

ADVERTIMENT. L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús estableties per la següent llicència Creative Commons: <https://creativecommons.org/licenses/?lang=ca>

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: <https://creativecommons.org/licenses/?lang=es>

WARNING. The access to the contents of this doctoral thesis is limited to the acceptance of the use conditions set by the following Creative Commons license: <https://creativecommons.org/licenses/?lang=en>

Tesis doctoral
Álvaro Carbayo Viejo

Estudio del sustrato neuropatológico y las bases moleculares en el espectro de la esclerosis lateral amiotrófica – demencia frontotemporal

Barcelona 2025

TESIS DOCTORAL

Estudio del sustrato neuropatológico y las bases moleculares en el espectro de la esclerosis lateral amiotrófica - demencia frontotemporal

Tesis doctoral presentada para optar al grado de Doctor

Doctorando:

Álvaro Carbayo Viejo

Director:

Dr. Ricardo Rojas García

Tutor:

Dr. Alberto Lleó Bisa

SANT PAU
Campus Salut
Barcelona

UNIVERSITAT AUTÒNOMA DE BARCELONA

DEPARTAMENT DE MEDICINA

PROGRAMA DE DOCTORADO EN MEDICINA

Barcelona 2025

Agradecimientos

El proceso de desarrollo de una tesis doctoral se vive, en muchas ocasiones, como un proceso largo y tedioso, a veces abrumador. En mi caso puedo decir que, aunque haya sido un proceso duradero en el tiempo, no he padecido una vivencia agónica, y he podido disfrutar de los sucesivos pasos del camino. Sin duda, esto ha sido gracias a todas las personas que me han acompañado en este trayecto, que me lo han facilitado y han permitido que este trabajo haya sido posible. Por ello, quiero agradecer a todas las personas que directa o indirectamente, hayan participado en el diseño y elaboración de este trabajo doctoral.

En primer lugar, gracias a los pacientes que, en el momento más duro de su vida, deciden de forma altruista, generosa y plena colaborar con el avance de la ciencia, con la esperanza de un futuro mejor para otros.

Al Hospital Clínic, que me vio nacer como neurólogo, a David y a Sergi, mis referentes más cercanos, que estimulasteis mis ganas de crecer y mi amor por esta especialidad. Al Hospital de Sant Pau y su Servicio de Neurología, que han sido mi casa de acogida.

A la Unidad de Neuromuscular y a cada uno de sus integrantes, de todos he aprendido algo y a todos os profeso admiración. La brillantez de Montse, la visión de futuro y el drive de Luis, las ganas de crecer y el ambiente generado entre los “juniors”. A Ana y Marta por tantísimos momentos compartidos en el camino, por ser un apoyo fundamental.

A Isabel Illa y Jesús Pradas, porque aunque no nos hayamos conocido, gracias a vuestros esfuerzos de hace años este trabajo ha sido hoy posible y forma parte de vuestro legado.

Al Comité Multidisciplinar de ELA, por un ambiente de luz inmejorable en un entorno a priori sombrío. Un grupo de personas con una calidad humana excepcional, con quienes trabajar es un auténtico placer. A Manolo, por tu interés y tu dedicación.

A mi pequeña familia de la residencia en el Clínic, mi familia de acogida en Barcelona, ahora con sede también en Boston. A Dani, por ser hogar, por los Tiny Desk de

Muntaner y por los saludos que irán creciendo a lo largo de los años. A Adela, por escuchar y desenmarañar mis pensamientos, por alimentar la curiosidad.

A mi núcleo vallisoletano eterno e inseparable, por el que no pasa el tiempo ni afectan las distancias. Herencia del Colegio San José que pervive en un continuo verano de los años 2010.

A Clara, por ser mi irreductible aldea gala vallisoletana, allá donde vayas.

A mis padres y a mis hermanos, por el amor y el apoyo incondicional a lo largo de los años. Por haberme transmitido y nutrido la curiosidad y la ambición de crecimiento, y unos valores con los que hoy me identifico. Con vosotros empezó todo.

A Ellen Gelpí, por tu visión fuera del marco y tu pasión tan contagiosa por lo que haces. Cada conversación es una apertura de una ventana oculta.

A Elena, por tu empuje, tu constancia, tu guía y tu fortaleza. Por tu capacidad de ver cosas que todavía nadie ha visto y hacerme partícipe de ellas.

A Janina, per la teva humilitat i la teva empatia, per transmetre'm el teu optimisme, les ganes de créixer i la passió per la docència, en el ambient més divertit i carinyós possible.

A Ricard, por tu confianza, tu paciencia infinita, tu dedicación incansable y el método transmitido. Por tu honestidad, tu ejemplo y tu referencia. Soy verdaderamente afortunado de haber contado con tu guía en esta aventura.

Abreviaciones

ALS - Amyotrophic Lateral Sclerosis (ELA en inglés)

ALSbi - ELA con alteración conductual

ALScbi - ELA con alteración cognitiva y conductual

ALSci - ELA con alteración cognitiva

APP - Afasia primaria progresiva

ARPP21 - cAMP regulated phosphoprotein 21

ATXN2 - Ataxin 2

bvFTD - Variante conductual de DFT (del inglés: behavioural variant FTD)

CHMP2B - charged multivesicular body protein 2B

C9orf72 - Chromosome 9 Open Reading Frame 72

DFT - Demencia frontotemporal

DLFT - Degeneración lobular frontotemporal

ELA - Esclerosis lateral amiotrófica

ENM - Enfermedad de neurona motora

EWS - Sarcoma de Ewing

FUS - Fused in Sarcoma

GLT8D1 - Glycosyltransferase 8 domain-containing protein 1

GRN - Granuline

GWAS - Genome Wide Association Studies

hnRNP - Heterogeneous Nuclear Ribonucleoproteins

LATE - Limbic-predominant Age-Related TDP-43 Encephalopathy

MAPT - Microtubule Associated Protein Tau

MATR3 - Matrin 3

OMIM - Online Mendelian Inheritance in Man

SOD1 - Superoxide Dismutase 1

SQSTM1 - Sequestosome 1

TAF15 - TATA-binding protein-associated factor 15

TARDBP - TAR DNA binding protein

TBK1 - TANK - Binding Kinase 1

TDP-43 - Transactive Response DNA Binding Protein - 43 kDa

TIA-1 - T-Lymphocyte Intracellular antigen- 1

Trn1 - Transportin 1

VCP - Valosin containing protein

Índice de figuras y tablas

Figura 1: Distribución de la incidencia de la ELA por grupos de edad y sexos en la población de Cataluña.	14
Figura 2: Representación de las características genéticas y neuropatológicas comunes en el espectro ELA-DFT.	17
Tabla 1: Criterios diagnósticos de El Escorial revisados.	20
Figura 3: Mecanismos fisiopatológicos implicados en la patogénesis de la ELA y los genes relacionados.	24
Figura 4: Imágenes de los hallazgos neuropatológicos característicos en el espectro ENM-DLFT.	29
Figura 5: Esquema de los distintos estadios de depósito de proteína TDP-43 en el espectro ENM-DLFT según el predominio fenotípico	33
Figura 6: Subtipos principales de DLFT según la distribución neuropatológica de las inclusiones de TDP-43 en las diferentes capas corticales.	34
Tabla 2: Listado de genes relacionados con ELA.	40

Índice

Aclaración	8
Resumen	9
Abstract	11
1. Introducción	13
1.1. Concepto e introducción histórica	13
1.2. Epidemiología	14
1.3. Fenotipo clínico en la ELA	16
1.4. El espectro ELA-DFT	17
1.5. Aproximación diagnóstico-terapéutica	19
1.5.1. Diagnóstico de la ELA y los síntomas cognitivo-conductuales	19
1.5.2. Abordaje terapéutico en la ELA	23
1.6. Etiología y fisiopatología: aprendizajes de los estudios neuropatológicos y moleculares	24
1.6.1. Disfunción del metabolismo y regulación del ARN: TDP-43	25
1.6.2. Otros mecanismos implicados: los gránulos de estrés	28
1.7. Neuropatología del espectro ENM-DLFT	29
1.7.1. Características macroscópicas	29
1.7.2. Características microscópicas	31
1.7.3. Características inmunohistoquímicas	32
1.7.4. Correlación clínico-patológica	37
1.8. Bases genéticas del espectro ELA-DFT	37
1.8.1. Susceptibilidad genética en la ELA	37
1.8.2. Superposición genética en el espectro ELA-DFT	39
1.8.3. Estudios genéticos e identificación de nuevos genes causales	42
2. Hipótesis	44
3. Objetivos	45
4. Compendio de publicaciones	46
4.1. Primer trabajo	46
4.2. Segundo trabajo	58
5. Resumen global de los resultados	67
6. Resumen de la discusión de resultados	70
7. Conclusiones	81
8. Líneas de futuro	82
9. Bibliografía	83

Aclaración

En el presente trabajo se tratarán los términos de “esclerosis lateral amiotrófica” (ELA) y “enfermedad de neurona motora” (ENM) de forma casi indistinta, pudiendo resultar algo confuso. A modo de aclaración, hablaremos de ENM en singular (término preferido en el mundo anglosajón) para referirnos a la entidad clínica y neuropatológica en la que tiene lugar la pérdida progresiva de las neuronas motoras, produciéndose en ella la degeneración concomitante de la primera y la segunda neurona motora, dando lugar al cuadro clínico con la semiología correspondiente conocido como ELA. Se utilizarán por tanto los términos ELA y ENM de forma prácticamente intercambiable.

Del mismo modo, se hablará de “degeneración lobular frontotemporal” (DLFT) para referirse a la patología neurodegenerativa en la que tiene lugar una pérdida de neuronas en las cortezas frontal y temporal, que puede estar en contexto del depósito de varias proteínas diferentes, mientras que se utilizará el término de “demencia frontotemporal” para referirse al conjunto de síndromes clínicos definidos por criterios específicos (sDLFT), que se asocian con las alteraciones neuropatológicas de DLFT subyacentes.

Resumen

La esclerosis lateral amiotrófica (ELA) es una enfermedad neurodegenerativa de rápida progresión en la que tiene lugar la degeneración de las neuronas motoras del córtex motor, núcleos motores del tronco del encéfalo y asta anterior de la médula espinal. Este proceso da lugar a la debilidad y atrofia progresivas de la musculatura, llevando finalmente al fallecimiento de los pacientes en una media de tiempo entre 3 y 5 años, habitualmente a causa de una insuficiencia respiratoria. Se trata de una enfermedad devastadora que, a día de hoy, no tiene un tratamiento curativo, y que genera una marcada dependencia en los pacientes y una importante carga psicológica tanto en ellos como en los familiares.

Aunque clásicamente se ha considerado como una enfermedad con implicación exclusiva del sistema motor, en la actualidad es reconocido que la ELA forma parte de un espectro continuo de enfermedad con la demencia frontotemporal (DFT). Desde un punto de vista clínico, se ha descrito que hasta un 50% de los pacientes con ELA presentan síntomas cognitivo-conductuales asociados, llegando a cumplir criterios diagnósticos de DFT entre un 10-15%. Además, ambas entidades neurodegenerativas comparten, con frecuencia, un sustrato neuropatológico y una base genética. Sin embargo, la etiología y la fisiopatología de la enfermedad no son bien conocidas, ni tampoco lo es el grado y frecuencia precisa de superposición entre ambas, ni la correspondencia con el sustrato molecular en el continuum de enfermedad.

El primero de los artículos que incluye esta tesis doctoral describe las características fenotípicas, neuropatológicas y genéticas de una extensa cohorte de pacientes con confirmación diagnóstica neuropatológica de enfermedad de neurona motora (ENM), procedente del Banco de Tejidos Neurológicos del Hospital Clínic - FRCB - IDIBAPS, realizando una recogida retrospectiva de los datos. En esta serie de 124 pacientes se describe una frecuencia del 35,5% de cambios neuropatológicos compatibles con degeneración lobular frontotemporal (DLFT), superior a las series previas. Además, se destaca la importante heterogeneidad que existe en los diferentes aspectos (clínico-fenotípico, genético y neuropatológico) del espectro ENM-DLFT, especialmente en los casos con DLFT concomitante. Finalmente, se hace énfasis en los aspectos clínicos no detectados de ambos extremos del mismo, revelando hallazgos que pasaron desapercibidos en vida y contribuyen a una definición precisa de las formas y

límites del espectro, poniendo de manifiesto la necesidad de herramientas que permitan un categorización precisa en vida de los pacientes que puede permitir una clasificación en base a criterios moleculares. Adicionalmente se revela como necesaria una colaboración estrecha entre las unidades de neuromuscular y de trastornos cognitivos para abordar de forma integral esta patología.

En el segundo artículo de esta tesis se describe una mutación en el gen *ARPP21* como causante de ELA en 10 pacientes pertenecientes a 7 familias no emparentadas, provenientes de una región geográfica reducida del sudeste de La Rioja, en los que el estudio genético convencional no había encontrado mutaciones causales. A raíz de la detección de un incremento regional inesperado de casos, especialmente de ELA familiar, se realizó un estudio genómico de varios pacientes, identificándose la variante p.Pro529Leu en *ARPP21*, una proteína de unión a ARN implicada en el metabolismo del ARN y que participa en la formación de gránulos de estrés, que estaba ausente en bases de datos poblacionales. El presente artículo apoya el papel causal de mutaciones en *ARPP21* en la patogénesis de la ELA y apoya la importancia de esta vía en la fisiopatología de la enfermedad aportando la posibilidad de una diana terapéutica específica. Adicionalmente, propone una estrategia novedosa para abordar la búsqueda de alteraciones genéticas causales de la enfermedad.

En resumen, la presente tesis doctoral pretende ayudar a la descripción y caracterización exhaustiva de las características del espectro ENM-DLFT, así como profundizar en el conocimiento que tenemos sobre la fisiopatología, sustrato y bases moleculares de la enfermedad, en concreto sobre las bases genéticas de la misma y la participación de nuevos genes implicados.

Abstract

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterised by the degeneration of motor neurons in the motor cortex, motor nuclei of the brainstem, and the anterior horn of the spinal cord. This process leads to progressive muscle weakness and atrophy, ultimately resulting in death within an average of 3 to 5 years, usually due to respiratory failure. It is a devastating disease that, to date, has no curative treatment and causes significant dependency in patients and a substantial psychological burden for both them and their families.

Although ALS has traditionally been considered a disease exclusively affecting the motor system, it is now recognized as part of a continuous spectrum with frontotemporal dementia (FTD). From a clinical perspective, it has been reported that up to 50% of ALS patients exhibit associated cognitive and behavioural symptoms, with 10-15% meeting the diagnostic criteria for FTD. Furthermore, these two neurodegenerative entities frequently share neuropathological substrates and genetic bases. However, the aetiology and pathophysiology of the disease remain poorly understood, as do the precise degree and frequency of overlap between the two conditions and their correlation with the molecular substrate within this disease continuum.

The first article included in this doctoral thesis describes the phenotypic, neuropathological, and genetic characteristics of an extensive cohort of patients with neuropathologically confirmed motor neuron disease (MND) from the Neurological Tissue Bank at Hospital Clínic - FRCB - IDIBAPS, using retrospective data collection. In this series of 124 patients, a 35.5% frequency of neuropathological changes compatible with frontotemporal lobar degeneration (FTLD) is reported, which is higher than in previous series. Additionally, it highlights the significant heterogeneity in various aspects (clinical-phenotypic, genetic, and neuropathological) of the MND-FTLD spectrum, particularly in cases with concomitant FTLD. The study emphasises the undetected clinical aspects at both ends of the spectrum, revealing findings that went unnoticed during life and contributing to a precise definition of the forms and boundaries of the spectrum. This underscores the need for tools that enable precise in-life categorization of patients based on molecular criteria. Furthermore, the study highlights the necessity of close collaboration between neuromuscular and cognitive disorder units for a comprehensive approach to this pathology.

The second article of this thesis describes a mutation in the *ARPP21* gene as a cause of ALS in 10 patients from seven unrelated families originating from a small geographic area in the southeast of La Rioja (Spain), where conventional genetic testing had failed to identify causal mutations. Following the detection of an unexpected regional increase in cases, particularly familial ALS, a genomic study of several patients was conducted, identifying the p.Pro529Leu variant in *ARPP21*, an RNA-binding protein involved in RNA metabolism and stress granule formation, which was absent from population databases. This article supports the causal role of *ARPP21* mutations in ALS pathogenesis and underscores the importance of this pathway in the disease's pathophysiology, suggesting a potential specific therapeutic target. Additionally, it proposes an innovative strategy for identifying causal genetic alterations in the disease.

In summary, this doctoral thesis aims to contribute to the comprehensive description and characterization of the MND-FTLD spectrum, as well as to deepen our understanding of the disease's pathophysiology, substrate, and molecular bases, specifically its genetic foundations and the involvement of new implicated genes.

1. Introducción

1.1. Concepto e introducción histórica

La esclerosis lateral amiotrófica (ELA) es una enfermedad neurodegenerativa grave caracterizada por la degradación progresiva de las neuronas motoras en el cerebro y la médula espinal.¹ Este proceso da lugar a un cuadro de debilidad y atrofia progresivas que habitualmente condiciona el fallecimiento de los pacientes en un período entre 3 y 5 años, normalmente a causa de una insuficiencia respiratoria.²

Las primeros estudios clínicos y patológicos de la enfermedad fueron realizados en 1874 por el eminentne neurólogo Jean-Martin Charcot, quien describió pacientes que desarrollaban un cuadro de parálisis y atrofia muscular progresivas, asociadas a un aumento del tono muscular y contracturas, correlacionando estos datos clínicos con las alteraciones observadas en los estudios anatopatológicos.³ En éstos se objetivó la esclerosis de las columnas laterales y la degeneración de las astas anteriores de la sustancia gris de la médula espinal, así como la atrofia de las fibras musculares secundaria al proceso neurógeno subyacente.⁴ Estos hallazgos fueron los que le confirieron el nombre por el que se conoce hasta el día de hoy esta entidad.

Clásicamente se ha considerado a la ELA como una enfermedad en la que existía una implicación exclusiva del sistema motor. Sin embargo, con el transcurso del tiempo y la proliferación de estudios que profundizan en la descripción del fenotipo clínico de estos pacientes, se ha documentado la presencia de síntomas extramotores, entre los que destacan las alteraciones cognitivas y conductuales, de forma que a día de hoy es considerada como una enfermedad multisistémica.⁵

A lo largo de las últimas décadas y de forma progresiva, se han publicado múltiples estudios que han confirmado una superposición clínica,⁶ genética⁷ y neuropatológica^{8,9} entre la ELA y la DFT, reforzada por la identificación en 2006 de la proteína TDP-43 (Transactive Response DNA Binding Protein - 43 kDa), proteína presente en los agregados patológicos que se depositan en el citoplasma de las neuronas y oligodendrocitos en la mayoría de pacientes con enfermedad de neurona motora (ENM) y aproximadamente la mitad de los pacientes con DLFT.^{10,11}

Sin embargo, nuestro conocimiento sobre su etiopatogenia, las bases moleculares de la enfermedad y la correlación con las manifestaciones clínicas, siguen siendo limitados.

1.2. Epidemiología

La ELA es una enfermedad de distribución global y estable en el tiempo, existiendo ligeras variaciones entre las diversas poblaciones.¹²⁻¹⁴ Estudios epidemiológicos internacionales apuntan una incidencia de enfermedad que oscila entre 1,5 y 4,7 casos / 100.000 habitantes/año, con una prevalencia estimada que varía entre 2,7 y 7,4 casos / 100.000 habitantes / año.^{15,16} En concreto, los estudios realizados en nuestro medio utilizando una metodología poblacional^{17,18} y estimaciones epidemiológicas,^{19,20} apuntan a unas cifras de incidencia y prevalencia estimadas entre 4-2,47 y 3,99-6,64 casos / 100.000 habitantes / año, respectivamente. En algunas áreas geográficas restringidas se describen importantes incrementos de incidencia regional, lo cual podría sugerir la existencia de un componente genético subyacente en estas áreas, especialmente cuando este cúmulo de casos es a expensas de casos familiares.²¹

En cuanto a la edad de aparición de la enfermedad, los diferentes trabajos sitúan la edad media de incidencia en la franja entre los 60-75 años de edad (Figura 1), describiéndose una caída de la incidencia a partir de los 75 años de edad. Sin embargo, este último dato no es totalmente uniforme entre las distintas cohortes, y algunos autores sugieren que podría existir un aumento del riesgo asociado a la edad, de forma que la disminución de la incidencia descrita en los grupos de población de edad avanzada podría ser consecuencia de una mayor dificultad para el diagnóstico en este grupo, en los que la frecuencia de comorbilidades es mayor o se produciría el fallecimiento por otros motivos antes de poderse confirmar el diagnóstico, entre otros motivos.^{22,23} Por último, existe cierta diferencia de incidencia entre sexos, con una ratio aproximada entre hombres:mujeres entre 1,3-1,5:1, sin encontrarse diferencias en la supervivencia o duración de la enfermedad entre ambos sexos.^{12,13}

Entre los factores de riesgo de la enfermedad, los únicos que se han identificado de forma contundente han sido la edad y la historia familiar, si bien el hábito tabáquico parece haberse establecido como el factor predisponente ambiental con una evidencia más sólida, y se ha reportado que niveles elevados de colesterol de la fracción de baja densidad (LDL) también puedan suponer un factor de riesgo de enfermedad.^{24,25} Otros

factores previamente reportados como la exposición a tóxicos, metales pesados, el deporte de élite o el traumatismo craneoencefálico de repetición,²⁶ no ha sido demostrado que puedan tener una contribución significativa para la patogénesis de la enfermedad.

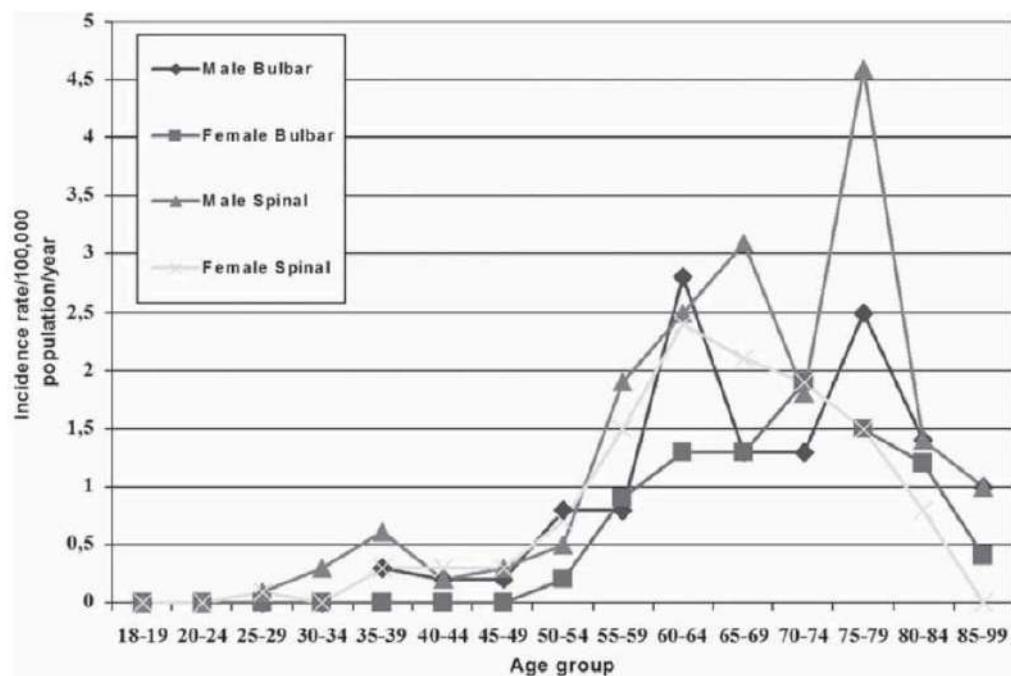


Figure 1. Incidence rates by age groups and site of onset in males and females.

Figura 1. Ratios de incidencia de ELA en Cataluña por grupos de edad y separados por sexo. Se observa un pico de incidencia en el grupo entre 70-75 años, con un leve predominio de varones sobre mujeres.

Extracto de *Pradas et al. 2013.*¹⁷

Sin embargo, cada vez es más evidente la contribución de las distintas alteraciones genéticas en la etiopatogenia, predisposición y modificación del curso evolutivo de la enfermedad.²⁷⁻²⁹ La existencia de antecedentes familiares en torno a un 5-10% de los casos, así como la identificación de un número creciente de genes en los que ciertas mutaciones tendrían un rol causal o predisponente para el desarrollo de la enfermedad, apoyan la relevancia del sustrato genético a la patogenia de la ELA.²⁹⁻³¹ Más recientemente, se han propuesto modelos oligo y poligénicos que proponen la existencia de múltiples variantes genéticas como la causa subyacente en la enfermedad.³²

1.3. Fenotipo clínico en la ELA

La degeneración progresiva de las neuronas motoras tiene una traducción clínica directa, dando lugar a una característica combinación de signos y síntomas consecuencia de la implicación de primera y segunda neurona motora. Esto es, la combinación de debilidad y atrofia muscular secundarias a la lesión de la segunda neurona motora, con espasticidad e hiperreflexia debido a la implicación de la primera neurona motora.³³

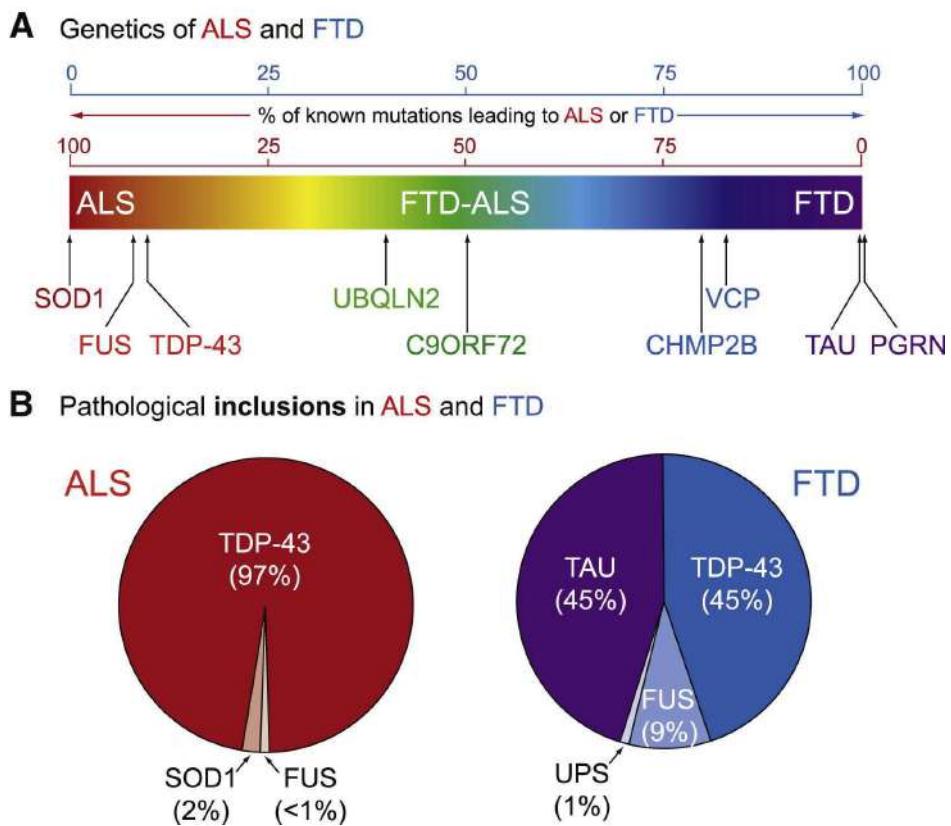
A pesar de tratarse de una combinación característica y distintiva de hallazgos semiológicos, la forma de presentación de la enfermedad es marcadamente heterogénea teniendo en cuenta que puede variar dependiendo del lugar y la región de inicio de síntomas o la semiología motora preponderante, entre otros factores.

De este modo, puede existir un desequilibrio en el predominio relativo de implicación entre la primera o la segunda neurona motora, pudiendo observarse casos en que la semiología queda restringida a la implicación exclusiva de una de las dos. Esta circunstancia puede dar lugar a cuadros clínicos como la esclerosis lateral primaria, con implicación aislada de primera neurona motora,^{34,35} o la atrofia muscular progresiva, con semiología derivada de la degeneración exclusiva de segunda neurona motora.³⁶ Estas variaciones fenotípicas ponen de manifiesto la moderada variabilidad existente en la forma de presentación y curso clínico de la enfermedad, presentando marcadas diferencias en cuanto al pronóstico, evolución y supervivencia de los pacientes.³⁷

Por otra parte, en cuanto a la región de inicio y los síntomas asociados, podemos diferenciar entre la implicación de la musculatura bulbar, cuya implicación produce síntomas como la disartria y la disfagia, siendo la forma de presentación en aproximadamente un tercio de los casos, o un inicio espinal, con debilidad de la musculatura de las extremidades o disfunción de la musculatura respiratoria. Independientemente de la región de inicio, en el curso natural de la evolución de la enfermedad, tiene lugar la extensión de los síntomas al resto de la musculatura hasta tener lugar una implicación difusa de la misma.^{1,2}

Otros factores que contribuyen a la heterogeneidad respecto la presentación clínica de la enfermedad son la distinta edad de inicio, el muy variable curso evolutivo de los pacientes, o la más reciente concepción de la ELA como una enfermedad multisistémica. En este sentido, se ha descrito la presencia de alteraciones de otros aspectos del sistema nervioso como la disfunción autonómica, oculomotora, alteraciones cerebelosas, aparición de signos extrapiramidales o los síntomas neuropsiquiátricos, seguramente infravalorados en este contexto dada la predominancia y gravedad de los síntomas motores.^{38,39}

Por último, es importante tener en cuenta la cada vez más considerada coexistencia de síntomas cognitivo-conductuales de predominio en los dominios frontales y temporales asociada a los síntomas motores, pudiendo estar presentes en un grado variable, considerándose en la actualidad como parte de un mismo espectro.^{10,11}


1.4. El espectro ELA-DFT

En las últimas décadas se ha hecho evidente la superposición existente entre la ELA y formas específicas de la DFT, lo que ha supuesto un cambio de conceptualización de estas enfermedades que a día de hoy consideramos como un continuo dentro de un mismo espectro clínico-patológico-genético de enfermedad (Figura 2).⁴⁰

Estudios poblacionales con grandes cohortes de pacientes sugieren que hasta un 50% de los pacientes con ELA presentan algún grado de deterioro cognitivo o conductual a lo largo del curso de la enfermedad, pudiendo llegar a cumplir criterios formales de alguna de las variantes clínicas de DFT hasta en un 10-20% de los casos,^{41,42} aunque algunas series sugieren que la proporción podría ser mayor.⁴³ En el lado opuesto del espectro, se ha descrito que en torno a un 12% de los pacientes con diagnóstico de DFT podrían desarrollar un cuadro clínico completo de ELA, mientras que hasta en un 40% existen signos clínicos o neurofisiológicos de implicación de neurona motora.⁴⁴

La DFT engloba el conjunto de síndromes clínicos que aparecen habitualmente en el contexto de enfermedades neurodegenerativas caracterizadas por la degeneración progresiva de los lóbulos frontales y temporales del cerebro. Se presenta clínicamente en síndromes clínicos definidos en los que predomina el trastorno del comportamiento social, la personalidad, las funciones ejecutivas y el lenguaje, por encima de otras funciones superiores.⁴⁵ De forma aislada, la DFT constituye la segunda causa de

demencia neurodegenerativa en la población menor de 65 años, generando una importante discapacidad y disminución de la esperanza de vida en los pacientes que la padecen.⁴⁶ Su presentación concomitante con la ENM en un mismo paciente parece asociarse con un peor pronóstico y una reducción significativa de la supervivencia.⁴⁷⁻⁴⁹

Figura 2. Representación de las características genéticas y neuropatológicas comunes en el espectro ELA-DFT. (A) Representación de la proporción de mutaciones conocidas que provocan ELA o DFT. (B) Representación de las características de las inclusiones proteicas patológicas en ELA y DFT. Las inclusiones de TDP-43 y FUS están presentes en distintas proporciones en ambas entidades, reflejando el solapamiento patológico entre las dos enfermedades.

Figura extraída de Ling *et al. Neuron*, 2013.⁵⁰

Por su parte, el término “degeneración lobular frontotemporal” (DLFT) es un concepto neuropatológico que engloba varias entidades neurodegenerativas que tienen en común la disfunción y pérdida selectiva de las neuronas de los lóbulos frontales y temporales de forma predominante, que se caracteriza, desde un punto de vista neuropatológico, por la presencia de depósitos patológicos de agregados citoplasmáticos neuronales de diferentes proteínas como TDP-43 o la proteína microtubular Tau, dando lugar a los síndromes clínicos definidos de DFT (sDLFT).⁵¹

Entre estos, destacan la variante conductual de la DFT (bvFTD, por sus siglas en inglés: behavioural variant frontotemporal dementia) y los distintos subtipos de afasia primaria progresiva (APP),⁵² que a su vez engloba síndromes diferenciados como la afasia no fluente o agramatical, la demencia semántica y la variante logopénica, esta última más relacionada patológicamente con la enfermedad de Alzheimer y no considerada dentro de la DLFT.⁵³ Finalmente, más recientemente se ha descrito un nuevo subgrupo de DFT que corresponde con la variante temporal derecha, con déficits cognitivos específicos.⁵⁴

Cada uno de estos síndromes clínicos se relaciona de forma predominante con una alteración neuropatológica subyacente distinta en cuanto al tipo de proteinopatía y la distribución de los agregados patológicos en las diferentes regiones y capas cerebrales, lo cual dificulta el diagnóstico preciso *antemortem* y supone un reto desde el punto de vista nosológico, diagnóstico y terapéutico en la consecución de terapias dirigidas molecularmente.^{55,56}

En cuanto al tipo de síntomas cognitivos en el contexto de ENM, lo más frecuente es la aparición de síntomas relacionados con la disfunción de los lóbulos frontal y temporal, como pueden ser la apatía, la falta de iniciativa o los trastornos del lenguaje.^{57,58} Cuando estos síntomas son de mayor entidad pueden llegar a cumplir criterios clínicos de alguna de las variantes de DFT, siendo la bvFTD lo más frecuentemente asociado a la ENM, seguido de la variante agramatical de APP, mucho menos frecuente y, finalmente, de la variante semántica de APP, casi anecdótica.⁵⁹ La fisiopatología subyacente a esta observación es poco conocida.

