology further suggest that extensions to GR or entirely new theories might be

necessary (Joyce et al., 2015).
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In summary, General Relativity not only reshaped our understanding of gravity

but also established the foundational framework for ongoing exploration of cosmol-

ogy (Berti et al., 2015).

At this point, it should be explained that Einstein initially hypothesized a ‘Cos-

mological Constant’ (Λ), symbolized by the Greek letter Lambda, to represent a

universe whose density remains constant over time and space. His motivation was

to model a static universe—neither expanding nor contracting. However, when later

observations by Hubble revealed that the universe was actually expanding, Einstein

allegedly dismissed his cosmological constant as the ‘biggest blunder of his life’.

Interestingly, Λ can also take other values that imply an expanding and even an

accelerating universe, as current observations suggest.

The concept of Λ can be extended to represent ‘Dark Energy’, a term used to

describe the mysterious force driving the universe’s accelerated expansion. One of

the primary goals of surveys like DES (Dark Energy Survey Collaboration, 2016),

DESI (DESI Collaboration et al., 2016b), and Euclid (Laureĳs et al., 2011) is to

measure the dark energy equation of state,𝑤—the ratio of pressure to density—along

with other key cosmological parameters, with a high level of precision. A value

of 𝑤 = −1 would indicate that the universe’s dark energy density remains constant

at any cosmic time, introducing the concept of negative pressure. However, dark

energy theories permit 𝑤 to vary, including over time. This parametrization of 𝑤

is commonly referred to as the Chevallier-Linder-Polarski (CPL) parametrization

(Chevallier & Polarski, 2001, Linder, 2003), which models 𝑤 as a linear function of

the scale factor, 𝑎, in the form:

𝑤 = 𝑤0 + (1 − 𝑎)𝑤𝑎 (1.18)

where 𝑤0 and 𝑤𝑎 are constants. Particularly, for 𝑤0 = −1 and 𝑤𝑎 = 0, the equation

simplifies to 𝑤 = −1, which corresponds to a cosmological constant. Furthermore,

Equation 1.18 is a robust parametrization but the use of high-order polynomials is

problematic. More interestingly, due to the nature of observations for 𝑧 ≲ 1.5 that

lack sufficient accuracy to detect time variations in 𝑤, they effectively measure an
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averaged 𝑤 or an equivalent constant 𝑤. This is called "The Mirage of 𝑤". These

topics have been thoroughly explored in Linder (2007). It is also important to note

that the DESI Y1 analysis results, for the first time, show a clear preference for the

𝑤0 − 𝑤𝑎 evolving dark energy model over ΛCDM. This finding suggests that dark

energy might be dynamic rather than a cosmological constant.

1.1.4 Overview of ΛCDM

As discussed in the previous subsections, the ΛCDM model has provided a coherent

cosmological framework that aligns with numerous observational tests. Below,

Figure 1.2 illustrates the key cosmic events as depicted by the ΛCDM model.

Figure 1.2: Graphical representation of cosmic events across time according to
consensus ΛCDM model. Copyright: ESA - C. Carreau

Perhaps one of the most important moments in the history of modern cosmology,

and the compelling evidence that led to the concept of "dark energy," emerged

in 1998 through the seminal works of Riess et al. (1998) and Perlmutter et al.

(1999). Independently, these two groups discovered that the universe is accelerating

by observing Type Ia supernovae, which serve as standardizable candles, using
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different surveys. This discovery led to the widespread acceptance of dark energy,

conceptualized as vacuum energy, within the scientific community. Figure 1.3

illustrates the relationship between supernovae magnitude (distance) and redshift

for the Supernova Cosmology Project.

Figure 1.3: Pioneering diagram from Perlmutter et al. (1999) showing the magnitude
of Type Ia Supernovae versus their redshift. The best-fit data to high redshift
Supernovae indicates that these supernovae are dimmer than expected in consistency
with Λ, providing striking evidence for the accelerated expansion of the universe.

Under the assumption of the standard ΛCDM cosmological model, the CMB

measurements from the Planck satellite predict a current expansion rate of 67.4±0.5

km s−1 Mpc−1 (i.e., with better than 1% precision) (Planck Collaboration, 2020)).

Consistent results are also obtained from the Atacama Cosmology Telescope (ACT,

e.g., Madhavacheril et al. (2024)), and from the South Pole Telescope (SPT, e.g.,

Balkenhol et al. (2023)).

Furthermore, these predictions of 𝐻0 are also in good agreement with other

early Universe results without using any CMB data. It is important to emphasize the

word "prediction" here because all of these early measurements predict the current

expansion rate 𝐻0 by using 6 parameter standard ΛCDM model.
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For instance, BAO data, when combined with the Big Bang Nucleosynthesis

(BBN) information using the physical baryon density parameter Ω𝑏ℎ
2 (Burles &

Tytler, 1998, Cooke et al., 2018, Schöneberg et al., 2019), can determine the Hubble

constant 𝐻0 by assuming the ΛCDM model. Alternatively, 𝐻0 can be estimated

independently of the sound horizon by using the horizon scale at matter-radiation

equality, 𝑘eq as explored in Philcox et al. (2022). Furthermore, the application

of the inverse distance ladder method, which integrates observations from Type

Ia supernovae (SN1a) and BAO, has also obtained results consistent with these

approaches (Macaulay et al., 2019). These results show the robustness of early

Universe methods in determining the value of 𝐻0. In conclusion, all of these early

Universe predictions agree well with each other regardless of CMB or sound horizon

involvement.

However, the early Universe predictions of 𝐻0 are challenged by the SH0ES

collaboration, which employs the local distance ladder with Cepheid calibration of

local Type Ia supernovae (Riess et al., 2021, 2019, 2022). They report a value of

𝐻0 = 73.04± 1.04 km/s/Mpc, indicating a 4− 5𝜎 tension with other measurements.

This so-called ‘Hubble Tension’ is currently the subject of intense ongoing debate

in both theoretical and observational cosmology with no consensus justification (Di

Valentino et al., 2021, Khalife et al., 2024, Verde et al., 2023).

1.2 Large Scale Structure

1.2.1 Inflation and Structure Formation

In the very early stages of the universe after the Big Bang, it was extremely hot

and filled with a dense plasma. During this time, cosmic inflation caused rapid

expansion, leading to a spatially flat geometry on large scales (Liddle & Lyth, 2000).

This is called Hot Big Bang and this primordial plasma featured minor irregularities

that, driven by gravity, expanded to initiate structural development. The beginnings

of this ancient period and the initial conditions for the universe’s cosmological

history remain subjects of intense ongoing investigation (Vagnozzi & Loeb, 2022).
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However, the theory of inflation first proposed by Alan Guth in 1981 (Guth, 1981)

offers a solution to two of the biggest problems: the horizon problem and the flatness

problem. These are explained in detail below.

The horizon problem arises from the observation that regions of the universe

that are far apart have very similar temperatures and other physical properties, despite

the fact that they lie outside each other’s cosmological horizons due to finite speed

of light and therefore should not have been able to exchange information or energy.

The flatness problem is related to the precise balance required in the early

universe between the density of the universe and its expansion rate. According to

the standard Big Bang model, the density of the universe must have been very close

to the critical density to result in the flat universe we observe today. Small deviations

from this balance in the early universe would have led to a much different universe,

either collapsing back on itself or expanding too rapidly for galaxies to form.

The inflationary paradigm states that the vacuum energy density of the early uni-

verse, vastly exceeding present-day levels, governed the Hubble expansion, inducing

an exponential increase in the scale factor 𝑎(𝑡) = 𝐶 exp
(
Λ
3 𝑡
)
.

The expansion therefore can smooth out any initial curvature, resulting in a flat

universe, which aligns with current observations.

Moreover, inflation also predicts quantum fluctuations in the early Universe, due

to deviations from the vacuum state. These quantum-induced fluctuations essentially

cause primordial density perturbations, which are Gaussian in nature. Even before

the development of inflationary theory, these primordial perturbations were regarded

as likely precursors to the formation of large-scale structures (Liddle & Lyth, 2000,

Peebles, 1980).

For this reason, its capacity to forecast a flat universe and offer a structure for the

origin of density fluctuations that led to the formation of cosmic structures cements

its place in modern cosmological theory.

1.2.2 Gravitational Lensing and Galaxy Bias

One of the important predictions of General Relativity (GR) is that matter bends

light, as light follows the geodesics of space-time. When light emitted by galaxies
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passes through a mass overdensity, it is bent by the gravitational field of this mass

overdensity. The extent of this bending is proportional to the mass of the intervening

object.

As a result, the images of galaxies are distorted, and the galaxy may appear

in a different location than it actually is. This distortion typically occurs due to a

foreground massive cluster or another galaxy (i.e., galaxy-galaxy lensing). While

it is difficult to detect this bending caused by less massive objects, it becomes an

observable effect when induced by a massive cluster or another galaxy. In cosmology,

the galaxies that cause the background galaxies’ light to bend are referred to as lenses,

and the galaxies whose light is bent are called source galaxies.

Figure 1.4 is an example image of galaxy-galaxy lensing, known as "Cosmic

Horseshoe" where a massive Luminous Red Galaxy (LRG) lenses the background

blue galaxy and the special alignment creates horseshoe-like image. We explain

more about LRG galaxies in the next sections as redMaGiC tracers that we use in

DES Y3 study are based on LRGs.

Galaxy Bias

It has long been understood that the spatial clustering of observable galaxies does

not necessarily mirror the distribution of the universe’s total matter. Instead, the

galaxy density can be described as a function of the underlying dark matter density.

This concept, known as galaxy ’bias,’ reflects the relationship between the spatial

distribution of galaxies and the underlying dark matter density field. The bias arises

from the intricate physics of galaxy formation, which causes the spatial distribution

of baryonic matter( i.e galaxies) to deviate from that of dark matter.

This idea was first proposed by Kaiser (1984) and the concept emerged as a

solution to the discrepancy observed between the clustering scale lengths of galaxies

and rich clusters, suggesting that both cannot be unbiased indicators of underlying

total mass field. Furthermore, Kaiser (1984) demonstrated that large galaxy clusters

exhibit a significant bias due to their rarity, forming primarily in the highest density

regions of the mass distribution, which exceed a certain critical threshold.

One may postulate that the smoothed galaxy density contrast is dependent upon
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Figure 1.4: The foreground galaxy, LRG 3-757, is known for its exceptional mass,
being a hundred times greater than the blue galaxy in the background. These galaxies
are aligned in nearly perfect syzygy (line alignment), nearing the formation of an
Einstein ring. Although galaxy-galaxy lensing is typically classified as weak lensing,
this particular system serves as a perfect example of strong lensing. Copyright: ESA
- Hubble
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the underlying dark matter density contrast at a given scale:

𝛿𝑔 = 𝑓 (𝛿), (1.19)

where 𝛿 ≡ (𝜌/𝜌̄) − 1, with 𝜌̄ representing the average mass density at the specified

scale. Under the assumption that 𝑓 (𝛿) is a linear function of 𝛿, the linear galaxy

bias 𝑏 can be described as the ratio of the average overdensity of galaxies and the

average overdensity of the total mass.

𝑏 =
𝛿𝑔

𝛿
, (1.20)

and this ratio can depend on scale and some other galaxy properties.

In modern cosmology, galaxy bias constitutes a fundamental concept. It is well-

established that tracers and galaxy classifications possess distinct galaxy biases when

mapping the distribution of dark matter (Tegmark et al., 2004, Zhao et al., 2024).

This is especially important in cross-correlation studies of voids, which primarily

aim to identify regions devoid of dark matter, therefore understanding galaxy bias

in voids is an important area of research.

Analyzing the CMB lensing signal from voids provides insights into the under-

lying matter distribution from the shape of the convergence signal and therefore it

can be compared with the theoretical predictions derived from the visible galaxy

distribution using linear galaxy bias.

One of the studies that influenced the primary original work of this thesis Raghu-

nathan et al. (2019) tested this assumption and found that the profile doesn’t agree

with the simple linear galaxy bias (Alam et al., 2017) explained above. Their findings

are also in line with Nadathur & Percival (2019).

1.2.3 Dark Matter

The concept of dark matter emerged from astronomical observations that could not

be explained by visible baryonic matter alone. In 1933, Fritz Zwicky published the

first evidence for dark matter in the Coma galaxy cluster, utilizing the virial theorem
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to infer the presence of unseen mass (Zwicky, 1933). Furthermore, Babcock (1939)

observed the rotation curve of the Andromeda Nebula (M31) and found that much of

its mass must be located at large radii, indicating a discrepancy with visible matter

from stars.

In 1959, Kahn & Woltjer (1959) argued that the total mass of the Milky Way

and Andromeda galaxies must be much larger than their stellar mass to explain why

they are currently approaching each other. This suggested the existence of extended

large dark matter halos enveloping galaxies.

Moreover, striking evidence was provided by Ostriker et al. (1974) and Einasto

et al. (1974), who demonstrated that massive dark halos are necessary to account for

the observed dynamics of galaxies and galaxy clusters (Ostriker & Peebles, 1973).

More importantly, Press & Schechter (1974) developed an analytic model for the

growth of cosmic structures from a Gaussian initial density field, known as the Press-

Schechter formalism. To test this model, they carried out N-body simulations, and

this was the first time numerical experiments were used for the nonlinear structure

formation in an expanding universe. In another landmark study, the mass profile

of DM halos was shown to follow a simple profile (NFW profile) (Navarro et al.,

1996). This is shown in Equation 1.21

𝜌(𝑟) = 𝜌0(
𝑟
𝑟𝑠

) (
1 + 𝑟

𝑟𝑠

)2 (1.21)

where 𝜌(𝑟) represents the density at radius 𝑟 , 𝜌0 is the characteristic density scale

that sets the overall density of the halo, and 𝑟𝑠 is the scale radius marking the

transition between the inner and outer regions of the halo based on the isothermal

profile.

In addition, observations show that galaxies and clusters of galaxies gravitation-

ally lens background sources as explained in Section 1.2.2. When these lensing

effects are interpreted within the context of GR, the amount of lensing appears sig-

nificantly amplified without assuming the existence of dark matter. The quantity and

distribution of dark matter inferred are similar to those required to explain galactic

rotation curves. In particular, sub-dark matter halos without any accompanying
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galaxies have already been observed (Minor et al., 2021, Vegetti et al., 2010), in

addition to some dwarf galaxies that are almost entirely dominated by dark mat-

ter (Simon et al., 2011). These observations further strengthen the evidence for

invisible, gravitating dark matter halos.

However, although dark matter constitutes a significant portion of the Universe’s

mass, its fundamental particle nature remains one of the most compelling mysteries

in modern physics. The leading candidates for dark matter particles are Weakly

Interacting Massive Particles (WIMPs), which are hypothesized to interact via the

weak nuclear force and gravity but not electromagnetically (Bertone et al., 2005,

Jungman et al., 1996). WIMPs are currently the leading candidates for the particle

nature of dark matter, as their potential annihilation processes are expected to pro-

duce gamma-ray signatures coming from the dynamical center of the Milky Way

and this might have been detected by Fermi-Gamma-Ray Space Telescope (Daylan

et al., 2016). Later on, some observations claimed that these excess signals can

actually come from milisecond pulsars rather than dark matter annihilation (Gau-

tam et al., 2022). More recently, some authors have investigated the potential of

voids to host these annihilation signals in comparison to dark matter halos and have

found that voids are very promising candidates, despite their low dark matter content

due to their clean nature free from astrophysical sources (Arcari et al., 2022). A

comprehensive review of the theoretical development of dark matter and current

observational tests can be found in Frenk & White (2012).

On the other hand, some authors have explained the aforementioned galactic

rotation curves using Modified Newtonian Dynamics (MOND) (Milgrom, 1983),

which is a modification of gravity. Although MOND was initially not widely

accepted and failed to explain large-scale phenomena such as the CMB acoustic

peaks and relativistic effects like gravitational lensing, interest in the theory increased

after Bekenstein (2004) expanded it with a relativistic extension. However, recent

observations of binary stars strongly disfavor MOND (Banik et al., 2024). We

explore more about modified gravity theories in Section 1.6.2.

In this thesis, we identify cosmic voids to probe regions devoid of dark matter

(DM), since DM constitutes a much larger fraction of the total matter content than
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baryonic matter and significantly contributes to gravitational lensing effects. We rely

on galaxies and their bias relationship to trace the underlying dark matter distribution

and to understand the properties of voids in the large-scale structure. Additionally,

we cross correlate cosmic voids with the weak lensing mass maps constructed from

Dark Energy Survey Y3 dataset in Chapter 3.

1.3 Cosmic Microwave Background (CMB) Radia-

tion

As explained in Section 1.2.1, In the early Universe, the leading theory predicts that

the Universe expands exponentially through a process called inflation (Albrecht &

Steinhardt, 1982, Guth, 1981, Linde, 1982).

One of the most important discoveries in modern cosmology was the discovery

of Cosmic Microwave Background (CMB) radiation. It was first predicted by George

Gamow and his students in a series of papers that first appeared in 1948 (Alpher

et al., 1948, Alpher & Herman, 1948b,a, 1949) based on the Friedmann equations

and hot Big Bang theory. While many papers refer to Alpher et al. (1948) as the first

prediction of a blackbody radiation filled within the Universe, the first calculation of

the temperature of this radiation appeared in Alpher & Herman (1948b). For more

details about the history of the prediction [see, e.g., Peebles (2014)].

Later on, the striking discovery of the CMB came from two radio astronomers

Arno Penzias and Robert Wilson in the USA in 1965 (Penzias & Wilson, 1965).

The CMB is observed as an isotropic radiation filling the entire Universe, char-

acterized by a black body spectrum at a temperature of 𝑇CMB = 2.725 K. The main

driver of this was the cooling of the Universe to allow coupling of protons and elec-

trons into forming neutral hydrogen atoms. This allowed photons to stream freely

in the Universe.

The recombination process was not an instantaneous event, as it requires a non-

negligible duration for the majority of protons and electrons to combine into neutral

hydrogen. Nevertheless, when observed from today point, this period appears

exceedingly brief relative to the vast distance to the last scattering surface.
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One of the most important features of CMB radiation is that it exhibits small

temperature fluctuations, which, under adiabatic conditions, also result in density

perturbations given by:
Δ𝑇

𝑇
=
Δ𝜌𝑚

𝜌𝑚
≈ 10−5. (1.22)

These minor fluctuations in the initial conditions are fundamental as they lead to

the formation of the structures that constitute the cosmic web we observe today.

The fluctuation amplitude at a redshift of approximately 𝑧 ∼ 1100 (around 400,000

years after inflation) is very tightly constrained by observations of the primary CMB

temperature anisotropy power spectrum (Planck Collaboration et al., 2020b). In the

following sections, we explain more on these anisotropies and their correlations,

which are fundamental observables in modern cosmology.

1.3.1 Temperature Anisotropies

CMB radiation’s temperature anisotropies at high redshifts, approximately 𝑧 ≈

1100, provide a rich source of data from the epoch of recombination. This has

been extensively studied by some missions such as the Planck satellite (Planck

Collaboration et al., 2020b, Tauber et al., 2010), the South Pole Telescope (SPT)

(Carlstrom et al., 2011, Ruhl et al., 2004), and the Atacama Cosmology Telescope

(ACT) (Fowler et al., 2007).

Analysis of the peak positions and amplitudes in the CMB power spectrum fa-

cilitates the estimation of various cosmological parameters, as elaborated in Section

1.3.2

1.3.2 CMB Power Spectrum

The CMB fluctuations are assumed to follow a Gaussian distribution with variance

given by the power spectrum 𝐶ℓ =

〈��𝑎CMB
ℓ𝑚

��2〉, where the CMB amplitude vector is

now defined in terms of spherical harmonics. This represents the distribution of

temperature fluctuations in the CMB across different angular scales on the sky.

These temperature fluctuations, observed as tiny variations in the CMB’s uni-

formity, are characterized by multipole moments, denoted by the symbol ℓ. Each
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multipole ℓ corresponds to an angular scale 𝜃 ≈ 180◦/ℓ, with large ℓ values indi-

cating small angular scales and vice versa. The power spectrum, 𝐶ℓ, quantifies the

amplitude of these temperature fluctuations at each multipole ℓ.

The most important feature of CMB temperature power spectrum is that peaks

and dips in the power spectrum correspond to physical processes in the early uni-

verse, including acoustic oscillations of the photon-baryon fluid right before the

recombination happened.

The first peak in the power spectrum reflects the largest acoustic oscillation scale,

providing a measure of the universe’s curvature, while subsequent peaks are sensitive

to the baryon density, dark matter content, and other cosmological parameters (Nolta

et al., 2004, Planck 2015 results. XVI., 2015). Figure 1.3.2 shows the temperature

power spectrum of the CMB as observed by Planck satellite (Planck Collaboration

et al., 2013).

Figure 1.5: The Power Spectrum of the CMB temperature fluctuations as observed
from Planck (Planck Collaboration et al., 2013), one of the fundamental observables
in modern cosmology.

The precise measurement of the CMB power spectrum by experiments such

as WMAP (Wilkinson Microwave Anisotropy Probe) (Dunkley et al., 2009a) and

Planck has been instrumental in establishing the standard model of cosmology,

known as ΛCDM (Lambda Cold Dark Matter), and in constraining key cosmolog-
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ical parameters with unprecedented precision (e.g., Hinshaw et al. (2013), Planck

Collaboration et al. (2020a)). These measurements have also provided insights into

the early universe’s inflationary period, dark energy, and the total matter-energy

content of the cosmos.

The continued study of the CMB power spectrum remains a cornerstone of

cosmological research, offering a unique window into the universe’s history and

composition.

1.3.3 CMB Lensing Convergence

As discussed in Section 1.2.2, a new approach in cosmic structure measurement

involves using gravitational lensing to directly observe the matter distribution. Al-

though strong gravitational lensing is valuable for examining individual distant ob-

jects and small regions of the sky in detail, weak lensing offers a promising method

for mapping the large-scale distribution of matter. This can be achieved through

weak lensing measurements, which use the distortions in galaxy shapes observed, a

technique commonly known as cosmic shear (Kaiser, 1992, Kilbinger, 2015).

However, the CMB offers several key advantages over cosmic shear and other

lensing probes of mass. This is because it serves as a single, well-localized source

at a precisely determined redshift, and its underlying statistics are well understood,

being nearly Gaussian. These features of the CMB make it relatively straightforward

to reconstruct maps of the mass or gravitational potential that cause CMB lensing.

CMB lensing is sensitive to the influence of all matter fluctuations along the

line of sight from the CMB last-scattering surface at 𝑧 ∼ 1100. However, it is

most sensitive to matter between 0.5 ≲ 𝑧 ≲ 3 due to the geometry (Zaldarriaga &

Seljak, 1999) with a peak around 𝑧 ≈ 2. Visualizing the redshift kernel of CMB

lensing and comparing it with state-of-the-art galaxy surveys, especially Euclid

(Laureĳs et al., 2011) and LSST (Ivezić et al., 2019), can be interesting as shown in

Figure 1.6. This broad and well-characterized redshift kernel as shown in Figure 1.6

makes CMB lensing an excellent tool for investigating phenomena such as massive

neutrinos, which influence the shape of the matter power spectrum. Although

CMB lensing maps do not provide direct information on the redshift dependence of
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Figure 1.6: Comparison of the CMB lensing kernel with redshift distributions from
upcoming galaxy surveys (Pearson & Zahn, 2014). The Gaussian model has 𝜇 = 1,
𝜎 = 0.5.
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cosmic growth, cross-correlating these maps with other large-scale structure tracers

that include redshift information—particularly optical galaxy surveys—can give

valuable constraints on dark energy and modified gravity as explored in DES data

(Giannantonio et al., 2016, Kirk et al., 2016).

The optimal CMB lensing map for cross-correlation analyses would ideally ex-

hibit a high signal-to-noise ratio (S/N) across all observed angular modes, extensive

sky coverage, and substantial overlap with galaxy surveys. The Planck collabo-

ration’s lensing map, which achieves the maximum aggregate S/N of any CMB

lensing measurement, encompasses nearly the entire sky. However, it exhibits a low

S/N per mode, limited to scales smaller than several degrees (Planck Collaboration

et al., 2020b). However, ground-based CMB observatories, including the South

Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT), have been

utilized to generate lensing maps with enhanced signal-to-noise ratios on smaller

scales, albeit over significantly smaller fractions of the sky compared to Planck. See

Das et al. (2011), van Engelen et al. (2012) and the recent results in Madhavacheril

et al. (2024), Pan et al. (2023). It is also important to note that CMB lensing alone

indicates the existence of dark energy with 𝑤 = −1 as shown by Sherwin et al.

(2011).

Here we show the Planck CMB lensing map in Figure 1.7.

Quadratic Estimators

To construct the convergence 𝜅 map from the CMB, it is useful to obtain both

temperature and polarization maps. The seminal work on the quadratic estimator and

its theoretical foundation is documented in Hu (2000). Subsequently, this framework

was extended to incorporate polarization data by Hu & Okamoto (2002a) and Lewis

& Challinor (2006).

The Planck CMB lensing analysis presented in this thesis (Planck Collaboration

et al., 2020b) employs the lensing convergence estimates derived by Carron &

Lewis (2017), which utilize a slightly modified version of the approach outlined

by Okamoto & Hu (2003). This modification enhances the quadratic estimator’s

efficiency, enabling the rapid generation of minimum-variance (MV) estimators
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Figure 1.7: The image of constructed HEALPix convergence 𝜅 map from Planck
Collaboration. The main data product used in Demirbozan et al. (2024) analysis.

directly from filtered maps. This methodology differs from the one used in the

Planck Collaboration et al. (2016b) lensing map. While the specifics of these

modifications are beyond the scope of this thesis, it is noteworthy that the work by

Vielzeuf et al. (2021), to which I have made significant contributions, employs the

Planck Collaboration et al. (2016b) lensing map while Demirbozan et al. (2024)

uses the CMB lensing map produced by Planck Collaboration et al. (2020b).

A fixed large-scale lensing potential will lens smaller background unlensed

CMB anisotropies in a characteristic way. By measuring a large number of these

anisotropies it should therefore be possible to extract information about the lens-

ing deflection field. The unlensed CMB field is, of course, unobservable, but its

statistics are very well understood. Statistical measures of the lensed CMB fields

should therefore be able to constrain the lensing potential. Here we concentrate on

reconstruction from the CMB temperature and polarization, and assume the primor-

dial fields are Gaussian and statistically isotropic. A visual representation of this is

shown in Figure 1.8.

This lensing potential construction essentially amounts to using correlations

between different scales of temperature anisotropies around each lensing mass to
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Figure 1.8: This figure taken from (Hu & Okamoto, 2002a) shows the impact of
lensing on a 10° x 10° area shown in an exaggerated manner for illustration. At
the top, from left to right, are shown: the temperature field before lensing, the
E-polarization field before lensing, and a spherically symmetric deflection field. At
the bottom, from left to right, the images depict: the temperature field after lensing,
the E-polarization field after lensing, and the B-polarization field resulting from
lensing. It should be noted that the scales used for the polarization and temperature
fields are different by a factor of 10.
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constrain the gravitational potential.