1.5. Aproximación diagnóstico-terapéutica

1.5.1. Diagnóstico de la ELA y los síntomas cognitivo-conductuales

A pesar de los grandes esfuerzos realizados a día de hoy no se dispone de biomarcadores fiables para su confirmación. Por ello, el diagnóstico, en la actualidad, está basado en la constatación de un cuadro clínico de debilidad progresiva con semiología secundaria a la disfunción de las neuronas motoras superior e inferior, acompañado de hallazgos neurofisiológicos compatibles con un proceso neurógeno activo y de cierta extensión. Dada la heterogeneidad de las manifestaciones clínicas y el solapamiento clínico con otras enfermedades neuromusculares, el diagnóstico

supone en muchos casos un desafío, y a menudo se recurre a criterios diagnósticos que proporcionan un marco en el que basarse.⁶⁰

Los primeros criterios diagnósticos propuestos fueron los de El Escorial en 1990,⁶¹ con sucesivas revisiones destinadas a aumentar su sensibilidad y especificidad mediante la adición de criterios de soporte neurofisiológicos (Tabla 1).⁶² El último marco de criterios propuesto tiende hacia una mayor simplificación con la intención de mejorar la sensibilidad preservando la especificidad, con buenos resultados aparentes en su aplicación.^{63,64} En estos últimos criterios se reduce el número de regiones corporales implicadas a uno, con progresión en el tiempo y descartando otras causas alternativas, y propone un diagnóstico dicotómico positivo o negativo en base a esto, eliminando las categorías previamente propuestas.

Tabla 1. Criterios diagnósticos de El Escorial revisados. Adaptada de de Carvalho *et al.*⁶²

Principios diagnósticos	
El diagnóstico de esclerosis lateral amiotrófica (ELA) requiere:	
(A) La presencia de:	
(A) La presencia de:	1. Evidencia de degeneración de la segunda neurona motora inferior (2NM) mediante examen clínico, electrofisiológico o neuropatológico;
	2. Evidencia de degeneración de la primera neurona motora (1NM) mediante examen clínico; y
	3. Progresión de los síntomas o signos hacia otras regiones, según la historia clínica, el examen físico o las pruebas electrofisiológicas.
(B) La ausencia de:	1. Evidencia electrofisiológica o patológica de otros procesos patológicos que puedan explicar los signos de degeneración de neurona motora, y
	2. Evidencia por neuroimagen de otros procesos patológicos que puedan explicar los signos clínicos y electrofisiológicos observados.
Categorías diagnósticas	
ELA definitiva	Presencia de signos de 1NM* y 2NM** en tres regiones anatómicas***.
ELA probable	Presencia de signos de 1NM y 2NM en al menos dos regiones, siendo los de 1NM rostrales (por encima) a los signos de 2NM.
ELA probable con apoyo de laboratorio	Presencia de signos de 1NM y 2NM en una región, con evidencia neurofisiológica de lesión de 2NM en otra.
ELA posible	Presencia de signos de 1NM y 2NM en una región aislada, o signos 1NM en dos regiones.

* 1NM: primera neurona motora.
 ** 2NM: segunda neurona motora.
 ***Se definen cuatro regiones anatómicas para la estratificación: bulbar, cervical, torácica y lumbar.

Por parte de los síntomas cognitivo conductuales, se ha desarrollado un sistema de criterios para categorizar el grado de participación, el tipo (cognitivo, conductual o ambos) y la relevancia de los distintos tipos de síntomas cognitivo-conductuales que se pueden observar asociados a la sintomatología motora en la ELA. Según los criterios de Strong et al.⁶⁵ se consideraría una diferenciación entre aquellos pacientes con ELA que cumpliese criterios de DFT en sus distintas variantes según sus propios criterios individuales (Rascovsky para la bvFDT, Gorno-tempini para las variantes de afasia primaria progresiva),^{52,66} y por otra parte aquellos pacientes que tuvieran ELA con presencia concomitante de síntomas cognitivos (ALSci - cognitive impairment), conductuales (ALSbi - behavioural impairment) o ambos (ALScbi), diferenciados de aquellos pacientes con ELA sin esta gama de síntomas.

Sin embargo, la utilidad de los criterios diagnósticos clínicos es limitada, y en esta época de desarrollo de terapias dirigidas, resulta extremadamente necesario el descubrimiento de nuevos biomarcadores que nos permitan la confirmación diagnóstica de forma precisa y precoz, así como la identificación de la patología molecular subyacente y las vías fisiopatológicas específicas alteradas. Esto podría resultar de especial utilidad en casos de DFT, en los que la proteinopatía es más variable.

En este sentido, se han hecho grandes avances a lo largo de los últimos años, implementándose algunos biomarcadores que intentan mejorar la sensibilidad y especificidad diagnóstica en ELA y DFT y su diagnóstico molecular, mientras que otros tratan de evaluar el grado de daño neuronal que correlacione con la progresión de la neurodegeneración, así como una posible respuesta terapéutica futura.

En cuanto a los biomarcadores diagnósticos, dada la elevada frecuencia de las inclusiones citoplasmáticas patológicas de TDP-43 en el sistema nervioso central de pacientes con ELA, muchos esfuerzos se han centrado en la detección de esta molécula a través de múltiples métodos y en diferentes fluidos biológicos, pero su ubicuidad en el sistema nervioso central, su posible presencia en otras enfermedades diferentes de la ELA y el relativo desconocimiento de su biología, han hecho que su detección plasmática o en LCR haya demostrado una especificidad limitada para el diagnóstico.⁶⁷

Trabajos más recientes proponen la detección de TDP-43 mediante nuevas técnicas como el RT-QUIC en LCR⁶⁸ o el estudio de su distribución y abundancia en las distintas capas de la piel en una biopsia cutánea, métodos que parecen tener un buen perfil de sensibilidad y especificidad para la ELA. Otras metodologías, como la detección de TDP-43 y la comparación con los distintos isotipos de proteína Tau en el interior de vesículas extracelulares circulantes, también podrían resultar de gran utilidad en la confirmación diagnóstica de la enfermedad y en la diferenciación entre las distintas proteinopatías subyacentes, si bien la aplicación de estas técnicas en la práctica clínica está lejos de ser implantada.⁶⁹ La detección de la expresión de exones crípticos de forma diferencia en la enfermedad, resultantes de la traducción anormal de ARN en contexto de la disregulación de su metabolismo secundario a la depleción nuclear de TDP-43 y la alteración de otras proteínas de unión a ARN, también es un hallazgo prometedor.^{70,71}

Considerando la posible participación del sistema inmunitario en la patogenia de la enfermedad, se ha estudiado la utilidad de múltiples moléculas implicadas en las distintas vías del sistema inmune, con resultados variables.^{72,73}

Por otra parte, se han estudiado otras muchas moléculas que pudiesen guardar una relación con el grado de lesión neuronal y que pudiesen traducir una mayor actividad del proceso neurodegenerativo, como la cadena ligera de los neurofilamentos, detectable tanto en el LCR como en plasma. Niveles elevados de esta molécula parecen guardar buena correlación con el daño neuronal y la progresión clínica de los pacientes con ELA, si bien no son específicos de la enfermedad y pueden detectarse en grado variable en múltiples enfermedades neurológicas.⁷⁴

No todos los biomarcadores quedan circunscritos al análisis de fluidos biológicos, sino que también disponemos de estudios de neuroimagen que nos aportan información complementaria. Técnicas de resonancia magnética de alta resolución como el análisis del grosor cortical en áreas concretas del cerebro o el análisis de la difusividad cortical media parecen guardar una buena correlación con los distintos grados de deterioro cognitivo-conductual en el espectro ELA-DFT, como también podrían ser de utilidad para la detección de este tipo de síntomas el uso de neuroimagen funcional como el PET-FDG.^{75,76}

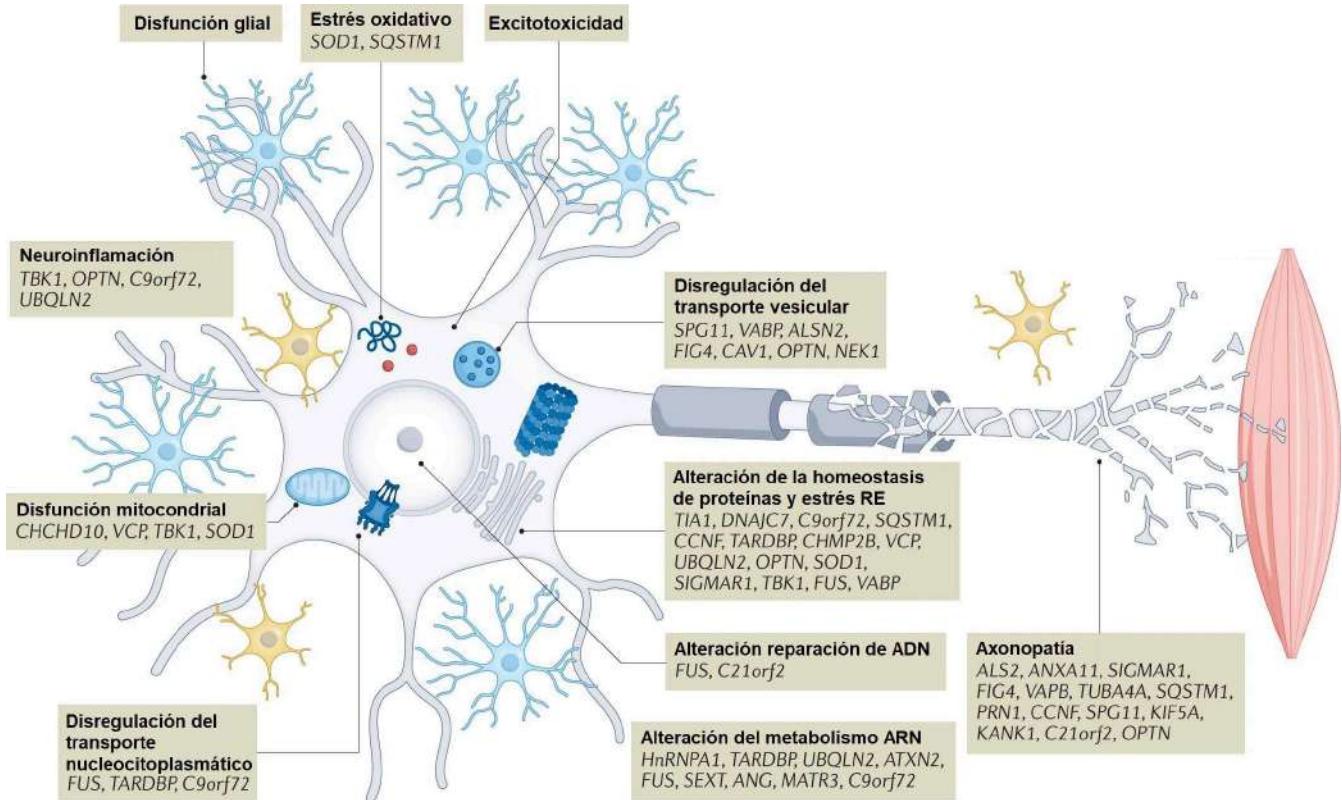
Finalmente, la identificación de una mutación genética en un paciente que presenta un cuadro clínico compatible también puede suponer una ayuda a la confirmación diagnóstica, y el descubrimiento de algunas de estas nuevas variantes ha supuesto una importante contribución a nuestro conocimiento de las vías fisiopatológicas de la enfermedad.²⁹

1.5.2. Abordaje terapéutico en la ELA

El abordaje terapéutico en la ELA, a día de hoy, está principalmente centrado en las medidas no farmacológicas, enfocada en el tratamiento de los síntomas asociados y organizado en equipos multidisciplinarios proporcionados por un equipo especializado. Intervenciones concretas incluyen el uso de la ventilación para la insuficiencia respiratoria y la colocación precoz de la sonda de nutrición enteral cuando son necesarias, según se recoge en las guías clínicas internacionales más recientes.⁷⁷

Desde el punto de vista farmacológico, son pocas las alternativas de las que se dispone. A lo largo de los años se han realizado ensayos clínicos en búsqueda de posibles principios activos con intervención en múltiples vías fisiopatológicas que pudieran tener un papel curativo o al menos con capacidad para ralentizar la evolución de la enfermedad.⁷⁸ Sin embargo, a pesar de estos esfuerzos, a nivel internacional sólo han recibido aprobación por las distintas agencias reguladoras un total de tres fármacos: riluzole, edaravone y la combinación de fenilbutirato de sodio y taurursodiol, en cualquier caso demostrando en los ensayos un efecto modesto en la supervivencia o la progresión de los pacientes. De entre estos principios activos, el único aprobado en España es el riluzole, mientras que los otros dos no han recibido la aprobación dados los limitados resultados que mostraron los ensayos clínicos.⁷⁹ La falta de conocimiento sobre la etiopatogenia de la enfermedad y las múltiples vías fisiopatológicas implicadas son, seguramente, dos de los principales factores que contribuyen a la dificultad en el desarrollo de terapias dirigidas exitosas.

Sin embargo, la aprobación reciente de la terapia con el oligonucleótido antisentido Tofersen en pacientes portadores de una mutación en *SOD1* (Superóxido dismutasa 1), en los que se presupone una interrupción del mecanismo de ganancia de función tóxica, abre una puerta a la terapia dirigida molecularmente en la ELA.⁸⁰


De este modo, resulta de vital importancia profundizar en los mecanismos fisiopatológicos de la enfermedad para poder dirigir el tratamiento de forma lo más precisa posible, por lo que tendría gran interés la identificación de posibles genes implicados en la patogenia de la enfermedad.

1.6. Etiología y fisiopatología: aprendizajes de los estudios neuropatológicos y moleculares

Aunque la etiología de la ENM no es bien conocida se cree que, al igual que otras enfermedades neurodegenerativas, podría tener su origen en una combinación de factores genéticos predisponentes y la implicación de factores medioambientales, que culminan en la disfunción de las neuronas motoras a través de la convergencia de varios mecanismos fisiopatológicos implicados (Figura 3).^{79,81}

En cuanto a las bases genéticas de la enfermedad, a día de hoy son más de 40 los genes identificados como posiblemente implicados en la patogenia, participando en distintos procesos celulares que hoy conocemos.²⁹ Sin embargo, la arquitectura genética de la ELA es compleja. La identificación de los distintos genes causales o predisponentes al desarrollo de la enfermedad ha ayudado a profundizar en el conocimiento de los diferentes procesos biológicos relacionados con la fisiopatogenia de la ELA.^{31,82}

En el proceso patogénico de la ELA se cree que puedan participar varios mecanismos interrelacionados (Figura 3), entre los que destacan la alteración del metabolismo y homeostasis del ARN⁸³ y, en menor medida, el ADN, las alteraciones en la formación y actividad de los gránulos de estrés,⁸⁴ los trastornos de la homeostasis y control de calidad de proteínas, alteraciones del transporte axonal y formación del citoesqueleto, el transporte vesicular, la disfunción mitocondrial y daño oxidativo, y la disregulación inmunitaria, entre otros.^{72,73,79,85} Estos procesos convergen en mecanismos fisiopatológicos comunes poco conocidos que interactúan entre sí, resultando finalmente en la disfunción de una red mayor y en la eventual degeneración y muerte de las neuronas motoras.^{81,86}

Figura 3. Mecanismos fisiopatológicos implicados en la patogénesis de la enfermedad de neurona motora y genes relacionados con ellos. Varios de estos genes y mecanismos son compartidos con la demencia frontotemporal, lo cual refuerza la idea de la superposición entre ambas entidades.

Adaptado de Mead, R.J. *Nat Rev Drug Discov*, 2022.⁷⁹

1.6.1. Disfunción del metabolismo y regulación del ARN: TDP-43

Uno de los mecanismos que parecen tener mayor relevancia en la fisiopatogenia de la enfermedad son las alteraciones en los distintos procesos relacionados con el ARN, tanto en su formación, homeostasis, metabolismo, transporte, regulación de la transcripción y del proceso de splicing alternativo del ARN.^{83,87} Su importancia viene respaldada por algunos de los hallazgos neuropatológicos característicos de la enfermedad, así como por la existencia de mutaciones causales en genes implicados en estas vías fisiopatológicas.

Son varias las proteínas que tienen capacidad de unirse al ARN y que se ven implicadas en los diferentes puntos de los múltiples mecanismos descritos.⁹⁰ Sin embargo, la más relevante en cuanto a los hallazgos neuropatológicos y su posible participación en la patogenia de la enfermedad es la proteína TDP-43.

TDP-43 es una proteína de unión a ARN y ADN que pertenece a la familia de las ribonucleoproteínas nucleares heterogéneas (hnRNP), participando activamente en procesos como la transcripción, splicing, transporte y maduración del RNA, así como en la formación de los llamados gránulos de estrés.⁸⁸⁻⁹⁰ Además, en estadios iniciales de la embriogénesis parece tener un papel importante en el correcto desarrollo de células neurales, especialmente en el sistema nervioso central.⁹¹

Codificada por el gen *TARDBP* (TAR DNA-binding protein), la proteína TDP-43 está compuesta por 414 aminoácidos constituidos en un dominio N-terminal, dos regiones de unión a ARN y un dominio C-terminal que incluye una región de baja complejidad similar a las regiones “prion-like”, el cual interviene en la interacción con otras proteínas y la formación de gránulos de estrés.^{92,93} De expresión ubicua, su localización más habitual es en el núcleo celular, siendo capaz de migrar con facilidad entre el núcleo y el citoplasma para llevar a cabo sus distintas funciones.⁹²

Bajo ciertas condiciones anormales y de estrés celular se puede producir la fosforilación y ubiquitinación de TDP-43, dando lugar a su deslocalización del núcleo celular y su agregación patológica en el citoplasma.⁸⁸ Se ha postulado que pueda existir una propagación de los agregados de TDP-43 a través de sus dominios “prion-like”, cuya conformación estructural facilitaría el acúmulo progresivo de oligómeros proteicos en un proceso similar a las fibras amiloides o la propagación de las proteínas priónicas.^{94,95}

Estos agregados de TDP-43 fosforilada están presentes en la ENM, donde suponen la proteinopatía predominante, presente hasta en un 90-95% de casos. Sin embargo, a pesar de su elevada frecuencia, mutaciones en *TARDBP* tan sólo explican el 1% del total de casos de ELA y menos del 5% de los casos de ELA familiar.^{96,97}

Del mismo modo, estas inclusiones anormales, con distinta morfología y distribución, también pueden estar presentes en parte de los casos de DLFT y, en menor medida, en una proporción variable en varias enfermedades neurodegenerativas, con diferente distribución entre las distintas regiones cerebrales.^{90,98} Un ejemplo de esto sería la enfermedad de Alzheimer, donde pueden encontrarse entre el 20-50% de los casos, inicialmente en la amígdala, pero con posterior distribución al hipocampo y córtex

entorrinal.^{99,100} En estos casos, el acúmulo patológico de TDP-43 fosforilada en estas regiones podría condicionar la aparición de síntomas cognitivos incluso en ausencia de depósito de proteína amiloide, como ocurre en el LATE (limbic-predominant age-related TDP-43 encephalopathy)¹⁰¹ o en relación con la esclerosis hipocampal.¹⁰²

Asimismo, se ha descrito la presencia de depósito anormal de TDP-43 en entidades clínicas y neuropatológicas cuya etiopatogenia no es, en principio, neurodegenerativa. Es el caso de la encefalopatía traumática crónica, en que se presupone un factor mecánico-traumático causal inicial, y la que a pesar del predominio de depósitos de proteína Tau, también se han observado agregados y neuritas con inmunorreactividad TDP-43 concomitante, en casos con y sin un cuadro clínico de ENM.^{103,104} Por otro lado, también se ha documentado la presencia de patología TDP-43 en enfermedades en cuya etiopatogenia existe un componente disimune claro, como en la enfermedad por anticuerpos anti-IgLON5, que también podrían presentarse clínicamente como un fenotipo de tipo ELA.^{105,106} Finalmente, se ha descrito la presencia de estos agregados en cerca del 30% de las personas mayores de 65 años, incluso en ausencia de síntomas cognitivos, por lo que también se ha relacionado su presencia como un posible hallazgo asociado al envejecimiento normal.¹⁰⁷

A pesar de todo, aunque se ha estudiado su participación como un posible desencadenante de neurotoxicidad en diferentes experimentos *in vivo* e *in vitro*, el papel de TDP-43 de forma directa en el proceso de neurodegeneración todavía no está claramente establecido.^{108,109}

TDP-43 no es la única proteína de unión a ARN relacionada con la ELA. Aunque con una participación más minoritaria, proteínas como FUS (Fused in Sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWS (Ewing Sarcoma), TIA-1 (T-Lymphocyte Intracellular antigen-1), la familia de las *hnRNP* (Heterogeneous Nuclear Ribonucleoproteins), *UBQLN2* (Ubiquilin 2) o *ATXN2* (Ataxin 2), entre otras, entre otras, han sido implicadas en las diferentes fases del procesamiento y metabolismo del ARN, y en la patogenia de la ELA mediante mecanismos tanto de pérdida o ganancia tóxica de función.^{110,111} Mutaciones en los genes que las codifican han sido descritas como causales o predisponentes de ELA, y estudios funcionales apoyan el papel de estas proteínas en la patogenicidad de la enfermedad.⁸⁹

Varias de estas proteínas participan, además, en la fisiopatogenia de la demencia frontotemporal, reforzando el concepto de la superposición entre ambas entidades. En concreto, la proteína FUS está presente en una proporción no desdeñable de casos de ELA y DFT, con distintos patrones morfológicos y una relación variable con mutaciones en el gen *FUS*, como veremos más adelante.¹¹³

La participación y el papel de esta miríada de proteínas, que comparten similitudes estructurales y funcionales, en los distintos puntos de la patogenia de la enfermedad, añaden una capa de complejidad al escenario de la fisiopatogenia del espectro ELA-DFT.¹¹²

1.6.2. Otros mecanismos implicados: los gránulos de estrés

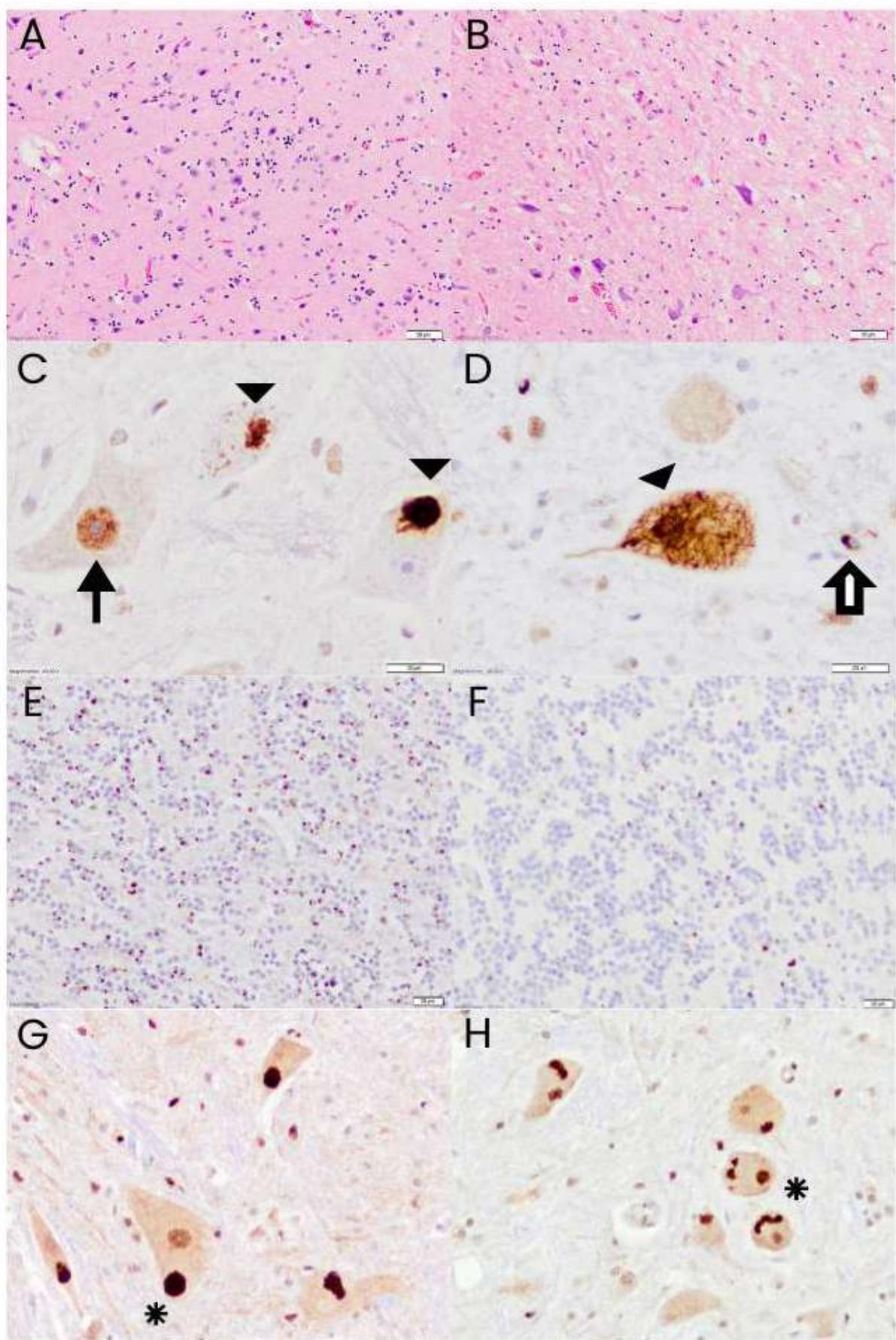
Otro de los mecanismos más recientemente estudiados que podrían tener su participación en la fisiopatogenia de la ELA son las alteraciones en la formación y el metabolismo de los gránulos de estrés.¹¹⁴

Los gránulos de estrés son estructuras dinámicas y sin membrana que se forman en el citoplasma de las células como respuesta a varios tipos de estrés celular, regulando la expresión génica y la síntesis de proteínas en condiciones de estrés. Están compuestos de moléculas de ARN, factores de inicio de traducción y varias proteínas de unión a ARN, sin una membrana circundante, de forma que constituyen estructuras altamente dinámicas que se conforman y se disgregan de manera continua como forma de adaptación celular al estrés. En estas circunstancias, se detiene temporalmente la formación de ARN mensajero, el cual se agrupa junto con las proteínas asociadas en estos gránulos como una forma de almacenamiento de recursos hasta que se resuelvan las condiciones fisiológicas, permitiendo así la rápida reanudación de los procesos biológicos. De esta forma, los gránulos de estrés podrían jugar un papel importante en la regulación de la expresión génica y la síntesis de proteínas durante las situaciones de estrés celular.¹¹⁵

Algunas de las proteínas de unión a ARN que se han relacionado con la formación de gránulos de estrés, y que, de hecho, pueden estar presentes en ellos, incluyen a TDP-43, FUS o TIA-1, entre otras.¹¹⁶ De este modo, se cree que las alteraciones en la formación, función y metabolismo de los gránulos de estrés, puedan tener relación con los procesos fisiopatológicos subyacentes en la ELA, pero también en otras

enfermedades neurodegenerativas como la enfermedad de Alzheimer y la enfermedad de Huntington, en las que la acumulación anormal de componentes de gránulos de estrés podría contribuir a la patología observada.^{115,117}

Los mecanismos exactos mediante los cuales TDP-43 y otras proteínas de unión a ARN contribuyen a la dinámica de los gránulos de estrés y cómo la desregulación de estos puede contribuir a enfermedades neurodegenerativas son todavía áreas activas de estudio.¹¹⁸


1.7. Neuropatología del espectro ENM-DLFT

Los hallazgos neuropatológicos que caracterizan a la ENM son la degeneración y pérdida de las neuronas motoras a nivel del córtex motor primario y astas anteriores de la médula espinal, que se acompaña de la pérdida axonal anterógrada y gliosis secundaria de los tractos corticoespinales (Figura 4).⁸⁶

1.7.1. Características macroscópicas

En la mayoría de los pacientes con ELA, el aspecto macroscópico del cerebro es normal. Sin embargo, la pérdida neuronal progresiva puede dar lugar a la eventual atrofia del córtex precentral, las astas y raíces anteriores de la médula. La degeneración secundaria de los tractos corticoespinales descendentes puede hacerse evidente en las pirámides medulares y en las columnas laterales, que tienden a mostrarse atróficas y esclerosadas, concediendo el nombre a la enfermedad. Se produce el adelgazamiento de la médula espinal y las raíces anteriores tienden a mostrarse atróficas y grisáceas en comparación con las raíces posteriores.^{119,120}

En algunos pacientes, especialmente en aquellos que presentan síntomas clínicos de deterioro cognitivo-conductual de forma asociada, pueden evidenciarse cambios neuropatológicos de DLFT, como es la atrofia cortical de predominio en los lóbulos frontal y temporal, con tendencia a ser más marcada en las áreas implicadas clínicamente, pudiendo asociar evolutivamente una dilatación ventricular secundaria.^{119,120}

Figura 4. Imágenes de los hallazgos neuropatológicos característicos en el espectro ENM-DLFT. A-B: Hematoxilina-Eosina. Pérdida moderada de neuronas piramidales de Betz, astrogliosis y proliferación de la microglía en córtex motor (A) y núcleo del hipogloso (B). C-D: Inmunohistoquímica TDP-43. Translocación de la inmunorreactividad de TDP43 desde la localización fisiológica en el núcleo (flecha negra) a su agregación patológica en el citoplasma de neuronas del córtex motor (cabezas de flecha) (C). Inclusiones densas Lewy body like (C), inclusiones en forma de ramillete (“skein-like”) e inclusiones oligodendrogliales (flecha blanca)(D). E-F: inmunohistoquímica de ubiquitina (E) y p62 (F) en cerebelo de pacientes con expansión patológica C9orf72. Se muestran inclusiones en forma de estrella inmunorreactivas para ubiquitina y p62 en las células granulares del cerebelo, que representan la repetición de dipéptidos. G-H: Inmunohistoquímica FUS. Inclusiones basófilas con inmunorreactividad FUS en el citoplasma de neuronas del asta anterior medular, de apariencia más compacta (G) o fibrilar (H).

Imágenes cedidas por cortesía de la Dra. Ellen Gelpi, realizadas sobre muestras de tejido de pacientes donantes incluidos en este trabajo.

1.7.2. Características microscópicas

A nivel microscópico, en el córtex motor se evidencia la pérdida de las neuronas piramidales de Betz, acompañada de espongiosis y gliosis laminar superficial, de predominio en la capa II del córtex frontal precentral. En casos más avanzados se extiende al resto de capas de la corteza y se puede acompañar de fenómenos de microvacuolización, espongiosis y gliosis astrocítica. En la médula espinal se objetiva una reducción del tamaño y posterior degeneración de las neuronas motoras en las astas anteriores, así como pérdida de axones mielinizados en las columnas anteriores y laterales.¹²⁰

Un hallazgo particular en las neuronas motoras son los cuerpos de Bunina, unas inclusiones citoplasmáticas eosinófilicas de pequeño tamaño (3-6 micras) que predominan en las neuronas motoras de las astas anteriores de la médula y núcleos motores troncoencefálicos, aunque no de forma exclusiva. Están formados por material proteico que incluye proteínas como la cistatina C o la transferrina, pero no TDP-43 ni otras asociadas a procesos neurodegenerativos, resultando controvertida la presencia en ellos de ubiquitina. Aunque bastante específicas de la ENM, su significado biológico y patológico es a día de hoy desconocido.^{121,122}

La presencia de alteraciones en las células gliales ha cobrado un creciente interés en los últimos años.¹²³ En el cerebro de estos pacientes, es frecuente observar cierto grado de astrogliosis reactiva rodeando a las neuronas motoras en degeneración,

expresando un incremento de la inmunorreactividad para algunos marcadores inflamatorios como la proteína gliofibrilar ácida.¹²⁴ Se ha planteado que la activación microglial pueda tener una correlación con el grado de gravedad del daño neuronal en la ELA a través de la liberación local de citocinas proinflamatorias y especies reactivas de oxígeno que podrían aumentar el estrés oxidativo a nivel local.^{125,126}

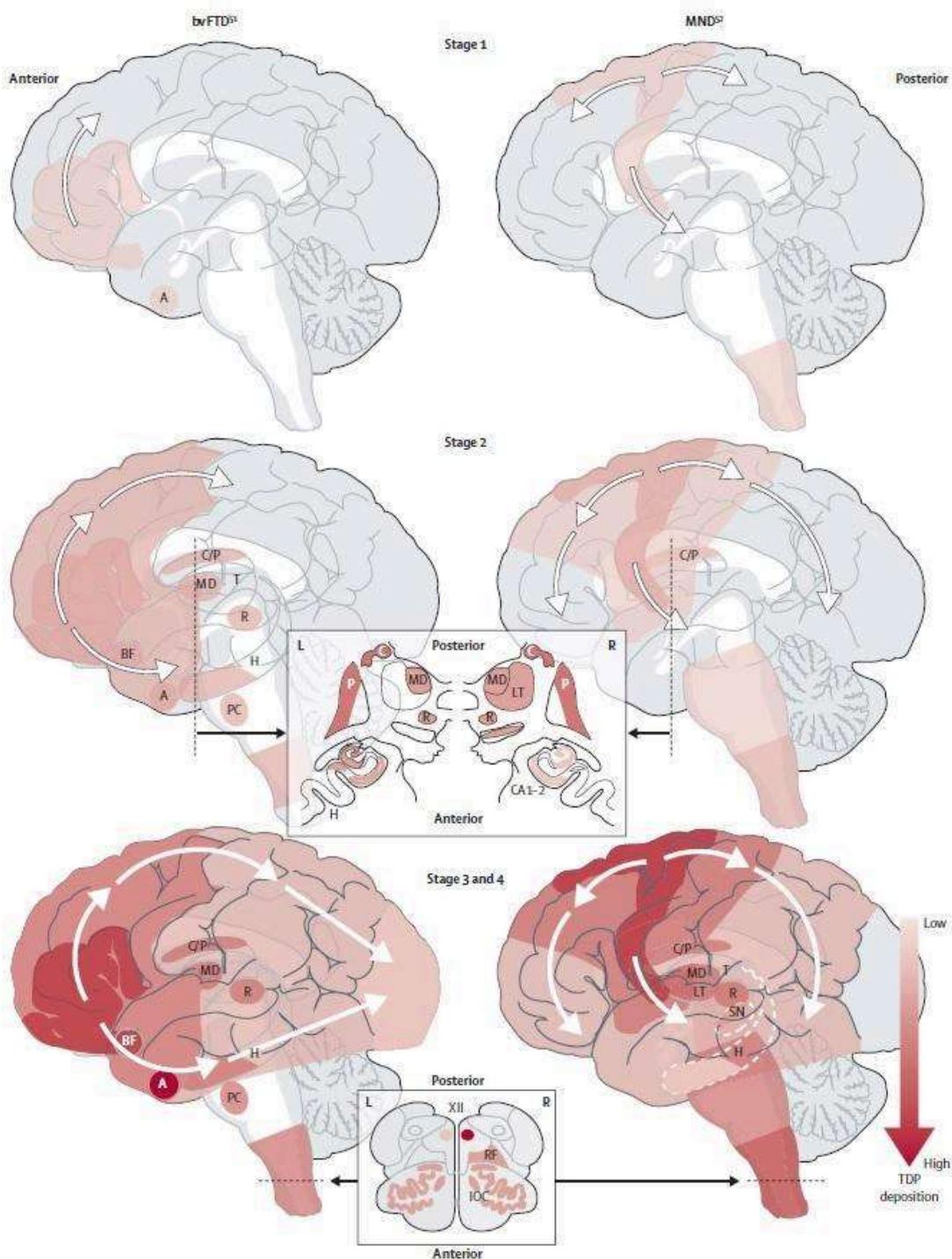
De forma similar a los hallazgos macroscópicos, en algunos casos de ENM, especialmente en aquellos que presentan síntomas cognitivo-conductuales, puede documentarse también cambios neuropatológicos de degeneración lobular frontotemporal, como son la pérdida neuronal, gliosis y la esclerosis laminar superficial en las cortezas de los lóbulos frontal y temporal.^{127,128} Sin embargo, la escasez de series clínico-neuropatológicas amplias hace que la frecuencia de los cambios neuropatológicos de DLFT en la ENM sea difícil de estimar.

1.7.3. Características inmunohistoquímicas

El hallazgo inmunohistoquímico más característico de la ENM es la presencia de agregados proteicos citoplasmáticos inmunorreactivos para proteína TDP-43 fosforilada y ubiquitina, y negativos para otras proteínas implicadas en enfermedades neurodegenerativas (Tau, alfa-sinucleína, etc).¹²⁹ Estas inclusiones están presentes en el 90-95% de los pacientes con ENM y en torno al 50% de los pacientes con DLFT, aunque también se han descrito en otras entidades de forma menos abundante.¹⁰

Los agregados de TDP-43 se localizan principalmente en el citoplasma de las neuronas, adquiriendo distintas morfologías: “skein-like” (en forma de madeja) de mayor o menor tamaño, en forma de punto, de inclusiones densas redondeadas o en forma de neuritas de diferente longitud.¹²⁹ El significado patológico de las distintas morfologías de los agregados no es bien conocido. Con menor frecuencia, también es posible observarlos en el citoplasma de los oligodendrocitos o como inclusiones intranucleares en las neuronas.⁵⁶

En el espectro ENM-DLFT la cantidad y distribución de estos agregados en las neuronas en distintas regiones cerebrales es variable dependiendo de la entidad clínica. De esta forma, en pacientes con ENM predominan en las neuronas motoras, mientras que en la DLFT se suelen visualizar en las neuronas de las cortezas frontal y temporal, donde el proceso neurodegenerativo es más activo. Sin embargo, con la


progresión de la enfermedad se produce una extensión de los agregados celulares a otras áreas cerebrales siguiendo ciertos patrones. En este sentido se han propuesto distintos modelos de progresión en estadios secuenciales definidos.^{130,131}

En el caso de la ENM, tras la localización inicial de los cambios patológicos en las neuronas motoras de la corteza motora, los núcleos motores troncoencefálicos (XII-X, VII, V) y las neuronas motoras alfa de la médula espinal (estadio 1 de Brettschneider), se produciría la propagación a las neuronas del neocórtex prefrontal (giro frontal medio), la formación reticular del tronco encefálico, los núcleos precerebelosos y el núcleo rojo (estadio 2), y posteriormente a los girus recto y orbitales del neocórtex prefrontal y luego la neocorteza postcentral y el estriado (estadio 3). En el último estadio (estadio 4) las inclusiones de TDP-43 fosforilada pueden observarse también en la porción anteromedial del lóbulo temporal, incluyendo el hipocampo (Figura 5).⁴⁰

Estos patrones de distribución de la proteinopatía TDP-43 en ENM no son siempre uniformes, habiéndose descrito otros en los que habría una mayor implicación de ganglios basales como el pálido, la sustancia nigra y el núcleo subtalámico, que clínicamente presentan mayor asociación con deterioro cognitivo y semiología extrapiramidal.^{132,133}

Patrones de propagación similares y complementarios se han descrito para la DLFT, donde además, la distribución de los agregados inmunorreactivos para TDP-43 en las distintas capas de las cortezas frontal y temporal, determina una clasificación de los distintos subtipos de DLFT (Figura 6), que puede tener su interés dada su asociación con diferentes hallazgos clínicos y genéticos .^{56,134}

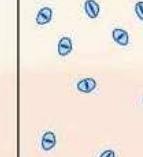
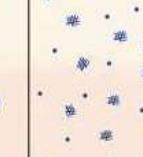



Los avances tecnológicos e informáticos aplicados al análisis de datos neuropatológicos han permitido el desarrollo de modelos de progresión de la patología TDP-43 en ELA, DFT y en otras patologías TDP-43 como el LATE.¹³⁵

Figura 5. Esquema de los estadios de propagación de los agregados de proteína TDP-43 en el espectro ENM-DLFT según el predominio fenotípico de inicio. A la izquierda, estadios propuestos para la bvFTD. A la derecha, estadios propuestos para la ENM.

Leyenda: amígala (A), basal forebrain (BF), caudado y putamen (C/P), hipocampo (H), regiones 1-2 del cuerno de Ammón del hipocampo (H.CA1–2), complejo olivar inferior (IOC), tálamo lateral (LT), núcleo mediodorsal talámico (MD), núcleos precerebelosos (PC), núcleo rojo (R), formación reticular pontina (RF), sustancia nigra (SN), tálamo (T), hipogloso (XII).

Figura extraída de Burrell JR, et al. *Lancet*. 2016.⁴⁰

	Type A	Type B	Type C	Type D	Type E
I					
II					
III					
IV					
V					
VI					
White Matter					

Figura 6 - Subtipos principales de DLFT-TDP según la distribución de las inclusiones de TDP-43 en las diferentes capas neocorticales. Tipo A: presencia de abundantes inclusiones citoplasmáticas neuronales (ICN) en medialuna o en anillo, con abundantes neuritas distróficas, de predominio en capas corticales superficiales (II/III). Tipo B: presencia de numerosas ICN y escasas neuritas distróficas (ND), distribuidas por todas las capas corticales. Tipo C: presencia de ND largas de predominio en las capas corticales más superficiales. Tipo D: presencia de inclusiones intranucleares neuronales lenticiformes con neuritas distróficas cortas. Tipo E: presencia de NCI gránulo-filamentosas y agregados finos puntiformes en el neuropilo en todas las capas neocorticales, con inclusiones oligodendrogliales curvilineas en la sustancia blanca.

Figura extraída de Lee et al. *Acta Neuropathol*, 2017.¹³⁶

Un caso particular son los pacientes con una expansión patológica en el gen *C9orf72* (Cromosoma 9 open reading frame 72), en los que además de los hallazgos neuropatológicos clásicamente descritos en la ENM TDP-43, presentan otros hallazgos específicos. En concreto, presentan inclusiones neuronales citoplasmáticas e intranucleares que son positivas para ubiquitina y p62, pero negativas para TDP-43, que contienen proteínas de repetición de dipéptidos (DPR) resultantes de la traducción anormal de las repeticiones expandidas, siendo más abundantes en el cerebelo, el hipocampo y el neocórtex. Además, se identifican también depósitos de focos de ARN nuclear en la corteza frontal, el hipocampo y el cerebelo, derivados de la producción excesiva de transcritos de *C9orf72* expandido.¹³⁷ La identificación de estas

características neuropatológicas es altamente predictiva de la existencia de la expansión patológica de *C9orf72* subyacente.¹³⁸

En una proporción menor de pacientes con ENM, pueden observarse agregados de otras proteínas distintas de TDP-43.

En el caso de pacientes con formas familiares de ELA por mutaciones en el gen *SOD1*, se ha descrito una mayor carga lesional en las neuronas de las astas anteriores medulares con respecto a la primera neurona motora, observándose en las tinciones inmunohistoquímicas unas inclusiones similares a cuerpos de Lewy que son positivas para *SOD1*, ubiquitina y algunas otras proteínas, pero negativas para TDP-43 y FUS.¹³⁹ Estos hallazgos neuropatológicos sugieren que los mecanismos moleculares en estos pacientes, aunque clínicamente indistinguibles, pueden ser distintos de los de otras formas de ELA.¹⁴⁰

Otro caso llamativo es el de la proteína FUS, una proteína de unión a ARN con similitudes estructurales y funcionales a TDP-43. FUS, junto con las proteínas EWS y TAF 15, conforma la familia FET (FUS/EWS/TAF 15), un grupo de proteínas de unión a ARN de una expresión ubicua que se transportan de forma continua entre el núcleo y el citoplasma gracias a la proteína de importación nuclear Transportina 1 (Trn1).¹⁴¹

En pacientes con mutaciones en el gen *FUS* se produce típicamente un cuadro de ELA clásico en cuyo estudio neuropatológico se pueden observar inclusiones intracitoplasmáticas de proteína FUS ubiquitinada aislada, sin otras proteínas de la familia FET, agregada de forma anormal en neuronas y glía.¹⁴² De forma anecdótica, se han descrito pacientes con una mutación subyacente en *FUS* que se presentan como DLFT sin ENM.^{113,143}

Por otro lado, también se pueden encontrar agregados de FUS con inmunorreactividad concomitante para otras proteínas de la familia FET y Trn1 en la corteza frontotemporal de pacientes con un cuadro clásico de DFT, en ausencia de mutaciones subyacentes en *FUS*.¹⁴² Sin embargo, este patrón de co-expresión de las inclusiones FUS asociada a otras proteínas FET también ha sido descrita en casos de ELA sin mutación en *FUS* subyacente.¹⁴⁴ Debido a esta diferencia de patrón de inmunorreactividad, se ha planteado que el proceso patogénico subyacente sea

diferente en los casos genéticamente determinados y lo casos sin mutaciones en el gen *FUS*.

Finalmente, la presencia concomitante de alteraciones patológicas de otros procesos neurodegenerativos, como son los cambios neuropatológicos de la enfermedad de Alzheimer o la esclerosis hipocampal, podrían tener un papel relevante en el desarrollo de síntomas cognitivos conductuales, especialmente en los pacientes de mayor edad.⁴³

1.7.4. Correlación clínico-patológica

El espectro ELA-DFT es marcadamente heterogéneo desde el punto de vista clínico tanto en su forma de inicio como en su evolución, especialmente con la adición de los síntomas cognitivo-conductuales al espectro de la enfermedad. La variabilidad añadida por los posibles condicionantes genéticos y las diferentes proteinopatías subyacentes, incrementan el grado de complejidad y la heterogeneidad de estas entidades. La complejidad se multiplica si tenemos en cuenta que los síndromes clínicos de DFT pueden tener sustratos patológicos, como los agregados de proteína Tau, y bases genéticas, como las mutaciones en *MAPT* o *GRN*, que no comparten superposición con la ENM.

En este sentido, los estudios clínico-neuropatológicos han demostrado su utilidad en la profundización de nuestro conocimiento sobre la fisiopatología y el sustrato del proceso neurodegenerativo, a día de hoy todavía limitado. Sin embargo, siguen siendo pocas las series descritas que presenten una correlación entre las características fenotípicas bien delimitadas junto con los hallazgos neuropatológicos específicos desde una perspectiva más global, centrándose la mayoría en distintos aspectos concretos de la patología.^{107,145-154}

1.8. Bases genéticas del espectro ELA-DFT

1.8.1. Susceptibilidad genética en la ELA

A pesar de no ser considerada primariamente como una enfermedad genéticamente determinada, los estudios genéticos en pacientes con ELA realizados en las últimas

décadas apuntan a una creciente relevancia del sustrato genético de la enfermedad en su etiopatogenia, con una arquitectura genética compleja.⁸¹

Se estima que el componente de heredabilidad de la enfermedad basado en variantes genéticas comunes pueda encontrarse en torno al 20%, comparado con la heredabilidad general del 60% en estudios de concordancia en gemelos monocigóticos.^{155,156} Por otra parte, se han desarrollado modelos matemáticos basados en registros poblacionales, que sugieren que el desarrollo de la ELA puede ser un proceso de varios “pasos teóricos” que incluyen un riesgo genético por la presencia de algunas variantes de riesgo y la interacción con factores ambientales, y cuyo número se reduciría en aquellos pacientes que presentan una mutación subyacente.^{157,158} Estos resultados resaltan la importancia del componente genético en la patogenia de la enfermedad.

Aunque la mayoría de casos de ELA son esporádicos, entre un 5-10% de los casos presentan historia familiar de la enfermedad o de DFT, siendo considerados como casos de ELA familiar.³⁰ En este grupo de pacientes, que desde el punto de vista clínico son indistinguibles de los esporádicos en su edad de inicio y curso de la enfermedad, se identifican mutaciones en los distintos genes causales en dos tercios de los casos. Mutaciones en estos mismos genes también pueden estar presentes en un 5-10% de los casos esporádicos, en los se produciría una mutación de novo.^{51,97,159}

A lo largo de las últimas décadas hemos asistido a un crecimiento exponencial en el número de genes conocidos en relación con la ELA.¹⁶⁰ Mutaciones en estos genes podrían generar un incremento de la susceptibilidad a padecer la enfermedad o alterar el grado de progresión de la misma, la mayoría de ellos con un patrón de herencia autosómico dominante, con grados variables de penetrancia.⁸¹ A día de hoy se han descrito más de 40 genes relacionados de forma consolidada (Tabla 2), si bien las mutaciones en cinco de ellos (*C9orf72*, *TARDBP*, *SOD1*, *FUS* y *TBK1* (*TANK-binding kinase*)) suponen en torno al 70-75% de los casos familiares con filiación molecular según las series,¹⁶¹⁻¹⁶³ destacando especialmente la expansión patológica del hexanucleótido GGGGCC en una región intrónica del gen *C9orf72*, que por sí sola supone un 40% de los casos de ELA familiar y un 7% de los esporádicos, si bien es un hallazgo variable según las distintas poblaciones.^{164,165}

En los últimos años se han propuesto algunos modelos alternativos de influencia del sustrato genético más allá de la identificación de variantes individuales, como podrían ser los modelos oligogénicos y poligénicos, en los que la presencia combinada de varias o incluso múltiples mutaciones de riesgo, podría influir en el desarrollo o progresión de la enfermedad.^{166,167}

Finalmente, se ha planteado que los cambios epigenéticos y la regulación de modificaciones postranscripcionales como la metilación del ADN, la edición del ARN o de las proteínas histonas podrían desempeñar un papel de interés en la patogenia o la progresión del continuo ELA-DFT, especialmente en los casos esporádicos, si bien se trata de un campo de reciente interés y su participación debe ser estudiada en profundidad.¹⁶⁸

1.8.2. Superposición genética en el espectro ELA-DFT

Igual que ocurre desde los aspectos clínico y neuropatológico, también existe una importante superposición entre la ELA y la DFT en las bases genéticas de la enfermedad.

En la DFT sin ELA asociada, en torno a un 30-40% de los casos presenta antecedentes familiares de alteraciones cognitivo-conductuales o neuropsiquiátricas y es considerada como familiar, encontrándose una mutación causal en aproximadamente la mitad de estos casos, con patrones de herencia variable.^{169,170} Aproximadamente la mitad de los casos de DFT con filiación molecular presentan una mutación subyacente en los genes *C9orf72*, *MAPT* (Microtubule Associated Protein Tau) o *GRN* (granulina), cada una de ellas relacionadas con un sustrato neuropatológico y características clínicas diferentes, mientras que variantes en otros genes son menos frecuentes.¹⁷¹ Como ejemplo, mutaciones en *GRN* conducen al desarrollo de un cuadro de DFT, manifestándose predominantemente como una bvFTD, muy raramente asociada a ENM, y caracterizada neuropatológicamente por el depósito de TDP-43 fosforilada con una distribución cortical de subtipo A de DLFT (Figura 6).¹⁷²

Tabla 2. Listado de genes relacionados con ELA. Adaptada de Wang et al. *Front Neurosci*, 2023.¹⁶⁰

Año	Gen	Herencia	Superposición	Funciones Probables
2021	<i>SPTLC1</i>	AD	ELA; HSP; CMT	Síntesis de esfingolípidos
2020	<i>WDR7</i>	¿?	ELA	Flujo de calcio; liberación de neurotransmisores
2020	<i>CAV1</i>	¿?	ELA	Homeostasis de calcio intracelular
2019	<i>GLT8D1</i>	AD	ELA	Síntesis de gangliósidos
2019	<i>ARPP21</i>	¿?	ELA	Factor neurotóxico sinérgico a GLT8D1
2019	<i>DNAJC7</i>	AD/AR	ELA	Homeostasis proteica
2018	<i>KIF5A</i>	AD	ELA; HSP; CMT2	Tráfico intracelular; defecto axonal
2017	<i>TIA1</i>	AD	ELA	Acumulación de TDP-43; metabolismo ARN
2017	<i>ANXA11</i>	¿?	ELA; DFT	Unión de fosfolípidos y calcio
2016	<i>CCNF</i>	AD	ELA; DFT	Autofagia; defectos axonales; agregación de proteínas
2016	<i>NEK1</i>	AD	ELA	Ciclos celulares; reparación ADN; formación de cilios
2016	<i>C21ORF2</i>	AD	ELA	Formación cilios; reparación ADN; función mitocondrial
2015	<i>TBK1</i>	AD	ELA; DFT	Autofagia; neuroinflamación
2014	<i>CHCHD10</i>	AD	ELA; DFT; ataxia	Función mitocondrial
2014	<i>MATR3</i>	AD	ELA; DFT	Ribostasis
2014	<i>TUBA4A</i>	AD	ELA; DFT	Organización del citoesqueleto; transporte axonal
2013	<i>ERBB4</i>	AD	ELA	Desarrollo neuronal
2013	<i>HNRNPA2B1</i>	AD; FR	ELA; miopatía; demencia	Ribostasis
2013	<i>HNRNPA1</i>	AD; FR	ELA; miopatía; demencia	Ribostasis
2012	<i>ATXN1</i>	FR	ELA	Transporte nucleocitoplásmico
2012	<i>EPHA4</i>	¿?	ELA; ataxia	Degeneración axonal
2012	<i>PFN1</i>	AD	ELA	Citoesqueleto; crecimiento y transporte axonal
2011	<i>C9ORF72</i>	AD	ELA; DFT	Tráfico intracelular; autofagia; estasis proteica; transporte nucleocitoplásmico
2011	<i>SQSTM1</i>	AD	ELA; DFT	Autofagia; neuroinflamación
2011	<i>UBQLN2</i>	Ligado a X	ELA; DFT	Estasis proteica
2010	<i>SIGMAR1</i>	AD/AR	ELA; DFT	Alteración del proteasoma; tráfico intracelular
2010	<i>ATXN2</i>	AD	ELA; SCA2	Ribostasis
2010	<i>OPTN</i>	AD/AR	ELA; DFT	Autofagia; neuroinflamación
2010	<i>SPG11</i>	AR	ELA; HSP; CMT	Daño en el ADN
2010	<i>VCP</i>	AD	ELA; DFT	Estasis proteica
2009	<i>ANG</i>	FR	ELA; DFT	Angiogénesis
2009	<i>FIG4</i>	AD	ELA	Tráfico intracelular
2009	<i>UNC13A</i>	¿?	ELA; DFT	Función sináptica
2009	<i>ELP3</i>	¿?	ELA	Ribostasis; integridad del citoesqueleto
2009	<i>FUS</i>	AD/AR	ELA; DFT	Ribostasis
2008	<i>TARDBP</i>	AD/AR	ELA; DFT	Ribostasis
2006	<i>CHMP2B</i>	AD	ELA; DFT	Estasis proteica; tráfico vesicular
2004	<i>HFE</i>	¿?	ELA; EA; PD	Homeostasis de hierro
2004	<i>VAPB</i>	AD	ELA	Estasis proteica
2003	<i>DCTN1</i>	AD; FR	ELA	Transporte axonal
2001	<i>ALS2</i>	AR	ELA	Tráfico vesicular
1998	<i>SETX</i>	AD	ELA	Ribostasis
1994	<i>NEFH</i>	AD; FR	ELA	Transporte axonal
1993	<i>SOD1</i>	AD/AR	ELA	Estasis proteica; estrés oxidativo

Leyenda: AD, autosómico dominante; AR, autosómico recesivo; CMT2, Charcot-Marie-Tooth tipo 2; DFT, demencia frontotemporal; EA, enfermedad de Alzheimer; ELA, esclerosis lateral amiotrófica; FR, factor de riesgo; HSP, paraparesia espástica hereditaria; PD, enfermedad de Parkinson; SCA2, ataxia espinocerebelosa tipo 2.

La heterogeneidad de los síndromes clínicos de DFT, que muestran una asociación variable con la ENM, así como la importante variabilidad de la neuropatología subyacente, añaden una capa de complejidad a esta entidad. La magnitud de la heredabilidad varía a lo largo del espectro de fenotipos clínicos, siendo la bvFTD (48%) y la ELA-DFT (10-40%) las que muestran una mayor historia familiar y carga genéticas, mientras que esto es de menor relevancia en las APP (12%), especialmente en su variante semántica.¹⁷³

A día de hoy son varios los genes causales identificados que pueden conducir al desarrollo de un cuadro de ELA, DFT o ambos (Tabla 2), cada uno de ellos con una frecuencia y una penetrancia variables. Entre ellos, destacan por su frecuencia los genes *TARDBP*, *VCP* (*Valosin containing protein*), *CHMP2B* (charged multivesicular body protein 2B), *SQSTM1* (*Sequestosome 1*), *UBQLN1* o *TBK1*, pero especialmente *C9orf72*.^{160,163}

Desde su identificación en 2011, la expansión patológica del hexanucleótido GGGGCC en una región no codificante del gen *C9orf72* se ha consolidado como la causa genética más común en ELA, DFT y la combinación ELA-DFT, considerándose responsable del 11% del total de casos de ELA y el 13% de DFT, especialmente relacionado con la variante conductual.^{164,174} Su expresividad fenotípica es variable, de modo que también se ha relacionado de forma más inhabitual con cuadros sindrómicamente más similares a trastornos extrapiramidales, hipercinéticos y con clínica neuropsiquiátrica florida.^{175,176} La penetrancia de los distintos fenotipos según la edad es también irregular, incrementándose con la edad.¹⁷⁷

Aunque no se conocen del todo las funciones fisiológicas de *C9orf72*, se cree que tiene una función esencial en los procesos de autofagia y en el mantenimiento de la homeostasis neuronal.¹⁷⁸ Del mismo modo, los mecanismos patogénicos por los cuales la expansión patológica de *C9orf72* podría conducir a la muerte neuronal y el proceso neurodegenerativo tampoco son bien conocidos. Las teorías más prominentes proponen un mecanismo tóxico secundario a la acumulación excesiva de ARN sobrereproducido por la expansión, o bien debido al acúmulo de proteínas de repetición de dipéptidos derivada de la traducción no convencional de la expansión, si bien también se ha propuesto que pueda producirse un fenómeno de haploinsuficiencia.^{164,179} Es posible que varios de estos mecanismos tengan una

participación conjunta en el proceso de toxicidad neuronal y ulterior neurodegeneración.¹⁸⁰

Es importante reconocer que son varias las vías fisiopatológicas o mecanísticas que se ven implicadas de forma repetida en la fisiopatología de la ELA y la DFT, que en parte hemos ido descubriendo gracias a la identificación de algunos de estos genes causales y la función de los mismos.⁷

1.8.2. Estudios genéticos e identificación de nuevos genes causales

A lo largo de los últimos años han sido muchos los métodos empleados para la identificación de potenciales genes candidatos causales de enfermedad. Uno de los más frecuentemente usados, de especial utilidad en casos con patrón de herencia mendeliana autosómico dominante con elevada penetrancia, es mediante el análisis de ligamiento.¹⁶⁷ Este método analiza la segregación de la enfermedad con marcadores genéticos concretos en familias con casos de ELA familiar, permitiendo identificar *loci* asociados con la enfermedad y eventualmente genes concretos localizados su proximidad, como ocurrió en el caso de genes como *SOD1* o *FUS*.^{181,182}

Otras muchas variantes han podido ser identificadas gracias a la combinación de esfuerzos colectivos en grandes estudios estudios genómicos, utilizando datos de secuenciación completa del genoma (Whole Genome Sequencing - WGS) en iniciativas como la del Project MinE Consortium (<https://www.projectmine.com/>), que incluye datos de secuenciación genómica de más de 15.000 pacientes con ELA y más de 7.500 controles sanos.¹⁸³ Estos estudios sugieren que la base genética de la ELA podría sustentarse fundamentalmente en variantes raras, al contrario que otras enfermedades como la esquizofrenia, que están asociadas con un gran número de variantes comunes.¹⁸⁴

A pesar de todo, el significado clínico de algunas de estas variables resulta incierto, careciendo en muchos casos de una evidencia sólida de asociación causal entre las variantes y el desarrollo de la enfermedad, especialmente en pacientes con ELA esporádica. Son necesarios estudios de replicación, estudios poblacionales y pruebas funcionales para la confirmación de su patogenicidad.⁸¹

Es importante recalcar que, a pesar de los sucesivos avances en este campo, hasta en un tercio de los pacientes con ELA familiar no se encuentra una variante genética subyacente pese a haberse realizado un estudio genético amplio de los genes conocidos, lo cual sugiere que todavía existen múltiples genes todavía no identificados que pueden tener una papel relevante en el sustrato molecular de la enfermedad.²⁷⁻²⁹ La identificación y estudio de estas variantes puede llevar a importantes avances en nuestra comprensión del funcionamiento del cerebro y las bases fisiopatológicas del espectro ELA-DFT, y eventualmente abrir la puerta al desarrollo de tratamientos dirigidos molecularmente que potencialmente modifican la enfermedad.⁸⁰

2. Hipótesis

Hipótesis principal:

El espectro de enfermedad ENM-DLFT es muy heterogéneo desde los puntos de vista clínico-fenotípico, neuropatológico y genético, existiendo una importante superposición entre ENM y DLFT. El estudio neuropatológico y el descubrimiento de nuevos genes causantes deben ampliar nuestro conocimiento de la enfermedad y ayudar en la definición de subgrupos homogéneos de enfermedad para ayudar en su caracterización.

Hipótesis específicas:

- En ausencia de biomarcadores diagnósticos fiables, la neuropatología debe ser una herramienta muy útil para el estudio detallado de casos y la tipificación multiparamétrica de pacientes con ELA, así como para el conocimiento de las bases moleculares de la enfermedad.
- La detección de picos de incidencia de casos de ELA en regiones geográficas restringidas, especialmente cuando estos son familiares, pueden sugerir la existencia de una causa genética subyacente.
- La identificación de nuevos genes causales de enfermedad debe resultar útil para profundizar nuestro conocimiento en la etiopatogenia de la ELA y las vías fisiopatológicas implicadas, así como ayudar en el diagnóstico de los pacientes.

3. Objetivos

Objetivo principal:

Profundizar en el conocimiento sobre las características clínicas, genéticas y neuropatológicas constitutivas, su interrelación e implicaciones en la nosología del espectro ENM-DLFT.

Objetivos específicos:

- Describir las características clínicas, neuropatológicas y genéticas del espectro ENM-DLFT en pacientes con una confirmación diagnóstica neuropatológica de ENM.
- Analizar la correspondencia entre los hallazgos neuropatológicos, clínicos y genéticos para definir subgrupos específicos.
- Identificar una posible mutación causal de ELA en genes hasta ahora no relacionados con la enfermedad, en pacientes provenientes de la región sudeste de La Rioja, donde se ha detectado un aumento de la incidencia de casos, con una inusual frecuencia de formas familiares.

4. Compendio de publicaciones

4.1. Primer trabajo

- **Título:** Clinicopathological correlates in the frontotemporal lobar degeneration – motor neuron disease spectrum.
- Trabajo publicado en *Brain* en 2024.
- **Referencia bibliográfica:** Carbayo Á, Borrego-Écija S, Turon-Sans J, Cortés-Vicente E, Molina-Porcel L, Gascón-Bayarri J, Rubio MÁ, Povedano M, Gámez J, Sotoca J, Juntas-Morales R, Almendrote M, Marquié M, Sánchez-Valle R, Illán-Gala I, Dols-Icardo O, Rubio-Guerra S, Bernal S, Caballero-Ávila M, Vesperinas A, Gelpi E, Rojas-García R. *Clinicopathological correlates in the frontotemporal lobar degeneration-motor neuron disease spectrum*. *Brain*. 2024 Jul 5;147(7):2357-2367. doi: 10.1093/brain/awae011. PMID: 38227807; PMCID: PMC11224598.

Clinicopathological correlates in the frontotemporal lobar degeneration–motor neuron disease spectrum

✉ Álvaro Carbayo,^{1,2,3} Sergi Borrego-Écija,⁴ Janina Turon-Sans,^{1,2,3} Elena Cortés-Vicente,^{1,2,3} Laura Molina-Porcel,^{4,5} Jordi Gascón-Bayarri,⁶ Miguel Ángel Rubio,⁷ Mónica Povedano,⁸ Josep Gámez,⁹ Javier Sotoca,¹⁰ Raúl Juntas-Morales,¹⁰ Miriam Almendroto,¹¹ Marta Marquié,¹² Raquel Sánchez-Valle,⁴ Ignacio Illán-Gala,^{13,14} Oriol Dols-Icardo,^{13,14} Sara Rubio-Guerra,^{13,14} Sara Bernal,^{3,15} Marta Caballero-Ávila,^{1,2,3} Ana Vesperinas,^{1,2,3} Ellen Gelpi^{5,16,†} and Ricard Rojas-García^{1,2,3,†}

†These authors contributed equally to this work.

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease (MND) that shares a common clinical, genetic and pathologic spectrum with frontotemporal dementia (FTD). It is highly heterogeneous in its presentation and features. Up to 50% of patients with MND develop cognitive-behavioural symptoms during the course of the disease, meeting criteria for FTD in 10%–15% of cases. In the absence of a precise biomarker, neuropathology is still a valuable tool to understand disease nosology, reach a definite diagnostic confirmation and help define specific subgroups of patients with common phenotypic, genetic and biomarker profiles. However, few neuropathological series have been published, and the frequency of frontotemporal lobar degeneration (FTLD) in MND is difficult to estimate.

In this work we describe a large clinicopathological series of MND patients, analysing the frequency of concurrent FTLD changes and trying to define specific subgroups of patients based on their clinical, genetic and pathological characteristics. We performed an observational, retrospective, multicentre case study. We included all cases meeting neuropathological criteria for MND from the Neurological Tissue Bank of the FRCB-IDIBAPS-Hospital Clínic Barcelona Biobank between 1994 and 2022, regardless of their last clinical diagnosis. While brain donation is encouraged in all patients, it is performed in very few, and representativeness of the cohort might not be precise for all patients with MND. We retrospectively reviewed clinical and neuropathological data and describe the main clinical, genetic and pathogenic features, comparing neuropathologic groups between MND with and without FTLD changes and aiming to define specific subgroups.

We included brain samples from 124 patients, 44 of whom (35.5%) had FTLD neuropathologic features (i.e. FTLD-MND). Pathologic TDP-43 aggregates were present in 93.6% of the cohort and were more extensive (higher Brettschneider stage) in those with concurrent FTLD ($P < 0.001$). Motor symptom onset was more frequent in the bulbar region in FTLD-MND cases than in those with isolated MND ($P = 0.023$), with no differences in survival. We observed a better clinicopathological correlation in the MND group than in the FTLD-MND group (93.8% versus 61.4%; $P < 0.001$). Pathogenic genetic variants were more common in the FTLD-MND group, especially C9orf72.

We describe a frequency of FTLD of 35.5% in our series of neuropathologically confirmed cases of MND. The FTLD-MND spectrum is highly heterogeneous in all aspects, especially in patients with FTLD, in whom it is particularly difficult to define specific subgroups. In the absence of definite biomarkers, neuropathology remains a valuable tool for a definite diagnosis, increasing our knowledge in disease nosology.

Received October 06, 2023. Revised December 05, 2023. Accepted January 02, 2024. Advance access publication January 16, 2024

© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (<https://creativecommons.org/licenses/by-nc/4.0/>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

- 1 Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB Sant Pau) Sant Pau, Barcelona 08025, Spain
- 2 Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
- 3 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
- 4 Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigacions Biomedíquies August Pi i Sunyer, University of Barcelona, Barcelona 08036, Spain
- 5 Neurological Tissue Bank, Biobanc-Hospital Clínic-FRCB-IDIBAPS, Barcelona 08036, Spain
- 6 Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- 7 Neuromuscular Unit, Department of Neurology, Hospital del Mar, Barcelona 08003, Spain
- 8 Department of Neurology, Motor Neuron Unit, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona 08907, Spain
- 9 GMA Clinic, Neurology Department, European Reference Network On Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona 08029, Spain
- 10 Neuromuscular Diseases Unit, Department of Neurology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
- 11 Neurology Department, Hospital Germans Trias i Pujol, Badalona 08916, Spain
- 12 Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona 08028, Spain
- 13 Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
- 14 Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- 15 Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
- 16 Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria

Correspondence to: Dr Ricard Rojas-García, MD, PhD
 Hospital de la Santa Creu i Sant Pau, Sant Quintí 89, Barcelona 08025, Spain
 E-mail: rrojas@santpau.cat

Correspondence may also be addressed to: Dr Ellen Gelpi, MD, PhD
 Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
 E-mail: ellen.gelpi@meduniwien.ac.at

Keywords: amyotrophic lateral sclerosis; motor neuron disease; frontotemporal dementia; neuropathology

Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by progressive muscle weakness and atrophy due to progressive degeneration of motor neurons in the brain and spinal cord, leading to respiratory insufficiency and death within a mean of 3 to 5 years.¹ Cognitive and behavioural impairment is recognized as part of the disease and present in approximately 50% of patients, while 10%–20% fulfil clinical diagnostic criteria for any of the clinical variants of frontotemporal dementia (FTD), especially the behavioural variant (bvFTD).^{2,3} Furthermore, around 12% of patients with FTD develop clinical motor neuron impairment, and up to 40% show minor clinical or neurophysiological motor signs.⁴ Hence, motor neuron disease (MND) and FTD are now considered to be part of the same disease spectrum. At neuropathological examination, most ALS patients and up to half of FTD patients present pathological cytoplasmic neuronal aggregates of TAR DNA-binding protein 43 (TDP-43) in several brain and spinal cord regions.⁵ The two diseases also share a common genetic background, with mutations in genes such as hexanucleotide expansion in chromosome 9 open reading frame 72 (C9orf72), tank-binding kinase 1 (TBK1) and TAR DNA-binding protein (TARDBP) as some of the most commonly seen mutations as causative for the disease.

The clinical presentation of ALS is highly heterogeneous considering the variability in phenotype and disease course, and it becomes even more so with the addition of cognitive-behavioural symptoms, especially with the added possibility of an underlying causative genetic mutation and the nature of protein aggregates. A definite biomarker for the diagnosis of ALS is lacking, and diagnosis currently relies on sets of consensus criteria based on clinical features, updated over time to increase sensitivity.^{6,7} It is, therefore, necessary to define and characterize specific subgroups of patients with common and relatively homogeneous phenotypic and genetic characteristics that correlate with a biomarker profile and neuropathological features. Our still very limited knowledge of the pathophysiology of the disease hinders the design of future novel molecular targeted treatments. In this context, neuropathology remains the current reference for a definite diagnosis of the frontotemporal lobar degeneration (FTLD)-MND spectrum and is invaluable to understanding the molecular basis of the disease and its pathophysiology. Nevertheless, few clinicopathological series have been published so far,⁸⁻¹¹ making it difficult to estimate the frequency of FTLD in MND.