For example, diagonal elements of the unlensed CMB multipoles represent

the variance of each mode with itself, essentially how much each mode fluctuates

independently, while the off-diagonal elements indicate the covariance between

different multipoles. This is shown in Equation 1.23, where for unlensed CMB,

off-diagonal elements of the multipoles (ℓ, 𝑚) ≠ (ℓ′, 𝑚′), we get ⟨𝑋̃ℓ𝑚 𝑋̃
∗
ℓ′𝑚′⟩ = 0,

implying no correaltion between different multipoles.

⟨𝑋̃𝑚∗
𝑙 𝑋̃𝑚′

𝑙′ ⟩ = 𝛿𝑙𝑙′𝛿𝑚𝑚′𝐶̃𝑋𝑋 ′

𝑙 (1.23)

In the context of CMB lensing, these off-diagonal elements can provide crucial

information about how mass distributions along the line of sight might correlate

different scales of the CMB sky.

Quadratic estimator operates by taking products of pairs of Fourier-transformed

CMB temperature (T) and/or polarization (E and B modes) fields.

It is possible to express the lensed (observed) CMB temperature 𝑇 in the 𝑛̂

direction as a deviation (remapping) of the un-lensed (emitted) temperature 𝑇 :

𝑇 (𝑛̂) = 𝑇 (𝑛̂ + ®𝛼(𝑛̂)), (1.24)

where ®𝛼(𝑛̂) is the deflection angle that is used to define a lensing potential (Φ(𝑛̂))

via

®𝛼(𝑛̂) = ®∇Φ(𝑛̂)

(see e.g., Lewis & Challinor (2006), for details). Assuming a flat universe, the CMB

lensing potential in a direction 𝑛̂ is defined as:

Φ(𝑛̂) = −2
∫ 𝑥cmb

0

𝑑𝜒 (𝑥cmb − 𝜒)
𝑥cmb𝜒

Ψ(𝜒𝑛̂; 𝑡), (1.25)

where 𝜒 is the co-moving distance (𝑥cmb is the co-moving distance to the CMB) and

Ψ is the gravitational potential evaluated in the 𝑛̂ direction and at time 𝑡 = 𝜂0 − 𝜂

where 𝜂0 is the conformal time today. The gravitational potential can then be

expressed as a function of the underlying matter density field through the Poisson
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equation (see Equation 1.33 which we also explore in the next sections)

The lensing convergence 𝜅, as a main observable, is defined as 𝜅 = −1
2∇

2Φ,

which in harmonic space can be related to the lensing potential as

𝜅𝐿𝑀 =
1
2
𝐿 (𝐿 + 1)Φ𝐿𝑀 (1.26)

where 𝐿 and 𝑀 are indices of spherical harmonics of the reconstructed lensing

maps. The Planck collaboration released the 𝜅𝐿𝑀 coefficients (see Planck Collabo-

ration et al. (2020b), Bartelmann & Schneider (2001) and Lewis & Challinor (2006),

for details).

For this reason, large underdensities like voids—with positive gravitational po-

tentials—have negative lensing potentials and imprint a negative convergence (𝜅) on

their locations in the CMB. However, the effect from a single void is so weak that it

can only be detected by stacking multiple void locations ( i.e., few tens to thousands)

on the CMB (Krause et al., 2013).

1.4 N-body Simulations

An N-body simulation is a computational technique used to model and study the

dynamical evolution of a system of N particles under the influence of gravity. In

modern cosmology, these particles often represent dark matter. The primary goal

is to understand how structures in the universe form and evolve over time due to

gravitational interactions. The simulation calculates the gravitational forces between

all pairs of particles and updates their positions and velocities over discrete time

steps. It is important to study complex, non-linear gravitational dynamics that are

impossible to solve analytically as Cold Dark Matter (CDM) was widely accepted.

Perhaps one of the pioneering N-body simulations was Millennium Simulation

produced by Springel et al. (2005). It used 10 billion particles and a 500 Gpc/ℎ box.

Within the scope of this thesis, which is about the cross-correlation between

cosmic superstructures and CMB observables, it is important to acknowledge the

significance of N-body simulations as a calibration point for measured signals. For
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example in Chapter 4, which is derived from Demirbozan et al. (2024), matched

filter method is employed and this method heavily relies on simulation templates

to construct the optimal filter. However, it is also important to acknowledge the

limitations of these simulations. For example, when modeling non-linear effects,

some stochastic elements are introduced to represent galaxy formation and cold

dark matter framework is assumed. However, if dark matter has non-gravitational

interactions and properties such as self-interaction or warmness. Baryonic physics

in N-body simulations is often simplified, including aspects like gas dynamics,

star formation, and feedback from supernovae or active galactic nuclei. These

complexities can lead to deviations from the idealized ΛCDM predictions. Another

point is that incorporating alternative cosmological models is challenging for N-body

simulations, as they do not easily include new models. Examples of such models

include those from string theory (Nǎstase, 2019), loop quantum gravity (Rovelli,

1998), and novel extensions of the cosmological model, such as Functors of Actions

Theories (FAT) (Ntelis & Morris, 2023).

This consideration is essential for the robustness and potential limitations of the

simulated voids, as well as their correlation with CMB observations in my research.

Nonetheless, given that this thesis predominantly focuses on superstructures (pri-

marily voids) on scales of a few tens of Mpc/ℎ, small scale baryonic physics such

as gas dynamics, AGN feedback and star formation are not expected to significantly

impact the results presented herein. This assumption has also been tested by Schus-

ter et al. (2024), who used both dark matter-only simulations and hydrodynamical

simulations that include non-linear baryonic effects. They found good agreement

between the two, implying that void studies are relatively free from complicated

baryonic effects.

It should be noted that some N-body simulations, such as the Takahashi simula-

tions (Takahashi et al., 2017) employed by Raghunathan et al. (2020), provide more

than 100 realizations with the same cosmology. This large number of realizations

increases the robustness of the results. However, these simulations include only

dark matter (DM) halos without galaxies, and they need to be populated by galaxy

tracers. Some previous DES studies (Kovács et al., 2022, Sánchez et al., 2016,
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Vielzeuf et al., 2021) selected redMaGiC galaxies because of their low redshift

errors. For consistency, we also rely on redMaGiC galaxies in our analysis, and

since MICE has slightly higher resolution than the Takahashi simulation, it is better

suited for resolving the halos that host LRGs (redMaGiC). Additionally, MICE has

been specifically designed to match the properties of DES LRGs, making it an ideal

choice for our study. Furthermore, since prior DES studies have used the MICE

simulation, we have chosen to use it as well to maintain alignment with those studies

(a more detailed explanation of the MICE simulation is provided in the next section).

However, we acknowledge that a future study would significantly benefit from using

over 100 realizations of Takahashi simulations. We also note that both Takahashi

and MICE simulations use cosmological parameters that somewhat differ from those

determined by the current Planck cosmology. The implications of these differences

for our study are discussed in the following sections.

More recently, machine learning and simulation based inference techniques have

been applied to cosmological simulations. One such example is SIMBIG simulation

where authors use a subset of the Baryon Oscillation Spectroscopic Survey (BOSS)

galaxy survey and determine cosmological parameters 𝐻0 and 𝑆8 with improved

constraints (Hahn et al., 2024). The field is rapidly evolving and the importance of

N-body simulations in modern cosmological research can’t be overstated.

1.4.1 MICE N-body Simulation

The MICE (Marenostrum Institut de Ciències de l’Espai) simulation is a N-body

simulation created to provide robust mock catalogue for large scale structure sur-

veys. MICE was created using the Marenostrum supercomputer at the Barcelona

Supercomputing Center (BSC)1 by using the code GADGET-2 (Springel, 2005).

The technical details of this simulation are given in Crocce et al. (2015), Fosalba

et al. (2015).

The MICE simulation is particularly notable for its scale and depth, which

includes 70 billion dark matter particles within a comoving volume of 3 Gpc/h,

extending up to 𝑧 ≈ 1.4. This scale allows for the modeling of cosmic structures

1www.bsc.es
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from the linear to highly non-linear regimes, making it a great tool to study voids.

Moreover, MICE simulation encompasses a volume 216 times greater than that

of the Millenium simulation (Springel et al., 2005), although it contains a comparable

number of particles. This larger volume, along with a corresponding increase in

particle mass, makes the MICE simulation better suited for statistical analyses on

very large scales. However, this advantage comes at the expense of resolution,

limiting the ability to examine smaller scales and substructures within galaxy-sized

dark matter halos. Since the scope of our study is voids, MICE simulation is a great

choice for us.

It is important to note the cosmology used in MICE assumes a flat standard

ΛCDM model derived from the five year survey of Wilkinson Microwave Anisotropy

Probe (WMAP) (Dunkley et al., 2009b). More specifically, the input fiducial param-

eters used in MICE are: Ω𝑚 = 0.25, ΩΛ = 0.75, Ω𝑏 = 0.044, 𝑛𝑠 = 0.95, 𝜎8 = 0.8,

and ℎ = 0.7. While the MICE simulation has been rigorously validated and exten-

sively utilized in various analyses, it is particularly important to highlight the adopted

value of Ω𝑚 = 0.25. This choice is somewhat lower than the best-fit value reported

by the Planck 2018 results, where Ω𝑚 = 0.315 (Planck Collaboration, 2018). The

discrepancy in the matter density parameter can influence the interpretation of the

results, so it is important to give more details on this.

For instance, the variation in cosmological parameters such as Ω𝑚 and the

Hubble parameter 𝐻0 could potentially alter the strength of the lensing signals we

observe. Nevertheless, we operate under the assumption that shifts in Ω𝑚 have an

insubstantial effect on our measurements of the lensing signal. This supposition is

supported by studies like those by Vielzeuf et al. (2021) and Kovács et al. (2022)

which utilize the WebSky simulation (Stein et al., 2020) to demonstrate that changes

in Ω𝑚 have a minimal impact on the amplitude of the CMB lensing signal. This

is also because it has been shown that the most important parameter affecting

void density—and consequently their matter content and convergence (𝜅)—is the

amplitude of matter fluctuations on scales of 8 ℎ−1 Mpc, known as 𝜎8 (Nadathur

et al., 2019). Our analysis also includes a robust error analysis, specifically focusing

on the uncertainties in the signal measurement of MICE templates, to confirm the
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reliability of our results despite the potential variability in Ω𝑚.

In order to populate dark matter halos with galaxies, MICE uses the Friends

of Friends (FoF) algorithm to define dark matter halos and then populates them

with galaxies using the Halo Occupation Distribution (HOD) (Benson et al., 2000,

Berlind & Weinberg, 2002, Jing et al., 1998, Peacock & Smith, 2000, Seljak, 2000).

For our purpose of creating a Dark Energy Survey Y3-like galaxy sample, we

employ the methodology described in Ferrero et al. (2021) to create the Red-sequence

Matched-filter Galaxy Catalogue redMaGiC, which is a catalog of photometrically

selected luminous red galaxies (LRG) based on the red-sequence Matched-filter

Probabilistic Percolation (redMaPPer) cluster finder algorithm, as described in Rozo

et al. (2016). See Cawthon et al. (2018) for further technical details.

The galaxy selection criteria in the MICE simulation are carefully adjusted to

replicate the observational characteristics of the DES Y3 redMaGiC sample. This is

accomplished by fine-tuning the simulations to produce galaxy redshift distributions,

clustering parameters, and color distributions that closely match those observed in

the DES Y3 data.

In particular, to populate dark matter halos with galaxies using the HOD method

which tells us how many galaxies each dark matter halo has on average, we need

to make use of the halo mass profiles, the classification of central and satellite

galaxies along with their positions, velocity profiles, and corresponding masses and

luminosities. This requires two separate function to be written: one for central

galaxies and one for satellite galaxies. Since our focus is on large scale information,

following the methodology of Ferrero et al. (2021), Tinker et al. (2012), Zheng et al.

(2007), central and satellite galaxies are placed and their velocities and luminosities

are assigned in the following way:

The number of central galaxies in a dark matter halo of mass 𝑀halo is given by:

𝑁cen = 𝑓 max
cen × 1

2

[
1 + erf

(
log 𝑀halo − log 𝑀min

𝜎log 𝑀

)]
(1.27)

where:

• 𝑓 max
cen is the maximum fraction of halos that can host a central galaxy.
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• 𝑀halo is the halo mass.

• 𝑀min is the minimum halo mass required to host a central galaxy.

• 𝜎log 𝑀 represents the scatter of the halo mass.

Equation 1.27 is modeled by the error function erf (𝑥), where halos with masses

much larger than 𝑀min almost certainly host a central galaxy (𝑁cen ≈ 𝑓 max
cen ), while

those with much smaller masses are unlikely to host one.

For satellite galaxies, the number of satellites in a dark matter halo is propor-

tional to a power of the halo mass:

𝑁sat = 𝑁cen

(
𝑀halo

𝑀1

)𝛼
(1.28)

where:

• 𝑁cen ensures that satellite galaxies are only assigned to halos that host a central

galaxy.

• 𝑀1 is the characteristic halo mass where, on average, a halo hosts one satellite

galaxy.

• 𝛼 is the power-law slope controlling the increase in the number of satellite

galaxies with halo mass.

All this process is repeated in very thin redshift cells and the parameters are

calculated for each shell to match 𝑛(𝑧) between MICE and DES Y3. After the

numbers of central and satellite galaxies are determined, positions and velocities to

the satellite galaxies are assigned in the following way:

• Positions: Satellites are placed according to a triaxial NFW profile. Inputs

include the halo’s position, mass, and redshift, resulting in satellite coordinates

(𝑥, 𝑦, 𝑧).

• Velocities: Velocities are assigned using a Gaussian distribution based on the

halo’s velocity, mass, and redshift, yielding velocity components (𝑉𝑥 , 𝑉𝑦, 𝑉𝑧).
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After this step, a luminosity selection is applied. To assign luminosities, halo

abundance matching (HAM) techniques are used (Kravtsov et al., 2018):

log(𝑙𝑝) = log(𝑀halo) + 𝜑LM · 𝐺𝜇=0,𝜎=1 (1.29)

where G is standard Gaussian distribution and 𝑙𝑝 is modeled in arbitrary scales. The

luminosity scatter parameter (𝜑LM) here adjusted carefully to select the galaxies

that match the observations, specifically the 𝑛(𝑧) distribution that match DES Y3

redMaGiC galaxies in our case. This technique facilitates matching the abundance

and redshift distribution of DES Y3 redMaGiC galaxies with those in the MICE

simulation by selecting the most luminous galaxies.

Consequently, the resulting MICE redMaGiC catalogue reproduces the 𝑛(𝑧)

redshift distribution of the galaxies observed in the DES Y3 redMaGiC dataset.

This match is very important as any mismatch here will result in very different void

catalogues being produced and therefore can affect the final measurements.

At this point, it is also important to note that we use the updated version of

redMaGiC called v0.5.1. This is a different approach than used in Kovács et al.

(2022) and it is one of the main factors of the difference in results with respect

to Demirbozan et al. (2024). The main changes are about the galaxy color/color

covariance and more robust estimation of redshifts, resulting in a different redshift

distibutions. Further details about the redMaGiC algorithm and corresponding plots

can be found in Section 1.5.2.

MICE CMB Lensing Map

Both in Vielzeuf et al. (2021) and Demirbozan et al. (2024), we utilize the MICE

CMB lensing map. This map is constructed using the "Onion Universe" technique,

as detailed in Fosalba et al. (2008). This technique effectively simulates the tomo-

graphic structure of photometric surveys by segmenting the 3D lightcone into 2D

all-sky maps with respect to the observer. This approach was among the pioneering

methods for deriving CMB lensing maps from N-body simulations, paralleled by

similar efforts in other studies (Carbone et al., 2009, Das & Bode, 2008). This

47



1.5. The Dark Energy Survey

map is provided in HEALPix format with Nside = 2048, but since our analysis in

both Vielzeuf et al. (2021) and Demirbozan et al. (2024) deals with degree-scale

variations, this map is downgraded to Nside = 512 and both studies perform all

the analysis with this resolution. Figure 1.9 shows this MICE CMB lensing map

without any alteration.

Figure 1.9: Original MICE CMB lensing map without any filtering or alteration
shown in Nside = 512 in HEALPix format.

1.5 The Dark Energy Survey

1.5.1 Overview and Instrument

At lower redshifts (𝑧 ≲ 2), as discussed in previous sections, testing cosmological

models can be effectively conducted through studies of the universe’s large-scale

structure, gravitational history, and dynamics. Meeting the precision requirements

necessary to complement CMB experiments necessitates the analysis of increasingly

detailed and extensive catalogs of the large-scale structure. In pursuit of these

objectives, the Dark Energy Survey was planned.

Initiated after years of meticulous planning and supported by a significant invest-

ment of approximately $100 million, the primary focus of the Dark Energy Survey
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(DES) has been to probe dark matter and dark energy (Offer & Lahav, 2023). These

components are crucial for understanding the mechanisms behind the universe’s

accelerating expansion. Apart from dark matter and dark energy, the objectives of

DES include evaluating alternative gravitational theories through detailed investi-

gations of large-scale cosmic structures, cluster counts, weak gravitational lensing,

and Type Ia supernovae. The extensive dataset generated by DES can also be used

to explore a broad range of other astrophysical phenomena (Dark Energy Survey

Collaboration, 2016).

DES uses the 570-megapixel DECam, a sophisticated camera mounted on the

4-meter Blanco telescope at Cerro Telolo Inter-American Observatory (CTIO) in

Chile. This advanced instrument’s focal plane comprises 62 2K x 4K CCD modules,

each with a resolution of 0.27"/pixel, configured in a hexagonal pattern to fit within

the approximately 2.2-degree diameter field of view. Additionally, it includes 12

smaller 2K x 2K CCDs dedicated to guiding, focusing, and alignment (Honscheid &

DePoy, 2008). This camera has been the key element in capturing detailed images

across 5000 square degrees of the sky in five optical and near - infrared (grizY)

bands, to measure the photometry of millions of galaxies. By its completion, DES

has compiled an extensive catalog comprising over 200 million galaxies in the South

Galactic Cap to 24th magnitude with photometric redshifts and 100 million stars

(Pandey et al., 2022).

At the time of writing this thesis, DES has provided some remarkable contri-

butions to cosmological constraints, including a precise 2.1% measurement of the

Baryon Acoustic Oscillations (BAO) (DES Collaboration, 2024b). This measure-

ment stands out as the most accurate angular BAO determination at any redshift

obtained from photometric surveys, only to be surpassed by main DESI Y1 results.

Moreover, DES has executed in-depth cosmic shear analyses through weak grav-

itational lensing by accurately measuring and correlating the shapes of more than

100 million galaxies (Amon et al., 2022, Gatti et al., 2021, Secco et al., 2022) in

addition to advanced galaxy clustering measurements (Porredon et al., 2022). Most

notably, DES has integrated analyses of galaxy bias, weak lensing, and galaxy clus-

tering to impose robust constraints on cosmological parameters (Abbott et al., 2022,
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Pandey et al., 2022). This integration involves the combination of three two-point

correlation functions (3×2pt): (i) cosmic shear using 100 million source galaxies,

(ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens

galaxy positions, known as galaxy-galaxy lensing.

DES was also remarkably successful in combining its data with external CMB

observations from SPT to obtain cosmological parameters with external tracers

(Abbott et al., 2019, 2023) and more recently Bocquet et al. (2024). The Type Ia su-

pernova (SN) observations of DES have imposed the tightest constrain on cosmology

by any SN data set to date as of the writing of this thesis (DES Collaboration, 2024a,

Vincenzi et al., 2024) as well as confirming cosmological time dilation (White et al.,

2024) as predicted by GR. This time dilation is also confirmed using quasar vari-

ability (Lewis & Brewer, 2023). In the context of this research on cosmic voids and

their interactions with the CMB lensing, DES provides an invaluable dataset.

1.5.2 Redshift Estimation and redMaGiC Tracers

Given that photometric redshifts are employed instead of spectroscopic redshifts, the

resulting redshifts inherently contain uncertainties. It is well established that Lumi-

nous Red Galaxies (LRGs) exhibit lower redshift errors because of their distinctive

position within the galaxy color-color space. Due to their significant luminosity,

LRGs are detectable at considerable redshifts even with comparatively short expo-

sure times. This feature of LRGs have been known from early data release of SDSS

as reported in Stoughton et al. (2002).

As large-scale surveys such as the DES increasingly rely on photometric red-

shifts, Rozo et al. (2016) introduced a novel selection method for LRGs based on

the earlier redMaPPer galaxy cluster finding algorithm (Rykoff et al., 2014) The

redMaPPer algorithm integrates spectroscopic data of galaxy clusters with photo-

metric observations to calibrate the red sequence of galaxies as a function of redshift.

This calibration serves as a photometric base, which is then used to identify galax-

ies as "red" by determining whether this empirical base accurately describes the

galaxy’s observed colors.

Therefore, red-sequence Matched-filter Galaxy Catalog (redMaGiC) tracers, as
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detailed by Rozo et al. (2016), aim to achieve a sample with minimized photometric

redshift errors. Figure 1.10 demonstrates the effectiveness of redMaGiC tracers

in approximating spectroscopic redshifts, particularly in comparison to CMASS

galaxies (Ross et al., 2011). Due to their low photometric redshift errors, redMaGiC

tracers have been employed in all DES void analyses. In particular, Sánchez et al.

(2016) showed a strong correlation between the 2D voids defined by spectroscopic

and photometric redshifts.

Figure 1.10: Comparison of photometric redshifts from redMaGiC tracers with
spectroscopic redshifts as referenced in Rozo et al. (2016) Left: A graph comparing
spectroscopic and photometric redshifts for CMASS galaxies using SDSS photo-
metric data. The colored contours indicate regions containing 68%, 95%, and 99%
of the data. A similar plot is shown for redMaGiC galaxies. The good agreement
between spec-z and photo-z galaxies from redMaGiC galaxies is evident.

It is crucial to acknowledge that the redMaGiC algorithm has undergone multiple

revisions, each with distinct versions. The application of these different versions

within the MICE simulation framework has introduced challenges, leading to in-

accuracies and unrealistic redshift distributions. In my primary study Demirbozan

et al. (2024), we used the updated v0.5.1 redMaGiC version, which demonstrated a

precise alignment with the expected redshift distribution, thereby mitigating these

issues. This is the main reason for the difference with the results of Kovács et al.

(2022), which will be discussed in the following chapters.
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1.6 Cosmic Voids

From the inception of large-scale structure surveys, astronomers have observed that

the distribution of galaxies in the Universe is not uniform, but instead forms complex

structures including walls, filaments, clusters, and voids (Bond et al., 1996, Davis

et al., 1985, Gregory & Thompson, 1978, Kirshner et al., 1981). These observations

reveal that walls and filaments accumulate mass from the surrounding vast under-

dense voids, which constitute the majority of late time Universe’s volume (Padilla

et al., 2005, Platen et al., 2007). Since voids occupy most of the volume of the

late-time Universe, their interiors are less prone to non-linear matter fluctuations.

As a result, they are dominated by dark energy. Furthermore, neutrino mass fraction

is high in void environments (Cai et al., 2015).

Therefore, voids can be used to constrain neutrino masses, as it has been shown

that massive neutrinos at the linear level modify the matter-radiation equality time

and the growth of matter perturbations, and therefore the evolution of voids (Les-

gourgues et al., 2013, Lesgourgues & Pastor, 2006). It is assumed that voids would

be smaller and less underdense in a massive neutrino universe (Massara et al., 2015).

Kreisch et al. 2019 also showed that void statistical properties are significantly af-

fected by neutrino masses, with the number of small voids increasing and the number

of large voids decreasing as the neutrino mass increases. More recently Vielzeuf

et al. (2023) claimed that void-CMB lensing cross-correlation is an important ob-

servable to probe neutrino mass and this is especially important as in this thesis, we

explore the CMB lensing signal of voids. The void size function also depends on

cosmological parameters after extensive calibration with simulations, as explored

by Contarini et al. (2022) and Verza et al. (2019).

The consensus is that voids expand and get larger over cosmic time, with outflows

emptying the matter inside (Baushev, 2021, Krause et al., 2013, Patiri et al., 2012,

Paz et al., 2013, van de Weygaert et al., 2016). However, recently Vallés-Pérez et al.

2021 argued that voids can also accrete matter over time from neighboring filaments

and clusters. They used hydrodynamical simulations and an elliptical definition of

voids that are different from most conventional watershed voids.
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In the consensus ΛCDM cosmological model, dark energy drives cosmic accel-

eration. Due to their low matter content, voids become dominated by dark energy

at earlier times, making them highly sensitive to the nature of dark energy (Lee &

Park, 2009, Pisani et al., 2015). For instance, the ellipticity of voids is sensitive

to the dark energy equation of state (Bos et al., 2012). Therefore, they are one of

the promising tools of the next decade of observational cosmology (Moresco et al.,

2022).

In recent years, galaxies in voids have gained attention. In particular, Beygu et al.

(2017) and Domínguez-Gómez et al. (2023) showed that void galaxies are generally

smaller and less massive late-type systems with active yet slower star formation his-

tories compared to those in denser environments. The low-density void environment

primarily limits their stellar mass and size, resulting in distinct structural character-

istics and evolutionary paths. This void environment fosters sustained but subdued

growth, leading to galaxies that are predominantly star-forming, morphologically

simpler, bluer and evolve more gradually than their counterparts in high density

environments (Curtis et al., 2024).

Throughout this thesis, various void-finding algorithms are used to identify and

analyze cosmic voids. Among these, some are based on the ZOBOV watershed

algorithm (Neyrinck, 2008), such as VIDE (Sutter et al., 2015b). The REVOLVER

algorithm (Nadathur et al., 2019) employs two distinct void-finding methods: one

based on ZOBOV, and the other on a 3D particle-mesh grid approach called Voxel

which are the primary void samples analyzed in my main study (Demirbozan et al.,

2024). Additionally, we make use of a different void definition called "2D" which

is defined on tomographic redshift slices (Sánchez et al., 2016).

Each of these void finders has been used in different aspects of void analysis

within the DES Y3 dataset. In the corresponding chapter on DES Y3 results, we

will provide a detailed explanation of these void finders, along with their respective

results and figures. However, an overview of each method is provided here to

establish a foundational understanding.

VIDE voids, in particular, have been extensively utilized in various DES void

studies (Fang et al., 2019, Pollina et al., 2019, Vielzeuf et al., 2021). See Hamaus
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et al. (2020) for a detailed analysis and references therein.

1.6.1 Void Finders Overview

In this section, I detail the group of void finders utilized throughout this thesis. A

substantial part of my contributions to Chapter 2 (Vielzeuf et al., 2021) involves the

use of VIDE voids. For Chapter 3, my focus primarily lies on 2D voids, while my

main project Chapter 4 (Demirbozan et al., 2024) uses both Voxel voids and 2D

voids. Although VIDE and Voxel voids play crucial roles in my research, ZOBOV

emerges as the primary algorithm employed in both the REVOLVER and VIDE

frameworks. Consequently, I will provide a detailed description of the ZOBOV

algorithm, emphasizing its importance and application in the void finders utilized.

ZOBOV Void Finder

ZOBOV (ZOnes Bordering On Voidness) is an algorithm that identifies density

depressions within a set of points without relying on any free parameters or shape

assumptions. It is largely based on the earlier dark-matter-halo finder VOBOZ

(VOronoi Bound Zones), which was nearly "parameter-free" (Neyrinck et al., 2005).