In this work, we describe a clinico-neuropathological series of 124 patients with MND with or without concurrent FTLD. We describe their main clinical, pathological and genetic features,

compare the two groups (MND versus MND-FTLD) and discuss the clinicopathological correlation.

Materials and methods

Case selection

We performed an observational, retrospective, multicentre, retrospective cohort study. We selected all cases meeting neuropathological criteria for MND from the Neurological Tissue Bank of the FRCB-IDIBAPS-Hospital Clínic Barcelona Biobank register between January 1994 and November 2022, irrespective of their last clinical diagnosis. These cases included brain donations from 13 hospitals and tertiary care centres in the province of Barcelona, Spain.

The Neurological Tissue Bank is a brain tissue repository for all neurodegenerative diseases and receives altruistic donations from patients with a wide range of neurodegenerative conditions. While brain donation is encouraged in all patients, especially in tertiary care hospitals, this takes place in very few cases. Considering a stable incidence of MND among several populations (2–3 cases/100 000 population/year),¹² between 1994 and 2022 we estimated an expected number of 3080 ALS cases in the province of Barcelona (population of 5.5 million). The patients included in our series ($n=124$) therefore represent approximately 4% of the total ALS cases. Cases with motor neuron loss in the context of advanced stages of other neurodegenerative disorders were excluded. Other exclusion criteria were lack of adequate clinical information and incomplete or equivocal clinical data. Patients were divided into two groups depending on whether or not they had concurrent FTLD pathology changes.

Neuropathological work-up

Cases were systematically studied as part of the routine neuropathological diagnostic practice. Post-mortem neuropathological studies were performed at the Neurological Tissue Bank of the Biobanc-Hospital Clínic-IDIBAPS, as previously reported according to standardized protocols and following BrainNet Europe II recommendations (www.brainnet-europe.org).¹³ A minimum of 25 representative brain areas were embedded in paraffin, cut at 5 µm and stained with haematoxylin and eosin and Luxol Fast Blue in selected brain areas. Immunohistochemistry was performed using antibodies anti-βA4, anti-pTau, anti-RD3 and anti-RD4 Tau, anti-α-synuclein, anti-α-internexin, anti-FUS and anti-TDP-43, pTDP-43, anti-ubiquitin, anti-p62, anti-transportin and anti-TAF15. Immunoreaction was visualized using the EnVision+ system peroxidase procedure (DAKO). Antibodies used for immunohistochemistry and their pretreatments are listed in *Supplementary Table 1*.

MND was defined as a loss of motor neurons and gliosis in primary motor cortex and/or signs of corticospinal tract degeneration at the level of the spinal cord (upper motor neuron, UMN), in the nuclei of the hypoglossus nerve in the medulla oblongata and/or in the anterior horn of the spinal cord at any level (lower motor neuron, LMN), or both. All cases were staged following the criteria proposed by Brettschneider¹⁴ for ALS, according to which, presence of TDP-43 aggregates was categorized following a semiquantitative rating scale (0, not detectable or ≤ 2 aggregates per region; +, mild; ++, moderate; +++, severe/numerous). Presence of any pathologic TDP-43 aggregates in the region of the highest-ranked stage defined the final neuropathologic Brettschneider stage. The presence

of glial/oligodendroglial TDP-43 aggregates was recorded but was not graded separately. FTLD was defined as a macro- or microscopic frontotemporal lobar degeneration pattern with neuronal loss, gliosis and/or a superficial laminar sclerosis in the frontal and/or temporal lobes.¹⁵ FTLD TDP subtype classification was performed based on TDP-43 or pTDP-43 immunohistochemistry following current recommendations.¹⁶ Pathological subtypes of FTLD-FUS were classified according to current recommendations.¹⁷

Specific immunostains were performed retroactively and reviewed thoroughly for cases studied prior to the description of TDP-43⁵ and FUS¹⁸ protein aggregates or the specific pathology associated with *C9orf72* expansion.¹⁹

Concurrent pathologies were categorized and staged according to respective current criteria: neurofibrillary pathology was staged according to Braak criteria,²⁰ amyloid-β phases were evaluated according to Thal criteria²¹ and the neuritic plaque score was assessed according to the Consortium to Establish a Registry for Alzheimer Disease criteria.²² Argyrophilic grain disease (AGD) was staged according to Saito criteria.²³

Clinical classification

Medical records were retrospectively reviewed by the neurologists responsible for the care of patients during life, and a form with the requested clinical information was filled in. The demographic variables and clinical features recorded were sex, age at onset of each individual motor and cognitive symptom, and age at death.

Clinical diagnosis of MND was made according to the revised diagnostic criteria of El Escorial, meeting criteria for definite, probable, and probable laboratory-supported ALS.^{6,7} Patients clinically diagnosed with FTD or other cognitive predominant neurodegenerative diseases were not systematically screened for MND. Neurophysiological studies and specific evaluation by MND specialists were only performed when considered necessary by the treating neurologist.

Patients' motor phenotypes were categorized as progressive muscular atrophy (PMA) when only LMN signs were present, primary lateral sclerosis (PLS) when only UMN signs were present and ALS when both signs were evident. Clinical and semiological variables included were the region of motor symptoms onset (spinal/bulbar), site of onset (bulbar/upper or lower limbs/proximal or distal), clinical diagnosis at death or last visit and presence of bulbar symptoms such as dysarthria and dysphagia.

We recorded cognitive and behavioural symptoms and FTD diagnosis according to the expert opinion of the treating neurologist. Neuropsychological testing has been performed systematically in all cases since 2015 but was previously assessed only when patients or relatives reported cognitive or behavioural symptoms or when these were suspected by the neurologist. Clinical diagnosis of FTD was made according to current criteria for FTD and its variants [bvFTD, semantic variant (sv-PPA) or non-fluent variants (nfv-PPA) of primary progressive aphasia (PPA)].^{24–26} Patients with cognitive or behavioural impairment who did not fulfil the criteria for FTD were classified as ALS-ci/bi.²⁴ Clinical diagnosis of progressive supranuclear palsy (PSP),²⁷ corticobasal degeneration (CBD),²⁸ Alzheimer's disease (AD)²⁹ and Lewy body dementia (LBD)³⁰ was made following current criteria. Family history of ALS, FTD and other neurodegenerative diseases was also recorded.

Table 1 Clinical, neuropathological and genetic features of the neuropathologically confirmed MND series

	Total n = 124	FTLD-MND n = 44 (35.5%)	MND n = 80 (64.4%)	P-value
Demographic features				
Male (%)/female	69 (55.6)/55	28 (63.6)/16	41 (51.2)/39	ns (0.18)
Patients from third level hospital (%)	102 (82.3)	28 (63.6)	74 (92.5)	<0.001
Motor symptoms (%)	114 (91.9)	34 (77.3)	80 (100)	<0.001
Motor onset age, years (SD)	62.58 (13.2)	64.55 (12.2)	61.72 (13.6)	ns (0.32)
Mean MND duration, months (SD)	37.15 (28.8)	34.84 (32.9)	38.20 (27.3)	ns (0.59)
Bulbar onset (%)	31 (27.7)	14 (42.4)	17 (21.5)	0.023
Age at death, years (SD)	66.35 (12.6)	68.64 (10.4)	65.09 (13.5)	ns (0.11)
Cognitive symptoms (%)	48 (38.7)	39 (88.6)	9 (11.3)	<0.001
Clinical FTD diagnosis (%)	35 (28.2)	30 (68.2)	5 (6.3)	<0.001
Clinical diagnosis				
Last diagnosis before death				<0.001
FTD (%)	5 (4.0)	5 ^a (11.4)	0	–
FTD-MND (%)	32 (25.8)	27 ^b (61.4)	5 (6.3)	–
MND (%)	82 (66.1)	7 (15.9)	75 (93.8)	–
Other non-motor neurodegenerative (%)	5 (4.0)	5 (11.4)	0	–
Diagnostic accuracy (matching clinic-pathological diagnosis), (%)	102/124 (82.3)	27/44 (61.4)	75/80 (93.8)	<0.001
Neuropathology				
Brain weight (g), mean (SD)	1239.67 (147.6)	1194.5 (138.2)	1264.2 (147.6)	0.012
Protein deposit in motor neurons				0.007
TDP43 (%)	104 (83.9)	31 (70.5)	73 (91.3)	–
TDP43—C9 pathology (%)	12 (9.7)	10 (22.7)	2 (2.5)	<0.001
FUS-FET (%)	5 (4.0)	2 (4.5)	3 (3.8)	–
PrPsc (VPSPr) (%)	2 (1.6)	1 (2.3)	1 (1.3)	–
No inclusions (%)	1 (0.8)	0	1 (1.3)	–
Brettschneider stage 1/2/3/4 (median)	13/27/21/43 (3)	2/2/3/27 (4)	11/25/18/16 (2)	<0.001
No UMN loss (%)	6 (4.8)	3 (7)	3 (3.8)	ns (0.34)
Genetic mutations, n (%)	18 (14.5%)	14 (31.8)	4 (5.0)	<0.001
C9orf72 (%)	12 (9.7%)	10 (22.7)	2 (2.5)	<0.001
TARDBP (%)	1 (0.8%)	0	1	–
VCP (%)	1 (0.8%)	0	1	–
TBK1 (%)	1 (0.8%)	1	0	–
SQSTM1 (%)	2 (1.6%)	2	0	–
Taf15 (%)	1 (0.8%)	1	0	–

A definite diagnosis was made according to neuropathologic characteristics and the comparison between neuropathologic groups. bvFTD = behavioural variant-frontotemporal dementia; CJD = Creutzfeldt-Jakob disease; FTD = frontotemporal dementia; FTLD = frontotemporal lobar degeneration; MND = motor neuron disease; nfv-PPA = non-fluent variant-primary progressive aphasia; ns = not significant; PrPsc = prion protein abnormal isoform; SD = standard deviation; sv-PPA = semantic variant-primary progressive aphasia; UMN = upper motor neuron.

^aCases of FTD included two with sv-PPA and three with bvFTD.

^bCases of FTD in this group included two with nfv-PPA and 24 with bvFTD.

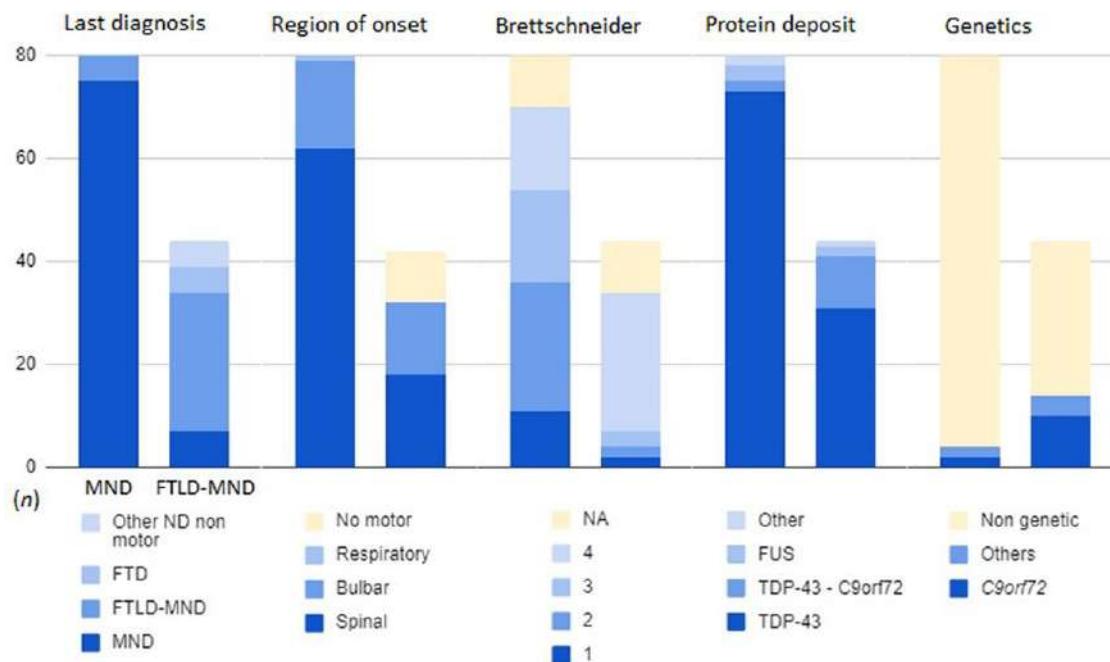
Genetic analysis

DNA was extracted from fresh-frozen cerebellum using the QIAamp DNA Mini kit for DNA purification from tissues (Qiagen Co.) following the manufacturer's instructions. In post-mortem tissue, we performed systematic screening for potential C9orf72 expansion mutation carriers searching for ubiquitin/p62-positive inclusions in the cerebellum and hippocampus as surrogate and as previously reported.¹⁹ The C9orf72 repeat was confirmed in suspected cases by repeat-primed PCR and fragment-length analysis. Other mutations were not identified by systematic screening of all patients but were identified in the framework of previous studies or by specific protocols in highly specialized units. In mutation carriers, information concerning other affected family members was not available.

Statistical analysis

Statistical analysis was done using the Statistical Package for Social Sciences (version 27.0, SPSS Inc). Comparisons between neuropathologic groups (MND versus FTLD-MND) and clinical, demographic, and

genetic data were performed by chi-square or Fisher tests for categorical data and Student's t-test or Kruskal-Wallis test for ordinal and continuous data. Survival analysis was performed using the Kaplan-Meier method. Statistical significance was set at $P < 0.05$ for all analyses.


Ethics

This study was conducted with the approval of the Ethics Committee of the Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. All individuals were brain donors and they or their relatives provided informed consent for the use of brain tissue for diagnostic and research purposes at the Neurological Tissue Bank of the Biobanc-Hospital Clínic-FRCB-IDIBAPS.

Results

Study cohort description and patient selection

One-hundred and twenty-four patients fulfilled the inclusion criteria, 55.6% of whom were males ($n = 69$). Mean age at death and

Figure 1 Motor neuron disease (MND) and frontotemporal lobar degeneration (FTLD)-MND distribution of the cohort's main clinical, neuropathologic and genetic features. The bar plot visually represents the distribution of the cohort's main features. The columns represent the absolute count (n) of patients in both neuropathological groups for every feature: MND on the left (n = 80) and FTLD on the right (n = 44). Note the global heterogeneity among both groups in every characteristic analysed, especially in the FTLD-MND group.

brain donation was 66.35 years [standard deviation (SD) 12.55]. Primary neuropathological diagnosis was isolated MND in 64.4% (n = 80) and FTLD-MND in the remaining 35.5% of individuals (n = 44). Of the 124 patients, 102 (82.26%) were referred by neurologists from third-level healthcare centres, and the others were referred from lower complexity facilities. Patients with MND were more frequently referred from third-level hospitals than patients with FTLD-MND ($P < 0.001$). Characteristics of the study cohort are reported in Table 1. No differences were found between neuropathological groups regarding the main demographic characteristics.

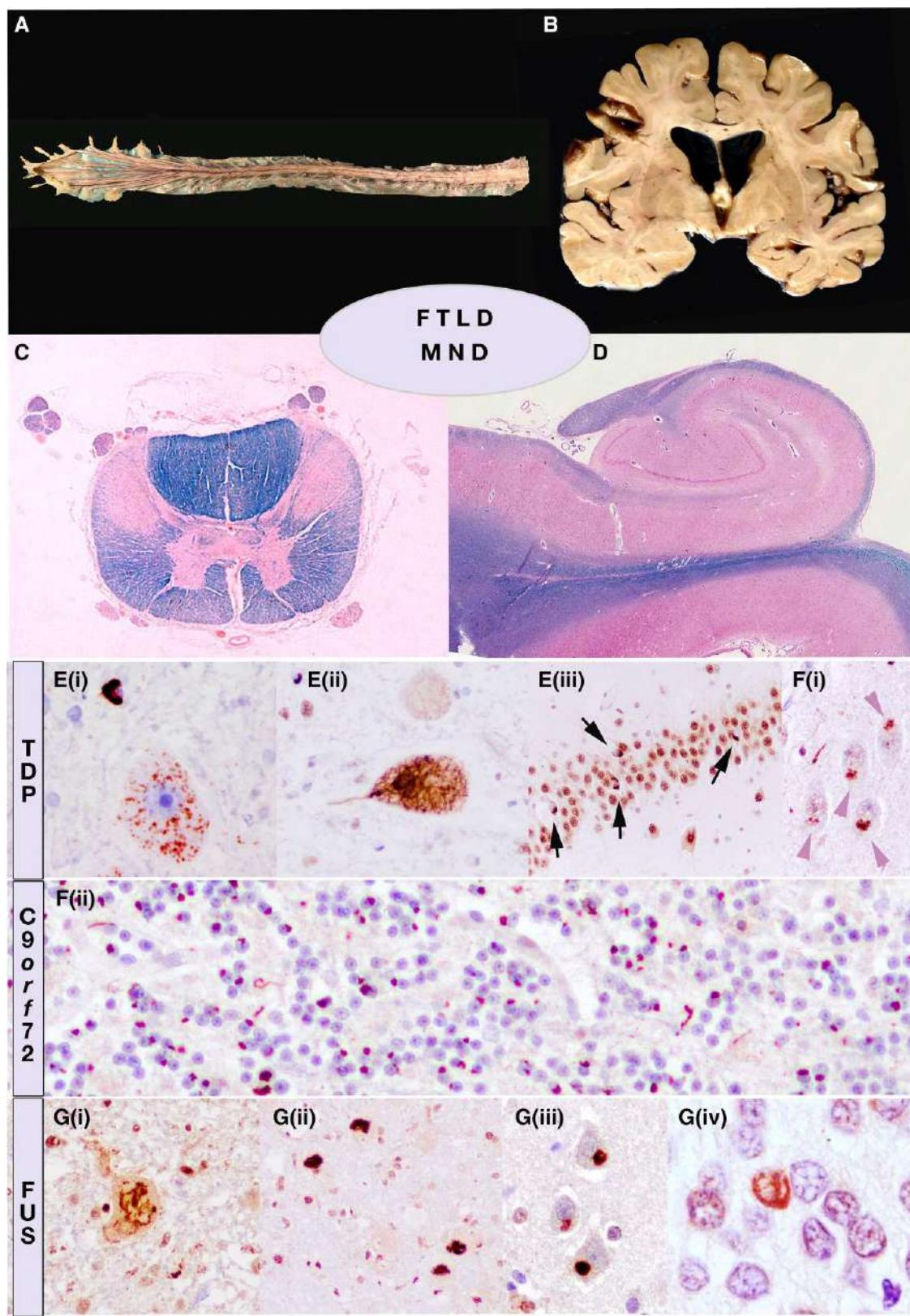
Neuropathology

Mean brain weight was significantly lower in patients with FTLD-MND neuropathology (1194.5 g in FTLD-MND versus 1264.2 g in MND; $P = 0.012$).

In terms of protein deposition, we found TDP-43 protein aggregates in 93.55% of patients (n = 116), 12 of whom (9.68% of the total) had concurrent specific C9orf72 mutation pathology with ubiquitin- and p62-positive, TDP-43-negative neuronal cytoplasmic and intranuclear inclusions containing dipeptide-repeat proteins, most abundant in the cerebellum, hippocampus and neocortex, as previously described.^{19,31,32} Five patients (4.03%) showed FET (FUS) protein aggregates. Two of these five patients had concurrent FTLD pathology. In two other patients (2%), MND was related to prion pathology (variably protease sensitive prionopathy, VPSPr), one with the typical FTLD pattern.³³ Finally, one patient had extensive motor neuron loss but no identifiable protein inclusions. No differences were found between MND or FTLD-MND in terms of type of protein deposition other than those related to C9orf72 pathology.

We stratified the distribution of TDP-43 pathology according to the Brettschneider score for ALS (Fig. 1 and Table 1). The score was not strictly applicable in 12 individuals because despite the presence of TDP43 aggregates in the anterior temporal lobe and/or

hippocampus (i.e. stage 4), they lacked protein deposits in other brain regions required for stages 2 or 3. These patients were no different from the others regarding the frequency of cognitive symptoms ($P = 0.124$), age at onset ($P = 0.778$) or death ($P = 0.378$). Only two patients exceeded 80 years of age at the time of death.


Regarding protein deposit within FTLD pathology (n = 44), 40 cases had TDP-43 aggregates and four did not. In the former group, distribution of TDP-43 within frontal cortical layers followed a type A FTLD pattern in 4 cases, a type B pattern in 21 cases and type C in 2 cases. In the remaining 13 cases, the pattern was unclassifiable or showed a mixture of types A/B. In the group with FTLD pathology but no TDP-43 aggregates, we found two FTLD cases associated with FUS-pathology [one in the form of basophilic inclusion body disease (BIBD) and the other with features of atypical FTLD-U (aFTLD-U)], one case associated with prion disease (VPSPr) and one FTLD-MND case with Tau inclusions.

Most patients showed involvement in both UMN and LMN. However, we found a variable degree—and even absence—of neuronal degeneration in either the UMN or LMN. Six patients had isolated LMN disease (LMNd) (4.8%). Three of the six also showed a typical FTLD pattern and one had isolated UMN disease (0.8%). Figure 2 illustrates the main neuropathologic features of the MND-FTLD spectrum.

Clinical characteristics according to the neuropathologic groups: MND versus FTLD-MND

Motor symptoms

In the FTLD-MND neuropathologic group, 10 subjects (9.06%) never reported motor neuron symptoms during life despite neuropathological motor neuron loss and corticospinal tract degeneration. They received a late clinical diagnosis of FTD (three bvFTD, two PPA) and other neurodegenerative diseases (two CBD, one PSP, one AD and one LBD). In contrast, all patients in the 'isolated

Figure 2 Representation of the neuropathological overlap between motor neuron disease (MND) and frontotemporal lobar degeneration (FTLD). Gross examination (A and B), histological overview (C and D) (Klüver-Barrera/Luxol Fast Blue) and immunohistochemistry. Macroscopic thinning of anterior roots of the spinal cord in amyotrophic lateral sclerosis (ALS) (A) may be associated with a narrowing of gyri in fronto-temporal regions and ventricular enlargement (B). The major neuropathological features of ALS are a secondary degeneration of the corticospinal tracts due to the loss of upper motor neurones and extensive loss of lower motor neurones in the brainstem and/or anterior horn cells. (C) Cross-section through the thoracic spinal cord shows prominent degeneration of the lateral and anterior corticospinal tract and atrophy of the anterior horns (Klüver-Barrera; blue colour highlights

(continued)

MND' group presented motor neuron symptoms, these being more frequent than in the FTLD-MND group ($P < 0.001$).

Among the whole group, when motor neuron symptoms were present ($n = 114$), onset was in the bulbar region in 31 (27.7%) patients. This was more frequently observed in the FTLD-MND group (42.4%, $n = 14$) than in the group with MND only (21.5%, $n = 17$), ($P = 0.023$). The rest of the cohort (72.3%, $n = 83$) had spinal onset, in which distal upper limb impairment was significantly more frequent in the FTLD-MND group than in the MND-only group (57.9% versus 21%, respectively) ($P = 0.003$). Of the remaining three patients, one presented with respiratory onset; however, this information was not available for the other two patients. Patients with a bulbar onset were older than those with spinal onset at the time of disease debut (68.37 versus 61.09 years, $P = 0.011$) and at death (69.97 versus 64.62 years, $P = 0.024$), but no differences were found in terms of disease duration or survival (30.26 months for bulbar onset versus 37.71 months for spinal onset, $P = 0.21$).

The initial motor phenotype was ALS in 86 patients (69.35%), LMND in 14 (11.29%), PLS in four (3.23%) and progressive bulbar palsy in six (4.84%). This information was not available for four patients (3.23%). No differences were found between MND or FTLD-MND patients regarding motor phenotype distribution.

Cognitive and behavioural symptoms

Cognitive or behavioural impairment during clinical follow-up was observed in 38.71% of patients ($n = 48$). We found that 39 of the 124 cases (31.45% of the overall cohort) met the clinical criteria for FTD (35 bvFTD, 4 PPA). The proportion of patients with cognitive or behavioural symptoms was higher in the FTLD-MND neuropathological group (88.6%, $n = 39$) than in the MND group (13.3%, $n = 9$) ($P < 0.001$). Furthermore, in the FTLD-MND group, 67.4% of patients received a clinical diagnosis of FTD ($n = 29$), significantly more than those in the MND group (6.3%, $n = 5$) ($P < 0.001$).

In the group of patients with isolated MND but no FTLD pathology, five patients who had received a clinical diagnosis of FTD-MND (bvFTD) showed no matching FTLD features in neuropathology. However, they displayed other neuropathologic changes that could explain the cognitive-behavioural impairments: (i) one had prion disease with a spinal onset FTD-MND phenotype and a disease duration of 6 years; (ii) one patient had prominent cognitive and behavioural symptoms with extensive AD pathology (stage VI of Braak); and (iii) three patients had an FTD-MND related genetic variant (C9orf72, VCP and TARDBP). The patient with a C9orf72 mutation presented extensive extramotor TDP-43 pathology (Brettschneider stage 4) and showed associated neurofibrillary pathology (Braak III) with amyloid deposits (Thal stage III). The patient with a TARDBP mutation¹³ presented mild cognitive impairment but prominent behavioural symptoms meeting the criteria for bvFTD. This patient's neuropathological examination showed extramotor TDP-43 pathology (Brettschneider stage 4) with abundant TDP-43 inclusions and gliosis in the amygdala and, to a lesser extent, in the thalamus and

hippocampal dentate gyrus. Lastly, the VCP mutation carrier (Individual 13), who died at the age of 82, presented with cognitive and behavioural impairment that met bvFTD criteria, while neuropathology revealed restricted MND (Brettschneider stage I) but additional AGD (Saito I) and neurofibrillary pathology (Braak stage II).

Four patients, all from the FTLD-MND pathology group, presented language impairment as a main clinical feature (i.e. PPA). Two of the four never presented motor symptoms and their final clinical diagnosis was sv-PPA; the other two had a nfv-PPA combined with MND.

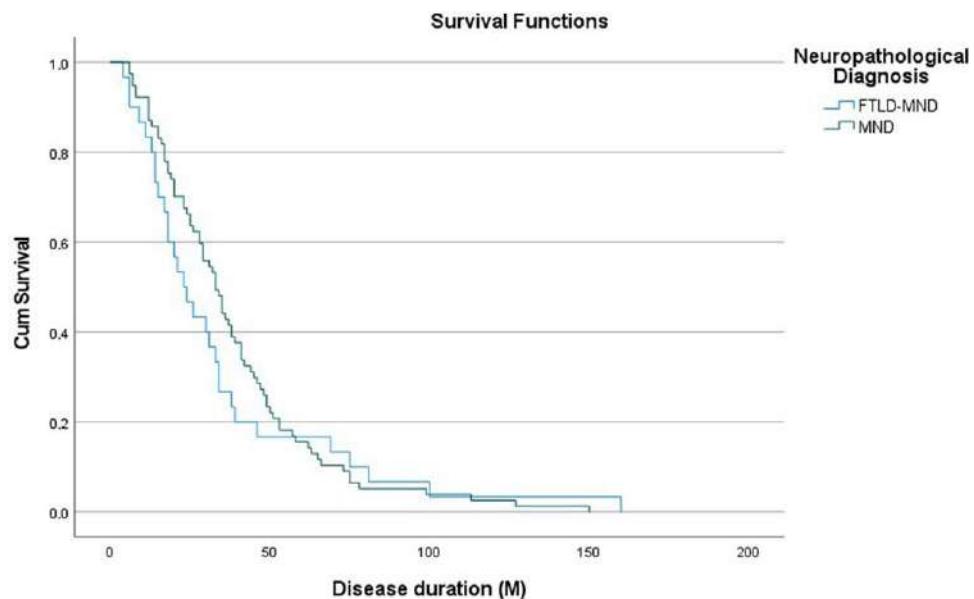
Clinicopathological diagnostic correlation

Table 1 and **Fig. 1** show the distribution of the final clinical diagnosis or last diagnosis before death.

When comparing the correspondence between clinical and neuropathological diagnoses, we found that patients with MND pathology were more accurately diagnosed (93.8%, $n = 75$) than patients with FTLD-MND (61.4%, $n = 27$) ($P < 0.001$).

In the FTLD-MND neuropathological group, we found 17 patients with non-concordant diagnoses. They included five patients with FTD, five patients with other neurodegenerative diseases, with no evident motor neuron impairment during life, observed only at neuropathologic examination, and seven patients with MND, in whom cognitive/behavioural symptoms were never referred or detected during the course of the disease.

Among patients with isolated MND pathology, we recorded five individuals with non-correspondent clinico-pathological diagnoses, as they met the clinical criteria for bvFTD but had no matching FTLD pathology (see 'Neuropathology' section).


In two patients, a prion disease pathology was diagnosed only after neuropathologic examination. Both these patients presented clinical features of MND with progressive asymmetric limb weakness and atrophy, with additional UMN signs on physical examination, hence meeting the diagnostic criteria for definite ALS. Both had concurrent prominent cognitive-behavioural symptoms and were ultimately diagnosed with FTD-MND. Disease duration was 4 and 6 years, respectively, and both patients died of aspiration pneumonia. Neuropathological features in both cases were a spongiform encephalopathy with pathological prion protein deposits consistent with the rare subtype 'variable protease sensitive prionopathy', involving cortical and subcortical areas and particularly the upper and lower motor systems.³³

Survival analysis

For survival analysis due to MND, we excluded those patients who had no motor symptoms during life. When evaluating survival separately for the neuropathological (i.e. FTLD-MND versus MND) or clinical diagnoses (i.e. FTD-MND versus clinical MND), we found no statistically significant differences in the survival rate ($P = 0.64$ and $P = 0.45$, respectively), with both groups showing a similar disease duration (**Fig. 3**). There was no difference in survival when

Figure 2 (Continued)

myelin sheaths). (D) Representation of normal hippocampus with preserved neuronal densities in all sectors. (E) Accumulation of pTDP43 protein in motor neurons in fine-granular cytoplasmic or mesh-like threads in MND (i and ii), or as small compact cytoplasmic inclusion in the granular neurons of the dentate gyrus (iii). (F) The intronic expansion in C9orf72 may manifest as MND-FTLD continuum and shares neuropathological features consistent of small ubiquitin and p62positive star-like inclusions (representing dipeptide repeats, DPR) in cortical neurons (i) or granular cytoplasmic inclusions in granule cells of the cerebellar cortex (ii), independently of TPD43 pathology and clinicopathological phenotype, which is determined by TDP but not by DPR. (G) FUS pathology may also be observed in ALS as fibrillar inclusions (i) or more compact (ii) and basophilic on haematoxylin and eosin stained sections (not shown), as well as in FTLD, either in the neuronal intermediate filament inclusion disease (NIFID) phenotype (iii) or atypical FTLD (aFTLD). [G(iv)] Vermiform nuclear inclusion in a granule cell of the dentate gyrus of the hippocampus.

Figure 3 Survival analysis. Comparison of survival analysis between neuropathological groups [i.e. frontotemporal lobar degeneration (FTLD)-motor neuron disease (MND) versus MND]. There was no difference between groups ($P = 0.64$). M = months.

patients were stratified by region of onset, presence of bulbar symptoms or detection of a pathogenic mutation.

Genetics

Regarding genetics, a genetic variant related to ALS or FTD was found in 14.5% ($n = 18$) patients, 14 from the FTLD-MND neuropathological group and four from the MND group. These variants included 12 C9orf72 expansions, two sequestosome-1 (SQSTM1), one TATA-box binding protein associated factor 15 (TAF15), one TARDBP, one TBK1 and one valosin containing protein (VCP), as described in previous work.³⁴ The distribution of mutations in the two groups is shown in Table 1 and Fig. 1.

Detection of a pathogenic genetic variant was more frequently associated with FTLD-MND pathology (31.8% of the FTLD-MND group versus 5% in MND pathology, $P < 0.001$), and C9orf72 repeat expansion mutation was independently associated with FTLD-MND pathology ($P < 0.001$).

Clinically, among the patients with FTLD-MND pathology and a mutation ($n = 14$), nine presented as FTD-MND and one as MND with no cognitive symptoms (C9orf72). These patients never presented motor neuron symptoms (two patients with a C9orf72 repeat expansion mutation and the two SQSTM1 mutation carriers) but were diagnosed with FTD ($n = 2$), AD ($n = 1$) or CBD ($n = 1$). Among the patients with isolated MND pathology and a mutation ($n = 4$), one presented as ALS and three presented as cognitive/behavioural symptoms that met clinical FTD criteria. Despite the lack of classical FTD pathological features, these patients had other pathological findings that could justify their symptoms (see 'Neuropathology' section).

Family history

Eleven (8.87%) patients presented a positive family history of ALS ($n = 5$), FTD ($n = 5$) or both ($n = 1$). Five of the 11 had an identified ALS-related mutation (four C9orf72 and one VCP), and 25 additional patients (20.16%) reported a positive family history of other neurodegenerative diseases, including AD, Parkinson's disease, LBD and other unspecified cognitive impairments.

Discussion

We describe an extensive series of clinically well-documented patients who had neuropathologically confirmed MND, with or without associated FTLD, and discuss clinicopathological correlations and discrepancies. We recorded a surprisingly high frequency of concomitant FTLD and identified various neuropathological subgroups. Our findings indicate there are several molecular pathology patterns with specifically altered pathological mechanisms that cannot be identified or predicted in clinical practice.

In our cohort, about one-third (35.5%) of patients with MND had concurrent neuropathological features of FTLD (i.e. FTLD-MND pathology), exceeding previous pathological^{8,9,11} and clinical reports.^{35–37} Large population-based series performing systematic cognitive testing have shown that up to 50% of patients with ALS develop cognitive and behavioural impairment,^{2,3,38} meeting clinical criteria for FTD in 10%–15%,^{35,36} with a significant impact on clinical management.^{39,40} Such findings indicate that the previous concept that ALS is a pure motor disease is definitely changing and expanding to a motor-behavioural-cognitive disease continuum.

On one hand, the higher frequency of FTLD in MND found in our study may partially be explained by the absence of reported motor symptoms in 10 of 124 patients (8%). These patients had a late clinical diagnosis of FTD-'only' or other neurodegenerative diseases but showed motor neuron involvement in neuropathology, leading to a final diagnosis of FTLD-MND. Some of these patients might have developed minimal motor signs that passed unnoticed, as there is neuropathologic^{9,41} and electrophysiologic evidence of motor system dysfunction in patients with FTD but no evident muscular atrophy or weakness.⁴

On the other hand, seven patients received a clinical diagnosis of MND but cognitive or behavioural symptoms were not recorded, even though FTLD pathology was found at post-mortem. This may have been due to a lack of a systematic cognitive evaluation at early disease stages and difficulty in their recognition when physical and articulatory impairments are extensive,^{39,40} suggesting the frequency of FTD in MND is underdiagnosed.