ZOBOV is quite similar to earlier Watershed Void Finder (WVF) (Platen et al.,

2007), as both algorithms use tessellation methods to measure densities and apply

the ’watershed’ concept, defining voids in a manner analogous to basins in a density

field. However, while WVF has some advanced mathematical techniques to smooth

the particle density before defining voids, ZOBOV directly analyzes raw, discrete

tracer data.

ZOBOV uses the Voronoi Tessellation Field Estimator (VTFE) technique to re-

construct the tracer density field from a discrete tracer particle distribution. This

method enables the identification of local minima within the field and the sur-

rounding watershed basins, which collectively form a non-overlapping set of density

depressions, or voids. Furthermore, the ZOBOV algorithm operates without any

assumptions regarding the geometrical shapes of voids to be identified, thereby cap-

turing the authentic topological characteristics of underdensities within the galactic
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distribution.

The whole process can be briefly summarized in a following way:

1. Density Estimation: Calculate the density for each tracer galaxy using

Voronoi tessellation, where the density at each point is inversely proportional

to the volume of its Voronoi cell.

2. Local Minima Identification: Identify local minima (i.e largest Voronoi cell

in the density field). These are points where the density is lower than at all

adjacent Voronoi cells. We call these zones basins.

3. Zones: Use a watershed algorithm to expand zones from each local minimum

by accreting neighboring Voronoi cells with increasing densities until reaching

a saddle point or density ridge. Conceptually, this can be visualized as

a flooding process where water fills up from the lowest points (the local

minima) and begins to spill over into adjacent lower areas. Each cell that is

filled becomes part of the zone.

4. Saddle Point Evaluation: Assess the significance of saddle points (density

ridges) between zones. If a saddle point is not significantly high in density

compared to adjacent zones, the zones are merged [See below].

5. Merge Zones into Voids: Combine zones into larger voids based on the

significance testing of their connecting saddle points.

6. Catalog Voids: Finalize and catalog the identified voids, documenting their

properties such as size and boundary definitions.

During this process, ZOBOV merges neighboring voids based on the watershed

principle, creating a hierarchical structure of voids and subvoids. This process is

illustrated in Figure 1.11. The resulting hierarchy and void size distribution are

highly dependent on the input parameters controlling the merging process. For

example, the merging process can result in the entire simulation box or Universe

encompassed within a single large void. In contrast, if no merging occurs, initial
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Figure 1.11: This figure illustrates a 2-D visualization of the ZOBOV algorithm as
shown in Neyrinck (2008). The figure clearly summarizes the Voronoi tessellation
process, wherein the largest Voronoi cell represents the density minima, and the
adjacent zoning is distinctly observable. In real application, this is done in 3D.
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voids are preserved. Hence, the criteria governing the merging process are of

paramount significance.

However, the criteria for the regulation of void merging are, regrettably, inher-

ently subjective, and various methodologies have been proposed within the existing

body of literature. For instance, Neyrinck (2008) proposes utilizing the ratio of

the lowest VTFE-reconstructed tracer number density at the void boundary to the

minimum VTFE density at its core—compared to the analogous ratio for spurious

voids in Poisson noise—as a criterion for delineating the ’most probable extent’ of

voids. Another approach involves halting void growth through merging when the

minimum VTFE density along the watershed ridge separating it from a shallower

potential subvoid (𝑛link) exceeds a predefined threshold. The REVOLVER algorithm

adopts the ZOBOV method for one of its void outputs; however, it does not perform

any basin merging for either ZOBOV-based or Voxel based voids. In Chapter 4 of

this thesis, we exclusively use Voxel-based voids produced by REVOLVER.

On the other hand, the VIDE void-finding toolkit (Sutter et al., 2015b) employs

the ZOBOV algorithm and establishes this threshold at 0.2 times the average tracer

density 𝑛. However, this selection of 0.2 is not strongly supported by theoretical rea-

soning. These issues are thoroughly investigated in Nadathur & Hotchkiss (2015b)

and below we further discuss this point within VIDE algorithm.

Regarding the definition of the radius, ZOBOV offers an estimation known as

the effective spherical radius. Despite the fact that voids have arbitrary

shapes and typically deviate significantly from spherical symmetry, it is practical to

characterize an effective spherical radius through the following equation:

𝑅𝑣 =

(
3𝑉
4𝜋

)1/3
(1.30)

Here, 𝑉 denotes the total volume of the void, constituted by the cumulative volume

of all individual Voronoi cells.

Regarding the determination of the void center, Neyrinck (2008) does not advo-

cate a definitive approach. The prevailing method, supported by several authors (e.g

Lavaux & Wandelt (2012), Nadathur & Hotchkiss (2014), Sutter et al. (2012, 2014)),
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identifies the void center as the Voronoi volume-weighted mean of the positions of

the mass tracers within the void. This approach emphasizes the influence of larger

Voronoi cells, which correspond to regions of lower density, thereby enhancing the

representativeness of the void center in reflecting underdense regions. However, it

remains ambiguous whether this approach accurately identifies the region exhibiting

the maximum deficit of mass.

This is because, due to the extremely low-density conditions within the interior

of a void, the Voronoi cells often exhibit significant elongation. Consequently,

the particles within these cells are typically positioned at considerable distances

from their geometric centers. This spatial arrangement renders the particle position

within each cell an inaccurate representation of the cell’s actual location. Moreover,

watershed voids encompass a substantial number of member particles, often several

hundreds, with the majority situated within the denser walls and filaments outside

the voids. The interplay of these factors results in the barycenter of the void being

approximately symmetrically located relative to the dense void walls, yet markedly

distant from the region of minimum density. For this reason, there is a more detailed

discussion below about VIDE.

At this point, it is also important to mention that a principal outcome derived

from the ZOBOV algorithm is the correlation between void size and the minima of

void density as explored in Nadathur & Hotchkiss (2015a). This relationship can be

accurately described as larger voids generally exhibit lower density minima. This is

an inherent attribute of the ZOBOV algorithm, maintaining consistency irrespective

of the tracers used for void identification, whether they are simulated dark matter

particles, halos, or galaxies. Furthermore, this trait is expected to be a universal

feature in all watershed void-finding algorithms. The primary conclusion from

these observations is that the watershed voids do not represent a uniform population

with consistent density contrasts across different sizes. This observation directly

challenges the foundational assumptions of the theoretical model proposed by Sheth

& van de Weygaert (2004)

Overall, the ZOBOV algorithm boasts paramount significance within large-scale

structure studies and has profoundly influenced numerous subsequent void finders.
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VIDE Algorithm

The VIDE toolkit, or Void IDentification and Examination toolkit, is an open-source

Python/C++ code that primarily derives from the ZOBOV algorithm, as explained

before. While VIDE also shares many similarities with the ZOBOV-based RE-

VOLVER voids, there are notable differences. We illustrate an example of VIDE

void in Figure 1.12.

One key distinction is the implementation of the watershed ridge merging thresh-

old inVIDE, set to 0.2 times the average tracer density 𝑛. This threshold’s dependency

on the minimal number density of tracers along void boundaries presents challenges.

Specifically, when applied to diverse galaxy tracer samples, such as QSO, ELG, or

LRG, each with distinct biases, the same threshold value corresponds to signif-

icantly different dark matter (DM) densities. This variance results in disparate

physical criteria for void merging across these tracer samples. Consequently, based

on the results from Nadathur (2016), Nadathur & Hotchkiss (2015a,b), Nadathur

et al. (2017), REVOLVER does not merge any zones and identifies each zone as a

separate void. This approach applies to both ZOBOV-based REVOLVER voids and

Voxel voids produced by the REVOLVER algorithm.

Another distinction is the definition of "void center". VIDE defines void center

as barycentre (volume-weighted center) of all the Voronoi cells in the void in the

following manner:

𝑋𝑣 =
1∑
𝑖 𝑉𝑖

∑︁
𝑖

𝑋𝑖𝑉𝑖, (1.31)

where 𝑋𝑖 and 𝑉𝑖 are the positions and Voronoi volumes of each tracer particle 𝑖,

respectively. However, Nadathur (2016), Nadathur & Hotchkiss (2015a), Nadathur

& Percival (2019) showed that the definition of the void center is not actually

very accurate to trace dark-matter halos. Conversely, REVOLVER defines the void

center as the center of the maximal sphere that is entirely devoid of galaxies, which

can be structured within the void, although REVOLVER also provides barycentre

definition. These definitions of void centers have been extensively examined in

(Nadathur & Percival, 2019), showing that the barycentre method diminishes the

signal-to-noise ratio of redshift-space distortion (RSD) measurements. It should
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be noted that maximal sphere fitting definition is the primary center definition of

REVOLVER, and Voxel voids also use this definition. In this thesis, since we

cross-correlate the identified void centers with CMB lensing, the definition of void

center has substantial importance.

Figure 1.12: This figure from Sutter et al. (2015b) shows the underlying tracer
density and purple void as found by the VIDE algorithm.

Voxel Algorithm

Most of my research, as described in Demirbozan et al. (2024), employs Voxel

voids. The fundamental objective of the Voxel algorithm is to develop a void-finding

mechanism capable of accommodating complex survey footprints characterized by

irregular geometries and holes more efficiently than other 2D and ZOBOV-based

algorithms. This is primarily because ZOBOV-based algorithms typically have to

exclude a significant number of identified voids due to boundary contamination

60



1.6. Cosmic Voids

issues.

Consequently, the Voxel algorithm employs a particle-mesh interpolation tech-

nique to ascertain the density field with enhanced accuracy. This methodology

situates tracers within a three-dimensional grid comprised of cells (termed voxels),

where the grid dimensionality is based upon the average number density of galaxy

tracers, denoted as 𝑛̄. Here, the side length of each voxel, 𝑎vox, is determined by

the equation 𝑎vox = 0.5
(

4𝜋𝑛̄
3

)−1/3
, with the density within each voxel being directly

proportional to the count of tracers it contains. Subsequently, the density field is nor-

malized using values obtained from the survey’s random catalog, which incorporates

the survey’s window function and corrects for selection biases. This characteristic

of Voxel voids distinguishes them from other detection algorithms by efficiently

using the complex geometry of the survey data through this normalization process.

Furthermore, this interpolation is not only computationally straightforward, but

also operates much faster than other density estimation methodologies, like VIDE

and ZOBOV, scaling linearly with the number of tracers.

Upon estimating the density field, a Gaussian filter with a smoothing length

𝑟𝑠 = 𝑛̄−1/3 is employed, identifying voids as loci of local minima within this refined

density distribution. To determine the dimensions and boundaries of each void, a

watershed algorithm iteratively incorporates adjacent voxels until a critical junc-

ture is reached, where the density of the subsequent cell is inferior to that of the

preceding one. This step is identical to the methodology in ZOBOV: contiguous

voxels exhibiting increasing overdensity are assimilated into the basin, ceasing this

process when the subsequent voxel exhibits a lower density than its predecessor.

Each resultant basin is thus identified as a Voxel void.

The center of a Voxel void is intrinsically determined by the center of the voxel

exhibiting the minimum density among all voxels within it. Given the localized

nature of this center determination, it exhibits a enhanced sensitivity to minor

perturbations in the density field. Nonetheless, such sensitivity appears to have

negligible impact on the overall statistical characteristics of Voxel voids.

Voxel voids are also irregularly shaped voids similar to VIDE. Therefore, Voxel

void radius is also calculated in the same way as in ZOBOV so that each identified
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void is assigned an effective radius, 𝑅𝑣, calculated using the formula:

𝑅𝑣 =

(
3

4𝜋
𝑁vox𝑉vox

) 1
3

,

where 𝑁vox represents the number of voxels that constitute the void, and 𝑉vox is the

volume of an individual voxel.

While numerous investigations have employed Voxel voids, predominantly for

void-galaxy cross-correlation analyses, their potential imprints on CMB lensing

remain unexplored (Massara et al., 2022, Mauland et al., 2023, Radinović et al.,

2024).

2D Algorithm

In this section, I will provide a brief overview of the 2D void finder algorithm,

which has been used in Demirbozan et al. (2024), Jeffrey et al. (2021), Vielzeuf et al.

(2021), where I have significant contributions. The main definition of 2D finders

comes from Sánchez et al. (2016), which applied 2D void finding in DES-Science

Verification (SV) data and measured weak lensing of galaxies around voids with

4.4𝜎 significance. The 2D void finder operates on tomographic redshift slices by

adopting a fixed comoving space value, typically set at 100Mpc/h. This selection

aligns with the objective of Sánchez et al. (2016) to maintain the redshift slice

thickness at twice the mean photometric redshift scatter 50Mpc/h of the redMaGiC

galaxies used in that study. The findings of Sánchez et al. (2016) demonstrate that a

minimum redshift slice thickness of 100Mpc/h is essential to ensure a satisfactory

concordance between spectroscopic and photometric redshift voids in simulations.

However, in practice one can increase this redshift thickness according to their

optimal choices and the objectives of their study. As will be elaborated upon in

subsequent chapters about the DESI Legacy Survey void project, it is noteworthy

that the redshift slice thickness may indeed be considerably substantial, potentially

extending from 𝑧 = 0.2 to 𝑧 = 0.4 or beyond.

After defining the tomographic slices, the whole slice is projected as a single

bin to create the galaxy tracer density map. This is usually done with Healpix map
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Nside=512 resolution and the density contrast map is created with respect to the

mean density 𝛿 =
𝑛𝑠𝑙𝑖𝑐𝑒
𝑛𝑠𝑙𝑖𝑐𝑒

− 1 where 𝑛𝑠𝑙𝑖𝑐𝑒 is the mean density of the slice.

At this point, another void-finding parameter (the Gaussian smoothing scale) is

applied to the tracer density contrast map to define density minima. To facilitate

lensing analyses, it was shown in previous DES analyses that a 𝜎 = 10Mpc/h

smoothing of the maps allows a robust detection of voids which carry most of

the lensing signal. Therefore, a 𝜎 = 10Mpc/h was used as a galaxy density map

smoothing parameter. However, Vielzeuf et al. (2021) used 20Mpc/h as well to test

the effect of this smoothing scale. In general to identify larger voids this smoothing

scale should be increased. As a note, we use 20Mpc/h in both Demirbozan et al.

(2024) and Kovács et al. (2022).

After this step, a third parameter is the minimum central under-density of a pixel

in smoothed density maps that is considered as a void centre. Voids with at least

30% under-density with respect to the 𝑛𝑠𝑙𝑖𝑐𝑒 in their centres were selected to ensure

that too shallow and potentially spurious voids are excluded. It is also important to

note that Hang et al. (2021) employs a slightly modified value in this context. By

plotting the density contrast map and fitting a log-normal distribution, they select

the least dense 10% or 5% of the identified potential void centres.

The void radius 𝑅𝑣 is determined using an algorithm that incrementally increases

the radius of annuli around void centers until the mean galaxy density 𝑛𝑠𝑙𝑖𝑐𝑒 is

achieved. Figure 1.13 illustrates the identified voids using this method.

Furthermore, it is noteworthy that the size of 2D voids generally exceeds those

of 3D voids (such as VIDE and REVOLVER voids), and their average lensing potential

fluctuations are higher. This 2D algorithm identifies an astounding 10 times more

voids compared to the REVOLVER algorithm when applied to the same tracers. In

addition, the algorithm identifies structures that are elongated along the line of sight,

rendering them particularly suitable for applications in gravitational lensing detec-

tion and Integrated Sachs-Wolfe (ISW) effect studies. It is particularly interesting to

note that most of the excess ISW signal studies discussed in 1.7.2 use these 2D void

types.
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Figure 1.13: Visualization from Sánchez et al. (2016) shows the circular morphol-
ogy of the detected voids. The background gray-scaled field represents the smoothed
galaxy field within a redshift slice. The two solid (red) dots signify the locations
of two void centers. For the upper void, a circular shell with radius 𝑅𝑖 is shown.
Given the density contrast 𝛿(𝑅𝑖) < 0, the algorithm proceeds to evaluate progres-
sively larger shells, extending to radius 𝑅 𝑗 where 𝛿(𝑅 𝑗 ) > 0. The void radius is
consequently defined as 𝑅𝑣 = 𝑅 𝑗 .
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1.6.2 Modified Gravity and Voids

The concept of modifying Einstein’s General Relativity arises from the need to

explain dark matter and dark energy on cosmological scales and to resolve inconsis-

tencies with quantum physics on quantum scales (Carlip, 2001, Clifton et al., 2012).

This usually involves replacing Ricci scalar with 𝑓 (𝑅) function in the Einstein-

Hilbert action introducing an additional scalar field that acts as a fifth force. It is

given by

𝑆EH =

∫ √−𝑔
(

1
2𝜅

𝑅 + L𝑚

)
𝑑4𝑥,

where 𝑅 is the Ricci scalar representing the curvature of spacetime, 𝑔 is the determi-

nant of the metric tensor 𝑔𝜇𝜈, 𝜅 = 8𝜋𝐺 with 𝐺 being the gravitational constant, and

L𝑚 denotes the matter Lagrangian density. In 𝑓 (𝑅) gravity theories, this action is

generalized by replacing the Ricci scalar 𝑅 with an arbitrary function of 𝑅, leading

to the modified action

𝑆 𝑓 (𝑅) =

∫ √−𝑔
(

1
2𝜅

𝑓 (𝑅) + L𝑚

)
𝑑4𝑥.

This modification allows for more complex gravitational dynamics and is able

to explain cosmic acceleration without dark energy. By choosing appropriate forms

of 𝑓 (𝑅), these theories can produce late-time accelerated expansion and offer alter-

native insights into the behavior of the universe on large scales. In literature, 𝑓 (𝑅)

theories of gravity dominates most of the attention of MG theories.

However, due to the precise agreement of GR with gravitational tests within the

Solar System (Bertotti et al., 2003, Will, 2014), any alterations to GR must also align

with these established results. Consequently, modifications like the fifth force must

be effectively suppressed within the Solar System or smaller scales. One method to

achieve this suppression is through screening mechanisms that render the fifth force

significant primarily in underdense environments (Brax, 2013, Paillas et al., 2019).

Therefore, one of the potential regions in the Universe where deviation from GR

can be observed is actually cosmic voids with their very low matter content. This

is because these large underdense regions diminish the effectiveness of screening
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mechanisms. In high-density environments, screening mechanisms, such as the

Vainshtein mechanism (Vainshtein, 1972) or Chameleon mechanism (Brax, 2013,

Khoury & Weltman, 2004), erase the signatures of Modified Gravity (MG) theories

and align observations with GR predictions. However, in the low-density environ-

ments of voids, these mechanisms are less effective, allowing MG signatures to

persist. Consequently, voids may exhibit deviations from GR with greater clarity

compared to more densely populated areas of the universe (Davies et al., 2019).

Furthermore, the shape and distribution of voids can vary under different gravita-

tional theories. For instance, the Hu–Sawicki f(R) model (Hu & Sawicki, 2007)

(screened by Chameleon mechanism (Khoury & Weltman, 2004)) of MG predicts

that void walls are higher compared to those predicted by GR, providing a method to

distinguish between these theories based on observational data of voids’ structural

features (Cai et al., 2015, Clifton et al., 2012, Hamaus et al., 2016, Perico et al.,

2019).

Another notable example of a model using a screened fifth force is the normal

branch of the Dvali-Gabadadze-Porrati (nDGP) braneworld scenarios (Dvali et al.,

2000) with extra-dimensional gravity. Within the nDGP model, the fifth force is

screened via Vainshtein screening (Vainshtein, 1972), which is less effective in

areas distant from strong gravitational potentials, such as voids. Therefore, the most

observable impacts of the fifth force are expected to be most pronounced in cosmic

voids.

For example, voids in nDGP model and general modified gravity models are

more under-dense as compared to ΛCDM voids due to the action of the fifth force

that arises in these models, which leads to a faster evacuation of matter from voids

(Cautun et al., 2018, Paillas et al., 2019).

This feature of nDGP and modified gravity models can be observed through the

weak lensing of voids. This makes voids particularly good candidates for observing

the effects of MG theories, which predict different lensing effects than GR (Braden

et al., 2021, Voivodic et al., 2016, Wen et al., 2024). For example, CMB lensing

signal of voids would be stronger than usual in the case of nDGP voids due to a more

underdense environment of these voids, whereas a massive neutrino cosmology
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would cause denser voids and their CMB lensing imprint would be weaker than

expected (Vielzeuf et al., 2023). This is because voids are sensitive to neutrino mass

fraction due to their underdense nature (Baker et al., 2018, Clampitt et al., 2013).

Another interesting feature of f(R) models, as discussed in De Felice & Tsujikawa

(2010), is their prediction of a different strength of the ISW effect compared to the

standard ΛCDM model. In particular, the evolution of the effective gravitational

potential Φeff differs during the accelerated epoch, thereby providing a means to test

the viability of f(R) gravity models as alternatives to ΛCDM model.

1.7 Tensions of ΛCDM and the Excess ISW Measure-

ment from Voids

1.7.1 Integrated Sachs-Wolfe Effect

As discussed in Section 1.3, the CMB contains profound cosmological insights,

primarily from its primary anisotropies. However, the CMB also offers valuable

information from secondary anisotropies, which develop as CMB photons travel

from the last scattering surface to their detection on Earth. Unlike CMB lensing,

the integrated Sachs-Wolfe effect (ISW) results from the energy change of photons

as they pass through evolving gravitational potentials during their extensive journey

and was first proposed by Sachs & Wolfe (1967). Although this thesis has focused on

CMB lensing, the techniques and methods used here are also effective for detecting

the Integrated Sachs-Wolfe effect (ISW). Thus, a discussion of the ISW effect is

provided.

As CMB photons traverse an overdense region in a universe undergoing acceler-

ated expansion, the energy they gain while entering the potential well of the region

is not fully compensated by the energy they lose upon exiting the now shallower

potential of the region. This results in overdense regions appearing as hot spots in

the CMB. Conversely, underdense regions, or voids, appear as cold spots because the

photon loses more energy climbing out of the potential hill than it gains descending

into it. Therefore, it is sensitive to time-derivative of the gravitational potential.
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This is illustrated in Figure 1.14 and Figure 1.15.

Figure 1.14: Illustration of the ISW effect in accelerating ΛCDM universe. The
resulting image shows "hotter" CMB photons from overdensities and "colder" pho-
tons from voids. Credit: Istvan Szapudi

Figure 1.15: Visualization of stacked ISW signal coming from superclusters and
voids as taken from (Granett et al., 2008).

In a universe with matter density Ω𝑚 = 1 and no dark energy, density pertur-

bations 𝛿 grow proportionally with the scale factor 𝑎 = (1 + 𝑧)−1. Thus, to linear

order, the gravitational potentialΦ, which is proportional to−𝛿/𝑎, remains constant.

However, in a ΛCDM universe with dark energy, the scale factor 𝑎 increases more

rapidly than the linear growth of density perturbations, causing the gravitational

potential Φ to decrease over time. Then,

Δ𝑇 (𝑛̂)
𝑇CMB

= − 2
𝑐2

∫ 𝑡LS

0
¤Φ(𝑛̂, 𝑡) 𝑑𝑡 (1.32)
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where 𝑇CMB = 2.725 K represents the mean temperature of the CMB at redshift

𝑧 = 0, 𝑡 signifies the look-back time , ¤Φ represents the rate of change of the

gravitational potential along the path of the photon and 𝑡LS is the time to the last

scattering surface.

The ISW effect is of significant interest because the condition ¤Φ ≠ 0 arises

exclusively within the context of linear theory during the era of late-time dark energy

dominance. As a result, detecting the ISW effect provides a powerful observational

direct probe of dark energy and acceleration. The gravitational potential, Φ, is

intrinsically connected to the matter density perturbation, 𝛿, via the Poisson equation:

∇2Φ =
3𝐻2

0Ω𝑚

2𝑎
𝛿, (1.33)

where 𝛿 is the fractional perturbation in the matter density and 𝑎(𝑡) is the dimen-

sionless scale factor.

The initial identification of the ISW effect was facilitated by the comprehensive

CMB maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP).

Among the pioneering investigations that successfully detected the ISW effect are

the work of Boughn & Crittenden (2005), Fosalba & Gaztañaga (2004), Fosalba

et al. (2003).

Following this breakthrough, numerous studies have focused on measuring and

refining the ISW effect through correlations with various tracer catalogs. These

research efforts are well-documented in the academic literature, reflecting ongoing

improvements in the precision of ISW measurements (Afshordi et al., 2004, Francis

& Peacock, 2010, Rassat et al., 2007).

The ISW effect also includes contributions from non-linear gravitational effects,

commonly referred to as the Rees-Sciama (RS) effect (Rees & Sciama, 1968). The

Rees-Sciama effect, which arises from the gravitational evolution of structures,

contributes to the ISW signal, but its impact is relatively minor, accounting for no

more than 10% of the total strength of the ISW signal (Cai et al., 2010).

Unlike the ISW effect, which predominantly occurs in scenarios where the

expansion rate changes significantly like in dark energy dominated era of ΛCDM,
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the Rees-Sciama effect is more pronounced in highly non-linear regimes of structure

formation. This effect is expected to be most significant in regions with rapidly

evolving massive structures like clusters of galaxies or large voids. The time variation

in the gravitational potential due to this evolution leads to an additional redshift or

blueshift in the CMB photons, altering their energy slightly as they traverse these

potentials.

Voids, characterized by their underdense nature, hold significant promise for

ISW studies due to their relative isolation from non-linear effects and minimal grav-

itational contamination (Schuster et al., 2024). As the largest density depressions in

the universe, voids dominate the angular scales relevant to observe the ISW effect

in the CMB power spectrum. This makes them particularly valuable for probing the

dynamics of dark energy and the ISW effect.

Under the linear growth approximation, density fluctuations evolve as:

𝛿(r, 𝑧) = 𝐷 (𝑧)𝛿(r), (1.34)

where 𝐷 (𝑧) is the linear growth factor with normalization 𝐷 (0) = 1.

From a combination of Equation 1.33 and Equation 1.34 one can obtain;

¤Φ = −𝐻 (𝑧) [1 − 𝑓 (𝑧)]Φ, (1.35)

where 𝑓 = 𝑑 ln 𝐷
𝑑 ln 𝑎 is the linear growth rate of structure.

Therefore, the Equation 1.32 for the ISW effect can be rewritten as:

Δ𝑇ISW

𝑇
(𝑛̂) = −2

∫ 𝑧LS

0
𝑎 [1 − 𝑓 (𝑧)]Φ(𝑛̂, 𝑧) 𝑑𝑧. (1.36)

This equation demonstrates that the strength of the ISW effect depends on the

gravitational potential, which is more pronounced in large-scale structures at lower

redshifts.
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1.7.2 Excess ISW Signal Claims from Voids

One of the biggest motivation of this thesis was the claim of ISW excess signals

coming from super large voids (Kovács et al., 2019). The methodology used in this

study is very similar to the methodology used to detect CMB lensing signals from

DES Y1 voids (Vielzeuf et al., 2021). Figure 1.16 shows the main result of Kovács

et al. (2019).

Figure 1.16: This figure presents stacked CMB temperature cutouts centered on
positions of very large voids, taken from Kovács et al. (2019). This study utilized
the DES Y3 data and Jubilee simulation forΛCDM calibration, focusing specifically
on very large voids. The analysis involved rescaling the void cutouts to normalize
their radii (𝑅/𝑅𝑣).

Furthermore, there is also a claim of sign-changing ISW detected from eBOSS

quasars (Kovács et al., 2022). The authors have investigated high-z eBOSS voids

(𝑧 = 1 to 𝑧 = 2.2) in tomographic redshift bins and claim a sign-changing ISW

signal for these redshift ranges, which is itself a 2–3, 𝜎 discrepancy with ΛCDM..

However, other studies have also investigated the ISW signals of voids, and have

found good agreement with ΛCDM expectations (Bahr-Kalus et al., 2022, Dong

et al., 2021, Hang et al., 2021, Nadathur & Crittenden, 2016).

There are also some studies that provide theoretical motivations from particle

physics for an enhanced ISW effect, such as Hlozek et al. (2015), where the authors

investigate the impact of ultralight axions (ULAs). Moreover, Wang & Mena (2024)

investigated the tomographic nature of the ISW effect using only CMB data and they
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found a good agreement with ΛCDM, but some 2𝜎 deviation at redshift 𝑧 = 500.

The study highlighted the need to investigate ISW both tomographically in time and

also in space. Ilić et al. (2013) also used stacking methodology to detect the ISW

signals as in Granett et al. (2008). Furthermore, the ISW effect has been shown

to correlate with thermal SZ effect and this measurement can be used to constrain

properties of diffuse gas (Ibitoye et al., 2024). Kovács et al. (2020) attempted a

common explanation to the Hubble tension and the claimed ISW anomalies by

voids. However, such a study would need to alter the late time expansion history

of the Universe and this was shown to be not possible (Alestas & Perivolaropoulos,

2021, Cai et al., 2022, Khalife et al., 2024).

1.7.3 The Cold Spot in the CMB

The discovery of the Cold Spot, an unusually cold area in the CMB has intrigued

cosmologists since its initial observation (Cruz et al., 2006), resulting in many studies

aimed at unraveling its origins. This discovery was made using a technique that

applies Spherical Mexican Hat Wavelet (SMHW) wave functions and this anomalous

region has spurred various hypotheses regarding its cosmological implications.

Initial investigations, such as those by Smith & Huterer (2010), explored the

possibility of a supervoid in the NVSS (NRAO VLA Sky Survey) aligned with the

Cold Spot, potentially explaining the anomaly through the ISW effect. However,

these studies found no substantial evidence to support the presence of such a void.

This finding was later confirmed by (Mackenzie et al., 2017).

Furthermore, the Cold Spot hypothesis was extensively investigated by Nadathur

et al. (2014) and was shown that it is the size of the Cold Spot, its most anomalous

feature rather than its temperature depression and also showed that it is impossible

to have such a huge void to cause CS in ΛCDM.

Conversely, Kovács et al. (2021) claims that the observed excess ISW signals

align with the Cold Spot due to a large supervoid, challenging the conventional

ΛCDM model. According to their analysis, such a CS-supervoid connection would

necessitate an ISW-void signal enhancement by a factor of 5 to 7 as claimed by

Kovács et al. (2019). In other words, the Cold Spot can be attributed to a supervoid
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only if the amplitude of ISW signals generally exhibits an excess that is 5 to 7 times

greater than the expectations of ΛCDM. This conclusion aligns with the findings

presented by Kovács et al. (2019).

Building on these results, recent work by Owusu et al. (2023) has further exam-

ined the likelihood of a large void causing the Cold Spot through the ISW effect.

Their findings suggest that the existence of such a huge void would be inconsistent

with observations from CMB lensing, thereby challenging the void hypothesis and

highlighting the need for alternative explanations.

It is important to note that other studies, such as those by Nadathur & Crittenden

(2016) and Hang et al. (2021), using data from the BOSS and DESI Imaging

DR8 surveys, respectively, have examined ISW-void signals without uncovering any

deviations from ΛCDM predictions. Specifically, Hang et al. (2021) employed the

same void definition and Gaussian filtering techniques as Kovács et al. (2019) and

Kovács et al. (2022), yet found that the amplitude of the detected ISW signal was

minimal, aligning well with ΛCDM expectations. This ongoing debate shows the

need for further research to resolve these discrepancies.

1.8 Motivation

As highlighted in previous chapters, modern cosmology is transitioning into a data-

driven epoch and it creates a way to test for new physics beyond the ΛCDM model.

Significant tensions regarding the fundamental parameters of ΛCDM, along with

debates surrounding cosmic voids, the ISW effect, and the Cold Spot, are prompting

a critical reassessment of this standard cosmological model. While the ΛCDM

model has been remarkably successful, it relies on the enigmatic components of

dark matter and dark energy, whose natures remain mysterious. Consequently, it

is important to rigorously test the ΛCDM predictions. As upcoming surveys will

gather more LSS data and more sensitive CMB data, it is increasingly important

to develop techniques for their cross-analysis. Voids are gaining attention and have

been used in many recent publications. It is predicted that with the sensitivity

of upcoming surveys, voids will be even more useful in obtaining cosmological
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information. Their low-density environment, without contamination by small-scale

baryonic physics, and their ability to evade screening mechanisms make them ideal

for studies of dark energy and modified gravity. Additionally, their weak lensing

imprint and ISW effect information can be very useful in testing ΛCDM predictions.

In this thesis, we explore this potential by analyzing the CMB lensing imprints of

superstructures as a test of ΛCDM model.
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Chapter 2

Measuring the CMB Lensing Signal

of Voids in the DES Y1 Dataset with

Template Fitting Method

In this chapter, the majority of the material is derived from the published paper

(Vielzeuf et al., 2021), to which I have made significant contributions. My work

primarily involved the utilization of VIDE voids and debugging the analysis code,

thereby substantially contributing to the main results. We employed the DES Y1

dataset, covering 1, 300 deg2, which is considerably smaller than the DES Y3 foot-

print of 4, 200 deg2. At the time of writing this paper, the only published research

on the Cosmic Microwave Background (CMB) lensing imprint of voids was by Cai

et al. (2017). In this study, two main void-finding methods are used: the 2D and 3D

VIDE, and a template fitting method that involved rescaling the CMB cutouts and

applying Gaussian filtering to the CMB maps. The main results show good agree-

ment with ΛCDM expectations albeit lower detection significance as compared to

other studies shown in this thesis.
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2.1 2D and VIDE void identification in DES Y1 dataset

and MICE simulation

2.1.1 2D voids in DES Y1 dataset

We run our 2D void finder using two different redMaGiC samples as tracers. The

redMaGiC high-luminosity sample applies a stronger cut in luminosity (𝐿 > 1.5𝐿∗)

which offers higher precision in photometric redshift. On the other hand, the

redMaGiC high-density sample has a more relaxed luminosity cut (𝐿 > 0.5𝐿∗),

resulting in an increased galaxy density. We then further probe systematic effects

by running the void finder on these two rather different samples using two different

initial Gaussian smoothing scales, namely 10 Mpc/h and 20 Mpc/h.

We compare the void catalogues in terms of three characteristic parameters

of voids: distribution in physical size (𝑟𝑣), distribution of mean density (𝛿) and

distribution in central void density (𝛿1/4). We observe the following properties:

• Comparing the different resulting catalogues, a higher number of voids is

detected when the tracer density is lower (redMaGiC high-luminosity sample).

Sutter et al. (2014) found a different behaviour for VIDE voids in simulations.

Shot noise appears to drive these effects. In particular, a higher number of

pixels are identified as 2D void centre candidates when the tracer density is

lower, and the mean density might be reached more frequently, splitting voids

up.

• A larger smoothing scale decreases the total number of voids for both tracer

densities, as the role of shot noise is reduced.

• The mean void radius is shifted towards larger values for larger smoothings,

as smaller voids merge into larger encompassing voids.

• Small smoothing scales result in a larger fraction of deep voids, given the

same tracer density. This feature is also related to shot noise properties.

When testing mask effects, we found that the voids identified using redMaGiC tracers

in the MICE octant have different properties compared to void properties of DES
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Y1-like survey patches inside the octant. We therefore decided to use the same mask

as in the DES Y1 cosmological analysis (Elvin-Poole et al., 2018) as this guarantees

faithful comparison to the observed data. We consider two rotated positions of the

Y1 mask with some overlap that is unavoidable inside the octant. Therefore, as a

consistency test, we will study two MICE Y1-like void catalogues (MICE 1 and

MICE 2; see Table 2.1 for more details).

2.1.2 VIDE voids in DES Y1 dataset

Aiming at a different catalogue of voids from the same data set, we also run the VIDE

void finder on the MICE redMaGiC photo-𝑧 catalogue in the full octant, focusing on

the high density sample of galaxies.

We find a total of 36115 voids using this 3-dimensional algorithm. The VIDE

algorithm provides various output parameters to characterise the voids. We judge

that the most important parameters for our CMB lensing study are the effective

radius (𝑟eff
𝑣 ), density contrast (𝑟), and the TreeLevel (for details see e.g. Neyrinck,

2008, Sutter et al., 2015a).

Unlike for 2D voids, we find no significant difference in VIDE void properties

(such as radius, central underdensity, and redshift distribution) when using Y1-like

mask patches or a full octant mask in MICE. This agrees with the findings of Pollina

et al. (2019). We therefore consider all voids in the MICE octant for our stacking

tests, i.e. a factor of ∼ 5 more voids than in a Y1 patch (see also Table 2.1 for void

number count comparisons).

In our empirical tests, we found that a 𝑟eff
𝑣 > 35 Mpc/h limit in radius effectively

removes small voids that tend to live in overdense environments.The positive central

𝜅 imprint of these small voids decreases the negative stacked 𝜅 signal inside the void

radius, bringing the signal closer to zero thus harder to detect. We also found that

an additional cut that removes the least significant voids below the 1𝜎 extremeness

level (𝑟 > 1.22) (Neyrinck, 2008) is helpful to eliminate voids with less negative

central imprints and remaining larger voids with positive central imprints. While

these choices are subject to further optimisation, we use them in the present analysis

in order to test a different definition using a robust and clean VIDE sub-sample.
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High luminosity (HL)
Smoothing DES Y1 MICE 1 MICE 2
10 Mpc/h 1218 1158 1219
20 Mpc/h 411 364 400

High density (HD)
Smoothing DES Y1 MICE 1 MICE 2
10 Mpc/h 427 421 420
20 Mpc/h 122 85 106
VIDE DES Y1 MICE
All 7383 36115

Pruned 239 1687

Table 2.1: We list the numbers of 2D voids identified in two Y1-like MICE patches
vs. in DES Y1 data. We also provide void number counts for VIDE voids for the
full MICE octant and for the DES Y1 data set, with and without pruning cuts that
we consider in our measurements.

Finally, we apply a cut with TreeLevel = 0 to only keep voids which are highest

in the hierarchy, i.e. do not overlap with sub-voids. These three conditions result in

a set of voids that is a very conservative subset of the full catalogue. However, such

a pruned catalogue with clean expected CMB 𝜅 imprints is sufficient for providing

an alternative for our main analysis with 2D voids.

2.2 Simulated cross-correlation analyses

2.2.1 Stacking 𝜅 maps on void positions

The CMB lensing imprint of single voids is impossible to detect (see e.g. Krause

et al., 2013). We therefore apply an averaging method using cutouts of the CMB

map at void positions (see e.g. Kovács et al., 2017, and reference therein). This

stacking procedure can be described with the following steps:

• we define a catalogue of voids. We also select subgroups in radius and density

bins to probe their specific imprint type.

• we re-scale the angular size of voids to measure distances in dimensionless

𝑅/𝑅𝑣 units where 𝑅𝑣 is the void radius. We use a patch size enclosing 5 re-

scaled void radii to possibly detect the lensing imprint of void surroundings,

78



2.2. Simulated cross-correlation analyses

3210123
R/Rv

No smoothing

HL20

DES Y1

3210123
R/Rv

No smoothing

HL20

MICE signal+noise (from SMICE + N0)

3210123
R/Rv

3

2

1

0

1

2

3

R/
R v

No smoothing

HL20

MICE signal (from SMICE)

4

2

0

2

4

×
10

3

3210123
R/Rv

FWHM = 1  smoothing

HL20

DES Y1

3210123
R/Rv

FWHM = 1  smoothing

HL20

MICE signal+noise (from SMICE + N0)

3210123
R/Rv

3

2

1

0

1

2

3

R/
R v

FWHM = 1  smoothing

HL20

MICE signal (from SMICE)

4

2

0

2

4

×
10

3

3210123
R/Rv

= 1  smoothing

HL20

DES Y1

3210123
R/Rv

= 1  smoothing

HL20

MICE signal+noise (from SMICE + N0)

3210123
R/Rv

3

2

1

0

1

2

3

R/
R v

= 1  smoothing

HL20

MICE signal (from SMICE)

4

2

0

2

4
×

10
3

Figure 2.1: Simulated signal-only stacked 𝜅 images from MICE (left) in comparison
to noise-added versions (centre) and observed DES Y1 stacked results (right) for
the HL20 version of 2D voids. All versions of our results are displayed without
smoothing (top) and with FWHM= 1◦ (middle) or 𝜎 = 1◦ (bottom) Gaussian
smoothings. The re-scaled void radius 𝑅/𝑅𝑣 = 1 is marked by the dashed circles.
We identify important trends with changing smoothing scales but overall report good
consistency between data and simulations.
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Figure 2.2: Same as Figure 2.1 except we replace the 2D void sample with VIDE
voids.
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such as matter overdensities around voids, i.e. compensation walls (Hamaus

et al., 2014).

• we probe the effect of a Gaussian smoothing on the noise properties of the

stacked images using different filter sizes applied to the CMB convergence

map (not in the re-scaled images).

• we stack using three different strategies: without smoothing; using a full width

at half maximum value FWHM= 1◦; and with a standard deviation 𝜎 = 1◦

(equivalent to FWHM= 2.355◦) to reduce the noise of the measurement. A

more optimized analysis could use filters matching the shape of the expected

signal to maximize 𝑆/𝑁 (see Nadathur & Crittenden, 2016, for a similar

analysis).

• we found that FWHM= 1◦ is a good compromise as it efficiently removes

fluctuations from very small scales (compared to the typical void size) but it

practically preserves the signal itself (see Figure 2.1 and Figure 2.2 for details).

• we cut out the re-scaled patches of the CMB convergence map centred at the

void centre position using healpix tools (Górski et al., 2005). This allows

us to have the same number of pixels by varying the resolution of the images

according to the particular void angular size.

• we then stack all patches and measure the average signal in different concentric

radius bins around the void centre.

As we use full-sky MICE 𝜅 maps but only consider smaller DES Y1-like patches,

we also measure the mean 𝜅 values in the masked area and remove this bias from the

profiles to account for possible large-scale fluctuations that a DES Y1-like survey is

affected by. From the Planck data, we also remove the mean 𝜅 value measured in

the DES Y1 footprint. We do not apply any other filtering in the stacking procedure

such as exclusion of large-scale modes up to ℓ < 10 (see Cai et al., 2017, for related

results).
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2.2. Simulated cross-correlation analyses

2.2.2 Simulated analyses with noise in the 𝜅 map

An important source of the measurement uncertainties are the random instrumental

noise in the Planck data. In order to model observational conditions, we generate

1000 Planck-like noise map realisations using the noise power spectra released

by the Planck team (Planck Collaboration et al., 2020b). We first check how the

detectable signal fluctuates around the true signal without rotating the MICE lensing

map (𝑆MICE
𝜅 ) in alignment with void positions. In this test we add simulated noise

contribution maps (𝑁 𝑖
𝜅) to the same non-rotated MICE 𝜅 (signal-only) map in 1000

random realisations. We find significant fluctuations in the signal in the presence of

Planck-like noise but no evidence for biases when considering noisy data. Figure

2.1 shows how the signal-only (𝑆MICE
𝜅 ) and noise-added (𝑆MICE

𝜅 + 𝑁0
𝜅 ) MICE images

compare for a given noise realisation in the case of 2D voids.

We note, however, that the total error of the stacking measurement also has a

contribution from random fluctuations in the stacked signal map itself. This sub-

dominant contribution is about half the magnitude of the instrumental 𝜅 noise based

on comparisons of fluctuations in random stacking measurements using the signal-

only MICE map 𝑆MICE
𝜅 or 𝑁 𝑖

𝜅 noise maps. This second error is, at least in part, due to

the complicated overlap structure of voids themselves along the line-of-sight, overlap

with their neighbour voids in the same redshift slice, and also the limited number of

available voids in a DES Y1 observational setup. These result in imperfect imprints

compared to a hypothetical mean signal of several isolated voids.

Then, to account for both the above sources of error in the void-𝜅 cross-

correlation measurement, we first create 1000 noise-added 𝑆MICE
𝜅 + 𝑁 𝑖

𝜅 maps. In

this case, we randomly rotate 𝑆MICE
𝜅 and estimate the measurement errors with 1000

runs (void positions and the 𝑆MICE
𝜅 map are not aligned). However, as the rotated

MICE maps may overlap in our 1000 random rotations affecting the estimation of

the covariance, we consider an alternative strategy to estimate the measurement er-

rors. We measure the power spectrum of the noiseless full-sky MICE 𝜅 map 𝑆MICE
𝜅

using the anafast routine of healpix. Then, given the same power spectrum, we

create 1000 random map realisations using synfast. We then add our 𝑁 𝑖
𝜅 noise

map realisations to these different 𝑆𝑖𝜅 MICE-like lensing map realisations, and thus

82



2.2. Simulated cross-correlation analyses

eliminate the possible correlations between random realisations due to rotation of

the MICE map. Finally, we stack the 1000 noisy random maps on void positions,

and, as in the MICE and DES Y1 measurements of the imprint signals, we also

remove the mean 𝜅 map value inside the DES Y1 survey mask area. Our additional

tests show that the removal of this monopole 𝜅 bias term reduces the overall errors

on the 𝐴 lensing amplitude by about 10%.

We note that while simulated and observed void catalogues are in good agreement

(see Figure A.1), we use the observed DES Y1 void catalogues for the estimation of

the errors to ensure that the overlap structure or any other correlation between voids

is fully realistic. We find that the above error estimation methods give consistent

results, but the second synfast-based method provides a few per cent larger error

bars. This is intuitively expected, since slightly more randomness is added to the

stacking process by using independent 𝜅 maps instead of rotation of a single one. We

therefore consider these more conservative synfast-based errors in our covariance

estimation process.

For all void catalogues, we repeat all measurements for our three different 𝜅

smoothing strategies: no smoothing, and two Gaussian smoothings with FWHM= 1◦

and 𝜎 = 1◦. Figure 2.1 demonstrates how different smoothings of the 𝜅 maps affect

the results. In Figure 2.1 we also preview the results from stacking measurements

using a DES Y1 2D void catalogue to show the reasonable agreement between

noise-added simulations and observed data. Other versions of the void catalogue

showed consistent results. Figure 2.2 presents our findings on alternative VIDE void

catalogues in MICE and in DES Y1. We find imprints comparable to 2D void results

for our very conservative subset.

2.2.3 Amplitude fitting

In our DES Y1 analysis we wish to perform a template fitting algorithm using the

simulated radial 𝜅 profiles extracted from MICE stacking analyses. As a measure of

the signal-to-noise (S/N) of simulated and observed signals given the measurement

errors and their covariance, we aim to constrain an amplitude 𝐴 (and its error 𝜎A)

as a ratio of DES Y1 and MICE signals using the full profile up to 𝑅/𝑅𝑣 = 5 in
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16 radial bins. We expect 𝐴 = 1 if the DES Y1 and MICE ΛCDM results are in

close agreement and we aim to test this hypothesis. In the DES Y1 analysis, we

fix the shape of the stacked convergence profile to that calibrated from the MICE

simulation. See e.g. Kovács et al. (2019) for a similar analysis with DES voids.

As detailed above, we estimate the covariance using 1000 different Planck-

like noise simulations (that dominate the measurement errors), and we also add a

randomly generated CMB lensing map with MICE-like power spectrum to estimate

the full error. We then invert the covariance matrix and correct our estimates by

multiplying with the Anderson-Hartlap factor 𝛼 = (𝑁randoms−𝑁bins−2)/(𝑁randoms−

1) (Hartlap et al., 2007). Given our measurement configuration, this serves as a

small (≈ 2%) correction.

To constrain the 𝐴 amplitude, we then evaluate a statistic

𝜒2 =
∑︁
𝑖 𝑗

(𝜅DES
𝑖 − 𝐴𝜅MICE

𝑖 )𝐶−1
𝑖 𝑗 (𝜅DES

𝑗 − 𝐴𝜅MICE
𝑗 ) (2.1)

where 𝜅𝑖 is the mean lensing signal in the radius bin 𝑖, and𝐶 is the covariance matrix

defined above. We perform such a 𝜒2 minimization for all void catalogue versions

and smoothing strategies using the corresponding data vectors and covariances.

2.2.4 Optimization of the measurement

The imprint of voids on the CMB lensing maps depends on their properties. Na-

dathur et al. (2017) showed that simulated cosmic voids, identified with the ZOBOV

methodology (similar to VIDE), trace the peaks of the underlying gravitational po-

tential differently given different density, size, and environment (see also Cai et al.,

2017)]. They reported that voids can be grouped based on a combined density-radius

observable to have distinct lensing profiles. In particular, they found that the com-

bination of all sub-populations gives an average profile that is closer to zero at all

scales, i.e. harder to detect. For instance, stacked 𝜅 images of voids-in-voids are less

negative in their centre, while voids-in-clouds show a more pronounced compensa-

tion. The overall significance of the measurement can therefore be improved if the

distinct imprints of different void types are measured separately and a combined sig-
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Figure 2.3: Comparison of the radial 𝜅 imprint profiles of 2D voids in the MICE
simulation and in DES Y1 data. We show results based on all three 𝜅 map smoothing
strategies, including no smoothing (left), FWHM= 1◦ smoothing (middle), and
𝜎 = 1◦ smoothing (right). For completeness, we present the imprints for all 2D void
catalogue versions including HD10, HD20, HL10, and HL20 from top to bottom.
Dashed red profiles mark the best fitting MICE templates considering the DES
measurements adn the band represents 1𝜎 error bars.
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nificance analysis is performed. These findings appear to be robust against changing

the galaxy tracer sample but have not yet been tested in photo-𝑧 void studies. We

thus cannot blindly follow these pruning strategies in our methodology.

2D voids

While 2D voids are different in their nature to 3D voids, we aim to explore the

possible optimisation of the void catalogue by pruning in a similar manner. We

therefore perform the stacking measurement for subsets of our 2D void catalogues

for both tracer densities and two different initial density smoothing scales.

The S/N is first measured in stacked images using individual bins in void radius

and underdensity, indicating how sub-classes of voids contribute to the total detection

significance. Similarly, we also stack cumulatively, i.e. gradually making use of

all the voids in the sample by adding more and more voids from bins of 𝑟v and 𝛿,

indicating which portion of the radius-ordered and density-ordered data provides the

highest detection significance. We make the following observations based on these

optimisation efforts:

• medium size voids of radii 40 Mpc/h < 𝑟𝑣 < 80 Mpc/h account for most of

the observable lensing signal. The magnitude of their lensing imprint is the

highest and they are the most numerous subgroup in the void catalogue which

results in smaller uncertainties.

• splitting the void catalogue based on the mean underdensity in voids, we

find that voids with −0.2 < 𝛿 < −0.1 carry most of the observable signal.

These are rather shallow void structures but they are the most numerous which

naturally result in higher statistical precision in the stacking measurements.

• while approximately two thirds of the S/N is contained inside the void radius

(𝑅/𝑅𝑣 < 1) and in the close surroundings (1 < 𝑅/𝑅𝑣 < 2), measuring the

cumulative S/N up to (𝑅/𝑅𝑣 = 5) does increase the detectability and provides

a way to test convergence to zero signal at large radii.

• the highest S/N is achieved by stacking all voids, even if some voids are

expected to contribute with less pronounced signal and higher noise at small
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scales (see Kovács et al., 2017, for a counter-example in the case of ISW

imprints).
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Figure 2.4: We compare the radial 𝜅 imprint profiles of VIDE voids in the MICE
simulation and in DES Y1 data. We show results based on all three 𝜅 map smoothing
strategies. Dashed red profiles mark the best fitting MICE templates to the DES
measurements. We also mark the expected errors for the Year-3 DES data set that
we wish to use in the future to extend this analysis (orange shaded areas around the
MICE signals).

In terms of different tracer density and smoothing, the highest S/N is found when

using the high luminosity catalogue with 10 Mpc/h smoothing (HL10)(The details

of this catalogue is explained in Section 2.1.1). We note that such a result is not

unexpected, given the wider redshift range and the larger fraction of deep voids in

the HL sample (see Figure A.1).

We estimate 𝑆/𝑁 = 4.2 for the case of no 𝜅 map smoothing, while we find an even

higher 𝑆/𝑁 = 5.9 and 𝑆/𝑁 = 4.6 for Gaussian smoothings using FWHM= 1◦ and

𝜎 = 1◦, respectively. We use 𝑆/𝑁 and 𝐴/𝜎A interchangeably to refer to the signal-

to-noise throughout the paper. We consider a DES Y1 measurement configuration

and resulting errors and a MICE ΛCDM signal (𝐴 = 1) of the simulated 2D voids.

Nevertheless, all measurement configurations show moderately significant 𝑆/𝑁 ≳

3 CMB lensing signals for voids in a survey such as DES Y1, and thus we will mea-

sure the corresponding observed lensing imprint of all DES void catalogues and

smoothing versions. See again Figure 2.1 for details.

We note that the main results above are based on the full void sample with a

variety of redshifts in 0.2 < 𝑧 < 0.7. For completeness, we also performed a simple

redshift binning test for voids of size 20 Mpc/h < 𝑟𝑣 < 70 Mpc/h. We found no

clear evidence for redshift evolution in their CMB lensing profile.
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VIDE voids

Because in this paper we consider VIDE voids as a consistency test, we do not

formally optimise the signal-to-noise for the VIDE void sample. Relatedly, we do

not have a single recipe for pruning parameters in the presence of photo-𝑧 errors

for 3D voids. Nevertheless, as explained in Section 3.3.2, we apply various pruning

cuts in order to ensure a detectable CMB lensing signal in the MICE simulation and

therefore also in DES Y1 data (see Figure 2.2). These cuts result in 1687 VIDE voids

in the MICE octant to be used in the stacking measurement, and 239 voids in the

DES Y1 redMaGiC high density data. We present a comparison with 2D void types

in Table 2.1, finding good consistency in void number counts.

Overall, we find 𝑆/𝑁 = 1.7 for the case of no 𝜅 map smoothing, while 𝑆/𝑁 = 2.1

and 𝑆/𝑁 = 2.0 for Gaussian smoothings using FWHM= 1◦ and 𝜎 = 1◦, respectively.

In these tests, we again consider a MICE 𝛬CDM imprint signal (𝐴 = 1) and a DES

Y1 measurement configuration and resulting errors (𝜎A) of the simulated VIDE

voids.

We note that our pruning cuts in fact remove most of the voids from the original

catalogue; thus the VIDE catalogue may promise higher 𝑆/𝑁 with further optimi-

sation. However, for our purposes of studying a sample complementary to the 2D

void analysis the sample defined above is adequate. We leave the optimisation of

VIDE catalogues for CMB lensing measurements for future work, including tests of

VIDE voids in high luminosity tracer catalogues that appear more promising for the

2D void definition.

2.3 Results from observations: DES Y1 × Planck

We measure the stacked imprint of DES Y1 voids with the same methodology and

parameters as in the case of the MICE mock. Together with the MICE results, the

stacked 𝜅 images of the DES Y1 void catalogues are shown in Figures 2.1 and 2.2

for 2D and VIDE voids, respectively. We find good consistency between simulations

and observations for all void definitions, smoothing strategy, and tracer density.