Even though clinicopathological concordance was higher in the MND pathology group, it was not perfect, as five patients showed prominent cognitive-behavioural symptoms that met bvFTD criteria (and were thus clinically diagnosed with FTD-ALS), despite not having corresponding FTLD neuropathology; alternative pathologies, however, might explain the symptoms. Both co-pathologies^{13,42} and predominant amygdalar impairment^{43,44} in ALS may induce cognitive-behavioural impairment and mimic an FTD phenotype. In three of these patients in our study, pathogenic genetic variants may also have contributed to frontotemporal dysfunction beyond the microscopic level.

Neuropathology is currently one of the most reliable diagnostic methods for both disease phenotypes, and our results may provide a more precise estimate of the real frequency of FTLD in MND and highlight these underrecognized features at both motor and cognitive-behavioural ends of the spectrum. This broader phenotypic horizon of the disease should not only prompt the search for new reliable diagnostic tools and biomarkers for early diagnosis and better characterization of the disease continuum and its nosology but also encourage closer collaboration between motor neuron and cognitive or memory units.

Another objective of our study was to identify possible subgroups of patients based on neuropathological, clinical and/or genetic features. ALS is clinically characterized by the concomitant presence of UMN and LMN signs that progress over time. However, diagnosis and classification can be challenging due to the highly variable presentation regarding the degree of involvement of UMN and/or LMN, the region of onset and the possible convergence of cognitive symptoms.^{45,46}

In most patients in our series, as expected, we found neuropathological evidence of neuronal loss of both the UMN and LMN systems. However, we found six patients with neuronal loss and TDP-43 inclusions restricted to the hypoglossal nucleus and/or anterior horns of the medulla. They showed no neuropathological signs of UMN loss or corticospinal tract degeneration, and three of them had concurrent FTLD pathology. Also, clinically, they presented phenotypically as LMNd (i.e. PMA), with associated FTD in those with the corresponding pathology. Moreover, one of these patients had a genetic pathogenic variant in a gene linked to ALS (TBK1).

Patients with no UMN signs in physical examination would not meet 'El Escorial ALS diagnostic criteria'.⁶ The recently published 'Gold Coast Criteria for ALS'⁷ allow the categorization of similar patients, who have no evident UMN signs during life. However, despite their higher sensitivity, these criteria have lower specificity, and patients with no UMN signs are particularly more liable to misdiagnosis.³⁹ Considering cognitive impairment and FTD diagnosis as an additional supportive criterion might be of help in confirming a definite ALS or FTD-MND diagnosis.⁴⁷

The appearance of cognitive symptoms adds to the clinical heterogeneity and makes it difficult to establish distinctive clinical categories. Beyond the more frequent bulbar onset and distal upper limb weakness and atrophy in patients with clinical and neuropathological FTLD,³⁶ we found little difference with patients in our series who had no cognitive impairment in terms of their motor neuron phenotype or even survival. The irruption of motor symptoms seems to be the main conditioning factor in prognosis⁹ but documenting cognitive and behavioural impairment can be essential due to the distinct implications in clinical management.^{35,48}

Concerning the neuropathological features, the most widely represented pathology is TDP-43, presenting in the form of cytoplasmic neuronal and glial aggregates in both MND and FTLD-MND.⁴²

Its extension, however, can vary along the continuum of the FTD-ALS spectrum, both in density and in anatomical and cytological location. Brettschneider et al.¹⁴ proposed a staging classification system based on sequential dissemination of TDP-43 in ALS and FTLD, where higher stages mostly correlate with more cognitive impairment according to our experience.¹³ Nevertheless, we found that 12 patients had a similar cognitive behavioural impairment profile, showing different distribution patterns. In these cases, the Brettschneider staging system was not strictly applicable, and thus they remained unclassifiable. Recent works using a disease progression model and data analysis suggest a model of distribution and dissemination patterns of TDP-43 in the FTLD-MND spectrum and also in limbic age-related TDP-43 encephalopathy⁴⁹ that may differ from the proposed patterns. Other distributions, such as predominantly pallido-nigro-luysian involvement, have also been described.⁵⁰

Although TDP-43 is the most predominant component of neuronal cytoplasmic inclusions, proteins other than TDP-43, such as FUS, may underly both FTLD and MND. While these aggregates are often related to mutations of the FUS gene in ALS patients, these are not usually apparent in FTLD. The simultaneous expression of other FET family protein inclusions (TAF15 and Trn1) may help to differentiate mutation carriers.^{51,52} However, some ALS-FUS cases also lack mutations and co-expression of TAF15 and Trn1 in the neuronal inclusions that behave neuropathologically similarly to sporadic FTLD-FUS/FET cases.⁵³ Here we present two additional cases with FTLD-MND-FUS with similar neuropathological features but no FUS mutations, suggesting a shared pathophysiological mechanism for FTLD-MND and MND related to FUS/FET pathology.

The heterogeneity we observed within the FTLD-MND spectrum was also reflected in the genetics, especially when FTLD was present, with several mutations underlying the same spectrum of disease. The main mutation we identified was C9orf72 expansion (Table 1), which had a high degree of correspondence with specific neuropathological alterations.^{19,31,32} However, detection of a genetic variant is not predictive of any distinctive clinical features, and even in cases with a previous family history of the disease, we are sometimes unable to find an underlying causative mutation. This might change in the foreseeable future, as genetic and molecular diagnoses are on the rise, paving the way for novel molecular-targeted treatments.

Our study has some limitations. First, as a brain bank series, although brain donation is encouraged for all patients, only a small percentage accept. Therefore, the series might not be fully representative of the whole population and may be subject to a selection bias. As this work does not intend to be an epidemiological study, the results should be interpreted with caution. Second, due to its retrospective nature, we included patients who were evaluated before the acceptance of formal FTD-ALS clinical criteria, and cognitive and behavioural impairment was assessed according to the opinion of the treating neurologist. However, we did not find any difference when we analysed patient subgroups before and after the publication of the criteria. While the lack of formal and systematic neuropsychological testing might underestimate subtle cognitive alterations, there was a good clinicopathological correlation in our series, and the retrospective application of these criteria has been proven to be fairly sensitive and specific.⁵⁴ Further prospective studies with a thorough registry of motor, cognitive-behavioural and ancillary testing should be conducted, as they are likely to detect subtle or masked cognitive/behavioural alterations. Finally, despite the presence of specific neuropathological changes that are highly specific to C9orf72 mutations, genetic screening was not systematically performed for other mutations and was only

performed under clinical criteria. Therefore, additional genetic cases might have been missed.

Our study reflects the heterogeneity of the MND-FTLD disease spectrum and the difficulties in defining distinct subgroups based on clinical presentation and phenotype, neuropathology and genetics, especially in those patients with mixed FTLD-MND features. In particular, some patients may have underlying proteinopathies other than TDP-43, others can present cognitive impairment with a neuropathological substrate other than classical FTLD or may have 'asymptomatic' MND. With the advent of protein-targeted therapies in neurodegeneration, it is of utmost importance to develop early disease-specific biomarkers related to altered pathophysiological mechanisms. In the meantime, neuropathology remains a valuable tool for defining the nosology and molecular pathology of the MND-FTLD disease spectrum.

Data availability

All data remain available at Hospital de la Santa Creu i Sant Pau upon request to the corresponding author.

Acknowledgements

We would like to dedicate this work to Dr Jesús Pradas Orozco as a token of our deep admiration and gratitude for being a constant source of inspiration and guidance in the field of MND. His wisdom and insights have been a guiding light, and his dedication to pushing the boundaries of knowledge has been a true inspiration. With our utmost respect and appreciation.

We are indebted to the Biobanc-Hospital Clinic-FRCB-IDIBAPS for samples and data procurement. The authors also thank the brain donors and their families for their generous donation for research.

Also, we thank Carolyn Newey for her help with language supervision and correction, which greatly improved the quality of our work.

Funding

This study has been funded by Instituto de Salud Carlos III PI19/01543 and PI23/00845, co-funded by ERDF/ESF, "A way to make Europe"/"Investing in your future". A.C. and M.C.-Á. are supported by Instituto de Salud Carlos III (Rio Hortega Contract CM21/00057 and CM21/00101, respectively). I.I.-G. is a senior Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), and receives funding from the GBHI, the Alzheimer's Association and the Alzheimer Society (GBHI ALZ UK-21-720973 and AACSF-21-850193). I.I.-G. was also supported by Instituto de Salud Carlos III (Juan Rodés Contract JR20/0018) and PI21/00791 from Instituto de Salud Carlos III. E.C.-V. was supported by Instituto de Salud Carlos III (Juan Rodés Contract JR19/00037).

Competing interests

The authors report no competing interests.

Supplementary material

Supplementary material is available at *Brain* online.

References

- van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. *Lancet*. 2017;390:2084–2098.
- Phukan J, Elamin M, Bede P, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: A population-based study. *J Neurol Neurosurg Psychiatry*. 2012;83:102–108.
- Elamin M, Phukan J, Bede P, et al. Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. *Neurology*. 2011;76:1263–1269.
- Burrell JR, Kiernan MC, Vucic S, Hodges JR. Motor neuron dysfunction in frontotemporal dementia. *Brain*. 2011;134:2582–2594.
- Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. *Science*. 2006;314:130–133.
- Brooks BR, Miller RG, Swash M, Munsat TL. El escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. *Amyotroph Lateral Scler Other Mot Neuron Disord*. 2000;1:293–299.
- Shefner JM, Al-Chalabi A, Baker MR, et al. A proposal for new diagnostic criteria for ALS. *Clin Neurophysiol*. 2020;131:1975–1978.
- Nishihira Y, Tan C-F, Onodera O, et al. Sporadic amyotrophic lateral sclerosis: Two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. *Acta Neuropathol*. 2008;116:169–182.
- Geser F, Martinez-Lage M, Robinson J, et al. Clinical and pathological Continuum of multisystem TDP-43 proteinopathies. *Arch Neurol*. 2009;66:180–189.
- Geser F, Brandmeir NJ, Kwong LK, et al. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. *Arch Neurol*. 2008;65:636–641.
- Coan G, Mitchell CS. An assessment of possible neuropathology and clinical relationships in 46 sporadic amyotrophic lateral sclerosis patient autopsies. *Neurodegener Dis*. 2015;15:301–312.
- Pradas J, Puig T, Rojas-García R, Viguera ML, Gich I, Logroscino G. Amyotrophic lateral sclerosis in catalonia: A population based study. *Amyotroph Lateral Scler Front Degener*. 2013;14:278–283.
- Borrego-Écija S, Turon-Sans J, Ximelis T, et al. Cognitive decline in amyotrophic lateral sclerosis: Neuropathological substrate and genetic determinants. *Brain Pathol*. 2021;31: e12942.
- Brettschneider J, Del Tredici K, Toledo JB, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. *Ann Neurol*. 2013;74:20–38.
- Cairns NJ, Bigio EH, Mackenzie IRA, et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: Consensus of the consortium for frontotemporal lobar degeneration. *Acta Neuropathol*. 2007;114:5–22.
- Mackenzie IR, Neumann M. Reappraisal of TDP-43 pathology in FTLD-U subtypes. *Acta Neuropathol*. 2017;134:79–96.
- Mackenzie IRA, Munoz DG, Kusaka H, et al. Distinct pathological subtypes of FTLD-FUS. *Acta Neuropathol*. 2011;121:207–218.
- Blair IP, Williams KL, Warrach ST, et al. FUS mutations in amyotrophic lateral sclerosis: Clinical, pathological, neurophysiological and genetic analysis. *J Neurol Neurosurg Psychiatry*. 2010;81:639–645.
- Ramos-Campoy O, Ávila-Polo R, Grau-Rivera O, et al. Systematic screening of ubiquitin/p62 aggregates in cerebellar Cortex expands the neuropathological phenotype of the C9orf72 expansion mutation. *J Neuropathol Exp Neurol*. 2018;77:703–709.
- Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. *Acta Neuropathol*. 2006;112:389–404.
- Thal DR, Rüb U, Orantes M, Braak H. Phases of A β -deposition in the human brain and its relevance for the development of AD. *Neurology*. 2002;58:1791–1800.

22. Mirra SS, Heyman A, McKeel D, et al. The consortium to establish a registry for Alzheimer's disease (CERAD): Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. *Neurology*. 1991;41:479-479.

23. Saito Y, Ruberu NN, Sawabe M, et al. Staging of argyrophilic grains: An age-associated tauopathy. *J Neuropathol Exp Neurol*. 2004;63:911-918.

24. Strong MJ, Grace GM, Freedman M, et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. *Amyotroph Lateral Scler*. 2009;10:131-146.

25. Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. *Brain*. 2011;134:2456-2477.

26. Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. *Neurology*. 2011;76:1006-1014.

27. Höglinder GU, Respondek G, Stamelou M, et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. *Mov Disord*. 2017;32:853-864.

28. Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. *Neurology*. 2013;80:496-503.

29. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association work-groups on diagnostic guidelines for Alzheimer's disease. *Alzheimer's Dement*. 2011;7:263-269.

30. McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies. *Neurology*. 2017;89:88-100.

31. Al-Sarraj S, King A, Troakes C, et al. P62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. *Acta Neuropathol*. 2011;122:691-702.

32. Mackenzie IRA, Frick P, Neumann M. The neuropathology associated with repeat expansions in the C9ORF72 gene. *Acta Neuropathol*. 2014;127:347-357.

33. Vicente-Pascual M, Rossi M, Gámez J, et al. Variably protease-sensitive prionopathy presenting within ALS/FTD spectrum. *Ann Clin Transl Neurol*. 2018;5:1297-1302.

34. Dols-Icardo O, García-Redondo A, Rojas-García R, et al. Analysis of known amyotrophic lateral sclerosis and frontotemporal dementia genes reveals a substantial genetic burden in patients manifesting both diseases not carrying the C9orf72 expansion mutation. *J Neurol Neurosurg Psychiatry*. 2018;89:162-168.

35. Gordon PH, Delgadillo D, Piquard A, et al. The range and clinical impact of cognitive impairment in French patients with ALS: A cross-sectional study of neuropsychological test performance. *Amyotroph Lateral Scler*. 2011;12:372-378.

36. Montuschi A, Iazzolino B, Calvo A, et al. Cognitive correlates in amyotrophic lateral sclerosis: A population-based study in Italy. *J Neurol Neurosurg Psychiatry*. 2015;86:168-173.

37. Woolley SC, Strong MJ. Frontotemporal dysfunction and dementia in amyotrophic lateral sclerosis. *Neurol Clin*. 2015;33:787-805.

38. Abrahams S, Newton J, Niven E, Foley J, Bak TH. Screening for cognition and behaviour changes in ALS. *Amyotroph Lateral Scler Front Degener*. 2014;15(1-2):9-14.

39. Cortés-Vicente E, Turon-Sans J, Gelpí E, et al. Distinct clinical features and outcomes in motor neuron disease associated with behavioural variant frontotemporal dementia. *Dement Geriatr Cogn Disord*. 2018;45(3-4):220-231.

40. Hu WT, Sheltnutt M, Wilson A, et al. Behavior matters—Cognitive predictors of survival in amyotrophic lateral sclerosis. *PLoS One*. 2013;8:e57584.

41. Josephs KA, Parisi JE, Knopman DS, Boeve BF, Petersen RC, Dickson DW. Clinically undetected motor neuron disease in pathologically proven frontotemporal lobar degeneration with motor neuron disease. *Arch Neurol*. 2006;63:506.

42. Robinson JL, Lee EB, Xie SX, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. *Brain*. 2018;141:2181-2193.

43. Takeda T, Seilhean D, Le Ber I, et al. Amygdala TDP-43 pathology in frontotemporal lobar degeneration and motor neuron disease. *J Neuropathol Exp Neurol*. 2017;76:800-812.

44. Makkinejad N, Schneider JA, Yu J, et al. Associations of amygdala volume and shape with transactive response DNA-binding protein 43 (TDP-43) pathology in a community cohort of older adults. *Neurobiol Aging*. 2019;77:104-111.

45. Al-Chalabi A, Hardiman O, Kiernan MC, Chiò A, Rix-Brooks B, van den Berg LH. Amyotrophic lateral sclerosis: Moving towards a new classification system. *Lancet Neurol*. 2016;15:1182-1194.

46. Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. *Lancet*. 2022;400:1363-1380.

47. Agosta F, Al-Chalabi A, Filippi M, et al. The el escorial criteria: Strengths and weaknesses. *Amyotroph Lateral Scler Front Degener*. 2015;16(1-2):1-7.

48. Hu WT, Seelaar H, Josephs KA, et al. Survival profiles of patients with frontotemporal dementia and motor neuron disease. *Arch Neurol*. 2009;66:1359-1364.

49. Young AL, Vogel JW, Robinson JL, et al. Data-driven neuropathological staging and subtyping of TDP-43 proteinopathies. *Brain*. 2023;146:2975-2988.

50. Miki Y, Mori F, Nunomura J, et al. Sporadic amyotrophic lateral sclerosis with pallido-nigro-luysian degeneration: A TDP-43 immunohistochemical study. *Neuropathology*. 2010;30:149-153.

51. Mackenzie IRA, Neumann M. Fused in sarcoma neuropathology in neurodegenerative disease. *Cold Spring Harb Perspect Med*. 2017;7:a024299.

52. Mackenzie IRA, Ansorge O, Strong M, et al. Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: Two distinct patterns correlating with disease severity and mutation. *Acta Neuropathol*. 2011;122:87-98.

53. Borrego-Écija S, Cortés-Vicente E, Cervera-Carles L, et al. Does ALS-FUS without FUS mutation represent ALS-FET? Report of three cases. *Neuropathol Appl Neurobiol*. 2019;45:421-426.

54. Balasa M, Gelpí E, Martín I, et al. Diagnostic accuracy of behavioral variant frontotemporal dementia consortium criteria (FTDC) in a clinicopathological cohort. *Neuropathol Appl Neurobiol*. 2015;41:882-892.

4.2. Segundo trabajo

- **Título:** Identification of a pathogenic mutation in *ARPP21* in patients with amyotrophic lateral sclerosis.
- Trabajo publicado en *Journal of Neurology, Neurosurgery and Psychiatry* en 2024.
- **Referencia bibliográfica:** Dols-Icardo O, **Carbayo Á**, Jericó I, Blasco-Martínez O, Álvarez-Sánchez E, López Pérez MA, Bernal S, Rodríguez-Santiago B, Cusco I, Turon-Sans J, Cabezas-Torres M, Caballero-Ávila M, Vesperinas A, Llansó L, Pagola-Lorz I, Torné L, Valle-Tamayo N, Muñoz L, Rubio-Guerra S, Illán-Gala I, Cortés-Vicente E, Gelpi E, Rojas-García R. *Identification of a pathogenic mutation in ARPP21 in patients with amyotrophic lateral sclerosis.* J Neurol Neurosurg Psychiatry. 2024 Jul 2:jnnp-2024-333834. doi: 10.1136/jnnp-2024-333834. Epub ahead of print. PMID: 38960585.

OPEN ACCESS

Original research

Identification of a pathogenic mutation in *ARPP21* in patients with amyotrophic lateral sclerosis

Oriol Dols-Icardo ^{1,2} Álvaro Carbayo ^{3,4,5} Iyonne Jericó^{6,7}, Olga Blasco-Martínez⁸ Esther Álvarez-Sánchez^{1,2} María Angeles López Pérez⁸, Sara Bernal^{4,9} Benjamín Rodríguez-Santiago^{4,9,10} Ivon Cusco⁹ Janina Turon-Sans^{3,4,5}, Manuel Cabezas-Torres^{3,4} Marta Caballero-Ávila ^{3,4,5} Ana Vesperinas^{3,4,5}, Laura Llansó^{3,4,5} Inmaculada Pagola-Lorz^{6,7} Laura Torné^{6,7} Natalia Valle-Tamayo^{1,2}, Laia Muñoz^{1,2} Sara Rubio-Guerra ^{1,2} Ignacio Illán-Gala ^{1,2}, Elena Cortés-Vicente ^{3,4,5} Ellen Gelpí¹¹ Ricard Rojas-García ^{3,4,5}

► Additional supplemental material is published online only. To view, please visit the journal online (<https://doi.org/10.1136/jnnp-2024-333834>).

For numbered affiliations see end of article.

Correspondence to

Dr Ricard Rojas-García,
Neurology, Hospital de la Santa
Creu i Sant Pau, Unidad de
Enfermedades Neuromusculares,
Barcelona, Spain; rrojas@santpau.cat
Dr Oriol Dols-Icardo; odols@santpau.cat

OD-I and ÁC contributed
equally.

Received 18 March 2024
Accepted 17 June 2024

ABSTRACT

Background and objective Between 5% and 10% of amyotrophic lateral sclerosis (ALS) cases have a family history of the disease, 30% of which do not have an identifiable underlying genetic cause after a comprehensive study of the known ALS-related genes. Based on a significantly increased incidence of ALS in a small geographical region from Spain, the aim of this work was to identify novel ALS-related genes in ALS cases with negative genetic testing.

Methods We detected an increased incidence of both sporadic and, especially, familial ALS cases in a small region from Spain compared with available demographic and epidemiological data. We performed whole genome sequencing in a group of 12 patients with ALS (5 of them familial) from this unique area. We expanded the study to include affected family members and additional cases from a wider surrounding region.

Results We identified a shared missense mutation (c.1586C>T; p.Pro529Leu) in the cyclic AMP regulated phosphoprotein 21 (*ARPP21*) gene that encodes an RNA-binding protein, in a total of 10 patients with ALS from 7 unrelated families. No mutations were found in other ALS-causing genes.

Conclusions While previous studies have dismissed a causal role of *ARPP21* in ALS, our results strongly support *ARPP21* as a novel ALS-causing gene.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease, characterised by muscle weakness and atrophy secondary to upper and lower motor neuron degeneration, leading to respiratory insufficiency and death within a mean of 3–5 years.¹ Over the last decades, an evident overlap of clinical, genetic and neuropathological features has been established between ALS and frontotemporal dementia (FTD).^{2–5}

Although most cases are considered sporadic (sALS), approximately 5–10% of ALS cases have a previous family history of ALS and are classified as familial ALS (fALS).⁶ To date, over 40 genes have been related to ALS, most showing a Mendelian autosomal dominant inheritance pattern. Several

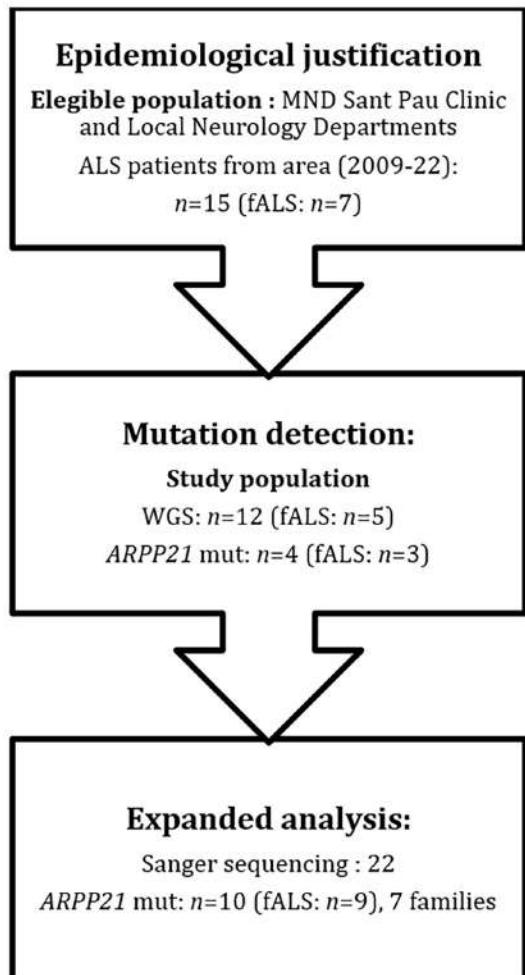
WHAT IS ALREADY KNOWN ON THIS TOPIC

→ Between 5% and 10% of amyotrophic lateral sclerosis (ALS) cases have a family history of the disease. 30% of familial ALS cases do not have an identifiable underlying genetic cause after a comprehensive study of the known ALS-related genes. Incidence rates of ALS are fairly homogeneous across European and American populations.

WHAT THIS STUDY ADDS

→ This work supports the causative role of cyclic AMP regulated phosphoprotein 21 (*ARPP21*) in ALS and adds to the extensive list of RNA-binding proteins involved in ALS pathophysiology. Further studies are required to elucidate the contribution and frequency of this variant in *ARPP21* to the genetic basis of the disease. Peaks of incidence of the disease in small geographical areas may help identify the underlying genetic causes of ALS.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY


→ *ARPP21* should be reclassified as an ALS-causing gene, and included in genetic screenings along with other known genes.

ALS-causing mutations have an impact on genes encoding RNA-binding proteins, such as transactive response DNA-binding protein 43 (*TDP-43*), fused in sarcoma (*FUS*) and T cell-restricted intracellular antigen-1 (*TIA1*), among others, highlighting the central role of RNA metabolism in the disease.⁷ However, despite the rapidly growing number of ALS-related genes, genetic diagnosis remains elusive in approximately 30% of patients with fALS.^{8,9} The disease has a complex genetic architecture, and oligogenic and polygenic models of inheritance have gained relevance.¹⁰ In this era of protein-targeted therapies and genetically oriented treatments, discovery and detection of new genetic variants and implicated genes is paramount.¹⁰

© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: Dols-Icardo O, Carbayo Á, Jericó I, et al. *J Neurol Neurosurg Psychiatry* Epub ahead of print: [please include Day Month Year]. doi:10.1136/jnnp-2024-333834

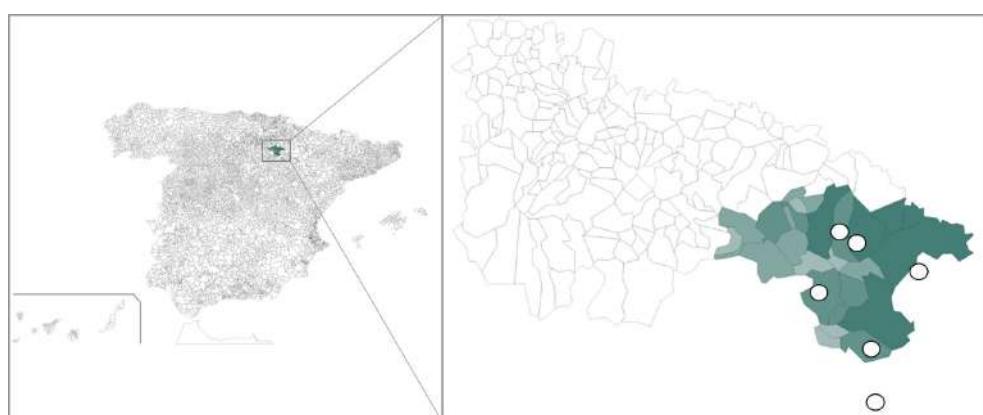
Figure 1 Flowchart indicating the steps followed in the study and the number of patients at each phase. ALS, amyotrophic lateral sclerosis; ARPP21, cyclic AMP regulated phosphoprotein 21; fALS, familial ALS; MND, motor neuron disease; WGS, whole genome sequencing.

Prospective, population-based studies show that incidence rates of ALS are relatively uniform across European and American populations, ranging between two and three cases per year per 100 000 inhabitants.^{11 12} Peaks of incidence in small regions,

especially when several cases aggregate in a family, might suggest the disorder has an underlying genetic substrate.¹³

Here we report the identification of a mutation in the cyclic AMP-regulated phosphoprotein 21 (ARPP21) gene, supporting its role as a novel ALS-causing gene and expanding the repertoire of RNA-binding proteins associated with ALS. We describe the clinical phenotype of 10 patients from 7 unrelated families carrying the same mutation in ARPP21.

MATERIALS AND METHODS


Case selection and study design

Since 1998 our register has prospectively included cases of ALS seen at the Motor Neuron Clinic at the Neuromuscular Diseases Unit of Hospital Sant Pau (Barcelona), a national referral centre for neuromuscular diseases. Between 2009 and 2022 we observed an unusual number of cases of ALS (especially familial cases) at our outpatient clinic, from a small region in the province of La Rioja in Spain. **Figure 1** illustrates the study design.

For epidemiological justification (**figure 1** – box 1) we reviewed our database and contacted neurology departments from local centres in the region. Eligible population: We selected new cases with diagnosis of ALS from the region, visited between January 2009 and December 2022.

Study population: For genetic analysis (**figure 1** – box 2) we selected cases from the study area (see **figure 2**) with available DNA samples, performing whole genome sequencing (WGS). Patients fulfilled ALS-El Escorial revised criteria for probable, probable laboratory-supported, or definite ALS.¹⁴ Both sporadic and fALS cases were included. fALS was defined as having a family member with a diagnosis of ALS in first or second-degree relatives, or having a first-degree family member with a confirmed FTD in the formal neuropsychological examination, according to current proposed criteria.⁶ All patients went through a targeted ALS-gene panel prior to WGS (online supplemental table 1 in supplementary materials). Patients with a previously identified ALS-causing mutation in this custom panel were excluded from this part of the study (WGS analysis), as they already had a known underlying genetic substrate for the disease.

After identifying the candidate variant, we expanded the analysis with the aim of increasing the series of mutation carriers. We performed Sanger sequencing in other cases of sALS and fALS from the surrounding geographical areas and also in their affected family members (**figure 1** – box 3). In cases carrying

Figure 2 (A) Map of Spain and its regions. (B) Map of La Rioja province and its regions. Regions belonging to the south-eastern area of La Rioja, where an increased frequency of amyotrophic lateral sclerosis cases was detected, are shaded in green. White dots mark the location on the map of the six towns of origin of the seven families.

the candidate variant, mutations in other known ALS-FTD genes were ruled out through exome sequencing (see online supplemental table 1 in supplementary materials).

Demography and epidemiology

The expected number of cases in the area during the study period was calculated using incidence rates from previous studies and demographic data of those in the catchment area over 18 years.

Demographic information on the geographical region was obtained from the official demographic records between 2009 and 2022 in the Spanish National Institute of Statistics (INE—Instituto Nacional de Estadística).^{15 16}

The minimum incidence was calculated using the numbers of new cases identified from the area and the population at risk in the study period. We compared the observed cases with the expected number of cases in the area, to obtain a ratio.

Clinical features

We recorded demographic and clinical variables. Demographic data included sex, date and place of birth and place of origin of the family. Clinical variables included age at disease onset, disease duration, region of onset of motor symptoms (spinal or bulbar). The clinical phenotype was categorised depending on the presence of upper (primary lateral sclerosis), lower motor neuron signs (progressive muscular atrophy) or both (ALS). The presence of cognitive and/or behavioural impairment and whether or not they met clinical criteria for FTD and its variants, were also noted.¹⁷⁻¹⁹

Family history

We recorded previous cases of ALS in the family as part of the routine clinical evaluation. As possible indicators of an underlying FTD we also recorded previous history of FTD, early-onset cognitive impairment (defined as younger than 65 years of age at symptom onset), cognitive impairment with marked behavioural impairment but no definite diagnosis, and diagnosis of other neurodegenerative diseases.

Genetic analyses

Library preparation and sequencing

WGS was performed at the National Centre for Genomic Analysis (Centro Nacional de Análisis Genómico—CNAG-CRG, Barcelona, Spain). Paired-end multiplex libraries were prepared following the manufacturer's instructions. Libraries were loaded to Illumina flow cells for cluster generation prior to producing 150 base read pairs on a NovaSeq 6000 instrument following the Illumina protocol. Image analysis, base calling and quality scoring of the run were processed using the manufacturer's software Real Time Analysis and followed by generation of FASTQ sequence files.

Bioinformatic and genetic analyses

Reads were mapped to human build GRCh38 with BWA-MEM V.0.7.17.²⁰ Alignment files containing only properly paired, unique mapping reads without duplicates were processed using Picard V.2.20 (<http://broadinstitute.github.io/picard/>) to add read groups and to remove duplicates. The Genome Analysis Tool Kit (GATK V.4.1.9.0)²¹ was used for local realignment and base quality score recalibration. Joint variant calling was done using HaplotypeCaller, CombineGVCFs and GenotypeGVCFs from GATK following the GATK best practices pipeline. Variants were hard filtered using GATK VariantFiltration (BaseQRankSum>4.0 || BaseQRankSum<-4.0,

FS>60,000, FS>200,000, ReadPosRankSum<-8.0, ReadPosRankSum>20.0, MQRankSum<-12.5, QD<2.0, MQ<40.0). We also retained variants where at least one sample contained the variant with a Depth ≥ 10 .

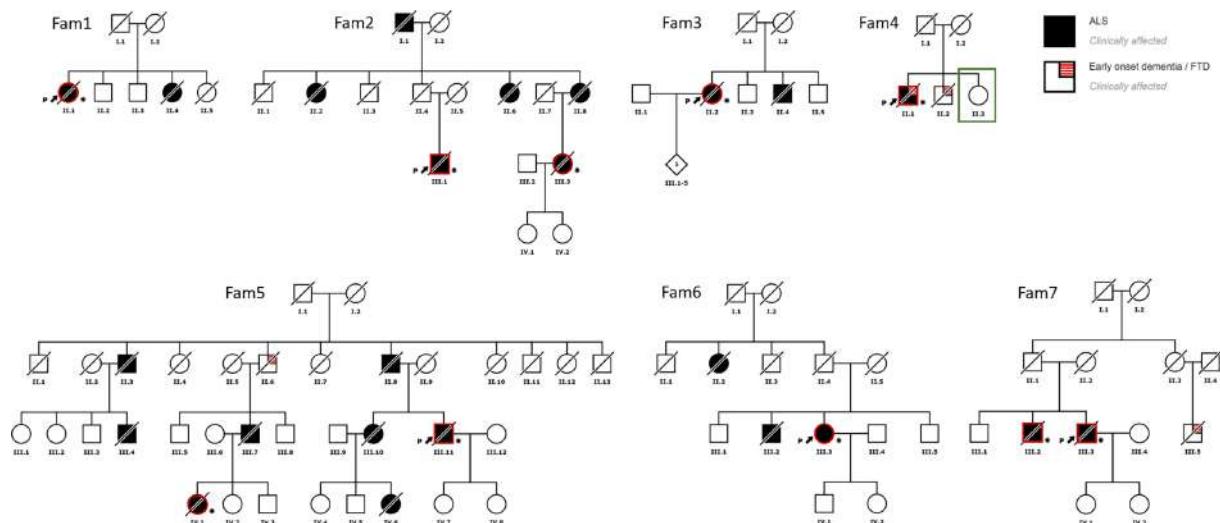
Functional annotations were added using SnpEff V.5.0 with the hg38.²² Variants were annotated with SnpSift V.5.0²³ using population frequencies, conservation scores and deleteriousness predictions from dbNSFP V.4.1a.²⁴ We also used other sources of annotations, such as gnomAD (V.3.1.2), CADD (V.1.6), InterVar and Clinvar (V.20200602).²⁵⁻²⁷ In order to check the frequency of the ARPP21 variant in the Spanish population, we used the Collaborative Spanish Variant Server which comprises exomes and genomes from 2105 unrelated Spanish individuals.²⁸

Somalier software²⁹ was used with WGS and whole exome sequencing (WES) data to assess relatedness among all probands included in the study (coefficient of relationship as a measure of the degree of consanguinity). Briefly, the software considers for each comparison: (1) the number of sites where one sample is hom-ref and another is hom-alt; (2) the number of sites where the samples have the same genotype; (3) the number of sites where both samples are heterozygotes; and (4) the number of sites where both samples are homozygous alternate.

WGS data was used to identify shared genotypes that might suggest a common haplotype in the four mutation carriers with available WGS data. A merged VCF file of ARPP21 gene ± 1 megabase combining variants from the four patients was obtained to explore shared blocks of genotypes. LDhap web-based tool (<https://ldlink.nih.gov/?tab=ldhap>) was used to obtain specific population haplotype frequencies of all haplotypes observed for a list of 30 query genetic variants (the maximum accepted as input) flanking the shared ARPP21 candidate variant and part of the shared haplotype (23 of them were available in LDhap). We selected the Iberian population in Spain (IBS) population to obtain allelic frequencies, in addition to the other populations in Europe and all other super populations available (African (AFR), American (AMR), East Asian (EAS) and South Asian (SAS)).

The presence of the disease-causing mutation in ARPP21 was validated using Sanger sequencing in all mutation carriers using the following forward (5' GACAGTGGTGTGCATCTTGTG 3') and reverse (3' GAGACATTCGCACATACCC 5') primers.

Once the ARPP21 variant was confirmed, other ALS and FTD causing genes were screened using WES and mutations in 58 ALS-FTD-related genes were ruled out (see online supplemental table 1 in supplementary materials for the complete list of genes). WES was used to study gene coding exons and flanking regions (± 50 base pairs). Briefly, DNA libraries were prepared using kapa reagents (Roche) and sequenced in NextSeq 500 or NextSeq 1000 instruments (Illumina) to obtain 2×150 base pair reads. Fastq files were mapped to the human genome using BWA.³⁰ Variants were called through GATK variant calling,²¹ and annotated using ANNOVAR.³¹ The C9orf72 hexanucleotide repeat expansion was discarded by means of rPCR (repeat-primed Polymerase Chain Reaction), as previously described.³²


Ethics

The study was conducted in accordance with the Declaration of Helsinki. All participants gave their written informed consent to participate in the study.

RESULTS

Epidemiology

The south-eastern region of the province of La Rioja is a 1219.42 km² area in north-eastern Spain (figure 2). Between

Figure 3 Family trees of the seven families in which the p.Pro529Leu mutation in ARPP21 was detected. Patients with ALS are shaded in black. Cases presenting an early onset dementia or dementia with prominent behavioural features are marked with a red square at the top right corner. The proband in each family is marked with an arrow and a 'P'. Cases that harbour the p.Pro529Leu mutation in ARPP21 are outlined in red and marked with an asterisk. The healthy individual (Family 4—II.3) with negative genetic testing is framed in a green box. No DNA was available from the other patients with ALS or patients with early-onset cognitive-behavioural impairment in the pedigrees. ALS, amyotrophic lateral sclerosis; ARPP21, cyclic AMP regulated phosphoprotein 21; FTD, frontotemporal dementia.

2009 and 2022, it had a mean population of 43 433, of whom 31 324 were over 18 years of age. The population density was 35.62 persons/km². Figure 1 illustrates the study design and flowchart of patients studied in each phase.

Considering a mean ALS incidence of 1.4–2.47 cases/100 000 person/year,^{11 12} we calculated an expected number of cases of 0.44–0.77 cases per year in this area, equivalent to 5–10 patients during the study period (2009–2022). In reference to fALS, assuming a frequency of 5–10% of fALS, the expected number of cases in the area would be 0.02–0.08 cases/year or one new case every 12.5–50 years.

Between 2009 and 2022, we visited 15 patients from the study area who met the diagnostic criteria for ALS. 7 of the 15 (46.6%) had a family history of ALS and were considered as fALS. In fALS cases, known ALS-causative mutations were ruled out through exome sequencing analysis or a custom gene panel.

The comparison between the observed frequency and the expected frequency resulted in an increased frequency of ALS cases in the area, with a ratio of 1.5–2.6 for total ALS cases and 7–24.5 for fALS cases.

12 of the 15 patients were eligible for further genomic analysis. One patient was excluded from this part of the study because an alternative genetic cause was found (non-sense pathogenic mutation in NEK1—c.3107C>G; p.Ser1036X—NM_001199397.3). No DNA was available for analysis in the remaining two patients.

Genetics

Detection of the ARPP21 mutation

WGS was performed in 12 unrelated patients (5 fALS and 7 sALS). We found a shared heterozygous missense mutation in ARPP21 (c.1586C>T; p.Pro529Leu (NM_001385486.1 or ENST00000417925.5)) in four unrelated patients with ALS (three fALS) from four different families (figure 3—Families 1–4) (table 1). The high frequency of this almost unique variant, together with its predicted deleteriousness (*CADD_phred*=26.7; *Polyphen HDIV* and *HVAR*=*Deleterious* and *Mutation Taster*=*Deleterious*) and high GERP (Genomic Evolutionary Rate Profiling) score (6.07), which predicted a huge evolutionary constraint, led us to prioritise this variant in ARPP21 as a

Table 1 Clinical features of patients with ALS carrying the ARPP21 mutation

Family	Patient	Region of onset	Motor phenotype	Cognitive symptoms	Disease duration	Study	
1	Fam 1	II.1*	Spinal	ALS	No	13	WGS
2	Fam 2	III.3	Spinal	ALS	No	—	WES
3	Fam 2	III.1*	Spinal	ALS	No	16	WGS
4	Fam 3	II.2*	Spinal	ALS	No	—	WGS
5	Fam 4	II.1*	Bulbar	ALS-FTD	bvFTD	31	WGS
6	Fam 5	III.11*	Bulbar	ALS	No	16	WES
7	Fam 5	IV.1	Spinal	ALS	No	15	WES
8	Fam 6	III.3*	Spinal	ALS	No	—	WES
9	Fam 7	III.2	Spinal	ALS	No	17	WES
10	Fam 7	III.3*	Spinal	ALS	No	4	WES

Probands of each family are marked with an asterisk (*). 'Disease duration' is expressed in months (M).

ALS, amyotrophic lateral sclerosis; ARPP21, cyclic AMP regulated phosphoprotein 21; bvFTD, behavioural variant of FTD; FTD, frontotemporal dementia; MND, motor neuron disease; WES, whole exome sequencing; WGS, whole genome sequencing.

potential causative mutation. The coefficients of the relationship obtained using Somalier suggest that the probands with available WGS and WES data are unrelated (data not shown). This variant is absent in the population database gnomAD (V.3.1.2) and carried by 4 out of 1 384 130 chromosomes in the latest updated version of gnomAD (V.4.0.0), where the mutation is annotated as p.Pro563Leu (NM_001385562.1 or ENST00000684406.1). We did not find any mutation carrier among the 2105 unrelated Spanish individuals included in the Collaborative Spanish Variant Server.²⁸

Our analysis disclosed a common haplotype shared by the four mutation carriers with available WGS data, which included 442 SNPs (Single Nucleotide Polymorphisms), encompassing 256 Kb (chr3:35605944–35862077). This haplotype was also found in WGS data from two of the eight non-mutation carriers included in this study. We further assessed its frequency in the general population using LDhap. The frequency of the haplotype in the IBS was 7.48%, the same as in the Toscani in Italy. Interestingly, this haplotype was observed at a higher frequency in the British in England and Scotland (GBR) population (11.5%) or at a lower frequency in the Finnish in Finland population (5.6%). The haplotype was almost absent in AFR or EAS populations (<1%), and at low frequencies in the ad mixed AMR population (2.7%). Notably, 90% of the SAS population carried this haplotype.

Expanded study in the region

We subsequently broadened the analysis to affected family members of mutation carriers (hence new fALS cases) and other new patients with sALS and fALS from a wider surrounding geographical area.

Using Sanger sequencing we analysed 22 new patients with ALS, 8 of whom were fALS. We found the candidate variant in 6 novel individuals: 1 affected relative in Family 2, and 5 more cases from 4 unrelated families, resulting in a final count of 10 *ARPP21* mutation carriers from 7 unrelated families (see pedigrees in figure 3). We were able to study only one unaffected family member (Family 4—II.3), who did not harbour the candidate variant. We did not find any patient with ALS among the families who did not carry the candidate variant in *ARPP21*.

Other ALS-FTD-related mutations were ruled out through WES, including the p.Arg92Cys variant in *GLT8D1* (see online supplemental table 1). No other rare variants were found in the *GLT8D1* gene in *ARPP21* mutation carriers. In the proband of Family 5 (III.11), we detected a heterozygous variant in *SQSTM1* (c.1175C>T; p.Pro392Leu), for which there is no consensus regarding its pathogenicity for ALS-FTD. The rare variant in *SQSTM1* was not carried by his affected family member (Family 5—IV.1) who also carried the mutation in *ARPP21* described in this study, thus demonstrating that did not segregate with disease and making any potential association with ALS unlikely.

Clinical features and family history

Table 1 shows the main clinical features of the series. Five patients were men (50%). The mean age at onset was 59.5 years (SD 11.37) and the mean disease duration was 16 months (SD 7.96). At the date of publication, three patients (30%) were alive. The region of onset was bulbar in two patients (20%) and spinal in the others (n=8; 80%). The clinical phenotype was classic ALS (ie, presence of upper and lower motor neuron signs) in all 10 patients (100%), with no cases of progressive muscular atrophy or primary lateral sclerosis in the series. Cognitive-behavioural impairment was present in one patient (10%).

Regarding family history, only one patient did not have a family history of ALS, but had a younger sibling with an early onset dementia (Family 4 in figure 3). Moreover, two other families (Families 5 and 7 in figure 3) had a family history of early-onset dementia.

Pedigrees and case descriptions

Table 1 summarises the main clinical features of the series. Figure 3 shows the family trees.

Family 1

Proband (II.1) presented with progressive paraparesis in their late 40s, with diffuse upper motor neuron signs. Family history was notable for a younger sibling (II.4) who had died from ALS in their 30s, and was hence diagnosed with fALS, with initial negative genetic testing, dying of respiratory insufficiency within 13 months from symptom onset. No clinical information was available concerning the proband's parents.

Family 2

Proband (III.1) was a patient in their late 30s with a family history of ALS in the grandfather on the father's side (I.1) and in three of his aunts (II.2; II.6; II.8). The patient presented with spinal onset ALS and died within 16 months from symptom onset. Conventional genetic testing was negative but the heterozygous variant in *ARPP21* was identified. A cousin (III.3) was diagnosed with ALS and carries the *ARPP21* variant.

Family 3

Proband (II.2) is an adult patient with no relevant medical history, but a family history of a brother (II.4) who died of spinal onset ALS. There were no medical records available for their parents. The patient was diagnosed with ALS in their late 60s following progressive distal upper and later lower limb weakness. Despite the slow progression of the disease, neurophysiological testing confirmed a motor neuron disease. At the time of publication of the present work, the patient was alive.

Family 4

Proband (II.1) was a patient in their 60s who presented with a sporadic, bulbar onset ALS, with a disease duration of 3 years. The patient showed profuse behavioural and cognitive impairment, suggestive of an ALS-FTD, but no formal neuropsychological testing was available.

A younger brother (II.2) had been diagnosed with an early-onset dementia before 65 years of age, but no formal cognitive-behavioural evaluation was performed. Both their parents had died from unknown causes before 60 years of age. No further detailed information was available on their family. The patient's younger sibling (II.3), older than 70 years of age, who showed no signs or symptoms suggestive of motor neuron disease, was genetically tested and did not harbour the *ARPP21* mutation.

Family 5

Proband (III.11) was an elderly patient with an unremarkable personal medical history. This patient presented with a bulbar onset motor neuron disease with progressive limb weakness and respiratory failure, leading to death within 16 months.

There was a profuse history of ALS in the family (see family tree: II.3, II.8, III.4, III.7, III.10, IV.1, IV.6). Furthermore, an uncle of the proband (II.6), whose son and granddaughter died of ALS and was hence an obligate carrier, was diagnosed with unspecified dementia and died before 50 years of age. After the

ARPP21 mutation was detected in the proband, the only affected family member (IV.1) with available DNA was retrospectively confirmed to harbour the same mutation.

Family 6

Proband (III.3) was a patient in their late 60s, with a family history of two cases of ALS (III.2, II.2). The proband developed progressive paraparesis evolving to upper limb weakness and dysphagia, and neurophysiological examinations compatible with ALS. At the time of submission of this work, the patient was alive.

Family 7

Proband (III.3) was an adult in their 60s who presented with a rapidly progressive tetraparesis, followed by respiratory insufficiency and death within the first 4 months of disease onset. The patient's brother (III.2) died of ALS 10 years prior to the proband's diagnosis, and was retrospectively confirmed to carry the *ARPP21* mutation. A cousin (III.5) was also diagnosed with early-onset dementia before 60 years of age. Their father died of pancreatic cancer in his early 70s.

DISCUSSION

Following an increased frequency of cases in the small region of the south-eastern La Rioja province in Spain, we identified the p.Pro529Leu mutation in *ARPP21* in 10 patients from 7 unrelated families, showing a presumably autosomal dominant pattern. Familial cases (ie, fALS) accounted for almost 50% of the total cases from the area, none of whom harboured any other known ALS-causing mutations.

From a clinical point of view, patients carrying the p.Pro529Leu variant presented a shorter survival (mean 16 months) than that described in the literature for ALS,¹² with no differential clinical features. Although no systematic cognitive assessment was performed, one patient showed prominent cognitive and behavioural impairment. Furthermore, three relatives (one of them an obligate carrier—Family 5 II.6) from different families had been diagnosed with early-onset dementia with marked behavioural symptoms, but no apparent motor neuron disease. It cannot be ruled out that the *ARPP21* mutation could also be related to FTD, and clinical presentation at any point might fall within the ALS-FTD spectrum (ie, ALS, FTD or ALS-FTD), as has been observed in other ALS-FTD-related genes.³³ Unfortunately, no formal cognitive testing, neuroimaging or DNA samples were available from these patients. Further studies will be required to confirm this hypothesis.

In 2019, Cooper-Knock *et al*³⁴ described the segregation of a mutation (p.Arg92Cys) in the glycosyltransferase 8 domain-containing protein 1 (*GLT8D1*) gene and the mutation described in the present study (p.Pro529Leu mutation in *ARPP21*) in an autosomal dominant ALS pedigree from the UK. Additional screening of both genes in 103 ALS cases disclosed 4 new *GLT8D1* mutation carriers, 3 of which also harboured the p.Pro529Leu mutation in *ARPP21*. However, after a rare variant burden analysis in the Project MinE data set, the authors prioritised mutations in the glycosyltransferase domain of *GLT8D1* as causative, suggesting only a secondary and putative synergistic effect for the mutation in *ARPP21* in double-mutation carriers. This conclusion was based on an observed shorter disease duration in patients carrying both mutations (<16 months),³⁴ similar to that of patients in our series who carry the p.Pro529Leu variant in isolation. Therefore, we show that the mutation described in our study is sufficient to cause ALS, and suggest that

the shorter disease duration might be independently attributed to the p.Pro529Leu mutation in *ARPP21*.

Interestingly, the four mutation carriers identified through our WGS approach shared a common haplotype. This haplotype was present in two of the eight non-mutation carriers in our study with available WGS data, and it is also found in other worldwide populations. In this context, beyond the Spanish population, its high frequency in the GBR and SAS populations, together with the fact that this haplotype is found at very low frequencies in AMR, AFR or EAS populations, suggests that people carrying this mutation might be restricted to specific ancestries. In this sense, the *ARPP21* mutation, although not definitely linked to ALS, has previously been detected in patients of European ancestry, primarily from UK,³⁴ which is part of the GBR population. Indeed, the haplotype is almost null in the EAS population, which might explain why this mutation has not been found in large cohort studies from China³⁵ and Australia^{34,36} that have previously described other rare variants in *ARPP21* or *GLT8D1*, but were unable to confirm their pathogenic role. Large ALS cohorts have been previously used to identify novel disease-causing variants, such as those included in project MiNE which comprises samples from diverse countries across the world (from Spain, but also Brazil, the USA, Australia and Russia, among others). As demonstrated by the differences in the presence of the *ARPP21* risk haplotype around the world, using such diverse populations may have precluded the identification of extremely rare disease-causing variants using rare genetic burden association analyses. It is important to note that our approach was based on the identification of a higher than expected burden of ALS cases in a remote region. For this reason, we implemented a unique strategy that diverged from previously used methods.

To date, the most recent reviews on the genetics of ALS do not consider *ARPP21* to be an ALS-causing gene,⁸ nor was it included in a recent study comprising a set of 90 ALS-associated genes selected from multiple databases.³⁷ In addition, an OMIM number has not yet been assigned to the *ARPP21* gene, and in the ALS Online Database (ALSoD; <https://alsod.ac.uk>)³⁸ the gene is still categorised as 'tenuous evidence', meaning that it has been associated with ALS in small studies that have not stood up to replication. Our study demonstrates that *ARPP21*, or at least the p.Pro529Leu mutation in this gene, is consistently associated with ALS and should be considered in future genetic studies.

The *ARPP21* protein is an RNA-binding protein widely expressed in the human brain³⁹ and based on the results of our study, adds to the long list of RNA-binding proteins implicated in ALS, such as TDP-43, TIA1 or FUS. It is involved in RNA metabolism, an event known to be deregulated and central to ALS pathophysiology.⁴⁰ Importantly, a common set of *ARPP21* target RNAs with related functions have been identified through iCLIP. These RNAs have a prominent role in messenger RNA splicing and processing as previously demonstrated by gene ontology enrichment analyses.³⁹ In addition, in cells expressing *ARPP21* treated with stress inducers (arsenite, clotrimazole or heat shock), the recruitment of *ARPP21* to stress granules is induced. Importantly, the C-terminal sequence of the protein (where the p.Pro529Leu mutation is located) is necessary and sufficient to induce its recruitment to these membraneless dynamic structures. Although its domains have not been fully characterised, the mutation described in our study (p.Pro529Leu) is located in the C-terminal sequence and in close proximity to an intrinsically disordered region with compositional bias to Proline residues (low-complexity regions) of *ARPP21*. We speculate that this mutation might result in an increased propensity of *ARPP21* to interact with and localise to stress granules, a mechanism

previously described in ALS-related mutations in other RNA-binding proteins such as FUS,⁴¹ TIA1⁴² or TDP-43, and directly related to the pathophysiology of ALS⁴³ and other neurodegenerative diseases.⁴⁴ Thus, beyond the implication of ARPP21 in RNA metabolism and processing, we suggest that this mutation could alter the dynamics of stress granules by increasing their aberrant formation and thus impacting on ALS pathogenesis.

Our study has some limitations. First, although our results suggest the causal role of the mutation described herein, DNA was available and genetic testing was consented to only in a few family members, thus precluding a complete segregation study. Given the variability in the age of onset of the disease, segregation analysis, especially involving some of the younger asymptomatic relatives, should be interpreted cautiously. Nevertheless, we strongly believe that the presence of the same variant in 10 patients with ALS (9 fALS) from 7 unrelated families in a small geographical area with a high incidence of ALS is a strong argument in favour of its pathogenicity. Further studies are required both in our country and worldwide to elucidate the contribution and frequency of this and other variants in ARPP21 to the genetic basis of the disease, as well as functional validation of the mutation pathogenicity. Second, clinical information on patients' families was collected retrospectively and was often incomplete, especially regarding cognitive and behavioural symptoms, for which specific standardised cognitive-behavioural tests could have provided a wider phenotypical spectrum of the variant.

In conclusion, our results support the causative role of a mutation (p.Pro529Leu) in ARPP21 in ALS. This work provides robust epidemiological and genetic arguments in favour of mutation pathogenicity. We also discuss disease-causing mechanisms associated with the mutation, supporting the role of ARPP21 as an independent, novel ALS-causing gene, adding to the complex genetic architecture of the disease and expanding the landscape of RNA-binding proteins altered in ALS.

Author affiliations

¹Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain

²Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain

³Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain

⁴Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain

⁵Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain

⁶Neuromuscular and Motor Neuron Diseases Research Group, Department of Neurology, Hospital Universitario de Navarra, Pamplona, Spain

⁷Health Research Institute of Navarra (IdisNa), Pamplona, Spain

⁸Department of Neurology, Hospital San Pedro, Logroño, La Rioja, Spain

⁹Genetics Department, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain

¹⁰Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain

¹¹Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria

X Oriol Dols-Icardo @Uri713 @SantPauMemory and Álvaro Carbayo @NMDsantPau

Acknowledgements We are indebted to patients and their families for their cooperation in the study. We thank Carolyn Newey for her help with language supervision and correction, which greatly improved the quality of our work. This work is generated within the European Reference Network for Neuromuscular Diseases.

Contributors Study conceptualisation and design: OD-I, ÁC, IJ, EG and RR-G were actively involved in study conceptualisation and design. Data acquisition, analysis and interpretation: OD-I, ÁC, OB-M, EA-S, MALP, SB, BR-S, IC, JT-S, MC-T, MC-Á, AV, LL, IP-L, LT, NV-T, LM, RR-G. Drafting and critical revision: OD-I, ÁC, BR-S, JT-S, MC-T, MC-Á, AV, LL, IP-L, LT, NV-T, LM, SR-G, II-G, EC-V, EG and RR-G. Study guarantors: RR-G, OD-I.

Funding This study was funded by the Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España) through the projects PI19/01543, PI23/00845 to RR-G, and PI18/00326, PI21/01395 to OD-I, cofunded by the European Regional Development Fund/European Social Fund (ERDF/ESF), 'A way to make Europe'/'Investing in your future'. OD-I receives funding from the Fundación Española para el Fomento de la Investigación de la Esclerosis Lateral Amiotrófica (FUNDELA - 'Por un mundo sin ELA'), Fundación HNA ('Premio Investigación científica de salud') and the Alzheimer's Association (AARF-22-924456). II-G is a senior Atlantic Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), and receives funding from the GBHI, the Alzheimer's Society (GBHI ALZ UK-21-720973) and the Alzheimer's Association (AACSF-21-850193). II-G was also supported by the Juan Rodés Contract (JR20/0018) and PI21/00791 from Instituto de Salud Carlos III (Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España).

Map disclaimer The inclusion of any map (including the depiction of any boundaries therein), or of any geographical or locational reference, does not imply the expression of any opinion whatsoever on the part of BMJ concerning the legal status of any country, territory, jurisdiction or area or of its authorities. Any such expression remains solely that of the relevant source and is not endorsed by BMJ. Maps are provided without any warranty of any kind, either express or implied.

Competing interests None declared.

Patient consent for publication Consent obtained directly from patient(s).

Ethics approval This study involves human participants and was approved by Hospital de la Santa Creu i Sant Pau Ethics Committee (Study ID: 20/016 HSCSP). Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: <http://creativecommons.org/licenses/by-nc/4.0/>.

ORCID iDs

Oriol Dols-Icardo <http://orcid.org/0000-0003-2656-8748>

Álvaro Carbayo <http://orcid.org/0000-0001-9282-8603>

Marta Caballero-Ávila <http://orcid.org/0000-0001-9850-8504>

Sara Rubio-Guerra <http://orcid.org/0000-0001-7652-8029>

Ignacio Illán-Gala <http://orcid.org/0000-0002-5418-2052>

Elena Cortés-Vicente <http://orcid.org/0000-0002-1428-1072>

Ricard Rojas-García <http://orcid.org/0000-0003-1411-5573>

REFERENCES

- van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. *Lancet* 2017;390:2084–98.
- Borrego-Écija S, Turon-Sans J, Ximelis T, et al. Cognitive decline in Amyotrophic lateral sclerosis: neuropathological substrate and genetic determinants. *Brain Pathol* 2021;31:e12942.
- Cortés-Vicente E, Turon-Sans J, Gelpí E, et al. Distinct clinical features and outcomes in motor neuron disease associated with behavioural variant frontotemporal dementia. *Dement Geriatr Cogn Disord* 2018;45:220–31.
- Carbayo Á, Borrego-Écija S, Turon-Sans J, et al. Clinicopathological correlates in frontotemporal lobar degeneration: motor neuron disease spectrum. *Brain* 2024;:awae011.
- Phukan J, Elamin M, Bede P, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. *J Neurol Neurosurg Psychiatry* 2012;83:102–8.
- Byrne S, Bede P, Elamin M, et al. Proposed criteria for familial amyotrophic lateral sclerosis. *Amyotroph Lateral Scler* 2011;12:157–9.
- Ling S-C, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. *Neuron* 2013;79:416–38.
- Akçimen F, Lopez ER, Landers JE, et al. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. *Nat Rev Genet* 2023;24:642–58.

9 Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. *Lancet Neurol* 2018;17:94–102.

10 Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. *Lancet* 2022;400:1363–80.

11 Pradas J, Puig T, Rojas-García R, et al. Amyotrophic lateral sclerosis in catalonia: a population based study. *Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration* 2013;14:278–83.

12 Jericó I, Elizalde-Beiras I, Pagola I, et al. Clinical features and incidence trends of amyotrophic lateral sclerosis in Navarre, Spain, 2007–2018: a population-based study. *Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration* 2021;22:401–9.

13 Logroscino G, Traynor BJ, Hardiman O, et al. Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues. *J Neurol Neurosurg Psychiatry* 2008;79:6–11.

14 Brooks BR, Miller RG, Swash M, et al. El escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. *Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders* 2000;1:293–9.

15 Instituto Nacional de Estadística (INE). 2024. Available: <https://www.ine.es> [Accessed 16 Feb 2024].

16 Instituto Nacional de Estadística (INE). Indicators for census tracks. Population and Housing Census La Rioja 2009–2022, 2024. Available: <https://www.ine.es/jaxiT3/Tabla.htm?t=2879&L=0> [Accessed 16 Feb 2024].

17 Strong MJ, Grace GM, Freedman M, et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. *Amyotroph Lateral Scler* 2009;10:131–46.

18 Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. *Brain* 2011;134:2456–77.

19 Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. *Neurology* 2011;76:1006–14.

20 Li H. Aligning sequence reads, clone sequences and assembly Contigs with BWA-MEM. *arXiv* 2013;1303.

21 McKenna N, Hanna M, Banks E, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. *Genome Res* 2010;20:1297–303.

22 Cingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, Snpeff. *Fly* 2012;6:80–92.

23 Cingolani P, Patel VM, Coon M, et al. Using drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, Snpsift. *Front Genet* 2012;3:35.

24 Liu X, Jian X, Boerwinkle E. dbNSFP V2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. *Hum Mutat* 2013;34:E2393–402.

25 Landrum MJ, Lee JM, Benson M, et al. Clinvar: improving access to variant interpretations and supporting evidence. *Nucleic Acids Res* 2018;46:D1062–7.

26 Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting splicing from primary sequence with deep learning. *Cell* 2019;176:535–48.

27 Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. *Nature* 2016;536:285–91.

28 Peña-Chiliet M, Roldán G, Pérez-Florido J, et al. CSVS, a Crowdsourcing database of the Spanish population genetic variability. *Nucleic Acids Res* 2021;49:D1130–7.

29 Pedersen BS, Bhattacharya PJ, Brown J, et al. Somalier: rapid relatedness estimation for cancer and Germline studies using efficient genome sketches. *Genome Med* 2020;12:62.

30 Li H, Durbin R. Fast and accurate short read alignment with burrows–Wheeler transform. *Bioinformatics* 2009;25:1754–60.

31 Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res* 2010;38:e164.

32 Dols-Icardo O, García-Redondo A, Rojas-García R, et al. Analysis of known Amyotrophic lateral sclerosis and Frontotemporal dementia genes reveals a substantial genetic burden in patients manifesting both diseases not carrying the C9orf72 expansion Mutation. *J Neurol Neurosurg Psychiatry* 2018;89:162–8.

33 Abramzon YA, Fratta P, Traynor BJ, et al. The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. *Front Neurosci* 2020;14:42.

34 Cooper-Knock J, Moll T, Ramesh T, et al. Mutations in the glycosyltransferase domain of Glt8D1 are associated with familial amyotrophic lateral sclerosis. *Cell Rep* 2019;26:2298–306.

35 Li W, Liu Z, Sun W, et al. Mutation analysis of Glt8D1 and Arpp21 genes in amyotrophic lateral sclerosis patients from Mainland China. *Neurobiol Aging* 2020;85:156.

36 Chan Moi Fat S, McCann EP, Williams KL, et al. Genetic analysis of Glt8D1 and Arpp21 in Australian familial and sporadic Amyotrophic lateral sclerosis. *Neurobiol Aging* 2021;101:297.

37 Van Daele SH, Moisse M, van Vugt JJFA, et al. Genetic variability in sporadic amyotrophic lateral sclerosis. *Brain* 2023;146:3760–9.

38 Wroe R, Wai-Ling Butler A, Andersen PM, et al. ALSOD: the amyotrophic lateral sclerosis online database. *Amyotroph Lateral Scler* 2008;9:249–50.

39 Rehfeld F, Maticzka D, Grosser S, et al. The RNA-binding protein Arpp21 controls dendritic branching by functionally opposing the miRNA it hosts. *Nat Commun* 2018;9:1235.

40 Ito D, Hatano M, Suzuki N. RNA binding proteins and the pathological cascade in ALS/FTD neurodegeneration. *Sci Transl Med* 2017;9:eaah5436.

41 Baron DM, Kaushansky LJ, Ward CL, et al. Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics. *Mol Neurodegener* 2013;8:30.

42 Mackenzie IR, Nicholson AM, Sarkar M, et al. Tia1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. *Neuron* 2017;95:808–16.

43 Aulas A, Vande Velde C. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS. *Front Cell Neurosci* 2015;9:423.

44 Wolozin B, Ivanov P. Stress granules and neurodegeneration. *Nat Rev Neurosci* 2019;20:649–66.

5. Resumen global de los resultados

En la presente tesis doctoral se realiza una aproximación a la etiopatogenia y las bases moleculares del espectro ELA-DFT, mediante dos metodologías complementarias: el análisis y descripción de las características neuropatológicas y su relación con los aspectos clínico-fenotípicos y genéticos, y también el estudio de la participación de mutaciones genéticas en la patogenia de la enfermedad, y cómo el descubrimiento de estas nuevas variantes contribuye a profundizar nuestro conocimiento sobre las bases moleculares de la enfermedad y las distintas vías fisiopatológicas implicadas.

En un primer estudio se recogen las características neuropatológicas, clínicas y genéticas de una serie de 124 pacientes seleccionados en base al criterio de diagnóstico neuropatológico de ENM, y clasificados para el análisis de los datos en dos grupos, según la presencia o ausencia de hallazgos neuropatológicos de DLFT (esto es, grupos ENM-DLFT y ENM aislada). En nuestra serie, identificamos una frecuencia del 35,5% de DLFT concomitante en pacientes con diagnóstico neuropatológico de ENM.

Desde el punto de vista clínico, la mayoría de los casos de la cohorte presentaron síntomas motores en correlación con los hallazgos neuropatológicos. Sin embargo, en el grupo neuropatológico de ENM-DLFT se identificaron diez casos en los que no se había documentado clínica o síntomas indicativos de implicación motora en vida (9%), recibiendo el diagnóstico de FTD sin implicación motora (cinco casos) u otros diagnósticos de enfermedad neurodegenerativa sin implicación motora (dos casos de degeneración corticobasal, dos de parálisis supranuclear progresiva, uno de enfermedad de Alzheimer y uno de demencia por cuerpos de Lewy). Se registraron síntomas cognitivos-conductuales en un 38% de la serie, cumpliendo criterios clínicos de DFT en un 31,5% del total, siendo esto más frecuente en el grupo neuropatológico de ENM-DLFT. También se describieron seis pacientes con síntomas cognitivos con alteraciones neuropatológicas subyacentes diferentes de la pérdida neuronal, la espongiosis y gliosis laminar superficial frontotemporales características de DLFT.

Encontramos una mayor concordancia entre los diagnósticos clínico y neuropatológico en el grupo de ENM aislada (93.8%) que en el de ENM-DLFT, en que la

correspondencia fue menor (61,4%). No se encontraron diferencias de supervivencia entre los grupos clínicos ni neuropatológicos.

Desde un punto de vista neuropatológico, encontramos agregados de TDP-43 en el 93,6% de los casos, con mayor extensión en las distintas áreas cerebrales en los pacientes que asocian cambios patológicos de DLFT, según la escala de Brettschneider. Otros pacientes presentaban otras proteínas de depósito, como FUS-FET (4%), o patología relacionada con enfermedad priónica (2%), así como un único caso con ENM pero sin agregación patológica de proteínas. En seis casos (4,8%) se constató patología aislada de segunda neurona motora, sin diferencias entre los grupos con y sin cambios de DLFT.

Por último, en cuanto a los estudios genéticos, se identificaron variantes patogénicas en el 14,5% de la muestra total, destacando las expansiones patológicas en *C9orf72*, y siendo significativamente más frecuente el hallazgo de mutaciones en el grupo ENM-DLFT (31,8% frente a 5% en ENM, $p < 0.001$).

En el segundo trabajo, describimos una mutación de tipo missense (c.1586C>T; p.Pro529Leu) en el gen *ARPP21* (fosfoproteína 21 regulada por AMP cíclico).

Detectamos un incremento de la frecuencia de casos de ELA y especialmente casos familiares, provenientes de la región sudeste de La Rioja, un área geográfica de extensión reducida. Entre 2009 y 2022 registramos 15 pacientes con ELA provenientes de una pequeña comarca, de los cuales 7 (45,6%) eran casos familiares, frecuencia varias veces superior a los casos esperados según las estimaciones epidemiológicas (1,5–2,6 veces para casos totales de ELA, 7–24,5 veces para los casos familiares).

En el análisis y comparación de los datos obtenidos de la secuenciación completa del genoma de 12 de estos pacientes, en los que se descartó la existencia de otras mutaciones en genes causales de ELA, se encontró una mutación puntual en heterocigosis en el gen *ARPP21* (c.1586C>T; p.Pro529Leu), que compartían cuatro pacientes de familias no emparentadas, siendo tres de ellos casos familiares. Esta variante se localiza en una región con alta preservación evolutiva y está ausente en bases de datos poblacionales (gnomAD V.3.1.2) y en una base colaborativa de genomas y exomas de población española (Collaborative Spanish Variant Server -

CSVs). Estos pacientes compartían además un haplotipo común, aunque el análisis sugería que no tenían un grado de parentesco cercano.

En el estudio genético ampliado a otros pacientes con ELA de la zona geográfica y territorios colindantes, así como a familiares con diagnóstico de ELA, se identificó la mutación candidata en un total de 10 pacientes pertenecientes a un total de 7 familias no emparentadas, en ausencia de otras mutaciones en genes causales conocidos.