We then use the stacked images to calculate a radial 𝜅 imprint profile in order to
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No smoothing
Catalogue VIDE HD10 HD20 HL10 HL20

MICE 1.69 3.12 2.63 4.16 3.45
DES Y1 1.54 2.68 3.40 2.94 3.15

FWHM= 1◦ smoothing
Catalogue VIDE HD10 HD20 HL10 HL20

MICE 2.12 4.16 3.12 5.88 4.35
DES Y1 2.61 3.46 3.80 4.13 3.70

𝜎 = 1◦ smoothing
Catalogue VIDE HD10 HD20 HL10 HL20

MICE 2.04 4.34 3.70 4.55 4.00
DES Y1 2.89 3.55 3.38 4.74 3.62

Table 2.2: Signal-to-noise ratios (𝐴/𝜎A) are listed for all measurement configu-
rations using MICE and DES Y1 signals. We compare three different smoothing
strategies and five void catalogue versions.
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Figure 2.5: We provide a detailed comparison of measurement significance in the
form of 𝐴/𝜎A. The conservative VIDE sample also provides useful consistency tests
in agreement with our 2D analyses. The dashed horizontal lines mark the mean of
the DES Y1 (dark) and the MICE (light) significances with values 3.31 and 3.55,
respectively.

quantify the results, relying on the noise analysis we introduced above. We present

these results below and provide a detailed description of our constraints on the 𝐴

amplitude of DES Y1 and MICE void lensing profiles.

2.3.1 2D voids

We continue our data analysis with the DES Y1 2D void catalogues that promised

higher 𝑆/𝑁 in our MICE analysis, where, recall, we forecasted 𝑆/𝑁 ≈ 5 for the high

luminosity catalogue.

We compare the stacked images of the 𝜅 imprints in the high luminosity catalogue
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with 20 Mpc/h smoothing in the galaxy density map in Figure 2.1 as a representative

example of all 2D void results. A visual inspection shows good agreement between

MICE and DES Y1 𝜅 imprints both in the centres and surroundings of the voids. We

find consistency for all 𝜅 smoothing strategies and report that similar conclusions

can be drawn from stacked images from other void catalogue versions (see also

Figure 2.2).

We then also measure the azimuthally averaged radial imprint profile in the

stacked images to quantify the results. We present the results in Figure 2.3 for all

four 2D void catalogue versions HD10, HD20, HL10, and HL20. The shaded blue

regions mark 1𝜎 errors computed with 1000 random realisations of the stacking

measurement on the MICE 𝜅 map with Planck-like noise included, while the error

bars around DES Y1 measurements show the same uncertainties for the DES data

(by construction, we use the same covariance estimation methodology for MICE and

DES data as explained in Section 2.2.2). We observe a good general agreement in the

sign and the shape of the observed and simulated profiles: negative 𝜅 values in the

interior of voids plus an extended range of positive convergence in the surroundings.

We note that the approximate convergence of the profiles to zero signal at large

distance from the void centre is an important null test which proves that our method

is not affected by significant additive biases.

We provide the 𝑆/𝑁 ratios for all catalogue versions and analysis techniques

in Table 2.2 and amplitudes with errors in Table 2.3. We observe clear trends in

the results, including a natural decrease of both errors and the signal itself if larger

Gaussian 𝜅 smoothing scales are applied to the CMB map. We see no evidence for

significant excess signals or a lack of signal compared to simulations.

As demonstrated in detail in Figure 2.3 for the case of 2D voids, the less promising

DES Y1 void catalogue versions tend to robustly show signal-to-noise ratios of at

least 𝑆/𝑁 ≈ 3. This is in good agreement with the mean of all MICE signal-to-noise

estimates 𝑆/𝑁 ≈ 3.5. We compare these mean 𝑆/𝑁 values to individual estimates

in Figure 2.5. We find that the DES Y1 constraints on the 𝐴 amplitude typically

favor values slightly lower than 𝐴 = 1, often with 𝐴 ≈ 0.8, and this reduces the

significance of our detections.
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In particular, the highest signal-to-noise is expected for the HL10 sample with

FWHM= 1◦ smoothing (based on the MICE analysis) with 𝑆/𝑁 ≈ 5.88. Using the

DES Y1 catalogue we constrain 𝐴 ≈ 0.72 ± 0.17 and 𝑆/𝑁 ≈ 4.13, i.e. slightly

lower than expected. In another promising configuration with the HL10 sample

with 𝜎 = 1◦ smoothing, we find 𝐴 ≈ 1.04 ± 0.22 and 𝑆/𝑁 ≈ 4.74, i.e. slightly

higher than expected. Nevertheless we conclude that these results are consistent

with expectations from MICE both in terms of amplitude and significance.

We note that our estimates of the stacked CMB 𝜅 profile in the MICE mock are

in good agreement with the simulated profile shapes and central amplitudes reported

by Cai et al. (2017) and Nadathur et al. (2017) even though they used different void

definitions and tracer catalogues.

2.3.2 VIDE voids

In Figure 2.4, we present the profile measurement results for VIDE voids for all three

smoothing strategies. The profiles with error bars again indicate the signal-to-noise

of the visually compelling imprints seen in the stacked images. We conclude that

an FWHM= 1◦ smoothing offers the best chance to detect a signal. The detection

reaches 𝑆/𝑁 = 2.6 with 𝐴 ≈ 1.23 ± 0.47, given the DES Y1 survey setup, in good

agreement with our predictions from the MICE mock (see more detailed comparisons

of expected and measured 𝑆/𝑁 in Figure 2.5). We find that the best-fit amplitudes

are all consistent with the expectation 𝐴 = 1 from the MICE simulation.

As a forecast, in Figure 2.4 we over-plot the expected error bars for the upcoming

DES Y3 dataset that will offer a better chance to measure the void CMB lensing

signal of DES voids even with a conservatively pruned VIDE catalogue. We expect

roughly two times smaller error bars given the approximately four times larger survey

area. This translates to an expected 𝑆/𝑁 ≈ 4.5 detection for identically selected but

more numerous DES Y3 VIDE voids.
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Figure 2.6: Comparisons of stacked imprints of simulated voids using HL10 (top
row) and HL20 (bottom row) void finder setups for the three different smoothing
strategies we analyze in the paper. Dashed profiles show the stacked imprints in
different DES Y1-like patches for the MICE (blue) and WebSky (red) simulations.
Solid blue lines represent our baseline estimation of the expected signal as the mean
of the signals from the two individual MICE patches. The solid orange profiles mark
the more precise full sky estimate of the stacked signal for WebSky data. Changes
due to different input cosmologies and field-to-field variations are comparable and
are within the errors of our DES Y1 measurements.

No smoothing
VIDE HD10 HD20 HL10 HL20

0.91 ± 0.59 0.86 ± 0.32 1.28 ± 0.38 0.71 ± 0.24 0.93 ± 0.29
FWHM= 1◦ smoothing

VIDE HD10 HD20 HL10 HL20
1.23 ± 0.47 0.84 ± 0.24 1.23 ± 0.32 0.72 ± 0.17 0.85 ± 0.23

𝜎 = 1◦ smoothing
VIDE HD10 HD20 HL10 HL20

1.42 ± 0.49 0.83 ± 0.23 0.90 ± 0.27 1.04 ± 0.22 0.91 ± 0.25

Table 2.3: Similar to Table 2, but here amplitudes (𝐴) and their errors (𝜎A) are
listed for all measurement configurations for DES Y1 signals. In the case of MICE,
amplitudes are all 𝐴 = 1 by definition, while the uncertainties are identical.
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2.3.3 Testing the role of the input cosmology

In preceding section, we argued that the MICE cosmological parameters with Ω𝑚 =

0.25, 𝜎8 = 0.8, and ℎ = 0.7 may represent a sufficiently accurate description of the

DES Y1 data set that we use in this study, as opposed to the best-fit Planck cosmology

(Planck Collaboration et al., 2020a) with Ω𝑚 ≈ 0.315 ± 0.007, 𝜎8 ≈ 0.811 ± 0.006,

and ℎ = 0.674 ± 0.005.

We nevertheless intended to test the shape and the amplitude of the stacked signal

of voids in a simulated data set based on the Planck 2018. Therefore, we analysed the

publicly available1 WebSky simulation (Stein et al., 2020) package. The WebSky

data set provides a light-cone halo catalogue and, among other data products, a

corresponding CMB lensing 𝜅 map. An important difference is that while the MICE

simulation provides realistic mock galaxy catalogues that mimic the observed DES

Y1 data, the WebSky simulation offers dark matter halo catalogues. In order to

make this halo catalogue to be as DES-like as possible, we set the same redshift

range and applied a simple halo mass cut to approximately model the population

of luminous red galaxies that were used as tracers of voids in our analysis. LRGs

are expected to reside in halos of mass ∼ 1013 − 1014ℎ−1𝑀⊙ (see e.g. Zheng et al.,

2009) that is above the mass resolution of the WebSky halo mock catalogue with

∼ 1012ℎ−1𝑀⊙. We therefore applied a simple halo mass cut with 𝑀 > 1013.5ℎ−1𝑀⊙

to define an LRG-like population. In particular, this selection cut is intended to

model the high luminosity sample that we compare to the WebSky results below.

We also added Gaussian photo-𝑧 errors with a redMaGiClike 𝜎𝑧/(1 + 𝑧) ≈ 0.02

scatter to the simulated WebSky spec-𝑧 coordinates to create realistic observational

conditions.

We first identified 19,729, and 8,784 voids in the full-sky WebSky simulation

data for our usual 10 Mpc/h and 20 Mpc/h initial Gaussian smoothing scales,

respectively. We then decided to apply the same DES Y1-like mask to the full sky

WebSky data set in order to test how the signal may fluctuate when measured from

the full data set as opposed to smaller patches. We note that in fact we used two

of these DES Y1-like survey patches in the MICE octant to estimate our signal as

1https://mocks.cita.utoronto.ca/data/websky/
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their mean and therefore we can also compare the field-to-field fluctuations in the

MICE simulation. Therefore, this set of results facilitates a comparison of not just

possible differences in the lensing imprint from changes in cosmology, but also a

characterisation of simple field-to-field variations in a given cosmology, either MICE

or WebSky. With the HL10 setup, we identified 839 and 874 voids in WebSky data

with a DES Y1-like mask applied in two cases, and 361 and 380 voids for HL20.

The number of voids is somewhat lower compared to our MICE results, but given the

lack of realistic redMaGiC galaxy mock in the case of WebSky data, such differences

are not unexpected, and the results can still be compared meaningfully.

For completeness, we tested all of our different smoothing strategies applied to

both the CMB 𝜅 map and the galaxy density field given high luminosity (HL) data

that promises better precision according to our MICE results and that we intend

to model with our pruned WebSky halo catalogue. We present these results in

Figure 2.6. We found that, given our measurements errors from the DES Y1 ×

Planck configuration, differences in the profile from changes in input cosmology

are comparable to field-to-field variations if individual DES Y1-like patches are

considered either in MICE or in WebSky simulations. We therefore conclude that

while in principle changes in cosmological parameters such as Ω𝑚, 𝜎8, and 𝐻0 may

affect void lensing imprints in the CMB, our current measurements of this signal

lack the precision to be sensitive to such small changes in these parameters.

2.4 Discussion & Conclusions

The main objective of this work was to study cosmic voids identified in Dark Energy

Survey galaxy samples, culled from the first year of observations. We relied on

the redMaGiC sample of luminous red galaxies of exquisite photometric redshift

accuracy to robustly identify cosmic voids in photometric data. We then aimed

to cross-correlate these cosmic voids with lensing maps of the Cosmic Microwave

Background using a stacking methodology.

Such a signal has already been detected by Cai et al. (2017) with a significance of

3.2𝜎. They stacked patches of the publicly available lensing convergence map of the
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Planck satellite on positions of voids identified in the BOSS footprint. In general,

we followed their methodology but we put more emphasis on simulation analyses to

detect a signal with DES data, given different galaxy tracer density and void finding

methods. In particular, we used simulated DES-like redMaGiC galaxy catalogues

together with a simulated lensing convergence map from the MICE Grand Challenge

N-body simulation to test our ability to detect the CMB lensing imprint of cosmic

voids.

We constrained the ratio of the observed and expected lensing systems, which we

called 𝐴. We first analysed the signal-to-noise corresponding to the CMB 𝜅 profile

of MICE redMaGiC voids. We considered different void populations including

2D voids and VIDE voids in 3D. We varied the galaxy density and also the initial

smoothing scale applied to the density field to find the centres of the 2D voids (see

Sánchez et al., 2016, for details). These parameters affect the significance of the

measurement as the total number of voids, mean void size, underdensity in void

interiors, and their depth in their centres are all affected by these choices and hence

so is the resulting lensing signal and noise.

We then comprehensively searched for the best combination of parameters that

guarantees the best chance to detect a signal with observed DES data. We concluded

that the lower tracer density of the higher luminosity redMaGiC galaxy catalogue

is preferable to achieve a higher signal-to-noise for both 10 Mpc/h and 20 Mpc/h

initial Gaussian smoothing.

We tested the prospects of using sub-classes of voids instead of the full sam-

ple, but concluded that stacking all voids is preferable for the best measurement

configuration with DES Y1 data.

We also tested the importance of post-processing in the MICE 𝜅 map. We

experimentally verified that Gaussian smoothing of scales FWHM= 1◦ and 𝜎 = 1◦

reduce the size of the small-scale fluctuations in the lensing map while preserving

most of the signal. For completeness, we created stacked images for all smoothing

versions and provided a detailed comparison of the results. In the MICE analysis,

we found that the best measurement configurations to detect a stacked signal are

achieved when considering a 2D void catalogue with high luminosity tracers and 10
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Mpc/h initial density smoothing (HL10), exceeding 𝑆/𝑁 ≈ 5 for given 𝜅 smoothing

strategies.

We then identified voids in the observed DES Y1 redMaGiC catalogue and

compared their properties with MICE voids. In general, we found a good agreement

when comparing observed 2D and VIDE void catalogues with both DES Y1-like

MICE mocks that we used for predictions. We repeated the simulated stacking

analyses using the observed Planck CMB lensing map. The signal-to-noise is

typically slightly lower than expected from MICE, due to a trend of lower amplitudes

at the level of 𝐴 ≈ 0.8 in some of the cases. Nevertheless, given the measurement

errors, we detected a stacked signal of voids with amplitudes consistent with 𝐴 ≈ 1.

Overall, we robustly detected imprints at the 3𝜎 significance level with most

of our analysis choices, reaching 𝑆/𝑁 ≈ 4 in the best predicted measurement

configurations using DES Y1 high luminosity redMaGiC data. We found that VIDE

voids provided similar imprints in the CMB lensing maps, albeit at consistently

lower 𝑆/𝑁 than 2D voids. This finding, however, is not unexpected given the

conservative cuts we apply to select our VIDE sample. We leave the possible further

improvements in the VIDE analysis for future work.

Using the WebSky simulation, we also tested how changes in cosmological

parameters might affect our results. We found that differences that arise from field-

to-field variations in the signal in DES Y1-like patches, and differences due to input

cosmology are comparable to each other and are within errors throughout the full

imprint profile. Therefore, the level of the precision offered by a DES Y1-like data

set combined with the Planck CMB 𝜅 map is not sufficient for such precision tests.

Increased galaxy survey window and a more numerous catalogue of voids, or better

precision in the reconstruction of the CMB lensing fluctuations may increase the

precision of these measurements in the near future.

Regarding the previously reported excess ISW signal in DES void samples

compared to 𝛬CDM simulations, however, we conclude that the excess in the CMB

temperature maps at void locations has no counterpart in the Planck CMB lensing

map. This finding does not necessarily invalidate the ISW tension. First, Cai et al.

(2017) also reported excess ISW signals using BOSS data, but found a stacked 𝜅
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signal in good agreement with 𝛬CDM simulations. Second, no detailed simulation

work has jointly estimated the ISW and CMB lensing signal of voids in some

alternative cosmologies. It is yet to be analysed if the excess ISW signal should

always be imprinted in the corresponding CMB 𝜅 map. Such simulation analyses

could potentially exclude the coexistence of an enhanced ISW signal and a 𝛬CDM-

like CMB 𝜅 imprint, pointing towards some exotic systematic effect that results in

an ISW-like excess in Planck temperature data aligned with the biggest voids in both

BOSS and DES data.

Our goal for the future is to create a bigger catalogue of voids, and potentially

superclusters, using galaxy catalogues from three years of observed DES data (DES

Y3). Furthermore, joint analyses of CMB lensing and galaxy shear statistics may

constrain modified gravity models (see e.g. Baker et al., 2018, Cautun et al., 2018).

In the near future, beyond a better understanding of the methodologies, new

simulations and new cosmic web decomposition data from experiments such as the

Dark Energy Spectroscopic Instrument (DESI) (Levi et al., 2013) and the Euclid

mission (Amendola et al., 2013) will further constrain the lensing and ISW signals

of cosmic voids.

.
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Chapter 3

Cross Correlation of DES Y3 Weak

Lensing Mass Maps with Voids

This chapter is mostly derived from Gatti et al. (2021), where we used voids to

cross-correlate with weak lensing mass maps created from the DES Y3 dataset. As

explained below, there are different methods for creating mass maps by assuming

various Bayesian priors. My main contribution was to use the stacking method,

as explained in Chapter 2, and to derive the errors using the Jackknife method by

treating each void as a Jackknife bin, rather than using simulations. By doing so, we

demonstrate the consistency of different mass map creation methods.

3.1 Mass Map Construction

One of the main goals of large-scale structure surveys such as DES is to measure

weak lensing (for a detailed literature review of weak lensing see Bartelmann &

Schneider, 2001, Mandelbaum, 2018). By measuring the slight deformations in

galaxy shapes caused by the mass distribution between the observed galaxies and

ourselves as observers (cosmic shear), we can impose stringent constraints on the

cosmological model that describes the Universe and its associated parameters. This

is because of the tidal field of matter inhomogeneities along the line of sight. Hence,

cosmic shear can be used to characterize the nature of dark energy by examining

distant galaxies, across different epochs in the history of the Universe (Huterer,

98



3.1. Mass Map Construction

2002).

Therefore, weak lensing can be used to construct mass maps (convergence maps).

These maps contain not only the distribution of dark matter but also the locational

attributes of its tracers, including galaxies, galaxy clusters, and cosmic voids.

The cumulative mass encountered along a line of sight is weighted by lensing

efficacy, which typically peaks at the midpoint between the source and the observer.

One of the key advantages of constructing mass maps is that convergence is a scalar

field, making it easier to manipulate and model compared to a shear field, which

more directly aligns with actual observations. Additionally, convergence maps

preserve the phase information of the mass distribution. This phase information has

the spatial arrangement of mass and make it easy to extract higher-order statistics

beyond the basic two-point correlation function or power spectrum.

There are some different mass map techniques in the literature, however, the ma-

jority of these techniques rely on the foundational approach pioneered by Kaiser &

Squires (1993) where authors show an analytical method to convert shear measure-

ments into convergence and this method (KS) has been used in various cosmological

analyses, as documented in multiple studies (Chang et al., 2015, Chang et al., 2018,

Liu et al., 2015, Oguri et al., 2018, Vikram et al., 2015).

Therefore in this section, we describe the mass map techniques and the void

cross-correlation technique to validate these four different weak lensing mass map

techniques.

3.1.1 Mass Map Inference

An ideal complex shear field, 𝛾, defined on the full celestial sphere relates to the

convergence field, 𝜅, for a given source redshift distribution. This ideal shear field is

full-sky, sampled everywhere, and noise-free. Inferring the unknown convergence

field from ellipticity measurements of a finite set of source galaxies in the presence

of survey masks and galaxy shape noise (discussed below) is the challenge of mass

mapping.

The real and imaginary parts of the shear 𝛾 are relative to a chosen two dimen-

sional coordinate system. In weak lensing, the observed ellipticity (Bartelmann &
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Schneider (2001)) of a galaxy 𝜖obs is related to the reduced shear 𝑔 plus the intrinsic

ellipticity of the source galaxy 𝜖s through

𝜖obs ≈ 𝑔 + 𝜖s,

where 𝑔 =
𝛾

1 − 𝜅
.

(3.1)

In the weak lensing limit, the reduced shear is approximately the true shear, 𝑔 ≈ 𝛾.

This allows an observed shear to be defined, 𝛾obs = 𝜖obs; this can be interpreted as a

noisy measurement of the true shear that has been degraded by shape noise (caused

by the unknown intrinsic ellipticities 𝜖s of the observed galaxies):

𝛾obs ≈ 𝛾 + 𝜖s . (3.2)

The shape noise is larger than the lensing signal by a factor of O(100) per galaxy.

It is therefore a dominant source of noise.

In a Bayesian framework we consider the posterior distribution of the conver-

gence 𝜅 conditional on the observed shear 𝛾 (here we have dropped the subscript obs

for brevity) and on the model M:

𝑝(𝜅 |𝛾,M) = 𝑝(𝛾 |𝜅,M) 𝑝(𝜅 |M)
𝑝(𝛾 |M) , (3.3)

where 𝑝(𝛾 |𝜅,M) is the likelihood (encoding the noise model), 𝑝(𝜅 |M) is the prior,

and 𝑝(𝛾 |M) is the Bayesian evidence.

We formulate all reconstructed convergence 𝜅 maps as the most probable maps

(given our observed data and assumptions); this is the peak of the posterior i.e.

the maximum a posteriori estimate. From equation 3.3 we see that the maximum a

posteriori estimate is given by

𝜿̂ = arg max
𝜿

log 𝑝(𝜸 |𝜿,M) + log 𝑝(𝜿 |M) , (3.4)

where M is our model (which in our case changes depending on the chosen prior

distribution). Here, the elements of the vectors 𝜿 and 𝜸 are the pixel values of a
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Figure 3.1: Figure taken from Gatti et al. (2021) shows DES Y3 weak lensing
mass maps, derived from the official DES Y3 shear catalog and generated using
various map-making techniques. Top left: KS E-mode map. Top right: E-mode
map created with the null B-mode prior method. Bottom left: E-mode Wiener
filter map. Bottom right: E-mode Glimpse map. The maps in the top panels have
been smoothed to 10 arcminutes, whereas the maps in the bottom panels have not
undergone any additional smoothing.

pixelized convergence map and the observed shear field, respectively.

Figure 3.1 shows the expected differences in maps constructed using various

algorithms, primarily due to their different prior choices. They illustrate the advan-

tages and disadvantages of each method in different scientific contexts. We focus on

four widely-used methods that encompass the most popular approaches: the Kaiser-

Squires (KS) method, the null B-mode prior method, the Gaussian prior (Wiener

filtering), and the halo-model sparsity prior called GLIMPSE. Below, we provide

an overview of each of these methods. Since the detailed processes of mass map

making are beyond the scope of this thesis, we concentrate on the main similarities

and differences among these methods. For further details, see Gatti et al. (2021).
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3.1.2 Mass Map Making Methods

While the main focus and contribution in this thesis is on cross-correlating cosmic

voids with these mass maps, understanding the differences in map-making methods

helps in interpreting the results.

Kaiser Squires (KS) method is based on analytical solution proposed by Kaiser

& Squires (1993). This is straightforward, direct inversion technique with no as-

sumptions (uniform prior), making it easy to implement but highly sensitive to noise

and masked areas, often producing spurious B-modes near edges.

Null B-Mode method, however, enforces a prior that eliminates B-modes, which

are not expected in weak lensing, providing better noise and edge artifact suppression

compared to KS, though it still benefits from some smoothing.

Wiener Filter method assumes a Gaussian prior, and usually good at recovering

large-scale structures while effectively suppressing noise, though it may smooth out

fine details on small scales.

Glimpse (Sparsity Prior) approach assumes that the mass map is sparse in a

wavelet basis, meaning it consists of a few significant, quasi-spherical structures,

like dark matter halos. Therefore, this method is ideal for reconstructing sharp,

small-scale features like dark matter halos in contrast to Wiener method, while

minimizing noise without overly smoothing the map.

3.2 Cross Correlation with Voids

To assess the robustness of different mass maps with respect to true galaxy underden-

sities and to understand how each method differs from the others, we cross-correlate

the mass maps with DES Y3 voids by stacking galaxy void positions on the created

mass maps. In order to do so, we rely on a similar method outlined before in Vielzeuf

et al. (2021), with the exception that we use Jackknife-based error estimates instead

of simulations. It should also be mentioned that REVOLVER(Nadathur et al., 2019)

voids used in this study are ZOBOV-based voids in contrast to Voxel based voids.

102



3.2. Cross Correlation with Voids

Cosmic void imprints

Cosmic voids are an increasingly favoured cosmic probe and have now already been

successfully used to extract cosmological information (for a recent overview see

Pisani et al., 2019). We expect these large lower-density regions in the cosmic web

to display a typical imprinting in the convergence signal when cross-correlated with

weak lensing mass maps (for previous results from DES Y1 data see Chang et al.,

2018).

We create a catalogue of so-called ‘2D voids’ (Sánchez et al., 2016) from the

DES Y3 redMaGiC (Rozo et al., 2016) photometric redshift data set by searching

for projected underdensities in tomographic slices of the galaxy catalogue. On

average, these tunnel-like voids correspond to density minima that are compensated

by an overdense zone in their surroundings. With this simple approach, we detect

3, 222 voids in the DES Y3 data set, which are larger on average, although also less

underdense, than most voids from other void finders (see e.g. Fang et al., 2019).

They certainly are useful tools in void lensing studies (Davies et al., 2018) and they

have been widely used in previous DES analyses (see e.g. Fang et al., 2019, Kovács,

2018, Kovács et al., 2019, Vielzeuf et al., 2021).

The lensing imprint of typical individual voids is expected to be undetectable

(Amendola et al., 1999). Therefore, after selecting our void sample, we follow a

stacking method to measure the mean signal of all voids (see e.g. Vielzeuf et al.,

2021). Knowing the angular size of voids, we re-scale the local mass map patches

around the void centres. In such re-scaled units, we then extract convergence

𝜅 patches five times the 𝑅/𝑅𝑣 = 1 void radius, stack them to increase signal-

to-noise, and measure radial profiles from the average 𝜅 patch. Without a large

set of simulations to estimate covariance of the void profile statistic, we estimate

uncertainty using a void-by-void jackknife method (see e.g. Sánchez et al., 2016).

We then correct these re-sampling based uncertainties with reference to previous

DES Y1 void analysis results that used more accurate Monte Carlo simulations

(Vielzeuf et al., 2021).

Fig. 3.2 shows the measured profiles using the DES voids. As anticipated, we

detect a negative convergence signal within the void radius (𝑅/𝑅𝑣 < 1) and a sur-
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rounding ring (1 < 𝑅/𝑅𝑣 < 3) of positive convergence signal (due to compensating

mass around voids). We note that different mass map versions show consistent sig-

nals (within the quoted uncertainties). While these void lensing results remain open

to much further quantitative work, there is certainly clear detection of correlations

between underdensities of galaxies and matter; this will motivate further studies

using DES Y3. We finally remark that the typical convergence signal associated

with local underdensities can be affected by the void definition and selection. We

explore alternative void samples extracted from DES Y3 data in Section 3.3.