Desde el punto de vista clínico, la edad de inicio de síntomas fue de 59,5 años de media, con una supervivencia media de 16 meses. El fenotipo fue el de una ELA clásica en todos los pacientes y sólo uno presentaba síntomas cognitivo conductuales que cumplían diagnóstico clínico de DFT.

6. Resumen de la discusión de resultados

La presente tesis doctoral pone de manifiesto la marcada heterogeneidad existente en el complejo espectro de la ELA-DFT, tanto desde los puntos de vista clínico y neuropatológico como en relación al componente genético subyacente de la enfermedad. Así, trata de evidenciar la necesidad de profundizar en el estudio de sus bases moleculares y fisiopatológicas, todavía poco conocidas, para poder entender su complejidad. Los resultados sugieren la conceptualización de la entidad teniendo en consideración las múltiples perspectivas desde las que esta puede ser abordada.

Con el objetivo de profundizar en el conocimiento de las características clínicas, genéticas y neuropatológicas constitutivas del espectro ELA-DFT, su interrelación y las implicaciones nosológicas, en el presente trabajo doctoral se han empleado dos metodologías diferentes aunque complementarias: el estudio multiparamétrico exhaustivo de una amplia serie de casos de ENM con diagnóstico neuropatológico definitivo, y por otra parte la búsqueda e identificación de nuevas variantes genéticas hasta ahora no confirmadas como condicionantes del desarrollo de la enfermedad, sobre observaciones de base epidemiológica, contribuyendo al estudio de la participación de las mutaciones genéticas en la etiopatogenia de la enfermedad.

El primer trabajo se centra en la descripción y el análisis de las características de una serie de pacientes cuyo criterio de selección es el diagnóstico neuropatológico predefinido de ENM. Esta cohorte de pacientes se seleccionó a partir de los casos del Banco de Tejidos Neurológicos del FRCB-IDIBAPS-Hospital Clínic de Barcelona, que incluye más de 2.300 muestras de cerebro y médula espinal de donantes sanos y con diversas enfermedades neurodegenerativas, donados de manera altruista para el avance de la neurociencia. En todos los pacientes se realizó un diagnóstico neuropatológico detallado que permite el estudio de las diferentes patologías y sus bases moleculares.

Los estudios con base neuropatológica resultan de especial relevancia en enfermedades neurodegenerativas en las que a día de hoy no disponemos de biomarcadores lo suficientemente fiables y específicos para el diagnóstico en vida de estos pacientes, como ocurre en el caso de la ELA y la DFT. La identificación en vida de estas entidades se basa en la aplicación de criterios diagnósticos clínicos que han

sido revisados a lo largo del tiempo para optimizar su clasificación.^{62,63} La confirmación del sustrato patológico permite el estudio retrospectivo de estos pacientes de una forma fiable, ya que se agrupan en base a hallazgos morfológicos y moleculares específicos, y ofrecen la disponibilidad de tejido para el estudio de posibles vías fisiopatológicas alteradas y la extracción de ADN o ARN para su análisis posterior.

Sin embargo, las series neuropatológicas en el espectro ENM-DLFT no son abundantes, las aproximaciones de los mismos son muy variables entre sí y muchas no cuentan con una caracterización fenotípica precisa de los pacientes o el estudio de posibles variantes genéticas subyacentes, resultando difícil la estimación real del grado de superposición entre ambas entidades clínicas.^{129,145-151}

En nuestra cohorte de 124 pacientes con confirmación neuropatológica de ENM, aproximadamente un tercio (35,5%) de los pacientes presentaban características neuropatológicas concomitantes de DLFT (es decir, patología ENM-DLFT), superando los reportes de trabajos neuropatológicos y clínicos previos.

Aunque históricamente la ELA ha sido considerada como una enfermedad neurodegenerativa con implicación exclusiva de las neuronas motoras, en la que se presumía la integridad de las funciones superiores, en la actualidad se ha consolidado la aceptación de su superposición con la DFT en un continuo de enfermedad motora - conductual - cognitiva. Hoy sabemos que la aparición de síntomas como la apatía, la desinhibición, la falta de empatía o de iniciativa, la disfunción ejecutiva o los trastornos del lenguaje es frecuente en este contexto. Gracias a series clínicas extensas se ha estimado que se encuentra presente, en pacientes con ELA, hasta en un 50%, y hasta en un 15-20% de los casos la magnitud e interferencia de estos síntomas en la vida de los pacientes es tal que llegan a cumplir criterios clínicos de demencia frontotemporal en sus distintas variantes, con implicaciones relevantes en el manejo clínico.^{41,42}

La elevada frecuencia de hallazgos neuropatológicos congruentes con DLFT en los pacientes con ENM que observamos en nuestra serie con respecto a los resultados descritos en la literatura, podría estar justificada por las discrepancias objetivadas entre las características clínicas reportadas en vida y algunos de los hallazgos neuropatológicos.

En primer lugar, en nuestra cohorte registramos 10 pacientes (8%) en los que no se había documentado síntomas motores durante su enfermedad, recibiendo un diagnóstico clínico de DFT, en cinco casos, u otras enfermedades neurodegenerativas con implicación cognitivo-conductual, en otros cinco, en los que, sin embargo, el estudio neuropatológico demostró degeneración de las neuronas motoras, por lo que el diagnóstico neuropatológico definitivo fue de ENM-DLFT. Es posible que estos pacientes desarrollasen signos motores mínimos de difícil identificación clínica, bien por su escasa magnitud o por haber quedado ensombrecidos en el contexto de un cuadro cognitivo-conductual florido predominante. Se ha descrito que hasta un 40% de los pacientes con DFT podrían desarrollar síntomas motores menores identificables únicamente en una exploración física minuciosa y dirigida, con el soporte de estudios neurofisiológicos, que tan sólo llegaban a desarrollarse como un cuadro motor de ENM en un 12% de los casos.^{35,182} La identificación en vida de estos casos es crucial para describir y comprender el espectro completo de la enfermedad.

Por otro lado, en siete pacientes de nuestra serie que recibieron un diagnóstico clínico de ELA aislada se encontró en la autopsia cambios patológicos característicos de FTLD, pero no se registraron en ellos síntomas cognitivos o conductuales durante su enfermedad. En muchos de estos pacientes no se había realizado una evaluación cognitiva formal en las primeras fases de la enfermedad, por lo que es posible que exista cierto infradiagnóstico de esta esfera. Del mismo modo, en fases avanzadas de la enfermedad motora, la evaluación de estos pacientes y el reconocimiento de este espectro sintomático es más difícil,⁴⁷ quedando a menudo encubierto por la gravedad de los síntomas motores. Esto podría ser especialmente así cuando existe implicación de la musculatura bulbar que genera dificultades articulatorias, si bien se han desarrollado tests específicamente adaptados para la valoración de los pacientes con disartria.¹⁸⁶ Estos factores también podrían contribuir al infradiagnóstico de la DFT en pacientes con ELA, como sugieren nuestros resultados.

Por otro lado, el hallazgo frecuente en la literatura de alteraciones neuropatológicas en áreas extramotoras a modo de inclusiones TDP-43, como ocurre en otros núcleos del tronco del encéfalo, la formación reticular, núcleos precerebelosos o en el estriado en pacientes con estadios neuropatológicos intermedios y más evolucionados (estadios 2, 3 y 4 de Brettschneider), podría sugerir que, del mismo modo que ocurre con los síntomas cognitivo-conductuales, puedan existir síntomas y alteraciones semiológicas

secundarias que no somos capaces de detectar, como podrían ser trastornos del sueño, alteraciones oculomotoras.^{38,39} El análisis de su frecuencia y sus características requerirá de estudio dirigido.

Aunque en el grupo de pacientes con diagnóstico neuropatológico de ENM la concordancia clínico-patológica fue mayor, también se encontraron casos discrepantes que habían sido diagnosticados en vida de ELA-DFT, pero que no tenían cambios neuropatológicos de DLFT correspondientes. En estos casos, se identificaron algunas copatologías que podrían explicar los síntomas cognitivos, como la presencia de degeneración amigdalar prominente o de mutaciones genéticas que pudiesen haber contribuido a la disfunción neuronal a nivel molecular sin traducción morfológica.^{43,187,188}

El uso de la neuropatología como base para la estratificación y el estudio retrospectivo de las características de estos pacientes nos ha permitido la identificación de alteraciones que podrían traducirse en síntomas poco evidentes o no reconocidos desde el aspecto clínico, tanto desde el punto de vista motor como cognitivo-conductual, pero que pueden conllevar implicaciones en la definición precisa del espectro completo ELA-DFT y en el manejo terapéutico. Estos hallazgos son de gran ayuda para la caracterización del continuo ELA-DFT y confirman la necesidad de estrechar la colaboración entre las distintas unidades clínicas que abordamos estas entidades, así como el desarrollo de herramientas que permitan identificar con mayor sensibilidad y especificidad las consecuencias clínicas derivadas. En este sentido, el uso de biomarcadores plasmáticos o de neuroimagen avanzada estructural y funcional, podría ser de utilidad para facilitar la detección de estas alteraciones subyacentes.^{74,75}

Uno de los principales objetivos de este trabajo era la identificación de posibles subgrupos relativamente homogéneos en el espectro ENM-DLFT basados en sus características clínicas, neuropatológicas y genéticas.

Desde un punto de vista clínico, la conocida variabilidad de la presentación clínica resultante de las diferentes combinaciones de síntomas de primera y segunda neurona motora, implicando a las distintas regiones anatómicas, y la posible adición de síntomas cognitivo-conductuales, dificultan el diagnóstico y complican la estratificación

en grupos homogéneos.¹⁸⁹ Aunque la mayoría de los pacientes de nuestra serie presentaba degeneración combinada de primera y segunda neurona motora en el estudio neuropatológico, es destacable la identificación de un número significativo de casos, hasta un 4,8% del total, en los que se detectaba la implicación de segunda neurona motora de forma aislada, con un presencia también variable de cambios neuropatológicos de DLFT. Incrementando la complejidad de estas combinaciones, uno de estos pacientes tenía una variante genética patogénica en un gen vinculado a la ELA (*TBK1*).

Las características clínicas del grupo clínico y neuropatológico con ENM-DLFT concomitante en nuestra serie tampoco permitieron una diferenciación clara de subgrupos en este. Estos pacientes mostraron pocas diferencias en términos de su fenotipo motor o incluso en la supervivencia con respecto a los que no tenían deterioro cognitivo, si bien sí presentaron una mayor tendencia a debutar en musculatura bulbar y con implicación más frecuente de la musculatura distal de las extremidades superiores, confirmando nuestros hallazgos previos.⁴⁷ La irrupción de síntomas motores parece ser el principal factor condicionante en el pronóstico, pero documentar el deterioro cognitivo y conductual puede ser esencial debido a las distintas implicaciones en el manejo clínico.¹⁹⁰

En cuanto a las características neuropatológicas, como era esperable, la patología más frecuente fue el hallazgo de agregados patológicos de TDP-43 en el citoplasma de neuronas y glía, tanto en ELA como en ENM-DLFT. Sin embargo, encontramos una moderada variabilidad en cuanto a su extensión anatómica y distribución celular a lo largo del continuo del espectro ENM-DLFT. Se han propuesto algunos modelos de diseminación de la patología TDP-43 como el de Brettschneider en forma de varias etapas secuenciales que, en nuestra experiencia, guardarían relación con el grado de deterioro cognitivo.^{43,130,131} No obstante, encontramos 12 pacientes que, a pesar de presentar un perfil de deterioro cognitivo conductual similar, mostraron diferentes patrones de distribución que no permitían la aplicación estricta de este sistema de estadificación. Otros trabajos recientes, que incluyen modelos basados en análisis informáticos de los datos neuropatológicos, proponen distintos patrones de diseminación de TDP-43.¹³⁵ Se han descrito también otras distribuciones en las que tendría lugar una participación pálido-nigro-luisiana predominantemente asociada a los cambios neuropatológicos de ENM.¹³²

Aunque la patología TDP-43 es el componente predominante, también se describen en la serie otro tipo de proteinopatías subyacentes a la ENM, como las inclusiones constituidas por la proteína FUS. Si bien estos los agregados inmunorreactivos para FUS en pacientes con ELA suelen estar relacionados con el hallazgo de mutaciones en el gen *FUS*, éstas no suelen detectarse en los casos de FTLD aislada.¹⁴² Por otro lado, en la DLFT pueden observarse inclusiones de FUS en distintos patrones neuropatológicos en ausencia de estas mutaciones, coexpresando otras proteínas de la familia FET. En trabajos previos, nuestro grupo describió la existencia de pacientes con ENM y patología FUS cuyas inclusiones presentaban también expresión simultánea para proteínas de la familia FET como TAF15 y el transportador Trn1, con un comportamiento neuropatológico similar a los casos esporádicos de FTLD-FUS/FET, que podrían constituir la entidad ELA-FET.¹⁴⁴

En esta serie identificamos dos casos de ENM-DLFT con inclusiones FUS que también eran inmunorreactivas para otras proteínas FET, de forma similar a los casos reportados de ELA-FUS sin mutaciones, sugiriendo un mecanismo fisiopatológico y un sustrato molecular común en la ELA-DFT y ELA en relación con la patología FUS-FET. De esta forma, planteamos que la expresión simultánea de otras proteínas de la familia FET (TAF15 y Trn1) en las inclusiones puede ayudar a diferenciar a estos de los portadores de mutaciones en *FUS*.

En nuestra cohorte, la heterogeneidad observada dentro del espectro también se reflejó en la genética, especialmente en el grupo con ENM y DLFT concomitante, donde se encontraron varias mutaciones subyacentes. La más frecuentemente identificada fue la expansión patológica en el gen C9orf72, mostrando un alto grado de correspondencia con las alteraciones neuropatológicas específicas descritas. Sin embargo, la detección de una variante genética no resulta predictiva del desarrollo de características clínicas o neuropatológicas distintivas. Únicamente en los casos con expansión en C9orf72 es posible establecer una relación con los hallazgos neuropatológicos.¹³⁸

En varios de estos pacientes, a pesar de tener antecedentes familiares de la enfermedad, sugiriendo una posible contribución de una etiopatogenia genética subyacente, no se logró encontrar una mutación causal. Con el auge de las terapias dirigidas molecularmente, resulta de vital importancia identificar el sustrato molecular

y las variantes genéticas en estos pacientes y desarrollar biomarcadores específicos de la enfermedad relacionados con los mecanismos fisiopatológicos alterados.

En el segundo trabajo perteneciente a esta tesis doctoral se aborda precisamente este problema: la identificación de nuevos genes relacionados con ELA-DFT que tengan una potencial contribución a la patogenia de la enfermedad.

En los últimos años la participación de un sustrato genético en la patogenia de la enfermedad ha cobrado un peso creciente, siendo considerado unos de los factores más relevantes en su etiopatogenia y fisiopatología, especialmente en los casos familiares.⁸¹ Sin embargo, en una proporción importante de los casos familiares no se ha identificado un componente genético responsable.²⁹ El descubrimiento de nuevas variantes genéticas con potencial implicación causal resulta de gran relevancia en la profundización de nuestro conocimiento sobre las bases de la enfermedad y abre la posibilidad a abordajes terapéuticos específicos.

Nuestro estudio parte de la detección de un aumento en la frecuencia de casos de ELA con respecto a la esperada, según las estimaciones epidemiológicas, en una pequeña comarca del sudeste de la provincia de La Rioja, España. En este área geográfica reducida, registramos un aumento de los casos de ELA y especialmente de ELA familiar respecto a la frecuencia esperada, en los cuales se había realizado un estudio de los genes conocidos asociados con la enfermedad en el que no se encontraron mutaciones subyacentes.

Tras el estudio genómico en los pacientes incluidos en el estudio y la posterior ampliación del estudio a otros familiares con diagnóstico de ELA y a otros pacientes de la misma zona, identificamos la mutación p.Pro529Leu en el gen *ARPP21* en un total de 10 pacientes con ELA (siendo la mitad casos familiares) pertenecientes a siete familias no emparentadas, mostrando un patrón presumiblemente autosómico dominante.

Desde el punto de vista clínico, los pacientes portadores de la variante p.Pro529Leu presentaron una supervivencia más corta (media de 16 meses) que la descrita en la literatura para la ELA, sin características clínicas diferenciales. Aunque no se realizó una evaluación cognitiva sistemática en todos los casos, únicamente un paciente mostró un deterioro cognitivo y conductual llamativo y fue diagnosticado en vida de ELA-DFT. Además, varios familiares pertenecientes a distintas familias, no incluidos en

el estudio, habían sido diagnosticados de demencia de inicio temprano con síntomas conductuales marcados, sin aparente enfermedad de las neuronas motoras. Estos hallazgos podrían sugerir que la mutación en *ARPP21* también podría estar relacionada con DFT, y tener una presentación clínica variable dentro del espectro ELA-DFT, como se ha observado en otros genes relacionados con ELA-DFT.¹⁶⁰ Desafortunadamente, no se dispuso de pruebas cognitivas formales, pruebas de neuroimagen ni muestras de ADN de estos pacientes para su análisis.

En 2019, Cooper-Knock et al. describieron la segregación del cambio p.Arg92Cys en el gen que codifica para la proteína que contiene el dominio de transferasa de glicosilación 8 (*GLT8D1*), que suponía la descripción de una vía fisiopatológica inédita en la ELA. Algunos de los pacientes con ELA de un pedigree del Reino Unido incluidos en dicho estudio presentaban de manera concomitante la mutación descrita en el nuestro (p.Pro529Leu en *ARPP21*), con un patrón de herencia autosómico dominante.¹⁹¹ Un cribado adicional de ambos genes en 103 casos de ELA reveló cuatro nuevos portadores de la mutación *GLT8D1*, tres de los cuales también portaban la mutación p.Pro529Leu en *ARPP21*. Sin embargo, tras un análisis de carga de variantes raras basado en los datos disponibles de Project MinE, los autores priorizaron las mutaciones en *GLT8D1* como causales, sugiriendo que la participación de las mutaciones en *ARPP21* tendrían únicamente un efecto neurotóxico sinérgico secundario, basado en una reducción de la supervivencia respecto a los *GLT8D1* mutados de forma aislada. En nuestra serie, los pacientes con la mutación p.Pro529Leu en *ARPP21* muestran la misma supervivencia reducida (si bien no fue estadísticamente significativa), en ausencia de mutaciones en *GLT8D1*, sugiriendo el papel patogénico independiente de las mutaciones en *ARPP21*.

Curiosamente, los cuatro pacientes portadores de la mutación identificada mediante la secuenciación del genoma completo (WGS) compartían un haplotipo común. Este haplotipo estaba presente en dos de los ocho no portadores de mutaciones en nuestro estudio genómico, y también se encuentra en otras poblaciones de todo el mundo tanto española como británica (en la que se habría detectado esta mutación),¹⁹¹ siendo mucho menos frecuente en poblaciones de ascendencia africana, americana o asiática, sugiriendo que las personas portadoras de esta mutación podrían estar restringidas a ascendencias específicas. En este sentido, grandes estudios de cohortes de pacientes en China y Australia, donde la frecuencia de este haplotipo es casi nula, no encontraron mutaciones en *ARPP21* que permitesen confirmar su papel

patogénico.^{192,193} Esto podría sugerir que la presencia de esta mutación podría estar restringida a ciertas poblaciones con ancestros comunes.

Los grandes estudios de cohortes de pacientes han resultado de gran utilidad para la identificación de variantes en nuevos genes relacionados con la ELA-DFT. Sin embargo, el uso de poblaciones tan diversas y heterogéneas puede haber impedido la identificación de variantes extremadamente raras mediante análisis de asociación de carga genética, como sugerirían las diferencias haplotípicas para el riesgo *ARPP21*. Nuestro enfoque se basó en la identificación de un aumento de la carga esperada de casos de ELA en una región remota, implementando una estrategia única apartada de los métodos previamente utilizados.

Hasta la fecha, en las últimas revisiones sobre la genética de la ELA no se ha considerado *ARPP21* como un gen causante de ELA,²⁹ ni está incluido en una revisión reciente que comprende un conjunto de 90 genes asociados a la ELA seleccionados de múltiples bases de datos.²⁸ Por el momento, no se ha asignado un número OMIM al gen *ARPP21*, y en la Base de Datos online de ELA (ALSoD; <https://alsod.ac.uk>) el gen sigue siendo categorizado como "evidencia tenue", lo que significa que ha sido asociado con la ELA en pequeños estudios que no han sido replicados.²⁷ Nuestros resultados respaldan el papel causal de la mutación (p.Pro529Leu) en *ARPP21* en la ELA, proporcionando sólidos argumentos epidemiológicos y genéticos, sugiriendo que su análisis debería ser considerado en futuros estudios genéticos.

Desde el punto de vista molecular, la proteína codificada por el gen *ARPP21* es una proteína de unión a ARN, como lo son TDP-43, TIA1 o FUS con implicación conocida en la fisiopatología de ELA. Está involucrada en el metabolismo del ARN, un evento conocido por estar desregulado y ser central en la fisiopatología de la ELA.^{83,110,112} Estudios de biología molecular mediante iCLIP han permitido identificar un conjunto común de ARNs diana de la proteína *ARPP21* con funciones relacionadas, con un papel destacado en el splicing y procesamiento del ARN mensajero.¹⁹⁴ Además, en células que expresan la proteína tratadas con agentes inductores de estrés, se induce el reclutamiento de *ARPP21* en gránulos de estrés. Aunque sus dominios no han sido completamente caracterizados, parece que la secuencia C-terminal de la proteína, donde se encuentra la mutación p.Pro529Leu, es una región necesaria para el reclutamiento de la proteína en estas estructuras dinámicas sin membrana, gracias a la existencia de un "región de baja complejidad" con incremento de residuos de

prolina. Especulamos que la mutación descrita podría alterar los mecanismos de interacción con los gránulos de estrés, un mecanismo descrito previamente en mutaciones relacionadas con la ELA en otras proteínas de unión al ARN, como FUS, TIA1 o TDP-43. De este modo, más allá de la implicación de ARPP21 en las distintas vías celulares y de procesamiento del ARN, sugerimos que esta mutación podría alterar la dinámica de los gránulos de estrés al aumentar su formación aberrante y, por lo tanto, impactar en la patogénesis de la ELA.^{114,115}

Este trabajo aporta argumentos epidemiológicos y genéticos sólidos que apoyan el papel causal de mutaciones en ARPP21 en la patogenia de la ELA. Sin embargo, es necesario realizar estudios funcionales de confirmación de la patogenidad de la mutación y las vías fisiopatológicas alteradas, así como ampliar el estudio mediante la detección de nuevos casos, estudios más amplios de segregación de la mutación y de la carga que esta supone en la ELA y, especialmente, en el espectro ELA-DFT. Del mismo modo, resultaría de gran utilidad la descripción neuropatológica del tejido cerebral y medular de casos con la mutación, permitiendo el estudio de la distribución de la proteína a nivel anatómico y celular en condiciones patológicas, como podría ser una posible deslocalización o su presencia en agregados.

La identificación de nuevos genes implicados en el desarrollo de la enfermedad y su posible papel en las distintas vías celulares nos ayudan a profundizar en nuestro conocimiento sobre las bases fisiopatológicas de la enfermedad, y nos acercan a la posibilidad de desarrollar terapias dirigidas para solventar el defecto molecular. En este sentido, las formas genéticamente determinadas con una filiación genética concreta posiblemente sean las primeras en poder acceder a una terapia dirigida, como ya hemos presenciado con la reciente introducción de la terapia con Tofersen en formas de ELA con una mutación subyacente en *SOD1*.¹⁹⁵

La presente tesis doctoral trata de profundizar en el conocimiento sobre las características clínicas, genéticas y neuropatológicas constitutivas del espectro ENM-DLFT, su interrelación y las implicaciones en su nosología.

Este continuo de enfermedad es marcadamente heterogéneo, presentando una importante dificultad para la identificación de subgrupos desde todos estos puntos de vista. Existe una importante variabilidad entre las distintas proteinopatías subyacentes encontradas en pacientes que comparten manifestaciones clínicas, pudiendo estar presentes también en otras entidades neurodegenerativas y otras con una

etiopatogenia no degenerativa, localizadas tanto en las neuronas motoras como en otras áreas cerebrales. Además, mutaciones en diversos genes implicados en vías fisiopatológicas diferentes, pueden dar lugar a los mismos depósitos de TDP-43. Este conjunto de hechos podría sugerir que el depósito de TDP-43 u otras proteínas puedan ser un evento que se presenta en las fases intermedias o tardías del proceso de neurodegeneración, dentro de una serie de alteraciones fisiopatológicas que todavía hoy no conocemos.

A pesar del caos aparente que se deriva de estas observaciones, debemos ser optimistas. Nuestros conocimientos sobre la etiopatogenia de la enfermedad han presenciado un crecimiento exponencial en los últimos años, y la complementación de los estudios genéticos y moleculares, apoyados sobre una buena base de fenotipificación clínica y neuropatológica que ayude en la definición de la nosología y la patología molecular del espectro de enfermedad ELA-FTLD, abre una ventana de oportunidad inédita.

7. Conclusiones

1. El espectro de características clínicas, genéticas y morfológicas del continuo de enfermedad ELA-DFT, definido a partir de la confirmación neuropatológica, es altamente heterogéneo en sus características, especialmente en el subgrupo con DFT concomitante, en el que resulta particularmente difícil la definición de subgrupos específicos.
2. La frecuencia de DLFT en la ENM podría ser superior a la reportada en series clínicas en la literatura, existiendo un elevado grado de concomitancia de ambas entidades, lo que hace necesario el desarrollo de herramientas específicas para su identificación en vida de los pacientes.
3. El gen *ARPP21* tiene un probable papel causal en la ELA, reforzando el papel de las alteraciones del metabolismo y procesamiento del ARN en la fisiopatología de la enfermedad.
4. Los estudios neuropatológicos y la detección de nuevas variantes genéticas con distintos mecanismos fisiopatológicos implicados son de gran utilidad para la profundización en el conocimiento sobre la nosología y las bases fisiopatológicas de la enfermedad.

8. Líneas de futuro

Los resultados de la presente tesis doctoral abren las posibles nuevas líneas de investigación:

- Estudio de las características clínicas, genéticas y neuropatológicas de la cohorte del Banco de Tejidos Neurológicos del Hospital Clínic - FRCB - IDIBAPS ampliada al espectro completo ENM-DLFT, incluyendo de forma adicional los casos con diagnóstico neuropatológico de DLFT sin ENM con diferentes sustratos moleculares.
- Caracterización y comparación del transcriptoma de pacientes con diferentes diagnósticos neuropatológicos del espectro ENM-DLFT incluyendo formas DFT sin ENM con depósitos de proteína Tau y TDP-43 para la investigación de potenciales biomarcadores diagnósticos y mecanismos moleculares fisiopatológicos alterados.
- Estudio multicéntrico de la frecuencia y distribución geográfica de mutaciones en el gen *ARPP21* en pacientes con ELA esporádica y familiar en la población española.
- Descripción y análisis de las alteraciones histológicas y el sustrato molecular en tejido cerebral postmortem de casos con mutación c.1586C>T; p.Pro529Leu en *ARPP21*.
- Estudios funcionales en cultivos de neuronas con mutaciones inducidas en *ARPP21* para la investigación de su papel en la patogenia de la enfermedad.

9. Bibliografía

1. Van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al. Amyotrophic lateral sclerosis. *The Lancet*. noviembre de 2017;390(10107):2084-98.
2. Masri P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. *Eur J Neurol*. octubre de 2020;27(10):1918-29.
3. Goetz CG. Amyotrophic lateral sclerosis: Early contributions of Jean-Martin Charcot. *Muscle Nerve*. marzo de 2000;23(3):336-43.
4. Duyckaerts C, Maisonneuve T, Hauw JJ, Seilhean D. Charcot identifies and illustrates amyotrophic lateral sclerosis. *Free Neuropathol*. 18 de mayo de 2021;12 Seiten.
5. Feldman H, Mackenzie IR. Extrapyramidal features in patients with motor neuron disease and dementia; a clinicopathological correlative study. *Acta Neuropathol (Berl)*. 1 de abril de 2004;107(4):336-40.
6. Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. *Neurology*. 8 de octubre de 2002;59(7):1077-9.
7. Abramzon YA, Fratta P, Traynor BJ, Chia R. The Overlapping Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. *Front Neurosci*. 5 de febrero de 2020;14:42.
8. Mackenzie IRA, H. Feldman H. Ubiquitin Immunohistochemistry Suggests Classic Motor Neuron Disease, Motor Neuron Disease With Dementia, and Frontotemporal Dementia of the Motor Neuron Disease Type Represent a Clinicopathologic Spectrum: *J Neuropathol Exp Neurol*. agosto de 2005;64(8):730-9.
9. Mackenzie IR, Feldman H. The relationship between extramotor ubiquitin-immunoreactive neuronal inclusions and dementia in motor neuron disease. *Acta Neuropathol (Berl)*. febrero de 2003;105(2):98-102.
10. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. *Science*. 6 de octubre de 2006;314(5796):130-3.
11. Mackenzie IR, Rademakers R. The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. *Curr Opin Neurol*. diciembre de 2008;21(6):693-700.
12. Marin B, Boumèdiene F, Logroscino G, Couratier P, Babron MC, Leutenegger AL, et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. *Int J Epidemiol*. 16 de mayo de 2016;dyw061.
13. Huisman MHB, De Jong SW, Van Doormaal PTC, Weinreich SS, Schelhaas HJ, Van Der Kooi AJ, et al. Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. *J Neurol Neurosurg Psychiatry*. 1 de octubre de 2011;82(10):1165-70.
14. Rojas-Garcia R, Scott KM, Roche JC, Scott W, Martin N, Janssen A, et al. No evidence for a large difference in ALS frequency in populations of African and European origin: A population based study in inner city London. *Amyotroph Lateral Scler*. enero de 2012;13(1):66-8.
15. Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, et al. Incidence of amyotrophic lateral sclerosis in Europe. *J Neurol Neurosurg Psychiatry*. 1 de abril de 2010;81(4):385-90.
16. Wolfson C, Gauvin DE, Ishola F, Oskoui M. Global Prevalence and Incidence of Amyotrophic Lateral Sclerosis: A Systematic Review. *Neurology [Internet]*. 8 de agosto de 2023 [citado 19 de agosto de 2024];101(6). Disponible en: <https://www.neurology.org/doi/10.1212/WNL.0000000000207474>
17. Pradas J, Puig T, Rojas-García R, Viguera ML, Gich I, Logroscino G, et al.

Amyotrophic lateral sclerosis in Catalonia: A population based study. *Amyotroph Lateral Scler Front Degener.* mayo de 2013;14(4):278-83.

18. Jericó I, Elizalde-Beiras I, Pagola I, Torné L, Galbete A, Delfrade-Osinaga J, et al. Clinical features and incidence trends of amyotrophic lateral sclerosis in Navarre, Spain, 2007–2018: a population-based study. *Amyotroph Lateral Scler Front Degener.* 3 de julio de 2021;22(5-6):401-9.
19. Riancho J, Lozano-Cuesta P, Santurtún A, Sánchez-Juan P, López-Vega JM, Berciano J, et al. Amyotrophic Lateral Sclerosis in Northern Spain 40 Years Later: What Has Changed? *Neurodegener Dis.* 2016;16(5-6):337-41.
20. Barceló MA, Povedano M, Vázquez-Costa JF, Franquet Á, Solans M, Saez M. Estimation of the prevalence and incidence of motor neuron diseases in two Spanish regions: Catalonia and Valencia. *Sci Rep.* 18 de marzo de 2021;11(1):6207.
21. Logroscino G, Traynor BJ, Hardiman O, Chio' A, Couratier P, Mitchell JD, et al. Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues. *J Neurol Neurosurg Psychiatry.* 1 de enero de 2008;79(1):6-11.
22. Aragones JM, Altimiras J, Roura-Poch P, Homs E, Bajo L, Povedano M, et al. Amyotrophic lateral sclerosis: A higher than expected incidence in people over 80 years of age. *Amyotroph Lateral Scler Front Degener.* 16 de noviembre de 2016;17(7-8):522-7.
23. Camacho-Soto A, Searles Nielsen S, Faust IM, Bucelli RC, Miller TM, Racette BA. Incidence of amyotrophic lateral sclerosis in older adults. *Muscle Nerve.* septiembre de 2022;66(3):289-96.
24. Zhan Y, Fang F. Smoking and amyotrophic lateral sclerosis: A mendelian randomization study. *Ann Neurol.* abril de 2019;85(4):482-4.
25. Bandres-Ciga S, Noyce AJ, Hemani G, Nicolas A, Calvo A, Mora G, et al. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. *Ann Neurol.* abril de 2019;85(4):470-81.
26. Chen H, Richard M, Sandler DP, Umbach DM, Kamel F. Head Injury and Amyotrophic Lateral Sclerosis. *Am J Epidemiol.* 27 de junio de 2007;166(7):810-6.
27. Wroe R, Wai-Ling Butler A, Andersen PM, Powell JF, Al-Chalabi A. ALSOD: The Amyotrophic Lateral Sclerosis Online Database. *Amyotroph Lateral Scler.* enero de 2008;9(4):249-50.
28. Van Daele SH, Moisse M, Van Vugt JJFA, Zwamborn RAJ, Van Der Spek R, Van Rheenen W, et al. Genetic variability in sporadic amyotrophic lateral sclerosis. *Brain.* 1 de septiembre de 2023;146(9):3760-9.
29. Akçimen F, Lopez ER, Landers JE, Nath A, Chiò A, Chia R, et al. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. *Nat Rev Genet.* septiembre de 2023;24(9):642-58.
30. Byrne S, Bede P, Elamin M, Kenna K, Lynch C, McLaughlin R, et al. Proposed criteria for familial amyotrophic lateral sclerosis. *Amyotroph Lateral Scler.* mayo de 2011;12(3):157-9.
31. Ranganathan R, Haque S, Coley K, Shepheard S, Cooper-Knock J, Kirby J. Multifaceted Genes in Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. *Front Neurosci.* 7 de julio de 2020;14:684.
32. Goutman SA, Hardiman O, Al-Chalabi A, Chiò A, Savelieff MG, Kiernan MC, et al. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. *Lancet Neurol.* mayo de 2022;21(5):465-79.
33. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. *The Lancet.* marzo de 2011;377(9769):942-55.
34. Singer MA, Statland JM, Wolfe GI, Barohn RJ. Primary lateral sclerosis. *Muscle Nerve.* marzo de 2007;35(3):291-302.
35. Hassan A, Mittal SO, Hu WT, Josephs KA, Sorenson EJ, Ahlskog JE. Natural

History of “Pure” Primary Lateral Sclerosis. *Neurology* [Internet]. 27 de abril de 2021 [citado 15 de noviembre de 2024];96(17). Disponible en: <https://www.neurology.org/doi/10.1212/WNL.0000000000011771>

36. Rowland LP. Progressive muscular atrophy and other lower motor neuron syndromes of adults. *Muscle Nerve*. febrero de 2010;41(2):161-5.
37. Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. *Nat Rev Neurol*. noviembre de 2014;10(11):661-70.
38. McCluskey L, Vandriel S, Elman L, Van Deerlin VM, Powers J, Boller A, et al. ALS-Plus syndrome: Non-pyramidal features in a large ALS cohort. *J Neurol Sci*. octubre de 2014;345(1-2):118-24.
39. Fang T, Jozsa F, Al-Chalabi A. Nonmotor Symptoms in Amyotrophic Lateral Sclerosis: A Systematic Review. En: *International Review of Neurobiology* [Internet]. Elsevier; 2017 [citado 14 de noviembre de 2024]. p. 1409-41. Disponible en: <https://linkinghub.elsevier.com/retrieve/pii/S0074774217300399>
40. Burrell JR, Halliday GM, Kril JJ, Ittner LM, Götz J, Kiernan MC, et al. The frontotemporal dementia-motor neuron disease continuum. *The Lancet*. agosto de 2016;388(10047):919-31.
41. Phukan J, Elamin M, Bede P, Jordan N, Gallagher L, Byrne S, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. *J Neurol Neurosurg Psychiatry*. enero de 2012;83(1):102-8.
42. Elamin M, Phukan J, Bede P, Jordan N, Byrne S, Pender N, et al. Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. *Neurology*. 5 de abril de 2011;76(14):1263-9.
43. Borrego-Écija S, Turon-Sans J, Ximelis T, Aldecoa I, Molina-Porcel L, Povedano M, et al. Cognitive decline in amyotrophic lateral sclerosis: Neuropathological substrate and genetic determinants. *Brain Pathol*. mayo de 2021;31(3):e12942.
44. Burrell JR, Kiernan MC, Vucic S, Hodges JR. Motor Neuron dysfunction in frontotemporal dementia. *Brain*. septiembre de 2011;134(9):2582-94.
45. Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M, et al. Frontotemporal Dementia, Where Do We Stand? A Narrative Review. *Int J Mol Sci*. 21 de julio de 2023;24(14):11732.
46. Boeve BF, Boxer AL, Kumfor F, Pijnenburg Y, Rohrer JD. Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations. *Lancet Neurol*. marzo de 2022;21(3):258-72.
47. Cortés-Vicente E, Turon-Sans J, Gelpí E, Clarimón J, Borrego-Écija S, Dols-Icardo O, et al. Distinct Clinical Features and Outcomes in Motor Neuron Disease Associated with Behavioural Variant Frontotemporal Dementia. *Dement Geriatr Cogn Disord*. 2018;45(3-4):220-31.
48. Hodges JR, Davies R, Xuereb J, Kril J, Halliday G. Survival in frontotemporal dementia. *Neurology*. 12 de agosto de 2003;61(3):349-54.
49. Kabir V, Ombelet F, Hobin F, Lamine N, De Vocht J, Van Damme P. Prognostic value of motor and extramotor involvement in ALS. *Amyotroph Lateral Scler Front Degener*. 2 de enero de 2024;25(1-2):67-74.
50. Ling SC, Polymenidou M, Cleveland DW. Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis. *Neuron*. agosto de 2013;79(3):416-38.
51. Grossman M, Seeley WW, Boxer AL, Hillis AE, Knopman DS, Ljubenov PA, et al. Frontotemporal lobar degeneration. *Nat Rev Dis Primer*. 10 de agosto de 2023;9(1):40.
52. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. *Neurology*. 15 de marzo de 2011;76(11):1006-14.
53. Gorno-Tempini ML, Brambati SM, Ginex V, Ogar J, Dronkers NF, Marcone A, et al.