Line-of-sight underdensities

Posing a slightly different question, we also examine the distribution of galaxies in a

line-of-sight aligned with the most negative fluctuations in the DES Y3 mass maps.

We call these voids in lensing maps or voles (see e.g. Davies et al., 2018). We use

a slightly modified version of the 2D void finder algorithm to identify them in the

DES mass maps. We apply a Gaussian smoothing of 2 deg in order to intentionally

select relatively deep and extended voles.

Following the previous DES Year 1 (Y1) analyses (Chang et al., 2018), the

redMaGiC galaxy position catalogue is projected into two-dimensional slices of

100 ℎ−1 Mpc along the line-of-sight. This thickness corresponds to the approximate

photo-𝑧 errors of the redMaGiC galaxies that allows the robust identification of voids

(see Sánchez et al., 2016, for details). At redshifts 0.1 < 𝑧 < 0.7, galaxy density

contrasts are measured in 15 tomographic slices aligned with voles. Galaxies

are counted within an aperture of 2 deg of the void centre, which approximately

corresponds to the full angular size of voles. The measured density contrasts at the

different redshifts are used to reconstruct the radial density profile aligned with the

given vole. Fig. 3.4 shows the line-of-sight galaxy density aligned with a significant

vole at (RA,Dec) ≈ (41.2◦,−12.2◦) in the KS map.

We find an extended underdensity that is consistent with a super-void with

radius 𝑅v ≈ 250 ℎ−1 Mpc (assuming simple Gaussian void profiles as in Finelli et al.

2016). This super-void, similar to the biggest underdensity found in the preceding

DES Y1 analysis (Chang et al., 2018), will have smaller-scale substructures that are
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Figure 3.2: Top panel: Void imprints on the DES mass maps. Bottom panel:
Differences of signals measured from different mass maps, relative to the KS results
and errors (shaded ranges are 1𝜎 and 2𝜎 about the KS signal).

inaccessible using redMaGiC photometric redshift data. Nevertheless, such a super-

void is comparable to the largest known underdensities in the local Universe, and

these objects are of great interest in cosmology (see e.g. Shimakawa et al., 2021).

Their integrated Sachs-Wolfe imprint has already been studied using DES Y3 data

to probe dark energy (for details see Kovács et al., 2019).

3.3 Alternative Samples of Voids

We considered alternative catalogues of voids to test how the mass map imprints

may depend on the void definition and selection.

VIDE1 (Sutter et al., 2015b) is a watershed void finder based on ZOBOV (Neyrinck,

2008) that has been widely employed for various void studies (see e.g. Hamaus et al.,

1https://bitbucket.org/cosmicvoids/
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2020, and references therein). It has already been successfully used to study voids

in the DES Y1 data (Fang et al., 2019, Pollina et al., 2019).

VIDE’s default centre is the volume-weighted barycentre, which does not gener-

ally coincide with the density minimum inside the void due to non-spherical void

geometry. Instead, the barycentre preserves information about the void boundary.

Therefore, a different kind of imprint signal is expected when correlated with con-

vergence maps, with more pronounced positive rings rather than negative centres

(for a comprehensive study on the 𝜅 signal associated with voids see Cautun et al.,

2016). In the DES Y3 redMaGiC data, VIDE detected 12, 841 voids. We then

halved this catalogue using the compensation of voids to further increase and isolate

the expected signal from the boundary zone, expecting to see an enhanced positive

convergence 𝜅 imprint from these over-compensated voids.

We are also interested in detecting the most pronounced negative 𝜅 signals associ-

ated with a specific subclass of large and deep voids that are under-compensated. As

a third option, we thus used the public2 void finder algorithm REVOLVER (Nadathur

et al., 2019, 2018), also based on the ZOBOV algorithm.

A proxy for the gravitational potential (and thus for the convergence field) at the

positions of voids can be defined as

𝜆𝑣 ≡ 𝛿𝑔

(
𝑅eff

1 ℎ−1Mpc

)1.2
, (3.5)

using the average galaxy density contrast 𝛿𝑔 = 1
𝑉

∫
𝑉
𝛿𝑔 d3x and the effective spherical

radius, 𝑅eff =

(
3

4𝜋𝑉
)1/3

, where the volume 𝑉 is the total volume of the void (for

further details see Nadathur & Crittenden, 2016, Nadathur et al., 2017). Raghunathan

et al. (2020) showed that different values of the𝜆𝑣 parameter indicate different (CMB)

lensing imprints, including signals with either positive or negative sign, aligned with

the void centre3. Following this, we keep only 7, 782 of the most under-compensated

voids defined by the lowest 𝜆𝑣 values. Leaving more detailed analyses for future

work, we note that a subclass of voids with high 𝜆𝑣 values would also correspond to

over-compensated voids such as our VIDE sample.

2https://github.com/seshnadathur/REVOLVER/
3REVOLVER voids may also be defined using barycentres.
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Figure 3.3: Top panel: Different mass map imprints of different types of voids.
Bottom panel: Differences in signals measured from different mass map reconstruc-
tions, relative to the KS results and errors (shaded ranges are 1𝜎 and 2𝜎 around the
KS results).
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Fig. 3.3 shows the measured profiles of our REVOLVER, VIDE, and 2D void

analyses given the uncertainties. As anticipated based on the differences in the

nature of the voids we selected, we detected qualitatively different signals in each

case:

• the VIDE voids show a relative depression in convergence at the void cen-

tre compared to the pronounced peak at the void boundary, matching our

expectations.

• the REVOLVER voids we selected are associated with strong negative 𝜅 imprints

that in fact extend far beyond the void radius, indicating surrounding voids on

average.

• 2D voids combine the advantages of the other finders. They excel in marking

the actual radius of voids in the mass map profiles, with reduced central and

wall amplitudes.

We thus report that all three void types we consider show consistent signals when

mass maps are varied for a given void sample. We leave more detailed analysis for

future work.
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Chapter 4

Measuring the CMB Lensing Signal

of Voids in the DES Y3 Dataset with

Matched Filtering Approach

This chapter of the thesis is primarily based on my peer-reviewed published work

Demirbozan et al. (2024), titled "The Gravitational Lensing Imprints of DES Y3

Superstructures on the CMB: A Matched Filtering Approach".

4.1 Introduction

Early large-scale galaxy surveys have revealed that the Universe’s structure forms

a cosmic web, featuring dense filaments and galaxy clusters alongside under-dense

regions known as cosmic voids (Peebles, 1980). As observational data has ex-

panded, these vast regions, primarily devoid of matter and dark matter, have gained

heightened attention (e.g., see Hamaus et al., 2016, Kovács et al., 2022, Nadathur

et al., 2019, Nadathur et al., 2020a, Raghunathan et al., 2019, Vielzeuf et al., 2021,

Woodfinden et al., 2023).

In particular, cosmic voids have proven to be useful tools for advancing cosmo-

logical studies. They offer a means to constrain the Neutrino mass sum (Kreisch

et al., 2019, Lesgourgues et al., 2013, Lesgourgues & Pastor, 2006, Massara et al.,

2015, Vielzeuf et al., 2023, Villaescusa-Navarro et al., 2013). Additionally, their
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abundance and density profiles aid in distinguishing Modified Gravity models from

General Relativity (GR), with voids’ ability to bypass screening mechanisms in high-

density environments being particularly noteworthy (Khoury & Weltman, 2004, Li

et al., 2012, Martino & Sheth, 2009, Pisani et al., 2019, Vainshtein, 1972).

As a result, voids offer an environment that is sensitive to physics beyond the

standard model of cosmology. They are sensitive to many effects, such as the

growth rate of cosmic structure and redshift space distortions (Hamaus et al., 2017,

2016, Nadathur et al., 2020b, Woodfinden et al., 2022, 2023), Alcock-Paczynski

distortions (Hamaus et al., 2016, Lavaux & Wandelt, 2012, Nadathur et al., 2019),

weak gravitational lensing (Clampitt & Jain, 2015, Fang et al., 2019, Melchior et al.,

2014, Raghunathan et al., 2019, Sánchez et al., 2016), baryon acoustic oscillations

(Kitaura et al., 2016), and the integrated Sachs-Wolfe effect (Granett et al., 2008,

Kovács et al., 2022, Kovács et al., 2019, Nadathur & Crittenden, 2016, Sachs &

Wolfe, 1967).

The large-scale structure of the Universe can influence the observed cosmic

microwave background (CMB) and imprint secondary anisotropies. For instance,

weak secondary CMB anisotropies, shaped by the evolving low-𝑧 structure, provide

key observational tests for dark energy. In particular, Kovács et al. 2022, Kovács

et al. 2019 have shown an excess ISW signal from large voids that deviates from

the predictions of the ΛCDM model. These findings have intensified interest in

CMB lensing signal of voids, as this offers an alternative test of these secondary

anisotropies.

Several recent works (e.g. Ade et al., 2019, Schmittfull & Seljak, 2018, Tan-

imura et al., 2020) have studied the cross-correlation between constructed weak

CMB lensing convergence maps (𝜅) and large-scale structure. For example, it was

shown that CMB lensing can be used to measure the masses of dark matter haloes

(initial detections include Baxter et al., 2015, Madhavacheril et al., 2015, Planck

Collaboration et al., 2016c) and to explore the non-linearities in structure formation

through its correlation with cosmic filaments (He et al., 2018). However, unlike

filaments and clusters, cosmic voids, as under-dense regions, cause an anti-lensing

effect and imprint a negative 𝜅 signal on the constructed CMB lensing map.
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The CMB lensing imprints of voids have been measured by various authors

(Cai et al., 2017, Hang et al., 2021, Kovács et al., 2022, Raghunathan et al., 2019,

Vielzeuf et al., 2021) with detection significances ranging from ∼ 3𝜎 up to ∼ 9𝜎.

However, Kovács et al. (2022) found the amplitude of the lensing signal to be low,

in moderate ∼ 2𝜎 tension with predictions from simulations, and Hang et al. (2021)

also found hints of lower-than-expected lensing from voids. Given the other tensions

in the late-time measurements of cosmological parameters with the predicted values

from ΛCDM (Abdalla et al., 2022, Heymans et al., 2021, Riess et al., 2019, Verde

et al., 2019), any discrepancy in the CMB lensing signal from voids would be of

great interest.

The stacked CMB lensing signal from voids is strongly influenced by specific

void parameters. A typical void features a low-density core (with overdensity 𝛿 < 0)

which may be surrounded by a compensating marginally overdense region (𝛿 > 0).

For most voids, the low central matter density gives rise to a de-lensing effect,

characterized by 𝜅 < 0 around the line of sight through the void center. However,

depending on the relative amplitudes of the density fluctuations in the core and the

surrounding overdensity and their physical extents, the convergence profile 𝜅(𝜃) at

angle 𝜃 from the void centre may differ, showing dips and rings of different widths

(Nadathur et al., 2017, Raghunathan et al., 2020). This in turn can depend on the

properties of the void-finding algorithm used for identification.

The objective of our study is to re-examine the CMB lensing imprint of voids

in the DES Y3 data using a matched filtering method, as outlined in (Raghunathan

et al., 2019), and to employ the Voxel void finder algorithm, which has not been

previously utilized in DES. Moreover, we explore the variation of the CMB lensing

signal with respect to redshift and the type of void finder employed. In contrast to

prior studies by (Hang et al., 2021, Kovács et al., 2022, Raghunathan et al., 2019),

which each employed a single type of void finder, our study implements two different

void finders to enhance the depth and range of our findings.

This paper is structured as follows: Section 2 explains our observed and simulated

data sets. Section 3 outlines our methods for identifying voids and superclusters,

as well as our matched filtering technique. Our primary observational findings
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are detailed in Section 4, while Section 5 offers a comprehensive discussion and

concludes the study.

4.2 Data and Simulations

4.2.1 Observational Data

Dark Energy Survey Year-3 Data

We identify cosmic voids using photometric redshift data from the first three years

(Y3) of the Dark Energy Survey (DES). DES is a six-year sky survey, with Y3

covering approximately one-eighth of the sky (5000 deg2) to a depth in the 𝑖𝐴𝐵 band

of less than 24, imaging around 300 million galaxies in five broadband filters (𝑔𝑟𝑖𝑧𝑌 )

up to redshift 𝑧 = 1.4 (for details see e.g. Dark Energy Survey Collaboration, 2016,

Flaugher et al., 2015).

We use a luminous red galaxy sample from the DES Y3 dataset. This Red-

sequence Matched-filter Galaxy Catalogue (redMaGiC) (see Rozo et al., 2016, for

DES science verification (SV) test results) is a catalog of photometrically identified

luminous red galaxies, with the red-sequence Matched-filter Probabilistic Percola-

tion (redMaPPer) cluster finder algorithm (Rykoff et al., 2014). This algorithm has

been used in many DES analyses (Fang et al., 2019, Gruen et al., 2016, Kovács,

2018, Kovács et al., 2022, Sánchez et al., 2016, Vielzeuf et al., 2021).

The redMaGiC galaxies offer the benefit of a low photo-𝑧 error, approximately

𝜎𝑧/(1 + 𝑧) ≈ 0.013. This error rate is half that of the MagLim galaxy sample from

DES Y3, which stands at𝜎𝑧/(1+𝑧) ≈ 0.027 (Porredon et al., 2022). For comparison,

we consider the study by (Kovács et al., 2022) which utilized an earlier version of

redMaGiC. Hence, we adopt the updated redMaGiC v0.5.1 for this research.

The redMaGiC algorithm produces various catalogs, distinguished by the den-

sities and luminosities of the galaxies. Specifically, the High Density (HD) catalog

maintains a consistent galaxy density, roughly 𝑛̄ ≈ 10−3ℎ3 Mpc−3 along the redshift

range. Conversely, the High Luminosity (HL) catalog exhibits a galaxy density of

𝑛̄ ≈ 4 × 10−4ℎ3 Mpc−3, which is considerably lower than its HD counterpart.
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In our analysis, we focus on the redshift range 0.2 < 𝑧 < 0.8 and make use of

the empirically constructed DES Y3 survey mask, which excludes contaminated

pixels, mainly due to nearby stars. This low photo-𝑧 error of redMaGiC allows

us to robustly identify void environments. The details of the clustering analysis of

the DES Y3 redMaGiC sample are documented in Pandey et al. (2022). It is also

important to mention that this study identified certain systematic errors, to which our

measurements are not sensitive, as we correlate them with an external LSS tracer,

the CMB lensing map.

Planck CMB Lensing Map

We utilize the full-sky public Cosmic Microwave Background (CMB) lensing con-

vergence (𝜅) maps from the Planck survey’s 2018 data release (Planck Collaboration

et al., 2020b).1

More specifically, we employ the COM_Lensing_4096_R3.00 map, which is

reconstructed using a minimum-variance (MV) quadratic estimator (Hu & Okamoto,

2002b). This estimator is based on a combination of foreground-cleaned SMICA

(Planck Collaboration et al., 2016a) CMB temperature and polarization maps, with

the mean field subtracted and a conservative mask applied to galaxy clusters to reduce

contamination from thermal Sunyaev-Zel’dovich (tSZ) contributions. Throughout

our analysis, we use 𝑁side = 512 HEALPix maps (Górski et al., 2005). We note that

this 𝑁side = 512 resolution is an appropriate choice considering the degree-scale

imprints of voids.

The gravitational lensing of the CMB, occurs due to spatial variations in the

gravitational potential field, Φ(𝑟, 𝜃), as CMB photons traverse the Universe. The

convergence can be described by the following equation:

𝜅(𝜃) =
3𝐻2

0Ω𝑚

2𝑐2

∫ 𝑟max

0

(𝑟max − 𝑟)𝑟
𝑟max

𝛿(𝑟, 𝜃) 𝑑𝑟 (4.1)

where 𝑟 is the comoving distance and 𝑟max is the comoving distance to the last

scattering surface of the CMB. This 𝜅 is a dimensionless quantity and measures all

1Downloaded from https://pla.esac.esa.int/#cosmology
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the projected matter density up to the CMB surface and is weighted by a kernel for

a given angular direction depending on the distance. The gravitational potential is

also related to the matter density fluctuation 𝛿 via the Poisson equation:

∇2Φ =
3𝐻2

0Ω𝑚

2𝑎
𝛿, (4.2)

where 𝛿 is the perturbation in the matter density and 𝑎(𝑡) is the dimensionless scale

factor.

4.2.2 Simulation - MICE CMB Lensing Map and redMaGiC

Tracers

We utilize the publicly available MICE (Marenostrum Institut de Ciencies de l’Espai)

simulation, which is an N-body light-cone extracted from the MICE Grand Chal-

lenge (MICE-GC). The MICE-GC contains approximately 70 billion dark-matter

particles in a (3ℎ−1Gpc)3 comoving volume. This simulation was created using

the Marenostrum supercomputer at the Barcelona Supercomputing Center (BSC)2,

running the GADGET2 code (Springel, 2005). For details on the creation of the MICE

simulation, see Crocce et al. (2015), and Fosalba et al. (2015).

The MICE simulation assumes a flat standard ΛCDM model with input fiducial

parameters: Ω𝑚 = 0.25, ΩΛ = 0.75, Ω𝑏 = 0.044, 𝑛𝑠 = 0.95, 𝜎8 = 0.8, and ℎ = 0.7,

derived from the Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) best

fit results (Dunkley et al., 2009a).

In this study, we utilize the CMB lensing map from the MICE simulation,

generated using the “Onion Universe” methodology as detailed in Fosalba et al.

(2008). The validity of this lensing map was subsequently confirmed through auto-

and cross-correlations with foreground MICE galaxy and dark matter particles (refer

to Fosalba et al. (2015) for an in-depth description of the map creation process).

Initially, the MICE 𝜅 map was provided with a HEALPix pixel resolution of 𝑁side =

2048. However, we downgraded the map to a lower resolution of 𝑁side = 512. This

adjustment significantly reduces the computational expense without causing a loss

2www.bsc.es
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of much information, given that voids are degree-scale objects. We also downgrade

the resolution of the Planck 𝜅 map to 𝑁side = 512 employed in our analysis.

We chose the redMaGiC tracers on our mock galaxy catalog from MICE, main-

taining consistency with the methodology utilized in the analysis of the observed

DES Y3 data Rozo et al. (2016). It is pertinent to note that the coverage of MICE

dark matter halos is confined to an octant of the sky (5169.25 deg2), which is larger

than the effective footprint of DES Y3 (4147.15 deg2). This MICE-redMaGiC mock

galaxy catalog was constructed to match the number density of the DES Y3 red-

MaGiC sample. It served as our tool to trace the distribution of galaxies on a large

scale and to identify voids.

It is important to emphasize that the MICE cosmological parameters are rela-

tively distant from the best-fit Planck cosmological parameters Planck Collaboration

et al. (2020a). For example, the difference in the values of Ω𝑚 and the Hubble con-

stant 𝐻0 can affect the amplitude of the lensing signal. However, we assume that

variances in cosmological parameters, particularly Ω𝑚, negligibly impact our lens-

ing signal measurements. This postulation aligns with findings from Vielzeuf et al.

(2021) and Kovács et al. (2022), who, utilizing the WebSky simulation Stein et al.

(2020), showed minimal influence of Ω𝑚 on the CMB lensing signal’s amplitude.

Additionally, our methodology encompasses a comprehensive error analysis, par-

ticularly addressing the MICE template uncertainties, ensuring the accuracy of our

findings despite potential Ω𝑚 discrepancies.

In this context, it is important to mention that, as detailed in Nadathur et al.

(2019), Vielzeuf et al. (2021), the parameter that seems to have the most significant

impact on the determination of the matter content and the lensing convergence of

voids is 𝜎8. The value of 𝜎8 in the MICE simulation, which is 0.8, is not far off from

the best-fit Planck value of 𝜎8 = 0.811 ± 0.006. Additionally, (Nadathur, 2016) and

(Nadathur & Hotchkiss, 2015a) have identified the primary factors influencing the

size and number of voids in any galaxy sample as the mean galaxy number density,

the amplitude of galaxy clustering and the linear galaxy bias. Furthermore, 𝜎8 also

affects void density profiles, especially close to void center (e.g., see Figure 5 in

Nadathur et al., 2019).
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4.3 Method

Our approach aligns with the matched filtering technique detailed in Nadathur & Crit-

tenden (2016), Raghunathan et al. (2019). Notably, Nadathur & Crittenden (2016)

evaluated the ISW imprint of voids, emphasizing that this technique avoids depen-

dence on arbitrary choices of additional tuning parameters (such as the smoothing

scale for Gaussian filtering of the CMB) that could introduce biases.

Utilizing the Voxel void parameters, 𝛿𝑔 and 𝑅𝑣, we introduce a dimensionless

parameter:

𝜆𝑣 ≡ 𝛿𝑔

(
𝑅𝑣

1 Mpc/ℎ

)1.2
. (4.3)

This parameter, as empirically demonstrated by Nadathur et al. (2017), exhibits a

strong correlation with void density profiles and their macroscopic environments.

As such, 𝜆𝑣 serves as a pertinent proxy for the gravitational potential associated

with voids. Given this relationship, we expect notable variations in the lensing

convergence profiles of voids based on their respective 𝜆𝑣 values.

4.3.1 Void and Supercluster Finding

Voxel Voids

The main goal of this research is to measure the CMB lensing signal from voids

using two different void definitions: Voxel and 2D. The Voxel method is designed

specifically for datasets with fragmented survey footprints, like DES Y3. One of

the key benefits of Voxel is that it estimates the galaxy density field by computing

number counts on a mesh, normalised by the counts of unclustered random points

whose distribution accounts for the survey window function. This is the same

method as used for estimating densities when computing power spectra: its use

provides a natural way to account for variations in the survey selection function, and

makes the Voxel algorithm better at handling gaps or fragmented survey masks than

algorithms that employ Voronoi tessellations to estimate the density field. However,

after the density field has been estimated, Voxel identifies voids using a watershed

algorithm similar to that used by other, tesellation-based, algorithms (Nadathur &
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Percival, 2019, Neyrinck, 2008, Sutter et al., 2015b, e.g.).

The algorithm generates the mesh size, denoted as 𝑁mesh, based on the tracer

mean number density. The size of the mesh is set based on the condition that

every cubic grid unit, known as a voxel, should possess a side length represented

by 𝑎vox = 0.5 ×
(

4𝜋𝑛̄
3

)− 1
3 . Here, 𝑛̄ stands for the estimated average density of

galaxies. The galaxy density field is then subsequently smoothed using a Gaussian

filter of size 𝑛
−1/3
𝑡 where 𝑛𝑡 is the mean number density of tracers. After this step,

local minima are identified across the voxels. Basins are formed around each local

minimum, mirroring the process used in earlier ZOBOV algorithm (Neyrinck, 2008).

The addition of adjacent voxels with increasing overdensity to the basin halts when

the next voxel shows a lower density than its predecessor. Each resulting basin

signifies a Voxel void.

For each identified Voxel void, we compute an average galaxy overdensity 𝛿𝑔

and define an effective spherical radius 𝑅𝑣, which equates to the radius of a sphere

with a volume equivalent to that of the void.

We generate the Voxel void catalogs for both DES Y3 and MICE simulation

using the open-source REVOLVER void-finding code Nadathur et al. (2019)3.

Void sizes in the MICE simulation range from 1.95ℎ−1Mpc ≤ 𝑅𝑣 ≤ 61.96 ℎ−1Mpc,

peaking around the median value 𝑅𝑣 = 19.37 ℎ−1Mpc. Meanwhile, for the DES,

void sizes range from 2.04ℎ−1Mpc ≤ 𝑅𝑣 ≤ 59.41 ℎ−1Mpc, peaking around the me-

dian value 𝑅𝑣 = 19.98 ℎ−1Mpc. Both MICE and DES have a median void redshift of

𝑧 = 0.57. We perform a comparative analysis of the number density of Voxel voids

identified in both the MICE and DES Y3 datasets per comoving volume (Mpc/ℎ)3,

as shown in Figure 4.1.

By applying the Voxel void finder to the updated redMaGiC galaxies, we ob-

tained notable insights. Our preference for HD tracers of redMaGiC in identifying

Voxel voids was influenced by their enhanced CMB lensing signal-to-noise ratio.

Our tests confirmed that HD voids exhibit a higher S/N than HL voids, enhancing

the efficacy of the matched filter method over other tracer densities. This outcome

is primarily attributed to the reduced galaxy density in the HL.

3Available at https://github.com/seshnadathur/Revolver
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Figure 4.1: Histogram illustrating the distribution of Voxel void number density
per unit volume in both the MICE and DES Y3 HD catalogs.

Table 4.2 outlines our findings: 44,426 voids in the MICE catalog and 33,427

voids in the DES Y3 catalog, both identified using High Density (HD) tracers. The

disparity in void counts between MICE and DES Y3 is due to differences in effective

sky coverage: MICE covers 5169.25 deg2 while DES Y3 covers 4143.17 deg2.

Consequently, the total voxel void number densities for MICE and DES Y3 are

8.59 voids/deg2 and 8.07 voids/deg2, respectively. Although our primary interest

lies in voids within the 0.2 < 𝑧 < 0.8 redshift range, data constraints restricted our

Voxel void analysis in the MICE catalog to a maximum redshift of 𝑧 = 0.75.
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2D Voids

We also employ a 2D void finder, an algorithm initially developed for photometric

redshift surveys. This algorithm identifies voids within tomographic redshift bins,

which are slices of space at different redshift ranges (Sánchez et al., 2016). The 2D

void finder has been employed in several DES studies Kovács et al. (2019, 2022),

Vielzeuf et al. (2021).

The 2D algorithm inspects possible minima in the galaxy density field, which

has been projected and smoothed for each redshift slice. The void radius 𝑅𝑣 is

defined when the density inside a thin annulus around the void center reaches the

mean density of the redshift slice, increasing the annuli by 1 ℎ−1Mpc. While 𝑅𝑣 is

typically measured in degrees and then converted to ℎ−1Mpc for consistency, we opt

to use degrees in our matched filtering analysis.

Key parameters for the 2D void finder include the smoothing scale for the galaxy

density maps, the redshift slice thickness, and the central minimum pixel density.

We adopt a smoothing parameter of 𝜎 = 10 ℎ−1Mpc, a central pixel density that is

at least 30% of the most underdense pixels in the redshift slice, and a slice thickness

of 𝑠 ≈ 100ℎ−1Mpc. This results in 12610 and 10904 voids for MICE and DES Y3,

respectively.

To remove potentially spurious objects due to variations in photometric redshift,

a measure of redshift derived from the photometric observations of an object, we

apply a cut of 𝑅𝑣 > 20ℎ−1Mpc, following the precedent set in Vielzeuf et al. (2021)

and Kovács et al. (2022). After this cut, the number of 2D voids reduces to 6295 for

MICE2 and 5148 for DES Y3.

Normalizing by the effective area, the 2D void densities are approximately

1.22 voids/deg2 for MICE2 and 1.25 voids/deg2 for DES Y3 within the total redshift

range. Just as with the Voxel voids, the 2D void densities of MICE and DES Y3

align closely. This implies that the discrepancies in absolute void count largely arise

from the differences in effective areas: 5169 deg2 for MICE2 and 4147 deg2 for

DESY3. Figure 4.2 shows the 2D void number density per unit volume as a function

of redshift bins. Specifically, we find that MICE (voids/deg2) = 1.22, while DES

Y3 (voids/deg2) = 1.25, which indicate a close alignment between the two. For a
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Figure 4.2: Histogram illustrating the distribution of 2D void number density
per unit volume as a function of tomographic redshift bins for the MICE and
DES Y3.

detailed view, refer to Table 4.1.

For this analysis, we utilize the High Luminosity (HL) tracers from our updated

redMaGiC v0.5.1 sample, this tracer density type choice is consistent with Kovács

et al. (2022) and has also been used with 2D voids in other DES studies (Kovács

et al., 2022, 2021). The study conducted by Kovács et al. (2022) is particularly

relevant to our analysis as it also examined DES Y3 2D voids defined on HL tracers

and used the MICE simulation, similar to our approach. The key difference lies in

their filtering and stacking method, which differs from ours. Therefore, it becomes

intriguing to investigate the extent of the difference these distinct methods can cause,

given the similarity in both the dataset and the simulation used. This choice was

made with the aim of examining the effects of an alternative method, the matched

filter, on our measurements.
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Table 4.1: Comparison of 2D Voids and 2D Superclusters in MICE and DES Y3.
Total numbers without any cut are as follows: MICE 2D Voids: 12610, MICE
2D Superclusters: 13167, DES Y3 2D Voids: 10904, DES Y3 2D Superclusters:
10592.

Category Redshift MICE (>20Mpc/h) DES Y3 (>20Mpc/h)
2D Voids Low 1201 921

Mid 1840 1512
High 3254 2715

Total (>20Mpc/h) 6295 5148
2D Superclusters Low 1043 809

Mid 1556 1338
High 2885 2285

Total (>20Mpc/h) 5484 4432

2D Superclusters

In order to supplement our analysis of 2D voids and provide further validation of

our results, we have expanded our study to include 2D superclusters. To identify

these superclusters, we applied the same 2D void finder to the tomographic galaxy

density maps used in the previous void analysis, but with a twist: we inverted the

density maps by multiplying them by −1. This operation effectively flips the galaxy

density map, facilitating the detection of voids in the newly inverted galaxy density

landscape. As such, the detected ’voids’ in this inverted landscape correspond to

superclusters in the original data. It is important to mention that our main reason for

using this supercluster definition is to be consistent with Kovács et al. (2022). The

superclusters found in this way represent overdense structures on a large scale within

the distribution of galaxies, though they may not be bound by gravity. Similar to

how voids are associated with extensive troughs in the density field, superclusters

are linked to prominent peaks in this field (Nadathur & Hotchkiss, 2014).

Using this method, we compiled a catalog of 2D superclusters, finding 5424

superclusters in the MICE simulation and 4432 superclusters in the DES Y3 dataset

after applying a size cut of 𝑅𝑣 > 20ℎ−1Mpc. We then apply the same redshift

binning as in 2D voids and we obtain the 2D supercluster numbers in Table 4.1.
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4.3.2 Void Lensing in MICE Simulation

To begin, we inspect the void lensing imprints within the MICE simulation to

calibrate the void lensing profiles 𝜅(𝜃). This involves stacking 10◦ x 10◦ patches,

derived from the full-sky MICE 𝜅 map and centered on each void. These stacks

reveal a negative 𝜅 imprint (divergent lensing) at the center of the void, signifying

the void’s central underdensity. In contrast, a less conspicuous positive imprint

encircles this, denoting matter overdensities at the outer periphery of the void. The

measured radial profiles from these stacks can be seen in Figure 4.3.

Unlike some studies (Cai et al., 2017, Hotchkiss et al., 2015, Kovács et al., 2019,

2022, Vielzeuf et al., 2023, Vielzeuf et al., 2021) that adopt a re-scaling method, our

measure of void lensing signals is in units of degrees (𝜃). This choice stems from

our use of the matched filtering approach, akin to Raghunathan et al. (2019), which

necessitates that these simulation template void lensing profiles are defined as 𝜅(𝜃).

Importantly, by not re-scaling, we maintain uniformity in the noise power from the

CMB lensing map across all void measurements. This is critical because the noise

in the CMB lensing map is scale-dependent; thus, re-scaling might inadvertently

mix different levels of noise power across various scales.

Additionally, Nadathur et al. (2017) has shown a stronger correlation between

the void lensing signal and 𝜆𝑣, as defined in Equation 4.3—a function of void radius

𝑅𝑣 and void overdensity 𝛿𝑔—than with the angular size of voids.

We organize the MICE void sample into three distinct redshift bins, labelled

LOWZ, MIDZ, and HIGHZ. This allows us to account for possible redshift-

dependent variations in the CMB lensing imprints of voids.

Further granularity is achieved by subdividing each redshift bin into three sep-

arate 𝜆𝑣 bins. Importantly, each 𝜆𝑣 bin is populated with an approximately equal

quantity of voids, a methodological decision that aligns with the approach used in

(Raghunathan et al., 2019). By proceeding in this way, we derive a total of nine bins

for our Voxel void sample.

As anticipated, the void lensing imprint strongly depends on the value of 𝜆𝑣.

More explicitly, voids with negative 𝜆𝑣 values, such as those in bins 1 and 2,

correlate with slightly larger, lower-density voids, exhibiting 𝜅 ≤ 0. On the other
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Table 4.2: This table presents the number of Voxel voids alongside the mean void
size within each redshift bin for both MICE and DESY3 datasets with sky fraction
being 0.125 and 0.100, respectively. For the detailed Voxel void size distribution
across all 9 void bins see Figure A.2 in the Appendix.

MICE Void Count DES Y3 Void Count
LOWZ (0.2 - 0.43) 9,298 6,821
MIDZ (0.43 - 0.59) 14,679 10,861
HIGHZ (0.59 - 0.75) 20,449 15,027

MICE Mean Void Size DES Y3 Mean Void Size
LOWZ (0.2 - 0.43) 20.01 (Mpc/h) 20.57 (Mpc/h)
MIDZ (0.43 - 0.59) 20.22 (Mpc/h) 20.54 (Mpc/h)
HIGHZ (0.59 - 0.75) 19.58 (Mpc/h) 20.02 (Mpc/h)

hand, voids with higher 𝜆𝑣 values (as in bin 3) equate to "voids within voids" (Sheth

& van de Weygaert, 2004), predominantly smaller voids enveloped within large-

scale underdensities, which present a positive 𝜅 ring around the void boundary as

seen from Figure 4.3.

We also take into account the fact that the MICE footprint is significantly larger

than the DES Y3 footprint and as a result, contains more voids. To assess the impact

of this difference, we apply the DES Y3 mask to the MICE octant and identify

the voids within this overlapping area. Subsequently, we carry out our stacking

analysis using these voids. As expected, and in line with previous studies, we do

not observe any substantial differences in the stacked profiles, despite the varying

footprints. Consequently, we opt to use all the voids in the MICE simulation without

implementing any footprint cut. This approach is consistent with the methodologies

adopted by (Kovács et al., 2022, Vielzeuf et al., 2021), providing further validation

to our study.

4.3.3 Filtering the CMB lensing map

When handling the CMB lensing map, we focus on lensing modes with 𝐿 ≤ 2048.

This is because the lensing signals from cosmic voids are typically found on degree

scales, and higher 𝐿 modes mostly consist of noise rather than useful signal. While

we did consider the exclusion of the largest scale modes with 𝐿 < 8 as was done in

Planck Collaboration et al. (2020b), we found that this had a negligible impact. As
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Figure 4.3: This figure presents the derived profiles from stacked images, each cen-
tered on identified Voxel voids within the MICE simulation. The data is segregated
into three different redshift bins, and within each of these, there are three different
𝜆𝑣 bins. The representation thus illustrates the behaviors and properties of these
Voxel voids across three redshift bins and different values of 𝜆𝑣. The shaded areas
in the figure represent 1𝜎 uncertainty intervals, estimated through standard errors
obtained from "void-by-void jackknife resampling." The dashed lines illustrate the
aggregate result from all voids within the specified redshift category.

a result, we decided to exclude only the monopole and the dipole.

The key challenges in detecting the lensing signals are the lensing reconstruction

noise present in the Planck 𝜅 map and the additional 𝜅 values contributed by unrelated

structures in our line of sight. These noise sources are about ten times larger than

the lensing signal from a single void, rendering it essentially invisible. Hence, our

strategy involves stacking these signals together and dividing the voids based on

their 𝜆𝑣 values. We then apply an optimized ’matched filter’ to the 𝜅 map before

stacking. This filter, derived from templates in the MICE simulations, combines

with the original map in a way that highlights the parts of the map that match the

filter, making the lensing signals stand out more.

The matched filter transforms the original lensing map, represented as 𝜅, into a

’filtered’ version, or 𝜅MF. This transformation involves convolving the filter with

the original map, effectively amplifying the signals that match the filter. We created

these filtered maps for each of nine different void ‘bins’.

One of the key benefits of this matched filter technique is its neutrality - it is

applied to the whole map uniformly so, it doesn’t unfairly favor certain parts of the

map over others. It also reduces the variability, or ‘noise’, at the locations of voids

to the lowest possible level.
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By comparing these measurements across all voids stacked together, we can see

the benefits of our approach to split the data into bins based on 𝜆𝑣 values. We also

find that the lensing signals are most easily detected in the two extreme 𝜆𝑣 bins rather

than the middle bin.

To construct the matched filters, we initiate by defining the convergence field at

a location 𝜽 , originating from the position 𝜽0 which corresponds to the 𝜅 value at

the center of a void as illustrated in Figure 4.3. This is expressed as:

𝜅(𝜃) = 𝜅template( |𝜃 − 𝜃0 |;𝜆𝑣) + 𝑝(𝜃) (4.4)

In this context, 𝑝 is symbolic of the noise component in all the 𝜅 maps, excluding

the void lensing signal itself. Meanwhile, the 𝜅template symbol represents the corre-

sponding void lensing template profile, which is derived from the stacked images

from MICE.

It is possible to separate this template profile as:

𝜅template(𝜃;𝜆𝑣) = 𝜅0(𝜆𝑣)𝑘 (𝜃;𝜆𝑣) (4.5)

= 𝜅0(𝜆𝑣)
∞∑︁
𝐿=0

𝑘𝐿0(𝜆𝑣)𝑌0
𝐿 (cos 𝜃), (4.6)

In the given equations, 𝜅0(𝜆𝑣) ≡ 𝜅template(0;𝜆𝑣) is what we refer to as the

‘amplitude term’. It informs us about the maximum intensity of the template profile

at the void center. Furthermore, 𝑘 (𝜃), which we call a shape function’, standardizes

the shape of the template profile based on the coefficients of its spherical harmonic,

𝑘𝐿0. To derive the 𝑘𝐿0 coefficients, an interpolated univariate spline was employed

to construct a HEALPix template map from the 𝑘 (𝜃) measurements. This map’s

pixel values, calculated from spherical coordinates, were then normalized relative

to the value of 𝜅0.

By taking these definitions into account, and making the assumption that the

noise component is uniform, shows no directional bias, and averages out to zero,

we are in a position to calculate the spherical harmonic coefficients for the ideal
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matched filter:

Ψ𝑀𝐹
L0 (𝜆𝑣) =

𝛼𝑘𝐿0(𝜆𝑣)
𝐶

𝑁tot
𝐿

(4.7)

with 𝛼 defined as

𝛼−1 ≡
∞∑︁
𝐿=0

(𝑘𝐿0(𝜆𝑣))2

𝐶
𝑁tot
𝐿

, (4.8)

where

𝐶
𝑁tot
𝐿

= 𝐶𝜅𝜅
𝐿 + 𝑁 𝜅𝜅

𝐿 , (4.9)

is the total power spectrum, and𝐶𝜅𝜅
𝐿

and 𝑁 𝜅𝜅
𝐿

are the lensing and noise power spectra,

respectively, for the Planck lensing map.

The ideal matched filters for each void bin, constructed using previously acquired

template profiles, are displayed in Figure 4.4. We calculate the sum in Eq. 4.8 up

to 𝐿 = 700, as the spherical harmonic coefficients for higher values of 𝐿 rapidly

approach zero, as seen in the figure. We have also transferred the jackknife errors

from the template profiles into the matched filters.

An important takeaway from Figure 4.3 is that the templates for the 𝜆𝑣 bin

1 in every redshift category don’t undergo a sign change, which suggests that the

corresponding matched filters for these bins also stay the same. For all the remaining

bins, a conspicuous crossover point is observed, resulting in filter profiles that are

either partly or entirely compensated. In this context, a "compensated" profile refers

to a matched filter profile where the areas under the curve with positive and negative

values of kappa cancel each other out, leading to a net zero integral over the profile.

This compensation phenomenon actually reflects a balance between the regions of

under-density and over-density within the voids and superclusters, as captured by

the lensing signal.

For each bin defined by the matched filter, based on 𝜆𝑣, the lensing map which

has been filtered, denoted by 𝜅MF, can be viewed as a convolution of the filter with

the original map. Formally,
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Figure 4.4: This figure shows the optimally determined spherical harmonic coef-
ficients, known as the kernel of the matched filters 𝜓𝑀𝐹

𝐿𝑂
, derived from the MICE

template profiles shown in Figure 4.3. The shaded regions represent uncertainty
estimates calculated from 1000 synthetic datasets using jackknife standard errors,
as detailed in Equation 4.15. In our analysis, we confine the application of spherical
harmonics to 𝐿 = 700, a convention based on the observation that the power of these
coefficients approaches zero beyond this threshold.

𝜅MF(𝜂) =
∫

𝑑Ω𝜅(𝜃)ΨMF( |𝜃 − 𝜂 |), (4.10)

This can also be transcribed into spherical harmonic space (Schäfer et al., 2006)

as follows,

𝜅𝑀𝐹
LM =

√︂
4𝜋

2𝐿 + 1
𝜅𝐿𝑀Ψ𝑀𝐹

L0 . (4.11)

The matched filter is designed to ensure the expected value of the filtered field at the

void locations is:

⟨𝜅MF(0;𝜆𝑣)⟩ = 𝜅0(𝜆𝑣), (4.12)

such that the filter is unbiased. This is the 𝜅0 measured at the void center. This

matched filter also minimizes the variance of the filtered field at this location, given

by

𝜎2
MF(0;𝜆𝑣) =

∞∑︁
𝐿=0

𝐶
𝑁tot
𝐿

|Ψ𝑀𝐹
L0 |2 . (4.13)

The maximum detection level of the optimal matched filter, for a single isolated

void, can be quantified as (McEwen et al., 2008),

Γ𝑠𝑖𝑛𝑔𝑙𝑒 (𝜆𝑣) ≡
⟨𝜅MF(0;𝜆𝑣)⟩
𝜎MF(0;𝜆𝑣)

= 𝛼−1/2𝜅0(𝜆𝑣) . (4.14)
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In summary, matched filtering is applied to optimize the signal-to-noise ratio.

This technique emphasizes the expected lensing signal in specific regions of the

lensing map, following a predetermined template, while reducing non-relevant areas.

The lensing signal, as represented by the void center pixel in the filtered map, enables

a statistically optimized quantification of the lensing effect, which is suitable for

stacking.

As observed in Figure 4.4, it is important to note that the power of the filter

primarily lies in the 𝐿 modes less than 500. This makes the final central pixel

of voids susceptible to smaller-scale noise as we anticipate that high 𝐿 modes are

dominated by noise. This does not compromise its effectiveness but rather highlights

its specificity. Given that cosmic voids are large-scale structures, it is reasonable

that these 𝐿 modes capture the most significant lensing information. Therefore, the

efficiency of the matched filter is not predicated on capturing all possible information,

but on maximizing the detectability of the specific lensing signal, assuming that the

MICE template accurately characterizes this signal.

4.3.4 Error Estimation

We use the jackknife method to estimate the uncertainties in the MICE void lensing

templates and their corresponding matched filters. This approach contrasts with the

method used by Kovács et al. (2022) (hereafter referred to as K22), which assumes

that errors in MICE are negligible. We set 𝑁 𝑗 𝑘 = 𝑁void for each void bin in the

MICE simulation. This process results in a jackknife sample of size 𝑁void. The

standard errors of the MICE templates, as used in Figure 4.3, are given by:

𝜎JK =

√√√
𝑁void − 1
𝑁void

𝑁void∑︁
𝑖=1

(𝜃𝑖 − 𝜃)2 (4.15)

where 𝜃𝑖 are the individual jackknife samples, 𝜃 is the mean of the jackknife esti-

mates, and 𝑁void is the number of voids in that bin.

We then estimate the covariance matrix from these "void by void" jackknife
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samples by using (Mohammad & Percival, 2022):

𝐶
( 𝑗 𝑘)
𝑖 𝑗

=
𝑁void − 1
𝑁void

𝑁void∑︁
𝑘=1

(𝜃𝑘𝑖 − 𝜃𝑖) (𝜃𝑘 𝑗
− 𝜃 𝑗 ) (4.16)

where the index 𝑘 represents the jackknife samples and 𝜃𝑘𝑖 and 𝜃 𝑗𝑖 are the corre-

sponding 𝜃 measurements in the 𝑖th bin, as shown in Figure 4.3.

After this, a synthetic data vector is created as:

𝜉mock = 𝐿𝑍 + 𝜉th, (4.17)

where 𝐿𝐿𝑇 = 𝐶𝑖 𝑗 , 𝐿 is obtained by a Cholesky decomposition of the covariance

matrix 𝐶ĳ, and 𝑍 is a vector of independent standard normal random variables (

𝜇 = 0 and 𝜎 = 1), and 𝜉th is the mean signal template for the corresponding bin.

In this way, we conserve the structure of the covariance and add random Gaussian

noise by using 𝑍 , which makes our template error analysis more robust compared to

previous CMB x LSS studies (Camacho-Ciurana et al., 2024, Kovács et al., 2019,

Kovács et al., 2021, Vielzeuf et al., 2021)

We then obtained 𝑁void synthetic data vectors using Equation 4.17 for each void

bin and calculated the mean profile of these. This process was repeated 𝑁 = 1000

times to obtain 1000 mean profiles. We applied our matched filter methodology

to obtain the spherical harmonic coefficients based on these 1000 mean profiles, as

shown in Fig 4.4.

Subsequently, we perform a convolution of these matched filters with 1000

randomly generated MICE 𝜅 maps, employing the synfast function from the Healpy

library. This operation introduces an additional layer of randomness, derived from

both the 𝜅 map and the coefficients of the matched filters, enabling us to observe

the impact of errors in the MICE templates. Otherwise, we could have just used the

mean template profile to convolve with 1000 randomly generated MICE 𝜅 maps, but

we wanted to observe the effect of the uncertainty in the template profiles.

We further tested our error analysis by applying jackknife resampling to different

sub-volumes and using various groupings with different 𝑁 𝑗 𝑘 values, such as 50, 64,
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and 100, instead of treating each void as an individual jackknife sub-sample. Our

findings indicated that when implementing Equation 4.17, the standard deviation of

the resulting templates remained consistent across these different groupings. This

consistency reinforced our decision to employ the "void by void" jackknife approach

for our final error analysis. This error analysis was repeated for 2D superclusters as

well.

Intriguingly, we find that the final stacked 𝜅 value emanating from the DES

Y3 void centers remains unaffected by the randomness in the spherical harmonics

coefficients of the matched filters. This can likely be attributed to the fact that the

influence of this jackknife randomness is minimal at smaller scales, such as the center

pixels of voids. We, therefore, conclude that our measurements are predominantly

dominated by the noise in the Planck 𝜅 map.

We first extract 𝜅0 values from the randomly generated and matched filtered

Planck-like convergence maps at the location of the central pixels of each bin of

DES Y3 voids. We then average out these values to calculate 𝜅0. This process,

involving 1000 random instances of 𝜅0, allows us to construct a covariance matrix

for our measurements.

Next, we determine the 𝜅0 values at the central pixels of DES Y3 void positions

for each bin on the corresponding matched filtered Planck map. These measured 𝜅0

values are subsequently compared with the corresponding MICE 𝜅0 values. Figure

4.5 illustrates the measured 𝜅0 values for each void bin, encompassing both Voxel

and 2D voids. The standard errors incorporated into the plot correspond to the

diagonal entries of our established covariance matrices.

To measure our CMB lensing detection significance, we use the 𝜒2 minimization

technique as in Kovács et al. (2022), Vielzeuf et al. (2021). We make use of the

following equation;

𝜒2 =
∑︁
𝑙,𝑚

(
𝜅DES
𝑙 − 𝐴𝜅 · 𝜅MICE

𝑙

)
𝐶−1
𝑙𝑚

(
𝜅DES
𝑚 − 𝐴𝜅 · 𝜅MICE

𝑚

)
(4.18)

where 𝜅𝑙 denotes the mean CMB lensing signal within 𝜃 bin 𝑙, and 𝐶 represents

the related covariance matrix. We checked to identify the best-fitting amplitude,
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represented as 𝐴𝜅 ± 𝜎𝐴𝜅
, by constraining the shape of the stacked convergence

profile from DES Y3 x Planck to align with the shape calibrated from the MICE

simulation. Moreover, in our matched filtering methodology, we apply the Percival

correction factor when inverting covariance matrices as described in Percival et al.

(2021). Conversely, for the covariance matrix derived from the template fitting

methodology of K22, we employ the Anderson-Hartlap factor ℎ = (𝑛randoms −

1)/(𝑛randoms − 𝑛data points − 2) before inverting the covariance matrix (Hartlap et al.,

2007). This approach is adopted to maintain consistency with the methods utilized

by K22. We then obtain the final results using the template fitting methodology of

K22 as depicted in Figure 4.7.

4.4 Results

The results of our study confirm that both Voxel and 2D void results are in good

agreement with expectation, as seen in Figure 4.5. The measured 𝐴𝑘 values are

𝐴𝑉𝑜𝑥𝑒𝑙 = 1.03 ± 0.22 and 𝐴2𝐷 = 1.02 ± 0.17. These represent a 4.61𝜎 detection of

CMB lensing in the case of Voxel voids, and a 5.92𝜎 detection for 2D Voids. We

attribute the marginally higher detection associated with 2D voids to their intrinsic

elongation along the line of sight due to their projected nature in redshift shells. We

then apply the same redshift binning to compare the results of 2D superclusters as

seen in Figure 4.6, finding 𝐴2𝐷 = 0.87 ± 0.15, corresponding to a 5.94𝜎 detection

of CMB lensing.

4.4.1 Comparison with K22 Voids

In order to understand the differences that the employed method and type of tracers

can make, we compare our results with K22 (Kovács et al., 2022). K22 uses the same

dataset and simulation as in our study. The difference lies in our updated redMaGiC

algorithm to select the galaxies both in DES Y3 and the MICE simulation.

In addition, we use the matched filtering method, and we do not re-scale when

stacking the CMB cutouts around voids. However, to investigate if the employed

method makes a significant difference in the results, we also use the same method
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Figure 4.5: Comparison of Voxel and 2D Voids: This figure illustrates the cor-
relation between the CMB lensing convergence (𝜅) derived from the Dark Energy
Survey Year 3 (DESY3) and Planck data, and the simulated void lensing 𝜅 from the
MICE simulation at the stacked center pixels of voids. Each redshift bin (LOWZ,
MIDZ, and HIGHZ) is represented by different markers. Within each redshift cat-
egory, the bin values of 𝜆𝑣 increase from the smallest to the largest. The plots
include a reference line at 𝐴𝑘 = 1.0 and the best-fit line. Our analysis reveals a
significant correlation between DESY3 and MICE data, with best-fit amplitudes of
𝐴𝑘 = 1.03 for Voxel voids and 𝐴𝑘 = 1.02 for 2D voids, corresponding to 4.61𝜎
and 5.92𝜎 detection levels for CMB lensing in voids, respectively. These findings
show a strong agreement with ΛCDM expectations.
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Figure 4.6: Comparative Analysis of 2D superclusters and 2D Voids: This figure
presents stacked 𝜅0 values for each redshift bin of both 2D superclusters and 2D voids.
Our joint fit utilizing different redshift categories yields a statistical significance of
5.94𝜎 and an amplitude of 𝐴𝑘 = 0.87±0.15 for 2D superclusters, while for 2D voids
we find a statistical significance of 5.92𝜎 and an amplitude of 𝐴𝑘 = 1.02 ± 0.17.
The amplitude 𝐴𝑘 observed for 2D superclusters is slightly lower than that for 2D
voids, but still falls within 1𝜎 of 𝐴𝑘 = 1.00. These results are in line with Hang et al.
(2021), which also found that 2D superclusters exhibit a slightly lower 𝐴𝑘 value than
their void counterparts. However, it’s important to note that our measured 𝐴𝑘 values
imply a good agreement with 𝐴𝑘 = 1.00, while Hang et al. (2021) demonstrate a
marginally lower lensing amplitude for voids and superclusters.
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as in the K22 study, rescaling the stacked CMB cutouts around void centers and

filtering the CMB lensing maps with a Gaussian filter with a size Full Width at Half

Maximum (FWHM) = 1◦.

To determine the covariance matrix for this measurement, we generate 1000 ran-

dom Planck maps in the same way as for our matched filtering approach, and repeat

the Gaussian filtering and the re-scaled stacking of DES Y3 voids and superclusters,

as carried out in K22. To estimate the lensing amplitude, we employ equation 4.18,

consistent with our matched filtering methodology. The templates and observed

signals are shown in Figure 4.7, and we find amplitudes 𝐴𝜅 = 0.88 ± 0.14 (a 6.30𝜎

detection of the lensing signal) for 2D voids, and 𝐴𝜅 = 0.94 ± 0.13 (a 7.16𝜎 de-

tection) for 2D Clusters. Compared to the results of K22, who report values of 𝐴𝜅

lower than the MICE expectation at around the ∼ 2.3𝜎 level, our results are perfectly

consistent with 𝐴𝜅 = 1. The statistical uncertainty in our results is slightly larger

than that of K22, although very compatible. We associate this difference between

our result and that of K22 with the updated and improved redMaGiC galaxy sample,

which affected both the Y3 data and the MICE mocks.

We further tested changing the cut used to define the superstructure sample, from

𝑅𝑣 < 20ℎ−1Mpc as used by K22 to 𝑅𝑣 < 15ℎ−1Mpc instead. This cut naturally

substantially increases the number of 2D voids and 2D superclusters in the final

sample, and leads to a reduction in the measurement uncertainties of ∼ 15% in each

case, while leaving the 𝐴𝜅 central values essentially unchanged. This suggests that

the K22 size cut is not optimal, but we leave a fuller investigation of optimisation of

the signal-to-noise to future work.

4.5 Discussion and Conclusion

In this study, we conducted an in-depth examination of superstructures and their

interrelation with the CMB lensing, zeroing in on a pivotal instrument for the

detection of the CMB lensing effect: the matched filter technique.

For the first time in the literature, we applied the Voxel void-finding algorithm

to photo-z galaxies and gauged their CMB lensing footprints.