The logopenic/phonological variant of primary progressive aphasia. *Neurology*. 14 de octubre de 2008;71(16):1227-34.

54. González-Caballero G, Abellán-Miralles I, Sáenz-Sanjuan MJ. Right temporal lobe variant of frontotemporal dementia. *J Clin Neurosci*. julio de 2015;22(7):1139-43.
55. Woollacott IOC, Rohrer JD. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. *J Neurochem*. agosto de 2016;138(S1):6-31.
56. Neumann M, Lee EB, Mackenzie IR. Frontotemporal Lobar Degeneration TDP-43-Immunoreactive Pathological Subtypes: Clinical and Mechanistic Significance. En: Ghetti B, Buratti E, Boeve B, Rademakers R, editores. *Frontotemporal Dementias* [Internet]. Cham: Springer International Publishing; 2021 [citado 21 de octubre de 2024]. p. 201-17. (Advances in Experimental Medicine and Biology; vol. 1281). Disponible en: https://link.springer.com/10.1007/978-3-030-51140-1_13
57. Phukan J, Pender NP, Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. *Lancet Neurol*. noviembre de 2007;6(11):994-1003.
58. Rusina R, Vandenberghe R, Bruffaerts R. Cognitive and Behavioral Manifestations in ALS: Beyond Motor System Involvement. *Diagnostics*. 30 de marzo de 2021;11(4):624.
59. Aiello EN, Feroldi S, De Luca G, Guidotti L, Arrigoni E, Appollonio I, et al. Primary progressive aphasia and motor neuron disease: A review. *Front Aging Neurosci*. 8 de septiembre de 2022;14:1003792.
60. Goutman SA, Hardiman O, Al-Chalabi A, Chiò A, Savelleff MG, Kiernan MC, et al. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. *Lancet Neurol*. mayo de 2022;21(5):480-93.
61. Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. *Amyotroph Lateral Scler Other Motor Neuron Disord*. enero de 2000;1(5):293-9.
62. De Carvalho M, Dengler R, Eisen A, England JD, Kaji R, Kimura J, et al. Electrodiagnostic criteria for diagnosis of ALS. *Clin Neurophysiol*. marzo de 2008;119(3):497-503.
63. Shefner JM, Al-Chalabi A, Baker MR, Cui LY, De Carvalho M, Eisen A, et al. A proposal for new diagnostic criteria for ALS. *Clin Neurophysiol*. agosto de 2020;131(8):1975-8.
64. Hannaford A, Pavely N, Van Den Bos M, Geevasinga N, Menon P, Shefner JM, et al. Diagnostic Utility of Gold Coast Criteria in AMYOTROPHIC LATERAL SCLEROSIS. *Ann Neurol*. mayo de 2021;89(5):979-86.
65. Strong MJ, Abrahams S, Goldstein LH, Woolley S, McLaughlin P, Snowden J, et al. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. *Amyotroph Lateral Scler Front Degener*. 3 de abril de 2017;18(3-4):153-74.
66. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. *Brain*. septiembre de 2011;134(9):2456-77.
67. Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, et al. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. *Int J Mol Sci*. 10 de octubre de 2024;25(20):10900.
68. Scialò C, Tran TH, Salzano G, Novi G, Caponnetto C, Chiò A, et al. TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients. *Brain Commun*. 1 de julio de 2020;2(2):fcaa142.
69. Chatterjee M, Özdemir S, Fritz C, Möbius W, Kleineidam L, Mandelkow E, et al. Plasma extracellular vesicle tau and TDP-43 as diagnostic biomarkers in FTD and ALS. *Nat Med*. junio de 2024;30(6):1771-83.

70. Mehta PR, Brown AL, Ward ME, Fratta P. The era of cryptic exons: implications for ALS-FTD. *Mol Neurodegener.* 15 de marzo de 2023;18(1):16.
71. Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenberry BN, Mordes DA, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. *Nat Neurosci.* febrero de 2019;22(2):167-79.
72. De Luna N, Carbayo Á, Dols-Icardo O, Turon-Sans J, Reyes-Leiva D, Illan-Gala I, et al. Neuroinflammation-Related Proteins NOD2 and Spp1 Are Abnormally Upregulated in Amyotrophic Lateral Sclerosis. *Neurol Neuroimmunol Neuroinflammation.* marzo de 2023;10(2):e200072.
73. Jericó I, Vicuña-Urriza J, Blanco-Luquin I, Macias M, Martinez-Merino L, Roldán M, et al. Profiling TREM2 expression in amyotrophic lateral sclerosis. *Brain Behav Immun.* marzo de 2023;109:117-26.
74. Illán-Gala I, Alcolea D, Montal V, Dols-Icardo O, Muñoz L, De Luna N, et al. CSF sAPP β , YKL-40, and NfL along the ALS-FTD spectrum. *Neurology [Internet].* 23 de octubre de 2018 [citado 14 de noviembre de 2024];91(17). Disponible en: <https://www.neurology.org/doi/10.1212/WNL.0000000000006383>
75. Illán-Gala I, Montal V, Pegueroles J, Vilaplana E, Alcolea D, Dols-Icardo O, et al. Cortical microstructure in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. *Neurology [Internet].* 3 de noviembre de 2020 [citado 14 de noviembre de 2024];95(18). Disponible en: <https://www.neurology.org/doi/10.1212/WNL.00000000000010727>
76. Canosa A, Pagani M, Cistaro A, Montuschi A, Iazzolino B, Fania P, et al. ¹⁸F-FDG-PET correlates of cognitive impairment in ALS. *Neurology.* 5 de enero de 2016;86(1):44-9.
77. Van Damme P, Al-Chalabi A, Andersen PM, Chiò A, Couratier P, De Carvalho M, et al. European Academy of Neurology (EAN) guideline on the management of amyotrophic lateral sclerosis in collaboration with European Reference Network for Neuromuscular Diseases (ERN EURO-NMD). *Eur J Neurol.* junio de 2024;31(6):e16264.
78. Petrov D, Mansfield C, Moussy A, Hermine O. ALS Clinical Trials Review: 20 Years of Failure. Are We Any Closer to Registering a New Treatment? *Front Aging Neurosci [Internet].* 22 de marzo de 2017 [citado 7 de noviembre de 2024];9. Disponible en: <http://journal.frontiersin.org/article/10.3389/fnagi.2017.00068/full>
79. Mead RJ, Shan N, Reiser HJ, Marshall F, Shaw PJ. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. *Nat Rev Drug Discov.* marzo de 2023;22(3):185-212.
80. Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC, et al. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. *N Engl J Med.* 22 de septiembre de 2022;387(12):1099-110.
81. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, et al. Amyotrophic lateral sclerosis. *Nat Rev Dis Primer.* 5 de octubre de 2017;3(1):1-19.
82. Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al. Amyotrophic lateral sclerosis. *The Lancet.* octubre de 2022;400(10360):1363-80.
83. Mandrioli J, Median I, Alberti S, Carra S. ALS and FTD: Where RNA metabolism meets protein quality control. *Semin Cell Dev Biol.* marzo de 2020;99:183-92.
84. Asadi MR, Sadat Moslehian M, Sabaie H, Jalaie A, Ghafouri-Fard S, Taheri M, et al. Stress Granules and Neurodegenerative Disorders: A Scoping Review. *Front Aging Neurosci.* 23 de junio de 2021;13:650740.
85. Peters OM, Ghasemi M, Brown RH. Emerging mechanisms of molecular pathology in ALS. *J Clin Invest.* 1 de junio de 2015;125(6):2548-2548.
86. Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. *Neurol Clin.* noviembre de 2015;33(4):855-76.
87. Butti Z, Patten SA. RNA Dysregulation in Amyotrophic Lateral Sclerosis. *Front*

Genet. 22 de enero de 2019;9:712.

88. Jo M, Lee S, Jeon YM, Kim S, Kwon Y, Kim HJ. The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. *Exp Mol Med.* octubre de 2020;52(10):1652-62.
89. Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. *Front Mol Neurosci.* 14 de febrero de 2019;12:25.
90. Liao YZ, Ma J, Dou JZ. The Role of TDP-43 in Neurodegenerative Disease. *Mol Neurobiol.* julio de 2022;59(7):4223-41.
91. Sephton CF, Good SK, Atkin S, Dewey CM, Mayer P, Herz J, et al. TDP-43 Is a Developmentally Regulated Protein Essential for Early Embryonic Development. *J Biol Chem.* febrero de 2010;285(9):6826-34.
92. Pinarbasi ES, Cağatay T, Fung HYJ, Li YC, Chook YM, Thomas PJ. Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization. *Sci Rep.* 4 de mayo de 2018;8(1):7083.
93. Kuo PH, Doudeva LG, Wang YT, Shen CKJ, Yuan HS. Structural insights into TDP-43 in nucleic-acid binding and domain interactions. *Nucleic Acids Res.* 21 de enero de 2009;37(6):1799-808.
94. McAlary L, Plotkin SS, Yerbury JJ, Cashman NR. Prion-Like Propagation of Protein Misfolding and Aggregation in Amyotrophic Lateral Sclerosis. *Front Mol Neurosci.* 1 de noviembre de 2019;12:262.
95. Jucker M, Walker LC. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. *Nat Neurosci.* octubre de 2018;21(10):1341-9.
96. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. *Science.* 21 de marzo de 2008;319(5870):1668-72.
97. Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. *Nature.* 10 de noviembre de 2016;539(7628):197-206.
98. Chen-Plotkin AS, Lee VMY, Trojanowski JQ. TAR DNA-binding protein 43 in neurodegenerative disease. *Nat Rev Neurol.* abril de 2010;6(4):211-20.
99. Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR, et al. Staging TDP-43 pathology in Alzheimer's disease. *Acta Neuropathol (Berl).* marzo de 2014;127(3):441-50.
100. Nag S, Yu L, Boyle PA, Leurgans SE, Bennett DA, Schneider JA. TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer's disease. *Acta Neuropathol Commun.* diciembre de 2018;6(1):33.
101. Zhang L, Chen Y, Liu M, Wang Y, Peng G. TDP-43 and Limbic-Predominant Age-Related TDP-43 Encephalopathy. *Front Aging Neurosci.* 14 de enero de 2020;11:376.
102. Nag S, Yu L, Capuano AW, Wilson RS, Leurgans SE, Bennett DA, et al. Hippocampal sclerosis and TDP -43 pathology in aging and A Izheimer disease. *Ann Neurol.* junio de 2015;77(6):942-52.
103. McKee AC, Gavett BE, Stern RA, Nowinski CJ, Cantu RC, Kowall NW, et al. TDP-43 Proteinopathy and Motor Neuron Disease in Chronic Traumatic Encephalopathy. *J Neuropathol Exp Neurol.* septiembre de 2010;69(9):918-29.
104. Gao F, Hu M, Zhang J, Hashem J, Chen C. TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. *Acta Neuropathol (Berl).* agosto de 2022;144(2):187-210.
105. Gelpi E, Reinecke R, Gaig C, Iranzo A, Sabater L, Molina-Porcel L, et al. Neuropathological spectrum of anti-IgLON5 disease and stages of brainstem tau pathology: updated neuropathological research criteria of the disease-related tauopathy. *Acta Neuropathol (Berl).* 14 de octubre de 2024;148(1):53.
106. Sista SR, Crum B, Aboseif A, Devine MF, Zekerdou A, Hammami MB, et al.

Motor-neuron-disease-like phenotype associated with IgLON5 disease. *J Neurol.* noviembre de 2022;269(11):6139-44.

107. Geser F, Robinson JL, Malunda JA, Xie SX, Clark CM, Kwong LK, et al. Pathological 43-kDa Transactivation Response DNA-Binding Protein in Older Adults With and Without Severe Mental Illness. *Arch Neurol* [Internet]. 1 de octubre de 2010 [citado 2 de noviembre de 2024];67(10). Disponible en: <http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneurol.2010.254>
108. Gao J, Wang L, Huntley ML, Perry G, Wang X. Pathomechanisms of TDP-43 in neurodegeneration. *J Neurochem.* julio de 2018;146(1):7-20.
109. Buratti E. TDP-43 post-translational modifications in health and disease. *Expert Opin Ther Targets.* 4 de marzo de 2018;22(3):279-93.
110. Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. *Neuron.* abril de 2019;102(2):294-320.
111. Nguyen HP, Van Broeckhoven C, Van Der Zee J. ALS Genes in the Genomic Era and their Implications for FTD. *Trends Genet.* junio de 2018;34(6):404-23.
112. Xue YC, Ng CS, Xiang P, Liu H, Zhang K, Mohamud Y, et al. Dysregulation of RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. *Front Mol Neurosci.* 29 de mayo de 2020;13:78.
113. Nolan M, Talbot K, Ansorge O. Pathogenesis of FUS-associated ALS and FTD: insights from rodent models. *Acta Neuropathol Commun.* diciembre de 2016;4(1):99.
114. Dudman J, Qi X. Stress Granule Dysregulation in Amyotrophic Lateral Sclerosis. *Front Cell Neurosci.* 17 de noviembre de 2020;14:598517.
115. Wolozin B, Ivanov P. Stress granules and neurodegeneration. *Nat Rev Neurosci.* noviembre de 2019;20(11):649-66.
116. Fan AC, Leung AKL. RNA Granules and Diseases: A Case Study of Stress Granules in ALS and FTLD. En: Yeo GW, editor. *RNA Processing* [Internet]. Cham: Springer International Publishing; 2016 [citado 31 de octubre de 2024]. p. 263-96. (Advances in Experimental Medicine and Biology; vol. 907). Disponible en: http://link.springer.com/10.1007/978-3-319-29073-7_11
117. Yu QY, Ye LQ, Li HL. Molecular interaction of stress granules with Tau and autophagy in Alzheimer's disease. *Neurochem Int.* julio de 2022;157:105342.
118. Yan X, Kuster D, Mohanty P, Nijssen J, Pombo-García K, Rizuan A, et al. Intra-condensate demixing of TDP-43 inside stress granules generates pathological aggregates [Internet]. 2024 [citado 31 de octubre de 2024]. Disponible en: <http://biorxiv.org/lookup/doi/10.1101/2024.01.23.576837>
119. Gray F, Duyckaerts C, de Girolami U. *Escourolle & Poirier's Manual of Basic Neuropathology.* Fifth. Oxford University Press; 2014.
120. Ellison D, Love S, Chimelli LMC, et al. *Neuropathology: a reference text of CNS pathology.* Elsevier Health Sciences; 2012.
121. Murayama S, Mori H, Ihara Y, Bouldin TW, Suzuki K, Tomonaga M. Immunocytochemical and ultrastructural studies of lower motor neurons in amyotrophic lateral sclerosis. *Ann Neurol.* febrero de 1990;27(2):137-48.
122. Tomonaga M, Saito M, Yoshimura M, Shimada H, Tohgi H. Ultrastructure of the Bunina bodies in anterior horn cells of amyotrophic lateral sclerosis. *Acta Neuropathol (Berl).* 1978;42(2):81-6.
123. Philips T, Rothstein JD. Glial cells in amyotrophic lateral sclerosis. *Exp Neurol.* diciembre de 2014;262:111-20.
124. Schiffer D, Fiano V. Astrogliosis in ALS: possible interpretations according to pathogenetic hypotheses. *Amyotroph Lateral Scler Other Motor Neuron Disord.* marzo de 2004;5(1):22-5.
125. Lasiene J, Yamanaka K. Glial Cells in Amyotrophic Lateral Sclerosis. *Neurol Res*

Int. 2011;2011:1-7.

126. Dols-Icardo O, Montal V, Sirisi S, López-Pernas G, Cervera-Carles L, Querol-Vilaseca M, et al. Motor cortex transcriptome reveals microglial key events in amyotrophic lateral sclerosis. *Neurol Neuroimmunol Neuroinflammation*. 3 de septiembre de 2020;7(5):e829.

127. Cairns NJ, Bigio EH, Mackenzie IRA, Neumann M, Lee VMY, Hatanpaa KJ, et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. *Acta Neuropathol (Berl)*. julio de 2007;114(1):5-22.

128. Bahia VS, Takada LT, Deramecourt V. Neuropathology of frontotemporal lobar degeneration: A review. *Dement Neuropsychol*. marzo de 2013;7(1):19-26.

129. Geser F, Lee VMY, Trojanowski JQ. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: A spectrum of TDP-43 proteinopathies. *Neuropathology*. abril de 2010;30(2):103-12.

130. Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Tredici KD. Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. *Nat Rev Neurol*. diciembre de 2013;9(12):708-14.

131. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. *Ann Neurol*. julio de 2013;74(1):20-38.

132. Miki Y, Mori F, Nunomura J, Ookawa K, Yajima N, Yagihashi S, et al. Sporadic amyotrophic lateral sclerosis with pallido-nigro-luysian degeneration: A TDP-43 immunohistochemical study. *Neuropathology*. abril de 2010;30(2):149-53.

133. Piao Y, Wakabayashi K, Kakita A, Yamada M, Hayashi S, Morita T, et al. Neuropathology with Clinical Correlations of Sporadic Amyotrophic Lateral Sclerosis: 102 Autopsy Cases Examined Between 1962 and 2000. *Brain Pathol*. enero de 2003;13(1):10-22.

134. Mackenzie IR, Neumann M. Reappraisal of TDP-43 pathology in FTLD-U subtypes. *Acta Neuropathol (Berl)*. julio de 2017;134(1):79-96.

135. Young AL, Vogel JW, Robinson JL, McMillan CT, Ossenkoppele R, Wolk DA, et al. Data-driven neuropathological staging and subtyping of TDP-43 proteinopathies. *Brain*. 3 de julio de 2023;146(7):2975-88.

136. Lee EB, Porta S, Michael Baer G, Xu Y, Suh E, Kwong LK, et al. Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. *Acta Neuropathol (Berl)*. julio de 2017;134(1):65-78.

137. Mackenzie IRA, Frick P, Neumann M. The neuropathology associated with repeat expansions in the C9ORF72 gene. *Acta Neuropathol (Berl)*. marzo de 2014;127(3):347-57.

138. Ramos-Campoy O, Ávila-Polo R, Grau-Rivera O, Antonell A, Clarimón J, Rojas-García R, et al. Systematic Screening of Ubiquitin/p62 Aggregates in Cerebellar Cortex Expands the Neuropathological Phenotype of the C9orf72 Expansion Mutation. *J Neuropathol Exp Neurol*. 1 de agosto de 2018;77(8):703-9.

139. Ince PG, Highley JR, Kirby J, Wharton SB, Takahashi H, Strong MJ, et al. Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. *Acta Neuropathol (Berl)*. diciembre de 2011;122(6):657-71.

140. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. *Nat Neurosci*. noviembre de 2010;13(11):1396-403.

141. Law WJ. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. *Brief Funct Genomic Proteomic*. 23 de febrero de 2006;5(1):8-14.

142. Mackenzie IRA, Ansorge O, Strong M, Bilbao J, Zinman L, Ang LC, et al. Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two

distinct patterns correlating with disease severity and mutation. *Acta Neuropathol (Berl)*. julio de 2011;122(1):87-98.

143. Van Langenhove T, Van Der Zee J, Sleegers K, Engelborghs S, Vandenberghe R, Gijsselinck I, et al. Genetic contribution of *FUS* to frontotemporal lobar degeneration. *Neurology*. 2 de febrero de 2010;74(5):366-71.

144. Borrego-Écija S, Cortés-Vicente E, Cervera-Carles L, Clarimón J, Gámez J, Batlle J, et al. Does ALS-FUS without *FUS* mutation represent ALS-FET? Report of three cases. *Neuropathol Appl Neurobiol*. junio de 2019;45(4):421-6.

145. Geser F, Martinez-Lage M, Robinson J, Uryu K, Neumann M, Brandmeir NJ, et al. Clinical and Pathological Continuum of Multisystem TDP-43 Proteinopathies. *Arch Neurol [Internet]*. 1 de febrero de 2009 [citado 3 de noviembre de 2024];66(2). Disponible en:
<http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneurol.2008.558>

146. Cooper-Knock J, Hewitt C, Highley JR, Brockington A, Milano A, Man S, et al. Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. *Brain*. marzo de 2012;135(3):751-64.

147. Geser F, Brandmeir NJ, Kwong LK, Martinez-Lage M, Elman L, McCluskey L, et al. Evidence of Multisystem Disorder in Whole-Brain Map of Pathological TDP-43 in Amyotrophic Lateral Sclerosis. *Arch Neurol [Internet]*. 1 de mayo de 2008 [citado 3 de noviembre de 2024];65(5). Disponible en:
<http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneur.65.5.636>

148. Brandmeir NJ, Geser F, Kwong LK, Zimmerman E, Qian J, Lee VMY, et al. Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease. *Acta Neuropathol (Berl)*. 29 de noviembre de 2007;115(1):123-31.

149. Coan G, Mitchell CS. An Assessment of Possible Neuropathology and Clinical Relationships in 46 Sporadic Amyotrophic Lateral Sclerosis Patient Autopsies. *Neurodegener Dis*. 2015;15(5):301-12.

150. Seo SW, Thibodeau MP, Perry DC, Hua A, Sidhu M, Sible I, et al. Early vs late age at onset frontotemporal dementia and frontotemporal lobar degeneration. *Neurology [Internet]*. 20 de marzo de 2018 [citado 3 de noviembre de 2024];90(12). Disponible en: <https://www.neurology.org/doi/10.1212/WNL.0000000000005163>

151. Nishihira Y, Tan CF, Onodera O, Toyoshima Y, Yamada M, Morita T, et al. Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. *Acta Neuropathol (Berl)*. agosto de 2008;116(2):169-82.

152. Johnson JK, Diehl J, Mendez MF, Neuhaus J, Shapira JS, Forman M, et al. Frontotemporal Lobar Degeneration: Demographic Characteristics of 353 Patients. *Arch Neurol [Internet]*. 1 de junio de 2005 [citado 3 de noviembre de 2024];62(6). Disponible en:
<http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneur.62.6.925>

153. Baborie A, Griffiths TD, Jaros E, McKeith IG, Burn DJ, Richardson A, et al. Pathological correlates of frontotemporal lobar degeneration in the elderly. *Acta Neuropathol (Berl)*. marzo de 2011;121(3):365-71.

154. Tan RH, McCann H, Shepherd CE, Pinkerton M, Mazumder S, Devenney EM, et al. Heterogeneity of cortical pTDP-43 inclusion morphologies in amyotrophic lateral sclerosis. *Acta Neuropathol Commun*. 13 de noviembre de 2023;11(1):180.

155. Keller MF, Ferrucci L, Singleton AB, Tienari PJ, Laaksovirta H, Restagno G, et al. Genome-Wide Analysis of the Heritability of Amyotrophic Lateral Sclerosis. *JAMA Neurol*. 1 de septiembre de 2014;71(9):1123.

156. Al-Chalabi A, Fang F, Hanby MF, Leigh PN, Shaw CE, Ye W, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. *J Neurol Neurosurg Psychiatry*. 1 de diciembre de 2010;81(12):1324-6.

157. Al-Chalabi A, Calvo A, Chio A, Colville S, Ellis CM, Hardiman O, et al. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. *Lancet Neurol.* noviembre de 2014;13(11):1108-13.

158. Chiò A, Mazzini L, D'Alfonso S, Corrado L, Canosa A, Moglia C, et al. The multistep hypothesis of ALS revisited: The role of genetic mutations. *Neurology [Internet]*. 14 de agosto de 2018 [citado 28 de octubre de 2024];91(7). Disponible en: <https://www.neurology.org/doi/10.1212/WNL.00000000000005996>

159. Byrne S, Walsh C, Lynch C, Bede P, Elamin M, Kenna K, et al. Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. *J Neurol Neurosurg Psychiatry*. 1 de junio de 2011;82(6):623-7.

160. Wang H, Guan L, Deng M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy. *Front Neurosci*. 12 de mayo de 2023;17:1170996.

161. Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. *Nat Neurosci*. enero de 2014;17(1):17-23.

162. Van Der Zee J, Gijsselinck I, Van Moesvelde S, Perrone F, Dillen L, Heeman B, et al. *TBK1* Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. *Hum Mutat*. marzo de 2017;38(3):297-309.

163. Dols-Icardo O, García-Redondo A, Rojas-García R, Borrego-Hernández D, Illán-Gala I, Muñoz-Blanco JL, et al. Analysis of known amyotrophic lateral sclerosis and frontotemporal dementia genes reveals a substantial genetic burden in patients manifesting both diseases not carrying the *C9orf72* expansion mutation. *J Neurol Neurosurg Psychiatry*. febrero de 2018;89(2):162-8.

164. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of *C9ORF72* Causes Chromosome 9p-Linked FTD and ALS. *Neuron*. octubre de 2011;72(2):245-56.

165. Zampatti S, Peconi C, Campopiano R, Gambardella S, Caltagirone C, Giardina E. *C9orf72*-Related Neurodegenerative Diseases: From Clinical Diagnosis to Therapeutic Strategies. *Front Aging Neurosci*. 10 de junio de 2022;14:907122.

166. Van Blitterswijk M, Van Es MA, Hennekam EAM, Dooijes D, Van Rheenen W, Medic J, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. *Hum Mol Genet*. 1 de septiembre de 2012;21(17):3776-84.

167. Leblond CS, Kaneb HM, Dion PA, Rouleau GA. Dissection of genetic factors associated with amyotrophic lateral sclerosis. *Exp Neurol*. diciembre de 2014;262:91-101.

168. Belzil VV, Katzman RB, Petrucci L. ALS and FTD: an epigenetic perspective. *Acta Neuropathol (Berl)*. octubre de 2016;132(4):487-502.

169. Younes K, Miller BL. Frontotemporal Dementia. *Psychiatr Clin North Am*. junio de 2020;43(2):331-44.

170. Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. *Neurology*. 11 de junio de 2002;58(11):1615-21.

171. Snowden JS, Adams J, Harris J, Thompson JC, Rollinson S, Richardson A, et al. Distinct clinical and pathological phenotypes in frontotemporal dementia associated with MAPT, PGRN and *C9orf72* mutations. *Amyotroph Lateral Scler Front Degener*. 27 de noviembre de 2015;16(7-8):497-505.

172. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. *Nature*. agosto de 2006;442(7105):916-9.

173. Greaves CV, Rohrer JD. An update on genetic frontotemporal dementia. *J Neurol*. agosto de 2019;266(8):2075-86.

174. Breevoort S, Gibson S, Figueroa K, Bromberg M, Pulst S. Expanding Clinical

Spectrum of C9ORF72 -Related Disorders and Promising Therapeutic Strategies: A Review. *Neurol Genet.* junio de 2022;8(3):e670.

175. Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, et al. Large C9orf72 Hexanucleotide Repeat Expansions Are Seen in Multiple Neurodegenerative Syndromes and Are More Frequent Than Expected in the UK Population. *Am J Hum Genet.* marzo de 2013;92(3):345-53.

176. Devenney EM, Ahmed RM, Halliday G, Piguet O, Kiernan MC, Hodges JR. Psychiatric disorders in C9orf72 kindreds: Study of 1,414 family members. *Neurology* [Internet]. 16 de octubre de 2018 [citado 1 de noviembre de 2024];91(16). Disponible en: <https://www.neurology.org/doi/10.1212/WNL.0000000000006344>

177. Murphy NA, Arthur KC, Tienari PJ, Houlden H, Chiò A, Traynor BJ. Age-related penetrance of the C9orf72 repeat expansion. *Sci Rep.* 18 de mayo de 2017;7(1):2116.

178. Smeyers J, Banchi EG, Latouche M. C9ORF72: What It Is, What It Does, and Why It Matters. *Front Cell Neurosci.* 5 de mayo de 2021;15:661447.

179. Shi Y, Lin S, Staats KA, Li Y, Chang WH, Hung ST, et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. *Nat Med.* marzo de 2018;24(3):313-25.

180. Freibaum BD, Taylor JP. The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. *Front Mol Neurosci* [Internet]. 13 de febrero de 2017 [citado 1 de noviembre de 2024];10. Disponible en: <http://journal.frontiersin.org/article/10.3389/fnmol.2017.00035/full>

181. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. *Nature.* 4 de marzo de 1993;362(6415):59-62.

182. Kwiatkowski TJ, Bosco DA, LeClerc AL, Tamrazian E, Vanderburg CR, Russ C, et al. Mutations in the *FUS/TLS* Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. *Science.* 27 de febrero de 2009;323(5918):1205-8.

183. Project Mine ALS Sequencing Consortium. Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. *Eur J Hum Genet.* octubre de 2018;26(10):1537-46.

184. PARALS Registry, SLALOM Group, SLAP Registry, FALS Sequencing Consortium, SLAGEN Consortium, NNIPPS Study Group, et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. *Nat Genet.* septiembre de 2016;48(9):1043-8.

185. Josephs KA, Parisi JE, Knopman DS, Boeve BF, Petersen RC, Dickson DW. Clinically Undetected Motor Neuron Disease in Pathologically Proven Frontotemporal Lobar Degeneration With Motor Neuron Disease. *Arch Neurol.* 1 de abril de 2006;63(4):506.

186. Lee J, Madhavan A, Krajewski E, Lingenerter S. Assessment of dysarthria and dysphagia in patients with amyotrophic lateral sclerosis: Review of the current evidence. *Muscle Nerve.* noviembre de 2021;64(5):520-31.

187. Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. *Brain.* 1 de julio de 2018;141(7):2181-93.

188. Takeda T, Seilhean D, Le Ber I, Millecamps S, Sazdovitch V, Kitagawa K, et al. Amygdala TDP-43 Pathology in Frontotemporal Lobar Degeneration and Motor Neuron Disease. *J Neuropathol Exp Neurol.* septiembre de 2017;76(9):800-12.

189. Al-Chalabi A, Hardiman O, Kiernan MC, Chiò A, Rix-Brooks B, Van Den Berg LH. Amyotrophic lateral sclerosis: moving towards a new classification system. *Lancet Neurol.* octubre de 2016;15(11):1182-94.

190. Hu WT, Seelaar H, Josephs KA, Knopman DS, Boeve BF, Sorenson EJ, et al.

Survival Profiles of Patients With Frontotemporal Dementia and Motor Neuron Disease. Arch Neurol [Internet]. 1 de noviembre de 2009 [citado 7 de noviembre de 2024];66(11). Disponible en: <http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneurol.2009.253>

191. Cooper-Knock J, Moll T, Ramesh T, Castelli L, Beer A, Robins H, et al. Mutations in the Glycosyltransferase Domain of GLT8D1 Are Associated with Familial Amyotrophic Lateral Sclerosis. *Cell Rep.* febrero de 2019;26(9):2298-2306.e5.

192. Li W, Liu Z, Sun W, Yuan Y, Hu Y, Ni J, et al. Mutation analysis of GLT8D1 and ARPP21 genes in amyotrophic lateral sclerosis patients from mainland China. *Neurobiol Aging.* enero de 2020;85:156.e1-156.e4.

193. Chan Moi Fat S, McCann EP, Williams KL, Henden L, Twine NA, Bauer DC, et al. Genetic analysis of GLT8D1 and ARPP21 in Australian familial and sporadic amyotrophic lateral sclerosis. *Neurobiol Aging.* mayo de 2021;101:297.e9-297.e11.

194. Rehfeld F, Maticzka D, Grosser S, Knauff P, Eravci M, Vida I, et al. The RNA-binding protein ARPP21 controls dendritic branching by functionally opposing the miRNA it hosts. *Nat Commun.* 26 de marzo de 2018;9(1):1235.

195. Everett WH, Bucelli RC. Tofersen for SOD1 ALS. *Neurodegener Dis Manag.* 2 de septiembre de 2024;14(5):149-60.

UAB
Universitat Autònoma de Barcelona