134



4.5. Discussion and Conclusion

0 1 2 3 4
R/Rv

5

4

3

2

1

0

1

2

3

4

×
10

3

ACluster = 0.94 ± 0.13 
(7.16 )

AVoid = 0.88 ± 0.14 
(6.30 )

2D Superclusters and 2D Voids
2D Supercluster MICE
2D Supercluster DES Y3
2D Void MICE
2D Void DES Y3

Figure 4.7: Stacked profile of 2D voids and 2D superclusters with the template
fitting methodology from K22. The 2D superstructures with radius 𝑅𝑣 < 20ℎ−1Mpc
are not included in the analysis in accordance with K22.There is no further binning
applied. The stacked images are obtained by rescaling the image up to 5𝑅𝑣 centered
on void positions. We then measured the radial kappa profile from the final stacked
images. The shaded regions show the 1𝜎 error bars from the covariance matrix as
explained in Section 4.4.1.
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The CMB lensing footprints of cosmic voids, sourced from both the DES Y3

dataset and the MICE simulation for Voxel and 2D voids, demonstrated a robust

agreement. This revelation provides compelling insights into the intricacies of delin-

eating superstructures. It highlights the significance of not only the methodologies

employed but also the noise properties associated with CMB lensing map and the

choice of galaxies utilized in their definition.

Our results indicate a slight divergence from the weaker signal reported for DES

Y3 voids in the study by Kovács et al. (2022), but align well with the findings for DES

Y1 voids by Vielzeuf et al. (2021). The disparity with the previous DES Y3 results

is primarily attributed to the enhancements made in the redMaGiC galaxy selection

algorithm employed in our investigation. It became evident that the selection of

tracer galaxies used to define superstructures wields a considerable influence on

the CMB lensing outcomes of these, independent of the methodology employed in

identifying the superstructures.

Our research emphasized significant observations of lensing stemming from

Voxel voids, 2D voids, and 2D clusters, each uniformly demonstrating an amplitude

consistent with 𝐴𝑘 = 1.00. Such uniformity across a variety of void types and

structures not only reinforces the robustness of our findings but also aligns with the

predictions of the ΛCDM cosmological model, agreeing well with the results of

previous studies (Cai et al., 2017, Camacho-Ciurana et al., 2024, Hang et al., 2021,

Raghunathan et al., 2019, Vielzeuf et al., 2021).

Furthermore, we identified a notable correspondence between 2D and 3D (Voxel)

voids in our study, where the 2D voids exhibited marginally lower uncertainties and

enhanced levels of CMB lensing detection. This observation indicates the supe-

rior precision of 2D void analysis in capturing lensing signals. Such precision is

presumably owed to the elongated structure of 2D voids along the line of sight,

which are defined on projected tomographic redshift slices. The 2D algorithm finds

structures elongated along the line of sight because they result in a big impact on the

projected density field but structures aligned perpendicular do not. This structural

characteristic possibly contributes to the increased sensitivity in detecting lensing

phenomena which is the integral effect along the line of sight, further validating the
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efficacy of employing 2D void analysis in studies of this nature.

Moreover, we demonstrated that Voxel voids can be effectively utilized for anal-

yses involving the cross-correlation of lensing effects on the CMB. This study is the

first to measure the CMB lensing imprints of Voxel voids. Our results provide evi-

dence that these voids exist in regions of the Universe characterized by a true deficit

in matter density as shown by their CMB lensing imprints. Encouragingly, our

results align closely with those derived from 2D voids, a void finder methodology

employed extensively in previous studies. Furthermore, as demonstrated by Radi-

nović et al. (2024), Voxel voids serve as a viable choice for void-galaxy correlation

analyses. Unlike 2D voids, whose tomographically projected nature precludes this

type of analysis, Voxel voids do not suffer from this limitation. This key advantage

makes Voxel voids particularly suited to forthcoming large-scale surveys such as the

Dark Energy Spectroscopic Instrument (DESI) (DESI Collaboration et al., 2016a,b)

and the Euclid mission (Laureĳs et al., 2011).

In our comparison of the matched filter and Gaussian filtering methods, we

observed consistent results for 𝐴𝑘 = 1.00 across 2D voids and clusters, as detailed in

Kovács et al. (2022), Vielzeuf et al. (2021). Our study demonstrated that the matched

filter method can provide more precise 𝐴𝑘 estimates, suggesting its potential for

future research. In particular, it can be interesting to utilize the matched filtering

method on the same dataset used in Kovács et al. (2022) to examine the detected

ISW signals. The authors of the cited study reported an excess ISW signal without

using matched filtering, which presents an intriguing opportunity for future analysis

and verification of their claim.

In the near future, the final processed data of the full six years of DES obser-

vations will be available for such analyses. The DES Y6 dataset covers the same

footprint as the Y3 data used here, but is deeper and thus has a factor of ∼ 2.3×

higher number density of galaxy tracers. Given the fixed footprint, we expect only

a small change in the number of 2D voids in Y6, as these are less sensitive to the

galaxy number density. In contrast, for Voxel voids, the number of voids is ex-

pected to change roughly proportional to the change in the tracer number density,

so we expect a factor of ∼ 2.3× increase in the number of voids for Y6. However,
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this does not translate to a simple 1/
√
𝑁voids reduction in the statistical uncertainty,

because the nature of individual voids found also changes as the galaxy number

density increases, with smaller voids being resolved. This means that the expected

signal strength also changes. A full accounting of the net effect on the expected

SNR requires dedicated studies using Y6 mocks.

This work provides the pivotal groundwork for upcoming studies from the Vera

Rubin Observatory and the Euclid Survey, which aim to further investigate the In-

tegrated Sachs-Wolfe (ISW) effect and CMB lensing due to cosmic superstructures.

Our research not only contributes to the evolving understanding of lensing phenom-

ena in the Universe but also lays a strong foundation for future studies. By applying

the insights discussed in our analysis, future large-scale structure surveys can refine

their strategies for exploring the universe’s large-scale structure, potentially leading

to enhanced accuracy and precision in cosmological constraints derived from these

measurements.
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Chapter 5

Discussion and Conclusion

In this thesis, the CMB lensing imprints of cosmic voids and superclusters are

tested against ΛCDM predictions by using N-body simulations. We used 2D and

VIDE voids from DES Y1 dataset and showed that they are in good agreement

with predictions using MICE simulation and template fitting method with Gaussian

filtering of the CMB. We showed how different Gaussian beam sizes affect the signal.

We then cross correlated voids in DES Y3 dataset with weak lensing mass maps

to show the consistency of different mass map making methods. We used three

different void types and showed their effect on different mass maps. We then used

optimal matched filtering method and apply it to Voxel voids identified in DES Y3

data set. For consistency, we also used 2D voids and apply both matched filtering

and the template fitting method.

When considering additional findings from the DESI Legacy Imaging Survey

DR8 (Hang et al., 2021) and Pan-STARRS (Camacho-Ciurana et al., 2024), which

leverage the advantages of a full-sky survey, it is also important to note that an

upcoming study by Sartori et al. (in preparation) using Legacy Imaging DR9 LRGs

is expected to be published shortly and their preliminary results also show good agree

with ΛCDM model as well by employing template fitting method and Gaussian

filtering. In comparison, our research employs the matched filter methodology

as also used in Raghunathan et al. (2019), wherein the authors use BOSS data.

Morevoer, Vielzeuf et al. (2021) also shows good agreement withΛCDM albeit lower

detection significance. These collective findings are comprehensively illustrated in
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Figure 5.1. These results show that different surveys by using different simulations

generally find good agreement with theoretical ΛCDM predictions.

An important observation from Figure 5.1 is that supercluster CMB lensing

amplitudes are mildy weaker than expectations in comparison to voids. Although

consistent within 1𝜎 in Demirbozan et al. (2024), this behavior is more prominent

in Hang et al. (2021) and in Kovács et al. (2022). This behaviour potentially require

additional research to confirm by changing supercluster definitions as opposed to

using inverted 2D finder.

A particular concern whether the matched filter predominantly detects "expected

signals" as calibrated by simulations or behaves like a Bayesian prior. However, the

fundamental principle of the matched filter is to identify a predetermined ( ΛCDM

template) signal within background noise under the assumption of isotropic noise

distribution. The most important feature of this method is its minimal parameter

dependence, relying only on the template signal that is being searched within the

embedded data. In contrast, Gaussian smoothing techniques have to specify the

Gaussian beam size, thereby introducing additional parameters into the analysis.

In Chapter 3, different types of voids were shown to imprint distinct stacked

profiles on mass maps. Similarly, Chapter 2 demonstrates that this variation is also

evident in stacked CMB lensing profiles. These results show the importance of using

multiple void finders on the same dataset to improve the robustness of the results.

Using multiple void-finding algorithms on the same dataset can significantly benefit

future void studies by providing more comprehensive results.

It should be noted that although ISW expectations are generally weaker than

CMB lensing signals, the ISW-void anomaly claimed by Granett et al. (2008) and

Kovács et al. (2022) is significantly stronger than the mild void × CMB lensing

tension reported by Kovács et al. (2022). This discrepancy is further supported by

findings in Cai et al. (2017), where superlarge voids (ZOBOV definition) exhibit

mildly excess signals, albeit with lower detection significance compared to Kovács

et al. (2022), while the CMB lensing signals for the same voids were entirely

consistent with theoretical expectations. Furthermore, Hang et al. (2021) reported

hints of a clearer ISW signal with increasing 𝑅𝑣 (2D definition), potentially due to
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5.1. Limitations

the lower noise levels in large-scale void stacks. It is therefore important for future

studies with more data to investigate the void size dependence of ISW and CMB

lensing effects.

On this note, some studies analyze void ISW/CMB lensing signals in the context

of the general tensions related to the ΛCDM model. In particular, Naidoo et al.

(2024) proposes a model with an evolving dark matter equation of state, where

void-ISW signals are enhanced, void-CMB lensing signals are somewhat weaker,

and both the 𝐻0 and 𝑆8 tensions can be alleviated (Abdalla et al., 2022).

One of our more prominent finding is that void x CMB lensing signals presented

in Chapter 2 and Chapter 4 both dominated by noise in 𝜅 maps. This shows that

the data from South Pole Telescope , Simons Observatory and Atacama Cosmology

Telescope can significantly increase the detection significance of these studies. The

data from these CMB surveys when combined with Euclid and Vera Rubin data can

refine the data presented in Figure 5.1 may significantly improve the precision to

test concordance cosmological models by using CMB x LSS techniques.

5.1 Limitations

In comparison to the findings of Raghunathan et al. (2019), which used a spectro-

scopic galaxy sample (CMASS from Reid et al. (2016)) with approximately 7300

voids over 10000 deg2, Demirbozan et al. (2024) used the Voxel voids and identi-

fied a significantly higher number density of voids (33427 in 4200 deg2), resulting

in higher density even after accounting for a thicker redshift range (redMagic

0.2 < 𝑧redmagic < 0.75 and 0.43 < 𝑧CMASS < 0.7).

This disparity arises primarily from two key factors. Firstly, the halo masses

probed by the CMASS sample (∼ 5×1013 M⊙) are substantially higher than the ones

probed by the redMaGiC sample (∼ 2 × 1013 M⊙) used in our analysis. Given the

steepness of the halo mass function, lower mass halos are inherently more abundant,

leading to the identification of a greater number of voids in our higher-density galaxy

catalogue. Secondly, as detailed in Section 1.6, the Voxel algorithm is specifically

designed to efficiently work on irregular survey masks which both DES and CMASS
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Figure 5.1: Comparison of all results presented and discussed in this thesis. DES
Y3, BOSS, and WISE Pan-STARRS, with their extensive sky coverage relative to
DES Y1, provide improved constraints on 𝐴𝑘 . Among these surveys, Pan-STARRS
achieves the tightest constraints, primarily due to its near full-sky coverage. When
combined, the results from BOSS, Pan-STARRS, DESI Imaging Legacy Survey,
and DES Y3 (Demirbozan24) exhibit good agreement with the ΛCDM model as
calibrated by various simulations and different surveys. Moreover, superclusters
demonstrate a slightly weaker amplitude compared to voids, as evidenced by the
findings of Demirbozan24, Hang21, and K22. All three studies utilize an inverted
2D void finder to identify superclusters and this technique may not be optimal to
identify superclusters.
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datasets suffer from.

On the other hand, ZOBOV-based algorithm used by Raghunathan et al. (2019)

needs the exclusion of voids from a substantial portion of the survey volume to

account for boundary contamination issues. However, this is less of an issue in the

Voxel approach. Therefore, Voxel voids result in higher number density of voids

as well as reducing the incidence of false positives within the void sample.

It is also important to note that, as discussed previously, Raghunathan et al.

(2019) used 108 realizations of Takahashi simulations to derive the mean CMB

lensing template profile of stacked voids. This increaases the robustness of the mean

lensing profile, which is then used to construct the corresponding matched filter. In

contrast, DES studies (Demirbozan et al., 2024, Kovács et al., 2022, Vielzeuf et al.,

2021) rely on a single realization of the MICE simulation. Moreover, Camacho-

Ciurana et al. (2024) employs the WebSky simulation (Stein et al., 2020), which

also consists of only one realization. Making use of multiple realizations of the

same simulation accurately models the error estimation inherent in the mean stacked

template and this approach should be preferred for future studies if possible.

Another consideration is that, instead of using DES redMagic sample in our

analysis. For further robustness, MagLim galaxy sample from DES can be used for

void analysis (Giannini et al., 2024, Porredon et al., 2021). The DES Y3 MagLim

dataset includes up to 10 million galaxies, and comparing the results obtained from

this sample with the findings presented in this thesis would be beneficial as MagLim

has higher number density albeit larger redshift errors. Furthermore, the inclusion

of CMB lensing maps from the South Pole Telescope (SPT) and the Atacama

Cosmology Telescope (ACT) is advantageous, as these datasets overlap with DES

in the regions covered by their observations (Madhavacheril et al., 2024, Pan et al.,

2023, Qu et al., 2024, Shaikh et al., 2024). Using these CMB lensing maps would

be additional cross check of the results in this thesis (Madhavacheril et al., 2024,

Pan et al., 2023, Qu et al., 2024, Shaikh et al., 2024).
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5.2 Future Research Directions

In this section, we explore potential research directions that can be pursued using

the methods and techniques presented in this thesis. As explained in preceding

chapters, cosmic voids serve as highly beneficial tools with considerable potential

for revolutionary research in modern cosmology. One particularly promising avenue

is the integration of rapidly advancing Artificial Intelligence (AI) methodologies into

void studies.

For instance, Cousinou et al. (2019), Hawken et al. (2020) employed neural net-

works and boosted decision trees to differentiate between genuine cosmic voids and

spurious ones. Additionally, Wang et al. (2023) explored the application of machine

learning algorithms to extract cosmological constraints from void characteristics,

successfully refining the estimations of Ω𝑚, 𝜎8, and 𝑛𝑠 with their best models. The

mean relative errors were determined to be 10%, 4%, and 3%, respectively, without

the need for spatial information from the void catalogs.

Given the necessity of having full-sky void catalogs to probe the claimed ISW

anomalies by voids, Storey-Fisher et al. (2024) full-sky Quasar catalogue can be an

interesting choice. The Quaia catalog is an all-sky quasar catalog compiled from

over 6.6 million quasar candidates identified by the Gaia mission (Gaia Collaboration

et al., 2016), enhanced with redshift estimates and refined using unWISE (Lang,

2014) infrared data and proper motion filters. It boasts the largest comoving volume

of any existing spectroscopic quasar sample, with a rigorous selection process that

significantly reduces contaminants and improves redshift accuracy, making it a

robust resource for cosmological studies.

For example, Manzotti & Dodelson (2014) used quasars from NRAO VLA Sky

Survey (NVSS) (Condon et al., 1998) as fair tracers of the matter density matter

field to map the ISW effect using cross-power spectrum. NVSS tracers have also

been used in Ho et al. (2008) to measure ISW effect (ISW detection > 4𝜎). This

is because NVSS tracers (i.e quasars) exhibit significant power and are detectable,

particularly in the radio spectrum, at high redshifts. Consequently, they are good

candidates to serve as probes of the extensive gravitational potential wells during

144



5.2. Future Research Directions

the initial phase of the dark energy-induced accelerated expansion of the universe,

leading to the generation of the ISW effect.

Although quasars are promising candidates for tracing the gravitational potential,

Hawken et al. (2020) showed that the QSO void sample is highly contaminated

with spurious voids mainly due to their sparsity. Nevertheless, Kovács et al. (2022)

reported the detection of a high-redshift ISW effect using eBOSS DR16 quasars. The

number density of quasars remains roughly consistent between eBOSS DR14 and

DR16 (Hawken et al., 2020). However, more recent findings by Curtis et al. (2024)

indicate that up to 25% of void galaxies are QSOs (more than their high density

counterparts), which may hinder the accurate tracing of dark matter distribution.

Nevertheless, a full-sky analysis from QUAIA identified voids that hold significant

potential for CMB lensing and ISW studies. Crittenden & Turok (1996) already

demonstrated theoretically that a deep full-sky survey could detect the ISW effect

with a signal-to-noise ratio of 7.6.

For example, an intriguing research direction involves the using of advanced

machine learning techniques to harness the high-density, albeit partial-sky dataset

obtained from DES LRGs. These LRGs exhibit the necessary sensitivity for accurate

identification of cosmic voids with their high density and low photo-z error. Focusing

on the overlapping regions between the QUAIA quasar catalog and DES data, we

propose using the QUAIA catalog as a primary training dataset. By fine-tuning the

model with insights derived from the observed DES voids, it could be possible to

substantially improve QUAIA’s capability in detecting voids in comparison to use

void finder only on QUAIA data. This enhanced model could then be applied across

the entire QUAIA dataset to compile a comprehensive, full-sky quasar-void catalog.

Such a catalog would be invaluable for cross-correlation studies between CMB and

LSS, particularly for investigating subtle ISW effect.

Similar to the methodology proposed for the DES-QUAIA data, it could be ad-

vantageous to combine high-resolution observations from the SPT and ACT with the

extensive, although lower-resolution, datasets from the Planck survey. The applica-

tion of machine learning techniques has demonstrated considerable efficacy in the

analysis of CMB data, notably in tasks such as foreground cleaning (Petroff et al.,
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2020, Yan et al., 2023). Investigating various deep learning methodologies, par-

ticularly super-resolution techniques using Convolutional Neural Networks (CNN)

(Dong et al., 2014, Ledig et al., 2017a), has significant potential to improve data

resolution. The super-resolution deep learning techniques have also been employed

in cosmological simulations to increase the resolution of dark matter halos (Li et al.,

2021).

Furthermore, Generative Adversarial Networks (GANs) (Goodfellow et al.,

2014, Ledig et al., 2017b) have been effectively employed in the generation of

CMB lensing maps, presenting an alternative to conventional quadratic estimator

techniques (Li et al., 2022). The incorporation of these advanced methodologies

could help exploit the Planck data with much detailed information. Such a CMB

lensing or temperature map would definitely help CMB x LSS studies in the future.

Several studies have examined the assumption of isotropy in the cosmological

principle through the analysis of galaxy clusters (Migkas, 2024). For instance, Colin

et al. (2019) argued that the observed cosmic acceleration exhibits an alignment with

the CMB dipole, providing evidence at the 1.4𝜎 level against isotropic acceleration.

This finding is further supported by Hu et al. (2024), who analyzed the Pantheon+

SN dataset and identified indications of anisotropy. However, Tang et al. (2023)

conducted a similar analysis using the same dataset and found results consistent

with cosmic isotropy, though they noted some evidence for anisotropy at lower

redshifts. Furthermore, Secrest et al. (2021) analyzed a sample of 1.36 million

quasars and identified a dipole in their number density, presenting a significant

deviation from the expectation of cosmic isotropy.

It would be intriguing to map the full-sky ISW effect and test its isotropy by

utilizing superstructures. Both template fitting with Gaussian filtering and matched

filtering methods could be employed for this purpose. A key challenge, however,

is that the ISW signal dominates on large angular scales (low multipoles), which

are heavily influenced by cosmic variance. Nevertheless, the multipole range 10 <

𝐿 < 50 offers a promising "golden" region for precise measurements. Voids are

particularly well-suited for these studies as they are relatively free from non-linear

and complex gravitational effects that can complicate analyses in superclusters. In
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such a study, it would be valuable to compare the differences between CMB lensing

and ISW signals from the same void set. Voids could be grouped by redshift

and position on the sky, ensuring that each group shares a similar gravitational

potential. REVOLVER’s 𝜆𝑣 is a perfect parameter to group voids for this purpose.

These groups would ideally produce the same CMB lensing imprint and, assuming

cosmic isotropy, should exhibit the same ISW imprint if cosmic acceleration is

uniform in all directions. Such an approach holds great potential for providing

a robust measure of cosmic acceleration. Additionally, tomographically probing

both the CMB lensing and ISW imprints of these grouped voids, which share

similar gravitational potentials, may aid in the extraction of cosmological parameters.

Several studies have attempted to derive cosmological parameters from the CMB

lensing signal of voids (Chantavat et al., 2017). However, to date, no study has

explored how the ratio of the CMB lensing to the ISW effect of voids changes with

redshift or used this ratio to extract cosmological parameters. Investigating this

could be an interesting avenue for future research.

Furthermore, as explored in this thesis, different void finders are effective for

different studies. The void size function, density, and the identified number of voids

change quite substantially with the choice of void finder. We have shown that 2D void

finders are effective for extracting high S/N from CMB lensing studies. However,

their assumption of a circular shape is not well-founded, as voids are not inherently

circular, and this approximation can oversimplify their true geometry. At this point,

one may think of using density contours to define these 2D voids. Nonetheless,

some analysis choices regarding the redshift slice thickness, smoothing parameters,

and overlap fraction with the survey footprint still need to be made. Despite these

considerations, this updated 2D void finder can provide significant improvements

when stacking multiple voids and can potentially enhance S/N of measurements.
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Appendix A

Additional Figures

Additional figures related to main content are shown. Figure A.1 taken from Vielzeuf

et al. (2021) below shows the 2D void numbers identified in the MICE simulation

with the DES Y1 footprint applied to two independent locations within the MICE

octant. See Figure A.2 for the size distribution of Voxel voids and Figure A.3 for

their correlation matrix.

We also present some results that were not included in Demirbozan et al. (2024).

Figure A.4 shows the redshift distribution of 2D voids as described in Kovács et al.

(2022) (K22), while Figure A.5 displays the redshift distribution of 2D voids from

Demirbozan et al. (2024) (D24). It is clearly seen that the general trends between

the two do not agree. Figure A.6 illustrates how the number of 2D voids changes

when using the DES Y6 v0.8.6 redMaGiC catalogue compared to the DES Y3 v0.5.1

catalogue. Figure A.8 shows the results when our pipeline is applied to a 10◦ × 10◦

fixed patch instead of rescaling and repeating the entire process. Furthermore, Figure

A.9 demonstrates that, instead of the usual 𝑅𝑣 > 20, ℎ−1,Mpc cut used in K22 and

D24, using a more permissive 𝑅𝑣 > 15, ℎ−1,Mpc cut increases the S/N ratio. This

indicates that the less stringent cut may be more advantageous for future analyses.

Based on Figure A.9 and Figure 4.7, we estimate 𝜒2/dof values for voids and

superclusters. This is given in Table A.1.
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Figure A.1: Comparison of the 2D void catalogue characteristics constructed in
simulated MICE1 and MICE2 (orange bars and blue steps) and observed DES Y1
samples (blue bars) across different void catalogue versions (HD10, HD20, HL10,
HL20). We present results for the high-density sample (first and second columns) and
the high-luminosity sample (third and fourth columns) using void finder smoothing
scales of 10 Mpc/h and 20 Mpc/h.

𝑅𝑣 > 20 Mpc/h 𝑅𝑣 > 15 Mpc/h
2D superclusters 1.23 1.32

2D voids 0.93 0.87

Table A.1: 𝜒2/dof values for 2D superclusters and 2D voids for different radius
threshold.
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Figure A.2: This plot illustrates the Voxel void size distributions for both MICE and
DESY3 using a normalized histogram, segmented across 9 redshift bins. Notably, the
number of voids inreases with increasing redshift bin. Additionally, voids within the
same 𝜆𝑣 bins, yet across differing redshift bins, exhibit a consistent size distribution
pattern. This consistency emphasizes the functional relationship between 𝜆𝑣 and
𝑅𝑣, as shown in Equation 4.3.

161



1 2 3 4 5 6 7 8 9

BIN

1

2

3

4

5

6

7

8

9

BI
N

1.00 0.50 -0.63 0.78 0.78 -0.76 0.70 -0.46 -0.68

0.50 1.00 -0.44 0.47 0.49 -0.49 0.43 -0.29 -0.43

-0.63 -0.44 1.00 -0.73 -0.80 0.85 -0.63 0.45 0.79

0.78 0.47 -0.73 1.00 0.78 -0.63 0.72 -0.45 -0.65

0.78 0.49 -0.80 0.78 1.00 -0.82 0.70 -0.47 -0.76

-0.76 -0.49 0.85 -0.63 -0.82 1.00 -0.62 0.48 0.84

0.70 0.43 -0.63 0.72 0.70 -0.62 1.00 -0.35 -0.40

-0.46 -0.29 0.45 -0.45 -0.47 0.48 -0.35 1.00 0.46

-0.68 -0.43 0.79 -0.65 -0.76 0.84 -0.40 0.46 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure A.3: This figure shows the correlation matrix of CMB lensing measurement
from 9 Voxel bins. The bins range from BIN 1, representing LOWZ 𝜆𝑣 Bin 1, to
BIN 9, representing HIGHZ 𝜆𝑣 Bin 3.
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Figure A.4: This figure compares the 2D void redshift distribution from Kovács
et al. (2022). There is a clear discrepancy between the MICE and DES Y3 2D void
distributions. After applying our code pipeline to these voids, We obtain the best-fit
value of 𝐴𝜅 = 0.71 ± 0.11, which indicates an even stronger tension (lower lensing
amplitude) than originally reported by Kovács et al. (2022).
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Figure A.5: Comparison of 2D void redshift distributions between MICE simulation
and DES Y3 data, as presented in Demirbozan et al. (2024). The observed trends are
consistent with expectations from the differing sky coverages of MICE and DES Y3.
These differences and their implications are thoroughly discussed in Demirbozan
et al. (2024).

Figure A.6: This figure illustrates the changes in the number density distribution of
redMaGiC galaxies between DES Y3 and DES Y6 datasets. The primary modifica-
tion from Y3 to Y6 involves an updated selection function, while the redshift range
remains constant. For comparison, 2D DES Y3 voids are also plotted.
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Figure A.7: We use the DES Y6 redMaGiC v0.8.6 galaxy catalogue and run a 2D
void finder on these tracers to observe changes in void numbers for a potential DES
Y6 void study. Our results show that, despite the increase in galaxy density, the
number of 2D voids decreases.
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Figure A.8: This figures shows the results obtained without re-scaling the CMB
cutouts, maintaining a fixed cutout size irrespective of void size and applying a
smoothing scale of FWHM = 1◦ to the CMB map, consistent with the re-scaling
method. The entire error estimation process was conducted using this fixed ap-
proach. It is important to note that the detection significances are reduced com-
pared to the re-scaling technique, potentially attributable to the chosen smoothing
scale. Nevertheless, the results exhibit strong agreement with MICE, thereby further
strengthening the findings in Demirbozan et al. (2024).
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Figure A.9: This figure shows the results when the void catalogue is expanded by
including voids with 𝑅𝑣 > 15 ℎ−1 Mpc instead of the previous cutoff at 20 ℎ−1 Mpc.
We observe a significant increase in the signal-to-noise ratio, indicating that the
20 ℎ−1 Mpc threshold applied by Sánchez et al. (2016) and Kovács et al. (2022) may
not represent a justified value. Again, the results show good agreement with MICE,
with an increased S/N, strengthening the results of Demirbozan et al. (2024) even
more.
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